Science.gov

Sample records for airspace system nas

  1. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project FY16 Annual Review

    NASA Technical Reports Server (NTRS)

    Grindle, Laurie; Hackenberg, Davis

    2016-01-01

    This presentation gives insight into the research activities and efforts being executed in order to integrate unmanned aircraft systems into the national airspace system. This briefing is to inform others of the UAS-NAS FY16 progress and future directions.

  2. UAS Integration Into the NAS: An Examination of Baseline Compliance in the Current Airspace System

    NASA Technical Reports Server (NTRS)

    Fern, Lisa; Kenny, Caitlin A.; Shively, Robert J.; Johnson, Walter

    2012-01-01

    As a result of the FAA Modernization and Reform Act of 2012, Unmanned Aerial Systems (UAS) are expected to be integrated into the National Airspace System (NAS) by 2015. Several human factors challenges need to be addressed before UAS can safely and routinely fly in the NAS with manned aircraft. Perhaps the most significant challenge is for the UAS to be non-disruptive to the air traffic management system. Another human factors challenge is how to provide UAS pilots with intuitive traffic information in order to support situation awareness (SA) of their airspace environment as well as a see-and-avoid capability comparable to manned aircraft so that a UAS pilot could safely maneuver the aircraft to maintain separation and collision avoidance if necessary. A simulation experiment was conducted to examine baseline compliance of UAS operations in the current airspace system. Researchers also examined the effects of introducing a Cockpit Situation Display (CSD) into a UAS Ground Control Station (GCS) on UAS pilot performance, workload and situation awareness while flying in a positively controlled sector. Pilots were tasked with conducting a highway patrol police mission with a Medium Altitude Long Endurance (MALE) UAS in L.A. Center airspace with two mission objectives: 1) to reroute the UAS when issued new instructions from their commander, and 2) to communicate with Air Traffic Control (ATC) to negotiate flight plan changes and respond to vectoring and altitude change instructions. Objective aircraft separation data, workload ratings, SA data, and subjective ratings regarding UAS operations in the NAS were collected. Results indicate that UAS pilots were able to comply appropriately with ATC instructions. In addition, the introduction of the CSD improved pilot SA and reduced workload associated with UAS and ATC interactions.

  3. Serious Gaming for Test & Evaluation of Clean-Slate (Ab Initio) National Airspace System (NAS) Designs

    NASA Technical Reports Server (NTRS)

    Allen, B. Danette; Alexandrov, Natalia

    2016-01-01

    Incremental approaches to air transportation system development inherit current architectural constraints, which, in turn, place hard bounds on system capacity, efficiency of performance, and complexity. To enable airspace operations of the future, a clean-slate (ab initio) airspace design(s) must be considered. This ab initio National Airspace System (NAS) must be capable of accommodating increased traffic density, a broader diversity of aircraft, and on-demand mobility. System and subsystem designs should scale to accommodate the inevitable demand for airspace services that include large numbers of autonomous Unmanned Aerial Vehicles and a paradigm shift in general aviation (e.g., personal air vehicles) in addition to more traditional aerial vehicles such as commercial jetliners and weather balloons. The complex and adaptive nature of ab initio designs for the future NAS requires new approaches to validation, adding a significant physical experimentation component to analytical and simulation tools. In addition to software modeling and simulation, the ability to exercise system solutions in a flight environment will be an essential aspect of validation. The NASA Langley Research Center (LaRC) Autonomy Incubator seeks to develop a flight simulation infrastructure for ab initio modeling and simulation that assumes no specific NAS architecture and models vehicle-to-vehicle behavior to examine interactions and emergent behaviors among hundreds of intelligent aerial agents exhibiting collaborative, cooperative, coordinative, selfish, and malicious behaviors. The air transportation system of the future will be a complex adaptive system (CAS) characterized by complex and sometimes unpredictable (or unpredicted) behaviors that result from temporal and spatial interactions among large numbers of participants. A CAS not only evolves with a changing environment and adapts to it, it is closely coupled to all systems that constitute the environment. Thus, the ecosystem that

  4. Remotely Operated Aircraft (ROA) Impact on the National Airspace System (NAS) Work Package: Automation Impacts of ROA's in the NAS

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The purpose of this document is to analyze the impact of Remotely Operated Aircraft (ROA) operations on current and planned Air Traffic Control (ATC) automation systems in the En Route, Terminal, and Traffic Flow Management domains. The operational aspects of ROA flight, while similar, are not entirely identical to their manned counterparts and may not have been considered within the time-horizons of the automation tools. This analysis was performed to determine if flight characteristics of ROAs would be compatible with current and future NAS automation tools. Improvements to existing systems / processes are recommended that would give Air Traffic Controllers an indication that a particular aircraft is an ROA and modifications to IFR flight plan processing algorithms and / or designation of airspace where an ROA will be operating for long periods of time.

  5. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project Subcommittee Final

    NASA Technical Reports Server (NTRS)

    Johnson, Chuck; Griner, James H.; Hayhurst, Kelly J.; Shively, Robert J.; Consiglio, Maria; Muller, Eric; Murphy, James; Kim, Sam

    2012-01-01

    UAS Integration in the NAS Project overview with details from each of the subprojects. Subprojects include: Communications, Certification, Integrated Test and Evaluation, Human Systems Integration, and Separation Assurance/Sense and Avoid Interoperability.

  6. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project

    NASA Technical Reports Server (NTRS)

    Griner, James H.

    2013-01-01

    NASA's UAS Integration in the NAS project, has partnered with Rockwell Collins to develop a concept Control and Non-Payload Communication system prototype radio, operating on recently allocated UAS frequency spectrum bands. The prototype radio will be used to validate initial proposed performance requirements for UAS control communications. This presentation will give an overview of the current status of the design, development, and flight test planning for this prototype radio.

  7. 78 FR 21084 - Proposed Amendment of Class D and E Airspace, and Establishment of Class E Airspace; Oceana NAS, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... Traffic Control Tower at Oceana NAS (Apollo Soucek Field) operating on a part time basis. This action...-0038; Airspace Docket No. 13-AEA-2, at the beginning of your comments. You may also submit and review...; Airspace Docket No. 13-AEA-2) and be submitted in triplicate to the Docket Management System (see...

  8. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project: KDP-A for Phase 2 Minimum Operational Performance Standards

    NASA Technical Reports Server (NTRS)

    Grindle, Laurie; Hackenberg, Davis L.

    2016-01-01

    UAS Integration in the NAS Project has: a) Developed Technical Challenges that are crucial to UAS integration, aligned with NASA's Strategic Plan and Thrusts, and support FAA standards development. b) Demonstrated rigorous project management processes through the execution of previous phases. c) Defined Partnership Plans. d) Established path to KDP-C. Request approval of Technical Challenges, execution of partnerships and plans, and execution of near-term FY17 activities. There is an increasing need to fly UAS in the NAS to perform missions of vital importance to National Security and Defense, Emergency Management, and Science. There is also an emerging need to enable commercial applications such as cargo transport (e.g. FedEx). Unencumbered NAS Access for Civil/Commercial UAS. Provide research findings, utilizing simulation and flight tests, to support the development and validation of DAA and C2 technologies necessary for integrating Unmanned Aircraft Systems into the National Airspace System.

  9. Shadow Mode Assessment Using Realistic Technologies for the National Airspace (SMART NAS)

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal H.

    2014-01-01

    Develop a simulation and modeling capability that includes: (a) Assessment of multiple parallel universes, (b) Accepts data feeds, (c) Allows for live virtual constructive distribute environment, (d) Enables integrated examinations of concepts, algorithms, technologies and National Airspace System (NAS) architectures.

  10. Meeting of Experts on NASA's Unmanned Aircraft System (UAS) Integration in the National Airspace Systems (NAS) Project

    NASA Technical Reports Server (NTRS)

    Wolfe, Jean; Bauer, Jeff; Bixby, C.J.; Lauderdale, Todd; Shively, Jay; Griner, James; Hayhurst, Kelly

    2010-01-01

    Topics discussed include: Aeronautics Research Mission Directorate Integrated Systems Research Program (ISRP) and UAS Integration in the NAS Project; UAS Integration into the NAS Project; Separation Assurance and Collision Avoidance; Pilot Aircraft Interface Objectives/Rationale; Communication; Certification; and Integrated Tests and Evaluations.

  11. Remotely Operated Aircraft (ROA) Impact on the National Airspace System (NAS) Work Package, 2005: Composite Report on FAA Flight Plan and Operational Evaluation Plan. Version 7.0

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The purpose of this document is to present the findings that resulted from a high-level analysis and evaluation of the following documents: (1) The OEP (Operational Evolution Plan) Version 7 -- a 10-year plan for operational improvements to increase capacity and efficiency in U.S. air travel and transport and other use of domestic airspace. The OEP is the FAA commitment to operational improvements. It is outcome driven, with clear lines of accountability within FAA organizations. The OEP concentrates on operational solutions and integrates safety, certification, procedures, staffing, equipment, avionics and research; (2) The Draft Flight Plan 2006 through 2010 -- a multi-year strategic effort, setting a course for the FAA through 2001, to provide the safest and most efficient air transportation system in the world; (3) The NAS System Architecture Version 5 -- a blueprint for modernizing the NAS and improving NAS services and capabilities through the year 2015; and (4) The NAS-SR-1000 System Requirements Specification (NASSRS) -- a compilation of requirements which describe the operational capabilities for the NAS. The analysis is particularly focused on examining the documents for relevance to existing and/or planned future UAV operations. The evaluation specifically focuses on potential factors that could materially affect the development of a commercial ROA industry, such as: (1) Design limitations of the CNS/ATM system, (2) Human limitations, The information presented was taken from program specifications or program office lead personnel.

  12. National Airspace System: Air-Ground Communications Operational Concept NAS-SR-1361

    DTIC Science & Technology

    1990-01-01

    Communications Switching System (ICSS). In addition to the ICSS, AFSS personnel have direct voice interface with VOR equipment to provide emergency voice...FSDPS supports the AFSS work station which is combined in various configurations to support the different AFSS operational positions. Direct voice ... interface in the form of emergency messages are transmitted over the VOR in the same manner as the facility voice identification. NASSRS Requirement

  13. National Airspace System (NAS)

    DTIC Science & Technology

    2013-12-01

    Defense Acquisition Management Information Retrieval Dev Est - Development Estimate DoD - Department of Defense DSN - Defense Switched Network Econ...Complete .. , IOT &E Start •• Complete -· Full Rate Production Contr. .. c- FOT&E Start , ... VOICE (VCSS) Program Review •:a. AUTOMATION (DAAS...JUN 1999 DEC 1999 OCT 1999 IOT &E Start JUL 2000 JUL 2000 JAN 2001 JUL 2000 Complete OCT 2003 OCT 2003 OCT 2004 OCT 2004 Full Rate Production Contract

  14. Considerations in the Integration of Small Aircraft Transportation System Higher Volume Operations (SATSHVO) in the National Airspace System (NAS)

    NASA Technical Reports Server (NTRS)

    Lohr, Gary W.; Williams, Dan; Abbott, Terence; Baxley, Brian; Greco, Adam; Ridgway, Richard

    2005-01-01

    The Small Aircraft Transportation System Higher Volume Operations (SATS HVO) concept holds the promise for increased efficiency and throughput at many of the nations under-used airports. This concept allows for concurrent operations at uncontrolled airports that under today s procedures are restricted to one arrival or one departure operation at a time, when current-day IFR separation standards are applied. To allow for concurrent operations, SATS HVO proposes several fundamental changes to today's system. These changes include: creation of dedicated airspace, development of new procedures and communications (phraseologies), and assignment of roles and responsibilities for pilots and controllers, among others. These changes would affect operations on the airborne side (pilot) as well as the groundside (controller and air traffic flow process). The focus of this paper is to discuss some of the issues and potential problems that have been considered in the development of the SATS HVO concept, in particular from the ground side perspective. Reasonable solutions to the issues raised here have been proposed by the SATS HVO team, and are discussed in this paper.

  15. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project - Gen-4 and Gen-5 Radio Plans

    NASA Technical Reports Server (NTRS)

    Griner, James H.

    2014-01-01

    NASA's UAS Integration in the NAS project, has partnered with Rockwell Collins to develop a concept Control and Non-Payload Communication (CNPC) system prototype radio, operating on recently allocated UAS frequency spectrum bands. This prototype radio is being used to validate initial proposed performance requirements for UAS control communications. This presentation will give an overview of the current plans for the prototype radio development.

  16. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project. NASA Contributions to the SARP WC Definition

    NASA Technical Reports Server (NTRS)

    Randall, Debra K.; Consiglio, Maria Cristina; Santiago, Confesor

    2014-01-01

    To better inform sense and avoid research needs and to understand ongoing investigation of potential solutions that ultimately lead to the assisting the FAA with their Congressional mandate to fly UAS in the NAS.

  17. Information transfer in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Lee, Alfred T.

    1988-01-01

    An informal overview is given of the work in progress and the planned work in the area of information transfer that specifically addresses human factors issues in National Airspace System (NAS). The issues of how weather information will be displayed on the flight deck, the development of appropriate decision making technology, and digital datalink transmission are also briefly discussed.

  18. 78 FR 46497 - Amendment of Class D and E Airspace, and Establishment of Class E Airspace; Oceana NAS, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... Tower at Oceana NAS (Apollo Soucek Field) now operating on a part time basis. This action enhances the... also updates the geographic coordinates of Oceana NAS (Apollo Soucek Field) and NALF Fentress. DATES... surface airspace at Oceana NAS (Apollo Soucek Field), VA, as the air traffic control tower...

  19. Intelligent aircraft/airspace systems

    NASA Technical Reports Server (NTRS)

    Wangermann, John P.

    1995-01-01

    Projections of future air traffic predict at least a doubling of the number of revenue passenger miles flown by the year 2025. To meet this demand, an Intelligent Aircraft/Airspace System (IAAS) has been proposed. The IAAS operates on the basis of principled negotiation between intelligent agents. The aircraft/airspace system today consists of many agents, such as airlines, control facilities, and aircraft. All the agents are becoming increasingly capable as technology develops. These capabilities should be exploited to create an Intelligent Aircraft/Airspace System (IAAS) that would meet the predicted traffic levels of 2005.

  20. Metrics for the NASA Airspace Systems Program

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Neitzke, Kurt W.

    2009-01-01

    This document defines an initial set of metrics for use by the NASA Airspace Systems Program (ASP). ASP consists of the NextGen-Airspace Project and the NextGen-Airportal Project. The work in each project is organized along multiple, discipline-level Research Focus Areas (RFAs). Each RFA is developing future concept elements in support of the Next Generation Air Transportation System (NextGen), as defined by the Joint Planning and Development Office (JPDO). In addition, a single, system-level RFA is responsible for integrating concept elements across RFAs in both projects and for assessing system-wide benefits. The primary purpose of this document is to define a common set of metrics for measuring National Airspace System (NAS) performance before and after the introduction of ASP-developed concepts for NextGen as the system handles increasing traffic. The metrics are directly traceable to NextGen goals and objectives as defined by the JPDO and hence will be used to measure the progress of ASP research toward reaching those goals. The scope of this document is focused on defining a common set of metrics for measuring NAS capacity, efficiency, robustness, and safety at the system-level and at the RFA-level. Use of common metrics will focus ASP research toward achieving system-level performance goals and objectives and enable the discipline-level RFAs to evaluate the impact of their concepts at the system level.

  1. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project, UAS Control and Non-Payload Communication System Phase-1 Flight Test Results

    NASA Technical Reports Server (NTRS)

    Griner, James H.

    2014-01-01

    NASA's UAS Integration in the NAS project, has partnered with Rockwell Collins to develop a concept Control and Non-Payload Communication (CNPC) system prototype radio, operating on recently allocated UAS frequency spectrum bands. This prototype radio is being used to validate initial proposed performance requirements for UAS control communications. This presentation will give an overview of the current status of the prototype radio development, and results from phase 1 flight tests conducted during 2013.

  2. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project: Detect and Avoid Display Evaluations in Support of SC-228 Minimum Operational Performance Standards Development

    NASA Technical Reports Server (NTRS)

    Fern, Lisa Carolynn

    2017-01-01

    The primary activity for the UAS-NAS Human Systems Integration (HSI) sub-project in Phase 1 was support of RTCA Special Committee 228 Minimum Operational Performance Standards (MOPS). We provide data on the effect of various Detect and Avoid (DAA) display features with respect to pilot performance of the remain well clear function in order to determine the minimum requirements for DAA displays.

  3. Identification and Analysis of National Airspace System Resource Constraints

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Marien, Ty V.; Viken, Jeffery K.; Neitzke, Kurt W.; Kwa, Tech-Seng; Dollyhigh, Samuel M.; Fenbert, James W.; Hinze, Nicolas K.

    2015-01-01

    This analysis is the deliverable for the Airspace Systems Program, Systems Analysis Integration and Evaluation Project Milestone for the Systems and Portfolio Analysis (SPA) focus area SPA.4.06 Identification and Analysis of National Airspace System (NAS) Resource Constraints and Mitigation Strategies. "Identify choke points in the current and future NAS. Choke points refer to any areas in the en route, terminal, oceanic, airport, and surface operations that constrain actual demand in current and projected future operations. Use the Common Scenarios based on Transportation Systems Analysis Model (TSAM) projections of future demand developed under SPA.4.04 Tools, Methods and Scenarios Development. Analyze causes, including operational and physical constraints." The NASA analysis is complementary to a NASA Research Announcement (NRA) "Development of Tools and Analysis to Evaluate Choke Points in the National Airspace System" Contract # NNA3AB95C awarded to Logistics Management Institute, Sept 2013.

  4. Throughput analysis for the National Airspace System

    NASA Astrophysics Data System (ADS)

    Sureshkumar, Chandrasekar

    The United States National Airspace System (NAS) network performance is currently measured using a variety of metrics based on delay. Developments in the fields of wireless communication, manufacturing and other modes of transportation like road, freight, etc. have explored various metrics that complement the delay metric. In this work, we develop a throughput concept for both the terminal and en-route phases of flight inspired by studies in the above areas and explore the applications of throughput metrics for the en-route airspace of the NAS. These metrics can be applied to the NAS performance at each hierarchical level—the sector, center, regional and national and will consist of multiple layers of networks with the bottom level comprising the traffic pattern modelled as a network of individual sectors acting as nodes. This hierarchical approach is especially suited for executive level decision making as it gives an overall picture of not just the inefficiencies but also the aspects where the NAS has performed well in a given situation from which specific information about the effects of a policy change on the NAS performance at each level can be determined. These metrics are further validated with real traffic data using the Future Air Traffic Management Concepts Evaluation Tool (FACET) for three en-route sectors and an Air Route Traffic Control Center (ARTCC). Further, this work proposes a framework to compute the minimum makespan and the capacity of a runway system in any configuration. Towards this, an algorithm for optimal arrival and departure flight sequencing is proposed. The proposed algorithm is based on a branch-and-bound technique and allows for the efficient computation of the best runway assignment and sequencing of arrival and departure operations that minimize the makespan at a given airport. The lower and upper bounds of the cost of each branch for the best first search in the branch-and-bound algorithm are computed based on the minimum

  5. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project: Advanced Collision Avoidance System for UAS (ACAS Xu) Interoperability White Paper Presentation

    NASA Technical Reports Server (NTRS)

    Fern, Lisa

    2017-01-01

    The Phase 1 DAA Minimum Operational Performance Standards (MOPS) provided requirements for two classes of DAA equipment: equipment Class 1 contains the basic DAA equipment required to assist a pilot in remaining well clear, while equipment Class 2 integrates the Traffic Alert and Collision Avoidance (TCAS) II system. Thus, the Class 1 system provides RWC functionality only, while the Class 2 system is intended to provide both RWC and Collision Avoidance (CA) functionality, in compliance with the Minimum Aviation System Performance (MASPS) for the Interoperability of Airborne Collision Avoidance Systems. The FAAs TCAS Program Office is currently developing Airborne Collision Avoidance System X (ACAS X) to support the objectives of the Federal Aviation Administrations (FAA) Next Generation Air Transportation System Program (NextGen). ACAS X has a suite of variants with a common underlying design that are intended to be optimized for their intended airframes and operations. ACAS Xu being is designed for UAS and allows for new surveillance technologies and tailored logic for platforms with different performance characteristics. In addition to Collision Avoidance (CA) alerting and guidance, ACAS Xu is being tuned to provide RWC alerting and guidance in compliance with the SC 228 DAA MOPS. With a single logic performing both RWC and CA functions, ACAS Xu will provide industry with an integrated DAA solution that addresses many of the interoperability shortcomings of Phase I systems. While the MOPS for ACAS Xu will specify an integrated DAA system, it will need to show compliance with the RWC alerting thresholds and alerting requirements defined in the DAA Phase 2 MOPS. Further, some functional components of the ACAS Xu system such as the remote pilots displayed guidance might be mostly references to the corresponding requirements in the DAA MOPS. To provide a seamless, integrated, RWC-CA system to assist the pilot in remaining well clear and avoiding collisions, several

  6. Remotely Operated Aircraft (ROA) Impact on the National Airspace System (NAS) Work Package: Data Modeling and Sharing Perspective for Development of a Common Operating Picture

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This report documents analyses that were performed in support of Task #3 of Work Package #3 (WP3), ROA Impact on the NAS. The purpose of the overall work package was to determine if there are any serious issues that would prevent or prohibit ROA's flying in the NAS on a routine basis, and if so, what actions should be taken to address them. The purpose of Task #3 was to look at this problem from the perspective of data modeling and sharing.

  7. System Engineering and Integration Contract for Implementation of the National Airspace System Plan. Volume 2. Section 5.0 NAS Plan Project Findings.

    DTIC Science & Technology

    1984-08-01

    kits for DVOR , 112 VOT, and 75 Doppler VOR conversion kits. Status UThe VORTAC, VOR, and VOR/DME replacement program is approaching satisfactory...monitoring of additional airport .q. facilities and equipment such as DVOR , ARSR-3, navigation, and communications facilities associated with FSS (by 1988...DHSA Designated Major System Acquisition DOC Department of Defense 1. DOD Department of Defense DUAT Direct User Access Terminal DVOR Doppler Very

  8. Environmental impact analysis with the airspace concept evaluation system

    NASA Technical Reports Server (NTRS)

    Augustine, Stephen; Capozzi, Brian; DiFelici, John; Graham, Michael; Thompson, Terry; Miraflor, Raymond M. C.

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Ames Research Center has developed the Airspace Concept Evaluation System (ACES), which is a fast-time simulation tool for evaluating Air Traffic Management (ATM) systems. This paper describes linking a capability to ACES which can analyze the environmental impact of proposed future ATM systems. This provides the ability to quickly evaluate metrics associated with environmental impacts of aviation for inclusion in multi-dimensional cost-benefit analysis of concepts for evolution of the National Airspace System (NAS) over the next several decades. The methodology used here may be summarized as follows: 1) Standard Federal Aviation Administration (FAA) noise and emissions-inventory models, the Noise Impact Routing System (NIRS) and the Emissions and Dispersion Modeling System (EDMS), respectively, are linked to ACES simulation outputs; 2) appropriate modifications are made to ACES outputs to incorporate all information needed by the environmental models (e.g., specific airframe and engine data); 3) noise and emissions calculations are performed for all traffic and airports in the study area for each of several scenarios, as simulated by ACES; and 4) impacts of future scenarios are compared to the current NAS baseline scenario. This paper also provides the results of initial end-to-end, proof-of-concept runs of the integrated ACES and environmental-modeling capability. These preliminary results demonstrate that if no growth is likely to be impeded by significant environmental impacts that could negatively affect communities throughout the nation.

  9. Dynamic airspace configuration algorithms for next generation air transportation system

    NASA Astrophysics Data System (ADS)

    Wei, Jian

    The National Airspace System (NAS) is under great pressure to safely and efficiently handle the record-high air traffic volume nowadays, and will face even greater challenge to keep pace with the steady increase of future air travel demand, since the air travel demand is projected to increase to two to three times the current level by 2025. The inefficiency of traffic flow management initiatives causes severe airspace congestion and frequent flight delays, which cost billions of economic losses every year. To address the increasingly severe airspace congestion and delays, the Next Generation Air Transportation System (NextGen) is proposed to transform the current static and rigid radar based system to a dynamic and flexible satellite based system. New operational concepts such as Dynamic Airspace Configuration (DAC) have been under development to allow more flexibility required to mitigate the demand-capacity imbalances in order to increase the throughput of the entire NAS. In this dissertation, we address the DAC problem in the en route and terminal airspace under the framework of NextGen. We develop a series of algorithms to facilitate the implementation of innovative concepts relevant with DAC in both the en route and terminal airspace. We also develop a performance evaluation framework for comprehensive benefit analyses on different aspects of future sector design algorithms. First, we complete a graph based sectorization algorithm for DAC in the en route airspace, which models the underlying air route network with a weighted graph, converts the sectorization problem into the graph partition problem, partitions the weighted graph with an iterative spectral bipartition method, and constructs the sectors from the partitioned graph. The algorithm uses a graph model to accurately capture the complex traffic patterns of the real flights, and generates sectors with high efficiency while evenly distributing the workload among the generated sectors. We further improve

  10. Real-Time Safety Monitoring and Prediction for the National Airspace System

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Indranil

    2016-01-01

    As new operational paradigms and additional aircraft are being introduced into the National Airspace System (NAS), maintaining safety in such a rapidly growing environment becomes more challenging. It is therefore desirable to have both an overview of the current safety of the airspace at different levels of granularity, as well an understanding of how the state of the safety will evolve into the future given the anticipated flight plans, weather forecasts, predicted health of assets in the airspace, and so on. To this end, we have developed a Real-Time Safety Monitoring (RTSM) that first, estimates the state of the NAS using the dynamic models. Then, given the state estimate and a probability distribution of future inputs to the NAS, the framework predicts the evolution of the NAS, i.e., the future state, and analyzes these future states to predict the occurrence of unsafe events. The entire probability distribution of airspace safety metrics is computed, not just point estimates, without significant assumptions regarding the distribution type and or parameters. We demonstrate our overall approach by predicting the occurrence of some unsafe events and show how these predictions evolve in time as flight operations progress.

  11. The Airspace Concepts Evaluation System Architecture and System Plant

    NASA Technical Reports Server (NTRS)

    Windhorst, Robert; Meyn, Larry; Manikonda, Vikram; Carlos, Patrick; Capozzi, Brian

    2006-01-01

    The Airspace Concepts Evaluation System is a simulation of the National Airspace System. It includes models of flights, airports, airspaces, air traffic controls, traffic flow managements, and airline operation centers operating throughout the United States. It is used to predict system delays in response to future capacity and demand scenarios and perform benefits assessments of current and future airspace technologies and operational concepts. Facilitation of these studies requires that the simulation architecture supports plug and play of different air traffic control, traffic flow management, and airline operation center models and multi-fidelity modeling of flights, airports, and airspaces. The simulation is divided into two parts that are named, borrowing from classical control theory terminology, control and plant. The control consists of air traffic control, traffic flow management, and airline operation center models, and the plant consists of flight, airport, and airspace models. The plant can run open loop, in the absence of the control. However, undesired affects, such as conflicts and over congestions in the airspaces and airports, can occur. Different controls are applied, "plug and played", to the plant. A particular control is evaluated by analyzing how well it managed conflicts and congestions. Furthermore, the terminal area plants consist of models of airports and terminal airspaces. Each model consists of a set of nodes and links which are connected by the user to form a network. Nodes model runways, fixes, taxi intersections, gates, and/or other points of interest, and links model taxiways, departure paths, and arrival paths. Metering, flow distribution, and sequencing functions can be applied at nodes. Different fidelity model of how a flight transits are can be used by links. The fidelity of the model can be adjusted by the user by either changing the complexity of the node/link network-or the way that the link models how the flights transit

  12. Characterization of Tactical Departure Scheduling in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Capps, Alan; Engelland, Shawn A.

    2011-01-01

    This paper discusses and analyzes current day utilization and performance of the tactical departure scheduling process in the National Airspace System (NAS) to understand the benefits in improving this process. The analysis used operational air traffic data from over 1,082,000 flights during the month of January, 2011. Specific metrics included the frequency of tactical departure scheduling, site specific variances in the technology's utilization, departure time prediction compliance used in the tactical scheduling process and the performance with which the current system can predict the airborne slot that aircraft are being scheduled into from the airport surface. Operational data analysis described in this paper indicates significant room for improvement exists in the current system primarily in the area of reduced departure time prediction uncertainty. Results indicate that a significant number of tactically scheduled aircraft did not meet their scheduled departure slot due to departure time uncertainty. In addition to missed slots, the operational data analysis identified increased controller workload associated with tactical departures which were subject to traffic management manual re-scheduling or controller swaps. An analysis of achievable levels of departure time prediction accuracy as obtained by a new integrated surface and tactical scheduling tool is provided to assess the benefit it may provide as a solution to the identified shortfalls. A list of NAS facilities which are likely to receive the greatest benefit from the integrated surface and tactical scheduling technology are provided.

  13. 76 FR 1511 - Amendment of Class D Airspace; Fort Worth NAS JRB (Carswell Field), TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-11

    ... navigation aids, at the request of the U.S. Navy, that are listed in the description. This action does not...) Class D airspace, Fort Worth, TX, and the navigation aids, to coincide with the FAAs...

  14. A Study of Future Communications Concepts and Technologies for the National Airspace System - Part II

    NASA Technical Reports Server (NTRS)

    Ponchak, Denise S.; Apaza, Rafael D.; Haynes, Brian; Wichgers, Joel M.; Roy, Aloke

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating current and anticipated wireless communications concepts and technologies that the National Airspace System (NAS) may need in the next 50 years. NASA has awarded three NASA Research Announcements (NAR) studies with the objective to determine the most promising candidate technologies for air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. This paper will present progress made in the studies and describe the communications challenges and opportunities that have been identified during the studies' first year.

  15. A Study of Future Communications Concepts and Technologies for the National Airspace System-Part I

    NASA Technical Reports Server (NTRS)

    Ponchak, Denise S.; Apaza, Rafael D.; Wichgers, Joel M.; Haynes, Brian; Roy, Aloke

    2013-01-01

    The National Aviation and Space Administration (NASA) Glenn Research Center (GRC) is investigating current and anticipated wireless communications concepts and technologies that the National Airspace System (NAS) may need in the next 50 years. NASA has awarded three NASA Research Announcements (NAR) studies with the objective to determine the most promising candidate technologies for air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. This paper will present progress made in the studies and describe the communications challenges and opportunities that have been identified during the studies' first phase.

  16. A Study of Future Communications Concepts and Technologies for the National Airspace System - Part IV

    NASA Technical Reports Server (NTRS)

    Ponchak, Denise S.; Apaza, Rafael D.; Wichgers, Joel M.; Haynes, Brian; Roy, Aloke

    2015-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating current and anticipated wireless communications concepts and technologies that the National Airspace System (NAS) may need in the next 50 years. NASA has awarded three NASA Research Announcements (NAR) studies with the objective to determine the most promising candidate technologies for air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. This paper will present the final results describing the communications challenges and opportunities that have been identified as part of the study.

  17. Airspace Systems Program: Next Generation Air Transportation System, NextGen Systems Analysis, Integration and Evaluation Project. Version 1.0; Project Plan

    NASA Technical Reports Server (NTRS)

    Quon, Leighton

    2010-01-01

    The key objectives of the NASA ASP are to: Improve mobility, capacity efficiency and access of the airspace system. Improve collaboration, predictability, and flexibility for the airspace users. Enable accurate modeling and simulation of air transportation systems. Accommodate operations of all classes of aircraft. Maintain system safety and environmental protection. In support of these program objectives, the major goal of the NextGen-SAIE Project is to enable the transition of key capacity and efficiency improvements to the NAS. Since many aspects of the NAS are unique to specific airport or airspace environments, demand on various parts of the NAS is not expected to increase equally as system demand grows. SAIE will provide systems level analysis of the NAS characteristics, constraints, and demands such that a suite of capacity-increasing concepts and technologies for system solutions are enabled and facilitated. The technical objectives in support of this goal are the following: Integration, evaluation, and transition of more mature concepts and technologies in an environment that faithfully emulates real-world complexities. Interoperability research and analysis of ASP technologies across ATM functions is performed to facilitate integration and take ASP concepts and technologies to higher Technology Readiness Level (TRL). Analyses are conducted on the program s concepts to identify the system benefits or impacts. System level analysis is conducted to increase understanding of the characteristics and constraints of airspace system and its domains.

  18. Validation Of The Airspace Concept Evaluation System Using Real World Data

    NASA Technical Reports Server (NTRS)

    Zelinski, Shannon

    2005-01-01

    This paper discusses the process of performing a validation of the Airspace Concept Evaluation System (ACES) using real world historical flight operational data. ACES inputs are generated from select real world data and processed to create a realistic reproduction of a single day of operations within the National Airspace System (NAS). ACES outputs are then compared to real world operational metrics and delay statistics for the reproduced day. Preliminary results indicate that ACES produces delays and airport operational metrics similar to the real world with minor variations of delay by phase of flight. ACES is a nation-wide fast-time simulation tool developed at NASA Ames Research Center. ACES models and simulates the NAS using interacting agents representing center control, terminal flow management, airports, individual flights, and other NAS elements. These agents pass messages between one another similar to real world communications. This distributed agent based system is designed to emulate the highly unpredictable nature of the NAS, making it a suitable tool to evaluate current and envisioned airspace concepts. To ensure that ACES produces the most realistic results, the system must be validated. There is no way to validate future concepts scenarios using real world historical data, but current day scenario validations increase confidence in the validity of future scenario results. Each operational day has unique weather and traffic demand schedules. The more a simulation utilizes the unique characteristic of a specific day, the more realistic the results should be. ACES is able to simulate the full scale demand traffic necessary to perform a validation using real world data. Through direct comparison with the real world, models may continuee to be improved and unusual trends and biases may be filtered out of the system or used to normalize the results of future concept simulations.

  19. Human Factors Guidelines for UAS in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Hobbs, Alan; Shively, R. Jay

    2013-01-01

    The ground control stations (GCS) of some UAS have been characterized by less-than-adequate human-system interfaces. In some cases this may reflect a failure to apply an existing regulation or human factors standard. In other cases, the problem may indicate a lack of suitable guidance material. NASA is leading a community effort to develop recommendations for human factors guidelines for GCS to support routine beyond-line-of-sight UAS operations in the national airspace system (NAS). In contrast to regulations, guidelines are not mandatory requirements. However, by encapsulating solutions to identified problems or areas of risk, guidelines can provide assistance to system developers, users and regulatory agencies. To be effective, guidelines must be relevant to a wide range of systems, must not be overly prescriptive, and must not impose premature standardization on evolving technologies. By assuming that a pilot will be responsible for each UAS operating in the NAS, and that the aircraft will be required to operate in a manner comparable to conventionally piloted aircraft, it is possible to identify a generic set of pilot tasks and the information, control and communication requirements needed to support these tasks. Areas where guidelines will be useful can then be identified, utilizing information from simulations, operational experience and the human factors literature. In developing guidelines, we recognize that existing regulatory and guidance material will, at times, provide adequate coverage of an area. In other cases suitable guidelines may be found in existing military or industry human factors standards. In cases where appropriate existing standards cannot be identified, original guidelines will be proposed.

  20. Airspace Systems Program: Next Generation Air Transportation System Concepts and Technology Development FY2010 Project Plan Version 3.0

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal H.

    2010-01-01

    This document describes the FY2010 plan for the management and execution of the Next Generation Air Transportation System (NextGen) Concepts and Technology Development (CTD) Project. The document was developed in response to guidance from the Airspace Systems Program (ASP), as approved by the Associate Administrator of the Aeronautics Research Mission Directorate (ARMD), and from guidelines in the Airspace Systems Program Plan. Congress established the multi-agency Joint Planning and Development Office (JPDO) in 2003 to develop a vision for the 2025 Next Generation Air Transportation System (NextGen) and to define the research required to enable it. NASA is one of seven agency partners contributing to the effort. Accordingly, NASA's ARMD realigned the Airspace Systems Program in 2007 to "directly address the fundamental research needs of the Next Generation Air Transportation System...in partnership with the member agencies of the JPDO." The Program subsequently established two new projects to meet this objective: the NextGen-Airspace Project and the NextGen-Airportal Project. Together, the projects will also focus NASA s technical expertise and world-class facilities to address the question of where, when, how and the extent to which automation can be applied to moving aircraft safely and efficiently through the NAS and technologies that address optimal allocation of ground and air technologies necessary for NextGen. Additionally, the roles and responsibilities of humans and automation influence in the NAS will be addressed by both projects. Foundational concept and technology research and development begun under the NextGen-Airspace and NextGen-Airportal projects will continue. There will be no change in NASA Research Announcement (NRA) strategy, nor will there be any change to NASA interfaces with the JPDO, Federal Aviation Administration (FAA), Research Transition Teams (RTTs), or other stakeholders

  1. A Study of Future Communications Concepts and Technologies for the National Airspace System-Part III

    NASA Technical Reports Server (NTRS)

    Ponchak, Denise S.; Apaza, Rafael D.; Wichgersm Joel M.; Haynes, Brian; Roy, Aloke

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating current and anticipated wireless communications concepts and technologies that the National Airspace System (NAS) may need in the next 50 years. NASA has awarded three NASA Research Announcements (NAR) studies with the objective to determine the most promising candidate technologies for air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. This paper will present progress made in the studies and describe the communications challenges and opportunities that have been identified as part of the study. NASA's NextGen Concepts and Technology Development (CTD) Project integrates solutions for a safe, efficient and high-capacity airspace system through joint research efforts and partnerships with other government agencies. The CTD Project is one of two within NASA's Airspace Systems Program and is managed by the NASA Ames Research Center. Research within the CTD Project is in support the 2011 NASA Strategic Plan Sub-Goal 4.1: Develop innovative solutions and advanced technologies, through a balanced research portfolio, to improve current and future air transportation. The focus of CTD is on developing capabilities in traffic flow management, dynamic airspace configuration, separation assurance, super density operations and airport surface operations. Important to its research is the development of human/automation information requirements and decisionmaking guidelines for human-human and human-machine airportal decision-making. Airborne separation, oceanic intrail climb/descent and interval management applications depend on location and intent information of surrounding aircraft. ADS-B has been proposed to provide the information exchange, but other candidates such as satellite-based receivers, broadband or airborne internet, and cellular communications are possible candidate's.

  2. The Proposed Use of Unmanned Aerial System Surrogate Research Aircraft for National Airspace System Integration Research

    NASA Technical Reports Server (NTRS)

    Howell, Charles T., III

    2011-01-01

    Research is needed to determine what procedures, aircraft sensors and other systems will be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS). This paper explores the use of Unmanned Aerial System (UAS) Surrogate research aircraft to serve as platforms for UAS systems research, development, and flight testing. These aircraft would be manned with safety pilots and researchers that would allow for flight operations almost anywhere in the NAS without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). With pilot override capability, these UAS Surrogate aircraft would be controlled from ground stations like true UAS s. It would be possible to file and fly these UAS Surrogate aircraft in the NAS with normal traffic and they would be better platforms for real world UAS research and development over existing vehicles flying in restricted ranges or other sterilized airspace. These UAS surrogate aircraft could be outfitted with research systems as required such as computers, state sensors, video recording, data acquisition, data link, telemetry, instrumentation, and Automatic Dependent Surveillance-Broadcast (ADS-B). These surrogate aircraft could also be linked to onboard or ground based simulation facilities to further extend UAS research capabilities. Potential areas for UAS Surrogate research include the development, flight test and evaluation of sensors to aide in the process of air traffic "see-and-avoid". These and other sensors could be evaluated in real-time and compared with onboard human evaluation pilots. This paper examines the feasibility of using UAS Surrogate research aircraft as test platforms for a variety of UAS related research.

  3. Managing the integration and harmonization of national airspace for unmanned and manned systems

    NASA Astrophysics Data System (ADS)

    Mumm, Hans

    This dissertation examines the leadership challenge created by the requirement to integrate unmanned aerial vehicles (UAVs) into the national airspace system (NAS). The lack of UAV-related federal rules and regulations is a primary factor prolonging this integration. This effort focuses primarily on the leadership portion of the solution and not the technological requirements. The research explores an adaptation of the complexity theory that offers a potential leadership framework for the government, industry, and academia to use for achieving the full integration of UAVs into the NAS. Due to the large number of stakeholders and the multitude of interrelated issues, a complexity-theory-leadership methodology was created and examined as a potential way to help the FAA accelerate their rule-making efforts. This dissertation focuses on United States UAV issues. The United States is one of the leaders in the unmanned systems arena, to include the first significant use of recoverable autonomous weaponized systems in combat. Issues such as airspace, airworthiness, social issues, privacy issues, regulations, and the lack of policies, procedures, or governance are universal for all countries that are active in this technology area. This qualitative dissertation makes use of the grounded theory methodology as it combines a literature review and research along with interviews with subject matter experts, and information gained from attending UAV related gatherings/discussions. The investigation uncovered significant FAA process impediments as well as some possible break through concepts that could work well with the complexity-theory-leadership methodology. Keywords: Complexity theory, leadership, change management, UAV, unmanned aerial vehicle, National Airspace, NAS, FAA, Federal Aviation Administration.

  4. Algorithm of Unmanned Aircraft Systems Displacement in Airspace

    NASA Astrophysics Data System (ADS)

    Gugała, Tomasz

    Despite the fact Unmanned Aerial Vehicles have been used for more than 70 years and their uncommon development has taken place in the first decade of the 21st Century, there is still no elaboration of "Uniform Concept of the Unmanned Aircraft Systems Displacement in Airspace". The indispensable condition of the above mentioned concept has to be flight safety of all airspace users. To achieve this goal, it is necessary to work out the adequate procedures and regulations in the scope of airspace usage taking into consideration this upto- date means of air transport. Therefore, elaboration of the algorithm by the author, can be a reason of achievement for the above mentioned object in the near future. Under such circumstances, the author has taken the trial to perform this challenging task.

  5. Wake Vortex Advisory System (WakeVAS) Evaluation of Impacts on the National Airspace System

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Dollyhigh, Samuel M.

    2005-01-01

    This report is one of a series that describes an ongoing effort in high-fidelity modeling/simulation, evaluation and analysis of the benefits and performance metrics of the Wake Vortex Advisory System (WakeVAS) Concept of Operations being developed as part of the Virtual Airspace Modeling and Simulation (VAMS) project. A previous study, determined the overall increases in runway arrival rates that could be achieved at 12 selected airports due to WakeVAS reduced aircraft spacing under Instrument Meteorological Conditions. This study builds on the previous work to evaluate the NAS wide impacts of equipping various numbers of airports with WakeVAS. A queuing network model of the National Airspace System, built by the Logistics Management Institute, Mclean, VA, for NASA (LMINET) was used to estimate the reduction in delay that could be achieved by using WakeVAS under non-visual meteorological conditions for the projected air traffic demand in 2010. The results from LMINET were used to estimate the total annual delay reduction that could be achieved and from this, an estimate of the air carrier variable operating cost saving was made.

  6. Modeling Air Traffic Management Technologies with a Queuing Network Model of the National Airspace System

    NASA Technical Reports Server (NTRS)

    Long, Dou; Lee, David; Johnson, Jesse; Gaier, Eric; Kostiuk, Peter

    1999-01-01

    This report describes an integrated model of air traffic management (ATM) tools under development in two National Aeronautics and Space Administration (NASA) programs -Terminal Area Productivity (TAP) and Advanced Air Transport Technologies (AATT). The model is made by adjusting parameters of LMINET, a queuing network model of the National Airspace System (NAS), which the Logistics Management Institute (LMI) developed for NASA. Operating LMINET with models of various combinations of TAP and AATT will give quantitative information about the effects of the tools on operations of the NAS. The costs of delays under different scenarios are calculated. An extension of Air Carrier Investment Model (ACIM) under ASAC developed by the Institute for NASA maps the technologies' impacts on NASA operations into cross-comparable benefits estimates for technologies and sets of technologies.

  7. Securing the Global Airspace System Via Identity-Based Security

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2015-01-01

    Current telecommunications systems have very good security architectures that include authentication and authorization as well as accounting. These three features enable an edge system to obtain access into a radio communication network, request specific Quality-of-Service (QoS) requirements and ensure proper billing for service. Furthermore, the links are secure. Widely used telecommunication technologies are Long Term Evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX) This paper provides a system-level view of network-centric operations for the global airspace system and the problems and issues with deploying new technologies into the system. The paper then focuses on applying the basic security architectures of commercial telecommunication systems and deployment of federated Authentication, Authorization and Accounting systems to provide a scalable, evolvable reliable and maintainable solution to enable a globally deployable identity-based secure airspace system.

  8. Toward a Concept of Operations for Aviation Weather Information Implementation in the Evolving National Airspace System

    NASA Technical Reports Server (NTRS)

    McAdaragh, Raymon M.

    2002-01-01

    The capacity of the National Airspace System is being stressed due to the limits of current technologies. Because of this, the FAA and NASA are working to develop new technologies to increase the system's capacity which enhancing safety. Adverse weather has been determined to be a major factor in aircraft accidents and fatalities and the FAA and NASA have developed programs to improve aviation weather information technologies and communications for system users The Aviation Weather Information Element of the Weather Accident Prevention Project of NASA's Aviation Safety Program is currently working to develop these technologies in coordination with the FAA and industry. This paper sets forth a theoretical approach to implement these new technologies while addressing the National Airspace System (NAS) as an evolving system with Weather Information as one of its subSystems. With this approach in place, system users will be able to acquire the type of weather information that is needed based upon the type of decision-making situation and condition that is encountered. The theoretical approach addressed in this paper takes the form of a model for weather information implementation. This model addresses the use of weather information in three decision-making situations, based upon the system user's operational perspective. The model also addresses two decision-making conditions, which are based upon the need for collaboration due to the level of support offered by the weather information provided by each new product or technology. The model is proposed for use in weather information implementation in order to provide a systems approach to the NAS. Enhancements to the NAS collaborative decision-making capabilities are also suggested.

  9. A systems approach for designing a radio station layout for the U.S. National Airspace

    NASA Astrophysics Data System (ADS)

    Boci, Erton S.

    Today's National Airspace System (NAS) is managed using an aging surveillance radar system. Current radar technology is not adequate to sustain the rapid growth of the commercial, civil, and federal aviation sectors and cannot be adapted to use emerging 21st century airspace surveillance technologies. With 87,000 flights to manage per day, America's ground based radar system has hit a growth ceiling. Consequently, the FAA has embarked on a broad-reaching effort called the Next Generation Air Transportation System (NextGen) that seeks to transform today's aviation airspace management and ensure increased safety and capacity in our NAS. This dissertation presents a systems approach to Service Volume (SV) engineering, a relatively new field of engineering that has emerged in support of the FAA's Automatic Dependent Surveillance -- Broadcast (ADS-B) Air Traffic Modernization Program. SV Engineering is responsible for radio station layout design that would provide the required radio frequency (RF) coverage over a set of Service Volumes, each which represents a section of controlled airspace that is served by a particular air control facility or service. The radio station layout must be optimized to meet system performance, safety, and interference requirements while minimizing the number of radio station sites required to provide RF coverage of the entire airspace of the Unites States. The interference level requirements at the victim (of interference) receivers are the most important and stringent requirements imposed on the ADS-B radio station layout and configuration. In this dissertation, we show a novel and practical way to achieve this optimality by developing and employing several key techniques such as such as reverse radio line-of-site (RLOS) and complex entity-relationship modeling, to address the greater challenges of engineering this complex system. Given that numerous NAS radar facilities are clustered together in relative close proximity to each other, we

  10. Initial Demonstration of the Real-Time Safety Monitoring Framework for the National Airspace System Using Flight Data

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Indranil; Daigle, Matthew; Goebel, Kai; Spirkovska, Lilly; Sankararaman, Shankar; Ossenfort, John; Kulkarni, Chetan; McDermott, William; Poll, Scott

    2016-01-01

    As new operational paradigms and additional aircraft are being introduced into the National Airspace System (NAS), maintaining safety in such a rapidly growing environment becomes more challenging. It is therefore desirable to have an automated framework to provide an overview of the current safety of the airspace at different levels of granularity, as well an understanding of how the state of the safety will evolve into the future given the anticipated flight plans, weather forecast, predicted health of assets in the airspace, and so on. Towards this end, as part of our earlier work, we formulated the Real-Time Safety Monitoring (RTSM) framework for monitoring and predicting the state of safety and to predict unsafe events. In our previous work, the RTSM framework was demonstrated in simulation on three different constructed scenarios. In this paper, we further develop the framework and demonstrate it on real flight data from multiple data sources. Specifically, the flight data is obtained through the Shadow Mode Assessment using Realistic Technologies for the National Airspace System (SMART-NAS) Testbed that serves as a central point of collection, integration, and access of information from these different data sources. By testing and evaluating using real-world scenarios, we may accelerate the acceptance of the RTSM framework towards deployment. In this paper we demonstrate the framework's capability to not only estimate the state of safety in the NAS, but predict the time and location of unsafe events such as a loss of separation between two aircraft, or an aircraft encountering convective weather. The experimental results highlight the capability of the approach, and the kind of information that can be provided to operators to improve their situational awareness in the context of safety.

  11. High Altitude Long Endurance Remotely Operated Aircraft - National Airspace System Integration - Simulation IPT: Detailed Airspace Operations Simulation Plan. Version 1.0

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The primary goal of Access 5 is to allow safe, reliable and routine operations of High Altitude-Long Endurance Remotely Operated Aircraft (HALE ROAs) within the National Airspace System (NAS). Step 1 of Access 5 addresses the policies, procedures, technologies and implementation issues of introducing such operations into the NAS above pressure altitude 40,000 ft (Flight Level 400 or FL400). Routine HALE ROA activity within the NAS represents a potentially significant change to the tasks and concerns of NAS users, service providers and other stakeholders. Due to the complexity of the NAS, and the importance of maintaining current high levels of safety in the NAS, any significant changes must be thoroughly evaluated prior to implementation. The Access 5 community has been tasked with performing this detailed evaluation of routine HALE-ROA activities in the NAS, and providing to key NAS stakeholders a set of recommended policies and procedures to achieve this goal. Extensive simulation, in concert with a directed flight demonstration program are intended to provide the required supporting evidence that these recommendations are based on sound methods and offer a clear roadmap to achieving safe, reliable and routine HALE ROA operations in the NAS. Through coordination with NAS service providers and policy makers, and with significant input from HALE-ROA manufacturers, operators and pilots, this document presents the detailed simulation plan for Step 1 of Access 5. A brief background of the Access 5 project will be presented with focus on Steps 1 and 2, concerning HALE-ROA operations above FL400 and FL180 respectively. An overview of project management structure follows with particular emphasis on the role of the Simulation IPT and its relationships to other project entities. This discussion will include a description of work packages assigned to the Simulation IPT, and present the specific goals to be achieved for each simulation work package, along with the associated

  12. Investigation of the Impact of User Gaming in the Next Generation National Airspace System

    NASA Technical Reports Server (NTRS)

    Hunter, George C.; Gao, Huina

    2011-01-01

    Over the past three decades, growth in the demand for air transportation has exceeded the growth in the national airspace system (NAS) capacity. Systems operating near capacity inevitably have delays and NAS d elays have increased in recent years. The desire to minimize delay costs has placed attention on the NAS air traffic management (ATM) syste m.One initiative that has helped to provide user representation in the ATM solution is the collaborative decision making (CDM) process. CDM addresses this issue by bringing users (referred to here as airline operation centers [AOCs]) and ATM providers together for information e xchange and cooperative planning. Such cooperative planning has been instituted, for instance, for the purpose of planning airport slot control strategies and rerouting strategies. While the CDM initiatives ha ve met with much success, they have also introduced the potential for AOCs to manipulate the system in unforeseen, unintended, and perhaps undesirable ways, from a system-wide, synoptic perspective. This type of manipulation is sometimes referred to as "gaming" the system. This study uses a high-fidelity simulation tool to investigate several models of user decision making behavior which could be considered to be gaming behavior and the emergent system dynamics and interactions between AOCs and traffic management.

  13. UAS Integration in the NAS Project - FY 14 Annual Review

    NASA Technical Reports Server (NTRS)

    Grindle, Laurie; Randall, Debra; Hackenberg, Davis

    2014-01-01

    This briefing gives insight into the research activities and efforts being executed in order to integrate unmanned aircraft systems into the national airspace system. This briefing is to inform others of the UAS-NAS Projects progress and future directions.

  14. UAS Integration in the NAS FY15 Annual Review

    NASA Technical Reports Server (NTRS)

    Grindle, Laurie; Randall, Debra; Hackenburg, Davis

    2015-01-01

    This presentation gives insight into the research activities and efforts being executed in order to integrate unmanned aircraft systems into the national airspace system. This briefing is to inform others of the UAS-NAS progress and future directions.

  15. Data link communications in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Lee, Alfred T.

    1989-01-01

    In the near future, conventional radio communications, currently the primary medium for the transfer of information between aircraft and ground stations, will be replaced by digital data link. This paper briefly describes this technology and summarizes what are believed to be the principal human factor issues associated with data link implementation in the airspace system. Integration of data link communications with existing systems on the flight deck and in the Air Traffic Control system is discussed with regard for both near term implementation and longer term operational issues.

  16. Validating the Airspace Concept Evaluation System for Different Weather Days

    NASA Technical Reports Server (NTRS)

    Zelinski, Shannon; Meyn, Larry

    2006-01-01

    This paper extends the process for validating the Airspace Concept Evaluation System using real-world historical flight operational data. System inputs such as flight plans and airport en-route capacities, are generated and processed to create a realistic reproduction of a single day's operations within the National Airspace System. System outputs such as airport throughput, delays, and en-route sector loads are then compared to real world operational metrics and delay statistics for the reproduced day. The process is repeated for 4 historical days with high and low traffic volume and delay attributed to weather. These 4 days are simulated using default en-route capacities and variable en-route capacities used to emulate weather. The validation results show that default enroute capacity simulations are closer to real-world data for low weather days than high weather days. The use of reduced variable enroute capacities adds a large delay bias to ACES but delay trends between weather days are better represented.

  17. NASA Airspace Systems Environmentally Focused Research

    NASA Technical Reports Server (NTRS)

    Cavolowsky, John

    2010-01-01

    This slide presentation focuses on how the Next Generation Air Space System can assist in reducing environmental pollution and reduced fuel consumption. By modifying some of the current aviation practices such as the dive and drive descent and making more efficient air traffic flow, the new system can assist in noise reduction, emissions reductions and reduce delays in routing and improve operational efficiency

  18. Dynamic Airspace Configuration

    NASA Technical Reports Server (NTRS)

    Bloem, Michael J.

    2014-01-01

    In air traffic management systems, airspace is partitioned into regions in part to distribute the tasks associated with managing air traffic among different systems and people. These regions, as well as the systems and people allocated to each, are changed dynamically so that air traffic can be safely and efficiently managed. It is expected that new air traffic control systems will enable greater flexibility in how airspace is partitioned and how resources are allocated to airspace regions. In this talk, I will begin by providing an overview of some previous work and open questions in Dynamic Airspace Configuration research, which is concerned with how to partition airspace and assign resources to regions of airspace. For example, I will introduce airspace partitioning algorithms based on clustering, integer programming optimization, and computational geometry. I will conclude by discussing the development of a tablet-based tool that is intended to help air traffic controller supervisors configure airspace and controllers in current operations.

  19. UAS-NAS Stakeholder Feedback Report

    NASA Technical Reports Server (NTRS)

    Randall, Debra; Murphy, Jim; Grindle, Laurie

    2016-01-01

    The need to fly UAS in the NAS to perform missions of vital importance to national security and defense, emergency management, science, and to enable commercial applications has been continually increasing over the past few years. To address this need, the NASA Aeronautics Research Mission Directorate (ARMD) Integrated Aviation Systems Program (IASP) formulated and funded the Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project (hereafter referred to as UAS-NAS Project) from 2011 to 2016. The UAS-NAS Project identified the following need statement: The UAS community needs routine access to the global airspace for all classes of UAS. The Project identified the following goal: To provide research findings to reduce technical barriers associated with integrating UAS into the NAS utilizing integrated system level tests in a relevant environment. This report provides a summary of the collaborations between the UAS-NAS Project and its primary stakeholders and how the Project applied and incorporated the feedback.

  20. Projected Demand and Potential Impacts to the National Airspace System of Autonomous, Electric, On-Demand Small Aircraft

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Viken, Jeffrey K.; Guerreiro, Nelson M.; Dollyhigh, Samuel M.; Fenbert, James W.; Hartman, Christopher L.; Kwa, Teck-Seng; Moore, Mark D.

    2012-01-01

    Electric propulsion and autonomy are technology frontiers that offer tremendous potential to achieve low operating costs for small-aircraft. Such technologies enable simple and safe to operate vehicles that could dramatically improve regional transportation accessibility and speed through point-to-point operations. This analysis develops an understanding of the potential traffic volume and National Airspace System (NAS) capacity for small on-demand aircraft operations. Future demand projections use the Transportation Systems Analysis Model (TSAM), a tool suite developed by NASA and the Transportation Laboratory of Virginia Polytechnic Institute. Demand projections from TSAM contain the mode of travel, number of trips and geographic distribution of trips. For this study, the mode of travel can be commercial aircraft, automobile and on-demand aircraft. NASA's Airspace Concept Evaluation System (ACES) is used to assess NAS impact. This simulation takes a schedule that includes all flights: commercial passenger and cargo; conventional General Aviation and on-demand small aircraft, and operates them in the simulated NAS. The results of this analysis projects very large trip numbers for an on-demand air transportation system competitive with automobiles in cost per passenger mile. The significance is this type of air transportation can enhance mobility for communities that currently lack access to commercial air transportation. Another significant finding is that the large numbers of operations can have an impact on the current NAS infrastructure used by commercial airlines and cargo operators, even if on-demand traffic does not use the 28 airports in the Continental U.S. designated as large hubs by the FAA. Some smaller airports will experience greater demand than their current capacity allows and will require upgrading. In addition, in future years as demand grows and vehicle performance improves other non-conventional facilities such as short runways incorporated into

  1. 75 FR 57848 - Revocation of Class E Airspace, Brunswick, ME; and Establishment of Class E Airspace, Wiscasset, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ...: Final rule. SUMMARY: This action removes Class E Airspace at Brunswick NAS, Brunswick, ME, as the..., Code of Federal Regulations (14 CFR) part 71 removes the Class E airspace at Brunswick NAS,...

  2. Automatic construction of aerial corridor for navigation of unmanned aircraft systems in class G airspace using LiDAR

    NASA Astrophysics Data System (ADS)

    Feng, Dengchao; Yuan, Xiaohui

    2016-05-01

    According to the airspace classification by the Federal Aviation Agency, Class G airspace is the airspace at 1,200 feet or less to the ground, which is beneath class E airspace and between classes B-D cylinders around towered airstrips. However, the lack of flight supervision mechanism in this airspace, unmanned aerial system (UAS) missions pose many safety issues. Collision avoidance and route planning for UASs in class G airspace is critical for broad deployment of UASs in commercial and security applications. Yet, unlike road network, there is no stationary marker in airspace to identify corridors that are available and safe for UASs to navigate. In this paper, we present an automatic LiDAR-based airspace corridor construction method for navigation in class G airspace and a method for route planning to minimize collision and intrusion. Our idea is to combine LiDAR to automatically identify ground objects that pose navigation restrictions such as airports and high-rises. Digital terrain model (DTM) is derived from LiDAR point cloud to provide an altitude-based class G airspace description. Following the FAA Aeronautical Information Manual, the ground objects that define the restricted airspaces are used together with digital surface model derived from LiDAR data to construct the aerial corridor for navigation of UASs. Preliminary results demonstrate competitive performance and the construction of aerial corridor can be automated with much great efficiency.

  3. Notional Airspace Operations Demonstration Plan

    NASA Technical Reports Server (NTRS)

    Trongale, Nicholas A.

    2006-01-01

    The airspace operations demonstration (AOD) is intended to show that the Access 5 Step 1 functional requirements can be met. The demonstration will occur in two phases. The initial on-range phase will be carried out in restricted airspace to demonstrate the cooperative collision avoidance (CCA) functional requirements and to provide risk-reduction for the AOD by allowing the test team to rehearse some elements of the demonstration mission. The CCA system to be used in these flights is based on Automatic Dependent Surveillance-Broadcast (ADS-B) which is a commercially-available system by which airplanes constantly broadcast their current position and altitude to other aircraft and ground resources over a dedicated radio datalink. The final phase will occur in the national airspace (NAS) and will be the formal demonstration of the remainder of the proposed functional requirements. The general objectives of the AOD are as follows: (1) Demonstrate that the UAS can aviate in the NAS (2) Demonstrate that the UAS can navigate in the NAS (3) Demonstrate that the UAS can communicate with the NAS (4) Demonstrate that the UAS can perform selected collision avoidance functions in the NAS (5) Demonstrate that the UAS can evaluate and avoid weather conflicts in the NAS (6) Demonstrate that the UAS can provide adequate command and control in the NAS In addition to the stated objectives, there are a number of goals for the flight demonstration. The demo can be accomplished successfully without achieving these goals, but these goals are to be used as a guideline for preparing for the mission. The goals are: (1) Mission duration of at least 24 hours (2) Loiter over heavy traffic to evaluate the data block issue identified during the Access 5 Airspace Operations Simulations (3) Document the contingency management process and lessons learned (4) Document the coordination process for Ground Control Stations (GCS) handoff (5) Document lessons learned regarding the process of flying in

  4. Enabling Civilian Low-Altitude Airspace and Unmanned Aerial System (UAS) Operations

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal

    2014-01-01

    UAS operations will be safer if a UTM system is available to support the functions associated with Airspace management and geo-fencing (reduce risk of accidents, impact to other operations, and community concerns); Weather and severe wind integration (avoid severe weather areas based on prediction); Predict and manage congestion (mission safety);Terrain and man-made objects database and avoidance; Maintain safe separation (mission safety and assurance of other assets); Allow only authenticated operations (avoid unauthorized airspace use).

  5. Unmanned Aircraft System (UAS) Delegation of Separation in NextGen Airspace

    NASA Technical Reports Server (NTRS)

    Kenny, Caitlin A.; Shively, Robert J.; Jordan, Kevin

    2014-01-01

    The purpose of this study was to determine the feasibility of unmanned aircraft systems (UAS) performing delegated separation in the national airspace system (NAS). Delegated separation is the transfer of responsibility for maintaining separation between aircraft or vehicles from air navigation service providers to the relevant pilot or flight operator. The effects of delegated separation and traffic display information level were collected through performance, workload, and situation awareness measures. The results of this study show benefits related to the use of conflict detection alerts being shown on the UAS operator's cockpit situation display (CSD), and to the use of full delegation. Overall, changing the level of separation responsibility and adding conflict detection alerts on the CSD was not found to have an adverse effect on performance as shown by the low amounts of losses of separation. The use of conflict detection alerts on the CSD and full delegation responsibilities given to the UAS operator were found to create significantly reduced workload, significantly increased situation awareness and significantly easier communications between the UAS operator and air traffic controller without significantly increasing the amount of losses of separation.

  6. Small Unmanned Aircraft Systems Integration into the National Airspace System Visual-Line-of-Sight Human-in-the-Loop Experiment

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Ghatas, Rania W.; Mcadaragh, Raymon; Burdette, Daniel W.; Comstock, James R.; Hempley, Lucas E.; Fan, Hui

    2015-01-01

    As part of the Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) project, research on integrating small UAS (sUAS) into the NAS was underway by a human-systems integration (HSI) team at the NASA Langley Research Center. Minimal to no research has been conducted on the safe, effective, and efficient manner in which to integrate these aircraft into the NAS. sUAS are defined as aircraft weighing 55 pounds or less. The objective of this human system integration team was to build a UAS Ground Control Station (GCS) and to develop a research test-bed and database that provides data, proof of concept, and human factors guidelines for GCS operations in the NAS. The objectives of this experiment were to evaluate the effectiveness and safety of flying sUAS in Class D and Class G airspace utilizing manual control inputs and voice radio communications between the pilot, mission control, and air traffic control. The design of the experiment included three sets of GCS display configurations, in addition to a hand-held control unit. The three different display configurations were VLOS, VLOS + Primary Flight Display (PFD), and VLOS + PFD + Moving Map (Map). Test subject pilots had better situation awareness of their vehicle position, altitude, airspeed, location over the ground, and mission track using the Map display configuration. This configuration allowed the pilots to complete the mission objectives with less workload, at the expense of having better situation awareness of other aircraft. The subjects were better able to see other aircraft when using the VLOS display configuration. However, their mission performance, as well as their ability to aviate and navigate, was reduced compared to runs that included the PFD and Map displays.

  7. An Evaluation of Operational Airspace Sectorization Integrated System (OASIS) Advisory Tool

    NASA Technical Reports Server (NTRS)

    Lee, Paul U.; Mogford, Richard H.; Bridges, Wayne; Buckley, Nathan; Evans, Mark; Gujral, Vimmy; Lee, Hwasoo; Peknik, Daniel; Preston, William

    2013-01-01

    In January 2013, a human-in-the-loop evaluation of the Operational Airspace Sectorization Integrated System (OASIS) was conducted in the Airspace Operations Laboratory of the Human Systems Integration Division (Code TH) in conjunction with the Aviation Systems Division (Code AF). The development of OASIS is a major activity of the Dynamic Airspace Configuration (DAC) research focus area within the Aeronautics Research Mission Directorate (ARMD) Airspace Systems Program. OASIS is an advisory tool to assist Federal Aviation Administration (FAA) En Route Area Supervisors in their planning of sector combinedecombine operations as well as opening closing of Data-side (D-side) control positions. These advisory solutions are tailored to the predicted traffic demand over the next few hours. During the experiment, eight retired FAA personnel served as participants for a part-task evaluation of OASIS functionality, covering the user interface as well as the underlying algorithm. Participants gave positive feedback on both the user interface and the algorithm solutions for airspace configuration, including an excellent average rating of 94 on the tool usability scales. They also suggested various enhancements to the OASIS tool, which will be incorporated into the next tool development cycle for the full-scale human-in-the-loop evaluation to be conducted later this year.

  8. Preliminary Uncorrelated Encounter Model of the National Airspace System

    DTIC Science & Technology

    2008-06-26

    Finally, the authors would also like to thank Vito D. Cavallo., Ann C. Drumm, Robert D. Grappel, J. Daniel Griffith, Garrett S. Harris , Jessica E...this ordering of the nodes is already topologically sorted: the first nod(e (airspace ( lass ) is connected to all other nodes. The second node

  9. Safely Enabling Civilian Unmanned Aerial System (UAS) Operations in Low-Altitude Airspace by Unmanned Aerial System Traffic Management (UTM)

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal Hemchandra

    2015-01-01

    Many UAS will operate at lower altitude (Class G, below 2000 feet). There is an urgent need for a system for civilian low-altitude airspace and UAS operations. Stakeholders want to work with NASA to enable safe operations.

  10. Safely Enabling Civilian Unmanned Aerial System (UAS) Operations In Low-Altitude Airspace By Unmanned Aerial System Traffic Management (UTM)

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal H.

    2015-01-01

    Many UAS will operate at lower altitude (Class G, below 2000 feet)There is urgent need for a system for civilian low-altitude airspace and UAS operations. Stakeholders want to work with NASA to enable safe operations.

  11. Aeronautics Research Mission Directorate Integrated Systems Research Program (ISRP) and UAS Integration in the NAS Project

    NASA Technical Reports Server (NTRS)

    Wolfe, Jean

    2010-01-01

    Program Goal: Conduct research at an integrated system-level on promising concepts and technologies and explore, assess, or demonstrate the benefits in a relevant environment.Criteria for selection of projects for Integrated Systems Research: a) Technology has attained enough maturity in the foundational research program that they merit more in-depth evaluation at an integrated system level in a relevant environment. b) Technologies which systems analysis indicates have the most potential for contributing to the simultaneous attainment of goals. c) Technologies identified through stakeholder input as having potential for simultaneous attainment of goals. d) Research not being done by other government agencies and appropriate for NASA to conduct. e) Budget augmentation. Environmentally Responsible Aviation (ERA) Project Explore and assess new vehicle concepts and enabling technologies through system-level experimentation to simultaneously reduce fuel burn, noise, and emissions Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project Contribute capabilities that reduce technical barriers related to the safety and operational challenges associated with enabling routine UAS access to the NAS Innovative Concepts for Green Aviation (ICGA) Project Spur innovation by offering research opportunities to the broader aeronautics community through peer-reviewed proposals, with a focus on making aviation more eco-friendly. Establish incentive prizes similar to the Centennial Challenges and sponsor innovation demonstrations of selected technologies that show promise of reducing aviation s impact on the environment

  12. Impacts of technology on the capacity needs of the US national airspace system

    NASA Technical Reports Server (NTRS)

    Ausrotas, Raymond A.; Simpson, Robert W.

    1992-01-01

    A review of the U.S. air transportation system is undertaken, focusing on airspace and airport capacity. Causes of delay and congestion are investigated. Aircraft noise is identified as the fundamental hindrance to capacity improvement. Research areas for NASA are suggested to improve capacity through technology.

  13. Development of a Portfolio Management Approach with Case Study of the NASA Airspace Systems Program

    NASA Technical Reports Server (NTRS)

    Neitzke, Kurt W.; Hartman, Christopher L.

    2012-01-01

    A portfolio management approach was developed for the National Aeronautics and Space Administration s (NASA s) Airspace Systems Program (ASP). The purpose was to help inform ASP leadership regarding future investment decisions related to its existing portfolio of advanced technology concepts and capabilities (C/Cs) currently under development and to potentially identify new opportunities. The portfolio management approach is general in form and is extensible to other advanced technology development programs. It focuses on individual C/Cs and consists of three parts: 1) concept of operations (con-ops) development, 2) safety impact assessment, and 3) benefit-cost-risk (B-C-R) assessment. The first two parts are recommendations to ASP leaders and will be discussed only briefly, while the B-C-R part relates to the development of an assessment capability and will be discussed in greater detail. The B-C-R assessment capability enables estimation of the relative value of each C/C as compared with all other C/Cs in the ASP portfolio. Value is expressed in terms of a composite weighted utility function (WUF) rating, based on estimated benefits, costs, and risks. Benefit utility is estimated relative to achieving key NAS performance objectives, which are outlined in the ASP Strategic Plan.1 Risk utility focuses on C/C development and implementation risk, while cost utility focuses on the development and implementation portions of overall C/C life-cycle costs. Initial composite ratings of the ASP C/Cs were successfully generated; however, the limited availability of B-C-R information, which is used as inputs to the WUF model, reduced the meaningfulness of these initial investment ratings. Development of this approach, however, defined specific information-generation requirements for ASP C/C developers that will increase the meaningfulness of future B-C-R ratings.

  14. Unmanned Aircraft Systems Traffic Management (UTM) Safely Enabling UAS Operations in Low-Altitude Airspace

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal H.

    2016-01-01

    Unmanned Aircraft System (UAS) Traffic Management (UTM) Enabling Civilian Low-Altitude Airspace and Unmanned Aircraft System Operations What is the problem? Many beneficial civilian applications of UAS have been proposed, from goods delivery and infrastructure surveillance, to search and rescue, and agricultural monitoring. Currently, there is no established infrastructure to enable and safely manage the widespread use of low-altitude airspace and UAS operations, regardless of the type of UAS. A UAS traffic management (UTM) system for low-altitude airspace may be needed, perhaps leveraging concepts from the system of roads, lanes, stop signs, rules and lights that govern vehicles on the ground today, whether the vehicles are driven by humans or are automated. What system technologies is NASA exploring? Building on its legacy of work in air traffic management for crewed aircraft, NASA is researching prototype technologies for a UAS Traffic Management (UTM) system that could develop airspace integration requirements for enabling safe, efficient low-altitude operations. While incorporating lessons learned from the today's well-established air traffic management system, which was a response that grew out of a mid-air collision over the Grand Canyon in the early days of commercial aviation, the UTM system would enable safe and efficient low-altitude airspace operations by providing services such as airspace design, corridors, dynamic geofencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning and re-routing, separation management, sequencing and spacing, and contingency management. One of the attributes of the UTM system is that it would not require human operators to monitor every vehicle continuously. The system could provide to human managers the data to make strategic decisions related to initiation, continuation, and termination of airspace operations. This approach would ensure that only authenticated UAS could operate

  15. [The NAS system: Nursing Activities Score in mobile technology].

    PubMed

    Catalan, Vanessa Menezes; Silveira, Denise Tolfo; Neutzling, Agnes Ludwig; Martinato, Luísa Helena Machado; Borges, Gilberto Cabral de Mello

    2011-12-01

    The objective of this study was to present the computerized structure that enables the use of the Nursing Activities Score (NAS) in mobile technology. It is a project for the development of technology production based on software engineering, founded on the theory of systems development life cycle. The NAS system was built in two modules: the search module, which is accessed using a personal computer (PC), and Data Collection module, which is accessed through a mobile device (Smartphone). The NAS system was constructed to allow other forms, in addition to the NAS tool, to be included in the future. Thus, it is understood that the development of the NAS will bring nurses closer to mobile technology and facilitate their accessibility to the data of the instrument relating to patients, thus assisting in decision-making and in staffing to provide nursing care.

  16. Identification and Analysis of Future Aeronautical Communications Candidates: A Study of Concepts and Technologies to Support the Aeronautical Communications Needs in the NextGen and Beyond National Airspace System

    NASA Technical Reports Server (NTRS)

    Wichgers, Joel M.; Mitchell, James P.

    2015-01-01

    This report describes the results of future aeronautical communications research conducted by Rockwell Collins employees under NRA contract to NASA. The overall goal of this research was to identify and begin to evaluate communication technology candidates expected to meet the long-term aircraft-to-aircraft and aircraft-to-ground data communications needs of Air Traffic Management in the NextGen and beyond National Airspace System (NAS), considering how the NAS and communications technologies will evolve during a 50-year modernization time horizon.

  17. NASA's UAS Integration into the NAS: A Report on the Human Systems Integration Phase 1 Simulation Activities

    NASA Technical Reports Server (NTRS)

    Fern, Lisa; Rorie, R. Conrad; Shively, R. Jay

    2014-01-01

    In 2011 the National Aeronautics and Space Administration (NASA) began a five-year Project to address the technical barriers related to routine access of Unmanned Aerial Systems (UAS) in the National Airspace System (NAS). Planned in two phases, the goal of the first phase was to lay the foundations for the Project by identifying those barriers and key issues to be addressed to achieve integration. Phase 1 activities were completed two years into the five-year Project. The purpose of this paper is to review activities within the Human Systems Integration (HSI) subproject in Phase 1 toward its two objectives: 1) develop GCS guidelines for routine UAS access to the NAS, and 2) develop a prototype display suite within an existing Ground Control Station (GCS). The first objective directly addresses a critical barrier for UAS integration into the NAS - a lack of GCS design standards or requirements. First, the paper describes the initial development of a prototype GCS display suite and supporting simulation software capabilities. Then, three simulation experiments utilizing this simulation architecture are summarized. The first experiment sought to determine a baseline performance of UAS pilots operating in civil airspace under current instrument flight rules for manned aircraft. The second experiment examined the effect of currently employed UAS contingency procedures on Air Traffic Control (ATC) participants. The third experiment compared three GCS command and control interfaces on UAS pilot response times in compliance with ATC clearances. The authors discuss how the results of these and future simulation and flight-testing activities contribute to the development of GCS guidelines to support the safe integration of UAS into the NAS. Finally, the planned activities for Phase 2, including an integrated human-in-the-loop simulation and two flight tests are briefly described.

  18. Development and Application of an Integrated Approach toward NASA Airspace Systems Research

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Fong, Robert K.; Abramson, Paul D.; Koenke, Ed

    2008-01-01

    The National Aeronautics and Space Administration's (NASA) Airspace Systems Program is contributing air traffic management research in support of the 2025 Next Generation Air Transportation System (NextGen). Contributions support research and development needs provided by the interagency Joint Planning and Development Office (JPDO). These needs generally call for integrated technical solutions that improve system-level performance and work effectively across multiple domains and planning time horizons. In response, the Airspace Systems Program is pursuing an integrated research approach and has adapted systems engineering best practices for application in a research environment. Systems engineering methods aim to enable researchers to methodically compare different technical approaches, consider system-level performance, and develop compatible solutions. Systems engineering activities are performed iteratively as the research matures. Products of this approach include a demand and needs analysis, system-level descriptions focusing on NASA research contributions, system assessment and design studies, and common systemlevel metrics, scenarios, and assumptions. Results from the first systems engineering iteration include a preliminary demand and needs analysis; a functional modeling tool; and initial system-level metrics, scenario characteristics, and assumptions. Demand and needs analysis results suggest that several advanced concepts can mitigate demand/capacity imbalances for NextGen, but fall short of enabling three-times current-day capacity at the nation s busiest airports and airspace. Current activities are focusing on standardizing metrics, scenarios, and assumptions, conducting system-level performance assessments of integrated research solutions, and exploring key system design interfaces.

  19. 77 FR 19076 - Establishment of Class E Airspace; Marion, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... Airspace at Marion, AL, to accommodate the new Area Navigation (RNAV) Global Positioning System (GPS... management of Instrument Flight Rules (IFR) operations within the National Airspace System. DATES:...

  20. Unmanned Aircraft Systems in the National Airspace System: A Formal Methods Perspective

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar A.; Dutle, Aaron; Narkawicz, Anthony; Upchurch, Jason

    2016-01-01

    As the technological and operational capabilities of unmanned aircraft systems (UAS) have grown, so too have international efforts to integrate UAS into civil airspace. However, one of the major concerns that must be addressed in realizing this integration is that of safety. For example, UAS lack an on-board pilot to comply with the legal requirement that pilots see and avoid other aircraft. This requirement has motivated the development of a detect and avoid (DAA) capability for UAS that provides situational awareness and maneuver guidance to UAS operators to aid them in avoiding and remaining well clear of other aircraft in the airspace. The NASA Langley Research Center Formal Methods group has played a fundamental role in the development of this capability. This article gives a selected survey of the formal methods work conducted in support of the development of a DAA concept for UAS. This work includes specification of low-level and high-level functional requirements, formal verification of algorithms, and rigorous validation of software implementations.

  1. 78 FR 72008 - Establishment of Class E Airspace; Aliceville, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ... Airspace at Aliceville, AL, to accommodate a new Area Navigation (RNAV) Global Positioning System (GPS... airspace required to accommodate the new RNAV (GPS) Standard Instrument Approach Procedures developed...

  2. Mapping a Path to Autonomous Flight in the National Airspace

    NASA Technical Reports Server (NTRS)

    Lodding, Kenneth N.

    2011-01-01

    The introduction of autonomous flight, whether military, commercial, or civilian, into the National Airspace System (NAS) will present significant challenges. Minimizing the impact and preventing the changes from becoming disruptive, rather than an enhancing technology will not be without difficulty. From obstacle detection and avoidance to real-time verification and validation of system behavior, there are significant problems which must be solved prior to the general acceptance of autonomous systems. This paper examines some of the key challenges and the multi-disciplinary collaboration which must occur for autonomous systems to be accepted as equal partners in the NAS.

  3. 76 FR 44258 - Removal of Class D and E Airspace; Willow Grove, PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... Federal Aviation Administration 14 CFR Part 71 Removal of Class D and E Airspace; Willow Grove, PA AGENCY... and Class E airspace areas at Willow Grove, PA. The Willow Grove Naval Air Station (NAS) has closed... Class D and E airspace at Willow Grove, PA. The closing of the Willow Grove NAS and cancellation of...

  4. Preliminary Investigation of Civil Tiltrotor in NextGen Airspace

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Salvano, Dan; Wright, Ken; Chung, William; Young, Ray; Miller, David; Paris, Alfanso; Gao, Huina; Cheng, Victor

    2010-01-01

    Presentation intro: Tiltrotor aircraft have long been envisioned as being a potentially viable means of commercial aviation transport. Preliminary results from an ongoing study into the operational and technological considerations of Civil Tiltrotor (CTR) operation in the Next Generation airspace, circa the 2025 time-frame, are presented and discussed. In particular, a fleet of CTR aircraft has been conceptually designed. The performance characteristics of this CTR fleet was subsequently translated into BADA (Base of Aircraft DAta) models that could be used as input to emulate CTR aircraft operations in the ACES and AvTerminal airspace and terminal area simulation tools. A network of nine North-Eastern corridor airports is the focus of the airspace simulation effort; the results from this airport network viII then be extrapolated to provide insights into systemic impact of CTRs on the National Airspace System (NAS). Future work will also be detailed as to attempts to model the systemic effects of noise and emissions from this fleet of new aircraft as well as assess their leveraged impact on public service missions, in time of need, such as major regional/national disaster relief efforts. The ideal outcome of this study is a set of results whereby Next Gen airspace CONOPs can be refined to reflect potential CTR capabilities and, conversely, CTR technology development efforts can be better informed as to key performance requirement thresholds needed to be met in order to successfully introduce these aircraft into civilian aviation operation.

  5. UAS Integration in the NAS Project: Flight Test 3 Data Analysis of JADEM-Autoresolver Detect and Avoid System

    NASA Technical Reports Server (NTRS)

    Gong, Chester; Wu, Minghong G.; Santiago, Confesor

    2016-01-01

    The Unmanned Aircraft Systems Integration in the National Airspace System project, or UAS Integration in the NAS, aims to reduce technical barriers related to safety and operational challenges associated with enabling routine UAS access to the NAS. The UAS Integration in the NAS Project conducted a flight test activity, referred to as Flight Test 3 (FT3), involving several Detect-and-Avoid (DAA) research prototype systems between June 15, 2015 and August 12, 2015 at the Armstrong Flight Research Center (AFRC). This report documents the flight testing and analysis results for the NASA Ames-developed JADEM-Autoresolver DAA system, referred to as 'Autoresolver' herein. Four flight test days (June 17, 18, 22, and July 22) were dedicated to Autoresolver testing. The objectives of this test were as follows: 1. Validate CPA prediction accuracy and detect-and-avoid (DAA, formerly known as self-separation) alerting logic in realistic flight conditions. 2. Validate DAA trajectory model including maneuvers. 3. Evaluate TCAS/DAA interoperability. 4. Inform final Minimum Operating Performance Standards (MOPS). Flight test scenarios were designed to collect data to directly address the objectives 1-3. Objective 4, inform final MOPS, was a general objective applicable to the UAS in the NAS project as a whole, of which flight test is a subset. This report presents analysis results completed in support of the UAS in the NAS project FT3 data review conducted on October 20, 2015. Due to time constraints and, to a lesser extent, TCAS data collection issues, objective 3 was not evaluated in this analysis.

  6. A System Concept for Facilitating User Preferences in En Route Airspace

    NASA Technical Reports Server (NTRS)

    Vivona, R. A.; Ballin, M. G.; Green, S. M.; Bach, R. E.; McNally, B. D.

    1996-01-01

    The Federal Aviation Administration is trying to make its air traffic management system more responsive to the needs of the aviation community by exploring the concept of 'free flight' for aircraft flying under instrument flight rules. A logical first step toward free flight could be made without significantly altering current air traffic control (ATC) procedures or requiring new airborne equipment by designing a ground-based system to be highly responsive to 'user preference' in en route airspace while providing for an orderly transition to the terminal area. To facilitate user preference in all en route environments, a system based on an extension of the Center/TRACON Automation System (CTAS) is proposed in this document. The new system would consist of two integrated components. An airspace tool (AT) focuses on unconstrained en route aircraft (e.g., not transitioning to the terminal airspace), taking advantage of the relatively unconstrained nature of their flights and using long-range trajectory prediction to provide cost-effective conflict resolution advisories to sector controllers. A sector tool (ST) generates efficient advisories for all aircraft, with a focus on supporting controllers in analyzing and resolving complex, highly constrained traffic situations. When combined, the integrated AT/ST system supports user preference in any air route traffic control center sector. The system should also be useful in evaluating advanced free-flight concepts by serving as a test bed for future research. This document provides an overview of the design concept, explains its anticipated benefits, and recommends a development strategy that leads to a deployable system.

  7. Aircrew displays and avionics for application in a future national airspace system

    NASA Technical Reports Server (NTRS)

    Salmirs, S.

    1979-01-01

    A concept for increased pilot involvement in a future National Airspace System was evolved during the FAA New Initiatives in Engineering and Development Users responsibilities and ways in which they might interact. The technical feasibility of the system is indicated by the sophisticated level of presently manufactured digital computers and display avionics, and the application of that technology under design by the major airframe manufacturers. Data collected during simulations and flights with the Terminal Configured Vehicle Program B-737 airplane are shown to have direct application to the new system concept. The adoption of the operational changes envisioned, offers some potentially significant advantages to the user.

  8. A Preliminary Evaluation of Supersonic Transport Category Vehicle Operations in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Underwood, Matthew C.; Guminsky, Michael D.

    2015-01-01

    Several public sector businesses and government agencies, including the National Aeronautics and Space Administration are currently working on solving key technological barriers that must be overcome in order to realize the vision of low-boom supersonic flights conducted over land. However, once these challenges are met, the manner in which this class of aircraft is integrated in the National Airspace System may become a potential constraint due to the significant environmental, efficiency, and economic repercussions that their integration may cause. Background research was performed on historic supersonic operations in the National Airspace System, including both flight deck procedures and air traffic controller procedures. Using this information, an experiment was created to test some of these historic procedures in a current-day, emerging Next Generation Air Transportation System (NextGen) environment and observe the interactions between commercial supersonic transport aircraft and modern-day air traffic. Data was gathered through batch simulations of supersonic commercial transport category aircraft operating in present-day traffic scenarios as a base-lining study to identify the magnitude of the integration problems and begin the exploration of new air traffic management technologies and architectures which will be needed to seamlessly integrate subsonic and supersonic transport aircraft operations. The data gathered include information about encounters between subsonic and supersonic aircraft that may occur when supersonic commercial transport aircraft are integrated into the National Airspace System, as well as flight time data. This initial investigation is being used to inform the creation and refinement of a preliminary Concept of Operations and for the subsequent development of technologies that will enable overland supersonic flight.

  9. Advanced Flow Control as a Management Tool in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Wugalter, S.

    1974-01-01

    Advanced Flow Control is closely related to Air Traffic Control. Air Traffic Control is the business of the Federal Aviation Administration. To formulate an understanding of advanced flow control and its use as a management tool in the National Airspace System, it becomes necessary to speak somewhat of air traffic control, the role of FAA, and their relationship to advanced flow control. Also, this should dispell forever, any notion that advanced flow control is the inspirational master valve scheme to be used on the Alaskan Oil Pipeline.

  10. NASA UAS Integration into the NAS Project: Human Systems Integration

    NASA Technical Reports Server (NTRS)

    Shively, Jay

    2016-01-01

    This presentation provides an overview of the work the Human Systems Integration (HSI) sub-project has done on detect and avoid (DAA) displays while working on the UAS (Unmanned Aircraft System) Integration into the NAS project. The most recent simulation on DAA interoperability with Traffic Collision Avoidance System (TCAS) is discussed in the most detail. The relationship of the work to the larger UAS community and next steps are also detailed.

  11. Performance of an Automated System for Control of Traffic in Terminal Airspace

    NASA Technical Reports Server (NTRS)

    Nikoleris, Tasos; Erzberger, Heinz; Paielli, Russell A.; Chu, Yung-Cheng

    2016-01-01

    This paper examines the performance of a system that performs automated conflict resolution and arrival scheduling for aircraft in the terminal airspace around major airports. Such a system has the potential to perform separation assurance and arrival sequencing tasks that are currently handled manually by human controllers. The performance of the system is tested against several simulated traffic scenarios that are characterized by the rate at which air traffic is metered into the terminal airspace. For each traffic scenario, the levels of performance that are examined include: number of conflicts predicted to occur, types of resolution maneuver used to resolve predicted conflicts, and the amount of delay for all flights. The simulation results indicate that the percentage of arrivals that required a maneuver that changes the flight's horizontal route ranged between 11% and 15% in all traffic scenarios. That finding has certain implications if this automated system were to be implemented simply as a decision support tool. It is also found that arrival delay due to purely wake vortex separation requirements on final approach constituted only between 29% and 35% of total arrival delay, while the remaining major portion of it is mainly due to delay back propagation effects.

  12. Weather Requirements and Procedures for Step 1: High Altitude Long Endurance (HALE) Unmanned Aircraft System (UAS) Flight Operations in the National Air Space (NAS)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This cover sheet is for version 2 of the weather requirements document along with Appendix A. The purpose of the requirements document was to identify and to list the weather functional requirements needed to achieve the Access 5 vision of "operating High Altitude, Long Endurance (HALE) Unmanned Aircraft Systems (UAS) routinely, safely, and reliably in the National Airspace System (NAS) for Step 1." A discussion of the Federal Aviation Administration (FAA) references and related policies, procedures, and standards is provided as basis for the recommendations supported within this document. Additional procedures and reference documentation related to weather functional requirements is also provided for background. The functional requirements and related information are to be proposed to the FAA and various standards organizations for consideration and approval. The appendix was designed to show that sources of flight weather information are readily available to UAS pilots conducting missions in the NAS. All weather information for this presentation was obtained from the public internet.

  13. Estimation of Reduction in Airspace Capacity Due to Convective Weather

    NASA Technical Reports Server (NTRS)

    Sheth, Kapil; Sridhar, Banavar; Namjoshi, Leena

    2006-01-01

    Severe convective weather routinely disrupts normal flow of air traffic in the United States' National Airspace System (NAS). Over the last decade, severe weather has been the most significant cause, accounting for over 70% of air traffic delays in the NAS. Flights incur modification in their nominal routes due to the presence of severe weather, and hence, suffer increased delays. These delays contribute to increased burden on airlines due to extra fuel costs and missed schedules for connecting flights. In this paper, the reduction in air space capacity and the associated air traffic delays due to severe convective weather will be investigated.

  14. Research in Modeling and Simulation for Airspace Systems Innovation

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Kimmel, William M.; Welch, Sharon S.

    2007-01-01

    This viewgraph presentation provides an overview of some of the applied research and simulation methodologies at the NASA Langley Research Center that support aerospace systems innovation. Risk assessment methodologies, complex systems design and analysis methodologies, and aer ospace operations simulations are described. Potential areas for future research and collaboration using interactive and distributed simula tions are also proposed.

  15. National Airspace System Plan: Facilities, Equipment, Associated Development and Other Capital Needs

    DTIC Science & Technology

    1988-06-01

    operational and equipment tially over the next two decades. Continuing growth needs to meet transitional capacity and reliability in the number of...routing constraints, and provide high levels of civil technological solutions. -: - -- A ., 1 "r- aviation system safety, reliability , and capability...required tance to the individual managers of the NAS Plan to meet current capability and reliability concerns projects. in the operational NAS. These

  16. Department of Defense Air Traffic Control and Airspace Management Systems

    DTIC Science & Technology

    1989-08-08

    Electronic Tabular Display System ( ETABS ) under development by the FAA. The FACTS-3200, an advanced 32 bit digital processor, is being added to the system... software compatible with FDIO. 2.1.1.4.2 Radar Facility Communications In general, military radar facilities employ or share the twenty-series family of...program is providing incremental changes to the existing radios by adding more frequencies, computer memory and software improvements, and equipment

  17. Transforming the NAS: The Next Generation Air Traffic Control System

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2004-01-01

    The next-generation air traffic control system must be designed to safely and efficiently accommodate the large growth of traffic expected in the near future. It should be sufficiently scalable to contend with the factor of 2 or more increase in demand expected by the year 2020. Analysis has shown that the current method of controlling air traffic cannot be scaled up to provide such levels of capacity. Therefore, to achieve a large increase in capacity while also giving pilots increased freedom to optimize their flight trajectories requires a fundamental change in the way air traffic is controlled. The key to achieving a factor of 2 or more increase in airspace capacity is to automate separation monitoring and control and to use an air-ground data link to send trajectories and clearances directly between ground-based and airborne systems. In addition to increasing capacity and offering greater flexibility in the selection of trajectories, this approach also has the potential to increase safety by reducing controller and pilot errors that occur in routine monitoring and voice communication tasks.

  18. A Glossary of Terms, Definitions, Acronyms, and Abbreviations Related to the National Airspace System (NAS)

    DTIC Science & Technology

    1990-06-01

    the part of the target being tracked. 13. track maneuver status/ TMS -- To aid the setting of the tracking modes, a track maneuver status ( TMS ) will be...crosstold from an adjacent center. ( TMS set to CROSSTELL in receiving center only.) 14. track merit -- A dash in the automatic tracking function that...Mean Sea Level (ICAO) AMSS Aeronautical Mobile Satellite Service AM-T Assistant Manager-Training AMTI Airborne Moving Target Indicator AM- TM

  19. UAS Integration in the NAS Project: Integrated Test and LVC Infrastructure

    NASA Technical Reports Server (NTRS)

    Murphy, Jim; Hoang, Ty

    2015-01-01

    Overview presentation of the Integrated Test and Evaluation sub-project of the Unmanned Aircraft System (UAS) in the National Airspace System (NAS). The emphasis of the presentation is the Live, Virtual, and Constructive (LVC) system (a broadly used name for classifying modeling and simulation) infrastructure and use of external assets and connection.

  20. Sandia Airspace Recording System (SARS) software reference manual

    SciTech Connect

    Tenney, J.L.

    1996-04-01

    SARS is a data acquisition system designed to gather and process radar data from aircraft flights. A database of flight trajectories has been developed for Albuquerque, NM, and Amarillo, TX. The data is used for safety analysis and risk assessment reports. To support this database effort, Sandia developed a collection of hardware and software tools to collect and post process the aircraft radar data. This document describes the data reduction tools which comprise the SARS, and maintenance procedures for the hardware and software system.

  1. Unmanned Aircraft Systems Traffic Management (UTM) Safely Enabling UAS Operations in Low-Altitude Airspace

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal H.

    2017-01-01

    Conduct research, development and testing to identify airspace operations requirements to enable large-scale visual and beyond visual line of sight UAS operations in the low-altitude airspace. Use build-a-little-test-a-little strategy remote areas to urban areas Low density: No traffic management required but understanding of airspace constraints. Cooperative traffic management: Understanding of airspace constraints and other operations. Manned and unmanned traffic management: Scalable and heterogeneous operations. UTM construct consistent with FAAs risk-based strategy. UTM research platform is used for simulations and tests. UTM offers path towards scalability

  2. Detecting and Mitigating Wind Turbine Clutter for Airspace Radar Systems

    PubMed Central

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results. PMID:24385880

  3. Detecting and mitigating wind turbine clutter for airspace radar systems.

    PubMed

    Wang, Wen-Qin

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results.

  4. Unmanned Aerial System (UAS) Traffic Management (UTM): Enabling Low-Altitude Airspace and UAS Operations

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal H.

    2014-01-01

    Many civilian applications of Unmanned Aerial Systems (UAS) have been imagined ranging from remote to congested urban areas, including goods delivery, infrastructure surveillance, agricultural support, and medical services delivery. Further, these UAS will have different equipage and capabilities based on considerations such as affordability, and mission needs applications. Such heterogeneous UAS mix, along with operations such as general aviation, helicopters, gliders must be safely accommodated at lower altitudes. However, key infrastructure to enable and safely manage widespread use of low-altitude airspace and UAS operations therein does not exist. Therefore, NASA is exploring functional design, concept and technology development, and a prototype UAS Traffic Management (UTM) system. UTM will support safe and efficient UAS operations for the delivery of goods and services

  5. Supporting the Use of Unmanned Aircraft Systems(UAS) for Global Science Observations in Civil and Segregated Airspace

    NASA Technical Reports Server (NTRS)

    Mulac, B. L.; Reider. K/

    2010-01-01

    Unmanned Aircraft Systems (UAS) are growing more popular within the earth science community as a way to augment measurements currently made with manned aircraft. UAS arc uniquely suited for applications that require long dwell times and/or in locations that are generally too dangerous for manned aircraft. Environmental monitoring in areas like the Arctic or obtaining data within a hurricane are just a couple of examples of many applications to which UAS are ideally suited. However, UAS are not without their challenges. Most unmanned aircraft are unable to meet current airspace regulations that are in place for manned aircraft, and specific airspace standards and regulations for unmanned aircraft do not exist. As a result, gaining access to civil airspace for flights is very difficult around the world. Under Term of Reference 48 within the ISPRS Commission 1, WGI/I: Standardization of Aircraft Interfaces, efforts have been made to understand and quantify the current state of UAS airspace access on a global scale. The results of these efforts will be presented along with examples of successful science missions that have been conducted internationally during the past year.

  6. Development and benefit analysis of a sector design algorithm for terminal dynamic airspace configuration

    NASA Astrophysics Data System (ADS)

    Sciandra, Vincent

    The National Airspace System (NAS) is the vast network of systems enabling safe and efficient air travel in the United States. It consists of a set of static sectors, each controlled by one or more air traffic controllers. Air traffic control is tasked with ensuring that all flights can depart and arrive on time and in a safe and efficient matter. However, skyrocketing demand will only increase the stress on an already inefficient system, causing massive delays. The current, static configuration of the NAS cannot possibly handle the future demand on the system safely and efficiently, especially since it is projected to triple by 2025. To overcome these issues, the Next Generation of Air Transportation System (NextGen) is being enacted to increase the flexibility of the NAS. A major objective of NextGen is to implement Adaptable Dynamic Airspace Configuration (ADAC) which will dynamically allocate the sectors to best fit the traffic in the area. Dynamically allocating sectors will allow resources such as controllers to be better distributed to meet traffic demands. Currently, most DAC research has involved the en route airspace. This leaves the terminal airspace, which accounts for a large amount of the overall NAS complexity, in need of work. Using a combination of methods used in en route sectorization, this thesis has developed an algorithm for the dynamic allocation of sectors in the terminal airspace. This algorithm will be evaluated using metrics common in the evaluation of dynamic density, which is adapted for the unique challenges of the terminal airspace, and used to measure workload on air traffic controllers. These metrics give a better view of the controller workload than the number of aircraft alone. By comparing the test results with sectors currently used in the NAS using real traffic data, the algorithm xv generated sectors can be quantitatively evaluated for improvement of the current sectorizations. This will be accomplished by testing the

  7. A Virtual Laboratory for Aviation and Airspace Prognostics Research

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan; Gorospe, George; Teubert, Christ; Quach, Cuong C.; Hogge, Edward; Darafsheh, Kaveh

    2017-01-01

    Integration of Unmanned Aerial Vehicles (UAVs), autonomy, spacecraft, and other aviation technologies, in the airspace is becoming more and more complicated, and will continue to do so in the future. Inclusion of new technology and complexity into the airspace increases the importance and difficulty of safety assurance. Additionally, testing new technologies on complex aviation systems and systems of systems can be challenging, expensive, and at times unsafe when implementing real life scenarios. The application of prognostics to aviation and airspace management may produce new tools and insight into these problems. Prognostic methodology provides an estimate of the health and risks of a component, vehicle, or airspace and knowledge of how that will change over time. That measure is especially useful in safety determination, mission planning, and maintenance scheduling. In our research, we develop a live, distributed, hardware- in-the-loop Prognostics Virtual Laboratory testbed for aviation and airspace prognostics. The developed testbed will be used to validate prediction algorithms for the real-time safety monitoring of the National Airspace System (NAS) and the prediction of unsafe events. In our earlier work1 we discussed the initial Prognostics Virtual Laboratory testbed development work and related results for milestones 1 & 2. This paper describes the design, development, and testing of the integrated tested which are part of milestone 3, along with our next steps for validation of this work. Through a framework consisting of software/hardware modules and associated interface clients, the distributed testbed enables safe, accurate, and inexpensive experimentation and research into airspace and vehicle prognosis that would not have been possible otherwise. The testbed modules can be used cohesively to construct complex and relevant airspace scenarios for research. Four modules are key to this research: the virtual aircraft module which uses the X

  8. Design, Development, and Testing of a UAV Hardware-in-the-Loop Testbed for Aviation and Airspace Prognostics Research

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan; Teubert, Chris; Gorospe, George; Burgett, Drew; Quach, Cuong C.; Hogge, Edward

    2016-01-01

    The airspace is becoming more and more complicated, and will continue to do so in the future with the integration of Unmanned Aerial Vehicles (UAVs), autonomy, spacecraft, other forms of aviation technology into the airspace. The new technology and complexity increases the importance and difficulty of safety assurance. Additionally, testing new technologies on complex aviation systems & systems of systems can be very difficult, expensive, and sometimes unsafe in real life scenarios. Prognostic methodology provides an estimate of the health and risks of a component, vehicle, or airspace and knowledge of how that will change over time. That measure is especially useful in safety determination, mission planning, and maintenance scheduling. The developed testbed will be used to validate prediction algorithms for the real-time safety monitoring of the National Airspace System (NAS) and the prediction of unsafe events. The framework injects flight related anomalies related to ground systems, routing, airport congestion, etc. to test and verify algorithms for NAS safety. In our research work, we develop a live, distributed, hardware-in-the-loop testbed for aviation and airspace prognostics along with exploring further research possibilities to verify and validate future algorithms for NAS safety. The testbed integrates virtual aircraft using the X-Plane simulator and X-PlaneConnect toolbox, UAVs using onboard sensors and cellular communications, and hardware in the loop components. In addition, the testbed includes an additional research framework to support and simplify future research activities. It enables safe, accurate, and inexpensive experimentation and research into airspace and vehicle prognosis that would not have been possible otherwise. This paper describes the design, development, and testing of this system. Software reliability, safety and latency are some of the critical design considerations in development of the testbed. Integration of HITL elements in

  9. On the Transition and Migration of Flight Functions in the Airspace System

    NASA Technical Reports Server (NTRS)

    Morris, Allan Terry; Young, Steve D.

    2012-01-01

    Since 400 BC, when man first replicated flying behavior with kites, up until the turn of the 20th century, when the Wright brothers performed the first successful powered human flight, flight functions have become available to man via significant support from man-made structures and devices. Over the past 100 years or so, technology has enabled several flight functions to migrate to automation and/or decision support systems. This migration continues with the United States NextGen and Europe s Single European Sky (a.k.a. SESAR) initiatives. These overhauls of the airspace system will be accomplished by accommodating the functional capabilities, benefits, and limitations of technology and automation together with the unique and sometimes overlapping functional capabilities, benefits, and limitations of humans. This paper will discuss how a safe and effective migration of any flight function must consider several interrelated issues, including, for example, shared situation awareness, and automation addiction, or over-reliance on automation. A long-term philosophical perspective is presented that considers all of these issues by primarily asking the following questions: How does one find an acceptable level of risk tolerance when allocating functions to automation versus humans? How does one measure or predict with confidence what the risks will be? These two questions and others will be considered from the two most-discussed paradigms involving the use of increasingly complex systems in the future: humans as operators and humans as monitors.

  10. A Cognitive System Model for Human/Automation Dynamics in Airspace Management

    NASA Technical Reports Server (NTRS)

    Corker, Kevin M.; Pisanich, Gregory; Lebacqz, J. Victor (Technical Monitor)

    1997-01-01

    NASA has initiated a significant thrust of research and development focused on providing the flight crew and air traffic managers automation aids to increase capacity in en route and terminal area operations through the use of flexible, more fuel-efficient routing, while improving the level of safety in commercial carrier operations. In that system development, definition of cognitive requirements for integrated multi-operator dynamic aiding systems is fundamental. In order to support that cognitive function definition, we have extended the Man Machine Integrated Design and Analysis System (MIDAS) to include representation of multiple cognitive agents (both human operators and intelligent aiding systems) operating aircraft, airline operations centers and air traffic control centers in the evolving airspace. The demands of this application require representation of many intelligent agents sharing world-models, and coordinating action/intention with cooperative scheduling of goals and actions in a potentially unpredictable world of operations. The MIDAS operator models have undergone significant development in order to understand the requirements for operator aiding and the impact of that aiding in the complex nondeterminate system of national airspace operations. The operator model's structure has been modified to include attention functions, action priority, and situation assessment. The cognitive function model has been expanded to include working memory operations including retrieval from long-term store, interference, visual-motor and verbal articulatory loop functions, and time-based losses. The operator's activity structures have been developed to include prioritization and interruption of multiple parallel activities among multiple operators, to provide for anticipation (knowledge of the intention and action of remote operators), and to respond to failures of the system and other operators in the system in situation-specific paradigms. The model's internal

  11. Share the Sky: Concepts and Technologies That Will Shape Future Airspace Use

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Cotton, William; Kopardekar, Parimal

    2011-01-01

    The airspace challenge for the United States is to protect national sovereignty and ensure the safety and security of those on the ground and in the air, while at the same time ensuring the efficiency of flight, reducing the costs involved, protecting the environment, and protecting the freedom of access to the airspace. Many visions of the future NAS hold a relatively near-term perspective, focusing on existing uses of the airspace and assuming that new uses will make up a small fraction of total use. In the longer term, the skies will be filled with diverse and amazing new air vehicles filling our societal needs. Anticipated new vehicles include autonomous air vehicles acting both independently and in coordinated groups, unpiloted cargo carriers, and large numbers of personal air vehicles and small-scale point-to-point transports. These vehicles will enable new capabilities that have the potential to increase societal mobility, transport freight at lower cost and with lower environmental impact, improve the study of the Earth s atmosphere and ecosystem, and increase societal safety and security by improving or drastically lowering the cost of critical services such as firefighting, emergency medical evacuation, search and rescue, border and neighborhood surveillance, and the inspection of our infrastructure. To ensure that uses of the airspace can continue to grow for the benefit of all, a new paradigm for operations is needed: equitably and safely sharing the airspace. This paper is an examination of such a vision, concentrating on the operations of all types of air vehicles and future uses of the National Airspace. Attributes of a long-term future airspace system are provided, emerging operations technologies are described, and initial steps in research and development are recommended.

  12. Diagnostic throughput factor analysis for en-route airspace and optimal aircraft trajectory generation based on capacity prediction and controller workload

    NASA Astrophysics Data System (ADS)

    Shin, Sanghyun

    Today's National Airspace System (NAS) is approaching its limit to efficiently cope with the increasing air traffic demand. Next Generation Air Transportation System (NextGen) with its ambitious goals aims to make the air travel more predictable with fewer delays, less time sitting on the ground and holding in the air to improve the performance of the NAS. However, currently the performance of the NAS is mostly measured using delay-based metrics which do not capture a whole range of important factors that determine the quality and level of utilization of the NAS. The factors affecting the performance of the NAS are themselves not well defined to begin with. To address these issues, motivated by the use of throughput-based metrics in many areas such as ground transportation, wireless communication and manufacturing, this thesis identifies the different factors which majorly affect the performance of the NAS as demand (split into flight cancellation and flight rerouting), safe separation (split into conflict and metering) and weather (studied as convective weather) through careful comparison with other applications and performing empirical sensitivity analysis. Additionally, the effects of different factors on the NAS's performance are quantitatively studied using real traffic data with the Future ATM Concepts Evaluation Tool (FACET) for various sectors and centers of the NAS on different days. In this thesis we propose a diagnostic tool which can analyze the factors that have greater responsibility for regions of poor and better performances of the NAS. Based on the throughput factor analysis for en-route airspace, it was found that weather and controller workload are the major factors that decrease the efficiency of the airspace. Also, since resources such as air traffic controllers, infrastructure and airspace are limited, it is becoming increasingly important to use the available resources efficiently. To alleviate the impact of the weather and controller

  13. Airspace Control

    DTIC Science & Technology

    2011-02-02

    it does not display a currently valid OMB control number. 1 . REPORT DATE 02 FEB 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4...each other; select the best course of action; and produce a joint operation plan or order (JP 1 - 02 ). A major element of the JOPP is campaign planning... 1 - 02 ). Airspace control should be integrated throughout the JOPP and campaign planning to ensure joint air operations support the JFC‘s plan.60

  14. 77 FR 4458 - Amendment of Class E Airspace; Rockingham, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    .... No comments were received. Class E airspace designations are published in paragraph 6005 of FAA Order... 14 CFR 71.1. The Class E airspace designations listed in this document will be published subsequently... safety and management of IFR operations within the National Airspace System. The airport formerly...

  15. 76 FR 52230 - Establishment of Class E Airspace; Forest, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-22

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Forest, VA AGENCY... Airspace at Forest, VA, to accommodate the new Area Navigation (RNAV) Global Positioning System (GPS... published in the Federal Register a notice of proposed rulemaking to establish Class E airspace at...

  16. 78 FR 25384 - Establishment of Class E Airspace; Immokalee, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    ... TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Immokalee, FL... Class E Airspace at Immokalee, FL, to accommodate the Area Navigation (RNAV) Global Positioning System... establish Class E airspace at Immokalee, FL (78 FR 6262) Docket No. FAA-2012-1051. Interested parties...

  17. 77 FR 45240 - Establishment of Class E Airspace; Arcadia, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ... TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Arcadia, FL... Class E Airspace at Arcadia, FL, to accommodate the new Area Navigation (RNAV) Global Positioning System... establish Class E airspace at Oneonta, AL (77 FR 33685) Docket No. FAA-2012-0365. Interested parties...

  18. Safely Enabling Low-Altitude Airspace Operations: Unmanned Aerial System Traffic Management (UTM)

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal

    2015-01-01

    Near-term Goal Enable initial low-altitude airspace and UAS operations with demonstrated safety as early as possible, within 5 years Long-term Goal Accommodate increased UAS operations with highest safety, efficiency, and capacity as much autonomously as possible (10-15 years).

  19. Unmanned Aerial Systems Traffic Management (UTM): Safely Enabling UAS Operations in Low-Altitude Airspace

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal H.; Cavolowsky, John

    2015-01-01

    Flexibility where possible, and structure where necessary. Consider the needs of national security, safe airspace operations, economic opportunities, and emerging technologies. Risk-based approach based on population density, assets on the ground, density of operations, etc. Digital, virtual, dynamic, and as needed UTM services to manage operations.

  20. 75 FR 61660 - Proposed Modification of Class D and E Airspace, and Revocation of Class E Airspace; Flagstaff, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... Airspace Docket No. 10-AWP-5) and be submitted in triplicate to the Docket Management System (see ADDRESSES... reference in 14 CFR Part 71.1. The Class D and E airspace designation listed in this document will be... Federal Aviation Administration 14 CFR Part 71 Docket No. FAA-2010-0784; Airspace Docket No....

  1. The SMART-NAS Testbed

    NASA Technical Reports Server (NTRS)

    Aquilina, Rudolph A.

    2015-01-01

    The SMART-NAS Testbed for Safe Trajectory Based Operations Project will deliver an evaluation capability, critical to the ATM community, allowing full NextGen and beyond-NextGen concepts to be assessed and developed. To meet this objective a strong focus will be placed on concept integration and validation to enable a gate-to-gate trajectory-based system capability that satisfies a full vision for NextGen. The SMART-NAS for Safe TBO Project consists of six sub-projects. Three of the sub-projects are focused on exploring and developing technologies, concepts and models for evolving and transforming air traffic management operations in the ATM+2 time horizon, while the remaining three sub-projects are focused on developing the tools and capabilities needed for testing these advanced concepts. Function Allocation, Networked Air Traffic Management and Trajectory Based Operations are developing concepts and models. SMART-NAS Test-bed, System Assurance Technologies and Real-time Safety Modeling are developing the tools and capabilities to test these concepts. Simulation and modeling capabilities will include the ability to assess multiple operational scenarios of the national airspace system, accept data feeds, allowing shadowing of actual operations in either real-time, fast-time and/or hybrid modes of operations in distributed environments, and enable integrated examinations of concepts, algorithms, technologies, and NAS architectures. An important focus within this project is to enable the development of a real-time, system-wide safety assurance system. The basis of such a system is a continuum of information acquisition, analysis, and assessment that enables awareness and corrective action to detect and mitigate potential threats to continuous system-wide safety at all levels. This process, which currently can only be done post operations, will be driven towards "real-time" assessments in the 2035 time frame.

  2. Waste tank 241-SY-101 dome airspace and ventilation system response to a flammable gas plume burn

    SciTech Connect

    Heard, F.J.

    1995-11-01

    A series of flammable gas plume burn and transient pressure analyses have been completed for a nuclear waste tank (241-SY-101) and associated tank farm ventilation system at the U.S. Department of Energy`s Hanford facility. The subject analyses were performed to address issues concerning the effects of transient pressures resulting from igniting a small volume of concentrated flammable gas just released from the surface of the waste as a plume and before the flammable gas concentration could be reduced by mixing with the dome airspace by local convection and turbulent diffusion. Such a condition may exist as part of an in progress episode gas release (EGR) or gas plume event. The analysis goal was to determine the volume of flammable gas that if burned within the dome airspace would result in a differential pressure, after propagating through the ventilation system, greater than the current High Efficiency Particulate Filter (HEPA) limit of 2.49 KPa (10 inches of water or 0. 36 psi). Such a pressure wave could rupture the tank ventilation system inlet and outlet HEPA filters leading to a potential release of contaminants to the environment

  3. Uncorrelated Encounter Model of the National Airspace System, Version 2.0

    DTIC Science & Technology

    2013-08-19

    between two IFR aircraft in oceanic airspace. The reason for this is that one cannot observe encounters of sufficient fidelity in the available data...does not observe a sufficient number of encounters between instrument flight rules ( IFR ) and non- IFR traffic beyond 12 NM from the shore. 4 TABLE 1...Encounter model categories. Aircraft of Interest Intruder Aircraft Location Flight Rule IFR VFR Noncooperative Noncooperative Conventional

  4. Unmanned Aircraft System (UAS) Traffic Management (UTM): Enabling Civilian Low-Altitude Airspace and Unmanned Aerial System Operations

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal Hemchandra

    2016-01-01

    Just a year ago we laid out the UTM challenges and NASA's proposed solutions. During the past year NASA's goal continues to be to conduct research, development and testing to identify airspace operations requirements to enable large-scale visual and beyond visual line-of-sight UAS operations in the low-altitude airspace. Significant progress has been made, and NASA is continuing to move forward.

  5. UAS-NAS Flight Test Series 3: Test Environment Report

    NASA Technical Reports Server (NTRS)

    Hoang, Ty; Murphy, Jim; Otto, Neil

    2016-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration in the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability (SSI), Human Systems Integration (HSI), and Communications (Comm), and Certification to support reducing the barriers of UAS access to the NAS. This research is broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Detect and Avoid (DAA) performance standards, command and control performance standards, and human systems integration. The focus of Test Infrastructure is to enable development and validation of airspace integration procedures and performance standards, including integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project will develop an adaptable, scalable, and schedulable relevant test environment capable of evaluating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project is conducting a series of human-in-the-loop (HITL) and flight test activities that integrate key concepts, technologies and/or procedures in a relevant air traffic environment. Each of the integrated events will build on the technical achievements, fidelity, and

  6. The NAS Alert System: a look at the first eight years

    USGS Publications Warehouse

    Fuller, Pam L.; Neilson, Matt; Huge, Dane H.

    2013-01-01

    The U.S. Geological Survey's Nonindigenous Aquatic Species (NAS) database program (http://nas.er.usgs.gov) tracks the distribution of introduced aquatic organisms across the United States. Awareness of, and timely response to, novel species introductions by those involved in nonindigenous aquatic species management and research requires a framework for rapid dissemination of occurrence data as it is incorporated into the NAS database. In May 2004, the NAS program developed an alert system to notify registered users of new introductions as part of a national early detection/rapid response system. This article summarizes information on system users and dispatched alerts from the system's inception through the end of 2011. The NAS alert system has registered over 1,700 users, with approximately 800 current subscribers. A total of 1,189 alerts had been transmitted through 2011. More alerts were sent for Florida (134 alerts) than for any other state. Fishes comprise the largest taxonomic group of alerts (440), with mollusks, plants, and crustaceans each containing over 100 alerts. Most alerts were for organisms that were intentionally released (414 alerts), with shipping, escape from captivity, and hitchhiking also representing major vectors. To explore the archive of sent alerts and to register, the search and signup page for the alert system can be found online at http://nas.er.usgs.gov/AlertSystem/default.aspx.

  7. Large Unmanned Aircraft System Operations in the National Airspace System - the NASA 2007 Western States Fire Missions

    NASA Technical Reports Server (NTRS)

    Buoni, Gregory P.; Howell, Kathleen M.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC) Ikhana (ee-kah-nah) project executed the 2007 Western States Fire Missions over several of the western United States using an MQ-9 unmanned aircraft system (UAS) in partnership with the NASA Ames Research Center, the United States Forest Service, and the National Interagency Fire Center. The missions were intended to supply infrared imagery of wildfires to firefighters on the ground within 10 minutes of data acquisition. For each of the eight missions, the NASA DFRC notified the Federal Aviation Administration (FAA) of specific flight plans within three or fewer days of the flight. The FAA Certificate of Waiver or Authorization (commonly referred to as a COA ) process was used to obtain access to the United States National Airspace System. Significant time and resources were necessary to develop the COA application, perform mission planning, and define and approve emergency landing sites. Unique aspects of flying unmanned aircraft created challenges to mission operations. Close coordination with FAA headquarters and air traffic control resulted in safe and successful missions that assisted firefighters by providing near-real-time imagery of selected wildfires.

  8. Unmanned Aviation Systems Models of the Radio Communications Links: Study Results - Appendices Annex 2. Volume 1 and Volume 2

    NASA Technical Reports Server (NTRS)

    Birr, Richard B.; Spencer, Roy; Murray, Jennifer; Lash, Andrew

    2013-01-01

    This report describes the analysis of communications between the Control Station and an Unmanned Aircraft (UA) flying in the National Airspace System (NAS). This work is based on the RTCA SC-203 Operational Services and Environment Description (OSED). The OSED document seeks to characterize the highly different attributes of all UAs navigating the airspace and define their relationship to airspace users, air traffic services, and operating environments of the NAS. One goal of this report is to lead to the development of Minimum Aviation System Performance Standards for Control and Communications. This report takes the nine scenarios found in the OSED and analyzes the communication links.

  9. NASA's UAS NAS Access Project

    NASA Technical Reports Server (NTRS)

    Johnson, Charles W.

    2011-01-01

    The vision of the Unmanned Aircraft System (UAS) Integration in the National Airspace System (NAS) Project is "A global transportation system which allows routine access for all classes of UAS." The goal of the UAS Integration in the NAS Project is to "contribute capabilities that reduce technical barriers related to the safety and operational challenges associated with enabling routine UAS access to the NAS." This goal will be accomplished through a two-phased approach based on development of system-level integration of key concepts, technologies and/or procedures, and demonstrations of integrated capabilities in an operationally relevant environment. Phase 1 will take place the first two years of the Project and Phase 2 will take place the following three years. The Phase 1 and 2 technical objectives are: Phase 1: Developing a gap analysis between current state of the art and the Next Generation Air Transportation System (NextGen) UAS Concept of Operations . Validating the key technical areas identified by this Project . Conducting initial modeling, simulation, and flight testing activities . Completing Sub-project Phase 1 deliverables (spectrum requirements, comparative analysis of certification methodologies, etc.) and continue Phase 2 preparation (infrastructure, tools, etc.) Phase 2: Providing regulators with a methodology for developing airworthiness requirements for UAS, and data to support development of certifications standards and regulatory guidance . Providing systems-level, integrated testing of concepts and/or capabilities that address barriers to routine access to the NAS. Through simulation and flight testing, address issues including separation assurance, communications requirements, and human systems integration in operationally relevant environments. The UAS in the NAS Project will demonstrate solutions in specific technology areas, which will address operational/safety issues related to UAS access to the NAS. Since the resource allocation for

  10. UAS Integration into the NAS: Unmanned Aircraft System (UAS) Delegation of Separation

    NASA Technical Reports Server (NTRS)

    Fern, Lisa Carolynn; Kenny, Caitlin Ailis

    2012-01-01

    FAA Modernization and Reform Act of 2012 mandates UAS integration in the NAS by 2015. Operators must be able to safely maneuver UAS to maintain separation and collision avoidance. Delegated Separation is defined as the transfer of responsibility for maintaining separation between aircraft or vehicles from the air navigation service provider to the relevant flight operator, and will likely begin in sparsely trafficked areas before moving to more heavily populated airspace. As UAS operate primarily in areas with lower traffic density and perform maneuvers routinely that are currently managed through special handling, they have the advantage of becoming an early adopter of delegated separation. This experiment will examine if UAS are capable of performing delegated separation in 5 nm horizontal and 1000 ft vertical distances under two delegation conditions. In Extended Delegation, ATC are in charge of identifying problems and delegating to pilot identification and implementation of the solution and monitoring. In Full Delegation, the pilots are responsible for all tasks related to separation assurance: identification of problems and solutions, implementation and monitoring.

  11. 75 FR 8485 - Revocation of Class D and E Airspace; Brunswick, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... and E Airspace at Brunswick NAS Airport, Brunswick, ME, as the airport has closed and the associated... Brunswick NAS Airport in Brunswick, ME has closed in compliance with the 2005 Base Realignment and Closure... NAS Airport, Brunswick, ME. This rule will become effective on the date specified in the DATES...

  12. 76 FR 41397 - Establishment of Class E Airspace; Florence, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-14

    ... airspace at Florence, OR, to accommodate aircraft using a new Area Navigation (RNAV) Global Positioning System (GPS) standard instrument approach procedures at Florence Municipal Airport. This improves...

  13. 75 FR 12974 - Establishment of Class E Airspace; Hailey, ID

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... E airspace at Hailey, ID, to accommodate aircraft using the Area Navigation (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedure (SIAP) at Friedman Memorial Airport. This...

  14. 75 FR 40719 - Establishment of Class E Airspace; Kemmerer, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-14

    ... E airspace at Kemmerer, WY to accommodate aircraft using a new Area Navigation (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedures (SIAPs) at Kemmerer Municipal Airport....

  15. 76 FR 1999 - Establishment of Class E Airspace; Panguitch, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-12

    ... E airspace at Panguitch, UT, to accommodate aircraft using a new Area Navigation (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedures at Panguitch Municipal Airport. This...

  16. Test Report for the Direct Access Radar/National Airspace System (DARC/NAS) Bi-Directional Interface Test

    DTIC Science & Technology

    1989-01-01

    Report m. Robert V. DiMeo, et al. DOT/FAA/CT-TN89/ II 9. Performing Organisation Name and Addrtess 10. Work Unit No. (TRAIS) U.S. Department of...procedures in summary form, the test enviroment , and test administration, data collection, and analyses. - Results - Presents significant findings based...cases that did not pass, whi wre attributed to S4 timng problems. As stated earlier in the Test Enviroent section we expected that a small percntage of

  17. The airspace is habitat

    USGS Publications Warehouse

    Diehl, Robert H.

    2013-01-01

    A preconception concerning habitat persists and has gone unrecognized since use of the term first entered the lexicon of ecological and evolutionary biology many decades ago. Specifically, land and water are considered habitats, while the airspace is not. This might at first seem a reasonable, if unintended, demarcation, since years of education and personal experience as well as limits to perception predispose a traditional view of habitat. Nevertheless, the airspace satisfies the definition and functional role of a habitat, and its recognition as habitat may have implications for policy where expanding anthropogenic development of airspace could impact the conservation of species and subject parts of the airspace to formalized legal protection.

  18. UAS Integration in the NAS Project: Integrated Test and Evaluation (IT&E) Flight Test 3. Revision E

    NASA Technical Reports Server (NTRS)

    Marston, Michael

    2015-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration into the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability, Human Systems Integration (HSI), and Communication to support reducing the barriers of UAS access to the NAS. This research is broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Sense and Avoid (SAA) performance standards, command and control performance standards, and human systems integration. The focus of Test Infrastructure is to enable development and validation of airspace integration procedures and performance standards, including the integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project will develop an adaptable, scalable, and schedulable relevant test environment capable of evaluating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project will conduct a series of Human-in-the-Loop and Flight Test activities that integrate key concepts, technologies and/or procedures in a relevant air traffic environment. Each of the integrated events will build on the technical achievements, fidelity and complexity of the previous tests and

  19. NAS: The first year

    NASA Technical Reports Server (NTRS)

    Bailey, F. R.; Kutler, Paul

    1988-01-01

    Discussed are the capabilities of NASA's Numerical Aerodynamic Simulation (NAS) Program and its application as an advanced supercomputing system for computational fluid dynamics (CFD) research. First, the paper describes the NAS computational system, called the NAS Processing System Network, and the advanced computational capabilities it offers as a consequence of carrying out the NAS pathfinder objective. Second, it presents examples of pioneering CFD research accomplished during NAS's first operational year. Examples are included which illustrate CFD applications for predicting fluid phenomena, complementing and supplementing experimentation, and aiding in design. Finally, pacing elements and future directions for CFD and NAS are discussed.

  20. Comparison of leading parallel NAS file systems on commodity hardware

    SciTech Connect

    Hedges, R; Fitzgerald, K; Gary, M; Stearman, D M

    2010-11-08

    High performance computing has experienced tremendous gains in system performance over the past 20 years. Unfortunately other system capabilities, such as file I/O, have not grown commensurately. In this activity, we present the results of our tests of two leading file systems (GPFS and Lustre) on the same physical hardware. This hardware is the standard commodity storage solution in use at LLNL and, while much smaller in size, is intended to enable us to learn about differences between the two systems in terms of performance, ease of use and resilience. This work represents the first hardware consistent study of the two leading file systems that the authors are aware of.

  1. Considerations for Domestic Law Enforcement Implementation of a UAS Program in the Proposed FAA Regulatory Environment of Integration into the National Airspace System

    DTIC Science & Technology

    2015-12-01

    THE NATIONAL AIRSPACE SYSTEM 5. FUNDING NUMBERS 6. AUTHOR(S) Keith Andrew McMinn 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval...Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) N/A 10...agencies can and should take advantage of the cost savings, technical capabilities, and mission performance offered by this technology

  2. 77 FR 3185 - Proposed Establishment of Class E Airspace; Grasonville, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... 71 [Docket No. FAA-2011-1340; Airspace Docket No. 11-AEA-22] Proposed Establishment of Class E... airspace management of Instrument Flight Rules (IFR) operations within the National Airspace System. DATES... triplicate to the Docket Management System (see ADDRESSES section for address and phone number). You may...

  3. Job Management Requirements for NAS Parallel Systems and Clusters

    NASA Technical Reports Server (NTRS)

    Saphir, William; Tanner, Leigh Ann; Traversat, Bernard

    1995-01-01

    A job management system is a critical component of a production supercomputing environment, permitting oversubscribed resources to be shared fairly and efficiently. Job management systems that were originally designed for traditional vector supercomputers are not appropriate for the distributed-memory parallel supercomputers that are becoming increasingly important in the high performance computing industry. Newer job management systems offer new functionality but do not solve fundamental problems. We address some of the main issues in resource allocation and job scheduling we have encountered on two parallel computers - a 160-node IBM SP2 and a cluster of 20 high performance workstations located at the Numerical Aerodynamic Simulation facility. We describe the requirements for resource allocation and job management that are necessary to provide a production supercomputing environment on these machines, prioritizing according to difficulty and importance, and advocating a return to fundamental issues.

  4. Concepts of Integration for UAS Operations in the NAS

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Chamberlain, James P.; Munoz, Cesar A.; Hoffler, Keith D.

    2012-01-01

    One of the major challenges facing the integration of Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is the lack of an onboard pilot that can comply with the legal requirement identified in the US Code of Federal Regulations (CFR) that pilots see and avoid other aircraft. UAS will be expected to demonstrate the means to perform the function of see and avoid while preserving the safety level of the airspace and the efficiency of the air traffic system. This paper introduces a Sense and Avoid (SAA) concept for integration of UAS into the NAS that is currently being developed by the National Aeronautics and Space Administration (NASA) and identifies areas that require additional experimental evaluation to further inform various elements of the concept. The concept design rests on interoperability principles that take into account both the Air Traffic Control (ATC) environment as well as existing systems such as the Traffic Alert and Collision Avoidance System (TCAS). Specifically, the concept addresses the determination of well clear values that are large enough to avoid issuance of TCAS corrective Resolution Advisories, undue concern by pilots of proximate aircraft and issuance of controller traffic alerts. The concept also addresses appropriate declaration times for projected losses of well clear conditions and maneuvers to regain well clear separation.

  5. The Effects of Projected Future Demand Including Very Light Jet Air-Taxi Operations on U.S. National Airspace System Delays as a Function of Next Generation Air Transportation System Airspace Capacity

    NASA Technical Reports Server (NTRS)

    Smith, Jerry; Viken, Jeff; Dollyhigh, Samuel; Trani, Antonio; Baik, Hojong; Hinze, Nicholas; Ashiabor, Senanu

    2007-01-01

    This paper presents the results from a study which investigates the potential effects of the growth in air traffic demand including projected Very Light Jet (VLJ) air-taxi operations adding to delays experienced by commercial passenger air transportation in the year 2025. The geographic region studied is the contiguous United States (U.S.) of America, although international air traffic to and from the U.S. is included. The main focus of this paper is to determine how much air traffic growth, including VLJ air-taxi operations will add to enroute airspace congestion and determine what additional airspace capacity will be needed to accommodate the expected demand. Terminal airspace is not modeled and increased airport capacity is assumed.

  6. Examination of Frameworks for Safe Integration of Intelligent Small UAS into the NAS

    NASA Technical Reports Server (NTRS)

    Logan, Michael J.

    2012-01-01

    This paper discusses a proposed framework for the safe integration of small unmanned aerial systems (sUAS) into the National Airspace System (NAS). The paper briefly examines the potential uses of sUAS to build an understanding of the location and frequency of potential future flight operations based on the future applications of the sUAS systems. The paper then examines the types of systems that would be required to meet the application-level demand to determine "classes" of platforms and operations. A framework for categorization of the "intelligence" level of the UAS is postulated for purposes of NAS integration. Finally, constraints on the intelligent systems are postulated to ensure their ease of integration into the NAS.

  7. 78 FR 60237 - Proposed Amendment of Class E Airspace; Burnet, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ..., to request a copy of Advisory Circular No. 11-2A, Notice of Proposed Rulemaking Distribution System... airspace is necessary for the safety and management of IFR operations at the airport. Class E airspace... 15, 2013, which is incorporated by reference in 14 CFR 71.1. The Class E airspace designation...

  8. 76 FR 73505 - Establishment of Class E Airspace; Danville Airport, PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... Class E airspace at Danville, PA, to accommodate new Area Navigation (RNAV) Global Positioning System... reference in 14 CFR 71.1. The Class E airspace designations listed in this document will be published... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Danville Airport,...

  9. 76 FR 41147 - Proposed Establishment of Class E Airspace; Chinle, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... Airspace Docket No. 11-AWP-7) and be submitted in triplicate to the Docket Management System (see ADDRESSES....1. The Class E airspace designation listed in this document will be published subsequently in this... Federal Aviation Administration 14 CFR Part 71 Proposed Establishment of Class E Airspace; Chinle,...

  10. Making the Case for New Research to Support the Integration of Small Unmanned Aircraft Systems into the National Airspace System

    NASA Technical Reports Server (NTRS)

    McAdaragh, Raymon M.; Comstock, James R., Jr.; Ghatas, Rania W.; Burdette, Daniel W.; Trujillo, Anna C.

    2014-01-01

    This paper describes the current state of sUAS regulation, their technical capabilities and the latest technologies that will allow for sUAS NAS integration. The research that is needed to demonstrate sUAS NAS integration capability is identified, and recommendations for conducting this necessary research are suggested.

  11. 77 FR 19928 - Amendment of Class E Airspace; Hugo, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Hugo, CO AGENCY: Federal... Hugo, CO. Decommissioning of the Hugo Tactical Air Navigation System (TACAN) has made this action... ] controlled airspace at Hugo, CO (76 FR 78576). Interested parties were invited to participate in...

  12. 77 FR 19930 - Amendment of Class E Airspace; Tobe, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Tobe, CO AGENCY: Federal... Tobe, CO. Decommissioning of the Tobe Tactical Air Navigation System (TACAN) has made this action... a notice of proposed rulemaking to amend controlled airspace at Tobe, CO (77 FR 4708)....

  13. 77 FR 18102 - Amendment of Class E Airspace; Lamar, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Lamar, CO AGENCY: Federal... Lamar Municipal Airport, Lamar, CO. Decommissioning of the Lamar Tactical Air Navigation System (TACAN... Register a notice of proposed rulemaking to amend controlled airspace at Lamar, CO (76 FR...

  14. 76 FR 64235 - Establishment of Class E Airspace; Nahunta, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Nahunta, GA AGENCY... Airspace at Nahunta, GA, to accommodate the new Area Navigation (RNAV) Global Positioning System (GPS..., GA (76 FR 45478) Docket No. FAA-2011-0727. Subsequent to publication, the FAA found a...

  15. 78 FR 72009 - Establishment of Class E Airspace; Star, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Star, NC AGENCY: Federal... at Star, NC, to accommodate a new Area Navigation (RNAV) Global Positioning System (GPS) Standard... Federal Register a notice of proposed rulemaking to establish Class E airspace at Star, NC (78 FR...

  16. 76 FR 72838 - Amendment of Class E Airspace; Luray, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... management of Instrument Flight Rules (IFR) operations within the National Airspace System. This action also..., 2011, and effective September 15, 2011, which is incorporated by reference in 14 CFR 71.1. The Class E... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Luray, VA AGENCY:...

  17. Capacity Takes Flight: A Vehicle-Centered Approach to Sustainable Airspace Productivity

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Ballin, Mark G.; Barmore, Bryan E.

    2005-01-01

    The National Airspace System (NAS) faces a significant challenge. With the nation's economy growing stronger, and passengers returning to the skies, the demand for air transportation is steadily rising once again. The capacity of the current airspace system will struggle to keep pace in the near term, and with demand expected to double within a decade, air traffic delays are likely to escalate, soon becoming intolerable for aviation businesses. Recognition in the aviation community is forming that retaining a growing, thriving air transportation system for the benefit of the traveling public and the world economy will likely require implementing transformational ideas in air traffic management. This video illustrates an approach NASA is pursuing to this end: the notion that a major untapped resource available to air traffic management can be leveraged, the aircraft itself. The thesis presented is that implementation of vehicle-centric air traffic management capabilities into the NAS could have a profound, positive, and sustainable impact on system capacity, individual aircraft operators, and the economy through its dependency on air.

  18. 77 FR 9839 - Amendment of Class D and Class E Airspace, and Establishment of Class E Airspace; Bozeman, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ...This action modifies Class D and Class E airspace at Bozeman, Gallatin Field Airport, Bozeman, MT, to accommodate aircraft using Instrument Landing System (ILS) Localizer (LOC) standard instrument approach procedures at Bozeman, Gallatin Field Airport. This action also establishes Class E En Route Domestic airspace to facilitate vectoring of Instrument Flight Rules (IFR) operations at the......

  19. A Framework for Safe Integration of Small UAS Into the NAS

    NASA Technical Reports Server (NTRS)

    Logan, Michael J.; Bland, Geoffrey; Murray, Jennifer

    2011-01-01

    This paper discusses a proposed framework for the safe integration of small unmanned aerial systems (sUAS) into the National Airspace System (NAS). The paper examines the potential uses of sUAS to build an understanding of the location and frequency of potential future flight operations based on the future applications of the sUAS systems. The paper then examines the types of systems that would be required to meet the application-level demand to determine classes of platforms and operations. Finally, a framework is proposed for both airworthiness and operations that attempts to balance safety with utility for these important systems.

  20. Large-scale structural analysis: The structural analyst, the CSM Testbed and the NAS System

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Mccleary, Susan L.; Macy, Steven C.; Aminpour, Mohammad A.

    1989-01-01

    The Computational Structural Mechanics (CSM) activity is developing advanced structural analysis and computational methods that exploit high-performance computers. Methods are developed in the framework of the CSM testbed software system and applied to representative complex structural analysis problems from the aerospace industry. An overview of the CSM testbed methods development environment is presented and some numerical methods developed on a CRAY-2 are described. Selected application studies performed on the NAS CRAY-2 are also summarized.

  1. Varying Levels of Automation on UAS Operator Responses to Traffic Resolution Advisories in Civil Airspace

    NASA Technical Reports Server (NTRS)

    Kenny, Caitlin; Fern, Lisa

    2012-01-01

    Continuing demand for the use of Unmanned Aircraft Systems (UAS) has put increasing pressure on operations in civil airspace. The need to fly UAS in the National Airspace System (NAS) in order to perform missions vital to national security and defense, emergency management, and science is increasing at a rapid pace. In order to ensure safe operations in the NAS, operators of unmanned aircraft, like those of manned aircraft, may be required to maintain separation assurance and avoid loss of separation with other aircraft while performing their mission tasks. This experiment investigated the effects of varying levels of automation on UAS operator performance and workload while responding to conflict resolution instructions provided by the Tactical Collision Avoidance System II (TCAS II) during a UAS mission in high-density airspace. The purpose of this study was not to investigate the safety of using TCAS II on UAS, but rather to examine the effect of automation on the ability of operators to respond to traffic collision alerts. Six licensed pilots were recruited to act as UAS operators for this study. Operators were instructed to follow a specified mission flight path, while maintaining radio contact with Air Traffic Control and responding to TCAS II resolution advisories. Operators flew four, 45 minute, experimental missions with four different levels of automation: Manual, Knobs, Management by Exception, and Fully Automated. All missions included TCAS II Resolution Advisories (RAs) that required operator attention and rerouting. Operator compliance and reaction time to RAs was measured, and post-run NASA-TLX ratings were collected to measure workload. Results showed significantly higher compliance rates, faster responses to TCAS II alerts, as well as less preemptive operator actions when higher levels of automation are implemented. Physical and Temporal ratings of workload were significantly higher in the Manual condition than in the Management by Exception and

  2. UAS-NAS Integrated Human in the Loop: Test Environment Report

    NASA Technical Reports Server (NTRS)

    Murphy, Jim; Otto, Neil; Jovic, Srba

    2015-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration in the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability (SSI), Human Systems Integration (HSI), and Communication to support reducing the barriers of UAS access to the NAS. This research was broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Sense and Avoid (SAA) performance standards, command and control performance standards, and human systems integration. The focus of the Test Infrastructure theme was to enable development and validation of airspace integration procedures and performance standards, including the execution of integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project developed an adaptable, scalable, and schedulable relevant test environment incorporating live, virtual, and constructive elements capable of validating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project planned to conduct three integrated events: a Human-in-the-Loop simulation and two Flight Test series that integrated key concepts, technologies and/or procedures in a relevant air traffic environment. Each of

  3. Integration of Weather Data into Airspace and Traffic Operations Simulation (ATOS) for Trajectory- Based Operations Research

    NASA Technical Reports Server (NTRS)

    Peters, Mark; Boisvert, Ben; Escala, Diego

    2009-01-01

    Explicit integration of aviation weather forecasts with the National Airspace System (NAS) structure is needed to improve the development and execution of operationally effective weather impact mitigation plans and has become increasingly important due to NAS congestion and associated increases in delay. This article considers several contemporary weather-air traffic management (ATM) integration applications: the use of probabilistic forecasts of visibility at San Francisco, the Route Availability Planning Tool to facilitate departures from the New York airports during thunderstorms, the estimation of en route capacity in convective weather, and the application of mixed-integer optimization techniques to air traffic management when the en route and terminal capacities are varying with time because of convective weather impacts. Our operational experience at San Francisco and New York coupled with very promising initial results of traffic flow optimizations suggests that weather-ATM integrated systems warrant significant research and development investment. However, they will need to be refined through rapid prototyping at facilities with supportive operational users We have discussed key elements of an emerging aviation weather research area: the explicit integration of aviation weather forecasts with NAS structure to improve the effectiveness and timeliness of weather impact mitigation plans. Our insights are based on operational experiences with Lincoln Laboratory-developed integrated weather sensing and processing systems, and derivative early prototypes of explicit ATM decision support tools such as the RAPT in New York City. The technical components of this effort involve improving meteorological forecast skill, tailoring the forecast outputs to the problem of estimating airspace impacts, developing models to quantify airspace impacts, and prototyping automated tools that assist in the development of objective broad-area ATM strategies, given probabilistic

  4. Flexible Airspace Management (FAM) Research 2010 Human-in-the-Loop Simulation

    NASA Technical Reports Server (NTRS)

    Lee, Paul U.; Brasil, Connie; Homola, Jeffrey; Kessell, Angela; Prevot, Thomas; Smith, Nancy

    2011-01-01

    A human-in-the-Ioop (HITL) simulation was conducted to assess potential user and system benefits of Flexible Airspace Management (FAM) concept, as well as designing role definitions, procedures, and tools to support the FAM operations in the mid-term High Altitude Airspace (HAA) environment. The study evaluated the benefits and feasibility of flexible airspace reconfiguration in response to traffic overload caused by weather deviations, and compared them to those in a baseline condition without the airspace reconfiguration. The test airspace consisted of either four sectors in one Area of Specialization or seven sectors across two Areas. The test airspace was assumed to be at or above FL340 and fully equipped Vvith data communications (Data Comm). Other assumptions were consistent with those of the HAA concept. Overall, results showed that FAM operations with multiple Traffic Management Coordinators, Area Supervisors, and controllers worked remarkably well. The results showed both user and system benefits, some of which include the increased throughput, decreased flight distance, more manageable sector loads, and better utilized airspace. Also, the roles, procedures, airspace designs, and tools were all very well received. Airspace configuration options that resulted from a combination of algorithm-generated airspace configurations with manual modifications were well acceptec and posed little difficuIty and/or workload during airspace reconfiguration process. The results suggest a positive impact of FAM operations in HAA. Further investigation would be needed to evaluate if the benefits and feasibility would extend in either non-HAA or mixed equipage environment.

  5. Generic Airspace Survey

    NASA Technical Reports Server (NTRS)

    Mogford, Richard H.; Bridges, Wayne; Gujarl, Vimmy; Lee, Paul U.; Preston, William

    2013-01-01

    This paper reports on an extension of generic airspace research to explore the amount of memorization and specialized skills required to manage sectors with specific characteristics or factors. Fifty-five retired controllers were given an electronic survey where they rated the amount of memorization or specialized skills needed for sixteen generic airspace factors. The results suggested similarities in the pattern of ratings between different areas of the US (East, Central, and West). The average of the ratings for each area also showed some differences between regions, with ratings being generally higher in the East area. All sixteen factors were rated as moderately to highly important and may be useful for future research on generic airspace, air traffic controller workload, etc.

  6. Method and System for Air Traffic Rerouting for Airspace Constraint Resolution

    NASA Technical Reports Server (NTRS)

    Sheth, Kapil S. (Inventor); McNally, B. David (Inventor); Erzberger, Heinz (Inventor); Morando, Alexander R. (Inventor); Clymer, Alexis A. (Inventor); Shih, Fu-tai (Inventor)

    2017-01-01

    A dynamic constraint avoidance route system automatically analyzes routes of aircraft flying, or to be flown, in or near constraint regions and attempts to find more time and fuel efficient reroutes around current and predicted constraints. The dynamic constraint avoidance route system continuously analyzes all flight routes and provides reroute advisories that are dynamically updated in real time. The dynamic constraint avoidance route system includes a graphical user interface that allows users to visualize, evaluate, modify if necessary, and implement proposed reroutes.

  7. Alternative Architectures for Distributed Cooperative Problem-Solving in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Smith, Phillip J.; Billings, Charles; McCoy, C. Elaine; Orasanu, Judith

    1999-01-01

    The air traffic management system in the United States is an example of a distributed problem solving system. It has elements of both cooperative and competitive problem-solving. This system includes complex organizations such as Airline Operations Centers (AOCs), the FAA Air Traffic Control Systems Command Center (ATCSCC), and traffic management units (TMUs) at enroute centers and TRACONs, all of which have a major focus on strategic decision-making. It also includes individuals concerned more with tactical decisions (such as air traffic controllers and pilots). The architecture for this system has evolved over time to rely heavily on the distribution of tasks and control authority in order to keep cognitive complexity manageable for any one individual operator, and to provide redundancy (both human and technological) to serve as a safety net to catch the slips or mistakes that any one person or entity might make. Currently, major changes are being considered for this architecture, especially with respect to the locus of control, in an effort to improve efficiency and safety. This paper uses a series of case studies to help evaluate some of these changes from the perspective of system complexity, and to point out possible alternative approaches that might be taken to improve system performance. The paper illustrates the need to maintain a clear understanding of what is required to assure a high level of performance when alternative system architectures and decompositions are developed.

  8. 77 FR 14319 - Unmanned Aircraft System Test Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... Federal Aviation Administration 14 CFR Part 91 Unmanned Aircraft System Test Sites AGENCY: Federal... test ranges/sites to integrate unmanned aircraft systems (UAS) into the National Airspace System (NAS... of such UAS test sites will assist in the effort to safely and efficiently integrate UAS into the...

  9. Rangeland remote sensing applications with unmanned aerial systems (UAS) in the national airspace: challenges and experiences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, civilian applications of unmanned aerial systems (UAS) have increased considerably due to their greater availability and the miniaturization of sensors, GPS, inertial measurement units, and other hardware. UAS are well suited for rangeland remote sensing applications, because of the...

  10. 76 FR 55232 - Establishment of Class E Airspace; Copperhill, TN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ...) Standard Instrument Approach Procedures serving Martin Campbell Field Airport. This action enhances the... System (GPS) Standard Instrument Approach Procedures developed for Martin Campbell Field Airport. This... scope of that authority as it establishes controlled airspace at Martin Campbell Field...

  11. The UAV and the Current and Future Regulatory Construction for Integration into the National Airspace System

    DTIC Science & Technology

    2005-07-01

    vehicles had already begun. In fact, a giant step toward wireless control from a separate or remote location was already taken by Nikola Tesla who in...1898 successfully demonstrated a radio control system he called “telautomaton.” 68 Nikola Tesla was a Serbian electrical engineer-inventor and...J. Seifer, Wizard: The Life and Times of Nikola Tesla Biography of a Genius, 377 (1996). 67 See Newcome, supra note 23, at 16-7. 68 Seifer

  12. National Airspace System Plan: Facilities, Equipment, Associated Development and Other Capital Needs

    DTIC Science & Technology

    1989-09-01

    0 ...... TRACOWATCT DATA Cou.XCTIONIVOICE 0,16TRIUM sic LLWAW; WIND SHEAR 19FMR L WrAT’"ka Stuvicts VIA MODE 8 DATA LINK.w4m ADAS WM $C REPIAICAMENT...radar systems. 0 NEXRAD operational support facility established. Search radar will be retained for FAA weather and air traffic control requirements...project completed. weather radar ( NEXRAD ). * NDB project completed. By 1994 Mode S and data link coverage will be provided down to 12,500 feet msl and

  13. Generic Airspace Concepts and Research

    NASA Technical Reports Server (NTRS)

    Mogford, Richard H.

    2010-01-01

    The purpose of this study was to evaluate methods for reducing the training and memorization required to manage air traffic in mid-term, Next Generation Air Transportation System (NextGen) airspace. We contrasted the performance of controllers using a sector information display and NextGen automation tools while working with familiar and unfamiliar sectors. The airspace included five sectors from Oakland and Salt Lake City Centers configured as a "generic center" called "West High Center." The Controller Information Tool was used to present essential information for managing these sectors. The Multi Aircraft Control System air traffic control simulator provided data link and conflict detection and resolution. There were five experienced air traffic controller participants. Each was familiar with one or two of the five sectors, but not the others. The participants rotated through all five sectors during the ten data collection runs. The results addressing workload, traffic management, and safety, as well as controller and observer comments, supported the generic sector concept. The unfamiliar sectors were comparable to the familiar sectors on all relevant measures.

  14. Hybrid Network Architectures for the Next Generation NAS

    NASA Technical Reports Server (NTRS)

    Madubata, Christian

    2003-01-01

    To meet the needs of the 21st Century NAS, an integrated, network-centric infrastructure is essential that is characterized by secure, high bandwidth, digital communication systems that support precision navigation capable of reducing position errors for all aircraft to within a few meters. This system will also require precision surveillance systems capable of accurately locating all aircraft, and automatically detecting any deviations from an approved path within seconds and be able to deliver high resolution weather forecasts - critical to create 4- dimensional (space and time) profiles for up to 6 hours for all atmospheric conditions affecting aviation, including wake vortices. The 21st Century NAS will be characterized by highly accurate digital data bases depicting terrain, obstacle, and airport information no matter what visibility conditions exist. This research task will be to perform a high-level requirements analysis of the applications, information and services required by the next generation National Airspace System. The investigation and analysis is expected to lead to the development and design of several national network-centric communications architectures that would be capable of supporting the Next Generation NAS.

  15. 76 FR 75448 - Establishment of Class D and E Airspace; Frederick, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-02

    ... Class D and E airspace at Frederick, MD, to accommodate new Area Navigation (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedures (SIAPs) at Frederick Municipal Airport. This...

  16. 78 FR 6262 - Proposed Establishment of Class E Airspace; Immokalee, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedures at Big Cypress Airfield... controlled airspace required to support the RNAV GPS standard instrument approach procedures for Big...

  17. 75 FR 76650 - Proposed Modification of Class E Airspace; Bryce Canyon, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-09

    ... (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedures at Bryce Canyon Airport.... Controlled airspace is necessary to accommodate aircraft using the RNAV (GPS) Standard Instrument...

  18. Analysis of System-Wide Investment in the National Airspace System: A Portfolio Analytical Framework and an Example

    NASA Technical Reports Server (NTRS)

    Bhadra, Dipasis; Morser, Frederick R.

    2006-01-01

    In this paper, the authors review the FAA s current program investments and lay out a preliminary analytical framework to undertake projects that may address some of the noted deficiencies. By drawing upon the well developed theories from corporate finance, an analytical framework is offered that can be used for choosing FAA s investments taking into account risk, expected returns and inherent dependencies across NAS programs. The framework can be expanded into taking multiple assets and realistic values for parameters in drawing an efficient risk-return frontier for the entire FAA investment programs.

  19. A Vision and Roadmap for Increasing User Autonomy in Flight Operations in the National Airspace

    NASA Technical Reports Server (NTRS)

    Cotton, William B.; Hilb, Robert; Koczo, Stefan; Wing, David

    2016-01-01

    The purpose of Air Transportation is to move people and cargo safely, efficiently and swiftly to their destinations. The companies and individuals who use aircraft for this purpose, the airspace users, desire to operate their aircraft according to a dynamically optimized business trajectory for their specific mission and operational business model. In current operations, the dynamic optimization of business trajectories is limited by constraints built into operations in the National Airspace System (NAS) for reasons of safety and operational needs of the air navigation service providers. NASA has been developing and testing means to overcome many of these constraints and permit operations to be conducted closer to the airspace user's changing business trajectory as conditions unfold before and during the flight. A roadmap of logical steps progressing toward increased user autonomy is proposed, beginning with NASA's Traffic Aware Strategic Aircrew Requests (TASAR) concept that enables flight crews to make informed, deconflicted flight-optimization requests to air traffic control. These steps include the use of data communications for route change requests and approvals, integration with time-based arrival flow management processes under development by the Federal Aviation Administration (FAA), increased user authority for defining and modifying downstream, strategic portions of the trajectory, and ultimately application of self-separation. This progression takes advantage of existing FAA NextGen programs and RTCA standards development, and it is designed to minimize the number of hardware upgrades required of airspace users to take advantage of these advanced capabilities to achieve dynamically optimized business trajectories in NAS operations. The roadmap is designed to provide operational benefits to first adopters so that investment decisions do not depend upon a large segment of the user community becoming equipped before benefits can be realized. The issues of

  20. NAS Demand Predictions, Transportation Systems Analysis Model (TSAM) Compared with Other Forecasts

    NASA Technical Reports Server (NTRS)

    Viken, Jeff; Dollyhigh, Samuel; Smith, Jeremy; Trani, Antonio; Baik, Hojong; Hinze, Nicholas; Ashiabor, Senanu

    2006-01-01

    The current work incorporates the Transportation Systems Analysis Model (TSAM) to predict the future demand for airline travel. TSAM is a multi-mode, national model that predicts the demand for all long distance travel at a county level based upon population and demographics. The model conducts a mode choice analysis to compute the demand for commercial airline travel based upon the traveler s purpose of the trip, value of time, cost and time of the trip,. The county demand for airline travel is then aggregated (or distributed) to the airport level, and the enplanement demand at commercial airports is modeled. With the growth in flight demand, and utilizing current airline flight schedules, the Fratar algorithm is used to develop future flight schedules in the NAS. The projected flights can then be flown through air transportation simulators to quantify the ability of the NAS to meet future demand. A major strength of the TSAM analysis is that scenario planning can be conducted to quantify capacity requirements at individual airports, based upon different future scenarios. Different demographic scenarios can be analyzed to model the demand sensitivity to them. Also, it is fairly well know, but not well modeled at the airport level, that the demand for travel is highly dependent on the cost of travel, or the fare yield of the airline industry. The FAA projects the fare yield (in constant year dollars) to keep decreasing into the future. The magnitude and/or direction of these projections can be suspect in light of the general lack of airline profits and the large rises in airline fuel cost. Also, changes in travel time and convenience have an influence on the demand for air travel, especially for business travel. Future planners cannot easily conduct sensitivity studies of future demand with the FAA TAF data, nor with the Boeing or Airbus projections. In TSAM many factors can be parameterized and various demand sensitivities can be predicted for future travel. These

  1. 14 CFR 91.705 - Operations within airspace designated as Minimum Navigation Performance Specification Airspace.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Minimum Navigation Performance Specification Airspace. 91.705 Section 91.705 Aeronautics and Space FEDERAL... Operations within airspace designated as Minimum Navigation Performance Specification Airspace. (a) Except as... airspace designated as Minimum Navigation Performance Specifications airspace unless— (1) The aircraft...

  2. 78 FR 48080 - Proposed Establishment of Class E Airspace; Magee, MS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-07

    ... new Area Navigation (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedure... Instrument Flight Rules (IFR) operations within the National Airspace System. DATES: Comments must be...; Airspace Docket No. 13-ASO-8) and be submitted in triplicate to the Docket Management System (see...

  3. 78 FR 14473 - Proposed Establishment of Class E Airspace; Sanibel, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... (RNAV) Global Positioning System (GPS) special Standard Instrument Approach Procedure (SIAP) serving... Rules (IFR) operations within the National Airspace System. DATES: Comments must be received on or...; Airspace Docket No. 12-ASO-18) and be submitted in triplicate to the Docket Management System...

  4. 76 FR 34196 - Proposed Establishment of Class E Airspace; Forest, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedures serving New London...) operations within the National Airspace System. DATES: Comments must be received on or before July 28, 2011...; Airspace Docket No. 11-AEA-11) and be submitted in triplicate to the Docket Management System...

  5. 78 FR 52111 - Proposed Establishment of Class E Airspace; Aliceville, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ... Navigation (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedure (SIAP) serving... Rules (IFR) operations within the National Airspace System. DATES: Comments must be received on or...; Airspace Docket No. 13-ASO-7) and be submitted in triplicate to the Docket Management System (see...

  6. First-principles study on structure stabilities of α-S and Na-S battery systems

    NASA Astrophysics Data System (ADS)

    Momida, Hiroyoshi; Oguchi, Tamio

    2014-03-01

    To understand microscopic mechanisms of charge and discharge reactions in Na-S batteries, there has been increasing needs to study fundamental atomic and electronic structures of elemental S as well as that of Na-S phases. The most stable form of S is known to be an orthorhombic α-S crystal at ambient temperature and pressure, and α-S consists of puckered S8 rings which crystallize in space group Fddd . In this study, the crystal structure of α-S is examined by using first-principles calculations with and without the van der Waals interaction corrections of Grimme's method, and results clearly show that the van der Waals interactions between the S8 rings have crucial roles on cohesion of α-S. We also study structure stabilities of Na2S, NaS, NaS2, and Na2S5 phases with reported crystal structures. Using calculated total energies of the crystal structure models, we estimate discharge voltages assuming discharge reactions from 2Na+ xS -->Na2Sx, and discharge reactions in Na/S battery systems are discussed by comparing with experimental results. This work was partially supported by Elements Strategy Initiative for Catalysts and Batteries (ESICB) of Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan.

  7. UAS in the NAS: Survey Responses by ATC, Manned Aircraft Pilots, and UAS Pilots

    NASA Technical Reports Server (NTRS)

    Comstock, James R., Jr.; McAdaragh, Raymon; Ghatas, Rania W.; Burdette, Daniel W.; Trujillo, Anna C.

    2013-01-01

    NASA currently is working with industry and the Federal Aviation Administration (FAA) to establish future requirements for Unmanned Aircraft Systems (UAS) flying in the National Airspace System (NAS). To work these issues NASA has established a multi-center UAS Integration in the NAS project. In order to establish Ground Control Station requirements for UAS, the perspective of each of the major players in NAS operations was desired. Three on-line surveys were administered that focused on Air Traffic Controllers (ATC), pilots of manned aircraft, and pilots of UAS. Follow-up telephone interviews were conducted with some survey respondents. The survey questions addressed UAS control, navigation, and communications from the perspective of small and large unmanned aircraft. Questions also addressed issues of UAS equipage, especially with regard to sense and avoid capabilities. From the ATC and military ATC perspective, of particular interest is how mixed-operations (manned/UAS) have worked in the past and the role of aircraft equipage. Knowledge gained from this information is expected to assist the NASA UAS in the NAS project in directing research foci thus assisting the FAA in the development of rules, regulations, and policies related to UAS in the NAS.

  8. UAS in the NAS: Survey Responses by ATC, Manned Aircraft Pilots, and UAS Pilots

    NASA Technical Reports Server (NTRS)

    Comstock, James R., Jr.; McAdaragh, Raymon; Ghatas, Rania W.; Burdette, Daniel W.; Trujillo, Anna C.

    2014-01-01

    NASA currently is working with industry and the Federal Aviation Administration (FAA) to establish future requirements for Unmanned Aircraft Systems (UAS) flying in the National Airspace System (NAS). To work these issues NASA has established a multi-center "UAS Integration in the NAS" project. In order to establish Ground Control Station requirements for UAS, the perspective of each of the major players in NAS operations was desired. Three on-line surveys were administered that focused on Air Traffic Controllers (ATC), pilots of manned aircraft, and pilots of UAS. Follow-up telephone interviews were conducted with some survey respondents. The survey questions addressed UAS control, navigation, and communications from the perspective of small and large unmanned aircraft. Questions also addressed issues of UAS equipage, especially with regard to sense and avoid capabilities. From the civilian ATC and military ATC perspectives, of particular interest are how mixed operations (manned / UAS) have worked in the past and the role of aircraft equipage. Knowledge gained from this information is expected to assist the NASA UAS Integration in the NAS project in directing research foci thus assisting the FAA in the development of rules, regulations, and policies related to UAS in the NAS.

  9. User Centered, Application Independent Visualization of National Airspace Data

    NASA Technical Reports Server (NTRS)

    Murphy, James R.; Hinton, Susan E.

    2011-01-01

    This paper describes an application independent software tool, IV4D, built to visualize animated and still 3D National Airspace System (NAS) data specifically for aeronautics engineers who research aggregate, as well as single, flight efficiencies and behavior. IV4D was origin ally developed in a joint effort between the National Aeronautics and Space Administration (NASA) and the Air Force Research Laboratory (A FRL) to support the visualization of air traffic data from the Airspa ce Concept Evaluation System (ACES) simulation program. The three mai n challenges tackled by IV4D developers were: 1) determining how to d istill multiple NASA data formats into a few minimal dataset types; 2 ) creating an environment, consisting of a user interface, heuristic algorithms, and retained metadata, that facilitates easy setup and fa st visualization; and 3) maximizing the user?s ability to utilize the extended range of visualization available with AFRL?s existing 3D te chnologies. IV4D is currently being used by air traffic management re searchers at NASA?s Ames and Langley Research Centers to support data visualizations.

  10. 77 FR 30439 - Proposed Establishment of Class E Airspace; Apopka, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ...; Airspace Docket No. 12-ASO-16) and be submitted in triplicate to the Docket Management System (see... request a copy of Advisory circular No. 11-2A, Notice of Proposed Rulemaking distribution System, which... safety and management of IFR operations at the airport. Class E airspace designations are published...

  11. 76 FR 77451 - Proposed Establishment of Class E Airspace; Piseco, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ...; Airspace Docket No. 11-ASO-18) and be submitted in triplicate to the Docket Management System (see... request a copy of Advisory circular No. 11-2A, Notice of Proposed Rulemaking distribution System, which... management of IFR operations at the airport. Class E airspace designations are published in Paragraph 6005...

  12. 76 FR 28382 - Proposed Establishment of Class E Airspace; Nephi, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... and Airspace Docket No. 11-ANM-4) and be submitted in triplicate to the Docket Management System (see... Advisory Circular No. 11-2A, Notice of Proposed Rulemaking Distribution System, which describes the... and management of aircraft operations. Class E airspace designations are published in paragraph...

  13. 77 FR 30438 - Proposed Establishment of Class E Airspace; Quakertown, PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ...; Airspace Docket No. 12-AEA-6) and be submitted in triplicate to the Docket Management System (see ADDRESSES... request a copy of Advisory circular No. 11-2A, Notice of Proposed Rulemaking distribution System, which... for the safety and management of IFR operations at the airport. Class E airspace designations...

  14. CTAS and NASA Air Traffic Management Fact Sheets for En Route Descent Advisor and Surface Management System

    NASA Technical Reports Server (NTRS)

    Lee, Katharine

    2004-01-01

    The Surface Management System (SMS) is a decision support tool that will help controllers, traffic managers, and NAS users manage the movements of aircraft on the surface of busy airports, improving capacity, efficiency, and flexibility. The Advanced Air Transportation Technologies (AATT) Project at NASA is developing SMS in cooperation with the FAA's Free Flight Phase 2 (FFP2) pro5ram. SMS consists of three parts: a traffic management tool, a controller tool, and a National Airspace System (NAS) information tool.

  15. Tactical Conflict Detection in Terminal Airspace

    NASA Technical Reports Server (NTRS)

    Tang, Huabin; Robinson, John E.; Denery, Dallas G.

    2010-01-01

    Air traffic systems have long relied on automated short-term conflict prediction algorithms to warn controllers of impending conflicts (losses of separation). The complexity of terminal airspace has proven difficult for such systems as it often leads to excessive false alerts. Thus, the legacy system, called Conflict Alert, which provides short-term alerts in both en-route and terminal airspace currently, is often inhibited or degraded in areas where frequent false alerts occur, even though the alerts are provided only when an aircraft is in dangerous proximity of other aircraft. This research investigates how a minimal level of flight intent information may be used to improve short-term conflict detection in terminal airspace such that it can be used by the controller to maintain legal aircraft separation. The flight intent information includes a site-specific nominal arrival route and inferred altitude clearances in addition to the flight plan that includes the RNAV (Area Navigation) departure route. A new tactical conflict detection algorithm is proposed, which uses a single analytic trajectory, determined by the flight intent and the current state information of the aircraft, and includes a complex set of current, dynamic separation standards for terminal airspace to define losses of separation. The new algorithm is compared with an algorithm that imitates a known en-route algorithm and another that imitates Conflict Alert by analysis of false-alert rate and alert lead time with recent real-world data of arrival and departure operations and a large set of operational error cases from Dallas/Fort Worth TRACON (Terminal Radar Approach Control). The new algorithm yielded a false-alert rate of two per hour and an average alert lead time of 38 seconds.

  16. 76 FR 49390 - Proposed Establishment of Class E Airspace; Palmyra, PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ...This action proposes to establish Class E Airspace at Palmyra, PA, to accommodate new Area Navigation (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedures at Reigle Field. This action would enhance the safety and airspace management of Instrument Flight Rules (IFR) operations at the...

  17. 78 FR 67299 - Modification of Class E Airspace; Cut Bank, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... Federal Aviation Administration 14 CFR Part 71 Modification of Class E Airspace; Cut Bank, MT AGENCY... airspace at Cut Bank, MT, to accommodate new Area Navigation (RNAV) Global Positioning System (GPS) standard instrument approach procedures at Cut Bank Municipal Airport. This improves the safety...

  18. 78 FR 32355 - Establishment of Class E Airspace; Bass Harbor, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-30

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Bass Harbor, ME AGENCY... Airspace at Bass Harbor, ME, to accommodate a new Area Navigation (RNAV) Global Positioning System (GPS) special Standard Instrument Approach Procedure (SIAP) serving Bass Harbor Heliport. This action...

  19. 76 FR 2000 - Modification of Class E Airspace; Show Low, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-12

    ... Federal Aviation Administration 14 CFR Part 71 Modification of Class E Airspace; Show Low, AZ AGENCY... airspace at Show Low, AZ, to accommodate aircraft using a new Area Navigation (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedures at Show Low Regional Airport. This will improve...

  20. 76 FR 70920 - Proposed Amendment of Class E Airspace; Colorado Springs, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... Federal Aviation Administration 14 CFR Part 71 Proposed Amendment of Class E Airspace; Colorado Springs...). SUMMARY: This action proposes to amend Class E airspace at City of Colorado Springs Municipal Airport, Colorado Springs, CO. Decommissioning of the Black Forest Tactical Air Navigation System (TACAN) has...

  1. 78 FR 49985 - Proposed Establishment of Class E Airspace; Sisseton, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... Circular No. 11-2A, Notice of Proposed Rulemaking Distribution System, which describes the application... effective September 15, 2012, which is incorporated by reference in 14 CFR 71.1. The Class E airspace... Federal Aviation Administration 14 CFR Part 71 Proposed Establishment of Class E Airspace; Sisseton,...

  2. 78 FR 25232 - Proposed Establishment of Class E Airspace; Parkston, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ... Circular No. 11-2A, Notice of Proposed Rulemaking Distribution System, which describes the application... effective September 15, 2012, which is incorporated by reference in 14 CFR 71.1. The Class E airspace... Federal Aviation Administration 14 CFR Part 71 Proposed Establishment of Class E Airspace; Parkston,...

  3. 76 FR 28305 - Amendment of Class D and Class E Airspace; Livermore, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... existing Class E airspace at Livermore, CA, to accommodate aircraft using new Instrument Landing System... description for Class D airspace. This improves the safety and management of Instrument Flight Rules (IFR... rulemaking effort by submitting written comments on the proposal to the FAA. No comments were received....

  4. 76 FR 21269 - Proposed Establishment of Class E Airspace; Florence, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... triplicate to the Docket Management System (see ADDRESSES section for address and phone number). You may also..., which is incorporated by reference in 14 CFR part 71.1. The Class E airspace designation listed in this... Federal Aviation Administration 14 CFR Part 71 Proposed Establishment of Class E Airspace; Florence,...

  5. 76 FR 21268 - Proposed Establishment of Class E Airspace; Lincoln, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... be submitted in triplicate to the Docket Management System (see ADDRESSES section for address and... Federal Aviation Administration 14 CFR Part 71 Docket No. FAA-2010-0987; Airspace Docket No. 10-ANM-14 Proposed Establishment of Class E Airspace; Lincoln, OR AGENCY: Federal Aviation Administration (FAA),...

  6. 76 FR 41145 - Proposed Amendment of Class E Airspace; Glendive, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... submitted in triplicate to the Docket Management System (see ADDRESSES section for address and phone number... CFR 71.1. The Class E airspace designation listed in this document will be published subsequently in... Federal Aviation Administration 14 CFR Part 71 Proposed Amendment of Class E Airspace; Glendive, MT...

  7. 77 FR 71361 - Proposed Amendment of Class E Airspace; West Union, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-30

    ... Circular No. 11-2A, Notice of Proposed Rulemaking Distribution System, which describes the application... effective September 15, 2012, which is incorporated by reference in 14 CFR 71.1. The Class E airspace... Federal Aviation Administration 14 CFR Part 71 Proposed Amendment of Class E Airspace; West Union,...

  8. 78 FR 65237 - Proposed Establishment of Class E Airspace; Central, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... Airspace Docket No. 13-AAL-1) and be submitted in triplicate to the Docket Management System (see ADDRESSES... Docket No. 13-AAL-1, at the beginning of your comments. You may also submit comments through the Internet...: ``Comments to FAA Docket No. FAA-2013-0017 and Airspace Docket No. 13-AAL-1''. The postcard will be...

  9. 78 FR 25233 - Proposed Establishment of Class E Airspace; Mahnomen, MN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ... Circular No. 11-2A, Notice of Proposed Rulemaking Distribution System, which describes the application... effective September 15, 2012, which is incorporated by reference in 14 CFR 71.1. The Class E airspace... Federal Aviation Administration 14 CFR Part 71 Proposed Establishment of Class E Airspace; Mahnomen,...

  10. 78 FR 25234 - Proposed Establishment of Class E Airspace; Walker, MN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ... Circular No. 11-2A, Notice of Proposed Rulemaking Distribution System, which describes the application.... Controlled airspace is needed for the safety and management of IFR operations at the airport. Class E... September 15, 2012, which is incorporated by reference in 14 CFR 71.1. The Class E airspace...

  11. 78 FR 30797 - Proposed Amendment of Class E Airspace; Point Thomson, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ... submitted in triplicate ] to the Docket Management System (see ADDRESSES section for address and phone... incorporated by reference in 14 CFR part 71.1. The Class E Airspace designation listed in this document will be... Federal Aviation Administration 14 CFR Part 71 Proposed Amendment of Class E Airspace; Point Thomson,...

  12. 76 FR 18040 - Amendment of Class E Airspace; West Yellowstone, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; West Yellowstone, MT AGENCY... airspace at Yellowstone Airport, West Yellowstone, MT, to accommodate aircraft using Instrument Landing System (ILS) Localizer (LOC) standard instrument approach procedures at Yellowstone Airport. This...

  13. 75 FR 30295 - Modification of Class E Airspace; West Yellowstone, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... Federal Aviation Administration 14 CFR Part 71 Modification of Class E Airspace; West Yellowstone, MT... Class E airspace at West Yellowstone, MT, to accommodate aircraft using a new Area Navigation (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedure (SIAP) at West Yellowstone...

  14. 76 FR 35370 - Proposed Establishment of Class E Airspace; Copperhill, TN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ... Navigation (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedures at Martin Campbell... controlled airspace required to support the new RNAV GPS standard instrument approach procedures for Martin... proposed regulation is within the scope of that authority as it would establish Class E airspace at...

  15. 77 FR 61248 - Establishment of Class E Airspace; Deer Lodge, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... Establishment of Class E Airspace; Deer Lodge, MT AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E airspace at Deer Lodge-City- County Airport, Deer...) Global Positioning System (GPS) standard instrument approach procedures at Deer Lodge-City-County...

  16. 77 FR 24159 - Proposed Modification of Class E Airspace; Plentywood, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ...: This action proposes to modify Class E airspace at Plentywood Sher-Wood Airport, Plentywood, MT... System (GPS) standard instrument approach procedures at Plentywood Sher-Wood Airport. The FAA is... Plentywood Sher-Wood Airport, Plentywood, MT. Controlled airspace is necessary to accommodate aircraft...

  17. Abnormal/Emergency Situations. Impact of Unmanned Aircraft Systems Emergency and Abnormal Events on the National Airspace System

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Access 5 analyzed the differences between UAS and manned aircraft operations under five categories of abnormal or emergency situations: Link Failure, Lost Communications, Onboard System Failures, Control Station Failures and Abnormal Weather. These analyses were made from the vantage point of the impact that these operations have on the US air traffic control system, with recommendations for new policies and procedures included where appropriate.

  18. Optimizing Airspace System Capacity Through a Small Aircraft Transportation System: An Analysis of Economic and Operational Considerations

    NASA Technical Reports Server (NTRS)

    Tarry, Scott E.; Bowen, Brent D.

    2001-01-01

    America's air transport system is currently faced with two equally important dilemmas. First, congestion and delays associated with the overburdened hub and spoke system will continue to worsen unless dramatic changes are made in the way air transportation services are provided. Second, many communities and various regions of the country have not benefited from the air transport system, which tends to focus its attention on major population centers. An emerging solution to both problems is a Small Aircraft Transportation System (SATS), which will utilize a new generation of advanced small aircraft to provide air transport services to those citizens who are poorly served by the hub and spoke system and those citizens who are not served at all. Using new innovations in navigation, communication, and propulsion technologies, these aircraft will enable users to safely and reliably access the over 5,000 general aviation landing facilities around the United States. A small aircraft transportation system holds the potential to revolutionize the way Americans travel and to greatly enhance the use of air transport as an economic development tool in rural and isolated communities across the nation.

  19. Sense and Avoid Safety Analysis for Remotely Operated Unmanned Aircraft in the National Airspace System. Version 5

    NASA Technical Reports Server (NTRS)

    Carreno, Victor

    2006-01-01

    This document describes a method to demonstrate that a UAS, operating in the NAS, can avoid collisions with an equivalent level of safety compared to a manned aircraft. The method is based on the calculation of a collision probability for a UAS , the calculation of a collision probability for a base line manned aircraft, and the calculation of a risk ratio given by: Risk Ratio = P(collision_UAS)/P(collision_manned). A UAS will achieve an equivalent level of safety for collision risk if the Risk Ratio is less than or equal to one. Calculation of the probability of collision for UAS and manned aircraft is accomplished through event/fault trees.

  20. Unmanned Aircraft Systems: Federal Actions Needed to Ensure Safety and Expand Their Potential Uses Within the National Airspace System

    DTIC Science & Technology

    2008-05-01

    Unmanned Aircraft Systems Figure 6: Forecast of Civil UASs Produced, 2008 through 2017 23 Figure 7: Applications for Certificates...useful in this study because it could operate above the extreme heat and toxic gases and solids emitted by the volcano . Figure 3: CBP’s Predator B UAS...agencies had contacted the agency to discuss potential use of UASs. An industry forecast of UAS growth from 2008 to 2017 predicts that interest among

  1. 76 FR 22012 - Amendment of Class E Airspace; Kokomo, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... Kokomo Municipal Airport and Regional Health System Heliport, Kokomo, IN. The FAA is taking this action... to expand Class E airspace to include Regional Health System Heliport, as well as amending existing... accommodate COPTER RNAV standard instrument approach procedures at Regional Health System Heliport, Kokomo,...

  2. Improved Throughput with Cooperating Futuristic Airspace Management Components

    NASA Technical Reports Server (NTRS)

    Glaab, Patricia C.

    2013-01-01

    An experiment was conducted to integrate airspace management tools that would typically be confined to either the en route or the terminal airspace to explore the potential benefits of their communication to improve arrival capacity. A NAS-wide simulation was configured with a new concept component that used the information to reconfigure the terminal airspace to the capacity benefit of the airport. Reconfiguration included a dynamically expanding and contracting TRACON area and a varying number of active arrival runways, both automatically selected to accommodate predicted volume of traffic. ATL and DFW were selected for the study. Results showed significant throughput increase for scenarios that are considered to be over-capacity for current day airport configurations. During periods of sustained demand for ATL 2018, throughput increased by 26 operations per hour (30%) and average delay was reduced from 18 minutes to 8 minutes per flight when using the dynamic TRACON. Similar results were obtained for DFW with 2018 traffic levels and for ATL with 2006 traffic levels, but with lower benefits due to lower demand.

  3. Security Risk Assessment Process for UAS in the NAS CNPC Architecture

    NASA Technical Reports Server (NTRS)

    Iannicca, Dennis C.; Young, Dennis P.; Thadani, Suresh K.; Winter, Gilbert A.

    2013-01-01

    This informational paper discusses the risk assessment process conducted to analyze Control and Non-Payload Communications (CNPC) architectures for integrating civil Unmanned Aircraft Systems (UAS) into the National Airspace System (NAS). The assessment employs the National Institute of Standards and Technology (NIST) Risk Management framework to identify threats, vulnerabilities, and risks to these architectures and recommends corresponding mitigating security controls. This process builds upon earlier work performed by RTCA Special Committee (SC) 203 and the Federal Aviation Administration (FAA) to roadmap the risk assessment methodology and to identify categories of information security risks that pose a significant impact to aeronautical communications systems. A description of the deviations from the typical process is described in regards to this aeronautical communications system. Due to the sensitive nature of the information, data resulting from the risk assessment pertaining to threats, vulnerabilities, and risks is beyond the scope of this paper.

  4. Security Risk Assessment Process for UAS in the NAS CNPC Architecture

    NASA Technical Reports Server (NTRS)

    Iannicca, Dennis Christopher; Young, Daniel Paul; Suresh, Thadhani; Winter, Gilbert A.

    2013-01-01

    This informational paper discusses the risk assessment process conducted to analyze Control and Non-Payload Communications (CNPC) architectures for integrating civil Unmanned Aircraft Systems (UAS) into the National Airspace System (NAS). The assessment employs the National Institute of Standards and Technology (NIST) Risk Management framework to identify threats, vulnerabilities, and risks to these architectures and recommends corresponding mitigating security controls. This process builds upon earlier work performed by RTCA Special Committee (SC) 203 and the Federal Aviation Administration (FAA) to roadmap the risk assessment methodology and to identify categories of information security risks that pose a significant impact to aeronautical communications systems. A description of the deviations from the typical process is described in regards to this aeronautical communications system. Due to the sensitive nature of the information, data resulting from the risk assessment pertaining to threats, vulnerabilities, and risks is beyond the scope of this paper

  5. The CSM testbed software system: A development environment for structural analysis methods on the NAS CRAY-2

    NASA Technical Reports Server (NTRS)

    Gillian, Ronnie E.; Lotts, Christine G.

    1988-01-01

    The Computational Structural Mechanics (CSM) Activity at Langley Research Center is developing methods for structural analysis on modern computers. To facilitate that research effort, an applications development environment has been constructed to insulate the researcher from the many computer operating systems of a widely distributed computer network. The CSM Testbed development system was ported to the Numerical Aerodynamic Simulator (NAS) Cray-2, at the Ames Research Center, to provide a high end computational capability. This paper describes the implementation experiences, the resulting capability, and the future directions for the Testbed on supercomputers.

  6. Minimum Capacity of NaS Battery according to Capacity of PV System in a Microgrid under 30 min Power Balancing Control

    NASA Astrophysics Data System (ADS)

    Shimakage, Toyonari; Sone, Akihito; Sumita, Jiro; Kato, Takeyoshi; Suzuoki, Yasuo

    On constructing a microgrid, it is essential to design capacity of photovoltaic power generation (PV) systems and storage batteries in accordance with a control target. In this study, we constructed a simulation model of energy control system in the microgrid used in the demonstration project. By using this model, we investigated the minimum capacity of NaS battery for different PV system capacities for keeping the target power imbalance within ±3% over 30 min. The main results are as follows. The microgrid involving 330-kW PV systems (corresponding to the actual system) needs a NaS battery capacity of at least approximately ±20kW, and PV systems with a capacity up to about 890kW can be integrated in the microgrid with a NaS battery capacity of ±500kW (corresponding to the actual system). We estimated the minimum capacity of NaS battery for different PV system capacities and clarified that the output behavior of the NaS battery and PAFC when supply and demand power imbalance over 30 min. exceeds the ±3% limit. We suggested the improved control model and showed that it is effective in decreasing the minimum capacity of NaS battery, although it has negative effects on the reduction of short-period power flow fluctuation at the grid-connection point.

  7. NASA System-Level Design, Analysis and Simulation Tools Research on NextGen

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge

    2011-01-01

    A review of the research accomplished in 2009 in the System-Level Design, Analysis and Simulation Tools (SLDAST) of the NASA's Airspace Systems Program is presented. This research thrust focuses on the integrated system-level assessment of component level innovations, concepts and technologies of the Next Generation Air Traffic System (NextGen) under research in the ASP program to enable the development of revolutionary improvements and modernization of the National Airspace System. The review includes the accomplishments on baseline research and the advancements on design studies and system-level assessment, including the cluster analysis as an annualization standard of the air traffic in the U.S. National Airspace, and the ACES-Air MIDAS integration for human-in-the-loop analyzes within the NAS air traffic simulation.

  8. 14 CFR 71.51 - Class C airspace.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... DESIGNATION OF CLASS A, B, C, D, AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES; AND REPORTING POINTS Class C Airspace § 71.51 Class C airspace. The Class C airspace areas listed in subpart C of FAA Order... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Class C airspace. 71.51 Section...

  9. 14 CFR 71.31 - Class A airspace.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE DESIGNATION OF CLASS A, B, C, D, AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES; AND REPORTING POINTS Class A Airspace § 71.31 Class A airspace. The airspace descriptions contained in § 71.33 and the...

  10. Frequency Allocations for Unmanned Aircraft Systems in the National Airspace. Access 5 White Paper to the WRC Advisory Committee

    NASA Technical Reports Server (NTRS)

    2006-01-01

    A critical aspect of the Access 5 program is identifying appropriate spectrum for civil and commercial purposes. However, currently, there is no spectrum allocated for the command/control link between the aircraft control station and the unmanned aircraft. Until such frequency spectrum is allocated and approved, it will be difficult for the UAS community to obtain civil airworthiness certification and operate in the NAS on a routine basis. This document provides a perspective from the UAS community on Agenda Items being considered for the upcoming World Radiocommunication Conference 2007 (WRC 07). Primarily, it supports the proposal to add Aeronautical Mobile (Route) Services (AM(R)S) to existing bands that could be used for UAS Line-of-Sight operations. It also recommends the need to identify spectrum that could be used for an Aeronautical Mobile Satellite (Route) Service (AMS(R)S) that would allow UAS to operate Beyond Line-of-Sight. If spectrum is made available to provide these services, it will then be incumbent upon the UAS community to justify their use of this spectrum as well as the assurance that they will not interfere with other users of this newly allocated spectrum.

  11. 75 FR 57383 - Modification of Class E Airspace; Willcox, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... Class E airspace at Willcox, AZ, to accommodate aircraft using a new Area Navigation (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedures (SIAPs) at Cochise County Airport. This will... County Airport, to accommodate IFR aircraft executing new RNAV (GPS) SIAPs at the airport. This action...

  12. 75 FR 57374 - Establishment of Class E Airspace; Fillmore, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... E airspace at Fillmore, UT, to accommodate aircraft using a new Area Navigation (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedure (SIAP) at Fillmore Municipal Airport. This..., at Fillmore Municipal Airport, to accommodate IFR aircraft executing new RNAV GPS SIAP at the...

  13. 77 FR 49720 - Establishment of Class E Airspace; Chenega Bay, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-17

    ... airspace at Chenega Bay, AK, to accommodate aircraft using a new Area Navigation (RNAV) Global Positioning System (GPS) standard instrument approach procedures at Chenega Bay Airport. This improves the safety...

  14. 76 FR 45479 - Proposed Establishment of Class E Airspace; Bumpass, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedures serving Lake Anna Airport... on which the following statement is made: ``Comments to Docket No. FAA-2011-0377; Airspace Docket...

  15. 76 FR 45478 - Proposed Establishment of Class E Airspace; Nahunta, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedures serving the Brantley... postcard on which the following statement is made: ``Comments to Docket No. FAA-2011-0727; Airspace...

  16. 76 FR 28915 - Proposed Modification of Class E Airspace; Alturas, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-19

    ... airspace is necessary to accommodate aircraft using Area Navigation (RNAV) Global Positioning System (GPS... action must submit with those comments a self-addressed stamped postcard on which the following...

  17. Development of Complexity Science and Technology Tools for NextGen Airspace Research and Applications

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Sawhill, Bruce K.; Herriot, James; Seehart, Ken; Zellweger, Dres; Shay, Rick

    2012-01-01

    The objective of this research by NextGen AeroSciences, LLC is twofold: 1) to deliver an initial "toolbox" of algorithms, agent-based structures, and method descriptions for introducing trajectory agency as a methodology for simulating and analyzing airspace states, including bulk properties of large numbers of heterogeneous 4D aircraft trajectories in a test airspace -- while maintaining or increasing system safety; and 2) to use these tools in a test airspace to identify possible phase transition structure to predict when an airspace will approach the limits of its capacity. These 4D trajectories continuously replan their paths in the presence of noise and uncertainty while optimizing performance measures and performing conflict detection and resolution. In this approach, trajectories are represented as extended objects endowed with pseudopotential, maintaining time and fuel-efficient paths by bending just enough to accommodate separation while remaining inside of performance envelopes. This trajectory-centric approach differs from previous aircraft-centric distributed approaches to deconfliction. The results of this project are the following: 1) we delivered a toolbox of algorithms, agent-based structures and method descriptions as pseudocode; and 2) we corroborated the existence of phase transition structure in simulation with the addition of "early warning" detected prior to "full" airspace. This research suggests that airspace "fullness" can be anticipated and remedied before the airspace becomes unsafe.

  18. 75 FR 11475 - Establishment of Class D Airspace, Modification of Class E Airspace; Columbus, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ... Class E airspace at Columbus Metropolitan Airport, Columbus, GA. A decrease in air traffic volume at the... existing Class E airspace at Columbus, GA. Due to a decrease in air traffic volume at Columbus Metropolitan... ] Columbus Metropolitan Airport, Columbus, GA. Lists of Subjects in 14 CFR Part 71 Airspace, Incorporation...

  19. 75 FR 8285 - Establishment of Class D Airspace, Modification of Class E Airspace; Columbus, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... Airspace; Columbus, GA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... airspace at Columbus Metropolitan Airport, Columbus, GA. A decrease in air traffic volume at the airport... existing Class E airspace at Columbus, GA. Due to a decrease in air traffic volume at Columbus...

  20. Method and System for Dynamic Automated Corrections to Weather Avoidance Routes for Aircraft in En Route Airspace

    NASA Technical Reports Server (NTRS)

    McNally, B. David (Inventor); Erzberger, Heinz (Inventor); Sheth, Kapil (Inventor)

    2015-01-01

    A dynamic weather route system automatically analyzes routes for in-flight aircraft flying in convective weather regions and attempts to find more time and fuel efficient reroutes around current and predicted weather cells. The dynamic weather route system continuously analyzes all flights and provides reroute advisories that are dynamically updated in real time while the aircraft are in flight. The dynamic weather route system includes a graphical user interface that allows users to visualize, evaluate, modify if necessary, and implement proposed reroutes.

  1. Well Clear: General Aviation and Commercial Pilots' Perceptioin of Unmanned Aerial Vehicles in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Ott, Joseph

    2015-01-01

    This research explored how different pilots perceived the concept of the Well Clear Boundary (WCB) and observed if that boundary changed when dealing with manned versus unmanned aircraft systems (UAS), and the effects of other variables. Pilots' WCB perceptions were collected objectively through simulator recordings and subjectively through questionnaires. Objectively, significant differences were found in WCB perception between two pilot types (general aviation [GA], and Airline Transport Pilots [ATPs]), and significant WCB differences were evident when comparing two intruder types (manned versus unmanned aircraft). Differences were dependent on other manipulated variables (intruder approach angle, ownship speed, and background traffic levels). Subjectively, there were differences in WCB perception across pilot types; GA pilots trusted UAS aircraft higher than the more experienced ATPs. Conclusions indicate pilots' WCB mental models are more easily perceived as time-based boundaries in front of ownship, and more easily perceived as distance-based boundaries to the rear of ownship.

  2. Safely Enabling UAS Operations in Low-Altitude Airspace

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal

    2017-01-01

    NASA is developing a system to safely enable low altitude unmanned aerial system (UAS) operations. The system is referred to as UAS Traffic Management (UTM). The UTM will safely enable a variety of business models and multiple operations in the same airspace. The UTM will provide services such as airspace configuration and geo-fencing, weather and wind integration, demand-capacity imbalance management, and separation management, and contingency management. The UTM research and development has been conducted in collaboration with many in industry, academia, and government. The UTM system will evolve through four builds. Each build will be collaboratively tested with partners. The final prototype will be available for persistent daily use of UAS operations beyond visual line of sight (BVLOS).

  3. Quantitative characterization of airspace enlargement in emphysema.

    PubMed

    Parameswaran, Harikrishnan; Majumdar, Arnab; Ito, Satoru; Alencar, Adriano M; Suki, Béla

    2006-01-01

    The mean linear intercept (L(m)) can be used to estimate the surface area for gas exchange in the lung. However, in recent years, it is most commonly used as an index for characterizing the enlargement of airspaces in emphysema and the associated severity of structural destruction in the lung. Specifically, an increase in L(m) is thought to result from an increase in airspace sizes. In this paper, we examined how accurately L(m) measures the linear dimensions of airspaces from histological sections and a variety of computer-generated test images. To this end, we developed an automated method for measuring linear intercepts from digitized images of tissue sections and calculate L(m) as their mean. We examined how the shape of airspaces and the variability of their sizes influence L(m) as well as the distribution of linear intercepts. We found that, for a relatively homogeneous enlargement of airspaces, L(m) was a reliable index for detecting emphysema. However, in the presence of spatial heterogeneities with a large variability of airspace sizes, L(m) did not significantly increase and sometimes even decreased compared with its value in normal tissue. We also developed an automated method for measuring the area and computed an equivalent diameter of each individual airspace that is independent of shape. Finally, we introduced new indexes based on the moments of diameter that we found to be more reliable than L(m) to characterize airspace enlargement in the presence of heterogeneities.

  4. 75 FR 18403 - Amendment of Class E Airspace; Rifle, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ... TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Rifle, CO AGENCY... E airspace at Rifle, CO. Additional controlled airspace is necessary to accommodate aircraft... Federal Register a notice of proposed rulemaking to establish additional controlled airspace at Rifle,...

  5. 77 FR 4459 - Amendment of Class E Airspace; Greenfield, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Greenfield, IA AGENCY... airspace for Greenfield, IA. Decommissioning of the Greenfield non-directional beacon (NDB) at Greenfield... proposed rulemaking to amend Class E airspace for Greenfield, IA, reconfiguring controlled airspace...

  6. 77 FR 29874 - Establishment of Class E Airspace; Freer, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Freer, TX AGENCY... airspace at Freer, TX. Controlled airspace is necessary to accommodate new Area Navigation (RNAV) Standard... Federal Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the Freer, TX,...

  7. 77 FR 29865 - Amendment of Class E Airspace; Leesville, LA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Leesville, LA AGENCY... airspace at Leesville, LA. Additional controlled airspace is necessary to ] accommodate new Area Navigation... Federal Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the Leesville,...

  8. 76 FR 44254 - Amendment of Class D Airspace; Denton, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class D Airspace; Denton, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class D airspace for... proposed rulemaking to amend Class D airspace for Denton, TX, creating additional controlled airspace...

  9. 75 FR 41076 - Establishment of Class E Airspace; Monterey, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Monterey, CA AGENCY... E airspace at Monterey, CA, to accommodate aircraft using a new Area Navigation (RNAV) Required... the boundaries of the airspace area. Class E airspace designations are published in paragraph 6002...

  10. 78 FR 6726 - Amendment of Class E Airspace; Ontonagon, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Ontonagon, MI AGENCY... airspace at Ontonagon, MI. Additional controlled airspace is necessary to accommodate new Area Navigation... proposed rulemaking (NPRM) to amend Class E airspace for the Ontonagon, MI, area, creating...

  11. An Assessment of Civil Tiltrotor Concept of Operations in the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Chung, William W.; Salvano, Dan; Rinehart, David; Young, Ray; Cheng, Victor; Lindsey, James

    2012-01-01

    Based on a previous Civil Tiltrotor (CTR) National Airspace System (NAS) performance analysis study, CTR operations were evaluated over selected routes and terminal airspace configurations assuming noninterference operations (NIO) and runway-independent operations (RIO). This assessment aims to further identify issues associated with these concepts of operations (ConOps), and their dependency on the airspace configuration and interaction with conventional fixed-wing traffic. Safety analysis following a traditional Safety Management System (SMS) methodology was applied to CTR-unique departure and arrival failures in the selected airspace to identify any operational and certification issues. Additional CTR operational cases were then developed to get a broader understanding of issues and gaps that will need to be addressed in future CTR operational studies. Finally, needed enhancements to National Airspace System performance analysis tools were reviewed, and recommendations were made on improvements in these tools that are likely to be required to support future progress toward CTR fleet operations in the Next Generation Air Transportation System (NextGen).

  12. Consumers and Workers Opinions of A Proposed Cash Food System: NAS Alameda

    DTIC Science & Technology

    1975-08-01

    attitudes toward the current food system and a proposed system under which all personnel would receive a monetary food allowance and would pay for food in...the dining hall on an item-by-item basis. The results indicated a clear preference by the consumer for a monetary food allowance, although...Data: Food Features , 19 C7. Survey Data: Summary 24 D. Attitudes Toward the Proposed System 24 Dl. Interview Data: CCMRATS Policy 26 D2

  13. The NAS Parallel Benchmarks

    SciTech Connect

    Bailey, David H.

    2009-11-15

    The NAS Parallel Benchmarks (NPB) are a suite of parallel computer performance benchmarks. They were originally developed at the NASA Ames Research Center in 1991 to assess high-end parallel supercomputers. Although they are no longer used as widely as they once were for comparing high-end system performance, they continue to be studied and analyzed a great deal in the high-performance computing community. The acronym 'NAS' originally stood for the Numerical Aeronautical Simulation Program at NASA Ames. The name of this organization was subsequently changed to the Numerical Aerospace Simulation Program, and more recently to the NASA Advanced Supercomputing Center, although the acronym remains 'NAS.' The developers of the original NPB suite were David H. Bailey, Eric Barszcz, John Barton, David Browning, Russell Carter, LeoDagum, Rod Fatoohi, Samuel Fineberg, Paul Frederickson, Thomas Lasinski, Rob Schreiber, Horst Simon, V. Venkatakrishnan and Sisira Weeratunga. The original NAS Parallel Benchmarks consisted of eight individual benchmark problems, each of which focused on some aspect of scientific computing. The principal focus was in computational aerophysics, although most of these benchmarks have much broader relevance, since in a much larger sense they are typical of many real-world scientific computing applications. The NPB suite grew out of the need for a more rational procedure to select new supercomputers for acquisition by NASA. The emergence of commercially available highly parallel computer systems in the late 1980s offered an attractive alternative to parallel vector supercomputers that had been the mainstay of high-end scientific computing. However, the introduction of highly parallel systems was accompanied by a regrettable level of hype, not only on the part of the commercial vendors but even, in some cases, by scientists using the systems. As a result, it was difficult to discern whether the new systems offered any fundamental performance advantage

  14. Systems Research and Development Service Report of R&D Activity,

    DTIC Science & Technology

    1980-05-01

    within the En Route Branch of the ATC Systems Division SRDS. Before joining the FAA in 1959, he spent 12 years at the Ballistic Research Laboratory at...controller. return-to- course encounter When the ATARS algorithm calls for the 89 issuance of a command, the preview command algorithm as soon as it is...Airspace System (NAS). The production of Of course , the above four schedule items low cost avionics must be possible, before do not occur in series

  15. Functional Requirements Document for HALE UAS Operations in the NAS: Step 1. Version 3

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The purpose of this Functional Requirements Document (FRD) is to compile the functional requirements needed to achieve the Access 5 Vision of "operating High Altitude, Long Endurance (HALE) Unmanned Aircraft Systems (UAS) routinely, safely, and reliably in the national airspace system (NAS)" for Step 1. These functional requirements could support the development of a minimum set of policies, procedures and standards by the Federal Aviation Administration (FAA) and various standards organizations. It is envisioned that this comprehensive body of work will enable the FAA to establish and approve regulations to govern safe operation of UAS in the NAS on a routine or daily "file and fly" basis. The approach used to derive the functional requirements found within this FRD was to decompose the operational requirements and objectives identified within the Access 5 Concept of Operations (CONOPS) into the functions needed to routinely and safely operate a HALE UAS in the NAS. As a result, four major functional areas evolved to enable routine and safe UAS operations for an on-demand basis in the NAS. These four major functions are: Aviate, Navigate, Communicate, and Avoid Hazards. All of the functional requirements within this document can be directly traceable to one of these four major functions. Some functions, however, are traceable to several, or even all, of these four major functions. These cross-cutting functional requirements support the "Command / Control: function as well as the "Manage Contingencies" function. The requirements associated to these high-level functions and all of their supporting low-level functions are addressed in subsequent sections of this document.

  16. National Air Space (NAS) Data Exchange Environment Through 2060

    NASA Technical Reports Server (NTRS)

    Roy, Aloke

    2015-01-01

    NASA's NextGen Concepts and Technology Development (CTD) Project focuses on capabilities to improve safety, capacity and efficiency of the National Air Space (NAS). In order to achieve those objectives, NASA sought industry-Government partnerships to research and identify solutions for traffic flow management, dynamic airspace configuration, separation assurance, super density operations, airport surface operations and similar forward-looking air-traffic modernization (ATM) concepts. Data exchanges over NAS being the key enabler for most of these ATM concepts, the Sub-Topic area 3 of the CTD project sought to identify technology candidates that can satisfy air-to-air and air/ground communications needs of the NAS in the year 2060 timeframe. Honeywell, under a two-year contract with NASA, is working on this communications technology research initiative. This report summarizes Honeywell's research conducted during the second year of the study task.

  17. Step 1: Human System Interface (HSI) Functional Requirements Document (FRD). Version 2

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This Functional Requirements Document (FRD) establishes a minimum set of Human System Interface (HSI) functional requirements to achieve the Access 5 Vision of "operating High Altitude, Long Endurance (HALE) Unmanned Aircraft Systems (UAS) routinely, safely, and reliably in the National Airspace System (NAS)". Basically, it provides what functions are necessary to fly UAS in the NAS. The framework used to identify the appropriate functions was the "Aviate, Navigate, Communicate, and Avoid Hazards" structure identified in the Access 5 FRD. As a result, fifteen high-level functional requirements were developed. In addition, several of them have been decomposed into low-level functional requirements to provide more detail.

  18. Air System Information Management

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.

    2004-01-01

    I flew to Washington last week, a trip rich in distributed information management. Buying tickets, at the gate, in flight, landing and at the baggage claim, myriad messages about my reservation, the weather, our flight plans, gates, bags and so forth flew among a variety of travel agency, airline and Federal Aviation Administration (FAA) computers and personnel. By and large, each kind of information ran on a particular application, often specialized to own data formats and communications network. I went to Washington to attend an FAA meeting on System-Wide Information Management (SWIM) for the National Airspace System (NAS) (http://www.nasarchitecture.faa.gov/Tutorials/NAS101.cfm). NAS (and its information infrastructure, SWIM) is an attempt to bring greater regularity, efficiency and uniformity to the collection of stovepipe applications now used to manage air traffic. Current systems hold information about flight plans, flight trajectories, weather, air turbulence, current and forecast weather, radar summaries, hazardous condition warnings, airport and airspace capacity constraints, temporary flight restrictions, and so forth. Information moving among these stovepipe systems is usually mediated by people (for example, air traffic controllers) or single-purpose applications. People, whose intelligence is critical for difficult tasks and unusual circumstances, are not as efficient as computers for tasks that can be automated. Better information sharing can lead to higher system capacity, more efficient utilization and safer operations. Better information sharing through greater automation is possible though not necessarily easy.

  19. Baseline Assessment of the Use of Weather Information in Airline Systems Operations Centers

    DTIC Science & Technology

    2012-08-01

    Wsi .--------------Weather.services.international vii ExECUTIvE sUmmAry approximately. 70.%. of. national. airspace. system. (nas...Products Coordinator Manager 4 dispatchers 604 Boeing 777 757 737-800 MD 82/83 A300/600 13,650 4.5h /1h /16h Worldwide Sabre WSI ...Pilotbrief EAG WSI Fusion NEXRAD, Convective SIGMETs, AIRMETs NOAA weather Center Java Tool International Senior Meteorologist

  20. Comparing Methods for Dynamic Airspace Configuration

    NASA Technical Reports Server (NTRS)

    Zelinski, Shannon; Lai, Chok Fung

    2011-01-01

    This paper compares airspace design solutions for dynamically reconfiguring airspace in response to nominal daily traffic volume fluctuation. Airspace designs from seven algorithmic methods and a representation of current day operations in Kansas City Center were simulated with two times today's demand traffic. A three-configuration scenario was used to represent current day operations. Algorithms used projected unimpeded flight tracks to design initial 24-hour plans to switch between three configurations at predetermined reconfiguration times. At each reconfiguration time, algorithms used updated projected flight tracks to update the subsequent planned configurations. Compared to the baseline, most airspace design methods reduced delay and increased reconfiguration complexity, with similar traffic pattern complexity results. Design updates enabled several methods to as much as half the delay from their original designs. Freeform design methods reduced delay and increased reconfiguration complexity the most.

  1. Common Methodology for Efficient Airspace Operations

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar

    2012-01-01

    Topics include: a) Developing a common methodology to model and avoid disturbances affecting airspace. b) Integrated contrails and emission models to a national level airspace simulation. c) Developed capability to visualize, evaluate technology and alternate operational concepts and provide inputs for policy-analysis tools to reduce the impact of aviation on the environment. d) Collaborating with Volpe Research Center, NOAA and DLR to leverage expertise and tools in aircraft emissions and weather/climate modeling. Airspace operations is a trade-off balancing safety, capacity, efficiency and environmental considerations. Ideal flight: Unimpeded wind optimal route with optimal climb and descent. Operations degraded due to reduction in airport and airspace capacity caused by inefficient procedures and disturbances.

  2. NAS Applications and Advanced Algorithms

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Biswas, Rupak; VanDerWijngaart, Rob; Kutler, Paul (Technical Monitor)

    1997-01-01

    This paper examines the applications most commonly run on the supercomputers at the Numerical Aerospace Simulation (NAS) facility. It analyzes the extent to which such applications are fundamentally oriented to vector computers, and whether or not they can be efficiently implemented on hierarchical memory machines, such as systems with cache memories and highly parallel, distributed memory systems.

  3. Environmental Assessment Addressing the 301st Fighter Wing Managed Airspace, Naval Air Station Joint Reserve Base, Fort Worth, Texas

    DTIC Science & Technology

    2009-05-01

    decisionmaking process. Copies of the EA and proposed FONSI were available for review at the Fort Worth Central Public Library , Texas; Brownwood Public Library ...Texas; F.M. Richards Memorial Library , Texas; Tom Green County Main Library , Texas; Killeen City Main Library , Texas; and Lawton Library , Oklahoma...through the defined areas. EA for 301 FW Managed Airspace NAS JRB Fort Worth May 2009 2-3 20 Ballinger Callahan County Haskell County Jones County

  4. 76 FR 80230 - Amendment of Class E Airspace; Huntington, WV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... 14 CFR Part 71 [Docket No. FAA-2011-1057; Airspace Docket No. 11-AEA-21] Amendment of Class E... amend Class E airspace at Huntington, WV (76 FR 64295) Docket No. FAA-2011-1057. Interested parties...

  5. 75 FR 19212 - Modification of Class E Airspace; Oxnard, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ... accommodate aircraft flying in the Los Angeles Air Route Traffic Control Center's (ARTCC's) airspace area. The... vectoring of aircraft flying en route, in and out of the Los Angeles ARTCC's airspace area. This...

  6. 76 FR 65944 - Establishment of Class E Airspace; Tatitlek, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... airspace at Tatitlek, AK, to accommodate the creation of one standard instrument approach procedure at the... airspace at the Tatitlek Airport, Tatitlek, AK, to accommodate the creation of a standard...

  7. SMART NAS Test Bed Overview

    NASA Technical Reports Server (NTRS)

    Palopo, Kee

    2016-01-01

    These slides presents an overview of SMART NAS Test Bed. The test bed is envisioned to be connected to operational systems and to allow a new concept and technology to be evaluated in its realistic environment. Its role as an accelerator of concepts and technologies development, its use-case-driven development approach, and its state are presented.

  8. Announced Strategy Types in Multiagent RL for Conflict-Avoidance in the National Airspace

    NASA Technical Reports Server (NTRS)

    Rebhuhn, Carrie; Knudson, Matthew D.; Tumer, Kagan

    2014-01-01

    The use of unmanned aerial systems (UAS) in the national airspace is of growing interest to the research community. Safety and scalability of control algorithms are key to the successful integration of autonomous system into a human-populated airspace. In order to ensure safety while still maintaining efficient paths of travel, these algorithms must also accommodate heterogeneity of path strategies of its neighbors. We show that, using multiagent RL, we can improve the speed with which conflicts are resolved in cases with up to 80 aircraft within a section of the airspace. In addition, we show that the introduction of abstract agent strategy types to partition the state space is helpful in resolving conflicts, particularly in high congestion.

  9. 78 FR 14475 - Proposed Establishment of Class E Airspace; Cleveland, TN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedures at Cleveland Regional...; Airspace Docket No. 12-ASO-47) and be submitted in triplicate to the Docket Management System (see... request a copy of Advisory circular No. 11-2A, Notice of Proposed Rulemaking distribution System,...

  10. 78 FR 54412 - Proposed Establishment of Class E Airspace; Chatom, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedures at Roy Wilcox Airport...; Airspace Docket No. 12-ASO-32) and be submitted in triplicate to the Docket Management System (see..., Notice of Proposed Rulemaking distribution System, which describes the application procedure....

  11. 78 FR 18269 - Proposed Modification of Class E Airspace; Clifton/Morenci, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... to accommodate aircraft using Area Navigation (RNAV) Global Positioning System (GPS) standard... Airspace Docket No. 12-AWP-9) and be submitted in triplicate to the Docket Management System (see ADDRESSES.... 11-2A, Notice of Proposed Rulemaking Distribution System, which describes the application...

  12. 78 FR 48298 - Amendment of Class E Airspace; Commerce, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Commerce, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at Commerce, TX. Additional controlled airspace is necessary to accommodate new Area Navigation...

  13. 75 FR 57376 - Modification of Class B Airspace; Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... Federal Aviation Administration 14 CFR Part 71 RIN 2120-AA66 Modification of Class B Airspace; Chicago, IL... Chicago, IL, Class B airspace area by expanding the existing airspace area to ensure containment of... segregating IFR aircraft arriving/departing Chicago O'Hare International Airport (ORD) and Visual Flight...

  14. 76 FR 15825 - Amendment of Class E Airspace; Pueblo, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Pueblo, CO AGENCY: Federal... airspace at Pueblo Memorial Airport, Pueblo, CO, to facilitate vectoring of Instrument Flight Rules (IFR... proposed rulemaking to amend Class E airspace at Pueblo, CO (76 FR 2609). Interested parties were...

  15. 77 FR 19929 - Amendment of Class E Airspace; Springfield, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Springfield, CO AGENCY... airspace at Springfield Municipal Airport, Springfield, CO. Decommissioning of the Tobe Tactical Air... amend controlled airspace at Springfield, CO (77 FR 1429). Interested parties were invited...

  16. 75 FR 16333 - Establishment of Class E Airspace; Quitman, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... scope of that authority as it establishes Class E airspace at Quitman, GA. Lists of Subjects in 14 CFR... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Quitman, GA AGENCY... action establishes Class E Airspace at Quitman, GA, to accommodate Standard Instrument...

  17. 76 FR 67056 - Amendment of Class E Airspace; Bryan, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... airspace for Bryan, OH. Decommissioning of the Bryan non-directional beacon (NDB) at Williams County... proposed rulemaking to amend Class E airspace for Bryan, OH, reconfiguring controlled airspace at Williams... Bryan NDB and cancellation of the NDB approach at Williams County Airport has made reconfiguration...

  18. 75 FR 31677 - Amendment of Class E Airspace; Austin, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ... TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Austin, TX AGENCY... airspace for the Austin, TX area. Additional controlled airspace is necessary to accommodate new Standard Instrument Approach Procedures (SIAPs) at Austin Executive Airport, Austin, TX. The FAA is taking this...

  19. 77 FR 45238 - Amendment of Class E Airspace; Montgomery, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Montgomery, AL AGENCY... amends Class E Airspace in the Montgomery, AL area, by recognizing the name change of Prattville-Grouby... Federal Regulations (14 CFR) part 71 amends Class E airspace for the Montgomery, AL, area at the...

  20. 76 FR 80232 - Establishment of Class E Airspace; Oneonta, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... Airspace; Oneonta, AL AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E Airspace at Oneonta, AL, to accommodate the new Area Navigation (RNAV) Global... establish Class E airspace at Oneonta, AL (76 FR 58728) Docket No. FAA-2011-0744. Interested parties...

  1. 76 FR 18041 - Establishment of Class E Airspace; Kahului, HI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Kahului, HI AGENCY... E airspace at Kahului Airport, Kahului, HI, to accommodate aircraft using Area Navigation (RNAV... establish controlled airspace at Kahului, HI (76 FR 3571). Interested parties were invited to participate...

  2. 75 FR 63708 - Establishment of Class E Airspace; Kalaupapa, HI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Kalaupapa, HI AGENCY... E airspace at Kalaupapa, HI, to accommodate aircraft using a new Area Navigation (RNAV) Global... Federal Register a notice of proposed rulemaking to establish controlled airspace at Kalaupapa, HI (75...

  3. 76 FR 75449 - Establishment of Class E Airspace; Stuart, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-02

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Stuart, IA AGENCY... airspace for Stuart, IA, to accommodate new COPTER area navigation (RNAV) Standard Instrument Approach... Federal Register a notice of proposed rulemaking to establish Class E airspace for Stuart, IA,...

  4. 76 FR 75447 - Amendment of Class E Airspace; Centerville, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-02

    ... TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Centerville, IA... E airspace for Centerville, IA. Decommissioning of the Centerville non-directional beacon (NDB) and... E airspace for the Centerville, IA, area. (76 FR 53358) Docket No. FAA-2011-0830. Interested...

  5. 75 FR 23581 - Amendment of Class E Airspace; Emmetsburg, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Emmetsburg, IA AGENCY... airspace for Emmetsburg, IA, adding additional controlled airspace to accommodate Area Navigation (RNAV) Standard Instrument Approach Procedures (SIAPs) at Emmetsburg Municipal Airport, Emmetsburg, IA. The FAA...

  6. 77 FR 32896 - Modification of Class E Airspace; Billings, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    ... Federal Aviation Administration 14 CFR Part 71 Modification of Class E Airspace; Billings, MT AGENCY... airspace at Billings Logan International Airport, Billings, MT. Controlled airspace is necessary to... procedures at Billings Logan International Airport. This action will also make a minor adjustment to...

  7. 76 FR 73501 - Amendment of Class E Airspace; Carroll, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Carroll, IA AGENCY: Federal... Carroll, IA. Decommissioning of the Carroll non-directional beacon (NDB) at Arthur N. Neu Airport, Carroll... rulemaking to amend Class E airspace for Carroll, IA, reconfiguring controlled airspace at Arthur N....

  8. 78 FR 59622 - Establishment of Class E Airspace; Akutan, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    ... submitting written comments on the proposal to the FAA. No comments were received. Class E airspace... September 15, 2013, which is incorporated by reference in 14 CFR 71.1. The Class E airspace designations...--DESIGNATION OF CLASS A, B, C, D AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES; AND REPORTING POINTS 0...

  9. 14 CFR 71.41 - Class B airspace.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Class B airspace. 71.41 Section 71.41 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE DESIGNATION OF CLASS A, B, C, D, AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES; AND REPORTING POINTS...

  10. 14 CFR 71.61 - Class D airspace.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Class D airspace. 71.61 Section 71.61 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE DESIGNATION OF CLASS A, B, C, D, AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES; AND REPORTING POINTS...

  11. 14 CFR 71.33 - Class A airspace areas.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Class A airspace areas. 71.33 Section 71.33 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE DESIGNATION OF CLASS A, B, C, D, AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES; AND REPORTING POINTS...

  12. 14 CFR 71.9 - Overlapping airspace designations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Overlapping airspace designations. 71.9 Section 71.9 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE DESIGNATION OF CLASS A, B, C, D, AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES;...

  13. 75 FR 37291 - Amendment of Class E Airspace; Osceola, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Osceola, AR AGENCY: Federal... Osceola, AR. Decommissioning of the Osceola non-directional beacon (NDB) at Osceola Municipal Airport has... rulemaking to amend Class E airspace for Osceola, AR, reconfiguring controlled airspace at Osceola...

  14. 76 FR 73505 - Establishment of Class E Airspace; Nashville, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Nashville, AR... Class E airspace for Nashville, AR, to accommodate new Area Navigation (RNAV) Standard Instrument... Federal Register a notice of proposed rulemaking to amend Class E airspace for Nashville, AR,...

  15. 78 FR 67297 - Establishment of Class E Airspace; Curtis, NE

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Curtis, NE AGENCY... airspace at Curtis, NE. Controlled airspace is necessary to accommodate new Area Navigation (RNAV) Standard Instrument Approach Procedures at Curtis Municipal Airport. The FAA is taking this action to enhance...

  16. 77 FR 29866 - Amendment of Class E Airspace; Springhill, LA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Springhill, LA AGENCY... airspace for Springhill, LA. Decommissioning of the Springhill non-directional beacon (NDB) at Springhill... Federal Register a notice of proposed rulemaking to amend Class E airspace for Springhill,...

  17. 75 FR 17891 - Amendment of Class D Airspace; Goldsboro, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class D Airspace; Goldsboro, NC AGENCY... action proposes to amend the Class D airspace at Seymour Johnson AFB, Goldsboro, NC, to reflect the part... amendment to Title 14, Code of Federal Regulations (14 CFR) part 71 to amend Class D airspace at...

  18. 78 FR 48291 - Amendment of Class D Airspace; Sparta, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class D Airspace; Sparta, WI AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class D airspace at... Register a notice of proposed rulemaking (NPRM) to amend Class D airspace for Sparta/Fort McCoy Airport...

  19. 77 FR 38472 - Amendment of Class D Airspace; Pontiac, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class D Airspace; Pontiac, MI AGENCY: Federal... Class D airspace within the Pontiac, MI, area by changing the name of the airport from ] Oakland-Pontiac... International Airport and adjusting the geographic coordinates within Class D airspace to coincide with the...

  20. 75 FR 39145 - Amendment of Class C Airspace; Flint, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ... Federal Aviation Administration 14 CFR Part 71 RIN 2120-AA66 Amendment of Class C Airspace; Flint, MI... legal description of the Bishop International Airport, Flint, MI, Class C airspace area by amending the... affect the ARP location, which defines the Class C airspace area's center point. The Rule This...

  1. 77 FR 41259 - Modification of Class E Airspace; Plentywood, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... airspace at Plentywood Sher-Wood Airport, Plentywood, MT. Controlled airspace is necessary to accommodate... procedures at Plentywood Sher-Wood Airport. This improves the safety and management of Instrument Flight... Plentywood Sher-Wood Airport, Plentywood, MT. Controlled airspace is necessary to accommodate IFR...

  2. 77 FR 34210 - Amendment of Class E Airspace; Orlando, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Orlando, FL AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E Airspace at... E airspace at Orlando, FL (77 FR 16783). Interested parties were invited to participate in...

  3. 76 FR 35967 - Amendment of Class E Airspace; Bozeman, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Bozeman, MT AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action modifies Class E airspace at... geographic coordinates for the Class D and E airspace areas, and updates the airport name. DATES:...

  4. 75 FR 13667 - Amendment of Class E Airspace; Huntingburg, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ... Administration 14 CFR Part 71 Amendment of Class E Airspace; Huntingburg, IN AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at Huntingburg, IN... rulemaking to amend Class E airspace for Huntingburg Airport, Huntingburg, IN (74 FR 66592) Docket No....

  5. 77 FR 66067 - Amendment of Class E Airspace; Boone, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-01

    ... Administration 14 CFR Part 71 Amendment of Class E Airspace; Boone, IA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at Boone, IA... proposed rulemaking (NPRM) to amend Class E airspace for the Boone, IA, area, creating...

  6. 75 FR 12162 - Class E Airspace; Manila, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ... Federal Aviation Administration 14 CFR Part 71 Class E Airspace; Manila, AR AGENCY: Federal Aviation... Class E airspace at Manila, AR. Decommissioning of the Manila non-directional beacon (NDB) at Manila... amending Class E airspace extending upward from 700 feet above the surface for standard instrument...

  7. 76 FR 53049 - Amendment of Class E Airspace; Shelby, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-25

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Shelby, MT AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action modifies Class E airspace at... received. Class E airspace designations are published in paragraph 6005 of FAA Order 7400.9U dated...

  8. 78 FR 41289 - Amendment of Class E Airspace; Ogallala, NE

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Ogallala, NE AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at... Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the Ogallala, NE.,...

  9. 78 FR 41290 - Establishment of Class E Airspace; Sanibel, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Sanibel, FL... June 10, 2013, the FAA published a final rule, in the Federal Register establishing Class E airspace at.... This action makes the corrections and is rewritten for clarity. The Class E airspace designations...

  10. 76 FR 47061 - Amendment of Class E Airspace; Lakeland, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Lakeland, FL AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at... proposed rulemaking (NPRM) to amend Class E airspace at Lakeland Linder Regional Airport, Lakeland, FL...

  11. 75 FR 59934 - Amendment to Class E Airspace; Smithfield, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... Federal Aviation Administration 14 CFR Part 71 Amendment to Class E Airspace; Smithfield, NC AGENCY... amends Class E airspace at Johnston County Airport, Smithfield, NC, by correcting an omission of the... amendment of the Class E airspace published in the Federal Register on July 27, 2010 (75 FR 43817)....

  12. 75 FR 12166 - Class E Airspace; Beatrice, NE

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ... Federal Aviation Administration 14 CFR Part 71 Class E Airspace; Beatrice, NE AGENCY: Federal Aviation... Class E airspace at Beatrice, NE. Decommissioning of the Shaw non-directional beacon (NDB) at Beatrice... amending Class E airspace extending upward from 700 feet above the surface for standard instrument...

  13. 77 FR 46284 - Amendment of Class E Airspace; Lemmon, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Lemmon, SD AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at... proposed rulemaking (NPRM) to amend Class E airspace for the Lemmon, SD, area, creating...

  14. 76 FR 9219 - Amendment of Class E Airspace; Muncie, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Muncie, IN AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at... Federal Register a notice of proposed rulemaking to amend Class E airspace for Muncie, IN,...

  15. 78 FR 18800 - Amendment of Class E Airspace; Decorah, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Decorah, IA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at... Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the Decorah, IA,...

  16. 78 FR 48295 - Amendment of Class E Airspace; Gruver, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Gruver, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at... Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the Gruver, TX,...

  17. 78 FR 48297 - Amendment of Class E Airspace; Bedford, PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Bedford, PA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E Airspace at... proposed rulemaking (NPRM) to amend Class E airspace at Bedford County Airport, Bedford, PA. (78 FR...

  18. 76 FR 28887 - Revocation of Class E Airspace; Ozark, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-19

    ... Federal Aviation Administration 14 CFR Part 71 Revocation of Class E Airspace; Ozark, MO AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action removes Class E airspace at... Code of Federal Regulations (14 CFR) Part 71 by removing Class E airspace in the Ozark, MO,...

  19. 78 FR 45849 - Amendment of Class E Airspace; Gustavus, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Gustavus, AK AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at... the proposal to the FAA. No comments were received. Class E airspace designations are published...

  20. 78 FR 18799 - Amendment of Class E Airspace; Superior, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Superior, WI AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at... proposed rulemaking (NPRM) to amend Class E airspace for the Superior, WI, area, creating...

  1. 75 FR 72939 - Modification of Class E Airspace; Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... Federal Aviation Administration 14 CFR Part 71 Modification of Class E Airspace; Portland, OR AGENCY... Class E airspace at Portland, OR, to accommodate aircraft using the Localizer/Distance Measuring... proposed in the NPRM. Class E airspace designations are published in paragraph 6005 of FAA Order...

  2. 77 FR 55690 - Amendment of Class E Airspace; Dillon, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Dillon, MT AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace... Federal Register a notice of proposed rulemaking (NPRM) to amend Class E airspace at Dillon...

  3. 77 FR 56761 - Amendment of Class E Airspace; Kerrville, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-14

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Kerrville, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E... Class E airspace for the Kerrville, TX, area, creating additional controlled airspace at...

  4. 75 FR 41075 - Amendment of Class E Airspace; Bozeman, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Bozeman, MT AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action will amend Class E airspace at... proposed rulemaking to amend Class E airspace at Bozeman, MT (75 FR 20321). Interested parties were...

  5. 76 FR 39259 - Establishment of Class E Airspace; Brunswick, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Brunswick, ME AGENCY... establishes Class E airspace at Brunswick Executive Airport, Brunswick, ME. DATES: The effective date is moved...), establishes Class E airspace at Brunswick Executive Airport, Brunswick, ME. This action will move up...

  6. 75 FR 12165 - Class E Airspace; Batesville, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ... TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 Class E Airspace; Batesville, AR AGENCY: Federal... proposes to amend Class E airspace at Batesville, AR. Decommissioning of the Independence County non... Regulations (14 CFR), part 71 by amending Class E airspace extending upward from 700 feet above the...

  7. 77 FR 28247 - Amendment of Class E Airspace; Decatur, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Decatur, IL AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at... proposed rulemaking (NPRM) to amend Class E airspace for the Decatur, IL, area, creating...

  8. 78 FR 22414 - Amendment of Class E Airspace; Reno, NV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Reno, NV AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at... were received. Class E airspace designations are published in paragraph 6003 of FAA Order 7400.9W...

  9. 76 FR 69608 - Modification of Class E Airspace; Blythe, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ... Modification of Class E Airspace; Blythe, CA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action modifies Class E airspace at Blythe, CA, to accommodate aircraft using Area... the controlled airspace needed to be adjusted; this action makes that adjustment. Class E...

  10. 78 FR 14652 - Amendment of Class E Airspace; Gaylord, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-07

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Gaylord, MI AGENCY: Federal... Gaylord, MI. Additional controlled airspace is necessary to accommodate new Area Navigation (RNAV... proposed rulemaking (NPRM) to amend Class E airspace for the Gaylord, MI, area, creating...

  11. 77 FR 5170 - Amendment of Class D Airspace; Jackson, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... County Airport-Reynolds Field, MI (Lat. 42 15'38'' N., long. 84 27'38'' W.) That airspace extending... Federal Aviation Administration 14 CFR Part 71 Amendment of Class D Airspace; Jackson, MI AGENCY: Federal... Class D airspace within the Jackson, MI, area by changing the name of the airport from Jackson...

  12. 77 FR 5169 - Amendment of Class D Airspace; Saginaw, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class D Airspace; Saginaw, MI AGENCY: Federal... Class D airspace within the Saginaw, MI, area by changing the name of the airport from Tri-City... airspace at MBS International Airport, Saginaw, MI. List of Subjects in 14 CFR Part 71...

  13. 77 FR 40492 - Revocation of Class D Airspace; Andalusia, AL; and Amendment of Class E Airspace; Fort Rucker, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... Federal Aviation Administration 14 CFR Part 71 Revocation of Class D Airspace; Andalusia, AL; and Amendment of Class E Airspace; Fort Rucker, AL AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action removes Class D Airspace at Andalusia, AL, as the Air Traffic...

  14. 77 FR 65255 - Establishment of Class E Airspace; Reidsville, GA, and Amendment of Class E Airspace; Vidalia, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ... rule. SUMMARY: This action establishes Class E Airspace at Reidsville, GA. Separation of existing Class..., Reidsville, GA, to accommodate the separation of existing Class E airspace surrounding Vidalia Regional... Municipal Airport, Vidalia, GA, to provide the controlled airspace required to accommodate the separation...

  15. 78 FR 52424 - Amendment of Class E Airspace; Dayton, TN, Establishment of Class E Airspace; Cleveland, TN, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ..., Establishment of Class E Airspace; Cleveland, TN, and Revocation of Class E Airspace; Bradley Memorial Hospital... Bradley Memorial Hospital is added to the Cleveland, TN, airspace description and removed from both the Dayton, TN, regulatory text as well as its listing as Bradley Memorial Hospital, Cleveland, TN,...

  16. 75 FR 65584 - Proposed Amendment of Class E Airspace; Savannah, TN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ...; Airspace Docket No. 10-ASO-37) and be submitted in triplicate to the Docket Management System (see... request a copy of Advisory circular No. 11-2A, Notice of Proposed Rulemaking distribution System, which..., and for continued safety and management of IFR operations at the airport. Class E...

  17. 77 FR 56174 - Proposed Establishment of Class D and Class E Airspace; Camp Guernsey, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... and Airspace Docket No. 12-ANM-13) and be submitted in triplicate to the Docket Management System (see... of Advisory Circular No. 11-2A, Notice of Proposed Rulemaking Distribution System, which describes..., and effective September 15, 2011, which is incorporated by reference in 14 CFR 71.1. The Class D...

  18. 78 FR 65238 - Proposed Establishment of Class E Airspace; Eagle, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... Airspace Docket No. 12-AAL-16) and be submitted in triplicate to the Docket Management System (see... No. 13-AAL-1, at the beginning of your comments. You may also submit comments through the Internet at... of Advisory Circular No. 11-2A, Notice of Proposed Rulemaking Distribution System, which...

  19. 75 FR 65582 - Proposed Amendment to Class E Airspace; Rawlins, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... and Airspace Docket No. 10-ANM-11) and be submitted in triplicate to the Docket Management System (see... Advisory Circular No. 11-2A, Notice of Proposed Rulemaking Distribution System, which describes the..., 2010, and effective September 15, 2010, which is incorporated by reference in 14 CFR 71.1. The Class...

  20. 77 FR 40834 - Proposed Amendment of Class E Airspace; Dillon, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ...) Global Positioning System (GPS) standard instrument approach procedures. The original NPRM only proposed... comment, and, therefore, proposes the additional creation of Class E surface airspace, and modification of... submitted in triplicate to the Docket Management System (see ] ADDRESSES section for address and...

  1. Airspace Technology Demonstration 3 (ATD-3): Dynamic Weather Routes (DWR) Technology Transfer Document Summary Version 1.0

    NASA Technical Reports Server (NTRS)

    Sheth, Kapil; Wang, Easter Mayan Chan

    2016-01-01

    Airspace Technology Demonstration #3 (ATD-3) is part of NASA's Airspace Operations and Safety Program (AOSP) - specifically, its Airspace Technology Demonstrations (ATD) Project. ATD-3 is a multiyear research and development effort which proposes to develop and demonstrate automation technologies and operating concepts that enable air navigation service providers and airspace users to continuously assess weather, winds, traffic, and other information to identify, evaluate, and implement workable opportunities for flight plan route corrections that can result in significant flight time and fuel savings in en route airspace. In order to ensure that the products of this tech-transfer are relevant and useful, NASA has created strong partnerships with the FAA and key industry stakeholders. This summary document and accompanying technology artifacts satisfy the first of three Research Transition Products (RTPs) defined in the Applied Traffic Flow Management (ATFM) Research Transition Team (RTT) Plan. This transfer consists of NASA's legacy Dynamic Weather Routes (DWR) work for efficient routing for en-route weather avoidance. DWR is a ground-based trajectory automation system that continuously and automatically analyzes active airborne aircraft in en route airspace to identify opportunities for simple corrections to flight plan routes that can save significant flying time, at least five minutes wind-corrected, while avoiding weather and considering traffic conflicts, airspace sector congestion, special use airspace, and FAA routing restrictions. The key benefit of the DWR concept is to let automation continuously and automatically analyze active flights to find those where simple route corrections can save significant time and fuel. Operators are busy during weather events. It is more effective to let automation find the opportunities for high-value route corrections.

  2. Optimizing Integrated Terminal Airspace Operations Under Uncertainty

    NASA Technical Reports Server (NTRS)

    Bosson, Christabelle; Xue, Min; Zelinski, Shannon

    2014-01-01

    In the terminal airspace, integrated departures and arrivals have the potential to increase operations efficiency. Recent research has developed geneticalgorithm- based schedulers for integrated arrival and departure operations under uncertainty. This paper presents an alternate method using a machine jobshop scheduling formulation to model the integrated airspace operations. A multistage stochastic programming approach is chosen to formulate the problem and candidate solutions are obtained by solving sample average approximation problems with finite sample size. Because approximate solutions are computed, the proposed algorithm incorporates the computation of statistical bounds to estimate the optimality of the candidate solutions. A proof-ofconcept study is conducted on a baseline implementation of a simple problem considering a fleet mix of 14 aircraft evolving in a model of the Los Angeles terminal airspace. A more thorough statistical analysis is also performed to evaluate the impact of the number of scenarios considered in the sampled problem. To handle extensive sampling computations, a multithreading technique is introduced.

  3. Development of Virtual Airspace Simulation Technology - Real-Time (VAST-RT) Capability 2 and Experimental Plans

    NASA Technical Reports Server (NTRS)

    Lehmer, R.; Ingram, C.; Jovic, S.; Alderete, J.; Brown, D.; Carpenter, D.; LaForce, S.; Panda, R.; Walker, J.; Chaplin, P.; Ballinger, D.

    2006-01-01

    The Virtual Airspace Simulation Technology - Real-Time (VAST-RT) Project, an element cf NASA's Virtual Airspace Modeling and Simulation (VAMS) Project, has been developing a distributed simulation capability that supports an extensible and expandable real-time, human-in-the-loop airspace simulation environment. The VAST-RT system architecture is based on DoD High Level Architecture (HLA) and the VAST-RT HLA Toolbox, a common interface implementation that incorporates a number of novel design features. The scope of the initial VAST-RT integration activity (Capability 1) included the high-fidelity human-in-the-loop simulation facilities located at NASA/Ames Research Center and medium fidelity pseudo-piloted target generators, such as the Airspace Traffic Generator (ATG) being developed as part of VAST-RT, as well as other real-time tools. This capability has been demonstrated in a gate-to-gate simulation. VAST-RT's (Capability 2A) has been recently completed, and this paper will discuss the improved integration of the real-time assets into VAST-RT, including the development of tools to integrate data collected across the simulation environment into a single data set for the researcher. Current plans for the completion of the VAST-RT distributed simulation environment (Capability 2B) and its use to evaluate future airspace capacity enhancing concepts being developed by VAMS will be discussed. Additionally, the simulation environment's application to other airspace and airport research projects is addressed.

  4. 75 FR 34624 - Revocation of Class D and E Airspace; Big Delta, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 Revocation of Class D and E Airspace; Big Delta, AK... Class D and E airspace at Big Delta, AK, to eliminate duplicated controlled airspace serving Allen Army... airspace at Big Delta, AK (75 FR 17322). Controlled airspace serving Allen Army Airfield was revised...

  5. 76 FR 22011 - Amendment of Class E Airspace; Carizzo Springs, Glass Ranch Airport, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Carizzo Springs, Glass Ranch... amends Class E airspace for the Carizzo Springs, Glass Ranch Airport, TX, airspace area, to accommodate... rulemaking to amend Class E airspace for the Carizzo Springs, Glass Ranch Airport, TX, airspace...

  6. Preliminary Airspace Operations Simulations Findings Report

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Provides preliminary findings of the initial series (normal operations and contingency management) of airspace operations simulations. The key elements of this report discuss feedback from controller subjects for UAS flight above FL430. Findings provide initial evaluation of routine UAS operations above dense ARTCC airspace (ZOB), and identify areas of further research, policy direction and procedural development. This document further serves as an addendum to the detailed AOS simulation plan (Deliverable SIM001), incorporating feedback from FAA air traffic personnel and Access 5 IPTs.

  7. 78 FR 72006 - Establishment of Class D Airspace and Class E Airspace; Laguna AAF, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ... Ground), Yuma, AZ. The establishment of an air traffic control tower has made this action necessary for... control tower has made this action necessary and provides the required controlled airspace for the...

  8. System Engineering and Integration Contract for Implementation of the National Airspace System Plan. Volume 1. Sections 1.0-4.0, 6.0.

    DTIC Science & Technology

    1984-08-01

    submits this document to the Department of Transportation, Federal Aviation Administration, in re- sponse to Statement of Work, Section 6.2, and Article II...Data Multiplexing, UML Replacement and Expansion, THL, and Airport Telecomunications ; J 2) Switching - NADIN 1A, NADIN 2; 3) Radio Control - Radio...projects so selected should be directed to schedule their first prototype/production article into the SSL test bed for full development and system

  9. 76 FR 56356 - Proposed Modification of Class E Airspace; Driggs, ID

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... airspace is necessary to accommodate aircraft using Area Navigation (RNAV) Global Positioning System (GPS... beginning of your comments. You may also submit comments through the Internet at http://www.regulations.gov... phone number). You may also submit comments through the Internet at...

  10. 75 FR 11476 - Proposed Amendment of Class D and E Airspace; Victorville, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ... airspace is needed for Instrument Flight Rules (IFR) operations at Southern California Logistics Airport... the safety and management of Instrument Flight Rules (IFR) aircraft utilizing both airports. This... be submitted in triplicate to the Docket Management System (see ADDRESSES section for address...

  11. 75 FR 61993 - Amendment of Class E Airspace; Kwajalein Island, Marshall Islands, RMI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... Island, Marshall Islands, RMI AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule... (TACAN) System from the legal description of the Class E airspace areas for Kwajalein Island, Bucholz AAF, Marshall Islands, RMI. The U.S. Army notified the FAA that the Kwajalein TACAN was decommissioned....

  12. 77 FR 55691 - Establishment of Class E Airspace; Circle Town, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ...This action establishes Class E airspace at Circle Town County Airport, Circle Town, MT to accommodate aircraft using new Area Navigation (RNAV) Global Positioning System (GPS) standard instrument approach procedures at Circle Town County Airport. This improves the safety and management of Instrument Flight Rules (IFR) operations at the...

  13. 75 FR 36585 - Proposed Establishment of Class E Airspace; Panguitch, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... be submitted in triplicate to the Docket Management System (see ADDRESSES section for address and..., 2009, and effective September 15, 2009, which is incorporated by reference in 14 CFR 71.1. The Class E...--DESIGNATION OF CLASS A, B, C, D AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES; AND REPORTING POINTS 1....

  14. 78 FR 60235 - Proposed Amendment of Class E Airspace; Georgetown, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ...; #0; #0;#0;Federal Register / Vol. 78, No. 190 / Tuesday, October 1, 2013 / Proposed Rules#0;#0..., to request a copy of Advisory Circular No. 11-2A, Notice of Proposed Rulemaking Distribution System... airspace is necessary for the safety and management of IFR operations at the airport. Class E...

  15. 78 FR 54415 - Proposed Establishment of Class E Airspace; Ennis, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ...). SUMMARY: This action proposes to establish Class E airspace at Ennis- Big Sky Airport, Ennis, MT... System (GPS) standard instrument approach procedures at Ennis-Big Sky Airport, Ennis, MT. The FAA is... from 700 feet above the surface within a 7-mile radius of Ennis- Big Sky Airport, Ennis, MT, along...

  16. 75 FR 41774 - Proposed Establishment and Modification of Class E Airspace; Deer Park, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ...; Deer Park, WA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking... airspace at Deer Park Airport, Deer Park, WA, to accommodate aircraft using the existing Area Navigation (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedures (SIAPs) at Deer...

  17. Use of a Small Unmanned Aircraft System for Autonomous Fire Spotting at the Great Dismal Swamp

    NASA Technical Reports Server (NTRS)

    Logan, Michael J.; Glaab, Louis J.; Craig, Timothy

    2016-01-01

    This paper describes the results of a set of experiments and analyses conducted to evaluate the capability of small unmanned aircraft systems (sUAS) to spot nascent fires in the Great Dismal Swamp (GDS) National Wildlife Refuge. This work is the result of a partnership between the National Aeronautics and Space Administration and the US Fish and Wildlife service specifically to investigate sUAS usage for fire-spotting. The objectives of the current effort were to: 1) Determine suitability and utility of low-cost Small Unmanned Aircraft Systems (sUAS) to detect nascent fires at GDS; 2) Identify and assess the necessary National Airspace System (NAS) integration issues; and 3) Provide information to GDS and the community on system requirements and concepts-of-operation (CONOPS) for conducting fire detection/support mission in the National Airspace and (4) Identify potential applications of intelligent autonomy that would enable or benefit this high-value mission. In addition, data on the ability of various low-cost sensors to detect smoke plumes and fire hot spots was generated during the experiments as well as identifying a path towards a future practical mission utility by using sUAS in beyond visual-line-of-sight operation in the National Airspace System (NAS).

  18. NASA Advanced Supercomputing (NAS) User Services Group

    NASA Technical Reports Server (NTRS)

    Pandori, John; Hamilton, Chris; Niggley, C. E.; Parks, John W. (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides an overview of NAS (NASA Advanced Supercomputing), its goals, and its mainframe computer assets. Also covered are its functions, including systems monitoring and technical support.

  19. Safely Enabling Low-Altitude Airspace Operations

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal

    2015-01-01

    Near-term Goal: Enable initial low-altitude airspace and UAS operations with demonstrated safety as early as possible, within 5 years. Long-term Goal: Accommodate increased UAS operations with highest safety, efficiency, and capacity as much autonomously as possible (10-15 years).

  20. 77 FR 1429 - Proposed Amendment of Class E Airspace; Springfield, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-10

    ... Federal Aviation Administration 14 CFR Part 71 Proposed Amendment of Class E Airspace; Springfield, CO...: This action proposes to amend Class E airspace at Springfield Municipal Airport, Springfield, CO... Springfield Municipal Airport, Springfield, CO. Airspace reconfiguration is necessary due to...

  1. JPL's Real-Time Weather Processor project (RWP) metrics and observations at system completion

    NASA Technical Reports Server (NTRS)

    Loesh, Robert E.; Conover, Robert A.; Malhotra, Shan

    1990-01-01

    As an integral part of the overall upgraded National Airspace System (NAS), the objective of the Real-Time Weather Processor (RWP) project is to improve the quality of weather information and the timeliness of its dissemination to system users. To accomplish this, an RWP will be installed in each of the Center Weather Service Units (CWSUs), located in 21 of the 23 Air Route Traffic Control Centers (ARTCCs). The RWP System is a prototype system. It is planned that the software will be GFE and that production hardware will be acquired via industry competitive procurement. The ARTCC is a facility established to provide air traffic control service to aircraft operating on Instrument Flight Rules (IFR) flight plans within controlled airspace, principally during the en route phase of the flight. Covered here are requirement metrics, Software Problem Failure Reports (SPFRs), and Ada portability metrics and observations.

  2. Research Initiatives and Preliminary Results In Automation Design In Airspace Management in Free Flight

    NASA Technical Reports Server (NTRS)

    Corker, Kevin; Lebacqz, J. Victor (Technical Monitor)

    1997-01-01

    The NASA and the FAA have entered into a joint venture to explore, define, design and implement a new airspace management operating concept. The fundamental premise of that concept is that technologies and procedures need to be developed for flight deck and ground operations to improve the efficiency, the predictability, the flexibility and the safety of airspace management and operations. To that end NASA Ames has undertaken an initial development and exploration of "key concepts" in the free flight airspace management technology development. Human Factors issues in automation aiding design, coupled aiding systems between air and ground, communication protocols in distributed decision making, and analytic techniques for definition of concepts of airspace density and operator cognitive load have been undertaken. This paper reports the progress of these efforts, which are not intended to definitively solve the many evolving issues of design for future ATM systems, but to provide preliminary results to chart the parameters of performance and the topology of the analytic effort required. The preliminary research in provision of cockpit display of traffic information, dynamic density definition, distributed decision making, situation awareness models and human performance models is discussed as they focus on the theme of "design requirements".

  3. Analysis of Aircraft Clusters to Measure Sector-Independent Airspace Congestion

    NASA Technical Reports Server (NTRS)

    Bilimoria, Karl D.; Lee, Hilda Q.

    2005-01-01

    The Distributed Air/Ground Traffic Management (DAG-TM) concept of operations* permits appropriately equipped aircraft to conduct Free Maneuvering operations. These independent aircraft have the freedom to optimize their trajectories in real time according to user preferences; however, they also take on the responsibility to separate themselves from other aircraft while conforming to any local Traffic Flow Management (TFM) constraints imposed by the air traffic service provider (ATSP). Examples of local-TFM constraints include temporal constraints such as a required time of arrival (RTA), as well as spatial constraints such as regions of convective weather, special use airspace, and congested airspace. Under current operations, congested airspace typically refers to a sector(s) that cannot accept additional aircraft due to controller workload limitations; hence Dynamic Density (a metric that is indicative of controller workload) can be used to quantify airspace congestion. However, for Free Maneuvering operations under DAG-TM, an additional metric is needed to quantify the airspace congestion problem from the perspective of independent aircraft. Such a metric would enable the ATSP to prevent independent aircraft from entering any local areas of congestion in which the flight deck based systems and procedures may not be able to ensure separation. This new metric, called Gaggle Density, offers the ATSP a mode of control to regulate normal operations and to ensure safety and stability during rare-normal or off-normal situations (e.g., system failures). It may be difficult to certify Free Maneuvering systems for unrestricted operations, but it may be easier to certify systems and procedures for specified levels of Gaggle Density that could be monitored by the ATSP, and maintained through relatively minor flow-rate (RTA type) restrictions. Since flight deck based separation assurance is airspace independent, the challenge is to measure congestion independent of sector

  4. New NAS journal

    NASA Astrophysics Data System (ADS)

    In April 1984 the National Academy of Sciences (NAS) will begin publishing a new quarterly focusing on science policy. Written primarily for legislators, diplomats, corporate managers, security analysts, and other public policy analysts, the new journal will deal with such diverse topics as arms control, economic competition, social change, and health care.Original articles are expected to create a 120-page periodical that will discuss policy issues on a sophisticated but nonspecialist level, in a manner similar to that which Foreign Affairs uses to discuss U.S. foreign policy topics, according to NAS.

  5. GIS and RDBMS Used with Offline FAA Airspace Databases

    NASA Technical Reports Server (NTRS)

    Clark, J.; Simmons, J.; Scofield, E.; Talbott, B.

    1994-01-01

    A geographic information system (GIS) and relational database management system (RDBMS) were used in a Macintosh environment to access, manipulate, and display off-line FAA databases of airport and navigational aid locations, airways, and airspace boundaries. This proof-of-concept effort used data available from the Adaptation Controlled Environment System (ACES) and Digital Aeronautical Chart Supplement (DACS) databases to allow FAA cartographers and others to create computer-assisted charts and overlays as reference material for air traffic controllers. These products were created on an engineering model of the future GRASP (GRaphics Adaptation Support Position) workstation that will be used to make graphics and text products for the Advanced Automation System (AAS), which will upgrade and replace the current air traffic control system. Techniques developed during the prototyping effort have shown the viability of using databases to create graphical products without the need for an intervening data entry step.

  6. Airspace Command and Control in the Contemporary Operating Environment

    DTIC Science & Technology

    2010-05-07

    article titled, “The Miracle of Operation Iraqi Freedom Airspace Management,” Wathen details the herculean effort airspace With multiple actors...the ability to predict airspace conflicts. 4 Colonel David Hume , an Air War College graduate, wrote a thesis on command and control and integration...of unmanned aircraft into the battlespace. Hume argues that the TAGS is not optimized to support the integration of unmanned aircraft operations

  7. The Development of Human Factor Guidelines for Unmanned Aircraft System Control Stations

    NASA Technical Reports Server (NTRS)

    Hobbs, Alan

    2014-01-01

    Despite being referred to as unmanned some of the major challenges confronting unmanned aircraft systems (UAS) relate to human factors. NASA is conducting research to address the human factors relevant to UAS access to non-segregated airspace. This work covers the issues of pilot performance, interaction with ATC, and control station design. A major outcome of this research will be recommendations for human factors design guidelines for UAS control stations to support routine beyond-line-of-sight operations in the US national airspace system (NAS). To be effective, guidelines must be relevant to a wide range of systems, must not be overly prescriptive, and must not impose premature standardization on evolving technologies. In developing guidelines, we recognize that existing regulatory and guidance material may already provide adequate coverage of certain issues. In other cases suitable guidelines may be found in existing military or industry human factors standards. In cases where appropriate existing standards cannot be identified, original guidelines will be proposed.

  8. Evidence toward an expanded international civil aviation organization (ICAO) concept of a single unified global communication navigation surveillance air traffic management (CNS/ATM) system: A quantitative analysis of ADS-B technology within a CNS/ATM system

    NASA Astrophysics Data System (ADS)

    Gardner, Gregory S.

    This research dissertation summarizes research done on the topic of global air traffic control, to include technology, controlling world organizations and economic considerations. The International Civil Aviation Organization (ICAO) proposed communication, navigation, surveillance, air traffic management system (CNS/ATM) plan is the basis for the development of a single global CNS/ATM system concept as it is discussed within this study. Research will be evaluated on the efficacy of a single technology, Automatic Dependent Surveillance-Broadcast (ADS-B) within the scope of a single global CNS/ATM system concept. ADS-B has been used within the Federal Aviation Administration's (FAA) Capstone program for evaluation since the year 2000. The efficacy of ADS-B was measured solely by using National Transportation Safety Board (NTSB) data relating to accident and incident rates within the Alaskan airspace (AK) and that of the national airspace system (NAS).

  9. The NAS Computational Aerosciences Archive

    NASA Technical Reports Server (NTRS)

    Miceli, Kristina D.; Globus, Al; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    In order to further the state-of-the-art in computational aerosciences (CAS) technology, researchers must be able to gather and understand existing work in the field. One aspect of this information gathering is studying published work available in scientific journals and conference proceedings. However, current scientific publications are very limited in the type and amount of information that they can disseminate. Information is typically restricted to text, a few images, and a bibliography list. Additional information that might be useful to the researcher, such as additional visual results, referenced papers, and datasets, are not available. New forms of electronic publication, such as the World Wide Web (WWW), limit publication size only by available disk space and data transmission bandwidth, both of which are improving rapidly. The Numerical Aerodynamic Simulation (NAS) Systems Division at NASA Ames Research Center is in the process of creating an archive of CAS information on the WWW. This archive will be based on the large amount of information produced by researchers associated with the NAS facility. The archive will contain technical summaries and reports of research performed on NAS supercomputers, visual results (images, animations, visualization system scripts), datasets, and any other supporting meta-information. This information will be available via the WWW through the NAS homepage, located at http://www.nas.nasa.gov/, fully indexed for searching. The main components of the archive are technical summaries and reports, visual results, and datasets. Technical summaries are gathered every year by researchers who have been allotted resources on NAS supercomputers. These summaries, together with supporting visual results and references, are browsable by interested researchers. Referenced papers made available by researchers can be accessed through hypertext links. Technical reports are in-depth accounts of tools and applications research projects

  10. UTM Safely Enabling UAS Operations in Low-Altitude Airspace

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal H.

    2016-01-01

    Conduct research, development and testing to identify airspace operations requirements to enable large-scale visual and beyond visual line of sight UAS operations in the low-altitude airspace. Use build-a-little-test-a-little strategy remote areas to urban areas Low density: No traffic management required but understanding of airspace constraints. Cooperative traffic management: Understanding of airspace constraints and other operations. Manned and unmanned traffic management: Scalable and heterogeneous operations. UTM construct consistent with FAAs risk-based strategy. UTM research platform is used for simulations and tests. UTM offers path towards scalability.

  11. ICAROUS: Integrated Configurable Architecture for Unmanned Systems

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.

    2016-01-01

    NASA's Unmanned Aerial System (UAS) Traffic Management (UTM) project aims at enabling near-term, safe operations of small UAS vehicles in uncontrolled airspace, i.e., Class G airspace. A far-term goal of UTM research and development is to accommodate the expected rise in small UAS traffic density throughout the National Airspace System (NAS) at low altitudes for beyond visual line-of-sight operations. This video describes a new capability referred to as ICAROUS (Integrated Configurable Algorithms for Reliable Operations of Unmanned Systems), which is being developed under the auspices of the UTM project. ICAROUS is a software architecture comprised of highly assured algorithms for building safety-centric, autonomous, unmanned aircraft applications. Central to the development of the ICAROUS algorithms is the use of well-established formal methods to guarantee higher levels of safety assurance by monitoring and bounding the behavior of autonomous systems. The core autonomy-enabling capabilities in ICAROUS include constraint conformance monitoring and autonomous detect and avoid functions. ICAROUS also provides a highly configurable user interface that enables the modular integration of mission-specific software components.

  12. Configuring Airspace Sectors with Approximate Dynamic Programming

    NASA Technical Reports Server (NTRS)

    Bloem, Michael; Gupta, Pramod

    2010-01-01

    In response to changing traffic and staffing conditions, supervisors dynamically configure airspace sectors by assigning them to control positions. A finite horizon airspace sector configuration problem models this supervisor decision. The problem is to select an airspace configuration at each time step while considering a workload cost, a reconfiguration cost, and a constraint on the number of control positions at each time step. Three algorithms for this problem are proposed and evaluated: a myopic heuristic, an exact dynamic programming algorithm, and a rollouts approximate dynamic programming algorithm. On problem instances from current operations with only dozens of possible configurations, an exact dynamic programming solution gives the optimal cost value. The rollouts algorithm achieves costs within 2% of optimal for these instances, on average. For larger problem instances that are representative of future operations and have thousands of possible configurations, excessive computation time prohibits the use of exact dynamic programming. On such problem instances, the rollouts algorithm reduces the cost achieved by the heuristic by more than 15% on average with an acceptable computation time.

  13. Access 5 - Step 1: Human Systems Integration Program Plan (HSIPP)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This report describes the Human System Interface (HSI) analysis, design and test activities that will be performed to support the development of requirements and design guidelines to facilitate the incorporation of High Altitude Long Endurance (HALE) Remotely Operated Aircraft (ROA) at or above FL400 in the National Airspace System (NAS). These activities are required to support the design and development of safe, effective and reliable ROA operator and ATC interfaces. This plan focuses on the activities to be completed for Step 1 of the ACCESS 5 program. Updates to this document will be made for each of the four ACCESS 5 program steps.

  14. 75 FR 13669 - Amendment of Class E Airspace; Dumas, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ... Instrument Approach Procedures (SIAPs) at Moore County Airport, Dumas, TX, and updates the airport's... rulemaking to amend Class E airspace for Dumas, TX, reconfiguring controlled airspace at Moore County Airport... surface to accommodate SIAPs at Moore County Airport, Dumas, TX. This action also updates the...

  15. 78 FR 34556 - Establishment of Class E Airspace; Tobe, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Tobe, CO AGENCY: Federal... at the Tobe VHF Omni- Directional Radio Range/Distance Measuring Equipment (VOR/DME), Tobe, CO, to... proposed rulemaking (NPRM) to establish controlled airspace at Tobe, CO (78 FR 18264). Interested...

  16. 77 FR 75836 - Establishment of Class E Airspace; Walsenburg, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Walsenburg, CO AGENCY... airspace at Spanish Peaks Airfield, Walsenburg, CO, to accommodate aircraft using new Area Navigation (RNAV... Airfield, Walsenburg, CO (77 FR 55776). Interested parties were invited to participate in this...

  17. 75 FR 18047 - Amendment of Class D Airspace; Hollywood, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... Administration 14 CFR Part 71 Amendment of Class D Airspace; Hollywood, FL AGENCY: Federal Aviation... Airport, Hollywood, FL. DATES: Effective Date: 0901 UTC. May 10, 2010. The Director of the Federal... airspace description for North Perry Airport, Hollywood, FL, incorrectly referenced the Miami, FL, Class...

  18. 76 FR 53328 - Airspace Designations; Incorporation by Reference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ... FAA processed all proposed changes of the airspace listings in FAA Order 7400.9U in full text as... in full text as final rules in the Federal Register. This rule reflects the periodic integration of... changes of the airspace listings in FAA Order 7400.9V in full text as proposed rule documents in...

  19. 78 FR 52847 - Airspace Designations; Incorporation by Reference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... FAA processed all proposed changes of the airspace listings in FAA Order 7400.9W in full text as... in full text as final rules in the Federal Register. This rule reflects the periodic integration of... changes of the airspace listings in FAA Order 7400.9X in full text as proposed rule documents in...

  20. 75 FR 20320 - Amendment of Class E Airspace; Smithfield, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ... needed for the Standard Instrument Approach Procedures (SIAPs) developed for Johnston County Airport... Smithfield, NC to provide controlled airspace required to support the SIAPs for Johnston County Airport. The... within the scope of that authority as it would amend Class E airspace at Johnston County...

  1. 75 FR 65581 - Establishment of Class E Airspace; Colebrook, NH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... Proposed Rulemaking, Airspace Docket No. 10-ANE-105, as published in the Federal Register on July 19, 2010... (NPRM); withdrawal. SUMMARY: This action withdraws the NPRM published in the Federal Register on July 19.... The NPRM is being withdrawn as a portion of the proposed airspace already exists. A new...

  2. 75 FR 12163 - Class E Airspace; Mountain View, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ... Federal Aviation Administration 14 CFR Part 71 Class E Airspace; Mountain View, AR AGENCY: Federal... proposes to amend Class E airspace at Mountain View, AR. Decommissioning of the Wilcox non-directional beacon (NDB) at Mountain View Wilcox Memorial Field Airport has made this action necessary for the...

  3. 76 FR 8281 - Amendment to Class B Airspace; Cleveland, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... International Airport (CLE) and non-participating Visual Flight Rules (VFR) aircraft operating in the vicinity... boundaries of Areas F and G to coincide with visual landmarks to prevent inadvertent Class B airspace... benefits of using visual landmarks for defining airspace boundaries and does so when possible....

  4. 78 FR 25382 - Amendment of Class E Airspace; Griffin, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    ... Griffin, GA, as the Griffin Non-Directional Beacon (NDB) has been decommissioned and new Standard... authority as it amends controlled airspace at Griffin-Spalding County Airport, Griffin, GA. Environmental... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Griffin, GA AGENCY:...

  5. 77 FR 68067 - Establishment of Class E Airspace; Coaldale, NV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... airspace at Coaldale VHF Omni- Directional Radio Range Tactical Air Navigational Aid (VORTAC), Coaldale, NV to facilitate vectoring of Instrument Flight Rules (IFR) aircraft under control of Oakland Air Route... request of the Oakland ARTCC to aid with the navigation of aircraft within the ARTCC's airspace area...

  6. 75 FR 6095 - Revocation of Class E Airspace; Hinesville, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 Revocation of Class E Airspace; Hinesville, GA AGENCY... November 25, 2009 (74 FR 61507), revokes Class E airspace at Liberty County Airport, Hinesville, GA....

  7. 77 FR 51464 - Amendment of Class E Airspace; Augusta, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Augusta, GA AGENCY: Federal... Augusta, GA. The Bushe Non-Directional Beacon (NDB) and the Burke County NDB have been decommissioned and... Field, Augusta, GA, and Burke County Airport, Waynesboro, GA, respectively. Airspace reconfiguration...

  8. 75 FR 32651 - Establishment of Class E Airspace; Quitman, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Quitman, GA AGENCY... April 1, 2010 that establishes Class E Airspace at Quitman Brooks County Airport, Quitman, GA....

  9. 77 FR 44120 - Establishment of Class E Airspace; Roundup, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-27

    ... airspace at Roundup Airport, Roundup, MT, to accommodate aircraft using new Area Navigation (RNAV) Global... action under 1 CFR part 51, subject to the annual revision of FAA Order 7400.9 and publication of... the TAAs. The airspace in question includes the following areas where Class E begins at 14,500...

  10. 76 FR 34576 - Amendment of Class E Airspace; Waynesboro, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ... Airspace at Waynesboro, VA, to accommodate the additional airspace need for the Standard Instrument Approach Procedures developed for Eagle's Nest Airport. This action enhances the safety and management of... procedures developed at Eagle's Nest Airport, Waynesboro, VA. This action is necessary for the safety...

  11. 75 FR 13670 - Amendment of Class E Airspace; Gadsden, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Gadsden, AL AGENCY: Federal... December 29, 2009 that amends Class E airspace at Northeast Alabama Regional, Gadsden, AL. DATES:...

  12. 76 FR 67054 - Amendment of Class E Airspace; Fayette, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Fayette, AL AGENCY: Federal... Fayette, AL, as the Fayette Non-Directional Beacon (NDB) has been decommissioned and new Standard... published in the Federal Register a notice of proposed rulemaking to amend Class E airspace at Fayette,...

  13. 78 FR 59807 - Establishment of Class E Airspace; Glasgow, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... airspace at the Glasgow VHF Omni-Directional Radio Range/Distance Measuring Equipment (VOR/DME) navigation... the surface, at the Glasgow VOR/DME navigation aid, Glasgow, MT, to accommodate IFR aircraft under... within the scope of that authority as it establishes controlled airspace at the Glasgow VOR/DME,...

  14. 78 FR 34555 - Establishment of Class E Airspace; Gillette, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... airspace at the Gillette VHF Omni-Directional Radio Range/Distance Measuring Equipment (VOR/DME), Gillette... the surface, at the Gillette VOR/DME navigation aid, Gillette, WY, to accommodate IFR aircraft under... within the scope of that authority as it establishes controlled airspace at the Gillette...

  15. 78 FR 65555 - Establishment of Class E Airspace; Salmon, ID

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... airspace at the Salmon VHF Omni-Directional Radio Range/Distance Measuring Equipment (VOR/DME) navigation... the surface, at the Salmon VOR/DME navigation aid, Salmon, ID, to accommodate IFR aircraft under... within the scope of that authority as it establishes controlled airspace at the Salmon VOR/DME,...

  16. 75 FR 4270 - Modification of Class E Airspace; Anniston, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 Modification of Class E Airspace; Anniston, AL AGENCY... October 28, 2009 that modifies the Class E airspace at Anniston Metropolitan Airport, Anniston, AL....

  17. 75 FR 81441 - Establishment of Class E Airspace; Benton, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Benton, IL AGENCY... airspace at Benton, IL, to accommodate new Area Navigation (RNAV) Standard Instrument Approach Procedures (SIAP) at Benton Municipal Airport, Benton, IL. The FAA is taking this action to enhance the safety...

  18. 14 CFR 71.71 - Class E airspace.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (2) The airspace below 1,500 feet above the surface of the earth. (b) The airspace areas designated... by reference, see § 71.1) which extend upward from 700 feet or more above the surface of the earth... been prescribed, or from 1,200 feet or more above the surface of the earth for the purpose...

  19. 14 CFR 91.130 - Operations in Class C airspace.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Operations in Class C airspace. 91.130 Section 91.130 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... designated. A satellite airport is any other airport within the Class C airspace area. (b) Traffic...

  20. 77 FR 42427 - Amendment of Class E Airspace; Grinnell, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-19

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Grinnell, IA AGENCY: Federal... Class E airspace at Grinnell Regional Airport, Grinnell, IA, by removing reference to the Grinnell NDB... Regional Airport, Grinnell, IA, and amends the geographic coordinates of the airport to coincide with...

  1. 75 FR 23580 - Amendment of Class E Airspace; Mapleton, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Mapleton, IA AGENCY: Federal... Mapleton, IA, adding additional controlled airspace to accommodate Area Navigation (RNAV) Standard Instrument Approach Procedures (SIAPs) at James G. Whiting Memorial Field Airport, Mapleton, IA. The FAA...

  2. 77 FR 68682 - Amendment of Class E Airspace; Guthrie, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Guthrie, IA AGENCY: Federal... Guthrie, IA. Decommissioning of the Guthrie Center non-directional radio beacon (NDB) at Guthrie County... proposed rulemaking (NPRM) to amend Class E airspace for the Guthrie, IA, area, creating...

  3. 78 FR 76053 - Amendment of Class E Airspace; Chariton, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-16

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Chariton, IA AGENCY: Federal... Chariton, IA. Decommissioning of the Chariton non-directional beacon (NDB) at Chariton Municipal Airport... Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the Chariton, IA,...

  4. 78 FR 67024 - Modification of Class E Airspace; Prineville, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... incorporated by reference in 14 CFR 71.1. The Class E airspace designations listed in this document will be... Federal Aviation Administration 14 CFR Part 71 Modification of Class E Airspace; Prineville, OR AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action modifies Class...

  5. 78 FR 48294 - Amendment of Class E Airspace; Mason, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Mason, TX AGENCY: Federal... Mason, TX. Additional controlled airspace is necessary to accommodate new Area Navigation (RNAV) Standard Instrument Approach Procedures at Mason County Airport. This action enhances the safety...

  6. 75 FR 29655 - Amendment of Class E Airspace; Batesville, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-27

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Batesville, AR AGENCY... airspace for Batesville, AR. Decommissioning of the Independence County non-directional beacon (NDB) at Batesville Regional Airport, Batesville, AR, has made this action necessary to enhance the safety...

  7. 75 FR 29657 - Establishment of Class E Airspace; Marianna, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-27

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Marianna, AR AGENCY... airspace for Marianna, AR to accommodate Area Navigation (RNAV) Standard Instrument Approach Procedures (SIAPs) at Marianna/Lee County Airport--Steve Edwards Field, Marianna, AR. The FAA is taking this...

  8. 75 FR 39148 - Establishment of Class E Airspace; Lucin, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ..., UT, to facilitate vectoring of Instrument Flight Rules (IFR) traffic from en route airspace to Salt Lake City, UT. This will improve the safety and management of IFR operations for the Salt Lake City, UT... operations by vectoring IFR aircraft from en route airspace to Salt Lake City, UT. This action enhances...

  9. 75 FR 81442 - Modification of Class E Airspace; Rawlins, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ...) at Rawlins Municipal Airport/Harvey Field, has made this action necessary. This will improve the... CFR) part 71 by amending Class E surface airspace at Rawlins Municipal Airport/Harvey Field. The... within the scope of that authority as it amends controlled airspace at Rawlins Municipal...

  10. 75 FR 43814 - Amendment of Class D Airspace; Goldsboro, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class D Airspace; Goldsboro, NC AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends the Class D... D airspace for Seymour Johnson AFB, Goldsboro, NC (75 FR 17891) Docket No. FAA-2010-0095....

  11. 78 FR 67296 - Establishment of Class D Airspace; Mesquite, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Class D Airspace; Mesquite, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class D... establish Class D airspace for Mesquite Metro Airport, Mesquite, TX (78 FR 48842) Docket No. FAA-2012-...

  12. 75 FR 67910 - Amendment of Class E Airspace; Charleston, SC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ...: This action amends Class E Airspace at Charleston, SC, by removing the East Cooper Airport from the airspace description. The East Cooper Airport has been renamed Mt. Pleasant Regional Airport- Faison Field... Charleston AFB/International Airport, the Charleston Executive Airport, and the East Cooper Airport. The...

  13. 78 FR 33963 - Amendment of Class E Airspace; Atwood, KS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... Administration 14 CFR Part 71 Amendment of Class E Airspace; Atwood, KS AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at Atwood, KS. Decommissioning of the Atwood non-directional radio beacon (NDB) at Atwood--Rawlins County--City County...

  14. 76 FR 61258 - Revision of Class E Airspace; Allakaket, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... Federal Aviation Administration 14 CFR Part 71 Revision of Class E Airspace; Allakaket, AK AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action revises Class E airspace at Allakaket, AK, to accommodate the amendment of one Standard Instrument Approach Procedure at the...

  15. 75 FR 33165 - Revision of Class E Airspace; Galena, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ... revising Class E airspace at Edward G. Pitka Sr. Airport, AK, to accommodate three amended SIAPs and one... TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 Revision of Class E Airspace; Galena, AK AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final Rule. SUMMARY: This action revises Class...

  16. 76 FR 60714 - Revision of Class E Airspace; Northway, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-30

    ... Federal Aviation Administration 14 CFR Part 71 Revision of Class E Airspace; Northway, AK AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action revises Class E airspace at Northway, AK, to accommodate the amendment of one Standard Instrument Approach Procedure at the...

  17. 77 FR 45240 - Establishment of Class E Airspace; Quakertown, PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Quakertown, PA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E... published in the Federal Register a notice of proposed rulemaking to establish Class E airspace...

  18. 77 FR 34209 - Amendment of Class E Airspace; Tallahassee, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Tallahassee, FL AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E... published in the Federal Register a notice of proposed rulemaking to amend Class E airspace in...

  19. 77 FR 46282 - Amendment of Class E Airspace; Sweetwater, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Sweetwater, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E... Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the Sweetwater, TX,...

  20. 75 FR 65226 - Establishment of Class E Airspace; Bamberg, SC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Bamberg, SC AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E... Register a notice of proposed rulemaking to establish Class E airspace at Bamberg, SC (75 FR 52654)...

  1. 77 FR 1012 - Establishment of Class E Airspace; Inverness, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-09

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Inverness, FL AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E... published in the Federal Register a notice of proposed rulemaking to establish Class E airspace at...

  2. 76 FR 9220 - Establishment of Class E Airspace; Martinsville, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Martinsville, IN AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E... Federal Register a notice of proposed rulemaking to establish Class E airspace for Martinsville,...

  3. 78 FR 18801 - Establishment of Class E Airspace; Beeville, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Beeville, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E... Federal Register a notice of proposed rulemaking (NPRM) to establish Class E airspace at Chase...

  4. 78 FR 61179 - Establishment of Class E Airspace; Comanche, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Comanche, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E... established for the airport in 2006, but the Class E airspace area to contain it was never...

  5. 76 FR 8624 - Revision of Class E Airspace; Barrow, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... Federal Aviation Administration 14 CFR Part 71 Revision of Class E Airspace; Barrow, AK AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action revises Class E airspace at...) 271-2850; e- mail: Martha.ctr.Dunn@faa.gov . Internet address:...

  6. 77 FR 66069 - Amendment of Class E Airspace; Perry, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-01

    ... TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Perry, IA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E... Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the Perry, IA, area,...

  7. 76 FR 8626 - Revision of Class E Airspace; Shungnak, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... Federal Aviation Administration 14 CFR Part 71 Revision of Class E Airspace; Shungnak, AK AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action revises Class E airspace at..., Box 14, Anchorage, AK 99513-7587; telephone number (907) 271-5898; fax: (907) 271-2850; e-...

  8. 75 FR 41077 - Revision of Class E Airspace; Monterey, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... Federal Aviation Administration 14 CFR Part 71 Revision of Class E Airspace; Monterey, CA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action revises Class E airspace at...: History The FAA received a request from NACO to clarify the legal description of the existing Class...

  9. 77 FR 16669 - Establishment of Class E Airspace; Bellefonte, PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Bellefonte, PA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E... Federal Register a notice of proposed rulemaking (NPRM) to establish Class E airspace 700 feet above...

  10. 78 FR 48296 - Amendment of Class E Airspace; Factoryville, PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Factoryville, PA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E... in the Federal Register a notice of proposed rulemaking (NPRM) to amend Class E airspace at...

  11. 76 FR 16530 - Establishment of Class E Airspace; Creighton, NE

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-24

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Creighton, NE AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E... Federal Register a notice of proposed rulemaking to establish Class E airspace for Creighton, NE,...

  12. 78 FR 22413 - Amendment of Class E Airspace; Omak, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Omak, WA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at... necessary. This action also makes a minor change to the legal description in reference to the Class...

  13. 78 FR 48302 - Establishment of Class E Airspace; Wagner, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Wagner, SD AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E... Federal Register a notice of proposed rulemaking (NPRM) to establish Class E airspace for the Wagner,...

  14. 75 FR 65224 - Amendment of Class E Airspace; Williston, ND

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Williston, ND AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E... Federal Register a notice of proposed rulemaking to amend Class E airspace for Williston, ND,...

  15. 78 FR 48300 - Establishment of Class E Airspace; Mahnomen, MN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Mahnomen, MN AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E... published in the Federal Register a notice of proposed rulemaking (NPRM) to establish Class E airspace...

  16. 75 FR 65225 - Amendment of Class E Airspace; Youngstown, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Youngstown, OH AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E... Register a notice of proposed rulemaking to amend Class E airspace for Youngstown, OH, creating...

  17. 75 FR 4270 - Establishment of Class E Airspace; Tompkinsville, KY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Tompkinsville, KY AGENCY... September 14, 2009 that establishes Class E Airspace at Tompkinsville--Monroe County Airport,...

  18. 77 FR 28246 - Amendment of Class E Airspace; Tullahoma, TN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Tullahoma, TN AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E... amend Class E airspace at Tullahoma, TN (77 FR 12759). Interested parties were invited to participate...

  19. 75 FR 13668 - Amendment of Class E Airspace; Georgetown, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Georgetown, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E... Federal Register a notice of proposed rulemaking to amend Class E airspace for Georgetown...

  20. 75 FR 65228 - Revocation of Class E Airspace; Chilicothe, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... Federal Aviation Administration 14 CFR Part 71 Revocation of Class E Airspace; Chilicothe, MO AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action removes Class E... that the Class E surface area airspace at Chilicothe Municipal Airport is no longer necessary and...

  1. 75 FR 4269 - Establishment of Class E Airspace; Lewisport, KY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Lewisport, KY... Register September 14, 2009 that establishes Class E Airspace at Hancock Co.--Ron Lewis Field,...

  2. 75 FR 4270 - Establishment of Class E Airspace; Saluda, SC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Saluda, SC... Register September 14, 2009 that establishes Class E Airspace at Saluda County Airport, Saluda, SC....

  3. 75 FR 4269 - Establishment of Class E Airspace; Clayton, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Clayton, GA AGENCY... September 14, 2009 that establishes Class E Airspace at Heaven's Landing Airport, Clayton, GA....

  4. 77 FR 45241 - Establishment of Class E Airspace; Apopka, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Apopka, FL AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E... published in the Federal Register a notice of proposed rulemaking (NPRM) to establish Class E airspace...

  5. 76 FR 8625 - Revision of Class E Airspace; Savoonga, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... Federal Aviation Administration 14 CFR Part 71 Revision of Class E Airspace; Savoonga, AK AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action revises Class E airspace at...-5898; fax: (907) 271-2850; e-mail: martha.ctr.dunn@faa.gov . Internet address:...

  6. 75 FR 4269 - Establishment of Class E Airspace; Hertford, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Hertford, NC AGENCY... September 14, 2009 that establishes Class E Airspace at Harvey Point Defense Testing Activity, Hertford,...

  7. 77 FR 66068 - Amendment of Class E Airspace; Breckenridge, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-01

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Breckenridge, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E... Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the Breckenridge, TX,...

  8. 78 FR 48301 - Establishment of Class E Airspace; Walker, MN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Walker, MN AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E... Federal Register a notice of proposed rulemaking (NPRM) to establish Class E airspace for the Walker,...

  9. 78 FR 18802 - Establishment of Class E Airspace; Tecumseh, NE

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Tecumseh, NE AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E... Federal Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the Tecumseh,...

  10. 75 FR 65227 - Revocation of Class E Airspace; Franklin, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... Federal Aviation Administration 14 CFR Part 71 Revocation of Class E Airspace; Franklin, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action removes Class E... rulemaking to remove Class E airspace for Franklin, TX (75 FR 36586) Docket No. FAA-2010-0603....

  11. 78 FR 32084 - Modification of Class D and Class E Airspace; Pueblo, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... Federal Aviation Administration 14 CFR Part 71 Modification of Class D and Class E Airspace; Pueblo, CO... Class D airspace and Class E airspace areas at Pueblo Memorial Airport, Pueblo, CO, to accommodate... airspace at Pueblo, CO (78 FR 11996). Interested parties were invited to participate in this...

  12. 77 FR 55776 - Proposed Establishment of Class E Airspace; Walsenburg, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ...-ANM-20 Proposed Establishment of Class E Airspace; Walsenburg, CO AGENCY: Federal Aviation... establish Class E airspace at Spanish Peaks Airfield, Walsenburg, CO. Controlled airspace is necessary to... Airfield, Walsenburg, CO. Controlled airspace is necessary to accommodate aircraft using the new RNAV...

  13. 78 FR 31839 - Establishment of Class E Airspace; Beeville-Chase Field, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Beeville-Chase Field, TX... Register of March 28, 2013. The title and airspace designation are corrected to read Beeville-Chase Field... Register document FAA 2012-0821, Airspace Docket No. 12- ASW-8, establishes Class E Airspace at Chase...

  14. 78 FR 54413 - Proposed Establishment of Class E Airspace; Star, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... Federal Aviation Administration 14 CFR Part 71 Proposed Establishment of Class E Airspace; Star, NC AGENCY... action proposes to establish Class E Airspace at Star, NC, to accommodate a new Area Navigation (RNAV... establish Class E airspace at Star, NC, providing the controlled airspace required to support the new...

  15. 77 FR 68683 - Amendment of Class E Airspace; Forest City, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Forest City, IA AGENCY... airspace at Forest City, IA. Additional controlled airspace is necessary to accommodate new Area Navigation... Federal Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the Forest City,...

  16. 77 FR 4700 - Proposed Establishment of Class E Airspace; Freer, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... Federal Aviation Administration 14 CFR Part 71 Proposed Establishment of Class E Airspace; Freer, TX...: This action proposes to establish Class E airspace at Freer, TX. Controlled airspace is necessary to... approach procedures at Seven C's Ranch Airport, Freer, TX. Controlled airspace is needed for the safety...

  17. 76 FR 38580 - Proposed Amendment of Class D Airspace; Eglin AFB, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... Federal Aviation Administration 14 CFR Part 71 Proposed Amendment of Class D Airspace; Eglin AFB, FL...: This action proposes to amend Class D Airspace in the Eglin Air Force Base (AFB), FL airspace area. The... amendment to Title 14, Code of Federal Regulations (14 CFR) part 71 to amend Class D airspace in the...

  18. 78 FR 52422 - Amendment of Class D and E Airspace; Wrightstown, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class D and E Airspace; Wrightstown, NJ AGENCY... amends Class D and E Airspace at Wrightstown, NJ, by updating the geographic coordinates and changing the... (14 CFR) part 71 amends Class D airspace and E airspace designated as an extension to a Class...

  19. 76 FR 30532 - Amendment of Class D and E Airspace; Palmdale, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 Amendment of Class D and E Airspace; Palmdale, CA... D Airspace and Class E Airspace at Palmdale, CA, to accommodate aircraft using Instrument Landing.... No comments were received. Class D and Class E Airspace designations are published in paragraph...

  20. 77 FR 40488 - Amendment of Class D and Class E Airspace; Lakehurst, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class D and Class E Airspace; Lakehurst, NJ...: This action changes the name of the airport associated with the Class D and Class E airspace at... name of the airport associated with the Class D airspace and Class E airspace designated as...

  1. 77 FR 50417 - Proposed Amendment of Class D and Class E Airspace; Lewiston, ID

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ... airspace, and Class E airspace extending upward from 700 feet above the surface and 1,200 feet above the... airspace 1,200 feet above the surface area to enhance safety in the Lewiston-Nez Pearce County Airport... airspace extending upward from 700 feet above the surface at Lewiston-Nez Perce County Airport,...

  2. 77 FR 19931 - Establishment of Class E Airspace; Boyne City, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Class E Airspace; Boyne City, MI AGENCY... airspace at Boyne City, MI. Controlled airspace is necessary to accommodate new Area Navigation (RNAV... Federal Register a notice of proposed rulemaking (NPRM) to amend Class E airspace for the Boyne City,...

  3. 78 FR 52109 - Proposed Amendment of Class D and E Airspace, and Establishment of Class E Airspace; Salisbury, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ... 700 feet or more above the surface of the earth. * * * * * AEA MD E5 Salisbury, MD Salisbury-Ocean..., and establish Class E airspace at Salisbury-Ocean City Wicomico Regional Airport, Salisbury, MD, due... Federal Regulations (14 CFR) part 71 to amend Class D and Class E airspace at Salisbury-Ocean...

  4. 14 CFR 61.95 - Operations in Class B airspace and at airports located within Class B airspace.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... airports located within Class B airspace. 61.95 Section 61.95 Aeronautics and Space FEDERAL AVIATION... GROUND INSTRUCTORS Student Pilots § 61.95 Operations in Class B airspace and at airports located within... student pilot may not operate an aircraft on a solo flight to, from, or at an airport located within...

  5. 14 CFR 61.95 - Operations in Class B airspace and at airports located within Class B airspace.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Operations in Class B airspace and at airports located within Class B airspace. 61.95 Section 61.95 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Student Pilots §...

  6. 75 FR 65250 - Proposed Amendment of Class E Airspace and Revocation of Class E Airspace; Easton, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... informal docket may also be examined during normal business hours at the office of the Eastern Service... E airspace areas extending upward from 700 feet or more above the surface of the earth... airspace extending upward from 700 feet above the surface of the Earth within a 6.5-mile radius of...

  7. NAS Panel faults export controls

    NASA Astrophysics Data System (ADS)

    Katzoff, Judith A.

    A study prepared by a top-level panel says that current export controls on militarily sensitive U.S. technology may be “overcorrecting” previous weaknesses in that system, resulting in “a complex and confusing control system” that makes it more difficult for U.S. businesses to compete in international markets. Moreover, this control system has “an increasingly corrosive effect” on U.S. relations with allies. The panel recommended that the United States concentrate more effort on bringing about uniformity in the export control policies of countries belonging to the Coordinating Committee on Multilateral Export Controls (CoCom), i.e., most of the member nations in NATO (the North Atlantic Treaty Organization) and Japan.The 21-member panel was appointed by the Committee on Science, Engineering, and Public Policy (COSEPUP), a joint unit of the National Academy of Sciences (NAS), the National Academy of Engineering (NAE), and the Institute of Medicine (IOM). The panel, composed of administrators, researchers, and former government officials, was chaired by AGU member Lew Allen, Jr., director of the Jet Propulsion Laboratory (Pasadena, Calif.) and former chief of staff of the U.S. Air Force. Their report was supported by NAS funds, by a number of private organizations (including AGU), by the U.S. Departments of Commerce, Defense, Energy, and State, by the National Science Foundation, and by the National Aeronautics and Space Administration.

  8. NextGen Operations in a Simulated NY Area Airspace

    NASA Technical Reports Server (NTRS)

    Smith, Nancy M.; Parke, Bonny; Lee, Paul; Homola, Jeff; Brasil, Connie; Buckley, Nathan; Cabrall, Chris; Chevalley, Eric; Lin, Cindy; Morey, Susan; Omar, Faisal; Rein-Weston, Daphne; Yoo, Hyo-Sang

    2013-01-01

    A human-in-the-loop simulation conducted in the Airspace Operations Laboratory (AOL) at NASA Ames Research Center explored the feasibility of a Next Generation Air Transportation System (NextGen) solution to address airspace and airport capacity limitations in and around the New York metropolitan area. A week-long study explored the feasibility of a new Optimal Profile Descent (OPD) arrival into the airspace as well as a novel application of a Terminal Area Precision Scheduling and Spacing (TAPSS) enhancement to the Traffic Management Advisor (TMA) arrival scheduling tool to coordinate high volume arrival traffic to intersecting runways. In the simulation, four en route sector controllers and four terminal radar approach control (TRACON) controllers managed traffic inbound to Newark International Airport's primary runway, 22L, and its intersecting overflow runway, 11. TAPSS was used to generate independent arrival schedules for each runway and a traffic management coordinator participant adjusted the arrival schedule for each runway 11 aircraft to follow one of the 22L aircraft. TAPSS also provided controller-managed spacing tools (slot markers with speed advisories and timelines) to assist the TRACON controllers in managing the arrivals that were descending on OPDs. Results showed that the tools significantly decreased the occurrence of runway violations (potential go-arounds) when compared with a Baseline condition with no tools. Further, the combined use of the tools with the new OPD produced a peak arrival rate of over 65 aircraft per hour using instrument flight rules (IFR), exceeding the current maximum arrival rate at Newark Liberty International Airport (EWR) of 52 per hour under visual flight rules (VFR). Although the participants rated the workload as relatively low and acceptable both with and without the tools, they rated the tools as reducing their workload further. Safety and coordination were rated by most participants as acceptable in both

  9. 75 FR 76652 - Proposed Establishment of Area Navigation (RNAV) Routes; Western United States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-09

    ... National Airspace System (NAS). DATES: Comments must be received on or before January 24, 2011. ADDRESSES... navigable airspace for en route Instrument Flight Rules (IFR) operations within the NAS. Specifically,...

  10. The NAS Computational Aerosciences Archive

    NASA Technical Reports Server (NTRS)

    Miceli, Kristina D.; Globus, Al; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    In order to further the state-of-the-art in computational aerosciences (CAS) technology, researchers must be able to gather and understand existing work in the field. One aspect of this information gathering is studying published work available in scientific journals and conference proceedings. However, current scientific publications are very limited in the type and amount of information that they can disseminate. Information is typically restricted to text, a few images, and a bibliography list. Additional information that might be useful to the researcher, such as additional visual results, referenced papers, and datasets, are not available. New forms of electronic publication, such as the World Wide Web (WWW), limit publication size only by available disk space and data transmission bandwidth, both of which are improving rapidly. The Numerical Aerodynamic Simulation (NAS) Systems Division at NASA Ames Research Center is in the process of creating an archive of CAS information on the WWW. This archive will be based on the large amount of information produced by researchers associated with the NAS facility. The archive will contain technical summaries and reports of research performed on NAS supercomputers, visual results (images, animations, visualization system scripts), datasets, and any other supporting meta-information. This information will be available via the WWW through the NAS homepage, located at http://www.nas.nasa.gov/, fully indexed for searching. The main components of the archive are technical summaries and reports, visual results, and datasets. Technical summaries are gathered every year by researchers who have been allotted resources on NAS supercomputers. These summaries, together with supporting visual results and references, are browsable by interested researchers. Referenced papers made available by researchers can be accessed through hypertext links. Technical reports are in-depth accounts of tools and applications research projects

  11. ICAROUS - Integrated Configurable Algorithms for Reliable Operations Of Unmanned Systems

    NASA Technical Reports Server (NTRS)

    Consiglio, María; Muñoz, César; Hagen, George; Narkawicz, Anthony; Balachandran, Swee

    2016-01-01

    NASA's Unmanned Aerial System (UAS) Traffic Management (UTM) project aims at enabling near-term, safe operations of small UAS vehicles in uncontrolled airspace, i.e., Class G airspace. A far-term goal of UTM research and development is to accommodate the expected rise in small UAS traffic density throughout the National Airspace System (NAS) at low altitudes for beyond visual line-of-sight operations. This paper describes a new capability referred to as ICAROUS (Integrated Configurable Algorithms for Reliable Operations of Unmanned Systems), which is being developed under the UTM project. ICAROUS is a software architecture comprised of highly assured algorithms for building safety-centric, autonomous, unmanned aircraft applications. Central to the development of the ICAROUS algorithms is the use of well-established formal methods to guarantee higher levels of safety assurance by monitoring and bounding the behavior of autonomous systems. The core autonomy-enabling capabilities in ICAROUS include constraint conformance monitoring and contingency control functions. ICAROUS also provides a highly configurable user interface that enables the modular integration of mission-specific software components.

  12. Status and projections of the NAS program

    NASA Technical Reports Server (NTRS)

    Bailey, Frank R.

    1986-01-01

    NASA's Numerical Aerodynamic Simulation (NAS) Program has completed development of the initial operating configuration of the NAS Processing System Network (NPSN). This is the first milestone in the continuing and pathfinding effort to provide state-of-the-art supercomputing for aeronautics research and development. The NPSN, available to a nation-wide community of remote users, provides a uniform UNIX environment over a network of host computers ranging from the Cray-2 supercomputer to advanced scientific workstations. This system, coupled with a vendor-independent base of common user interface and network software, presents a new paradigm for supercomputing environments. Background leading to the NAS program, its programmatic goals and strategies, technical goals and objectives, and the development activities leading to the current NPSN configuration are presented. Program status, near-term plans, and plans for the next major milestone, the extended operating configuration, are also discussed.

  13. Commercial UAV operations in civil airspace

    NASA Astrophysics Data System (ADS)

    Newcome, Laurence R.

    2000-11-01

    The Federal Aviation Administration is often portrayed as the major impediment to unmanned aerial vehicle expansion into civil government and commercial markets. This paper describes one company's record for successfully negotiating the FAA regulations and obtaining authorizations for several types of UAVs to fly commercial reconnaissance missions in civil airspace. The process and criteria for obtaining such authorizations are described. The mishap records of the Pioneer, Predator and Hunter UAVs are examined in regard to their impact on FAA rule making. The paper concludes with a discussion of the true impediments to UAV penetration of commercial markets to date.

  14. NASA's UAS [Unmanned Aircraft Systems] Related Activities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey

    2012-01-01

    NASA continues to operate all sizes of UAS in all classes of airspace both domestically and internationally. Missions range from highly complex operations in coordination with piloted aircraft, ground, and space systems in support of science objectives to single aircraft operations in support of aeronautics research. One such example is a scaled commercial transport aircraft being used to study recovery techniques due to large upsets. NASA's efforts to support routine UAS operations continued on several fronts last year. At the national level in the United States (U.S.), NASA continued its support of the UAS Executive Committee (ExCom) comprised of the Federal Aviation Administration (FAA), Department of Defense (DoD), Department of Homeland Security (DHS), and NASA. The committee was formed in recognition of the need of UAS operated by these agencies to access to the National Airspace System (NAS) to support operational, training, development and research requirements. Recommendations were received on how to operate both manned and unmanned aircraft in class D airspace and plans are being developed to validate and implement those recommendations. In addition the UAS ExCom has begun developing recommendations for how to achieve routine operations in remote areas as well as for small UAS operations in class G airspace. As well as supporting the UAS ExCom, NASA is a participant in the recently formed Aviation Rule Making Committee for UAS. This committee, established by the FAA, is intended to propose regulatory guidance which would enable routine civil UAS operations. As that effort matures NASA stands ready to supply the necessary technical expertise to help that committee achieve its objectives. By supporting both the UAS ExCom and UAS ARC, NASA is positioned to provide its technical expertise across the full spectrum of UAS airspace access related topic areas. The UAS NAS Access Project got underway this past year under the leadership of NASA s Aeronautics

  15. Interaction of Airspace Partitions and Traffic Flow Management Delay

    NASA Technical Reports Server (NTRS)

    Palopo, Kee; Chatterji, Gano B.; Lee, Hak-Tae

    2010-01-01

    To ensure that air traffic demand does not exceed airport and airspace capacities, traffic management restrictions, such as delaying aircraft on the ground, assigning them different routes and metering them in the airspace, are implemented. To reduce the delays resulting from these restrictions, revising the partitioning of airspace has been proposed to distribute capacity to yield a more efficient airspace configuration. The capacity of an airspace partition, commonly referred to as a sector, is limited by the number of flights that an air traffic controller can safely manage within the sector. Where viable, re-partitioning of the airspace distributes the flights over more efficient sectors and reduces individual sector demand. This increases the overall airspace efficiency, but requires additional resources in some sectors in terms of controllers and equipment, which is undesirable. This study examines the tradeoff of the number of sectors designed for a specified amount of traffic in a clear-weather day and the delays needed for accommodating the traffic demand. Results show that most of the delays are caused by airport arrival and departure capacity constraints. Some delays caused by airspace capacity constraints can be eliminated by re-partitioning the airspace. Analyses show that about 360 high-altitude sectors, which are approximately today s operational number of sectors of 373, are adequate for delays to be driven solely by airport capacity constraints for the current daily air traffic demand. For a marginal increase of 15 seconds of average delay, the number of sectors can be reduced to 283. In addition, simulations of traffic growths of 15% and 20% with forecasted airport capacities in the years 2018 and 2025 show that delays will continue to be governed by airport capacities. In clear-weather days, for small increases in traffic demand, increasing sector capacities will have almost no effect on delays.

  16. Operational air traffic control requirements for the new Voice Switching and Control System

    NASA Technical Reports Server (NTRS)

    Leon, N.

    1984-01-01

    Final user requirements defined for the Voice Switching and Control System (VSCS) to be implemented for ATC functions as part of the Area Control Facility (ACF) concept for the National Airspace System (NAS) are described. The VSCS will be communications equipment at operational stations, supervisory positions, and support systems, the switching system itself, and interfaces between the VSCS and other systems. Supervisory users will include the Area Manager, Traffic Management Coordinator, a Military Operations Specialists, a Weather Coordinator, a NAS manager, Maintenance, and a flight Data Communications Specialist. The VSCS will supply computerized communications capability within and among ATC centers. Details of the efforts used to define the system requirements are recounted, noting the heavy reliance on recommendations from active ATC personnel.

  17. Remote access for NAS: Supercomputing in a university environment

    NASA Technical Reports Server (NTRS)

    Johnson, G.; Olson, B.; Swisshelm, J.; Pryor, D.; Ziebarth, J.

    1986-01-01

    The experiment was designed to assist the Numerical Aerodynamic Simulation (NAS) Project Office in the testing and evaluation of long haul communications for remote users. The objectives of this work were to: (1) use foreign workstations to remotely access the NAS system; (2) provide NAS with a link to a large university-based computing facility which can serve as a model for a regional node of the Long-Haul Communications Subsystem (LHCS); and (3) provide a tail circuit to the University of Colorado a Boulder thereby simulating the complete communications path from NAS through a regional node to an end-user.

  18. Analysis of Different Cost Functions in the Geosect Airspace Partitioning Tool

    NASA Technical Reports Server (NTRS)

    Wong, Gregory L.

    2010-01-01

    A new cost function representing air traffic controller workload is implemented in the Geosect airspace partitioning tool. Geosect currently uses a combination of aircraft count and dwell time to select optimal airspace partitions that balance controller workload. This is referred to as the aircraft count/dwell time hybrid cost function. The new cost function is based on Simplified Dynamic Density, a measure of different aspects of air traffic controller workload. Three sectorizations are compared. These are the current sectorization, Geosect's sectorization based on the aircraft count/dwell time hybrid cost function, and Geosect s sectorization based on the Simplified Dynamic Density cost function. Each sectorization is evaluated for maximum and average workload along with workload balance using the Simplified Dynamic Density as the workload measure. In addition, the Airspace Concept Evaluation System, a nationwide air traffic simulator, is used to determine the capacity and delay incurred by each sectorization. The sectorization resulting from the Simplified Dynamic Density cost function had a lower maximum workload measure than the other sectorizations, and the sectorization based on the combination of aircraft count and dwell time did a better job of balancing workload and balancing capacity. However, the current sectorization had the lowest average workload, highest sector capacity, and the least system delay.

  19. A Human Factors Approach to Bridging Systems and Introducing New Technologies

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.

    2011-01-01

    The application of human factors in aviation has grown to cover a wide range of disciplines and methods capable of assessing human-systems integration at many levels. For example, at the individual level, pilot workload may be studied while at the team level, coordinated workload distribution may be the focal point. At the organizational level, the way in which individuals and teams are supported by training and standards, policies and procedures may introduce additional, relevant topics. A consideration of human factors at each level contributes to our understanding of successes and failures in pilot performance, but this system focused on the flight deck alone -- is only one part of the airspace system. In the FAA's NextGen plan to overhaul the National Airspace System (NAS), new capabilities will enhance flightdeck systems (pilots), flight operations centers (dispatchers) and air traffic control systems (controllers and air traffic managers). At a minimum, the current roles and responsibilities of these three systems are likely to change. Since increased automation will be central to many of the enhancements, the role of automation is also likely to change. Using NextGen examples, a human factors approach for bridging complex airspace systems will be the main focus of this presentation. It is still crucial to consider the human factors within each system, but the successful implementation of new technologies in the NAS requires an understanding of the collaborations that occur when these systems intersect. This human factors approach to studying collaborative systems begins with detailed task descriptions within each system to establish a baseline of the current operations. The collaborative content and context are delineated through the review of regulatory and advisory materials, letters of agreement, policies, procedures and documented practices. Field observations and interviews also help to fill out the picture. Key collaborative functions across systems

  20. 32 CFR 989.28 - Airspace and range proposals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... initiated by the FAA affect military use, the roles are reversed. The proponent's action officers (civil engineering and local airspace management) must ensure that the FAA is fully integrated into the...

  1. 32 CFR 989.28 - Airspace and range proposals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... initiated by the FAA affect military use, the roles are reversed. The proponent's action officers (civil engineering and local airspace management) must ensure that the FAA is fully integrated into the...

  2. 32 CFR 989.28 - Airspace and range proposals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... initiated by the FAA affect military use, the roles are reversed. The proponent's action officers (civil engineering and local airspace management) must ensure that the FAA is fully integrated into the...

  3. 32 CFR 989.28 - Airspace and range proposals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... initiated by the FAA affect military use, the roles are reversed. The proponent's action officers (civil engineering and local airspace management) must ensure that the FAA is fully integrated into the...

  4. 32 CFR 989.28 - Airspace and range proposals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... initiated by the FAA affect military use, the roles are reversed. The proponent's action officers (civil engineering and local airspace management) must ensure that the FAA is fully integrated into the...

  5. 75 FR 79294 - Amendment of Class E Airspace; Henderson, KY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-20

    ... airspace at Henderson, KY. The Geneva Non-Directional Beacon (NDB) has been decommissioned and new Standard... due to the decommissioning of the Geneva NDB and cancellation of the NDB approach, and for...

  6. 76 FR 28308 - Modification of Class E Airspace; Poplar, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... airspace at Poplar Municipal Airport, Poplar, MT. The airport was moved 1.5 Nautical Miles (NM) to the... Airport, Poplar, MT. The airport was moved 1.5 nautical miles to the northeast, and controlled...

  7. 76 FR 30821 - Amendment of Class E Airspace; Duluth, MN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    .... SUPPLEMENTARY INFORMATION: History On March 23, 2011, the FAA published in the Federal Register a notice of... Airspace areas extending upward from 700 feet or more above the surface of the earth. * * * * * AGL MN...

  8. 78 FR 67298 - Establishment of Class E Airspace; Ennis, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... INFORMATION: History On September 4, 2013, the FAA published in the Federal Register a notice of proposed...: Paragraph 6005 Class E airspace areas extending upward from 700 feet or more above the surface of the...

  9. 75 FR 62458 - Revision of Class E Airspace; Tanana, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... INFORMATION: History On Tuesday, July 6, 2010, the FAA published a notice of proposed rulemaking in the...: * * * * * Paragraph 6005 Class E Airspace Extending Upward From 700 Feet or More Above the Surface of the...

  10. 78 FR 32085 - Amendment of Class E Airspace; Eureka, NV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    .... SUPPLEMENTARY INFORMATION: History On December 21, 2012, the FAA published in the Federal Register a notice of...: Paragraph 6005 Class E airspace areas extending upward from 700 feet or more above the surface of the...

  11. 78 FR 34553 - Amendment of Class E Airspace; Bend, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ...., Renton, WA, 98057; telephone (425) 203-4537. SUPPLEMENTARY INFORMATION: History On March 1, 2013, the FAA... Class E airspace areas extending upward from 700 feet or more above the surface of the...

  12. 78 FR 36411 - Amendment of Class E Airspace; Tuskegee, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-18

    ... Tuskegee, AL, as the Tuskegee VOR/DME has been decommissioned and airspace reconfiguration is necessary for... reconfiguration is necessary due to the decommissioning of the Tuskegee VOR/DME and cancellation of the...

  13. 78 FR 1742 - Amendment to Class B Airspace; Atlanta, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... to increase safety and aid pilots in gaining situational awareness within or around the Class B area... airspace. The FAA finds that the new 6,000-floor still provides sufficient space for safe operations...

  14. 78 FR 14651 - Amendment of Class E Airspace; Goldsboro, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-07

    ... (GPS) Standard Instrument Approach Procedures at Mount Olive Municipal Airport. Airspace... Olive Municipal Airport and the Seymour Johnson TACAN, and recognizes the airport name change of... support the new RNAV (GPS) standard instrument approach procedures for Mount Olive Municipal Airport....

  15. 14 CFR 73.3 - Special use airspace.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... designated altitude floors and ceilings expressed as flight levels or as feet above mean sea level. Unless... flight level). (c) The horizontal limits of special use airspace are measured by boundaries described...

  16. 14 CFR 73.3 - Special use airspace.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... designated altitude floors and ceilings expressed as flight levels or as feet above mean sea level. Unless... flight level). (c) The horizontal limits of special use airspace are measured by boundaries described...

  17. UAS Integration into the NAS Project

    NASA Technical Reports Server (NTRS)

    Bauer, Jeff

    2010-01-01

    The goal of the UAS Integration in the NAS Project is to contribute capabilities that reduce technical barriers related to the safety and operational challenges associated with enabling routine UAS access to the NAS This goal will be accomplished through a two-phased approach of system-level integration of key concepts, technologies and/or procedures, and demonstrations of integrated capabilities in an operationally relevant environment. Technical objectives include: PHASE 1: a) Validating the key technical areas identified by this project. System-level analyses, a State of the Art Analysis (SOAA), and a ConOps will identify the challenges and barriers preventing routine UAS access to the NAS. b) Developing a national roadmap and gap analysis identifying specific deliverables in the area of operations, procedures, and technologies that will impact future policy decisions. PHASE 2: a) Provide regulators with a methodology for developing airworthiness requirements for UAS and data to support development of certifications standards and regulatory guidance. b) Provide systems-level integrated testing of concepts and/or capabilities that address barriers to routine access to the NAS. Through simulation and flight testing, address issues including separation assurance, communications requirements, and Pilot Aircraft Interfaces (PAIs) in operationally relevant environments

  18. 77 FR 39653 - Proposed Establishment of Class E Airspace; Reidsville, GA, and Proposed Amendment of Class E...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... establish Class E Airspace at Reidsville, GA. Separation of existing Class E airspace surrounding Swinton... (formerly Reidsville Airport), Reidsville, GA, to accommodate the separation of existing Class E...

  19. 77 FR 19927 - Amendment of Class E Airspace; Willcox, AZ, and Revocation of Class E Airspace; Cochise, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... conforming amendments. FOR FURTHER INFORMATION CONTACT: Eldon Taylor, Federal Aviation Administration... northeast of the airport. That airspace extending upward from 1,200 feet above the surface bounded by a...

  20. 75 FR 47736 - Amendment of Class D and E Airspace, Establishment of Class E Airspace; Patuxent River, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-09

    ... control tower and establish Class E airspace designated as surface areas to accommodate the additional... operations of the airport control tower, establishing in advance the dates and times by a Notice to...