Science.gov

Sample records for airs temperature retrievals

  1. High Lapse Rates in AIRS Retrieved Temperatures in Cold Air Outbreaks

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of AIRS provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of AIRS temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low air temperatures, large sea-air temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the AIRS experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold air mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows AIRS to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface air temperatures. The bias in near-surface air temperature is seen to be independent of sea surface temperature, however. AIRS is therefore sensitive to air-sea temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct AIRS near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this air-sea temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to

  2. Retrieval of air temperatures from crowd-sourced battery temperatures of cell phones

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James; Leijnse, Hidde; Uijlenhoet, Remko; Steeneveld, Gert-Jan; Horn, Berthold K. P.

    2013-04-01

    Accurate air temperature observations are important for urban meteorology, for example to study the urban heat island and adverse effects of high temperatures on human health. The number of available temperature observations is often relatively limited. A new development is presented to derive temperature information for the urban canopy from an alternative source: cell phones. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. Results are presented for Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree Celsius. This shows that monitoring air temperatures employing an Android application holds great promise. Since 75% of the world's population has a cell phone, 20% of the land surface of the earth has cellular telephone coverage, and 500 million devices use the Android operating system, there is a huge potential for measuring air temperatures employing cell phones. This could eventually lead to real-time world-wide temperature maps.

  3. Bias Correction for Assimilation of Retrieved AIRS Profiles of Temperature and Humidity

    NASA Technical Reports Server (NTRS)

    Blakenship, Clay; Zavodsky, Bradley; Blackwell, William

    2014-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral radiometer aboard NASA's Aqua satellite designed to measure atmospheric profiles of temperature and humidity. AIRS retrievals are assimilated into the Weather Research and Forecasting (WRF) model over the North Pacific for some cases involving "atmospheric rivers". These events bring a large flux of water vapor to the west coast of North America and often lead to extreme precipitation in the coastal mountain ranges. An advantage of assimilating retrievals rather than radiances is that information in partly cloudy fields of view can be used. Two different Level 2 AIRS retrieval products are compared: the Version 6 AIRS Science Team standard retrievals and a neural net retrieval from MIT. Before assimilation, a bias correction is applied to adjust each layer of retrieved temperature and humidity so the layer mean values agree with a short-term model climatology. WRF runs assimilating each of the products are compared against each other and against a control run with no assimilation. Forecasts are against ERA reanalyses.

  4. Bias Correction for Assimilation of Retrieved AIRS Profiles of Temperature and Humidity

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay; Zavodsky, Brad; Blackwell, William

    2014-01-01

    Atmospheric Infrared Sounder (AIRS) is a hyperspectral radiometer aboard NASA's Aqua satellite designed to measure atmospheric profiles of temperature and humidity. AIRS retrievals are assimilated into the Weather Research and Forecasting (WRF) model over the North Pacific for some cases involving "atmospheric rivers". These events bring a large flux of water vapor to the west coast of North America and often lead to extreme precipitation in the coastal mountain ranges. An advantage of assimilating retrievals rather than radiances is that information in partly cloudy fields of view can be used. Two different Level 2 AIRS retrieval products are compared: the Version 6 AIRS Science Team standard retrievals and a neural net retrieval from MIT. Before assimilation, a bias correction is applied to adjust each layer of retrieved temperature and humidity so the layer mean values agree with a short-term model climatology. WRF runs assimilating each of the products are compared against each other and against a control run with no assimilation. This paper will describe the bias correction technique and results from forecasts evaluated by validation against a Total Precipitable Water (TPW) product from CIRA and against Global Forecast System (GFS) analyses.

  5. Improved Temperature Sounding and Quality Control Methodology Using AIRS/AMSU Data: The AIRS Science Team Version 5 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John M.; Iredell, Lena; Keita, Fricky

    2009-01-01

    This paper describes the AIRS Science Team Version 5 retrieval algorithm in terms of its three most significant improvements over the methodology used in the AIRS Science Team Version 4 retrieval algorithm. Improved physics in Version 5 allows for use of AIRS clear column radiances in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of clear column radiances .R(sub i) for all channels. This new approach allows for the generation of more accurate values of .R(sub i) and T(p) under most cloud conditions. Secondly, Version 5 contains a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 also contains for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology, referred to as AIRS Version 5 AO, was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Results are shown comparing the relative performance of the AIRS Version 4, Version 5, and Version 5 AO for the single day, January 25, 2003. The Goddard DISC is now generating and distributing products derived using the AIRS Science Team Version 5 retrieval algorithm. This paper also described the Quality Control flags contained in the DISC AIRS/AMSU retrieval products and their intended use for scientific research purposes.

  6. Temperature retrieval from Rayleigh-Brillouin scattering profiles measured in air.

    PubMed

    Witschas, Benjamin; Gu, Ziyu; Ubachs, Wim

    2014-12-01

    In order to investigate the performance of two different algorithms for retrieving temperature from Rayleigh-Brillouin (RB) line shapes, RB scattering measurements have been performed in air at a wavelength of 403 nm, for a temperature range from 257 K to 330 K, and atmospherically relevant pressures from 871 hPa to 1013 hPa. One algorithm, based on the Tenti S6 line shape model, shows very good accordance with the reference temperature. In particular, the absolute difference is always less than 2 K. A linear correlation yields a slope of 1.01 ± 0.02 and thus clearly demonstrates the reliability of the retrieval procedure. The second algorithm, based on an analytical line shape model, shows larger discrepancies of up to 9.9 K and is thus not useful at its present stage. The possible reasons for these discrepancies and improvements of the analytical model are discussed. The obtained outcomes are additionally verified with previously performed RB measurements in air, at 366 nm, temperatures from 255 K to 338 K and pressures from 643 hPa to 826 hPa [Appl. Opt. 52, 4640 (2013)]. The presented results are of relevance for future lidar studies that might utilize RB scattering for retrieving atmospheric temperature profiles with high accuracy. PMID:25606897

  7. Assessing the Potential of the AIRS Retrieved Surface Temperature for 6-Hour Average Temperature Forecast in River Forecast Centers

    NASA Astrophysics Data System (ADS)

    Ding, F.; Theobald, M.; Vollmer, B.; Savtchenko, A. K.; Hearty, T. J.; Esfandiari, A. E.

    2012-12-01

    Producing timely and accurate water forecast and information is the mission of National Weather Service River Forecast Centers (NWS RFCs) of National Oceanic and Atmospheric Administration (NOAA). The river forecast system in RFCs requires average surface temperature in the fixed 6-hour period 000-0600, 0600-1200, 1200-1800, and 1200-0000 UTC. The current logic of RFC temperature forecast relies on ingest of point values of daytime maximum and nighttime minimum temperature. Meanwhile, the mean temperature for the 6-hour period is estimated from a weighted average of daytime maximum and nighttime minimum temperature. The Atmospheric Infrared Sounder (AIRS) in the first high spectral resolution infrared sounder on board the Aqua satellite which was launched in May 2002 and follows a Sun-synchronous polar orbit. It is aimed to produce high resolution atmospheric profile and surface atmospheric parameters. As Aqua crosses the equator at about 1330 and 0130 local time, the AIRS retrieved surface temperature may represent daytime maximum and nighttime minimum value. Comparing to point observation from surface weather stations which are often sparse over the less-populated area and are unevenly distributed, satellite may obtain better area averaged observation. This test study assesses the potential of using AIRS retrieved surface temperature to forecast 6-hour average temperature for NWS RFCs. The California Nevada RFC is selected due to the poor coverage of surface observation in the mountainous region and spring snow melting. The study focuses on the March to May spring season when water from snowpack melting often plays important role in flood. AIRS retrieved temperature and surface weather station data set will be used to derive statistical weighting coefficient for 6-hour average temperature forecast. The resulting forecast biases and errors will be the main indicators of the potential usage. All study results will be presented in the meeting.

  8. Recent improvements in retrieving near-surface air temperature and humidity using microwave remote sensing (Invited)

    NASA Astrophysics Data System (ADS)

    Roberts, J. B.

    2010-12-01

    Detailed studies of the energy and water cycles require accurate estimation of the turbulent fluxes of moisture and heat across the atmosphere-ocean interface at regional to basin scale. Providing estimates of these latent and sensible heat fluxes over the global ocean necessitates the use of satellite or reanalysis-based estimates of near surface variables. Recent studies have shown that errors in the surface (10 meter) estimates of humidity and temperature are currently the largest sources of uncertainty in the production of turbulent fluxes from satellite observations. Therefore, emphasis has been placed on reducing the systematic errors in the retrieval of these parameters from microwave radiometers. This study discusses recent improvements in the retrieval of air temperature and humidity through improvements in the choice of algorithms (linear vs. nonlinear) and the choice of microwave sensors. Particular focus is placed on improvements using a neural network approach with a single sensor (Special Sensor Microwave/Imager) and the use of combined sensors from the NASA AQUA satellite platform. The latter algorithm utilizes the unique sampling available on AQUA from the Advanced Microwave Scanning Radiometer (AMSR-E) and the Advanced Microwave Sounding Unit (AMSU-A). Current estimates of uncertainty in the near-surface humidity and temperature from single and multi-sensor approaches are discussed and used to estimate errors in the turbulent fluxes.

  9. Recent Improvements in Retrieving Near-Surface Air Temperature and Humidity Using Microwave Remote Sensing

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent

    2010-01-01

    Detailed studies of the energy and water cycles require accurate estimation of the turbulent fluxes of moisture and heat across the atmosphere-ocean interface at regional to basin scale. Providing estimates of these latent and sensible heat fluxes over the global ocean necessitates the use of satellite or reanalysis-based estimates of near surface variables. Recent studies have shown that errors in the surface (10 meter)estimates of humidity and temperature are currently the largest sources of uncertainty in the production of turbulent fluxes from satellite observations. Therefore, emphasis has been placed on reducing the systematic errors in the retrieval of these parameters from microwave radiometers. This study discusses recent improvements in the retrieval of air temperature and humidity through improvements in the choice of algorithms (linear vs. nonlinear) and the choice of microwave sensors. Particular focus is placed on improvements using a neural network approach with a single sensor (Special Sensor Microwave/Imager) and the use of combined sensors from the NASA AQUA satellite platform. The latter algorithm utilizes the unique sampling available on AQUA from the Advanced Microwave Scanning Radiometer (AMSR-E) and the Advanced Microwave Sounding Unit (AMSU-A). Current estimates of uncertainty in the near-surface humidity and temperature from single and multi-sensor approaches are discussed and used to estimate errors in the turbulent fluxes.

  10. Neural network temperature and moisture retrieval algorithm validation for AIRS/AMSU and CrIS/ATMS

    NASA Astrophysics Data System (ADS)

    Milstein, Adam B.; Blackwell, William J.

    2016-02-01

    We present comprehensive validation results for the recently introduced neural network technique for retrieving vertical profiles of atmospheric temperature and water vapor from spaceborne microwave and hyperspectral infrared sounding instruments. This technique is currently in operational use as the first guess for the NASA Atmospheric Infrared Sounder (AIRS) Science Team Version 6 retrieval algorithm. The validation incorporates a variety of data sources, independent from the algorithm training set, as ground truth, including global numerical weather analyses generated by the European Center for Medium-Range Weather Forecasts, synoptic radiosonde measurements, and radiosondes dedicated for validation. The results demonstrate significant performance improvements over the previous AIRS/advanced microwave sounding unit (AMSU) operational sounding retrievals in both retrieval error and also show comparable vertical resolution. We also present initial neural network retrieval results using measurements from the Cross-Track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) currently flying on the Suomi National Polar-orbiting Partnership satellite.

  11. Improved Surface and Tropospheric Temperatures Determined Using Only Shortwave Channels: The AIRS Science Team Version-6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2011-01-01

    The Goddard DISC has generated products derived from AIRS/AMSU-A observations, starting from September 2002 when the AIRS instrument became stable, using the AIRS Science Team Version-5 retrieval algorithm. The AIRS Science Team Version-6 retrieval algorithm will be finalized in September 2011. This paper describes some of the significant improvements contained in the Version-6 retrieval algorithm, compared to that used in Version-5, with an emphasis on the improvement of atmospheric temperature profiles, ocean and land surface skin temperatures, and ocean and land surface spectral emissivities. AIRS contains 2378 spectral channels covering portions of the spectral region 650 cm(sup -1) (15.38 micrometers) - 2665 cm(sup -1) (3.752 micrometers). These spectral regions contain significant absorption features from two CO2 absorption bands, the 15 micrometers (longwave) CO2 band, and the 4.3 micrometers (shortwave) CO2 absorption band. There are also two atmospheric window regions, the 12 micrometer - 8 micrometer (longwave) window, and the 4.17 micrometer - 3.75 micrometer (shortwave) window. Historically, determination of surface and atmospheric temperatures from satellite observations was performed using primarily observations in the longwave window and CO2 absorption regions. According to cloud clearing theory, more accurate soundings of both surface skin and atmospheric temperatures can be obtained under partial cloud cover conditions if one uses observations in longwave channels to determine coefficients which generate cloud cleared radiances R(sup ^)(sub i) for all channels, and uses R(sup ^)(sub i) only from shortwave channels in the determination of surface and atmospheric temperatures. This procedure is now being used in the AIRS Version-6 Retrieval Algorithm. Results are presented for both daytime and nighttime conditions showing improved Version-6 surface and atmospheric soundings under partial cloud cover.

  12. Improving forecast skill by assimilation of quality-controlled AIRS temperature retrievals under partially cloudy conditions

    NASA Astrophysics Data System (ADS)

    Reale, O.; Susskind, J.; Rosenberg, R.; Brin, E.; Liu, E.; Riishojgaard, L. P.; Terry, J.; Jusem, J. C.

    2008-04-01

    The National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite is now recognized as an important contributor towards the improvement of weather forecasts. At this time only a small fraction of the total data produced by AIRS is being used by operational weather systems. In fact, in addition to effects of thinning and quality control, the only AIRS data assimilated are radiance observations of channels unaffected by clouds. Observations in mid-lower tropospheric sounding AIRS channels are assimilated primarily under completely clear-sky conditions, thus imposing a very severe limitation on the horizontal distribution of the AIRS-derived information. In this work it is shown that the ability to derive accurate temperature profiles from AIRS observations in partially cloud-contaminated areas can be utilized to further improve the impact of AIRS observations in a global model and forecasting system. The analyses produced by assimilating AIRS temperature profiles obtained under partial cloud cover result in a substantially colder representation of the northern hemisphere lower midtroposphere at higher latitudes. This temperature difference has a strong impact, through hydrostatic adjustment, in the midtropospheric geopotential heights, which causes a different representation of the polar vortex especially over northeastern Siberia and Alaska. The AIRS-induced anomaly propagates through the model's dynamics producing improved 5-day forecasts.

  13. Improving Forecast Skill by Assimilation of Quality-controlled AIRS Temperature Retrievals under Partially Cloudy Conditions

    NASA Technical Reports Server (NTRS)

    Reale, O.; Susskind, J.; Rosenberg, R.; Brin, E.; Riishojgaard, L.; Liu, E.; Terry, J.; Jusem, J. C.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite has been long recognized as an important contributor towards the improvement of weather forecasts. At this time only a small fraction of the total data produced by AIRS is being used by operational weather systems. In fact, in addition to effects of thinning and quality control, the only AIRS data assimilated are radiance observations of channels unaffected by clouds. Observations in mid-lower tropospheric sounding AIRS channels are assimilated primarily under completely clear-sky conditions, thus imposing a very severe limitation on the horizontal distribution of the AIRS-derived information. In this work it is shown that the ability to derive accurate temperature profiles from AIRS observations in partially cloud-contaminated areas can be utilized to further improve the impact of AIRS observations in a global model and forecasting system. The analyses produced by assimilating AIRS temperature profiles obtained under partial cloud cover result in a substantially colder representation of the northern hemisphere lower midtroposphere at higher latitudes. This temperature difference has a strong impact, through hydrostatic adjustment, in the midtropospheric geopotential heights, which causes a different representation of the polar vortex especially over northeastern Siberia and Alaska. The AIRS-induced anomaly propagates through the model's dynamics producing improved 5-day forecasts.

  14. The validation of AIRS retrievals

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Olsen, Edward T.; Chen, Luke L.; Hagan, Denise E.; Fishbein, Evan; McMillin, Larry; Zhou, Jiang; McMillan, Wallace W.

    2003-01-01

    The initial validation of Atmospheric Infrared Sounder (SIRS) experiment retrievals were completed in August 2003 as part of public release of version 3.0 data. The associated analyses are reported at http://daac.gsfc.nasa.gov/atmodyn/airs/, where data may be accessed. Here we describe some of those analyses, with an emphasis on cloud cleared radiances, atmospheric temperature profiles, sea surface temperature, total water vapor and atmospheric water vapor profiles. The results are applicable over ocean in the latitude band +/-40 degrees.

  15. A Case Study of the Impact of AIRS Temperature Retrievals on Numerical Weather Prediction

    NASA Technical Reports Server (NTRS)

    Reale, O.; Atlas, R.; Jusem, J. C.

    2004-01-01

    Large errors in numerical weather prediction are often associated with explosive cyclogenesis. Most studes focus on the under-forecasting error, i.e. cases of rapidly developing cyclones which are poorly predicted in numerical models. However, the over-forecasting error (i.e., to predict an explosively developing cyclone which does not occur in reality) is a very common error that severely impacts the forecasting skill of all models and may also present economic costs if associated with operational forecasting. Unnecessary precautions taken by marine activities can result in severe economic loss. Moreover, frequent occurrence of over-forecasting can undermine the reliance on operational weather forecasting. Therefore, it is important to understand and reduce the prdctions of extreme weather associated with explosive cyclones which do not actually develop. In this study we choose a very prominent case of over-forecasting error in the northwestern Pacific. A 960 hPa cyclone develops in less than 24 hour in the 5-day forecast, with a deepening rate of about 30 hPa in one day. The cyclone is not versed in the analyses and is thus a case of severe over-forecasting. By assimilating AIRS data, the error is largely eliminated. By following the propagation of the anomaly that generates the spurious cyclone, it is found that a small mid-tropospheric geopotential height negative anomaly over the northern part of the Indian subcontinent in the initial conditions, propagates westward, is amplified by orography, and generates a very intense jet streak in the subtropical jet stream, with consequent explosive cyclogenesis over the Pacific. The AIRS assimilation eliminates this anomaly that may have been caused by erroneous upper-air data, and represents the jet stream more correctly. The energy associated with the jet is distributed over a much broader area and as a consequence a multiple, but much more moderate cyclogenesis is observed.

  16. Application of Artificial Neural Networks to the Development of Improved Multi-Sensor Retrievals of Near-Surface Air Temperature and Humidity Over Ocean

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Robertson, Franklin R.; Clayson, Carol Anne

    2012-01-01

    Improved estimates of near-surface air temperature and air humidity are critical to the development of more accurate turbulent surface heat fluxes over the ocean. Recent progress in retrieving these parameters has been made through the application of artificial neural networks (ANN) and the use of multi-sensor passive microwave observations. Details are provided on the development of an improved retrieval algorithm that applies the nonlinear statistical ANN methodology to a set of observations from the Advanced Microwave Scanning Radiometer (AMSR-E) and the Advanced Microwave Sounding Unit (AMSU-A) that are currently available from the NASA AQUA satellite platform. Statistical inversion techniques require an adequate training dataset to properly capture embedded physical relationships. The development of multiple training datasets containing only in-situ observations, only synthetic observations produced using the Community Radiative Transfer Model (CRTM), or a mixture of each is discussed. An intercomparison of results using each training dataset is provided to highlight the relative advantages and disadvantages of each methodology. Particular emphasis will be placed on the development of retrievals in cloudy versus clear-sky conditions. Near-surface air temperature and humidity retrievals using the multi-sensor ANN algorithms are compared to previous linear and non-linear retrieval schemes.

  17. Sensitivity Analysis for Atmospheric Infrared Sounder (AIRS) CO2 Retrieval

    NASA Technical Reports Server (NTRS)

    Gat, Ilana

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a thermal infrared sensor able to retrieve the daily atmospheric state globally for clear as well as partially cloudy field-of-views. The AIRS spectrometer has 2378 channels sensing from 15.4 micrometers to 3.7 micrometers, of which a small subset in the 15 micrometers region has been selected, to date, for CO2 retrieval. To improve upon the current retrieval method, we extended the retrieval calculations to include a prior estimate component and developed a channel ranking system to optimize the channels and number of channels used. The channel ranking system uses a mathematical formalism to rapidly process and assess the retrieval potential of large numbers of channels. Implementing this system, we identifed a larger optimized subset of AIRS channels that can decrease retrieval errors and minimize the overall sensitivity to other iridescent contributors, such as water vapor, ozone, and atmospheric temperature. This methodology selects channels globally by accounting for the latitudinal, longitudinal, and seasonal dependencies of the subset. The new methodology increases accuracy in AIRS CO2 as well as other retrievals and enables the extension of retrieved CO2 vertical profiles to altitudes ranging from the lower troposphere to upper stratosphere. The extended retrieval method for CO2 vertical profile estimation using a maximum-likelihood estimation method. We use model data to demonstrate the beneficial impact of the extended retrieval method using the new channel ranking system on CO2 retrieval.

  18. AEROMETRIC INFORMATION RETRIEVAL SYSTEM (AIRS) - GRAPHICS

    EPA Science Inventory

    Aerometric Information Retrieval System (AIRS) is a computer-based repository of information about airborne pollution in the United States and various World Health Organization (WHO) member countries. AIRS is administered by the U.S. Environmental Protection Agency, and runs on t...

  19. AEROMETRIC INFORMATION RETRIEVAL SYSTEM (AIRS) EXECUTIVE

    EPA Science Inventory

    Aerometric Information Retrieval System (AIRS) is a computer-based repository of information about airborne pollution in the United States and various World Health Organization (WHO) member countries. AIRS is administered by the U.S. Environmental Protection Agency, and runs on t...

  20. AEROMETRIC INFORMATION RETRIEVAL SYSTEM - AIRS FACILITY SUBSYSTEM

    EPA Science Inventory

    Aerometric Information Retrieval System (AIRS) is a computer-based repository of information about airborne pollution in the United States and various World Health Organization (WHO) member countries. AIRS is administered by the U.S. Environmental Protection Agency, and runs on t...

  1. Retrieval of the land surface-air temperature difference from high spatial resolution satellite observations over complex surfaces in the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Gao, Shiyang; Chen, Haishan; Yu, Jiahui; Tang, Qun

    2015-08-01

    The temperature difference between the surface and the air (dTsa) directly indicates the intensity and heat fluxes of land-atmosphere interaction. Considering the effects of surface characteristics and air condition on the surface temperature, using 1 km data from the MOD02 thermal infrared bands of the EOS/moderate-resolution imaging spectroradiometer (MODIS) on satellite Aqua, other MODIS products and temperatures observed from weather stations at 14:00 China standard time (CST), the study analyzes the relationships between dTsa and brightness temperature in the infrared atmospheric window band (Bt31 and Bt32), the water vapor band (Bt28), the atmospheric temperature band (Bt25), and the CO2 band (Bt34). A model estimating dTsa is built. The model coefficients are estimated for 96 stations representing 96 sets of surface and atmospheric conditions, and 71 sets of coefficients among them passing 90% confidence levels of estimating dTsa are selected as references. Combined with the probabilistic neural network (PNN) method and nine parameters reflecting surface characteristics in one season and month, the Tibetan Plateau surface is classified as 71 types with 71 sets of coefficients. PNN is certified an efficient classification method for multiple parameters and mass data. Based on PNN and estimated model, estimated dTsa shows 1.36°C root-mean-square error and a standard deviation of 0.74°C, and dTsa distribution exhibits all centers with peak value and valley value of European Centre for Medium-Range Weather Forecasts, MYD07, and simple regression model results, showing its superiority. The model is worthy of further exploration and application in an effort to advance the retrieval of surface energy fluxes from remote sensing.

  2. AIRS Retrieval Validation During the EAQUATE

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L.; Cuomo, Vincenzo; Taylor, Jonathan P.; Barnet, Christopher D.; DiGirolamo, Paolo; Pappalardo, Gelsomina; Larar, Allen M.; Liu, Xu; Newman, Stuart M.

    2006-01-01

    Atmospheric and surface thermodynamic parameters retrieved with advanced hyperspectral remote sensors of Earth observing satellites are critical for weather prediction and scientific research. The retrieval algorithms and retrieved parameters from satellite sounders must be validated to demonstrate the capability and accuracy of both observation and data processing systems. The European AQUA Thermodynamic Experiment (EAQUATE) was conducted mainly for validation of the Atmospheric InfraRed Sounder (AIRS) on the AQUA satellite, but also for assessment of validation systems of both ground-based and aircraft-based instruments which will be used for other satellite systems such as the Infrared Atmospheric Sounding Interferometer (IASI) on the European MetOp satellite, the Cross-track Infrared Sounder (CrIS) from the NPOESS Preparatory Project and the following NPOESS series of satellites. Detailed inter-comparisons were conducted and presented using different retrieval methodologies: measurements from airborne ultraspectral Fourier transform spectrometers, aircraft in-situ instruments, dedicated dropsondes and radiosondes, and ground based Raman Lidar, as well as from the European Center for Medium range Weather Forecasting (ECMWF) modeled thermal structures. The results of this study not only illustrate the quality of the measurements and retrieval products but also demonstrate the capability of these validation systems which are put in place to validate current and future hyperspectral sounding instruments and their scientific products.

  3. Improved surface parameter retrievals using AIRS/AMSU data

    NASA Astrophysics Data System (ADS)

    Susskind, Joel; Blaisdell, John

    2008-04-01

    The AIRS Science Team Version 5.0 retrieval algorithm became operational at the Goddard DAAC in July 2007 generating near real-time products from analysis of AIRS/AMSU sounding data. This algorithm contains many significant theoretical advances over the AIRS Science Team Version 4.0 retrieval algorithm used previously. Two very significant developments of Version 5 are: 1) the development and implementation of an improved Radiative Transfer Algorithm (RTA) which allows for accurate treatment of non-Local Thermodynamic Equilibrium (non-LTE) effects on shortwave sounding channels; and 2) the development of methodology to obtain very accurate case by case product error estimates which are in turn used for quality control. These theoretical improvements taken together enabled a new methodology to be developed which further improves soundings in partially cloudy conditions. In this methodology, longwave CO2 channel observations in the spectral region 700 cm -1 to 750 cm -1 are used exclusively for cloud clearing purposes, while shortwave CO II channels in the spectral region 2195 cm -1 to 2395 cm -1 are used for temperature sounding purposes. This allows for accurate temperature soundings under more difficult cloud conditions. This paper further improves on the methodology used in Version 5 to derive surface skin temperature and surface spectral emissivity from AIRS/AMSU observations. Now, following the approach used to improve tropospheric temperature profiles, surface skin temperature is also derived using only shortwave window channels. This produces improved surface parameters, both day and night, compared to what was obtained in Version 5. These in turn result in improved boundary layer temperatures and retrieved total O 3 burden.

  4. On the Biases in AIRS Retrieval of Ozone (Work in Progress)

    NASA Technical Reports Server (NTRS)

    Irion, Bill F.; Gunson, Michael; Newchurch, Michael; Na, Sunmi

    2006-01-01

    A viewgraph presentation on various biases in AIRS retrieval of ozone is given. The topics include: 1) AIRS captures UTLS ozone events; 2) Simplified AIRS retrieval of ozone; 3) How much is AIRS getting its skill in ozone from regression? biases are similar to ECMWF; 4) How does channel selection and damping affect the retrieval?; 5) Decreasing damping worsens results in upper"trop/lower"strat with current channel selection; 6) If results worse with decreased damping, let s give the retrieval more information; 7) Adding channels at current damping doesn't change anything.; 8) Adding channels and decreasing damping gives mixed results; 9) Let's look at the radiances and their uncertainties ; 10) Systematic biases in radiance uncertainties?; 11) Surface Temperature; 12) Temperature Profile; and 13) x vs Brightness Temperature Error Optimal Estimation Retrieval.

  5. Inter-comparison between AIRS and IASI through Retrieved Parameters

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Smith, William L.; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Steve

    2008-01-01

    A State-of-the-art retrieval algorithm dealing with all-weather conditions has been applied to satellite/aircraft instruments retrieving cloud/surface and atmospheric conditions. High quality retrievals have been achieved from IASI data. Surface, cloud, and atmospheric structure and variation are well captured by IASI measurements and/or retrievals. The same retrieval algorithm is also applied to AIRS for retrieval inter-comparison. Both AIRS and IASI have a similar FOV size but AIRS has a higher horizontal resolution. AIRS data can be interpolated to IASI horizontal resolution for inter-comparison at the same geophysical locations, however a temporal variation between AIRS and IASI observations need to be considered. JAIVEx has employed aircraft to obtain the atmospheric variation filling the temporal gap between two satellites. First results show that both AIRS and IASI have a very similar vertical resolving power, atmospheric conditions are well captured by both instruments, and radiances are well calibrated. AIRS data shown in retrievals (e.g., surface emissivity and moisture) have a relatively higher noise level. Since the this type of retrieval is very sensitive to its radiance quality, retrieval products inter-comparison is an effective way to identify/compare their radiance quality, in terms of a combination of spectral resolution and noise level, and to assess instrument performance. Additional validation analyses are needed to provide more-definitive conclusions.

  6. Atmospheric profile retrieval with AIRS data and validation at the ARM CART site

    NASA Astrophysics Data System (ADS)

    Wu, Xuebao; Li, Jun; Zhang, Wenjian; Wang, Fang

    2005-09-01

    The physical retrieval algorithm of atmospheric temperature and moisture distribution from the Atmospheric InfraRed Sounder (AIRS) radiances is presented. The retrieval algorithm is applied to AIRS clearsky radiance measurements. The algorithm employs a statistical retrieval followed by a subsequent nonlinear physical retrieval. The regression coefficients for the statistical retrieval are derived from a dataset of global radiosonde observations (RAOBs) comprising atmospheric temperature, moisture, and ozone profiles. Evaluation of the retrieved profiles is performed by a comparison with RAOBs from the Atmospheric Radiation Measurement (ARM) Program Cloud And Radiation Testbed (CART) in Oklahoma, U. S. A. Comparisons show that the physicallybased AIRS retrievals agree with the RAOBs from the ARM CART site with a Root Mean Square Error (RMSE) of 1 K on average for temperature profiles above 850 hPa, and approximately 10% on average for relative humidity profiles. With its improved spectral resolution, AIRS depicts more detailed structure than the current Geostationary Operational Environmental Satellite (GOES) sounder when comparing AIRS sounding retrievals with the operational GOES sounding products.

  7. Improved Stratospheric Temperature Retrievals for Climate Reanalysis

    NASA Technical Reports Server (NTRS)

    Rokke, L.; Joiner, J.

    1999-01-01

    The Data Assimilation Office (DAO) is embarking on plans to generate a twenty year reanalysis data set of climatic atmospheric variables. One of the focus points will be in the evaluation of the dynamics of the stratosphere. The Stratospheric Sounding Unit (SSU), flown as part of the TIROS Operational Vertical Sounder (TOVS), is one of the primary stratospheric temperature sensors flown consistently throughout the reanalysis period. Seven unique sensors made the measurements over time, with individual instrument characteristics that need to be addressed. The stratospheric temperatures being assimilated across satellite platforms will profoundly impact the reanalysis dynamical fields. To attempt to quantify aspects of instrument and retrieval bias we are carefully collecting and analyzing all available information on the sensors, their instrument anomalies, forward model errors and retrieval biases. For the retrieval of stratospheric temperatures, we adapted the minimum variance approach of Jazwinski (1970) and Rodgers (1976) and applied it to the SSU soundings. In our algorithm, the state vector contains an initial guess of temperature from a model six hour forecast provided by the Goddard EOS Data Assimilation System (GEOS/DAS). This is combined with an a priori covariance matrix, a forward model parameterization, and specifications of instrument noise characteristics. A quasi-Newtonian iteration is used to obtain convergence of the retrieved state to the measurement vector. This algorithm also enables us to analyze and address the systematic errors associated with the unique characteristics of the cell pressures on the individual SSU instruments and the resolving power of the instruments to vertical gradients in the stratosphere. The preliminary results of the improved retrievals and their assimilation as well as baseline calculations of bias and rms error between the NESDIS operational product and col-located ground measurements will be presented.

  8. Crowdsourcing urban air temperatures from smartphone battery temperatures

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James C. R.; Leijnse, Hidde; Steeneveld, Gert-Jan; Horn, Berthold K. P.; Uijlenhoet, Remko

    2014-05-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. It has been shown that a straightforward heat transfer model can be employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. The methodology has been applied to Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree

  9. Compressive Earth observatory: An insight from AIRS/AMSU retrievals

    NASA Astrophysics Data System (ADS)

    Ebtehaj, Ardeshir M.; Foufoula-Georgiou, Efi; Lerman, Gilad; Bras, Rafael L.

    2015-01-01

    We demonstrate that the global fields of temperature, humidity, and geopotential heights admit a nearly sparse representation in the wavelet domain, offering a viable path forward to explore new paradigms of sparsity-promoting data assimilation and compressive recovery of land surface-atmospheric states from space. We illustrate this idea using retrieval products of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) on board the Aqua satellite. The results reveal that the sparsity of the fields of temperature is relatively pressure independent, while atmospheric humidity and geopotential heights are typically sparser at lower and higher pressure levels, respectively. We provide evidence that these land-atmospheric states can be accurately estimated using a small set of measurements by taking advantage of their sparsity prior.

  10. SAGE II stratospheric density and temperature retrieval experiment

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. P.; Chu, W. P.; Lenoble, J.; Nagatani, R. M.; Chanin, M. L.; Barnes, R. A.; Schmidlin, F.; Rowland, M.

    1992-01-01

    This paper describes a stratospheric density and temperature retrieval experiment based on the solar occultation measurement of the Stratospheric Aerosol and Gas Experiment (SAGE II). The entire retrieval analysis involves two inversion steps: the vertical structure inversion, which derives the profile of local atmospheric extinction from SAGE II limb optical depth data, and the species inversion, which inverts the concentration of air molecules, aerosols, ozone, and nitrogen dioxide from the derived atmospheric extinction at five SAGE II short wavelengths (0.385, 0.448, 0.453, 0.525, and 0.600 microns). The derived density profile is then used to infer the temperature distribution, assuming that the atmosphere is in hydrostatic equilibrium and obeys the ideal gas law. The temperature profiles retrieved from the SAGE II observations are compared with near-coincident, in both time and space, French Rayleigh lidar and NASA Wallops Flight Facility rocket datasonde soundings as well as the National Meteorological Center (NMC) data analyses. The results indicate that the mean SAGE II temperature agrees with the mean lidar measurements to within 2 C at altitudes from 30.5 to 52.5 km. The SAGE II and datasonde observations agree to within about 4 C in approximately the same altitude region.

  11. [Retrieval of the Optical Thickness and Cloud Top Height of Cirrus Clouds Based on AIRS IR High Spectral Resolution Data].

    PubMed

    Cao, Ya-nan; Wei, He-li; Dai, Cong-ming; Zhang, Xue-hai

    2015-05-01

    A study was carried out to retrieve optical thickness and cloud top height of cirrus clouds from the Atmospheric Infrared Sounder (AIRS) high spectral resolution data in 1070~1135 cm-1 IR band using a Combined Atmospheric Radiative Transfer model (CART) by brightness temperature difference between model simulation and AIRS observation. The research is based on AIRS LIB high spectral infrared observation data combined with Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product data. Brightness temperature spectra based, on the retrieved cirrus optical thickness and cloud top height were simulated and compared with brightness temperature spectra of AIRS observation in the 650~1150 cm-1 band. The cirrus optical thickness and cloud top height retrieved were compared with brightness temperature of AIRS for channel 760 (900.56 cm-1, 11. 1 µm) and cirrus reflectance of MODIS cloud product. And cloud top height retrieved was compared with cloud top height from MODIS. Results show that the brightness temperature spectra simulated were basically consistent with AIRS observation under the condition of retrieval in the 650~1150 cm-1 band. It means that CART can be used to simulate AIRS brightness temperature spectra. The retrieved cirrus parameters are consistent with brightness temperature of AIRS for channel 11. 1 µm with low brightness temperature corresponding to large cirrus optical thickness and high cloud top height. And the retrieved cirrus parameters are consistent with cirrus reflectance of MODIS cloud product with high cirrus reflectance corresponding to large cirrus optical thickness and high cloud top height. Correlation coefficient of brightness temperature between retrieved cloud top height and MODIS cloud top height was relatively high. They are mostly located in the range of 8. 5~11.5 km, and their probability distribution trend is approximately identical. CART model is feasible to retrieve cirrus properties, and the retrieval is reliable. PMID

  12. Surface Temperature variability from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Dang, V. T.; Aumann, H. H.

    2015-12-01

    To address the existence and possible causes of the climate hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014for the day and night conditions. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We compare the satellite data with the new surface data produced by Karl et al. (2015) who denies the reality of the climate hiatus. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The day-night difference is an indicator of the anthropogenic trend. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  13. Significant Advances in the AIRS Science Team Version-6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena; Molnar, Gyula

    2012-01-01

    AIRS/AMSU is the state of the art infrared and microwave atmospheric sounding system flying aboard EOS Aqua. The Goddard DISC has analyzed AIRS/AMSU observations, covering the period September 2002 until the present, using the AIRS Science Team Version-S retrieval algorithm. These products have been used by many researchers to make significant advances in both climate and weather applications. The AIRS Science Team Version-6 Retrieval, which will become operation in mid-20l2, contains many significant theoretical and practical improvements compared to Version-5 which should further enhance the utility of AIRS products for both climate and weather applications. In particular, major changes have been made with regard to the algOrithms used to 1) derive surface skin temperature and surface spectral emissivity; 2) generate the initial state used to start the retrieval procedure; 3) compute Outgoing Longwave Radiation; and 4) determine Quality Control. This paper will describe these advances found in the AIRS Version-6 retrieval algorithm and demonstrate the improvement of AIRS Version-6 products compared to those obtained using Version-5,

  14. Pattern recognition in the satellite temperature retrieval problem

    NASA Technical Reports Server (NTRS)

    Thompson, O. E.; Goldberg, M. D.; Dazlich, D. A.

    1985-01-01

    Pattern recognition procedures have been developed in order to improve the first-guess fields for satellite temperature retrievals. The first procedure is used to select one or more historical radiosonde temperature profiles as analog estimates of ambient thermal structure. The second procedure is used to organize a priori data into shape-coherent pattern libraries using structural information inherent in the data itself. On the basis of independent tests of about 800 temperature retrievals, it was found that: (1) the pattern recognition techniques reduced first-guess profile errors by nearly 50 percent in comparison with traditional partitioning schemes; and (2) with regression and physical-iterative retrieval algorithms, however, the effect of pattern recognition on temperature retrieval error was insignificant. Analysis of individual retrieval errors showed that poor retrievals may outweigh the potential benefits of both pattern recognition techniques.

  15. Variability in AIRS-retrieved cloud amount and thermodynamic phase over west versus east Antarctica influenced by the SAM

    NASA Astrophysics Data System (ADS)

    Lubin, Dan; Kahn, Brian H.; Lazzara, Matthew A.; Rowe, Penny; Walden, Von P.

    2015-02-01

    In a sample of summertime cloud retrievals from the NASA Atmospheric Infrared Sounder (AIRS), a positive Southern Annular Mode (SAM) index polarity is associated with greater cloud frequency and larger effective cloud fraction over West Antarctica compared with a negative SAM index polarity. The opposite result appears over the high East Antarctic Plateau. Comparing AIRS-retrieved cloud fraction with Antarctic Automatic Weather Station 2 m air temperature data, a positive and significant correlation is found over most of West Antarctica, signifying a longwave heating effect of clouds. Over East Antarctica correlations between Sun elevation and 2 m air temperature are strongest, consistent with lower cloud amount.

  16. CrIS/ATMS Retrievals Using the Latest AIRS/AMSU Retrieval Methodology

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis C.; Blaisdell, John; Iredell, Lena

    2015-01-01

    This research is being done under the NPP Science Team Proposal: Analysis of CrISATMS Using an AIRS Version 6-like Retrieval Algorithm Objective: Generate a long term CrISATMS level-3 data set that is consistent with that of AIRSAMSU Approach: Adapt the currently operational AIRS Science Team Version-6 Retrieval Algorithm, or an improved version of it, for use with CrISATMS data. Metric: Generate monthly mean level-3 CrISATMS climate data sets and evaluate the results by comparison of monthly mean AIRSAMSU and CrISATMS products, and more significantly, their inter-annual differences and, eventually, anomaly time series. The goal is consistency between the AIRSAMSU and CrISATMS climate data sets.

  17. Using optimal estimation method for upper atmospheric Lidar temperature retrieval

    NASA Astrophysics Data System (ADS)

    Zou, Rongshi; Pan, Weilin; Qiao, Shuai

    2016-07-01

    Conventional ground based Rayleigh lidar temperature retrieval use integrate technique, which has limitations that necessitate abandoning temperatures retrieved at the greatest heights due to the assumption of a seeding value required to initialize the integration at the highest altitude. Here we suggests the use of a method that can incorporate information from various sources to improve the quality of the retrieval result. This approach inverts lidar equation via optimal estimation method(OEM) based on Bayesian theory together with Gaussian statistical model. It presents many advantages over the conventional ones: 1) the possibility of incorporating information from multiple heterogeneous sources; 2) provides diagnostic information about retrieval qualities; 3) ability of determining vertical resolution and maximum height to which the retrieval is mostly independent of the a priori profile. This paper compares one-hour temperature profiles retrieved using conventional and optimal estimation methods at Golmud, Qinghai province, China. Results show that OEM results show a better agreement with SABER profile compared with conventional one, in some region it is much lower than SABER profile, which is a very different results compared with previous studies, further studies are needed to explain this phenomenon. The success of applying OEM on temperature retrieval is a validation for using as retrieval framework in large synthetic observation systems including various active remote sensing instruments by incorporating all available measurement information into the model and analyze groups of measurements simultaneously to improve the results.

  18. Comparative Results of AIRS AMSU and CrIS/ATMS Retrievals Using a Scientifically Equivalent Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena

    2016-01-01

    The AIRS Science Team Version 6 retrieval algorithm is currently producing high quality level-3 Climate Data Records (CDRs) from AIRSAMSU which are critical for understanding climate processes. The AIRS Science Team is finalizing an improved Version-7 retrieval algorithm to reprocess all old and future AIRS data. AIRS CDRs should eventually cover the period September 2002 through at least 2020. CrISATMS is the only scheduled follow on to AIRSAMSU. The objective of this research is to prepare for generation of a long term CrISATMS level-3 data using a finalized retrieval algorithm that is scientifically equivalent to AIRSAMSU Version-7.

  19. Impact of Mineral Aerosol on TOVS Temperature and Moisture Retrievals

    NASA Technical Reports Server (NTRS)

    Weaver, Clark; Joiner, Joanna; Ginoux, Paul; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Mineral aerosols can absorb significant radiation in the infrared spectrum. Consequently, there may be errors in TIROS Operational Vertical Sounder (TOVS) retrieved temperature and moisture profiles in regions of heavy dust loading. We first investigate the potential error in the temperature retrievals and secondly attempt to account for radiative effects of the dust in retrievals. Information on the dust concentrations and size distribution is from the Goddard Chemistry Aerosol Transport model (GOCART). Aerosol optical parameters are calculated from mie scattering theory assuming a composition of pure illite. We used the cloud-clearing DAO TOVS retrieval system of Joiner and Rokke (2000). It is incorporated into the Data Assimilation Office (DAO) Finite Volume Data Assimilation System (NDAS). The advantage of this approach is that the first guess temperature profile used in the TOVS retrieval are forecasted temperatures from the previous assimilated time period. The operational DAO fvDAS was run for 10 days during June 2001 during a period of dust outbreaks off the coast of Africa over the Atlantic. The observed minus the forecast (O-F) brightness temperature at each TOVS channel is a measure of the accuracy of the retrieval. Since there was no account of dust during this operational run, a dependence of O-F on the estimated atmospheric dust concentrations from GOCART indicates that the dust is contaminating the TOVS retrievals. Channels that measure the surface temperature, lower tropospheric temperature and moisture show this dependence. There are errors in the retrieved brightness temperature of a half a degree or more during heavy dust loading conditions. The forecasted brightness temperature is always greater than the observed value. The radiative transfer module used in the DAO TOVS retrieval system was modified to account for dust. We calculate the sensitivity of the brightness temperature of the TOVS channels to the dust concentrations in GOCART assuming

  20. Results from CrIS-ATMS Obtained Using the AIRS Science Team Retrieval Methodology

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis C.; Iredell, Lena

    2013-01-01

    which significantly improved results of AIRS Version-6. Version-5.70 CrIS/ATMS temperature profile and surface skin temperature retrievals are of very good quality, and are better than AIRS Version-5 retrievals, but are still significantly poorer than those of AIRS Version-6. CrIS/ATMS retrievals should improve when a Neural-Net start-up system is ready for use. We also examined CrIS/ATMS retrievals generated by NOAA using their NUCAPS retrieval algorithm, which is based on earlier versions of the AIRS Science Team retrieval algorithms. We show that the NUCAPS algorithm as currently configured is not well suited for climate monitoring purposes.

  1. Evaluation of Skin Temperatures Retrieved from GOES-8

    NASA Technical Reports Server (NTRS)

    Suggs, Ronnie, J.; Jedlovec, G. J.; Lapenta, W. M.; Haines, S. L.

    2000-01-01

    Skin temperatures derived from geostationary satellites have the potential of providing the temporal and spatial resolution needed for model assimilation. To adequately assess the potential improvements in numerical model forecasts that can be made by assimilating satellite data, an estimate of the accuracy of the skin temperature product is necessary. A particular skin temperature algorithm, the Physical Split Window Technique, that uses the longwave infrared channels of the GOES Imager has shown promise in recent model assimilation studies to provide land surface temperatures with reasonable accuracy. A comparison of retrieved GOES-8 skin temperatures from this algorithm with in situ measurements is presented. Various retrieval algorithm issues are addressed including surface emissivity

  2. A Comparison of the Red Green Blue Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Folmer, Michael; Dunion, Jason

    2014-01-01

    The Red Green Blue (RGB) Air Mass imagery is derived from multiple channels or paired channel differences. Multiple channel products typically provide additional information than a single channel can provide alone. The RGB Air Mass imagery simplifies the interpretation of temperature and moisture characteristics of air masses surrounding synoptic and mesoscale features. Despite the ease of interpretation of multiple channel products, the combination of channels and channel differences means the resulting product does not represent a quantity or physical parameter such as brightness temperature in conventional single channel satellite imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles of temperature, moisture, and ozone can provide insight about the air mass represented on the RGB Air Mass product and provide confidence in the product and representation of air masses despite the lack of a quantity to reference for interpretation. This study focuses on RGB Air Mass analysis of Hurricane Sandy as it moved north along the U.S. East Coast, while transitioning to a hybrid extratropical storm. Soundings and total column ozone retrievals were analyzed using data from the Cross-track Infrared and Advanced Technology Microwave Sounder Suite (CrIMSS) on the Suomi National Polar Orbiting Partnership satellite and the Atmospheric Infrared Sounder (AIRS) on the National Aeronautics and Space Administration Aqua satellite along with dropsondes that were collected from National Oceanic and Atmospheric Administration and Air Force research aircraft. By comparing these datasets to the RGB Air Mass, it is possible to capture quantitative information that could help in analyzing the synoptic environment enough to diagnose the onset of extratropical transition. This was done by identifying any stratospheric air intrusions (SAIs) that existed in the vicinity of Sandy as the wind

  3. Intraosseous access in trauma by air medical retrieval teams.

    PubMed

    Sheils, Mark; Ross, Mark; Eatough, Noel; Caputo, Nicholas D

    2014-01-01

    Trauma accounts for a significant portion of overall mortality globally. Hemorrhage is the second major cause of mortality in the prehospital environment. Air medical retrieval services throughout the world have been developed to help improve the outcomes of patients suffering from a broad range of medical conditions, including trauma. These services often utilize intraosseous (IO) devices as an alternative means for access of both medically ill and traumatically injured patients in austere environments. However, studies have suggested that IO access cannot reach acceptable rates for massive transfusion. We review the subject to find the answer of whether IO access should be performed by air medical teams in the prehospital setting, or would central venous (CVC) access be more appropriate? We decided to assess the literature for capacity of IO access to meet resuscitation requirements in the prehospital management of trauma. We also decided to compare the insertion and complication characteristics of IO and CVC access. PMID:25049187

  4. Retrieving atmospheric temperature parameters from DMSP SSM/T-1 data with a neural network

    NASA Astrophysics Data System (ADS)

    Butler, Charles T.; Meredith, R. v. Z.; Stogryn, A. P.

    1996-03-01

    We show that back propagation neural networks yield excellent results in retrieving air temperature profiles from the 1000- to the 10-mbar pressure level together with tropopause temperature and pressure estimates using operational brightness temperature data from the special sensor microwave imager (SSM/T-1) microwave radiometer. Networks trained and tested with matched SSM/T-1 measurements and conventional soundings collected during a 30-day period in northern hemisphere winter demonstrated rms retrieval errors substantially less than 2K from 500 to 30 mbar, significantly outperforming an operational linear-regression algorithm using the same data. Tropopause temperature and pressure retrievals showed rms errors of 2.15 K and 19.8 mbar. Retrieval accuracy of the system exceeds that of any previously published method using DMSP data and equals or exceeds that of published studies using data from other satellite-borne instruments. Retrieval accuracy under possible failure modes of the SSM/T-1 instrument are also considered, as are ways to recover from single-channel loss. The method retrieves profiles and tropopause parameters with acceptable accuracy either if the brightness-temperature of any one channel is offset 1.5 K or more or if uniform random noise with a peak value in the range (-2, 2) K is added in one channel. The performance is only slightly more impaired if all channels are simultaneously offset up to 1.5 K or if random noise in the range (-1, 1) K is simultaneously added to all channels. Under single-channel loss the retrieval error can be made small at virtually every level by retrieving with a network trained without that channel.

  5. Retrieval of the Nitrous Oxide Profiles using the AIRS Data in China

    NASA Astrophysics Data System (ADS)

    Chen, L.; Ma, P.; Tao, J.; Li, X.; Zhang, Y.; Wang, Z.; Li, S.; Xiong, X.

    2014-12-01

    As an important greenhouse gas and ozone-depleting substance, the 100-year global warming potential of Nitrous Oxide (N2O) is almost 300 times higher than that of carbon dioxide. However, there are still large uncertainties about the quantitative N2O emission and its feedback to climate change due to the coarse ground-based network. This approach attempts to retrieve the N2O profiles from the Atmospheric InfraRed Sounder (AIRS) data. First, the sensitivity of atmospheric temperature and humidity profiles and surface parameters between two spectral absorption bands were simulated by using the radiative transfer model. Second, the eigenvector regression algorithm is used to construct a priori state. Third, an optimal estimate method was developed based on the band selection of N2O. Finally, we compared our retrieved AIRS profiles with HIPPO data, and analyzed the seasonal and annual N2O distribution in China from 2004 to 2013.

  6. Downscaling Thermal Infrared Radiance for Subpixel Land Surface Temperature Retrieval

    PubMed Central

    Liu, Desheng; Pu, Ruiliang

    2008-01-01

    Land surface temperature (LST) retrieved from satellite thermal sensors often consists of mixed temperature components. Retrieving subpixel LST is therefore needed in various environmental and ecological studies. In this paper, we developed two methods for downscaling coarse resolution thermal infrared (TIR) radiance for the purpose of subpixel temperature retrieval. The first method was developed on the basis of a scale-invariant physical model on TIR radiance. The second method was based on a statistical relationship between TIR radiance and land cover fraction at high spatial resolution. The two methods were applied to downscale simulated 990-m ASTER TIR data to 90-m resolution. When validated against the original 90-m ASTER TIR data, the results revealed that both downscaling methods were successful in capturing the general patterns of the original data and resolving considerable spatial details. Further quantitative assessments indicated a strong agreement between the true values and the estimated values by both methods.

  7. Lessons Learned from AIRS: Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2011-01-01

    This slide presentation reviews the use of shortwave channels available to the Atmospheric Infrared Sounder (AIRS) to improve the determination of surface and atmospheric temperatures. The AIRS instrument is compared with the Infrared Atmospheric Sounding Interferometer (IASI) on-board the MetOp-A satellite. The objectives of the AIRS/AMSU were to (1) provide real time observations to improve numerical weather prediction via data assimilation, (2) Provide observations to measure and explain interannual variability and trends and (3) Use of AIRS product error estimates allows for QC optimized for each application. Successive versions in the AIRS retrieval methodology have shown significant improvement.

  8. Trends in Surface Temperature from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Aumann, H. H.

    2014-12-01

    To address possible causes of the current hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We find a monotonic positive trend for the land temperature but not for the ocean temperature. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The results are compared with the model studies. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  9. Retrieval of Atmospheric Temperature from Airborne Microwave Radiometer Observations

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Schreier, Franz; Kenntner, Mareike; Fix, Andreas; Trautmann, Thomas

    2015-06-01

    Atmospheric temperature is a key geophysical parameter associated with fields such as meteorology, climatology, or photochemistry. There exist several techniques to measure temperature profiles. In the case of microwave remote sensing, the vertical temperature profile can be estimated from thermal emission lines of molecular oxygen. The MTP (Microwave Temperature Profiler) instrument is an airborne radiometer developed at the Jet Propulsion Laboratory (JPL), United States. The instrument passively measures natural thermal emission from oxygen lines at 3 frequencies and at a selection of 10 viewing angles (from near zenith to near nadir). MTP has participated in hundreds of flights, including on DLR’s Falcon and HALO aircrafts. These flights have provided data of the vertical temperature distribution from the troposphere to the lower stratosphere with a good temporal and spatial resolution. In this work, we present temperature retrievals based on the Tikhonov-type regularized nonlinear least squares fitting method. In particular, Jacobians (i.e. temperature derivatives) are evaluated by means of automatic differentiation. The retrieval performance from the MTP measurements is analyzed by using synthetic data. Besides, the vertical sensitivity of the temperature retrieval is studied by weighting functions characterizing the sensitivity of the transmission at different frequencies with respect to changes of altitude levels.

  10. Retrieval of Atmospheric and Surface Parameters from AIRS/AMSU/HSB Data Under Cloudy Conditions

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Barnet, Chris; Blaisdell, John; Einaudi, Franco (Technical Monitor)

    2002-01-01

    New state of the art methodology is described to analyze AIRS/AMSU/HSB data in the presence of multiple cloud formations. The methodology forms the basis for the AIRS Science Team algorithm which will be used to analyze AIRS/AMSU/HSB data on EOS Aqua. The cloud clearing methodology requires no knowledge of the spectral properties of the clouds. The basic retrieval methodology is general and extracts the maximum information from the radiances, consistent with the channel noise covariance matrix. The retrieval methodology minimizes the dependence of the solution on the first guess field and the first guess error characteristics. Results are shown for AIRS Science Team simulation studies with multiple cloud formations. These simulation studies imply that clear column radiances can be reconstructed under partial cloud cover with an accuracy comparable to single spot channel noise in the temperature and water vapor sounding regions, temperature soundings can be produced under partial cloud cover with RMS errors on the order of, or better than, 1deg K in 1 km thick layers from the surface to 700 mb, 1 km layers from 700 mb to 300 mb, 3 km layers from 300 mb to 30 mb, and 5 km layers from 30 mb to 1 mb, and moisture profiles can be obtained with an accuracy better than 20% absolute errors in 1 km layers from the surface to nearly 200 mb.

  11. Using Satellite Aerosol Retrievals to Monitor Surface Particulate Air Quality

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Remer, Lorraine A.; Kahn, Ralph A.; Chu, D. Allen; Mattoo, Shana; Holben, Brent N.; Schafer, Joel S.

    2011-01-01

    The MODIS and MISR aerosol products were designed nearly two decades ago for the purpose of climate applications. Since launch of Terra in 1999, these two sensors have provided global, quantitative information about column-integrated aerosol properties, including aerosol optical depth (AOD) and relative aerosol type parameters (such as Angstrom exponent). Although primarily designed for climate, the air quality (AQ) community quickly recognized that passive satellite products could be used for particulate air quality monitoring and forecasting. However, AOD and particulate matter (PM) concentrations have different units, and represent aerosol conditions in different layers of the atmosphere. Also, due to low visible contrast over brighter surface conditions, satellite-derived aerosol retrievals tend to have larger uncertainty in urban or populated regions. Nonetheless, the AQ community has made significant progress in relating column-integrated AOD at ambient relative humidity (RH) to surface PM concentrations at dried RH. Knowledge of aerosol optical and microphysical properties, ambient meteorological conditions, and especially vertical profile, are critical for physically relating AOD and PM. To make urban-scale maps of PM, we also must account for spatial variability. Since surface PM may vary on a finer spatial scale than the resolution of standard MODIS (10 km) and MISR (17km) products, we test higher-resolution versions of MODIS (3km) and MISR (1km research mode) retrievals. The recent (July 2011) DISCOVER-AQ campaign in the mid-Atlantic offers a comprehensive network of sun photometers (DRAGON) and other data that we use for validating the higher resolution satellite data. In the future, we expect that the wealth of aircraft and ground-based measurements, collected during DISCOVER-AQ, will help us quantitatively link remote sensed and ground-based measurements in the urban region.

  12. Is Air Temperature Enough to Predict Lake Surface Temperature?

    NASA Astrophysics Data System (ADS)

    Piccolroaz, S.; Toffolon, M.; Majone, B.

    2014-12-01

    Lake surface water (LST) is a key factor that controls most of the physical and ecological processes occurring in lakes. Reliable estimates are especially important in the light of recent studies, which revealed that inland water bodies are highly sensitive to climate, and are rapidly warming throughout the world. However, an accurate estimation of LST usually requires a significant amount of information that is not always available. In this work, we present an application of air2water, a lumped model that simulates LST as a function of air temperature only. In addition, air2water allows for a qualitative evaluation of the depth of the epilimnion during the annual stratification cycle. The model consists in a simplification of the complete heat budget of the well-mixed surface layer, and has a few parameters (from 4 to 8 depending on the version) that summarize the role of the different heat flux components. Model calibration requires only air and water temperature data, possibly covering sufficiently long historical periods in order to capture inter-annual variability and long-term trends. During the calibration procedure, the information included in input data is retrieved to directly inform model parameters, which can be used to classify the thermal behavior of the lake. In order to investigate how thermal dynamics are related to morphological features, the model has been applied to 14 temperate lakes characterized by different morphological and hydrological conditions, by different sources of temperature data (buoys, satellite), and by variable frequency of acquisition. A good agreement between observed and simulated LST has been achieved, with a RMSE in the order of 1°C, which is fully comparable to the performances of more complex process-based models. This application allowed for a deeper understanding of the thermal response of lakes as a function of their morphology, as well as for specific analyses as for example the investigation of the exceptional

  13. Study of cloud effect on the tropospheric temperature retrievals

    NASA Astrophysics Data System (ADS)

    Navas-Guzmán, F.; Stähli, O.; Kämpfer, N.

    2014-02-01

    In this paper, we address the characterization of clouds and its inclusion in microwave retrievals in order to study its effect on tropospheric temperature profiles measured by TEMPERA radiometer. TEMPERA is the first ground-based microwave radiometer that allows to obtain temperature profiles in the troposphere and stratosphere at the same time. In order to characterize the clouds a multi-instrumental approach has been performed. Cloud base altitudes were detected using ceilometer measurements while the integrated liquid water was measured by TROWARA radiometer. Both instruments are co-located with TEMPERA in Bern (Switzerland). Using this information and a constant Liquid Water Content value inside the cloud a liquid profile is provided to characterize the clouds in the inversion algorithm. Microwave temperature profiles have been obtained incorporating this water liquid profile in the inversion algorithm and also without considering the clouds, in order to asses its effect on the retrievals. The results have been compared with the temperature profiles from radiosondes which are launched twice a day at the aerological station of MeteoSwiss in Payerne (40 km W of Bern). Almost one year of data has been analyzed and 60 non-precipitating cloud cases were studied. The statistical analysis carried out over all the cases evidenced that temperature retrievals improved in most of the cases when clouds were incorporated in the inversion algorithm.

  14. Retrieval of temperature and water vapor from combined satellite and ground based ultra-spectral measurements

    NASA Astrophysics Data System (ADS)

    Jian, Yongxiao

    Ultra-spectrometers with a spectral resolution better than 1 cm-1, such as AIRS on the AQUA, IASI on the Metop-A/B, and CrIS on the Suomi-NPP, have become operational during the past decade. The radiance spectra measured by these satellite-borne spectrometers provide soundings of the atmosphere with relatively high vertical resolution and high accuracy except for the lower atmosphere. Meanwhile, many ground-based ultra-spectrometers based on the Michelson Interferometer have been incorporated into the Department of Energy Atmospheric Radiation Measurement facilities and aboard NOAA research vessels. These instruments provide temperature and water vapor soundings within the planetary boundary layer continuously with very high vertical resolution. This dissertation develops a retrieval procedure which can combine the radiance measured by ground-based spectrometers and coincident observation from satellite-borne instruments to improve retrieval results throughout the lower atmosphere. To verify the feasibility and improved accuracy of the combined retrieval, 90 clear sky cases from four in-situ radiosonde measurement locations or geographical regions, were selected for this study. Each region consists of radiosonde measurements of temperature and water vapor, downwelling radiance spectra measured at approximately the balloon launch time, and upwelling radiance observation by IASI at the location and time coincident with the surface radiance and radiosonde measurements. These cases indicate, that when compared with the retrieval from upwelling radiance or downwelling radiance spectra only, there is a significant improvement of the retrieval using combined upwelling and downwelling radiance spectra is observed. At altitude below the 800 hPa pressure level, the errors using the combined retrieval are about 0.5 -- 1 K in temperature, and 20 -- 40 % for water vapor mixing ratio. These errors are approximately one-third the magnitude of errors for the sounding retrieval

  15. Results from CrIS/ATMS Obtained Using an "AIRS Version-6 Like Retrieval Algorithm

    NASA Astrophysics Data System (ADS)

    Susskind, J.

    2015-12-01

    A main objective of AIRS/AMSU on EOS is to provide accurate sounding products that are used to generate climate data sets. Suomi NPP carries CrIS/ATMS that were designed as follow-ons to AIRS/AMSU. Our objective is to generate a long term climate data set of products derived from CrIS/ATMS to serve as a continuation of the AIRS/AMSU products. The Goddard DISC has generated AIRS/AMSU retrieval products, extending from September 2002 through real time, using the AIRS Science Team Version-6 retrieval algorithm. Level-3 gridded monthly mean values of these products, generated using AIRS Version-6, form a state of the art multi-year set of Climate Data Records (CDRs), which is expected to continue through 2022 and possibly beyond, as the AIRS instrument is extremely stable. The goal of this research is to develop and implement a CrIS/ATMS retrieval system to generate CDRs that are compatible with, and are of comparable quality to, those generated operationally using AIRS/AMSU data. The AIRS Science Team has made considerable improvements in AIRS Science Team retrieval methodology and is working on the development of an improved AIRS Science Team Version-7 retrieval methodology to be used to reprocess all AIRS data in the relatively near future. Research is underway by Dr. Susskind and co-workers at the NASA GSFC Sounder Research Team (SRT) towards the finalization of the AIRS Version-7 retrieval algorithm, the current version of which is called SRT AIRS Version-6.22. Dr. Susskind and co-workers have developed analogous retrieval methodology for analysis of CrIS/ATMS data, called SRT CrIS Version-6.22. Results will be presented that show that AIRS and CrIS products derived using a common further improved retrieval algorithm agree closely with each other and are both superior to AIRS Version 6. The goal of the AIRS Science Team is to continue to improve both AIRS and CrIS retrieval products and then use the improved retrieval methodology for the processing of past and

  16. Cloudy Sounding and Cloud-Top Height Retrieval From AIRS Alone Single Field-of-View Radiance Measurements

    NASA Technical Reports Server (NTRS)

    Weisz, Elisabeth; Li, Jun; Li, Jinlong; Zhou, Daniel K.; Huang, Hung-Lung; Goldberg, Mitchell D.; Yang, Ping

    2007-01-01

    High-spectral resolution measurements from the Atmospheric Infrared Sounder (AIRS) onboard the EOS (Earth Observing System) Aqua satellite provide unique information about atmospheric state, surface and cloud properties. This paper presents an AIRS alone single field-of-view (SFOV) retrieval algorithm to simultaneously retrieve temperature, humidity and ozone profiles under all weather conditions, as well as cloud top pressure (CTP) and cloud optical thickness (COT) under cloudy skies. For optically thick cloud conditions the above-cloud soundings are derived, whereas for clear skies and optically thin cloud conditions the profiles are retrieved from 0.005 hPa down to the earth's surface. Initial validation has been conducted by using the operational MODIS (Moderate Resolution Imaging Spectroradiometer) product, ECMWF (European Center of Medium range Weather Forecasts) analysis fields and radiosonde observations (RAOBs). These inter-comparisons clearly demonstrate the potential of this algorithm to process data from 38 high-spectral infrared (IR) sounder instruments.

  17. Retrieval of humidity and temperature profiles over the oceans from INSAT 3D satellite radiances

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, C.; Kumar, Deo; Balaji, C.

    2016-03-01

    In this study, retrieval of temperature and humidity profiles of atmosphere from INSAT 3D-observed radiances has been accomplished. As the first step, a fast forward radiative transfer model using an Artificial neural network has been developed and it was proven to be highly effective, giving a correlation coefficient of 0.97. In order to develop this, a diverse set of physics-based clear sky profiles of pressure ( P), temperature ( T) and specific humidity ( q) has been developed. The developed database was further used for geophysical retrieval experiments in two different frameworks, namely, an ANN and Bayesian estimation. The neural network retrievals were performed for three different cases, viz., temperature only retrieval, humidity only retrieval and combined retrieval. The temperature/humidity only ANN retrievals were found superior to combined retrieval using an ANN. Furthermore, Bayesian estimation showed superior results when compared with the combined ANN retrievals.

  18. AIR PERMIT COMPLIANCE FOR WASTE RETRIEVAL OEPRATIONS INVOLVING MULTI-UNIT OPERATIONS

    SciTech Connect

    SIMMONS FM

    2007-11-05

    Since 1970, approximately 38,000 suspect-transuranic and transuranic waste containers have been placed in retrievable storage on the Hanford Site in the 200 Areas burial grounds. Hanford's Waste Retrieval Project is retrieving these buried containers and processing them for safe storage and disposition. Container retrieval activities require an air emissions permit to account for potential emissions of radionuclides. The air permit covers the excavation activities as well as activities associated with assaying containers and installing filters in the retrieved transuranic containers lacking proper venting devices. Fluor Hanford, Inc. is required to track radioactive emissions resulting from the retrieval activities. Air, soil, and debris media contribute to the emissions and enabling assumptions allow for calculation of emissions. Each of these activities is limited to an allowed annual emission (per calendar year) and .contributes to the overall total emissions allowed for waste retrieval operations. Tracking these emissions is required to ensure a permit exceedance does not occur. A tracking tool was developed to calculate potential emissions in real time sense. Logic evaluations are established within the tracking system to compare real time data against license limits to ensure values are not exceeded for either an individual activity or the total limit. Data input are based on field survey and workplace air monitoring activities. This tracking tool is used monthly and quarterly to verify compliance to the license limits. Use of this tool has allowed Fluor Hanford, Inc. to successfully retrieve a significant number of containers in a safe manner without any exceedance of emission limits.

  19. Retrieval of atmospheric temperature profiles by a scanning microwave spectrometer

    NASA Technical Reports Server (NTRS)

    Rosenkranz, P. W.; Staelin, D. H.; Pettyjohn, R. L.

    1976-01-01

    The Nimbus-6 satellite carries a scanning microwave spectrometer (SCAMS) experiment. The five frequency bands observed are near 22.2, 31.6, 52.8, 53.8, and 55.4 GHz. The calibration system permitted preflight calibration to an accuracy of about 1 K. In orbit, small empirical corrections were made to the calibration constants to obtain agreement in the mean of SCAMS measurements with computations based on conventional data analyzed by the National Meteorological Center (NMC). Global maps of temperature profiles were retrieved from the SCAMS measurements by a statistical method. Using the NMC analysis as the verification, RMS errors in level temperatures range of about 2-4 K, depending on altitude. Errors for layers of octave extent in pressure are uniformly about 2 K. Theoretical computations show that additional spectrometer channels would improve temperature sensing performance

  20. Temperature profile retrievals with extended Kalman-Bucy filters

    NASA Technical Reports Server (NTRS)

    Ledsham, W. H.; Staelin, D. H.

    1979-01-01

    The Extended Kalman-Bucy Filter is a powerful technique for estimating non-stationary random parameters in situations where the received signal is a noisy non-linear function of those parameters. A practical causal filter for retrieving atmospheric temperature profiles from radiances observed at a single scan angle by the Scanning Microwave Spectrometer (SCAMS) carried on the Nimbus 6 satellite typically shows approximately a 10-30% reduction in rms error about the mean at almost all levels below 70 mb when compared with a regression inversion.

  1. Wind induced errors on retrieving SSS with SMOS brightness temperature

    NASA Astrophysics Data System (ADS)

    Yin, X.; Boutin, J.; Martin, N.; Vergely, J.; Spurgeon, P.

    2012-04-01

    is used with correcting sea surface current. We study also the method to retrieve SSS and wind speed with multi-bands brightness temperature (TB) by collocating SSMI multi-bands TB and SMOS L-band TB.

  2. Improving Forecast Skill by Assimilation of AIRS Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The AIRS Version 5 retrieval algorithm, is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates delta T(p) for retrieved quantities and the use of these error estimates for Quality Control. We conducted a number of data assimilation experiments using the NASA GEOS-5 Data Assimilation System as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The model was run at a horizontal resolution of 0.5 deg. latitude X 0.67 deg longitude with 72 vertical levels. These experiments were run during four different seasons, each using a different year. The AIRS temperature profiles were presented to the GEOS-5 analysis as rawinsonde profiles, and the profile error estimates delta (p) were used as the uncertainty for each measurement in the data assimilation process. We compared forecasts analyses generated from the analyses done by assimilation of AIRS temperature profiles with three different sets of thresholds; Standard, Medium, and Tight. Assimilation of Quality Controlled AIRS temperature profiles significantly improve 5-7 day forecast skill compared to that obtained without the benefit of AIRS data in all of the cases studied. In addition, assimilation of Quality Controlled AIRS temperature soundings performs better than assimilation of AIRS observed radiances. Based on the experiments shown, Tight Quality Control of AIRS temperature profile performs best

  3. The EUSTACE project: delivering global, daily information on surface air temperature

    NASA Astrophysics Data System (ADS)

    Morice, C. P.; Rayner, N. A.; Auchmann, R.; Bessembinder, J.; Bronnimann, S.; Brugnara, Y.; Conway, E. A.; Ghent, D.; Good, E.; Herring, K.; Kennedy, J.; Lindgren, F.; Madsen, K. S.; Merchant, C. J.; van der Schrier, G.; Stephens, A.; Tonboe, R. T.; Waterfall, A. M.; Mitchelson, J.; Woolway, I.

    2015-12-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, we must develop an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. These relationships can be derived either empirically or with the help of a physical model.Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals would be used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. As the data volumes involved are considerable, such work needs to include development of new "Big Data" analysis methods.We will present plans and progress along this road in the EUSTACE project (2015-June 2018), i.e.: • providing new, consistent, multi-component estimates of uncertainty in surface skin temperature retrievals from satellites; • identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; • estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; • using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras.Information will also be given on how interested users can become

  4. A Regularized Neural Net Approach for Retrieval of Atmospheric and Surface Temperatures with the IASI Instrument

    NASA Technical Reports Server (NTRS)

    Aires, F.; Chedin, A.; Scott, N. A.; Rossow, W. B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Abstract In this paper, a fast atmospheric and surface temperature retrieval algorithm is developed for the high resolution Infrared Atmospheric Sounding Interferometer (IASI) space-borne instrument. This algorithm is constructed on the basis of a neural network technique that has been regularized by introduction of a priori information. The performance of the resulting fast and accurate inverse radiative transfer model is presented for a large divE:rsified dataset of radiosonde atmospheres including rare events. Two configurations are considered: a tropical-airmass specialized scheme and an all-air-masses scheme.

  5. Satellite observation of atmospheric methane: intercomparison between AIRS and GOSAT TANSO-FTS retrievals

    NASA Astrophysics Data System (ADS)

    Zou, M.; Xiong, X.; Saitoh, N.; Warner, J.; Zhang, Y.; Chen, L.; Weng, F.

    2015-10-01

    Space-borne observations of atmospheric methane (CH4) have been made using the Atmospheric Infrared Sounder (AIRS) on the EOS/Aqua satellite since August 2002 and the Thermal and Near-infrared Sensor for Carbon Observation Fourier Transform Spectrometer (TANSO-FTS) on the Greenhouse Gases Observing Satellite (GOSAT) since April 2009. This study compared the GOSAT TANSO-FTS thermal infrared (TIR) version 1.0 CH4 product with the collocated AIRS version 6 CH4 product using data from 1 August 2010 to 30 June 2012, including the CH4 mixing ratios and the total column amounts. The results show that at 300-600 hPa, where both AIRS and GOSAT-TIR CH4 have peak sensitivities, they agree very well, but GOSAT-TIR retrievals tend to be higher than AIRS in layer 200-300 hPa. At 300 hPa the CH4 mixing ratio from GOSAT-TIR is, on average, 10.3 ± 31.8 ppbv higher than that from AIRS, and at 600 hPa GOSAT-TIR retrieved CH4 is -16.2 ± 25.7 ppbv lower than AIRS CH4. Comparison of the total column amount of CH4 shows that GOSAT-TIR agrees with AIRS to within 1 % in the mid-latitude regions of Southern Hemisphere and in tropics. In the mid to high latitudes in the Northern Hemisphere, GOSAT-TIR is ~ 1-2 % lower than AIRS, and in the high-latitude regions of Southern Hemisphere the difference of GOSAT from AIRS varies from -3 % in October to +2 % in July. The difference between AIRS and GOSAT TANSO-FTS retrievals is mainly due to the difference in retrieval algorithms and instruments itself, and the larger difference in the high latitude regions is associated with the low information content and small degree of freedoms of the retrieval. The degree of freedom of GOSAT-TIR retrievals is lower than that of AIRS also indicates that the constraint in GOSAT-TIR retrieval may be too strong. From the good correlation between AIRS and GOSAT-TIR retrievals and the seasonal variation they observed we are confident that the thermal infrared measurements from AIRS and GOSAT-TIR can provide

  6. Satellite observation of atmospheric methane: intercomparison between AIRS and GOSAT TANSO-FTS retrievals

    NASA Astrophysics Data System (ADS)

    Zou, Mingmin; Xiong, Xiaozhen; Saitoh, Naoko; Warner, Juying; Zhang, Ying; Chen, Liangfu; Weng, Fuzhong; Fan, Meng

    2016-08-01

    Space-borne observations of atmospheric methane (CH4) have been made using the Atmospheric Infrared Sounder (AIRS) on the EOS/Aqua satellite since August 2002 and the Thermal and Near-infrared Sensor for Carbon Observation Fourier Transform Spectrometer (TANSO-FTS) on the Greenhouse Gases Observing Satellite (GOSAT) since April 2009. This study compared the GOSAT TANSO-FTS thermal infrared (TIR) version 1.0 CH4 product with the collocated AIRS version 6 CH4 product using data from 1 August 2010 to 30 June 2012, including the CH4 mixing ratios and the total column amounts. The results show that at 300-600 hPa, where both AIRS and GOSAT-TIR CH4 have peak sensitivities, they agree very well, but GOSAT-TIR retrievals tend to be higher than AIRS in layer 200-300 hPa. At 300 hPa the CH4 mixing ratio from GOSAT-TIR is, on average, 10.3 ± 31.8 ppbv higher than that from AIRS, and at 600 hPa GOSAT-TIR retrieved CH4 is -16.2 ± 25.7 ppbv lower than AIRS CH4. Comparison of the total column amount of CH4 shows that GOSAT-TIR agrees with AIRS to within 1 % in the mid-latitude regions of the Southern Hemisphere and in the tropics. In the mid to high latitudes in the Northern Hemisphere, comparison shows that GOSAT-TIR is ˜ 1-2 % lower than AIRS, and in the high-latitude regions of the Southern Hemisphere the difference of GOSAT from AIRS varies from -3 % in October to +2 % in July. The difference between AIRS and GOSAT TANSO-FTS retrievals is mainly due to the difference in retrieval algorithms and instruments themselves, and the larger difference in the high-latitude regions is associated with the low information content and small degrees of freedom of the retrieval. The degrees of freedom of GOSAT-TIR retrievals are lower than that of AIRS, which also indicates that the constraint in GOSAT-TIR retrievals may be too strong. From the good correlation between AIRS and GOSAT-TIR retrievals and the seasonal variation they observed, we are confident that the thermal infrared

  7. Extending MGS-TES Temperature Retrievals in the Martian Atmosphere up to 90 Km: Retrieval Approach and Results

    NASA Technical Reports Server (NTRS)

    Feofilov, A. G.; Kutepov, A. A.; Rezac, L.; Smith, M. D.

    2015-01-01

    This paper describes a methodology for performing a temperature retrieval in the Martian atmosphere in the 50-90 km altitude range using spectrally integrated 15 micrometers C02 limb emissions measured by the Thermal Emission Spectrometer (TES), the thermal infrared spectrometer on board the Mars Global Surveyor (MGS). We demonstrate that temperature retrievals from limb observations in the 75-90 km altitude range require accounting for the non-local thermodynamic equilibrium (non-LTE) populations of the C02(v2) vibrational levels. Using the methodology described in the paper, we have retrieved approximately 1200 individual temperature profiles from MGS TES limb observations in the altitude range between 60 and 90 km. 0ur dataset of retrieved temperature profiles is available for download in supplemental materials of this paper. The temperature retrieval uncertainties are mainly caused by radiance noise, and are estimated to be about 2 K at 60 km and below, 4 K at 70 km, 7 K at 80 km, 10 K at 85 km, and 20 K at 90 km. We compare the retrieved profiles to Mars Climate Database temperature profiles and find good qualitative agreement. Quantitatively, our retrieved profiles are in general warmer and demonstrate strong variability with the following values for bias and standard deviations (in brackets) compared to the Martian Year 24 dataset of the Mars Climate Database: 6 (+/-20) K at 60 km, 7.5 (+/-25) K at 65 km, 9 (+/-27) K at 70 km, 9.5 (+/-27) K at 75 km, 10 (+/-28) K at 80 km, 11 (+/-29) K at 85 km, and 11.5 (+/-31) K at 90 km. Possible reasons for the positive temperature bias are discussed. carbon dioxide molecular vibrations

  8. AEROMETRIC INFORMATION RETRIEVAL SYSTEM (AIRS) -GEOGRAPHIC, COMMON, AND MAINTENANCE SUBSYSTEM (GCS)

    EPA Science Inventory

    Aerometric Information Retrieval System (AIRS) is a computer-based repository of information about airborne pollution in the United States and various World Health Organization (WHO) member countries. AIRS is administered by the U.S. Environmental Protection Agency, and runs on t...

  9. Two Surface Temperature Retrieval Methods Compared Over Agricultural Lands

    NASA Technical Reports Server (NTRS)

    French, Andrew N.; Schmugge, Thomas J.; Jacob, Frederic; Ogawa, Kenta; Houser, Paul R. (Technical Monitor)

    2002-01-01

    Accurate, spatially distributed surface temperatures are required for modeling evapotranspiration (ET) over agricultural fields under wide ranging conditions, including stressed and unstressed vegetation. Modeling approaches that use surface temperature observations, however, have the burden of estimating surface emissivities. Emissivity estimation, the subject of much recent research, is facilitated by observations in multiple thermal infrared bands. But it is nevertheless a difficult task. Using observations from a multiband thermal sensor, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), estimated surface emissivities and temperatures are retrieved in two different ways: the temperature emissivity separation approach (TES) and the normalized emissivity approach (NEM). Both rely upon empirical relationships, but the assumed relationships are different. TES relies upon a relationship between the minimum spectral emissivity and the range of observed emissivities. NEM relies upon an assumption that at least one thermal band has a pre-determined emissivity (close to 1.0). The benefits and consequences of each approach will be demonstrated for two different landscapes: one in central Oklahoma, USA and another in southern New Mexico.

  10. Surface emissivity and temperature retrieval for a hyperspectral sensor

    SciTech Connect

    Borel, C.C.

    1998-12-01

    With the growing use of hyper-spectral imagers, e.g., AVIRIS in the visible and short-wave infrared there is hope of using such instruments in the mid-wave and thermal IR (TIR) some day. The author believes that this will enable him to get around using the present temperature-emissivity separation algorithms using methods which take advantage of the many channels available in hyper-spectral imagers. A simple fact used in coming up with a novel algorithm is that a typical surface emissivity spectrum are rather smooth compared to spectral features introduced by the atmosphere. Thus, a iterative solution technique can be devised which retrieves emissivity spectra based on spectral smoothness. To make the emissivities realistic, atmospheric parameters are varied using approximations, look-up tables derived from a radiative transfer code and spectral libraries. One such iterative algorithm solves the radiative transfer equation for the radiance at the sensor for the unknown emissivity and uses the blackbody temperature computed in an atmospheric window to get a guess for the unknown surface temperature. By varying the surface temperature over a small range a series of emissivity spectra are calculated. The one with the smoothest characteristic is chosen. The algorithm was tested on synthetic data using MODTRAN and the Salisbury emissivity database.

  11. A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES

    SciTech Connect

    Madhusudhan, N.; Seager, S.

    2009-12-10

    We present a new method to retrieve molecular abundances and temperature profiles from exoplanet atmosphere photometry and spectroscopy. We run millions of one-dimensional (1D) atmosphere models in order to cover the large range of allowed parameter space. In order to run such a large number of models, we have developed a parametric pressure-temperature (P-T) profile coupled with line-by-line radiative transfer, hydrostatic equilibrium, and energy balance, along with prescriptions for non-equilibrium molecular composition and energy redistribution. The major difference from traditional 1D radiative transfer models is the parametric P-T profile, which essentially means adopting energy balance only at the top of the atmosphere and not in each layer. We see the parametric P-T model as a parallel approach to the traditional exoplanet atmosphere models that rely on several free parameters to encompass unknown absorbers and energy redistribution. The parametric P-T profile captures the basic physical features of temperature structures in planetary atmospheres (including temperature inversions), and fits a wide range of published P-T profiles, including those of solar system planets. We apply our temperature and abundance retrieval method to the atmospheres of two transiting exoplanets, HD 189733b and HD 209458b, which have the best Spitzer and Hubble Space Telescope data available. For HD 189733b, we find efficient day-night redistribution of energy in the atmosphere, and molecular abundance constraints confirming the presence of H{sub 2}O, CO, CH{sub 4}, and CO{sub 2}. For HD 209458b, we confirm and constrain the dayside thermal inversion in an average 1D temperature profile. We also report independent detections of H{sub 2}O, CO, CH{sub 4}, and CO{sub 2} on the dayside of HD 209458b, based on six-channel Spitzer photometry. We report constraints for HD 189733b due to individual data sets separately; a few key observations are variable in different data sets at similar

  12. Validation of AIRS/AMSU Cloud Retrievals Using MODIS Cloud Analyses

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula I.; Susskind, Joel

    2005-01-01

    The AIRS/AMSU (flying on the EOS-AQUA satellite) sounding retrieval methodology allows for the retrieval of key atmospheric/surface parameters under partially cloudy conditions (Susskind et al.). In addition, cloud parameters are also derived from the AIRS/AMSU observations. Within each AIRS footprint, cloud parameters at up to 2 cloud layers are determined with differing cloud top pressures and effective (product of infrared emissivity at 11 microns and physical cloud fraction) cloud fractions. However, so far the AIRS cloud product has not been rigorously evaluated/validated. Fortunately, collocated/coincident radiances measured by MODIS/AQUA (at a much lower spectral resolution but roughly an order of-magnitude higher spatial resolution than that of AIRS) are used to determine analogous cloud products from MODIS. This allows us for a rather rare and interesting possibility: the intercomparisons and mutual validation of imager vs. sounder-based cloud products obtained from the same satellite positions. First, we present results of small-scale (granules) instantaneous intercomparisons. Next, we will evaluate differences of temporally averaged (monthly) means as well as the representation of inter-annual variability of cloud parameters as presented by the two cloud data sets. In particular, we present statistical differences in the retrieved parameters of cloud fraction and cloud top pressure. We will investigate what type of cloud systems are retrieved most consistently (if any) with both retrieval schemes, and attempt to assess reasons behind statistically significant differences.

  13. Retrieval of Mid-tropospheric CO2 Directly from AIRS Measurements

    NASA Technical Reports Server (NTRS)

    Olsen, Edward T.; Chahine, Moustafa T.; Chen, Luke L.; Pagano, Thomas S.

    2008-01-01

    We apply the method of Vanishing Partial Derivatives (VPD) to AIRS spectra to retrieve daily the global distribution of CO2 at a nadir geospatial resolution of 90 km x 90 km without requiring a first-guess input beyond the global average. Our retrievals utilize the 15 (micro)m band radiances, a complex spectral region. This method may be of value in other applications, in which spectral signatures of multiple species are not well isolated spectrally from one another.

  14. Surface Temperature of the Arctic: Comparison of TOVS Satellite Retrievals with Surface Observations.

    NASA Astrophysics Data System (ADS)

    Chen, Yonghua; Francis, Jennifer A.; Miller, James R.

    2002-12-01

    Surface temperature is a fundamental parameter for climate research. Over the Arctic Ocean and neighboring seas conventional temperature observations are often of uncertain quality, however, owing to logistical obstacles in making measurements over sea ice in harsh environmental conditions. Satellites offer an attractive alternative, but standard methods encounter difficulty in detecting clouds in the frequent surface-based temperature inversion and when solar radiation is absent. The Television and Infrared Observation Satellite (TIROS) Operational Vertical Sounder Polar Pathfinder (TOVS Path-P) dataset provides nearly 20 yr (1979-98) of satellite-derived, gridded surface skin temperatures for the Arctic region north of 60°N. Another dataset based on surface observations has also recently become available. The International Arctic Buoy Program/Polar Exchange at the Sea Surface (IABP/POLES) project provides a gridded near-surface air temperature dataset based on optimally interpolated observations from Russian drifting ice stations, buoys, and land stations from 1979 to 1997.In this study these two datasets are compared and areas with large differences (4 to 6 K) are found in both winter and summer. Over the ice-covered Arctic Ocean in both seasons TOVS temperatures are substantially colder than POLES and over the Greenland-Iceland-Norwegian (GIN) Seas TOVS is warmer. Using point measurements from manned ice stations and ships it is found that POLES is too warm (2 K on average) in January. The bias is larger (4 K) in regions where the primary source of data is buoys, which contain warm biases in winter owing to the insulation effect of snow covering the sensors. The difference between skin and 2-m temperatures accounts for approximately 1 K of the January discrepancy between POLES and TOVS. Over the GIN Seas in both seasons POLES is much too cold (7 K) where values are based primarily on analyses from the National Centers for Environmental Prediction (NCEP). In

  15. Cris-atms Retrievals Using an AIRS Science Team Version 6-like Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis C.; Iredell, Lena

    2014-01-01

    CrIS is the infrared high spectral resolution atmospheric sounder launched on Suomi-NPP in 2011. CrISATMS comprise the IRMW Sounding Suite on Suomi-NPP. CrIS is functionally equivalent to AIRS, the high spectral resolution IR sounder launched on EOS Aqua in 2002 and ATMS is functionally equivalent to AMSU on EOS Aqua. CrIS is an interferometer and AIRS is a grating spectrometer. Spectral coverage, spectral resolution, and channel noise of CrIS is similar to AIRS. CrIS spectral sampling is roughly twice as coarse as AIRSAIRS has 2378 channels between 650 cm-1 and 2665 cm-1. CrIS has 1305 channels between 650 cm-1 and 2550 cm-1. Spatial resolution of CrIS is comparable to AIRS.

  16. Results from CrIS/ATMS Obtained Using an "AIRS Version-6 Like" Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena

    2015-01-01

    A main objective of AIRS/AMSU on EOS is to provide accurate sounding products that are used to generate climate data sets. Suomi NPP carries CrIS/ATMS that were designed as follow-ons to AIRS/AMSU. Our objective is to generate a long term climate data set of products derived from CrIS/ATMS to serve as a continuation of the AIRS/AMSU products. We have modified an improved version of the operational AIRS Version-6 retrieval algorithm for use with CrIS/ATMS. CrIS/ATMS products are of very good quality, and are comparable to, and consistent with, those of AIRS.

  17. COMPLIANCE FOR HANFORD WASTE RETRIEVAL RADIOACTIVE AIR EMISSIONS

    SciTech Connect

    FM SIMMONS

    2009-06-30

    {sm_bullet} Since 1970, approximately 38,000 suspect transuranic (TRU) and TRU waste cont{approx}iners have been placed in retrievable storage on the Hanford Site in the 200Area's burial grounds. {sm_bullet} TRU waste is defined as waste containing greater than 100 nanocuries/gram of alpha emitting transuranic isotopes with half lives greater than 20 years. {sm_bullet} The United States currentl{approx}permanently disposes of TRU waste at the Waste Isolation Pilot Plant (WIPP).

  18. Temperature retrieval at the southern pole of the Venusian atmosphere

    NASA Astrophysics Data System (ADS)

    Garate-Lopez, Itziar; Garcia-Munoz, A.; Hueso, R.; Sanchez-Lavega, A.

    2013-10-01

    Venus’ thermal radiation spectrum is punctuated by CO2 bands of various strengths probing into different atmospheric depths. It is thus possible to invert measured spectra of thermal radiation to infer atmospheric temperature profiles. VIRTIS-M observations of Venus in the 3-5 µm range allow us to study the night time thermal structure of the planet’s upper troposphere and lower mesosphere from 50 to 105 km [1, 2]. Building a forward radiative transfer model that solves the radiative transfer equation for the atmosphere on a line-by-line basis, we confirmed that aerosol scattering must be taken into account and we studied the impact of factors such as cloud opacity, and the size, composition and vertical distribution of aerosols [3]. The cloud top altitude and aerosol scale height have a notable impact on the spectrum. However, their weighting function matrices have similar structures contributing to the degeneracy of the temperature retrieval algorithm [2]. Our retrieval code is focused on the strong 4.3µm CO2 band, which enables the determination of the thermal profile above the cloud top, and based on the algorithm proposed by Grassi et al. (2008) in their equation (2). We present temperature maps for the south pole of Venus, where a highly variable vortex is observed. We aim to combine these maps with our previously measured velocity fields from the same VIRTIS-M infrared images [4], in order to infer the potential vorticity distribution for different vortex configurations and to improve the understanding of its unpredictable character and its role in the general atmospheric circulation. Acknowledgements This work was supported by the Spanish MICIIN projects AYA2009-10701 and AYA2012-36666 with FEDER funds, by Grupos Gobierno Vasco IT-765-13 and by Universidad País Vasco UPV/EHU through program UFI11/55. IGL and AGM gratefully acknowledge ESA/RSSD for hospitality and access to ‘The Grid’ computing resources. References [1] Roos-Serote, M., et al

  19. Validation of AIRS Retrievals of CO2 via Comparison to In Situ Measurements

    NASA Technical Reports Server (NTRS)

    Olsen, Edward T.; Chahine, Moustafa T.; Chen, Luke L.; Jiang, Xun; Pagano, Thomas S.; Yung, Yuk L.

    2008-01-01

    Topics include AIRS on Aqua, 2002-present with discussion about continued operation to 2011 and beyond and background, including spectrum, weighting functions, and initialization; comparison with aircraft and FTIR measurements in Masueda (CONTRAIL) JAL flask measurements, Park Falls, WI FTIR, Bremen, GDF, and Spitsbergen, Norway; AIRS retrievals over addition FTIR sites in Darwin, AU and Lauder, NZ; and mid-tropospheric carbon dioxide weather and contribution from major surface sources. Slide titles include typical AIRS infrared spectrum, AIRS sensitivity for retrieving CO2 profiles, independence of CO2 solution with respect to the initial guess, available in situ measurements for validation and comparison, comparison of collocated V1.5x AIRS CO2 (N_coll greater than or equal to 9) with INTEX-NA and SPURT;

  20. Crowdsourcing urban air temperatures from smartphone battery temperatures

    NASA Astrophysics Data System (ADS)

    Overeem, A.; Robinson, J. C. R.; Leijnse, H.; Steeneveld, G. J.; Horn, B. K. P.; Uijlenhoet, R.

    2013-08-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. A straightforward heat transfer model is employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas.

  1. Controlled-Temperature Hot-Air Gun

    NASA Technical Reports Server (NTRS)

    Munoz, M. C.

    1986-01-01

    Materials that find applications in wind tunnels first tested in laboratory. Hot-Air Gun differs from commercial units in that flow rate and temperature monitored and controlled. With typical compressed-airsupply pressure of 25 to 38 psi (170 to 260 kPa), flow rate and maximum temperature are 34 stdft3/min (0.96 stdm3/min) and 1,090 degrees F (590 degrees C), respectively. Resembling elaborate but carefully regulated hot-air gun, setup used to apply blasts of air temperatures above 1,500 degrees F (815 degrees C) to test specimens.

  2. Retrieving dust aerosols properties (optical depth and altitude) from very high resolution infrared sounders : from AIRS to IASI.

    NASA Astrophysics Data System (ADS)

    Peyridieu, S.; Chédin, A.; Capelle, V.; Pierangelo, C.; Lamquin, N.; Armante, R.

    2009-04-01

    Observation from space, being global and quasi-continuous, is a first importance tool for aerosol studies. Remote sensing in the visible domain has been widely used to obtain better characterization of these particles and their effect on solar radiation. On the opposite, remote sensing of aerosols in the thermal infrared domain still remains marginal. However, knowledge of the effect of aerosols on terrestrial radiation is needed for the evaluation of their total radiative forcing. Infrared remote sensing provides a way to retrieve other aerosol characteristics, including their mean altitude. Moreover, observations are possible at night and day, over ocean and over land. In this context, six years (2003-2008) of the 2nd generation vertical sounder AIRS observations have been processed over the tropical belt (30°N-30°S). Aerosol properties (10 µm infrared optical depth and mean layer altitude) are retrieved using a Look-Up Table (LUT) approach. The forward radiative transfer model 4A (Automatized Atmospheric Absorption Atlas) coupled with the DISORT algorithm accounting for atmospheric diffusion is used to feed the LUTs with simulations of the brightness temperatures of AIRS channels selected for their sensitivity to dust aerosols. LUTs degrees of freedom are : instrument viewing angle, surface pressure and surface emissivity, a parameter particularly important for dust retrieval over bright surfaces, such as deserts. AODs (resp. altitude) are sampled over the range 0.0-0.8 (resp. 0-5800 m). The retrieval algorithm follows two main steps : (i) retrieval of the atmospheric situation observed (temperature and water vapour profiles) ; (ii) retrieval of aerosol properties. Results have been compared to instruments commonly used in aerosol studies and also part of the Aqua Train : MODIS/Aqua and CALIOP/CALIPSO. The agreement obtained from these comparisons is quite satisfactory, demonstrating that our algorithm effectively allows the simultaneous retrieval of dust AOD

  3. Improved Methodology for Surface and Atmospheric Soundings, Error Estimates, and Quality Control Procedures: the AIRS Science Team Version-6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2014-01-01

    The AIRS Science Team Version-6 AIRS/AMSU retrieval algorithm is now operational at the Goddard DISC. AIRS Version-6 level-2 products are generated near real-time at the Goddard DISC and all level-2 and level-3 products are available starting from September 2002. This paper describes some of the significant improvements in retrieval methodology contained in the Version-6 retrieval algorithm compared to that previously used in Version-5. In particular, the AIRS Science Team made major improvements with regard to the algorithms used to 1) derive surface skin temperature and surface spectral emissivity; 2) generate the initial state used to start the cloud clearing and retrieval procedures; and 3) derive error estimates and use them for Quality Control. Significant improvements have also been made in the generation of cloud parameters. In addition to the basic AIRS/AMSU mode, Version-6 also operates in an AIRS Only (AO) mode which produces results almost as good as those of the full AIRS/AMSU mode. This paper also demonstrates the improvements of some AIRS Version-6 and Version-6 AO products compared to those obtained using Version-5.

  4. Endotracheal tube cuff pressure before, during, and after fixed-wing air medical retrieval.

    PubMed

    Brendt, Peter; Schnekenburger, Marc; Paxton, Karen; Brown, Anthony; Mendis, Kumara

    2013-01-01

    Abstract Background. Increased endotracheal tube (ETT) cuff pressure is associated with compromised tracheal mucosal perfusion and injuries. No published data are available for Australia on pressures in the fixed-wing air medical retrieval setting. Objective. After introduction of a cuff pressure manometer (Mallinckrodt, Hennef, Germany) at the Royal Flying Doctor Service (RFDS) Base in Dubbo, New South Wales (NSW), Australia, we assessed the prevalence of increased cuff pressures before, during, and after air medical retrieval. Methods. This was a retrospective audit in 35 ventilated patients during fixed-wing retrievals by the RFDS in NSW, Australia. Explicit chart review of ventilated patients was performed for cuff pressures and changes during medical retrievals with pressurized aircrafts. Pearson correlation was calculated to determine the relation of ascent and ETT cuff pressure change from ground to flight level. Results. The mean (± standard deviation) of the first ETT cuff pressure measurement on the ground was 44 ± 20 cmH2O. Prior to retrieval in 11 patients, the ETT cuff pressure was >30 cmH2O and in 11 patients >50 cmH2O. After ascent to cruising altitude, the cuff pressure was >30 cmH2O in 22 patients and >50 cmH2O in eight patients. The cuff pressure was reduced 1) in 72% of cases prior to take off and 2) in 85% of cases during flight, and 3) after landing, the cuff pressure increased in 85% of cases. The correlation between ascent in cabin altitude and ETT cuff pressure was r = 0.3901, p = 0.0205. Conclusions. The high prevalence of excessive cuff pressures during air medical retrieval can be avoided by the use of cuff pressure manometers. Key words: cuff pressure; air medical retrieval; prehospital. PMID:23252881

  5. Adaptive neuro-fuzzy inference system for temperature and humidity profile retrieval from microwave radiometer observations

    NASA Astrophysics Data System (ADS)

    Ramesh, K.; Kesarkar, A. P.; Bhate, J.; Venkat Ratnam, M.; Jayaraman, A.

    2015-01-01

    The retrieval of accurate profiles of temperature and water vapour is important for the study of atmospheric convection. Recent development in computational techniques motivated us to use adaptive techniques in the retrieval algorithms. In this work, we have used an adaptive neuro-fuzzy inference system (ANFIS) to retrieve profiles of temperature and humidity up to 10 km over the tropical station Gadanki (13.5° N, 79.2° E), India. ANFIS is trained by using observations of temperature and humidity measurements by co-located Meisei GPS radiosonde (henceforth referred to as radiosonde) and microwave brightness temperatures observed by radiometrics multichannel microwave radiometer MP3000 (MWR). ANFIS is trained by considering these observations during rainy and non-rainy days (ANFIS(RD + NRD)) and during non-rainy days only (ANFIS(NRD)). The comparison of ANFIS(RD + NRD) and ANFIS(NRD) profiles with independent radiosonde observations and profiles retrieved using multivariate linear regression (MVLR: RD + NRD and NRD) and artificial neural network (ANN) indicated that the errors in the ANFIS(RD + NRD) are less compared to other retrieval methods. The Pearson product movement correlation coefficient (r) between retrieved and observed profiles is more than 92% for temperature profiles for all techniques and more than 99% for the ANFIS(RD + NRD) technique Therefore this new techniques is relatively better for the retrieval of temperature profiles. The comparison of bias, mean absolute error (MAE), RMSE and symmetric mean absolute percentage error (SMAPE) of retrieved temperature and relative humidity (RH) profiles using ANN and ANFIS also indicated that profiles retrieved using ANFIS(RD + NRD) are significantly better compared to the ANN technique. The analysis of profiles concludes that retrieved profiles using ANFIS techniques have improved the temperature retrievals substantially; however, the retrieval of RH by all techniques considered in this paper (ANN, MVLR and

  6. Simulation of spectral effects of Asian dusts on the AIRS radiances and its application to retrieval of dust properties

    NASA Astrophysics Data System (ADS)

    Han, Hyo-Jin; Sohn, Byung-Ju; Huang, Hung-Lung; Weisz, Elisabeth

    2010-11-01

    In order to examine the effect of Asian dusts and apply to retrieval of dust properties, radiances measured by AIRS were simulated using the RTTOV-9 model. The model has been implemented with new optical properties for Asian dusts; refractive indices of mineral dust in the OPAC library and size distribution of Asian dusts retrieved from 10 years of skyradiometer measurements at Dunhuang, China. The simulations were performed using the implemented model, but with specification of AOT and height of dust layers obtained from CALIOP measurements. In the simulations, surface and atmospheric temperatures are from AIRS level 2 products while surface emissivity is specified with UW/CIMSS monthly mean global infrared surface emissivity data. Results show that effect of Asian dusts on AIRS spectra is substantial over infrared window regions (i.e.: 3.7 - 4.1 μm, 8.8 - 9.3 μm, 10 - 13 μm) for moderate and strong dust cases (AOT >= 0.5), while surface effect is dominant for weak dust cases (AOT < 0.5). Over 10 - 13 μm and 3.6 - 4.1 μm ranges, the simulation performances are improved when the dust effect is added. However, on the spectral range of 8.8 - 9.3 μm, the simulation overestimates radiances in comparison with AIRS measurements, probably because the mineral dust composition of OPAC does not coincide with the Asian dust. The comparison of simulated radiances with AIRS measurements shows a comparable quality for both clear and dusty conditions on the 10 - 13 μm and 3.6 - 4.1 μm ranges, suggesting that results can be incorporated for developing dust retrieval algorithm from hyperspectral images such as AIRS and IASI.

  7. Air separation with temperature and pressure swing

    DOEpatents

    Cassano, Anthony A.

    1986-01-01

    A chemical absorbent air separation process is set forth which uses a temperature swing absorption-desorption cycle in combination with a pressure swing wherein the pressure is elevated in the desorption stage of the process.

  8. Validating AIRS upper atmosphere water vapor retrievals using aircraft and balloon in situ measurements

    NASA Astrophysics Data System (ADS)

    Hagan, D. E.; Webster, C. R.; Farmer, C. B.; May, R. D.; Herman, R. L.; Weinstock, E. M.; Christensen, L. E.; Lait, L. R.; Newman, P. A.

    2004-11-01

    This paper provides an initial assessment of the accuracy of the Atmospheric Infrared Sounder (AIRS) water vapor retrievals from 500 to 100 mbar. AIRS satellite measurements are compared with accurate aircraft (NASA WB57) and balloon in situ water vapor measurements obtained during the NASA Pre-Aura Validation Experiment (Pre-AVE) in Costa Rica during Jan. 2004. AIRS retrieval (each pressure level of a single footprint) of water vapor amount agrees with the in situ measurements to ~25% or better if matched closely in time (1 hr) and space (50-100 km). Both AIRS and in situ measurements observe similar significant variation in moisture amount over a two-day period, associated with large-scale changes in weather patterns.

  9. Crowdsourcing urban air temperature measurements using smartphones

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-10-01

    Crowdsourced data from cell phone battery temperature sensors could be used to contribute to improved real-time, high-resolution air temperature estimates in urban areas, a new study shows. Temperature observations in cities are in some cases currently limited to a few weather stations, but there are millions of smartphone users in many cities. The batteries in cell phones have temperature sensors to avoid damage to the phone.

  10. Nowcasting daily minimum air and grass temperature

    NASA Astrophysics Data System (ADS)

    Savage, M. J.

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient ( b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass

  11. Nowcasting daily minimum air and grass temperature.

    PubMed

    Savage, M J

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient (b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass

  12. Temperature Tunable Air-Gap Etalon Filter

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Stephen, Mark A.; Lunt, David L.

    1998-01-01

    We report on experimental measurements of a temperature tuned air-gap etalon filter. The filter exhibits temperature dependent wavelength tuning of 54 pm/C. It has a nominal center wavelength of 532 nm. The etalon filter has a 27 pm optical bandpass and 600 pm free spectral range (finesse approximately 22). The experimental results are in close agreement with etalon theory.

  13. Undulator Hall Air Temperature Fault Scenarios

    SciTech Connect

    Sevilla, J.; Welch, J.; /SLAC

    2010-11-17

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  14. Modeling monthly mean air temperature for Brazil

    NASA Astrophysics Data System (ADS)

    Alvares, Clayton Alcarde; Stape, José Luiz; Sentelhas, Paulo Cesar; de Moraes Gonçalves, José Leonardo

    2013-08-01

    Air temperature is one of the main weather variables influencing agriculture around the world. Its availability, however, is a concern, mainly in Brazil where the weather stations are more concentrated on the coastal regions of the country. Therefore, the present study had as an objective to develop models for estimating monthly and annual mean air temperature for the Brazilian territory using multiple regression and geographic information system techniques. Temperature data from 2,400 stations distributed across the Brazilian territory were used, 1,800 to develop the equations and 600 for validating them, as well as their geographical coordinates and altitude as independent variables for the models. A total of 39 models were developed, relating the dependent variables maximum, mean, and minimum air temperatures (monthly and annual) to the independent variables latitude, longitude, altitude, and their combinations. All regression models were statistically significant ( α ≤ 0.01). The monthly and annual temperature models presented determination coefficients between 0.54 and 0.96. We obtained an overall spatial correlation higher than 0.9 between the models proposed and the 16 major models already published for some Brazilian regions, considering a total of 3.67 × 108 pixels evaluated. Our national temperature models are recommended to predict air temperature in all Brazilian territories.

  15. Results from CrIS/ATMS Obtained Using an "AIRS Version-6 Like" Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena; Blaisdell, John

    2015-01-01

    AIRS and CrIS Version-6.22 O3(p) and q(p) products are both superior to those of AIRS Version-6.Monthly mean August 2014 Version-6.22 AIRS and CrIS products agree reasonably well with OMPS, CERES, and witheach other. JPL plans to process AIRS and CrIS for many months and compare interannual differences. Updates to thecalibration of both CrIS and ATMS are still being finalized. We are also working with JPL to develop a joint AIRS/CrISlevel-1 to level-3 processing system using a still to be finalized Version-7 retrieval algorithm. The NASA Goddard DISCwill eventually use this system to reprocess all AIRS and recalibrated CrIS/ATMS. .

  16. Data Assimilation Experiments Using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2009-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains a number of significant improvements over Version 4. Two very significant improvements are described briefly below. 1) The AIRS Science Team Radiative Transfer Algorithm (RTA) has now been upgraded to accurately account for effects of non-local thermodynamic equilibrium on the AIRS observations. This allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval algorithm during both day and night. Following theoretical considerations, tropospheric temperature profile information is obtained almost exclusively from clear column radiances in the 4.3 micron CO2 band in the AIRS Version 5 temperature profile retrieval step. These clear column radiances are a derived product that are indicative of radiances AIRS channels would have seen if the field of view were completely clear. Clear column radiances for all channels are determined using tropospheric sounding 15 micron CO2 observations. This approach allows for the generation of accurate values of clear column radiances and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel clear column radiances. These error estimates are used for quality control of the retrieved products. Based on error estimate thresholds, each temperature profiles is assigned a characteristic pressure, pg, down to which the profile is characterized as good for use for data assimilation purposes. We have conducted forecast impact experiments assimilating AIRS quality controlled temperature profiles using the NASA GEOS-5 data assimilation system, consisting of the NCEP GSI analysis coupled with the

  17. Air pollution, temperature and pediatric influenza in Brisbane, Australia.

    PubMed

    Xu, Zhiwei; Hu, Wenbiao; Williams, Gail; Clements, Archie C A; Kan, Haidong; Tong, Shilu

    2013-09-01

    Previous studies have demonstrated the importance of weather variables in influencing the incidence of influenza. However, the role of air pollution is often ignored in identifying the environmental drivers of influenza. This research aims to examine the impacts of air pollutants and temperature on the incidence of pediatric influenza in Brisbane, Australia. Lab-confirmed daily data on influenza counts among children aged 0-14years in Brisbane from 2001 January 1st to 2008 December 31st were retrieved from Queensland Health. Daily data on maximum and minimum temperatures for the same period were supplied by the Australian Bureau of Meteorology. Winter was chosen as the main study season due to it having the highest pediatric influenza incidence. Four Poisson log-linear regression models, with daily pediatric seasonal influenza counts as the outcome, were used to examine the impacts of air pollutants (i.e., ozone (O3), particulate matter≤10μm (PM10) and nitrogen dioxide (NO2)) and temperature (using a moving average of ten days for these variables) on pediatric influenza. The results show that mean temperature (Relative risk (RR): 0.86; 95% Confidence Interval (CI): 0.82-0.89) was negatively associated with pediatric seasonal influenza in Brisbane, and high concentrations of O3 (RR: 1.28; 95% CI: 1.25-1.31) and PM10 (RR: 1.11; 95% CI: 1.10-1.13) were associated with more pediatric influenza cases. There was a significant interaction effect (RR: 0.94; 95% CI: 0.93-0.95) between PM10 and mean temperature on pediatric influenza. Adding the interaction term between mean temperature and PM10 substantially improved the model fit. This study provides evidence that PM10 needs to be taken into account when evaluating the temperature-influenza relationship. O3 was also an important predictor, independent of temperature. PMID:23911338

  18. Validation of the retrieval of surface skin temperature and surface emissivity from MOPITT measurements and their impacts on the retrieval of tropospheric carbon monoxide profiles

    NASA Astrophysics Data System (ADS)

    Ho, Shu-Peng; Gille, John C.; Edwards, David P.; Warner, Juying; Deeter, Merritt N.; Francis, Gene L.; Ziskin, Daniel C.

    2003-04-01

    The Measurements of Pollution In The Troposphere (MOPITT) instrument is designed to measure the spatial and temporal variation of the carbon monoxide (CO) profile and total column amount in the troposphere from the space. MOPITT channels are sensitive to both thermal emission from the surface and target gas absorption and emission. Surface temperature and emissivity are retrieved simultaneously with the CO profile. To obtain the desired 10% precision for the retrieved CO from MOPITT measurements, it is important to understand MOPITT CO channel sensitivity to surface temperature and emissivity and the impacts of the effects of any errors in retrieved skin temperature and emissivity on retrieved CO for various underlying surfaces. To demonstrate the impacts of the surface temperature and emissivity on the retrieval of the tropospheric CO profile, simulation studies are performed. The collocated Moderate Resolution Imaging Spectroradiometer (MODIS) surface products are used to assess the accuracy of the retrieved MOPITT surface temperature and emissivity.

  19. Assesment of a soil moisture retrieval with numerical weather prediction model temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of using a Numerical Weather Prediction (NWP) soil temperature product instead of estimates provided by concurrent 37 GHz data on satellite-based passive microwave retrieval of soil moisture retrieval was evaluated. This was prompted by the change in system configuration of preceding mult...

  20. The EUSTACE project: combining different components of the observing system to deliver global, daily information on surface air temperature

    NASA Astrophysics Data System (ADS)

    Rayner, Nick

    2016-04-01

    Day-to-day variations in surface air temperature affect society in many ways and are fundamental information for many climate services; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, we must develop an understanding of the relationships between traditional surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. Here we reflect on our experience so far within the Horizon 2020 project EUSTACE of using satellite skin temperature retrievals to help us to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types and developing new statistical models of how surface air temperature varies in a connected way from place to place. We will present plans and progress along this road in the EUSTACE project (2015-June 2018): - providing new, consistent, multi-component estimation of uncertainty in surface skin temperature retrievals from satellites; - identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; - estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; - using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras. Information will also be given on how interested users can become involved.

  1. Temperature and dust profiles in Martian dust storm conditions retrieved from Mars Climate Sounder measurements

    NASA Astrophysics Data System (ADS)

    Kleinboehl, A.; Kass, D. M.; Schofield, J. T.; McCleese, D. J.

    2013-12-01

    Mars Climate Sounder (MCS) is a mid- and far-infrared thermal emission radiometer on board the Mars Reconnaissance Orbiter. It measures radiances in limb and nadir/on-planet geometry from which vertical profiles of atmospheric temperature, water vapor, dust and condensates can be retrieved in an altitude range from 0 to 80 km and with a vertical resolution of ~5 km. Due to the limb geometry used as the MCS primary observation mode, retrievals in conditions with high aerosol loading are challenging. We have developed several modifications to the MCS retrieval algorithm that will facilitate profile retrievals in high-dust conditions. Key modifications include a retrieval option that uses a surface pressure climatology if a pressure retrieval is not possible in high dust conditions, an extension of aerosol retrievals to higher altitudes, and a correction to the surface temperature climatology. In conditions of a global dust storm, surface temperatures tend to be lower compared to standard conditions. Taking this into account using an adaptive value based on atmospheric opacity leads to improved fits to the radiances measured by MCS and improves the retrieval success rate. We present first results of these improved retrievals during the global dust storm in 2007. Based on the limb opacities observed during the storm, retrievals are typically possible above ~30 km altitude. Temperatures around 240 K are observed in the middle atmosphere at mid- and high southern latitudes after the onset of the storm. Dust appears to be nearly homogeneously mixed at lower altitudes. Significant dust opacities are detected at least up to 70 km altitude. During much of the storm, in particular at higher altitudes, the retrieved dust profiles closely resemble a Conrath-profile.

  2. Data Assimilation Experiments using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    SUsskind, Joel

    2008-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 pm C02 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 pm C02 observations are now used primarily in the generation of cloud cleared radiances Ri. This approach allows for the generation of accurate values of Ri and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by- channel error estimates for Ri. These error estimates are used for quality control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of quality control using the NASA GEOS-5 data assimilation system. Assimilation of quality controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done Operationally by ECMWF and NCEP. Forecasts resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.

  3. Improving Forecast Skill by Assimilation of Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2009-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of cloud cleared radiances R(sub i). This approach allows for the generation of accurate values of R(sub i) and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel error estimates for R(sub i). These error estimates are used for Quality Control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of Quality Control using the NASA GEOS-5 data assimilation system. Assimilation of Quality Controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done operationally by ECMWF and NCEP. Forecast resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.

  4. Demonstrating the Operational Value of Atmospheric Infrared Sounder (AIRS) Retrieved Profiles in the Pre-Convective Environment

    NASA Technical Reports Server (NTRS)

    Kozlowski, Danielle M.; Zavodsky, T.; Jedloved, Gary J.

    2011-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service offices. SPoRT provides real-time NASA products and capabilities to its partners to address specific operational forecast challenges. One operational forecast challenge is forecasting convective weather in data-void regions such as large bodies of water (e.g. Gulf of Mexico). To address this forecast challenge, SPoRT produces a twice-daily three-dimensional analysis that blends a model first-guess from the Advanced Research Weather Research and Forecasting (WRF-ARW) model with retrieved profiles from the Atmospheric Infrared Sounder (AIRS) -- a hyperspectral sounding instrument aboard NASA's Aqua satellite that provides temperature and moisture profiles of the atmosphere. AIRS profiles are unique in that they give a three dimensional view of the atmosphere that is not available through the current rawinsonde network. AIRS has two overpass swaths across North America each day, one valid in the 0700-0900 UTC timeframe and the other in the 1900-2100 UTC timeframe. This is helpful because the rawinsonde network only has data from 0000 UTC and 1200 UTC at specific land-based locations. Comparing the AIRS analysis product with control analyses that include no AIRS data demonstrates the value of the retrieved profiles to situational awareness for the pre-convective (and convective) environment. In an attempt to verify that the AIRS analysis was a good representation of the vertical structure of the atmosphere, both the AIRS and control analyses are compared to a Rapid Update Cycle (RUC) analysis used by operational forecasters. Using guidance from operational forecasters, convective available potential energy (CAPE) was determined to be a vital variable in making convective forecasts and is used herein to demonstrate the utility of the AIRS profiles in changing the vertical

  5. Assessment of Mars Atmospheric Temperature Retrievals from the Thermal Emission Spectrometer Radiances

    NASA Technical Reports Server (NTRS)

    Hoffman, Matthew J.; Eluszkiewicz, Janusz; Weisenstein, Deborah; Uymin, Gennady; Moncet, Jean-Luc

    2012-01-01

    Motivated by the needs of Mars data assimilation. particularly quantification of measurement errors and generation of averaging kernels. we have evaluated atmospheric temperature retrievals from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) radiances. Multiple sets of retrievals have been considered in this study; (1) retrievals available from the Planetary Data System (PDS), (2) retrievals based on variants of the retrieval algorithm used to generate the PDS retrievals, and (3) retrievals produced using the Mars 1-Dimensional Retrieval (M1R) algorithm based on the Optimal Spectral Sampling (OSS ) forward model. The retrieved temperature profiles are compared to the MGS Radio Science (RS) temperature profiles. For the samples tested, the M1R temperature profiles can be made to agree within 2 K with the RS temperature profiles, but only after tuning the prior and error statistics. Use of a global prior that does not take into account the seasonal dependence leads errors of up 6 K. In polar samples. errors relative to the RS temperature profiles are even larger. In these samples, the PDS temperature profiles also exhibit a poor fit with RS temperatures. This fit is worse than reported in previous studies, indicating that the lack of fit is due to a bias correction to TES radiances implemented after 2004. To explain the differences between the PDS and Ml R temperatures, the algorithms are compared directly, with the OSS forward model inserted into the PDS algorithm. Factors such as the filtering parameter, the use of linear versus nonlinear constrained inversion, and the choice of the forward model, are found to contribute heavily to the differences in the temperature profiles retrieved in the polar regions, resulting in uncertainties of up to 6 K. Even outside the poles, changes in the a priori statistics result in different profile shapes which all fit the radiances within the specified error. The importance of the a priori statistics prevents

  6. Assessment of Mars atmospheric temperature retrievals from the Thermal Emission Spectrometer radiances

    NASA Astrophysics Data System (ADS)

    Hoffman, Matthew J.; Eluszkiewicz, Janusz; Weisenstein, Debra; Uymin, Gennady; Moncet, Jean-Luc

    2012-08-01

    Motivated by the needs of Mars data assimilation, particularly quantification of measurement errors and generation of averaging kernels, we have evaluated atmospheric temperature retrievals from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) radiances. Multiple sets of retrievals have been considered in this study: (1) retrievals available from the Planetary Data System (PDS), (2) retrievals based on variants of the retrieval algorithm used to generate the PDS retrievals, and (3) retrievals produced using the Mars 1-Dimensional Retrieval (M1R) algorithm based on the Optimal Spectral Sampling (OSS) forward model. The retrieved temperature profiles are compared to the MGS Radio Science (RS) temperature profiles. For the samples tested, the M1R temperature profiles can be made to agree within 2 K (in the zonal mean) with the RS temperature profiles, but only after tuning the prior and error statistics. Use of a global prior that does not take into account the seasonal dependence leads errors of up 6 K. In polar samples, errors relative to the RS temperature profiles are even larger. In these samples, the PDS temperature profiles also exhibit a poor fit with RS temperatures. This fit is worse than reported in previous studies, indicating that the lack of fit is due to a bias correction to TES radiances implemented after 2004. To explain the differences between the PDS and M1R temperatures, the algorithms are compared directly, with the OSS forward model inserted into the PDS algorithm. Factors such as the filtering parameter, the use of linear versus nonlinear constrained inversion, and the choice of the forward model, are found to contribute heavily to the differences in the temperature profiles retrieved in the polar regions, resulting in uncertainties of up to 6 K. Even outside the poles, changes in the a priori statistics result in different profile shapes which all fit the radiances within the specified error. The importance of the a priori

  7. Temperature effects on the retrieval of SO2 from ultraviolet satellite observations

    NASA Astrophysics Data System (ADS)

    Yan, Huanhuan; Wang, Weihe; Chen, Liangfu

    2014-11-01

    Sulfur dioxide (SO2) has a significant impact on the urban environment pollution and global climate. Compared with regional ground monitoring networks, satellite remote sensing technology provides an unprecedented advantage for continuous, large spatial and short-revisit monitoring for atmospheric SO2. Approaches for retrieval of SO2 from ultraviolet satellite observations have been developed and applied to detection of volcanic SO2 and regional emissions. However, these retrieval algorithms do not consider the temperature variation effect on SO2 retrievals, and simply use the absorption coefficient at a constant temperature as inputs for SO2 retrievals. In this study, hyperspectral OMI measurements were used to analyze the temperature effects on the retrieval of SO2 columns. Results of DOAS algorithm showed that with increasing SO2 concentration, the retrieval errors caused by temperature effects accumulated, and the differences in SO2 columns increased to a maximum of ~25 DU (SO2 column of 293K: ~65 DU). Therefore, atmospheric temperature is an important factor which has significant influence to high precise atmospheric SO2 retrievals.

  8. Cloud-induced uncertainties in AIRS and ECMWF temperature and specific humidity

    NASA Astrophysics Data System (ADS)

    Wong, Sun; Fetzer, Eric J.; Schreier, Mathias; Manipon, Gerald; Fishbein, Evan F.; Kahn, Brian H.; Yue, Qing; Irion, Fredrick W.

    2015-03-01

    The uncertainties of the Atmospheric Infrared Sounder (AIRS) Level 2 version 6 specific humidity (q) and temperature (T) retrievals are quantified as functions of cloud types by comparison against Integrated Global Radiosonde Archive radiosonde measurements. The cloud types contained in an AIRS/Advanced Microwave Sounding Unit footprint are identified by collocated Moderate Resolution Imaging Spectroradiometer retrieved cloud optical depth (COD) and cloud top pressure. We also report results of similar validation of q and T from European Centre for Medium-Range Weather Forecasts (ECMWF) forecasts (EC) and retrievals from the AIRS Neural Network (NNW), which are used as the initial state for AIRS V6 physical retrievals. Differences caused by the variation in the measurement locations and times are estimated using EC, and all the comparisons of data sets against radiosonde measurements are corrected by these estimated differences. We report in detail the validation results for AIRS GOOD quality control, which is used for the AIRS Level 3 climate products. AIRS GOOD quality q reduces the dry biases inherited from the NNW in the middle troposphere under thin clouds but enhances dry biases in thick clouds throughout the troposphere (reaching -30% at 850 hPa near deep convective clouds), likely because the information contained in AIRS retrievals is obtained in cloud-cleared areas or above clouds within the field of regard. EC has small moist biases (~5-10%), which are within the uncertainty of radiosonde measurements, in thin and high clouds. Temperature biases of all data are within ±1 K at altitudes above the 700 hPa level but increase with decreasing altitude. Cloud-cleared retrievals lead to large AIRS cold biases (reaching about -2 K) in the lower troposphere for large COD, enhancing the cold biases inherited from the NNW. Consequently, AIRS GOOD quality T root-mean-squared errors (RMSEs) are slightly smaller than the NNW errors in thin clouds (1.5-2.5 K) but

  9. An extended Kalman-Bucy filter for atmospheric temperature profile retrieval with a passive microwave sounder

    NASA Technical Reports Server (NTRS)

    Ledsham, W. H.; Staelin, D. H.

    1978-01-01

    An extended Kalman-Bucy filter has been implemented for atmospheric temperature profile retrievals from observations made using the Scanned Microwave Spectrometer (SCAMS) instrument carried on the Nimbus 6 satellite. This filter has the advantage that it requires neither stationary statistics in the underlying processes nor linear production of the observed variables from the variables to be estimated. This extended Kalman-Bucy filter has yielded significant performance improvement relative to multiple regression retrieval methods. A multi-spot extended Kalman-Bucy filter has also been developed in which the temperature profiles at a number of scan angles in a scanning instrument are retrieved simultaneously. These multi-spot retrievals are shown to outperform the single-spot Kalman retrievals.

  10. Evaluation of a Linear Mixing Model to Retrieve Soil and Vegetation Temperatures of Land Targets

    NASA Astrophysics Data System (ADS)

    Yang, Jinxin; Jia, Li; Cui, Yaokui; Zhou, Jie; Menenti, Massimo

    2014-03-01

    A simple linear mixing model of heterogeneous soil-vegetation system and retrieval of component temperatures from directional remote sensing measurements by inverting this model is evaluated in this paper using observations by a thermal camera. The thermal camera was used to obtain multi-angular TIR (Thermal Infra-Red) images over vegetable and orchard canopies. A whole thermal camera image was treated as a pixel of a satellite image to evaluate the model with the two-component system, i.e. soil and vegetation. The evaluation included two parts: evaluation of the linear mixing model and evaluation of the inversion of the model to retrieve component temperatures. For evaluation of the linear mixing model, the RMSE is 0.2 K between the observed and modelled brightness temperatures, which indicates that the linear mixing model works well under most conditions. For evaluation of the model inversion, the RMSE between the model retrieved and the observed vegetation temperatures is 1.6K, correspondingly, the RMSE between the observed and retrieved soil temperatures is 2.0K. According to the evaluation of the sensitivity of retrieved component temperatures on fractional cover, the linear mixing model gives more accurate retrieval accuracies for both soil and vegetation temperatures under intermediate fractional cover conditions.

  11. Midtropospheric CO2 concentration retrieval from AIRS observations in the tropics

    NASA Astrophysics Data System (ADS)

    Crevoisier, C.; Heilliette, S.; Chédin, A.; Serrar, S.; Armante, R.; Scott, N. A.

    2004-09-01

    Midtropospheric carbon dioxide (CO2) concentration is retrieved in the tropics [20S:20N], over sea, at night, for the period April to October 2003 from the Atmospheric Infrared Sounder (AIRS) observations. The method relies on a non-linear regression inference scheme using neural networks. A rough estimate of the mean precision of the method is about 2.5 ppmv (0.7%). The retrieved seasonal cycle and its latitudinal dependence agree well with aircraft CO2 in situ measurements made at the same altitude range. Maps produced on a monthly basis at a resolution of 15° × 15°, although not yet fully understood, show good agreement with known characteristics of CO2 distribution reflecting both atmospheric transport and surface fluxes (fossil fuel emissions, biomass burning, air-surface gas exchanges).

  12. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  13. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  14. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  15. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  16. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  17. Preliminary verification of instantaneous air temperature estimation for clear sky conditions based on SEBAL

    NASA Astrophysics Data System (ADS)

    Zhu, Shanyou; Zhou, Chuxuan; Zhang, Guixin; Zhang, Hailong; Hua, Junwei

    2016-03-01

    Spatially distributed near surface air temperature at the height of 2 m is an important input parameter for the land surface models. It is of great significance in both theoretical research and practical applications to retrieve instantaneous air temperature data from remote sensing observations. An approach based on Surface Energy Balance Algorithm for Land (SEBAL) to retrieve air temperature under clear sky conditions is presented. Taking the meteorological measurement data at one station as the reference and remotely sensed data as the model input, the research estimates the air temperature by using an iterative computation. The method was applied to the area of Jiangsu province for nine scenes by using MODIS data products, as well as part of Fujian province, China based on four scenes of Landsat 8 imagery. Comparing the air temperature estimated from the proposed method with that of the meteorological station measurement, results show that the root mean square error is 1.7 and 2.6 °C at 1000 and 30 m spatial resolution respectively. Sensitivity analysis of influencing factors reveals that land surface temperature is the most sensitive to the estimation precision. Research results indicate that the method has great potentiality to be used to estimate instantaneous air temperature distribution under clear sky conditions.

  18. Results from CrIS/ATMS Obtained Using an AIRS "Version-6 like" Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena

    2015-01-01

    We tested and evaluated Version-6.22 AIRS and Version-6.22 CrIS products on a single day, December 4, 2013, and compared results to those derived using AIRS Version-6. AIRS and CrIS Version-6.22 O3(p) and q(p) products are both superior to those of AIRS Version-6All AIRS and CrIS products agree reasonably well with each other. CrIS Version-6.22 T(p) and q(p) results are slightly poorer than AIRS over land, especially under very cloudy conditions. Both AIRS and CrIS Version-6.22 run now at JPL. Our short term plans are to analyze many common months at JPL in the near future using Version-6.22 or a further improved algorithm to assess the compatibility of AIRS and CrIS monthly mean products and their interannual differences. Updates to the calibration of both CrIS and ATMS are still being finalized. JPL plans, in collaboration with the Goddard DISC, to reprocess all AIRS data using a still to be finalized Version-7 retrieval algorithm, and to reprocess all recalibrated CrISATMS data using Version-7 as well.

  19. Results from CrIS/ATMS Obtained Using an AIRS "Version-6 Like" Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena

    2015-01-01

    We have tested and evaluated Version-6.22 AIRS and Version-6.22 CrIS products on a single day, December 4, 2013, and compared results to those derived using AIRS Version-6. AIRS and CrIS Version-6.22 O3(p) and q(p) products are both superior to those of AIRS Version-6All AIRS and CrIS products agree reasonably well with each other CrIS Version-6.22 T(p) and q(p) results are slightly poorer than AIRS under very cloudy conditions. Both AIRS and CrIS Version-6.22 run now at JPL. Our short term plans are to analyze many common months at JPL in the near future using Version-6.22 or a further improved algorithm to assess the compatibility of AIRS and CrIS monthly mean products and their interannual differencesUpdates to the calibration of both CrIS and ATMS are still being finalized. JPL plans, in collaboration with the Goddard DISC, to reprocess all AIRS data using a still to be finalized Version-7 retrieval algorithm, and to reprocess all recalibrated CrISATMS data using Version-7 as well.

  20. Estimation of Biomass Burning Influence on Air Pollution around Beijing from an Aerosol Retrieval Model

    PubMed Central

    Mukai, Sonoyo; Nakata, Makiko

    2014-01-01

    We investigate heavy haze episodes (with dense concentrations of atmospheric aerosols) occurring around Beijing in June, when serious air pollution was detected by both satellite and ground measurements. Aerosol retrieval is achieved by radiative transfer simulation in an Earth atmosphere model. We solve the radiative transfer problem in the case of haze episodes by successive order of scattering. We conclude that air pollution around Beijing in June is mainly due to increased emissions of anthropogenic aerosols and that carbonaceous aerosols from agriculture biomass burning in Southeast Asia also contribute to pollution. PMID:25250383

  1. A Comparison of the Red Green Blue (RGB) Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles and NOAA G-IV Dropsondes

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Folmer, Michael; Dunion, Jason

    2014-01-01

    RGB air mass imagery is derived from multiple channels or paired channel differences. The combination of channels and channel differences means the resulting imagery does not represent a quantity or physical parameter such as brightness temperature in conventional single channel imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles and NOAA G-IV dropsondes provide insight about the vertical structure of the air mass represented on the RGB air mass imagery and are a first step to validating the imagery.

  2. Retrieval of Temperature From a Multiple Channel Rayleigh-Scatter Lidar Using an Optimal Estimation Method

    NASA Astrophysics Data System (ADS)

    Sica, R. J.; Haefele, A.

    2014-12-01

    The measurement of temperature in the middle atmosphere with Rayleigh-scatter lidars is an important technique for assessing atmospheric change. Current retrieval schemes for these temperature have several shortcoming which can be overcome using an optimal estimation method (OEM). OEMs are applied to the retrieval of temperature from Rayleigh-scatter lidar measurements using both single and multiple channel measurements. Forward models are presented that completely characterize the measurement and allow the simultaneous retrieval of temperature, dead time and background. The method allows a full uncertainty budget to be obtained on a per profile basis that includes, in addition to the statistical uncertainties, the smoothing error and uncertainties due to Rayleigh extinction, ozone absorption, the lidar constant, nonlinearity in the counting system, variation of the Rayleigh-scatter cross section with altitude, pressure, acceleration due to gravity and the variation of mean molecular mass with altitude. The vertical resolution of the temperature profile is found at each height, and a quantitative determination is made of the maximum height to which the retrieval is valid. A single temperature profile can be retrieved from measurements with multiple channels that cover different height ranges, vertical resolutions and even different detection methods. The OEM employed is shown to give robust estimates of temperature consistent with previous methods, while requiring minimal computational time. This demonstrated success of lidar temperature retrievals using an OEM opens new possibilities in atmospheric science for measurement integration between active and passive remote sensing instruments. We are currently working on extending our method to simultaneously retrieve water vapour and temperature using Raman-scatter lidar measurements.

  3. Benchmarking, Research, Development, and Support for ORNL Automated Image and Signature Retrieval (AIR/ASR) Technologies

    SciTech Connect

    Tobin, K.W.

    2004-06-01

    This report describes the results of a Cooperative Research and Development Agreement (CRADA) with Applied Materials, Inc. (AMAT) of Santa Clara, California. This project encompassed the continued development and integration of the ORNL Automated Image Retrieval (AIR) technology, and an extension of the technology denoted Automated Signature Retrieval (ASR), and other related technologies with the Defect Source Identification (DSI) software system that was under development by AMAT at the time this work was performed. In the semiconductor manufacturing environment, defect imagery is used to diagnose problems in the manufacturing line, train yield management engineers, and examine historical data for trends. Image management in semiconductor data systems is a growing cause of concern in the industry as fabricators are now collecting up to 20,000 images each week. In response to this concern, researchers at the Oak Ridge National Laboratory (ORNL) developed a semiconductor-specific content-based image retrieval method and system, also known as AIR. The system uses an image-based query-by-example method to locate and retrieve similar imagery from a database of digital imagery using visual image characteristics. The query method is based on a unique architecture that takes advantage of the statistical, morphological, and structural characteristics of image data, generated by inspection equipment in industrial applications. The system improves the manufacturing process by allowing rapid access to historical records of similar events so that errant process equipment can be isolated and corrective actions can be quickly taken to improve yield. The combined ORNL and AMAT technology is referred to hereafter as DSI-AIR and DSI-ASR.

  4. Air Temperature estimation from Land Surface temperature and solar Radiation parameters

    NASA Astrophysics Data System (ADS)

    Lazzarini, Michele; Eissa, Yehia; Marpu, Prashanth; Ghedira, Hosni

    2013-04-01

    Air Temperature (AirT) is a fundamental parameter in a wide range of applications such as climate change studies, weather forecast, energy balance modeling, efficiency of Photovoltaic (PV) solar cells, etc. Air temperature data are generally obtained through regular measurements from meteorological stations. The distribution of these stations is normally sparse, so the spatial pattern of this parameter cannot be accurately estimated by interpolation methods. This work investigated the relationship between Air Temperature measured at meteorological stations and spatially contiguous measurements derived from Remote Sensing techniques, such as Land Surface Temperature (LST) maps, emissivity maps and shortwave radiation maps with the aim of creating a continuous map of AirT. For LST and emissivity, MSG-SEVIRI LST product from Land Surface Analysis Satellite Applications Facility (LSA-SAF) has been used. For shortwave radiation maps, an Artificial Neural Networks ensemble model has been developed and previously tested to create continuous maps from Global Horizontal Irradiance (GHI) point measurements, utilizing six thermal channels of MSG-SEVIRI. The testing sites corresponded to three meteorological stations located in the United Arab Emirates (UAE), where in situ measurements of Air Temperature were available. From the starting parameters, energy fluxes and net radiation have been calculated, in order to have information on the incoming and outgoing long-wave radiation and the incoming short-wave radiation. The preliminary analysis (day and Night measurements, cloud free) showed a strong negative correlation (0.92) between Outgoing long-wave radiation - GHI and LST- AirT, with a RMSE of 1.84 K in the AirT estimation from the initial parameters. Regression coefficients have been determined and tested on all the ground stations. The analysis also demonstrated the predominant impact of the incoming short-wave radiation in the AirT hourly variation, while the incoming

  5. AirMOSS P-Band Radar Retrieval of Subcanopy Soil Moisture Profile

    NASA Astrophysics Data System (ADS)

    Tabatabaeenejad, A.; Burgin, M. S.; Duan, X.; Moghaddam, M.

    2013-12-01

    Knowledge of soil moisture, as a key variable of the Earth system, plays an important role in our under-standing of the global water, energy, and carbon cycles. The importance of such knowledge has led NASA to fund missions such as Soil Moisture Active and Passive (SMAP) and Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS). The AirMOSS mission seeks to improve the estimates of the North American Net Ecosystem Exchange (NEE) by providing high-resolution observations of the root zone soil moisture (RZSM) over regions representative of the major North American biomes. AirMOSS flies a P-band SAR to penetrate vegetation and into the root zone to provide estimates of RZSM. The flights cover areas containing flux tower sites in regions from the boreal forests in Saskatchewan, Canada, to the tropical forests in La Selva, Costa Rica. The radar snapshots are used to generate estimates of RZSM via inversion of a scattering model of vegetation overlying soils with variable moisture profiles. These retrievals will be used to generate a time record of RZSM, which will be integrated with an ecosystem demography model in order to estimate the respiration and photosynthesis carbon fluxes. The aim of this work is the retrieval of the moisture profile over AirMOSS sites using the collected P-band radar data. We have integrated layered-soil scattering models into a forest scattering model; for the backscattering from ground and for the trunk-ground double-bounce mechanism, we have used a layered small perturbation method and a coherent scattering model of layered soil, respectively. To estimate the soil moisture profile, we represent it as a second-order polynomial in the form of az2 + bz + c, where z is the depth and a, b, and c are the coefficients to be retrieved from radar measurements. When retrieved, these coefficients give us the soil moisture up to a prescribed depth of validity. To estimate the unknown coefficients of the polynomial, we use simulated

  6. Evaluation of Ice cloud retrievals using CloudSat/CALIPSO/MODIS/AIRS and EarthCARE

    NASA Astrophysics Data System (ADS)

    Okamoto, H.; Sato, K.; Hagihara, Y.; Tanaka, K.; Ishimoto, H.; Makino, T.; Nishizawa, T.; Sugimoto, N.

    2014-12-01

    We analyzed characterization of ice water content and ice water path and discussed the uncertainties of these quantities. We developed the retrieval algorithms that use CloudSat and CALIOP on CALIPSO and also the one for CloudSat, CALIOP and MODIS on Aqua. There are several possible sources of uncertainties in the retrieved values. The backscattering properties of ice particles have not been yet fully understood in lidar wavelengths. There are also uncertainties in the retrieval results in radar- or lidar-only detected cloud regions where only one of the two sensors detected clouds. Multiple scattering contribution in space-borne lidar observations has not been fully evaluated too. In order to assess and reduce these uncertainties, we introduced two approaches. Analyses of independent physical quantities based on the same physical ice particle models used in the retrievals of microphysics might be useful in order to test consistency in the ice particle model and its scattering properties. Second approach is to develop a new type of ground-based active sensor system. Concerning the first approach, backscattering color ratio of ice particles was derived from the backscattering coefficient at 532nm and 1064nm for periods before and after the change of the laser tilt angle from 0.3 degrees off nadir to 3 degrees off nadir. Then we examined relationships between the retrieved color ratio and the retrieved microphysics and found the relations agreed with the theoretically estimated ones.For the second approach, Multi-Field of view Multiple Scattering Polarization Lidar has been developed to resolve the angular dependence of backscattering and depolarization ratio and has been employed to evaluate the uncertainties in the retrievals. We performed global evaluation of ice microphysical properties and examined relationships between ice microphysics and ice super saturation information from AIRS on Aqua. Finally we introduced the JAXA-ESA satellite mission EarthCARE that

  7. A deterministic inversion technique for sea surface temperature retrieval from MODIS radiances

    NASA Astrophysics Data System (ADS)

    Koner, Prabhat K.; Harris, Andy

    2015-05-01

    The MODIS advanced sensor contains 16 channels in the thermal infrared band, makes it an attractive instrument for atmospheric and oceanic sciences. Even for satellite-derived sea surface temperature (SST) retrievals, the dynamics of atmospheric conditions are intended to be characterized by the satellite measurement sufficiently to retrieve good quality SST. The Group for High Resolution SST (GHRSST), which is an international scientific body, provides MODIS SST to date using only two and/or three channels by employing regression method. The few coefficients used in regression based retrieval methods are unable to compensate for wide atmospheric variability and as a result, significant errors are embedded in the retrieved SST. We will demonstrate in this work that the MODIS SST can be retrieved with approximately double the accuracy compared GHRSST operational SST, by using more channels and our physical deterministic-based modified total least squares (MTLS) method. This study also includes the SST4/NLSST and optimal estimation based SST retrieval for comparison purposes. The information content and noise analysis of these retrievals, and the retrieval error due to the quality of cloud detection is discussed.

  8. A Bayesian Retrieval of Greenland Ice Sheet Internal Temperature from Ultra-wideband Software-defined Microwave Radiometer (UWBRAD) Measurements

    NASA Astrophysics Data System (ADS)

    Duan, Y.; Durand, M. T.; Jezek, K. C.; Yardim, C.; Bringer, A.; Aksoy, M.; Johnson, J.

    2015-12-01

    The ultra-wideband software-defined microwave radiometer (UWBRAD) is designed to provide ice sheet internal temperature product via measuring low frequency microwave emission. Twelve channels ranging from 0.5 to 2.0 GHz are covered by the instrument. A Bayesian framework was designed to retrieve the ice sheet internal temperature from UWBRAD brightness temperature (Tb) measurements for the Greenland air-borne demonstration scheduled for summer 2016. Several parameters would affect the ice sheet physical temperature. And the effective surface temperature, geothermal heat flux and the variance of upper layer ice density were treated as unknown random variables within the retrieval framework. Synthetic brightness temperature were calculated by the snow radiation transfer models as a function of ice temperature, ice density, and an estimate of snow grain size in the upper layers. A incoherent model-the Microwave Emission Model of Layered Snowpacks (MEMLS) and a coherent model were used respectively to estimate the influence of coherent effect. The inputs of the radiation transfer model were generated from a 1-D heat-flow equation developed by Robin and a exponential fit of ice density variation from Borehole measurement. The simulated Tb was corrupted with white noise and served as UWBRAD observation in retrieval. A look-up table was developed between the parameters and the corresponding Tb. In the Bayesian retrieval process, each parameter was defined with its possible range and set to be uniformly distributed. The Markov Chain Monte Carlo (MCMC) approach was applied to make the unknown parameters randomly walk in the parameter space. Experiment results were examined for science goals on three levels: estimation of the 10-m firn temperature, the average temperature integrated with depth, and the entire temperature profile. The 10-m temperature was estimated to within 0.77 K, with a bias of 0.6 K, across the 47 locations on the ice sheet; the 10-m "synthetic true

  9. Sodar retrieval of vertical acceleration, and implications for the determination of temperature and fluxes in the convective boundary layer

    NASA Astrophysics Data System (ADS)

    Fiocco, Giorgio; Ciminelli, Maria Grazia; Mastrantonio, Giangiuseppe

    With an array of acoustic Doppler sounders it is possible to retrieve a Lagrangian description of the air motions in the boundary layer: with adequate signal-to-noise and data processing, vertical profiles of the vertical acceleration can be obtained. In addition, by application of the buoyancy equation, the temperature and the heat flux in convective conditions can be inferred. Results of experiments carried out with three vertically pointing sodars, but with the horizontal velocity information independently provided, are shown, compared with profiles obtained with tethered balloons, and discussed.

  10. Performance of soil moisture retrieval algorithms using multiangular L band brightness temperatures

    NASA Astrophysics Data System (ADS)

    Piles, M.; Camps, A.; Vall-Llossera, M.; Monerris, A.; Talone, M.; Sabater, J. M.

    2010-06-01

    The Soil Moisture and Ocean Salinity (SMOS) mission of the European Space Agency was successfully launched in November 2009 to provide global surface soil moisture and sea surface salinity maps. The SMOS single payload is the Microwave Imaging Radiometer by Aperture Synthesis (MIRAS), an L band two-dimensional aperture synthesis interferometric radiometer with multiangular and polarimetric imaging capabilities. SMOS-derived soil moisture products are expected to have an accuracy of 0.04 m3/m3 over 50 × 50 km2 and a revisit time of 3 days. Previous studies have remarked the necessity of combining SMOS brightness temperatures with auxiliary data to achieve the required accuracy. However, the required auxiliary data and optimal soil moisture retrieval setup need yet to be optimized. Also, the satellite operation mode (dual polarization or full polarimetric) is an open issue to be addressed during the commissioning phase activities. In this paper, an in-depth study of the different retrieval configurations and ancillary data needed for the retrieval of soil moisture from future SMOS observations is presented. A dedicated L2 Processor Simulator software has been developed to obtain soil moisture estimates from SMOS-like brightness temperatures generated using the SMOS End-to-End Performance Simulator (SEPS). Full-polarimetric brightness temperatures are generated in SEPS, and soil moisture retrievals are performed using vertical (Tvv) and horizontal (Thh) brightness temperatures and using the first Stokes parameter (TI). Results show the accuracy obtained with the different retrieval setups for four main surface conditions combining wet and dry soils with bare and vegetation-covered surfaces. Soil moisture retrievals using TI exhibit a significantly better performance than using Thh and Tvv in all scenarios, which indicates that the dual-polarization mode should not be disregarded. The uncertainty of the ancillary data used in the minimization process and its effect on

  11. Transfer and distortion of atmospheric information in the satellite temperature retrieval problem

    NASA Technical Reports Server (NTRS)

    Thompson, O. E.

    1981-01-01

    A systematic approach to investigating the transfer of basic ambient temperature information and its distortion by satellite systems and subsequent analysis algorithms is discussed. The retrieval analysis cycle is derived, the variance spectrum of information is examined as it takes different forms in that process, and the quality and quantity of information existing at each stop is compared with the initial ambient temperature information. Temperature retrieval algorithms can smooth, add, or further distort information, depending on how stable the algorithm is, and how heavily influenced by a priori data.

  12. Retrieval of Temperature and Water Vapour From Multiple Channel Lidar Systems Using an Optimal Estimation Method

    NASA Astrophysics Data System (ADS)

    Sica, Robert; Haefele, Alexander

    2015-04-01

    While the application of optimal estimation methods (OEMs) is well-known for the retrieval of atmospheric parameters from passive instruments, active instruments have typically not employed the OEM. For instance, the measurement of temperature in the middle atmosphere with Rayleigh-scatter lidars is an important technique for assessing atmospheric change. Current retrieval schemes for these temperatures have several shortcomings which can be overcome using an OEM. Forward models have been constructed that fully characterize the measurement and allow the simultaneous retrieval of temperature, dead time and background. The OEM allows a full uncertainty budget to be obtained on a per profile basis that includes, in addition to the statistical uncertainties, the smoothing error and uncertainties due to Rayleigh extinction, ozone absorption, the lidar constant, nonlinearity in the counting system, variation of the Rayleigh-scatter cross section with altitude, pressure, acceleration due to gravity and the variation of mean molecular mass with altitude. The vertical resolution of the temperature profile is found at each height, and a quantitative determination is made of the maximum height to which the retrieval is valid. A single temperature profile can be retrieved from measurements with multiple channels that cover different height ranges, vertical resolutions and even different detection methods. The OEM employed is shown to give robust estimates of temperature consistent with previous methods, while requiring minimal computational time. Retrieval of water vapour mixing ratio from vibrational Raman scattering lidar measurements is another example where an OEM offers a considerable advantage over the standard analysis technique, with the same advantages as discussed above for Rayleigh-scatter temperatures but with an additional benefit. The conversion of the lidar measurement into mixing ratio requires a calibration constant to be employed. Using OEM the calibration

  13. Retrieval of Temperature and Water Vapour from Multiple Channel Lidar Systems Using an Optimal Estimation Method

    NASA Astrophysics Data System (ADS)

    Sica, Robert; Haefele, Alexander

    2016-04-01

    While the application of optimal estimation methods (OEMs) is well-known for the retrieval of atmospheric parameters from passive instruments, active instruments have typically not employed the OEM. For instance, the measurement of temperature in the middle atmosphere with Rayleigh-scatter lidars is an important technique for assessing atmospheric change. Current retrieval schemes for these temperatures have several shortcomings which can be overcome using an OEM. Forward models have been constructed that fully characterize the measurement and allow the simultaneous retrieval of temperature, dead time and background. The OEM allows a full uncertainty budget to be obtained on a per profile basis that includes, in addition to the statistical uncertainties, the smoothing error and uncertainties due to Rayleigh extinction, ozone absorption, the lidar constant, nonlinearity in the counting system, variation of the Rayleigh-scatter cross section with altitude, pressure, acceleration due to gravity and the variation of mean molecular mass with altitude. The vertical resolution of the temperature profile is found at each height, and a quantitative determination is made of the maximum height to which the retrieval is valid. A single temperature profile can be retrieved from measurements with multiple channels that cover different height ranges, vertical resolutions and even different detection methods. The OEM employed is shown to give robust estimates of temperature consistent with previous methods, while requiring minimal computational time. Retrieval of water vapour mixing ratio from vibrational Raman scattering lidar measurements is another example where an OEM offers a considerable advantage over the standard analysis technique, with the same advantages as discussed above for Rayleigh-scatter temperatures but with an additional benefit. The conversion of the lidar measurement into mixing ratio requires a calibration constant to be employed. Using OEM the calibration

  14. Global Distribution and Variability of Surface Skin and Surface Air Temperatures as Depicted in the AIRS Version-6 Data Set

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2014-01-01

    In this presentation, we will briefly describe the significant improvements made in the AIRS Version-6 retrieval algorithm, especially as to how they affect retrieved surface skin and surface air temperatures. The global distribution of seasonal 1:30 AM and 1:30 PM local time 12 year climatologies of Ts,a will be presented for the first time. We will also present the spatial distribution of short term 12 year anomaly trends of Ts,a at 1:30 AM and 1:30 PM, as well as the spatial distribution of temporal correlations of Ts,a with the El Nino Index. It will be shown that there are significant differences between the behavior of 1:30 AM and 1:30 PM Ts,a anomalies in some arid land areas.

  15. Synergistic use of AIRS and MODIS for dust top height retrieval over land

    NASA Astrophysics Data System (ADS)

    Yao, Zhigang; Li, Jun; Zhao, Zengliang

    2015-04-01

    It is nontrivial to extract the dust top height (DTH) accurately from passive instruments over land due to the complexity of the surface conditions. The Moderate Resolution Imaging Spectroradiometer (MODIS) deep blue (DB) algorithm can be used to infer the aerosol optical depth (AOD) over high-reflective surfaces. The Atmospheric Infrared Sounder (AIRS) can simultaneously obtain the DTH and optical depth information. This study focuses on the synergistic use of AIRS observations and MODIS DB results for improving the DTH by using a stable relationship between the AIRS infrared and MODIS DB AODs. A one-dimensional variational (1DVAR) algorithm is applied to extract the DTH from AIRS. Simulation experiments indicate that when the uncertainty of the dust optical depth decreases from 50% to 20%, the improvement of the DTH retrieval accuracy from AIRS reaches 200 m for most of the assumed dust conditions. For two cases over the Taklimakan Desert, the results are compared against Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements. The results confirm that the MODIS DB product could help extract the DTH over land from AIRS.

  16. Land Surface Temperature Retrieval from Landsat 8 TIRS - A Case Study of Istanbul.

    NASA Astrophysics Data System (ADS)

    Bektas Balcik, Filiz; Mujgan Ergene, Emine

    2016-04-01

    Land Surface Temperature (LST) is considered as one of the important parameter to determine negative human population influences like rapid urbanization, destruction of vegetated area, unplanned industrialization, climate change from local to global scale on earth surface. On February 11, 2013 Landsat 8 OLI was launched with two thermal infrared bands that is between 10.60-12.51μm. This innovation on thermal sensors of Landsat 8 TIRS provide a good opportunity to calculate LST using different algorithms such as Split Window Algorithm (SW) and Mono Window Algorithm (MW) with the same TIRS bands. In this study, 21 October 2014 dated Landsat 8 OLI data was used to determine LST of Istanbul using mono window and split window algorithm. The population of the Istanbul was 3 million in the 1970s, 7.4 million in the 1990s, and around 13 million currently. As a result of rapid population growth and unplanned urban expansion in Istanbul, dramatic land cover changes have occurred especially within the past 65 years. Because of this reason it has huge importance to determine LST distribution of the city for sustainable management. Meteorological data used in the study include near- surface temperature and relative-humidity from 15 meteorological stations in Istanbul for the same date and hour of the Landsat 8 OLI sensor image provided (October 21, 10:30AM). The mean near-surface air temperature gathered from meteorological stations was used to verify the final retrieved LST results. The correlation coefficient between LST and the meteorological station derived near-surface temperature was calculated for accuracy verification. To determine the impact of urban components on LST, Index based built up index calculated using remote sensing data. The regression analysis was performed on the relationship between built-up land and LST using various regression models. The derived results were compared to eximine the ability of the selected algorithms.

  17. A Comprehensive Analysis of AIRS Near Surface Air Temperature and Water Vapor Over Land and Tropical Ocean

    NASA Astrophysics Data System (ADS)

    Dang, H. V. T.; Lambrigtsen, B.; Manning, E. M.; Fetzer, E. J.; Wong, S.; Teixeira, J.

    2015-12-01

    Version 6 (V6) of the Atmospheric Infrared Sounder's (AIRS) combined infrared and microwave (IR+MW) retrieval of near surface air temperature (NSAT) and water vapor (NSWV) is validated over the United States with the densely populated MESONET data. MESONET data is a collection of surface/near surface meteorological data from many federal and state agencies. The ones used for this analysis are measured from instruments maintained by the National Weather Service (NWS), the Federal Aviation Administration (FAA), and the Interagency Remote Automatic Weather Stations (RAWS), resulting in a little more than four thousand locations throughout the US. Over the Tropical oceans, NSAT and NSWV are compared to a network of moored buoys from the Tropical Atmosphere Ocean/Triangle Trans-Ocean Buoy Network (TAO/TRITON), and the Pilot Research Moored Array in the Tropical Atlantic (PIRATA). With the analysis of AIRS surface and near surface products over ocean, we glean information on how retrieval of NSAT and NSWV over land can be improved and why it needs some adjustments. We also compare AIRS initial guess of near surface products that are trained on fifty days of ECMWF along with AIRS calibrated radiances, to ECMWF analysis data. The comparison is done to show the differing characteristics of AIRS initial guesses from ECMWF.

  18. Land surface temperature retrieval from Landsat 8 data and validation with geosensor network

    NASA Astrophysics Data System (ADS)

    Tan, Kun; Liao, Zhihong; Du, Peijun; Wu, Lixin

    2016-06-01

    A method for the retrieval of land surface temperature (LST) from the two thermal bands of Landsat 8 data is proposed in this paper. The emissivities of vegetation, bare land, buildings, and water are estimated using different features of the wavelength ranges and spectral response functions. Based on the Planck function of the Thermal Infrared Sensor (TIRS) band 10 and band 11, the radiative transfer equation is rebuilt and the LST is obtained using the modified emissivity parameters. A sensitivity analysis for the LST retrieval is also conducted. The LST was retrieved from Landsat 8 data for the city of Zoucheng, Shandong Province, China, using the proposed algorithm, and the LST reference data were obtained at the same time from a geosensor network (GSN). A comparative analysis was conducted between the retrieved LST and the reference data from the GSN. The results showed that water had a higher LST error than the other land-cover types, of less than 1.2°C, and the LST errors for buildings and vegetation were less than 0.75°C. The difference between the retrieved LST and reference data was about 1°C on a clear day. These results confirm that the proposed algorithm is effective for the retrieval of LST from the Landsat 8 thermal bands, and a GSN is an effective way to validate and improve the performance of LST retrieval.

  19. Ice surface temperature retrieval from AVHRR, ATSR, and passive microwave satellite data: Algorithm development and application

    NASA Technical Reports Server (NTRS)

    Key, Jeff; Maslanik, James; Steffen, Konrad

    1994-01-01

    One essential parameter used in the estimation of radiative and turbulent heat fluxes from satellite data is surface temperature. Sea and land surface temperature (SST and LST) retrieval algorithms that utilize the thermal infrared portion of the spectrum have been developed, with the degree of success dependent primarily upon the variability of the surface and atmospheric characteristics. However, little effort has been directed to the retrieval of the sea ice surface temperature (IST) in the Arctic and Antarctic pack ice or the ice sheet surface temperature over Antarctica and Greenland. The reason is not one of methodology, but rather our limited knowledge of atmospheric temperature, humidity, and aerosol vertical, spatial and temporal distributions, the microphysical properties of polar clouds, and the spectral characteristics of snow, ice, and water surfaces. Over the open ocean the surface is warm, dark, and relatively homogeneous. This makes SST retrieval, including cloud clearing, a fairly straightforward task. Over the ice, however, the surface within a single satellite pixel is likely to be highly heterogeneous, a mixture of ice of various thicknesses, open water, and snow cover in the case of sea ice. Additionally, the Arctic is cloudy - very cloudy - with typical cloud cover amounts ranging from 60-90 percent. There are few observations of cloud cover amounts over Antarctica. The goal of this research is to increase our knowledge of surface temperature patterns and magnitudes in both polar regions, by examining existing data and improving our ability to use satellite data as a monitoring tool. Four instruments are of interest in this study: the AVHRR, ATSR, SMMR, and SSM/I. Our objectives are as follows. Refine the existing AVHRR retrieval algorithm defined in Key and Haefliger (1992; hereafter KH92) and applied elsewhere. Develop a method for IST retrieval from ATSR data similar to the one used for SST. Further investigate the possibility of estimating

  20. Retrieving Land Surface Temperature from Hyperspectral Thermal Infrared Data Using a Multi-Channel Method

    PubMed Central

    Zhong, Xinke; Huo, Xing; Ren, Chao; Labed, Jelila; Li, Zhao-Liang

    2016-01-01

    Land Surface Temperature (LST) is a key parameter in climate systems. The methods for retrieving LST from hyperspectral thermal infrared data either require accurate atmospheric profile data or require thousands of continuous channels. We aim to retrieve LST for natural land surfaces from hyperspectral thermal infrared data using an adapted multi-channel method taking Land Surface Emissivity (LSE) properly into consideration. In the adapted method, LST can be retrieved by a linear function of 36 brightness temperatures at Top of Atmosphere (TOA) using channels where LSE has high values. We evaluated the adapted method using simulation data at nadir and satellite data near nadir. The Root Mean Square Error (RMSE) of the LST retrieved from the simulation data is 0.90 K. Compared with an LST product from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on Meteosat, the error in the LST retrieved from the Infared Atmospheric Sounding Interferometer (IASI) is approximately 1.6 K. The adapted method can be used for the near-real-time production of an LST product and to provide the physical method to simultaneously retrieve atmospheric profiles, LST, and LSE with a first-guess LST value. The limitations of the adapted method are that it requires the minimum LSE in the spectral interval of 800–950 cm−1 larger than 0.95 and it has not been extended for off-nadir measurements. PMID:27187408

  1. Retrieving Land Surface Temperature from Hyperspectral Thermal Infrared Data Using a Multi-Channel Method.

    PubMed

    Zhong, Xinke; Huo, Xing; Ren, Chao; Labed, Jelila; Li, Zhao-Liang

    2016-01-01

    Land Surface Temperature (LST) is a key parameter in climate systems. The methods for retrieving LST from hyperspectral thermal infrared data either require accurate atmospheric profile data or require thousands of continuous channels. We aim to retrieve LST for natural land surfaces from hyperspectral thermal infrared data using an adapted multi-channel method taking Land Surface Emissivity (LSE) properly into consideration. In the adapted method, LST can be retrieved by a linear function of 36 brightness temperatures at Top of Atmosphere (TOA) using channels where LSE has high values. We evaluated the adapted method using simulation data at nadir and satellite data near nadir. The Root Mean Square Error (RMSE) of the LST retrieved from the simulation data is 0.90 K. Compared with an LST product from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on Meteosat, the error in the LST retrieved from the Infared Atmospheric Sounding Interferometer (IASI) is approximately 1.6 K. The adapted method can be used for the near-real-time production of an LST product and to provide the physical method to simultaneously retrieve atmospheric profiles, LST, and LSE with a first-guess LST value. The limitations of the adapted method are that it requires the minimum LSE in the spectral interval of 800-950 cm(-1) larger than 0.95 and it has not been extended for off-nadir measurements. PMID:27187408

  2. Operational Use of the AIRS Total Column Ozone Retrievals Along with the RGB Air Mass Product as Part of the GOES-R Proving Ground

    NASA Technical Reports Server (NTRS)

    Folmer, Michael; Zavodsky, Bradley; Molthan, Andrew

    2012-01-01

    The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Hydrometeorological Prediction Center (HPC) and Ocean Prediction Center (OPC) provide short-term and medium-range forecast guidance of heavy precipitation, strong winds, and other features often associated with mid-latitude cyclones over both land and ocean. As a result, detection of factors that lead to rapid cyclogenesis and high wind events is key to improving forecast skill. One phenomenon that has been identified with these events is the stratospheric intrusion that occurs near tropopause folds. This allows for deep mixing near the top of the atmosphere where dry air high in ozone concentrations and potential vorticity descends (sometimes rapidly) deep into the mid-troposphere. Observations from satellites can aid in detection of these stratospheric air intrusions (SAI) regions. Specifically, multispectral composite imagery assign a variety of satellite spectral bands to the red, green, and blue (RGB) color components of imagery pixels and result in color combinations that can assist in the detection of dry stratospheric air associated with PV advection, which in turn may alert forecasters to the possibility of a rapidly strengthening storm system. Single channel or RGB satellite imagery lacks quantitative information about atmospheric moisture unless the sampled brightness temperatures or other data are converted to estimates of moisture via a retrieval process. Thus, complementary satellite observations are needed to capture a complete picture of a developing storm system. Here, total column ozone retrievals derived from a hyperspectral sounder are used to confirm the extent and magnitude of SAIs. Total ozone is a good proxy for defining locations and intensity of SAIs and has been used in studies evaluating that phenomenon (e.g. Tian et al. 2007, Knox and Schmidt 2005). Steep gradients in values of total ozone seen by satellites have been linked

  3. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  4. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  5. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  6. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  7. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  8. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  9. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  10. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  11. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  12. 14 CFR 23.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine....

  13. Air Surface Temperature Correlation with Greenhouse Gases by Using Airs Data Over Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Rajab, Jasim Mohammed; MatJafri, M. Z.; Lim, H. S.

    2014-08-01

    The main objective of this study is to develop algorithms for calculating the air surface temperature (AST). This study also aims to analyze and investigate the effects of greenhouse gases (GHGs) on the AST value in Peninsular Malaysia. Multiple linear regression is used to achieve the objectives of the study. Peninsular Malaysia has been selected as the research area because it is among the regions of tropical Southeast Asia with the greatest humidity, pockets of heavy pollution, rapid economic growth, and industrialization. The predicted AST was highly correlated ( R = 0.783) with GHGs for the 6-year data (2003-2008). Comparisons of five stations in 2009 showed close agreement between the predicted AST and the observed AST from AIRS, especially in the wet season (within 1.3 K). The in situ data ranged from 1 to 2 K. Validation results showed that AST ( R = 0.776-0.878) has values nearly the same as the observed AST from AIRS. We found that O3 during the wet season was indicated by a strongly positive beta coefficient (0.264-0.992) with AST. The CO2 yields a reasonable relationship with temperature with low to moderate beta coefficient (-0.065 to 0.238). The O3, CO2, and environmental variables experienced different seasonal fluctuations that depend on weather conditions and topography. The concentration of gases and pollution were the highest over industrial zones and overcrowded cities, and the dry season was more polluted compared with the wet season. These results indicate the advantage of using the satellite AIRS data and a correlation analysis to investigate the effect of atmospheric GHGs on AST over Peninsular Malaysia. An algorithm that is capable of retrieving Peninsular Malaysian AST in all weather conditions with total uncertainties ranging from 1 to 2 K was developed.

  14. SPICAM dayglow measurements: a tool to retrieve CO2 vertical density profile and exospheric temperatures

    NASA Astrophysics Data System (ADS)

    Stiepen, A.; Gérard, J.-C.; Bougher, S.; Montmessin, F.; Bertaux, J.-L.

    2012-09-01

    We analyze the behavior of the CO2 + and CO Cameron ultraviolet dayglow in the atmosphere of Mars through a large dataset of dayside grazing limb observations performed by the Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars (SPICAM) on board the Mars Express spacecraft. Limb profiles are studied to retrieve the temperature of the Martian exosphere and its variability with season, latitude and solar activity. We use a one-dimensional chemical-diffusive model to retrieve the main features of the emissions and constrain the temperature and density vertical profiles of the main components of the Martian atmosphere.

  15. Comparing OMI and AIRS Retrievals Against AIRPACT-3 Forecasts for the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Herron-Thorpe, F. L.; Vaughan, J.; Lamb, B.; Mount, G.

    2008-12-01

    The AIRPACT-3 regional air quality forecast system, which utilizes the MM5/SMOKE/CMAQ modeling suite, runs nightly predicting air quality for the Pacific Northwest. AIRPACT has been evaluated periodically against surface monitor data for ozone and PM2.5. In a NASA-funded project, satellite measurements of air quality in the Pacific Northwest are being compared to AIRPACT results to: 1) provide feedback on the accuracy of the emissions inventory used by AIRPACT and 2) explore how satellite retrievals may be used operationally for initialization and validation. Measurements of tropospheric NO2 from OMI (Ozone Monitoring Instrument) as well as CO from AIRS (Atmospheric InfraRed Sounder on Aqua) are compared to forecast results. Monthly average comparisons over a 20 month period are examined for NO2 over the entire domain to identify spatial anomalies in the emissions inventory. Day-to-day and month-to-month trend comparisons around urban areas are analyzed to evaluate relative model response. AIRPACT profiles are compared to satellite profiles at individual urban points and the OMI NO2 averaging kernels are also used to calculate columns independent of the assumed tropospheric profiles used in the retrieval algorithms. AIRPACT also gets wildfire emissions from the Forest Service BlueSky project; satellite column abundances of NO2 and CO are used to evaluate these wildfire emissions over the past two summers. Finally, a design model for planned assimilation is presented for specific satellite products, indicating their expected temporal frequency of utility (i.e. daily, monthly, etc.) and the model stage (i.e. initial conditions, boundary conditions or model emissions) of their assimilation into the AIRPACT-3 forecast system.

  16. Assimilation of next generation geostationary aerosol optical depth retrievals to improve air quality simulations

    NASA Astrophysics Data System (ADS)

    Saide, Pablo E.; Kim, Jhoon; Song, Chul H.; Choi, Myungje; Cheng, Yafang; Carmichael, Gregory R.

    2014-12-01

    Planned geostationary satellites will provide aerosol optical depth (AOD) retrievals at high temporal and spatial resolution which will be incorporated into current assimilation systems that use low-Earth orbiting (e.g., Moderate Resolution Imaging Spectroradiometer (MODIS)) AOD. The impacts of such additions are explored in a real case scenario using AOD from the Geostationary Ocean Color Imager (GOCI) on board of the Communication, Ocean, and Meteorology Satellite, a geostationary satellite observing northeast Asia. The addition of GOCI AOD into the assimilation system generated positive impacts, which were found to be substantial in comparison to only assimilating MODIS AOD. We found that GOCI AOD can help significantly to improve surface air quality simulations in Korea for dust, biomass burning smoke, and anthropogenic pollution episodes when the model represents the extent of the pollution episodes and retrievals are not contaminated by clouds. We anticipate future geostationary missions to considerably contribute to air quality forecasting and provide better reanalyses for health assessments and climate studies.

  17. Seasonal comparisons of retrieved temperature and water vapour between ACE-FTS and COSMIC.

    NASA Astrophysics Data System (ADS)

    Olsen, Kevin; Toon, Geoff; Boone, Chris; Strong, Kim

    2015-04-01

    Motivated by the selection of a high-resolution solar occultation Fourier transform spectrometer (FTS) to fly to Mars, we developed new algorithms for retrieving vertical profiles of temperature and pressure from spectra. We present temperature retrieval results from remote sensing spectra collected by the Canadian Space Agency's (CSA) Atmospheric Chemistry Experiment (ACE), which recently celebrated its tenth year in orbit. ACE utilizes a high-resolution (0.02 cm-1) Fourier Transform Spectrometer (FTS) operating between 750-4400 cm-1 in limb-scanning mode using the sun as a light source (solar occultation). We compare our retrieved profiles to those of the ACE Science Team and the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC). COSMIC is a group of six small satellites that use signals from GPS satellites to measure water vapour pressure an temperature via radio occultation. We have collected five sets of zonal and seasonal coincidences with a tight criteria of 150 km and 1 hour. Retrieved H2O profiles from both satellites will also be presented for these data sets. Compared to ACE, we can achieve T differences between 1 and 5 K below 50 km, perform less well between 50 and 100 km. Compared to COSMIC, available below 40 km, we perform similarly, while the ACE retrievals are in close agreement.

  18. Ground- and Space-Based Temperature and Humidity Retrievals: Statistical Evaluation.

    NASA Astrophysics Data System (ADS)

    Boba Stankov, B.

    1996-03-01

    A near-real-time integrated temperature and water vapor sounding system has been designed and in operation since June 1993. It combines hourly data from the ground-based radio acoustic sounding system (RASS), a two-channel microwave radiometer, standard surface meteorological instruments, a lidar ceilometer, and the Aerodynamic Research Incorporated Communication, Addressing and Reporting System aboard commercial airlines with space-based data from the TIROS-N Operational Vertical Sounder (TOVS). The physical retrieval algorithm provided by the International TOVS Processing Package is used for combining the ground- and space-based temperature and humidity profiles. The first-guess profiles of temperature and humidity required by the physical retrieval algorithm arc obtained by using a statistical inversion technique and the ground-based remote sensors measurements.Statistical error estimates are presented for the hourly. near-real-time, ground-, and space-based retrieved temperature and humidity profiles based on 119 soundings collected during a two-month-long experiment conducted at Platteville, Colorado, during February and March 1994. Radiosonde data collected by the Environmental Technology Laboratory and the Winter Icing and Storms Program in Platteville and the National Weather Service in Denver, Colorado, are used for comparison. The comparison showed excellent agreement between retrieved and radiosonde soundings. Retrieved temperature profiles show better performance than the retrieved humidity profiles because of the high vertical resolution of the RASS measurements. It is suggested that adding more information from the new individual remote sensors as they develop, through the technique used here, would lead to further profiling improvements.

  19. Inter-Comparison of GOES-8 Imager and Sounder Skin Temperature Retrievals

    NASA Technical Reports Server (NTRS)

    Haines, Stephanie L.; Suggs, Ronnie J.; Jedlovec, Gary J.; Arnold, James E. (Technical Monitor)

    2001-01-01

    Skin temperature (ST) retrievals derived from geostationary satellite observations have both high temporal and spatial resolutions and are therefore useful for applications such as assimilation into mesoscale forecast models, nowcasting, and diagnostic studies. Our retrieval method uses a Physical Split Window technique requiring at least two channels within the longwave infrared window. On current GOES satellites, including GOES-11, there are two Imager channels within the required spectral interval. However, beginning with the GOES-M satellite the 12-um channel will be removed, leaving only one longwave channel. The Sounder instrument will continue to have three channels within the longwave window, and therefore ST retrievals will be derived from Sounder measurements. This research compares retrievals from the two instruments and evaluates the effects of the spatial resolution and sensor calibration differences on the retrievals. Both Imager and Sounder retrievals are compared to ground-truth data to evaluate the overall accuracy of the technique. An analysis of GOES-8 and GOES-11 intercomparisons is also presented.

  20. Land surface temperature from INSAT-3D imager data: Retrieval and assimilation in NWP model

    NASA Astrophysics Data System (ADS)

    Singh, Randhir; Singh, Charu; Ojha, Satya P.; Kumar, A. Senthil; Kishtawal, C. M.; Kumar, A. S. Kiran

    2016-06-01

    A new algorithm is developed for retrieving the land surface temperature (LST) from the imager radiance observations on board geostationary operational Indian National Satellite (INSAT-3D). The algorithm is developed using the two thermal infrared channels (TIR1 10.3-11.3 µm and TIR2 11.5-12.5 µm) via genetic algorithm (GA). The transfer function that relates LST and thermal radiances is developed using radiative transfer model simulated database. The developed algorithm has been applied on the INSAT-3D observed radiances, and LST retrieved from the developed algorithm has been validated with Moderate Resolution Imaging Spectroradiometer land surface temperature (LST) product. The developed algorithm demonstrates a good accuracy, without significant bias and standard deviations of 1.78 K and 1.41 K during daytime and nighttime, respectively. The newly proposed algorithm performs better than the operational algorithm used for LST retrieval from INSAT-3D satellite. Further, a set of data assimilation experiments is conducted with the Weather Research and Forecasting (WRF) model to assess the impact of INSAT-3D LST on model forecast skill over the Indian region. The assimilation experiments demonstrated a positive impact of the assimilated INSAT-3D LST, particularly on the lower tropospheric temperature and moisture forecasts. The temperature and moisture forecast errors are reduced (as large as 8-10%) with the assimilation of INSAT-3D LST, when compared to forecasts that were obtained without the assimilation of INSAT-3D LST. Results of the additional experiments of comparative performance of two LST products, retrieved from operational and newly proposed algorithms, indicate that the impact of INSAT-3D LST retrieved using newly proposed algorithm is significantly larger compared to the impact of INSAT-3D LST retrieved using operational algorithm.

  1. An algorithm for retrieving land surface temperatures using VIIRS data in combination with multi-sensors.

    PubMed

    Xia, Lang; Mao, Kebiao; Ma, Ying; Zhao, Fen; Jiang, Lipeng; Shen, Xinyi; Qin, Zhihao

    2014-01-01

    A practical algorithm was proposed to retrieve land surface temperature (LST) from Visible Infrared Imager Radiometer Suite (VIIRS) data in mid-latitude regions. The key parameter transmittance is generally computed from water vapor content, while water vapor channel is absent in VIIRS data. In order to overcome this shortcoming, the water vapor content was obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) data in this study. The analyses on the estimation errors of vapor content and emissivity indicate that when the water vapor errors are within the range of ±0.5 , the mean retrieval error of the present algorithm is 0.634 K; while the land surface emissivity errors range from -0.005 to +0.005, the mean retrieval error is less than 1.0 K. Validation with the standard atmospheric simulation shows the average LST retrieval error for the twenty-three land types is 0.734 K, with a standard deviation value of 0.575 K. The comparison between the ground station LST data indicates the retrieval mean accuracy is -0.395 K, and the standard deviation value is 1.490 K in the regions with vegetation and water cover. Besides, the retrieval results of the test data have also been compared with the results measured by the National Oceanic and Atmospheric Administration (NOAA) VIIRS LST products, and the results indicate that 82.63% of the difference values are within the range of -1 to 1 K, and 17.37% of the difference values are within the range of ±2 to ±1 K. In a conclusion, with the advantages of multi-sensors taken fully exploited, more accurate results can be achieved in the retrieval of land surface temperature. PMID:25397919

  2. An Algorithm for Retrieving Land Surface Temperatures Using VIIRS Data in Combination with Multi-Sensors

    PubMed Central

    Xia, Lang; Mao, Kebiao; Ma, Ying; Zhao, Fen; Jiang, Lipeng; Shen, Xinyi; Qin, Zhihao

    2014-01-01

    A practical algorithm was proposed to retrieve land surface temperature (LST) from Visible Infrared Imager Radiometer Suite (VIIRS) data in mid-latitude regions. The key parameter transmittance is generally computed from water vapor content, while water vapor channel is absent in VIIRS data. In order to overcome this shortcoming, the water vapor content was obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) data in this study. The analyses on the estimation errors of vapor content and emissivity indicate that when the water vapor errors are within the range of ±0.5 g/cm2, the mean retrieval error of the present algorithm is 0.634 K; while the land surface emissivity errors range from −0.005 to +0.005, the mean retrieval error is less than 1.0 K. Validation with the standard atmospheric simulation shows the average LST retrieval error for the twenty-three land types is 0.734 K, with a standard deviation value of 0.575 K. The comparison between the ground station LST data indicates the retrieval mean accuracy is −0.395 K, and the standard deviation value is 1.490 K in the regions with vegetation and water cover. Besides, the retrieval results of the test data have also been compared with the results measured by the National Oceanic and Atmospheric Administration (NOAA) VIIRS LST products, and the results indicate that 82.63% of the difference values are within the range of −1 to 1 K, and 17.37% of the difference values are within the range of ±2 to ±1 K. In a conclusion, with the advantages of multi-sensors taken fully exploited, more accurate results can be achieved in the retrieval of land surface temperature. PMID:25397919

  3. Validation of the modified Becker's split-window approach for retrieving land surface temperature from AVHRR

    NASA Astrophysics Data System (ADS)

    Quan, Weijun; Chen, Hongbin; Han, Xiuzhen; Ma, Zhiqiang

    2015-10-01

    To further verify the modified Becker's split-window approach for retrieving land surface temperature (LST) from long-term Advanced Very High Resolution Radiometer (AVHRR) data, a cross-validation and a radiance-based (R-based) validation are performed and examined in this paper. In the cross-validation, 3481 LST data pairs are extracted from the AVHRR LST product retrieved with the modified Becker's approach and compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) LST product (MYD11A1) for the period 2002-2008, relative to the positions of 548 weather stations in China. The results show that in most cases, the AVHRR LST values are higher than the MYD11A1. When the AVHRR LSTs are adjusted with a linear regression, the values are close to the MYD11A1, showing a good linear relationship between the two datasets ( R 2 = 0.91). In the R-based validation, comparison is made between AVHRR LST retrieved from the modified Becker's approach and the inversed LST from the Moderate Resolution Transmittance Model (MODTRAN) consolidated with observed temperature and humidity profiles at four radiosonde stations. The results show that the retrieved AVHRR LST deviates from the MODTRAN inversed LST by-1.3 (-2.5) K when the total water vapor amount is less (larger) than 20 mm. This provides useful hints for further improvement of the LST retrieval algorithms' accuracy and consistency.

  4. Soil temperature error propagation in passive microwave retrieval of soil moisture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the near future two dedicated soil moisture satellites will be launched (SMOS and SMAP), both carrying an L-band radiometer. It is well known that microwave soil moisture retrieval algorithms must account for the physical temperature of the emitting surface. Solutions to this include: difference ...

  5. Satellite Inference of Thermals and Cloud Base Updraft Speeds Based on Retrieved Surface and Cloud Base Temperatures

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Rosenfeld, D.; Li, Z.

    2014-12-01

    Updraft speeds of thermals have always been difficult to measure, despite the significant role they play in transporting pollutants and in cloud formation and precipitation. In this study, updraft speeds measured by Doppler lidar are found to be correlated with the observed planetary boundary layer (PBL) and surface properties in the buoyancy-driven PBL over the Southern Great Plains (SGP) site operated by the U.S. Department of Energy's Atmospheric Radiation Program (ARM). Based on the found relationships, two approaches are proposed to estimate both maximum (Wmax ) and cloud base (Wb ) updraft speeds. The required input data are PBL height, 10-m horizontal wind speed, wind shear, surface skin temperature and 2-m air temperature. The application for remote sensing of updraft speeds in cloud-topped PBL from space was tested by using satellite-retrieved surface and cloud base temperature in combination with European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis data. Validation against lidar-measured updraft speeds indicates the feasibility of retrieving Wmax (root-mean-square error, RMSE, is 0.32 m/s) and Wb (RMSE is 0.42 m/s) for global coverage. This information is essential to advance the understanding of aerosol-cloud interactions. This method does not work for stable or mechanically-driven PBL.

  6. Ozone retrievals from MAGEAQ GEO TIR+VIS for air quality

    NASA Astrophysics Data System (ADS)

    Quesada-Ruiz, Samuel; Attié, Jean-Luc; Lahoz, William A.; Abida, Rachid; El-Amraoui, Laaziz; Ricaud, Philippe; Zbinden, Regina; Spurr, Robert; da Silva, Arlindo M.

    2016-04-01

    Nowadays, air quality monitoring is based on the use of ground-based stations (GBS) or satellite measurements. GBS provide accurate measurements of pollutant concentrations, especially in the planetary boundary layer (PBL), but usually the spatial coverage is sparse. Polar-orbiting satellites provide good spatial resolution but low temporal coverage -this is insufficient for tracking pollutants exhibiting a diurnal cycle (Lahoz et al., 2012). However, pollutant concentrations can be measured by instruments placed on board a geostationary satellite, which can provide sufficiently high temporal and spatial resolutions (e.g. Hache et al., 2014). In this work, we investigate the potentiality of a possible future geostationary instrument, MAGEAQ (Monitoring the Atmosphere from Geostationary orbit for European Air Quality), for retrieving ozone measurements over Europe. In particular, MAGEAQ can provide 1-hour temporal sampling at 10x10km pixel resolution for measurements in both visible (VIS) and thermal infrared (TIR) bands -thus, we will be able to measure during the day and at night. MAGEAQ synthetic radiance observations are obtained through radiative transfer (RT) simulations using the VLIDORT discrete ordinate RT model (Spurr, 2006) based on output from the GEOS-5 Nature Run (Gelaro et al., 2015) providing optical information, plus a suitable instrument model. Ozone is retrieved from these synthetic measurements using the optimal estimation inversion scheme of Levenberg-Marquardt. Finally, we examine an application of the air quality concept based on these ozone retrievals during the heatwave event of July 2006 over Europe. REFERENCES Gelaro, R., Putman, W. M., Pawson, S., Draper, C., Molod, A., Norris, P. M., Ott, L., Privé, N., Reale, O., Achuthavarier, D., Bosilovich, M., Buchard, V., Chao, W., Coy, L., Cullather, R., da Silva, A., Darmenov, A., Errico, R. M., Fuentes, M., Kim, M-J., Koster, R., McCarty, W., Nattala, J., Partyka, G., Schubert, S., Vernieres, G

  7. Retrieval of upper atmosphere pressure-temperature profiles from high resolution solar occultation spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Russell, J. M., III; Park, J. H.; Namkung, J.

    1987-01-01

    Pressure-temperature profiles over the 18 to 75 km altitude range were retrieved from 0.01 cm(-1) resolution infrared solar absorption spectra recorded with the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer operating in the solar occultation mode during the Spacelab 3 shuttle mission (April 30 to May 1, 1985). The analysis method is described and preliminary results deduced for five occultation events are compared to correlative pressure-temperature measurments.

  8. Air temperature variation across the seed cotton dryer mixpoint

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eighteen tests were conducted in six gins in the fall of 2008 to measure air temperature variation within various heated air seed cotton drying systems with the purpose of: checking validation of recommendations by a professional engineering society and measuring air temperature variation across the...

  9. Possible Economies in Air-Conditioning by Accepting Temperature Swings.

    ERIC Educational Resources Information Center

    Loudon, A. G.; Petherbridge, P.

    Public building air conditioning systems, which use constant and varying heat and cooling loads, are compared and investigated. Experiments indicated that constant temperature controls based on outside air temperature alone were inefficient. Ventilating a building with outside air and the methods of doing so are cited as being the most economical…

  10. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  11. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  12. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  13. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  14. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  15. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  16. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  17. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  18. 14 CFR 29.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor air temperature controls. 29.1157 Section 29.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  19. 14 CFR 25.1157 - Carburetor air temperature controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor air temperature controls. 25.1157 Section 25.1157 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air...

  20. AIR TEMPERATURE DISTRIBUTION IN SEED COTTON DRYING SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ten tests were conducted in the fall of 2007 to measure air temperature variation within various heated air seed cotton drying systems with the purpose of: checking validation of recommendations by a professional engineering society and measuring air temperature variation across the airflow ductwork...

  1. Acoustic method for measuring air temperature and humidity in rooms

    NASA Astrophysics Data System (ADS)

    Kanev, N. G.

    2014-05-01

    A method is proposed to determine air temperature and humidity in rooms with a system of sound sources and receivers, making it possible to find the sound velocity and reverberation time. Nomograms for determining the air temperature and relative air humidity are constructed from the found sound velocity and time reverberation values. The required accuracy of measuring these parameters is estimated.

  2. Relationship between ozone and the air pollutants in Peninsular Malaysia for 2003 retrieved from SCIAMACHY

    NASA Astrophysics Data System (ADS)

    Tan, K. C.; Lim, H. S.; Mat Jafri, M. Z.

    2013-05-01

    Since few decades ago, air pollution has become a hot topic of environmental and atmospheric research due to the impact of air pollution on human health. Ozone is one of the important chemical constituent of the atmosphere, which plays a key role in atmospheric energy budget and chemistry, air quality and global change. Results from the analysis of the retrieved monthly data from Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY) were utilized, in order to analyze the impact of air pollutants (CO2, CH4, H2O, and NO2) on the ozone in Peninsular Malaysia for 2003 using multiple regression analysis. SCIAMACHY onboard ENVISAT as part of the atmospheric chemistry payload of the third European Space Agency (ESA) Earth observation, is the first satellite instrument whose measurements is enough precise and sensitive for all the greenhouse gases to make observation at all atmospheric altitude levels down to the Earth's surface. Among the four pollutants, ozone was most affected by water vapor (H2O vapor), indicated by a strong beta coefficient (-0.769 - 0.997), depends on the seasonal variety. In addition, CO2 also shows a strong Beta coefficient (-0.654 - 0.717) and also affected by the seasonal variation. The variation of pollutants on the average explains change 50.1% of the ozone. This means that about 50.1% of the ozone is attributed to these pollutant gases. The SCIAMACHY data and the satellite measurements successfully identify the increase of the atmospheric air pollutants over the study area.

  3. Development and Analysis of a Long Term, Global, Terrestrial Land Surface Temperature Dataset Based on HIRS Satellite Retrievals

    NASA Astrophysics Data System (ADS)

    Wood, Eric; Siemann, Amanda; Coccia, Gabriele; Pan, Ming

    2016-04-01

    Land surface temperature (LST) is a critical state variable for surface energy exchanges as it is one of the controls on emitted radiation at the Earth's surface. LST also exerts an important control on turbulent fluxes through the temperature gradient between LST and air temperature. Although observations of surface energy balance components are widely accessible from in-situ stations in most developed regions, these ground-based observations are not available in many underdeveloped regions. Satellite remote sensing measurements provide wider spatial coverage to derive LST over land, and are used in this study to form a high resolution, long term LST data product. Satellite measurements from the High Resolution Infrared Radiation Sounder (HIRS) sensor has been selected by the Global Energy and Water Exchanges Project (GEWEX) Data and Analysis Project (GDAP) as the primary satellite observations for the development of GDAP's internally consistent datasets due to HIRS' multi-decadal data record length. Using a post-processing Bayesian statistical procedure, a HIRS-consistent LST data set is developed at a hourly, global land, 0.5 degree resolution for clear and cloudy conditions from 1979 to 2009 through merging the National Centers for Environmental Protection (NCEP) Climate Forecast System Reanalysis (CFSR) LST estimates with the HIRS retrievals. The Baseline Surface Radiation Network (BSRN) observations are used to validate the HIRS retrievals, the CFSR LST estimates, as well as the final merged LST dataset. An intercomparison between the original retrievals and CFSR LST datasets, before and after merging, is also presented with an analysis of the datasets including an error assessment of the final LST dataset.

  4. An integrated approach toward the incorporation of clouds in the temperature retrievals from microwave measurements

    NASA Astrophysics Data System (ADS)

    Navas-Guzmán, F.; Stähli, O.; Kämpfer, N.

    2014-06-01

    In this paper, we address the characterization of clouds and its inclusion in microwave retrievals in order to study its effect on tropospheric temperature profiles measured by TEMPERA radiometer. TEMPERA is the first ground-based microwave radiometer that makes it possible to obtain temperature profiles in the troposphere and stratosphere at the same time. In order to characterize the clouds a multi-instrumental approach has been adopted. Cloud base altitudes were detected using ceilometer measurements while the integrated liquid water was measured by TROWARA radiometer. Both instruments are co-located with TEMPERA in Bern (Switzerland). Using this information and a constant Liquid Water Content value inside the cloud a liquid profile is provided to characterize the clouds in the inversion algorithm. Microwave temperature profiles have been obtained incorporating this water liquid profile in the inversion algorithm and also without considering the clouds, in order to assess its effect on the retrievals. The results have been compared with the temperature profiles from radiosondes which are launched twice a day at the aerological station of MeteoSwiss in Payerne (40 km W of Bern). Almost 1 year of data have been analysed and 60 non-precipitating cloud cases were studied. The statistical analysis carried out over all the cases evidenced that temperature retrievals improved in most of the cases when clouds were incorporated in the inversion algorithm.

  5. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  6. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  7. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  8. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  9. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  10. Comparing OMI and AIRS Retrievals Against AIRPACT-3 Forecasts for the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Vaughan, J. K.; Herron-Thorpe, F.; Lamb, B. K.; Mount, G. H.

    2008-05-01

    The AIRPACT-3 regional air quality forecast system, which utilizes the MM5/SMOKE/CMAQ modeling suite, runs nightly predicting air quality for the Pacific Northwest. AIRPACT has been evaluated periodically against surface monitor data for ozone and PM2.5. In a NASA-funded project, satellite measurements of air quality in the Pacific Northwest are being compared to AIRPACT results to: 1) provide feedback on the accuracy of the emissions inventory used by AIRPACT and 2) explore how satellite retrievals may be used operationally for initialization and validation. Measurements of tropospheric NO2, SO2, and Aerosol Optical Depth made by OMI (Ozone Monitoring Instrument flying on Aura) as well as CO from AIRS (Atmospheric InfraRed Sounder on Aqua) are compared to forecast results. Monthly average comparisons for NO2 for the entire domain are examined to identify spatial anomalies in the emissions inventory. Day-to-day trend comparisons around urban areas are analyzed to evaluate relative model response. Also, AIRPACT gets wildfire emissions from the Forest Service BlueSky project; satellite column abundances of NO2 and CO as well as aerosol optical depth (AOD) are being used to evaluate these wildfire emissions. Assimilation algorithms for non- meteorological (i.e. chemistry) correction/assimilation schemes found in the literature are briefly discussed. Finally, a design model for planned assimilation routines is presented for specific satellite products, indicating their expected temporal frequency of utility (i.e. daily, monthly, etc.) and the model stage (i.e. initial conditions, boundary conditions or model emissions) of their assimilation into the AIRPACT-3 forecast system.

  11. Uncertainties of satellite-derived surface skin temperatures in the polar oceans: MODIS, AIRS/AMSU, and AIRS only

    NASA Astrophysics Data System (ADS)

    Kang, H.-J.; Yoo, J.-M.; Jeong, M.-J.; Won, Y.-I.

    2015-10-01

    Uncertainties in the satellite-derived surface skin temperature (SST) data in the polar oceans during two periods (16-24 April and 15-23 September) 2003-2014 were investigated and the three data sets were intercompared as follows: MODerate Resolution Imaging Spectroradiometer Ice Surface Temperature (MODIS IST), the SST of the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A (AIRS/AMSU), and AIRS only. The AIRS only algorithm was developed in preparation for the degradation of the AMSU-A. MODIS IST was systematically warmer up to 1.65 K at the sea ice boundary and colder down to -2.04 K in the polar sea ice regions of both the Arctic and Antarctic than that of the AIRS/AMSU. This difference in the results could have been caused by the surface classification method. The spatial correlation coefficient of the AIRS only to the AIRS/AMSU (0.992-0.999) method was greater than that of the MODIS IST to the AIRS/AMSU (0.968-0.994). The SST of the AIRS only compared to that of the AIRS/AMSU had a bias of 0.168 K with a RMSE of 0.590 K over the Northern Hemisphere high latitudes and a bias of -0.109 K with a RMSE of 0.852 K over the Southern Hemisphere high latitudes. There was a systematic disagreement between the AIRS retrievals at the boundary of the sea ice, because the AIRS only algorithm utilized a less accurate GCM forecast over the seasonally varying frozen oceans than the microwave data. The three data sets (MODIS, AIRS/AMSU and AIRS only) showed significant warming rates (2.3 ± 1.7 ~ 2.8 ± 1.9 K decade-1) in the northern high regions (70-80° N) as expected from the ice-albedo feedback. The systematic temperature disagreement associated with surface type classification had an impact on the resulting temperature trends.

  12. Uncertainties of satellite-derived surface skin temperatures in the polar oceans: MODIS, AIRS/AMSU, and AIRS only

    NASA Astrophysics Data System (ADS)

    Kang, H.-J.; Yoo, J.-M.; Jeong, M.-J.; Won, Y.-I.

    2015-05-01

    Uncertainties in the satellite-derived Surface Skin Temperature (SST) data in the polar oceans during two periods (16-24 April and 15-23 September) of 2003-2014 were investigated and the three datasets were intercompared as follows: MODerate Resolution Imaging Spectroradiometer Ice Surface Temperature (MODIS IST), the SST of the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A (AIRS/AMSU), and AIRS only. AIRS only algorithm was developed in preparation for the degradation of the AMSU-A. MODIS IST was systematically up to 1.65 K warmer at the sea ice boundary and up to 2.04 K colder in the polar sea ice regions of both the Arctic and Antarctic than that of the AIRS/AMSU. This difference in the results could have been caused by the surface classification method. The spatial correlation coefficient of the AIRS only to the AIRS/AMSU (0.992-0.999) method was greater than that of the MODIS IST to the AIRS/AMSU (0.968-0.994). The SST of the AIRS only compared to that of the AIRS/AMSU had a bias of 0.168 K with a RMSE of 0.590 K over the Northern Hemisphere high latitudes and a bias of -0.109 K with a RMSE of 0.852 K over the Southern Hemisphere high latitudes. There was a systematic disagreement between the AIRS retrievals at the boundary of the sea ice, because the AIRS only algorithm utilized a~less accurate GCM forecast over the seasonally-varying frozen oceans than the microwave data. The three datasets (MODIS, AIRS/AMSU and AIRS only) showed significant warming rates (2.3 ± 1.7 ~2.8 ± 1.9 K decade-1) in the northern high latitude regions (70-80° N) as expected from the ice-albedo feedback. The systematic temperature disagreement associated with surface type classification had an impact on the resulting temperature trends.

  13. Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) data processing and atmospheric temperature and trace gas retrieval

    NASA Astrophysics Data System (ADS)

    Riese, M.; Spang, R.; Preusse, P.; Ern, M.; Jarisch, M.; Offermann, D.; Grossmann, K. U.

    1999-07-01

    The Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) experiment aboard the Shuttle Pallet Satellite (SPAS) was successfully flown in early November 1994 (STS 66) and in August 1997 (STS 85). This paper focuses on the first flight of the instrument, which was part of the Atmospheric Laboratory for Application and Science 3 (ATLAS 3) mission of NASA. During a free flying period of 7 days, limb scan measurements of atmospheric infrared emissions were performed in the 4 to 71 μm wavelength region. For improved horizontal resolution, three telescopes (viewing directions) were used that sensed the atmosphere simultaneously. Atmospheric pressures, temperatures, and volume mixing ratios of various trace gases were retrieved from the radiance data by using a fast onion-peeling retrieval technique. This paper gives an overview of the data system including the raw data processing and the temperature and trace gas profile retrieval. Examples of version 1 limb radiance data (level 1 product) and version 1 mixing ratios (level 2 product) of ozone, ClONO2, and CFC-11 are given. A number of important atmospheric transport processes can already be identified in the level 1 limb radiance data. Radiance data of the lower stratosphere (18 km) indicate strong upwelling in some equatorial regions, centered around the Amazon, Congo, and Indonesia. Respective data at the date line are consistent with convection patterns associated with El Niño. Very low CFC-11 mixing ratios occur inside the South Polar vortex and cause low radiance values in a spectral region sensitive to CFC-11 emissions. These low values are a result of considerable downward transport of CFC-11 poor air that occurred during the winter months. Limb radiance profiles and retrieved mixing ratio profiles of CFC-11 indicate downward transport over ˜5 km. The accuracy of the retrieved version 1 mixing ratios is rather different for the various trace gases. In the middle atmosphere the estimated

  14. Case studies of aerosol and ocean color retrieval using a Markov chain radiative transfer model and AirMSPI measurements

    NASA Astrophysics Data System (ADS)

    Xu, F.; Diner, D. J.; Seidel, F. C.; Dubovik, O.; Zhai, P.

    2014-12-01

    A vector Markov chain radiative transfer method was developed for forward modeling of radiance and polarization fields in a coupled atmosphere-ocean system. The method was benchmarked against an independent Successive Orders of Scattering code and linearized through the use of Jacobians. Incorporated with the multi-patch optimization algorithm and look-up-table method, simultaneous aerosol and ocean color retrievals were performed using imagery acquired by the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) when it was operated in step-and-stare mode with 9 viewing angles ranging between ±67°. Data from channels near 355, 380, 445, 470*, 555, 660*, and 865* nm were used in the retrievals, where the asterisk denotes the polarimetric bands. Retrievals were run for AirMSPI overflights over Southern California and Monterey Bay, CA. For the relatively high aerosol optical depth (AOD) case (~0.28 at 550 nm), the retrieved aerosol concentration, size distribution, water-leaving radiance, and chlorophyll concentration were compared to those reported by the USC SeaPRISM AERONET-OC site off the coast of Southern California on 6 February 2013. For the relatively low AOD case (~0.08 at 550 nm), the retrieved aerosol concentration and size distribution were compared to those reported by the Monterey Bay AERONET site on 28 April 2014. Further, we evaluate the benefits of multi-angle and polarimetric observations by performing the retrievals using (a) all view angles and channels; (b) all view angles but radiances only (no polarization); (c) the nadir view angle only with both radiance and polarization; and (d) the nadir view angle without polarization. Optimized retrievals using different initial guesses were performed to provide a measure of retrieval uncertainty. Removal of multi-angular or polarimetric information resulted in increases in both parameter uncertainty and systematic bias. Potential accuracy improvements afforded by applying constraints on the surface

  15. Microwave radiometer to retrieve temperature profiles from the surface to the stratopause

    NASA Astrophysics Data System (ADS)

    Stähli, O.; Murk, A.; Kämpfer, N.; Mätzler, C.; Eriksson, P.

    2013-09-01

    TEMPERA (TEMPERature RAdiometer) is a new ground-based radiometer which measures in a frequency range from 51-57 GHz radiation emitted by the atmosphere. With this instrument it is possible to measure temperature profiles from ground to about 50 km. This is the first ground-based instrument with the capability to retrieve temperature profiles simultaneously for the troposphere and stratosphere. The measurement is done with a filterbank in combination with a digital fast Fourier transform spectrometer. A hot load and a noise diode are used as stable calibration sources. The optics consist of an off-axis parabolic mirror to collect the sky radiation. Due to the Zeeman effect on the emission lines used, the maximum height for the temperature retrieval is about 50 km. The effect is apparent in the measured spectra. The performance of TEMPERA is validated by comparison with nearby radiosonde and satellite data from the Microwave Limb Sounder on the Aura satellite. In this paper we present the design and measurement method of the instrument followed by a description of the retrieval method, together with a validation of TEMPERA data over its first year, 2012.

  16. A data-driven approach for retrieving temperatures and abundances in brown dwarf atmospheres

    SciTech Connect

    Line, Michael R.; Fortney, Jonathan J.; Marley, Mark S.; Sorahana, Satoko

    2014-09-20

    Brown dwarf spectra contain a wealth of information about their molecular abundances, temperature structure, and gravity. We present a new data driven retrieval approach, previously used in planetary atmosphere studies, to extract the molecular abundances and temperature structure from brown dwarf spectra. The approach makes few a priori physical assumptions about the state of the atmosphere. The feasibility of the approach is first demonstrated on a synthetic brown dwarf spectrum. Given typical spectral resolutions, wavelength coverage, and noise, property precisions of tens of percent can be obtained for the molecular abundances and tens to hundreds of K on the temperature profile. The technique is then applied to the well-studied brown dwarf, Gl 570D. From this spectral retrieval, the spectroscopic radius is constrained to be 0.75-0.83 R {sub J}, log (g) to be 5.13-5.46, and T {sub eff} to be between 804 and 849 K. Estimates for the range of abundances and allowed temperature profiles are also derived. The results from our retrieval approach are in agreement with the self-consistent grid modeling results of Saumon et al. This new approach will allow us to address issues of compositional differences between brown dwarfs and possibly their formation environments, disequilibrium chemistry, and missing physics in current grid modeling approaches as well as a many other issues.

  17. Mars Climate Sounder Retrievals with Two-dimensional Radiative Transfer: Implications for the Temperature Structure in the Winter Polar Region

    NASA Astrophysics Data System (ADS)

    Kleinboehl, A.; Friedson, A. J.; Schofield, J. T.

    2014-12-01

    The Mars Climate Sounder (MCS) is a mid- and far-infrared thermal emission radiometer on board the Mars Reconnaissance Orbiter (MRO). It measures radiances in limb and on-planet viewing geometries. From these radiance measurements, profiles of atmospheric temperature, dust and water ice are operationally retrieved from the surface to ~80 km altitude with a vertical resolution of ~5 km. While limb geometry provides superior vertical resolution over sounding in nadir geometry, it leads to significant horizontal averaging along the line-of-sight. This can lead to misrepresentations in the retrieved quantities in the presence of significant horizontal gradients of these quantities, if the retrieval assumes spherical symmetry. In MCS retrievals, this effect is particularly important in the polar winter regions due to the strong latitudinal gradients in atmospheric temperature. It leads to an apparent shift of the cold pole of the polar vortex away from the viewing direction of the instrument. The assumption of spherical symmetry can lead to misrepresentations of several K in temperature at a given latitude. Here we present an approach to consider these horizontal gradients by applying a two-dimensional radiative transfer scheme to the MCS retrieval. In a first pass a retrieval with the assumption of spherical symmetry is performed. From these retrieval results, horizontal gradients in temperature, pressure, dust and water ice are determined for all measurements along an MRO orbit. These gradient fields are then imposed on a second pass of the retrieval using a two-dimensional radiative transfer scheme. We show that the approach reduces misrepresentations in the retrieved temperature to typically less than 1-2 K in the wall of the polar vortex. Application of this approach to the operational MCS retrieval will lead to a significant improvement in the quality of the retrieved parameters, in particular of temperature in the winter polar regions, which have emerged as a

  18. Effects of vertical distribution of water vapor and temperature on total column water vapor retrieval error

    NASA Technical Reports Server (NTRS)

    Sun, Jielun

    1993-01-01

    Results are presented of a test of the physically based total column water vapor retrieval algorithm of Wentz (1992) for sensitivity to realistic vertical distributions of temperature and water vapor. The ECMWF monthly averaged temperature and humidity fields are used to simulate the spatial pattern of systematic retrieval error of total column water vapor due to this sensitivity. The estimated systematic error is within 0.1 g/sq cm over about 70 percent of the global ocean area; systematic errors greater than 0.3 g/sq cm are expected to exist only over a few well-defined regions, about 3 percent of the global oceans, assuming that the global mean value is unbiased.

  19. Simultaneous Retrieval of Temperature, Water Vapor and Ozone Atmospheric Profiles from IASI: Compression, De-noising, First Guess Retrieval and Inversion Algorithms

    NASA Technical Reports Server (NTRS)

    Aires, F.; Rossow, W. B.; Scott, N. A.; Chedin, A.; Hansen, James E. (Technical Monitor)

    2001-01-01

    A fast temperature water vapor and ozone atmospheric profile retrieval algorithm is developed for the high spectral resolution Infrared Atmospheric Sounding Interferometer (IASI) space-borne instrument. Compression and de-noising of IASI observations are performed using Principal Component Analysis. This preprocessing methodology also allows, for a fast pattern recognition in a climatological data set to obtain a first guess. Then, a neural network using first guess information is developed to retrieve simultaneously temperature, water vapor and ozone atmospheric profiles. The performance of the resulting fast and accurate inverse model is evaluated with a large diversified data set of radiosondes atmospheres including rare events.

  20. Microwave radiometer to retrieve temperature profiles from the surface to the stratopause

    NASA Astrophysics Data System (ADS)

    Stähli, O.; Murk, A.; Kämpfer, N.; Mätzler, C.; Eriksson, P.

    2013-03-01

    TEMPERA is a new ground-based radiometer which measures in a frequency range from 51-57 GHz radiation emitted by the atmosphere. The instrument operates thermally stabilized inside a lab. With this instrument it is possible to measure temperature profiles from ground to about 50 km. This is the first ground-based instrument with the capability to retrieve temperature profiles simultaneously for the troposphere and stratosphere. The measurement is done with a filterbank in combination with a digital Fast-Fourier-Transform spectrometer. A hot load and a noise diode are used as stable calibration sources. The optics consist of an off-axis parabolic mirror to collect the sky radiation. Due to the Zeeman effect on the emission lines used, the maximum height for the temperature retrieval is about 50 km. The effect is apparent in the measured spectra. The performance of TEMPERA is validated by comparison with nearby radiosonde and satellite data from the Microwave Limb Sounder on the Aura satellite. In this paper we present the design and measurement method of the instrument followed by a description of the retrieval method, together with a validation of TEMPERA data over its first year, 2012.

  1. Land surface temperature retrieved from airborne multispectral scanner mid-infrared and thermal-infrared data.

    PubMed

    Qian, Yong-Gang; Wang, Ning; Ma, Ling-Ling; Liu, Yao-Kai; Wu, Hua; Tang, Bo-Hui; Tang, Ling-Li; Li, Chuan-Rong

    2016-01-25

    Land surface temperature (LST) is one of the key parameters in the physics of land surface processes at local/global scales. In this paper, a LST retrieval method was proposed from airborne multispectral scanner data comparing one mid-infrared (MIR) channel and one thermal infrared (TIR) channel with the land surface emissivity given as a priori knowledge. To remove the influence of the direct solar radiance efficiently, a relationship between the direct solar radiance and water vapor content and the view zenith angle and solar zenith angle was established. Then, LST could be retrieved with a split-window algorithm from MIR/TIR data. Finally, the proposed algorithm was applied to the actual airborne flight data and validated with in situ measurements of land surface types in the Baotou site in China on 17 October 2014. The results demonstrate that the difference between the retrieved and in situ LST was less than 1.5 K. The bais, RMSE, and standard deviation of the retrieved LST were 0.156 K, 0.883 K, and 0.869 K, respectively, for samples. PMID:26832579

  2. Retrieval of Raindrop Size Distribution, Vertical Air Velocity and Water Vapor Attenuation Using Dual-Wavelength Doppler Radar Observations

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; Srivastava, C.

    2005-01-01

    Two techniques for retrieving the slope and intercept parameters of an assumed exponential raindrop size distribution (RSD), vertical air velocity, and attenuation by precipitation and water vapor in light stratiform rain using observations by airborne, nadir looking dual-wavelength (X-band, 3.2 cm and W-band, 3.2 mm) radars are presented. In both techniques, the slope parameter of the RSD and the vertical air velocity are retrieved using only the mean Doppler velocities at the two wavelengths. In the first method, the intercept of the RSD is estimated from the observed reflectivity at the longer wavelength assuming no attenuation at that wavelength. The attenuation of the shorter wavelength radiation by precipitation and water vapor are retrieved using the observed reflectivity at the shorter wavelength. In the second technique, it is assumed that the longer wavelength suffers attenuation only in the melting band. Then, assuming a distribution of water vapor, the melting band attenuation at both wavelengths and the rain attenuation at the shorter wavelength are retrieved. Results of the retrievals are discussed and several physically meaningful results are presented.

  3. The impact of AIRS atmospheric temperature and moisture profiles on hurricane forecasts: Ike (2008) and Irene (2011)

    NASA Astrophysics Data System (ADS)

    Zheng, Jing; Li, Jun; Schmit, Timothy J.; Li, Jinlong; Liu, Zhiquan

    2015-03-01

    Atmospheric InfraRed Sounder (AIRS) measurements are a valuable supplement to current observational data, especially over the oceans where conventional data are sparse. In this study, two types of AIRS-retrieved temperature and moisture profiles, the AIRS Science Team product (SciSup) and the single field-of-view (SFOV) research product, were evaluated with European Centre for Medium-Range Weather Forecasts (ECMWF) analysis data over the Atlantic Ocean during Hurricane Ike (2008) and Hurricane Irene (2011). The evaluation results showed that both types of AIRS profiles agreed well with the ECMWF analysis, especially between 200 hPa and 700 hPa. The average standard deviation of both temperature profiles was approximately 1 K under 200 hPa, where the mean AIRS temperature profile from the AIRS SciSup retrievals was slightly colder than that from the AIRS SFOV retrievals. The mean SciSup moisture profile was slightly drier than that from the SFOV in the mid troposphere. A series of data assimilation and forecast experiments was then conducted with the Advanced Research version of the Weather Research and Forecasting (WRF) model and its three-dimensional variational (3DVAR) data assimilation system for hurricanes Ike and Irene. The results showed an improvement in the hurricane track due to the assimilation of AIRS clear-sky temperature profiles in the hurricane environment. In terms of total precipitable water and rainfall forecasts, the hurricane moisture environment was found to be affected by the AIRS sounding assimilation. Meanwhile, improving hurricane intensity forecasts through assimilating AIRS profiles remains a challenge for further study.

  4. Striping noise mitigation in ATMS brightness temperatures and its impact on cloud LWP retrievals

    NASA Astrophysics Data System (ADS)

    Ma, Yuan; Zou, Xiaolei

    2015-07-01

    Advanced Technology Microwave Sounder (ATMS) on board Suomi National Polar-orbiting Partnership (NPP) satellite provides global distributions of microwave brightness temperature measurements at 22 temperature and humidity sounding channels twice daily. However, the differences between observations and brightness temperature simulations exhibit a systematic along-track striping noise for all channels. In this study, a set of 22 "optimal" filters is designed to remove the striping noise in different channels. It is shown that the original method for ATMS striping noise mitigation developed by Qin et al. can be simplified and made suitable for use in an operational context. Impacts of striping noise mitigation on small-scale weather features are investigated by comparing ATMS cloud liquid water path (LWP) retrieved before and after striping noise mitigation. It is shown that the optimal filters do not affect small-scale cloud features while smoothing out striping noise in brightness temperatures. It is also shown that the striping noise is present in the LWP retrievals if the striping noise in brightness temperatures of ATMS channels 1 and 2 is not removed. The amplitude of the striping noise in LWP is linearly related to the magnitude of striping noise in ATMS brightness temperature observations.

  5. Retrieval of Temperature and Species Distributions from Multispectral Image Data of Surface Flame Spread in Microgravity

    NASA Technical Reports Server (NTRS)

    Annen, K. D.; Conant, John A.; Weiland, Karen J.

    2001-01-01

    Weight, size, and power constraints severely limit the ability of researchers to fully characterize temperature and species distributions in microgravity combustion experiments. A powerful diagnostic technique, infrared imaging spectrometry, has the potential to address the need for temperature and species distribution measurements in microgravity experiments. An infrared spectrum imaged along a line-of-sight contains information on the temperature and species distribution in the imaged path. With multiple lines-of-sight and approximate knowledge of the geometry of the combustion flowfield, a three-dimensional distribution of temperature and species can be obtained from one hyperspectral image of a flame. While infrared imaging spectrometers exist for collecting hyperspectral imagery, the remaining challenge is retrieving the temperature and species information from this data. An initial version of an infrared analysis software package, called CAMEO (Combustion Analysis Model et Optimizer), has been developed for retrieving temperature and species distributions from hyperspectral imaging data of combustion flowfields. CAMEO has been applied to the analysis of multispectral imaging data of flame spread over a PMMA surface in microgravity that was acquired in the DARTFire program. In the next section of this paper, a description of CAMEO and its operation is presented, followed by the results of the analysis of microgravity flame spread data.

  6. Analysis of CrIS-ATMS Data Using an AIRS Science Team Version 6 - Like Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis C.

    2013-01-01

    CrIS/ATMS is flying on NPP and is scheduled to fly on JPSS-1. CrIS/ATMS has roughly equivalent capabilities to AIRS/AMSU. The AIRS Science Team Version 6 retrieval algorithm is currently producing very high quality level-3 Climate Data Records (CDR's) that will be critical for understanding climate processes AIRS CDRs should eventually cover the period September 2002 through at least 2020. CrIS/ATMS is the only scheduled follow on to AIRS AMSU. I have been asked by Ramesh Kakar if CrIS/ATMS can be counted on to adequately continue the AIRS/AMSU CDRs beyond 2020, or is something better needed? This research is being done to answer that question. A minimum requirement to obtain a yes answer is that CrIS/ATMS be analyzed using an AIRS Version 6 - like algorithm. NOAA is currently generating CrIS/ATMS products using 2 algorithms: IDPS and NUCAPS

  7. Markov Chain Method for Radiative Transfer Modeling: A Case Study of Aerosol/Surface Retrieval using AirMSPI Measurements

    NASA Astrophysics Data System (ADS)

    Xu, F.; Diner, D. J.; Davis, A. B.; Latyshev, S.; Garay, M. J.; Kalashnikova, O.; Ge, C.; Wang, J.

    2013-12-01

    A vector Markov chain (MarCh) radiative transfer (RT) code developed at JPL that includes forward modeling of radiance and polarization fields and linearization (analytical estimation of Jacobians) was incorporated into an aerosol and surface retrieval package for a plane-parallel atmosphere/surface system. The RT computation by MarCh is based on matrix operations. To improve the code's computational efficiency, the forward model is currently undergoing acceleration through the exploration of different strategies for matrix operation and inversion, including numerical optimization, multi-threading/multi-processing techniques on a CPU. Implementation on a graphics processing unit (GPU) is also planned. Following a benchmarking study of the forward model, the performance of MarCh in aerosol and surface retrieval is being tested. With an optimized algorithm, we started from aerosol optical depth and surface retrieval using imagery acquired by Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) over Fresno, CA. Aerosol properties including concentration and size distribution of different species provided by the Weather Research and Forecasting (WRF)-Chem model were used to constrain the retrieval and reduce the parameter space. The assumptions of spectral invariance in the angular shape of surface bidirectional reflectance factors (BRFs) and the magnitude of polarized surface BRFs were tested. The aerosol and surface properties are then relaxed in a stepwise way to refine the aerosol retrieval results and enable comparison with independent retrievals obtained from a collocated AErosol RObotic NETwork (AERONET) station.

  8. P-band Radar Retrieval of Root-Zone Soil Moisture: AirMOSS Methodology, Progress, and Improvements

    NASA Astrophysics Data System (ADS)

    Moghaddam, M.; Tabatabaeenejad, A.; Chen, R.

    2015-12-01

    The AirMOSS mission seeks to improve the estimates of the North American Net Ecosystem Exchange (NEE)by providing high-resolution observations of the root zone soil moisture (RZSM) over regions representative of themajor North American biomes. The radar snapshots are used to generate estimates of RZSM. To retrieve RZSM, weuse a discrete scattering model integrated with layered-soil scattering models. The soil moisture profile is representedas a quadratic function in the form of az2 + bz + c, where z is the depth and a, b, and c are the coefficients to beretrieved. The ancillary data necessary to characterize a pixel are available from various databases. We applythe retrieval method to the radar data acquired over AirMOSS sites including Canada's BERMS, Walnut Gulchin Arizona, MOISST in Oklahoma, Tonzi Ranch in California, and Metolius in Oregon, USA. The estimated soilmoisture profile is validated against in-situ soil moisture measurements. We have continued to improve the accuracyof retrievals as the delivery of the RZSMproducts has progressed since 2012. For example, the 'threshold depth' (thedepth up to which the retrieval is mathematically valid) has been reduced from 100 cm to 50 cm after the retrievalaccuracy was assessed both mathematically and physically. Moreover, we progressively change the implementationof the inversion code and its subroutines as we find more accurate and efficient ways of mathematical operations. Thelatest AirMOSS results (including soil moisture maps, validation plots, and scatter plots) as well as all improvementsapplied to the retrieval algorithm, including the one mentioned above, will be reported at the talk, following a briefdescription of the retrieval methodology. Fig. 1 shows a validation plot for a flight over Tonzi Ranch from September2014 (a) and a scatter plot for various threshold depths using 2012 and 2013 data.

  9. The Effects of Landscape Heterogeneity on Brightness Temperature and Soil Moisture Retrieval

    NASA Astrophysics Data System (ADS)

    Neelam, M.; Mohanty, B.

    2013-12-01

    Soil moisture is a key variable to describe energy-water budgets at land surface. Passive remote sensing has played a crucial role in monitoring soil moisture from space. However, due to technical constrains and gaps in scientific understanding, the goal of 4% soil moisture accuracy are not obtained yet. With the advancement of technology and integration of radar/radiometer measurements, some of the measurement errors can be reduced. Nevertheless, the scientific understanding of the effects of landscape heterogeneity and its error contribution to soil moisture retrieval is lacking. In this paper, we have performed a synthetic study using tau-omega model, to understand the effects of within pixel heterogeneity in terms of different land cover types. This work focuses on understanding the effects of land cover type such as fresh/saline, vegetation density and type, percentage of clay on accuracy of soil moisture retrieval. Heterogeneous pixels cannot be characterized through simple averaging of contributing parameters, as these parameters exhibit non-linear behavior. For example, the brightness temperature observed for total VWC < 4.5 kg/m2 of mixed pixel with different vegetation types is far less than the average brightness temperature observed for individual vegetation types summing to total VWC. Such analysis is extended to different landcover types, to better address the effects of heterogeneity on soil moisture retrieval. Thus an attempt to develop an effective averaging technique to address the effect of nonlinear behavior on brightness temperature is made. The technique is tested by determining soil moisture accuracy obtained using retrieval algorithm.

  10. Evaluating atmospheric correction models for retrieving surface temperatures from the AVHRR over a tallgrass prairie

    NASA Technical Reports Server (NTRS)

    Cooper, D. I.; Asrar, G.

    1989-01-01

    The effects of atmospheric attenuation on surface radiative temperatures obtained by the AVHRR over a tallgrass prairie area in the Flint Hills of Kansas are examined. Six atmospheric correction models developed primarily for sea-surface temperature studies are used to test their utility for retrieval of radiative temperatures over the land surface. An uncertainty of + or - 3.0 C was found for the AVHRR data, and used to evaluate the performance of a given model. When the difference between in situ and AVHRR surface temperatures was smaller than the uncertainty, the model was judged to be adequate. Among the six models evaluated, only the NOAA split-window model consistently adjusted the AVHRR surface temperatures within + or - 3.0 C of the in situ measurements.

  11. Retrieving Temperature and Moisture Profiles from AERI Radiance Observations. AERIPROF Value-Added Product Technical Description

    SciTech Connect

    Feltz, W. F.; Howell, H. B.; Comstock, J.; Mahon, R.; Turner, D. D.; Smith, W. L.; Woolf, H. M.; Halter, T.

    2007-04-01

    One of the goals of the Atmospheric Radiation Measurement (ARM) Program is to collect a long-term series of radiative and atmospheric state observations to improve the parameterization of these processes in global climate models. The ARM Program intended to move away from the traditional approach of directly measuring profiles of temperature and moisture using radiosondes, which is expensive in terms of expendables and manpower, and develop methods to retrieve these profiles with ground-based remote sensors. The atmospheric emitted radiance interferometer (AERI), whose radiance data contains information on the vertical distribution of water vapor and temperature, is an integral part of the ARM profiling plan.

  12. Satellite retrieval of cloud properties from the O2 A-band for air quality and climate applications

    NASA Astrophysics Data System (ADS)

    Wang, P.; Stammes, P.; van der A, R.

    2009-04-01

    The FRESCO (Fast Retrieval Scheme for Clouds from the Oxygen A-band) algorithm has been used to retrieve cloud information from measurements of the O2 A-band around 760 nm by GOME, SCIAMACHY and GOME-2. The cloud parameters retrieved by FRESCO are the effective cloud fraction and cloud pressure, which are used for cloud correction in the retrieval of trace gases like O3 and NO2. To improve the cloud pressure retrieval for partly cloudy scenes, single Rayleigh scattering has been included in an improved version of the algorithm, called FRESCO+. FRESCO+ gives more reliable cloud pressures over partly cloudy pixels. Simulations and comparisons with ground-based radar measurements of clouds shows that the FRESCO+ cloud pressure is about the optical midlevel of the cloud. Globally averaged, the FRESCO+ cloud pressure is about 50 hPa higher than the FRESCO cloud pressure, while the FRESCO+ effective cloud fraction is about 0.01 larger. From ground-based validation (P. Wang et al., Atmos. Chem. Phys., 8, 6565-6576, 2008) it appears that the FRESCO+ cloud retrievals improve the retrieval of tropospheric NO2 as compared to FRESCO. So FRESCO+ contributes to better monitoring of air quality from space. The FRESCO+ cloud algorithm has been applied to GOME and SCIAMACHY measurements since the beginning of the missions. Monthly averaged SCIAMACHY FRESCO+ effective cloud fraction and cloud pressure maps show similar patterns as the ISCCP cloud maps, although there are some differences, due to the different meaning of the cloud products and due to the fact that photons in the O2 A-band penetrate into clouds. The 6-year averaged seasonal cloud maps from SCIAMACHY data have good agreement with the global circulation patterns. Therefore, the FRESCO+ products are not only efficient for cloud correction of trace gas retrievals but also contribute additional information for climate research.

  13. Regression analysis in modeling of air surface temperature and factors affecting its value in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Rajab, Jasim Mohammed; Jafri, Mohd. Zubir Mat; Lim, Hwee San; Abdullah, Khiruddin

    2012-10-01

    This study encompasses air surface temperature (AST) modeling in the lower atmosphere. Data of four atmosphere pollutant gases (CO, O3, CH4, and H2O) dataset, retrieved from the National Aeronautics and Space Administration Atmospheric Infrared Sounder (AIRS), from 2003 to 2008 was employed to develop a model to predict AST value in the Malaysian peninsula using the multiple regression method. For the entire period, the pollutants were highly correlated (R=0.821) with predicted AST. Comparisons among five stations in 2009 showed close agreement between the predicted AST and the observed AST from AIRS, especially in the southwest monsoon (SWM) season, within 1.3 K, and for in situ data, within 1 to 2 K. The validation results of AST with AST from AIRS showed high correlation coefficient (R=0.845 to 0.918), indicating the model's efficiency and accuracy. Statistical analysis in terms of β showed that H2O (0.565 to 1.746) tended to contribute significantly to high AST values during the northeast monsoon season. Generally, these results clearly indicate the advantage of using the satellite AIRS data and a correlation analysis study to investigate the impact of atmospheric greenhouse gases on AST over the Malaysian peninsula. A model was developed that is capable of retrieving the Malaysian peninsulan AST in all weather conditions, with total uncertainties ranging between 1 and 2 K.

  14. Air temperature field distribution estimations over a Chinese mega-city using MODIS land surface temperature data: the case of Shanghai

    NASA Astrophysics Data System (ADS)

    Ma, Weichun; Zhou, Liguo; Zhang, Hao; Zhang, Yan; Dai, Xiaoyan

    2016-03-01

    The capability of obtaining spatially distributed air temperature data from remote sensing measurements is an improvement for many environmental applications focused on urban heat island, carbon emissions, climate change, etc. This paper is based on the MODIS/Terra and Aqua data utilized to study the effect of the urban atmospheric heat island in Shanghai, China. The correlation between retrieved MODIS land surface temperature (LST) and air temperature measured at local weather stations was initially studied at different temporal and spatial scales. Secondly, the air temperature data with spatial resolutions of 250 m and 1 km were estimated from MODIS LST data and in-situ measured air temperature. The results showed that there is a slightly higher correlation between air temperature and MODIS LST at a 250m resolution in spring and autumn on an annual scale than observed at a 1 km resolution. Although the distribution pattern of the air temperature thermal field varies in different seasons, the urban heat island (UHI) in Shanghai is characterized by a distribution pattern of multiple centers, with the central urban area as the primary center and the built-up regions in each district as the subcenters. This study demonstrates the potential not only for estimating the distribution of the air temperature thermal field from MODIS LST with 250 m resolution in spring and autumn in Shanghai, but also for providing scientific and effective methods for monitoring and studying UHI effect in a Chinese mega-city such as Shanghai.

  15. Data Assimilation Experiments using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2008-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AlRS data. Version 5 contains accurate case-by-case error estimates for most derived products, which are also used for quality control. We have conducted forecast impact experiments assimilating AlRS quality controlled temperature profiles using the NASA GEOS-5 data assimilation system, consisting of the NCEP GSI analysis coupled with the NASA FVGCM. Assimilation of quality controlled temperature profiles resulted in significantly improved forecast skill in both the Northern Hemisphere and Southern Hemisphere Extra-Tropics, compared to that obtained from analyses obtained when all data used operationally by NCEP except for AlRS data is assimilated. Experiments using different Quality Control thresholds for assimilation of AlRS temperature retrievals showed that a medium quality control threshold performed better than a tighter threshold, which provided better overall sounding accuracy; or a looser threshold, which provided better spatial coverage of accepted soundings. We are conducting more experiments to further optimize this balance of spatial coverage and sounding accuracy from the data assimilation perspective. In all cases, temperature soundings were assimilated well below cloud level in partially cloudy cases. The positive impact of assimilating AlRS derived atmospheric temperatures all but vanished when only AIRS stratospheric temperatures were assimilated. Forecast skill resulting from assimilation of AlRS radiances uncontaminated by clouds, instead of AlRS temperature soundings, was only slightly better than that resulting from assimilation of only stratospheric AlRS temperatures. This reduction in forecast skill is most likely the result of significant loss of tropospheric information when only AIRS radiances unaffected by clouds are used in the data assimilation process.

  16. Retrieving sea surface salinity with multiangular L-band brightness temperatures: Improvement by spatiotemporal averaging

    NASA Astrophysics Data System (ADS)

    Camps, A.; Vall-Llossera, M.; Batres, L.; Torres, F.; Duffo, N.; Corbella, I.

    2005-04-01

    The Soil Moisture and Ocean Salinity (SMOS) mission was selected in May 1999 by the European Space Agency to provide global and frequent soil moisture and sea surface salinity maps. SMOS' single payload is Microwave Imaging Radiometer by Aperture Synthesis (MIRAS), an L band two-dimensional aperture synthesis interferometric radiometer with multiangular observation capabilities. Most geophysical parameter retrieval errors studies have assumed the independence of measurements both in time and space so that the standard deviation of the retrieval errors decreases with the inverse of square root of the number of measurements being averaged. This assumption is especially critical in the case of sea surface salinity (SSS), where spatiotemporal averaging is required to achieve the ultimate goal of 0.1 psu error. This work presents a detailed study of the SSS error reduction by spatiotemporal averaging, using the SMOS end-to-end performance simulator (SEPS), including thermal noise, all instrumental error sources, current error correction and image reconstruction algorithms, and correction of atmospheric and sky noises. The most important error sources are the biases that appear in the brightness temperature images. Three different sources of biases have been identified: errors in the noise injection radiometers, Sun contributions to the antenna temperature, and imaging under aliasing conditions. A calibration technique has been devised to correct these biases prior to the SSS retrieval at each satellite overpass. Simulation results show a retrieved salinity error of 0.2 psu in warm open ocean, and up to 0.7 psu at high latitudes and near the coast, where the external calibration method presents more difficulties.

  17. Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).

  18. Investigations of the spatial and temporal resolution of retrievals of atmospheric carbon dioxide from the Atmospheric InfraRed Sounder (AIRS).

    NASA Astrophysics Data System (ADS)

    Maddy, Eric Sean

    As the dominant anthropogenic greenhouse gas, carbon dioxide (CO 2), represents an important component of climate change (IPCC 2007). Owing to burning of fossil fuels and deforestation, atmospheric CO2 concentrations have increased over 110 parts-per-million by volume (ppmv) from 270 ppmv to 380 ppmv since the dawn of the Industrial Revolution. Understanding of the spatial distribution of the sources and sinks of atmospheric CO 2 is necessary not only to predict the future atmospheric abundances but also their effect on future climate. Although designed for deriving high precision temperature and moisture profiles, NASA's Atmospheric InfraRed Sounder (AIRS) IR measurements include broad vertical sensitivity (between 3 and 10 km) to atmospheric CO2 variations. Coupled with AIRS' broad swath pattern and a technique referred to as "cloud-clearing" these measurements enable daily global spatial coverage. Nevertheless, AIRS' ability to determine the spatial distribution of carbon dioxide (CO2) is strongly dependent on its ability to separate the radiative effects of CO2 from temperature not to mention measurement uncertainties due to clouds and other geophysical variables such as moisture and ozone. This research presents a thorough investigation into the temporal and spatial scales that the AIRS can separate temperature (and other geophysical variables) from CO2. Through our detailed understanding of the way satellites view the Earth's atmosphere, we have developed an algorithm capable of retrieving global middle-to-upper tropospheric CO2 concentrations in all-weather conditions with total uncertainties ranging between 1 to 2 ppmv. From a radiative perspective, roughly equivalent to 30 mK to 60 mK, 1 to 2 ppmv, is an awesome feat for a space-borne sensor. Necessary for the remarkable performance of this algorithm, we developed methodologies capable of separating the radiative effect of CO2 variability from temperature, improved the fast rapid transmittance algorithm

  19. Utility of Assimilating Surface Radiometric Temperature Observations for Evaporative Fraction and Heat Transfer Coefficient Retrieval

    NASA Astrophysics Data System (ADS)

    Crow, Wade T.; Kustas, William P.

    2005-04-01

    Recent advances in land data assimilation have yielded variational smoother techniques designed to solve the surface energy balance based on remote observations of surface radiometric temperature. These approaches have a number of potential advantages over existing diagnostic models, including the ability to make energy flux predictions between observation times and reduced requirements for ancillary parameter estimation. Here, the performance of a recently developed variational smoother approach is examined in detail over a range of vegetative and hydrological conditions in the southern U.S.A. during the middle part of the growing season. Smoother results are compared with flux tower observations and energy balance predictions obtained from the two-source energy balance model (TSM). The variational approach demonstrates promise for flux retrievals at dry and lightly vegetated sites. However, results suggest that the simultaneous retrieval of both evaporative fraction and turbulent transfer coefficients by the variational approach will be difficult for wet and/or heavily vegetated land surfaces. Additional land surface information (e.g. leaf area index ( L AI) or the rough specification of evaporative fraction bounds) will be required to ensure robust predictions under such conditions. The single-source nature of the variational approach also hampers the physical interpretation of turbulent transfer coefficient retrievals. Intercomparisons between energy flux predictions from the variational approach and the purely diagnostic TSM demonstrate that the relative accuracy of each approach is contingent on surface conditions and the accuracy with which L AI values required by the TSM can be estimated.

  20. A Prototype Algorithm for Land Surface Temperature Retrieval from Sentinel-3 Mission

    NASA Astrophysics Data System (ADS)

    Sobrino, Jose A.; Jimenez-Munoz, Juan C.; Soria, Guillem; Brockmann, Carsten; Ruescas, Ana; Danne, Olaf; North, Peter; Phillipe, Pierre; Berger, Michel; Merchant, Chris; Ghent, Darren; Remedios, John

    2015-12-01

    In this work we present a prototype algorithm to retrieve Land Surface Temperature (LST) from OLCI and SLSTR instruments on board Sentinel-3 platform, which was developed in the framework of the SEN4LST project. For this purpose, data acquired with the ENVISAT MERIS and AATSR instruments are used as a benchmark. The objective is to improve the LST standard product (level 2) currently derived from the single AATSR instrument taking advantages of the improved characteristics of the future OLCI and SLSTR instruments. Hence, the high spectral resolution of OLCI instrument and the dual-view and thermal bands available in the SLSTR instruments have the potential to improve the characterization of the atmosphere and therefore to improve the atmospheric correction and cloud mask. Bands in the solar domain available in both instruments allow the retrieval of the surface emissivity, being a key input to the LST algorithm. Pairs of MERIS/AATSR are processed over different sites and validated with in situ measurements using the LST processor included in the BEAM software. Results showed that the proposed LST algorithm improves LST retrievals of the standard level-2 product.

  1. Solar Eclipse Effect on Shelter Air Temperature

    NASA Technical Reports Server (NTRS)

    Segal, M.; Turner, R. W.; Prusa, J.; Bitzer, R. J.; Finley, S. V.

    1996-01-01

    Decreases in shelter temperature during eclipse events were quantified on the basis of observations, numerical model simulations, and complementary conceptual evaluations. Observations for the annular eclipse on 10 May 1994 over the United States are presented, and these provide insights into the temporal and spatial changes in the shelter temperature. The observations indicated near-surface temperature drops of as much as 6 C. Numerical model simulations for this eclipse event, which provide a complementary evaluation of the spatial and temporal patterns of the temperature drops, predict similar decreases. Interrelationships between the temperature drop, degree of solar irradiance reduction, and timing of the peak eclipse are also evaluated for late spring, summer, and winter sun conditions. These simulations suggest that for total eclipses the drops in shelter temperature in midlatitudes can be as high as 7 C for a spring morning eclipse.

  2. Effect of emissivity uncertainty on surface temperature retrieval over urban areas: Investigations based on spectral libraries

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Yang, Song; Su, Z.; Wang, Kai

    2016-04-01

    Land surface emissivity (LSE) is a prerequisite for retrieving land surface temperature (LST) through single channel methods. According to error model, a 0.01 (1%) uncertainty of LSE may result in a 0.5 K error in LST under a moderate condition, while an obvious error (approximately 1 K) is possible under a warmer and less humid situation. Significant emissivity variations are presented among the anthropogenic materials in three spectral libraries, which raise a critical question that whether urban LSE can be estimated accurately to meet the needs for LST retrieval. Methods widely used for urban LSE estimation are investigated, including the classification-based method, the spectral-index based method, and the linear spectral mixture model (LSMM). Results indicate that the classification-based method may not be effectively applicable for urban LSE estimation, due mainly to the insignificant relation between the short-wave multispectral reflectance and the long-wave thermal emissivity shown by the spectra. Compared with the classification-based method, the LSMM shows relatively more accurate predictions, whereas, the performance of the LSMM largely depends on the determination of endmembers. Obvious uncertainties in LSE estimation likely appear if endmembers are determined improperly. Increasing the spectra for endmembers is a practical and beneficial means for LSMM when there is not a priori knowledge, which emphasizes the necessity of building a comprehensive spectral library of urban materials. Furthermore, the LST retrieval from a single channel of Landsat 8 is more challenging as compared with the retrieval from the channels of its predecessors-Landsat 4/5/7.

  3. On the effect of surface emissivity on temperature retrievals. [for meteorology

    NASA Technical Reports Server (NTRS)

    Kornfield, J.; Susskind, J.

    1977-01-01

    The paper is concerned with errors in temperature retrieval caused by incorrectly assuming that surface emissivity is equal to unity. An error equation that applies to present-day atmospheric temperature sounders is derived, and the bias errors resulting from various emissivity discrepancies are calculated. A model of downward flux is presented and used to determine the effective downward flux. In the 3.7-micron region of the spectrum, emissivities of 0.6 to 0.9 have been observed over land. At a surface temperature of 290 K, if the true emissivity is 0.6 and unit emissivity is assumed, the error would be approximately 11 C. In the 11-micron region, the maximum deviation of the surface emissivity from unity was 0.05.

  4. One-dimensional variational (1D-Var) retrieval of middle to upper tropospheric humidity using AIRS radiance data

    NASA Astrophysics Data System (ADS)

    Ishimoto, Hiroshi; Okamoto, Kozo; Okamoto, Hajime; Sato, Kaori

    2014-06-01

    A one-dimensional variational analysis (1D-Var retrieval) of tropospheric humidity was conducted using hyper-spectral radiance data from the Atmospheric Infrared Sounder (AIRS). For the vertical range of the atmosphere between 200 and 600 hPa, the same high-resolution retrieval of humidity profiles as for clear-sky conditions was possible over low clouds if the cloud height was lower than 800 hPa. Global analyses from a global data assimilation system were used for initial profiles, and clear conditions over 800 hPa height were determined from AIRS radiance data. Results of analyses for 50 days of global radiosonde matchup data from 21 December 2008 to 8 February 2009 revealed that our 1D-Var calculations derived humidity profiles were closer to the sonde profiles than those of a global analysis at a height over 600 hPa. Furthermore, the results of 1D-Var retrieval often represented high and supersaturated relative humidity around the supposed ice clouds. The altitudes of the high humidity region agreed with the height of ice clouds that had been detected by CloudSat/CALIPSO. As well as possibly improving the humidity profiles in a numerical model by data assimilation, it is expected that these humidity analyses using AIRS radiance data will provide additional information for the study of ice clouds in the middle to upper troposphere.

  5. Comparison of MODIS Land Surface Temperature and Air Temperature over the Continental USA Meteorological Stations

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Bounoua, Lahouari; Imhoff, Marc L.; Wolfe, Robert E.; Thome, Kurtis

    2014-01-01

    The National Land Cover Database (NLCD) Impervious Surface Area (ISA) and MODIS Land Surface Temperature (LST) are used in a spatial analysis to assess the surface-temperature-based urban heat island's (UHIS) signature on LST amplitude over the continental USA and to make comparisons to local air temperatures. Air-temperature-based UHIs (UHIA), calculated using the Global Historical Climatology Network (GHCN) daily air temperatures, are compared with UHIS for urban areas in different biomes during different seasons. NLCD ISA is used to define urban and rural temperatures and to stratify the sampling for LST and air temperatures. We find that the MODIS LST agrees well with observed air temperature during the nighttime, but tends to overestimate it during the daytime, especially during summer and in nonforested areas. The minimum air temperature analyses show that UHIs in forests have an average UHIA of 1 C during the summer. The UHIS, calculated from nighttime LST, has similar magnitude of 1-2 C. By contrast, the LSTs show a midday summer UHIS of 3-4 C for cities in forests, whereas the average summer UHIA calculated from maximum air temperature is close to 0 C. In addition, the LSTs and air temperatures difference between 2006 and 2011 are in agreement, albeit with different magnitude.

  6. Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite Part 1: Carbon dioxide

    NASA Astrophysics Data System (ADS)

    Schneising, O.; Buchwitz, M.; Burrows, J. P.; Bovensmann, H.; Reuter, M.; Notholt, J.; Macatangay, R.; Warneke, T.

    2008-07-01

    Carbon dioxide (CO2) and methane (CH4) are the two most important anthropogenic greenhouse gases. SCIAMACHY on ENVISAT is the first satellite instrument whose measurements are sensitive to concentration changes of the two gases at all altitude levels down to the Earth's surface where the source/sink signals are largest. We have processed three years (2003 2005) of SCIAMACHY near-infrared nadir measurements to simultaneously retrieve vertical columns of CO2 (from the 1.58 μm absorption band), CH4 (1.66 μm) and oxygen (O2 A-band at 0.76 μm) using the scientific retrieval algorithm WFM-DOAS. We show that the latest version of WFM-DOAS, version 1.0, which is used for this study, has been significantly improved with respect to its accuracy compared to the previous versions while essentially maintaining its high processing speed (~1 min per orbit, corresponding to ~6000 single measurements, and per gas on a standard PC). The greenhouse gas columns are converted to dry air column-averaged mole fractions, denoted XCO2 (in ppm) and XCH4 (in ppb), by dividing the greenhouse gas columns by simultaneously retrieved dry air columns. For XCO2 dry air columns are obtained from the retrieved O2 columns. For XCH4 dry air columns are obtained from the retrieved CO2 columns because of better cancellation of light path related errors compared to using O2 columns retrieved from the spectrally distant O2 A-band. Here we focus on a discussion of the XCO2 data set. The XCH4 data set is discussed in a separate paper (Part 2). In order to assess the quality of the retrieved XCO2 we present comparisons with Fourier Transform Spectroscopy (FTS) XCO2 measurements at two northern hemispheric mid-latitude ground stations. To assess the quality globally, we present detailed comparisons with global XCO2 fields obtained from NOAA's CO2 assimilation system CarbonTracker. For the Northern Hemisphere we find good agreement with the reference data for the CO2 seasonal cycle and the CO2 annual

  7. Retrieving mesopause temperature and line-of-sight wind from full-diurnal-cycle Na lidar observations.

    PubMed

    Krueger, David A; She, Chiao-Yao; Yuan, Tao

    2015-11-10

    Narrowband Na lidar measurement of mesopause region temperatures were pioneered by Fricke and von Zahn in 1985, in 1990 by She et al. at Colorado State University (CSU), with upgrades to measure both temperature and wind in 1994, and under sunlit conditions in 1996 with 24 h continuous observational capability in 2002. This paper details the assumptions and procedures for the retrieval of mesopause region temperatures, line-of-sight winds, and sodium densities from day and night signals from the CSU narrowband Na lidar. The Hanle effect and the effect of the pulsed laser line shape function on the accuracy of temperature and LOS wind retrieval are also discussed. PMID:26560775

  8. Associations of endothelial function and air temperature in diabetic subjects

    EPA Science Inventory

    Background and Objective: Epidemiological studies consistently show that air temperature is associated with changes in cardiovascular morbidity and mortality. However, the biological mechanisms underlying the association remain largely unknown. As one index of endothelial functio...

  9. Retrieval of temperature from a multiple-channel Rayleigh-scatter lidar using an optimal estimation method.

    PubMed

    Sica, R J; Haefele, A

    2015-03-10

    The measurement of temperature in the middle atmosphere with Rayleigh-scatter lidars is an important technique for assessing atmospheric change. Current retrieval schemes for this temperature have several shortcomings, which can be overcome by using an optimal estimation method (OEM). Forward models are presented that completely characterize the measurement and allow the simultaneous retrieval of temperature, dead time, and background. The method allows a full uncertainty budget to be obtained on a per profile basis that includes, in addition to the statistical uncertainties, the smoothing error and uncertainties due to Rayleigh extinction, ozone absorption, lidar constant, nonlinearity in the counting system, variation of the Rayleigh-scatter cross section with altitude, pressure, acceleration due to gravity, and the variation of mean molecular mass with altitude. The vertical resolution of the temperature profile is found at each height, and a quantitative determination is made of the maximum height to which the retrieval is valid. A single temperature profile can be retrieved from measurements with multiple channels that cover different height ranges, vertical resolutions, and even different detection methods. The OEM employed is shown to give robust estimates of temperature, which are consistent with previous methods, while requiring minimal computational time. This demonstrated success of lidar temperature retrievals using an OEM opens new possibilities in atmospheric science for measurement integration between active and passive remote sensing instruments. PMID:25968361

  10. Numerical simulation of VTPR temperature retrievals in a severe storm environment

    NASA Technical Reports Server (NTRS)

    Vonderhaar, T. H.; Hillger, D. W.

    1979-01-01

    Environmental conditions prior to convective development on the Great Plains of the U.S. on one case study day were investigated using the high-resolution infrared radiation sounder (HIRS) on Nimbus 6. A dual-retrieval scheme was developed to retrieve both lower tropospheric moisture and temperature parameters from the HIRS radiances. Total precipitable water, surface dew point temperatures, and stability indices were analyzed at a resolution of up to 30 Km on this day. Correlations with interpolated NES rawinsonde values were high and intrinsic noise levels were low. The true quality of the mesoscale analyses, however, is only seen by examining the small scale features at a scale of approximately 100 Km. Perturbations on the dry line feature for this day were seen in the satellite data, although the dry line position was just as easily picked up by surface observations. Convective development 2 1/2 hours later did seem to correlate well with the local maxima of moisture and instability seen in the satellite analyses.

  11. Multispectral X-ray Imagaing for Core Temperature and Density Maps Retrieval in Direct Drive Implosions

    SciTech Connect

    Tommasini, R; Koch, J A; Izumi, N; Welser, L A; Mancini, R C; Delettrez, J; Regan, S; Smalyuk, V

    2006-04-26

    We report on the experiments aimed at obtaining core temperature and density maps in direct drive implosions at the OMEGA Laser Facility using multi-monochromatic X-ray imagers. These instruments use an array of pinholes and a flat multilayer mirror to provide unique multi-spectral images distributed over a wide spectral range. Using Argon as a dopant in the DD-filled plastic shells produces emission images in the Ar He-b and Ly-b spectral regions. These images allow the retrieval of temperature and density maps of the plasma. We deployed three identical multi-monochromatic X-ray imagers in a quasi-orthogonal line-of-sight configuration to allow tomographic reconstruction of the structure of the imploding core.

  12. Potential use of Spaceborne Lidar Measurements to Improve Atmospheric Temperature Retrievals from Passive Sensors.

    PubMed

    Chazette, P; Mégie, G; Pelon, J

    1998-11-20

    A preliminary study of the synergism between active and passive spaceborne remote sensing systems has been conducted on the basis of new prospects for the implementation of lidar systems on space platforms for global scale measurements. Assuming a quasi-simultaneity in the measurements performed with an active backscatter lidar and with operational meteorological packages such as the Television Infrared Operational Satellite (TIROS)-N Operational Vertical Sounder radiometers, it is shown that combining both measurements could lead to an improvement in the accuracy of the retrieved vertical temperature profile in the lower troposphere. We used a modified version of the improved initialization inversion operational algorithm, to process the TIROS-N Operational Vertical Sounder data, taking into account the lidar measurements of cloud heights to define a temperature reference. New perspectives for the coupling of lidar and passive radiometers are discussed. PMID:18301603

  13. Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite - Part 2: Methane

    NASA Astrophysics Data System (ADS)

    Schneising, O.; Buchwitz, M.; Burrows, J. P.; Bovensmann, H.; Bergamaschi, P.; Peters, W.

    2009-01-01

    Carbon dioxide (CO2) and methane (CH4) are the two most important anthropogenic greenhouse gases. SCIAMACHY on ENVISAT is the first satellite instrument whose measurements are sensitive to concentration changes of the two gases at all altitude levels down to the Earth's surface where the source/sink signals are largest. We have processed three years (2003-2005) of SCIAMACHY near-infrared nadir measurements to simultaneously retrieve vertical columns of CO2 (from the 1.58 μm absorption band), CH4 (1.66 μm) and oxygen (O2 A-band at 0.76 μm) using the scientific retrieval algorithm WFM-DOAS. We show that the latest version of WFM-DOAS, version 1.0, which is used for this study, has been significantly improved with respect to its accuracy compared to the previous versions while essentially maintaining its high processing speed (~1 min per orbit, corresponding to ~6000 single measurements, and per gas on a standard PC). The greenhouse gas columns are converted to dry air column-averaged mole fractions, denoted XCO2 (in ppm) and XCH4 (in ppb), by dividing the greenhouse gas columns by simultaneously retrieved dry air columns. For XCO2 dry air columns are obtained from the retrieved O2 columns. For XCH4 dry air columns are obtained from the retrieved CO2 columns because of better cancellation of light path related errors compared to using O2 columns retrieved from the spectrally distant O2 A-band. Here we focus on a discussion of the XCH4 data set. The XCO2 data set is discussed in a separate paper (Part 1). For 2003 we present detailed comparisons with the TM5 model which has been optimally matched to highly accurate but sparse methane surface observations. After accounting for a systematic low bias of ~2% agreement with TM5 is typically within 1-2%. We investigated to what extent the SCIAMACHY XCH4 is influenced by the variability of atmospheric CO2 using global CO2 fields from NOAA's CO2 assimilation system CarbonTracker. We show that the CO2 corrected and

  14. Backus-Gilbert theory and its application to retrieval of ozone and temperature profiles. [from remote sounding data

    NASA Technical Reports Server (NTRS)

    Conrath, B. J.

    1977-01-01

    The inversion method provides a quantitative evaluation of the trade-off between vertical resolution of a retrieved profile and formal root-mean-square (rms) error due to measurement noise propagation. The problem of retrieving the top-side ozone profile from backscattered ultraviolet (BUV) measurements is considered. For measurements of the type currently being obtained with the Nimbus 4 and AE-E BUV experiments, it is found that a vertical resolution of approximately 0.75 scale height can be achieved for a formal volume mixing ratio profile error of 10%. Other examples include treatments of the retrieval of temperature profiles from measurements in the 15 micron CO2 absorption band for both the terrestrial and Martian atmospheres. Finally, the method is applied to the problem of retrieving temperature profiles of the Jovian planets from measurements in the far infrared pressure induced H2 lines to be obtained from the Mariner Jupiter/Saturn fly-by missions.

  15. Retrieving Temperature and Moisture Profiles from AERI Radiance Observations: AERIPROF Value-Added Product Technical Description Revision 1

    SciTech Connect

    WF Feltz; HB Howell; RO Knuteson; JM Comstock; R Mahon; DD Turner; WL Smith; HM Woolf; C Sivaraman; TD Halter

    2007-04-30

    This document explains the procedure to retrieve temperature and moisture profiles from high-spectral resolution infrared radiance data measured by the U.S. Department Of Energy (DOE) Atmospheric Radiation (ARM) Program’s atmospheric emitted radiance interferometer (AERI) instrument. The technique has been named the AERIPROF thermodynamic retrieval algorithm. The software has been developed over the last decade at the University of Wisconsin-Madison and has matured into an ARM Value-Added Procedure. This document will describe the AERIPROF retrieval procedure, outline the algorithm routines, discuss the software heritage, and, finally, provide references with further documentation.

  16. Effect of Initial Mixture Temperature on Flame Speed of Methane-Air, Propane-Air, and Ethylene-Air Mixtures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L

    1952-01-01

    Flame speeds based on the outer edge of the shadow cast by the laminar Bunsen cone were determined as functions of composition for methane-air mixtures at initial mixture temperatures ranging from -132 degrees to 342 degrees c and for propane-air and ethylene-air mixtures at initial mixture temperatures ranging from -73 degrees to 344 degrees c. The data showed that maximum flame speed increased with temperature at an increasing rate. The percentage change in flame speed with change in initial temperature for the three fuels followed the decreasing order, methane, propane, and ethylene. Empirical equations were determined for maximum flame speed as a function of initial temperature over the temperature range covered for each fuel. The observed effect of temperature on flame speed for each of the fuels was reasonably well predicted by either the thermal theory as presented by Semenov or the square-root law of Tanford and Pease.

  17. Lidar-measured atmospheric N₂ vibrational-rotational Raman spectra and consequent temperature retrieval.

    PubMed

    Liu, Fuchao; Yi, Fan

    2014-11-17

    We have built a spectrally resolved Raman lidar to measure atmospheric N₂ Stokes vibrational-rotational Raman spectra. The lidar applies a double-grating polychromator with a reciprocal linear dispersion of ~0.12 nm mm(-1) for the wavelength separation and a 32-channel linear-array photomultiplier tube for sampling the spectral signals. The lidar can together measure the individual S- and O-branch line signals from J = 0 (2) through 14 (16). A comparison shows an excellent agreement between the lidar-measured and theoretically-calculated spectra. Based on the signal ratio of two individual lines (e.g., S-branch J = 6 and 12), the atmospheric temperature profiles are derived without requiring a calibration from another reference temperature. In terms of the envelope shape of an even-J section of the measured S-branch lines, we have also developed a new temperature retrieval approach without needing a calibration from reference temperature data. Both the approaches can give rise to reasonable temperature profiles comparable to that from local radiosonde. PMID:25402026

  18. Retrievals of Stratocumulus Drop Size Distributions from Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) Observations

    NASA Astrophysics Data System (ADS)

    Garay, Michael; Diner, David

    2013-04-01

    Data from the Polarization and Directionality of the Earth's Reflectances (POLDER) satellite instruments have been used for many years to retrieve information about the mean and dispersion of cloud droplet size distributions. The position of specific features in scattering angle space corresponding to supernumerary bows in the polarized phase function are extremely sensitive to the effective radius of the cloud droplets, while the amplitude of these features carries information on the dispersion of droplet sizes. Due to the relatively coarse angular sampling of POLDER multiangular views (~10°), variations in scattering angle from pixel to pixel are used instead to obtain fine sampling in angle, which requires the clouds to be homogeneous on scales of 150 km × 150 km in the POLDER retrievals. We will describe high-resolution polarimetric observations of marine stratocumulus clouds made off the coast of California by the AirMSPI instrument, which files on the NASA ER-2 high-altitude research aircraft. AirMSPI is an eight-band pushbroom camera mounted on a controllable gimbal, which allows the instrument to make observations over a ±67° range in the direction of aircraft motion. AirMSPI's eight spectral bands are 355, 380, 445, 470, 555, 660, 865, and 935 nm in the ultraviolet to the near-infrared range. Polarimetric observations are made in the 470, 660, and 865 nm bands using photoelastic modulators (PEMs) to rapidly vary the orientation of the linearly polarized component (Stokes Q and U) of the incoming light, enabling measurement of the relative ratios of these parameters to intensity from individual pixels. From the nominal 20 km altitude of the aircraft, AirMSPI can provide imagery mapped to a 25 m grid using a sweep scanning strategy in which the gimbal controlling the pointing of the instrument is slewed back and forth along the direction of aircraft motion. The AirMSPI observations of the polarimetric features of marine stratocumulus clouds have been

  19. A physically based analytical spatial air temperature and humidity model

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Endreny, Theodore A.; Nowak, David J.

    2013-09-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat storage based on semiempirical functions and generates spatially distributed estimates based on inputs of topography, land cover, and the weather data measured at a reference site. The model assumes that for all grids under the same mesoscale climate, grid air temperature and humidity are modified by local variation in absorbed solar radiation and the partitioning of sensible and latent heat. The model uses a reference grid site for time series meteorological data and the air temperature and humidity of any other grid can be obtained by solving the heat flux network equations. PASATH was coupled with the USDA iTree-Hydro water balance model to obtain evapotranspiration terms and run from 20 to 29 August 2010 at a 360 m by 360 m grid scale and hourly time step across a 285 km2 watershed including the urban area of Syracuse, NY. PASATH predictions were tested at nine urban weather stations representing variability in urban topography and land cover. The PASATH model predictive efficiency R2 ranged from 0.81 to 0.99 for air temperature and 0.77 to 0.97 for dew point temperature. PASATH is expected to have broad applications on environmental and ecological models.

  20. Performance evaluation of Landsat 8 TIRS and the NOAA/METOP AVHRR sensors for lake surface water temperature retrieval

    NASA Astrophysics Data System (ADS)

    Lieberherr, Gian; Bur, Patrick; Wunderle, Stefan

    2016-04-01

    Lake surface water temperature (LSWT) is an important driver of lake ecosystems and it has been identified as an indicator of climate change. In-situ data for European lake water temperatures are very heterogeneous in terms of spatio-temporal coverage and retrieval methods. Satellite derived long term LSWT time series, as derived for example from the AVHRR sensor (since early 80ies), can serve as a baseline when merging different data sets. Another important advantage of satellite based temperature measurement is the representation of spatial temperature distribution within a waterbody. Focusing on spatial temperature distribution, the coarse resolutions of older sensors (1.1km for AVHRR sensor) is a limiting factor. Thus, during this study, the performance of LSWT retrieval from the TIRS sensor on the Landsat 8 platform was evaluated. The TIRS sensor has a resolution of 100m which allows to see small spatial temperature gradients, and it also offers the possibility to retrieve LSWT from smaller lakes where it was not possible with the AVHRR sensor. The temperature retrieval method used for both sensors was an optimized split window approach with lake specific and sensor specific coefficients. To validate and to evaluate the performance of the retrievals, the LSWT derived from Landsat 8 TIRS and from AVHRR where compared to each other, and also to different in-situ measurements. The accuracy of the temperature retrieval with the Landsat 8 sensor is shown to be generally better than with the AVHRR sensor. This is due to the higher resolution of the TIRS sensor, leading to lower contamination rate for individual pixels.

  1. Retrieval of lake water temperature based on LandSat TM imagery: A case study in East Lake of Wuhan

    NASA Astrophysics Data System (ADS)

    Cao, Bo; Kang, Ling; Yang, Shengmei

    2013-10-01

    Lake water temperature is one of the most important parameters determining ecological conditions in lake water. With the recent development of satellite remote sensing, remotely sensed data instead of traditional sampling measurement can be used to retrieve the lake surface temperature. The East Lake located in the Wuhan city was selected as research region in this paper. The mono window algorithm has been applied to retrieve the lake water temperature of East lake basin with Landsat TM data. Through three groups of field survey data, the outcome shows that the retrieval results using the mono window model are quite approximate to the same period of the experimental region historical temperature data. So, it is feasible to utilize the remote sensing method to obtain the lake temperature. Meanwhile, the retrieval results also demonstrate that the East Lake surface temperatures from different years have the similar distribution regularity. Generally speaking, the temperature of the lake center is higher than the surrounding area. The west of lake is mostly higher than the east mainly due to the vegetation density and urbanization distribution condition. This conclusion is important to the further study on monitoring the East Lake temperature particularly in large scale.

  2. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  3. Retrieval of Ocean Surface Windspeed and Rainrate from the Hurricane Imaging Radiometer (HIRAD) Brightness Temperature Observations

    NASA Technical Reports Server (NTRS)

    Biswas, Sayak K.; Jones, Linwood; Roberts, Jason; Ruf, Christopher; Ulhorn, Eric; Miller, Timothy

    2012-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne synthetic aperture passive microwave radiometer capable of wide swath imaging of the ocean surface wind speed under heavy precipitation e.g. in tropical cyclones. It uses interferometric signal processing to produce upwelling brightness temperature (Tb) images at its four operating frequencies 4, 5, 6 and 6.6 GHz [1,2]. HIRAD participated in NASA s Genesis and Rapid Intensification Processes (GRIP) mission during 2010 as its first science field campaign. It produced Tb images with 70 km swath width and 3 km resolution from a 20 km altitude. From this, ocean surface wind speed and column averaged atmospheric liquid water content can be retrieved across the swath. The column averaged liquid water then could be related to an average rain rate. The retrieval algorithm (and the HIRAD instrument itself) is a direct descendant of the nadir-only Stepped Frequency Microwave Radiometer that is used operationally by the NOAA Hurricane Research Division to monitor tropical cyclones [3,4]. However, due to HIRAD s slant viewing geometry (compared to nadir viewing SFMR) a major modification is required in the algorithm. Results based on the modified algorithm from the GRIP campaign will be presented in the paper.

  4. Climatology of upper air temperature in the Eastern Mediterranean region

    NASA Astrophysics Data System (ADS)

    Philandras, C. M.; Nastos, P. T.; Kapsomenakis, I. N.; Repapis, C. C.

    2015-01-01

    The goal of this study is to contribute to the climatology of upper air temperature in the Mediterranean region, during the period 1965-2011. For this purpose, both radiosonde recordings and gridded reanalysis datasets of upper air temperature from National Center for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) were used for seven barometric levels at 850 hPa, 700 hPa, 500 hPa, 300 hPa, 200 hPa, 150 hPa and 100 hPa. Trends and variability of upper air temperature were analyzed on annual and seasonal basis. Further, the impact of atmospheric circulation, by means of correlation between upper air temperature at different barometric levels and specific climatic indices such as Mediterranean Oscillation Index (MOI), North Sea Caspian Pattern Index (NCPI) and North Atlantic Oscillation Index (NAOI), was also quantified. Our findings have given evidence that air temperature is increasing at a higher rate in lower/middle troposphere against upper, and this is very likely due to increasing greenhouse gas concentrations.

  5. Spaceborne lidar measurement accuracy - Simulation of aerosol, cloud, molecular density, and temperature retrievals

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Morley, B. M.; Browell, E. V.

    1982-01-01

    In connection with studies concerning the use of an orbiting optical radar (lidar) to conduct aerosol and cloud measurements, attention has been given to the accuracy with which lidar return signals could be measured. However, signal-measurement error is not the only source of error which can affect the accuracy of the derived information. Other error sources are the assumed molecular-density and atmospheric-transmission profiles, and the lidar calibration factor (which relates signal to backscatter coefficient). The present investigation has the objective to account for the effects of all these errors sources for several realistic combinations of lidar parameters, model atmospheres, and background lighting conditions. In addition, a procedure is tested and developed for measuring density and temperature profiles with the lidar, and for using the lidar-derived density profiles to improve aerosol retrievals.

  6. Improving SMOS retrieved salinity: characterization of systematic errors in reconstructed and modelled brightness temperature images

    NASA Astrophysics Data System (ADS)

    Gourrion, J.; Guimbard, S.; Sabia, R.; Portabella, M.; Gonzalez, V.; Turiel, A.; Ballabrera, J.; Gabarro, C.; Perez, F.; Martinez, J.

    2012-04-01

    The Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) instrument onboard the Soil Moisture and Ocean Salinity (SMOS) mission was launched on November 2nd, 2009 with the aim of providing, over the oceans, synoptic sea surface salinity (SSS) measurements with spatial and temporal coverage adequate for large-scale oceanographic studies. For each single satellite overpass, SSS is retrieved after collecting, at fixed ground locations, a series of brightness temperature from successive scenes corresponding to various geometrical and polarization conditions. SSS is inversed through minimization of the difference between reconstructed and modeled brightness temperatures. To meet the challenging mission requirements, retrieved SSS needs to accomplish an accuracy of 0.1 psu after averaging in a 10- or 30-day period and 2°x2° or 1°x1° spatial boxes, respectively. It is expected that, at such scales, the high radiometric noise can be reduced to a level such that remaining errors and inconsistencies in the retrieved salinity fields can essentially be related to (1) systematic brightness temperature errors in the antenna reference frame, (2) systematic errors in the Geophysical Model Function - GMF, used to model the observations and retrieve salinity - for specific environmental conditions and/or particular auxiliary parameter values and (3) errors in the auxiliary datasets used as input to the GMF. The present communication primarily aims at adressing above point 1 and possibly point 2 for the whole polarimetric information i.e. issued from both co-polar and cross-polar measurements. Several factors may potentially produce systematic errors in the antenna reference frame: the unavoidable fact that all antenna are not perfectly identical, the imperfect characterization of the instrument response e.g. antenna patterns, account for receiver temperatures in the reconstruction, calibration using flat sky scenes, implementation of ripple reduction algorithms at sharp

  7. Precision estimation in temperature and refractivity profiles retrieved by GPS radio occultations

    NASA Astrophysics Data System (ADS)

    Alexander, P.; Torre, A.; Llamedo, P.; Hierro, R.

    2014-07-01

    The Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC) is a six-satellite Global Positioning System (GPS) radio occultation (RO) mission that started in April 2006. The close proximity of these satellites during some months after launch provided a unique opportunity to evaluate the precision of GPS RO temperature and refractivity profile retrievals in the neutral atmosphere from nearly collocated and simultaneous observations. In order to work with nearly homogeneous sets, data are divided into five groups according to latitude bands during 20 days of July. For all latitude bands and variables, the best precision values (about 0.1%) are found somewhere between 8 and 25 km height. In general, we find that precision degrades significantly with height above 30 km and its performance becomes there worse than 1%. Temperature precision assessment has been generally excluded in previous studies. Refractivity has here, in general, a precision similar to dry temperature but worse than wet temperature in the lower atmosphere and above 30 km. However, it has been shown that the better performance of wet temperature is an artificial effect produced by the use of the same background information in nearly collocated wet retrievals. Performance in refractivity around 1% is found in the Northern Hemisphere at the lowest heights and significantly worse in the southern polar zone above 30 km. There is no strong dependence of the estimated precision in terms of height on day and night, on latitude, on season, or on the homogeneity degree of each group of profiles. This reinforces the usual claim that GPS RO precision is independent of the atmospheric conditions. The roughly 0.1% precision in the 8-25 km height interval should suffice to distinguish between day and night average values, but no significant differences are found through a Student t test for both populations at all heights in each latitude band. It was then shown that the present spatial

  8. An Integrated Approach toward Retrieving Physically Consistent Profiles of Temperature, Humidity, and Cloud Liquid Water.

    NASA Astrophysics Data System (ADS)

    Löhnert, Ulrich; Crewell, Susanne; Simmer, Clemens

    2004-09-01

    A method is presented for deriving physically consistent profiles of temperature, humidity, and cloud liquid water content. This approach combines a ground-based multichannel microwave radiometer, a cloud radar, a lidar-ceilometer, the nearest operational radiosonde measurement, and ground-level measurements of standard meteorological properties with statistics derived from results of a microphysical cloud model. All measurements are integrated within the framework of optimal estimation to guarantee a retrieved profile with maximum information content. The developed integrated profiling technique (IPT) is applied to synthetic cloud model output as a test of accuracy. It is shown that the liquid water content profiles obtained with the IPT are significantly more accurate than common methods that use the microwave-derived liquid water path to scale the radar reflectivity profile. The IPT is also applied to 2 months of the European Cloud Liquid Water Network (CLIWA-NET) Baltic Sea Experiment (BALTEX) BRIDGE main experiment (BBC) campaign data, considering liquid-phase, nonprecipitating clouds only. Error analysis indicates root-mean-square uncertainties of less than 1 K in temperature and less than 1 g m-3 in humidity, where the relative error in liquid water content ranges from 15% to 25%. A comparison of the vertically integrated humidity profile from the IPT with the nearest operational radiosonde shows an acceptable bias error of 0.13 kg m-2 when the Rosenkranz gas absorption model is used. However, if the Liebe gas absorption model is used, this systematic error increases to -1.24 kg m-2, showing that the IPT humidity retrieval is significantly dependent on the chosen gas absorption model.


  9. Operational use of the AIRS Total Column Ozone Retrievals along with the RGB Airmass Product as Part of the GOES-R Proving Ground

    NASA Technical Reports Server (NTRS)

    Folmer, M.; Zavodsky, Bradley; Molthan, Andrew

    2012-01-01

    The Red, Green, Blue (RGB) Air Mass product has been demonstrated in the GOES ]R Proving Ground as a possible decision aid. Forecasters have been trained on the usefulness of identifying stratospheric intrusions and potential vorticity (PV) anomalies that can lead to explosive cyclogenesis, genesis of mesoscale convective systems (MCSs), or the transition of tropical cyclones to extratropical cyclones. It has also been demonstrated to distinguish different air mass types from warm, low ozone air masses to cool, high ozone air masses and the various interactions with the PV anomalies. To assist the forecasters in understanding the stratospheric contribution to high impact weather systems, the Atmospheric Infrared Sounder (AIRS) Total Column Ozone Retrievals have been made available as an operational tool. These AIRS retrievals provide additional information on the amount of ozone that is associated with the red coloring seen in the RGB Air Mass product. This paper discusses how the AIRS retrievals can be used to quantify the red coloring in RGB Air Mass product. These retrievals can be used to diagnose the depth of the stratospheric intrusions associated with different types of weather systems and provide the forecasters decision aid tools that can improve the quality of forecast products.

  10. Heat tolerance of higher plants cenosis to damaging air temperatures

    NASA Astrophysics Data System (ADS)

    Ushakova, Sofya; Shklavtsova, Ekaterina

    Designing sustained biological-technical life support systems (BTLSS) including higher plants as a part of a photosynthesizing unit, it is important to foresee the multi species cenosis reaction on either stress-factors. Air temperature changing in BTLSS (because of failure of a thermoregulation system) up to the values leading to irreversible damages of photosynthetic processes is one of those factors. However, it is possible to increase, within the certain limits, the plant cenosis tolerance to the unfavorable temperatures’ effect due to the choice of the higher plants possessing resistance both to elevated and to lowered air temperatures. Besides, the plants heat tolerance can be increased when subjecting them during their growing to the hardening off temperatures’ effect. Thus, we have come to the conclusion that it is possible to increase heat tolerance of multi species cenosis under the damaging effect of air temperature of 45 (°) СC.

  11. Innovative coal gasification system with high temperature air

    SciTech Connect

    Yoshikawa, K.; Katsushima, H.; Kasahara, M.; Hasegawa, T.; Tanaka, R.; Ootsuka, T.

    1997-12-31

    This paper proposes innovative coal gasification power generation systems where coal is gasified with high temperature air of about 1300K produced by gasified coal fuel gas. The main features of these systems are high thermal efficiency, low NO{sub x} emission, compact desulfurization and dust removal equipment and high efficiency molten slag removal with a very compact gasifier. Recent experimental results on the pebble bed coal gasifier appropriate for high temperature air coal gasification are reported, where 97.7% of coal ash is successfully caught in the pebble bed and extracted without clogging. A new concept of high temperature air preheating system is proposed which is characterized by its high reliability and low cost.

  12. Remote Sensing of Earth's Limb by TIMED/GUVI: Retrieval of thermospheric composition and temperature

    NASA Astrophysics Data System (ADS)

    Meier, R. R.; Picone, J. M.; Drob, D.; Bishop, J.; Emmert, J. T.; Lean, J. L.; Stephan, A. W.; Strickland, D. J.; Christensen, A. B.; Paxton, L. J.; Morrison, D.; Kil, H.; Wolven, B.; Woods, Thomas N.; Crowley, G.; Gibson, S. T.

    2015-01-01

    The Global Ultraviolet Imager (GUVI) onboard the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite senses far ultraviolet emissions from O and N2 in the thermosphere. Transformation of far ultraviolet radiances measured on the Earth limb into O, N2, and O2 number densities and temperature quantifies these responses and demonstrates the value of simultaneous altitude and geographic information. Composition and temperature variations are available from 2002 to 2007. This paper documents the extraction of these data products from the limb emission rates. We present the characteristics of the GUVI limb observations, retrievals of thermospheric neutral composition and temperature from the forward model, and the dramatic changes of the thermosphere with the solar cycle and geomagnetic activity. We examine the solar extreme ultraviolet (EUV) irradiance magnitude and trends through comparison with simultaneous Solar Extreme EUV (SEE) measurements on TIMED and find the EUV irradiance inferred from GUVI averaged (2002-2007) 30% lower magnitude than SEE version 11 and varied less with solar activity. The smaller GUVI variability is not consistent with the view that lower solar EUV radiation during the past solar minimum is the cause of historically low thermospheric mass densities. Thermospheric O and N2 densities are lower than the NRLMSISE-00 model, but O2 is consistent. We list some lessons learned from the GUVI program along with several unresolved issues.

  13. The role of subsurface soil temperature feedbacks in summer surface air temperature variability over East Asia

    NASA Astrophysics Data System (ADS)

    Zhang, J.

    2012-12-01

    Soil temperature, an important component of land surface, can influence the climate through its effects on surface energy and water budgets and resulted changes in regional atmospheric circulation. However, the effects of soil temperature on climate variations have been less discussed. This study investigates the role of subsurface soil temperature feedbacks in influencing summer surface air temperature variability over East Asia by means of regional climate model (RCM) simulations. For this aim, two long-term simulations with and without subsurface soil temperature feedbacks are performed with the Weather Research and Forecasting (WRF) model. From our investigation, it is evident that subsurface soil temperature feedbacks make a dominant contribution to amplifying summer surface air temperature variability over the arid/semi-arid regions. Further analysis reveals that subsurface soil temperature exhibits an asymmetric effect on summer daytime and nighttime surface air temperature variability, with a stronger effect on daily minimum temperature variability than that of daily maximum temperature variability. This study provides the first RCM-based demonstration that subsurface soil temperature feedbacks play an important role in influencing climate variability over East Asia, such as summer surface air temperature. In the meanwhile, the model bias should be recognized. The results achieved by this study thus need to be further confirmed in a multi-model framework to eliminate the model dependence.

  14. Passive radiative cooling below ambient air temperature under direct sunlight.

    PubMed

    Raman, Aaswath P; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui

    2014-11-27

    Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day. PMID:25428501

  15. A single field of view method for retrieving tropospheric temperature profiles from cloud-contaminated radiance data

    NASA Technical Reports Server (NTRS)

    Hodges, D. B.; Scoggins, J. R.

    1977-01-01

    The paper presents a method for retrieving single field of view tropospheric temperature profiles directly from cloud-contaminated radiance data through the use of auxiliary data such as observed shelter temperatures and estimated cloud-top height. A model was formulated to calculate cloud parameters for use with the radiative transport equation at an estimated cloud-top level. The cloud and temperature data are used in conjunction with real and simulated radiance data from NOAA satellites.

  16. Emission Controls Using Different Temperatures of Combustion Air

    PubMed Central

    Holubčík, Michal; Papučík, Štefan

    2014-01-01

    The effort of many manufacturers of heat sources is to achieve the maximum efficiency of energy transformation chemically bound in the fuel to heat. Therefore, it is necessary to streamline the combustion process and minimize the formation of emission during combustion. The paper presents an analysis of the combustion air temperature to the heat performance and emission parameters of burning biomass. In the second part of the paper the impact of different dendromass on formation of emissions in small heat source is evaluated. The measured results show that the regulation of the temperature of the combustion air has an effect on concentration of emissions from the combustion of biomass. PMID:24971376

  17. Retrieval and Mapping of Soil Texture Based on Land Surface Diurnal Temperature Range Data from MODIS

    PubMed Central

    Wang, De-Cai; Zhang, Gan-Lin; Zhao, Ming-Song; Pan, Xian-Zhang; Zhao, Yu-Guo; Li, De-Cheng; Macmillan, Bob

    2015-01-01

    Numerous studies have investigated the direct retrieval of soil properties, including soil texture, using remotely sensed images. However, few have considered how soil properties influence dynamic changes in remote images or how soil processes affect the characteristics of the spectrum. This study investigated a new method for mapping regional soil texture based on the hypothesis that the rate of change of land surface temperature is related to soil texture, given the assumption of similar starting soil moisture conditions. The study area was a typical flat area in the Yangtze-Huai River Plain, East China. We used the widely available land surface temperature product of MODIS as the main data source. We analyzed the relationships between the content of different particle soil size fractions at the soil surface and land surface day temperature, night temperature and diurnal temperature range (DTR) during three selected time periods. These periods occurred after rainfalls and between the previous harvest and the subsequent autumn sowing in 2004, 2007 and 2008. Then, linear regression models were developed between the land surface DTR and sand (> 0.05 mm), clay (< 0.001 mm) and physical clay (< 0.01 mm) contents. The models for each day were used to estimate soil texture. The spatial distribution of soil texture from the studied area was mapped based on the model with the minimum RMSE. A validation dataset produced error estimates for the predicted maps of sand, clay and physical clay, expressed as RMSE of 10.69%, 4.57%, and 12.99%, respectively. The absolute error of the predictions is largely influenced by variations in land cover. Additionally, the maps produced by the models illustrate the natural spatial continuity of soil texture. This study demonstrates the potential for digitally mapping regional soil texture variations in flat areas using readily available MODIS data. PMID:26090852

  18. Retrieval and Mapping of Soil Texture Based on Land Surface Diurnal Temperature Range Data from MODIS.

    PubMed

    Wang, De-Cai; Zhang, Gan-Lin; Zhao, Ming-Song; Pan, Xian-Zhang; Zhao, Yu-Guo; Li, De-Cheng; Macmillan, Bob

    2015-01-01

    Numerous studies have investigated the direct retrieval of soil properties, including soil texture, using remotely sensed images. However, few have considered how soil properties influence dynamic changes in remote images or how soil processes affect the characteristics of the spectrum. This study investigated a new method for mapping regional soil texture based on the hypothesis that the rate of change of land surface temperature is related to soil texture, given the assumption of similar starting soil moisture conditions. The study area was a typical flat area in the Yangtze-Huai River Plain, East China. We used the widely available land surface temperature product of MODIS as the main data source. We analyzed the relationships between the content of different particle soil size fractions at the soil surface and land surface day temperature, night temperature and diurnal temperature range (DTR) during three selected time periods. These periods occurred after rainfalls and between the previous harvest and the subsequent autumn sowing in 2004, 2007 and 2008. Then, linear regression models were developed between the land surface DTR and sand (> 0.05 mm), clay (< 0.001 mm) and physical clay (< 0.01 mm) contents. The models for each day were used to estimate soil texture. The spatial distribution of soil texture from the studied area was mapped based on the model with the minimum RMSE. A validation dataset produced error estimates for the predicted maps of sand, clay and physical clay, expressed as RMSE of 10.69%, 4.57%, and 12.99%, respectively. The absolute error of the predictions is largely influenced by variations in land cover. Additionally, the maps produced by the models illustrate the natural spatial continuity of soil texture. This study demonstrates the potential for digitally mapping regional soil texture variations in flat areas using readily available MODIS data. PMID:26090852

  19. Accuracy of retrieving temperature and humidity profiles by ground-based microwave radiometry in truly complex terrain

    NASA Astrophysics Data System (ADS)

    Massaro, G.; Stiperski, I.; Pospichal, B.; Rotach, M. W.

    2015-08-01

    Within the Innsbruck Box project, a ground-based microwave radiometer (RPG-HATPRO) was operated in the Inn Valley (Austria), in very complex terrain, between September 2012 and May 2013 to obtain temperature and humidity vertical profiles of the full troposphere with a specific focus on the valley boundary layer. In order to assess its performance in a deep alpine valley, the profiles obtained by the radiometer with different retrieval algorithms based on different climatologies are compared to local radiosonde data. A retrieval that is improved with respect to the one provided by the manufacturer, based on better resolved data, shows a significantly smaller root mean square error (RMSE), both for the temperature and humidity profiles. The improvement is particularly substantial at the heights close to the mountaintop level and in the upper troposphere. Lower-level inversions, common in an alpine valley, are resolved to a satisfactory degree. On the other hand, upper-level inversions (above 1200 m) still pose a significant challenge for retrieval. For this purpose, specialized retrieval algorithms were developed by classifying the radiosonde climatologies into specialized categories according to different criteria (seasons, daytime, nighttime) and using additional regressors (e.g., measurements from mountain stations). The training and testing on the radiosonde data for these specialized categories suggests that a classification of profiles that reproduces meaningful physical characteristics can yield improved targeted specialized retrievals. A novel and very promising method of improving the profile retrieval in a mountainous region is adding further information in the retrieval, such as the surface temperature at fixed levels along a topographic slope or from nearby mountaintops.

  20. Accuracy of retrieving temperature and humidity profiles by ground-based microwave radiometry in truly complex terrain

    NASA Astrophysics Data System (ADS)

    Massaro, G.; Stiperski, I.; Pospichal, B.; Rotach, M. W.

    2015-03-01

    Within the Innsbruck Box project, a ground-based microwave radiometer (RPG-HATPRO) was operated in the Inn Valley (Austria), in very complex terrain, between September 2012 and May 2013 to obtain temperature and humidity vertical profiles of the full troposphere with a specific focus on the valley boundary layer. The profiles obtained by the radiometer with different retrieval algorithms based on different climatologies, are compared to local radiosonde data. A retrieval that is improved with respect to the one provided by the manufacturer, based on better resolved data, shows a significantly smaller root mean square error (RMSE), both for the temperature and humidity profiles. The improvement is particularly substantial at the heights close to the mountaintop level and in the upper troposphere. Lower level inversions, common in an alpine valley, are resolved to a satisfactory degree. On the other hand, upper level inversions (above 1200 m) still pose a significant challenge for retrieval. For this purpose, specialized retrieval algorithms were developed by classifying the radiosonde climatologies into specialized categories according to different criteria (seasons, daytime, nighttime) and using additional regressors (e.g., measurements from mountain stations). The training and testing on the radiosonde data for these specialized categories suggests that a classification of profiles that reproduces meaningful physical characteristics can yield improved targeted specialized retrievals. A really new and very promising method of improving the profile retrieval in a mountain region is adding further information in the retrieval, such as the surface temperature at fixed levels along a topographic slope or from nearby mountain tops.

  1. An intercomparison study of tropospheric NO2 columns retrieved from MAX-DOAS and simulated by regional air quality models

    NASA Astrophysics Data System (ADS)

    Blechschmidt, Anne-Marlene

    2016-04-01

    Tropospheric NO2 is hazardous to human health and can lead to tropospheric ozone formation, eutrophication of ecosystems and acid rain production. It is therefore very important to accurately observe and simulate tropospheric NO2 on a regional and global scale. In the present study, MAX-DOAS tropospheric NO2 column retrievals from three European measurement stations are applied for validation of a regional model ensemble. In general, there is a good agreement between simulated and retrieved NO2 column values for individual MAX-DOAS measurements, indicating that the model ensemble does well represent the emission and tropospheric chemistry of NOx. However, the model ensemble tends to overestimate low and underestimate high tropospheric NO2 column values, respectively. Pollution transport towards the stations is on average well represented by the models. However, large differences can be found for individual pollution plumes. Seasonal cycles are overestimated by the model ensemble, which could point to problems in simulating photochemistry. While weekly cycles are reproduced well by the models, model performance is rather poor for diurnal cycles. In particular, simulated morning rush hour peaks are not confirmed by MAX-DOAS retrievals, which may result from inappropriate hourly scaling of NOx emissions, possibly combined with errors in chemistry. Our results demonstrate that a large number of validation points are available from MAX-DOAS data, which should therefore be used more extensively in future regional air quality modelling studies.

  2. Temperature Dependences of Air-Broadening and Shift Parameters in the ν_3 Band of Ozone

    NASA Astrophysics Data System (ADS)

    Smith, Mary Ann H.; Devi, V. Malathy; Benner, D. Chris

    2015-06-01

    Line parameter errors can contribute significantly to the total errors in retrievals of terrestrial atmospheric ozone concentration profiles using the strong 9.6-μm band, particularly for nadir-viewing experiments Detailed knowledge of the interfering ozone signal is also needed for retrievals of other atmospheric species in this spectral region. We have determined Lorentz air-broadening and pressure-induced shift coefficients along with their temperature dependences for a number of transitions in the ν_3 fundamental band of 16O_3. These results were obtained by applying the multispectrum nonlinear least-squares fitting technique to a set of 31 high-resolution infrared absorption spectra of O_3 recorded at temperatures between 160 and 300 K with several different room-temperature and coolable sample cells at the McMath-Pierce Fourier transform spectrometer at the National Solar Observatory on Kitt Peak. We compare our results with other available measurements and with the ozone line parameters in the HITRAN database. J.~Worden et al., J.~Geophys.~Res. 109 (2004) 9308-9319. R.~Beer et al., Geophys.~Res.~Lett. 35 (2008) L09801. D.~Chris Benner et al., JQSRT 53 (1995) 705-721. Rothman et al., J. Quant. Spectrosc. Radiat. Transfer 130 (2013) 4. JQSRT 130 (2013) 4-50.

  3. Variability of Winter Air Temperature in Mid-Latitude Europe

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Ardizzone, J.; Atlas, R.; Bungato, D.; Cierniewski, J.; Jusem, J. C.; Przybylak, R.; Schubert, S.; Starr, D.; Walczewski, J.

    2002-01-01

    The aim of this paper is to report extreme winter/early-spring air temperature (hereinafter temperature) anomalies in mid-latitude Europe, and to discuss the underlying forcing to these interannual fluctuations. Warm advection from the North Atlantic in late winter controls the surface-air temperature, as indicated by the substantial correlation between the speed of the surface southwesterlies over the eastern North Atlantic (quantified by a specific Index Ina) and the 2-meter level air temperatures (hereinafter Ts) over Europe, 45-60 deg N, in winter. In mid-March and subsequently, the correlation drops drastically (quite often it is negative). This change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature: absorption of insolation replaces the warm advection as the dominant control. This forcing by maritime-air advection in winter was demonstrated in a previous publication, and is re-examined here in conjunction with extreme fluctuations of temperatures in Europe. We analyze here the interannual variability at its extreme by comparing warm-winter/early-spring of 1989/90 with the opposite scenario in 1995/96. For these two December-to-March periods the differences in the monthly mean temperature in Warsaw and Torun, Poland, range above 10 C. Short-term (shorter than a month) fluctuations of the temperature are likewise very strong. We conduct pentad-by-pentad analysis of the surface-maximum air temperature (hereinafter Tmax), in a selected location, examining the dependence on Ina. The increased cloudiness and higher amounts of total precipitable water, corollary effects to the warm low-level advection. in the 1989/90 winter, enhance the positive temperature anomalies. The analysis of the ocean surface winds is based on the Special Sensor Microwave/Imager (SSM/I) dataset; ascent rates, and over land wind data are from the European Centre for Medium-Range Weather Forecasts (ECMWF); maps of 2-m temperature, cloud

  4. Feasibility Study of LANDSAT-8 Imagery for Retrieving Sea Surface Temperature (case Study Persian Gulf)

    NASA Astrophysics Data System (ADS)

    Bayat, F.; Hasanlou, M.

    2016-06-01

    Sea surface temperature (SST) is one of the critical parameters in marine meteorology and oceanography. The SST datasets are incorporated as conditions for ocean and atmosphere models. The SST needs to be investigated for various scientific phenomenon such as salinity, potential fishing zone, sea level rise, upwelling, eddies, cyclone predictions. On the other hands, high spatial resolution SST maps can illustrate eddies and sea surface currents. Also, near real time producing of SST map is suitable for weather forecasting and fishery applications. Therefore satellite remote sensing with wide coverage of data acquisition capability can use as real time tools for producing SST dataset. Satellite sensor such as AVHRR, MODIS and SeaWIFS are capable of extracting brightness values at different thermal spectral bands. These brightness temperatures are the sole input for the SST retrieval algorithms. Recently, Landsat-8 successfully launched and accessible with two instruments on-board: (1) the Operational Land Imager (OLI) with nine spectral bands in the visual, near infrared, and the shortwave infrared spectral regions; and (2) the Thermal Infrared Sensor (TIRS) with two spectral bands in the long wavelength infrared. The two TIRS bands were selected to enable the atmospheric correction of the thermal data using a split window algorithm (SWA). The TIRS instrument is one of the major payloads aboard this satellite which can observe the sea surface by using the split-window thermal infrared channels (CH10: 10.6 μm to 11.2 μm; CH11: 11.5 μm to 12.5 μm) at a resolution of 30 m. The TIRS sensors have three main advantages comparing with other previous sensors. First, the TIRS has two thermal bands in the atmospheric window that provide a new SST retrieval opportunity using the widely used split-window (SW) algorithm rather than the single channel method. Second, the spectral filters of TIRS two bands present narrower bandwidth than that of the thermal band on board on

  5. Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels

    NASA Technical Reports Server (NTRS)

    Susskind,Joel

    2009-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. AIRS is a grating spectrometer with a number of linear arrays of detectors with each detector sensitive to outgoing radiation in a characteristic frequency v(sub i) with a spectral band pass delta v(sub i) of roughly v(sub i) /1200. AIRS contains 2378 spectral channels covering portions of the spectral region 650 cm(exp -1) (15.38 gm) - 2665 cm(exp -1)' (3.752 micrometers). These spectral regions contain significant absorption features from two CO2 absorption bands, the 15 micrometer (longwave) CO2 band, and the 4.3 micrometer (shortwave) CO, absorption band. There are also two atmospheric window regions, the 12 micrometerm - 8 micrometer (longwave) window, and the 4.17 micrometer - 3.75 micrometer (shortwave) window. Historically, determination of surface and atmospheric temperatures from satellite observations was performed using primarily observations in the longwave window and CO2 absorption regions. One reason for this was concerns about the effects, during the day, of reflected sunlight and non-Local Thermodynamic Equilibrium (non-LTE) on the observed radiances in the shortwave portion of the spectrum. According to cloud clearing theory, more accurate soundings of both surface skin and atmospheric temperatures can be obtained under partial cloud cover conditions if one uses the longwave channels to determine cloud cleared radiances R(sub i) for all channels, and uses R(sub i) only from shortwave channels in the determination of surface and atmospheric temperatures. This procedure is now being used by the AIRS Science Team in preparation for the AIRS Version 6 Retrieval Algorithm. This paper describes how the effects on the radiances of solar radiation reflected by clouds and the Earth's surface, and also of non-LTE, are accounted for in the analysis of the data. Results are presented for both

  6. Pulsed positive streamer discharges in air at high temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Kamakura, Taku

    2016-08-01

    Atmospheric-pressure air pulsed positive streamer discharges are generated in a 13 mm point-plane gap in the temperature range of 293 K–1136 K, and the effect of temperature on the streamer discharges is studied. When the temperature is increased, the product of applied voltage and temperature VT proportional to the reduced electric field can be used as a primary parameter that determines some discharge parameters regardless of temperature. For a given VT, the transferred charge per pulse, streamer diameter, product of discharge energy and temperature, and length of secondary streamer are almost constant regardless of T, whereas the streamer velocity decreases with increasing T and the decay rate of the discharge current is proportional to 1/T. The N2(C) emission intensity is approximately determined by the discharge energy independent of T. These results are useful to predict the streamer discharge and its reactive species production when the ambient temperature is increased.

  7. Effects of air flow directions on composting process temperature profile

    SciTech Connect

    Kulcu, Recep; Yaldiz, Osman

    2008-07-01

    In this study, chicken manure mixed with carnation wastes was composted by using three different air flow directions: R1-sucking (downward), R2-blowing (upward) and R3-mixed. The aim was to find out the most appropriate air flow direction type for composting to provide more homogenous temperature distribution in the reactors. The efficiency of each aeration method was evaluated by monitoring the evolution of parameters such as temperature, moisture content, CO{sub 2} and O{sub 2} ratio in the material and dry material losses. Aeration of the reactors was managed by radial fans. The results showed that R3 resulted in a more homogenous temperature distribution and high dry material loss throughout the composting process. The most heterogeneous temperature distribution and the lowest dry material loss were obtained in R2.

  8. Temperature gradients and clear-air turbulence probabilities

    NASA Technical Reports Server (NTRS)

    Bender, M. A.; Panofsky, H. A.; Peslen, C. A.

    1976-01-01

    In order to forecast clear-air turbulence (CAT) in jet aircraft flights, a study was conducted in which the data from a special-purpose instrument aboard a Boeing 747 jet airliner were compared with satellite-derived radiance gradients, conventional temperature gradients from analyzed maps, and temperature gradients obtained from a total air temperature sensor on the plane. The advantage of making use of satellite-derived data is that they are available worldwide without the need for radiosonde observations, which are scarce in many parts of the world. Major conclusions are that CAT probabilities are significantly higher over mountains than flat terrain, and that satellite radiance gradients appear to discriminate between CAT and no CAT better than conventional temperature gradients over flat lands, whereas the reverse is true over mountains, the differences between the two techniques being not large over mountains.

  9. Dust aerosol optical depth and altitude retrieved from 7 years of infrared sounders observations (AIRS, IASI) and comparison with other aerosol datasets (MODIS, CALIOP, PARASOL)

    NASA Astrophysics Data System (ADS)

    Peyridieu, Sophie; Chédin, Alain; Tanré, Didier; Capelle, Virginie; Pierangelo, Clémence; Lamquin, Nicolas; Armante, Raymond

    2010-05-01

    Remote sensing of aerosol properties in the visible domain has been widely used for a better characterization of these particles and of their effect on solar radiation. On the opposite, remote sensing of aerosols in the thermal infrared domain still remains marginal. However, knowledge of the effect of aerosols on terrestrial radiation is needed for the evaluation of their total radiative forcing. A key point of infrared remote sensing is its ability to retrieve aerosol optical depth as well as mean dust layer altitude, a variable required for measuring their impact on climate. Moreover, observations are possible night and day, over ocean and over land. Our algorithm is specifically designed to retrieve simultaneously coarse mode dust aerosol 10 µm optical depth (AOD) and mean layer altitude from high spectral resolution infrared sounders observations. Thanks to IASI higher spectral resolution, the selection of finer channels for aerosol detection allows an even more accurate determination of aerosol properties. In this context, results obtained from 7 years (2003-2010) of AIRS/Aqua and more than 2 years (2007-2010) of IASI/Metop observations have been compared to other aerosol sensors. Compared to MODIS/Aqua optical depth product, 10 µm dust optical depth shows a very good agreement, particularly for tropical Atlantic regions downwind of the Sahara during the dust season. Comparisons with PARASOL non-spherical coarse mode product allows explaining small differences observed far from the sources. Time series of the mean aerosol layer altitude are compared to the CALIOP Level-2 products starting June 2006. For regions located downwind of the Sahara, the comparison again shows a good agreement with a mean standard deviation between the two products of about 400 m over the period processed, demonstrating that our algorithm effectively allows retrieving accurate mean dust layer altitude. A 7-year global climatology of the aerosol 10 µm dust optical depth and of the

  10. The Effects of Air Pollution and Temperature on COPD.

    PubMed

    Hansel, Nadia N; McCormack, Meredith C; Kim, Victor

    2016-06-01

    Chronic Obstructive Pulmonary Disease (COPD) affects 12-16 million people in the United States and is the third-leading cause of death. In developed countries, smoking is the greatest risk factor for the development of COPD, but other exposures also contribute to the development and progression of the disease. Several studies suggest, though are not definitive, that outdoor air pollution exposure is linked to the prevalence and incidence of COPD. Among individuals with COPD, outdoor air pollutants are associated with loss of lung function and increased respiratory symptoms. In addition, outdoor air pollutants are also associated with COPD exacerbations and mortality. There is much less evidence for the impact of indoor air on COPD, especially in developed countries in residences without biomass exposure. The limited existing data suggests that indoor particulate matter and nitrogen dioxide concentrations are linked to increased respiratory symptoms among patients with COPD. In addition, with the projected increases in temperature and extreme weather events in the context of climate change there has been increased attention to the effects of heat exposure. Extremes of temperature-both heat and cold-have been associated with increased respiratory morbidity in COPD. Some studies also suggest that temperature may modify the effect of pollution exposure and though results are not conclusive, understanding factors that may modify susceptibility to air pollution in patients with COPD is of utmost importance. PMID:26683097

  11. Experimental and theoretical analysis results for high temperature air combustion

    SciTech Connect

    Tanigawa, Tadashi; Morita, Mitsunobu

    1998-07-01

    With Japan's preparation of its Action program to prevent global warming in 1990 and the holding of the United National Conference on Environment and Development (the Earth Summit) in 1992 as a backdrop, reflecting the global effort to protect the environment, a high performance industrial furnace development project was launched in 1993 by the New Energy and Industrial Technology Development Organization (NEDO). This project focuses on the development of a combustion technology which uses air that is preheated to extremely high temperatures (above 1,000 C), heretofore considered impossible. Not only can this technology reduce carbon dioxide emission, thought to cause the greenhouse effect, by over 30%, but it can also reduce nitrogen oxide emission by nearly half. This new technology makes use of the recently-developed high-cycle regenerative heat exchanger, for preheating the furnace air supply. This exchanger preheats air to above 1,000 C, much higher than for conventional furnaces, and then this air is injected with fuel. R and D data have shown that CO{sub 2} and NO{sub x} emissions can be reduced markedly. However, the theoretical analysis is yet to be made, thereby hampering efforts to have this advanced technology become widely adopted. This project accumulated new data related to uniform temperature distribution, high energy heat transfer and low NO{sub x} as common characteristics of high temperature air combustion.

  12. Iterative retrieval of surface emissivity and temperature for a hyperspectral sensor

    SciTech Connect

    Borel, C.C.

    1997-11-01

    The central problem of temperature-emissivity separation is that we obtain N spectral measurements of radiance and need to find N + 1 unknowns (N emissivities and one temperature). To solve this problem in the presence of the atmosphere we need to find even more unknowns: N spectral transmissions {tau}{sub atmo}({lambda}) up-welling path radiances L{sub path}{up_arrow}({lambda}) and N down-welling path radiances L{sub path}{down_arrow}({lambda}). Fortunately there are radiative transfer codes such as MODTRAN 3 and FASCODE available to get good estimates of {tau}{sub atmo}({lambda}), L{sub path}{up_arrow}({lambda}) and L{sub path}{down_arrow}({lambda}) in the order of a few percent. With the growing use of hyperspectral imagers, e.g. AVIRIS in the visible and short-wave infrared there is hope of using such instruments in the mid-wave and thermal IR (TIR) some day. We believe that this will enable us to get around using the present temperature - emissivity separation (TES) algorithms using methods which take advantage of the many channels available in hyperspectral imagers. The first idea we had is to take advantage of the simple fact that a typical surface emissivity spectrum is rather smooth compared to spectral features introduced by the atmosphere. Thus iterative solution techniques can be devised which retrieve emissivity spectra {epsilon} based on spectral smoothness. To make the emissivities realistic, atmospheric parameters are varied using approximations, look-up tables derived from a radiative transfer code and spectral libraries. By varying the surface temperature over a small range a series of emissivity spectra are calculated. The one with the smoothest characteristic is chosen. The algorithm was tested on synthetic data using MODTRAN and the Salisbury emissivity database.

  13. Flame Speeds of Methane-Air, Propane-Air, and Ethylene-Air Mixtures at Low Initial Temperatures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L; Heimel, Sheldon

    1952-01-01

    Flame speeds were determined for methane-air, propane-air, and ethylene-air mixtures at -73 C and for methane-air mixtures at -132 C. The data extend the curves of maximum flame speed against initial mixture temperature previously established for the range from room temperature to 344 C. Empirical equations for maximum flame speed u(cm/ sec) as a function of initial mixture temperature T(sub O) were determined to be as follows: for methane, for T(sub O) from 141 to 615 K, u = 8 + 0.000160 T(sub O)(exp 2.11); for propane, for T(sub O) from 200 to 616 K, u = 10 + 0.000342 T(sub O)(exp 2.00); for ethylene, for T(sub O) from 200 to 617 K, u = 10 + 0.00259 T(sub O)(exp 1.74). Relative flame speeds at low initial temperatures were predicted within approximately 20 percent by either the thermal theory as presented by Semenov or by the diffusion theory of Tanford and Pease. The same order was found previously for high initial temperatures. The low-temperature data were also found to extend the linear correlations between maximum flame speed and calculated equilibrium active-radical concentrations, which were established by the previously reported high-temperature data.

  14. The wide area retrievals of temperature in life space from multi-data set fusion

    NASA Astrophysics Data System (ADS)

    Han, D. Y.

    2014-05-01

    Heat wave is one of the phenomena stemmed from abnormal climate caused by climate change. This phenomenon which occurs strongly and frequently worldwide has been threatening the heath-vulnerable classes in the urban and suburb area. To reduce the damage from the heat wave, the current research attempts to perform data assimilation between highresolution images and ground observation data based on middle infra-red satellite imagery. We use an integrated approach involving compilation of both spatial and non-spatial data from government agencies and institutions, application of spatial and temporal analyses using remote sensing data. The near real-time temperature retrievals of selected areas are performed and analyzed using thermal data from COMS, Landsat, and in-situ data. And, the computational complexity and storage were discussed. Seven major land-use categories (Built-up, Road, Agriculture (green house, paddy fields, and dry fields), Field of construction work, Vegetation (forests), Wasteland and Water bodies) frequently are used in Korea. The four land-uses were selected as the most strongly areas affected by heat waves according to the survey of National Emergency Management Agency. In the future, we will estimate the precise wide area temperature of life space and promote the application of the heat/health watch/warning system.

  15. Retrieving Marine Inherent Optical Properties from Satellites Using Temperature and Salinity-dependent Backscattering by Seawater

    NASA Technical Reports Server (NTRS)

    Werdell, Paul J.; Franz, Bryan Alden; Lefler, Jason Travis; Robinson, Wayne D.; Boss, Emmanuel

    2013-01-01

    Time-series of marine inherent optical properties (IOPs) from ocean color satellite instruments provide valuable data records for studying long-term time changes in ocean ecosystems. Semi-analytical algorithms (SAAs) provide a common method for estimating IOPs from radiometric measurements of the marine light field. Most SAAs assign constant spectral values for seawater absorption and backscattering, assume spectral shape functions of the remaining constituent absorption and scattering components (e.g., phytoplankton, non-algal particles, and colored dissolved organic matter), and retrieve the magnitudes of each remaining constituent required to match the spectral distribution of measured radiances. Here, we explore the use of temperature- and salinity-dependent values for seawater backscattering in lieu of the constant spectrum currently employed by most SAAs. Our results suggest that use of temperature- and salinity-dependent seawater spectra elevate the SAA-derived particle backscattering, reduce the non-algal particles plus colored dissolved organic matter absorption, and leave the derived absorption by phytoplankton unchanged.

  16. Geomagnetic activity and polar surface air temperature variability

    NASA Astrophysics Data System (ADS)

    Seppälä, A.; Randall, C. E.; Clilverd, M. A.; Rozanov, E.; Rodger, C. J.

    2009-10-01

    Here we use the ERA-40 and ECMWF operational surface level air temperature data sets from 1957 to 2006 to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the A p index. Previous modeling work has suggested that NO x produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in surface air temperatures (SATs). We find that during winter months, polar SATs in years with high A p index are different than in years with low A p index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, depending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings (SSWs) are excluded. We take into account solar irradiance variations, unlike previous analyses of geomagnetic effects in ERA-40 and operational data. Although we cannot conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating wintertime surface air temperatures. We tested our SAT results against variation in the Quasi Biennial Oscillation, the El Niño Southern Oscillation and the Southern Annular Mode. The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode, and we cannot robustly exclude a chance linkage between sea surface temperature variability and geomagnetic activity.

  17. Drier Air, Lower Temperatures, and Triggering of Paroxysmal Atrial Fibrillation

    PubMed Central

    Nguyen, Jennifer L.; Link, Mark S.; Luttmann-Gibson, Heike; Laden, Francine; Schwartz, Joel; Wessler, Benjamin S.; Mittleman, Murray A.; Gold, Diane R.; Dockery, Douglas W.

    2015-01-01

    Background The few previous studies on the onset of paroxysmal atrial fibrillation and meteorologic conditions have focused on outdoor temperature and hospital admissions, but hospital admissions are a crude indicator of atrial fibrillation incidence, and studies have found other weather measures in addition to temperature to be associated with cardiovascular outcomes. Methods Two hundred patients with dual chamber implantable cardioverter-defibrillators were enrolled and followed prospectively from 2006 to 2010 for new onset episodes of atrial fibrillation. The date and time of arrhythmia episodes documented by the implanted cardioverter-defibrillators were linked to meteorologic data and examined using a case-crossover analysis. We evaluated associations with outdoor temperature, apparent temperature, air pressure, and three measures of humidity (relative humidity, dew point, and absolute humidity). Results Of the 200 enrolled patients, 49 patients experienced 328 atrial fibrillation episodes lasting ≥30 seconds. Lower temperatures in the prior 48 hours were positively associated with atrial fibrillation. Lower absolute humidity (ie, drier air) had the strongest and most consistent association: each 0.5 g/m3 decrease in the prior 24 hours increased the odds of atrial fibrillation by 4% (95% confidence interval [CI]: 0%, 7%) and by 5% (95% CI: 2%, 8%) for exposure in the prior 2 hours. Results were similar for dew point but slightly weaker. Conclusions Recent exposure to drier air and lower temperatures were associated with the onset of atrial fibrillation among patients with known cardiac disease, supporting the hypothesis that meteorologic conditions trigger acute cardiovascular episodes. PMID:25756220

  18. Innovative approach to retrieve land surface emissivity and land surface temperature in areas of highly dynamic emissivity changes by using thermal infrared data

    NASA Astrophysics Data System (ADS)

    Heinemann, Sascha; Muro, Javier; Burkart, Andreas; Schultz, Johannes; Thonfeld, Frank; Menz, Gunter

    2016-04-01

    , are developed. One way to calibrate LST retrievals is by comparing the canopy leaf temperature of conifers derived from TIR data with the surrounding air temperature (e.g. from synoptic stations). Prospectively, the derived LSE/LST data become validated with near infrared data obtained from an UAV with a TIR camera (TIRC) onboard, and is also compared with ground-based measurements. This study aims to generate an appropriate method to eventually obtain a high correlation between LSE/LST, TIRC and ground truth data by integrating developed correction terms.

  19. Modeling daily average stream temperature from air temperature and watershed area

    NASA Astrophysics Data System (ADS)

    Butler, N. L.; Hunt, J. R.

    2012-12-01

    Habitat restoration efforts within watersheds require spatial and temporal estimates of water temperature for aquatic species especially species that migrate within watersheds at different life stages. Monitoring programs are not able to fully sample all aquatic environments within watersheds under the extreme conditions that determine long-term habitat viability. Under these circumstances a combination of selective monitoring and modeling are required for predicting future geospatial and temporal conditions. This study describes a model that is broadly applicable to different watersheds while using readily available regional air temperature data. Daily water temperature data from thirty-eight gauges with drainage areas from 2 km2 to 2000 km2 in the Sonoma Valley, Napa Valley, and Russian River Valley in California were used to develop, calibrate, and test a stream temperature model. Air temperature data from seven NOAA gauges provided the daily maximum and minimum air temperatures. The model was developed and calibrated using five years of data from the Sonoma Valley at ten water temperature gauges and a NOAA air temperature gauge. The daily average stream temperatures within this watershed were bounded by the preceding maximum and minimum air temperatures with smaller upstream watersheds being more dependent on the minimum air temperature than maximum air temperature. The model assumed a linear dependence on maximum and minimum air temperature with a weighting factor dependent on upstream area determined by error minimization using observed data. Fitted minimum air temperature weighting factors were consistent over all five years of data for each gauge, and they ranged from 0.75 for upstream drainage areas less than 2 km2 to 0.45 for upstream drainage areas greater than 100 km2. For the calibration data sets within the Sonoma Valley, the average error between the model estimated daily water temperature and the observed water temperature data ranged from 0.7

  20. The prediction of tropopause height from clusters of brightness temperatures and its application in the stratified regression temperature retrievals using microwave and infrared satellite measurements

    NASA Technical Reports Server (NTRS)

    Munteanu, M. J.; Piraino, P.; Jakubowicz, O.

    1984-01-01

    A total of 1575 radiosondes and the corresponding simulated brightness temperatures were used in an effort to derive a temperature retrieval based on the clusters of brightness temperatures. The 8 simulated channels, namely, 3 MSU and 5 IR of the TIROS-N satellite are used by the GLAS temperature retrieval method. The 3 MSU and 5 IR brightness temperatures were clustered into 17 cluster groups and a regression for the prediction of the tropopause height in mb was generated. The overall r.m.s. for the tropopause prediction is excellent, namely, around 16 mb for the summer and 23 mb for the winter. The correct cluster of brightness temperatures can be identified 98% of the time by the method of discriminatory classification if it is approximately a normal distribution or, in general, by the method of the nearest neighbor.

  1. A Multi-Channel Method for Retrieving Surface Temperature for High-Emissivity Surfaces from Hyperspectral Thermal Infrared Images.

    PubMed

    Zhong, Xinke; Labed, Jelila; Zhou, Guoqing; Shao, Kun; Li, Zhao-Liang

    2015-01-01

    The surface temperature (ST) of high-emissivity surfaces is an important parameter in climate systems. The empirical methods for retrieving ST for high-emissivity surfaces from hyperspectral thermal infrared (HypTIR) images require spectrally continuous channel data. This paper aims to develop a multi-channel method for retrieving ST for high-emissivity surfaces from space-borne HypTIR data. With an assumption of land surface emissivity (LSE) of 1, ST is proposed as a function of 10 brightness temperatures measured at the top of atmosphere by a radiometer having a spectral interval of 800-1200 cm(-1) and a spectral sampling frequency of 0.25 cm(-1). We have analyzed the sensitivity of the proposed method to spectral sampling frequency and instrumental noise, and evaluated the proposed method using satellite data. The results indicated that the parameters in the developed function are dependent on the spectral sampling frequency and that ST of high-emissivity surfaces can be accurately retrieved by the proposed method if appropriate values are used for each spectral sampling frequency. The results also showed that the accuracy of the retrieved ST is of the order of magnitude of the instrumental noise and that the root mean square error (RMSE) of the ST retrieved from satellite data is 0.43 K in comparison with the AVHRR SST product. PMID:26061199

  2. A Multi-Channel Method for Retrieving Surface Temperature for High-Emissivity Surfaces from Hyperspectral Thermal Infrared Images

    PubMed Central

    Zhong, Xinke; Labed, Jelila; Zhou, Guoqing; Shao, Kun; Li, Zhao-Liang

    2015-01-01

    The surface temperature (ST) of high-emissivity surfaces is an important parameter in climate systems. The empirical methods for retrieving ST for high-emissivity surfaces from hyperspectral thermal infrared (HypTIR) images require spectrally continuous channel data. This paper aims to develop a multi-channel method for retrieving ST for high-emissivity surfaces from space-borne HypTIR data. With an assumption of land surface emissivity (LSE) of 1, ST is proposed as a function of 10 brightness temperatures measured at the top of atmosphere by a radiometer having a spectral interval of 800–1200 cm−1 and a spectral sampling frequency of 0.25 cm−1. We have analyzed the sensitivity of the proposed method to spectral sampling frequency and instrumental noise, and evaluated the proposed method using satellite data. The results indicated that the parameters in the developed function are dependent on the spectral sampling frequency and that ST of high-emissivity surfaces can be accurately retrieved by the proposed method if appropriate values are used for each spectral sampling frequency. The results also showed that the accuracy of the retrieved ST is of the order of magnitude of the instrumental noise and that the root mean square error (RMSE) of the ST retrieved from satellite data is 0.43 K in comparison with the AVHRR SST product. PMID:26061199

  3. Advances in Fast Response Acoustically Derived Air Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Bogoev, Ivan; Jacobsen, Larry; Horst, Thomas; Conrad, Benjamin

    2016-04-01

    Fast-response accurate air-temperature measurements are required when estimating turbulent fluxes of heat, water and carbon dioxide by open-path eddy-covariance technique. In comparison with contact thermometers like thermocouples, ultra-sonic thermometers do not suffer from solar radiation loading, water vapor condensation and evaporative cooling effects. Consequently they have the potential to provide more accurate true air temperature measurements. The absolute accuracy of the ultrasonic thermometer is limited by the following parameters: the distance between the transducer pairs, transducer delays associated with the electrical-acoustic signal conversion that vary with temperature, components of the wind vector that are normal to the ultrasonic paths, and humidity. The distance between the transducer pairs is commonly obtained by coordinate measuring machine. Improved accuracy demonstrated in this study results from increased stiffness in the anemometer head to better maintain the ultrasonic path-length distances. To further improve accuracy and account for changes in transducer delays and distance as a function of temperature, these parameters are characterized in a zero-wind chamber over the entire operating temperature range. When the sonic anemometer is combined with a co-located fast-response water vapor analyzer, like in the IRGASON instrument, speed of sound can be compensated for humidity effects on a point-by-point basis resulting in a true fast-response air temperature measurement. Laboratory test results show that when the above steps are implemented in the calibration of the ultrasonic thermometer air-temperature accuracy better than ±0.5 degrees Celsius can be achieved over the entire operating range. The approach is also validated in a field inter-comparison with an aspirated thermistor probe mounted in a radiation shield.

  4. Kalman filter physical retrieval of surface emissivity and temperature from SEVIRI infrared channels: a validation and intercomparison study

    NASA Astrophysics Data System (ADS)

    Masiello, G.; Serio, C.; Venafra, S.; Liuzzi, G.; Göttsche, F.; Trigo, I. F.; Watts, P.

    2015-07-01

    A Kalman filter-based approach for the physical retrieval of surface temperature and emissivity from SEVIRI (Spinning Enhanced Visible and Infrared Imager) infrared observations has been developed and validated against in situ and satellite observations. Validation for land has been provided based on in situ observations from the two permanent stations at Evora and Gobabeb operated by Karlsruhe Institute of Technology (KIT) within the framework of EUMETSAT's Satellite Application Facility on Land Surface Analysis (LSA SAF). Sea surface retrievals have been intercompared on a broad spatial scale with equivalent satellite products (MODIS, Moderate Resolution Imaging Spectroradiometer, and AVHRR, Advanced Very High Resolution Radiometer) and ECMWF (European Centre for Medium-Range Weather Forecasts) analyses. For surface temperature, the Kalman filter yields a root mean square accuracy of ≍ ±1.5 °C for the two land sites considered and ≍ ±1.0 °C for the sea. Comparisons with polar satellite instruments over the sea surface show nearly zero temperature bias. Over the land surface the retrieved emissivity follows the seasonal vegetation cycle and permits identification of desert sand regions using the SEVIRI channel at 8.7 μm due to the strong quartz reststrahlen bands around 8-9 μm. Considering the two validation stations, we have found that emissivity retrieved in SEVIRI channel 10.8 μm over the gravel plains of the Namibian desert is in excellent agreement with in situ observations. Over Evora, the seasonal variation of emissivity with vegetation is successfully retrieved and yields emissivity values for green and dry vegetation that are in good agreement with spectral library data. The algorithm has been applied to the SEVIRI full disk, and emissivity maps on that global scale have been physically retrieved for the first time.

  5. Kalman filter physical retrieval of surface emissivity and temperature from SEVIRI infrared channels: a validation and inter-comparison study

    NASA Astrophysics Data System (ADS)

    Masiello, G.; Serio, C.; Venafra, S.; Liuzzi, G.; Göttsche, F.; Trigo, I. F.; Watts, P.

    2015-04-01

    A Kalman filter based approach for the physical retrieval of surface temperature and emissivity from SEVIRI (Spinning Enhanced Visible and Infrared Imager) infrared observations has been developed and validated against in situ and satellite observations. Validation for land has been provided based on in situ observations from the two permanent stations Evora and Gobabeb operated by Karlsruhe Institute of Technology (KIT) within the framework of EUMETSAT's Satellite Application Facility on Land Surface Analysis (LSA-SAF). Sea surface retrievals have been intercompared on a broad spatial scale with equivalent satellite products (MODIS or Moderate Resolution Imaging Spectroradiometer and AVHRR or Advanced Very High Resolution Radiometer) and ECMWF (European Centre for Medium Range Weather Forecasts) analyses. Results show that for surface temperature the algorithm yields an accuracy of ≈ ± 1.5 °C in case of land and ≈ ± 1.0 °C in case of sea surface. Comparisons with polar satellite instruments over the sea surface show nearly zero temperature bias. Over the land surface the retrieved emissivity follows the seasonal vegetation cycle and allows to identify desert sand regions because of strong reststrahlen bands of Quartz in the SEVIRI channel at 8.7 μm. Considering the two validation stations, we have that emissivity retrieved in SEVIRI channel 10.8 μm over the gravel plains of the Namib desert is in excellent agreement with in situ observations. Over Evora, the seasonal variation of emissivity with vegetation is successfully retrieved and yields emissivity values for green and dry vegetation that are in good agreement with spectral library data. The algorithm has been applied to the SEVIRI full disk and emissivity maps on that global scale have been physically retrieved for the first time.

  6. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  7. CARS Temperature and Species Measurements For Air Vehicle Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Gord, James R.; Grisch, Frederic; Klimenko, Dmitry; Clauss, Walter

    2005-01-01

    The coherent anti-Stokes Raman spectroscopy (CARS) method has recently been used in the United States and Europe to probe several different types of propulsion systems for air vehicles. At NASA Langley Research Center in the United States, CARS has been used to simultaneously measure temperature and the mole fractions of N2, O2 and H2 in a supersonic combustor, representative of a scramjet engine. At Wright- Patterson Air Force Base in the United States, CARS has been used to simultaneously measure temperature and mole fractions of N2, O2 and CO2, in the exhaust stream of a liquid-fueled, gas-turbine combustor. At ONERA in France and the DLR in Germany researchers have used CARS to measure temperature and species concentrations in cryogenic LOX-H2 rocket combustion chambers. The primary aim of these measurements has been to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.

  8. Microwave temperature profiler for clear air turbulence prediction

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L. (Inventor)

    1992-01-01

    A method is disclosed for determining Richardson Number, Ri, or its reciprocal, RRi, for clear air prediction using measured potential temperature and determining the vertical gradient of potential temperature, d(theta)/dz. Wind vector from the aircraft instrumentation versus potential temperature, dW/D(theta), is determined and multiplies by d(theta)/dz to obtain dW/dz. Richardson number or its reciprocal is then determined from the relationship Ri = K(d theta)/dz divided by (dW/dz squared) for use in detecting a trend toward a threshold value for the purpose of predicting clear air turbulence. Other equations for this basic relationship are disclosed together with the combination of other atmospheric observables using multiple regression techniques.

  9. Symmetric scaling properties in global surface air temperature anomalies

    NASA Astrophysics Data System (ADS)

    Varotsos, Costas A.; Efstathiou, Maria N.

    2015-08-01

    We have recently suggested "long-term memory" or internal long-range correlation within the time-series of land-surface air temperature (LSAT) anomalies in both hemispheres. For example, an increasing trend in the LSAT anomalies is followed by another one at a different time in a power-law fashion. However, our previous research was mainly focused on the overall long-term persistence, while in the present study, the upward and downward scaling dynamics of the LSAT anomalies are analysed, separately. Our results show that no significant fluctuation differences were found between the increments and decrements in LSAT anomalies, over the whole Earth and over each hemisphere, individually. On the contrary, the combination of land-surface air and sea-surface water temperature anomalies seemed to cause a departure from symmetry and the increments in the land and sea surface temperature anomalies appear to be more persistent than the decrements.

  10. EVA Retriever Demonstration

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The EVA retriever is demonstrated in the Manipulator Development Facility (MDF). The retriever moves on the air bearing table 'searching' for its target, in this case tools 'dropped' by astronauts on orbit.

  11. Fiber optic distributed temperature sensing for the determination of air temperature

    NASA Astrophysics Data System (ADS)

    de Jong, S. A. P.; Slingerland, J. D.; van de Giesen, N. C.

    2015-01-01

    This paper describes a method to correct for the effect of solar radiation in atmospheric distributed temperature sensing (DTS) applications. By using two cables with different diameters, one can determine what temperature a zero diameter cable would have. Such a virtual cable would not be affected by solar heating and would take on the temperature of the surrounding air. With two unshielded cable pairs, one black pair and one white pair, good results were obtained given the general consensus that shielding is needed to avoid radiation errors (WMO, 2010). The correlations between standard air temperature measurements and air temperatures derived from both cables of colors had a high correlation coefficient (r2=0.99) and a RMSE of 0.38 °C, compared to a RMSE of 2.40 °C for a 3.0 mm uncorrected black cable. A thin white cable measured temperatures that were close to air temperature measured with a nearby shielded thermometer (RMSE of 0.61 °C). The temperatures were measured along horizontal cables with an eye to temperature measurements in urban areas, but the same method can be applied to any atmospheric DTS measurements, and for profile measurements along towers or with balloons and quadcopters.

  12. The Effects of Air Pollution and Temperature on COPD

    PubMed Central

    Hansel, Nadia N.; McCormack, Meredith C.; Kim, Victor

    2016-01-01

    Chronic Obstructive Pulmonary Disease (COPD) affects 12–16 million people in the United States and is the third-leading cause of death. In developed countries, smoking is the greatest risk factor for the development of COPD, but other exposures also contribute to the development and progression of the disease. Several studies suggest, though are not definitive, that outdoor air pollution exposure is linked to the prevalence and incidence of COPD. Among individuals with COPD, outdoor air pollutants are associated with loss of lung function and increased respiratory symptoms. In addition, outdoor air pollutants are also associated with COPD exacerbations and mortality. There is much less evidence for the impact of indoor air on COPD, especially in developed countries in residences without biomass exposure. The limited existing data suggests that indoor particulate matter and nitrogen dioxide concentrations are linked to increased respiratory symptoms among patients with COPD. In addition, with the projected increases in temperature and extreme weather events in the context of climate change there has been increased attention to the effects of heat exposure. Extremes of temperature—both heat and cold—have been associated with increased respiratory morbidity in COPD. Some studies also suggest that temperature may modify the effect of pollution exposure and though results are not conclusive, understanding factors that may modify susceptibility to air pollution in patients with COPD is of utmost importance. PMID:26683097

  13. Innovative approach to retrieve land surface emissivity and land surface temperature in areas of highly dynamic emissivity changes by using thermal infrared data

    NASA Astrophysics Data System (ADS)

    Heinemann, S.

    2015-12-01

    The land surface temperature (LST) is an extremely significant parameter in order to understand the processes of energetic interactions between Earth's surface and atmosphere. This knowledge is significant for various environmental research questions, particularly with regard to the recent climate change. This study shows an innovative approach to retrieve land surface emissivity (LSE) and LST by using thermal infrared (TIR) data from satellite sensors, such as SEVIRI and AATSR. So far there are no methods to derive LSE/LST particularly in areas of highly dynamic emissivity changes. Therefore especially for regions with large surface temperature amplitude in the diurnal cycle such as bare and uneven soil surfaces but also for regions with seasonal changes in vegetation cover including various surface areas such as grassland, mixed forests or agricultural land different methods were investigated to identify the most appropriate one. The LSE is retrieved by using the day/night Temperature-Independent Spectral Indices (TISI) method, and the Generalised Split-Window (GSW) method is used to retrieve the LST. Nevertheless different GSW algorithms show that equal LSEs lead to large LST differences. Additionally LSE is also measured using a NDVI-based threshold method (NDVITHM) to distinguish between soil, dense vegetation cover and pixel composed of soil and vegetation. The data used for this analysis were derived from MODIS TIR. The analysis is implemented with IDL and an intercomparison is performed to determine the most effective methods. To compensate temperature differences between derived and ground truth data appropriate correction terms by comparing derived LSE/LST data with ground-based measurements are developed. One way to calibrate LST retrievals is by comparing the canopy leaf temperature of conifers derived from TIR data with the surrounding air temperature (e.g. from synoptic stations). Prospectively, the derived LSE/LST data become validated with near

  14. Intercomparison of OMI NO2 and HCHO air mass factor calculations: recommendations and best practices for retrievals

    NASA Astrophysics Data System (ADS)

    Lorente Delgado, Alba; Klaas Boersma, Folkert; Hilboll, Andreas; Richter, Andreas; Yu, Huan; van Roozendael, Michel; Dörner, Steffen; Wagner, Thomas; Barkley, Michael; Lamsal, Lok; Lin, Jintai; Liu, Mengyao

    2016-04-01

    We present a detailed comparison of the air mass factor (AMF) calculation process used by various research groups for OMI satellite retrievals of NO2 and HCHO. Although satellite retrievals have strongly improved over the last decades, there is still a need to better understand and reduce the uncertainties associated with every retrieval step of satellite data products, such as the AMF calculation. Here we compare and evaluate the different approaches used to calculate AMFs by several scientific groups (KNMI (WUR), IASB-BIRA, IUP-UNI. BREMEN, MPI-C, NASA GSFC, LEICESTER UNI. and PEKING UNI.). Each group calculated altitude dependent (box-) AMFs and clear sky and total tropospheric AMFs for several OMI orbits. First, European groups computed AMFs for one OMI orbit using common settings for the choice of surface albedo data, terrain height, cloud treatment and a priori vertical profile. Second, every group computed AMFs for two complete days in different seasons using preferred settings for the ancillary data and cloud treatment as a part of a Round Robin exercise. Box-AMFs comparison showed good consistency and underlined the importance of a correct treatment of the physical processes affecting the effective light path and the vertical discretization of the atmosphere. Using common settings, tropospheric NO2 AMFs in polluted pixels on average agreed within 4.7% whereas in remote pixels agreed within 3.5%. Using preferred settings relative differences between AMFs increase up to 15-30%. This increase is traced back to the different choices and assumptions made throughout the AMF calculation, which affect the final AMF values and thus the uncertainty in the AMF calculation. Differences between state of the art cloud treatment approaches highlight the importance of an accurate cloud correction: total and clear sky AMFs in polluted conditions differ by up to 40% depending on the retrieval scenario. Based on the comparison results, specific recommendations on best

  15. Spatial interpolation of monthly mean air temperature data for Latvia

    NASA Astrophysics Data System (ADS)

    Aniskevich, Svetlana

    2016-04-01

    Temperature data with high spatial resolution are essential for appropriate and qualitative local characteristics analysis. Nowadays the surface observation station network in Latvia consists of 22 stations recording daily air temperature, thus in order to analyze very specific and local features in the spatial distribution of temperature values in the whole Latvia, a high quality spatial interpolation method is required. Until now inverse distance weighted interpolation was used for the interpolation of air temperature data at the meteorological and climatological service of the Latvian Environment, Geology and Meteorology Centre, and no additional topographical information was taken into account. This method made it almost impossible to reasonably assess the actual temperature gradient and distribution between the observation points. During this project a new interpolation method was applied and tested, considering auxiliary explanatory parameters. In order to spatially interpolate monthly mean temperature values, kriging with external drift was used over a grid of 1 km resolution, which contains parameters such as 5 km mean elevation, continentality, distance from the Gulf of Riga and the Baltic Sea, biggest lakes and rivers, population density. As the most appropriate of these parameters, based on a complex situation analysis, mean elevation and continentality was chosen. In order to validate interpolation results, several statistical indicators of the differences between predicted values and the values actually observed were used. Overall, the introduced model visually and statistically outperforms the previous interpolation method and provides a meteorologically reasonable result, taking into account factors that influence the spatial distribution of the monthly mean temperature.

  16. Temperature-Dependence of Air-Broadened Line Widths and Shifts in the nu3 Band of Ozone

    NASA Technical Reports Server (NTRS)

    Smith, Mary A. H.; Rinsland, Curtis P.; Devi, V. Malathy; Benner, D. Chris; Cox, A. M.

    2006-01-01

    The 9.6-micron bands of O3 are used by many remote-sensing experiments for retrievals of terrestrial atmospheric ozone concentration profiles. Line parameter errors can contribute significantly to the total errors in these retrievals, particularly for nadir-viewing. The McMath-Pierce Fourier transform spectrometer at the National Solar Observatory on Kitt Peak was used to record numerous high-resolution infrared absorption spectra of O3 broadened by various gases at temperatures between 160 and 300 K. Over 30 spectra were analyzed simultaneously using a multispectrum nonlinear least squares fitting technique to determine Lorentz air-broadening and pressure-induced shift coefficients along with their temperature dependences for selected transitions in the 3 fundamental band of (16)O3. We compare the present results with other measurements reported in the literature and with the ozone parameters on the 2000 and 2004 editions of the HITRAN database.

  17. Requirements for high-temperature air-cooled central receivers

    SciTech Connect

    Wright, J.D.; Copeland, R.J.

    1983-12-01

    The design of solar thermal central receivers will be shaped by the end user's need for energy. This paper identifies the requirements for receivers supplying heat for industrial processes or electric power generation in the temperature range 540 to 1000/sup 0/C and evaluates the effects of the requirements on air-cooled central receivers. Potential IPH applications are identified as large baseload users that are located some distance from the receiver. In the electric power application, the receiver must supply heat to a pressurized gas power cycle. The difficulty in providing cost-effective thermal transport and thermal storage for air-cooled receivers is a critical problem.

  18. Can air temperature be used to project influences of climate change on stream temperature?

    USGS Publications Warehouse

    Arismendi, Ivan; Safeeq, Mohammad; Dunham, Jason B.; Johnson, Sherri L.

    2014-01-01

    Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To address this knowledge gap, we examined the performance of two widely used linear and nonlinear regression models that predict stream temperatures based on air temperatures. We evaluated model performance and temporal stability of model parameters in a suite of regulated and unregulated streams with 11–44 years of stream temperature data. Although such models may have validity when predicting stream temperatures within the span of time that corresponds to the data used to develop them, model predictions did not transfer well to other time periods. Validation of model predictions of most recent stream temperatures, based on air temperature–stream temperature relationships from previous time periods often showed poor performance when compared with observed stream temperatures. Overall, model predictions were less robust in regulated streams and they frequently failed in detecting the coldest and warmest temperatures within all sites. In many cases, the magnitude of errors in these predictions falls within a range that equals or exceeds the magnitude of future projections of climate-related changes in stream temperatures reported for the region we studied (between 0.5 and 3.0 °C by 2080). The limited ability of regression-based statistical models to accurately project stream temperatures over time likely stems from the fact that underlying processes at play, namely the heat budgets of air and water, are distinctive in each medium and vary among localities and through time.

  19. Derivation of regression coefficients for sea surface temperature retrieval over East Asia

    NASA Astrophysics Data System (ADS)

    Ahn, Myoung-Hwan; Sohn, Eun-Ha; Hwang, Byong-Jun; Chung, Chu-Yong; Wu, Xiangqian

    2006-05-01

    Among the regression-based algorithms for deriving SST from satellite measurements, regionally optimized algorithms normally perform better than the corresponding global algorithm. In this paper, three algorithms are considered for SST retrieval over the East Asia region (15° 55°N, 105° 170°E), including the multi-channel algorithm (MCSST), the quadratic algorithm (QSST), and the Pathfinder algorithm (PFSST). All algorithms are derived and validated using collocated buoy and Geostationary Meteorological Satellite (GMS-5) observations from 1997 to 2001. An important part of the derivation and validation of the algorithms is the quality control procedure for the buoy SST data and an improved cloud screening method for the satellite brightness temperature measurements. The regionally optimized MCSST algorithm shows an overall improvement over the global algorithm, removing the bias of about -0.13°C and reducing the root-mean-square difference (rmsd) from 1.36°C to 1.26°C. The QSST is only slightly better than the MCSST. For both algorithms, a seasonal dependence of the remaining error statistics is still evident. The Pathfinder approach for deriving a season-specific set of coefficients, one for August to October and one for the rest of the year, provides the smallest rmsd overall that is also stable over time.

  20. A Methodology for Soil Moisture Retrieval from Land Surface Temperature, Vegetation Index, Topography and Soil Type

    NASA Astrophysics Data System (ADS)

    Pradhan, N. R.

    2015-12-01

    Soil moisture conditions have an impact upon hydrological processes, biological and biogeochemical processes, eco-hydrology, floods and droughts due to changing climate, near-surface atmospheric conditions and the partition of incoming solar and long-wave radiation between sensible and latent heat fluxes. Hence, soil moisture conditions virtually effect on all aspects of engineering / military engineering activities such as operational mobility, detection of landmines and unexploded ordinance, natural material penetration/excavation, peaking factor analysis in dam design etc. Like other natural systems, soil moisture pattern can vary from completely disorganized (disordered, random) to highly organized. To understand this varying soil moisture pattern, this research utilized topographic wetness index from digital elevation models (DEM) along with vegetation index from remotely sensed measurements in red and near-infrared bands, as well as land surface temperature (LST) in the thermal infrared bands. This research developed a methodology to relate a combined index from DEM, LST and vegetation index with the physical soil moisture properties of soil types and the degree of saturation. The advantage in using this relationship is twofold: first it retrieves soil moisture content at the scale of soil data resolution even though the derived indexes are in a coarse resolution, and secondly the derived soil moisture distribution represents both organized and disorganized patterns of actual soil moisture. The derived soil moisture is used in driving the hydrological model simulations of runoff, sediment and nutrients.

  1. Can air temperatures be used to project influences of climate change on stream temperatures?

    NASA Astrophysics Data System (ADS)

    Arismendi, I.; Safeeq, M.; Dunham, J.; Johnson, S. L.

    2013-12-01

    The lack of available in situ stream temperature records at broad spatiotemporal scales have been recognized as a major limiting factor in the understanding of thermal behavior of stream and river systems. This has motivated the promotion of a wide variety of models that use surrogates for stream temperatures including a regression approach that uses air temperature as the predictor variable. We investigate the long-term performance of widely used linear and non-linear regression models between air and stream temperatures to project the latter in future climate scenarios. Specifically, we examine the temporal variability of the parameters that define each of these models in long-term stream and air temperature datasets representing relatively natural and highly human-influenced streams. We selected 25 sites with long-term records that monitored year-round daily measurements of stream temperature (daily mean) in the western United States (California, Oregon, Idaho, Washington, and Alaska). Surface air temperature data from each site was not available. Therefore, we calculated daily mean surface air temperature for each site in contiguous US from a 1/16-degree resolution gridded surface temperature data. Our findings highlight several limitations that are endemic to linear or nonlinear regressions that have been applied in many recent attempts to project future stream temperatures based on air temperature. Our results also show that applications over longer time periods, as well as extrapolation of model predictions to project future stream temperatures are unlikely to be reliable. Although we did not analyze a broad range of stream types at a continental or global extent, our analysis of stream temperatures within the set of streams considered herein was more than sufficient to illustrate a number of specific limitations associated with statistical projections of stream temperature based on air temperature. Radar plots of Nash-Sutcliffe efficiency (NSE) values for

  2. Persistence analysis of daily mean air temperature variation in Georgia

    NASA Astrophysics Data System (ADS)

    Matcharashvili, Teimuraz; Chelidze, Tamaz; Zhukova, Natalia; Mepharidze, Ekaterine; Sborshchikov, Alexander

    2010-05-01

    Extrapolation of observed linear trends is common practice in climate change researches on different scales. In this respect it is important, that though global warming is well established, the question of persistence of trends on regional scales remain controversial. Indeed, climate change for specific region and time by definition includes more than the simple average of weather conditions. Either random events or long-term changes, or more often combinations of them, can bring about significant swings in a variety of climate indicators from one time period to the next. Therefore in order to achieve further understanding of dynamics of climate change the character of stable peculiarities of analyzed dynamics should be investigated. Analysis of the character of long range correlations in climatological time series or peculiarities of their inherent memory is motivated exactly by this goal. Such analysis carried out on a different scales may help to understand spatial and temporal features of regional climate change. In present work the problem of persistence of observed trends in air temperature time series in Georgia was investigated. Longest available mean daily temperature time series of Tbilisi (1890-2008) were analyzed. Time series on shorter time scales of five stations in the West and East Georgia also were considered as well as monthly mean temperature time series of five stations. Additionally, temporally and spatially averaged daily and monthly mean air temperature time series were analyzed. Extent of persistence in mentioned time series were evaluated using R/S analysis calculation. Detrended and Multifractal Detrended Fluctuation Analysis as well as multi scaling analysis based on CWT have been used. Our results indicate that variation of daily or monthly mean temperatures reveals clear antipersistence on whole available time scale. It seems that antipersistence on global scale is general characteristics of mean air temperature variation and is not

  3. Historical changes in air temperature are evident in temperature fluxes measured in the sub-soil.

    NASA Astrophysics Data System (ADS)

    Fraser, Fiona; McCormick, Benjamin; Hallett, Paul; Wookey, Philip; Hopkins, David

    2013-04-01

    Warming trends in soil temperature have implications for a plethora of soil processes, including exacerbated climate change through the net release of greenhouse gases. Whereas long-term datasets of air temperature changes are abundant, a search of scientific literature reveals a lack of information on soil temperature changes and their specific consequences. We analysed five long-term data series collected in the UK (Dundee and Armagh) and Canada (Charlottetown, Ottawa and Swift Current). They show that the temperatures of soils at 5 - 20 cm depth, and sub-soils at 30 - 150 cm depth, increased in line with air temperature changes over the period 1958 - 2003. Differences were found, however, between soil and air temperatures when data were sub-divided into seasons. In spring, soil temperature warming ranged from 0.19°C at 30 cm in Armagh to 4.30°C at 50 cm in Charlottetown. In summer, however, the difference was smaller and ranged from 0.21°C at 10 cm in Ottawa to 3.70°C at 50 cm in Charlottetown. Winter temperatures were warmer in soil and ranged from 0.45°C at 5 cm in Charlottetown to 3.76°C at 150 cm in Charlottetown. There were significant trends in changes to soil temperature over time, whereas air temperature trends tended only to be significant in winter (changes range from 1.27°C in Armagh to 3.35°C in Swift Current). Differences in the seasonal warming patterns between air and soil temperatures have potential implications for the parameterization of models of biogeochemical cycling.

  4. RELATIONSHIP BETWEEN WATER TEMPERATURES AND AIR TEMPERATURES FOR CENTRAL US STREAMS

    EPA Science Inventory

    An analysis of the relationship between air and stream water temperature records for 11 rivers located in the central United States was conducted. he reliability of commonly available water temperature records was shown to be of unequal quality. imple linear relationships between...

  5. Air Temperature Estimation over the Third Pole Using MODIS LST

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Zhang, F.; Ye, M.; Che, T.

    2015-12-01

    The Third Pole is centered on the Tibetan Plateau (TP), which is the highest large plateau around the world with extremely complex terrain and climate conditions, resulting in very scarce meteorological stations especially in the vast west region. For these unobserved areas, the remotely sensed land surface temperature (LST) can greatly contribute to air temperature estimation. In our research we utilized the MODIS LST production from both TERRA and AQUA to estimate daily mean air temperature over the TP using multiple statistical models. Other variables used in the models include longitudes, latitudes, Julian day, solar zenith, NDVI and elevation. To select a relatively optimal model, we chose six popular and representative statistical models as candidate models including the multiple linear regression (MLR), the partial least squares regression (PLS), back propagate neural network (BPNN), support vector regression (SVR), random forests (RF) and Cubist regression (CR). The performances of the six models were compared for each possible combination of LSTs at four satellite pass times and two quality situations. Eventually a ranking table consisting of optimal models for each LST combination and quality situation was built up based on the validation results. By this means, the final production is generated providing daily mean air temperature with the least cloud blockage and acceptable accuracy. The average RMSEs of cross validation are mostly around 2℃. Stratified validations were also performed to test the expansibility to unobserved and high-altitude areas of the final models selected.

  6. Data fusion of CO2 retrieved from GOSAT and AIRS using regression analysis and fixed rank kriging

    NASA Astrophysics Data System (ADS)

    Zhou, Cong; Shi, Runhe; Gao, Wei

    2015-09-01

    This paper proposes an improved statistical method for fusing carbon dioxide (CO2) data retrieved from two major instruments, the Greenhouse gases Observing SATellite (GOSAT) and the Atmospheric Infrared Sounder (AIRS). These two datasets were fused to obtain CO2 concentrations near the surface, which is a region that is especially important for studies on carbon sources and sinks. Overall, the CO2 monthly average values from GOSAT are all lower than those from AIRS from 2010 to 2012. The datasets show the similar seasonal cycles of carbon dioxide and show an increasing trend with a determination coefficient of 0.45. A strong correlation was determined by adding the climatic factors as independent variables for regression analysis. The correlation coefficients between the CO2 values from AIRS and GOSAT significantly increased in response. The true CO2 data processes were then predicted using the fixed rank kriging method. This showed that the data-fusion CO2 product provides more reasonable information and that the corresponding mean squared prediction errors are smaller than those from the single GOSAT CO2 dataset.

  7. Use of Quality Controlled AIRS Temperature Soundings to Improve Forecast Skill

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste; Iredell, Lena

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. Also included are the clear column radiances used to derive these products which are representative of the radiances AIRS would have seen if there were no clouds in the field of view. All products also have error estimates. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of 1K, and layer precipitable water with an rms error of 20 percent, in cases with up to 90 percent effective cloud cover. The products are designed for data assimilation purposes for the improvement of numerical weather prediction, as well as for the study of climate and meteorological processes. With regard to data assimilation, one can use either the products themselves or the clear column radiances from which the products were derived. The AIRS Version 5 retrieval algorithm is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates for retrieved quantities and clear column radiances, and the use of these error estimates for Quality Control. The temperature profile error estimates are used to determine a case-by-case characteristic pressure pbest, down to which the profile is considered acceptable for data assimilation purposes. The characteristic pressure p(sub best) is determined by comparing the case dependent error estimate (delta)T(p) to the threshold values (Delta)T(p). The AIRS Version 5 data set provides error estimates of T(p) at all levels, and also profile dependent values of pbest based

  8. Air Cooling for High Temperature Power Electronics (Presentation)

    SciTech Connect

    Waye, S.; Musselman, M.; King, C.

    2014-09-01

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  9. Global surface air temperature variations: 1851-1984

    SciTech Connect

    Jones, P.D.; Raper, S.C.B.; Kelly, P.M.

    1986-11-01

    Many attempts have been made to combine station surface air temperature data into an average for the Northern Hemisphere. Fewer attempts have been made for the Southern Hemisphere because of the unavailability of data from the Antarctic mainland before the 1950s and the uncertainty of making a hemispheric estimate based solely on land-based analyses for a hemisphere that is 80% ocean. Past estimates have been based largely on data from the World Weather Records (Smithsonian Institution, 1927, 1935, 1947, and U.S. Weather Bureau, 1959-82) and have been made without considerable effort to detect and correct station inhomogeneities. Better estimates for the Southern Hemisphere are now possible because of the availability of 30 years of climatological data from Antarctica. The mean monthly surface air temperature anomalies presented in this package for the than those previously published because of the incorporation of data previously hidden away in archives and the analysis of station homogeneity before estimation.

  10. Impact of temperature field inhomogeneities on the retrieval of atmospheric species from MIPAS IR limb emission spectra

    NASA Astrophysics Data System (ADS)

    Kiefer, M.; Arnone, E.; Dudhia, A.; Carlotti, M.; Castelli, E.; von Clarmann, T.; Dinelli, B. M.; Kleinert, A.; Linden, A.; Milz, M.; Papandrea, E.; Stiller, G.

    2010-04-01

    We examine volume mixing ratios (vmr) retrieved from limb emission spectra recorded with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). In level 2 (L2) data products of three different retrieval processors, which perform one dimensional (1-D) retrievals, we find significant differences between species' profiles from ascending and descending orbit parts. The relative differences vary systematically with time of the year, latitude, and altitude. In the lower stratosphere their monthly means can reach maxima of 20% for CFC-11, CFC-12, HNO3, H2O, 10% for CH4 and N2O. Relative differences between monthly means of 1-D retrieval results and of the true atmospheric state can be expected to reach half of these percentage values, while relative differences in single vmr profiles might well exceed those numbers. Often there are no physical or chemical reasons for these differences, so they are an indicator for a problem in the data processing. The differences are generally largest at locations where the meridional temperature gradient of the atmosphere is strong. On the contrary, when performing the retrieval with a tomographic two dimensional (2-D) retrieval, L2 products generally do not show these differences. This implies that inhomogeneities in the temperature field, and possibly in the species' fields, which are accounted for in the 2-D algorithm and not in standard 1-D processors, may cause significant deviations in the results. Inclusion of an externally given adequate temperature gradient in the forward model of a 1-D processor helps to reduce the observed differences. However, only the full tomographic approach is suitable to resolve the horizontal inhomogeneities. Implications for the use of the 1-D data, e.g. for validation, are discussed. The dependence of the ascending/descending differences on the observation strategy suggests that this problem is to be expected to affect in general 1-D retrievals of infrared limb sounders, if the line of

  11. Impact of temperature field inhomogeneities on the retrieval of atmospheric species from MIPAS IR limb emission spectra

    NASA Astrophysics Data System (ADS)

    Kiefer, M.; Arnone, E.; Dudhia, A.; Carlotti, M.; Castelli, E.; von Clarmann, T.; Dinelli, B. M.; Kleinert, A.; Linden, A.; Milz, M.; Papandrea, E.; Stiller, G.

    2010-10-01

    We examine volume mixing ratios (vmr) retrieved from limb emission spectra recorded with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board Envisat. In level 2 (L2) data products of three different retrieval processors, which perform one dimensional (1-D) retrievals, we find significant differences between species' profiles from ascending and descending orbit parts. The relative differences vary systematically with time of the year, latitude, and altitude. In the lower stratosphere their monthly means can reach maxima of 20% for CFC-11, CFC-12, HNO3, H2O, 10% for CH4 and N2O. Relative differences between monthly means of 1-D retrieval results and of the true atmospheric state can be expected to reach half of these percentage values, while relative differences in single vmr profiles might well exceed those numbers. Often there are no physical or chemical reasons for these differences, so they are an indicator for a problem in the data processing. The differences are generally largest at locations where the meridional temperature gradient of the atmosphere is strong. On the contrary, when performing the retrieval with a tomographic two dimensional (2-D) retrieval, L2 products generally do not show these differences. This suggests that inhomogeneities in the temperature field, and possibly in the species' fields, which are accounted for in the 2-D algorithm and not in standard 1-D processors, may cause significant deviations in the results. Inclusion of an externally given adequate temperature gradient in the forward model of a 1-D processor helps to reduce the observed differences. However, only the full tomographic 2-D approach is suitable to resolve the horizontal inhomogeneities. Implications for the use of the 1-D data, e.g. for validation, are discussed. The dependence of the ascending/descending differences on the observation strategy suggests that this problem may affect 1-D retrievals of infrared limb sounders, if the line of sight

  12. Accelerator Mass Spectrometric determination of radiocarbon in stratospheric CO2, retrieved from AirCore sampling.

    NASA Astrophysics Data System (ADS)

    Paul, Dipayan; Been, Henk A.; Chen, Huilin; Kivi, Rigel; Meijer, Harro A. J.

    2015-04-01

    In this decade, understanding the impact of human activities on climate is one of the key issues of discussion globally. The continuous rise in the concentration of greenhouse gases, e.g., CO2, CH4, etc. in the atmosphere, predominantly due to human activities, is alarming and requires continuous monitoring to understand the dynamics. Radiocarbon is an important atmospheric tracer and one of the many used in the understanding of the global carbon budget, which includes the greenhouse gases like CO2 and CH4. Measurement of 14C (or radiocarbon) in atmospheric CO2 generally requires collection of large air samples (few liters) from which CO2 is extracted and then the concentration of radiocarbon is determined. Currently, Accelerator Mass Spectrometry (AMS) is the most precise, reliable and widely used technique for atmospheric radiocarbon detection. However, the regular collection of air samples from troposphere and stratosphere, for example using aircraft, is prohibitively expensive. AirCore is an innovative atmospheric sampling system, developed by NOAA. It comprises of a long tube descending from a high altitude with one end open and the other closed, and has been demonstrated to be a reliable, cost-effective sampling system for high-altitude profile (up to ~ 30 km) measurements of CH4and CO2(Karion et al. 2010). In Europe, AirCore measurements are being performed on a regular basis near Sodankylä since September 2013. Here we describe the analysis of two such AirCore samples collected in July 2014, Finland, for determining the 14C concentration in stratospheric CO2. The two AirCore samples were collected on consecutive days. Each stratospheric AirCore sample was divided into six fractions, each containing ~ 35 μg CO2 (~9.5 μg C). Each fraction was separately trapped in 1 /4 inch coiled stainless steel tubing for radiocarbon measurements. The procedure for CO2 extraction from the stratospheric air samples; the sample preparation, with samples containing < 10

  13. Industrial applications of MHD high temperature air heater technology

    NASA Astrophysics Data System (ADS)

    Saari, D. P.; Fenstermacher, J. E.; White, L. R.; Marksberry, C. L.

    1981-12-01

    The MHD high temperature air heater (HTAH) requires technology beyond the current state-of-the-art of industrial regenerative heaters. Specific aspects of HTAH technology which may find other application include refractory materials and valves resistant to the high temperature, corrosive, slag-bearing gas, materials resistant to cyclic thermal stresses, high temperature support structures for the cored brick bed, regenerative heater operating techniques for preventing accumulation of slag in the heater, and analytical tools for computing regenerative heater size, cost, and performance. Areas where HTAH technology may find application include acetylene/ethylene production processes, flash pyrolysis of coal, high temperature gas reactors, coal gasification processes, various metallurgical processes, waste incineration, and improvements to existing regenerator technology such as blast furnace stoves and glass tank regenerators.

  14. Evidence of Lunar Phase Influence on Global Surface Air Temperatures

    NASA Technical Reports Server (NTRS)

    Anyamba, Ebby; Susskind, Joel

    2000-01-01

    Intraseasonal oscillations appearing in a newly available 20-year record of satellite-derived surface air temperature are composited with respect to the lunar phase. Polar regions exhibit strong lunar phase modulation with higher temperatures occurs near full moon and lower temperatures at new moon, in agreement with previous studies. The polar response to the apparent lunar forcing is shown to be most robust in the winter months when solar influence is minimum. In addition, the response appears to be influenced by ENSO events. The highest mean temperature range between full moon and new moon in the polar region between 60 deg and 90 deg latitude was recorded in 1983, 1986/87, and 1990/91. Although the largest lunar phase signal is in the polar regions, there is a tendency for meridional equatorward progression of anomalies in both hemispheres so that the warning in the tropics occurs at the time of the new moon.

  15. AIRS CO2 Retrievals Using the Method of Vanishing Partial Derivatives (VPD)

    NASA Technical Reports Server (NTRS)

    Chahine, Moustafa; Yung, Yuk; Li, Qinbin; Olsen, Ed; Chen, Luke; Krakauer, Nir

    2006-01-01

    This document consists of presentation slides that review the work being done with observations from the Atmospheric Infrared Sounder (AIRS) using the concept of Vanishing Partial Derivatives. The infrared region is where several minor gases such as CO2, O3, CO, CH4 and SO2 are radiatively active.

  16. Development and Experimental Evaluation of a Retrieval System for Air Force Control Display Information. Final Report.

    ERIC Educational Resources Information Center

    Debons, Anthony; and Others

    A proposed classification system was studied to determine its efficacy to the Air Force Control-Display Area. Based on negative outcomes from a logical assessment of the proposed system, an alternate system was proposed to include the coordinate index concept. Upon development of a thesaurus and an index system for 106 documents on VSTOL/VTOL…

  17. Antarctic Sea ice variations and seasonal air temperature relationships

    NASA Technical Reports Server (NTRS)

    Weatherly, John W.; Walsh, John E.; Zwally, H. J.

    1991-01-01

    Data through 1987 are used to determine the regional and seasonal dependencies of recent trends of Antarctic temperature and sea ice. Lead-lag relationships involving regional sea ice and air temperature are systematically evaluated, with an eye toward the ice-temperature feedbacks that may influence climatic change. Over the 1958-1087 period the temperature trends are positive in all seasons. For the 15 years (l973-l987) for which ice data are available, the trends are predominantly positive only in winter and summer, and are most strongly positive over the Antarctic Peninsula. The spatially aggregated trend of temperature for this latter period is small but positive, while the corresponding trend of ice coverage is small but negative. Lag correlations between seasonal anomalies of the two variables are generally stronger with ice lagging the summer temperatures and with ice leading the winter temperatures. The implication is that summer temperatures predispose the near-surface waters to above-or below-normal ice coverage in the following fall and winter.

  18. A single field of view method for retrieving tropospheric temperature profiles from cloud-contaminated radiance data

    NASA Technical Reports Server (NTRS)

    Hodges, D. B.

    1976-01-01

    An iterative method is presented to retrieve single field of view (FOV) tropospheric temperature profiles directly from cloud-contaminated radiance data. A well-defined temperature profile may be calculated from the radiative transfer equation (RTE) for a partly cloudy atmosphere when the average fractional cloud amount and cloud-top height for the FOV are known. A cloud model is formulated to calculate the fractional cloud amount from an estimated cloud-top height. The method is then examined through use of simulated radiance data calculated through vertical integration of the RTE for a partly cloudy atmosphere using known values of cloud-top height(s) and fractional cloud amount(s). Temperature profiles are retrieved from the simulated data assuming various errors in the cloud parameters. Temperature profiles are retrieved from NOAA-4 satellite-measured radiance data obtained over an area dominated by an active cold front and with considerable cloud cover and compared with radiosonde data. The effects of using various guessed profiles and the number of iterations are considered.

  19. Assimilation of soil moisture retrievals or brightness temperature observations from SMOS and SMAP into the GEOS-5 land surface model

    NASA Astrophysics Data System (ADS)

    De Lannoy, G. J. M.; Reichle, R. H.

    2015-12-01

    Two L-band microwave missions are currently collecting passive microwave observations and aiming at an improved estimation of soil moisture. The ESA Soil Moisture Ocean Salinity (SMOS) mission and the NASA Soil Moisture Active Passive (SMAP) mission both provide Level 1 brightness temperature products and derived Level 2 soil moisture retrieval products. The assimilation of these products into land surface models has potential to improve global estimates of soil moisture and other land surface variables. This presentation investigates the benefits and challenges of assimilating either retrievals or brightness temperature observations from either SMOS or SMAP into the Goddard Earth Observing System (GEOS-5) land surface model. It will be shown that the seasonal corrections introduced by retrieval assimilation are slightly different from those with brightness temperature assimilation as a result of the technical implementation of the assimilation scheme. Various resulting land surface variables will also be evaluated against the results from the operational SMAP Level 4 Soil Moisture (L4_SM) product, which assimilates SMAP brightness temperature data.

  20. Retrieval of temperature profiles from CHAMP for climate monitoring: intercomparison with Envisat MIPAS and GOMOS and different atmospheric analyses

    NASA Astrophysics Data System (ADS)

    Gobiet, A.; Kirchengast, G.; Manney, G. L.; Borsche, M.; Retscher, C.; Stiller, G.

    2007-02-01

    This study describes and evaluates a Global Navigation Satellite System (GNSS) radio occultation (RO) retrieval scheme particularly aimed at delivering bias-free atmospheric parameters for climate monitoring and research. The focus of the retrieval is on the sensible use of a priori information for careful high-altitude initialisation in order to maximise the usable altitude range. The RO retrieval scheme has been meanwhile applied to more than five years of data (September 2001 to November 2006) from the German CHAllenging Minisatellite Payload for geoscientific research (CHAMP) satellite. In this study it was validated against various correlative datasets including the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and the Global Ozone Monitoring for Occultation of Stars (GOMOS) sensors on Envisat, five different atmospheric analyses, and the operational CHAMP retrieval product from GeoForschungsZentrum (GFZ) Potsdam. In the global mean within 10 to 30 km altitude we find that the present validation observationally constrains the potential RO temperature bias to be <0.2 K. Latitudinally resolved analyses show biases to be observationally constrained to <0.2-0.5 K up to 35 km in most cases, and up to 30 km in any case, even if severely biased (about 10 K or more) a priori information is used in the high altitude initialisation of the retrieval. No evidence is found for the 10-35 km altitude range of RO bias sources other than those potentially propagated downward from initialisation, indicating that the widely quoted RO promise of "unbiasedness and long-term stability due to intrinsic self-calibration" can indeed be realized given care in the data processing to strictly limit structural uncertainty. The results demonstrate that an adequate high-altitude initialisation technique is crucial for accurate stratospheric RO retrievals and that still common methods of initialising the involved hydrostatic integral with an upper boundary temperature or

  1. Temperature Independent Differential Absorption Spectroscopy (tidas) and Simplified Atmospheric Air Mass Factor (samf) Techniques For The Measurement of Ozone Vertical Content From Gome Data

    NASA Astrophysics Data System (ADS)

    Zehner, C.; Casadio, S.; di Sarra, A.; Putz, E.

    A simple technique for the fast retrieval of ozone vertical amount from GOME (Global Ozone Monitoring Experiment) spectra is described in detail. The TIDAS (Tempera- ture Independent Differential Absorption Spectroscopy) technique uses GOME's ca- pability of measuring atmospheric spectra over a broad wavelength range with high spectral resolution. The ozone slant columns are retrieved by applying the Beer- Lambert law to two spectral windows where the ozone absorption cross sections show similar temperature dependence. A simple geometric air mass factor is computed for a fixed height spherical atmosphere (SAMF: Simplified Atmospheric air Mass Factor) to retrieve ozone vertical amounts. Vertical ozone values are compared to the GDP (GOME Data Processor), and to ground based ozone measurements.

  2. AIRS Level 2 Data Products

    NASA Technical Reports Server (NTRS)

    Vicente, Gilberto

    2003-01-01

    The Atmospheric InfraRed Sounder (AIRS) Standard Retrieval Product consists of retrieved cloud and surface properties; profiles of retrieved temperature, water vapor, and ozone; and a flag indicating the presence of cloud ice or water. They contain quality assessment flags in addition to retrieved quantities and are generated for all locations where atmospheric soundings are taken. An AIRS granule consists of 6 minutes of data. This corresponds to approximately 1/15 of an orbit but exactly 45 scan lines of AMSU-A data or 135 scan lines of AIRS and HSB data.

  3. Controls of air temperature variability over an Alpine Glacier

    NASA Astrophysics Data System (ADS)

    Shaw, Thomas; Brock, Ben; Ayala, Álvaro; Rutter, Nick

    2016-04-01

    Near surface air temperature (Ta) is one of the most important controls on energy exchange between a glacier surface and the overlying atmosphere. However, not enough detail is known about the controls on Ta across a glacier due to sparse data availability. Recent work has provided insights into variability of Ta along glacier centre-lines in different parts of the world, yet there is still a limited understanding of off-centreline variability in Ta and how best to estimate it from distant off-glacier locations. We present a new dataset of distributed 2m Ta records for the Tsanteleina Glacier in Northwest Italy from July-September, 2015. Data provide detailed information of lateral (across-glacier) and centre-line variations in Ta, with ~20,000 hourly observations from 17 locations. The suitability of different vertical temperature gradients (VTGs) in estimating air temperature is considered under a range of meteorological conditions and from different forcing locations. A key finding is that local VTGs account for a lot of Ta variability under a broad range of climatic conditions. However, across-glacier variability is found to be significant, particularly for high ambient temperatures and for localised topographic depressions. The relationship of spatial Ta patterns with regional-scale reanalysis data and alternative Ta estimation methodologies are also presented. This work improves the knowledge of local scale Ta variations and their importance to melt modelling.

  4. High efficiency power generation from coal and wastes utilizing high temperature air combustion technology (Part 2: Thermal performance of compact high temperature air preheater and MEET boiler)

    SciTech Connect

    Iwahashi, Takashi; Kosaka, Hitoshi; Yoshida, Nobuhiro

    1998-07-01

    The compact high temperature air preheater and the MEET boiler, which are critical components of the MEET system, are the direct evolutions of the high temperature air combustion technology. Innovative hardware concept for a compact high temperature air preheater has been proposed, and preliminary experiment using the MEET-I high temperature air preheater based on this concept successfully demonstrated continuous high temperature air generation with almost no temperature fluctuation. A preliminary heat transfer calculation for the MEET boiler showed that regenerative combustion using high temperature air is quite effective for radiative heat transfer augmentation in a boiler, which will lead to significant downsizing of a boiler. The heat transfer characteristics in the MEET boiler were experimentally measured and the heat transfer promotion effect and the uniform heat transfer field were confirmed. Moreover, it was understood that excellent combustion with the low BTU gas of about 3,000 kcal/m{sup 3} was done.

  5. A temperature inversion-induced air pollution process as analyzed from Mie LiDAR data.

    PubMed

    Wu, Wanning; Zha, Yong; Zhang, Jiahua; Gao, Jay; He, Junliang

    2014-05-01

    A severe air pollution event in the Xianlin District of Nanjing City, China during 23-24 December 2012 was analyzed in terms of aerosol extinction coefficient and AOT retrieved from Mie scattering LiDAR data, in conjunction with in situ particulate concentrations measured near the Earth's surface, and the Weather Research Forecast-derived meteorological conditions. Comprehensive analyses of temperature, humidity, wind direction and velocity, and barometric pressure led to the conclusion that this pollution event was caused by advection inversion. In the absence of temperature inversion, the atmosphere at a height of 0.15 km has a relatively large extinction coefficient. In situ measured particulates exhibited a very large diurnal range. However, under the influence of turbulences, AOT was rather stable with a value <0.2 at an altitude below 0.8 km. Advection inversion appeared at 9:00 AM on 24 December, and did not dissipate until 22:00 PM. This temperature inversion, to some degree, inhibited the dispersion of near-surface particulates. Affected by this temperature inversion, the atmospheric extinction coefficient near the surface became noticeably larger. Near-surface particulates hardly varied at a concentration around 0.2mg/m(3). AOT at an altitude below 0.8 km rose to 0.31. PMID:24556291

  6. Principle Component Analysis of the Evolution of the Saharan Air Layer and Dust Transport: Comparisons between a Model Simulation and MODIS Retrievals

    NASA Technical Reports Server (NTRS)

    Wong, S.; Colarco, P. R.; Dessler, A.

    2006-01-01

    The onset and evolution of Saharan Air Layer (SAL) episodes during June-September 2002 are diagnosed by applying principal component analysis to the NCEP reanalysis temperature anomalies at 850 hPa, where the largest SAL-induced temperature anomalies are located. The first principal component (PC) represents the onset of SAL episodes, which are associated with large warm anomalies located at the west coast of Africa. The second PC represents two opposite phases of the evolution of the SAL. The positive phase of the second PC corresponds to the southwestward extension of the warm anomalies into the tropical-subtropical North Atlantic Ocean, and the negative phase corresponds to the northwestward extension into the subtropical to mid-latitude North Atlantic Ocean and the southwest Europe. A dust transport model (CARMA) and the MODIS retrievals are used to study the associated effects on dust distribution and deposition. The positive (negative) phase of the second PC corresponds to a strengthening (weakening) of the offshore flows in the lower troposphere around 10deg - 20degN, causing more (less) dust being transported along the tropical to subtropical North Atlantic Ocean. The variation of the offshore flow indicates that the subseasonal variation of African Easterly Jet is associated with the evolution of the SAL. Significant correlation is found between the second PC time series and the daily West African monsoon index, implying a dynamical linkage between West African monsoon and the evolution of the SAL and Saharan dust transport.

  7. Sensitivity of New England Stream Temperatures to Air Temperature and Precipitation Under Projected Climate

    NASA Astrophysics Data System (ADS)

    Huang, T.; Samal, N. R.; Wollheim, W. M.; Stewart, R. J.; Zuidema, S.; Prousevitch, A.; Glidden, S.

    2015-12-01

    The thermal response of streams and rivers to changing climate will influence aquatic habitat. This study examines the impact that changing climate has on stream temperatures in the Merrimack River, NH/MA USA using the Framework for Aquatic Modeling in the Earth System (FrAMES), a spatially distributed river network model driven by air temperature, air humidity, wind speed, precipitation, and solar radiation. Streamflow and water temperatures are simulated at a 45-second (latitude x longitude) river grid resolution for 135 years under historical and projected climate variability. Contemporary streamflow (Nash-Sutcliffe Coefficient = 0.77) and river temperatures (Nash-Sutcliffe Coefficient = 0.89) matched at downstream USGS gauge data well. A suite of model runs were made in combination with uniformly increased daily summer air temperatures by 2oC, 4 oC and 6 oC as well as adjusted precipitation by -40%, -30%, -20%, -10% and +10% as a sensitivity analysis to explore a broad range of potential future climates. We analyzed the summer stream temperatures and the percent of river length unsuitable for cold to warm water fish habitats. Impacts are greatest in large rivers due to the accumulation of river temperature warming throughout the entire river network. Cold water fish (i.e. brook trout) are most strongly affected while, warm water fish (i.e. largemouth bass) aren't expected to be impacted. The changes in stream temperatures under various potential climate scenarios will provide a better understanding of the specific impact that air temperature and precipitation have on aquatic thermal regimes and habitat.

  8. Dependence of air masses type on PBL vertical structure retrieved at the Mace Head station during EUCAARI campaign.

    NASA Astrophysics Data System (ADS)

    Milroy, Conor; Martucci, Giovanni; O'Dowd, Colin

    2010-05-01

    During the EUCAARI Intensive Observing Period held at the Mace Head GAW station from mid-May to mid-June, 2008, the PBL depth has been continuously measured by two ceilometers (Vaisala CL31 and Jenoptik CHM15K) and a microwave radiometer (RPG-HATPRO). The Lidar-Ceilometer, through the gradients in aerosol backscatter profiles, and the microwave profiler, through gradients in the specific humidity profiles, were used to remotely-sense the boundary layer structure. An automatic, newly developed Temporal Height-Tracking (THT) algorithm (Martucci et al., 2010) have been applied to both type of instruments data to retrieve the 2-layered structure of the local marine boundary layer. The two layers are defined as a lower, well mixed layer, i.e. the surface mixed layer, and the layer occupying the region below the free Troposphere inversion, i.e. the decoupled residual or convective layer. A categorization of the incoming air masses has been performed based on their origins and been used to asses the correlation with the PBL depths. The study confirmed the dependence of PBL vertical structure on different air masses and different type of advected aerosol.

  9. The feasibility of retrieving vertical temperature profiles from satellite nadir UV observations: A sensitivity analysis and an inversion experiment with neural network algorithms

    NASA Astrophysics Data System (ADS)

    Sellitto, P.; Del Frate, F.

    2014-07-01

    Atmospheric temperature profiles are inferred from passive satellite instruments, using thermal infrared or microwave observations. Here we investigate on the feasibility of the retrieval of height resolved temperature information in the ultraviolet spectral region. The temperature dependence of the absorption cross sections of ozone in the Huggins band, in particular in the interval 320-325 nm, is exploited. We carried out a sensitivity analysis and demonstrated that a non-negligible information on the temperature profile can be extracted from this small band. Starting from these results, we developed a neural network inversion algorithm, trained and tested with simulated nadir EnviSat-SCIAMACHY ultraviolet observations. The algorithm is able to retrieve the temperature profile with root mean square errors and biases comparable to existing retrieval schemes that use thermal infrared or microwave observations. This demonstrates, for the first time, the feasibility of temperature profiles retrieval from space-borne instruments operating in the ultraviolet.

  10. On extreme rainfall intensity increases with air temperature

    NASA Astrophysics Data System (ADS)

    Molnar, Peter; Fatichi, Simone; Paschalis, Athanasios; Gaal, Ladislav; Szolgay, Jan; Burlando, Paolo

    2016-04-01

    The water vapour holding capacity of air increases at about 7% per degree C according to the Clausius-Clapeyron (CC) relation. This is one of the arguments why a warmer future atmosphere, being able to hold more moisture, will generate higher extreme precipitation intensities. However, several empirical studies have recently demonstrated an increase in extreme rain intensities with air temperature above CC rates, in the range 7-14% per degree C worldwide (called super-CC rates). This was observed especially for shorter duration rainfall, i.e. in hourly and finer resolution data (e.g. review in Westra et al., 2014). The super-CC rate was attributed to positive feedbacks between water vapour and the updraft dynamics in convective clouds and lateral supply (convergence) of moisture. In addition, mixing of storm types was shown to be potentially responsible for super-CC rates in empirical studies. Assuming that convective events are accompanied by lightning, we will show on a large rainfall dataset in Switzerland (30 year records of 10-min and 1-hr data from 59 stations) that while the average rate of increase in extreme rainfall intensity (95th percentile) is 6-7% in no-lightning events and 8-9% in lightning events, it is 11-13% per degree C when all events are combined (Molnar et al., 2015). These results are relevant for climate change studies which predict shifts in storm types in a warmer climate in some parts of the world. The observation that extreme rain intensity and air temperature are positively correlated has consequences for the stochastic modelling of rainfall. Most current stochastic models do not explicitly include a direct rain intensity-air temperature dependency beyond applying factors of change predicted by climate models to basic statistics of precipitation. Including this dependency explicitly in stochastic models will allow, for example in the nested modelling approach of Paschalis et al. (2014), the random cascade disaggregation routine to be

  11. Linking geomagnetic activity and polar surface air temperature variability

    NASA Astrophysics Data System (ADS)

    Seppala, Annika

    ERA-40 and ECMWF operational surface level air temperature (SAT) data sets from 1957 to 2006 were used to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the Ap index. Previous modelling work has suggested that NOx produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in polar SATs. We find that during winter months, ERA-40 and ECMWF polar SATs in years with high Ap index are different than in years with low Ap index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, de-pending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings are excluded. Solar irradiance variations were taken into account in the analysis. Although using the re-analysis and operational data sets it was not possible to conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating polar wintertime surface air temperature patterns. The SAT results were tested against variation in the Quasi Biennial Oscillation (QBO), the El Niño Southern Oscillation (ENSO) and the Southern Annular Mode n (SAM). The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode (NAM) and we could not robustly exclude a chance linkage between sea surface temperature (SST) variability and geomagnetic activity. Examining the physical link between geomagnetic activity and polar surface temperature variability patterns using atmospheric models is an ongoing task.

  12. Generation of low-temperature air plasma for food processing

    NASA Astrophysics Data System (ADS)

    Stepanova, Olga; Demidova, Maria; Astafiev, Alexander; Pinchuk, Mikhail; Balkir, Pinar; Turantas, Fulya

    2015-11-01

    The project is aimed at developing a physical and technical foundation of generating plasma with low gas temperature at atmospheric pressure for food industry needs. As known, plasma has an antimicrobial effect on the numerous types of microorganisms, including those that cause food spoilage. In this work an original experimental setup has been developed for the treatment of different foods. It is based on initiating corona or dielectric-barrier discharge in a chamber filled with ambient air in combination with a certain helium admixture. The experimental setup provides various conditions of discharge generation (including discharge gap geometry, supply voltage, velocity of gas flow, content of helium admixture in air and working pressure) and allows for the measurement of the electrical discharge parameters. Some recommendations on choosing optimal conditions of discharge generation for experiments on plasma food processing are developed.

  13. The Trends of Soil Temperature Change Associated with Air Temperature Change in Korea from 1973 to 2012

    NASA Astrophysics Data System (ADS)

    Lee, Bo-Hyun; Park, Byeong-Hak; Koh, Eun-Hee; Lee, Kang-Kun

    2015-04-01

    Examining long-term trends of the soil temperature can contribute to assessing subsurface thermal environment. The recent 40-year (1973-2012) meteorological data from 14 Korea Meteorological Administration (KMA) stations was analyzed in this study to estimate the temporal variations of air and soil temperatures (at depths 0.5 and 1.0m) in Korea and their relations. The information on regional characteristics of study sites was also collected to investigate the local and regional features influencing the soil temperature. The long-term increasing trends of both air and soil temperatures were estimated by using simple linear regression analysis. The air temperature rise and soil temperature rise were compared for every site to reveal the relation between air and soil temperature changes. In most sites, the proportion of soil temperature rise to air temperature rise was nearly one to one except a few sites. The difference between the air and soil temperature trends at those sites may be attributed to the combined effect of soil properties such as thermal diffusivity and soil moisture content. The impact of urbanization on the air and soil temperature was also investigated in this study. Establishment of the relationship between the air and soil temperatures can help predicting the soil temperature change in a region where no soil temperature data is obtained by using air temperature data. For rigorous establishment of the relationship between soil and air temperatures, more thorough investigation on the soil thermal properties is necessary through additional monitoring and accompanied validation of the proposed relations. Keywords : Soil temperature, Air temperature, Cross-correlation analysis, Soil thermal diffusivity, Urbanization effect Acknowledgement This work was supported by the research project of "Advanced Technology for Groundwater Development and Application in Riversides (Geowater+)" in "Water Resources Management Program (code 11 Technology Innovation C05

  14. Land surface skin temperatures from a combined analysis of microwave and infrared satellite observations for an all-weather evaluation of the differences between air and skin temperatures

    NASA Astrophysics Data System (ADS)

    Prigent, Catherine; Aires, Filipe; Rossow, William B.

    2003-05-01

    A neural network inversion scheme including first guess information has been developed to retrieve surface temperature Ts, along with atmospheric water vapor, cloud liquid water, and surface emissivities over land from a combined analysis of Special Sensor Microwave/Imager (SSM/I) and International Satellite Cloud Climatology Project (ISCCP) data. In the absence of routine in situ surface skin measurements, retrieved Ts values are evaluated by comparison to the surface air temperature Tair measured by the meteorological station network. The Ts - Tair difference shows all the expected variations with solar flux, soil characteristics, and cloudiness. During daytime the Ts - Tair difference is driven by the solar insulation, with positive differences that increase with increasing solar flux. With decreasing soil and vegetation moisture the evaporation rate decreases, increasing the sensible heat flux, thus requiring larger Ts - Tair differences. Nighttime Ts - Tair differences are governed by the longwave radiation balance, with Ts usually closer or lower than Tair. The presence of clouds dampens all the difference. After suppression of the variability associated to the diurnal solar flux variations, the Ts and Tair data sets show very good agreement in their synoptic variations, even for cloudy cases, with no bias and a global rms difference of ˜2.9 K. This value is an upper limit of the retrieval rms because it includes errors in the in situ data as well as errors related to imperfect time and space collocations between the satellite and in situ measurements.

  15. Estimating Temperature Retrieval Accuracy Associated With Thermal Band Spatial Resolution Requirements for Center Pivot Irrigation Monitoring and Management

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Irons, James; Spruce, Joseph P.; Underwood, Lauren W.; Pagnutti, Mary

    2006-01-01

    This study explores the use of synthetic thermal center pivot irrigation scenes to estimate temperature retrieval accuracy for thermal remote sensed data, such as data acquired from current and proposed Landsat-like thermal systems. Center pivot irrigation is a common practice in the western United States and in other parts of the world where water resources are scarce. Wide-area ET (evapotranspiration) estimates and reliable water management decisions depend on accurate temperature information retrieval from remotely sensed data. Spatial resolution, sensor noise, and the temperature step between a field and its surrounding area impose limits on the ability to retrieve temperature information. Spatial resolution is an interrelationship between GSD (ground sample distance) and a measure of image sharpness, such as edge response or edge slope. Edge response and edge slope are intuitive, and direct measures of spatial resolution are easier to visualize and estimate than the more common Modulation Transfer Function or Point Spread Function. For these reasons, recent data specifications, such as those for the LDCM (Landsat Data Continuity Mission), have used GSD and edge response to specify spatial resolution. For this study, we have defined a 400-800 m diameter center pivot irrigation area with a large 25 K temperature step associated with a 300 K well-watered field surrounded by an infinite 325 K dry area. In this context, we defined the benchmark problem as an easily modeled, highly common stressing case. By parametrically varying GSD (30-240 m) and edge slope, we determined the number of pixels and field area fraction that meet a given temperature accuracy estimate for 400-m, 600-m, and 800-m diameter field sizes. Results of this project will help assess the utility of proposed specifications for the LDCM and other future thermal remote sensing missions and for water resource management.

  16. Identifying Modes of Temperature Variability Using AIRS Data.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Aumann, H. H.; Yung, Y.

    2007-12-01

    We use the Atmospheric Infrared Sounder (AIRS) and Advance Microwave Sounding Unit (AMSU) data obtained on Aqua spacecraft to study mid-tropospheric temperature variability between 2002-2007. The analysis is focused on daily zonal means of the AIRS channel at 2388 1/cm in the CO2 R-branch and the AMSU channel #5 in the 57 GHz Oxygen band, both with weighting function peaking in the mid-troposphere (400 mb) and the matching sea surface temperature from NCEP (Aumann et al., 2007). Taking into account the nonlinear and non- stationary behavior of the temperature we apply the Empirical Mode Decomposition (Huang et al., 1998) to better separate modes of variability. All-sky (cloudy) and clear sky, day and night data are analyzed. In addition to the dominant annual variation, which is nonlinear and latitude dependent, we identified the modes with higher frequency and inter-annual modes. Some trends are visible and we apply stringent criteria to test their statistical significance. References: Aumann, H. H., D. T. Gregorich, S. E. Broberg, and D. A. Elliott, Geophys. Res. Lett., 34, L15813, doi:10.1029/2006GL029191, 2007. Huang, N. E. Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, Proc. R. Soc. Lond., A 454, 903-995, 1998.

  17. Retrieval of thermospheric atomic oxygen, nitrogen and temperature from the 732 NM emission measured by the ISO on ATLAS 1

    NASA Technical Reports Server (NTRS)

    Fennelly, Judy A.; Torr, Douglas G.; Torr, Marsha R.; Richards, Phillip G.; Yung, Sopo

    1993-01-01

    The Imaging Spectrometric Observatory (ISO) was a part of the ATLAS 1 Mission flown on the shuttle Atlantis from March 24 to April 2, 1992. During limb scanning operations, the ISO measured the O+(2P) ion emission at 732 nm. We have used a numerical inversion technique to retrieve thermospheric atomic oxygen, molecular nitrogen and temperature profiles. These preliminary results indicate a lower thermospheric temperature cooler than that predicted by MSIS for the solar conditions during the mission. Although the densities agree at low altitudes, the reduced scale height produces O and N2 densities 25 percent lower than the MSIS at 300 km.

  18. Recent Spatial and Temporal Anomalies and Trends of OLR as Observed by CERES and Computed Based on AIRS Retrievals

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula; Susskind, Joel; Iredell, Lena

    2010-01-01

    We show that a recent CERES-observed negative trend in OLR of approx.-0.1 W/sq m/yr averaged over the globe, for the time period of September 2002 through February 2010 used in this study, is found in the AIRS OLR data as well. Most importantly, even minute details (down to 1 x 1 Degree GCM-scale resolution) of spatial and temporal anomalies and trends of OLR as observed by CERES and computed based on AIRS-retrieved surface and atmospheric geophysical parameters over this time period are essentially the same. We see this correspondence even in the very large spatial variations of these trends with local values ranging from -2.6 W/sq m/yr to +3.0 W/sq m/yr in the tropics. This essentially perfect agreement of OLR anomalies and even local trends derived from observations by two different instruments, in totally independent and different manners, implies that both sets of results must be highly accurate; and indirectly validates the anomalies and trends of other AIRS derived products as well. These products show that global and regional anomalies and trends of OLR, water vapor and cloud cover over the last 7+ years are strongly influenced by El-Nino-La Nina cycles . We use the anomalies and trends of AIRS derived products to explain why the global OLR has a large negative trend over this time period; Global and tropical OLR began to decrease significantly at the onset of a strong La Nina in mid-2007. AIRS products show that cloudiness and mid-tropospheric water vapor began to increase in the tropics at roughly the same time, especially in the region 5degN - 20degS latitude extending eastward from 150degW to 30degE longitude, with a corresponding very large drop in OLR in this region. Late 2009 is characterized by a strong El-Nino, with a corresponding change in sign of observed tropical water vapor, cloud cover, and OLR anomalies. If one excludes the area 5degN - 20degS, 150degW - 30degE from the statistics, area mean OLR trends over the rest of the globe are

  19. Physical Retrieval of Surface Emissivity Spectrum from Hyperspectral Infrared Radiances

    NASA Technical Reports Server (NTRS)

    Li, Jun; Weisz, Elisabeth; Zhou, Daniel K.

    2007-01-01

    Retrieval of temperature, moisture profiles and surface skin temperature from hyperspectral infrared (IR) radiances requires spectral information about the surface emissivity. Using constant or inaccurate surface emissivities typically results in large retrieval errors, particularly over semi-arid or arid areas where the variation in emissivity spectrum is large both spectrally and spatially. In this study, a physically based algorithm has been developed to retrieve a hyperspectral IR emissivity spectrum simultaneously with the temperature and moisture profiles, as well as the surface skin temperature. To make the solution stable and efficient, the hyperspectral emissivity spectrum is represented by eigenvectors, derived from the laboratory measured hyperspectral emissivity database, in the retrieval process. Experience with AIRS (Atmospheric InfraRed Sounder) radiances shows that a simultaneous retrieval of the emissivity spectrum and the sounding improves the surface skin temperature as well as temperature and moisture profiles, particularly in the near surface layer.

  20. [Error analysis of the land surface temperature retrieval using HJ-1B thermal infrared remote sensing data].

    PubMed

    Zhao, Li-Min; Yu, Tao; Tian, Qing-Jiu; Gu, Xing-Fa; Li, Jia-Guo; Wan, Wei

    2010-12-01

    Error analysis is playing an important role in the application of the remote sensing data and model. A theoretical analysis of error sensitivities in land surface temperature (LST) retrieval using radiance transfer model (RT) is introduced, which was applied to a new thermal infrared remote sensing data of HJ-1B satellite(IRS4). The modification of the RT model with MODTRAN 4 for IRS4 data is mentioned. Error sensitivities of the model are exhibited by analyzing the derivatives of parameters. It is shown that the greater the water vapor content and smaller the emissivity and temperature, the greater the LST retrieval error. The main error origin is from equivalent noise, uncertainty of water vapor content and emissivity, which lead to an error of 0.7, 0.6 and 0.5 K on LST in typical condition, respectively. Hence, a total error of 1 K for LST has been found. It is confirmed that the LST retrieved from HJ-1B data is incredible when application requirement is more than 1K, unless more accurate in situ measurements for atmospheric parameters and emissivity are applied. PMID:21322240

  1. Improved temperature retrieval methods for the validation of a hydrodynamic simulation of a partially frozen power plant cooling lake

    NASA Astrophysics Data System (ADS)

    Casterline, May V.; Salvaggio, Carl; Garrett, Alfred J.; Bartlett, Brent D.; Faulring, Jason W.; Salvaggio, Philip S.

    2010-05-01

    The ALGE code is a hydrodynamic model developed by Savannah River National Laboratory (SRNL) to derive the power output levels of an electric generation facility from observing the associated cooling pond with an aerial imaging platform. Over the past two years work has been completed to extend the capabilities of the model to incorporate snow and ice as possible phenomena in the modeled environment. In order to validate the extension of the model, intensive ground truth data as well as high-resolution aerial infrared imagery were collected during the winters of 2008-2009 and 2009-2010, for a combined eight months of data collection. Due to the harsh and extreme environmental conditions automatic data collection instruments were designed and deployed. Based on experience gained during the first collection season and equipment design failures, overhauls in the design and operation of the automated data collection buoys were performed. In addition, a more thorough and robust twofold calibration technique was implemented within the aerial imaging chain to assess the accuracy of the retrieved surface temperatures. By design, the calibration method employed in this application uses ground collected, geolocated water surface temperatures and in-flight blackbody imagery to produce accurate temperature maps of the pond in interest. A sensitivity analysis was implemented within the data reduction technique to produce accurate sensor reaching temperature values using designed equipment and methods for temperature retrieval at the water's surface.

  2. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  3. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  4. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  5. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  6. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  7. Decadal power in land air temperatures: Is it statistically significant?

    NASA Astrophysics Data System (ADS)

    Thejll, Peter A.

    2001-12-01

    The geographical distribution and properties of the well-known 10-11 year signal in terrestrial temperature records is investigated. By analyzing the Global Historical Climate Network data for surface air temperatures we verify that the signal is strongest in North America and is similar in nature to that reported earlier by R. G. Currie. The decadal signal is statistically significant for individual stations, but it is not possible to show that the signal is statistically significant globally, using strict tests. In North America, during the twentieth century, the decadal variability in the solar activity cycle is associated with the decadal part of the North Atlantic Oscillation index series in such a way that both of these signals correspond to the same spatial pattern of cooling and warming. A method for testing statistical results with Monte Carlo trials on data fields with specified temporal structure and specific spatial correlation retained is presented.

  8. A new approach to quantifying soil temperature responses to changing air temperature and snow cover

    NASA Astrophysics Data System (ADS)

    Mackiewicz, Michael C.

    2012-08-01

    Seasonal snow cover provides an effective insulating barrier, separating shallow soil (0.25 m) from direct localized meteorological conditions. The effectiveness of this barrier is evident in a lag in the soil temperature response to changing air temperature. The causal relationship between air and soil temperatures is largely because of the presence or absence of snow cover, and is frequently characterized using linear regression analysis. However, the magnitude of the dampening effect of snow cover on the temperature response in shallow soils is obscured in linear regressions. In this study the author used multiple linear regression (MLR) with dummy predictor variables to quantify the degree of dampening between air and shallow soil temperatures in the presence and absence of snow cover at four Greenland sites. The dummy variables defining snow cover conditions were z = 0 for the absence of snow and z = 1 for the presence of snow cover. The MLR was reduced to two simple linear equations that were analyzed relative to z = 0 and z = 1 to enable validation of the selected equations. Compared with ordinary linear regression of the datasets, the MLR analysis yielded stronger coefficients of multiple determination and less variation in the estimated regression variables.

  9. Storage and retrieval of THz-bandwidth single photons using a room-temperature diamond quantum memory.

    PubMed

    England, Duncan G; Fisher, Kent A G; MacLean, Jean-Philippe W; Bustard, Philip J; Lausten, Rune; Resch, Kevin J; Sussman, Benjamin J

    2015-02-01

    We report the storage and retrieval of single photons, via a quantum memory, in the optical phonons of a room-temperature bulk diamond. The THz-bandwidth heralded photons are generated by spontaneous parametric down-conversion and mapped to phonons via a Raman transition, stored for a variable delay, and released on demand. The second-order correlation of the memory output is g((2))(0)=0.65±0.07, demonstrating a preservation of nonclassical photon statistics throughout storage and retrieval. The memory is low noise, high speed and broadly tunable; it therefore promises to be a versatile light-matter interface for local quantum processing applications. PMID:25699439

  10. Retrieval of temperature profiles from CHAMP for climate monitoring: intercomparison with Envisat MIPAS and GOMOS and different atmospheric analyses

    NASA Astrophysics Data System (ADS)

    Gobiet, A.; Kirchengast, G.; Manney, G. L.; Borsche, M.; Retscher, C.; Stiller, G.

    2007-07-01

    This study describes and evaluates a Global Navigation Satellite System (GNSS) radio occultation (RO) retrieval scheme particularly aimed at delivering bias-free atmospheric parameters for climate monitoring and research. The focus of the retrieval is on the sensible use of a priori information for careful high-altitude initialisation in order to maximise the usable altitude range. The RO retrieval scheme has been meanwhile applied to more than five years of data (September 2001 to present) from the German CHAllenging Minisatellite Payload for geoscientific research (CHAMP) satellite. In this study it was validated against various correlative datasets including the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and the Global Ozone Monitoring for Occultation of Stars (GOMOS) sensors on Envisat, five different atmospheric analyses, and the operational CHAMP retrieval product from GeoForschungsZentrum (GFZ) Potsdam. In the global mean within 10 to 30 km altitude we find that the present validation observationally constrains the potential RO temperature bias to be <0.2 K. Latitudinally resolved analyses show biases to be observationally constrained to <0.2-0.5 K up to 35 km in most cases, and up to 30 km in any case, even if severely biased (about 10 K or more) a priori information is used in the high altitude initialisation of the retrieval. No evidence is found for the 10-35 km altitude range of residual RO bias sources other than those potentially propagated downward from initialisation, indicating that the widely quoted RO promise of "unbiasedness and long-term stability due to intrinsic self-calibration" can indeed be realised given care in the data processing to strictly limit structural uncertainty. The results thus reinforce that adequate high-altitude initialisation is crucial for accurate stratospheric RO retrievals. The common method of initialising, at some altitude in the upper stratosphere, the hydrostatic integral with an upper

  11. Change point analysis of mean annual air temperature in Iran

    NASA Astrophysics Data System (ADS)

    Shirvani, A.

    2015-06-01

    The existence of change point in the mean of air temperature is an important indicator of climate change. In this study, Student's t parametric and Mann-Whitney nonparametric Change Point Models (CPMs) were applied to test whether a change point has occurred in the mean of annual Air Temperature Anomalies Time Series (ATATS) of 27 synoptic stations in different regions of Iran for the period 1956-2010. The Likelihood Ratio Test (LRT) was also applied to evaluate the detected change points. The ATATS of all stations except Bandar Anzali and Gorgan stations, which were serially correlated, were transformed to produce an uncorrelated pre-whitened time series as an input file for the CPMs and LRT. Both the Student's t and Mann-Whitney CPMs detected the change point in the ATATS of (a) Tehran Mehrabad, Abadan, Kermanshah, Khoramabad and Yazd in 1992, (b) Mashhad and Tabriz in 1993, (c) Bandar Anzali, Babolsar and Ramsar in 1994, (d) Kerman and Zahedan in 1996 at 5% significance level. The likelihood ratio test shows that the ATATS before and after detected change points in these 12 stations are normally distributed with different means. The Student's t and Mann-Whitney CPMs suggested different change points for individual stations in Bushehr, Bam, Shahroud, and Gorgan. However, the LRT confirmed the change points in these four stations as 1997, 1996, 1993, and 1996, respectively. No change points were detected in the remaining 11 stations.

  12. Retrieval of Sea Surface Temperature Over Poteran Island Water of Indonesia with Landsat 8 Tirs Image: a Preliminary Algorithm

    NASA Astrophysics Data System (ADS)

    Syariz, M. A.; Jaelani, L. M.; Subehi, L.; Pamungkas, A.; Koenhardono, E. S.; Sulisetyono, A.

    2015-10-01

    The Sea Surface Temperature (SST) retrieval from satellites data Thus, it could provide SST data for a long time. Since, the algorithms of SST estimation by using Landsat 8 Thermal Band are sitedependence, we need to develop an applicable algorithm in Indonesian water. The aim of this research was to develop SST algorithms in the North Java Island Water. The data used are in-situ data measured on April 22, 2015 and also estimated brightness temperature data from Landsat 8 Thermal Band Image (band 10 and band 11). The algorithm was established using 45 data by assessing the relation of measured in-situ data and estimated brightness temperature. Then, the algorithm was validated by using another 40 points. The results showed that the good performance of the sea surface temperature algorithm with coefficient of determination (R2) and Root Mean Square Error (RMSE) of 0.912 and 0.028, respectively.

  13. Effect of Ambient Design Temperature on Air-Cooled Binary Plant Output

    SciTech Connect

    Dan Wendt; Greg Mines

    2011-10-01

    Air-cooled binary plants are designed to provide a specified level of power production at a particular air temperature. Nominally this air temperature is the annual mean or average air temperature for the plant location. This study investigates the effect that changing the design air temperature has on power generation for an air-cooled binary plant producing power from a resource with a declining production fluid temperature and fluctuating ambient temperatures. This analysis was performed for plants operating both with and without a geothermal fluid outlet temperature limit. Aspen Plus process simulation software was used to develop optimal air-cooled binary plant designs for specific ambient temperatures as well as to rate the performance of the plant designs at off-design operating conditions. Results include calculation of annual and plant lifetime power generation as well as evaluation of plant operating characteristics, such as improved power generation capabilities during summer months when electric power prices are at peak levels.

  14. Assessing surface air temperature variability using quantile regression

    NASA Astrophysics Data System (ADS)

    Timofeev, A. A.; Sterin, A. M.

    2014-12-01

    Many researches in climate change currently involve linear trends, based on measured variables. And many of them only consider trends in mean values, whereas it is clear, that not only means, but also whole shape of distribution changes over time and requires careful assessment. For example extreme values including outliers may get bigger, while median has zero slope.Quantile regression provides a convenient tool, that enables detailed analysis of changes in full range of distribution by producing a vector of quantile trends for any given set of quantiles.We have applied quantile regression to surface air temperature observations made at over 600 weather stations across Russian Federation during last four decades. The results demonstrate well pronounced regions with similar values of significant trends in different parts of temperature value distribution (left tail, middle part, right tail). The uncertainties of quantile trend estimations for several spatial patterns of trends over Russia are estimated and analyzed for each of four seasons.For temperature trend estimation over vast territories, quantile regression is an effort consuming approach, but is more informative than traditional instrument, to assess decadal evolution of temperature values, including evolution of extremes.Partial support of ERA NET RUS ACPCA joint project between EU and RBRF 12-05-91656-ЭРА-А is highly appreciated.

  15. Land Surface Temperature Retrieval Through the Synthesis of Hyperspectral and Multispectral Data from the HyspIRI Preparatory Flight Campaign

    NASA Astrophysics Data System (ADS)

    Scheele, C. J.; Rill, L.; Grigsby, S.; Ustin, S.

    2013-12-01

    Land surface temperature (LST) is an important parameter in climatological and ecological studies. Many ecological processes, such as evapotranspiration have impacts at temperature gradients less than 1K, however the current error in LST is greater than 1K. Improved accuracy in LST measurements is one goal of the Hyperspectral Infrared Imager (HyspIRI) mission through the synthesis of VSWIR and TIR spectrometers. To demonstrate the capabilities of sensor fusion, HyspIRI Preparatory Flight Campaign data acquired MODIS/ASTER Simulator (MASTER) and AVIRIS instruments flown concurrently. By combining measurements from both instruments we assessed the accuracy of LST retrieval. Data collected from the Sierra Nevada Mountains, CA on May 3, 2013 was processed using both the ATCOR and ACORN radiative transfer models to collect water vapor concentration per pixel in the visible to shortwave-infrared (VSWIR) water absorption bands. The MODTRAN radiative transfer model was run for varying water vapor amounts in the TIR to generate an atmospheric correction lookup table. This lookup table enabled each pixel in the TIR to be corrected based on the VSWIR AVIRIS water vapor retrieval. A temperature and emissivity separation algorithm, developed in Gillespie et al. (1998), was used to calculate the emissivity of each pixel. The temperatures derived from different water vapor maps provide a means to analyze the results. This serves as a preview of the power of sensor synthesis for LST acquisition in preparation for HyspIRI.

  16. Usefulness of AIRS-Derived OLR, Temperature, Water Vapor and Cloudiness Anomaly Trends for GCM Validation

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula I.; Susskind, Joel; Iredell, Lena F.

    2010-01-01

    Mainly due to their global nature, satellite observations can provide a very useful basis for GCM validations. In particular, satellite sounders such as AIRS provide 3-D spatial information (most useful for GCMs), so the question arises: can we use AIRS datasets for climate variability assessments? We show that the recent (September 2002 February 2010) CERES-observed negative trend in OLR of approx.-0.1 W/sq m/yr averaged over the globe is found in the AIRS OLR data as well. Most importantly, even minute details (down to 1 x 1 degree GCM-scale resolution) of spatial and temporal anomalies and trends of OLR as observed by CERES and computed based on AIRS-retrieved surface and atmospheric geophysical parameters over this time period are essentially the same. The correspondence can be seen even in the very large spatial variations of these trends with local values ranging from -2.6 W/sq m/yr to +3.0 W/sq m/yr in the tropics, for example. This essentially perfect agreement of OLR anomalies and trends derived from observations by two different instruments, in totally independent and different manners, implies that both sets of results must be highly accurate, and indirectly validates the anomalies and trends of other AIRS derived products as well. These products show that global and regional anomalies and trends of OLR, water vapor and cloud cover over the last 7+ years are strongly influenced by EI-Nino-La Nina cycles . We have created climate parameter anomaly datasets using AIRS retrievals which can be compared directly with coupled GCM climate variability assessments. Moreover, interrelationships of these anomalies and trends should also be similar between the observed and GCM-generated datasets, and, in cases of discrepancies, GCM parameterizations could be improved based on the relationships observed in the data. First, we assess spatial "trends" of variability of climatic parameter anomalies [since anomalies relative to the seasonal cycle are good proxies of

  17. Roughness parameter optimization using Land Parameter Retrieval Model and Soil Moisture Deficit: Implementation using SMOS brightness temperatures

    NASA Astrophysics Data System (ADS)

    Srivastava, Prashant K.; O'Neill, Peggy; Han, Dawei; Rico-Ramirez, Miguel A.; Petropoulos, George P.; Islam, Tanvir; Gupta, Manika

    2015-04-01

    Roughness parameterization is necessary for nearly all soil moisture retrieval algorithms such as single or dual channel algorithms, L-band Microwave Emission of Biosphere (LMEB), Land Parameter Retrieval Model (LPRM), etc. At present, roughness parameters can be obtained either by field experiments, although obtaining field measurements all over the globe is nearly impossible, or by using a land cover-based look up table, which is not always accurate everywhere for individual fields. From a catalogue of models available in the technical literature domain, the LPRM model was used here because of its robust nature and applicability to a wide range of frequencies. LPRM needs several parameters for soil moisture retrieval -- in particular, roughness parameters (h and Q) are important for calculating reflectivity. In this study, the h and Q parameters are optimized using the soil moisture deficit (SMD) estimated from the probability distributed model (PDM) and Soil Moisture and Ocean Salinity (SMOS) brightness temperatures following the Levenberg-Marquardt (LM) algorithm over the Brue catchment, Southwest of England, U.K.. The catchment is predominantly a pasture land with moderate topography. The PDM-based SMD is used as it is calibrated and validated using locally available ground-based information, suitable for large scale areas such as catchments. The optimal h and Q parameters are determined by maximizing the correlation between SMD and LPRM retrieved soil moisture. After optimization the values of h and Q have been found to be 0.32 and 0.15, respectively. For testing the usefulness of the estimated roughness parameters, a separate set of SMOS datasets are taken into account for soil moisture retrieval using the LPRM model and optimized roughness parameters. The overall analysis indicates a satisfactory result when compared against the SMD information. This work provides quantitative values of roughness parameters suitable for large scale applications. The

  18. Building a Learning Database for the Neural Network Retrieval of Sea Surface Salinity from SMOS Brightness Temperatures

    NASA Astrophysics Data System (ADS)

    Ammar, A.; Labroue, S.; Obligis, E.; Thiria, S.; Crépon, M.

    2009-04-01

    Using neural networks to retrieve the sea surface salinity from the observed Soil Moisture and Ocean Salinity (SMOS) brightness temperatures (TBs) is an empirical approach that offers the possibility of being independent from any theoretical emissivity model, during the in-flight phase. A Previous study has proven that this approach is applicable to all pixels over ocean, by designing a set of neural networks with different inputs. The present study exposes a strategy to build the learning database to be used for the retrieval, and demonstrates that a judicious distribution of the geophysical parameters allows to markedly reduce the systematic regional biases of the retrieved SSS, which are due to the high noise on the TBs. An equalization of the distribution of the geophysical parameters, followed by a new technique for boosting the learning process, makes the regional biases almost disappear for latitudes between 40°S and 40°N, while the global standard deviation remains between 0.6 psu (at the center of the swath) and 1 psu (at the edges). Besides, we show that the size of the learning database is not as critical as the choice of the distribution of geophysical parameters.

  19. Cyclic Oxidation of High-Temperature Alloy Wires in Air

    NASA Technical Reports Server (NTRS)

    Reigel, Marissa M.

    2004-01-01

    High-temperature alloy wires are proposed for use in seal applications for future re-useable space vehicles. These alloys offer the potential for improved wear resistance of the seals. The wires must withstand the high temperature environments the seals are subjected to as well as maintain their oxidation resistance during the heating and cooling cycles of vehicle re-entry. To model this, the wires were subjected to cyclic oxidation in stagnant air. of this layer formation is dependent on temperature. Slow growing oxides such as chromia and alumina are desirable. Once the oxide is formed it can prevent the metal from further reacting with its environment. Cyclic oxidation models the changes in temperature these wires will undergo in application. Cycling the temperature introduces thermal stresses which can cause the oxide layer to break off. Re-growth of the oxide layer consumes more metal and therefore reduces the properties and durability of the material. were used for cyclic oxidation testing. The baseline material, Haynes 188, has a Co base and is a chromia former while the other two alloys, Kanthal A1 and PM2000, both have a Fe base and are alumina formers. Haynes 188 and Kanthal A1 wires are 250 pm in diameter and PM2000 wires are 150 pm in diameter. The coiled wire has a total surface area of 3 to 5 sq cm. The wires were oxidized for 11 cycles at 1204 C, each cycle containing a 1 hour heating time and a minimum 20 minute cooling time. Weights were taken between cycles. After 11 cycles, one wire of each composition was removed for analysis. The other wire continued testing for 70 cycles. Post-test analysis includes X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) for phase identification and morphology.

  20. Study of Ram-air Heat Exchangers for Reducing Turbine Cooling-air Temperature of a Supersonic Aircraft Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Diaguila, Anthony J; Livingood, John N B; Eckert, Ernst R G

    1956-01-01

    The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude of 70,000 feet. A compressor-bleed-air weight flow of 2.7 pounds per second was assumed for the coolant; ram air was considered as the other fluid. Pressure drops and inlet states of both fluids were prescribed, and ranges of compressor-bleed-air temperature reductions and of the ratio of compressor-bleed to ram-air weight flows were considered.

  1. Daily Cycle of Air Temperature and Surface Temperature in Stone Forest

    NASA Astrophysics Data System (ADS)

    Wang, K.; Li, Y.; Wang, X.; Yuan, M.

    2013-12-01

    Urbanization is one of the most profound human activities that impact on climate change. In cities, where are highly artificial areas, the conflict between human activity and natural climate is particularly prominent. Urban areas always have the larger area of impervious land, the higher consumption of greenhouse gases, more emissions of anthropogenic heat and air pollution, all contribute to the urban warming phenomena. Understanding the mechanisms causing a variety of phenomena involved in the urban warming is critical to distinguish the anthropogenic effect and natural variation in the climate change. However, the exact dynamics of urban warming were poorly understood, and effective control strategies are not available. Here we present a study of the daily cycle of air temperature and surface temperature in Stone Forest. The specific heat of the stones in the Stone Forest and concrete of the man-made structures within the cities are approximate. Besides, the height of the Stone Forest and the height of buildings within the city are also similar. As a scenic area, the Stone Forest is being preserved and only opened for sightseeing. There is no anthropogenic heat, as well air pollution within the Stone Forest. The thermal environment in Stone Forest can be considered to be a simulation of thermal environment in the city, which can reveal the effect of man-made structures on urban thermal environment. We conducted the field studies and numerical analysis in the Stone Forest for 4 typical urban morphology and environment scenarios, including high-rise compact cities, low-rise sparse cities, garden cities and isolated single stone. Air temperature and relative humidity were measured every half an hour in 15 different locations, which within different spatial distribution of stones and can represent the four urban scenarios respectively. At the same time, an infrared camera was used to take thermal images and get the hourly surface temperatures of stones and

  2. Impacts of wind farms on surface air temperatures

    PubMed Central

    Baidya Roy, Somnath; Traiteur, Justin J.

    2010-01-01

    Utility-scale large wind farms are rapidly growing in size and numbers all over the world. Data from a meteorological field campaign show that such wind farms can significantly affect near-surface air temperatures. These effects result from enhanced vertical mixing due to turbulence generated by wind turbine rotors. The impacts of wind farms on local weather can be minimized by changing rotor design or by siting wind farms in regions with high natural turbulence. Using a 25-y-long climate dataset, we identified such regions in the world. Many of these regions, such as the Midwest and Great Plains in the United States, are also rich in wind resources, making them ideal candidates for low-impact wind farms. PMID:20921371

  3. Subseasonal variability of North American wintertime surface air temperature

    NASA Astrophysics Data System (ADS)

    Lin, Hai

    2015-09-01

    Using observational pentad data of the recent 34 Northern Hemisphere extended winters, subseasonal variability of surface air temperature (SAT) over North America is analyzed. The four leading modes of subseasonal SAT variability, that are identified with an empirical orthogonal function (EOF) analysis, account for about 60% of the total variance. The first (EOF1) and second (EOF2) modes are independent of other modes, and thus are likely controlled by distinct processes. The third (EOF3) and fourth (EOF4) modes, however, tend to have a phase shift to each other in space and time, indicating that part of their variability is related to a common process and represent a propagating pattern over North America. Lagged regression analysis is conducted to identify the precursors of large-scale atmospheric circulation for each mode a few pentads in advance, and to understand the processes that influence the subseasonal SAT variability and the predictability signal sources. EOF1 is found to be closely related to the Pacific-North American (PNA) circulation pattern and at least part of its variability is preceded by the East Asian cold surge. The cold surge leads to low-level convergence and enhanced convection in the tropical central Pacific which in turn induces the PNA. EOF2 tends to oscillate at a period of about 70 days, and is influenced by the low-frequency component of the Madden-Julian Oscillation (MJO). On the other hand, EOF3 and EOF4 are connected to the high-frequency part of the MJO which has a period range of 30-50 days. These findings would help understanding the mechanisms of subseasonal surface air temperature variability in North America and improving weather predictions on a subseasonal time scale.

  4. Effect of production microclimate on female thermal state with increased temperature and air humidity

    NASA Technical Reports Server (NTRS)

    Machablishvili, O. G.

    1980-01-01

    The thermal state of women during the effect of high air temperature and relative humidity with a varying degree of physical loads was studied. Parameters for air temperature, relative humidity, and air movement were established. It was established that in women the thermo-regulatory stress occurs at lower air temperatures and with lower physical loads than in men. The accumulation of heat in women was revealed with lower air temperature than in men. It is concluded that to preserve the normal physiological state of the female organism it is necessary to create more favorable microclimate conditions and decrease the physical loads.

  5. [Multi-layer perceptron neural network based algorithm for simultaneous retrieving temperature and emissivity from hyperspectral FTIR data].

    PubMed

    Cheng, Jie; Xiao, Qing; Li, Xiao-Wen; Liu, Qin-Huo; Du, Yong-Ming

    2008-04-01

    The present paper firstly points out the defect of typical temperature and emissivity separation algorithms when dealing with hyperspectral FTIR data: the conventional temperature and emissivity algorithms can not reproduce correct emissivity value when the difference between the ground-leaving radiance and object's blackbody radiation at its true temperature and the instrument random noise are on the same order, and this phenomenon is very prone to occur rence near 714 and 1 250 cm(-1) in the field measurements. In order to settle this defect, a three-layer perceptron neural network has been introduced into the simultaneous inversion of temperature and emissivity from hyperspectral FTIR data. The soil emissivity spectra from the ASTER spectral library were used to produce the training data, the soil emissivity spectra from the MODIS spectral library were used to produce the test data, and the result of network test shows the MLP is robust. Meanwhile, the ISSTES algorithm was used to retrieve the temperature and emissivity form the test data. By comparing the results of MLP and ISSTES, we found the MLP can overcome the disadvantage of typical temperature and emisivity separation, although the rmse of derived emissivity using MLP is lower than the ISSTES as a whole. Hence, the MLP can be regarded as a beneficial complementarity of the typical temperature and emissivity separation. PMID:18619297

  6. Estimating Air Temperature over the Tibetan Plateau Using MODIS Data

    NASA Astrophysics Data System (ADS)

    Huang, Fangfang; Ma, Weiqiang; Ma, Yaoming; Li, Maoshan; Hu, Zeyong

    2016-04-01

    Time series of MODIS land surface temperature (LST) data and normalized difference vegetation index (NDVI) data, combined with digital elevation model (DEM) and meterological data for 2001-2012, were used to estimate and map the spatial distribution of monthly mean air temperature over the Tibatan Plateau (TP). Time series and regression analysis of monthly mean land surface temperature (Ts) and air temperature (Ta) were both conducted by ordinary liner regression (OLR) and geographical weighted regression (GWR) methods. Analysis showed that GWR method had much better result (Adjusted R2 > 0.79, root mean square error (RMSE) is between 0.51° C and 1.12° C) for estimating Ta than OLR method. The GWR model, with MODIS LST, NDVI and altitude as independent variables, was used to estimate Ta over the Tibetan Plateau. All GWR models in each month were tested by F-test with significant level of α=0.01 and the regression coefficients were all tested by T-test with significant level of α=0.01. This illustrated that Ts, NDVI and altitude play an important role on estimating Ta over the Tibetan Plateau. Finally, the major conclusions are as follows: (1) GWR method has higher accuracy for estimating Ta than OLR (Adjusted R2=0.40˜0.78, RMSE=1.60˜4.38° C), and the Ta control precision can be up to 1.12° C. (2) Over the Northern TP, the range of Ta variation in January is -29.28 ˜ -5.0° C, and that in July is -0.53 ˜ 14.0° C. Ta in summer half year (from May to October) is between -15.92 ˜ 14.0° C. From October on, 0° C isothermal level is gradually declining from the altitude of 4˜5 kilometers, and hits the bottom with altitude of 3200 meters in December, and Ta is all under 0° C in January. 10° C isothermal level gradually starts rising from the altitude of 3200 meters from May, and reaches the highest level with altitude of 4˜5 kilometers in July. In addition, Ta in south slope of the Tanggula Mountains is obviously higher than that in the north slope. Ta

  7. Topographic and spatial impacts of temperature inversions on air quality using mobile air pollution surveys.

    PubMed

    Wallace, Julie; Corr, Denis; Kanaroglou, Pavlos

    2010-10-01

    We investigated the spatial and topographic effects of temperature inversions on air quality in the industrial city of Hamilton, located at the western tip of Lake Ontario, Canada. The city is divided by a 90-m high topographic scarp, the Niagara Escarpment, and dissected by valleys which open towards Lake Ontario. Temperature inversions occur frequently in the cooler seasons, exacerbating the impact of emissions from industry and traffic. This study used pollution data gathered from mobile monitoring surveys conducted over a 3-year period, to investigate whether the effects of the inversions varied across the city. Temperature inversions were identified with vertical temperature data from a meteorological tower located within the study area. We divided the study area into an upper and lower zone separated by the Escarpment and further into six zones, based on location with respect to the Escarpment and industrial and residential areas, to explore variations across the city. The results identified clear differences in the responses of nitrogen dioxide (NO(2)) and fine particulate matter (PM2.5) to temperature inversions, based on the topographic and spatial criteria. We found that pollution levels increased as the inversion strengthened, in the lower city. However, the results also suggested that temperature inversions identified in the lower city were not necessarily experienced in the upper city with the same intensity. Further, pollution levels in the upper city appeared to decrease as the inversion deepened in the lower city, probably because of an associated change in prevailing wind direction and lower wind speeds, leading to decreased long-range transport of pollutants. PMID:20705328

  8. Space-based retrievals of air-sea gas transfer velocities using altimeters: Calibration for dimethyl sulfide

    NASA Astrophysics Data System (ADS)

    Goddijn-Murphy, Lonneke; Woolf, David K.; Marandino, Christa

    2012-08-01

    This study is the first to directly correlate gas transfer velocity, measured at sea using the eddy-correlation (EC) technique, and satellite altimeter backscattering. During eight research cruises in different parts of the world, gas transfer velocity of dimethyl sulfide (DMS) was measured. The sample times and locations were compared with overpass times and locations of remote sensing satellites carrying Ku-band altimeters: ERS-1, ERS-2, TOPEX, POSEIDON, GEOSAT Follow-On, JASON-1, JASON-2 and ENVISAT. The result was 179 pairs of gas transfer velocity measurements and backscattering coefficients. An inter-calibration of the different altimeters significantly reduced data scatter. The inter-calibrated data was best fitted to a quadratic relation between the inverse of the backscattering coefficients and the gas transfer velocity measurements. A gas transfer parameterization based on backscattering, corresponding with sea surface roughness, might be expected to perform better than wind speed-based parameterizations. Our results, however, did not show improvement compared to direct correlation of shipboard wind speeds. The relationship of gas transfer velocity to satellite-derived backscatter, or wind speed, is useful to provide retrieval algorithms. Gas transfer velocity (cm/hr), corrected to a Schmidt number of 660, is proportional to wind speed (m/s). The measured gas transfer velocity is controlled by both the individual water-side and air-side gas transfer velocities. We calculated the latter using a numerical scheme, to derive water-side gas transfer velocity. DMS is sufficiently soluble to neglect bubble-mediated gas transfer, thus, the DMS transfer velocities could be applied to estimate water-side gas transfer velocities through the unbroken surface of any other gas.

  9. a Simple and Effective Retrieval of Land Surface Temperature Using a New Reflectance Based Emissivity Estimation Technique

    NASA Astrophysics Data System (ADS)

    Nithiyanandam, Y.; Nichol, J. E.

    2016-06-01

    Emissivity is a significant factor in determining land surface temperature (LST) retrieved from the thermal infrared (TIR) satellite images. A new simplified method (reflectance method) for emissivity correction was developed in this study while estimating emissivity values at a spatial resolution of 30 m from the radiance values of the SWIR image. This in turn enables mapping surface temperatures at a much finer spatial resolution (30 m). Temperatures so estimated are validated against surface temperatures measured in the ground by thermocouple data loggers recorded during satellite overpass time. In this study, surface emissivity values are derived directly from the AST_ L1B images. The reflectance method estimates temperature at higher spatial resolution of 30 m when compared to the 90 m spatial resolution of TES and reference channel methods. Temperature determined for the daytime image of 30th November 2007 using different emissivity techniques was compared with the temperatures measured on the field using thermocouple data loggers. It is observed that the estimates from the reflectance method are much closer to the field measurements than the TES and reference channel methods. The temperature difference values range from 0.2 to 2.3 °C, 0.15 to 5.6 °C, and 2.6 to 8.6 °C for the reflectance method, normalization method and reference channel method, respectively. The new reflectance emissivity techniques i.e. reflectance method exhibits the least deviation from the field measured temperature values. While considering the accuracy of data logger (1 °C) the reflectance method enables one to map surface temperature precisely than other two methods.

  10. Measurements of the CO_2 15 μm Band System Broadened by Air, N_2 and CO_2 at Terrestrial Atmospheric Temperatures

    NASA Astrophysics Data System (ADS)

    Smith, M. A. H.; Devi, V. Malathy; Benner, D. Chris; Blake, T. A.; Sams, R. L.

    2009-06-01

    In earth remote sensing, retrievals of atmospheric temperature profiles are often based on observed radiances in infrared spectral regions where emission from atmospheric CO_2 predominates. To achieve improved retrieval accuracy, systematic errors in the forward model must be reduced, especially those associated with errors in the spectroscopic line calculation. We have recorded more than 110 new high-resolution infrared spectra of the 15-μm band system of CO_2 to accurately determine line intensities, self-, air- and N_2-broadened widths and pressure-induced line shifts, along with their temperature dependences. The spectra were recorded with the Bruker IFS 120 HR Fourier transform spectrometer at Pacific Northwest National Laboratory (PNNL) and temperature-controlled sample cells. Sample temperatures were between 206K and 298K. Maximum total pressures were 15 Torr for self-broadening and 613 Torr for air- and N_2-broadening. Analysis is done using a multispectrum fitting technique to retrieve the spectroscopic parameters. Line mixing and other non-Lorentz, non-Voigt line shapes are also assessed. The resulting line parameters are compared with the HITRAN database and with other measurements. D. Chris Benner, C.P. Rinsland, V. Malathy Devi, M.A.H. Smith, and D. Atkins, J. Quant. Spectrosc. Radiat. Transfer 53, 705-721 (1995) L.S. Rothman et al., J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005) L.S. Rothman et al., J. Quant. Spectrosc. Radiat. Transfer, in press (2009)

  11. Assimilation of humidity and temperature observations retrieved from ground-based microwave radiometers into a convective-scale NWP model

    NASA Astrophysics Data System (ADS)

    Caumont, Olivier; Vincendon, Béatrice; Cimini, Domenico; Löhnert, Ulrich; Alados-Arboledas, Lucas; Bleisch, René; Buffa, Franco; Enrico Ferrario, Massimo; Haefele, Alexander; Huet, Thierry; Madonna, Fabio; Pace, Giandomenico

    2016-04-01

    Temperature and humidity retrievals from an international network of ground-based microwave radiometers (MWR) have been collected to assess the potential of their assimilation into a convective-scale Numerical Weather Prediction (NWP) system. Thirteen stations over a domain encompassing the western Mediterranean basin were considered for a time period of forty-one days in autumn, when heavy-precipitation events most often plague this area. Prior to their assimilation, MWR data were compared to very-short-term forecasts. Observation-minus-background statistics revealed some biases, but standard deviations were comparable to that obtained with radiosondes. The MWR data were then assimilated in a three-dimensional variational (3DVar) data assimilation system through the use of a rapid update cycle. A set of sensitivity experiments allowed assessing extensively the impact of the assimilation of temperature and humidity profiles, both separately and jointly. The respective benefit of MWR data and radiosonde data on analyses and forecasts was also investigated.

  12. Implementation of Cloud Retrievals for Tropospheric Emission Spectrometer (TES) Atmospheric Retrievals: Part 1. Description and Characterization of Errors on Trace Gas Retrievals

    NASA Technical Reports Server (NTRS)

    Kulawik, Susan S.; Worden, John; Eldering, Annmarie; Bowman, Kevin; Gunson, Michael; Osterman, Gregory B.; Zhang, Lin; Clough, Shepard A.; Shephard, Mark W.; Beer, Reinhard

    2006-01-01

    We develop an approach to estimate and characterize trace gas retrievals in the presence of clouds in high spectral measurements of upwelling radiance in the infrared spectral region (650-2260/cm). The radiance contribution of clouds is parameterized in terms of a set of frequency-dependent nonscattering optical depths and a cloud height. These cloud parameters are retrieved jointly with surface temperature, emissivity, atmospheric temperature, and trace gases such as ozone from spectral data. We demonstrate the application of this approach using data from the Tropospheric Emission Spectrometer (TES) and test data simulated with a scattering radiative transfer model. We show the value of this approach in that it results in accurate estimates of errors for trace gas retrievals, and the retrieved values improve over the initial guess for a wide range of cloud conditions. Comparisons are made between TES retrievals of ozone, temperature, and water to model fields from the Global Modeling and Assimilation Office (GMAO), temperature retrievals from the Atmospheric Infrared Sounder (AIRS), tropospheric ozone columns from the Goddard Earth Observing System (GEOS) GEOS-Chem, and ozone retrievals from the Total Ozone Mapping Spectrometer (TOMS). In each of these cases, this cloud retrieval approach does not introduce observable biases into TES retrievals.

  13. Combustion and gasification characteristics of pulverized coal using high-temperature air

    SciTech Connect

    Hanaoka, R.; Nakamura, M.; Kiga, T.; Kosaka, H.; Iwahashi, T.; Yoshikawa, K.; Sakai, M.; Muramatsu, K.; Mochida, S.

    1998-07-01

    In order to confirm performance of high-temperature-air combusting of pulverized coal, laboratory-scale combustion and gasification tests of coal were conducted changing air temperature and oxygen concentration in the air. Theses were conducted in a drop tube furnace of 200mm in inside diameter and 2,000mm in length. The furnace was heated by ceramic heater up to 1,300 C. A high-temperature air preheater utilizing the HRS (High Cycle Regenerative Combustion System) was used to obtain high-temperature combustion air. As the results, NOx emission was reduced when pulverized coal was fired with high-temperature-air. On the other hand, by lower oxygen concentration in combustion air diluted by nitrogen, NOx emission slightly decreased while became higher under staging condition.

  14. How the Plant Temperature Links to the Air Temperature in the Desert Plant Artemisia ordosica

    PubMed Central

    Yu, Ming-Han; Ding, Guo-Dong; Gao, Guang-Lei; Sun, Bao-Ping; Zhao, Yuan-Yuan; Wan, Li; Wang, De-Ying; Gui, Zi-Yang

    2015-01-01

    Plant temperature (Tp) is an important indicator of plant health. To determine the dynamics of plant temperature and self-cooling ability of the plant, we measured Tp in Artemisia ordosica in July, in the Mu Us Desert of Northwest China. Related factors were also monitored to investigate their effects on Tp, including environmental factors, such as air temperature (Ta), relative humidity, wind speed; and physiological factors, such as leaf water potential, sap flow, and water content. The results indicate that: 1) Tp generally changes in conjunction with Ta mainly, and varies with height and among the plant organs. Tp in the young branches is most constant, while it is the most sensitive in the leaves. 2) Correlations between Tp and environmental factors show that Tp is affected mainly by Ta. 3) The self-cooling ability of the plant was effective by midday, with Tp being lower than Ta. 4) Increasing sap flow and leaf water potential showed that transpiration formed part of the mechanism that supported self-cooling. Increased in water conductance and specific heat at midday may be additional factors that contribute to plant cooling ability. Therefore, our results confirmed plant self-cooling ability. The response to high temperatures is regulated by both transpiration speed and an increase in stem water conductance. This study provides quantitative data for plant management in terms of temperature control. Moreover, our findings will assist species selection with taking plant temperature as an index. PMID:26280557

  15. Environmentally sound thermal energy extraction from coal and wastes using high temperature air combustion technology

    SciTech Connect

    Yoshikawa, Kunio

    1999-07-01

    High temperature air combustion is one of promising ways of burning relatively low BTU gas obtained from gasification of low grade coal or wastes. In this report, the author proposes a new power generation system coupled with high temperature air gasification of coal/wastes and high temperature air combustion of the syngas from coal/wastes. This system is realized by employing Multi-staged Enthalpy Extraction Technology (MEET). The basic idea of the MEET system is that coal or wastes are gasified with high temperature air of about 1,000 C, then the generated syngas is cooled in a heat recovery boiler to be cleaned-up in a gas cleanup system (desulfurization, desalinization and dust removal). Part of thermal energy contained in this cleaned-up syngas is used for high temperature air preheating, and the complete combustion of the fuel gas is done using also high temperature air for driving gas turbines or steam generation in a boiler.

  16. Analysis of spanwise temperature distribution in three types of air-cooled turbine blade

    NASA Technical Reports Server (NTRS)

    Livingood, John N B; Brown, W Byron

    1950-01-01

    Methods for computing spanwise blade-temperature distributions are derived for air-cooled hollow blades, air-cooled hollow blades with inserts, and air-cooled blades containing internal cooling fins. Individual and combined effects on spanwise blade-temperature distributions of cooling-air and radial heat conduction are determined. In general, the effects of radiation and radial heat conduction were found to be small and the omission of these variations permitted the construction of nondimensional charts for use in determining spanwise temperature distribution through air-cooled turbine blades. An approximate method for determining the allowable stress-limited blade-temperature distribution is included, with brief accounts of a method for determining the maximum allowable effective gas temperatures and the cooling-air requirements. Numerical examples that illustrate the use of the various temperature-distribution equations and of the nondimensional charts are also included.

  17. Temporal and spatial assessments of minimum air temperature using satellite surface temperature measurements in Massachusetts, USA

    PubMed Central

    Kloog, Itai; Chudnovsky, Alexandra; Koutrakis, Petros; Schwartz, Joel

    2015-01-01

    Although meteorological stations provide accurate air temperature observations, their spatial coverage is limited and thus often insufficient for epidemiological studies. Satellite data expand spatial coverage, enhancing our ability to estimate near surface air temperature (Ta). However, the derivation of Ta from surface temperature (Ts) measured by satellites is far from being straightforward. In this study, we present a novel approach that incorporates land use regression, meteorological variables and spatial smoothing to first calibrate between Ts and Ta on a daily basis and then predict Ta for days when satellite Ts data were not available. We applied mixed regression models with daily random slopes to calibrate Moderate Resolution Imaging Spectroradiometer (MODIS) Ts data with monitored Ta measurements for 2003. Then, we used a generalized additive mixed model with spatial smoothing to estimate Ta in days with missing Ts. Out-of-sample tenfold cross-validation was used to quantify the accuracy of our predictions. Our model performance was excellent for both days with available Ts and days without Ts observations (mean out-of-sample R2=0.946 and R2=0.941 respectively). Furthermore, based on the high quality predictions we investigated the spatial patterns of Ta within the study domain as they relate to urban vs. non-urban land uses. PMID:22721687

  18. A theory for the retrieval of virtual temperature from winds, radiances and the equations of fluid dynamics

    NASA Technical Reports Server (NTRS)

    Tzvi, G. C.

    1986-01-01

    A technique to deduce the virtual temperature from the combined use of the equations of fluid dynamics, observed wind and observed radiances is described. The wind information could come from ground-based sensitivity very high frequency (VHF) Doppler radars and/or from space-borne Doppler lidars. The radiometers are also assumed to be either space-borne and/or ground-based. From traditional radiometric techniques the vertical structure of the temperature can be estimated only crudely. While it has been known for quite some time that the virtual temperature could be deduced from wind information only, such techniques had to assume the infallibility of certain diagnostic relations. The proposed technique is an extension of the Gal-Chen technique. It is assumed that due to modeling uncertainties the equations of fluid dynamics are satisfied only in the least square sense. The retrieved temperature, however, is constrained to reproduce the observed radiances. It is shown that the combined use of the three sources of information (wind, radiances and fluid dynamical equations) can result in a unique determination of the vertical temperature structure with spatial and temporal resolution comparable to that of the observed wind.

  19. Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar.

    PubMed

    Xia, Haiyun; Dou, Xiankang; Shangguan, Mingjia; Zhao, Ruocan; Sun, Dongsong; Wang, Chong; Qiu, Jiawei; Shu, Zhifeng; Xue, Xianghui; Han, Yuli; Han, Yan

    2014-09-01

    Temperature detection remains challenging in the low stratosphere, where the Rayleigh integration lidar is perturbed by aerosol contamination and ozone absorption while the rotational Raman lidar is suffered from its low scattering cross section. To correct the impacts of temperature on the Rayleigh Doppler lidar, a high spectral resolution lidar (HSRL) based on cavity scanning Fabry-Perot Interferometer (FPI) is developed. By considering the effect of the laser spectral width, Doppler broadening of the molecular backscatter, divergence of the light beam and mirror defects of the FPI, a well-behaved transmission function is proved to show the principle of HSRL in detail. Analysis of the statistical error of the HSRL is carried out in the data processing. A temperature lidar using both HSRL and Rayleigh integration techniques is incorporated into the Rayleigh Doppler wind lidar. Simultaneous wind and temperature detection is carried out based on the combined system at Delhi (37.371°N, 97.374°E; 2850 m above the sea level) in Qinghai province, China. Lower Stratosphere temperature has been measured using HSRL between 18 and 50 km with temporal resolution of 2000 seconds. The statistical error of the derived temperatures is between 0.2 and 9.2 K. The temperature profile retrieved from the HSRL and wind profile from the Rayleigh Doppler lidar show good agreement with the radiosonde data. Specifically, the max temperature deviation between the HSRL and radiosonde is 4.7 K from 18 km to 36 km, and it is 2.7 K between the HSRL and Rayleigh integration lidar from 27 km to 34 km. PMID:25321553

  20. Spatial Correlations of Anomaly Time Series of AIRS Version-6 Land Surface Skin Temperatures with the Nino-4 Index

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2013-01-01

    The AIRS Science Team Version-6 data set is a valuable resource for meteorological studies. Quality Controlled earth's surface skin temperatures are produced on a 45 km x 45 km spatial scale under most cloud cover conditions. The same retrieval algorithm is used for all surface types under all conditions. This study used eleven years of AIRS monthly mean surface skin temperature and cloud cover products to show that land surface skin temperatures have decreased significantly in some areas and increased significantly in other areas over the period September 2002 through August 2013. These changes occurred primarily at 1:30 PM but not at 1:30 AM. Cooling land areas contained corresponding increases in cloud cover over this time period, with the reverse being true for warming land areas. The cloud cover anomaly patterns for a given month are affected significantly by El Nino/La Nina activity, and anomalies in cloud cover are a driving force behind anomalies in land surface skin temperature.

  1. Simultaneous retrieval of temperature-dependent absorption coefficient and conductivity of participating media

    PubMed Central

    Ren, Yatao; Qi, Hong; Zhao, Fangzhou; Ruan, Liming; Tan, Heping

    2016-01-01

    A secondary optimization technique was proposed to estimate the temperature-dependent thermal conductivity and absorption coefficient. In the proposed method, the stochastic particle swarm optimization was applied to solve the inverse problem. The coupled radiation and conduction problem was solved in a 1D absorbing, emitting, but non-scattering slab exposed to a pulse laser. It is found that in the coupled radiation and conduction problem, the temperature response is highly sensitive to conductivity but slightly sensitive to the optical properties. On the contrary, the radiative intensity is highly sensitive to optical properties but slightly sensitive to thermal conductivity. Therefore, the optical and thermal signals should both be considered in the inverse problem to estimate the temperature-dependent properties of the transparent media. On this basis, the temperature-dependent thermal conductivity and absorption coefficient were both estimated accurately by measuring the time-dependent temperature, and radiative response at the boundary of the slab. PMID:26912418

  2. Simultaneous retrieval of temperature-dependent absorption coefficient and conductivity of participating media

    NASA Astrophysics Data System (ADS)

    Ren, Yatao; Qi, Hong; Zhao, Fangzhou; Ruan, Liming; Tan, Heping

    2016-02-01

    A secondary optimization technique was proposed to estimate the temperature-dependent thermal conductivity and absorption coefficient. In the proposed method, the stochastic particle swarm optimization was applied to solve the inverse problem. The coupled radiation and conduction problem was solved in a 1D absorbing, emitting, but non-scattering slab exposed to a pulse laser. It is found that in the coupled radiation and conduction problem, the temperature response is highly sensitive to conductivity but slightly sensitive to the optical properties. On the contrary, the radiative intensity is highly sensitive to optical properties but slightly sensitive to thermal conductivity. Therefore, the optical and thermal signals should both be considered in the inverse problem to estimate the temperature-dependent properties of the transparent media. On this basis, the temperature-dependent thermal conductivity and absorption coefficient were both estimated accurately by measuring the time-dependent temperature, and radiative response at the boundary of the slab.

  3. Simultaneous retrieval of temperature-dependent absorption coefficient and conductivity of participating media.

    PubMed

    Ren, Yatao; Qi, Hong; Zhao, Fangzhou; Ruan, Liming; Tan, Heping

    2016-01-01

    A secondary optimization technique was proposed to estimate the temperature-dependent thermal conductivity and absorption coefficient. In the proposed method, the stochastic particle swarm optimization was applied to solve the inverse problem. The coupled radiation and conduction problem was solved in a 1D absorbing, emitting, but non-scattering slab exposed to a pulse laser. It is found that in the coupled radiation and conduction problem, the temperature response is highly sensitive to conductivity but slightly sensitive to the optical properties. On the contrary, the radiative intensity is highly sensitive to optical properties but slightly sensitive to thermal conductivity. Therefore, the optical and thermal signals should both be considered in the inverse problem to estimate the temperature-dependent properties of the transparent media. On this basis, the temperature-dependent thermal conductivity and absorption coefficient were both estimated accurately by measuring the time-dependent temperature, and radiative response at the boundary of the slab. PMID:26912418

  4. The proper weighting function for retrieving temperatures from satellite measured radiances

    NASA Technical Reports Server (NTRS)

    Arking, A.

    1976-01-01

    One class of methods for converting satellite measured radiances into atmospheric temperature profiles, involves a linearization of the radiative transfer equation: delta r = the sum of (W sub i) (delta T sub i) where (i=1...s) and where delta T sub i is the deviation of the temperature in layer i from that of a reference atmosphere, delta R is the difference in the radiance at satellite altitude from the corresponding radiance for the reference atmosphere, and W sub i is the discrete (or vector) form of the T-weighting (i.e., temperature weighting) function W(P), where P is pressure. The top layer of the atmosphere corresponds to i = 1, the bottom layer to i = s - 1, and i = s refers to the surface. Linearization in temperature (or some function of temperature) is at the heart of all linear or matrix methods. The weighting function that should be used is developed.

  5. Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H

    1937-01-01

    Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.

  6. Apparatus for supplying conditioned air at a substantially constant temperature and humidity

    NASA Technical Reports Server (NTRS)

    Obler, H. D. (Inventor)

    1980-01-01

    The apparatus includes a supply duct coupled to a source of supply air for carrying the supply air therethrough. A return duct is coupled to the supply duct for carrying return conditioned air therethrough. A temperature reducing device is coupled to the supply duct for decreasing the temperature of the supply and return conditioned air. A by-pass duct is coupled to the supply duct for selectively directing portions of the supply and return conditioned air around the temperature reducing device. Another by-pass duct is coupled to the return duct for selectively directing portions of the return conditioned air around the supply duct and the temperature reduction device. Controller devices selectively control the flow and amount of mixing of the supply and return conditioned air.

  7. Evaluation of the potential of one to three SEASAT-SMMR channels in retrieving sea surface temperature

    NASA Technical Reports Server (NTRS)

    Pandey, P. C.; Kniffen, S.

    1982-01-01

    The scanning multichannel microwave radiometer (SMMR) aboard the SEASAT satellite measured emitted radiation in both horizontal and vertical polarizations at microwave frequencies of 6.6, 10.69, 18.0, 21.0 and 37.0 GHz. Retrieval algorithms, for sea surface temperature (SST) determination, from subsets of one to three SMMR channels are obtained by a two step statistical technique. The technique first selects the best subsets of a given size defined by an R2 criterion (coefficient of determination), of a given size by the application of an efficient 'leaps and bounds' technique on a statistical data base. It then performs a regression analysis on the selected subsets. The statistical data base employed a large (600) set of seasonally and geographically diverse atmospheric and surface parameters for radiative transfer calculations. The results of the study of one to three channel subset retrieval algorithms indicate the possibility of using 6.6V, 6.6H and 18V channels for SST determination from SEASAT-SMMR data.

  8. Retrieving soil surface temperature under snowpack using special sensor microwave/imager brightness temperature in forested areas of Heilongjiang, China: an improved method

    NASA Astrophysics Data System (ADS)

    Zheng, Xingming; Li, Xiaofeng; Jiang, Tao; Ding, Yanling; Wu, Lili; Zhang, Shiyi; Zhao, Kai

    2016-04-01

    Soil surface temperature (Ts) is an important indicator of global temperature change and a key input parameter for retrieving land surface variables using remote sensing techniques. Due to the masking in the thermal infrared band and the scattering in the microwave band of snow, the temperature of soil surfaces covered by snow is difficult to infer from remote sensing data. We attempted to estimate Ts under snow cover using brightness temperature data from the special sensor microwave/imager. Ts under snow cover was underestimated due to the strong scattering effect of snow on upward soil microwave emissions at 37 GHz. The underestimated portion of Ts is related to snow properties, such as depth, grain size, and moisture. Based on the microwave emission model of layered snowpacks, the simulated results revealed a linear relationship between the underestimated Ts and the brightness temperature difference (TBD) at 19 and 37 GHz. When TBDs at 19 and 37 GHz were introduced to the Ts estimation method, accuracy improved, i.e., the root mean square error and bias of the estimated Ts decreased greatly, especially for dry snow. This improvement allows Ts estimation of snow-covered surfaces from 37 GHz microwave brightness temperature.

  9. Validation of temperature retrievals obtained by the Limb Infrared Monitor of the Stratosphere (LIMS) experiment on Nimbus 7

    NASA Technical Reports Server (NTRS)

    Gille, J. C.; Bailey, P. L.; Lyjak, L. V.; Beck, S. A.; Russell, J. M., III; Remsberg, E. E.; Gordley, L. L.; Lienesch, J. H.; Planet, W. G.; House, F. B.

    1984-01-01

    An outline is given of LIMS temperature determinations (as a function of pressure) from measurements in two channels covering portions of the 15-micrometer band of carbon dioxide. The known sources of error from the radiometer and data reduction are used to estimate the systematic and random errors expected of the results. Observational determinations of the complete end-to-end precision are obtained by computing the standard deviation of six sequential temperature retrievals in regions where the atmosphere is horizontally uniform. This yields values of 0.2 to 0.6 K, in reasonable agreement with the estimates. A correction for horizontal gradients in the atmosphere leads to a large reduction in the differences between the stratospheric temperatures determined on the ascending and descending portions of the orbit. The temperatures agree in the mean with radiosondes and rocketsondes to within 1-2 K in most regions below 1 mbar. Several interesting, previously unseen features included cold regions in the mid-latitude mesosphere and wavelike vertical variations in the tropics.

  10. Spectral Line Parameters Including Temperature Dependences of Self- and Air-Broadening in the 2 (left arrow) 0 Band of CO at 2.3 micrometers

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Benner, D. Chris; Smith, M. A. H.; Mantz, A. W.; Sung, K.; Brown, L. R.; Predoi-Cross, A.

    2012-01-01

    Temperature dependences of pressure-broadened half-width and pressure-induced shift coefficients along with accurate positions and intensities have been determined for transitions in the 2<--0 band of C-12 O-16 from analyzing high-resolution and high signal-to-noise spectra recorded with two different Fourier transform spectrometers. A total of 28 spectra, 16 self-broadened and 12 air-broadened, recorded using high- purity (greater than or equal to 99.5% C-12-enriched) CO samples and CO diluted with dry air(research grade) at different temperatures and pressures, were analyzed simultaneously to maximize the accuracy of the retrieved parameters. The sample temperatures ranged from 150 to 298K and the total pressures varied between 5 and 700 Torr. A multispectrum nonlinear least squares spectrum fitting technique was used to adjust the rovibrational constants (G, B, D, etc.) and intensity parameters (including Herman-Wallis coefficients), rather than determining individual line positions and intensities. Self-and air-broadened Lorentz half-width coefficients, their temperature dependence exponents, self- and air-pressure-induced shift coefficients, their temperature dependences, self- and air-line mixing coefficients, their temperature dependences and speed dependence have been retrieved from the analysis. Speed-dependent line shapes with line mixing employing off-diagonal relaxation matrix element formalism were needed to minimize the fit residuals. This study presents a precise and complete set of spectral line parameters that consistently reproduce the spectrum of carbon monoxide over terrestrial atmospheric conditions.

  11. LAND SURFACE TEMPERATURE RETRIEVAL AT HIGH SPATIAL AND TEMPORAL RESOLUTIONS OVER THE SOUTHWESTERN UNITED STATES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface temperature (LST) and its diurnal variation are important observable characteristics when evaluating climate change, land-atmosphere energy exchange processes and the global hydrological cycle. These characteristics are observable from satellite platforms using thermal infrared, but do...

  12. A 3-D tomographic retrieval approach with advection compensation for the air-borne limb-imager GLORIA

    NASA Astrophysics Data System (ADS)

    Ungermann, J.; Blank, J.; Lotz, J.; Leppkes, K.; Hoffmann, L.; Guggenmoser, T.; Kaufmann, M.; Preusse, P.; Naumann, U.; Riese, M.

    2011-11-01

    Infrared limb sounding from aircraft can provide 2-D curtains of multiple trace gas species. However, conventional limb sounders view perpendicular to the aircraft axis and are unable to resolve the observed airmass along their line-of-sight. GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) is a new remote sensing instrument that is able to adjust its horizontal view angle with respect to the aircraft flight direction from 45° to 135°. This will allow for tomographic measurements of mesoscale structures for a wide variety of atmospheric constituents. Many flights of the GLORIA instrument will not follow closed curves that allow measuring an airmass from all directions. Consequently, it is examined by means of simulations, what spatial resolution can be expected under ideal conditions from tomographic evaluation of measurements made during a straight flight. It is demonstrated that the achievable horizontal resolution in the line-of-sight direction could be reduced from over 200 km to around 70 km compared to conventional retrievals and that the tomographic retrieval is also more robust against horizontal gradients in retrieved quantities in this direction. In a second step, it is shown that the incorporation of channels exhibiting different optical depth can further enhance the spatial resolution of 3-D retrievals enabling the exploitation of spectral samples usually not used for limb sounding due to their opacity. A second problem for tomographic retrievals is that advection, which can be neglected for conventional retrievals, plays an important role for the time-scales involved in a tomographic measurement flight. This paper presents a method to diagnose the effect of a time-varying atmosphere on a 3-D retrieval and demonstrates an effective way to compensate for effects of advection by incorporating wind-fields from meteorological datasets as a priori information.

  13. Short-term effects of air temperature on plasma metabolite concentrations in patients undergoing cardiac cattheterization.

    EPA Science Inventory

    BACKGROUND: Epidemiological studies have shown associations between air temperature and cardiovascular health outcomes. Metabolic dysregulation might also play a role in the development of cardiovascular disease.OBJECTIVES: To investigate short-term temperature effects on metabol...

  14. Startup of air-cooled condensers and dry cooling towers at low temperatures of the cooling air

    NASA Astrophysics Data System (ADS)

    Milman, O. O.; Ptakhin, A. V.; Kondratev, A. V.; Shifrin, B. A.; Yankov, G. G.

    2016-05-01

    The problems of startup and performance of air-cooled condensers (ACC) and dry cooling towers (DCT) at low cooling air temperatures are considered. Effects of the startup of the ACC at sub-zero temperatures are described. Different options of the ACC heating up are analyzed, and examples of existing technologies are presented (electric heating, heating up with hot air or steam, and internal and external heating). The use of additional heat exchanging sections, steam tracers, in the DCT design is described. The need for high power in cases of electric heating and heating up with hot air is noted. An experimental stand for research and testing of the ACC startup at low temperatures is described. The design of the three-pass ACC unit is given, and its advantages over classical single-pass design at low temperatures are listed. The formation of ice plugs inside the heat exchanging tubes during the start-up of ACC and DCT at low cooling air temperatures is analyzed. Experimental data on the effect of the steam flow rate, steam nozzle distance from the heat-exchange surface, and their orientation in space on the metal temperature were collected, and test results are analyzed. It is noted that the surface temperature at the end of the heat up is almost independent from its initial temperature. Recommendations for the safe start-up of ACCs and DCTs are given. The heating flow necessary to sufficiently heat up heat-exchange surfaces of ACCs and DCTs for the safe startup is estimated. The technology and the process of the heat up of the ACC with the heating steam external supply are described by the example of the startup of the full-scale section of the ACC at sub-zero temperatures of the cooling air, and the advantages of the proposed start-up technology are confirmed.

  15. Temperature Profile and Surface Pressure Retrieval of Mars’ Atmosphere Using Infrared Heterodyne Spectroscopy

    NASA Astrophysics Data System (ADS)

    Smith, Ramsey L.; Hewagama, T.; Livengood, T. A.; Fast, K. E.; Kostiuk, T.

    2012-10-01

    Infrared heterodyne spectroscopy of CO2 transitions in the Martian atmosphere was obtained using the Goddard Space Flight Center’s Heterodyne Instrument for Planetary Winds and Composition, HIPWAC, on the NASA Infrared Telescope Facility 3-m telescope, with resolving power of 2.5107. The measured spectra are not fully consistent with temperature profiles for this location and season derived from the Mars Global Surveyor mission (MGS), particularly constraining the pressure and temperature in the deepest part of the troposphere with unambiguous differences between the MGS temperature profile and that required to satisfy the measured emergent spectrum. The temperature information is useful for studying seasonal and global variability, for comparison of results from flight mission results, as well as better profiles for interpreting flight obtained measurements. We will report data collected from our analysis of our high-resolution measurement of 16O12C16O used to develop a temperature profile and surface pressure. CO2 is uniformly mixed in the Martian atmosphere, which makes it an ideal candidate for temperature determination. We are able to collect spectra of the isotopologues of CO2 in the same spectra, which eliminates a source of error for molecular species identification and atmosphere temperature determination. The aforementioned parameters are critical for Martian atmospheric-surface investigations such as isotopologue determination and isotope ratio calculations. For example, an average over measurements acquired at the subsolar point and in the early afternoon at the subsolar latitude yields the terrestrial VSMOW standard, with a minimal difference of 18O = +9±14 ‰. This precision is sufficient to enable a remote investigation of seasonal variations, i.e. due to mass-dependent fractionation in the polar ice cap freeze-sublimate cycle.

  16. [Analysis of the Influence of Temperature on the Retrieval of Ozone Vertical Profiles Using the Thermal Infrared CrIS Sounder].

    PubMed

    Ma, Peng-fei; Chen, Liang-fu; Zou, Ming-min; Zhang, Ying; Tao, Ming-hui; Wang, Zi-leng; Su, Lin

    2015-12-01

    Ozone is a particularly critical trace gas in the Earth's atmosphere, since this molecule plays a key role in the photochemical reactions and climate change. The TIR measurements can capture the variability of ozone and are weakly sensitive to the lowermost tropospheric ozone content but can provide accurate measurements of tropospheric ozone and higher vertical resolution ozone profiles, with the additional advantage that measurements are also possible during the night. Because of the influence of atmospheric temperature, the ozone profile retrieval accuracy is severely limited. This paper analyze and discuss the ozone absorption spectra and weighting function sensitivity of temperature and its influence on ozone profile retrieval in detail. First, we simulate the change of atmospheric transmittance and radiance by importing 1 K temperature uncertainty, using line-by-line radiative transfer mode under 6 different atmosphere modes. The results show that the transmittance change ratio for 1 K temperature variation was consistent with the transmittance change ratio for 5%-6% change of ozone density variation in all layers of the profile. Then, we calculate the change of weighting function by a temperature error of 1 K, using the Community Radiative Transfer Model (CRTM) for the Cross-track Infrared Sounder (CrIS) on the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite and calculate the corresponding change of retrieval result. The results demonstrate that CrIS is sensitive to Ozone in the middle to upper stratosphere, with the peak vertical sensitivity between 10-100 hPa and the change of weighting function for 1 K temperature variation was consistent with 6% change in the ozone profile. Finally, the paper retrieves ozone profiles from the CrIS radiances with a nonlinear Newton iteration method and use the eigenvector regression algorithm to construct the a priori state. In order to resolve the problem of temperature uncertainty and get high accuracy

  17. One-Component Pressure-Temperature Phase Diagrams in the Presence of Air

    ERIC Educational Resources Information Center

    Andrade-Gamboa, Julio; Martire, Daniel O.; Donati, Edgardo R.

    2010-01-01

    One-component phase diagrams are good approximations to predict pressure-temperature ("P-T") behavior of a substance in the presence of air, provided air pressure is not much higher than the vapor pressure. However, at any air pressure, and from the conceptual point of view, the use of a traditional "P-T" phase diagram is not strictly correct. In…

  18. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 34 2013-07-01 2013-07-01 false NOX intake-air humidity...

  19. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 33 2011-07-01 2011-07-01 false NOX intake-air humidity...

  20. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 32 2010-07-01 2010-07-01 false NOX intake-air humidity...

  1. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 34 2012-07-01 2012-07-01 false NOX intake-air humidity...

  2. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670 NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you... 40 Protection of Environment 33 2014-07-01 2014-07-01 false NOX intake-air humidity...

  3. Computer modeling of the sensitivity of a laser water vapor sensor to variations in temperature and air speed

    NASA Technical Reports Server (NTRS)

    Tucker, George F.

    1994-01-01

    Currently, there is disagreement among existing methods of determining atmospheric water vapor concentration at dew-points below -40 C. A major source of error is wall effects which result from the necessity of bringing samples into the instruments. All of these instruments also have response times on the order of seconds. NASA Langley is developing a water vapor sensor which utilizes the absorption of the infrared radiation produced by a diode laser to estimate water vapor concentration. The laser beam is directed through an aircraft window to a retroreflector located on an engine. The reflected beam is detected by an infrared detector located near the laser. To maximize signal to noise, derivative signals are analyzed. By measuring the 2f/DC signal and correcting for ambient temperature, atmospheric pressure and air speed (which results in a Doppler shifting of the laser beam), the water vapor concentration can be retrieved. Since this is an in situ measurement there are no wall effects and measurements can be made at a rate of more than 20 per second. This allows small spatial variations of water vapor to be studied. In order to study the sensitivity of the instrument to variations in temperature and air speed, a computer program which generated the 2f, 3f, 4f, DC and 2f/DC signals of the instrument as a function of temperature, pressure and air speed was written. This model was used to determine the effect of errors in measurement of the temperature and air speed on the measured water vapor concentration. Future studies will quantify the effect of pressure measurement errors, which are expected to be very small. As a result of these studied, a retrieval algorithm has been formulated, and will be applied to data taken during the PEM-West atmospheric science field mission. Spectroscopic studies of the water vapor line used by the instrument will be used to refine this algorithm. To prepare for these studies, several lasers have been studied to determine their

  4. Retrieval and Analysis of Temperature and Important Trace Gases in the Lower Stratosphere as measured by GLORIA during ESSenCe11

    NASA Astrophysics Data System (ADS)

    Blank, Jörg; Guggenmoser, Tobias; Ungermann, Jörn; Grooß, Jens-Uwe; Vogel, Baerbel; Kleinert, Anne; Kaufmann, Martin; Riese, Martin

    2013-04-01

    The Gimballed Limb Observer for Radiance Imaging in the Atmosphere (GLORIA) is a new remote sensing instrument combining a Fourier transform infrared spectrometer with a highly flexible gimbal mount. The 2-D detector array measures spectra with a uniquely spatial and spectral resolution. Air masses can be observed from different directions by turning the instrument's line of sight in the gimbal frame. During December 2011 the instrument flew for the first time on the high flying Russian Geophysica M-55 research plane over Kiruna (Sweden). At that time, there was a very strong and cold polar vortex with several filamentary structures at its boundary and within the operation radius of the aircraft. We retrieved fields of temperature and several important trace gases from measurements obtained during the ESSenCe campaign and compared them to 3-D model calculations of the atmosphere. We show that there exists filamentary structure of less than 1 km vertical extent, which is only visible due to the high vertical resolution of 300 m provided by GLORIA and is not fully resolved in the comparison data.

  5. The impact of heterogeneous surface temperatures on the 2-m air temperature over the Arctic Ocean in spring

    NASA Astrophysics Data System (ADS)

    Tetzlaff, A.; Kaleschke, L.; Lüpkes, C.; Ament, F.; Vihma, T.

    2012-07-01

    The influence of spatial surface temperature changes over the Arctic Ocean on the 2-m air temperature variability is estimated using backward trajectories based on ERA-Interim and the JRA25 wind fields. They are initiated at Alert, Barrow and at the Tara drifting station. Three different methods are used. The first one compares mean ice surface temperatures along the trajectories to the observed 2-m air temperatures at the stations. The second one correlates the observed temperatures to air temperatures obtained using a simple Lagrangian box model which only includes the effect of sensible heat fluxes. For the third method, mean sensible heat fluxes from the model are correlated with the difference of the air temperatures at the model starting point and the observed temperatures at the stations. The calculations are based on MODIS ice surface temperatures and four different sets of ice concentration derived from SSM/I and AMSR-E data. Under nearly cloud free conditions, up to 90% of the 2-m air temperature variance can be explained for Alert, and 60% for Barrow using these methods. The differences are attributed to the different ice conditions, which are characterized by high ice concentration around Alert and lower ice concentration near Barrow. These results are robust for the different sets of reanalyses and ice concentration data. Near-surface winds of both reanalyses show a large inconsistency in the Central Arctic, which leads to a large difference in the correlations between modeled and observed 2-m air temperatures at Tara. Explained variances amount to 70% using JRA and only 45% using ERA. The results also suggest that near-surface temperatures at a given site are influenced by the variability of surface temperatures in a domain of about 150 to 350 km radius around the site.

  6. A simplified physically-based model to calculate surface water temperature of lakes from air temperature in climate change scenarios

    NASA Astrophysics Data System (ADS)

    Piccolroaz, S.; Toffolon, M.

    2012-12-01

    Modifications of water temperature are crucial for the ecology of lakes, but long-term analyses are not usually able to provide reliable estimations. This is particularly true for climate change studies based on Global Circulation Models, whose mesh size is normally too coarse for explicitly including even some of the biggest lakes on Earth. On the other hand, modeled predictions of air temperature changes are more reliable, and long-term, high-resolution air temperature observational datasets are more available than water temperature measurements. For these reasons, air temperature series are often used to obtain some information about the surface temperature of water bodies. In order to do that, it is common to exploit regression models, but they are questionable especially when it is necessary to extrapolate current trends beyond maximum (or minimum) measured temperatures. Moreover, water temperature is influenced by a variety of processes of heat exchange across the lake surface and by the thermal inertia of the water mass, which also causes an annual hysteresis cycle between air and water temperatures that is hard to consider in regressions. In this work we propose a simplified, physically-based model for the estimation of the epilimnetic temperature in lakes. Starting from the zero-dimensional heat budget, we derive a simplified first-order differential equation for water temperature, primarily forced by a seasonally varying external term (mainly related to solar radiation) and an exchange term explicitly depending on the difference between air and water temperatures. Assuming annual sinusoidal cycles of the main heat flux components at the atmosphere-lake interface, eight parameters (some of them can be disregarded, though) are identified, which can be calibrated if two temporal series of air and water temperature are available. We note that such a calibration is supported by the physical interpretation of the parameters, which provide good initial

  7. Retrieval of the cyclostrophic wind in the Venus mesosphere from the VIRTIS/Venus Express temperature sounding.

    NASA Astrophysics Data System (ADS)

    Piccialli, Arianna; Titov, Dmitri; Grassi, Davide; Khatuntsev, Igor; Drossart, Pierre; Piccioni, Giuseppe; Migliorini, Alessandra

    Venus mesosphere is characterized by an extremely complex dynamics: a retrograde super rotation flow near the cloud top completes a full rotation of the planets in only four earth days and in the upper thermosphere a solar - antisolar circulation reaches speeds of 100 m/s. Earlier studies have shown that the strong zonal winds at cloud top are the result of local balance of pressure gradient and centripetal force which is called cyclostrophic balance. The thermal wind equation that describes this balance relates the vertical wind gradient to the latitudinal temperature gradient on isobaric levels. The temperature structure of Venus mesosphere has been observed with a good spatial and temporal coverage in the last two years from VIRTIS (Visual and Infrared Thermal Imaging Spectrometer) on board the Venus Express spacecraft. Here we present preliminary retrievals of the cyclostrophic wind derived from VIRTIS temperature sounding. The main features of the wind are 1) the midlatitude jet with a maximum speed of 80 - 90 ± 10 m/s which occurs around 50° S latitude at 70 km altitude; 2) the fast decrease of the wind speed from 60° S toward the pole; 3) the decrease of the wind speed with increasing height above the jet. The dependence of zonal wind on local time has been analysed, our preliminary results show that parameters of the mid-latitude jet only weekly depend on local solar time. Comparison with cloud - tracked wind derived from the Venus Monitoring Camera (VMC) show a general good agreement.

  8. Prototypical experiments relating to air oxidation of Zircaloy-4 at high temperatures

    NASA Astrophysics Data System (ADS)

    Steinbrück, Martin

    2009-08-01

    The mechanism of the reaction between Zircaloy-4 and air at temperatures from 800 to 1500 °C was studied. Air attack under prototypical conditions with air ingress during a hypothetic severe nuclear reactor accident was investigated. Oxidation in air and in air and nitrogen-containing atmospheres leads to a major degradation of the cladding material. The main mechanism is the formation of zirconium nitride and its re-oxidation. Pre-oxidation in steam prevents air attack as long as the oxide scale is intact. Under steam/oxygen starvation conditions, the oxide scale is reduced and significant external nitride formation takes place. When modeling air ingress in severe accident computer codes, parabolic correlations for oxidation in air may be applied only for high temperatures (>1400 °C) and for pre-oxidized cladding (⩾1100 °C). Under all other conditions, faster, rather linear reaction kinetics should be applied.

  9. Temperature maps of Saturn's satellites retrieved from Cassini-VIMS observations (Invited)

    NASA Astrophysics Data System (ADS)

    Filacchione, Gianrico; Capaccioni, Fabrizio; Ciarniello, Mauro; Tosi, Federico; D'Aversa, Emiliano; Clark, Roger N.; Brown, Robert N.; Buratti, Bonnie J.; Cruikshank, Dale P.; Dalle Ore, Cristina M.; Scipioni, Francesca; Cerroni, Priscilla

    2014-11-01

    The spectral position of the 3.6 µm continuum peak measured on Cassini-VIMS reflectance spectra is used to infer the temperature of the regolith particles covering the surfaces of Saturn’s icy satellites. Laboratory measurements by Clark et al. (2012) have shown that 3.6 µm peak for pure crystalline water ice particles shifts towards shorter wavelengths when the sample is cooled, moving from about 3.65 µm at T=123 K to about 3.55 µm at T=88 K. A similar trend is observed also in the imaginary part (k) of the refractive index of water ice when the sample is cooled from T=140 K to 20 K (Mastrapa et al., 2009). Since water ice is the dominant endmember on Saturn’s satellites surfaces (Clark and Owensby, 1981; Clark et al., 1984; Filacchione et al., 2012), the measurement of the wavelength at which the 3.6 µm reflectance peak occurs can be considered as a temperature indicator. We report on our temperature maps of Mimas, Enceladus, Tethys, Dione and Rhea derived by applying this method to Cassini-VIMS data taken at spatial resolution of 20-40 km/pixel. These maps allow us to correlate the temperature distribution with solar illumination conditions and with geological features. On average Enceladus’ mid-latitudes regions appear at T<100 K while the south pole tiger-stripes active area shows a thermal emission at T>115 K. Tethys’ and Mimas’ equatorial lenses show significant thermal anomalies: despite the fact that these features have low visible albedo they appear colder than the surrounding mid-latitude regions as a consequence of a much higher thermal inertia. On Mimas, the floor of Herschel crater appears warmer (T>115 K) than the adjacent equatorial lens area (T<110 K). Finally, the analysis of Dione shows that the temperature across the bright wispy terrains is lower than the nearby low albedo areas.

  10. Predicting seed cotton moisture content from changes in drying air temperature - second year

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A mathematical model was used to predict seed cotton moisture content in the overhead section of a cotton gin. The model took into account the temperature, mass flow, and specific heat of both the air and seed cotton. Air temperatures and mass flows were measured for a second year at a commercial g...

  11. Correction of Temperatures of Air-Cooled Engine Cylinders for Variation in Engine and Cooling Conditions

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Pinkel, Benjamin; Ellerbrock, Herman H , Jr

    1939-01-01

    Factors are obtained from semiempirical equations for correcting engine-cylinder temperatures for variation in important engine and cooling conditions. The variation of engine temperatures with atmospheric temperature is treated in detail, and correction factors are obtained for various flight and test conditions, such as climb at constant indicated air speed, level flight, ground running, take-off, constant speed of cooling air, and constant mass flow of cooling air. Seven conventional air-cooled engine cylinders enclosed in jackets and cooled by a blower were tested to determine the effect of cooling-air temperature and carburetor-air temperature on cylinder temperatures. The cooling air temperature was varied from approximately 80 degrees F. to 230 degrees F. and the carburetor-air temperature from approximately 40 degrees F. to 160 degrees F. Tests were made over a large range of engine speeds, brake mean effective pressures, and pressure drops across the cylinder. The correction factors obtained experimentally are compared with those obtained from the semiempirical equations and a fair agreement is noted.

  12. Effects of Outside Air Temperature on Movement of Phosphine Gas in Concrete Elevator Bins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies that measured the movement and concentration of phosphine gas in upright concrete bins over time indicated that fumigant movement was dictated by air currents, which in turn, were a function of the difference between the average grain temperature and the average outside air temperature durin...

  13. Prediction of air temperature in the aircraft cabin under different operational conditions

    NASA Astrophysics Data System (ADS)

    Volavý, F.; Fišer, J.; Nöske, I.

    2013-04-01

    This paper deals with the prediction of the air temperature in the aircraft cabin by means of Computational Fluid Dynamics. The simulations are performed on the CFD model which is based on geometry and cabin interior arrangement of the Flight Test Facility (FTF) located at Fraunhofer IBP, Germany. The experimental test flights under three different cabin temperatures were done in FTF and the various data were gathered during these flights. Air temperature in the cabin was measured on probes located near feet, torso and head of each passenger and also surface temperature and air temperature distributed from inlets were measured. The data were firstly analysed in order to obtain boundary conditions for cabin surfaces and inlets. Then the results of air temperature from the simulations were compared with measured data. The suitability and accuracy of the CFD approach for temperature prediction is discussed.

  14. Spatial and Temporal Inter-Relationships between Anomalies and Trends of Temperature, Moisture, Cloud Cover, and OLR as Observed by AIRS/AMSU on Aqua

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2008-01-01

    AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU by the AIRS Science Team include surface skin temperature and atmospheric temperature profiles; atmospheric humidity profiles, fractional cloud cover and cloud top pressure, and OLR. Products covering the period September 2002 through the present have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. In this paper, we will show results covering the time period September 2006 - November 2008. This time period is marked by a substantial warming trend of Northern Hemisphere Extratropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear sky and All Sky OLR. The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, will be shown, with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. Results will also be shown to validate the anomalies and trends of temperature profiles and OLR as determined from analysis of AIRS/AMSU data. Global and regional trends during the 6 1/3 year period are not necessarily indicative of what has happened in the past, or what may happen in the future. Nevertheless, the inter-relationships of spatial and temporal anomalies of atmospheric geophysical parameters with those of surface skin temperature are indicative of climate processes, and can be used to test the performance of climate models when driven by changes in surface temperatures.

  15. Spatial and Temporal Inter-Relationship between Anomalies and Trends of Temperature, Moisture, Cloud Cover and OLR as Observed by AIRS/AMSU on Aqua

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula

    2009-01-01

    AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU by the AIRS Science Team include surface skin temperature and atmospheric temperature profiled; atmospheric humidity profiles, fractional cloud clover and cloud top pressure, and OLR. Products covering the period September 2002 through the present have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. In this paper, we will show results covering the time period September 2006 - November 2008. This time period is marked by a substantial warming trend of Northern Hemisphere Extra-tropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear Sky and All Sky OLR. The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, will be shown with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. Results will also be shown to evaluate the anomalies and trends of temperature profiles and OLR as determined from analysis of AIRS/AMSU data. Global and regional trends during the 6 1/3 year time period are not necessarily indicative of what has happened in the past, or what may happen in the future. Nevertheless, the inter-relationships of spatial and temporal anomalies of atmospheric geophysical parameters with those of surface skin temperature are indicative of climate processes, and can be used to test the performance of climate models when driven by changes in surface temperatures.

  16. Robust comparison of climate models with observations using blended land air and ocean sea surface temperatures

    NASA Astrophysics Data System (ADS)

    Cowtan, Kevin; Hausfather, Zeke; Hawkins, Ed; Jacobs, Peter; Mann, Michael E.; Miller, Sonya K.; Steinman, Byron A.; Stolpe, Martin B.; Way, Robert G.

    2015-08-01

    The level of agreement between climate model simulations and observed surface temperature change is a topic of scientific and policy concern. While the Earth system continues to accumulate energy due to anthropogenic and other radiative forcings, estimates of recent surface temperature evolution fall at the lower end of climate model projections. Global mean temperatures from climate model simulations are typically calculated using surface air temperatures, while the corresponding observations are based on a blend of air and sea surface temperatures. This work quantifies a systematic bias in model-observation comparisons arising from differential warming rates between sea surface temperatures and surface air temperatures over oceans. A further bias arises from the treatment of temperatures in regions where the sea ice boundary has changed. Applying the methodology of the HadCRUT4 record to climate model temperature fields accounts for 38% of the discrepancy in trend between models and observations over the period 1975-2014.

  17. Predicted Atmospheric Temperature Retrievals for the New Horizons Encounter with Pluto.

    NASA Astrophysics Data System (ADS)

    Zalucha, Angela M.

    2014-11-01

    The New Horizons spacecraft will flyby Pluto this July. Three opportunities for observing the temperature vs. height will present themselves: A radio occultaion of radio signals transmitted from Earth to the Radio Science Experiment (REX) instrument, a stellar occultation of a background star as seen by Alice, and a stellar occultation of the Sun as seen by Alice. The temperature vs. height profiles will be generated using the Pluto version of the Massachusetts Institute of Technology general circulation model, which now includes radiative-conductive forcing from the Strobel et al. (1996) model, a multilayer subsurface, and a volatile cycle. The simulations begin in the year 1986 and end at the date of the New Horizons encounter. The Pluto conditions that will be discussed are (1) a surface albedo pattern taken from Buie et al. (2010), (2) a "best case" surface N2 ice distribution and temperature from the Hansen and Paige (1996) model, (3) a configuration where there is initially no surface N2 ice, and (4) a configuration where there is effectively infinitely deep surface N2 ice.

  18. D region meteoric smoke and neutral temperature retrieval using the poker flat incoherent scatter radar

    NASA Astrophysics Data System (ADS)

    Fentzke, J. T.; Hsu, V.; Brum, C. G. M.; Strelnikova, I.; Rapp, M.; Nicolls, M.

    2012-11-01

    This brief note describes the first measurement of the microphysical properties and variability of meteoric smoke particles (MSPs) at high latitude using the Poker Flat ISR (65.1°N, 147.5°W). We present a novel technique for determining height resolved daytime D region neutral temperatures, which takes into account the presence of charged dust. We discuss the temporal/spatial variability and the relation to meteoric input observed and MSP microphysical properties in the polar mesopause region. The derived nanometer sized MSPs are consistent with size profiles derived previously using radar/rocket techniques and we note that our results imply a lack of heavy cluster ions below 85 km during the observing period. This provides a template for potential use at many other radar sites for the determination of microphysical properties of MSPs and day-time neutral temperature in the D region that show good general agreement with model and satellite temperature data during the observing period.

  19. Modeling subcanopy incoming longwave radiation to seasonal snow using air and tree trunk temperatures

    NASA Astrophysics Data System (ADS)

    Webster, Clare; Rutter, Nick; Zahner, Franziska; Jonas, Tobias

    2016-02-01

    Data collected at three Swiss alpine forested sites over a combined 11 year period were used to evaluate the role of air temperature in modeling subcanopy incoming longwave radiation to the snow surface. Simulated subcanopy incoming longwave radiation is traditionally partitioned into that from the sky and that from the canopy, i.e., a two-part model. Initial uncertainties in predicting longwave radiation using the two-part model resulted from vertical differences in measured air temperature. Above-canopy (35 m) air temperatures were higher than those within (10 m) and below (2 m) canopy throughout four snow seasons (December-April), demonstrating how the forest canopy can act as a cold sink for air. Lowest model root-mean-square error (RMSE) was using above-canopy air temperature. Further investigation of modeling subcanopy longwave radiation using above-canopy air temperature showed underestimations, particularly during periods of high insolation. In order to explicitly account for canopy temperatures in modeling longwave radiation, the two-part model was improved by incorporating a measured trunk view component and trunk temperature. Trunk temperature measurements were up to 25°C higher than locally measured air temperatures. This three-part model reduced the RMSE by up to 7.7 W m-2 from the two-part air temperature model at all sensor positions across the 2014 snowmelt season and performed particularly well during periods of high insolation when errors from the two-part model were up to 40 W m-2. A parameterization predicting tree trunk temperatures using measured air temperature and incoming shortwave radiation demonstrate a simple method that can be applied to provide input to the three-part model across midlatitude coniferous forests.

  20. Analysis of Land Surface Temperature Retrieved from High Resolution Satellites in Seoul, South Korea

    NASA Astrophysics Data System (ADS)

    Jee, Joon-Bum; Choi, Young-Jean

    2015-04-01

    In order to analyze the land surface properties in Seoul and its surrounding metropolitan area in the South Korea, several indices and LST were calculated by the Landsat 8 and TERRA and AQUA MODIS satellites. The land surface properties used are the indices that represented Soil Adjusted Vegetation Index (SAVI), Modified Normalized Difference Wetness Index (MNDWI), Normalized Difference Wetness Index (NDWI), Tasseled cap Brightness, Tasseled cap Greenness, Tasseled cap Wetness Index, Normalized Difference Vegetation Index (NDVI) and Normalized Difference Built-up Index (NDBI) and the LST of the area in and around Seoul. Most indices distinguish very well between urban, rural, mountain, building, river and road. In particular, most of the urbanization is represented in the new cities around Seoul. According to NDVI, NDBI and LST, urban expansion is displayed in the surrounding area of Seoul. The LST and surface elevation have a strong relationship with the distribution and structure of the vegetation/built-up indices such as NDVI and NDBI. While the NDVI is positively correlated with the LST and is also negatively correlated with the surface elevation, the NDBI have just the opposite correlations, respectively. In addition, in order to investigate the thermal properties in metropolitan, Landsat and MODIS land surface temperature, AWS (Automatic Weather Station) temperature, digital elevation model and landuse are used. Analysis method among the Landsat and MODIS LST and AWS temperature is basic statistics using by correlation coefficient, root-mean-square error (RMSE) and linear regression function etc. As a result, statistics of Landsat and MODIS LST are a correlation coefficient of 0.32 and RMSE of 4.61K, respectively. And statistics of Landsat and MODIS LST and AWS temperature have the correlations of 0.83 and 0.96 and the RMSE of 3.28K and 2.25K, respectively. Landsat and MODIS LST have relatively high correlation with AWS temperature, and the slope of the

  1. Sensitivity of Temperature Profiles Retrieved from Mars Global Surveyor Thermal Emission Spectrometer (MGS/TES) Observations to the GSFC Synthetic Mars Model Atmosphere

    NASA Technical Reports Server (NTRS)

    Maguire, William C.; Pearl, J. C.; Smith, M. D.; Thompson, R. F.; Conrath, B. J.; Dason, S.; Kaelberer, M. S.; Christensen, P. R.

    1999-01-01

    Part of the task of interpreting IR spectral features observed by MGS/TES due to surface minerals requires distinguishing those IR signatures from atmospheric signatures of gas and dust. Surface-atmosphere separation for MGS/TES depends on knowledge of the retrieved temperature profile. In turn, the temperature retrieval Erom the observed data depends on molecular parameters including 15 micron CO2 line shape or line intensities which contribute to defining the Mars synthetic radiative transfer model. Using a simple isothermal, homogeneous single layer model of Pinnock and Shine, we find the ratio of (the error in degrees Kelvin of the retrieved temperature profile) to (the percentage error in the absorption coefficient) (deg K/percent) to be 0.4 at 200K. This ratio at 150K and 250K is 0.2 and 0.6, respectively. A more refined model, incorporating observed MGS/TES retrieved temperature profiles, the TES instrumental resolution and the most recent molecular modelling, will yield an improved knowledge of this error sensitivity. We present results of such a sensitivity study to determine the dependence of temperature profiles inverted from MGS/TES on these and other molecular parameters. This work was supported in part by NASA's Mars Data Analysis Program.

  2. Comparison of MODIS Satellite Land Surface Temperature with Air Temperature along a 5000-metre Elevation Transect on Kilimanjaro, Tanzania.

    NASA Astrophysics Data System (ADS)

    Pepin, N. C.; Williams, R.; Maeda, E. E.

    2015-12-01

    There is concern that high elevations may be warming more rapidly than lower elevations, but there is a lack of observational data from weather stations in the high mountains. One alternative data source is satellite LST (Land Surface Temperature) which has extensive spatial coverage. This study compares instantaneous values of LST (1030 and 2230 local solar time) as measured by the MODIS MOD11A2 product at 1 km resolution with equivalent screen level air temperatures (in the same pixel) measured from a transect of 22 in situ weather stations across Kilimanjaro ranging in elevation from 990 to 5803 m. Data consists of 11 years on the SW slope and 3 years on the NE slope, equating to >500 and ~140 octtads (8-day periods) respectively. Results show substantial differences between LST and local air temperature, sometimes up to 20C. During the day the LST tends to be higher than air temperature and the reverse is true at night. The differences show large variance, particularly during the daytime, and tend to increase with elevation, particularly on the NE slope of the mountain which faces the sun when the daytime observations are taken (1030 LST). Differences between LST and air temperature are larger in the dry seasons (JF and JJAS), and reduce when conditions are more cloudy. Systematic relationships with cloud cover and vegetation characteristics (as measured by NDVI and MAIAC for the same pixel) are displayed. More vegetation reduces daytime surface heating above the air temperature, but this relationship weakens with elevation. Nighttime differences are more stable and show no relationship with vegetation indices. Therefore the predictability of the LST/air temperature differences reduces at high elevations and it is therefore much more challenging to use satellite data at high elevations to complement in situ air temperature measurements for climate change assessments, especially for daytime maximum temperatures.

  3. Estimating Sampling Biases and Measurement Uncertainties of AIRS-AMSU-A Temperature and Water Vapor Observations Using MERRA Reanalysis

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas J.; Savtchenko, Andrey K.; Tian, Baijun; Fetzer, Eric; Yung, Yuk L.; Theobald, Michael; Vollmer, Bruce; Fishbein, Evan; Won, Young-In

    2014-01-01

    We use MERRA (Modern Era Retrospective-Analysis for Research Applications) temperature and water vapor data to estimate the sampling biases of climatologies derived from the AIRS/AMSU-A (Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A) suite of instruments. We separate the total sampling bias into temporal and instrumental components. The temporal component is caused by the AIRS/AMSU-A orbit and swath that are not able to sample all of time and space. The instrumental component is caused by scenes that prevent successful retrievals. The temporal sampling biases are generally smaller than the instrumental sampling biases except in regions with large diurnal variations, such as the boundary layer, where the temporal sampling biases of temperature can be +/- 2 K and water vapor can be 10% wet. The instrumental sampling biases are the main contributor to the total sampling biases and are mainly caused by clouds. They are up to 2 K cold and greater than 30% dry over mid-latitude storm tracks and tropical deep convective cloudy regions and up to 20% wet over stratus regions. However, other factors such as surface emissivity and temperature can also influence the instrumental sampling bias over deserts where the biases can be up to 1 K cold and 10% wet. Some instrumental sampling biases can vary seasonally and/or diurnally. We also estimate the combined measurement uncertainties of temperature and water vapor from AIRS/AMSU-A and MERRA by comparing similarly sampled climatologies from both data sets. The measurement differences are often larger than the sampling biases and have longitudinal variations.

  4. Spatial and Temporal Inter-Relationships Between Anomalies of Temperature, Moisture, Cloud Cover, and OLR as Observed by AIRS/AMSU on Aqua

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2008-01-01

    AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU include surface skin temperature and atmospheric temperature profiles; atmospheric humidity profiles, percent cloud cover and cloud top pressure, and OLR. Near real time products, stating with September 2002, have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. Results in this paper included products through April 2008. The time period studied is marked by a substantial warming trend of Northern Hemisphere Extropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear Sky and All Sky OLR The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, are shown below, with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. The ability to match this data represents a good test of a model's response to El Nino.

  5. Homogenisation of minimum and maximum air temperature in northern Portugal

    NASA Astrophysics Data System (ADS)

    Freitas, L.; Pereira, M. G.; Caramelo, L.; Mendes, L.; Amorim, L.; Nunes, L.

    2012-04-01

    Homogenization of minimum and maximum air temperature has been carried out for northern Portugal for the period 1941-2010. The database corresponds to the values of the monthly arithmetic averages calculated from daily values observed at stations within the network of stations managed by the national Institute of Meteorology (IM). Some of the weather stations of IM's network are collecting data for more than a century; however, during the entire observing period, some factors have affected the climate series and have to be considered such as, changes in the station surroundings and changes related to replacement of manually operated instruments. Besides these typical changes, it is of particular interest the station relocation to rural areas or to the urban-rural interface and the installation of automatic weather stations in the vicinity of the principal or synoptic stations with the aim of replacing them. The information from these relocated and new stations was merged to produce just one but representative time series of that site. This process starts at the end 90's and the information of the time series fusion process constitutes the set of metadata used. Two basic procedures were performed: (i) preliminary statistical and quality control analysis; and, (ii) detection and correction of problems of homogeneity. In the first case, was developed and used software for quality control, specifically dedicated for the detection of outliers, based on the quartile values of the time series itself. The analysis of homogeneity was performed using the MASH (Multiple Analysis of Series for Homogenisation) and HOMER, which is a software application developed and recently made available within the COST Action ES0601 (COST-ES0601, 2012). Both methods provide a fast quality control of the original data and were developed for automatic processing, analyzing, homogeneity testing and adjusting of climatological data, but manual usage is also possible. Obtained results with both

  6. Skin sites to predict deep-body temperature while wearing firefighters' personal protective equipment during periodical changes in air temperature.

    PubMed

    Kim, Siyeon; Lee, Joo-Young

    2016-04-01

    The aim of this study was to investigate stable and valid measurement sites of skin temperatures as a non-invasive variable to predict deep-body temperature while wearing firefighters' personal protective equipment (PPE) during air temperature changes. Eight male firefighters participated in an experiment which consisted of 60-min exercise and 10-min recovery while wearing PPE without self-contained breathing apparatus (7.75 kg in total PPE mass). Air temperature was periodically fluctuated from 29.5 to 35.5 °C with an amplitude of 6 °C. Rectal temperature was chosen as a deep-body temperature, and 12 skin temperatures were recorded. The results showed that the forehead and chest were identified as the most valid sites to predict rectal temperature (R(2) = 0.826 and 0.824, respectively) in an environment with periodically fluctuated air temperatures. This study suggests that particular skin temperatures are valid as a non-invasive variable when predicting rectal temperature of an individual wearing PPE in changing ambient temperatures. Practitioner Summary: This study should offer assistance for developing a more reliable indirect indicating system of individual heat strain for firefighters in real time, which can be used practically as a precaution of firefighters' heat-related illness and utilised along with physiological monitoring. PMID:26214379

  7. A neural network method for land surface temperature retrieval from AMSR-E passive microwave data over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Gao, C. X.; Qiu, S.; Wu, H.; Jiang, X. G.; Li, Z. L.; Huo, H. Y.

    2012-04-01

    The Tibetan Plateau is well known both for its high altitude and unique geographical features, and has been identified to be critical in regulating the Asia monsoon climate and hydrological cycle. The presence of permafrost and seasonal frozen ground play an important role in determining the nature of Tibetan land and atmosphere interactions. Land surface temperature (LST) is the link between soil-vegetation-atmosphere fluxes and soil water content through the energy water balance, and can be used as an indicator of soil moisture dynamics and for partitioning between sensible and latent heat. In this study, the LSTs over the Tibetan Plateau are retrieved from advanced microwave scanning radiometer-earth (AMSR-E) passive microwave data combined with infrared LST measurements (MODIS LST) onboard the same platform, Aqua satellite, using a generalized regression neural network method. Because of the difficulties in obtaining representative in-situ LST measurements at AMSR-E pixel scale, the MODIS LST is taken as actual ground measurements. To make the method suitable for more situations, clear-sky and cloudy brightness temperatures in AMSR-E channels are simulated under various atmospheric and surface conditions with the aid of the monochromatic radiative transfer model and the advances integral equation model, and are integrated with the measured AMSR-E brightness temperatures and MODIS LSTs to learn the neural network. The results show that the retrieved LST from AMSR-E data in channels 23.8V, 36.5H, 36.5V, 89.0V and 89.0H GHz (V: vertical polarization and H: horizontal polarization) gives the minimal root mean square error (RMSE), approximately 4.5 K, and that more than 73% of errors are within 4 K. In addition, a new group of LST (denoted as AMSR-E LST1) is derived with a single channel method from the same AMSR-E data in channel 37 GHz using a linear relation and is evaluated with MODIS LST. It is noted that there are significant differences between AMSR-E LST1

  8. Air-Cooled Design of a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization Systems

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.; Affleck, Dave L.; Rosen, Micha; LeVan, M. Douglas; Wang, Yuan; Cavalcante, Celio L.

    2004-01-01

    The air revitalization system of the International Space Station (ISS) operates in an open loop mode and relies on the resupply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby closing the air-loop. We have a developed a temperature-swing adsorption compressor (TSAC) for performing these tasks that is energy efficient, quiet, and has no rapidly moving parts. This paper discusses the mechanical design and the results of thermal model validation tests of a TSAC that uses air as the cooling medium.

  9. Determination of needed parameters for measuring temperature fields in air by thermography

    NASA Astrophysics Data System (ADS)

    Pešek, Martin; Pavelek, Milan

    2012-04-01

    The aim of this article is the parameters determination of equipment for measuring temperature fields in air using an infrared camera. This method is based on the visualization of temperature fields in an auxiliary material, which is inserted into the non-isothermal air flow. The accuracy of air temperature measurement (or of surface temperature of supplies) by this method depends especially on (except for parameters of infrared camera) the determination of the static and the dynamic qualities of auxiliary material. The emissivity of support material is the static quality and the dynamic quality is time constant. Support materials with a high emissivity and a low time constant are suitable for the measurement. The high value of emissivity results in a higher measurement sensitivity and the radiation temperature independence. In this article the emissivity of examined kinds of auxiliary materials (papers and textiles) is determined by temperature measuring of heated samples by a calibrated thermocouple and by thermography, with the emissivity setting on the camera to 1 and with the homogeneous radiation temperature. Time constants are determined by a step change of air temperature in the surrounding of auxiliary material. The time constant depends mainly on heat transfer by the convection from the air into the auxiliary material. That is why the effect of air temperature is examined in this article (or a temperature difference towards the environmental temperature) and the flow velocity on the time constant with various types of auxiliary materials. The obtained results allow to define the conditions for using the method of measurement of temperature fields in air during various heating and air conditioning applications.

  10. Effect of pyrolysis temperature and air flow on toxicity of gases from a polycarbonate polymer

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Brick, V. E.; Brauer, D. P.

    1978-01-01

    A polycarbonate polymer was evaluated for toxicity of pyrolysis gases generated at various temperatures without forced air flow and with 1 L/min air flow, using the toxicity screening test method developed at the University of San Francisco. Time to various animal responses decreased with increasing pyrolysis temperature over the range from 500 C to 800 C. There appeared to be no significant toxic effects at 400 C and lower temperatures.

  11. Some Effects of Air and Fuel Oil Temperatures on Spray Penetration and Dispersion

    NASA Technical Reports Server (NTRS)

    Gelalles, A G

    1930-01-01

    Presented here are experimental results obtained from a brief investigation of the appearance, penetration, and dispersion of oil sprays injected into a chamber of highly heated air at atmospheric pressure. The development of single sprays injected into a chamber containing air at room temperature and at high temperature was recorded by spray photography equipment. A comparison of spray records showed that with the air at the higher temperature, the spray assumed the appearance of thin, transparent cloud, the greatest part of which rapidly disappeared from view. With the chamber air at room temperature, a compact spray with an opaque core was obtained. Measurements of the records showed a decrease in penetration and an increase in the dispersion of the spray injected into the heated air. No ignition of the fuel injected was observed or recorded until the spray particles came in contact with the much hotter walls of the chamber about 0.3 second after the start of injection.

  12. Validation of AIRS V6 Surface Temperature over Greenland with GCN and NOAA Stations

    NASA Technical Reports Server (NTRS)

    Lee, Jae N.; Hearty, Thomas; Cullather, Richard; Nowicki, Sophie; Susskind, Joel

    2016-01-01

    This work compares the temporal and spatial characteristics of the AIRSAMSU (Atmospheric Infrared Sounder Advanced Microwave Sounding Unit A) Version 6 and MODIS (Moderate resolution Imaging Spectroradiometer) Collection 5 derived surface temperatures over Greenland. To estimate uncertainties in space-based surface temperature measurements, we re-projected the MODIS Ice Surface Temperature (IST) to 0.5 by 0.5 degree spatial resolution. We also re-gridded AIRS Skin Temperature (Ts) into the same grid but classified with different cloud conditions and surface types. These co-located data sets make intercomparison between the two instruments relatively straightforward. Using this approach, the spatial comparison between the monthly mean AIRS Ts and MODIS IST is in good agreement with RMS 2K for May 2012. This approach also allows the detection of any long-term calibration drift and the careful examination of calibration consistency in the MODIS and AIRS temperature data record. The temporal correlations between temperature data are also compared with those from in-situ measurements from GC-Net (GCN) and NOAA stations. The coherent time series of surface temperature evident in the correlation between AIRS Ts and GCN temperatures suggest that at monthly time scales both observations capture the same climate signal over Greenland. It is also suggested that AIRS surface air temperature (Ta) can be used to estimate the boundary layer inversion.

  13. Attribution of precipitation changes on ground-air temperature offset: Granger causality analysis

    NASA Astrophysics Data System (ADS)

    Cermak, Vladimir; Bodri, Louise

    2016-06-01

    This work examines the causal relationship between the value of the ground-air temperature offset and the precipitation changes for monitored 5-min data series together with their hourly and daily averages obtained at the Sporilov Geophysical Observatory (Prague). Shallow subsurface soil temperatures were monitored under four different land cover types (bare soil, sand, short-cut grass and asphalt). The ground surface temperature (GST) and surface air temperature (SAT) offset, ΔT(GST-SAT), is defined as the difference between the temperature measured at the depth of 2 cm below the surface and the air temperature measured at 5 cm above the surface. The results of the Granger causality test did not reveal any evidence of Granger causality for precipitation to ground-air temperature offsets on the daily scale of aggregation except for the asphalt pavement. On the contrary, a strong evidence of Granger causality for precipitation to the ground-air temperature offsets was found on the hourly scale of aggregation for all land cover types except for the sand surface cover. All results are sensitive to the lag choice of the autoregressive model. On the whole, obtained results contain valuable information on the delay time of ΔT(GST-SAT) caused by the rainfall events and confirmed the importance of using autoregressive models to understand the ground-air temperature relationship.

  14. The Influence of African Dust on Air Quality in the Caribbean Basin: An Integrated Analysis of Satellite Retrievals, Ground Observations, and Model Simulations

    NASA Astrophysics Data System (ADS)

    Yu, H.; Prospero, J. M.; Chin, M.; Randles, C. A.; da Silva, A.; Bian, H.

    2015-12-01

    Long-term surface measurements in several locations extending from northeastern coast of South America to Miami in Florida have shown that African dust arrives in the Greater Caribbean Basin throughout a year. This long-range transported dust frequently elevates the level of particulate matter (PM) above the WHO guideline for PM10, which raises a concern of possible adverse impact of African dust on human health in the region. There is also concern about how future climate change might affect dust transport and its influence on regional air quality. In this presentation we provide a comprehensive characterization of the influence of African dust on air quality in the Caribbean Basin via integrating the ground observations with satellite retrievals and model simulations. The ground observations are used to validate and evaluate satellite retrievals and model simulations of dust, while satellite measurements and model simulations are used to extend spatial coverage of the ground observations. An analysis of CALIPSO lidar measurements of three-dimensional distribution of aerosols over 2007-2014 yields altitude-resolved dust mass flux into the region. On a basis of 8-year average and integration over the latitude zone of 0°-30°N, a total of 76 Tg dust is imported to the air above the Greater Caribbean Basin, of which 34 Tg (or 45%) is within the lowest 1 km layer and most relevant to air quality concern. The seasonal and interannual variations of the dust import are well correlated with ground observations of dust in Cayenne, Barbados, Puerto Rico, and Miami. We will also show comparisons of the size-resolved dust amount from both NASA GEOS-5 aerosol simulation and MERRA-2 aerosol reanalysis (i.e., column aerosol loading being constrained by satellite measurements of radiance at the top of atmosphere) with the ground observations and satellite measurement.

  15. The influence of air-conditioning on street temperatures in the city of Paris

    NASA Astrophysics Data System (ADS)

    de Munck, C. S.; Pigeon, G.; Masson, V.; Marchadier, C.; Meunier, F.; Tréméac, B.; Merchat, M.

    2010-12-01

    A consequence of urban heat islands in summer is the increased use of air-conditioning during extreme heat events : the use of air-conditioning systems, while cooling the inside of buildings releases waste heat (as latent and sensible heat) in the lower part of the urban atmosphere, hence potentially increasing air street temperatures where the heat is released. This may lead locally to a further increase in air street temperatures, therefore increasing the air cooling demand, while at the same time lowering the efficiency of air-conditioning units. A coupled model consisting of a meso-scale meteorological model (MESO-NH) and an urban energy balance model (TEB) has been implemented with an air-conditioning module and used in combination to real spatialised datasets to understand and quantify potential increases in temperature due to air-conditioning heat releases for the city of Paris . In a first instance, the current types of air-conditioning systems co-existing in the city were simulated (underground chilled water network, wet cooling towers and individual air-conditioning units) to study the effects of latent and sensible heat releases on street temperatures. In a third instance, 2 scenarios were tested to characterise the impacts of likely future trends in air-conditioning equipment in the city : a first scenario for which current heat releases were converted to sensible heat, and a second based on 2030s projections of air-conditioning equipment at the scale of the city. All the scenarios showed an increase in street temperature which, as expected, was greater at night time than day time. For the first two scenarios, this increase in street temperatures was localised at or near the sources of air-conditioner heat releases, while the 2030s air-conditioning scenario impacted wider zones in the city. The amplitude of the increase in temperature varied from 0,25°C to 1°C for the air-conditioning current state, between 0,25°C and 2°C for the sensible heat

  16. Line parameters including temperature dependences of air- and self-broadened line shapes of 12C16O2: 2.06-μm region

    NASA Astrophysics Data System (ADS)

    Benner, D. Chris; Devi, V. Malathy; Sung, Keeyoon; Brown, Linda R.; Miller, Charles E.; Payne, Vivienne H.; Drouin, Brian J.; Yu, Shanshan; Crawford, Timothy J.; Mantz, Arlan W.; Smith, Mary Ann H.; Gamache, Robert R.

    2016-08-01

    This study reports the results from analyzing a number of high resolution, high signal-to-noise ratio (S/N) spectra in the 2.06-μm spectral region for pure CO2 and mixtures of CO2 in dry air. A multispectrum nonlinear least squares curve fitting technique has been used to retrieve the various spectral line parameters. The dataset includes 27 spectra: ten pure CO2, two 99% 13C-enriched CO2 and fifteen spectra of mixtures of 12C-enriched CO2 in dry air. The spectra were recorded at various gas sample temperatures between 170 and 297 K. The absorption path lengths range from 0.347 to 49 m. The sample pressures for the pure CO2 spectra varied from 1.1 to 594 Torr; for the two 13CO2 spectra the pressures were ∼10 and 146 Torr. For the air-broadened spectra, the pressures of the gas mixtures varied between 200 and 711 Torr with CO2 volume mixing ratios ranging from 0.014% to 0.203%. The multispectrum fitting technique was applied to fit simultaneously all these spectra to retrieve consistent set of line positions, intensities, and line shape parameters including their temperature dependences; for this, the Voigt line shape was modified to include line mixing (via the relaxation matrix formalism) and quadratic speed dependence. The new results are compared to select published values, including recent ab initio calculations. These results are required to retrieve the column averaged dry air mole fraction (XCO2) from space-based observations, such as the Orbiting Carbon Observatory-2 (OCO-2) satellite mission that NASA launched in July 2014.

  17. The Effect of Aerosols and Clouds on the Retrieval of Infrared Sea Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Vazquez-Cuervo, Jorge; Armstrong, Edward M.; Harris, Andy

    2004-01-01

    Comparisons are performed between spatially averaged sea surface temperatures (ASST2) as derived from the second Along-Track Scanning Radiometer (ATSR-2) on board the second European Remote Sensing Satellite (ERS-2) and the NOAA-NASA Advanced Very High Resolution Radiometer (AVHRR) Oceans Pathfinder dataset (MPFSST). Difference maps, MPFSST 2 ASST2, along with the application of a simple statistical regression model to aerosol and cloud data from the Total Ozone Mapping Spectrometer ( TOMS), are used to examine the impact of possible aerosol and cloud contamination. Differences varied regionally, but the largest biases were seen off western Africa. Nighttime and daytime differences off western Africa were reduced from -0.5degrees to -0.2degreesC and from -0.1degrees to 0degreesC, respectively. Significant cloud flagging, based on the model, occurred in the Indian Ocean, the equatorial Pacific, and in the vicinity of the Gulf Stream. Comparisons of the MPFSST and the ASST2 with in situ data from the 2002 version of the World Oceanic Database (WOD02) off western Africa show larger mean differences for the MPFSST. The smallest mean differences occurred for nighttime ASST2 - WOD02 with a value of 0.0degrees +/- 0.4degreesC.

  18. Climatology of Vertical Air Motion During Rainfall in Niamey, Niger and Black Forest, Germany using an Innovative Cloud Radar Retrieval Technique

    NASA Astrophysics Data System (ADS)

    Luke, E. P.; Giangrande, S. E.; Kollias, P.

    2008-12-01

    In recent years, the DOE Atmospheric Radiation Measurement (ARM) program has deployed its ARM Mobile Facility (AMF) to collect continuous measurements in several climatologically distinct locations, including a year-long stay in Niamey, Niger and eight months in Germany's Black Forest. The AMF includes a vertically pointing 95 GHz cloud radar, a tool of choice for profiling non-precipitating clouds at high spatial and temporal resolutions, but commonly considered poorly suited to the quantitative study of precipitation, due in large part to attenuation. However, an innovative technique first explored by Lhermitte in the late 1980s, and subsequently by others, sidesteps much of the quantitative uncertainty imposed by attenuation by exploiting non-Rayleigh resonance effects of scattering from raindrops at 95 GHz. Given a modest range of suitable drop sizes, non-Rayleigh resonances appear as distinct peaks and valleys in Doppler spectra, which once identified, can be directly mapped to known drop sizes by Mie theory. Although attenuation in rain at 95 GHz is substantial, key to the technique is that all non-Rayleigh peaks and valleys in a given Doppler spectrum are affected equally, preserving their relative positions and magnitudes (barring feature extinction). Vertical air motion is retrieved very accurately by taking the difference between the measured Doppler velocity of a resonance feature (usually the first valley) and the known terminal velocity of its associated drop size. We have achieved promising retrieval accuracies at spatial and temporal resolutions of 30 meters and 2 seconds. Here we present lessons learned when the retrieval technique is automated and applied to measurements taken in rain over the full durations of the Niamey and Black Forest AMF deployments, comparing vertical air velocity patterns of monsoonal precipitation over the African desert with those of the orographically influenced precipitation in Germany's mountains.

  19. A comparison of urban heat islands mapped using skin temperature, air temperature, and apparent temperature (Humidex), for the greater Vancouver area.

    PubMed

    Ho, Hung Chak; Knudby, Anders; Xu, Yongming; Hodul, Matus; Aminipouri, Mehdi

    2016-02-15

    Apparent temperature is more closely related to mortality during extreme heat events than other temperature variables, yet spatial epidemiology studies typically use skin temperature (also known as land surface temperature) to quantify heat exposure because it is relatively easy to map from satellite data. An empirical approach to map apparent temperature at the neighborhood scale, which relies on publicly available weather station observations and spatial data layers combined in a random forest regression model, was demonstrated for greater Vancouver, Canada. Model errors were acceptable (cross-validated RMSE=2.04 °C) and the resulting map of apparent temperature, calibrated for a typical hot summer day, corresponded well with past temperature research in the area. A comparison with field measurements as well as similar maps of skin temperature and air temperature revealed that skin temperature was poorly correlated with both air temperature (R(2)=0.38) and apparent temperature (R(2)=0.39). While the latter two were more similar (R(2)=0.87), apparent temperature was predicted to exceed air temperature by more than 5 °C in several urban areas as well as around the confluence of the Pitt and Fraser rivers. We conclude that skin temperature is not a suitable proxy for human heat exposure, and that spatial epidemiology studies could benefit from mapping apparent temperature, using an approach similar to the one reported here, to better quantify differences in heat exposure that exist across an urban landscape. PMID:26706765

  20. Nadir sensitivity of passive millimeter and submillimeter wave channels to clear air temperature and water vapor variations

    NASA Astrophysics Data System (ADS)

    Klein, Marian; Gasiewski, Albin J.

    2000-07-01

    The upwelling microwave-to-submillimeter wave brightness temperature observed from above the Earth's atmosphere is sensitive to parameters such as pressure, temperature, water vapor, and hydrometeor content, and this sensitivity has been successfully used for passive vertical sounding of temperature and water vapor profiles. To determine optimal satellite observation strategies for future passive microwave instruments operating at frequencies above those now used, a study of the potential clear-air vertical sounding capabilities of all significant microwave oxygen and water vapor absorption lines in the frequency range from approximately 10 to 1000 GHz has been performed. The study is based on a second-order statistical climatological model covering four seasons, three latitudinal zones, and altitudes up to ˜70 km. The climatological model was developed by comparing data from three sources: the Upper Atmosphere Research Satellite Halogen Occultation Experiment (UARS HALOE) instrument, the TIROS Operational Vertical Sounder (TOVS) Initial Guess Retrieval radiosonde set, and the NOAA advanced microwave sounder unit (AMSU) radiosonde set. The Liebe MPM87 absorption model is used for water vapor and oxygen absorption and considers the effects of ozone and isotope absorption. Variations in the vertical sounding capabilities due to statistical variations of water vapor and temperature with latitude and season around each line are considered, and useful channel sets for geostationary microwave vertical sounding are suggested.

  1. Modelling near subsurface temperature with mixed type boundary condition for transient air temperature and vertical groundwater flow

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev Ranjan; Ramana, D. V.; Singh, R. N.

    2012-10-01

    Near-subsurface temperatures have signatures of climate change. Thermal models of subsurface have been constructed by prescribing time dependent Dirichlet type boundary condition wherein the temperature at the soil surface is prescribed and depth distribution of temperature is obtained. In this formulation it is not possible to include the relationship between air temperatures and the temperature of soil surface. However, if one uses a Robin type boundary condition, a transfer coefficient relates the air and soil surface temperatures which helps to determine both the temperature at the surface and at depth given near surface air temperatures. This coefficient is a function of meteorological conditions and is readily available. We have developed such a thermal model of near subsurface region which includes both heat conduction and advection due to groundwater flows and have presented numerical results for changes in the temperature-depth profiles for different values of transfer coefficient and groundwater flux. There are significant changes in temperature and depth profiles due to changes in the transfer coefficient and groundwater flux. The analytical model will find applications in the interpretation of the borehole geothermal data to extract both climate and groundwater flow signals.

  2. Comparison of Near-Surface Air Temperatures and MODIS Ice-Surface Temperatures at Summit, Greenland (2008-2013)

    NASA Technical Reports Server (NTRS)

    Shuman, Christopher A.; Hall, Dorothy K.; DiGirolamo, Nicolo E.; Mefford, Thomas K.; Schnaubelt, Michael J.

    2014-01-01

    We have investigated the stability of the MODerate resolution Imaging Spectroradiometer (MODIS) infrared-derived ice surface temperature (IST) data from Terra for use as a climate quality data record. The availability of climate quality air temperature data (TA) from a NOAA Global Monitoring Division observatory at Greenlands Summit station has enabled this high temporal resolution study of MODIS ISTs. During a 5 year period (July 2008 to August 2013), more than 2500 IST values were compared with 3-minute average TA values derived from the 1-minute data from NOAAs primary 2 m air temperature sensor. These data enabled an expected small offset between air and surface temperatures at this the ice sheet location to be investigated over multiple annual cycles.

  3. Investigation of the impact of extreme air temperature on river water temperature: case study of the heat episode 2013.

    NASA Astrophysics Data System (ADS)

    Weihs, Philipp; Trimmel, Heidelinde; Goler, Robert; Formayer, Herbert; Holzapfel, Gerda; Rauch, Hans Peter

    2014-05-01

    Water stream temperature is a relevant factor for water quality since it is an important driver of water oxygen content and in turn also reduces or increases stress on the aquatic fauna. The water temperature of streams is determined by the source and inflow water temperature, by the energy balance at the stream surface and by the hydrological regime of the stream. Main factors driving the energy balance of streams are radiation balance and air temperature which influences the sensitive and latent heat flux. The present study investigates the impact of the heat episode of summer 2013 on water temperature of two lowland rivers in south eastern Austria. Within the scope of the project BIO_CLIC routine measurements of water temperature at 33 locations alongside the rivers Pinka and Lafnitz have been performed since spring 2012. In addition meteorological measurements of global shortwave and longwave radiation, air temperature, wind and air humidity have been carried out during this time. For the same time period, data of discharge and water levels of both rivers were provided by the public hydrological office. The heat episode of summer 2013 started, according to the Kysely- definition, on 18 July and lasted until 14 August. The highest air temperature ever recorded in Austria was reported on 8 August at 40.5°C. In Güssing, which is located within the project area, 40.0 °C were recorded. In the lower reaches of the river Pinka, at the station Burg the monthly mean water temperature of August 2013 was with more than 22°C, 1°C higher than the mean water temperature of the same period of the previous years. At the same station, the maximum water temperature of 27.1°C was recorded on 29 July, 9 days prior to the air temperature record. Analysis shows that at the downstream stations the main driving parameter is solar radiation whereas at the upstream stations a better correlation between air temperature and water temperature is obtained. Using the extensive data set

  4. Retrieving Atmospheric Temperature and Moisture Profiles from NPP CRIS/ATMS Sensors Using Crimss EDR Algorithm

    NASA Technical Reports Server (NTRS)

    Liu, X.; Kizer, S.; Barnet, C.; Dvakarla, M.; Zhou, D. K.; Larar, A. M.

    2012-01-01

    The Joint Polar Satellite System (JPSS) is a U.S. National Oceanic and Atmospheric Administration (NOAA) mission in collaboration with the U.S. National Aeronautical Space Administration (NASA) and international partners. The NPP Cross-track Infrared Microwave Sounding Suite (CrIMSS) consists of the infrared (IR) Crosstrack Infrared Sounder (CrIS) and the microwave (MW) Advanced Technology Microwave Sounder (ATMS). The CrIS instrument is hyperspectral interferometer, which measures high spectral and spatial resolution upwelling infrared radiances. The ATMS is a 22-channel radiometer similar to Advanced Microwave Sounding Units (AMSU) A and B. It measures top of atmosphere MW upwelling radiation and provides capability of sounding below clouds. The CrIMSS Environmental Data Record (EDR) algorithm provides three EDRs, namely the atmospheric vertical temperature, moisture and pressure profiles (AVTP, AVMP and AVPP, respectively), with the lower tropospheric AVTP and the AVMP being JPSS Key Performance Parameters (KPPs). The operational CrIMSS EDR an algorithm was originally designed to run on large IBM computers with dedicated data management subsystem (DMS). We have ported the operational code to simple Linux systems by replacing DMS with appropriate interfaces. We also changed the interface of the operational code so that we can read data from both the CrIMSS science code and the operational code and be able to compare lookup tables, parameter files, and output results. The detail of the CrIMSS EDR algorithm is described in reference [1]. We will present results of testing the CrIMSS EDR operational algorithm using proxy data generated from the Infrared Atmospheric Sounding Interferometer (IASI) satellite data and from the NPP CrIS/ATMS data.

  5. Geographical and Geomorphological Effects on Air Temperatures in the Columbia Basin's Signature Vineyards

    NASA Astrophysics Data System (ADS)

    Olson, L.; Pogue, K. R.; Bader, N.

    2012-12-01

    The Columbia Basin of Washington and Oregon is one of the most productive grape-growing areas in the United States. Wines produced in this region are influenced by their terroir - the amalgamation of physical and cultural elements that influence grapes grown at a particular vineyard site. Of the physical factors, climate, and in particular air temperature, has been recognized as a primary influence on viticulture. Air temperature directly affects ripening in the grapes. Proper fruit ripening, which requires precise and balanced levels of acid and sugar, and the accumulation of pigment in the grape skin, directly correlates with the quality of wine produced. Many features control air temperature within a particular vineyard. Elevation, latitude, slope, and aspect all converge to form complex relationships with air temperatures; however, the relative degree to which these attributes affect temperatures varies between regions and is not well understood. This study examines the influence of geography and geomorphology on air temperatures within the American Viticultural Areas (AVAs) of the Columbia Basin in eastern Washington and Oregon. The premier vineyards within each AVA, which have been recognized for producing high-quality wine, were equipped with air temperature monitoring stations that collected hourly temperature measurements. A variety of temperature statistics were calculated, including daily average, maximum, and minimum temperatures. From these values, average diurnal variation and growing degree-days (10°C) were calculated. A variety of other statistics were computed, including date of first and last frost and time spent below a minimum temperature threshold. These parameters were compared to the vineyard's elevation, latitude, slope, aspect, and local topography using GPS, ArcCatalog, and GIS in an attempt to determine their relative influences on air temperatures. From these statistics, it was possible to delineate two trends of temperature variation

  6. Robust Comparison of Climate Models with Observations Using Blended Land Air and Ocean Sea Surface Temperatures

    NASA Astrophysics Data System (ADS)

    Hausfather, Z.; Jacobs, P.; Cowtan, K.; Hawkins, E.; Mann, M. E.; Miller, S. K.; Steinman, B. A.; Way, R. G.; Stolpe, M.

    2015-12-01

    Model-observation comparisons provide an important test of climate models' ability to realistically simulate the transient evolution of the system. A great deal of attention has recently focused on the so-called "hiatus" period of the past ~15 years, when estimates of recent surface temperature evolution fall at the lower end of climate model projections. This work quantifies a systematic bias in model-observation comparisons arising from differential warming rates between sea surface temperatures and surface air temperatures over oceans. Global mean temperatures from climate model simulations are typically calculated using surface air temperatures, while the corresponding observations are based on a blend of air and sea surface temperatures. A further bias arises from the treatment of temperatures in regions where the sea ice boundary has changed. We discuss the magnitude of these biases, and their implications for the evaluation of climate model performance over the "hiatus" period and the full instrumental record.

  7. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    PubMed Central

    Lee, Jing-Nang; Lin, Tsung-Min

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system. PMID:25250390

  8. Oxide modified air electrode surface for high temperature electrochemical cells

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1992-01-01

    An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

  9. Stability limit of room air temperature of a VAV system

    SciTech Connect

    Matsuba, Tadahiko; Kamimura, Kazuyuki; Kasahara, Masato; Kimbara, Akiomi; Kurosu, Shigeru; Murasawa, Itaru; Hashimoto, Yukihiko

    1998-12-31

    To control heating, ventilating, and air-conditioning (HVAC) systems, it has been necessary to accept an analog system controlled mainly by proportional-plus-integral-plus-derivative (PID) action. However, when conventional PID controllers are replaced with new digital controllers by selecting the same PID parameters as before, the control loops have often got into hunting phenomena, which result in undamped oscillations. Unstable control characteristics (such as huntings) are thought to be one of the crucial problems faced by field operators. The PID parameters must be carefully selected to avoid instabilities. In this study, a room space is simulated as a thermal system that is air-conditioned by a variable-air-volume (VAV) control system. A dynamic room model without infiltration or exfiltration, which is directly connected to a simple air-handling unit without an economizer, is developed. To explore the possible existence of huntings, a numerical system model is formulated as a bilinear system with time-delayed feedback, and a parametric analysis of the stability limit is presented. Results are given showing the stability region affected by the selection of control and system parameters. This analysis was conducted to help us tune the PID controllers for optimal HVAC control.

  10. New temperature and pressure retrieval algorithm for high-resolution infrared solar occultation spectroscopy: analysis and validation against ACE-FTS and COSMIC

    NASA Astrophysics Data System (ADS)

    Olsen, K. S.; Toon, G. C.; Boone, C. D.; Strong, K.

    2015-10-01

    Motivated by the initial selection of a high-resolution solar occultation Fourier transform spectrometer (FTS) to fly to Mars on the ExoMars Trace Gas Orbiter, we have been developing algorithms for retrieving volume mixing ratio vertical profiles of trace gases, the primary component of which is a new algorithm and software for retrieving vertical profiles of temperature and pressure from the spectra. In contrast to Earth-observing instruments, which can rely on accurate meteorological models, a priori information, and spacecraft position, Mars retrievals require a method with minimal reliance on such data. The temperature and pressure retrieval algorithms developed for this work were evaluated using Earth-observing spectra from the Atmospheric Chemistry Experiment (ACE) FTS, a solar occultation instrument in orbit since 2003, and the basis for the instrument selected for a Mars mission. ACE-FTS makes multiple measurements during an occultation, separated in altitude by 1.5-5 km, and we analyze 10 CO2 vibration-rotation bands at each altitude, each with a different usable altitude range. We describe the algorithms and present results of their application and their comparison to the ACE-FTS data products. The Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) provides vertical profiles of temperature up to 40 km with high vertical resolution. Using six satellites and GPS radio occultation, COSMIC's data product has excellent temporal and spatial coverage, allowing us to find coincident measurements with ACE with very tight criteria: less than 1.5 h and 150 km. We present an inter-comparison of temperature profiles retrieved from ACE-FTS using our algorithm, that of the ACE Science Team (v3.5), and from COSMIC. When our retrievals are compared to ACE-FTS v3.5, we find mean differences between -5 and +2 K, and that our retrieved profiles have no seasonal or zonal biases, but do have a warm bias in the stratosphere and a cold bias in the

  11. New temperature and pressure retrieval algorithm for high-resolution infrared solar occultation spectroscopy: analysis and validation against ACE-FTS and COSMIC

    NASA Astrophysics Data System (ADS)

    Olsen, Kevin S.; Toon, Geoffrey C.; Boone, Chris D.; Strong, Kimberly

    2016-03-01

    Motivated by the initial selection of a high-resolution solar occultation Fourier transform spectrometer (FTS) to fly to Mars on the ExoMars Trace Gas Orbiter, we have been developing algorithms for retrieving volume mixing ratio vertical profiles of trace gases, the primary component of which is a new algorithm and software for retrieving vertical profiles of temperature and pressure from the spectra. In contrast to Earth-observing instruments, which can rely on accurate meteorological models, a priori information, and spacecraft position, Mars retrievals require a method with minimal reliance on such data. The temperature and pressure retrieval algorithms developed for this work were evaluated using Earth-observing spectra from the Atmospheric Chemistry Experiment (ACE) FTS, a solar occultation instrument in orbit since 2003, and the basis for the instrument selected for a Mars mission. ACE-FTS makes multiple measurements during an occultation, separated in altitude by 1.5-5 km, and we analyse 10 CO2 vibration-rotation bands at each altitude, each with a different usable altitude range. We describe the algorithms and present results of their application and their comparison to the ACE-FTS data products. The Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) provides vertical profiles of temperature up to 40 km with high vertical resolution. Using six satellites and GPS radio occultation, COSMIC's data product has excellent temporal and spatial coverage, allowing us to find coincident measurements with ACE with very tight criteria: less than 1.5 h and 150 km. We present an intercomparison of temperature profiles retrieved from ACE-FTS using our algorithm, that of the ACE Science Team (v3.5), and from COSMIC. When our retrievals are compared to ACE-FTS v3.5, we find mean differences between -5 and +2 K and that our retrieved profiles have no seasonal or zonal biases but do have a warm bias in the stratosphere and a cold bias in the

  12. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  13. Combustion of Gaseous Fuels with High Temperature Air in Normal- and Micro-gravity Conditions

    NASA Technical Reports Server (NTRS)

    Wang, Y.; Gupta, A. K.

    2001-01-01

    The objective of this study is determine the effect of air preheat temperature on flame characteristics in normal and microgravity conditions. We have obtained qualitative (global flame features) and some quantitative information on the features of flames using high temperature combustion air under normal gravity conditions with propane and methane as the fuels. This data will be compared with the data under microgravity conditions. The specific focus under normal gravity conditions has been on determining the global flame features as well as the spatial distribution of OH, CH, and C2 from flames using high temperature combustion air at different equivalence ratio.

  14. Investigation of air temperature on the nightside of Venus derived from VIRTIS-H on board Venus-Express

    NASA Astrophysics Data System (ADS)

    Migliorini, A.; Grassi, D.; Montabone, L.; Lebonnois, S.; Drossart, P.; Piccioni, G.

    2012-02-01

    We present the spatial distribution of air temperature on Venus' night side, as observed by the high spectral resolution channel of VIRTIS (Visible and Infrared Thermal Imaging Spectrometer), or VIRTIS-H, on board the ESA mission Venus Express. The present work extends the investigation of the average thermal fields in the northern hemisphere of Venus, by including the VIRTIS-H data. We show results in the pressure range of 100-4 mbar, which corresponds to the altitude range of 65-80 km. With these new retrievals, we are able to compare the thermal structure of the Venus' mesosphere in both hemispheres. The major thermal features reported in previous investigations, i.e. the cold collar at about 65-70°S latitude, 100 mbar pressure level, and the asymmetry between the evening and morning sides, are confirmed here. By comparing the temperatures retrieved by the VIRTIS spectrometer in the North and South we find that similarities exist between the two hemispheres. Solar thermal tides are clearly visible in the average temperature fields. To interpret the thermal tide signals (otherwise impossible without day site observations), we apply model simulations using the Venus global circulation model Venus GCM (Lebonnois, S., Hourdin, F., Forget, F., Eymet, V., Fournier, R. [2010b]. International Venus Conference, Aussois, 20-26 June 2010) of the Laboratoire de Météorologie Dynamique (LMD). We suggest that the signal detected at about 60-70° latitude and pressure of 100 mbar is a diurnal component, while those located at equatorial latitudes are semi-diurnal. Other tide-related features are clearly identified in the upper levels of the atmosphere.

  15. Temperature Dependences for Air-broadened Widths and Shift Coefficients in the 30013 - 00001 and 30012 - 00001 Bands of Carbon Dioxide near 1600 nm

    NASA Astrophysics Data System (ADS)

    Devi, M.; Predoi-Cross, A.; McKellar, R.; Benner, C.; Miller, C. E.; Toth, R. A.; Brown, L. R.

    2008-12-01

    Nearly 40 high resolution spectra of air-broadened CO2 recorded at temperatures between 215 and 294 K were analyzed using a multispectrum nonlinear least squares technique to determine temperature dependences of air-broadened half width and air-induced pressure shift coefficients in the 30013-00001 and 30012-00001 bands of 12CO2. Data were recorded with two different Fourier transform spectrometers (Kitt Peak FTS at the National Solar Observatory in Arizona and the Bomem FTS at NRC, Ottawa) with optical path lengths ranging between 25 m and 121 m. The sample pressures varied between 11 torr (pure CO2) and 924 torr (CO2-air) with volume mixing ratios of CO2 in air between ~ 0.015 and 0.11. To minimize systematic errors and increase the accuracy of the retrieved parameters, we constrained the multispectrum nonlinear least squares fittings to use quantum mechanical expressions for the rovibrational energies and intensities rather than retrieving the individual positions and intensities line-by-line. The results suggest minimal vibrational dependence for the temperature dependence coefficients.1 1 A. Predoi-Cross and R. Mckellar are grateful for financial support from the National Sciences and Engineering Research Council of Canada. The research at the Jet Propulsion laboratory (JPL), California Institute of Technology, was performed under contract with National Aeronautics and Space Administration. The support received from the National Science Foundation under Grant No. ATM-0338475 to the College of William and Mary is greatly appreciated. The authors thank Mike Dulick of the National Solar Observatory for his assistance in obtaining the data recorded at Kitt Peak.

  16. Increasing influence of air temperature on upper Colorado River streamflow

    NASA Astrophysics Data System (ADS)

    Woodhouse, Connie A.; Pederson, Gregory T.; Morino, Kiyomi; McAfee, Stephanie A.; McCabe, Gregory J.

    2016-03-01

    This empirical study examines the influence of precipitation, temperature, and antecedent soil moisture on upper Colorado River basin (UCRB) water year streamflow over the past century. While cool season precipitation explains most of the variability in annual flows, temperature appears to be highly influential under certain conditions, with the role of antecedent fall soil moisture less clear. In both wet and dry years, when flow is substantially different than expected given precipitation, these factors can modulate the dominant precipitation influence on streamflow. Different combinations of temperature, precipitation, and soil moisture can result in flow deficits of similar magnitude, but recent droughts have been amplified by warmer temperatures that exacerbate the effects of relatively modest precipitation deficits. Since 1988, a marked increase in the frequency of warm years with lower flows than expected, given precipitation, suggests continued warming temperatures will be an increasingly important influence in reducing future UCRB water supplies.

  17. Increasing influence of air temperature on upper Colorado River streamflow

    USGS Publications Warehouse

    Woodhouse, Connie A.; Pederson, Gregory T.; Morino, Kiyomi; McAfee, Stephanie A.; McCabe, Gregory

    2016-01-01

    This empirical study examines the influence of precipitation, temperature, and antecedent soil moisture on upper Colorado River basin (UCRB) water year streamflow over the past century. While cool season precipitation explains most of the variability in annual flows, temperature appears to be highly influential under certain conditions, with the role of antecedent fall soil moisture less clear. In both wet and dry years, when flow is substantially different than expected given precipitation, these factors can modulate the dominant precipitation influence on streamflow. Different combinations of temperature, precipitation, and soil moisture can result in flow deficits of similar magnitude, but recent droughts have been amplified by warmer temperatures that exacerbate the effects of relatively modest precipitation deficits. Since 1988, a marked increase in the frequency of warm years with lower flows than expected, given precipitation, suggests continued warming temperatures will be an increasingly important influence in reducing future UCRB water supplies.

  18. Geometric-Optical Modeling of Directional Thermal Radiance for Improvement of Land Surface Temperature Retrievals from MODIS, ASTER, and Landsat-7 Instruments

    NASA Technical Reports Server (NTRS)

    Li, Xiaowen; Friedl, Mark; Strahler, Alan

    2002-01-01

    The general objectives of this project were to improve understanding of the directional emittance properties of land surfaces in the thermal infrared (TIR) region of the electro-magnetic spectrum. To accomplish these objectives our research emphasized a combination of theoretical model development and empirical studies designed to improve land surface temperature (LST) retrievals from space-borne remote sensing instruments. Following the proposal, the main tasks for this project were to: (1) Participate in field campaigns; (2) Acquire and process field, aircraft, and ancillary data; (3) Develop and refine models of LST emission; (4) Develop algorithms for LST retrieval; and (5) Explore LST retrieval methods for use in energy balance models. In general all of these objectives were addressed, and for the most part achieved. The main results from this project are described in the publications arising from this effort. We summarize our efforts related to each of the objectives.

  19. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region

    NASA Astrophysics Data System (ADS)

    Oikawa, P. Y.; Ge, C.; Wang, J.; Eberwein, J. R.; Liang, L. L.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.

    2015-11-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality.

  20. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region.

    PubMed

    Oikawa, P Y; Ge, C; Wang, J; Eberwein, J R; Liang, L L; Allsman, L A; Grantz, D A; Jenerette, G D

    2015-01-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality. PMID:26556236

  1. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region

    PubMed Central

    Oikawa, P. Y.; Ge, C.; Wang, J.; Eberwein, J. R.; Liang, L. L.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.

    2015-01-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality. PMID:26556236

  2. Effect of air preheat temperature and oxygen concentration on flame structure and emission

    SciTech Connect

    Bolz, S.; Gupta, A.K.

    1998-07-01

    The structure of turbulent diffusion flames with highly preheated combustion air (air preheat temperature in excess of 1,150 C) has been obtained using a specially designed regenerative combustion furnace. Propane gas was used as the fuel. Data have been obtained on the global flame features, spectral emission characteristics, spatial distribution of OH, CH and C{sub 2} species, and pollutants emission from the flames. The results have been obtained for various degrees of air preheat temperatures and O{sub 2} concentration in the air. The color of the flame was found to change from yellow to blue to bluish-green to green over the range of conditions examined. In some cases a hybrid color flame was also observed. The recorded images of the flame photographs were analyzed using color-analyzing software. The results show that thermal and chemical flame behavior strongly depends on the air preheat temperature and oxygen content in the air. The flame color was found to be bluish-green or green at very high air preheat temperatures and low-oxygen concentration. However, at high oxygen concentration the flame color was yellow. The flame volume was found to increase with increase in air-preheat temperature and decrease in oxygen concentration. The flame length showed a similar behavior. The concentrations of OH, CH and C{sub 2} increased with an increase in air preheat temperatures. These species exhibited a two-stage combustion behavior at low oxygen concentration and single stage combustion behavior at high oxygen concentration in the air. Stable flames were obtained for remarkably low equivalence ratios, which would not be possible with normal combustion air. Pollutants emission, including CO{sub 2} and NO{sub x} , was much lower with highly preheated combustion air at low O{sub 2} concentration than the normal air. The results also suggest uniform flow and flame thermal characteristics with conditioned highly preheated air. Highly preheated air combustion provides much

  3. Sampling Biases in Datasets of Historical Mean Air Temperature over Land

    NASA Astrophysics Data System (ADS)

    Wang, K.

    2014-12-01

    Global mean surface air temperature have risen by 0.74 °C over the last 100 years. However, the definition of mean surface air temperature is still a subject of debate. The most defensible definition might be the integral of the continuous temperature measurements over a day (Td0). However, for technological and historical reasons, mean temperatures (Td1) over land have been taken to be the average of the daily maximum and minimum temperature measurements. All existing principle global temperature analyses over land are primarily based on Td1. Here, I make a first quantitative assessment of the bias in the use of Td1 to estimate trends of mean air temperature using hourly air temperature observations at 5600 globally distributed weather stations from the 1970s to 2013. I find that the use of Td1 has a negligible impact on the global mean warming rate. However, the trend of Td1 has a substantial bias at regional and local scales, with a root mean square error of over 25% at 5°×5° grids. Therefore, caution should be taken when using mean air temperature datasets based on Td1 to examine spatial patterns of global warming.

  4. Estimation of Surface Air Temperature Over Central and Eastern Eurasia from MODIS Land Surface Temperature

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.

    2011-01-01

    Surface air temperature (T(sub a)) is a critical variable in the energy and water cycle of the Earth.atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of T(sub a) from satellite remotely sensed land surface temperature (T(sub s)) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured T(sub a) and MODIS T(sub s). The relationships between the maximum T(sub a) and daytime T(sub s) depend significantly on land cover types, but the minimum T(sub a) and nighttime T(sub s) have little dependence on the land cover types. The largest difference between maximum T(sub a) and daytime T(sub s) appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum T(sub a) were estimated from 1 km resolution MODIS T(sub s) under clear-sky conditions with coefficients calculated based on land cover types, while the minimum T(sub a) were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum T(sub a) varies from 2.4 C over closed shrublands to 3.2 C over grasslands, and the MAE of the estimated minimum Ta is about 3.0 C.

  5. Emperor penguin body surfaces cool below air temperature.

    PubMed

    McCafferty, D J; Gilbert, C; Thierry, A-M; Currie, J; Le Maho, Y; Ancel, A

    2013-06-23

    Emperor penguins Aptenodytes forsteri are able to survive the harsh Antarctic climate because of specialized anatomical, physiological and behavioural adaptations for minimizing heat loss. Heat transfer theory predicts that metabolic heat loss in this species will mostly depend on radiative and convective cooling. To examine this, thermal imaging of emperor penguins was undertaken at the breeding colony of Pointe Géologie in Terre Adélie (66°40' S 140° 01' E), Antarctica in June 2008. During clear sky conditions, most outer surfaces of the body were colder than surrounding sub-zero air owing to radiative cooling. In these conditions, the feather surface will paradoxically gain heat by convection from surrounding air. However, owing to the low thermal conductivity of plumage any heat transfer to the skin surface will be negligible. Future thermal imaging studies are likely to yield further insights into the adaptations of this species to the Antarctic climate. PMID:23466479

  6. Emperor penguin body surfaces cool below air temperature

    PubMed Central

    McCafferty, D. J.; Gilbert, C.; Thierry, A.-M.; Currie, J.; Le Maho, Y.; Ancel, A.

    2013-01-01

    Emperor penguins Aptenodytes forsteri are able to survive the harsh Antarctic climate because of specialized anatomical, physiological and behavioural adaptations for minimizing heat loss. Heat transfer theory predicts that metabolic heat loss in this species will mostly depend on radiative and convective cooling. To examine this, thermal imaging of emperor penguins was undertaken at the breeding colony of Pointe Géologie in Terre Adélie (66°40′ S 140° 01′ E), Antarctica in June 2008. During clear sky conditions, most outer surfaces of the body were