Sample records for airway ciliated cells

  1. Ciliated cells of pseudostratified airway epithelium do not become mucous cells after ovalbumin challenge.

    PubMed

    Pardo-Saganta, Ana; Law, Brandon M; Gonzalez-Celeiro, Meryem; Vinarsky, Vladimir; Rajagopal, Jayaraj

    2013-03-01

    Mucous cell metaplasia is a hallmark of airway diseases, such as asthma and chronic obstructive pulmonary disease. The majority of human airway epithelium is pseudostratified, but the cell of origin of mucous cells has not been definitively established in this type of airway epithelium. There is evidence that ciliated, club cell (Clara), and basal cells can all give rise to mucus-producing cells in different contexts. Because pseudostratified airway epithelium contains distinct progenitor cells from simple columnar airway epithelium, the lineage relationships of progenitor cells to mucous cells may be different in these two epithelial types. We therefore performed lineage tracing of the ciliated cells of the murine basal cell-containing airway epithelium in conjunction with the ovalbumin (OVA)-induced murine model of allergic lung disease. We genetically labeled ciliated cells with enhanced Yellow Fluorescent Protein (eYFP) before the allergen challenge, and followed the fate of these cells to determine whether they gave rise to newly formed mucous cells. Although ciliated cells increased in number after the OVA challenge, the newly formed mucous cells were not labeled with the eYFP lineage tag. Even small numbers of labeled mucous cells could not be detected, implying that ciliated cells make virtually no contribution to the new goblet cell pool. This demonstrates that, after OVA challenge, new mucous cells do not originate from ciliated cells in a pseudostratified basal cell-containing airway epithelium.

  2. ATP7B detoxifies silver in ciliated airway epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibricevic, Aida, E-mail: aidaibricevic@hotmail.co; Brody, Steven L., E-mail: sbrody@dom.wustl.ed; Youngs, Wiley J., E-mail: youngs@uakron.ed

    2010-03-15

    Silver is a centuries-old antibiotic agent currently used to treat infected burns. The sensitivity of a wide range of drug-resistant microorganisms to silver killing suggests that it may be useful for treating refractory lung infections. Toward this goal, we previously developed a methylated caffeine silver acetate compound, SCC1, that exhibits broad-spectrum antimicrobial activity against clinical strains of bacteria in vitro and when nebulized to lungs in mouse infection models. Preclinical testing of high concentrations of SCC1 in primary culture mouse tracheal epithelial cells (mTEC) showed selective ciliated cell death. Ciliated cell death was induced by both silver- and copper-containing compoundsmore » but not by the methylated caffeine portion of SCC1. We hypothesized that copper transporting P-type ATPases, ATP7A and ATP7B, play a role in silver detoxification in the airway. In mTEC, ATP7A was expressed in non-ciliated cells, whereas ATP7B was expressed only in ciliated cells. The exposure of mTEC to SCC1 induced the trafficking of ATP7B, but not ATP7A, suggesting the presence of a cell-specific silver uptake and detoxification mechanisms. Indeed, the expression of the copper uptake protein CTR1 was also restricted to ciliated cells. A role of ATP7B in silver detoxification was further substantiated when treatment of SCC1 significantly increased cell death in ATP7B shRNA-treated HepG2 cells. In addition, mTEC from ATP7B{sup -/-} mice showed enhanced loss of ciliated cells compared to wild type. These studies are the first to demonstrate a cell type-specific expression of the Ag{sup +}/Cu{sup +} transporters ATP7A, ATP7B, and CTR1 in airway epithelial cells and a role for ATP7B in detoxification of these metals in the lung.« less

  3. Myb permits multilineage airway epithelial cell differentiation

    PubMed Central

    Pan, Jie-hong; Adair-Kirk, Tracy L.; Patel, Anand C.; Huang, Tao; Yozamp, Nicholas S.; Xu, Jian; Reddy, E. Premkumar; Byers, Derek E.; Pierce, Richard A.; Holtzman, Michael J.; Brody, Steven L.

    2014-01-01

    The epithelium of the pulmonary airway is specially differentiated to provide defense against environmental insults, but also subject to dysregulated differentiation that results in lung disease. The current paradigm for airway epithelial differentiation is a one-step program whereby a p63+ basal epithelial progenitor cell generates a ciliated or secretory cell lineage, but the cue for this transition and whether there are intermediate steps is poorly defined. Here we identify transcription factor Myb as a key regulator that permits early multilineage differentiation of airway epithelial cells. Myb+ cells were identified as p63− and therefore distinct from basal progenitor cells, but were still negative for markers of differentiation. Myb RNAi treatment of primary-culture airway epithelial cells and Myb gene deletion in mice resulted in a p63− population with failed maturation of Foxj1+ ciliated cells, as well as Scbg1a1+ and Muc5ac+ secretory cells. Consistent with these findings, analysis of whole genome expression of Myb-deficient cells identified Myb-dependent programs for ciliated and secretory cell differentiation. Myb+ cells were rare in human airways but were increased in regions of ciliated cells and mucous cell hyperplasia in samples from subjects with chronic obstructive pulmonary disease. Together, the results show that a p63− Myb+ population of airway epithelial cells represents a distinct intermediate stage of differentiation that is required under normal conditions and may be heightened in airway disease. PMID:25103188

  4. The Human Airway Epithelial Basal Cell Transcriptome

    PubMed Central

    Wang, Rui; Zwick, Rachel K.; Ferris, Barbara; Witover, Bradley; Salit, Jacqueline; Crystal, Ronald G.

    2011-01-01

    Background The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. Methodology/Principal Findings Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the “human airway basal cell signature” as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. Conclusion/Significance The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem

  5. Epithelial Cell Culture from Human Adenoids: A Functional Study Model for Ciliated and Secretory Cells

    PubMed Central

    González, Claudia; Espinosa, Marisol; Sánchez, María Trinidad; Droguett, Karla; Ríos, Mariana; Fonseca, Ximena; Villalón, Manuel

    2013-01-01

    Background. Mucociliary transport (MCT) is a defense mechanism of the airway. To study the underlying mechanisms of MCT, we have both developed an experimental model of cultures, from human adenoid tissue of ciliated and secretory cells, and characterized the response to local chemical signals that control ciliary activity and the secretion of respiratory mucins in vitro. Materials and Methods. In ciliated cell cultures, ciliary beat frequency (CBF) and intracellular Ca2+ levels were measured in response to ATP, UTP, and adenosine. In secretory cultures, mucin synthesis and secretion were identified by using immunodetection. Mucin content was taken from conditioned medium and analyzed in the presence or absence of UTP. Results. Enriched ciliated cell monolayers and secretory cells were obtained. Ciliated cells showed a basal CBF of 10.7 Hz that increased significantly after exposure to ATP, UTP, or adenosine. Mature secretory cells showed active secretion of granules containing different glycoproteins, including MUC5AC. Conclusion. Culture of ciliated and secretory cells grown from adenoid epithelium is a reproducible and feasible experimental model, in which it is possible to observe ciliary and secretory activities, with a potential use as a model to understand mucociliary transport control mechanisms. PMID:23484122

  6. JAG1-Mediated Notch Signaling Regulates Secretory Cell Differentiation of the Human Airway Epithelium.

    PubMed

    Gomi, Kazunori; Staudt, Michelle R; Salit, Jacqueline; Kaner, Robert J; Heldrich, Jonna; Rogalski, Allison M; Arbelaez, Vanessa; Crystal, Ronald G; Walters, Matthew S

    2016-08-01

    Basal cells (BC) are the stem/progenitor cells of the human airway epithelium capable of differentiating into secretory and ciliated cells. Notch signaling activation increases BC differentiation into secretory cells, but the role of individual Notch ligands in regulating this process in the human airway epithelium is largely unknown. The objective of this study was to define the role of the Notch ligand JAG1 in regulating human BC differentiation. JAG1 over-expression in BC increased secretory cell differentiation, with no effect on ciliated cell differentiation. Conversely, knockdown of JAG1 decreased expression of secretory cell genes. These data demonstrate JAG1-mediated Notch signaling regulates differentiation of BC into secretory cells.

  7. Transcriptional PROFILING OF MUCOCILIARY DIFFERENTIATION IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    When cultured at an air-liquid interface (ALI) in the appropriate medium, primary human airway epithelial cells form a polarized, pseudostratified epithelium composed of ciliated and mucus-secreting cells. This culture system provides a useful tool for the in vitro study of...

  8. Rhinovirus Delays Cell Repolarization in a Model of Injured/Regenerating Human Airway Epithelium

    PubMed Central

    Faris, Andrea N.; Ganesan, Shyamala; Chattoraj, Asamanja; Chattoraj, Sangbrita S.; Comstock, Adam T.; Unger, Benjamin L.; Hershenson, Marc B.

    2016-01-01

    Rhinovirus (RV), which causes exacerbation in patients with chronic airway diseases, readily infects injured airway epithelium and has been reported to delay wound closure. In this study, we examined the effects of RV on cell repolarization and differentiation in a model of injured/regenerating airway epithelium (polarized, undifferentiated cells). RV causes only a transient barrier disruption in a model of normal (mucociliary-differentiated) airway epithelium. However, in the injury/regeneration model, RV prolongs barrier dysfunction and alters the differentiation of cells. The prolonged barrier dysfunction caused by RV was not a result of excessive cell death but was instead associated with epithelial-to-mesenchymal transition (EMT)-like features, such as reduced expression of the apicolateral junction and polarity complex proteins, E-cadherin, occludin, ZO-1, claudins 1 and 4, and Crumbs3 and increased expression of vimentin, a mesenchymal cell marker. The expression of Snail, a transcriptional repressor of tight and adherence junctions, was also up-regulated in RV-infected injured/regenerating airway epithelium, and inhibition of Snail reversed RV-induced EMT-like features. In addition, compared with sham-infected cells, the RV-infected injured/regenerating airway epithelium showed more goblet cells and fewer ciliated cells. Inhibition of epithelial growth factor receptor promoted repolarization of cells by inhibiting Snail and enhancing expression of E-cadherin, occludin, and Crumbs3 proteins, reduced the number of goblet cells, and increased the number of ciliated cells. Together, these results suggest that RV not only disrupts barrier function, but also interferes with normal renewal of injured/regenerating airway epithelium by inducing EMT-like features and subsequent goblet cell hyperplasia. PMID:27119973

  9. Fank1 and Jazf1 promote multiciliated cell differentiation in the mouse airway epithelium

    PubMed Central

    Johnson, Jo-Anne; Watson, Julie K.

    2018-01-01

    ABSTRACT The airways are lined by secretory and multiciliated cells which function together to remove particles and debris from the respiratory tract. The transcriptome of multiciliated cells has been extensively studied, but the function of many of the genes identified is unknown. We have established an assay to test the ability of over-expressed transcripts to promote multiciliated cell differentiation in mouse embryonic tracheal explants. Overexpression data indicated that Fibronectin type 3 and ankyrin repeat domains 1 (Fank1) and JAZF zinc finger 1 (Jazf1) promoted multiciliated cell differentiation alone, and cooperatively with the canonical multiciliated cell transcription factor Foxj1. Moreover, knock-down of Fank1 or Jazf1 in adult mouse airway epithelial cultures demonstrated that these factors are both required for ciliated cell differentiation in vitro. This analysis identifies Fank1 and Jazf1 as novel regulators of multiciliated cell differentiation. Moreover, we show that they are likely to function downstream of IL6 signalling and upstream of Foxj1 activity in the process of ciliated cell differentiation. In addition, our in vitro explant assay provides a convenient method for preliminary investigation of over-expression phenotypes in the developing mouse airways. This article has an associated First Person interview with the first author of the paper. PMID:29661797

  10. Airway Basal Cells. The “Smoking Gun” of Chronic Obstructive Pulmonary Disease

    PubMed Central

    2014-01-01

    The earliest abnormality in the lung associated with smoking is hyperplasia of airway basal cells, the stem/progenitor cells of the ciliated and secretory cells that are central to pulmonary host defense. Using cell biology and ’omics technologies to assess basal cells isolated from bronchoscopic brushings of nonsmokers, smokers, and smokers with chronic obstructive pulmonary disease (COPD), compelling evidence has been provided in support of the concept that airway basal cells are central to the pathogenesis of smoking-associated lung diseases. When confronted by the chronic stress of smoking, airway basal cells become disorderly, regress to a more primitive state, behave as dictated by their inheritance, are susceptible to acquired changes in their genome, lose the capacity to regenerate the epithelium, are responsible for the major changes in the airway that characterize COPD, and, with persistent stress, can undergo malignant transformation. Together, these observations led to the conclusion that accelerated loss of lung function in susceptible individuals begins with disordered airway basal cell biology (i.e., that airway basal cells are the “smoking gun” of COPD, a potential target for the development of therapies to prevent smoking-related lung disorders). PMID:25354273

  11. Observing planar cell polarity in multiciliated mouse airway epithelial cells.

    PubMed

    Vladar, Eszter K; Lee, Yin Loon; Stearns, Tim; Axelrod, Jeffrey D

    2015-01-01

    The concerted movement of cilia propels inhaled contaminants out of the lungs, safeguarding the respiratory system from toxins, pathogens, pollutants, and allergens. Motile cilia on the multiciliated cells (MCCs) of the airway epithelium are physically oriented along the tissue axis for directional motility, which depends on the planar cell polarity (PCP) signaling pathway. The MCCs of the mouse respiratory epithelium have emerged as an important model for the study of motile ciliogenesis and the PCP signaling mechanism. Unlike other motile ciliated or planar polarized tissues, airway epithelial cells are relatively easily accessible and primary cultures faithfully model many of the essential features of the in vivo tissue. There is growing interest in understanding how cells acquire and polarize motile cilia due to the impact of mucociliary clearance on respiratory health. Here, we present methods for observing and quantifying the planar polarized orientation of motile cilia both in vivo and in primary culture airway epithelial cells. We describe how to acquire and evaluate electron and light microscopy images of ciliary ultrastructural features that reveal planar polarized orientation. Furthermore, we describe the immunofluorescence localization of PCP pathway components as a simple readout for airway epithelial planar polarization and ciliary orientation. These methods can be adapted to observe ciliary orientation in other multi- and monociliated cells and to detect PCP pathway activity in any tissue or cell type. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Generation of a human airway epithelium derived basal cell line with multipotent differentiation capacity

    PubMed Central

    2013-01-01

    Background As the multipotent progenitor population of the airway epithelium, human airway basal cells (BC) replenish the specialized differentiated cell populations of the mucociliated airway epithelium during physiological turnover and repair. Cultured primary BC divide a limited number of times before entering a state of replicative senescence, preventing the establishment of long-term replicating cultures of airway BC that maintain their original phenotype. Methods To generate an immortalized human airway BC cell line, primary human airway BC obtained by brushing the airway epithelium of healthy nonsmokers were infected with a retrovirus expressing human telomerase (hTERT). The resulting immortalized cell line was then characterized under non-differentiating and differentiating air-liquid interface (ALI) culture conditions using ELISA, TaqMan quantitative PCR, Western analysis, and immunofluorescent and immunohistochemical staining analysis for cell type specific markers. In addition, the ability of the cell line to respond to environmental stimuli under differentiating ALI culture was assessed. Results We successfully generated an immortalized human airway BC cell line termed BCi-NS1 via expression of hTERT. A single cell derived clone from the parental BCi-NS1 cells, BCi-NS1.1, retains characteristics of the original primary cells for over 40 passages and demonstrates a multipotent differentiation capacity into secretory (MUC5AC, MUC5B), goblet (TFF3), Clara (CC10) and ciliated (DNAI1, FOXJ1) cells on ALI culture. The cells can respond to external stimuli such as IL-13, resulting in alteration of the normal differentiation process. Conclusion Development of immortalized human airway BC that retain multipotent differentiation capacity over long-term culture should be useful in understanding the biology of BC, the response of BC to environmental stress, and as a target for assessment of pharmacologic agents. PMID:24298994

  13. Temporal dynamics of ovine airway epithelial cell differentiation at an air-liquid interface

    PubMed Central

    Sutherland, Erin; Berry, Catherine C.; Davies, Robert L.

    2017-01-01

    The respiratory tract and lungs are subject to diverse pathologies with wide-ranging implications for both human and animal welfare. The development and detailed characterization of cell culture models for studying such forms of disease is of critical importance. In recent years the use of air-liquid interface (ALI)-cultured airway epithelial cells has increased markedly, as this method of culture results in the formation of a highly representative, organotypic in vitro model system. In this study we have expanded on previous knowledge of differentiated ovine tracheal epithelial cells by analysing the progression of differentiation over an extensive time course at an ALI. We observed a pseudo-stratified epithelium with ciliation and a concurrent increase in cell layer thickness from 9 days post-ALI with ciliation approaching a maximum level at day 24. A similar pattern was observed with respect to mucus production with intensely stained PAS-positive cells appearing at day 12. Ultrastructural analysis by SEM confirmed the presence of both ciliated cells and mucus globules on the epithelial surface within this time-frame. Trans-epithelial electrical resistance (TEER) peaked at 1049 Ω × cm2 as the cell layer became confluent, followed by a subsequent reduction as differentiation proceeded and stabilization at ~200 Ω × cm2. Importantly, little deterioration or de-differentiation was observed over the 45 day time-course indicating that the model is suitable for long-term experiments. PMID:28746416

  14. Impact of acute exposure to WTC dust on ciliated and goblet cells in lungs of rats

    PubMed Central

    Cohen, Mitchell D.; Vaughan, Joshua M.; Garrett, Brittany; Prophete, Colette; Horton, Lori; Sisco, Maureen; Ghio, Andrew; Zelikoff, Judith; Lung-chi, Chen

    2015-01-01

    Clinical studies and the World Trade Center (WTC) Health Registry have revealed increases in the incidence of chronic (non-cancer) lung disorders among first responders (FR) who were at Ground Zero during the initial 72 h after the collapse. Our previous analyses of rats exposed to building-derived WTC dusts using exposure scenarios/levels that mimicked FR mouth-breathing showed that a single WTC dust exposure led to changes in expression of genes whose products could be involved in the lung ailments, but few other significant pathologies. We concluded that rather than acting as direct inducers of many of the FR health effects, it was more likely inhaled WTC dusts instead may have impacted on toxicities induced by other rescue-related co-pollutants present in Ground Zero air. To allow for such effects to occur, we hypothesized that the alkaline WTC dusts induced damage to the normal ability of the lungs to clear inhaled particles. To validate this, rats were exposed on two consecutive days (2 h/d, by intratracheal inhalation) to WTC dust (collected 12–13 September 2001) and examined over a 1-yr period thereafter for changes in the presence of ciliated cells in the airways and hyperplastic goblet cells in the lungs. WTC dust levels in the lungs were assessed in parallel to verify that any changes in levels of these cells corresponded with decreases in host ability to clear the particles themselves. Image analyses of the rat lungs revealed a significant decrease in ciliated cells and increase in hyperplastic goblet cells due to the single series of WTC dust exposures. The study also showed there was only a nominal non-significant decrease (6–11%) in WTC dust burden over a 1-yr period after the final exposure. These results provide support for our current hypothesis that exposure to WTC dusts caused changes in airway morphology/cell composition; such changes could, in turn, have led to potential alterations in the clearance/toxicities of other pollutants inhaled

  15. Impact of acute exposure to WTC dust on ciliated and goblet cells in lungs of rats.

    PubMed

    Cohen, Mitchell D; Vaughan, Joshua M; Garrett, Brittany; Prophete, Colette; Horton, Lori; Sisco, Maureen; Ghio, Andrew; Zelikoff, Judith; Lung-chi, Chen

    2015-01-01

    Clinical studies and the World Trade Center (WTC) Health Registry have revealed increases in the incidence of chronic (non-cancer) lung disorders among first responders (FR) who were at Ground Zero during the initial 72 h after the collapse. Our previous analyses of rats exposed to building-derived WTC dusts using exposure scenarios/levels that mimicked FR mouth-breathing showed that a single WTC dust exposure led to changes in expression of genes whose products could be involved in the lung ailments, but few other significant pathologies. We concluded that rather than acting as direct inducers of many of the FR health effects, it was more likely inhaled WTC dusts instead may have impacted on toxicities induced by other rescue-related co-pollutants present in Ground Zero air. To allow for such effects to occur, we hypothesized that the alkaline WTC dusts induced damage to the normal ability of the lungs to clear inhaled particles. To validate this, rats were exposed on two consecutive days (2 h/d, by intratracheal inhalation) to WTC dust (collected 12-13 September 2001) and examined over a 1-yr period thereafter for changes in the presence of ciliated cells in the airways and hyperplastic goblet cells in the lungs. WTC dust levels in the lungs were assessed in parallel to verify that any changes in levels of these cells corresponded with decreases in host ability to clear the particles themselves. Image analyses of the rat lungs revealed a significant decrease in ciliated cells and increase in hyperplastic goblet cells due to the single series of WTC dust exposures. The study also showed there was only a nominal non-significant decrease (6-11%) in WTC dust burden over a 1-yr period after the final exposure. These results provide support for our current hypothesis that exposure to WTC dusts caused changes in airway morphology/cell composition; such changes could, in turn, have led to potential alterations in the clearance/toxicities of other pollutants inhaled

  16. Barrier role of actin filaments in regulated mucin secretion from airway goblet cells.

    PubMed

    Ehre, Camille; Rossi, Andrea H; Abdullah, Lubna H; De Pestel, Kathleen; Hill, Sandra; Olsen, John C; Davis, C William

    2005-01-01

    Airway goblet cells secrete mucin onto mucosal surfaces under the regulation of an apical, phospholipase C/G(q)-coupled P2Y(2) receptor. We tested whether cortical actin filaments negatively regulate exocytosis in goblet cells by forming a barrier between secretory granules and plasma membrane docking sites as postulated for other secretory cells. Immunostaining of human lung tissues and SPOC1 cells (an epithelial, mucin-secreting cell line) revealed an apical distribution of beta- and gamma-actin in ciliated and goblet cells. In goblet cells, actin appeared as a prominent subplasmalemmal sheet lying between granules and the apical membrane, and it disappeared from SPOC1 cells activated by purinergic agonist. Disruption of actin filaments with latrunculin A stimulated SPOC1 cell mucin secretion under basal and agonist-activated conditions, whereas stabilization with jasplakinolide or overexpression of beta- or gamma-actin conjugated to yellow fluorescent protein (YFP) inhibited secretion. Myristoylated alanine-rich C kinase substrate, a PKC-activated actin-plasma membrane tethering protein, was phosphorylated after agonist stimulation, suggesting a translocation to the cytosol. Scinderin (or adseverin), a Ca(2+)-activated actin filament severing and capping protein was cloned from human airway and SPOC1 cells, and synthetic peptides corresponding to its actin-binding domains inhibited mucin secretion. We conclude that actin filaments negatively regulate mucin secretion basally in airway goblet cells and are dynamically remodeled in agonist-stimulated cells to promote exocytosis.

  17. Differentiated human airway organoids to assess infectivity of emerging influenza virus.

    PubMed

    Zhou, Jie; Li, Cun; Sachs, Norman; Chiu, Man Chun; Wong, Bosco Ho-Yin; Chu, Hin; Poon, Vincent Kwok-Man; Wang, Dong; Zhao, Xiaoyu; Wen, Lei; Song, Wenjun; Yuan, Shuofeng; Wong, Kenneth Kak-Yuen; Chan, Jasper Fuk-Woo; To, Kelvin Kai-Wang; Chen, Honglin; Clevers, Hans; Yuen, Kwok-Yung

    2018-06-26

    Novel reassortant avian influenza H7N9 virus and pandemic 2009 H1N1 (H1N1pdm) virus cause human infections, while avian H7N2 and swine H1N1 virus mainly infect birds and pigs, respectively. There is no robust in vitro model for assessing the infectivity of emerging viruses in humans. Based on a recently established method, we generated long-term expanding 3D human airway organoids which accommodate four types of airway epithelial cells: ciliated, goblet, club, and basal cells. We report differentiation conditions which increase ciliated cell numbers to a nearly physiological level with synchronously beating cilia readily discernible in every organoid. In addition, the differentiation conditions induce elevated levels of serine proteases, which are essential for productive infection of human influenza viruses and low-pathogenic avian influenza viruses. We also established improved 2D monolayer culture conditions for the differentiated airway organoids. To demonstrate the ability of differentiated airway organoids to identify human-infective virus, 3D and 2D differentiated airway organoids are applied to evaluate two pairs of viruses with known distinct infectivity in humans, H7N9/Ah versus H7N2 and H1N1pdm versus an H1N1 strain isolated from swine (H1N1sw). The human-infective H7N9/Ah virus replicated more robustly than the poorly human-infective H7N2 virus; the highly human-infective H1N1pdm virus replicated to a higher titer than the counterpart H1N1sw. Collectively, we developed differentiated human airway organoids which can morphologically and functionally simulate human airway epithelium. These differentiated airway organoids can be applied for rapid assessment of the infectivity of emerging respiratory viruses to human. Copyright © 2018 the Author(s). Published by PNAS.

  18. Cell volumes, maximal growth rates of unicellular algae and ciliates, and the role of ciliates in the marine pelagial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banse, K.

    1982-01-01

    A review of growth rates of diatoms and dinoflagellates in light-saturated, nutrient-replete cultures at 20/sup 0/C confirms weak dependence on cell volume or mass. These maximal (intrinsic) rates are not linearly related to surface area or surface-to-volume ratio of the cells. The growth of most diatoms is materially faster than that of dinoflagellates; other algae fall in between or below the dinoflagellates. Small ciliates have appreciably higher intrinsic growth rates than algae of the same cell volume. The average food consumption per ciliate in the marine pelagic realm is inferred to be very low, so that the realized specific growthmore » rates are much smaller than the intrinsic potentials. Also, a previously postulated refuge from predation, afforded by small size, is extended down to about 10-..mu..m/sup 3/ cell volume.« less

  19. Photomovements in Ciliated Protozoa

    NASA Astrophysics Data System (ADS)

    Kuhlmann, Hans-Werner

    Ciliates are unicellular, nonphotosynthetic organisms which show a number of light-induced responses. Orientation with respect to the direction of light, phototaxis, has been demonstrated in some species of ciliates. Most of these species bear conspicuous cell organelles such as subpellicular pigment granules, a colored stigma, a watchglass organelle, or a compound crystalline organelle. Several lines of evidence suggest that these kinds of organelles are prerequisites for phototactic orientation of the cells. Photoreceptor molecules presumedly mediating the photobehavior of two species have been identified. The ecological advantage of light-induced responses in ciliated protozoa is still debated. In some cases the organisms may utilize this behavior either to approach their potential prey, to escape their predators, to escape damaging light, or to meet a mating partner. Several species of ciliates display inverse phototactic behavior at different stages of their life cycle.

  20. Effects of resource supplements on mature ciliate biofilms: an empirical test using a new type of flow cell.

    PubMed

    Norf, Helge; Arndt, Hartmut; Weitere, Markus

    2009-11-01

    Biofilm-dwelling consumer communities play an important role in the matter flux of many aquatic ecosystems. Due to their poor accessibility, little is as yet known about the regulation of natural biofilms. Here, a new type of flow cell is presented which facilitates both experimental manipulation and live observation of natural, pre-grown biofilms. These flow cells were used to study the dynamics of mature ciliate biofilms in response to supplementation of planktonic bacteria. The results suggest that enhanced ciliate productivity could be quickly transferred to micrometazoans (ciliate grazers), making the effects on the standing stock of the ciliates detectable only for a short time. Likewise, no effect on ciliates appeared when micrometazoan consumers were ab initio abundant. This indicates the importance of 'top-down' control of natural ciliate biofilms. The flow cells used here offer great potential for experimentally testing such control mechanisms within naturally cultivated biofilms.

  1. From single cilia to collective waves in human airway ciliated tissues

    NASA Astrophysics Data System (ADS)

    Cicuta, Pietro; Chioccioli, Maurizio; Feriani, Luigi; Pellicciotta, Nicola; Kotar, Jurij

    I will present experimental results on activity of motile cilia on various scales: from waveforms on individual cilia to the synchronised motion in cilia carpets of airway cells. Model synthetic experiments have given us an understanding of how cilia could couple with each other through forces transmitted by the fluid, and thus coordinate to beat into well organized waves (previous work is reviewed in Annu. Rev. Condens. Matter Phys. 7, 1-26 (2016)). Working with live imaging of airway human cells at the different scales, we can now test whether the biological system satisfies the ``simple'' behavior expected of the fluid flow coupling, or if other factors of mechanical forces transmission need to be accounted for. In general being able to link from the scale of molecular biological activity up to the phenomenology of collective dynamics requires to understand the relevant physical mechanism. This understanding then allows informed diagnostics (and perhaps therapeutic) approaches to a variety of diseases where mucociliary clearance in the airways is compromised. We have started exploring particularly cystic fibrosis, where the rheological properties of the mucus are affected and prevent efficient cilia synchronization. ERC Grant HydroSync.

  2. Assessing phagotrophy in the mixotrophic ciliate Paramecium bursaria using GFP-expressing yeast cells.

    PubMed

    Miura, Takashi; Moriya, Hisao; Iwai, Sosuke

    2017-07-03

    We used cells of the yeast Saccharomyces cerevisiae expressing green fluorescent protein (GFP) as fluorescently labelled prey to assess the phagocytic activities of the mixotrophic ciliate Paramecium bursaria, which harbours symbiotic Chlorella-like algae. Because of different fluorescence spectra of GFP and algal chlorophyll, ingested GFP-expressing yeast cells can be distinguished from endosymbiotic algal cells and directly counted in individual P. bursaria cells using fluorescence microscopy. By using GFP-expressing yeast cells, we found that P. bursaria altered ingestion activities under different physiological conditions, such as different growth phases or the presence/absence of endosymbionts. Use of GFP-expressing yeast cells allowed us to estimate the digestion rates of live prey of the ciliate. In contrast to the ingestion activities, the digestion rate within food vacuoles was not affected by the presence of endosymbionts, consistent with previous findings that food and perialgal vacuoles are spatially and functionally separated in P. bursaria. Thus, GFP-expressing yeast may provide a valuable tool to assess both ingestion and digestion activities of ciliates that feed on eukaryotic organisms. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Transcriptional program of ciliated epithelial cells reveals new cilium and centrosome components and links to human disease.

    PubMed

    Hoh, Ramona A; Stowe, Timothy R; Turk, Erin; Stearns, Tim

    2012-01-01

    Defects in the centrosome and cilium are associated with a set of human diseases having diverse phenotypes. To further characterize the components that define the function of these organelles we determined the transcriptional profile of multiciliated tracheal epithelial cells. Cultures of mouse tracheal epithelial cells undergoing differentiation in vitro were derived from mice expressing GFP from the ciliated-cell specific FOXJ1 promoter (FOXJ1:GFP). The transcriptional profile of ciliating GFP+ cells from these cultures was defined at an early and a late time point during differentiation and was refined by subtraction of the profile of the non-ciliated GFP- cells. We identified 649 genes upregulated early, when most cells were forming basal bodies, and 73 genes genes upregulated late, when most cells were fully ciliated. Most, but not all, of known centrosome proteins are transcriptionally upregulated early, particularly Plk4, a master regulator of centriole formation. We found that three genes associated with human disease states, Mdm1, Mlf1, and Dyx1c1, are upregulated during ciliogenesis and localize to centrioles and cilia. This transcriptome for mammalian multiciliated epithelial cells identifies new candidate centrosome and cilia proteins, highlights similarities between components of motile and primary cilia, and identifies new links between cilia proteins and human disease.

  4. Transcriptional Program of Ciliated Epithelial Cells Reveals New Cilium and Centrosome Components and Links to Human Disease

    PubMed Central

    Hoh, Ramona A.; Stowe, Timothy R.; Turk, Erin; Stearns, Tim

    2012-01-01

    Defects in the centrosome and cilium are associated with a set of human diseases having diverse phenotypes. To further characterize the components that define the function of these organelles we determined the transcriptional profile of multiciliated tracheal epithelial cells. Cultures of mouse tracheal epithelial cells undergoing differentiation in vitro were derived from mice expressing GFP from the ciliated-cell specific FOXJ1 promoter (FOXJ1:GFP). The transcriptional profile of ciliating GFP+ cells from these cultures was defined at an early and a late time point during differentiation and was refined by subtraction of the profile of the non-ciliated GFP- cells. We identified 649 genes upregulated early, when most cells were forming basal bodies, and 73 genes genes upregulated late, when most cells were fully ciliated. Most, but not all, of known centrosome proteins are transcriptionally upregulated early, particularly Plk4, a master regulator of centriole formation. We found that three genes associated with human disease states, Mdm1, Mlf1, and Dyx1c1, are upregulated during ciliogenesis and localize to centrioles and cilia. This transcriptome for mammalian multiciliated epithelial cells identifies new candidate centrosome and cilia proteins, highlights similarities between components of motile and primary cilia, and identifies new links between cilia proteins and human disease. PMID:23300604

  5. Differential susceptibility of inbred mouse strains to chlorine-induced airway fibrosis

    PubMed Central

    Mo, Yiqun; Chen, Jing; Schlueter, Connie F.

    2013-01-01

    Chlorine is a reactive gas that is considered a chemical threat agent. Humans who develop acute lung injury from chlorine inhalation typically recover normal lung function; however, a subset can experience chronic airway disease. To examine pathological changes following chlorine-induced lung injury, mice were exposed to a single high dose of chlorine, and repair of the lung was analyzed at multiple times after exposure. In FVB/NJ mice, chlorine inhalation caused pronounced fibrosis of larger airways that developed by day 7 after exposure and was associated with airway hyperreactivity. In contrast, A/J mice had little or no airway fibrosis and had normal lung function at day 7. Unexposed FVB/NJ mice had less keratin 5 staining (basal cell marker) than A/J mice in large intrapulmonary airways where epithelial repair was poor and fibrosis developed after chlorine exposure. FVB/NJ mice had large areas devoid of epithelium on day 1 after exposure leading to fibroproliferative lesions on days 4 and 7. A/J mice had airways covered by squamous keratin 5-stained cells on day 1 that transitioned to a highly proliferative reparative epithelium by day 4 followed by the reappearance of ciliated and Clara cells by day 7. The data suggest that lack of basal cells in the large intrapulmonary airways and failure to effect epithelial repair at these sites are factors contributing to the development of airway fibrosis in FVB/NJ mice. The observed differences in susceptibility to chlorine-induced airway disease provide a model in which mechanisms and treatment of airway fibrosis can be investigated. PMID:23171502

  6. Differential susceptibility of inbred mouse strains to chlorine-induced airway fibrosis.

    PubMed

    Mo, Yiqun; Chen, Jing; Schlueter, Connie F; Hoyle, Gary W

    2013-01-15

    Chlorine is a reactive gas that is considered a chemical threat agent. Humans who develop acute lung injury from chlorine inhalation typically recover normal lung function; however, a subset can experience chronic airway disease. To examine pathological changes following chlorine-induced lung injury, mice were exposed to a single high dose of chlorine, and repair of the lung was analyzed at multiple times after exposure. In FVB/NJ mice, chlorine inhalation caused pronounced fibrosis of larger airways that developed by day 7 after exposure and was associated with airway hyperreactivity. In contrast, A/J mice had little or no airway fibrosis and had normal lung function at day 7. Unexposed FVB/NJ mice had less keratin 5 staining (basal cell marker) than A/J mice in large intrapulmonary airways where epithelial repair was poor and fibrosis developed after chlorine exposure. FVB/NJ mice had large areas devoid of epithelium on day 1 after exposure leading to fibroproliferative lesions on days 4 and 7. A/J mice had airways covered by squamous keratin 5-stained cells on day 1 that transitioned to a highly proliferative reparative epithelium by day 4 followed by the reappearance of ciliated and Clara cells by day 7. The data suggest that lack of basal cells in the large intrapulmonary airways and failure to effect epithelial repair at these sites are factors contributing to the development of airway fibrosis in FVB/NJ mice. The observed differences in susceptibility to chlorine-induced airway disease provide a model in which mechanisms and treatment of airway fibrosis can be investigated.

  7. Antibody production using a ciliate generates unusual antibody glycoforms displaying enhanced cell-killing activity

    PubMed Central

    Calow, Jenny; Bockau, Ulrike; Struwe, Weston B.; Nowaczyk, Marc M.; Loser, Karin; Crispin, Max

    2016-01-01

    ABSTRACT Antibody glycosylation is a key parameter in the optimization of antibody therapeutics. Here, we describe the production of the anti-cancer monoclonal antibody rituximab in the unicellular ciliate, Tetrahymena thermophila. The resulting antibody demonstrated enhanced antibody-dependent cell-mediated cytotoxicity, which we attribute to unusual N-linked glycosylation. Detailed chromatographic and mass spectrometric analysis revealed afucosylated, oligomannose-type glycans, which, as a whole, displayed isomeric structures that deviate from the typical human counterparts, but whose branches were equivalent to fragments of metabolic intermediates observed in human glycoproteins. From the analysis of deposited crystal structures, we predict that the ciliate glycans adopt protein-carbohydrate interactions with the Fc domain that closely mimic those of native complex-type glycans. In addition, terminal glucose structures were identified that match biosynthetic precursors of human glycosylation. Our results suggest that ciliate-based expression systems offer a route to large-scale production of monoclonal antibodies exhibiting glycosylation that imparts enhanced cell killing activity. PMID:27594301

  8. What we can learn from a tadpole about ciliopathies and airway diseases: Using systems biology in Xenopus to study cilia and mucociliary epithelia.

    PubMed

    Walentek, Peter; Quigley, Ian K

    2017-01-01

    Over the past years, the Xenopus embryo has emerged as an incredibly useful model organism for studying the formation and function of cilia and ciliated epithelia in vivo. This has led to a variety of findings elucidating the molecular mechanisms of ciliated cell specification, basal body biogenesis, cilia assembly, and ciliary motility. These findings also revealed the deep functional conservation of signaling, transcriptional, post-transcriptional, and protein networks employed in the formation and function of vertebrate ciliated cells. Therefore, Xenopus research can contribute crucial insights not only into developmental and cell biology, but also into the molecular mechanisms underlying cilia related diseases (ciliopathies) as well as diseases affecting the ciliated epithelium of the respiratory tract in humans (e.g., chronic lung diseases). Additionally, systems biology approaches including transcriptomics, genomics, and proteomics have been rapidly adapted for use in Xenopus, and broaden the applications for current and future translational biomedical research. This review aims to present the advantages of using Xenopus for cilia research, highlight some of the evolutionarily conserved key concepts and mechanisms of ciliated cell biology that were elucidated using the Xenopus model, and describe the potential for Xenopus research to address unresolved questions regarding the molecular mechanisms of ciliopathies and airway diseases. © 2017 Wiley Periodicals, Inc.

  9. Repair of tracheal epithelium by basal cells after chlorine-induced injury

    PubMed Central

    2012-01-01

    Background Chlorine is a widely used toxic compound that is considered a chemical threat agent. Chlorine inhalation injures airway epithelial cells, leading to pulmonary abnormalities. Efficient repair of injured epithelium is necessary to restore normal lung structure and function. The objective of the current study was to characterize repair of the tracheal epithelium after acute chlorine injury. Methods C57BL/6 mice were exposed to chlorine and injected with 5-ethynyl-2′-deoxyuridine (EdU) to label proliferating cells prior to sacrifice and collection of tracheas on days 2, 4, 7, and 10 after exposure. Airway repair and restoration of a differentiated epithelium were examined by co-localization of EdU labeling with markers for the three major tracheal epithelial cell types [keratin 5 (K5) and keratin 14 (K14) for basal cells, Clara cell secretory protein (CCSP) for Clara cells, and acetylated tubulin (AcTub) for ciliated cells]. Morphometric analysis was used to measure proliferation and restoration of a pseudostratified epithelium. Results Epithelial repair was fastest and most extensive in proximal trachea compared with middle and distal trachea. In unexposed mice, cell proliferation was minimal, all basal cells expressed K5, and K14-expressing basal cells were absent from most sections. Chlorine exposure resulted in the sloughing of Clara and ciliated cells from the tracheal epithelium. Two to four days after chlorine exposure, cell proliferation occurred in K5- and K14-expressing basal cells, and the number of K14 cells was dramatically increased. In the period of peak cell proliferation, few if any ciliated or Clara cells were detected in repairing trachea. Expression of ciliated and Clara cell markers was detected at later times (days 7–10), but cell proliferation was not detected in areas in which these differentiated markers were re-expressed. Fibrotic lesions were observed at days 7–10 primarily in distal trachea. Conclusion The data are

  10. Quantifying Ciliary Dynamics during Assembly Reveals Step-wise Waveform Maturation in Airway Cells.

    PubMed

    Oltean, Alina; Schaffer, Andrew J; Bayly, Philip V; Brody, Steven L

    2018-05-31

    Motile cilia are essential for clearance of particulates and pathogens from airways. For effective transport, ciliary motor proteins and axonemal structures interact to generate the rhythmic, propulsive bending, but the mechanisms that produce a dynamic waveform remain incompletely understood. Biomechanical measures of human cilia motion and their relationships to cilia assembly are needed to illuminate the biophysics of normal cilia function, and to quantify dysfunction in ciliopathies. To these ends, we analyzed cilia motion from high-speed video microscopy of ciliated cells sampled from human lung airways compared to primary-culture cells that undergo ciliogenesis in vitro. Quantitative assessment of waveform parameters showed variations in waveform shape between individual cilia; however, general trends in waveform parameters emerged, associated with progression of cilia length and stage of differentiation. When cilia emerged from cultured cells, beat frequency was initially elevated, then fell and remained stable as cilia lengthened. In contrast, the average bending amplitude and the ability to generate force gradually increased and eventually approached values observed in ex vivo samples. Dynein arm motor proteins DNAH5, DNAH9, DNAH11, and DNAH6 were localized within specific regions of the axoneme in the ex vivo cells; however distinct stages of in vitro waveform development identified by biomechanical features were associated with the progressive movement of dyneins to the appropriate proximal or distal sections of the cilium. These observations suggest that the step-wise variation in waveform development during ciliogenesis is dependent on cilia length and potentially outer dynein arm assembly.

  11. The Role of Bitter and Sweet Taste Receptors in Upper Airway Immunity

    PubMed Central

    Workman, Alan D.; Palmer, James N.; Adappa, Nithin D.

    2016-01-01

    Over the past several years, taste receptors have emerged as key players in the regulation of innate immune defenses in the mammalian respiratory tract. Several cell types in the airway, including ciliated epithelial cells, solitary chemosensory cells, and bronchial smooth muscle cells, all display chemoresponsive properties that utilize taste receptors. A variety of bitter products secreted by microbes are detected with resultant downstream inflammation, increased mucous clearance, antimicrobial peptide secretion, and direct bacterial killing. Genetic variation of bitter taste receptors also appears to play a role in the susceptibility to infection in respiratory disease states, including that of chronic rhinosinusitis. Ongoing taste receptor research may yield new therapeutics that harness innate immune defenses in the respiratory tract and may offer alternatives to antibiotic treatment. The present review discusses taste receptor-protective responses and analyzes the role these receptors play in mediating airway immune function. PMID:26492878

  12. The DNA of ciliated protozoa.

    PubMed Central

    Prescott, D M

    1994-01-01

    Ciliates contain two types of nuclei: a micronucleus and a macronucleus. The micronucleus serves as the germ line nucleus but does not express its genes. The macronucleus provides the nuclear RNA for vegetative growth. Mating cells exchange haploid micronuclei, and a new macronucleus develops from a new diploid micronucleus. The old macronucleus is destroyed. This conversion consists of amplification, elimination, fragmentation, and splicing of DNA sequences on a massive scale. Fragmentation produces subchromosomal molecules in Tetrahymena and Paramecium cells and much smaller, gene-sized molecules in hypotrichous ciliates to which telomere sequences are added. These molecules are then amplified, some to higher copy numbers than others. rDNA is differentially amplified to thousands of copies per macronucleus. Eliminated sequences include transposonlike elements and sequences called internal eliminated sequences that interrupt gene coding regions in the micronuclear genome. Some, perhaps all, of these are excised as circular molecules and destroyed. In at least some hypotrichs, segments of some micronuclear genes are scrambled in a nonfunctional order and are recorded during macronuclear development. Vegetatively growing ciliates appear to possess a mechanism for adjusting copy numbers of individual genes, which corrects gene imbalances resulting from random distribution of DNA molecules during amitosis of the macronucleus. Other distinctive features of ciliate DNA include an altered use of the conventional stop codons. Images PMID:8078435

  13. Expression and function of Anoctamin 1/TMEM16A calcium-activated chloride channels in airways of in vivo mouse models for cystic fibrosis research.

    PubMed

    Hahn, Anne; Salomon, Johanna J; Leitz, Dominik; Feigenbutz, Dennis; Korsch, Lisa; Lisewski, Ina; Schrimpf, Katrin; Millar-Büchner, Pamela; Mall, Marcus A; Frings, Stephan; Möhrlen, Frank

    2018-06-02

    Physiological processes of vital importance are often safeguarded by compensatory systems that substitute for primary processes in case these are damaged by gene mutation. Ca 2+ -dependent Cl - secretion in airway epithelial cells may provide such a compensatory mechanism for impaired Cl - secretion via cystic fibrosis transmembrane conductance regulator (CFTR) channels in cystic fibrosis (CF). Anoctamin 1 (ANO1) Ca 2+ -gated Cl - channels are known to contribute to calcium-dependent Cl - secretion in tracheal and bronchial epithelia. In the present study, two mouse models of CF were examined to assess a potential protective function of Ca 2+ -dependent Cl - secretion, a CFTR deletion model (cftr -/- ), and a CF pathology model that overexpresses the epithelial Na + channel β-subunit (βENaC), which is encoded by the Scnn1b gene, specifically in airway epithelia (Scnn1b-Tg). The expression levels of ANO1 were examined by mRNA and protein content, and the channel protein distribution between ciliated and non-ciliated epithelial cells was analyzed. Moreover, Ussing chamber experiments were conducted to compare Ca 2+ -dependent Cl - secretion between wild-type animals and the two mouse models. Our results demonstrate that CFTR and ANO1 channels were co-expressed with ENaC in non-ciliated cells of mouse tracheal and bronchial epithelia. Ciliated cells did not express these proteins. Despite co-localization of CFTR and ANO1 in the same cell type, cells in cftr -/- mice displayed no altered expression of ANO1. Similarly, ANO1 expression was unaffected by βENaC overexpression in the Scnn1b-Tg line. These results suggest that the CF-related environment in the two mouse models did not induce ANO1 overexpression as a compensatory system.

  14. Toxicity of Chlorpyrifos and Dimethoate to the Ciliate Urostyla grandis, with Notes on Their Effects on Cell Ultrastructure

    NASA Astrophysics Data System (ADS)

    Mu, Weijie; Warren, Alan; Pan, Xuming; Ying, Chen

    2018-06-01

    Chlorpyrifos and dimethoate are overused agricultural pesticides that can trigger trophic cascades, resulting in toxicity to both terrestrial and aquatic organisms as well as altered ecosystems. In previous studies, substantial attention has been given to the effects of pesticides on vertebrate species and, to a lesser extent, species of zooplankton. The present study was designed to show that the fission time effective concentration in ciliates is a potential aquatic detection index for environmental monitoring. The ciliate Urostyla grandis was treated with doses of chlorpyrifos and dimethoate. After exposed to the pesticides, the LC 50 ( i.e., concentration that killed 50% of the ciliate cells within 24 h) values were 0.029 mg L-1 for chlorpyrifos and 0.0685 mg L-1 for dimethoate. The fission time effective concentrations after 168 h of exposure were 0.0075-0.0093 mg L-1 for chlorpyrifos and 0.2640-0.2750 mg L-1 for dimethoate. These results show that the fission time effective concentration is lower than the LC 50 value in ciliates, indicating that fission time effective concentration is more suitable than the LC 50 value for environmental monitoring using ciliates. The effects of chlorpyrifos and dimethoate on ciliate cell ultrastructures included agglutination of chromatin in the macronucleus, protruded and discontinuous macronuclear and micronuclear membranes, loss of integrity of mitochondrial membranes and contents, and abscission and deformation of the adoral zone of membranelles.

  15. Diesel exhaust particulate induces airway hyperresponsiveness in a murine model: essential role of GM-CSF.

    PubMed

    Ohta, K; Yamashita, N; Tajima, M; Miyasaka, T; Nakano, J; Nakajima, M; Ishii, A; Horiuchi, T; Mano, K; Miyamoto, T

    1999-11-01

    Inhaled pollutants were recently shown to be responsible for an increased incidence of airway allergic diseases, including asthma. A common feature of all forms of asthma is airway hyperresponsiveness. Our purpose was to elucidate the effects of diesel exhaust particulate (DEP), one of the most prevalent inhaled pollutants, on airway responsiveness. A/J and C57Bl/6 mice were used; the former are genetically predisposed to be hyperresponsive to acetylcholine, whereas the latter are not. DEP was administered intranasally for 2 weeks, after which pulmonary function was analyzed by whole-body plethysmography. Intranasal administration of DEP increased airway responsiveness to acetylcholine in both A/J and C57Bl/6 mice and induced displacement of ciliated epithelial cells by mucus-secreting Clara cells. The effect was mediated by M(3) muscarinic receptors. Acetylcholine-evoked bronchial constriction was reversed by administration of terbutaline, a beta(2)-adrenergic antagonist, which is also characteristic of human asthma. Intranasal administration of antibody raised against GM-CSF abolished DEP-evoked increases in airway responsiveness and Clara cell hyperplasia. The antibody raised against IL-4 also inhibited DEP-evoked increases in airway responsiveness. However, it was to a lesser extent compared with antibody against GM-CSF. In addition, DEP stimulated GM-CSF messenger RNA expression in the lung. DEP induces airway hyperresponsiveness by stimulating GM-CSF synthesis.

  16. Bone Marrow Cells Expressing Clara Cell Secretory Protein Increase Epithelial Repair After Ablation of Pulmonary Clara Cells

    PubMed Central

    Bustos, Martha L; Mura, Marco; Marcus, Paula; Hwang, David; Ludkovski, Olga; Wong, Amy P; Waddell, Thomas K

    2013-01-01

    We have previously reported a subpopulation of bone marrow cells (BMC) that express Clara cell secretory protein (CCSP), generally felt to be specific to lung Clara cells. Ablation of lung Clara cells has been reported using a transgenic mouse that expresses thymidine kinase under control of the CCSP promoter. Treatment with ganciclovir results in permanent elimination of CCSP+ cells, failure of airway regeneration, and death. To determine if transtracheal delivery of wild-type bone marrow CCSP+ cells is beneficial after ablation of lung CCSP+ cells, transgenic mice were treated with ganciclovir followed by transtracheal administration of CCSP+ or CCSP− BMC. Compared with mice administered CCSP− cells, mice treated with CCSP+ cells had more donor cells lining the airway epithelium, where they expressed epithelial markers including CCSP. Although donor CCSP+ cells did not substantially repopulate the airway, their administration resulted in increased host ciliated cells, better preservation of airway epithelium, reduction of inflammatory cells, and an increase in animal survival time. Administration of CCSP+ BMC is beneficial after permanent ablation of lung Clara cells by increasing bronchial epithelial repair. Therefore, CCSP+ BMC could be important for treatment of lung diseases where airways re-epithelialization is compromised. PMID:23609017

  17. [The morphology of ciliated cells in nasal mucosa during a viral infection].

    PubMed

    Grabowska-Joachimiak, A

    1998-01-01

    Presentation of the morphological changes in virus-infected nasal ciliated cells was the aim of this report. The most typical abnormalities observed in nasal smears were: intracytoplasmic inclusions, multinucleated cells, absence of cilia, ciliocytophthoria, cytoplasm vacuolization, "naked nuclei" and changes in the cellular shape. Cytological pictures of the alterations connected with viral infection were demonstrated. Presented results were consistent with the observations of other authors. Morphological analysis of the epithelial cells is a very important element of cytological examination of the nasal mucosa.

  18. Gravitaxis of Bursaria truncatella: electrophysiological and behavioural analyses of a large ciliate cell.

    PubMed

    Krause, Martin; Bräucker, Richard

    2009-05-01

    Bursaria truncatella is a giant ciliate. Its volume of 3 x 10(7)microm(3) and a sedimentation rate of 923microm s(-1) would induce the cell to rapidly sink to the bottom of a pond unless compensating mechanisms exist. The upward swimming behaviour of a cell population (negative gravitaxis) may be either a result of reorientations of the cells (graviorientation) and/or direction-dependent changes in propulsion rate (gravikinesis). The special statocyst hypothesis assumes a stimulation of mechanosensitive ion channels by forces of the cytoplasmic mass acting on the lower membrane. Here, we present basic electrophysiological data on B. truncatella. Investigation of the mechanosensitivity reveals a polar distribution of depolarising and hyperpolarising mechanosensitive channels at least on the dorsal membrane of the cell. Analysis of swimming behaviour demonstrates that Bursaria orients against the gravity vector (r(Oc)=0.34) and performs a negative gravikinesis (-633microm s(-1)) compensating the sedimentation rate by 70%. Under hypergravity conditions gravitaxis in Bursaria is enhanced. Microgravity experiments indicate an incomplete relaxation of graviresponses during 4s of weightlessness. Experimental data are in accordance with the special statocyst hypothesis of graviperception, as was demonstrated in other ciliates.

  19. Photosensory transduction in unicellular eukaryotes: a comparison between related ciliates Blepharisma japonicum and Stentor coeruleus and photoreceptor cells of higher organisms.

    PubMed

    Sobierajska, Katarzyna; Fabczak, Hanna; Fabczak, Stanisław

    2006-06-01

    Blepharisma japonicum and Stentor coeruleus are related ciliates, conspicuous by their photosensitivity. They are capable of avoiding illuminated areas in the surrounding medium, gathering exclusively in most shaded places (photodispersal). Such behaviour results mainly from motile photophobic response occurring in ciliates. This light-avoiding response is observed during a relatively rapid increase in illumination intensity (light stimulus) and consists of cessation of cell movement, a period of backward movement (ciliary reversal), followed by a forward swimming, usually in a new direction. The photosensitivity of ciliates is ascribed to their photoreceptor system, composed of pigment granules, containing the endogenous photoreceptor -- blepharismin in Blepharisma japonicum, and stentorin in Stentor coeruleus. A light stimulus, applied to both ciliates activates specific stimulus transduction processes leading to the electrical changes at the plasma membrane, correlated with a ciliary reversal during photophobic response. These data indicate that both ciliates Blepharisma japonicum and Stentor coeruleus, the lower eukaryotes, are capable of transducing the perceived light stimuli in a manner taking place in some photoreceptor cells of higher eukaryotes. Similarities and differences concerning particular stages of light transduction in eukaryotes at different evolutional levels are discussed in this article.

  20. Colonization dynamics of biofilm-associated ciliate morphotypes at different flow velocities.

    PubMed

    Risse-Buhl, Ute; Küsel, Kirsten

    2009-01-01

    The impact of flow velocity on initial ciliate colonization dynamics on surfaces were studied in the third order Ilm stream (Thuringia, Germany) at a slow flowing site (0.09ms(-1)) and two faster flowing sites (0.31ms(-1)) and in flow channels at 0.05, 0.4, and 0.8ms(-1). At the slow flowing stream site, surfaces were rapidly colonized by ciliates with up to 60 cells cm(-2) after 24h. In flow channels, the majority of suspended ciliates and inorganic matter accumulated at the surface within 4.5h at 0.05ms(-1). At 0.4ms(-1) the increase in ciliate abundance in the biofilm was highest between 72 and 168h at about 3 cells cm(-2)h(-1). Faster flow velocities were tolerated by vagile flattened ciliates that live in close contact to the surface. Vagile flattened and round filter feeders preferred biofilms at slow flow velocities. Addition of inorganic particles (0, 0.6, and 7.3mgcm(-2)) did not affect ciliate abundance in flow channel biofilms, but small ciliate species dominated and number of species was lowest (16 species cm(-2)) in biofilms at high sediment content. Although different morphotypes dominated the communities at contrasting flow velocities, all functional groups contributed to initial biofilm communities implementing all trophic links within the microbial loop.

  1. Protistan Bacterivory in an Oligomesotrophic Lake: Importance of Attached Ciliates and Flagellates

    PubMed

    Carrias; Amblard; Bourdier

    1996-05-01

    Seasonal and depth variations of the abundance, biomass, and bacterivory of protozoa (heterotrophic and mixotrophic flagellates and ciliates) were determined during thermal stratification in an oligomesotrophic lake (Lake Pavin, France). Maximal densities of heterotrophic flagellates (1.9x10(3) cells ml-1) and ciliates (6.1 cells ml-1) were found in the metalimnion. Pigmented flagellates dominated the flagellate biomass in the euphotic zone. Community composition of ciliated protists varied greatly with depth, and both the abundance and biomass of ciliates was dominated by oligotrichs. Heterotrophic flagellates dominated grazing, accounting for 84% of total protistan bacterivory. Maximal grazing impact of heterotrophic flagellates was 18.9x10(6) bacteria 1(-1)h-1. On average, 62% of nonpigmented flagellates were found to ingest particles. Ciliates and mixotrophic flagellates averaged 13% and 3% of protistan bacterivory, respectively. Attached protozoa (ciliates and flagellates) were found to colonize the diatom Asterionella formosa. Attached bacterivores had higher ingestion rates than free bacterivorous protozoa and may account for 66% of total protozoa bacterivory. Our results indicated that even in low numbers, epibiotic protozoa may have a major grazing impact on free bacteria.

  2. Fecal Ciliate Composition of Domestic Horses (Equus caballus Linnaeus, 1758) Living in Kyrgyzstan.

    PubMed

    Gürelli, Gözde; Canbulat, Savaş; Aldayarov, Nurbek

    2015-11-03

    Species composition and distribution of intestinal ciliates were investigated in the feces from 15 domestic horses living in Bishkek, Kyrgyzstan. Twenty-three species belonging to 14 genera were identified. This is the first study on intestinal ciliates in domestic horses living in Kyrgyzstan. The mean number of ciliates was 14.1 ± 6.8 x10(4) cells ml(-1) of feces and the mean number of ciliate species per host was 6.0 ± 3.2. No endemic or new species were detected. Blepharocorys was the major genus as these ciliates were detected in high proportions. In contrast Holophryoides, Allantosoma were only observed at low frequencies. Recorded ciliate species in this investigation had almost the same characteristics as those described in previous studies. There was no important geographic variation in the intestinal ciliate fauna of equids.

  3. Airway responsiveness to mannitol in asthma is associated with chymase-positive mast cells and eosinophilic airway inflammation.

    PubMed

    Sverrild, A; Bergqvist, A; Baines, K J; Porsbjerg, C; Andersson, C K; Thomsen, S F; Hoffmann, H J; Gibson, P; Erjefält, J S; Backer, V

    2016-02-01

    Airway hyperresponsiveness (AHR) to inhaled mannitol is associated with indirect markers of mast cell activation and eosinophilic airway inflammation. It is unknown how AHR to mannitol relates to mast cell phenotype, mast cell function and measures of eosinophilic inflammation in airway tissue. We compared the number and phenotype of mast cells, mRNA expression of mast cell-associated genes and number of eosinophils in airway tissue of subjects with asthma and healthy controls in relation to AHR to mannitol. Airway hyperresponsiveness to inhaled mannitol was measured in 23 non-smoking, corticosteroid-free asthmatic individuals and 10 healthy controls. Mast cells and eosinophils were identified in mucosal biopsies from all participants. Mast cells were divided into phenotypes based on the presence of chymase. mRNA expression of mast cell-associated genes was measured by real-time PCR. The proportion of submucosal MCTC was higher in asthmatic individuals with AHR to mannitol compared with asthmatic individuals without AHR (median: 40.3% vs. 18.7%, P = 0.03). Increased submucosal MCTC numbers were associated with increased levels of mRNA for thymic stromal lymphopoietin (TSLP) and CPA3 in asthmatics. Reactivity to mannitol correlated significantly with eosinophils in submucosa (r(s): 0.56, P = 0.01). Airway hyperresponsiveness to inhaled mannitol is associated with an altered submucosal mast cell profile in asthmatic individuals. This mast cell profile is associated with increased levels of TSLP and CPA3. The degree of AHR to mannitol is correlated with the degree of eosinophilic inflammation in the airway submucosa. © 2015 John Wiley & Sons Ltd.

  4. Functional diversity of aquatic ciliates.

    PubMed

    Weisse, Thomas

    2017-10-01

    This paper first reviews the concept of functional diversity in general terms and then applies it to free-living aquatic ciliates. Ciliates are extremely versatile organisms and display an enormous functional diversity as key elements of pelagic food webs, acting as predators of bacteria, algae, other protists and even some metazoans. Planktonic ciliates are important food for zooplankton, and mixotrophic and functionally autotrophic species may significantly contribute to primary production in the ocean and in lakes. The co-occurrence of many ciliate species in seemingly homogenous environments indicates a wide range of their ecological niches. Variation in space and time may foster co-occurrence and prevent violating the competitive exclusion principle among ciliates using the same resources. Considering that many ciliates may be dormant and/or rare in many habitats, ciliate species diversity must be higher than can be deduced from simple sampling techniques; molecular methods of identification clearly point to this hidden diversity. From a functional point of view, the question is how much of this diversity represents redundancy. A key challenge for future research is to link the ecophysiological performance of naturally co-occurring ciliates to their functional genes. To this end, more experimental research is needed with with functionally different species. Copyright © 2017 The Author. Published by Elsevier GmbH.. All rights reserved.

  5. [Regeneration of the ciliary beat of human ciliated cells].

    PubMed

    Wolf, G; Koidl, B; Pelzmann, B

    1991-10-01

    The influence of an isotonic, alkaline saline solution (diluted "Emser Sole" or brine from the spa of Bad Ems) on the ciliary beat of isolated cultured human ciliated cells of the upper respiratory tract was investigated. The ciliary beat was observed via an inverted phase contrast microscope (Zeiss Axiomat IDPC) and measured microphotometrically under physiological conditions and after the damaging influence of 1% propanal solution. Under physiological conditions the saline solution had a positive, although statistically not significant influence on the frequency of the ciliary beat. After damage of the cultivated cells by 1% propanal solution, the saline solution had a significant better influence on the regeneration of the cultured cells than a physiological sodium chloride solution. It is concluded that diluted brine from Bad Ems has a positive effect on the ciliary beat of the respiratory epithelium and accelerates its regeneration after damage by viral and bacterial infections, surgery or inhaled noxae.

  6. The oxidative stress response of oxytetracycline in the ciliate Pseudocohnilembus persalinus.

    PubMed

    Wang, Chongnv; Pan, Xuming; Fan, Yawen; Chen, Ying; Mu, Weijie

    2017-12-01

    Oxytetracycline (OTC) is commonly employed in fish farms to prevent bacterial infections in China, and because of their widely and intensive use, the potential harmful effects on organisms in aquatic environment are of great concern. Ciliates play an important role in aquatic food webs as secondary producers, and Pseudocohnilembus persalinus, is one kind of them which are easily found in fish farms, surviving in polluted water. Therefore, using P. persalinus as experimental models, this study investigated the effects of oxytetracycline (OTC) on the growth, antioxidant system and morphological damage in pollution-resistant ciliates species. Our results showed that the 96-h EC 50 values for OTC of P. persalinus was 21.38mgL -1 . The increased level of SOD and GSH during 96h OTC stress was related to an adaptive response under oxidative stress induced in ciliates. Additionally, sod1, sod2 and sod3 exhibited a significant increased expression level compared to control group at 24h treatment, indicating a promoting of dense system in ciliates at this exposure time. However, only sod1 and sod2 showed raised expression level at 48h stress, showing the different sensitive of gene isoforms to some extent. With OTC treatment, damage of regular wrinkles, shrunk, twisted on the cell surface, even forming cyst of scuticociliatid ciliate cells were firstly observed by SEM (scanning electron microscope) in this study. Overall, physiological, molecular and morphological information on the toxicological studies of ciliates and more information on possibility of ciliates as indicators of contamination were provided in this study. Copyright © 2017. Published by Elsevier B.V.

  7. Allergen-specific Th1 cells fail to counterbalance Th2 cell-induced airway hyperreactivity but cause severe airway inflammation.

    PubMed

    Hansen, G; Berry, G; DeKruyff, R H; Umetsu, D T

    1999-01-01

    Allergic asthma, which is present in as many as 10% of individuals in industrialized nations, is characterized by chronic airway inflammation and hyperreactivity induced by allergen-specific Th2 cells secreting interleukin-4 (IL-4) and IL-5. Because Th1 cells antagonize Th2 cell functions, it has been proposed that immune deviation toward Th1 can protect against asthma and allergies. Using an adoptive transfer system, we assessed the roles of Th1, Th2, and Th0 cells in a mouse model of asthma and examined the capacity of Th1 cells to counterbalance the proasthmatic effects of Th2 cells. Th1, Th2, and Th0 lines were generated from ovalbumin (OVA)-specific T-cell receptor (TCR) transgenic mice and transferred into lymphocyte-deficient, OVA-treated severe combined immunodeficiency (SCID) mice. OVA-specific Th2 and Th0 cells induced significant airway hyperreactivity and inflammation. Surprisingly, Th1 cells did not attenuate Th2 cell-induced airway hyperreactivity and inflammation in either SCID mice or in OVA-immunized immunocompetent BALB/c mice, but rather caused severe airway inflammation. These results indicate that antigen-specific Th1 cells may not protect or prevent Th2-mediated allergic disease, but rather may cause acute lung pathology. These findings have significant implications with regard to current therapeutic goals in asthma and allergy and suggest that conversion of Th2-dominated allergic inflammatory responses into Th1-dominated responses may lead to further problems.

  8. Ciliates by the Slice.

    ERIC Educational Resources Information Center

    Boynton, John E.; Small, Eugene B.

    1984-01-01

    Describes new methods of collecting and examining ciliates, particularly those found in the sediments of lakes, rivers, and estuaries. Discusses extraction methods in preparation for observations in the classroom. Suggests investigations of ciliate ecology as an area of increasing research interest. (JM)

  9. Ultrastructure of extrusomes in hypotrichous ciliate Pseudourostyla nova

    NASA Astrophysics Data System (ADS)

    Zhou, Yao; Wang, Zhengjun; Zhang, Jun; Gu, Fukang

    2011-01-01

    The ultrastructure of extrusomes of the hypotrichous ciliate Pseudourostyla nova was observed in scanning and transmission electron microscopy and enzyme-cytochemistry. The results show that the distribution, morphological characteristics, morphogenesis process, and extrusive process of the extrusomes in P. nova are different from the trichocysts in Paramecium, suggesting that the extrusomes of P. nova can respond to environmental stimuli, play an important role in the defense of this species, and cannot be regarded as "trichocysts". The results also suggest that the extrusomes might be originated from the Golgi apparatus and mature in the cytoplasm; after the extrusion of mature extrusomes, the residual substance might be reabsorbed and reused by the ciliate cell via food vacuoles, and take part in material recycling of the cell.

  10. Critical role of actin-associated proteins in smooth muscle contraction, cell proliferation, airway hyperresponsiveness and airway remodeling.

    PubMed

    Tang, Dale D

    2015-10-30

    Asthma is characterized by airway hyperresponsiveness and airway remodeling, which are largely attributed to increased airway smooth muscle contractility and cell proliferation. It is known that both chemical and mechanical stimulation regulates smooth muscle contraction. Recent studies suggest that contractile activation and mechanical stretch induce actin cytoskeletal remodeling in smooth muscle. However, the mechanisms that control actin cytoskeletal reorganization are not completely elucidated. This review summarizes our current understanding regarding how actin-associated proteins may regulate remodeling of the actin cytoskeleton in airway smooth muscle. In particular, there is accumulating evidence to suggest that Abelson tyrosine kinase (Abl) plays a critical role in regulating airway smooth muscle contraction and cell proliferation in vitro, and airway hyperresponsiveness and remodeling in vivo. These studies indicate that Abl may be a novel target for the development of new therapy to treat asthma.

  11. [Regulation of airway stem cell proliferation in idiopathic pulmonary fibrosis].

    PubMed

    Yang, S X; Wu, Q; Sun, X; Li, X; Li, K; Xu, L; Li, Y; Zhang, Q Y; Zhang, Y C; Chen, H Y

    2016-09-01

    To investigate the effect of fibroblasts on regulating airway stem cell proliferation in idiopathic pulmonary fibrosis. Lung cell suspension was prepared from β-actin-GFP mice. Airway stem cells were obtained by fluorescence activated cell sorting and co-cultured with lung fibroblasts. The fibroblasts were treated with TGF-β inhibitor SB43142. The expression of growth factors FGF1/2 and the effect of FGF1/2 on stem cell proliferation were observed. The cloning efficiency of airway stem cells, when co-cultured with normal lung fibroblast cells for 8 days, was (3.5±1.1)%, while the cloning efficiency was reduced to (0.04±0.04)% when co-cultured with lung fibroblasts from idiopathic pulmonary fibrosis patients. The difference between the 2 groups was statistically significant(P=0.002 5). TGF-β receptor inhibitor SB431542 increased lung fibroblast growth factors FGF1/2 expression.FGF1 mRNA expression was increased to the experimental group 0.005 5 from 0.000 2 in the control group.FGF2 mRNA expression of the amount raised to the experimental group 0.000 15 from 0.000 8 in the control group.FGF1/2 promoted the growth of airway stem cells. After FGF1/2 was co-cultured with normal lung fibroblast cells for 8 days, the cloning efficiency of airway stem cells was (0.3±0.1)%. During the development of idiopathic pulmonary fibrosis, fibroblast secreted FGF1/2 regulate airway stem cell proliferation.

  12. RSV-encoded NS2 promotes epithelial cell shedding and distal airway obstruction

    PubMed Central

    Liesman, Rachael M.; Buchholz, Ursula J.; Luongo, Cindy L.; Yang, Lijuan; Proia, Alan D.; DeVincenzo, John P.; Collins, Peter L.; Pickles, Raymond J.

    2014-01-01

    Respiratory syncytial virus (RSV) infection is the major cause of bronchiolitis in young children. The factors that contribute to the increased propensity of RSV-induced distal airway disease compared with other commonly encountered respiratory viruses remain unclear. Here, we identified the RSV-encoded nonstructural 2 (NS2) protein as a viral genetic determinant for initiating RSV-induced distal airway obstruction. Infection of human cartilaginous airway epithelium (HAE) and a hamster model of disease with recombinant respiratory viruses revealed that NS2 promotes shedding of infected epithelial cells, resulting in two consequences of virus infection. First, epithelial cell shedding accelerated the reduction of virus titers, presumably by clearing virus-infected cells from airway mucosa. Second, epithelial cells shedding into the narrow-diameter bronchiolar airway lumens resulted in rapid accumulation of detached, pleomorphic epithelial cells, leading to acute distal airway obstruction. Together, these data indicate that RSV infection of the airway epithelium, via the action of NS2, promotes epithelial cell shedding, which not only accelerates viral clearance but also contributes to acute obstruction of the distal airways. Our results identify RSV NS2 as a contributing factor for the enhanced propensity of RSV to cause severe airway disease in young children and suggest NS2 as a potential therapeutic target for reducing the severity of distal airway disease. PMID:24713657

  13. Airway epithelial homeostasis and planar cell polarity signaling depend on multiciliated cell differentiation.

    PubMed

    Vladar, Eszter K; Nayak, Jayakar V; Milla, Carlos E; Axelrod, Jeffrey D

    2016-08-18

    Motile airway cilia that propel contaminants out of the lung are oriented in a common direction by planar cell polarity (PCP) signaling, which localizes PCP protein complexes to opposite cell sides throughout the epithelium to orient cytoskeletal remodeling. In airway epithelia, PCP is determined in a 2-phase process. First, cell-cell communication via PCP complexes polarizes all cells with respect to the proximal-distal tissue axis. Second, during ciliogenesis, multiciliated cells (MCCs) undergo cytoskeletal remodeling to orient their cilia in the proximal direction. The second phase not only directs cilium polarization, but also consolidates polarization across the epithelium. Here, we demonstrate that in airway epithelia, PCP depends on MCC differentiation. PCP mutant epithelia have misaligned cilia, and also display defective barrier function and regeneration, indicating that PCP regulates multiple aspects of airway epithelial homeostasis. In humans, MCCs are often sparse in chronic inflammatory diseases, and these airways exhibit PCP dysfunction. The presence of insufficient MCCs impairs mucociliary clearance in part by disrupting PCP-driven polarization of the epithelium. Consistent with defective PCP, barrier function and regeneration are also disrupted. Pharmacological stimulation of MCC differentiation restores PCP and reverses these defects, suggesting its potential for broad therapeutic benefit in chronic inflammatory disease.

  14. Airway epithelial homeostasis and planar cell polarity signaling depend on multiciliated cell differentiation

    PubMed Central

    Vladar, Eszter K.; Nayak, Jayakar V.; Milla, Carlos E.; Axelrod, Jeffrey D.

    2016-01-01

    Motile airway cilia that propel contaminants out of the lung are oriented in a common direction by planar cell polarity (PCP) signaling, which localizes PCP protein complexes to opposite cell sides throughout the epithelium to orient cytoskeletal remodeling. In airway epithelia, PCP is determined in a 2-phase process. First, cell-cell communication via PCP complexes polarizes all cells with respect to the proximal-distal tissue axis. Second, during ciliogenesis, multiciliated cells (MCCs) undergo cytoskeletal remodeling to orient their cilia in the proximal direction. The second phase not only directs cilium polarization, but also consolidates polarization across the epithelium. Here, we demonstrate that in airway epithelia, PCP depends on MCC differentiation. PCP mutant epithelia have misaligned cilia, and also display defective barrier function and regeneration, indicating that PCP regulates multiple aspects of airway epithelial homeostasis. In humans, MCCs are often sparse in chronic inflammatory diseases, and these airways exhibit PCP dysfunction. The presence of insufficient MCCs impairs mucociliary clearance in part by disrupting PCP-driven polarization of the epithelium. Consistent with defective PCP, barrier function and regeneration are also disrupted. Pharmacological stimulation of MCC differentiation restores PCP and reverses these defects, suggesting its potential for broad therapeutic benefit in chronic inflammatory disease. PMID:27570836

  15. Survival of Legionella pneumophila in the cold-water ciliate Tetrahymena vorax

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith-Somerville, H.E.; Huryn, V.B.; Walker, C.

    1991-09-01

    The processing of phagosomes containing Legionella pneumophila and Escerichia coli were compared in Tetrahymena vorax, a hymenostome ciliated protozoan that prefers lower temperatures. L. pneumophila did not multiply in the ciliate when incubated at 20 to 22C, but vacuoles containing L. pneumophila were retained in the cells for a substantially longer time than vacuoles with E. coli. Electron micrographs showed no evidence of degradation of L. pneumophila cells through 12 h, while E. coli cells in the process of being digested were observed in vacuoles 75 min after the addition of the bacterium T. vorax ingested L. pneumophila normally, butmore » by 10 to 15 min, the vacuolar membrane appeared denser than that surrounding nascent or newly formed phagosomes. In older vacuoles, electron-dense particles lined portions of the membrane. Acidification of the phagosomes indicated by the accumulation of neutral red was similar in T. vorax containing L. pneumophila or E. coli. This ciliate could provide a model for the analysis of virulence-associated intracellular events independent of the replication of L. pneumophila.« less

  16. Ciliated muconodular papillary tumour of the lung: a newly defined low-grade malignant tumour.

    PubMed

    Sato, Shuichi; Koike, Teruaki; Homma, Keiichi; Yokoyama, Akira

    2010-11-01

    We present two cases of ciliated muconodular papillary tumour (CMPT) in this report. CMPT is a newly defined low-grade malignant tumour with ciliated columnar epithelial cells, occurring in the peripheral lung. Both patients underwent pulmonary resection due to an enlarged solitary pulmonary nodule. Pathological findings in both cases confirmed a papillary tumour with a mixture of ciliated columnar and goblet cells. The tumours were rich in mucous and had spread along the alveolar walls, as observed in bronchioloalveolar carcinoma. Nuclear atypia was mild, and no mitotic activity was observed. Immunohistochemically, tumour cells stained positive for carcinoembryonic antigen, thyroid transcription factor-1 and cytokeratin 7 but not for cytokeratin 20. The immunohistochemical staining patterns were almost identical to those of pulmonary adenocarcinoma. We definitively diagnosed as CMPT. Both patients remained relapse-free.

  17. Adoptive transfer of induced-Treg cells effectively attenuates murine airway allergic inflammation.

    PubMed

    Xu, Wei; Lan, Qin; Chen, Maogen; Chen, Hui; Zhu, Ning; Zhou, Xiaohui; Wang, Julie; Fan, Huimin; Yan, Chun-Song; Kuang, Jiu-Long; Warburton, David; Togbe, Dieudonnée; Ryffel, Bernhard; Zheng, Song-Guo; Shi, Wei

    2012-01-01

    Both nature and induced regulatory T (Treg) lymphocytes are potent regulators of autoimmune and allergic disorders. Defects in endogenous Treg cells have been reported in patients with allergic asthma, suggesting that disrupted Treg cell-mediated immunological regulation may play an important role in airway allergic inflammation. In order to determine whether adoptive transfer of induced Treg cells generated in vitro can be used as an effective therapeutic approach to suppress airway allergic inflammation, exogenously induced Treg cells were infused into ovalbumin-sensitized mice prior to or during intranasal ovalbumin challenge. The results showed that adoptive transfer of induced Treg cells prior to allergen challenge markedly reduced airway hyperresponsiveness, eosinophil recruitment, mucus hyper-production, airway remodeling, and IgE levels. This effect was associated with increase of Treg cells (CD4(+)FoxP3(+)) and decrease of dendritic cells in the draining lymph nodes, and with reduction of Th1, Th2, and Th17 cell response as compared to the controls. Moreover, adoptive transfer of induced Treg cells during allergen challenge also effectively attenuate airway inflammation and improve airway function, which are comparable to those by natural Treg cell infusion. Therefore, adoptive transfer of in vitro induced Treg cells may be a promising therapeutic approach to prevent and treat severe asthma.

  18. Adoptive Transfer of Induced-Treg Cells Effectively Attenuates Murine Airway Allergic Inflammation

    PubMed Central

    Chen, Maogen; Chen, Hui; Zhu, Ning; Zhou, Xiaohui; Wang, Julie; Fan, Huimin; Yan, Chun-Song; Kuang, Jiu-Long; Warburton, David; Togbe, Dieudonnée; Ryffel, Bernhard; Zheng, Song-Guo; Shi, Wei

    2012-01-01

    Both nature and induced regulatory T (Treg) lymphocytes are potent regulators of autoimmune and allergic disorders. Defects in endogenous Treg cells have been reported in patients with allergic asthma, suggesting that disrupted Treg cell-mediated immunological regulation may play an important role in airway allergic inflammation. In order to determine whether adoptive transfer of induced Treg cells generated in vitro can be used as an effective therapeutic approach to suppress airway allergic inflammation, exogenously induced Treg cells were infused into ovalbumin-sensitized mice prior to or during intranasal ovalbumin challenge. The results showed that adoptive transfer of induced Treg cells prior to allergen challenge markedly reduced airway hyperresponsiveness, eosinophil recruitment, mucus hyper-production, airway remodeling, and IgE levels. This effect was associated with increase of Treg cells (CD4+FoxP3+) and decrease of dendritic cells in the draining lymph nodes, and with reduction of Th1, Th2, and Th17 cell response as compared to the controls. Moreover, adoptive transfer of induced Treg cells during allergen challenge also effectively attenuate airway inflammation and improve airway function, which are comparable to those by natural Treg cell infusion. Therefore, adoptive transfer of in vitro induced Treg cells may be a promising therapeutic approach to prevent and treat severe asthma. PMID:22792275

  19. Transducing Airway Basal Cells with a Helper-Dependent Adenoviral Vector for Lung Gene Therapy.

    PubMed

    Cao, Huibi; Ouyang, Hong; Grasemann, Hartmut; Bartlett, Claire; Du, Kai; Duan, Rongqi; Shi, Fushan; Estrada, Marvin; Seigel, Kyle E; Coates, Allan L; Yeger, Herman; Bear, Christine E; Gonska, Tanja; Moraes, Theo J; Hu, Jim

    2018-06-01

    A major challenge in developing gene-based therapies for airway diseases such as cystic fibrosis (CF) is sustaining therapeutic levels of transgene expression over time. This is largely due to airway epithelial cell turnover and the host immunogenicity to gene delivery vectors. Modern gene editing tools and delivery vehicles hold great potential for overcoming this challenge. There is currently not much known about how to deliver genes into airway stem cells, of which basal cells are the major type in human airways. In this study, helper-dependent adenoviral (HD-Ad) vectors were delivered to mouse and pig airways via intranasal delivery, and direct bronchoscopic instillation, respectively. Vector transduction was assessed by immunostaining of lung tissue sections, which revealed that airway basal cells of mice and pigs can be targeted in vivo. In addition, efficient transduction of primary human airway basal cells was verified with an HD-Ad vector expressing green fluorescent protein. Furthermore, we successfully delivered the human CFTR gene to airway basal cells from CF patients, and demonstrated restoration of CFTR channel activity following cell differentiation in air-liquid interface culture. Our results provide a strong rationale for utilizing HD-Ad vectors to target airway basal cells for permanent gene correction of genetic airway diseases.

  20. Nitric oxide enhances Th9 cell differentiation and airway inflammation

    PubMed Central

    Niedbala, Wanda; Besnard, Anne-Gaelle; Nascimento, Daniele Carvalho; Donate, Paula Barbim; Sonego, Fabiane; Yip, Edwin; Guabiraba, Rodrigo; Chang, Hyun-Dong; Fukada, Sandra Y.; Salmond, Robert J.; Schmitt, Edgar; Bopp, Tobias; Ryffel, Bernhard; Liew, Foo Y.

    2014-01-01

    Th9 cells protect hosts against helminthic infection but also mediate allergic disease. Here we show that nitric oxide (NO) promotes Th9 cell polarization of murine and human CD4+ T cells. NO de-represses the tumor suppressor gene p53 via nitrosylation of Mdm2. NO also increases p53-mediated IL-2 production, STAT5 phosphorylation and IRF4 expression, all essential for Th9 polarization. NO also increases the expression of TGFβR and IL-4R, pivotal to Th9 polarization. OVA-sensitized mice treated with an NO donor developed more severe airway inflammation. Transferred Th9 cells induced airway inflammation, which was exacerbated by NO and blocked by anti-IL-9 antibody. Nos2−/− mice had less Th9 cells and developed attenuated eosinophilia during OVA-induced airway inflammation compared to wild-type mice. Our data demonstrate that NO is an important endogenous inducer of Th9 cells and provide a hitherto unrecognized mechanism for NO-mediated airway inflammation via the expansion of Th9 cells. PMID:25099390

  1. Nitric oxide enhances Th9 cell differentiation and airway inflammation.

    PubMed

    Niedbala, Wanda; Besnard, Anne-Gaelle; Nascimento, Daniele Carvalho; Donate, Paula Barbim; Sonego, Fabiane; Yip, Edwin; Guabiraba, Rodrigo; Chang, Hyun-Dong; Fukada, Sandra Y; Salmond, Robert J; Schmitt, Edgar; Bopp, Tobias; Ryffel, Bernhard; Liew, Foo Y

    2014-08-07

    Th9 cells protect hosts against helminthic infection but also mediate allergic disease. Here we show that nitric oxide (NO) promotes Th9 cell polarization of murine and human CD4(+) T cells. NO de-represses the tumour suppressor gene p53 via nitrosylation of Mdm2. NO also increases p53-mediated IL-2 production, STAT5 phosphorylation and IRF4 expression, all essential for Th9 polarization. NO also increases the expression of TGFβR and IL-4R, pivotal to Th9 polarization. OVA-sensitized mice treated with an NO donor developed more severe airway inflammation. Transferred Th9 cells induced airway inflammation, which was exacerbated by NO and blocked by anti-IL-9 antibody. Nos2(-/-) mice had less Th9 cells and developed attenuated eosinophilia during OVA-induced airway inflammation compared with wild-type mice. Our data demonstrate that NO is an important endogenous inducer of Th9 cells and provide a hitherto unrecognized mechanism for NO-mediated airway inflammation via the expansion of Th9 cells.

  2. Influence of airway wall compliance on epithelial cell injury and adhesion during interfacial flows

    PubMed Central

    Higuita-Castro, Natalia; Mihai, Cosmin; Hansford, Derek J.

    2014-01-01

    Interfacial flows during cyclic airway reopening are an important source of ventilator-induced lung injury. However, it is not known how changes in airway wall compliance influence cell injury during airway reopening. We used an in vitro model of airway reopening in a compliant microchannel to investigate how airway wall stiffness influences epithelial cell injury. Epithelial cells were grown on gel substrates with different rigidities, and cellular responses to substrate stiffness were evaluated in terms of metabolic activity, mechanics, morphology, and adhesion. Repeated microbubble propagations were used to simulate cyclic airway reopening, and cell injury and detachment were quantified via live/dead staining. Although cells cultured on softer gels exhibited a reduced elastic modulus, these cells experienced less plasma membrane rupture/necrosis. Cells on rigid gels exhibited a minor, but statistically significant, increase in the power law exponent and also exhibited a significantly larger height-to-length aspect ratio. Previous studies indicate that this change in morphology amplifies interfacial stresses and, therefore, correlates with the increased necrosis observed during airway reopening. Although cells cultured on stiff substrates exhibited more plasma membrane rupture, these cells experienced significantly less detachment and monolayer disruption during airway reopening. Western blotting and immunofluorescence indicate that this protection from detachment and monolayer disruption correlates with increased focal adhesion kinase and phosphorylated paxillin expression. Therefore, changes in cell morphology and focal adhesion structure may govern injury responses during compliant airway reopening. In addition, these results indicate that changes in airway compliance, as occurs during fibrosis or emphysema, may significantly influence cell injury during mechanical ventilation. PMID:25213636

  3. Characterization of Nipah virus infection in a model of human airway epithelial cells cultured at an air-liquid interface.

    PubMed

    Escaffre, Olivier; Borisevich, Viktoriya; Vergara, Leoncio A; Wen, Julie W; Long, Dan; Rockx, Barry

    2016-05-01

    Nipah virus (NiV) is an emerging paramyxovirus that can cause lethal respiratory illness in humans. No vaccine/therapeutic is currently licensed for humans. Human-to-human transmission was previously reported during outbreaks and NiV could be isolated from respiratory secretions, but the proportion of cases in Malaysia exhibiting respiratory symptoms was significantly lower than that in Bangladesh. Previously, we showed that primary human basal respiratory epithelial cells are susceptible to both NiV-Malaysia (M) and -Bangladesh (B) strains causing robust pro-inflammatory responses. However, the cells of the human respiratory epithelium that NiV targets are unknown and their role in NiV transmission and NiV-related lung pathogenesis is still poorly understood. Here, we characterized NiV infection of the human respiratory epithelium using a model of the human tracheal/bronchial (B-ALI) and small airway (S-ALI) epithelium cultured at an air-liquid interface. We show that NiV-M and NiV-B infect ciliated and secretory cells in B/S-ALI, and that infection of S-ALI, but not B-ALI, results in disruption of the epithelium integrity and host responses recruiting human immune cells. Interestingly, NiV-B replicated more efficiently in B-ALI than did NiV-M. These results suggest that the human tracheal/bronchial epithelium is favourable to NiV replication and shedding, while inducing a limited host response. Our data suggest that the small airways epithelium is prone to inflammation and lesions as well as constituting a point of virus entry into the pulmonary vasculature. The use of relevant models of the human respiratory tract, such as B/S-ALI, is critical for understanding NiV-related lung pathogenesis and identifying the underlying mechanisms allowing human-to-human transmission.

  4. Microtubules Enable the Planar Cell Polarity of Airway Cilia

    PubMed Central

    Vladar, Eszter K.; Bayly, Roy D.; Sangoram, Ashvin; Scott, Matthew P.; Axelrod, Jeffrey D.

    2012-01-01

    Summary Background Airway cilia must be physically oriented along the longitudinal tissue axis for concerted, directional motility that is essential for proper mucociliary clearance. Results We show that Planar Cell Polarity (PCP) signaling specifies directionality and orients respiratory cilia. Within all airway epithelial cells a conserved set of PCP proteins shows interdependent, asymmetric junctional localization; non-autonomous signaling coordinates polarization between cells; and a polarized microtubule (MT) network is likely required for asymmetric PCP protein localization. We find that basal bodies dock after polarity of PCP proteins is established, are polarized nearly simultaneously, and refinement of basal body/cilium orientation continues during airway epithelial development. Unique to mature multiciliated cells, we identify PCP-regulated, planar polarized MTs that originate from basal bodies and interact, via their plus ends, with membrane domains associated with the PCP proteins Frizzled and Dishevelled. Disruption of MTs leads to misoriented cilia. Conclusions A conserved PCP pathway orients airway cilia by communicating polarity information from asymmetric membrane domains at the apical junctions, through MTs, to orient the MT and actin based network of ciliary basal bodies below the apical surface. PMID:23122850

  5. Human mast cell and airway smooth muscle cell interactions: implications for asthma.

    PubMed

    Page, S; Ammit, A J; Black, J L; Armour, C L

    2001-12-01

    Asthma is characterized by inflammation, hyperresponsiveness, and remodeling of the airway. Human mast cells (HMCs) play a central role in all of these changes by releasing mediators that cause exaggerated bronchoconstriction, induce human airway smooth muscle (HASM) cell proliferation, and recruit and activate inflammatory cells. Moreover, the number of HMCs present on asthmatic HASM is increased compared with that on nonasthmatic HASM. HASM cells also have the potential to actively participate in the inflammatory process by synthesizing cytokines and chemokines and expressing surface molecules, which have the capacity to perpetuate the inflammatory mechanisms present in asthma. This review specifically examines how the mediators of HMCs have the capacity to modulate many functions of HASM; how the synthetic function of HASM, particularly through the release and expression of stem cell factor, has the potential to influence HMC number and activation in an extraordinarily potent and proinflammatory manner; and how these interactions between HMCs and HASM have potential consequences for airway structure and inflammation relevant to the disease process of asthma.

  6. Human Rhinovirus Infection of Epithelial Cells Modulates Airway Smooth Muscle Migration.

    PubMed

    Shariff, Sami; Shelfoon, Christopher; Holden, Neil S; Traves, Suzanne L; Wiehler, Shahina; Kooi, Cora; Proud, David; Leigh, Richard

    2017-06-01

    Airway remodeling, a characteristic feature of asthma, begins in early life. Recurrent human rhinovirus (HRV) infections are a potential inciting stimulus for remodeling. One component of airway remodeling is an increase in airway smooth muscle cell (ASMC) mass with a greater proximity of the ASMCs to the airway epithelium. We asked whether human bronchial epithelial cells infected with HRV produced mediators that are chemotactic for ASMCs. ASMC migration was investigated using the modified Boyden Chamber and the xCELLigence Real-Time Cell Analyzer (ACEA Biosciences Inc., San Diego, CA). Multiplex bead analysis was used to measure HRV-induced epithelial chemokine release. The chemotactic effects of CCL5, CXCL8, and CXCL10 were also examined. Supernatants from HRV-infected epithelial cells caused ASMC chemotaxis. Pretreatment of ASMCs with pertussis toxin abrogated chemotaxis, as did treatment with formoterol, forskolin, or 8-bromo-cAMP. CCL5, CXCL8, and CXCL10 were the most up-regulated chemokines produced by HRV-infected airway epithelial cells. When recombinant CCL5, CXCL8, and CXCL10 were used at levels found in epithelial supernatants, they induced ASMC chemotaxis similar to that seen with epithelial cell supernatants. When examined individually, CCL5 was the most effective chemokine in causing ASMC migration, and treatment of supernatant from HRV-infected epithelial cells with anti-CCL5 antibodies significantly attenuated ASMC migration. These findings suggest that HRV-induced CCL5 can induce ASMC chemotaxis and thus may contribute to the pathogenesis of airway remodeling in patients with asthma.

  7. Symbiotic ciliates receive protection against UV damage from their algae: a test with Paramecium bursaria and Chlorella.

    PubMed

    Summerer, Monika; Sonntag, Bettina; Hörtnagl, Paul; Sommaruga, Ruben

    2009-05-01

    We assessed the photoprotective role of symbiotic Chlorella in the ciliate Paramecium bursaria by comparing their sensitivity to UV radiation (UVR) with Chlorella-reduced and Chlorella-free (aposymbiotic) cell lines of the same species. Aposymbiotic P. bursaria had significantly higher mortality than the symbiotic cell lines when exposed to UVR. To elucidate the protection mechanism, we assessed the algal distribution within the ciliate using thin-sections and transmission electron microscopy and estimated the screening factor by Chlorella based on an optical model. These analyses evidenced a substantial screening factor ranging, from 59.2% to 93.2% (320nm) for regular algal distribution. This screening efficiency reached up to approximately 100% when Chlorella algae were dislocated to the posterior region of the ciliate. The dislocation was observed in symbiotic ciliates only under exposure to UV plus photosynthetically active radiation (PAR) or to high PAR levels. Moreover, under exposure to UVB radiation and high PAR, symbiotic P. bursaria aggregated into dense spots. This behavior could represent an efficient avoidance strategy not yet described for ciliates. Analyses of the intact symbiosis and their algal symbionts for UV-screening compounds (mycosporine-like amino acids and sporopollenin) proved negative. Overall, our results show that photoprotection in this ciliate symbiosis represents an additional advantage to the hitherto postulated nutritional benefits.

  8. Local small airway epithelial injury induces global smooth muscle contraction and airway constriction.

    PubMed

    Zhou, Jian; Alvarez-Elizondo, Martha B; Botvinick, Elliot; George, Steven C

    2012-02-01

    Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca(2+) wave in the epithelium, and multiple Ca(2+) waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca(2+) or decreasing intracellular Ca(2+) both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca(2+)-dependent smooth muscle shortening.

  9. Targeting Phosphoinositide 3-Kinase γ in Airway Smooth Muscle Cells to Suppress Interleukin-13-Induced Mouse Airway Hyperresponsiveness

    PubMed Central

    Jiang, Haihong; Xie, Yan; Abel, Peter W.; Toews, Myron L.; Townley, Robert G.; Casale, Thomas B.

    2012-01-01

    We recently reported that phosphoinositide 3-kinase γ (PI3Kγ) directly regulates airway smooth muscle (ASM) contraction by modulating Ca2+ oscillations. Because ASM contraction plays a critical role in airway hyperresponsiveness (AHR) of asthma, the aim of the present study was to determine whether targeting PI3Kγ in ASM cells could suppress AHR in vitro and in vivo. Intranasal administration into mice of interleukin-13 (IL-13; 10 μg per mouse), a key pathophysiologic cytokine in asthma, induced AHR after 48 h, as assessed by invasive tracheostomy. Intranasal administration of a broad-spectrum PI3K inhibitor or a PI3Kγ-specific inhibitor 1 h before AHR assessment attenuated IL-13 effects. Airway responsiveness to bronchoconstrictor agonists was also examined in precision-cut mouse lung slices pretreated without or with IL-13 for 24 h. Acetylcholine and serotonin dose-response curves indicated that IL-13-treated lung slices had a 40 to 50% larger maximal airway constriction compared with controls. Furthermore, acetylcholine induced a larger initial Ca2+ transient and increased Ca2+ oscillations in IL-13-treated primary mouse ASM cells compared with control cells, correlating with increased cell contraction. As expected, PI3Kγ inhibitor treatment attenuated IL-13-augmented airway contractility of lung slices and ASM cell contraction. In both control and IL-13-treated ASM cells, small interfering RNA-mediated knockdown of PI3Kγ by 70% only reduced the initial Ca2+ transient by 20 to 30% but markedly attenuated Ca2+ oscillations and contractility of ASM cells by 50 to 60%. This report is the first to demonstrate that PI3Kγ in ASM cells is important for IL-13-induced AHR and that acute treatment with a PI3Kγ inhibitor can ameliorate AHR in a murine model of asthma. PMID:22543031

  10. Transduction of ferret airway epithelia using a pre-treatment and lentiviral gene vector.

    PubMed

    Cmielewski, Patricia; Farrow, Nigel; Donnelley, Martin; McIntyre, Chantelle; Penny-Dimri, Jahan; Kuchel, Tim; Parsons, David

    2014-11-21

    The safety and efficiency of gene therapies for cystic fibrosis (CF) need to be assessed in pre-clinical models. Using the normal ferret, this study sought to determine whether ferret airway epithelia could be transduced with a lysophosphatidylcholine (LPC) pre-treatment followed by a VSV-G pseudotyped HIV-1 based lentiviral (LV) vector, in preparation for future studies in CF ferrets. Six normal ferrets (7 -8 weeks old) were treated with a 150 μL LPC pre-treatment, followed one hour later by a 500 μL LV vector dose containing the LacZ transgene. LacZ gene expression in the conducting airways and lung was assessed by X-gal staining after 7 days. The presence of transduction in the lung, as well as off-target transduction in the liver, spleen and gonads, were assessed by qPCR. The levels of LV vector p24 protein bio-distribution in blood sera were assessed by ELISA at 0, 1, 3, 5 and 7 days. The dosing protocol was well tolerated. LacZ gene expression was observed en face in the trachea of all animals. Histology showed that ciliated and basal cells were transduced in the trachea, with rare LacZ transduced single cells noted in lung. p24 levels was not detectable in the sera of 5 of the 6 animals. The LacZ gene was not detected in the lung tissue and no off-target transduction was detected by qPCR. This study shows that ferret airway epithelia are transducible using our unique two-step pre-treatment and LV vector dosing protocol. We have identified a number of unusual anatomical factors that are likely to influence the level of transduction that can be achieved in ferret airways. The ability to transduce ferret airway epithelium is a promising step towards therapeutic LV-CFTR testing in a CF ferret model.

  11. Airway Hyperresponsiveness through Synergy of γδ T Cells and NKT Cells1

    PubMed Central

    Jin, Niyun; Miyahara, Nobuaki; Roark, Christina L.; French, Jena D.; Aydintug, M. Kemal; Matsuda, Jennifer L.; Gapin, Laurent; O'Brien, Rebecca L.; Gelfand, Erwin W.; Born, Willi K.

    2015-01-01

    Mice sensitized and challenged with OVA were used to investigate the role of innate T cells in the development of allergic airway hyperresponsiveness (AHR). AHR, but not eosinophilic airway inflammation, was induced in T cell-deficient mice by small numbers of cotransferred γδ T cells and invariant NKT cells, whereas either cell type alone was not effective. Only Vγ1+Vδ5+ γδ T cells enhanced AHR. Surprisingly, OVA-specific αβ T cells were not required, revealing a pathway of AHR development mediated entirely by innate T cells. The data suggest that lymphocytic synergism, which is key to the Ag-specific adaptive immune response, is also intrinsic to T cell-dependent innate responses. PMID:17709511

  12. Boosting airway T-regulatory cells by gastrointestinal stimulation as a strategy for asthma control.

    PubMed

    Strickland, D H; Judd, S; Thomas, J A; Larcombe, A N; Sly, P D; Holt, P G

    2011-01-01

    The hallmark of atopic asthma is transient airways hyperresponsiveness (AHR) preceded by aeroallergen-induced Th-cell activation. This is preceded by upregulation of CD86 on resident airway dendritic cells (DCs) that normally lack competence in T-cell triggering. Moreover, AHR duration is controlled via T-regulatory (Treg) cells, which can attenuate CD86 upregulation on DC. We show that airway mucosal Treg/DC interaction represents an accessible therapeutic target for asthma control. Notably, baseline airway Treg activity in sensitized rats can be boosted by microbe-derived stimulation of the gut, resulting in enhanced capacity to control CD86 expression on airway DC triggered by aeroallergen and accelerated resolution of AHR.

  13. A survey of entodiniomorphid ciliates in chimpanzees and bonobos.

    PubMed

    Pomajbíková, Katerina; Petrzelková, Klára J; Profousová, Ilona; Petrásová, Jana; Kisidayová, Svetlana; Varádyová, Zora; Modrý, David

    2010-05-01

    Intestinal entodiniomorphid ciliates are commonly diagnosed in the feces of wild apes of the genera Pan and Gorilla. Although some authors previously considered entodiniomorphid ciliates as possible pathogens, a symbiotic function within the intestinal ecosystem and their participation in fiber fermentation has been proposed. Previous studies have suggested that these ciliates gradually disappear under captive conditions. We studied entodiniomorphid ciliates in 23 captive groups of chimpanzees, three groups of captive bonobos and six populations of wild chimpanzees. Fecal samples were examined using Sheather's flotation and Merthiolate-Iodine-Formaldehyde Concentration (MIFC) methods. We quantified the number of ciliates per gram of feces. The MIFC method was more sensitive for ciliate detection than the flotation method. Ciliates of genus Troglodytella were detected in 13 groups of captive chimpanzees, two groups of bonobos and in all wild chimpanzee populations studied. The absence of entodiniomorphids in some captive groups might be because of the extensive administration of chemotherapeutics in the past or a side-effect of the causative or prophylactic administration of antiparasitic or antibiotic drugs. The infection intensities of ciliates in captive chimpanzees were higher than in wild ones. We suppose that the over-supply of starch, typical in captive primate diets, might induce an increase in the number of ciliates. In vitro studies on metabolism and biochemical activities of entodiniomorphids are needed to clarify their role in ape digestion.

  14. Local small airway epithelial injury induces global smooth muscle contraction and airway constriction

    PubMed Central

    Zhou, Jian; Alvarez-Elizondo, Martha B.; Botvinick, Elliot

    2012-01-01

    Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca2+ wave in the epithelium, and multiple Ca2+ waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca2+ or decreasing intracellular Ca2+ both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca2+-dependent smooth muscle shortening. PMID:22114176

  15. Ciliated protozoa of two antarctic lakes: analysis by quantitative protargol staining and examination of artificial substrates

    NASA Technical Reports Server (NTRS)

    Kepner, R. L. Jr; Wharton, R. A. Jr; Coats, D. W.; Wharton RA, J. r. (Principal Investigator)

    1999-01-01

    Planktonic and artificial substrate-associated ciliates have been identified in two perennially ice-covered antarctic lakes of the McMurdo Dry Valleys. Abundances estimated by quantitative protargol staining ranged from < 5 to 31690 cells l-1, levels that are comparable to those previously obtained using other methods. Nineteen ciliate taxa were identified from these lakes, with the most frequently encountered genera being Plagiocampa, Askenasia, Monodinium, Sphaerophrya and Vorticella. The taxonomic findings compare favorably with those of previous investigators; however four previously unreported genera were observed in both Lakes Fryxell and Hoare. The variability in the depth distributions of ciliates in Lake Fryxell is explained in terms of lake physicochemical properties and ciliate prey distributions, while factors related to temporal succession in the Lake Hoare assemblage remain unexplained. Local marine or temperate zone freshwater habitats are a more likely source than the surrounding dry valleys soils for present ciliate colonists in these lakes. Although the taxonomic uncertainties require further examination, our results suggest that ciliate populations in these antarctic lakes undergo significant fluctuations and are more diverse than was previously recognized.

  16. Ciliates in chalk-stream habitats congregate in biodiversity hot spots.

    PubMed

    Bradley, Mark W; Esteban, Genoveva F; Finlay, Bland J

    2010-09-01

    Free-living ciliates are a diverse group of microbial eukaryotes that inhabit aquatic environments. They have a vital role within the 'microbial loop', being consumers of microscopic prey such as bacteria, micro-algae, and flagellates, and representing a link between the microscopic and macroscopic components of aquatic food webs. This investigation describes the ciliate communities of four habitats located in the catchment of the River Frome, the major chalk-stream in southern Britain. The ciliate communities were characterised in terms of community assemblage, species abundance and size classes. The ciliate communities investigated proved to be highly diverse, yielding a total of 114 active species. An additional 15 'cryptic' ciliate species were also uncovered. Heterogeneity in the ciliate communities was evident at multiple spatial scales, revealing hot spots of species richness, both within and between habitats. The ciliate communities of habitats with flowing water were composed of smaller ciliates compared to the still-water habitats examined. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  17. Chemical Defense by Erythrolactones in the Euryhaline Ciliated Protist, Pseudokeronopsis erythrina.

    PubMed

    Buonanno, Federico; Anesi, Andrea; Giuseppe, Graziano Di; Guella, Graziano; Ortenzi, Claudio

    2017-02-01

    Pseudokeronopsis erythrina produces three new secondary metabolites, erythrolactones A2, B2 and C2, and their respective sulfate esters (A1, B1, C1), the structures of which have been recently elucidated on the basis of NMR spectroscopic data coupled to high resolution mass measurements (HR-MALDI-TOF). An analysis of the discharge of the protozoan pigment granules revealed that the non-sulfonated erythrolactones are exclusively stored in these cortical organelles, which are commonly used by a number of ciliates as chemical weapons in offense/defense interactions with prey and predators. We evaluated the toxic activity of pigment granule discharge on a panel of free-living ciliates and micro-invertebrates, and the activity of each single purified erythrolactone on three ciliate species. We also observed predator-prey interactions of P. erythrina with unicellular and multicellular predators. Experimental results confirm that only P. erythrina cells with discharged pigment granules were preferentially or exclusively hunted and eaten by at least some of its predators, whereas almost all intact (fully pigmented) cells remained alive. Our results indicate that erythrolactones are very effective as a chemical defense in P. erythrina.

  18. Sphingosine-1-phosphate induces pro-remodelling response in airway smooth muscle cells

    PubMed Central

    Fuerst, E; Foster, H R; Ward, J P T; Corrigan, C J; Cousins, D J; Woszczek, G

    2014-01-01

    Background Increased proliferation of airway smooth muscle (ASM) cells leading to hyperplasia and increased ASM mass is one of the most characteristic features of airway remodelling in asthma. A bioactive lipid, sphingosine-1-phosphate (S1P), has been suggested to affect airway remodelling by stimulation of human ASM cell proliferation. Objective To investigate the effect of S1P on signalling and regulation of gene expression in ASM cells from healthy and asthmatic individuals. Methods Airway smooth muscle cells grown from bronchial biopsies of healthy and asthmatic individuals were exposed to S1P. Gene expression was analysed using microarray, real-time PCR and Western blotting. Receptor signalling and function were determined by mRNA knockdown and intracellular calcium mobilization experiments. Results S1P potently regulated the expression of more than 80 genes in human ASM cells, including several genes known to be involved in the regulation of cell proliferation and airway remodelling (HBEGF, TGFB3, TXNIP, PLAUR, SERPINE1, RGS4). S1P acting through S1P2 and S1P3 receptors activated intracellular calcium mobilization and extracellular signal-regulated and Rho-associated kinases to regulate gene expression. S1P-induced responses were not inhibited by corticosteroids and did not differ significantly between ASM cells from healthy and asthmatic individuals. Conclusion S1P induces a steroid-resistant, pro-remodelling pathway in ASM cells. Targeting S1P or its receptors could be a novel treatment strategy for inhibiting airway remodelling in asthma. PMID:25041788

  19. MAML2 Rearrangements in Variant Forms of Mucoepidermoid Carcinoma: Ancillary Diagnostic Testing for the Ciliated and Warthin-like Variants.

    PubMed

    Bishop, Justin A; Cowan, Morgan L; Shum, Chung H; Westra, William H

    2018-01-01

    Mucoepidermoid carcinoma (MEC) is the most common salivary gland malignancy. Recent studies have shown that most MECs harbor gene fusions involving MAML2-an alteration that appears to be specific for MEC, a finding that could be diagnostically useful. While most cases of MEC are histologically straightforward, uncommon variants can cause considerable diagnostic difficulty. We present 2 variants of MEC for which MAML2 studies were crucial in establishing a diagnosis: a previously undescribed ciliated variant, and the recently described Warthin-like variant. All cases of ciliated and Warthin-like MEC were retrieved from the archives of The Johns Hopkins Hospital. Break-apart fluorescence in situ hybridization for MAML2 was performed on all cases. One ciliated MEC and 6 Warthin-like MECs were identified. The ciliated MEC presented as a 4.6 cm cystic lymph node metastasis originating from the tongue base in a 47-year-old woman. The Warthin-like MECs presented as parotid masses ranging in size from 1.2 to 3.3 (mean, 2.7 cm) in 4 women and 2 men. The ciliated MEC consisted of macrocystic spaces punctuated by tubulopapillary proliferations of squamoid cells and ciliated columnar cells. The Warthin-like MECs were comprised of cystic spaces lined by multilayered oncocytic to squamoid cells surrounded by a circumscribed cuff of lymphoid tissue with germinal centers. In these cases, the Warthin-like areas dominated the histologic picture. Conventional MEC, when present, represented a minor tumor component. MAML2 rearrangements were identified in all cases. Warthin-like MEC, and now a ciliated form of MEC, are newly described variants of a common salivary gland carcinoma. Unfamiliarity with these novel forms, unanticipated cellular features (eg, cilia), and morphologic overlap with mundane benign processes (eg, developmental ciliated cysts, Warthin tumor) or other carcinomas (eg, ciliated human papillomavirus-related carcinoma) may render these variants susceptible to

  20. Basal body assembly in ciliates: the power of numbers

    PubMed Central

    Pearson, Chad G.; Winey, Mark

    2009-01-01

    Centrioles perform the dual functions of organizing both centrosomes and cilia. The biogenesis of nascent centrioles is an essential cellular event that is tightly coupled to the cell cycle so that each cell contains only two or four centrioles at any given point in the cell cycle. The assembly of centrioles and their analogs, basal bodies, is well characterized at the ultrastructural level whereby structural modules are built into a functional organelle. Genetic studies in model organisms combined with proteomic, bioinformatic, and identifying ciliary disease gene orthologs have revealed a wealth of molecules requiring further analysis to determine their roles in centriole duplication, assembly, and function. Nonetheless, at this stage our understanding of how molecular components interact to build new centrioles and basal bodies is limited. The ciliates, Tetrahymena and Paramecium, historically have been the subject of cytological and genetic study of basal bodies. Recent advances in the ciliate genetic and molecular toolkit have placed these model organisms in a favorable position to study the molecular mechanisms of centriole and basal body assembly. PMID:19192246

  1. Ciliate communities consistently associated with coral diseases

    NASA Astrophysics Data System (ADS)

    Sweet, M. J.; Séré, M. G.

    2016-07-01

    Incidences of coral disease are increasing. Most studies which focus on diseases in these organisms routinely assess variations in bacterial associates. However, other microorganism groups such as viruses, fungi and protozoa are only recently starting to receive attention. This study aimed at assessing the diversity of ciliates associated with coral diseases over a wide geographical range. Here we show that a wide variety of ciliates are associated with all nine coral diseases assessed. Many of these ciliates such as Trochilia petrani and Glauconema trihymene feed on the bacteria which are likely colonizing the bare skeleton exposed by the advancing disease lesion or the necrotic tissue itself. Others such as Pseudokeronopsis and Licnophora macfarlandi are common predators of other protozoans and will be attracted by the increase in other ciliate species to the lesion interface. However, a few ciliate species (namely Varistrombidium kielum, Philaster lucinda, Philaster guamense, a Euplotes sp., a Trachelotractus sp. and a Condylostoma sp.) appear to harbor symbiotic algae, potentially from the coral themselves, a result which may indicate that they play some role in the disease pathology at the very least. Although, from this study alone we are not able to discern what roles any of these ciliates play in disease causation, the consistent presence of such communities with disease lesion interfaces warrants further investigation.

  2. Can a fermentation gas mainly produced by rumen Isotrichidae ciliates be a potential source of biohydrogen and a fuel for a chemical fuel cell?

    PubMed

    Piela, Piotr; Michałowski, Tadeusz; Miltko, Renata; Szewczyk, Krzysztof; Sikora, Radosław; Grzesiuk, Elzbieta; Sikora, Anna

    2010-07-01

    Bacteria, fungi and protozoa inhabiting the rumen, the largest chamber of the ruminants' stomach, release large quantities of hydrogen during the fermentation of carbohydrates. The hydrogen is used by coexisting methanogens to produce methane in energy-yielding processes. This work shows, for the first time, a fundamental possibility of using a hydrogen-rich fermentation gas produced by selected rumen ciliates to feed a low-temperature hydrogen fuel cell. A biohydrogen fuel cell (BHFC) was constructed consisting of (i) a bioreactor, in which a hydrogen-rich gas was produced from glucose by rumen ciliates, mainly of the Isotrichidae family, deprived of intra- and extracellular bacteria, methanogens, and fungi, and (ii) a chemical fuel cell of the polymer-electrolyte type (PEFC). The fuel cell was used as a tester of the technical applicability of the fermentation gas produced by the rumen ciliates for power generation. The average estimated hydrogen yield was ca. 1.15 mol H2 per mol of fermented glucose. The BHFC performance was equal to the performance of the PEFC running on pure hydrogen. No fuel cell poisoning effects were detected. A maximum power density of 1.66 kW/m2 (PEFC geometric area) was obtained at room temperature. The maximum volumetric power density was 128 W/m3 but the coulombic efficiency was only ca. 3.8%. The configuration of the bioreactor limited the continuous operation time of this BHFC to ca. 14 hours.

  3. Cell-to-Cell Contact and Nectin-4 Govern Spread of Measles Virus from Primary Human Myeloid Cells to Primary Human Airway Epithelial Cells.

    PubMed

    Singh, Brajesh K; Li, Ni; Mark, Anna C; Mateo, Mathieu; Cattaneo, Roberto; Sinn, Patrick L

    2016-08-01

    Measles is a highly contagious, acute viral illness. Immune cells within the airways are likely first targets of infection, and these cells traffic measles virus (MeV) to lymph nodes for amplification and subsequent systemic dissemination. Infected immune cells are thought to return MeV to the airways; however, the mechanisms responsible for virus transfer to pulmonary epithelial cells are poorly understood. To investigate this process, we collected blood from human donors and generated primary myeloid cells, specifically, monocyte-derived macrophages (MDMs) and dendritic cells (DCs). MDMs and DCs were infected with MeV and then applied to primary cultures of well-differentiated airway epithelial cells from human donors (HAE). Consistent with previous results obtained with free virus, infected MDMs or DCs were incapable of transferring MeV to HAE when applied to the apical surface. Likewise, infected MDMs or DCs applied to the basolateral surface of HAE grown on small-pore (0.4-μm) support membranes did not transfer virus. In contrast, infected MDMs and DCs applied to the basolateral surface of HAE grown on large-pore (3.0-μm) membranes successfully transferred MeV. Confocal microscopy demonstrated that MDMs and DCs are capable of penetrating large-pore membranes but not small-pore membranes. Further, by using a nectin-4 blocking antibody or recombinant MeV unable to enter cells through nectin-4, we demonstrated formally that transfer from immune cells to HAE occurs in a nectin-4-dependent manner. Thus, both infected MDMs and DCs rely on cell-to-cell contacts and nectin-4 to efficiently deliver MeV to the basolateral surface of HAE. Measles virus spreads rapidly and efficiently in human airway epithelial cells. This rapid spread is based on cell-to-cell contact rather than on particle release and reentry. Here we posit that MeV transfer from infected immune cells to epithelial cells also occurs by cell-to-cell contact rather than through cell-free particles. In

  4. Murine epithelial cells: isolation and culture.

    PubMed

    Davidson, Donald J; Gray, Michael A; Kilanowski, Fiona M; Tarran, Robert; Randell, Scott H; Sheppard, David N; Argent, Barry E; Dorin, Julia R

    2004-08-01

    We describe an air-liquid interface primary culture method for murine tracheal epithelial cells on semi-permeable membranes, forming polarized epithelia with a high transepithelial resistance, differentiation to ciliated and secretory cells, and physiologically appropriate expression of key genes and ion channels. We also describe the isolation of primary murine nasal epithelial cells for patch-clamp analysis, generating polarised cells with physiologically appropriate distribution and ion channel expression. These methods enable more physiologically relevant analysis of murine airway epithelial cells in vitro and ex vivo, better utilisation of transgenic mouse models of human pulmonary diseases, and have been approved by the European Working Group on CFTR expression.

  5. Dysregulation of type 2 innate lymphoid cells and TH2 cells impairs pollutant-induced allergic airway responses.

    PubMed

    De Grove, Katrien C; Provoost, Sharen; Hendriks, Rudi W; McKenzie, Andrew N J; Seys, Leen J M; Kumar, Smitha; Maes, Tania; Brusselle, Guy G; Joos, Guy F

    2017-01-01

    Although the prominent role of T H 2 cells in type 2 immune responses is well established, the newly identified type 2 innate lymphoid cells (ILC2s) can also contribute to orchestration of allergic responses. Several experimental and epidemiologic studies have provided evidence that allergen-induced airway responses can be further enhanced on exposure to environmental pollutants, such as diesel exhaust particles (DEPs). However, the components and pathways responsible remain incompletely known. We sought to investigate the relative contribution of ILC2 and adaptive T H 2 cell responses in a murine model of DEP-enhanced allergic airway inflammation. Wild-type, Gata-3 +/nlslacZ (Gata-3-haploinsufficient), RAR-related orphan receptor α (RORα) fl/fl IL7R Cre (ILC2-deficient), and recombination-activating gene (Rag) 2 -/- mice were challenged with saline, DEPs, or house dust mite (HDM) or DEP+HDM. Airway hyperresponsiveness, as well as inflammation, and intracellular cytokine expression in ILC2s and T H 2 cells in the bronchoalveolar lavage fluid and lung tissue were assessed. Concomitant DEP+HDM exposure significantly enhanced allergic airway inflammation, as characterized by increased airway eosinophilia, goblet cell metaplasia, accumulation of ILC2s and T H 2 cells, type 2 cytokine production, and airway hyperresponsiveness compared with sole DEPs or HDM. Reduced Gata-3 expression decreased the number of functional ILC2s and T H 2 cells in DEP+HDM-exposed mice, resulting in an impaired DEP-enhanced allergic airway inflammation. Interestingly, although the DEP-enhanced allergic inflammation was marginally reduced in ILC2-deficient mice that received combined DEP+HDM, it was abolished in DEP+HDM-exposed Rag2 -/- mice. These data indicate that dysregulation of ILC2s and T H 2 cells attenuates DEP-enhanced allergic airway inflammation. In addition, a crucial role for the adaptive immune system was shown on concomitant DEP+HDM exposure. Copyright © 2016 American

  6. Rumen ciliate protozoa of domestic sheep (Ovis aries) and goat (Capra aegagrus hircus) in Kyrgyzstan.

    PubMed

    Gürelli, Gözde; Canbulat, Savaş; Aldayarov, Nurbek; Dehority, Burk A

    2016-03-01

    Species composition and concentration of rumen ciliate protozoa were investigated in the rumen contents of 14 domestic sheep and 1 goat living in Bishkek, Kyrgyzstan. This is the first report on rumen ciliates from ruminants living in Kyrgyzstan. In sheep 12 genera, 28 species and 12 morphotypes were detected, whereas in goat 8 genera, 12 species and 4 morphotypes were detected. The density of ciliates in sheep was (28.1 ± 20.0) × 10(4) cells mL(-1) and in goat was 37.0 × 10(4) cells mL(-1). Dasytricha ruminantium, Isotricha prostoma, Entodinium simulans and Ophryoscolex caudatus were major species (100%) in sheep, and for the first time, Diplodinium rangiferi was detected in a domestic goat. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Visualization of ex vivo human ciliated epithelium and induced flow using optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ling, Yuye; Gamm, Uta A.; Yao, Xinwen; Arteaga-Solis, Emilio; Emala, Charles W.; Choma, Michael A.; Hendon, Christine P.

    2017-04-01

    The ciliated epithelium is important to the human respiratory system because it clears mucus that contains harmful microorganisms and particulate matter. We report the ex vivo visualization of human trachea/bronchi ciliated epithelium and induced flow characterized by using spectral-domain optical coherence tomography (SD-OCT). A total number of 17 samples from 7 patients were imaged. Samples were obtained from Columbia University Department of Anesthesiology's tissue bank. After excision, the samples were placed in Gibco Medium 199 solution with oxygen at 4°C until imaging. The samples were maintained at 36.7°C throughout the experiment. The imaging protocol included obtaining 3D volumes and 200 consecutive B-scans parallel to the head-to-feet direction (superior-inferior axis) of the airway, using Thorlabs Telesto system at 1300 nm at 28 kHz A-line rate and a custom built high resolution SDOCT system at 800nm at 32 kHz A-line rate. After imaging, samples were processed with H and E histology. Speckle variance of the time resolved datasets demonstrate significant contrast at the ciliated epithelium sites. Flow images were also obtained after injecting 10μm polyester beads into the solution, which shows beads traveling trajectories near the ciliated epithelium areas. In contrary, flow images taken in the orthogonal plane show no beads traveling trajectories. This observation is in line with our expectation that cilia drive flow predominantly along the superior-inferior axis. We also observed the protective function of the mucus, shielding the epithelium from the invasion of foreign objects such as microspheres. Further studies will be focused on the cilia's physiological response to environmental changes such as drug administration and physical injury.

  8. Laparoscopic Excision of a Ciliated Hepatic Foregut Cyst

    PubMed Central

    Mak, Grace Z.; Reynolds, Jordan P.; Tevar, Amit D.; Pritts, Timothy A.

    2009-01-01

    Ciliated hepatic foregut cysts are uncommon solitary cysts of the liver that originate from the embryologic foregut. Clinically and radiographically, these lesions can be difficult to distinguish from neoplasms. Recent reports have demonstrated that ciliated hepatic foregut cysts may undergo dysplastic progression, supporting the argument to excise these cysts when discovered. Fewer than 100 cases have been described in the literature since the first description of a ciliated hepatic foregut cyst in 1857. We present a patient who recently underwent laparoscopic excision of a ciliated hepatic foregut cyst, review the literature, and propose the rationale for attempting removal of these cysts via a laparoscopic approach. PMID:19366552

  9. Characterization of ciliate diversity in bromeliad tank waters from the Brazilian Atlantic Forest.

    PubMed

    Simão, Taiz L L; Borges, Adriana Giongo; Gano, Kelsey A; Davis-Richardson, Austin G; Brown, Christopher T; Fagen, Jennie R; Triplett, Eric W; Dias, Raquel; Mondin, Claudio A; da Silva, Renata M; Eizirik, Eduardo; Utz, Laura R P

    2017-10-01

    Bromeliads are a diverse group of plants that includes many species whose individuals are capable of retaining water, forming habitats called phytotelmata. These habitats harbor a diversity of organisms including prokaryotes, unicellular eukaryotes, metazoans, and fungi. Among single-celled eukaryotic organisms, ciliates are generally the most abundant. In the present study, we used Illumina DNA sequencing to survey the eukaryotic communities, especially ciliates, inhabiting the tanks of the bromeliads Aechmea gamosepala and Vriesea platynema in the Atlantic Forest of southern Brazil. Filtered sequences were clustered into distinct OTUs using a 99% identity threshold, and then assigned to phylum and genus using a BLAST-based approach (implemented in QIIME) and the SILVA reference database. Both bromeliad species harbored very diverse eukaryotic communities, with Arthropoda and Ciliophora showing the highest abundance (as estimated by the number of sequence reads). The ciliate genus Tetrahymena was the most abundant among single-celled organisms, followed by apicomplexan gregarines and the ciliate genus Glaucoma. Another interesting finding was the presence and high abundance of Trypanosoma in these bromeliad tanks, demonstrating their occurrence in this type of environment. The results presented here demonstrate a hidden diversity of eukaryotes in bromeliad tank waters, opening up new avenues for their in-depth characterization. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  10. Mast cell mediators in citric acid-induced airway constriction of guinea pigs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, C.-H.; Lai, Y.-L.

    2005-08-15

    We demonstrated previously that mast cells play an important role in citric acid (CA)-induced airway constriction. In this study, we further investigated the underlying mediator(s) for this type of airway constriction. At first, to examine effects caused by blocking agents, 67 young Hartley guinea pigs were divided into 7 groups: saline + CA; methysergide (serotonin receptor antagonist) + CA; MK-886 (leukotriene synthesis inhibitor) + CA; mepyramine (histamine H{sub 1} receptor antagonist) + CA; indomethacin (cyclooxygenase inhibitor) + CA; cromolyn sodium (mast cell stabilizer) + CA; and compound 48/80 (mast cell degranulating agent) + CA. Then, we tested whether leukotriene C{submore » 4} (LTC{sub 4}) or histamine enhances CA-induced airway constriction in compound 48/80-pretreated guinea pigs. We measured dynamic respiratory compliance (Crs) and forced expiratory volume in 0.1 s (FEV{sub 0.1}) during either baseline or recovery period. In addition, we detected histamine level, an index of pulmonary mast cell degranulation, in bronchoalveolar lavage (BAL) samples. Citric acid aerosol inhalation caused decreases in Crs and FEV{sub 0.1}, indicating airway constriction in the control group. This airway constriction was significantly attenuated by MK-886, mepyramine, cromolyn sodium, and compound 48/80, but not by either methysergide or indomethacin. Both LTC{sub 4} and histamine infusion significantly increased the magnitude of CA-induced airway constriction in compound 48/80-pretreated guinea pigs. Citric acid inhalation caused significant increase in histamine level in the BAL sample, which was significantly suppressed by compound 48/80. These results suggest that leukotrienes and histamine originating from mast cells play an important role in CA inhalation-induced noncholinergic airway constriction.« less

  11. RhoA orchestrates glycolysis for Th2 cell differentiation and allergic airway inflammation

    PubMed Central

    Yang, Jun-Qi; Kalim, Khalid W.; Li, Yuan; Zhang, Shuangmin; Hinge, Ashwini; Filippi, Marie-Dominique; Zheng, Yi; Guo, Fukun

    2015-01-01

    Background Mitochondrial metabolism is known to be important for T cell activation. However, its involvement in effector T cell differentiation has just begun to gain attention. Importantly, how metabolic pathways are integrated with T cell activation and effector cell differentiation and function remains largely unknown. Objective We sought to test our hypothesis that RhoA GTPase orchestrates glycolysis for Th2 cell differentiation and Th2-mediated allergic airway inflammation. Methods Conditional RhoA-deficient mice were generated by crossing RhoAflox/flox mice with CD2-Cre transgenic mice. Effects of RhoA on Th2 differentiation were evaluated by in vitro Th2-polarized culture conditions, and in vivo in ovalbumin (OVA)-induced allergic airway inflammation. Cytokines were measured by intracellular staining and ELISA. T cell metabolism was measured by Seahorse XF24 Analyzer and flow cytometry. Results Disruption of RhoA inhibited T cell activation and Th2 differentiation in vitro and prevented the development of allergic airway inflammation in vivo, with no effect on Th1 cells. RhoA deficiency in activated T cells led to multiple defects in metabolic pathways such as glycolysis and oxidative phosphorylation. Importantly, RhoA couples glycolysis to Th2 cell differentiation and allergic airway inflammation via regulating IL-4 receptor mRNA expression and Th2-specific signaling events. Finally, inhibition of Rho-associated protein kinase (ROCK), an immediate downstream effector of RhoA, blocked Th2 differentiation and allergic airway inflammation. Conclusion RhoA is a key component of the signaling cascades leading to Th2-differentiation and allergic airway inflammation, at least in part, through the control of T cell metabolism and via ROCK pathway. PMID:26100081

  12. Innate lymphoid cells contribute to allergic airway disease exacerbation by obesity.

    PubMed

    Everaere, Laetitia; Ait-Yahia, Saliha; Molendi-Coste, Olivier; Vorng, Han; Quemener, Sandrine; LeVu, Pauline; Fleury, Sebastien; Bouchaert, Emmanuel; Fan, Ying; Duez, Catherine; de Nadai, Patricia; Staels, Bart; Dombrowicz, David; Tsicopoulos, Anne

    2016-11-01

    Epidemiologic and clinical observations identify obesity as an important risk factor for asthma exacerbation, but the underlying mechanisms remain poorly understood. Type 2 innate lymphoid cells (ILC2s) and type 3 innate lymphoid cells (ILC3s) have been implicated, respectively, in asthma and adipose tissue homeostasis and in obesity-associated airway hyperresponsiveness (AHR). We sought to determine the potential involvement of innate lymphoid cells (ILCs) in allergic airway disease exacerbation caused by high-fat diet (HFD)-induced obesity. Obesity was induced by means of HFD feeding, and allergic airway inflammation was subsequently induced by means of intranasal administration of house dust mite (HDM) extract. AHR, lung and visceral adipose tissue inflammation, humoral response, cytokines, and innate and adaptive lymphoid populations were analyzed in the presence or absence of ILCs. HFD feeding exacerbated allergic airway disease features, including humoral response, airway and tissue eosinophilia, AHR, and T H 2 and T H 17 pulmonary profiles. Notably, nonsensitized obese mice already exhibited increased lung ILC counts and tissue eosinophil infiltration compared with values in lean mice in the absence of AHR. The numbers of total and cytokine-expressing lung ILC2s and ILC3s further increased in HDM-challenged obese mice compared with those in HDM-challenged lean mice, and this was accompanied by high IL-33 and IL-1β levels and decreased ILC markers in visceral adipose tissue. Furthermore, depletion of ILCs with an anti-CD90 antibody, followed by T-cell reconstitution, led to a profound decrease in allergic airway inflammatory features in obese mice, including T H 2 and T H 17 infiltration. These results indicate that HFD-induced obesity might exacerbate allergic airway inflammation through mechanisms involving ILC2s and ILC3s. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. Evaluation of double formalin--Lugol's fixation in assessing number and biomass of ciliates: an example of estimations at mesoscale in NE Atlantic.

    PubMed

    Karayanni, Hera; Christaki, Urania; Van Wambeke, France; Dalby, Andrew P

    2004-03-01

    Ciliated protozoa are potential grazers of primary and bacterial production and act as intermediaries between picoplankton and copepods and other large suspension feeders. Accurate determination of ciliate abundance and feeding mode is crucial in oceanic carbon budget estimations. However, the impact of different fixatives on the abundance and cell volume of ciliates has been investigated in only a few studies using either laboratory cultures or natural populations. Lugol's solution and formalin are the most commonly used fixatives for the preservation of ciliates samples. In the present study, the aim was to compare 0.4% Lugol's solution and 2% borated-formalin fixation and evaluate the need of counting duplicate samples each using a different fixative. For this, a large number of samples (n = 110) from the NE Atlantic was analyzed in the frame of POMME program (Multidisciplinary Mesoscale Ocean Program). We established a statistically significant relationship (p < 0.0001) between Lugol's and formalin fixed samples for both abundance (r2 = 0.50) and biomass (r2 = 0.76) of aloricate ciliates which showed that counts were higher in Lugol's solution by a factor of 2 and a non-taxon specific cell-loss in formalin. However, loricate ciliate abundance in our samples which were represented primarily by Tintinnus spp. did not show any difference between the two treatments. Abundance and biomass of mixotrophic ciliates (chloroplast-bearing cells) were for various reasons underestimated in both treatments. Our results show that unique fixation by formalin may severely underestimate ciliates abundance and biomass although their population may not alter. For this reason, Lugol's solution is best for the estimation of their abundance and biomass. However, for counts of mixotrophs and the evaluation of the ecological role of ciliates in carbon flux, double fixation is essential. Compromises regarding the fixatives have lead to severe underestimations of mixotrophs in studies

  14. Methods for the cultivation of ciliated protozoa from the large intestine of horses.

    PubMed

    Bełżecki, Grzegorz; Miltko, Renata; Michałowski, Tadeusz; McEwan, Neil R

    2016-01-01

    This paper describes cultivation methods for ciliates from the digestive tract of horses. Members of three different genera were successfully grown in vitro for short periods of time. However, only cells belonging to the genus Blepharocorys, which resides in the horse's large intestine, were maintained for longer periods. This Blepharocorys culture was successfully grown in vitro after inoculation of freshly excreted horse faeces in culture medium containing a population of bacteria. The ciliates survived for over six months, and the density of their population varied between 1.7 × 10(3) and 2.4 × 10(3) cells mL(-1). Favourable conditions for the prolonged cultivation of this ciliate were observed when the medium was prepared by mixing horse faeces and 'caudatum' salt solution in a 1:1 V/V ratio together with food (60% powdered meadow hay, 16% wheat gluten, 12% barley flour and 12% microcrystalline cellulose) supplied as 0.20 mg mL(-1) culture per day. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Primary Airway Epithelial Cell Gene Editing Using CRISPR-Cas9.

    PubMed

    Everman, Jamie L; Rios, Cydney; Seibold, Max A

    2018-01-01

    The adaptation of the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR associated endonuclease 9 (CRISPR-Cas9) machinery from prokaryotic organisms has resulted in a gene editing system that is highly versatile, easily constructed, and can be leveraged to generate human cells knocked out (KO) for a specific gene. While standard transfection techniques can be used for the introduction of CRISPR-Cas9 expression cassettes to many cell types, delivery by this method is not efficient in many primary cell types, including primary human airway epithelial cells (AECs). More efficient delivery in AECs can be achieved through lentiviral-mediated transduction, allowing the CRISPR-Cas9 system to be integrated into the genome of the cell, resulting in stable expression of the nuclease machinery and increasing editing rates. In parallel, advancements have been made in the culture, expansion, selection, and differentiation of AECs, which allow the robust generation of a bulk edited AEC population from transduced cells. Applying these methods, we detail here our latest protocol to generate mucociliary epithelial cultures knocked out for a specific gene from donor-isolated primary human basal airway epithelial cells. This protocol includes methods to: (1) design and generate lentivirus which targets a specific gene for KO with CRISPR-Cas9 machinery, (2) efficiently transduce AECs, (3) culture and select for a bulk edited AEC population, (4) molecularly screen AECs for Cas9 cutting and specific sequence edits, and (5) further expand and differentiate edited cells to a mucociliary airway epithelial culture. The AEC knockouts generated using this protocol provide an excellent primary cell model system with which to characterize the function of genes involved in airway dysfunction and disease.

  16. Curcumin regulates airway epithelial cell cytokine responses to the pollutant cadmium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rennolds, Jessica; Malireddy, Smitha; Hassan, Fatemat

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cadmium induces secretion of IL-6 and IL-8 by two distinct pathways. Black-Right-Pointing-Pointer Cadmium increases NAPDH oxidase activity leading to Erk activation and IL-8 secretion. Black-Right-Pointing-Pointer Curcumin prevents cadmium-induced secretion of both IL-6 and IL-8 by airway cells. Black-Right-Pointing-Pointer Curcumin could be use to suppress lung inflammation due to cadmium inhalation. -- Abstract: Cadmium is a toxic metal present in the environment and its inhalation can lead to pulmonary disease such as lung cancer and chronic obstructive pulmonary disease. These lung diseases are characterized by chronic inflammation. Here we show that exposure of human airway epithelial cells to cadmiummore » promotes a polarized apical secretion of IL-6 and IL-8, two pivotal pro-inflammatory cytokines known to play an important role in pulmonary inflammation. We also determined that two distinct pathways controlled secretion of these proinflammatory cytokines by human airway epithelial cells as cadmium-induced IL-6 secretion occurs via an NF-{kappa}B dependent pathway, whereas IL-8 secretion involves the Erk1/2 signaling pathway. Interestingly, the natural antioxidant curcumin could prevent both cadmium-induced IL-6 and IL-8 secretion by human airway epithelial cells. In conclusion, curcumin could be used to prevent airway inflammation due to cadmium inhalation.« less

  17. Airway epithelial cell response to human metapneumovirus infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, X.; Liu, T.; Spetch, L.

    2007-11-10

    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections (LRTIs) in infants, elderly and immunocompromised patients. In this study, we show that hMPV can infect in a similar manner epithelial cells representative of different tracts of the airways. hMPV-induced expression of chemokines IL-8 and RANTES in primary small alveolar epithelial cells (SAE) and in a human alveolar type II-like epithelial cell line (A549) was similar, suggesting that A549 cells can be used as a model to study lower airway epithelial cell responses to hMPV infection. A549 secreted a variety of CXC and CC chemokines, cytokines and typemore » I interferons, following hMPV infection. hMPV was also a strong inducer of transcription factors belonging to nuclear factor (NF)-{kappa}B, interferon regulatory factors (IRFs) and signal transducers and activators of transcription (STATs) families, which are known to orchestrate the expression of inflammatory and immunomodulatory mediators.« less

  18. Triptolide inhibits TGF-β1-induced cell proliferation in rat airway smooth muscle cells by suppressing Smad signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ming; Lv, Zhiqiang; Huang, Linjie

    Background: We have reported that triptolide can inhibit airway remodeling in a murine model of asthma via TGF-β1/Smad signaling. In the present study, we aimed to investigate the effect of triptolide on airway smooth muscle cells (ASMCs) proliferation and the possible mechanism. Methods: Rat airway smooth muscle cells were cultured and made synchronized, then pretreated with different concentration of triptolide before stimulated by TGF-β1. Cell proliferation was evaluated by MTT assay. Flow cytometry was used to study the influence of triptolide on cell cycle and apoptosis. Signal proteins (Smad2, Smad3 and Smad7) were detected by western blotting analysis. Results: Triptolidemore » significantly inhibited TGF-β1-induced ASMC proliferation (P<0.05). The cell cycle was blocked at G1/S-interphase by triptolide dose dependently. No pro-apoptotic effects were detected under the concentration of triptolide we used. Western blotting analysis showed TGF-β1 induced Smad2 and Smad3 phosphorylation was inhibited by triptolide pretreatment, and the level of Smad7 was increased by triptolide pretreatment. Conclusions: Triptolide may function as an inhibitor of asthma airway remodeling by suppressing ASMCs proliferation via negative regulation of Smad signaling pathway. - Highlights: • In this study, rat airway smooth muscle cells were cultured and made synchronized. • Triptolide inhibited TGF-β1-induced airway smooth muscle cells proliferation. • Triptolide inhibited ASMCs proliferation via negative regulation of Smad signaling pathway.« less

  19. Stem cells are dispensable for lung homeostasis but restore airways after injury.

    PubMed

    Giangreco, Adam; Arwert, Esther N; Rosewell, Ian R; Snyder, Joshua; Watt, Fiona M; Stripp, Barry R

    2009-06-09

    Local tissue stem cells have been described in airways of the lung but their contribution to normal epithelial maintenance is currently unknown. We therefore developed aggregation chimera mice and a whole-lung imaging method to determine the relative contributions of progenitor (Clara) and bronchiolar stem cells to epithelial maintenance and repair. In normal and moderately injured airways chimeric patches were small in size and not associated with previously described stem cell niches. This finding suggested that single, randomly distributed progenitor cells maintain normal epithelial homeostasis. In contrast we found that repair following severe lung injury resulted in the generation of rare, large clonal cell patches that were associated with stem cell niches. This study provides evidence that epithelial stem cells are dispensable for normal airway homeostasis. We also demonstrate that stem cell activation and robust clonal cellular expansion occur only during repair from severe lung injury.

  20. Impact of Soil Texture on Soil Ciliate Communities

    NASA Astrophysics Data System (ADS)

    Chau, J. F.; Brown, S.; Habtom, E.; Brinson, F.; Epps, M.; Scott, R.

    2014-12-01

    Soil water content and connectivity strongly influence microbial activities in soil, controlling access to nutrients and electron acceptors, and mediating interactions between microbes within and between trophic levels. These interactions occur at or below the pore scale, and are influenced by soil texture and structure, which determine the microscale architecture of soil pores. Soil protozoa are relatively understudied, especially given the strong control they exert on bacterial communities through predation. Here, ciliate communities in soils of contrasting textures were investigated. Two ciliate-specific primer sets targeting the 18S rRNA gene were used to amplify DNA extracted from eight soil samples collected from Sumter National Forest in western South Carolina. Primer sets 121F-384F-1147R (semi-nested) and 315F-959R were used to amplify soil ciliate DNA via polymerase chain reaction (PCR), and the resulting PCR products were analyzed by gel electrophoresis to obtain quantity and band size. Approximately two hundred ciliate 18S rRNA sequences were obtained were obtained from each of two contrasting soils. Sequences were aligned against the NCBI GenBank database for identification, and the taxonomic classification of best-matched sequences was determined. The ultimate goal of the work is to quantify changes in the ciliate community under short-timescale changes in hydrologic conditions for varying soil textures, elucidating dynamic responses to desiccation stress in major soil ciliate taxa.

  1. Social biases determine spatiotemporal sparseness of ciliate mating heuristics.

    PubMed

    Clark, Kevin B

    2012-01-01

    Ciliates become highly social, even displaying animal-like qualities, in the joint presence of aroused conspecifics and nonself mating pheromones. Pheromone detection putatively helps trigger instinctual and learned courtship and dominance displays from which social judgments are made about the availability, compatibility, and fitness representativeness or likelihood of prospective mates and rivals. In earlier studies, I demonstrated the heterotrich Spirostomum ambiguum improves mating competence by effecting preconjugal strategies and inferences in mock social trials via behavioral heuristics built from Hebbian-like associative learning. Heuristics embody serial patterns of socially relevant action that evolve into ordered, topologically invariant computational networks supporting intra- and intermate selection. S. ambiguum employs heuristics to acquire, store, plan, compare, modify, select, and execute sets of mating propaganda. One major adaptive constraint over formation and use of heuristics involves a ciliate's initial subjective bias, responsiveness, or preparedness, as defined by Stevens' Law of subjective stimulus intensity, for perceiving the meaningfulness of mechanical pressures accompanying cell-cell contacts and additional perimating events. This bias controls durations and valences of nonassociative learning, search rates for appropriate mating strategies, potential net reproductive payoffs, levels of social honesty and deception, successful error diagnosis and correction of mating signals, use of insight or analysis to solve mating dilemmas, bioenergetics expenditures, and governance of mating decisions by classical or quantum statistical mechanics. I now report this same social bias also differentially affects the spatiotemporal sparseness, as measured with metric entropy, of ciliate heuristics. Sparseness plays an important role in neural systems through optimizing the specificity, efficiency, and capacity of memory representations. The present

  2. Airway epithelial SPDEF integrates goblet cell differentiation and pulmonary Th2 inflammation

    PubMed Central

    Rajavelu, Priya; Chen, Gang; Xu, Yan; Kitzmiller, Joseph A.; Korfhagen, Thomas R.; Whitsett, Jeffrey A.

    2015-01-01

    Epithelial cells that line the conducting airways provide the initial barrier and innate immune responses to the abundant particles, microbes, and allergens that are inhaled throughout life. The transcription factors SPDEF and FOXA3 are both selectively expressed in epithelial cells lining the conducting airways, where they regulate goblet cell differentiation and mucus production. Moreover, these transcription factors are upregulated in chronic lung disorders, including asthma. Here, we show that expression of SPDEF or FOXA3 in airway epithelial cells in neonatal mice caused goblet cell differentiation, spontaneous eosinophilic inflammation, and airway hyperresponsiveness to methacholine. SPDEF expression promoted DC recruitment and activation in association with induction of Il33, Csf2, thymic stromal lymphopoietin (Tslp), and Ccl20 transcripts. Increased Il4, Il13, Ccl17, and Il25 expression was accompanied by recruitment of Th2 lymphocytes, group 2 innate lymphoid cells, and eosinophils to the lung. SPDEF was required for goblet cell differentiation and pulmonary Th2 inflammation in response to house dust mite (HDM) extract, as both were decreased in neonatal and adult Spdef–/– mice compared with control animals. Together, our results indicate that SPDEF causes goblet cell differentiation and Th2 inflammation during postnatal development and is required for goblet cell metaplasia and normal Th2 inflammatory responses to HDM aeroallergen. PMID:25866971

  3. Regulation of xanthine dehydrogensase gene expression and uric acid production in human airway epithelial cells

    PubMed Central

    Huff, Ryan D.; Hsu, Alan C-Y.; Nichol, Kristy S.; Jones, Bernadette; Knight, Darryl A.; Wark, Peter A. B.; Hansbro, Philip M.

    2017-01-01

    Introduction The airway epithelium is a physical and immunological barrier that protects the pulmonary system from inhaled environmental insults. Uric acid has been detected in the respiratory tract and can function as an antioxidant or damage associated molecular pattern. We have demonstrated that human airway epithelial cells are a source of uric acid. Our hypothesis is that uric acid production by airway epithelial cells is induced by environmental stimuli associated with chronic respiratory diseases. We therefore examined how airway epithelial cells regulate uric acid production. Materials and methods Allergen and cigarette smoke mouse models were performed using house dust mite (HDM) and cigarette smoke exposure, respectively, with outcome measurements of lung uric acid levels. Primary human airway epithelial cells isolated from clinically diagnosed patients with asthma and chronic obstructive pulmonary disease (COPD) were grown in submerged cultures and compared to age-matched healthy controls for uric acid release. HBEC-6KT cells, a human airway epithelial cell line, were grown under submerged monolayer conditions for mechanistic and gene expression studies. Results HDM, but not cigarette smoke exposure, stimulated uric acid production in vivo and in vitro. Primary human airway epithelial cells from asthma, but not COPD patients, displayed elevated levels of extracellular uric acid in culture. In HBEC-6KT, production of uric acid was sensitive to the xanthine dehydrogenase (XDH) inhibitor, allopurinol, and the ATP Binding Cassette C4 (ABCC4) inhibitor, MK-571. Lastly, the pro-inflammatory cytokine combination of TNF-α and IFN-γ elevated extracellular uric acid levels and XDH gene expression in HBEC-6KT cells. Conclusions Our results suggest that the active production of uric acid from human airway epithelial cells may be intrinsically altered in asthma and be further induced by pro-inflammatory cytokines. PMID:28863172

  4. Nasal epithelial cells as surrogates for bronchial epithelial cells in airway inflammation studies.

    PubMed

    McDougall, Catherine M; Blaylock, Morgan G; Douglas, J Graham; Brooker, Richard J; Helms, Peter J; Walsh, Garry M

    2008-11-01

    The nose is an attractive source of airway epithelial cells, particularly in populations in which bronchoscopy may not be possible. However, substituting nasal cells for bronchial epithelial cells in the study of airway inflammation depends upon comparability of responses, and evidence for this is lacking. Our objective was to determine whether nasal epithelial cell inflammatory mediator release and receptor expression reflect those of bronchial epithelial cells. Paired cultures of undifferentiated nasal and bronchial epithelial cells were obtained from brushings from 35 subjects, including 5 children. Cells were subject to morphologic and immunocytochemical assessment. Mediator release from resting and cytokine-stimulated cell monolayers was determined, as was cell surface receptor expression. Nasal and bronchial cells had identical epithelial morphology and uniform expression of cytokeratin 19. There were no differences in constitutive expression of CD44, intercellular adhesion molecule-1, alphavbeta3, and alphavbeta5. Despite significantly higher constitutive release of IL-8, IL-6, RANTES (regulated on activation, normal T cell expressed and secreted), and matrix metalloproteinase (MMP)-9 from nasal compared with bronchial cells, the increments in release of all studied mediators in response to stimulation with IL-1beta and TNF-alpha were similar, and there were significant positive correlations between nasal and bronchial cell secretion of IL-6, RANTES, vascular endothelial growth factor, monocyte chemoattractant protein-1, MMP-9, and tissue inhibitor of metalloproteinase-1. Despite differences in absolute mediator levels, the responses of nasal and bronchial epithelial cells to cytokine stimulation were similar, expression of relevant surface receptors was comparable, and there were significant correlations between nasal and bronchial cell mediator release. Therefore, nasal epithelial cultures constitute an accessible surrogate for studying lower airway

  5. Endoscopic diode-laser applications in airway surgery

    NASA Astrophysics Data System (ADS)

    Pankratov, Michail M.; Wang, Zhi; Rebeiz, Elie E.; Perrault, Donald F., Jr.; Shapshay, Stanley M.; Gleich, Lyon L.

    1994-09-01

    A technique was developed to secure small mucosal grafts onto the airway wound with fibrin/albumin tissue adhesive mixed with ICG dye and irradiated with a 810 nm diode laser. An in vitro study of the tensile strength produced strong mucosal soldering which was adequate to fix grafts in place. In vivo studies showed that wounds with mucosal grafts were completely covered by regenerated squamous cells in 1 week and by ciliated epithelium in 2 weeks. Excellent healing was observed at 6 and 14 days postoperatively and the histology at 28 days found normal epithelium over the vocal cord lesion. This soldering technique is a less traumatic treatment for patients with extensive lesions of the larynx of various origin. Diode laser soldering with ICG-doped fibrin tissue adhesive was evaluated in tracheal anastomosis as a substitute for absorbable sutures. In vitro studies demonstrated strong anastomoses with minimal tissue damage. In vivo animal study showed that these anastomoses had less fibrosis and tissue damage than control animals repaired with sutures only.

  6. Equine Airway Mast Cells are Sensitive to Cell Death Induced by Lysosomotropic Agents.

    PubMed

    Wernersson, S; Riihimäki, M; Pejler, G; Waern, I

    2017-01-01

    Mast cells are known for their detrimental effects in various inflammatory conditions. Regimens that induce selective mast cell apoptosis may therefore be of therapeutic significance. Earlier studies have demonstrated that murine- and human-cultured mast cells are highly sensitive to apoptosis induced by the lysosomotropic agent LeuLeuOMe (LLME). However, the efficacy of lysosomotropic agents for inducing apoptosis of in vivo-derived airway mast cells and the impact on mast cells in other species have not been assessed. Here we addressed whether lysosomotropic agents can induce cell death of equine in vivo-derived mast cells. Bronchoalveolar lavage (BAL) fluids from horses were incubated with LLME at 15-100 μm for up to 48 h. The overall cell viability was unaffected by 15 μm LLME up to 48 h, whereas a relatively modest drop in total cell counts (~30%) was seen at the highest LLME dose used. In contrast to the relatively low effect on total cell counts, LLME efficiently and dose dependently reduced the number of mast cells in BAL fluids, with an almost complete depletion (96%) of mast cells after 24 h of incubation with 100 μm LLME. A significant but less dramatic reduction (up to ~45%) of lymphocytes was also seen, whereas macrophages and neutrophils were essentially resistant. The appearance of apoptotic bodies suggested a mechanism involving apoptosis rather than necrosis. These findings suggest that equine airway mast cells are highly sensitive to lysosomotropic agents. Possibly, lysosomotropic agents could be of therapeutic value to treat disorders involving harmful accumulation of mast cells in the airways. © 2016 The Foundation for the Scandinavian Journal of Immunology.

  7. Expression of taste receptors in Solitary Chemosensory Cells of rodent airways

    PubMed Central

    2011-01-01

    Background Chemical irritation of airway mucosa elicits a variety of reflex responses such as coughing, apnea, and laryngeal closure. Inhaled irritants can activate either chemosensitive free nerve endings, laryngeal taste buds or solitary chemosensory cells (SCCs). The SCC population lies in the nasal respiratory epithelium, vomeronasal organ, and larynx, as well as deeper in the airway. The objective of this study is to map the distribution of SCCs within the airways and to determine the elements of the chemosensory transduction cascade expressed in these SCCs. Methods We utilized a combination of immunohistochemistry and molecular techniques (rtPCR and in situ hybridization) on rats and transgenic mice where the Tas1R3 or TRPM5 promoter drives expression of green fluorescent protein (GFP). Results Epithelial SCCs specialized for chemoreception are distributed throughout much of the respiratory tree of rodents. These cells express elements of the taste transduction cascade, including Tas1R and Tas2R receptor molecules, α-gustducin, PLCβ2 and TrpM5. The Tas2R bitter taste receptors are present throughout the entire respiratory tract. In contrast, the Tas1R sweet/umami taste receptors are expressed by numerous SCCs in the nasal cavity, but decrease in prevalence in the trachea, and are absent in the lower airways. Conclusions Elements of the taste transduction cascade including taste receptors are expressed by SCCs distributed throughout the airways. In the nasal cavity, SCCs, expressing Tas1R and Tas2R taste receptors, mediate detection of irritants and foreign substances which trigger trigeminally-mediated protective airway reflexes. Lower in the respiratory tract, similar chemosensory cells are not related to the trigeminal nerve but may still trigger local epithelial responses to irritants. In total, SCCs should be considered chemoreceptor cells that help in preventing damage to the respiratory tract caused by inhaled irritants and pathogens. PMID:21232137

  8. Expression of taste receptors in solitary chemosensory cells of rodent airways.

    PubMed

    Tizzano, Marco; Cristofoletti, Mirko; Sbarbati, Andrea; Finger, Thomas E

    2011-01-13

    Chemical irritation of airway mucosa elicits a variety of reflex responses such as coughing, apnea, and laryngeal closure. Inhaled irritants can activate either chemosensitive free nerve endings, laryngeal taste buds or solitary chemosensory cells (SCCs). The SCC population lies in the nasal respiratory epithelium, vomeronasal organ, and larynx, as well as deeper in the airway. The objective of this study is to map the distribution of SCCs within the airways and to determine the elements of the chemosensory transduction cascade expressed in these SCCs. We utilized a combination of immunohistochemistry and molecular techniques (rtPCR and in situ hybridization) on rats and transgenic mice where the Tas1R3 or TRPM5 promoter drives expression of green fluorescent protein (GFP). Epithelial SCCs specialized for chemoreception are distributed throughout much of the respiratory tree of rodents. These cells express elements of the taste transduction cascade, including Tas1R and Tas2R receptor molecules, α-gustducin, PLCβ2 and TrpM5. The Tas2R bitter taste receptors are present throughout the entire respiratory tract. In contrast, the Tas1R sweet/umami taste receptors are expressed by numerous SCCs in the nasal cavity, but decrease in prevalence in the trachea, and are absent in the lower airways. Elements of the taste transduction cascade including taste receptors are expressed by SCCs distributed throughout the airways. In the nasal cavity, SCCs, expressing Tas1R and Tas2R taste receptors, mediate detection of irritants and foreign substances which trigger trigeminally-mediated protective airway reflexes. Lower in the respiratory tract, similar chemosensory cells are not related to the trigeminal nerve but may still trigger local epithelial responses to irritants. In total, SCCs should be considered chemoreceptor cells that help in preventing damage to the respiratory tract caused by inhaled irritants and pathogens.

  9. Interaction with Epithelial Cells Modifies Airway Macrophage Response to Ozone

    EPA Science Inventory

    The initial innate immune response to ozone (03) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived...

  10. Hypoxia-inducible factor-1 signalling promotes goblet cell hyperplasia in airway epithelium

    PubMed Central

    Polosukhin, Vasiliy V; Cates, Justin M; Lawson, William E; Milstone, Aaron P; Matafonov, Anton G; Massion, Pierre P; Lee, Jae Woo; Randell, Scott H; Blackwell, Timothy S

    2018-01-01

    Goblet cell hyperplasia is a common feature of chronic obstructive pulmonary disease (COPD) airways, but the mechanisms that underlie this epithelial remodelling in COPD are not understood. Based on our previous finding of hypoxia-inducible factor-1α (HIF-1α) nuclear localization in large airways from patients with COPD, we investigated whether hypoxia-inducible signalling could influence the development of goblet cell hyperplasia. We evaluated large airway samples obtained from 18 lifelong non-smokers and 13 former smokers without COPD, and 45 former smokers with COPD. In these specimens, HIF-1α nuclear staining occurred almost exclusively in COPD patients in areas of airway remodelling. In COPD patients, 93.2 ± 3.9% (range 65 – 100%) of goblet cells were HIF-1α positive in areas of goblet cell hyperplasia, whereas nuclear HIF-1α was not detected in individuals without COPD or in normal-appearing pseudostratified epithelium from COPD patients. To determine the direct effects of hypoxia-inducible signalling on epithelial cell differentiation in vitro, human bronchial epithelial cells (HBECs) were grown in air-liquid interface cultures under hypoxia (1% O2) or following treatment with a selective HIF-1α stabilizer, (2R)-[(4-biphenylylsulphonyl)amino]-N-hydroxy-3-phenyl-propionamide (BiPS). HBECs grown in hypoxia or with BiPS treatment were characterized by HIF-1α activation, carbonic anhydrase IX expression, mucus-producing cell hyperplasia and increased expression of MUC5AC. Analysis of signal transduction pathways in cells with HIF-1α activation showed increased ERK1/2 phosphorylation without activation of epidermal growth factor receptor, Ras, PI3K-Akt or STAT6. These data indicate an important effect of hypoxia-inducible signalling on airway epithelial cell differentiation and identify a new potential target to limit mucus production in COPD. PMID:21557221

  11. Impaired airway epithelial cell responses from children with asthma to rhinoviral infection.

    PubMed

    Kicic, A; Stevens, P T; Sutanto, E N; Kicic-Starcevich, E; Ling, K-M; Looi, K; Martinovich, K M; Garratt, L W; Iosifidis, T; Shaw, N C; Buckley, A G; Rigby, P J; Lannigan, F J; Knight, D A; Stick, S M

    2016-11-01

    The airway epithelium forms an effective immune and physical barrier that is essential for protecting the lung from potentially harmful inhaled stimuli including viruses. Human rhinovirus (HRV) infection is a known trigger of asthma exacerbations, although the mechanism by which this occurs is not fully understood. To explore the relationship between apoptotic, innate immune and inflammatory responses to HRV infection in airway epithelial cells (AECs) obtained from children with asthma and non-asthmatic controls. In addition, to test the hypothesis that aberrant repair of epithelium from asthmatics is further dysregulated by HRV infection. Airway epithelial brushings were obtained from 39 asthmatic and 36 non-asthmatic children. Primary cultures were established and exposed to HRV1b and HRV14. Virus receptor number, virus replication and progeny release were determined. Epithelial cell apoptosis, IFN-β production, inflammatory cytokine release and epithelial wound repair and proliferation were also measured. Virus proliferation and release was greater in airway epithelial cells from asthmatics but this was not related to the number of virus receptors. In epithelial cells from asthmatic children, virus infection dampened apoptosis, reduced IFN-β production and increased inflammatory cytokine production. HRV1b infection also inhibited wound repair capacity of epithelial cells isolated from non-asthmatic children and exaggerated the defective repair response seen in epithelial cells from asthmatics. Addition of IFN-β restored apoptosis, suppressed virus replication and improved repair of airway epithelial cells from asthmatics but did not reduce inflammatory cytokine production. Collectively, HRV infection delays repair and inhibits apoptotic processes in epithelial cells from non-asthmatic and asthmatic children. The delayed repair is further exaggerated in cells from asthmatic children and is only partially reversed by exogenous IFN-β. © 2016 John Wiley & Sons

  12. Elucidating Mechanisms by which Invertebrate Larval Settlement is Affected by Biofilm Ciliates

    NASA Astrophysics Data System (ADS)

    Shimeta, J.; Watson, M. G.; Zalizniak, L.; Scardino, A. J.

    2016-02-01

    Despite extensive studies of benthic invertebrate larvae responding to settlement cues from bacteria and microalgae in biofilms, the roles of protozoa have been largely ignored. We recently showed that an assemblage of biofilm ciliates affected larval settlement and survival rates among two polychaetes, a mussel, and a bryozoan, being inhibitory to some and facilitative to others. Here we investigated settlement inhibition further for the serpulid worm, Galeolaria caespitosa, and the mussel, Mytilus galloprovincialis. Single species of ciliates were capable of inhibiting settlement by up to 68%. The effects were density dependent, with the strength of inhibition being directly related to ciliate abundance. The strength of inhibition also differed significantly among ciliate species, suggesting that both the abundance and makeup of ciliate assemblages could be an important variable determining settlement rates in the field. We studied the mechanisms of inhibition further with G. caespitosa and the ciliate, Euplotes minuta. Filtrate from ciliate cultures failed to inhibit settlement, indicating that dissolved chemicals were not the inhibiting factor. Physical presence of ciliates was inhibitory, as demonstrated by video analysis of larval search behavior. Following contact with a ciliate, larval swimming was disrupted, including retreat from the substratum and significant changes in swimming angles. Ciliates may also have influenced settlement indirectly by altering cues from biofilm bacteria. Although bacterial densities were unaffected by ciliate grazing during the assays, bacterial distributions were significantly more clumped in the presence of ciliates, which could perhaps affect the suitability of the biofilm for larvae. These organism-scale interactions at the biofilm boundary could produce significant constraints on larval recruitment patterns and suggest that further studies are needed on the roles of protozoans in boundary layer processes.

  13. Ciliates learn to diagnose and correct classical error syndromes in mating strategies

    PubMed Central

    Clark, Kevin B.

    2013-01-01

    Preconjugal ciliates learn classical repetition error-correction codes to safeguard mating messages and replies from corruption by “rivals” and local ambient noise. Because individual cells behave as memory channels with Szilárd engine attributes, these coding schemes also might be used to limit, diagnose, and correct mating-signal errors due to noisy intracellular information processing. The present study, therefore, assessed whether heterotrich ciliates effect fault-tolerant signal planning and execution by modifying engine performance, and consequently entropy content of codes, during mock cell–cell communication. Socially meaningful serial vibrations emitted from an ambiguous artificial source initiated ciliate behavioral signaling performances known to advertise mating fitness with varying courtship strategies. Microbes, employing calcium-dependent Hebbian-like decision making, learned to diagnose then correct error syndromes by recursively matching Boltzmann entropies between signal planning and execution stages via “power” or “refrigeration” cycles. All eight serial contraction and reversal strategies incurred errors in entropy magnitude by the execution stage of processing. Absolute errors, however, subtended expected threshold values for single bit-flip errors in three-bit replies, indicating coding schemes protected information content throughout signal production. Ciliate preparedness for vibrations selectively and significantly affected the magnitude and valence of Szilárd engine performance during modal and non-modal strategy corrective cycles. But entropy fidelity for all replies mainly improved across learning trials as refinements in engine efficiency. Fidelity neared maximum levels for only modal signals coded in resilient three-bit repetition error-correction sequences. Together, these findings demonstrate microbes can elevate survival/reproductive success by learning to implement classical fault-tolerant information processing in

  14. Airway epithelial stem cells and the pathophysiology of chronic obstructive pulmonary disease.

    PubMed

    Randell, Scott H

    2006-11-01

    Characteristic pathologic changes in chronic obstructive pulmonary disease (COPD) include an increased fractional volume of bronchiolar epithelial cells, fibrous thickening of the airway wall, and luminal inflammatory mucus exudates, which are positively correlated with airflow limitation and disease severity. The mechanisms driving general epithelial expansion, mucous secretory cell hyperplasia, and mucus accumulation must relate to the effects of initial toxic exposures on patterns of epithelial stem and progenitor cell proliferation and differentiation, eventually resulting in a self-perpetuating, and difficult to reverse, cycle of injury and repair. In this review, current concepts in stem cell biology and progenitor-progeny relationships related to COPD are discussed, focusing on the factors, pathways, and mechanisms leading to mucous secretory cell hyperplasia and mucus accumulation in the airways. A better understanding of alterations in airway epithelial phenotype in COPD will provide a logical basis for novel therapeutic approaches.

  15. Free-living ciliates from epiphytic tank bromeliads in Mexico.

    PubMed

    Durán-Ramírez, Carlos Alberto; García-Franco, José Guadalupe; Foissner, Wilhelm; Mayén-Estrada, Rosaura

    2015-02-01

    The ciliate diversity of Mexican bromeliads is poorly known. We studied the ciliate community of two species of epiphytic tank bromeliads from 48 individuals of Tillandsia heterophylla and four of T. prodigiosa. The bromeliads occurred on over 22 tree host species. Samples were collected during 2009 and 2010 in a mountain cloud forest and in two coffee plantations and in a pine-oak forest. The ciliates were identified in live and protargol preparations. We recorded 61 ciliate species distributed in 39 genera grouped in eight classes. Ten species were frequent in the 52 samples (20 ± 3.2) and Leptopharynx bromeliophilus was the most frequent recorded in 25 samples. Thirty-three species are new for the fauna of Mexico, 24 species have been recorded for the first time in tank bromeliads. The classes Spirotrichea, Oligohymenophorea and Colpodea presented the highest number of species, 16, 14, and 12, respectively. Colpoda was the most species-rich genus being present with six species. A low similarity between areas and seasons was obtained with Jaccard's index. We conclude that the two bromeliads species host a rich ciliate diversity whose knowledge contributes to the question of ciliate distribution and specifically, in tank bromeliads. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Migration of guinea pig airway epithelial cells in response to bombesin analogues.

    PubMed

    Kim, J S; McKinnis, V S; White, S R

    1997-03-01

    Bombesin-like peptides within neuroepithelial cells elicit proliferation of normal and malignant airway epithelial cells. It is not clear that these peptides also elicit epithelial cell migration, a necessary component of airway repair after injury. We studied the effects of the bombesin analogues, gastrin releasing peptide (GRP) and neuromedin B (NMB), on guinea pig tracheal epithelial cell (GPTEC) migration. Primary GPTEC were allowed to migrate through 8-microm-pore gelatin-coated filters for 6 h in a chemotaxis chamber, after which the number of migrated cells per 10 high power fields (10 hpf) were counted. Both neuropeptides elicited migration of GPTEC: 24.8 +/- 4.5 cells for 10(-11) M NMB (P < 0.001 versus control, n = 4) and 16.8 +/- 1.2 cells for 10(-12) M GRP (P < 0.001 versus control, n = 8). Migration was attenuated substantially by a bombesin receptor antagonist. To investigate further the relationship of migration through a filter to the repair of a damaged epithelium, we studied the repair of epithelial cells by video microscopy. A 0.3- to 0.5-microm2 wound was created in a confluent monolayer of GPTEC, and wound closure was followed over 24 h. There was no significant acceleration in the rate of repair of GRP- or NMB-stimulated monolayers compared to control. These data demonstrate that GRP and NMB elicit migration of airway epithelial cells but may not play a significant role in the early repair of the airway epithelium in culture.

  17. Azithromycin ameliorates airway remodeling via inhibiting airway epithelium apoptosis.

    PubMed

    Liu, Yuanqi; Pu, Yue; Li, Diandian; Zhou, Liming; Wan, Lihong

    2017-02-01

    Azithromycin can benefit treating allergic airway inflammation and remodeling. In the present study, we hypothesized that azithromycin alleviated airway epithelium injury through inhibiting airway epithelium apoptosis via down regulation of caspase-3 and Bax/Bcl2 ratio in vivo and in vitro. Ovalbumin induced rat asthma model and TGF-β1-induced BEAS-2B cell apoptosis model were established, respectively. In vivo experiments, airway epithelium was stained with hematoxylin and eosin (HE) and periodic acid-Schiff (PAS) to histologically evaluate the airway inflammation and remodeling. Airway epithelium apoptotic index (AI) was further analyzed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), while expression of apoptosis related gene (Bax, Bcl2, Caspase-3) in lungs were measured by qRT-PCR and western blotting, respectively. In vitro experiments, apoptosis were evaluated by Flow cytometry (FCM) and TUNEL. Above apoptosis related gene were also measured by qRT-PCR and western blotting. Compared with the OVA group, azithromycin significantly reduced the inflammation score, peribronchial smooth muscle layer thickness, epithelial thickening and goblet cell metaplasia (P<0.05), and effectively suppressed AI of airway epithelium (P<0.05). Moreover, the increasing mRNA and protein expressions of Caspase-3 and Bax/Bcl-2 ratio in lung tissue were all significantly decreased in azithromycin-treated rats (P<0.05). In vitro, azithromycin significantly suppressed TGF-β1-induced BEAS-2B cells apoptosis (P<0.05) and reversed TGF-β1 elevated Caspase-3 mRNA level and Bax/Bcl-2 ratio (P<0.05). Azithromycin is an attractive treatment option for reducing airway epithelial cell apoptosis by improving the imbalance of Bax/Bcl-2 ratio and inhibiting Caspase-3 level in airway epithelium. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Nasal Epithelial Cells as Surrogates for Bronchial Epithelial Cells in Airway Inflammation Studies

    PubMed Central

    McDougall, Catherine M.; Blaylock, Morgan G.; Douglas, J. Graham; Brooker, Richard J.; Helms, Peter J.; Walsh, Garry M.

    2008-01-01

    The nose is an attractive source of airway epithelial cells, particularly in populations in which bronchoscopy may not be possible. However, substituting nasal cells for bronchial epithelial cells in the study of airway inflammation depends upon comparability of responses, and evidence for this is lacking. Our objective was to determine whether nasal epithelial cell inflammatory mediator release and receptor expression reflect those of bronchial epithelial cells. Paired cultures of undifferentiated nasal and bronchial epithelial cells were obtained from brushings from 35 subjects, including 5 children. Cells were subject to morphologic and immunocytochemical assessment. Mediator release from resting and cytokine-stimulated cell monolayers was determined, as was cell surface receptor expression. Nasal and bronchial cells had identical epithelial morphology and uniform expression of cytokeratin 19. There were no differences in constitutive expression of CD44, intercellular adhesion molecule-1, αvβ3, and αvβ5. Despite significantly higher constitutive release of IL-8, IL-6, RANTES (regulated on activation, normal T cell expressed and secreted), and matrix metalloproteinase (MMP)-9 from nasal compared with bronchial cells, the increments in release of all studied mediators in response to stimulation with IL-1β and TNF-α were similar, and there were significant positive correlations between nasal and bronchial cell secretion of IL-6, RANTES, vascular endothelial growth factor, monocyte chemoattractant protein-1, MMP-9, and tissue inhibitor of metalloproteinase-1. Despite differences in absolute mediator levels, the responses of nasal and bronchial epithelial cells to cytokine stimulation were similar, expression of relevant surface receptors was comparable, and there were significant correlations between nasal and bronchial cell mediator release. Therefore, nasal epithelial cultures constitute an accessible surrogate for studying lower airway inflammation. PMID

  19. Activation of an Aquareovirus, Chum Salmon Reovirus (CSV), by the Ciliates Tetrahymena thermophila and T. canadensis.

    PubMed

    Pinheiro, Marcel D O; Bols, Niels C

    2018-03-05

    For the first time, ciliates have been found to activate rather than inactivate a virus, chum salmon reovirus (CSV). Activation was seen as an increase in viral titre upon incubation of CSV at 22 °C with Tetrahymena canadenesis and two strains of T. thermophila: wild type (B1975) and a temperature conditional mutant for phagocytosis (NP1). The titre increase was not likely due to replication because CSV had no visible effects on the ciliates and no vertebrate virus has ever been shown unequivocally to replicate in ciliates. When incubated with B1975 and NP1 at 30 °C, CSV was activated only by B1975. Therefore, activation required CSV internalization because at 30 °C only B1975 exhibited phagocytosis. CSV replicated in fish cells at 18 to 26 °C but not at 30 °C. Collectively, these observations point to CSV activation being distinct from replication. Activation is attributed to the CSV capsid being modified in the ciliate phagosomal-lysosomal system and released in a more infectious form. When allowed to swim in CSV-infected fish cell cultures, collected, washed, and transferred to uninfected cultures, T. canadensis caused a CSV infection. Overall the results suggest that ciliates could have roles in the environmental dissemination of some fish viral diseases. © 2018 The Author(s) Journal of Eukaryotic Microbiology © 2018 International Society of Protistologists.

  20. The filter-feeding ciliates Colpidium striatum and Tetrahymena pyriformis display selective feeding behaviours in the presence of mixed, equally-sized, bacterial prey.

    PubMed

    Thurman, Jill; Parry, Jacqueline D; Hill, Philip J; Laybourn-Parry, Johanna

    2010-10-01

    This study examined whether two ciliates could discriminate between equally-sized bacterial prey in mixture and if so, how selectivity might benefit the ciliate population. Live Klebsiella aerogenes, K. ozaenae and Escherichia coli, expressing different coloured fluorescent proteins, were cultured in such a way as to provide populations containing equally-sized cells (to prevent size-selective grazing taking place) and these prey were fed to each ciliate in 50:50 mixtures. Colpidium striatum selected K. aerogenes over K. ozaenae which itself was selected over E. coli. Tetrahymena pyriformis showed no selectivity between K. aerogenes and E. coli but K. aerogenes was selected over K. ozaenae while E. coli was not. This apparent selection of K. aerogenes over K. ozaenae was sustained in ciliate populations with different feeding histories and when K. aerogenes comprised only 20% of the prey mixture, suggesting possible optimal foraging behaviour. The metabolic benefits for selecting K. aerogenes were identified as possibly being an increase in cell biovolume and yield for C. striatum and T. pyriformis, respectively. The mechanism by which these ciliates selected specific bacterial cells in mixture is currently unknown but the use of live fluorescent bacteria, in prey mixtures, offers an exciting avenue for further investigation of selective feeding by protozoa. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Efficient generation of functional CFTR-expressing airway epithelial cells from human pluripotent stem cells.

    PubMed

    Wong, Amy P; Chin, Stephanie; Xia, Sunny; Garner, Jodi; Bear, Christine E; Rossant, Janet

    2015-03-01

    Airway epithelial cells are of great interest for research on lung development, regeneration and disease modeling. This protocol describes how to generate cystic fibrosis (CF) transmembrane conductance regulator protein (CFTR)-expressing airway epithelial cells from human pluripotent stem cells (PSCs). The stepwise approach from PSC culture to differentiation into progenitors and then mature epithelia with apical CFTR activity is outlined. Human PSCs that were inefficient at endoderm differentiation using our previous lung differentiation protocol were able to generate substantial lung progenitor cell populations. Augmented CFTR activity can be observed in all cultures as early as at 35 d of differentiation, and full maturation of the cells in air-liquid interface cultures occurs in <5 weeks. This protocol can be used for drug discovery, tissue regeneration or disease modeling.

  2. The Idiopathic Pulmonary Fibrosis Honeycomb Cyst Contains A Mucocilary Pseudostratified Epithelium

    PubMed Central

    Seibold, Max A.; Smith, Russell W.; Urbanek, Cydney; Groshong, Steve D.; Cosgrove, Gregory P.; Brown, Kevin K.; Schwarz, Marvin I.

    2013-01-01

    Background We previously identified a MUC5B gene promoter-variant that is a risk allele for sporadic and familial Idiopathic Pulmonary Fibrosis/Usual Interstitial Pneumonia (IPF/UIP). This allele was strongly associated with increased MUC5B gene expression in lung tissue from unaffected subjects. Despite the strong association of this airway epithelial marker with disease, little is known of mucin expressing structures or of airway involvement in IPF/UIP. Methods Immunofluorescence was used to subtype mucus cells according to MUC5B and MUC5AC expression and to identify ciliated, basal, and alveolar type II (ATII) cells in tissue sections from control and IPF/UIP subjects. Staining patterns were quantified for distal airways (Control and IPF/UIP) and in honeycomb cysts (HC). Results MUC5B-expressing cells (EC) were detected in the majority of control distal airways. MUC5AC-EC were identified in half of these airways and only in airways that contained MUC5B-EC. The frequency of MUC5B+ and MUC5AC+ distal airways was increased in IPF/UIP subjects. MUC5B-EC were the dominant mucus cell type in the HC epithelium. The distal airway epithelium from control and IPF/UIP subjects and HC was populated by basal and ciliated cells. Most honeycombing regions were distinct from ATII hyperplasic regions. ATII cells were undetectable in the overwhelming majority of HC. Conclusions The distal airway contains a pseudostratified mucocilary epithelium that is defined by basal epithelial cells and mucus cells that express MUC5B predominantly. These data suggest that the HC is derived from the distal airway. PMID:23527003

  3. Role of IL-4 receptor α-positive CD4(+) T cells in chronic airway hyperresponsiveness.

    PubMed

    Kirstein, Frank; Nieuwenhuizen, Natalie E; Jayakumar, Jaisubash; Horsnell, William G C; Brombacher, Frank

    2016-06-01

    TH2 cells and their cytokines are associated with allergic asthma in human subjects and with mouse models of allergic airway disease. IL-4 signaling through the IL-4 receptor α (IL-4Rα) chain on CD4(+) T cells leads to TH2 cell differentiation in vitro, implying that IL-4Rα-responsive CD4(+) T cells are critical for the induction of allergic asthma. However, mechanisms regulating acute and chronic allergen-specific TH2 responses in vivo remain incompletely understood. This study defines the requirements for IL-4Rα-responsive CD4(+) T cells and the IL-4Rα ligands IL-4 and IL-13 in the development of allergen-specific TH2 responses during the onset and chronic phase of experimental allergic airway disease. Development of acute and chronic ovalbumin (OVA)-induced allergic asthma was assessed weekly in CD4(+) T cell-specific IL-4Rα-deficient BALB/c mice (Lck(cre)IL-4Rα(-/lox)) and respective control mice in the presence or absence of IL-4 or IL-13. During acute allergic airway disease, IL-4 deficiency did not prevent the onset of TH2 immune responses and OVA-induced airway hyperresponsiveness or goblet cell hyperplasia, irrespective of the presence or absence of IL-4Rα-responsive CD4(+) T cells. In contrast, deficiency of IL-13 prevented allergic asthma, irrespective of the presence or absence of IL-4Rα-responsive CD4(+) T cells. Importantly, chronic allergic inflammation and airway hyperresponsiveness were dependent on IL-4Rα-responsive CD4(+) T cells. Deficiency in IL-4Rα-responsive CD4(+) T cells resulted in increased numbers of IL-17-producing T cells and, consequently, increased airway neutrophilia. IL-4-responsive T helper cells are dispensable for acute OVA-induced airway disease but crucial in maintaining chronic asthmatic pathology. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  4. Creation and characterization of an airway epithelial cell line for stable expression of CFTR variants

    PubMed Central

    Gottschalk, Laura B.; Vecchio-Pagan, Briana; Sharma, Neeraj; Han, Sangwoo T.; Franca, Arianna; Wohler, Elizabeth S.; Batista, Denise A.S.; Goff, Loyal A.; Cutting, Garry R.

    2016-01-01

    Background Analysis of the functional consequences and treatment response of rare CFTR variants is challenging due to the limited availability of primary airways cells. Methods A Flp recombination target (FRT) site for stable expression of CFTR was incorporated into an immortalized CF bronchial epithelial cell line (CFBE41o−). CFTR cDNA was integrated into the FRT site. Expression was evaluated by western blotting and confocal microscopy and function measured by short circuit current. RNA sequencing was used to compare the transcriptional profile of the resulting CF8Flp cell line to primary cells and tissues. Results Functional CFTR was expressed from integrated cDNA at the FRT site of the CF8Flp cell line at levels comparable to that seen in native airway cells. CF8Flp cells expressing WT-CFTR have a stable transcriptome comparable to that of primary cultured airway epithelial cells, including genes that play key roles in CFTR pathways. Conclusion CF8Flp cells provide a viable substitute for primary CF airway cells for the analysis of CFTR variants in a native context. PMID:26694805

  5. Allergic asthma is distinguished by sensitivity of allergen-specific CD4+ T cells and airway structural cells to type 2 inflammation.

    PubMed

    Cho, Josalyn L; Ling, Morris F; Adams, David C; Faustino, Lucas; Islam, Sabina A; Afshar, Roshi; Griffith, Jason W; Harris, Robert S; Ng, Aylwin; Radicioni, Giorgia; Ford, Amina A; Han, Andre K; Xavier, Ramnik; Kwok, William W; Boucher, Richard; Moon, James J; Hamilos, Daniel L; Kesimer, Mehmet; Suter, Melissa J; Medoff, Benjamin D; Luster, Andrew D

    2016-10-05

    Despite systemic sensitization, not all allergic individuals develop asthma symptoms upon airborne allergen exposure. Determination of the factors that lead to the asthma phenotype in allergic individuals could guide treatment and identify novel therapeutic targets. We used segmental allergen challenge of allergic asthmatics (AA) and allergic nonasthmatic controls (AC) to determine whether there are differences in the airway immune response or airway structural cells that could drive the development of asthma. Both groups developed prominent allergic airway inflammation in response to allergen. However, asthmatic subjects had markedly higher levels of innate type 2 receptors on allergen-specific CD4 + T cells recruited into the airway. There were also increased levels of type 2 cytokines, increased total mucin, and increased mucin MUC5AC in response to allergen in the airways of AA subjects. Furthermore, type 2 cytokine levels correlated with the mucin response in AA but not AC subjects, suggesting differences in the airway epithelial response to inflammation. Finally, AA subjects had increased airway smooth muscle mass at baseline measured in vivo using novel orientation-resolved optical coherence tomography. Our data demonstrate that the development of allergic asthma is dependent on the responsiveness of allergen-specific CD4 + T cells to innate type 2 mediators as well as increased sensitivity of airway epithelial cells and smooth muscle to type 2 inflammation. Copyright © 2016, American Association for the Advancement of Science.

  6. Rare Freshwater Ciliate Paramecium chlorelligerum Kahl, 1935 and Its Macronuclear Symbiotic Bacterium "Candidatus Holospora parva".

    PubMed

    Lanzoni, Olivia; Fokin, Sergei I; Lebedeva, Natalia; Migunova, Alexandra; Petroni, Giulio; Potekhin, Alexey

    2016-01-01

    Ciliated protists often form symbioses with many diverse microorganisms. In particular, symbiotic associations between ciliates and green algae, as well as between ciliates and intracellular bacteria, are rather wide-spread in nature. In this study, we describe the complex symbiotic system between a very rare ciliate, Paramecium chlorelligerum, unicellular algae inhabiting its cytoplasm, and novel bacteria colonizing the host macronucleus. Paramecium chlorelligerum, previously found only twice in Germany, was retrieved from a novel location in vicinity of St. Petersburg in Russia. Species identification was based on both classical morphological methods and analysis of the small subunit rDNA. Numerous algae occupying the cytoplasm of this ciliate were identified with ultrastructural and molecular methods as representatives of the Meyerella genus, which before was not considered among symbiotic algae. In the same locality at least fifteen other species of "green" ciliates were found, thus it is indeed a biodiversity hot-spot for such protists. A novel species of bacterial symbionts living in the macronucleus of Paramecium chlorelligerum cells was morphologically and ultrastructurally investigated in detail with the description of its life cycle and infection capabilities. The new endosymbiont was molecularly characterized following the full-cycle rRNA approach. Furthermore, phylogenetic analysis confirmed that the novel bacterium is a member of Holospora genus branching basally but sharing all characteristics of the genus except inducing connecting piece formation during the infected host nucleus division. We propose the name "Candidatus Holospora parva" for this newly described species. The described complex system raises new questions on how these microorganisms evolve and interact in symbiosis.

  7. Altered Regulation of Airway Epithelial Cell Chloride Channels in Cystic Fibrosis

    NASA Astrophysics Data System (ADS)

    Frizzell, Raymond A.; Rechkemmer, Gerhard; Shoemaker, Richard L.

    1986-08-01

    In many epithelial cells the chloride conductance of the apical membrane increases during the stimulation of electrolyte secretion. Single-channel recordings from human airway epithelial cells showed that β -adrenergic stimulation evoked apical membrane chloride channel activity, but this response was absent in cells from patients with cystic fibrosis (CF). However, when membrane patches were excised from CF cells into media containing sufficient free calcium (approximately 180 nanomolar), chloride channels were activated. The chloride channels of CF cells were similar to those of normal cells as judged by their current-voltage relations, ion selectivity, and kinetic behavior. These findings demonstrate the presence of chloride channels in the apical membranes of CF airway cells. Their regulation by calcium appears to be intact, but cyclic adenosine monophosphate (cAMP)-dependent control of their activity is defective.

  8. GTP-Binding Proteins Inhibit cAMP Activation of Chloride Channels in Cystic Fibrosis Airway Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Schwiebert, Erik M.; Kizer, Neil; Gruenert, Dieter C.; Stanton, Bruce A.

    1992-11-01

    Cystic fibrosis (CF) is a genetic disease characterized, in part, by defective regulation of Cl^- secretion by airway epithelial cells. In CF, cAMP does not activate Cl^- channels in the apical membrane of airway epithelial cells. We report here whole-cell patch-clamp studies demonstrating that pertussis toxin, which uncouples heterotrimeric GTP-binding proteins (G proteins) from their receptors, and guanosine 5'-[β-thio]diphosphate, which prevents G proteins from interacting with their effectors, increase Cl^- currents and restore cAMP-activated Cl^- currents in airway epithelial cells isolated from CF patients. In contrast, the G protein activators guanosine 5'-[γ-thio]triphosphate and AlF^-_4 reduce Cl^- currents and inhibit cAMP from activating Cl^- currents in normal airway epithelial cells. In CF cells treated with pertussis toxin or guanosine 5'-[β-thio]diphosphate and in normal cells, cAMP activates a Cl^- conductance that has properties similar to CF transmembrane-conductance regulator Cl^- channels. We conclude that heterotrimeric G proteins inhibit cAMP-activated Cl^- currents in airway epithelial cells and that modulation of the inhibitory G protein signaling pathway may have the therapeutic potential for improving cAMP-activated Cl^- secretion in CF.

  9. Roxithromycin inhibits VEGF-induced human airway smooth muscle cell proliferation: Opportunities for the treatment of asthma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Qing-Mei, E-mail: 34713316@qq.com; Jiang, Ping, E-mail: jiangping@163.com; Yang, Min, E-mail: YangMin@163.com

    Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodelling, which is associated with increased airway smooth muscle (ASM) mass. Roxithromycin (RXM) has been widely used in asthma treatment; however, its mechanism of action is poorly understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodelling in patients with asthma, and shown to promote ASM cell proliferation. Here, we investigated the effect of RXM on VEGF-induced ASM cell proliferation and attempted to elucidate the underlying mechanisms of action. We tested the effect of RXM on proliferationmore » and cell cycle progression, as well as on the expression of phospho-VEGF receptor 2 (VEGFR2), phospho-extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-Akt, and caveolin-1 in VEGF-stimulated ASM cells. RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. Additionally, VEGF-induced ASM cell proliferation was suppressed by inhibiting the activity of ERK1/2, but not that of Akt. Furthermore, RXM treatment inhibits VEGF-induced activation of VEGFR2 and ERK and downregulation of caveolin-1 in a dose-dependent manner. RXM also inhibited TGF-β-induced VEGF secretion by ASM cells and BEAS-2B cells. Collectively, our findings suggest that RXM inhibits VEGF-induced ASM cell proliferation by suppression of VEGFR2 and ERK1/2 activation and caveolin-1 down-regulation, which may be involved in airway remodelling. Further elucidation of the mechanisms underlying these observations should enable the development of treatments for smooth muscle hyperplasia-associated diseases of the airway such as asthma. - Highlights: • RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. • VEGF-induced cell proliferation was suppressed by inhibiting the activity of ERK1/2. • RXM inhibits activation of VEGFR2 and ERK and

  10. Swimming under the Influence: Effect of Algal Toxins on the Behavior of the Marine Ciliate Favella sp.

    NASA Astrophysics Data System (ADS)

    Sterling, A.; Echevarria, M. L.; Borrett, S. R.; Taylor, A. R.

    2016-02-01

    Although it is known that microzooplankton can regulate harmful algal bloom (HAB) dynamics through grazing of algae, the effects of HAB-related toxins on these micrograzers are unknown. Therefore I examined the effects of the algal toxins domoic acid (DA), brevetoxin (PbTx-2), and 2,4-trans,trans-decadienal (DDA) on the swimming behavior of the marine ciliate Favella sp. Neither DA nor PbTx-2 had a significant effect at the highest concentrations tested (800 nM and 400 nM respectively). However, about 50% of ciliates ceased swimming after 1 h exposure to 30 µM and 50 µM DDA and displayed significant behavioral changes within 5 min. Preliminary recovery experiments showed that up to 80% of the non-swimming ciliates were viable after 24 h, suggesting in these ciliates DDA did not induce programmed cell death. This work demonstrates that some, but not all, algal toxins may compromise the ability of microzooplankton to evade predators, capture prey, and regulate HABs.

  11. Airway Basal Cell Heterogeneity and Lung Squamous Cell Carcinoma.

    PubMed

    Hynds, Robert E; Janes, Sam M

    2017-09-01

    Basal cells are stem/progenitor cells that maintain airway homeostasis, enact repair following epithelial injury, and are a candidate cell-of-origin for lung squamous cell carcinoma. Heterogeneity of basal cells is recognized in terms of gene expression and differentiation capacity. In this Issue, Pagano and colleagues isolate a subset of immortalized basal cells that are characterized by high motility, suggesting that they might also be heterogeneous in their biophysical properties. Motility-selected cells displayed an increased ability to colonize the lung in vivo The possible implications of these findings are discussed in terms of basal cell heterogeneity, epithelial cell migration, and modeling of metastasis that occurs early in cancer evolution. Cancer Prev Res; 10(9); 491-3. ©2017 AACR See related article by Pagano et al., p. 514 . ©2017 American Association for Cancer Research.

  12. Anti-inflammatory effects of embelin in A549 cells and human asthmatic airway epithelial tissues.

    PubMed

    Lee, In-Seung; Cho, Dong-Hyuk; Kim, Ki-Suk; Kim, Kang-Hoon; Park, Jiyoung; Kim, Yumi; Jung, Ji Hoon; Kim, Kwanil; Jung, Hee-Jae; Jang, Hyeung-Jin

    2018-02-01

    Allergic asthma is the most common type in asthma, which is defined as a chronic inflammatory disease of the lung. In this study, we investigated whether embelin (Emb), the major component of Ardisia japonica BL. (AJB), exhibits anti-inflammatory effects on allergic asthma via inhibition of NF-κB activity using A549 cells and asthmatic airway epithelial tissues. Inflammation was induced in A549 cells, a human airway epithelial cell line, by IL-1β (10 ng/ml) treatment for 4 h. The effects of Emb on NF-κB activity and COX-2 protein expression in inflamed airway epithelial cells and human asthmatic airway epithelial tissues were analyzed via western blot. The secretion levels of NF-κB-mediated cytokines/chemokines, including IL-4, 6, 9, 13, TNF-α and eotaxin, were measured by a multiplex assay. Emb significantly blocked NF-κB activity in IL-1β-treated A549 cells and human asthmatic airway epithelial tissues. COX-2 expression was also reduced in both IL-1β-treated A549 cells and asthmatic tissues Emb application. Emb significantly reduced the secretion of IL-4, IL-6 and eotaxin in human asthmatic airway epithelial tissues by inhibiting activity of NF-κB. The results of this study suggest that Emb may be used as an anti-inflammatory agent via inhibition of NF-κB and related cytokines.

  13. Investigating the biodiversity of ciliates in the 'Age of Integration'.

    PubMed

    Clamp, John C; Lynn, Denis H

    2017-10-01

    Biology is now turning toward a more integrative approach to research, distinguished by projects that depend on collaboration across hierarchical levels of organization or across disciplines. This trend is prompted by the need to solve complex, large-scale problems and includes disciplines that could be defined as integrative biodiversity. Integrative biodiversity of protists, including that of ciliates, is still partially in its infancy. This is the result of a shortage of historical data resources such as curated museum collections. Major areas of integrative biodiversity of ciliates that have begun to emerge can be categorized as integrative systematics, phenotypic plasticity, and integrative ecology. Integrative systematics of ciliates is characterized by inclusion of diverse sources of data in treatment of taxonomy of species and phylogenetic investigations. Integrative research in phenotypic plasticity combines investigation of functional roles of individual species of ciliates with genetic and genomic data. Finally, integrative ecology focuses on genetic identity of species in communities of ciliates and their collective functional roles in ecosystems. A review of current efforts toward integrative research into biodiversity of ciliates reveals a single, overarching concern-rapid progress will be achieved only by implementing a comprehensive strategy supported by one or more groups of active researchers. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  14. The symbiotic intestinal ciliates and the evolution of their hosts.

    PubMed

    Moon-van der Staay, Seung Yeo; van der Staay, Georg W M; Michalowski, Tadeusz; Jouany, Jean-Pierre; Pristas, Peter; Javorský, Peter; Kišidayová, Svetlana; Varadyova, Zora; McEwan, Neil R; Newbold, C Jamie; van Alen, Theo; de Graaf, Rob; Schmid, Markus; Huynen, Martijn A; Hackstein, Johannes H P

    2014-04-01

    The evolution of sophisticated differentiations of the gastro-intestinal tract enabled herbivorous mammals to digest dietary cellulose and hemicellulose with the aid of a complex anaerobic microbiota. Distinctive symbiotic ciliates, which are unique to this habitat, are the largest representatives of this microbial community. Analyses of a total of 484 different 18S rRNA genes show that extremely complex, but related ciliate communities can occur in the rumen of cattle, sheep, goats and red deer (301 sequences). The communities in the hindgut of equids (Equus caballus, Equus quagga), and elephants (Elephas maximus, Loxodonta africanus; 162 sequences), which are clearly distinct from the ruminant ciliate biota, exhibit a much higher diversity than anticipated on the basis of their morphology. All these ciliates from the gastro-intestinal tract constitute a monophyletic group, which consists of two major taxa, i.e. Vestibuliferida and Entodiniomorphida. The ciliates from the evolutionarily older hindgut fermenters exhibit a clustering that is specific for higher taxa of their hosts, as extant species of horse and zebra on the one hand, and Africa and Indian elephant on the other hand, share related ciliates. The evolutionary younger ruminants altogether share the various entodiniomorphs and the vestibuliferids from ruminants. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Matrine suppresses airway inflammation by downregulating SOCS3 expression via inhibition of NF-κB signaling in airway epithelial cells and asthmatic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Daqing; Wang, Jing; Yang, Niandi

    Matrine has been demonstrated to attenuate allergic airway inflammation. Elevated suppressor of cytokine signaling 3 (SOCS3) was correlated with the severity of asthma. The aim of this study was to investigate the effect of matrine on SOCS3 expression in airway inflammation. In this study, we found that matrine significantly inhibited OVA-induced AHR, inflammatory cell infiltration, goblet cell differentiation, and mucous production in a dose-dependent manner in mice. Matrine also abrogated the level of interleukin (IL)-4 and IL-13, but enhanced interferon (IFN)-γ expression, both in BALF and in lung homogenates. Furthermore, matrine impeded TNF-α-induced the expression of IL-6 and adhesion moleculesmore » in airway epithelial cells (BEAS-2B and MLE-12). Additionally, we found that matrine inhibited SOCS3 expression, both in asthmatic mice and TNF-α-stimulated epithelial cells via suppression of the NF-κB signaling pathway by using pcDNA3.1-SOCS3 plasmid, SOCS3 siRNA, or nuclear factor kappa-B (NF-κB) inhibitor PDTC. Conclusions: Matrine suppresses airway inflammation by downregulating SOCS3 expression via inhibition of NF-κB signaling in airway epithelial cells and asthmatic mice. - Highlights: • Matrine attenuates asthmatic symptoms and regulates Th1/Th2 balance in vivo. • Matrine suppresses inflammation responses in vitro. • Matrine decreases SOCS3 expression both in vivo and in vitro. • Matrine inhibits SOCS3 expression by suppressing NF-κB signaling.« less

  16. Survival characteristics of diarrheagenic Escherichia coli pathotypes and Helicobacter pylori during passage through the free-living ciliate, Tetrahymena sp.

    PubMed

    Smith, Charlotte D; Berk, Sharon G; Brandl, Maria T; Riley, Lee W

    2012-12-01

    Free-living protozoa have been implicated in the survival and transport of pathogens in the environment, but the relationship between non-Shiga toxin-producing Escherichia coli or Helicobacter pylori and ciliates has not been characterized. Six diarrheagenic pathotypes of E. coli and an isolate of H. pylori were evaluated for their susceptibility to digestion by Tetrahymena, an aquatic ciliate. Tetrahymena strain MB125 was fed E. coli or H. pylori, and the ciliate's egested products examined for viable bacterial pathogens by the BacLight(™) LIVE/DEAD (™) assay, a cell elongation method, and by colony counts. All six diarrheagenic E. coli pathotypes survived digestion, whereas H. pylori was digested. Growth of E. coli on agar plates indicated that the bacteria were able to replicate after passage through the ciliate. Transmission electron micrographs of E. coli cells as intact rods vs. degraded H. pylori cells corroborated these results. Scanning electron microscopy revealed a net-like matrix around intact E. coli cells in fecal pellets. These results suggest a possible role for Tetrahymena and its egested fecal pellets in the dissemination of diarrheagenic E. coli in the environment. This bacterial-protozoan interaction may increase opportunities for transmission of diarrheagenic E. coli to mammalian hosts including humans. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. A computational prediction for the effective drug and stem cell treatment of human airway burns.

    PubMed

    Park, Seungman

    2016-01-01

    Burns in the airway from inhaling hot gases lead to one of the most common causes of death in the United States. In order to navigate tissues with large burn areas, the velocity, temperature, and heat flux distributions throughout the human airway system are computed for the inhalation of hot air using the finite-element method. From there, the depth of burned tissue is estimated for a range of exposure times. Additionally, the effectiveness of drug or stem cell delivery to the burned airway tissue is considered for a range of drug or cell sizes. Results showed that the highest temperature and lowest heat flux regions are observed near the pharynx and just upstream of the glottis. It was found that large particles such as stem cells (>20 μm) are effective for treatment of the upper airways, whereas small particles (<10 μm) such as drug nanoparticles are effective in the lower airways.

  18. Species-specific and individual differences in Nipah virus replication in porcine and human airway epithelial cells.

    PubMed

    Sauerhering, Lucie; Zickler, Martin; Elvert, Mareike; Behner, Laura; Matrosovich, Tatyana; Erbar, Stephanie; Matrosovich, Mikhail; Maisner, Andrea

    2016-07-01

    Highly pathogenic Nipah virus (NiV) causes symptomatic infections in pigs and humans. The severity of respiratory symptoms is much more pronounced in pigs than in humans, suggesting species-specific differences of NiV replication in porcine and human airways. Here, we present a comparative study on productive NiV replication in primary airway epithelial cell cultures of the two species. We reveal that NiV growth substantially differs in primary cells between pigs and humans, with a more rapid spread of infection in human airway epithelia. Increased replication, correlated with higher endogenous expression levels of the main NiV entry receptor ephrin-B2, not only significantly differed between airway cells of the two species but also varied between cells from different human donors. To our knowledge, our study provides the first experimental evidence of species-specific and individual differences in NiV receptor expression and replication kinetics in primary airway epithelial cells. It remains to be determined whether and how these differences contribute to the viral host range and pathogenicity.

  19. Intracellular Insulin-like Growth Factor-I Induces Bcl-2 Expression in Airway Epithelial Cells 1

    PubMed Central

    Chand, Hitendra S.; Harris, Jennifer Foster; Mebratu, Yohannes; Chen, Yangde; Wright, Paul S.; Randell, Scott H.; Tesfaigzi, Yohannes

    2012-01-01

    Bcl-2, a prosurvival protein, regulates programmed cell death during development and repair processes, and can be oncogenic when cell proliferation is deregulated. The present study investigated what factors modulate Bcl-2 expression in airway epithelial cells and identified the pathways involved. Microarray analysis of mRNA from airway epithelial cells captured by laser microdissection showed that increased expression of IL-1β and IGF-1 coincided with induced Bcl-2 expression compared to controls. Treatment of cultured airway epithelial cells with IL-1β and IGF-1 induced Bcl-2 expression by increasing Bcl-2 mRNA stability with no discernible changes in promoter activity. Silencing the IGF-1 expression using shRNA showed that intracellular (IC)-IGF-1 was increasing Bcl-2 expression. Blocking EGFR or IGF-1R activation also suppressed IC-IGF-1, and abolished the Bcl-2 induction. Induced expression and co-localization of IC-IGF-1 and Bcl-2 were observed in airway epithelial cells of mice exposed to LPS or cigarette smoke and of patients with cystic fibrosis and chronic bronchitis but not in the respective controls. These studies demonstrate that IC-IGF-1 induces Bcl-2 expression in epithelial cells via IGF-1R and EGFR pathways, and targeting IC-IGF-1 could be beneficial to treat chronic airway diseases. PMID:22461702

  20. Mesenchymal stem cells alleviate oxidative stress-induced mitochondrial dysfunction in the airways.

    PubMed

    Li, Xiang; Michaeloudes, Charalambos; Zhang, Yuelin; Wiegman, Coen H; Adcock, Ian M; Lian, Qizhou; Mak, Judith C W; Bhavsar, Pankaj K; Chung, Kian Fan

    2018-05-01

    Oxidative stress-induced mitochondrial dysfunction can contribute to inflammation and remodeling in patients with chronic obstructive pulmonary disease (COPD). Mesenchymal stem cells protect against lung damage in animal models of COPD. It is unknown whether these effects occur through attenuating mitochondrial dysfunction in airway cells. We sought to examine the effect of induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) on oxidative stress-induce mitochondrial dysfunction in human airway smooth muscle cells (ASMCs) in vitro and in mouse lungs in vivo. ASMCs were cocultured with iPSC-MSCs in the presence of cigarette smoke medium (CSM), and mitochondrial reactive oxygen species (ROS) levels, mitochondrial membrane potential (ΔΨm), and apoptosis were measured. Conditioned medium from iPSC-MSCs and transwell cocultures were used to detect any paracrine effects. The effect of systemic injection of iPSC-MSCs on airway inflammation and hyperresponsiveness in ozone-exposed mice was also investigated. Coculture of iPSC-MSCs with ASMCs attenuated CSM-induced mitochondrial ROS, apoptosis, and ΔΨm loss in ASMCs. iPSC-MSC-conditioned medium or transwell cocultures with iPSC-MSCs reduced CSM-induced mitochondrial ROS but not ΔΨm or apoptosis in ASMCs. Mitochondrial transfer from iPSC-MSCs to ASMCs was observed after direct coculture and was enhanced by CSM. iPSC-MSCs attenuated ozone-induced mitochondrial dysfunction, airway hyperresponsiveness, and inflammation in mouse lungs. iPSC-MSCs offered protection against oxidative stress-induced mitochondrial dysfunction in human ASMCs and in mouse lungs while reducing airway inflammation and hyperresponsiveness. These effects are, at least in part, dependent on cell-cell contact, which allows for mitochondrial transfer, and paracrine regulation. Therefore iPSC-MSCs show promise as a therapy for oxidative stress-dependent lung diseases, such as COPD. Copyright © 2017 American Academy of Allergy

  1. Rare Freshwater Ciliate Paramecium chlorelligerum Kahl, 1935 and Its Macronuclear Symbiotic Bacterium “Candidatus Holospora parva”

    PubMed Central

    Lebedeva, Natalia; Migunova, Alexandra; Petroni, Giulio

    2016-01-01

    Ciliated protists often form symbioses with many diverse microorganisms. In particular, symbiotic associations between ciliates and green algae, as well as between ciliates and intracellular bacteria, are rather wide-spread in nature. In this study, we describe the complex symbiotic system between a very rare ciliate, Paramecium chlorelligerum, unicellular algae inhabiting its cytoplasm, and novel bacteria colonizing the host macronucleus. Paramecium chlorelligerum, previously found only twice in Germany, was retrieved from a novel location in vicinity of St. Petersburg in Russia. Species identification was based on both classical morphological methods and analysis of the small subunit rDNA. Numerous algae occupying the cytoplasm of this ciliate were identified with ultrastructural and molecular methods as representatives of the Meyerella genus, which before was not considered among symbiotic algae. In the same locality at least fifteen other species of “green” ciliates were found, thus it is indeed a biodiversity hot-spot for such protists. A novel species of bacterial symbionts living in the macronucleus of Paramecium chlorelligerum cells was morphologically and ultrastructurally investigated in detail with the description of its life cycle and infection capabilities. The new endosymbiont was molecularly characterized following the full-cycle rRNA approach. Furthermore, phylogenetic analysis confirmed that the novel bacterium is a member of Holospora genus branching basally but sharing all characteristics of the genus except inducing connecting piece formation during the infected host nucleus division. We propose the name “Candidatus Holospora parva” for this newly described species. The described complex system raises new questions on how these microorganisms evolve and interact in symbiosis. PMID:27992463

  2. First report of ciliate (Protozoa) epibionts on deep-sea harpacticoid copepods

    NASA Astrophysics Data System (ADS)

    Sedlacek, Linda; Thistle, David; Fernandez-Leborans, Gregorio; Carman, Kevin R.; Barry, James P.

    2013-08-01

    We report the first observations of ciliate epibionts on deep-sea, benthic harpacticoid copepods. One ciliate epibiont species belonged to class Karyorelictea, one to subclass Suctoria, and one to subclass Peritrichia. Our samples came from the continental rise off central California (36.709°N, 123.523°W, 3607 m depth). We found that adult harpacticoids carried ciliate epibionts significantly more frequently than did subadult copepodids. The reason for the pattern is unknown, but it may involve differences between adults and subadult copepodids in size or in time spent swimming. We also found that the ciliate epibiont species occurred unusually frequently on the adults of two species of harpacticoid copepod; a third harpacticoid species just failed the significance test. When we ranked the 57 harpacticoid species in our samples in order of abundance, three species identified were, as a group, significantly more abundant than expected by chance if one assumes that the abundance of the group and the presence of ciliate epibionts on them were uncorrelated. High abundance may be among the reasons a harpacticoid species carries a ciliate epibiont species disproportionately frequently. For the combinations of harpacticoid species and ciliate epibiont species identified, we found one in which males and females differed significantly in the proportion that carried epibionts. Such a sex bias has also been reported for shallow-water, calanoid copepods.

  3. Antimitogenic effect of bitter taste receptor agonists on airway smooth muscle cells

    PubMed Central

    Sharma, Pawan; Panebra, Alfredo; Pera, Tonio; Tiegs, Brian C.; Hershfeld, Alena; Kenyon, Lawrence C.

    2015-01-01

    Airway remodeling is a hallmark feature of asthma and chronic obstructive pulmonary disease. Clinical studies and animal models have demonstrated increased airway smooth muscle (ASM) mass, and ASM thickness is correlated with severity of the disease. Current medications control inflammation and reverse airway obstruction effectively but have limited effect on remodeling. Recently we identified the expression of bitter taste receptors (TAS2R) on ASM cells, and activation with known TAS2R agonists resulted in ASM relaxation and bronchodilation. These studies suggest that TAS2R can be used as new therapeutic targets in the treatment of obstructive lung diseases. To further establish their effectiveness, in this study we aimed to determine the effects of TAS2R agonists on ASM growth and promitogenic signaling. Pretreatment of healthy and asthmatic human ASM cells with TAS2R agonists resulted in a dose-dependent inhibition of ASM proliferation. The antimitogenic effect of TAS2R ligands was not dependent on activation of protein kinase A, protein kinase C, or high/intermediate-conductance calcium-activated K+ channels. Immunoblot analyses revealed that TAS2R agonists inhibit growth factor-activated protein kinase B phosphorylation without affecting the availability of phosphatidylinositol 3,4,5-trisphosphate, suggesting TAS2R agonists block signaling downstream of phosphatidylinositol 3-kinase. Furthermore, the antimitogenic effect of TAS2R agonists involved inhibition of induced transcription factors (activator protein-1, signal transducer and activator of transcription-3, E2 factor, nuclear factor of activated T cells) and inhibition of expression of multiple cell cycle regulatory genes, suggesting a direct inhibition of cell cycle progression. Collectively, these findings establish the antimitogenic effect of TAS2R agonists and identify a novel class of receptors and signaling pathways that can be targeted to reduce or prevent airway remodeling as well as

  4. The Role of Ciliate Protozoa in the Rumen.

    PubMed

    Newbold, Charles J; de la Fuente, Gabriel; Belanche, Alejandro; Ramos-Morales, Eva; McEwan, Neil R

    2015-01-01

    First described in 1843, Rumen protozoa with their striking appearance were assumed to be important for the welfare of their host. However, despite contributing up to 50% of the bio-mass in the rumen, the role of protozoa in rumen microbial ecosystem remains unclear. Phylogenetic analysis of 18S rDNA libraries generated from the rumen of cattle, sheep, and goats has revealed an unexpected diversity of ciliated protozoa although variation in gene copy number between species makes it difficult to obtain absolute quantification. Despite repeated attempts it has proven impossible to maintain rumen protozoa in axenic culture. Thus it has been difficult to establish conclusively a role of ciliate protozoa in rumen fiber degradation. The development of techniques to clone and express ciliate genes in λ phage, together with bioinformatic indices to confirm the ciliate origin of the genes has allowed the isolation and characterization of fibrolytic genes from rumen protozoa. Elimination of the ciliate protozoa increases microbial protein supply by up to 30% and reduces methane production by up to 11%. Our recent findings suggest that holotrich protozoa play a disproportionate role in supporting methanogenesis whilst the small Entodinium are responsible for much of the bacterial protein turnover. As yet no method to control protozoa in the rumen that is safe and practically applicable has been developed, however a range of plant extract capable of controlling if not completely eliminating rumen protozoa have been described.

  5. The Role of Ciliate Protozoa in the Rumen

    PubMed Central

    Newbold, Charles J.; de la Fuente, Gabriel; Belanche, Alejandro; Ramos-Morales, Eva; McEwan, Neil R.

    2015-01-01

    First described in 1843, Rumen protozoa with their striking appearance were assumed to be important for the welfare of their host. However, despite contributing up to 50% of the bio-mass in the rumen, the role of protozoa in rumen microbial ecosystem remains unclear. Phylogenetic analysis of 18S rDNA libraries generated from the rumen of cattle, sheep, and goats has revealed an unexpected diversity of ciliated protozoa although variation in gene copy number between species makes it difficult to obtain absolute quantification. Despite repeated attempts it has proven impossible to maintain rumen protozoa in axenic culture. Thus it has been difficult to establish conclusively a role of ciliate protozoa in rumen fiber degradation. The development of techniques to clone and express ciliate genes in λ phage, together with bioinformatic indices to confirm the ciliate origin of the genes has allowed the isolation and characterization of fibrolytic genes from rumen protozoa. Elimination of the ciliate protozoa increases microbial protein supply by up to 30% and reduces methane production by up to 11%. Our recent findings suggest that holotrich protozoa play a disproportionate role in supporting methanogenesis whilst the small Entodinium are responsible for much of the bacterial protein turnover. As yet no method to control protozoa in the rumen that is safe and practically applicable has been developed, however a range of plant extract capable of controlling if not completely eliminating rumen protozoa have been described. PMID:26635774

  6. CXCR3 surface expression in human airway epithelial cells: cell cycle dependence and effect on cell proliferation.

    PubMed

    Aksoy, Mark O; Yang, Yi; Ji, Rong; Reddy, P J; Shahabuddin, Syed; Litvin, Judith; Rogers, Thomas J; Kelsen, Steven G

    2006-05-01

    We recently demonstrated that human bronchial epithelial cells (HBEC) constitutively express the CXC chemokine receptor CXCR3, which when activated, induces directed cell migration. The present study in HBEC examined the relative expression of the CXCR3 splice variants CXCR3-A and -B, cell cycle dependence of CXCR3 expression, and the effects of the CXCR3 ligand, the interferon-gamma-inducible CXC chemokine I-TAC/CXCL11, on DNA synthesis and cell proliferation. Both CXCR3-A and -B mRNA, assessed by real-time RT-PCR, were expressed in normal HBEC (NHBEC) and the HBEC line 16-HBE. However, CXCR3-B mRNA was 39- and 6-fold greater than CXCR3-A mRNA in NHBEC and 16-HBE, respectively. Although most HBEC (>80%) assessed by flow cytometry and immunofluorescence microscopy contained intracellular CXCR3, only a minority (<40%) expressed it on the cell surface. In this latter subset of cells, most (>75%) were in the S + G(2)/M phases of the cell cycle. Stimulation of CXCR3 with I-TAC enhanced thymidine incorporation and cell proliferation and increased p38 and ERK1/2 phosphorylation. These data indicate that 1) human airway epithelial cells primarily express CXCR3-B mRNA, 2) surface expression of CXCR3 is largely confined to the S + G(2)/M phases of the cell cycle, and 3) activation of CXCR3 induces DNA synthesis, cell proliferation, and activation of MAPK pathways. We speculate that activation of CXCR3 exerts a mitogenic effect in HBEC, which may be important during airway mucosal injury in obstructive airway diseases such as asthma and chronic obstructive pulmonary disease.

  7. The Tara Oceans voyage reveals global diversity and distribution patterns of marine planktonic ciliates

    PubMed Central

    Gimmler, Anna; Korn, Ralf; de Vargas, Colomban; Audic, Stéphane; Stoeck, Thorsten

    2016-01-01

    Illumina reads of the SSU-rDNA-V9 region obtained from the circumglobal Tara Oceans expedition allow the investigation of protistan plankton diversity patterns on a global scale. We analyzed 6,137,350 V9-amplicons from ocean surface waters and the deep chlorophyll maximum, which were taxonomically assigned to the phylum Ciliophora. For open ocean samples global planktonic ciliate diversity is relatively low (ca. 1,300 observed and predicted ciliate OTUs). We found that 17% of all detected ciliate OTUs occurred in all oceanic regions under study. On average, local ciliate OTU richness represented 27% of the global ciliate OTU richness, indicating that a large proportion of ciliates is widely distributed. Yet, more than half of these OTUs shared <90% sequence similarity with reference sequences of described ciliates. While alpha-diversity measures (richness and exp(Shannon H)) are hardly affected by contemporary environmental conditions, species (OTU) turnover and community similarity (β-diversity) across taxonomic groups showed strong correlation to environmental parameters. Logistic regression models predicted significant correlations between the occurrence of specific ciliate genera and individual nutrients, the oceanic carbonate system and temperature. Planktonic ciliates displayed distinct vertical distributions relative to chlorophyll a. In contrast, the Tara Oceans dataset did not reveal any evidence that latitude is structuring ciliate communities. PMID:27633177

  8. Acute Lung Injury and Persistent Small Airway Disease in a Rabbit Model of Chlorine Inhalation

    PubMed Central

    Musah, Sadiatu; Schlueter, Connie F.; Humphrey, David M.; Powell, Karen S.; Roberts, Andrew M.; Hoyle, Gary W.

    2016-01-01

    Chlorine is a pulmonary toxicant to which humans can be exposed through accidents or intentional releases. Acute effects of chlorine inhalation in humans and animal models have been well characterized, but less is known about persistent effects of acute, high-level chlorine exposures. In particular, animal models that reproduce the long-term effects suggested to occur in humans are lacking. Here, we report the development of a rabbit model in which both acute and persistent effects of chlorine inhalation can be assessed. Male New Zealand White rabbits were exposed to chlorine while the lungs were mechanically ventilated. After chlorine exposure, the rabbits were extubated and were allowed to survive for up to 24 h after exposure to 800 ppm chlorine for 4 min to study acute effects or up to 7 days after exposure to 400 ppm for 8 min to study longer term effects. Acute effects observed 6 or 24 h after inhalation of 800 ppm chlorine for 4 min included hypoxemia, pulmonary edema, airway epithelial injury, inflammation, altered baseline lung mechanics, and airway hyperreactivity to inhaled methacholine. Seven days after recovery from inhalation of 400 ppm chlorine for 8 min, rabbits exhibited mild hypoxemia, increased area of pressure-volume loops, and airway hyperreactivity. Lung histology 7 days after chlorine exposure revealed abnormalities in the small airways, including inflammation and sporadic bronchiolitis obliterans lesions. Immunostaining showed a paucity of club and ciliated cells in the epithelium at these sites. These results suggest that small airway disease may be an important component of persistent respiratory abnormalities that occur following acute chlorine exposure. This non-rodent chlorine exposure model should prove useful for studying persistent effects of acute chlorine exposure and for assessing efficacy of countermeasures for chlorine-induced lung injury. PMID:27913141

  9. Acute lung injury and persistent small airway disease in a rabbit model of chlorine inhalation.

    PubMed

    Musah, Sadiatu; Schlueter, Connie F; Humphrey, David M; Powell, Karen S; Roberts, Andrew M; Hoyle, Gary W

    2017-01-15

    Chlorine is a pulmonary toxicant to which humans can be exposed through accidents or intentional releases. Acute effects of chlorine inhalation in humans and animal models have been well characterized, but less is known about persistent effects of acute, high-level chlorine exposures. In particular, animal models that reproduce the long-term effects suggested to occur in humans are lacking. Here, we report the development of a rabbit model in which both acute and persistent effects of chlorine inhalation can be assessed. Male New Zealand White rabbits were exposed to chlorine while the lungs were mechanically ventilated. After chlorine exposure, the rabbits were extubated and were allowed to survive for up to 24h after exposure to 800ppm chlorine for 4min to study acute effects or up to 7days after exposure to 400ppm for 8min to study longer term effects. Acute effects observed 6 or 24h after inhalation of 800ppm chlorine for 4min included hypoxemia, pulmonary edema, airway epithelial injury, inflammation, altered baseline lung mechanics, and airway hyperreactivity to inhaled methacholine. Seven days after recovery from inhalation of 400ppm chlorine for 8min, rabbits exhibited mild hypoxemia, increased area of pressure-volume loops, and airway hyperreactivity. Lung histology 7days after chlorine exposure revealed abnormalities in the small airways, including inflammation and sporadic bronchiolitis obliterans lesions. Immunostaining showed a paucity of club and ciliated cells in the epithelium at these sites. These results suggest that small airway disease may be an important component of persistent respiratory abnormalities that occur following acute chlorine exposure. This non-rodent chlorine exposure model should prove useful for studying persistent effects of acute chlorine exposure and for assessing efficacy of countermeasures for chlorine-induced lung injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Mast Cells Can Amplify Airway Reactivity and Features of Chronic Inflammation in an Asthma Model in Mice

    PubMed Central

    Williams, Cara M.M.; Galli, Stephen J.

    2000-01-01

    The importance of mast cells in the development of the allergen-induced airway hyperreactivity and inflammation associated with asthma remains controversial. We found that genetically mast cell–deficient WBB6F1-W/Wv mice that were sensitized to ovalbumin (OVA) without adjuvant, then challenged repetitively with antigen intranasally, exhibited much weaker responses in terms of bronchial hyperreactivity to aerosolized methacholine, lung tissue eosinophil infiltration, and numbers of proliferating cells within the airway epithelium than did identically treated WBB6F1-+/+ normal mice. However, W/Wv mice that had undergone selective reconstitution of tissue mast cells with in vitro–derived mast cells of congenic +/+ mouse origin exhibited airway responses that were very similar to those of the +/+ mice. By contrast, W/Wv mice that were sensitized with OVA emulsified in alum and challenged with aerosolized OVA exhibited levels of airway hyperreactivity and lung tissue eosinophil infiltration that were similar to those of the corresponding +/+ mice. Nevertheless, these W/Wv mice exhibited significantly fewer proliferating cells within the airway epithelium than did identically treated +/+ mice. These results show that, depending on the “asthma model” investigated, mast cells can either have a critical role in, or not be essential for, multiple features of allergic airway responses in mice. PMID:10934234

  11. Gene Transfer by Guanidinium-Cholesterol Cationic Lipids into Airway Epithelial Cells in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Oudrhiri, Noufissa; Vigneron, Jean-Pierre; Peuchmaur, Michel; Leclerc, Tony; Lehn, Jean-Marie; Lehn, Pierre

    1997-03-01

    Synthetic vectors represent an attractive alternative approach to viral vectors for gene transfer, in particular into airway epithelial cells for lung-directed gene therapy for cystic fibrosis. Having recently found that guanidinium-cholesterol cationic lipids are efficient reagents for gene transfer into mammalian cell lines in vitro, we have investigated their use for gene delivery into primary airway epithelial cells in vitro and in vivo. The results obtained indicate that the lipid bis (guanidinium)-tren-cholesterol (BGTC) can be used to transfer a reporter gene into primary human airway epithelial cells in culture. Furthermore, liposomes composed of BGTC and dioleoyl phosphatidylethanolamine (DOPE) are efficient for gene delivery to the mouse airway epithelium in vivo. Transfected cells were detected both in the surface epithelium and in submucosal glands. In addition, the transfection efficiency of BGTC/DOPE liposomes in vivo was quantitatively assessed by using the luciferase reporter gene system.

  12. Act together—implications of symbioses in aquatic ciliates

    PubMed Central

    Dziallas, Claudia; Allgaier, Martin; Monaghan, Michael T.; Grossart, Hans-Peter

    2012-01-01

    Mutual interactions in the form of symbioses can increase the fitness of organisms and provide them with the capacity to occupy new ecological niches. The formation of obligate symbioses allows for rapid evolution of new life forms including multitrophic consortia. Microbes are important components of many known endosymbioses and their short generation times and strong potential for genetic exchange may be important drivers of speciation. Hosts provide endo- and ectosymbionts with stable, nutrient-rich environments, and protection from grazers. This is of particular importance in aquatic ecosystems, which are often highly variable, harsh, and nutrient-deficient habitats. It is therefore not surprising that symbioses are widespread in both marine and freshwater environments. Symbioses in aquatic ciliates are good model systems for exploring symbiont-host interactions. Many ciliate species are globally distributed and have been intensively studied in the context of plastid evolution. Their relatively large cell size offers an ideal habitat for numerous microorganisms with different functional traits including commensalism and parasitism. Phagocytosis facilitates the formation of symbiotic relationships, particularly since some ingested microorganisms can escape the digestion. For example, photoautotrophic algae and methanogens represent endosymbionts that greatly extend the biogeochemical functions of their hosts. Consequently, symbiotic relationships between protists and prokaryotes are widespread and often result in new ecological functions of the symbiotic communities. This enables ciliates to thrive under a wide range of environmental conditions including ultraoligotrophic or anoxic habitats. We summarize the current understanding of this exciting research topic to identify the many areas in which knowledge is lacking and to stimulate future research by providing an overview on new methodologies and by formulating a number of emerging questions in this field

  13. Airway smooth muscle in airway reactivity and remodeling: what have we learned?

    PubMed Central

    2013-01-01

    It is now established that airway smooth muscle (ASM) has roles in determining airway structure and function, well beyond that as the major contractile element. Indeed, changes in ASM function are central to the manifestation of allergic, inflammatory, and fibrotic airway diseases in both children and adults, as well as to airway responses to local and environmental exposures. Emerging evidence points to novel signaling mechanisms within ASM cells of different species that serve to control diverse features, including 1) [Ca2+]i contractility and relaxation, 2) cell proliferation and apoptosis, 3) production and modulation of extracellular components, and 4) release of pro- vs. anti-inflammatory mediators and factors that regulate immunity as well as the function of other airway cell types, such as epithelium, fibroblasts, and nerves. These diverse effects of ASM “activity” result in modulation of bronchoconstriction vs. bronchodilation relevant to airway hyperresponsiveness, airway thickening, and fibrosis that influence compliance. This perspective highlights recent discoveries that reveal the central role of ASM in this regard and helps set the stage for future research toward understanding the pathways regulating ASM and, in turn, the influence of ASM on airway structure and function. Such exploration is key to development of novel therapeutic strategies that influence the pathophysiology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. PMID:24142517

  14. Rhinovirus disrupts the barrier function of polarized airway epithelial cells.

    PubMed

    Sajjan, Umadevi; Wang, Qiong; Zhao, Ying; Gruenert, Dieter C; Hershenson, Marc B

    2008-12-15

    Secondary bacterial infection following rhinovirus (RV) infection has been recognized in chronic obstructive pulmonary disease. We sought to understand mechanisms by which RV infection facilitates secondary bacterial infection. Primary human airway epithelial cells grown at air-liquid interface and human bronchial epithelial (16HBE14o-) cells grown as polarized monolayers were infected apically with RV. Transmigration of bacteria (nontypeable Haemophilus influenzae and others) was assessed by colony counting and transmission electron microscopy. Transepithelial resistance (R(T)) was measured by using a voltmeter. The distribution of zona occludins (ZO)-1 was determined by immunohistochemistry and immunoblotting. Epithelial cells infected with RV showed 2-log more bound bacteria than sham-infected cultures, and bacteria were recovered from the basolateral media of RV- but not sham-infected cells. Infection of polarized airway epithelial cell cultures with RV for 24 hours caused a significant decrease in R(T) without causing cell death or apoptosis. Ultraviolet-treated RV did not decrease R(T), suggesting a requirement for viral replication. Reduced R(T) was associated with increased paracellular permeability, as determined by flux of fluorescein isothiocyanate (FITC)-inulin. Neutralizing antibodies to tumor necrosis factor (TNF)-alpha, IFN-gamma and IL-1beta reversed corresponding cytokine-induced reductions in R(T) but not that induced by RV, indicating that the RV effect is independent of these proinflammatory cytokines. Confocal microscopy and immunoblotting revealed the loss of ZO-1 from tight junction complexes in RV-infected cells. Intranasal inoculation of mice with RV1B also caused the loss of ZO-1 from the bronchial epithelium tight junctions in vivo. RV facilitates binding, translocation, and persistence of bacteria by disrupting airway epithelial barrier function.

  15. Intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verhaeghe, Catherine; Tabruyn, Sebastien P.; Oury, Cecile

    Cystic fibrosis is a common genetic disorder characterized by a severe lung inflammation and fibrosis leading to the patient's death. Enhanced angiogenesis in cystic fibrosis (CF) tissue has been suggested, probably caused by the process of inflammation, as similarly described in asthma and chronic bronchitis. The present study demonstrates an intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells. Microarray experiments showed that CF airway epithelial cells expressed several angiogenic factors such as VEGF-A, VEGF-C, bFGF, and PLGF at higher levels than control cells. These data were confirmed by real-time quantitative PCR and, at the protein level, by ELISA. Conditionedmore » media of these cystic fibrosis cells were able to induce proliferation, migration and sprouting of cultured primary endothelial cells. This report describes for the first time that cystic fibrosis epithelial cells have an intrinsic angiogenic activity. Since excess of angiogenesis is correlated with more severe pulmonary disease, our results could lead to the development of new therapeutic applications.« less

  16. First report of predation of Giardia sp. cysts by ciliated protozoa and confirmation of predation of Cryptosporidium spp. oocysts by ciliate species.

    PubMed

    Siqueira-Castro, Isabel Cristina Vidal; Greinert-Goulart, Juliane Araújo; Bonatti, Tais Rondello; Yamashiro, Sandra; Franco, Regina Maura Bueno

    2016-06-01

    Ciliated protozoa are important components of the microbial food web in various habitats, especially aquatic environments. These organisms are useful bioindicators for both environmental quality assessment and the wastewater purification process. The pathogenic parasitic protozoan species Giardia and Cryptosporidium represent a significant concern for human health, being responsible for numerous disease outbreaks worldwide. The predation of cysts and oocysts in 15 ciliate species from water and sewage samples collected in Campinas, São Paulo, Brazil were verified under laboratory conditions. The ciliated protozoan species were selected based on their mode of nutrition, and only bacterivorous and suspension-feeders were considered for the experiments. The species Blepharisma sinuosum, Euplotes aediculatus, Sterkiella cavicola, Oxytricha granulifera, Vorticella infusionum, Spirostomum minus, and Stentor coeruleus ingested cysts and oocysts, the resistance forms of Giardia spp. and Cryptosporidium spp., respectively. This is the first time that the ingestion of Giardia cysts by ciliated protozoa has been reported. These findings may contribute to a better understanding of the biological removal of these pathogens from aquatic environments.

  17. Chitin-Induced Airway Epithelial Cell Innate Immune Responses Are Inhibited by Carvacrol/Thymol

    PubMed Central

    Erle, David J.

    2016-01-01

    Chitin is produced in large amounts by fungi, insects, and other organisms and has been implicated in the pathogenesis of asthma. Airway epithelial cells are in direct contact with environmental particles and serve as the first line of defense against inhaled allergens and pathogens. The potential contributions of airway epithelial cells to chitin-induced asthma remain poorly understood. We hypothesized that chitin directly stimulates airway epithelial cells to release cytokines that promote type 2 immune responses and to induce expression of molecules which are important in innate immune responses. We found that chitin exposure rapidly induced the expression of three key type 2-promoting cytokines, IL-25, IL-33 and TSLP, in BEAS-2B transformed human bronchial epithelial cells and in A549 and H292 lung carcinoma cells. Chitin also induced the expression of the key pattern recognition receptors TLR2 and TLR4. Chitin induced the expression of miR-155, miR-146a and miR-21, each of which is known to up-regulate the expression of pro-inflammatory cytokines. Also the expression of SOCS1 and SHIP1 which are known targets of miR-155 was repressed by chitin treatment. The monoterpene phenol carvacrol (Car) and its isomer thymol (Thy) are found in herbal essential oils and have been shown to inhibit allergic inflammation in asthma models. We found that Car/Thy inhibited the effects of chitin on type 2-promoting cytokine release and on the expression of TLRs, SOCS1, SHIP1, and miRNAs. Car/Thy could also efficiently reduce the protein levels of TLR4, inhibit the increase in TLR2 protein levels in chitin plus Car/Thy-treated cells and increase the protein levels of SHIP1 and SOCS1, which are negative regulators of TLR-mediated inflammatory responses. We conclude that direct effects of chitin on airway epithelial cells are likely to contribute to allergic airway diseases like asthma, and that Car/Thy directly inhibits epithelial cell pro-inflammatory responses to chitin. PMID

  18. Propagation of respiratory viruses in human airway epithelia reveals persistent virus-specific signatures.

    PubMed

    Essaidi-Laziosi, Manel; Brito, Francisco; Benaoudia, Sacha; Royston, Léna; Cagno, Valeria; Fernandes-Rocha, Mélanie; Piuz, Isabelle; Zdobnov, Evgeny; Huang, Song; Constant, Samuel; Boldi, Marc-Olivier; Kaiser, Laurent; Tapparel, Caroline

    2018-06-01

    The leading cause of acute illnesses, respiratory viruses, typically cause self-limited diseases, although severe complications can occur in fragile patients. Rhinoviruses (RVs), respiratory enteroviruses (EVs), influenza virus, respiratory syncytial viruses (RSVs), and coronaviruses are highly prevalent respiratory pathogens, but because of the lack of reliable animal models, their differential pathogenesis remains poorly characterized. We sought to compare infections by respiratory viruses isolated from clinical specimens using reconstituted human airway epithelia. Tissues were infected with RV-A55, RV-A49, RV-B48, RV-C8, and RV-C15; respiratory EV-D68; influenza virus H3N2; RSV-B; and human coronavirus (HCoV)-OC43. Replication kinetics, cell tropism, effect on tissue integrity, and cytokine secretion were compared. Viral adaptation and tissue response were assessed through RNA sequencing. RVs, RSV-B, and HCoV-OC43 infected ciliated cells and caused no major cell death, whereas H3N2 and EV-D68 induced ciliated cell loss and tissue integrity disruption. H3N2 was also detected in rare goblet and basal cells. All viruses, except RV-B48 and HCoV-OC43, altered cilia beating and mucociliary clearance. H3N2 was the strongest cytokine inducer, and HCoV-OC43 was the weakest. Persistent infection was observed in all cases. RNA sequencing highlighted perturbation of tissue metabolism and induction of a transient but important immune response at 4 days after infection. No majority mutations emerged in the viral population. Our results highlight the differential in vitro pathogenesis of respiratory viruses during the acute infection phase and their ability to persist under immune tolerance. These data help to appreciate the range of disease severity observed in vivo and the occurrence of chronic respiratory tract infections in immunocompromised hosts. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  19. Sources of mycosporine-like amino acids in planktonic Chlorella-bearing ciliates (Ciliophora)

    PubMed Central

    SONNTAG, BETTINA; SUMMERER, MONIKA; SOMMARUGA, RUBEN

    2007-01-01

    Mycosporine-like amino acids (MAAs) are a family of secondary metabolites known to protect organisms exposed to solar UV radiation. We tested their distribution among several planktonic ciliates bearing Chlorella isolated from an oligo-mesotrophic lake in Tyrol, Austria. In order to test the origin of these compounds, the MAAs were assessed by high performance liquid chromatography in both the ciliates and their symbiotic algae. Considering all Chlorella-bearing ciliates, we found: (i) seven different MAAs (mycosporine-glycine, palythine, asterina-330, shinorine, porphyra-334, usujirene, palythene); (ii) one to several MAAs per species and (iii) qualitative and quantitative seasonal changes in the MAAs (e.g. in Pelagodileptus trachelioides). In all species tested, concentrations of MAAs were always <1% of ciliate dry weight. Several MAAs were also identified in the Chlorella isolated from the ciliates, thus providing initial evidence for their symbiotic origin. In Uroleptus sp., however, we found evidence for a dietary source of MAAs. Our results suggest that accumulation of MAAs in Chlorella-bearing ciliates represents an additional benefit of this symbiosis and an adaptation for survival in sunlit, UV-exposed waters.

  20. Visualisation of Multiple Tight Junctional Complexes in Human Airway Epithelial Cells.

    PubMed

    Buckley, Alysia G; Looi, Kevin; Iosifidis, Thomas; Ling, Kak-Ming; Sutanto, Erika N; Martinovich, Kelly M; Kicic-Starcevich, Elizabeth; Garratt, Luke W; Shaw, Nicole C; Lannigan, Francis J; Larcombe, Alexander N; Zosky, Graeme; Knight, Darryl A; Rigby, Paul J; Kicic, Anthony; Stick, Stephen M

    2018-01-01

    Apically located tight junctions in airway epithelium perform a fundamental role in controlling macromolecule migration through paracellular spaces. Alterations in their expression may lead to disruptions in barrier integrity, which subsequently facilitates entry of potential bacterial and other pathogens into the host. Furthermore, there is emerging evidence that the barrier integrity of the airway in certain airway inflammatory diseases may be altered. However, there is little consensus on the way this is assessed and measured and the type of cells used to achieve this. Here, we assessed four fixation methods including; (i) 4% ( v /v) paraformaldehyde; (ii) 100% methanol; (iii) acetone or; (iv) 1:1 methanol: acetone. Pre-extraction with Triton X-100 was also performed and assessed on cells prior to fixation with either methanol or paraformaldehyde. Cells were also permeabilized with 0.1% (v/v) Saponin in 1× TBS following fixation and subsequently stained for tight junction proteins. Confocal microscopy was then used to visualise, compare and evaluate staining intensity of the tight junctional complexes in order to determine a standardised workflow of reproducible staining. Positive staining was observed following methanol fixation for claudin-1 and ZO-1 tight junction proteins but no staining was detected for occludin in 16HBE14o- cells. Combinatorial fixation with methanol and acetone also produced consistent positive staining for both occludin and ZO-1 tight junction proteins in these cells. When assessed using primary cells cultured at air-liquid interface, similar positive staining for claudin-1 and ZO-1 was observed following methanol fixation, while similar positive staining for occludin and ZO-1 was observed following the same combinatorial fixation with methanol and acetone. The present study demonstrates the importance of a personalised approach to optimise staining for the visualisation of different tight junction proteins. Of significance, the

  1. Oxytetracycline Inhibits Mucus Secretion and Inflammation in Human Airway Epithelial Cells.

    PubMed

    Shah, Said Ahmad; Ishinaga, Hajime; Takeuchi, Kazuhiko

    2017-01-01

    Oxytetracycline is a broad-spectrum antibiotic, but its nonantibacterial effects in the human respiratory tract are unknown. In this study, the effects of oxytetracycline on mucus secretion and inflammation were examined by PCR and ELISA in the human airway epithelial cell line NCI-H292. Oxytetracycline (10 μg/mL) significantly inhibited TNF-α-induced MUC5AC gene expression and MUC5AC protein levels in NCI-H292 cells. It also downregulated IL-8 and IL-1β gene expression and IL-1β protein levels. Our findings demonstrated that oxytetracycline suppressed mucus production and inflammation in human respiratory epithelial cells, providing further evidence for the usefulness of oxytetracycline for human airway inflammatory diseases. © 2017 S. Karger AG, Basel.

  2. Airway-Resident Memory CD8 T Cells Provide Antigen-Specific Protection against Respiratory Virus Challenge through Rapid IFN-γ Production.

    PubMed

    McMaster, Sean R; Wilson, Jarad J; Wang, Hong; Kohlmeier, Jacob E

    2015-07-01

    CD8 airway resident memory T (TRM) cells are a distinctive TRM population with a high turnover rate and a unique phenotype influenced by their localization within the airways. Their role in mediating protective immunity to respiratory pathogens, although suggested by many studies, has not been directly proven. This study provides definitive evidence that airway CD8 TRM cells are sufficient to mediate protection against respiratory virus challenge. Despite being poorly cytolytic in vivo and failing to expand after encountering Ag, airway CD8 TRM cells rapidly express effector cytokines, with IFN-γ being produced most robustly. Notably, established airway CD8 TRM cells possess the ability to produce IFN-γ faster than systemic effector memory CD8 T cells. Furthermore, naive mice receiving intratracheal transfer of airway CD8 TRM cells lacking the ability to produce IFN-γ were less effective at controlling pathogen load upon heterologous challenge. This direct evidence of airway CD8 TRM cell-mediated protection demonstrates the importance of these cells as a first line of defense for optimal immunity against respiratory pathogens and suggests they should be considered in the development of future cell-mediated vaccines. Copyright © 2015 by The American Association of Immunologists, Inc.

  3. Ciliated protozoa in the impact zone of the Uzhgorod treatment plant

    NASA Astrophysics Data System (ADS)

    Pliashechnyk, Volodimir; Danko, Yaroslav; Łagód, Grzegorz; Drewnowski, Jakub; Kuzmina, Tatiana; Babko, Roman

    2018-02-01

    This paper presents the results of studies on the Uzh River (Ukraine, Zakarpattia Oblast) near the effluent point of a sewage treatment plant in Uzhgorod. The samples were taken at various sites of the treatment plant along the stages of purification process, as well as in the river, at a number of different points above and below the wastewater discharge. At each of these objects, the temperature and O2 were measured. The structure of ciliate assemblage was analyzed along the stages of the treatment process in the WWTP and in the river before and after the sewage discharge. A total of 26 ciliate taxa were observed and included in the analysis. All the studied stations were considered as a continuum in which populations of protozoa spread freely according to their ecological preferences. The majority of ciliate species were encountered in each of the examined stations, but their quantitative development differed significantly, reflecting their response to the environmental conditions at the stations. The analysis of the qualitative and quantitative distribution of ciliate populations by the stations enabled to group them in respect to the peculiarities of the local conditions. The study showed that the majority of the ciliate species, typical of bioreactors, are equally common at the stations of the Uzh River below wastewater discharges. The ciliate assemblage in the oxygen gradient demonstrated a wide spectrum of ecological tolerance at the species level. These findings confirm that ciliates are very good indicators of the environmental quality, provided that detailed information about their environmental priorities is available.

  4. Mast cells in airway diseases and interstitial lung disease.

    PubMed

    Cruse, Glenn; Bradding, Peter

    2016-05-05

    Mast cells are major effector cells of inflammation and there is strong evidence that mast cells play a significant role in asthma pathophysiology. There is also a growing body of evidence that mast cells contribute to other inflammatory and fibrotic lung diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. This review discusses the role that mast cells play in airway diseases and highlights how mast cell microlocalisation within specific lung compartments and their cellular interactions are likely to be critical for their effector function in disease. Published by Elsevier B.V.

  5. Antimitogenic effect of bitter taste receptor agonists on airway smooth muscle cells.

    PubMed

    Sharma, Pawan; Panebra, Alfredo; Pera, Tonio; Tiegs, Brian C; Hershfeld, Alena; Kenyon, Lawrence C; Deshpande, Deepak A

    2016-02-15

    Airway remodeling is a hallmark feature of asthma and chronic obstructive pulmonary disease. Clinical studies and animal models have demonstrated increased airway smooth muscle (ASM) mass, and ASM thickness is correlated with severity of the disease. Current medications control inflammation and reverse airway obstruction effectively but have limited effect on remodeling. Recently we identified the expression of bitter taste receptors (TAS2R) on ASM cells, and activation with known TAS2R agonists resulted in ASM relaxation and bronchodilation. These studies suggest that TAS2R can be used as new therapeutic targets in the treatment of obstructive lung diseases. To further establish their effectiveness, in this study we aimed to determine the effects of TAS2R agonists on ASM growth and promitogenic signaling. Pretreatment of healthy and asthmatic human ASM cells with TAS2R agonists resulted in a dose-dependent inhibition of ASM proliferation. The antimitogenic effect of TAS2R ligands was not dependent on activation of protein kinase A, protein kinase C, or high/intermediate-conductance calcium-activated K(+) channels. Immunoblot analyses revealed that TAS2R agonists inhibit growth factor-activated protein kinase B phosphorylation without affecting the availability of phosphatidylinositol 3,4,5-trisphosphate, suggesting TAS2R agonists block signaling downstream of phosphatidylinositol 3-kinase. Furthermore, the antimitogenic effect of TAS2R agonists involved inhibition of induced transcription factors (activator protein-1, signal transducer and activator of transcription-3, E2 factor, nuclear factor of activated T cells) and inhibition of expression of multiple cell cycle regulatory genes, suggesting a direct inhibition of cell cycle progression. Collectively, these findings establish the antimitogenic effect of TAS2R agonists and identify a novel class of receptors and signaling pathways that can be targeted to reduce or prevent airway remodeling as well as

  6. SERCA2 Regulates Non-CF and CF Airway Epithelial Cell Response to Ozone

    PubMed Central

    Ahmad, Shama; Nichols, David P.; Strand, Matthew; Rancourt, Raymond C.; Randell, Scott H.; White, Carl W.; Ahmad, Aftab

    2011-01-01

    Calcium mobilization can regulate a wide range of essential functions of respiratory epithelium, including ion transport, ciliary beat frequency, and secretion of mucus, all of which are modified in cystic fibrosis (CF). SERCA2, an important controller of calcium signaling, is deficient in CF epithelium. We conducted this study to determine whether SERCA2 deficiency can modulate airway epithelial responses to environmental oxidants such as ozone. This could contribute to the pathogenesis of pulmonary exacerbations, which are important and frequent clinical events in CF. To address this, we used air-liquid interface (ALI) cultures of non-CF and CF cell lines, as well as differentiated cultures of cells derived from non-CF and CF patients. We found that ozone exposure caused enhanced membrane damage, mitochondrial dysfunction and apoptotic cell death in CF airway epithelial cell lines relative to non-CF. Ozone exposure caused increased proinflammatory cytokine production in CF airway epithelial cell lines. Elevated proinflammatory cytokine production also was observed in shRNA-mediated SERCA2 knockdown cells. Overexpression of SERCA2 reversed ozone-induced proinflammatory cytokine production. Ozone-induced proinflammatory cytokine production was NF-κB- dependent. In a stable NF-κB reporter cell line, SERCA2 inhibition and knockdown both upregulated cytomix-induced NF-κB activity, indicating importance of SERCA2 in modulating NF-κB activity. In this system, increased NF-κB activity was also accompanied by increased IL-8 production. Ozone also induced NF-κB activity and IL-8 release, an effect that was greater in SERCA2-silenced NF-κB-reporter cells. SERCA2 overexpression reversed cytomix-induced increased IL-8 release and total nuclear p65 in CFTR-deficient (16HBE-AS) cells. These studies suggest that SERCA2 is an important regulator of the proinflammatory response of airway epithelial cells and could be a potential therapeutic target. PMID:22096575

  7. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (K{sub ATP}) channels have been identified in ASMCs. Mount evidence has suggested that K{sub ATP} channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K{sup +} channels triggers K{sup +} efflux, which leading to membrane hyperpolarization, preventing Ca{sup 2+}entry through closing voltage-operated Ca{sup 2+} channels. Intracellular Ca{sup 2+} is the most important regulator of muscle contraction, cell proliferation and migration. K{sup +} efflux decreases Ca{sup 2+} influx, which consequently influences ASMCs proliferation andmore » migration. As a K{sub ATP} channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective K{sub ATP} channel antagonist. These findings provide a strong evidence to support that

  8. Extrusomes in ciliates: diversification, distribution, and phylogenetic implications.

    PubMed

    Rosati, Giovanna; Modeo, Letizia

    2003-01-01

    Exocytosis is, in all likelihood, an important communication method among microbes. Ciliates are highly differentiated and specialized micro-organisms for which versatile and/or sophisticated exocytotic organelles may represent important adaptive tools. Thus, in ciliates, we find a broad range of different extrusomes, i.e ejectable membrane-bound organelles. Structurally simple extrusomes, like mucocysts and cortical granules, are widespread in different taxa within the phylum. They play the roles in each case required for the ecological needs of the organisms. Then, we find a number of more elaborate extrusomes, whose distribution within the phylum is more limited, and in some way related to phylogenetic affinities. Herein we provide a survey of literature and our data on selected extrusomes in ciliates. Their morphology, distribution, and possible function are discussed. The possible phylogenetic implications of their diversity are considered.

  9. Role of nicotinic receptors and acetylcholine in mucous cell metaplasia, hyperplasia and airway mucus formation in vitro and in vivo

    PubMed Central

    Gundavarapu, Sravanthi; Wilder, Julie A.; Mishra, Neerad C.; Rir-sima-ah, Jules; Langley, Raymond J.; Singh, Shashi P.; Saeed, Ali Imran; Jaramillo, Richard J.; Gott, Katherine M.; Peña-Philippides, Juan Carlos; Harrod, Kevin S.; McIntosh, J. Michael; Buch, Shilpa; Sopori, Mohan L.

    2012-01-01

    Background Airway mucus hypersecretion is a key pathophysiological feature in number of lung diseases. Cigarette smoke/nicotine and allergens are strong stimulators of airway mucus; however, the mechanism of mucus modulation is unclear. Objectives Characterize the pathway by which cigarette smoke/nicotine regulates airway mucus and identify agents that decrease airway mucus. Methods IL-13 and gamma-aminobutyric acid receptors (GABAARs) are implicated in airway mucus. We examined the role of IL-13 and GABAARs in nicotine-induced mucus formation in normal human bronchial epithelial (NHBE) and A549 cells, and secondhand cigarette smoke and/or ovalbumin-induced mucus formation in vivo. Results Nicotine promotes mucus formation in NHBE cells; however, the nicotine-induced mucus formation is independent of IL-13 but sensitive to the GABAAR antagonist picrotoxin (PIC). Airway epithelial cells express α7/α9/α10 nicotinic acetylcholine receptors (nAChRs) and specific inhibition or knockdown of α7- but not α9/α10-nAChRs abrogates mucus formation in response to nicotine and IL-13. Moreover, addition of acetylcholine or inhibition of its degradation increases mucus in NHBE cells. Nicotinic but not muscarinic receptor antagonists block allergen or nicotine/cigarette smoke-induced airway mucus formation in NHBE cells and/or in mouse airways. Conclusions Nicotine-induced airway mucus formation is independent of IL-13 and α7-nAChRs are critical in airway mucous cell metaplasia/hyperplasia and mucus production in response to various pro-mucoid agents, including IL-13. In the absence of nicotine, acetylcholine may be the biological ligand for α7-nAChRs to trigger airway mucus formation. α7-nAChRs are downstream of IL-13 but upstream of GABAARα2 in the MUC5AC pathway. Acetylcholine and α-7-nAChRs may serve as therapeutic targets to control airway mucus. PMID:22578901

  10. NITROTYROSINE ATTENUATES RSV-INDUCED INFLAMMATION IN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Nitrotyrosine attenuates RSV-induced inflammation in airway epithelial cells. Joleen Soukup, Zuowei Li, Susanne Becker and Yuh-Chin Huang. NHEERL, ORD, USEPA, RTP, North Carolina, CEMALB, University of North Carolina, Chapel Hill, North Carolina

    Nitrotyrosine (NO2Tyr) is a...

  11. Manipulation of Cell Physiology Enables Gene Silencing in Well-differentiated Airway Epithelia

    PubMed Central

    Krishnamurthy, Sateesh; Behlke, Mark A; Ramachandran, Shyam; Salem, Aliasger K; McCray Jr, Paul B; Davidson, Beverly L

    2012-01-01

    The application of RNA interference-based gene silencing to the airway surface epithelium holds great promise to manipulate host and pathogen gene expression for therapeutic purposes. However, well-differentiated airway epithelia display significant barriers to double-stranded small-interfering RNA (siRNA) delivery despite testing varied classes of nonviral reagents. In well-differentiated primary pig airway epithelia (PAE) or human airway epithelia (HAE) grown at the air–liquid interface (ALI), the delivery of a Dicer-substrate small-interfering RNA (DsiRNA) duplex against hypoxanthine–guanine phosphoribosyltransferase (HPRT) with several nonviral reagents showed minimal uptake and no knockdown of the target. In contrast, poorly differentiated cells (2–5-day post-seeding) exhibited significant oligonucleotide internalization and target knockdown. This finding suggested that during differentiation, the barrier properties of the epithelium are modified to an extent that impedes oligonucleotide uptake. We used two methods to overcome this inefficiency. First, we tested the impact of epidermal growth factor (EGF), a known enhancer of macropinocytosis. Treatment of the cells with EGF improved oligonucleotide uptake resulting in significant but modest levels of target knockdown. Secondly, we used the connectivity map (Cmap) database to correlate gene expression changes during small molecule treatments on various cells types with genes that change upon mucociliary differentiation. Several different drug classes were identified from this correlative assessment. Well-differentiated epithelia treated with DsiRNAs and LY294002, a PI3K inhibitor, significantly improved gene silencing and concomitantly reduced target protein levels. These novel findings reveal that well-differentiated airway epithelia, normally resistant to siRNA delivery, can be pretreated with small molecules to improve uptake of synthetic oligonucleotide and RNA interference (RNAi) responses. PMID

  12. Chimeric Antigen Receptor-Redirected Regulatory T Cells Suppress Experimental Allergic Airway Inflammation, a Model of Asthma.

    PubMed

    Skuljec, Jelena; Chmielewski, Markus; Happle, Christine; Habener, Anika; Busse, Mandy; Abken, Hinrich; Hansen, Gesine

    2017-01-01

    Cellular therapy with chimeric antigen receptor (CAR)-redirected cytotoxic T cells has shown impressive efficacy in the treatment of hematologic malignancies. We explored a regulatory T cell (Treg)-based therapy in the treatment of allergic airway inflammation, a model for asthma, which is characterized by an airway hyper-reactivity (AHR) and a chronic, T helper-2 (Th2) cell-dominated immune response to allergen. To restore the immune balance in the lung, we redirected Tregs by a CAR toward lung epithelia in mice upon experimentally induced allergic asthma, closely mimicking the clinical situation. Adoptively transferred CAR Tregs accumulated in the lung and in tracheobronchial lymph nodes, reduced AHR and diminished eosinophilic airway inflammation, indicated by lower cell numbers in the bronchoalveolar lavage fluid and decreased cell infiltrates in the lung. CAR Treg cells furthermore prevented excessive pulmonary mucus production as well as increase in allergen-specific IgE and Th2 cytokine levels in exposed animals. CAR Tregs were more efficient in controlling asthma than non-modified Tregs, indicating the pivotal role of specific Treg cell activation in the affected organ. Data demonstrate that lung targeting CAR Treg cells ameliorate key features of experimental airway inflammation, paving the way for cell therapy of severe allergic asthma.

  13. An autocrine ATP release mechanism regulates basal ciliary activity in airway epithelium.

    PubMed

    Droguett, Karla; Rios, Mariana; Carreño, Daniela V; Navarrete, Camilo; Fuentes, Christian; Villalón, Manuel; Barrera, Nelson P

    2017-07-15

    Extracellular ATP, in association with [Ca 2+ ] i regulation, is required to maintain basal ciliary beat frequency. Increasing extracellular ATP levels increases ciliary beating in airway epithelial cells, maintaining a sustained response by inducing the release of additional ATP. Extracellular ATP levels in the millimolar range, previously associated with pathophysiological conditions of the airway epithelium, produce a transient arrest of ciliary activity. The regulation of ciliary beat frequency is dependent on ATP release by hemichannels (connexin/pannexin) and P2X receptor activation, the blockage of which may even stop ciliary movement. The force exerted by cilia, measured by atomic force microscopy, is reduced following extracellular ATP hydrolysis. This result complements the current understanding of the ciliary beating regulatory mechanism, with special relevance to inflammatory diseases of the airway epithelium that affect mucociliary clearance. Extracellular nucleotides, including ATP, are locally released by the airway epithelium and stimulate ciliary activity in a [Ca 2+ ] i -dependent manner after mechanical stimulation of ciliated cells. However, it is unclear whether the ATP released is involved in regulating basal ciliary activity and mediating changes in ciliary activity in response to chemical stimulation. In the present study, we evaluated ciliary beat frequency (CBF) and ciliary beating forces in primary cultures from mouse tracheal epithelium, using videomicroscopy and atomic force microscopy (AFM), respectively. Extracellular ATP levels and [Ca 2+ ] i were measured by luminometric and fluorimetric assays, respectively. Uptake of ethidium bromide was measured to evaluate hemichannel functionality. We show that hydrolysis of constitutive extracellular ATP levels with apyrase (50 U ml -1 ) reduced basal CBF by 45% and ciliary force by 67%. The apyrase effect on CBF was potentiated by carbenoxolone, a hemichannel inhibitor, and oxidized ATP, an

  14. Cigarette Smoke Modulates Repair and Innate Immunity following Injury to Airway Epithelial Cells.

    PubMed

    Amatngalim, Gimano D; Broekman, Winifred; Daniel, Nadia M; van der Vlugt, Luciën E P M; van Schadewijk, Annemarie; Taube, Christian; Hiemstra, Pieter S

    2016-01-01

    Cigarette smoking is the main risk factor associated with chronic obstructive pulmonary disease (COPD), and contributes to COPD development and progression by causing epithelial injury and inflammation. Whereas it is known that cigarette smoke (CS) may affect the innate immune function of airway epithelial cells and epithelial repair, this has so far not been explored in an integrated design using mucociliary differentiated airway epithelial cells. In this study, we examined the effect of whole CS exposure on wound repair and the innate immune activity of mucociliary differentiated primary bronchial epithelial cells, upon injury induced by disruption of epithelial barrier integrity or by mechanical wounding. Upon mechanical injury CS caused a delayed recovery in the epithelial barrier integrity and wound closure. Furthermore CS enhanced innate immune responses, as demonstrated by increased expression of the antimicrobial protein RNase 7. These differential effects on epithelial repair and innate immunity were both mediated by CS-induced oxidative stress. Overall, our findings demonstrate modulation of wound repair and innate immune responses of injured airway epithelial cells that may contribute to COPD development and progression.

  15. Airway structural cells regulate TLR5-mediated mucosal adjuvant activity.

    PubMed

    Van Maele, L; Fougeron, D; Janot, L; Didierlaurent, A; Cayet, D; Tabareau, J; Rumbo, M; Corvo-Chamaillard, S; Boulenouar, S; Jeffs, S; Vande Walle, L; Lamkanfi, M; Lemoine, Y; Erard, F; Hot, D; Hussell, T; Ryffel, B; Benecke, A G; Sirard, J-C

    2014-05-01

    Antigen-presenting cell (APC) activation is enhanced by vaccine adjuvants. Most vaccines are based on the assumption that adjuvant activity of Toll-like receptor (TLR) agonists depends on direct, functional activation of APCs. Here, we sought to establish whether TLR stimulation in non-hematopoietic cells contributes to flagellin's mucosal adjuvant activity. Nasal administration of flagellin enhanced T-cell-mediated immunity, and systemic and secretory antibody responses to coadministered antigens in a TLR5-dependent manner. Mucosal adjuvant activity was not affected by either abrogation of TLR5 signaling in hematopoietic cells or the presence of flagellin-specific, circulating neutralizing antibodies. We found that flagellin is rapidly degraded in conducting airways, does not translocate into lung parenchyma and stimulates an early immune response, suggesting that TLR5 signaling is regionalized. The flagellin-specific early response of lung was regulated by radioresistant cells expressing TLR5 (particularly the airway epithelial cells). Flagellin stimulated the epithelial production of a small set of mediators that included the chemokine CCL20, which is known to promote APC recruitment in mucosal tissues. Our data suggest that (i) the adjuvant activity of TLR agonists in mucosal vaccination may require TLR stimulation of structural cells and (ii) harnessing the effect of adjuvants on epithelial cells can improve mucosal vaccines.

  16. Airway Memory CD4(+) T Cells Mediate Protective Immunity against Emerging Respiratory Coronaviruses.

    PubMed

    Zhao, Jincun; Zhao, Jingxian; Mangalam, Ashutosh K; Channappanavar, Rudragouda; Fett, Craig; Meyerholz, David K; Agnihothram, Sudhakar; Baric, Ralph S; David, Chella S; Perlman, Stanley

    2016-06-21

    Two zoonotic coronaviruses (CoVs)-SARS-CoV and MERS-CoV-have crossed species to cause severe human respiratory disease. Here, we showed that induction of airway memory CD4(+) T cells specific for a conserved epitope shared by SARS-CoV and MERS-CoV is a potential strategy for developing pan-coronavirus vaccines. Airway memory CD4(+) T cells differed phenotypically and functionally from lung-derived cells and were crucial for protection against both CoVs in mice. Protection was dependent on interferon-γ and required early induction of robust innate and virus-specific CD8(+) T cell responses. The conserved epitope was also recognized in SARS-CoV- and MERS-CoV-infected human leukocyte antigen DR2 and DR3 transgenic mice, indicating potential relevance in human populations. Additionally, this epitope was cross-protective between human and bat CoVs, the progenitors for many human CoVs. Vaccine strategies that induce airway memory CD4(+) T cells targeting conserved epitopes might have broad applicability in the context of new CoVs and other respiratory virus outbreaks. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Reduced immune responses in chimeric mice engrafted with bone marrow cells from mice with airways inflammation.

    PubMed

    Scott, Naomi M; Ng, Royce L X; McGonigle, Terence A; Gorman, Shelley; Hart, Prue H

    2015-11-01

    During respiratory inflammation, it is generally assumed that dendritic cells differentiating from the bone marrow are immunogenic rather than immunoregulatory. Using chimeric mice, the outcomes of airways inflammation on bone marrow progenitor cells were studied. Immune responses were analyzed in chimeric mice engrafted for >16 weeks with bone marrow cells from mice with experimental allergic airways disease (EAAD). Responses to sensitization and challenge with the allergen causing inflammation in the bone marrow-donor mice were significantly reduced in the chimeric mice engrafted with bone marrow cells from mice with EAAD (EAAD-chimeric). Responses to intranasal LPS and topical fluorescein isothiocyanate (non-specific challenges) were significantly attenuated. Fewer activated dendritic cells from the airways and skin of the EAAD-chimeric mice could be tracked to the draining lymph nodes, and may contribute to the significantly reduced antigen/chemical-induced hypertrophy in the draining nodes, and the reduced immune responses to sensitizing allergens. Dendritic cells differentiating in vitro from the bone marrow of >16 weeks reconstituted EAAD-chimeric mice retained an ability to poorly prime immune responses when transferred into naïve mice. Dendritic cells developing from bone marrow progenitors during airways inflammation are altered such that daughter cells have reduced antigen priming capabilities.

  18. Effects of ZCR-2060 on allergic airway inflammation and cell activation in guinea-pigs.

    PubMed

    Abe, T; Yoshida, K; Omata, T; Segawa, Y; Matsuda, K; Nagai, H

    1994-11-01

    The effects of 2-(2-(4-(diphenylmethyl)-1-piperadinyl) ethoxy) benzoic acid malate (ZCR-2060) on allergic airway inflammation and inflammatory cell activation in guinea-pigs were studied. Allergic airway inflammation was induced by inhalation of antigen into actively-sensitized animals and the increase in inflammatory cells into bronchoalveolar lavage fluid (BALF) was measured. Aeroantigen-induced infiltration of inflammatory cells, especially eosinophils and neutrophils, in BALF gradually increased, and reached a peak at 6 or 9 h after the challenge. ZCR-2060 (1 mg kg-1 p.o.) clearly inhibited the increase of eosinophil numbers in BALF. Moreover, the effect of ZCR-2060 on inflammatory cell activation in terms of chemotaxis and superoxide generation in-vitro was studied. ZCR-2060 (10(-6)-10(-4) M) inhibited the platelet-activating factor (PAF)-induced chemotaxis of eosinophils and neutrophils, but did not inhibit the leukotriene B4-induced chemotaxis of eosinophils and the formyl-Met-Leu-Phe-induced chemotaxis of neutrophils. PAF-induced superoxide anion generation by eosinophils, neutrophils and alveolar macrophages was inhibited by ZCR-2060 (10(-6)-10(-4) M). However, ZCR-2060 did not affect phorbol myristate acetate-induced superoxide anion generation by eosinophils, neutrophils and alveolar macrophages. These results indicate that ZCR-2060 inhibits allergic airway inflammation, and PAF-induced inflammatory cell activation in guinea-pigs. ZCR-2060 may prove useful for the treatment of allergic airway inflammation or allergic disorders, especially inflammatory cell infiltration and activation.

  19. Acute lung injury and persistent small airway disease in a rabbit model of chlorine inhalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musah, Sadiatu; Schlueter, Connie F.; Humphrey, Da

    Chlorine is a pulmonary toxicant to which humans can be exposed through accidents or intentional releases. Acute effects of chlorine inhalation in humans and animal models have been well characterized, but less is known about persistent effects of acute, high-level chlorine exposures. In particular, animal models that reproduce the long-term effects suggested to occur in humans are lacking. Here, we report the development of a rabbit model in which both acute and persistent effects of chlorine inhalation can be assessed. Male New Zealand White rabbits were exposed to chlorine while the lungs were mechanically ventilated. After chlorine exposure, the rabbitsmore » were extubated and were allowed to survive for up to 24 h after exposure to 800 ppm chlorine for 4 min to study acute effects or up to 7 days after exposure to 400 ppm for 8 min to study longer term effects. Acute effects observed 6 or 24 h after inhalation of 800 ppm chlorine for 4 min included hypoxemia, pulmonary edema, airway epithelial injury, inflammation, altered baseline lung mechanics, and airway hyperreactivity to inhaled methacholine. Seven days after recovery from inhalation of 400 ppm chlorine for 8 min, rabbits exhibited mild hypoxemia, increased area of pressure–volume loops, and airway hyperreactivity. Lung histology 7 days after chlorine exposure revealed abnormalities in the small airways, including inflammation and sporadic bronchiolitis obliterans lesions. Immunostaining showed a paucity of club and ciliated cells in the epithelium at these sites. These results suggest that small airway disease may be an important component of persistent respiratory abnormalities that occur following acute chlorine exposure. This non-rodent chlorine exposure model should prove useful for studying persistent effects of acute chlorine exposure and for assessing efficacy of countermeasures for chlorine-induced lung injury. - Highlights: • A novel rabbit model of chlorine-induced lung disease was

  20. Restoration of Chloride Efflux by Azithromycin in Airway Epithelial Cells of Cystic Fibrosis Patients▿

    PubMed Central

    Saint-Criq, Vinciane; Rebeyrol, Carine; Ruffin, Manon; Roque, Telma; Guillot, Loïc; Jacquot, Jacky; Clement, Annick; Tabary, Olivier

    2011-01-01

    Azithromycin (AZM) has shown promising anti-inflammatory properties in chronic obstructive pulmonary diseases, and clinical studies have presented an improvement in the respiratory condition of cystic fibrosis (CF) patients. The aim of this study was to investigate, in human airway cells, the mechanism by which AZM has beneficial effects in CF. We demonstrated that AZM did not have any anti-inflammatory effect on CF airway cells but restored Cl− efflux. PMID:21220528

  1. Matrix stiffness-modulated proliferation and secretory function of the airway smooth muscle cells.

    PubMed

    Shkumatov, Artem; Thompson, Michael; Choi, Kyoung M; Sicard, Delphine; Baek, Kwanghyun; Kim, Dong Hyun; Tschumperlin, Daniel J; Prakash, Y S; Kong, Hyunjoon

    2015-06-01

    Multiple pulmonary conditions are characterized by an abnormal misbalance between various tissue components, for example, an increase in the fibrous connective tissue and loss/increase in extracellular matrix proteins (ECM). Such tissue remodeling may adversely impact physiological function of airway smooth muscle cells (ASMCs) responsible for contraction of airways and release of a variety of bioactive molecules. However, few efforts have been made to understand the potentially significant impact of tissue remodeling on ASMCs. Therefore, this study reports how ASMCs respond to a change in mechanical stiffness of a matrix, to which ASMCs adhere because mechanical stiffness of the remodeled airways is often different from the physiological stiffness. Accordingly, using atomic force microscopy (AFM) measurements, we found that the elastic modulus of the mouse bronchus has an arithmetic mean of 23.1 ± 14 kPa (SD) (median 18.6 kPa). By culturing ASMCs on collagen-conjugated polyacrylamide hydrogels with controlled elastic moduli, we found that gels designed to be softer than average airway tissue significantly increased cellular secretion of vascular endothelial growth factor (VEGF). Conversely, gels stiffer than average airways stimulated cell proliferation, while reducing VEGF secretion and agonist-induced calcium responses of ASMCs. These dependencies of cellular activities on elastic modulus of the gel were correlated with changes in the expression of integrin-β1 and integrin-linked kinase (ILK). Overall, the results of this study demonstrate that changes in matrix mechanics alter cell proliferation, calcium signaling, and proangiogenic functions in ASMCs. Copyright © 2015 the American Physiological Society.

  2. Zooxanthellae harvested by ciliates associated with brown band syndrome of corals remain photosynthetically competent.

    PubMed

    Ulstrup, Karin E; Kühl, Michael; Bourne, David G

    2007-03-01

    Brown band syndrome is a new coral affliction characterized by a local accumulation of yet-unidentified ciliates migrating as a band along the branches of coral colonies. In the current study, morphologically intact zooxanthellae (= Symbiodinium) were observed in great numbers inside the ciliates (>50 dinoflagellates per ciliate). Microscale oxygen measurements and variable chlorophyll a fluorescence analysis along with microscopic observations demonstrated that zooxanthellae within the ciliates are photosynthetically competent and do not become compromised during the progression of the brown band zone. Zooxanthellae showed similar trends in light acclimation in a comparison of rapid light curve and steady-state light curve measures of variable chlorophyll a fluorescence. Extended light exposure of steady-state light curves resulted in higher quantum yields of photosystem II. The brown band tissue exhibited higher photosynthetically active radiation absorptivity, indicating more efficient light absorption due to a higher density of zooxanthellae in the ciliate-dominated zone. This caused relatively higher gross photosynthesis rates in the zone with zooxanthella-containing ciliates compared to healthy coral tissue. The observation of photosynthetically active intracellular zooxanthellae in the ciliates suggests that the latter can benefit from photosynthates produced by ingested zooxanthellae and from photosynthetic oxygen production that alleviates diffusion limitation of oxic respiration in the densely populated brown band tissue. It remains to be shown whether the zooxanthellae form a stable symbiotic association with the ciliate or are engulfed incidentally during grazing on coral tissue and then maintained as active inside the ciliate for a period before being digested and replaced by new zooxanthellae.

  3. Zooxanthellae Harvested by Ciliates Associated with Brown Band Syndrome of Corals Remain Photosynthetically Competent▿

    PubMed Central

    Ulstrup, Karin E.; Kühl, Michael; Bourne, David G.

    2007-01-01

    Brown band syndrome is a new coral affliction characterized by a local accumulation of yet-unidentified ciliates migrating as a band along the branches of coral colonies. In the current study, morphologically intact zooxanthellae (= Symbiodinium) were observed in great numbers inside the ciliates (>50 dinoflagellates per ciliate). Microscale oxygen measurements and variable chlorophyll a fluorescence analysis along with microscopic observations demonstrated that zooxanthellae within the ciliates are photosynthetically competent and do not become compromised during the progression of the brown band zone. Zooxanthellae showed similar trends in light acclimation in a comparison of rapid light curve and steady-state light curve measures of variable chlorophyll a fluorescence. Extended light exposure of steady-state light curves resulted in higher quantum yields of photosystem II. The brown band tissue exhibited higher photosynthetically active radiation absorptivity, indicating more efficient light absorption due to a higher density of zooxanthellae in the ciliate-dominated zone. This caused relatively higher gross photosynthesis rates in the zone with zooxanthella-containing ciliates compared to healthy coral tissue. The observation of photosynthetically active intracellular zooxanthellae in the ciliates suggests that the latter can benefit from photosynthates produced by ingested zooxanthellae and from photosynthetic oxygen production that alleviates diffusion limitation of oxic respiration in the densely populated brown band tissue. It remains to be shown whether the zooxanthellae form a stable symbiotic association with the ciliate or are engulfed incidentally during grazing on coral tissue and then maintained as active inside the ciliate for a period before being digested and replaced by new zooxanthellae. PMID:17259357

  4. Evidence for autocrine and paracrine regulation of allergen-induced mast cell mediator release in the guinea pig airways.

    PubMed

    Yu, Li; Liu, Qi; Canning, Brendan J

    2018-03-05

    Mast cells play an essential role in immediate type hypersensitivity reactions and in chronic allergic diseases of the airways, including asthma. Mast cell mediator release can be modulated by locally released autacoids and circulating hormones, but surprisingly little is known about the autocrine effects of mediators released upon mast cell activation. We thus set out to characterize the autocrine and paracrine effects of mast cell mediators on mast cell activation in the guinea pig airways. By direct measures of histamine, cysteinyl-leukotriene and thromboxane release and with studies of allergen-evoked contractions of airway smooth muscle, we describe a complex interplay amongst these autacoids. Notably, we observed an autocrine effect of the cysteinyl-leukotrienes acting through cysLT 1 receptors on mast cell leukotriene release. We confirmed the results of previous studies demonstrating a marked enhancement of mast cell mediator release following cyclooxygenase inhibition, but we have extended these results by showing that COX-2 derived eicosanoids inhibit cysteinyl-leukotriene release and yet are without effect on histamine release. Given the prominent role of COX-1 inhibition in aspirin-sensitive asthma, these data implicate preformed mediators stored in granules as the initial drivers of these adverse reactions. Finally, we describe the paracrine signaling cascade leading to thromboxane synthesis in the guinea pig airways following allergen challenge, which occurs indirectly, secondary to cysLT 1 receptor activation on structural cells and/ or leukocytes within the airway wall, and a COX-2 dependent synthesis of the eicosanoid. The results highlight the importance of cell-cell and autocrine interactions in regulating allergic responses in the airways. Copyright © 2017. Published by Elsevier B.V.

  5. Interactions between airway epithelial cells and dendritic cells during viral infections using an in vitro co-culture model

    EPA Science Inventory

    Rationale: Historically, single cell culture models have been limited in pathological and physiological relevance. A co-culture model of dendritic cells (DCs) and differentiated human airway epithelial cells was developed to examine potential interactions between these two cell t...

  6. Entrapment of Ciliates at the Water-Air Interface

    PubMed Central

    Ferracci, Jonathan; Ueno, Hironori; Numayama-Tsuruta, Keiko; Imai, Yohsuke; Yamaguchi, Takami; Ishikawa, Takuji

    2013-01-01

    The importance of water-air interfaces (WAI) on microorganism activities has been recognized by many researchers. In this paper, we report a novel phenomenon: the entrapment of ciliates Tetrahymena at the WAI. We first characterized the behavior of cells at the interface and showed that the cells' swimming velocity was considerably reduced at the WAI. To verify the possible causes of the entrapment, we investigated the effects of positive chemotaxis for oxygen, negative geotaxis and surface properties. Even though the taxes were still effective, the entrapment phenomenon was not dependent on the physiological conditions, but was instead affected by the physical properties at the interface. This knowledge is useful for a better understanding of the physiology of microorganisms at interfaces in nature and in industry. PMID:24130692

  7. Pseudomonas aeruginosa Airway Infection Recruits and Modulates Neutrophilic Myeloid-Derived Suppressor Cells

    PubMed Central

    Öz, Hasan H.; Zhou, Benyuan; Voss, Pina; Carevic, Melanie; Schroth, Carolin; Frey, Nina; Rieber, Nikolaus; Hector, Andreas; Hartl, Dominik

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes infections mainly in patients with cystic fibrosis (CF) lung disease. Despite innate and adaptive immune responses upon infection, P. aeruginosa is capable of efficiently escaping host defenses, but the underlying immune mechanisms remain poorly understood. Myeloid-derived suppressor cells (MDSCs) are innate immune cells that are functionally characterized by their potential to suppress T- and natural killer (NK)-cell responses. Here we demonstrate, using an airway in vivo infection model, that P. aeruginosa recruits and activates neutrophilic MDSCs, which functionally suppress T-cell responses. We further show that the CF gene defect (CF transmembrane conductance regulator, CFTR) modulates the functionality, but not the recruitment or generation of neutrophilic MDSCs. Collectively, we define a mechanism by which P. aeruginosa airway infection undermines host immunity by modulating neutrophilic MDSCs in vivo. PMID:27965936

  8. Exposure of differentiated airway epithelial cells to volatile smoke in vitro.

    PubMed

    Beisswenger, Christoph; Platz, Juliane; Seifart, Carola; Vogelmeier, Claus; Bals, Robert

    2004-01-01

    Cigarette smoke (CS) is the predominant pathogenetic factor in the development of chronic bronchitis and chronic obstructive pulmonary disease. The knowledge about the cellular and molecular mechanisms underlying the smoke-induced inflammation in epithelial cells is limited. The aim of this study was to develop an in vitro model to monitor the effects of volatile CS on differentiated airway epithelial cells. The airway epithelial cell line MM-39 and primary human bronchial epithelial cells were cultivated as air-liquid interface cultures and exposed directly to volatile CS. We used two types of exposure models, one using ambient air, the other using humidified and warm air. Cytokine levels were measured by quantitative PCR and ELISA. Phosphorylation of p38 MAP kinase was assessed by Western blot analysis. To reduce the smoke-induced inflammation, antisense oligonucleotides directed against the p65 subunit of NF-kappaB were applied. Exposure of epithelia to cold and dry air resulted in a significant inflammatory response. In contrast, exposure to humidified warm air did not elicit a cellular response. Stimulation with CS resulted in upregulation of mRNA for IL-6 and IL-8 and protein release. Exposure to CS combined with heat-inactivated bacteria synergistically increased levels of the cytokines. Reactions of differentiated epithelial cells to smoke are mediated by the MAP kinase p38 and the transcription factor NF-kappaB. We developed an exposure model to examine the consequences of direct exposure of differentiated airway epithelial cells to volatile CS. The model enables to measure the cellular reactions to smoke exposure and to determine the outcome of therapeutic interventions. Copyright 2004 S. Karger AG, Basel

  9. Multipotent versus differentiated cell fate selection in the developing Drosophila airways

    PubMed Central

    Matsuda, Ryo; Hosono, Chie; Samakovlis, Christos; Saigo, Kaoru

    2015-01-01

    Developmental potentials of cells are tightly controlled at multiple levels. The embryonic Drosophila airway tree is roughly subdivided into two types of cells with distinct developmental potentials: a proximally located group of multipotent adult precursor cells (P-fate) and a distally located population of more differentiated cells (D-fate). We show that the GATA-family transcription factor (TF) Grain promotes the P-fate and the POU-homeobox TF Ventral veinless (Vvl/Drifter/U-turned) stimulates the D-fate. Hedgehog and receptor tyrosine kinase (RTK) signaling cooperate with Vvl to drive the D-fate at the expense of the P-fate while negative regulators of either of these signaling pathways ensure P-fate specification. Local concentrations of Decapentaplegic/BMP, Wingless/Wnt, and Hedgehog signals differentially regulate the expression of D-factors and P-factors to transform an equipotent primordial field into a concentric pattern of radially different morphogenetic potentials, which gradually gives rise to the distal-proximal organization of distinct cell types in the mature airway. DOI: http://dx.doi.org/10.7554/eLife.09646.001 PMID:26633813

  10. Parasitic Nematode-Induced CD4+Foxp3+T Cells Can Ameliorate Allergic Airway Inflammation

    PubMed Central

    Kang, Shin Ae; Park, Mi-Kyung; Cho, Min Kyoung; Park, Sang Kyun; Jang, Min Seong; Yang, Bo-Gie; Jang, Myoung Ho; Kim, Dong-Hee; Yu, Hak Sun

    2014-01-01

    Background The recruitment of CD4+CD25+Foxp3+T (Treg) cells is one of the most important mechanisms by which parasites down-regulate the immune system. Methodology/Principal Findings We compared the effects of Treg cells from Trichinella spiralis-infected mice and uninfected mice on experimental allergic airway inflammation in order to understand the functions of parasite-induced Treg cells. After four weeks of T. spiralis infection, we isolated Foxp3-GFP-expressing cells from transgenic mice using a cell sorter. We injected CD4+Foxp3+ cells from T. spiralis-infected [Inf(+)Foxp3+] or uninfected [Inf(-)Foxp3+] mice into the tail veins of C57BL/6 mice before the induction of inflammation or during inflammation. Inflammation was induced by ovalbumin (OVA)-alum sensitization and OVA challenge. The concentrations of the Th2-related cytokines IL-4, IL-5, and IL-13 in the bronchial alveolar lavage fluid and the levels of OVA-specific IgE and IgG1 in the serum were lower in mice that received intravenous application of Inf(+)Foxp3+ cells [IV(inf):+(+) group] than in control mice. Some features of allergic airway inflammation were ameliorated by the intravenous application of Inf(-)Foxp3+ cells [IV(inf):+(-) group], but the effects were less distinct than those observed in the IV(inf):+(+) group. We found that Inf(+)Foxp3+ cells migrated to inflammation sites in the lung and expressed higher levels of Treg-cell homing receptors (CCR5 and CCR9) and activation markers (Klrg1, Capg, GARP, Gzmb, OX40) than did Inf(-)Foxp3+ cells. Conclusion/Significance T. spiralis infection promotes the proliferation and functional activation of Treg cells. Parasite-induced Treg cells migrate to the inflammation site and suppress immune responses more effectively than non-parasite-induced Treg cells. The adoptive transfer of Inf(+)Foxp3+ cells is an effective method for the treatment and prevention of allergic airway diseases in mice and is a promising therapeutic approach for the treatment

  11. Human airway epithelial cell cultures for modeling respiratory syncytial virus infection.

    PubMed

    Pickles, Raymond J

    2013-01-01

    Respiratory syncytial virus (RSV) is an important human respiratory pathogen with narrow species tropism. Limited availability of human pathologic specimens during early RSV-induced lung disease and ethical restrictions for RSV challenge studies in the lower airways of human volunteers has slowed our understanding of how RSV causes airway disease and greatly limited the development of therapeutic strategies for reducing RSV disease burden. Our current knowledge of RSV infection and pathology is largely based on in vitro studies using nonpolarized epithelial cell-lines grown on plastic or in vivo studies using animal models semipermissive for RSV infection. Although these models have revealed important aspects of RSV infection, replication, and associated inflammatory responses, these models do not broadly recapitulate the early interactions and potential consequences of RSV infection of the human columnar airway epithelium in vivo. In this chapter, the pro et contra of in vitro models of human columnar airway epithelium and their usefulness in respiratory virus pathogenesis and vaccine development studies will be discussed. The use of such culture models to predict characteristics of RSV infection and the correlation of these findings to the human in vivo situation will likely accelerate our understanding of RSV pathogenesis potentially identifying novel strategies for limiting the severity of RSV-associated airway disease.

  12. Comparing the responses of rumen ciliate protozoa and bacteria to excess carbohydrate.

    PubMed

    Teixeira, César R V; Lana, Rogério de Paula; Tao, Junyi; Hackmann, Timothy J

    2017-06-01

    When given excess carbohydrate, certain microbial species respond by storing energy (synthesizing reserve carbohydrate), but other species respond by dissipating the energy as heat (spilling energy). To determine the importance of these responses in the rumen microbial community, this study quantified the responses of mixed ciliate protozoa vs bacteria to glucose. We hypothesized that ciliates would direct more glucose to synthesis of reserve carbohydrate (and less to energy spilling) than would bacteria. Ciliates and bacteria were isolated from rumen fluid using filtration and centrifugation, resuspended in nitrogen-free buffer to limit growth, and dosed with 5 mM glucose. Compared with bacteria, ciliates consumed glucose >3-fold faster and synthesized reserve carbohydrate 4-fold faster. They incorporated 53% of glucose carbon into reserve carbohydrate-nearly double the value (27%) for bacteria. Energy spilling was not detected for ciliates, as all heat production (104%) was accounted by synthesis of reserve carbohydrate and endogenous metabolism. For bacteria, reserve carbohydrate and endogenous metabolism accounted for only 68% of heat production, and spilling was detected within 11 min of dosing glucose. These results suggest that ciliates alter the course of ruminal carbohydrate metabolism by outcompeting bacteria for excess carbohydrate, maximizing reserve carbohydrate synthesis, and minimizing energy spilling. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. [Comparison of ciliate diversity in biodisc reactors which purify industrial wastewater].

    PubMed

    Luna-Pabello, V M; Durán De Bazúa, C; Aladro-Lubel, M A

    1995-01-01

    The comparative study of the ciliate populations present in rotating biological reactors (biodiscs reactors) of 20 l working volume, treating three different wastewaters is the aim of this project. Wastewaters chosen were those of a maize mill, of a sugarcane/ethyl alcohol plant, and of a recycled paper mill. Its dissolved organic contents, measured as soluble chemical oxygen demand (COD) and five-day biochemical oxygen demand (BOD5), were 2040 mg COD/l and 585 mg BOD5/l for maize mill effluents (nejayote), 2000 mg COD/l and 640 mg BOD5/l for sugarcane/ethanol effluents (vinasses), and 960 mg COD/l and 120 mg BOD5/l for whitewaters of the paper industry. Results obtained indicate that ciliate proliferate in all chambers of reactors treating these wastewaters. The ciliates were more abundant in vinasses, followed by nejayote, and then whitewaters. Among protozoa, ciliates were present as follows: 19 species in total. Three of them were common for the three systems. Free swimming ciliates were in higher proportion than pedunculated ones. Its diversity was higher for the whitewaters system, next for nejayote, and the lesser, for vinasses, corroborating the fact that less polluted waters have higher organisms' diversity.

  14. Endothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells

    PubMed Central

    Ding, Bi-Sen; Gomi, Kazunori; Rafii, Shahin; Crystal, Ronald G.; Walters, Matthew S.

    2015-01-01

    ABSTRACT Human airway basal cells are the stem (or progenitor) population of the airway epithelium, and play a central role in anchoring the epithelium to the basement membrane. The anatomic position of basal cells allows for potential paracrine signaling between them and the underlying non-epithelial stromal cells. In support of this, we have previously demonstrated that endothelial cells support growth of basal cells during co-culture through vascular endothelial growth factor A (VEGFA)-mediated signaling. Building on these findings, we found, by RNA sequencing analysis, that basal cells expressed multiple fibroblast growth factor (FGF) ligands (FGF2, FGF5, FGF11 and FGF13) and that only FGF2 and FGF5 were capable of functioning in a paracrine manner to activate classical FGF receptor (FGFR) signaling. Antibody-mediated blocking of FGFR1 during basal-cell–endothelial-cell co-culture significantly reduced the endothelial-cell-dependent basal cell growth. Stimulation of endothelial cells with basal-cell-derived growth factors induced endothelial cell expression of matrix metallopeptidase 14 (MMP14), and short hairpin RNA (shRNA)-mediated knockdown of endothelial cell MMP14 significantly reduced the endothelial-cell-dependent growth of basal cells. Overall, these data characterize a new growth-factor-mediated reciprocal ‘crosstalk’ between human airway basal cells and endothelial cells that regulates proliferation of basal cells. PMID:26116571

  15. Toll-like receptor-2 agonist-allergen coupling efficiently redirects Th2 cell responses and inhibits allergic airway eosinophilia.

    PubMed

    Krishnaswamy, Jayendra Kumar; Jirmo, Adan Chari; Baru, Abdul Mannan; Ebensen, Thomas; Guzmán, Carlos A; Sparwasser, Tim; Behrens, Georg M N

    2012-12-01

    Toll-like receptor (TLR) agonists beneficially modulate allergic airway inflammation. However, the efficiency of TLR agonists varies considerably, and their exact cellular mechanisms (especially of TLR 2/6 agonists) are incompletely understood. We investigated at a cellular level whether the administration of the pharmacologically improved TLR2/6 agonist S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cysteinyl-amido-monomethoxy polyethylene glycol (BPP) conjugated to antigenic peptide (BPP-OVA) could divert an existing Th2 response and influence airway eosinophilia. The effects of BPP-OVA on airway inflammation were assessed in a classic murine sensitization/challenge model and an adoptive transfer model, which involved the adoptive transfer of in vitro differentiated ovalbumin (OVA)-specific Th2 cells. Functional T-cell stimulation by lung dendritic cells (DCs) was determined both in vitro and in vivo, combined with a cytokine secretion analysis. A single mucosal application of BPP-OVA efficiently delivered antigen, led to TLR2-mediated DC activation, and resulted in OVA-specific T-cell proliferation via lung DCs in vivo. In alternative models of allergic airway disease, a single administration of BPP-OVA before OVA challenge (but not BPP alone) significantly reduced airway eosinophilia, most likely through altered antigen-specific T-cell stimulation via DCs. Analyses of adoptively transferred Th2-biased cells after BPP-OVA administration in vivo suggested that BPP-OVA guides antigen-specific Th2 cells to produce significantly higher amounts of IFN-γ upon allergen challenge. In conclusion, our data show for the first time that a single mucosal administration of a TLR 2/6 agonist-allergen conjugate can provoke IFN-γ responses in Th2-biased cells and alleviate allergic airway inflammation.

  16. NK cells contribute to persistent airway inflammation and AHR during the later stage of RSV infection in mice.

    PubMed

    Long, Xiaoru; Xie, Jun; Zhao, Keting; Li, Wei; Tang, Wei; Chen, Sisi; Zang, Na; Ren, Luo; Deng, Yu; Xie, Xiaohong; Wang, Lijia; Fu, Zhou; Liu, Enmei

    2016-10-01

    RSV can lead to persistent airway inflammation and AHR and is intimately associated with childhood recurrent wheezing and asthma, but the underlying mechanisms remain unclear. There are high numbers of NK cells in the lung, which not only play important roles in the acute stage of RSV infection, but also are pivotal in regulating the pathogenesis of asthma. Therefore, in this study, we assumed that NK cells might contribute to persistent airway disease during the later stage of RSV infection. Mice were killed at serial time points after RSV infection to collect samples. Leukocytes in bronchoalveolar lavage fluid (BALF) were counted, lung histopathology was examined, and airway hyperresponsiveness (AHR) was measured by whole-body plethysmography. Cytokines were detected by ELISA, and NK cells were determined by flow cytometry. Rabbit anti-mouse asialo-GM-1 antibodies and resveratrol were used to deplete or suppress NK cells. Inflammatory cells in BALF, lung tissue damage and AHR were persistent for 60 days post-RSV infection. Type 2 cytokines and NK cells were significantly increased during the later stage of infection. When NK cells were decreased by the antibodies or resveratrol, type 2 cytokines, the persistent airway inflammation and AHR were all markedly reduced. NK cells can contribute to the RSV-associated persistent airway inflammation and AHR at least partially by promoting type 2 cytokines. Therefore, therapeutic targeting of NK cells may provide a novel approach to alleviating the recurrent wheezing subsequent to RSV infection.

  17. IκBNS induces Muc5ac expression in epithelial cells and causes airway hyper-responsiveness in murine asthma models.

    PubMed

    Yokota, M; Tamachi, T; Yokoyama, Y; Maezawa, Y; Takatori, H; Suto, A; Suzuki, K; Hirose, K; Takeda, K; Nakajima, H

    2017-07-01

    In allergic asthma, environmental allergens including house dust mite (HDM) trigger pattern recognition receptors and activate downstream signaling pathways including NF-κB pathways not only in immune cells but also in airway epithelial cells. Recent studies have shown that NF-κB activation is regulated positively or negatively depending on the cellular context by IκBNS (encoded by the gene Nfkbid), one of atypical IκB proteins, in the nucleus. Therefore, we hypothesized that IκBNS expressed in immune cells or epithelial cells is involved in the regulation of asthmatic responses. To determine the roles of IκBNS in HDM-induced asthmatic responses. Roles of IκBNS in HDM-induced airway inflammation and airway hyper-responsiveness (AHR) were examined by using IκBNS-deficient (Nfkbid -/- ) mice. Roles of IκBNS expressed in hematopoietic cells and nonhematopoietic cells were separately evaluated by bone marrow chimeric mice. Roles of IκBNS expressed in murine tracheal epithelial cells (mTECs) were examined by air-liquid interface culture. House dust mite-induced airway inflammation and AHR were exacerbated in mice lacking IκBNS in hematopoietic cells. In contrast, HDM-induced airway inflammation was exacerbated, but AHR was attenuated in mice lacking IκBNS in nonhematopoietic cells. The induction of Muc5ac, a representative mucin in asthmatic airways, was reduced in Nfkbid -/- mTEC, whereas the induction of Spdef, a master regulator of goblet cell metaplasia, was not impaired in Nfkbid -/- mTEC. Moreover, IκBNS bound to and activated the MUC5AC distal promoter in epithelial cells. IκBNS is involved in inducing Muc5ac expression in lung epithelial cells and causing AHR in HDM-induced asthma models. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Airway surface mycosis in chronic TH2-associated airway disease.

    PubMed

    Porter, Paul C; Lim, Dae Jun; Maskatia, Zahida Khan; Mak, Garbo; Tsai, Chu-Lin; Citardi, Martin J; Fakhri, Samer; Shaw, Joanne L; Fothergil, Annette; Kheradmand, Farrah; Corry, David B; Luong, Amber

    2014-08-01

    Environmental fungi have been linked to TH2 cell-related airway inflammation and the TH2-associated chronic airway diseases asthma, chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP), and allergic fungal rhinosinusitis (AFRS), but whether these organisms participate directly or indirectly in disease pathology remains unknown. To determine the frequency of fungus isolation and fungus-specific immunity in patients with TH2-associated and non-TH2-associated airway disease. Sinus lavage fluid and blood were collected from sinus surgery patients (n = 118) including patients with CRSwNP, patients with CRS without nasal polyps, patients with AFRS, and non-CRS/nonasthmatic control patients. Asthma status was determined from medical history. Sinus lavage fluids were cultured and directly examined for evidence of viable fungi. PBMCs were restimulated with fungal antigens in an enzyme-linked immunocell spot assay to determine total memory fungus-specific IL-4-secreting cells. These data were compared with fungus-specific IgE levels measured from plasma by ELISA. Filamentous fungi were significantly more commonly cultured in patients with TH2-associated airway disease (asthma, CRSwNP, or AFRS: n = 68) than in control patients with non-TH2-associated disease (n = 31): 74% vs 16%, respectively (P < .001). Both fungus-specific IL-4 enzyme-linked immunocell spot (n = 48) and specific IgE (n = 70) data correlated with TH2-associated diseases (sensitivity 73% and specificity 100% vs 50% and 77%, respectively). The frequent isolation of fungi growing directly within the airways accompanied by specific immunity to these organisms only in patients with TH2-associated chronic airway diseases suggests that fungi participate directly in the pathogenesis of these conditions. Efforts to eradicate airway fungi from the airways should be considered in selected patients. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  19. Graviperception in ciliates: Steps in the transduction chain

    NASA Astrophysics Data System (ADS)

    Hemmersbach, R.; Krause, M.; Bräucker, R.; Ivanova, K.

    Ciliates represent suitable model systems to study the mechanisms of graviperception and signal transduction as they show clear gravity-induced behavioural responses (gravitaxis and gravikinesis). The cytoplasm seems to act as a "statolith" stimulating mechanosensitive ion channels in the cell membrane. In order to test this hypothesis, electrophysiological studies with Stylonychia mytilus were performed, revealing the proposed changes (de- or hyperpolarization) depending on the cell's spatial orientation. The behaviour of Paramecium and Stylonychia was also analyzed during variable acceleration conditions of parabolic flights (5th German Parabolic Flight Campaign, 2003). The corresponding data confirm the relaxation of the graviresponses in microgravity as well as the existence of thresholds of graviresponses, which are found to be in the range of 0.4× g (gravikinesis) and 0.6× g (gravitaxis).

  20. Bronchial airway gene expression signatures in mouse lung squamous cell carcinoma and their modulation by cancer chemopreventive agents

    PubMed Central

    Szabo, Eva; Miller, Mark Steven; Lubet, Ronald A.; You, Ming; Wang, Yian

    2017-01-01

    Due to exposure to environmental toxicants, a “field cancerization” effect occurs in the lung resulting in the development of a field of initiated but morphologically normal appearing cells in the damaged epithelium of bronchial airways with dysregulated gene expression patterns. Using a mouse model of lung squamous cell carcinoma (SCC), we performed transcriptome sequencing (RNA-Seq) to profile bronchial airway gene expression and found activation of the PI3K and Myc signaling networks in cytologically normal bronchial airway epithelial cells of mice with preneopastic lung SCC lesions, which was reversed by treatment with the PI3K Inhibitor XL-147 and pioglitazone, respectively. Activated MYC signaling was also present in premalignant and tumor tissues from human lung SCC patients. In addition, we identified a key microRNA, mmu-miR-449c-5p, whose suppression significantly up-regulated Myc expression in the normal bronchial airway epithelial cells of mice with early stage SCC lesions. We developed a novel bronchial genomic classifier in mice and validated it in humans. In the classifier, Ppbp (pro-platelet basic protein) was overexpressed 115 fold in the bronchial airways of mice with preneoplastic lung SCC lesions. This is the first report that demonstrates Ppbp as a novel biomarker in the bronchial airway for lung cancer diagnosis. PMID:27935865

  1. Nuclear localization signal targeting to macronucleus and micronucleus in binucleated ciliate Tetrahymena thermophila.

    PubMed

    Iwamoto, Masaaki; Mori, Chie; Osakada, Hiroko; Koujin, Takako; Hiraoka, Yasushi; Haraguchi, Tokuko

    2018-06-08

    Ciliated protozoa possess two morphologically and functionally distinct nuclei: a macronucleus (MAC) and a micronucleus (MIC). The MAC is transcriptionally active and functions in all cellular events. The MIC is transcriptionally inactive during cell growth, but functions in meiotic events to produce progeny nuclei. Thus, these two nuclei must be distinguished by the nuclear proteins required for their distinct functions during cellular events such as cell proliferation and meiosis. To understand the mechanism of the nuclear transport specific to either MAC or MIC, we identified specific nuclear localization signals (NLSs) in two MAC- and MIC-specific nuclear proteins, macronuclear histone H1 and micronuclear linker histone-like protein (Mlh1), respectively. By expressing GFP-fused fragments of these proteins in Tetrahymena thermophila cells, two distinct regions in macronuclear histone H1 protein were assigned as independent MAC-specific NLSs and two distinct regions in Mlh1 protein were assigned as independent MIC-specific NLSs. These NLSs contain several essential lysine residues responsible for the MAC- and MIC-specific nuclear transport, but neither contains any consensus sequence with known monopartite or bipartite NLSs in other model organisms. Our findings contribute to understanding how specific nuclear targeting is achieved to perform distinct nuclear functions in binucleated ciliates. © 2018 The Authors. Genes to Cells published by Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  2. Prevalence of ciliated epithelium in apical periodontitis lesions.

    PubMed

    Ricucci, Domenico; Loghin, Simona; Siqueira, José F; Abdelsayed, Rafik A

    2014-04-01

    This article reports on the morphologic features and the frequency of ciliated epithelium in apical cysts and discusses its origin. The study material consisted of 167 human apical periodontitis lesions obtained consecutively from patients presenting for treatment during a period of 12 years in a dental practice operated by one of the authors. All of the lesions were obtained still attached to the root apices of teeth with untreated (93 lesions) or treated canals (74 lesions). The former were obtained by extraction and the latter by extraction or apical surgery. Specimens were processed for histopathologic and histobacteriologic analyses. Lesions were classified, and the type of epithelium, if present, was recorded. Of the lesions analyzed, 49 (29%) were diagnosed as cysts. Of these, 26 (53%) were found in untreated teeth, and 23 (47%) related to root canal-treated teeth. Ciliated columnar epithelium was observed partially or completely lining the cyst wall in 4 cysts, and all of them occurred in untreated maxillary molars. Three of these lesions were categorized as pocket cysts, and the other was a true cyst. Ciliated columnar epithelium-lined cysts corresponded to approximately 2% of the apical periodontitis lesions and 8% of the cysts of endodontic origin in the population studied. This epithelium is highly likely to have a sinus origin in the majority of cases. However, the possibility of prosoplasia or upgraded differentiation into ciliated epithelium from the typical cystic lining squamous epithelium may also be considered. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. ω-3 Polyunsaturated fatty acids accelerate airway repair by activating FFA4 in club cells.

    PubMed

    Lee, Kyoung-Pil; Park, Soo-Jin; Kang, Saeromi; Koh, Jung-Min; Sato, Koichi; Chung, Hae-Young; Okajima, Fumikazu; Im, Dong-Soon

    2017-06-01

    A G protein-coupled receptor (GPCR) named free fatty acid receptor 4 (FFA4, also known as GPR120) was found to act as a GPCR for ω-3 polyunsaturated fatty acids. Its expression has been reported in lung epithelial club cells. We investigated whether supplementation of the ω-3 fatty acids benefits lung health. Omacor (7.75 mg/kg), clinically prescribed preparation of ω-3 fatty acids, and FFA4-knockout mice were utilized in a naphthalene-induced mouse model of acute airway injury (1 injection of 30 mg/kg ip). Naphthalene injection induced complete destruction of bronchiolar epithelial cells within a day. Appearance of bronchiolar epithelial cells was observed after 21 days in control mice. It was found, however, that supplementation of Omacor accelerated the recovery. The appearance of bronchiolar epithelial cells was observed between 7 and 14 days after naphthalene injury in Omacor-treated mice. In isolated club cells, ω-3 fatty acids were found to stimulate cell proliferation and migration but to inhibit cell differentiation. With the use of pharmacological tools and FFA4-knockout mice, FFA4 was found to be responsible for ω-3 fatty acids-induced proliferation in vitro in club cells. Furthermore, accelerated recovery from naphthalene-induced airway injury in Omacor-treated mice was not observed in FFA4-knockout mice in vivo. Present findings indicate that ω-3 fatty acids-induced proliferation of bronchiole epithelial cells through FFA4 is responsible for Omacor-induced accelerated recovery from airway injury. Therefore, intermittent administration of Omacor needs to be tested for acute airway injury because ω-3 fatty acids stimulate proliferation but inhibit differentiation of club cells. Copyright © 2017 the American Physiological Society.

  4. Rumen ciliate protozoal fauna of native sheep, friesian cattle and dromedary camel in Libya.

    PubMed

    Selim, H M; Imai, S; el Sheik, A K; Attia, H; Okamoto, E; Miyagawa, E; Maede, Y

    1999-03-01

    Rumen ciliate species and composition were surveyed on the native sheep, Friesian-cattle and dromedary (one-humped) camels kept in Libya. As a result of survey, 5 genera including 14 species with 5 formae in native sheep, 9 genera including 27 species with 6 formae in Friesian-cattle and 6 genera including 13 species and 7 formae in dromedary camels were identified. All of the ciliate species and their percentage composition detected from the Libyan sheep and cattle in this examination were similar to those found from corresponding animals in the other countries. Libyan camels lacked some peculiar ciliate species found from camels in the other countries, but had many cosmopolitan species common with those in the domestic ruminants, suggesting that ciliate faunae of camel are easily affected by the other domestic ruminants kept together. The ciliate density was estimated as 105/ml in every host species.

  5. Human airway epithelial cells investigated by atomic force microscopy: A hint to cystic fibrosis epithelial pathology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasalvia, Maria; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari; Castellani, Stefano

    The pathophysiology of cystic fibrosis (CF) airway disease stems from mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, leading to a chronic respiratory disease. Actin cytoskeleton is disorganized in CF airway epithelial cells, likely contributing to the CF-associated basic defects, i.e. defective chloride secretion and sodium/fluid hypersorption. In this work, we aimed to find whether this alteration could be pointed out by means of Atomic Force Microscopy (AFM) investigation, as roughness and Young's elastic module. Moreover, we also sought to determine whether disorganization of actin cytoskeleton is linked to hypersoption of apical fluid. Not only CFBE41o- (CFBE) cells, immortalizedmore » airway epithelial cells homozygous for the F508del CFTR allele, showed a different morphology in comparison with 16HBE14o- (16HBE) epithelial cells, wild-type for CFTR, but also they displayed a lack of stress fibers, suggestive of a disorganized actin cytoskeleton. AFM measurements showed that CFBE cells presented a higher membrane roughness and decreased rigidity as compared with 16HBE cells. CFBE overexpressing wtCFTR became more elongated than the parental CFBE cell line and presented actin stress fibers. CFBE cells absorbed more fluid from the apical compartment. Study of fluid absorption with the F-actin-depolymerizing agent Latrunculin B demonstrated that actin cytoskeletal disorganization increased fluid absorption, an effect observed at higher magnitude in 16HBE than in CFBE cells. For the first time, we demonstrate that actin cytoskeleton disorganization is reflected by AFM parameters in CF airway epithelial cells. Our data also strongly suggest that the lack of stress fibers is involved in at least one of the early step in CF pathophysiology at the levels of the airways, i.e. fluid hypersorption. - Highlights: • CF bronchial epithelial (CFBE) cells show a disorganized actin cytoskeleton. • CFBE cells present high roughness and low rigidity

  6. Deep-sea ciliates: Recorded diversity and experimental studies on pressure tolerance

    NASA Astrophysics Data System (ADS)

    Schoenle, Alexandra; Nitsche, Frank; Werner, Jennifer; Arndt, Hartmut

    2017-10-01

    Microbial eukaryotes play an important role in biogeochemical cycles not only in productive surface waters but also in the deep sea. Recent studies based on metagenomics report deep-sea protistan assemblages totally different from continental slopes and shelf waters. To give an overview about the ciliate fauna recorded from the deep sea we summarized the available information on ciliate occurrence in the deep sea. Our literature review revealed that representatives of the major phylogenetic groups of ciliates were recorded from the deep sea (> 1000 m depth): Karyorelictea, Heterotrichea, Spirotrichea (Protohypotrichia, Euplotia, Oligotrichia, Choreotrichia, Hypotrichia), Armophorea (Armophorida), Litostomatea (Haptoria), Conthreep (Phyllopharyngea incl. Cyrtophoria, Chonotrichia, Suctoria; Nassophorea incl. Microthoracida, Synhymeniida, Nassulida; Colpodea incl. Bursariomorphida, Cyrtolophosidida; Prostomatea; Plagiopylea incl. Plagiopylida, Odontostomatida; Oligohymenophorea incl. Peniculia, Scuticociliatia, Hymenostomatia, Apostomatia, Peritrichia, Astomatia). Species occurring in both habitats, deep sea and shallow water, are rarely found to our knowledge to date. This indicates a high deep-sea specific ciliate fauna. Our own studies of similar genotypes (SSU rDNA and cox1 gene) revealed that two small scuticociliate species (Pseudocohnilembus persalinus and Uronema sp.) could be isolated from surface as well as deep waters (2687 m, 5276 m, 5719 m) of the Pacific. The adaptation to deep-sea conditions was investigated by exposing the ciliate isolates directly or stepwise to different hydrostatic pressures ranging from 1 to 550 atm at temperatures of 2 °C and 13 °C. Although the results indicated no general barophilic behavior, all four isolated strains survived the highest established pressure. A better survival at 550 atm could be observed for the lower temperature. Among microbial eukaryotes, ciliates should be considered as a diverse and potentially

  7. The D1-D2 region of the large subunit ribosomal DNA as barcode for ciliates.

    PubMed

    Stoeck, T; Przybos, E; Dunthorn, M

    2014-05-01

    Ciliates are a major evolutionary lineage within the alveolates, which are distributed in nearly all habitats on our planet and are an essential component for ecosystem function, processes and stability. Accurate identification of these unicellular eukaryotes through, for example, microscopy or mating type reactions is reserved to few specialists. To satisfy the demand for a DNA barcode for ciliates, which meets the standard criteria for DNA barcodes defined by the Consortium for the Barcode of Life (CBOL), we here evaluated the D1-D2 region of the ribosomal DNA large subunit (LSU-rDNA). Primer universality for the phylum Ciliophora was tested in silico with available database sequences as well as in the laboratory with 73 ciliate species, which represented nine of 12 ciliate classes. Primers tested in this study were successful for all tested classes. To test the ability of the D1-D2 region to resolve conspecific and congeneric sequence divergence, 63 Paramecium strains were sampled from 24 mating species. The average conspecific D1-D2 variation was 0.18%, whereas congeneric sequence divergence averaged 4.83%. In pairwise genetic distance analyses, we identified a D1-D2 sequence divergence of <0.6% as an ideal threshold to discriminate Paramecium species. Using this definition, only 3.8% of all conspecific and 3.9% of all congeneric sequence comparisons had the potential of false assignments. Neighbour-joining analyses inferred monophyly for all taxa but for two Paramecium octaurelia strains. Here, we present a protocol for easy DNA amplification of single cells and voucher deposition. In conclusion, the presented data pinpoint the D1-D2 region as an excellent candidate for an official CBOL barcode for ciliated protists. © 2013 John Wiley & Sons Ltd.

  8. The marine mixotroph, Mesodinium rubrum is far more than a greenhouse ciliate

    NASA Astrophysics Data System (ADS)

    Yih, W.; Myung, G.; Kim, H. S.; Yoo, Y. D.; Rho, J. R.

    2016-02-01

    Permanent symbiosis between the mixotrophic ciliate Mesodinium rubrum and the cryptomonad symbionts has long been assumed since 1908, when Hans Lohmann firstly described the reddish-brown globules inside M. rubrum ("Halteria rubra") cells as symbiotic algae ("Erythromonas haltericola"). Thus, M. rubrum was envisioned as a host greenhouse where numerous cryptomonad symbionts could be farmed. During last two decades, however, information on the species interaction among marine protists including M. rubrum was so impressively accumulated that the more real picture of the `symbiotic relationship' could be revealed. In addition to the obligate replacement of the selected organelles from a `symbiont', multiple donor strains for the klepto-organelles of M. rubrum was also explored. Hence, experimentally designed organelle trades for M. rubrum is not impossible today. This unique mixotrophic ciliate must be a pivotal member of marine plankton ecosystem with its superior klepto-organelles, motility, growth rate, and linkablilty to higher trophic levels. M. rubrum can link marine heterotrophic bacteria and cyanobacteria to its own predators which in turn could be consumed by other carnivores. Supported by the klepto-organelles and vitamins from prey cryptomonads as well as N(from cyanobacteria) and P(from heterotrophic bacteria) nutrients, M. rubrum thrives at diverse marine environments. Bacterivory by the protistan members of `Mesodinium food chain' may need to be further studied before we can better understand the superiority of the unique ciliate species in the sea.

  9. Mycosporine-like amino acids in the zooxanthella-ciliate symbiosis Maristentor dinoferus.

    PubMed

    Sommaruga, Ruben; Whitehead, Kenia; Shick, J Malcolm; Lobban, Christopher S

    2006-06-01

    Coral reef organisms living in mutualistic symbioses with phototrophic dinoflagellates are widespread in shallow UV-transparent waters. Maristentor dinoferus is a recently discovered species of marine benthic ciliate that hosts symbiotic dinoflagellates of the genus Symbiodinium. In this study, we tested this ciliate for the occurrence of mycosporine-like amino acids, a family of secondary metabolites that minimize damage from exposure to solar UV radiation by direct screening. Using high-performance liquid chromatography and liquid chromatography coupled to mass spectrometry, five mycosporine-like amino acids (shinorine, palythenic acid, palythine, mycosporine-2-glycine, and porphyra-334) were identified in aqueous methanolic extracts of the symbiosis. This is the first report of mycosporine-like amino acids in a marine ciliate.

  10. Trefoil factor-2 reverses airway remodeling changes in allergic airways disease.

    PubMed

    Royce, Simon G; Lim, Clarice; Muljadi, Ruth C; Samuel, Chrishan S; Ververis, Katherine; Karagiannis, Tom C; Giraud, Andrew S; Tang, Mimi L K

    2013-01-01

    Trefoil factor 2 (TFF2) is a small peptide with an important role in mucosal repair. TFF2 is up-regulated in asthma, suggesting a role in asthma pathogenesis. Given its known biological role in promoting epithelial repair, TFF2 might be expected to exert a protective function in limiting the progression of airway remodeling in asthma. The contribution of TFF2 to airway remodeling in asthma was investigated by examining the expression of TFF2 in the airway and lung, and evaluating the effects of recombinant TFF2 treatment on established airway remodeling in a murine model of chronic allergic airways disease (AAD). BALB/c mice were sensitized and challenged with ovalbumin (OVA) or saline for 9 weeks, whereas mice with established OVA-induced AAD were treated with TFF2 or vehicle control (intranasally for 14 d). Effects on airway remodeling, airway inflammation, and airway hyperresponsiveness were then assessed, whereas TFF2 expression was determined by immunohistochemistry. TFF2 expression was significantly increased in the airways of mice with AAD, compared with expression levels in control mice. TFF2 treatment resulted in reduced epithelial thickening, subepithelial collagen deposition, goblet-cell metaplasia, bronchial epithelium apoptosis, and airway hyperresponsiveness (all P < 0.05, versus vehicle control), but TFF2 treatment did not influence airway inflammation. The increased expression of endogenous TFF2 in response to chronic allergic inflammation is insufficient to prevent the progression of airway inflammation and remodeling in a murine model of chronic AAD. However, exogenous TFF2 treatment is effective in reversing aspects of established airway remodeling. TFF2 has potential as a novel treatment for airway remodeling in asthma.

  11. Protease-activated receptor 2 activation of myeloid dendritic cells regulates allergic airway inflammation

    PubMed Central

    2011-01-01

    Background A common characteristic of allergens is that they contain proteases that can activate protease-activated receptor (PAR-2); however the mechanism by which PAR-2 regulates allergic airway inflammation is unclear. Methods Mice (wild type and PAR-2-deficient) were sensitized using German cockroach (GC) feces (frass), the isolated protease from GC frass, or through adoptive transfer of GC frass-treated bone marrow-derived dendritic cells (BMDC) and measurements of airway inflammation (cellular infiltration, cytokine expression, and mucin production), serum IgE levels and airway hyperresponsiveness (AHR) were assessed. BMDC were cultured, treated with GC frass and assessed for cytokine production. PAR-2 expression on pulmonary mDCs was determined by flow cytometry. Results Exposure to GC frass induced AHR and airway inflammation in wild type mice; however PAR-2-deficient mice had significantly attenuated responses. To directly investigate the role of the protease, we isolated the protease from GC frass and administered the endotoxin-free protease into the airways of mice in the presence of OVA. GC frass proteases were sufficient to promote the development of AHR, serum IgE, and Th2 cytokine production. PAR-2 expression on mDC was upregulated following GC frass exposure, but the presence of a functional PAR-2 did not alter antigen uptake. To determine if PAR-2 activation led to differential cytokine production, we cultured BMDC in the presence of GM-CSF and treated these cells ex vivo with GC frass. PAR-2-deficient BMDC released significantly less IL-6, IL-23 and TNFα compared to BMDC from wild type mice, suggesting PAR-2 activation was important in Th2/Th17 skewing cytokine production. To determine the role for PAR-2 on mDCs on the initiation of allergic airway inflammation, BMDCs from wild type and PAR-2-deficient mice were treated in the presence or absence of GC frass and then adoptively transferred into the airway of wild type mice. Importantly, GC frass

  12. Mechanical Forces Program the Orientation of Cell Division during Airway Tube Morphogenesis.

    PubMed

    Tang, Zan; Hu, Yucheng; Wang, Zheng; Jiang, Kewu; Zhan, Cheng; Marshall, Wallace F; Tang, Nan

    2018-02-05

    Oriented cell division plays a key role in controlling organogenesis. The mechanisms for regulating division orientation at the whole-organ level are only starting to become understood. By combining 3D time-lapse imaging, mouse genetics, and mathematical modeling, we find that global orientation of cell division is the result of a combination of two types of spindles with distinct spindle dynamic behaviors in the developing airway epithelium. Fixed spindles follow the classic long-axis rule and establish their division orientation before metaphase. In contrast, rotating spindles do not strictly follow the long-axis rule and determine their division orientation during metaphase. By using both a cell-based mechanical model and stretching-lung-explant experiments, we showed that mechanical force can function as a regulatory signal in maintaining the stable ratio between fixed spindles and rotating spindles. Our findings demonstrate that mechanical forces, cell geometry, and oriented cell division function together in a highly coordinated manner to ensure normal airway tube morphogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Novel population genetics in ciliates due to life cycle and nuclear dimorphism.

    PubMed

    Morgens, David W; Stutz, Timothy C; Cavalcanti, Andre R O

    2014-08-01

    Our understanding of population genetics comes primarily from studies of organisms with canonical life cycles and nuclear organization, either haploid or diploid, sexual, or asexual. Although this template yields satisfactory results for the study of animals and plants, the wide variety of genomic organizations and life cycles of unicellular eukaryotes can make these organisms behave differently in response to mutation, selection, and drift than predicted by traditional population genetic models. In this study, we show how each of these unique features of ciliates affects their evolutionary parameters in mutation-selection, selection-drift, and mutation-selection-drift situations. In general, ciliates are less efficient in eliminating deleterious mutations-these mutations linger longer and at higher frequencies in ciliate populations than in sexual populations--and more efficient in selecting beneficial mutations. Approaching this problem via analytical techniques and simulation allows us to make specific predictions about the nature of ciliate evolution, and we discuss the implications of these results with respect to the high levels of polymorphism and high rate of protein evolution reported for ciliates. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Ciliates from ancient permafrost: Assessment of cold resistance of the resting cysts.

    PubMed

    Shatilovich, Anastasia; Stoupin, Daniel; Rivkina, Elizaveta

    2015-06-01

    There is evidence that resting cysts of soil ciliates and numerous taxa of other protists can survive in permafrost for thousands of years at subzero temperatures; however, our knowledge about mechanisms of long term cryobiosis remains incomplete. In order to better understand the means by which ancient cysts survive, we investigated resistance to cyclical supercooling stress of resting cysts of the soil ciliate Colpoda steinii (Colpodida, Ciliophora). Three clonal strains were used for comparison, isolated from Siberian tundra soil, ancient Holocene (5-7,000 y) and late Pleistocene (32-35,000 y) permafrost sediments. To determine the viability of the ancient and contemporary ciliate cysts we improved and validated a cultivation-independent method of vital fluorescent staining with a combination of two nucleic acid binding dyes, acridine orange and propidium iodide. The viability of Colpoda steinii cysts during low-temperature experiments was measured using both the proposed vital fluorescent staining method and standard germination test. Our results indicate that the dual-fluorescence technique is a more accurate, rapid, and efficient method for estimating cyst viability. We found that cysts of ancient ciliates display lower tolerance to the impact of cyclical cold compared to cysts of contemporary ciliates from Siberian permafrost affected soils. Copyright © 2015 Elsevier GmbH. All rights reserved.

  15. Cryptophyte farming by symbiotic ciliate host detected in situ.

    PubMed

    Qiu, Dajun; Huang, Liangmin; Lin, Senjie

    2016-10-25

    Protist-alga symbiosis is widespread in the ocean, but its characteristics and function in situ remain largely unexplored. Here we report the symbiosis of the ciliate Mesodinium rubrum with cryptophyte cells during a red-tide bloom in Long Island Sound. In contrast to the current notion that Mesodinium retains cryptophyte chloroplasts or organelles, our multiapproach analyses reveal that in this bloom the endosymbiotic Teleaulax amphioxeia cells were intact and expressing genes of membrane transporters, nucleus-to-cytoplasm RNA transporters, and all major metabolic pathways. Among the most highly expressed were ammonium transporters in both organisms, indicating cooperative acquisition of ammonium as a major N nutrient, and genes for photosynthesis and cell division in the cryptophyte, showing active population proliferation of the endosymbiont. We posit this as a "Mesodinium-farming-Teleaulax" relationship, a model of protist-alga symbiosis worth further investigation by metatranscriptomic technology.

  16. Social biases determine spatiotemporal sparseness of ciliate mating heuristics

    PubMed Central

    2012-01-01

    Ciliates become highly social, even displaying animal-like qualities, in the joint presence of aroused conspecifics and nonself mating pheromones. Pheromone detection putatively helps trigger instinctual and learned courtship and dominance displays from which social judgments are made about the availability, compatibility, and fitness representativeness or likelihood of prospective mates and rivals. In earlier studies, I demonstrated the heterotrich Spirostomum ambiguum improves mating competence by effecting preconjugal strategies and inferences in mock social trials via behavioral heuristics built from Hebbian-like associative learning. Heuristics embody serial patterns of socially relevant action that evolve into ordered, topologically invariant computational networks supporting intra- and intermate selection. S. ambiguum employs heuristics to acquire, store, plan, compare, modify, select, and execute sets of mating propaganda. One major adaptive constraint over formation and use of heuristics involves a ciliate’s initial subjective bias, responsiveness, or preparedness, as defined by Stevens’ Law of subjective stimulus intensity, for perceiving the meaningfulness of mechanical pressures accompanying cell-cell contacts and additional perimating events. This bias controls durations and valences of nonassociative learning, search rates for appropriate mating strategies, potential net reproductive payoffs, levels of social honesty and deception, successful error diagnosis and correction of mating signals, use of insight or analysis to solve mating dilemmas, bioenergetics expenditures, and governance of mating decisions by classical or quantum statistical mechanics. I now report this same social bias also differentially affects the spatiotemporal sparseness, as measured with metric entropy, of ciliate heuristics. Sparseness plays an important role in neural systems through optimizing the specificity, efficiency, and capacity of memory representations. The

  17. MTOR Suppresses Cigarette Smoke-Induced Epithelial Cell Death and Airway Inflammation in Chronic Obstructive Pulmonary Disease.

    PubMed

    Wang, Yong; Liu, Juan; Zhou, Jie-Sen; Huang, Hua-Qiong; Li, Zhou-Yang; Xu, Xu-Chen; Lai, Tian-Wen; Hu, Yue; Zhou, Hong-Bin; Chen, Hai-Pin; Ying, Song-Min; Li, Wen; Shen, Hua-Hao; Chen, Zhi-Hua

    2018-04-15

    Airway epithelial cell death and inflammation are pathological features of chronic obstructive pulmonary disease (COPD). Mechanistic target of rapamycin (MTOR) is involved in inflammation and multiple cellular processes, e.g., autophagy and apoptosis, but little is known about its function in COPD pathogenesis. In this article, we illustrate how MTOR regulates cigarette smoke (CS)-induced cell death, airway inflammation, and emphysema. Expression of MTOR was significantly decreased and its suppressive signaling protein, tuberous sclerosis 2 (TSC2), was increased in the airway epithelium of human COPD and in mouse lungs with chronic CS exposure. In human bronchial epithelial cells, CS extract (CSE) activated TSC2, inhibited MTOR, and induced autophagy. The TSC2-MTOR axis orchestrated CSE-induced autophagy, apoptosis, and necroptosis in human bronchial epithelial cells; all of which cooperatively regulated CSE-induced inflammatory cytokines IL-6 and IL-8 through the NF-κB pathway. Mice with a specific knockdown of Mtor in bronchial or alveolar epithelial cells exhibited significantly augmented airway inflammation and airspace enlargement in response to CS exposure, accompanied with enhanced levels of autophagy, apoptosis, and necroptosis in the lungs. Taken together, these data demonstrate that MTOR suppresses CS-induced inflammation and emphysema-likely through modulation of autophagy, apoptosis, and necroptosis-and thus suggest that activation of MTOR may represent a novel therapeutic strategy for COPD. Copyright © 2018 by The American Association of Immunologists, Inc.

  18. The Role of TNF Family Molecules Light in Cellular Interaction Between Airway Smooth Muscle Cells and T Cells During Chronic Allergic Inflammation.

    PubMed

    Shi, Fei; Xiong, Yi; Zhang, Yarui; Qiu, Chen; Li, Manhui; Shan, Aijun; Yang, Ying; Li, Binbin

    2018-06-01

    Interaction between T cells and airway smooth muscle (ASM) cells has been identified as an important factor in the development of asthma. LIGHT (known as TNFSF14) -mediated signaling likely contributes to various inflammatory disorders and airway remodeling. The objective of this study was to investigate the roles of LIGHT-mediated pathways in the interaction between ASM cells and T cells during chronic allergic inflammation. Mice were sensitized and challenged by ovalbumin (OVA) to induce chronic airway allergic inflammation. The control group received PBS only. The histological features and LIGHT expressions in lungs were assessed in vivo. Furthermore, T cells and ASM cells derived from the model mice were co-cultured both in the presence and absence of anti-LIGHT Ab for 72 h. The effects of LIGHT blockade on expressions of downstream signaling molecules, proliferation, and apoptosis of ASM cells, differentiation of T cells, and inflammatory cytokines release were evaluated. We demonstrated that LIGHT blockade strikingly inhibited the mRNA and protein expressions of HVEM, c-JUN, and NFκB. Additionally, LIGHT blockade resulted in decreased proliferation and increased apoptosis of ASM cells. Moreover, depletion of LIGHT dramatically reduced the differentiation of CD4 + T cells into Th1, Th2, and Th17 cells, as well as inhibited inflammatory cytokines release including IL-13, TGF-β, and IFN-γ, which are associated with CD4 + T cell differentiation and ASM cell proliferation. LIGHT plays an important role in the interaction between T cells and ASM cells in chronic allergic asthma. Blockade of LIGHT markedly suppressed ASM hyperplasia and inflammatory responses, which might be modulated through HVEM-NFκB or c-JUN pathways. Therefore, targeting LIGHT is a promising therapeutic strategy for airway inflammation and remodeling in chronic allergic asthma.

  19. ["Light" epithelial cells of swine and bovine oviducts].

    PubMed

    Suuroia, T; Aunapuu, M; Arend, A; Sépp, E

    2002-01-01

    The ultrastructure of oviduct epithelium of clinically healthy cows and 15 sows was investigated using scanning and transmission electron microscopy. In all parts of the oviduct, ciliated and non-ciliated epithelial cells are present, but their number varies in both the investigated animals in different regions of the oviduct, depending on the phase of the estrous cycle. In addition to ciliated cells with numerous cilia on their luminal surface, so-called pale ciliary cells were found in all parts of the oviduct of cows and sows. The cytoplasm of these cells is electron-lucent, their luminal surface carries few cilia and short microvilli. The apical cytoplasm contains species specific secretory granules, which means that these cells have features characteristic of both secretory and ciliated cells. It is suggested that the pale ciliated and non-ciliated secretory cells are functional stages of the same tubar epithelium cell, and that the transformation between these two cell types is regulated by functional requirements of the organ in different phases of the estrous cycle.

  20. Differential lower airway dendritic cell patterns may reveal distinct endotypes of RSV bronchiolitis.

    PubMed

    Kerrin, Aoife; Fitch, Paul; Errington, Claire; Kerr, Dennis; Waxman, Liz; Riding, Kay; McCormack, Jon; Mehendele, Felicity; McSorley, Henry; MacKenzie, Karen; Wronski, Sabine; Braun, Armin; Levin, Richard; Theilen, Ulf; Schwarze, Jürgen

    2017-07-01

    The pathogenesis of respiratory syncytial virus (RSV) bronchiolitis in infants remains poorly understood. Mouse models implicate pulmonary T cells in the development of RSV disease. T cell responses are initiated by dendritic cells (DCs), which accumulate in lungs of RSV-infected mice. In infants with RSV bronchiolitis, previous reports have shown that DCs are mobilised to the nasal mucosa, but data on lower airway DC responses are lacking. To determine the presence and phenotype of DCs and associated immune cells in bronchoalveolar lavage (BAL) and peripheral blood samples from infants with RSV bronchiolitis. Infants intubated and ventilated due to severe RSV bronchiolitis or for planned surgery (controls with healthy lungs) underwent non-bronchoscopic BAL. Immune cells in BAL and blood samples were characterised by flow cytometry and cytokines measured by Human V-Plex Pro-inflammatory Panel 1 MSD kit. In RSV cases, BAL conventional DCs (cDCs), NK T cells, NK cells and pro-inflammatory cytokines accumulated, plasmacytoid DCs (pDCs) and T cells were present, and blood cDCs increased activation marker expression. When stratifying RSV cases by risk group, preterm and older (≥4 months) infants had fewer BAL pDCs than term born and younger (<4 months) infants, respectively. cDCs accumulate in the lower airways during RSV bronchiolitis, are activated systemically and may, through activation of T cells, NK T cells and NK cells, contribute to RSV-induced inflammation and disease. In addition, the small population of airway pDCs in preterm and older infants may reveal a distinct endotype of RSV bronchiolitis with weak antiviral pDC responses. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. Histophagous ciliate Pseudocollinia brintoni and bacterial assemblage interaction with krill Nyctiphanes simplex. II. Host responses.

    PubMed

    Gómez-Gutiérrez, Jaime; Angel-Rodríguez, Jorge A; Tremblay, Nelly; Zenteno-Savín, Tania; Aguilar-Méndez, Mario J; López-Cortés, Alejandro; Robinson, Carlos J

    2015-10-27

    Unlike decapod crustaceans of commercial interest, the krill defense system and its response to parasites and pathogens is virtually unknown. Histophagous ciliates of the genus Pseudocollinia interact with at least 7 krill species in the northeastern Pacific. Although they can cause epizootic events, the physiology of the histophagous ciliate-host interaction and krill (host) defenses remain unknown. From 1 oceanographic survey along the southwestern coast of the Baja California Peninsula near Bahía Magdalena and 2 in the Gulf of California, we investigated parasitoid-host physiological responses (fatty acid and oxidative stress indicators) of the subtropical krill Nyctiphanes simplex infected with the ciliate P. brintoni. All life stages of P. brintoni were associated with opportunistic bacterial assemblages that have not been explicitly investigated in other Pseudocollinia species (P. beringensis, P. oregonensis, and P. similis). Parasitoid ciliates exclusively infected adult females, which showed increased lipid content during gonad development. As the infection progressed, omega-3 eicosapentaenoic and docosahexaenoic fatty acids, which may act as energy sources to produce high numbers of ciliate transmission stages, were quickly depleted. Antioxidant enzymes, components of the crustacean defense system, varied throughout infection, but without inhibiting Pseudocollinia infection, i.e. higher levels of lipid oxidative damage were detected in late stages of infection. The ineffective response of the krill antioxidant defense system against histophagous ciliates and the bacteria associated with the ciliates suggests that Pseudocollinia ciliates are functionally analogous to krill predators and may have a strong influence on the population dynamics of krill.

  2. Bitter taste receptor agonists alter mitochondrial function and induce autophagy in airway smooth muscle cells.

    PubMed

    Pan, Shi; Sharma, Pawan; Shah, Sushrut D; Deshpande, Deepak A

    2017-07-01

    Airway remodeling, including increased airway smooth muscle (ASM) mass, is a hallmark feature of asthma and COPD. We previously identified the expression of bitter taste receptors (TAS2Rs) on human ASM cells and demonstrated that known TAS2R agonists could promote ASM relaxation and bronchodilation and inhibit mitogen-induced ASM growth. In this study, we explored cellular mechanisms mediating the antimitogenic effect of TAS2R agonists on human ASM cells. Pretreatment of ASM cells with TAS2R agonists chloroquine and quinine resulted in inhibition of cell survival, which was largely reversed by bafilomycin A1, an autophagy inhibitor. Transmission electron microscope studies demonstrated the presence of double-membrane autophagosomes and deformed mitochondria. In ASM cells, TAS2R agonists decreased mitochondrial membrane potential and increased mitochondrial ROS and mitochondrial fragmentation. Inhibiting dynamin-like protein 1 (DLP1) reversed TAS2R agonist-induced mitochondrial membrane potential change and attenuated mitochondrial fragmentation and cell death. Furthermore, the expression of mitochondrial protein BCL2/adenovirus E1B 19-kDa protein-interacting protein 3 (Bnip3) and mitochondrial localization of DLP1 were significantly upregulated by TAS2R agonists. More importantly, inhibiting Bnip3 mitochondrial localization by dominant-negative Bnip3 significantly attenuated cell death induced by TAS2R agonist. Collectively the TAS2R agonists chloroquine and quinine modulate mitochondrial structure and function, resulting in ASM cell death. Furthermore, Bnip3 plays a central role in TAS2R agonist-induced ASM functional changes via a mitochondrial pathway. These findings further establish the cellular mechanisms of antimitogenic effects of TAS2R agonists and identify a novel class of receptors and pathways that can be targeted to mitigate airway remodeling as well as bronchoconstriction in obstructive airway diseases. Copyright © 2017 the American Physiological

  3. Gene Delivery to the Airway

    PubMed Central

    Keiser, Nicholas W.; Engelhardt, John F.

    2013-01-01

    This unit describes generation of and gene transfer to several commonly used airway models. Isolation and transduction of primary airway epithelial cells are first described. Next, the preparation of polarized airway epithelial monolayers is outlined. Transduction of these polarized cells is also described. Methods are presented for generation of tracheal xenografts as well as both ex vivo and in vivo gene transfer to these xenografts. Finally, a method for in vivo gene delivery to the lungs of rodents is included. Methods for evaluating transgene expression are given in the support protocols. PMID:23853081

  4. Genetic modification of adeno-associated viral vector type 2 capsid enhances gene transfer efficiency in polarized human airway epithelial cells.

    PubMed

    White, April F; Mazur, Marina; Sorscher, Eric J; Zinn, Kurt R; Ponnazhagan, Selvarangan

    2008-12-01

    Cystic fibrosis (CF) is a common genetic disease characterized by defects in the expression of the CF transmembrane conductance regulator (CFTR) gene. Gene therapy offers better hope for the treatment of CF. Adeno-associated viral (AAV) vectors are capable of stable expression with low immunogenicity. Despite their potential in CF gene therapy, gene transfer efficiency by AAV is limited because of pathophysiological barriers in these patients. Although a few AAV serotypes have shown better transduction compared with the AAV2-based vectors, gene transfer efficiency in human airway epithelium has still not reached therapeutic levels. To engineer better AAV vectors for enhanced gene delivery in human airway epithelium, we developed and characterized mutant AAV vectors by genetic capsid modification, modeling the well-characterized AAV2 serotype. We genetically incorporated putative high-affinity peptide ligands to human airway epithelium on the GH loop region of AAV2 capsid protein. Six independent mutant AAV were constructed, containing peptide ligands previously reported to bind with high affinity for known and unknown receptors on human airway epithelial cells. The vectors were tested on nonairway cells and nonpolarized and polarized human airway epithelial cells for enhanced infectivity. One of the mutant vectors, with the peptide sequence THALWHT, not only showed the highest transduction in undifferentiated human airway epithelial cells but also indicated significant transduction in polarized cells. Interestingly, this modified vector was also able to infect cells independently of the heparan sulfate proteoglycan receptor. Incorporation of this ligand on other AAV serotypes, which have shown improved gene transfer efficiency in the human airway epithelium, may enhance the application of AAV vectors in CF gene therapy.

  5. Role of non-coding RNAs in maintaining primary airway smooth muscle cells

    PubMed Central

    2014-01-01

    Background The airway smooth muscle (ASM) cell maintains its own proliferative rate and contributes to the inflammatory response in the airways, effects that are inhibited by corticosteroids, used in the treatment of airways diseases. Objective We determined the differential expression of mRNAs, microRNAs (miRNAs) and long noncoding RNA species (lncRNAs) in primary ASM cells following treatment with a corticosteroid, dexamethasone, and fetal calf serum (FCS). Methods mRNA, miRNA and lncRNA expression was measured by microarray and quantitative real-time PCR. Results A small number of miRNAs (including miR-150, −371-5p, −718, −940, −1181, −1207-5p, −1915, and −3663-3p) were decreased following exposure to dexamethasone and FCS. The mRNA targets of these miRNAs were increased in expression. The changes in mRNA expression were associated with regulation of ASM actin cytoskeleton. We also observed changes in expression of lncRNAs, including natural antisense, pseudogenes, intronic lncRNAs, and intergenic lncRNAs following dexamethasone and FCS. We confirmed the change in expression of three of these, LINC00882, LINC00883, PVT1, and its transcriptional activator, c-MYC. We propose that four of these lincRNAs (RP11-46A10.4, LINC00883, BCYRN1, and LINC00882) act as miRNA ‘sponges’ for 4 miRNAs (miR-150, −371-5p, −940, −1207-5p). Conclusion This in-vitro model of primary ASM cell phenotype was associated with the regulation of several ncRNAs. Their identification allows for in-vitro functional experimentation to establish causality with the primary ASM phenotype, and in airway diseases such as asthma and chronic obstructive pulmonary disease (COPD). PMID:24886442

  6. Epithelial Cell TRPV1-Mediated Airway Sensitivity as a Mechanism for Respiratory Symptoms Associated with Gulf War Illness?

    DTIC Science & Technology

    2010-06-01

    TITLE: “Epithelial Cell TRPV1 -Mediated Airway Sensitivity as a Mechanism for Respiratory Symptoms Associated with Gulf War Illness” PRINCIPAL...66,),&$7,212) E7(/(3+21(180%(5 ,QFOXGHDUHDFRGH 01-06-2010 Annual Report 1 JUN 2009 - 31 MAY 2010 Epithelial Cell TRPV1 -Mediated Airway...express functional TRPV1 . More recently we found that these cells also express another important irritant receptor, namely TRPA1. Activation of

  7. THE EFFECTS OF COMBINATORIAL EXPOSURE OF PRO-INFLAMMATORY AND ANTI-INFLAMMATORY CYTOKINES ON AIRWAY EPITHELIAL CELL RELEASE OF CHEMOTACTIC MEDIATORS

    EPA Science Inventory

    Asthma is a chronic inflammatory disorder of the airways affecting nearly 15 million individuals nationally. Within the inflamed asthmatic airway there exist complex interactions between many cells and the cytokines they release, in particular mast cells, eosinophils, T-lymphocy...

  8. Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Young-Il; Kim, Seung Hyun; Ju, Jung Won

    Highlights: {yields} Treatment with Clonorchis sinensis-derived total protein attenuates OVA-induced airway inflammation and AHR to methacholine. {yields} Induction of CD4{sup +}CD25{sup +}Foxp3{sup +} T cells and IL-10 along with suppression of splenocyte proliferation by C. sinensis-derived total protein. {yields} C. sinensis-derived total protein interferes with the expression of co-stimulatory molecules in DCs. -- Abstract: Asthma is characterized by Th2-mediated inflammation, resulting in airway hyperresponsiveness (AHR) through airway remodeling. Recent epidemiological and experimental reports have suggested an inverse relationship between the development of allergy and helminth infections. Infection by Clonorchis sinensis, a liver fluke that resides in the bile duct ofmore » humans, is endemic predominantly in Asia including Korea and China. Using a murine model for asthma, we investigated the effects of C. sinensis-derived total protein (Cs-TP) on allergen-induced airway inflammation and the mechanism underlying the protective effects of Cs-TP administration on asthma. Treatment with Cs-TP attenuated OVA-induced airway inflammation and methacholine-induced AHR, as well as eosinophilia development, lymphocyte infiltration into the lung, and goblet cell metaplasia. This protective effect of Cs-TP is associated with markedly reduced OVA-specific IgE and Th1/Th2 cytokine production. Moreover, Cs-TP increased the number of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T (Treg) cells as well as their suppressive activity. In fact, proliferation of OVA-restimulated splenocytes was suppressed significantly. Cs-TP also inhibited the expression of such co-stimulatory molecules as CD80, CD86, and CD40 in LPS- or OVA-stimulated dendritic cells (DCs), suggesting that Cs-TP could interfere with the capacity of airway DCs to prime naive T cells. These data demonstrate the capacity of C. sinensis to ameliorate allergic asthma and broaden our understanding of the

  9. Arsenic Compromises Conducting Airway Epithelial Barrier Properties in Primary Mouse and Immortalized Human Cell Cultures

    PubMed Central

    Sherwood, Cara L.; Liguori, Andrew E.; Olsen, Colin E.; Lantz, R. Clark; Burgess, Jefferey L.; Boitano, Scott

    2013-01-01

    Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb)] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE) cell model we found that both micromolar (3.9 μM) and submicromolar (0.8 μM) arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl) Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-). We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway. PMID:24349408

  10. Neurochemical characterization of sea lamprey taste buds and afferent gustatory fibers: presence of serotonin, calretinin, and CGRP immunoreactivity in taste bud bi-ciliated cells of the earliest vertebrates.

    PubMed

    Barreiro-Iglesias, Antón; Villar-Cerviño, Verona; Villar-Cheda, Begoña; Anadón, Ramón; Rodicio, María Celina

    2008-12-01

    Neuroactive substances such as serotonin and other monoamines have been suggested to be involved in the transmission of gustatory signals from taste bud cells to afferent fibers. Lampreys are the earliest vertebrates that possess taste buds, although these differ in structure from taste buds in jawed vertebrates, and their neurochemistry remains unknown. We used immunofluorescence methods with antibodies raised against serotonin, tyrosine hydroxylase (TH), gamma-aminobutyric acid (GABA), glutamate, calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), calretinin, and acetylated alpha-tubulin to characterize the neurochemistry and innervation of taste buds in the sea lamprey, Petromyzon marinus L. For localization of proliferative cells in taste buds we used bromodeoxyuridine labeling and proliferating cell nuclear antigen immunohistochemistry. Results with both markers indicate that proliferating cells are restricted to a few basal cells and that almost all cells in taste buds are nonproliferating. A large number of serotonin-, calretinin-, and CGRP-immunoreactive bi-ciliated cells were revealed in lamprey taste buds. This suggests that serotonin participates in the transmission of gustatory signals and indicates that this substance appeared early on in vertebrate evolution. The basal surface of the bi-ciliated taste bud cells was contacted by tubulin-immunoreactive fibers. Some of the fibers surrounding the taste bud were calretinin immunoreactive. Lamprey taste bud cells or afferent fibers did not exhibit TH, GABA, glutamate, or NPY immunoreactivity, which suggests that expression of these substances evolved in taste buds of some gnathostomes lines after the separation of gnathostomes and lampreys. (c) 2008 Wiley-Liss, Inc.

  11. Protective effects of valproic acid against airway hyperresponsiveness and airway remodeling in a mouse model of allergic airways disease.

    PubMed

    Royce, Simon G; Dang, William; Ververis, Katherine; De Sampayo, Nishika; El-Osta, Assam; Tang, Mimi L K; Karagiannis, Tom C

    2011-12-01

    Airway remodeling and airway hyperresponsiveness are major aspects of asthma pathology that are not targeted optimally by existing anti-inflammatory drugs. Histone deacetylase inhibitors have a wide range of effects that may potentially abrogate aspects of remodeling. One such histone deacetylase inhibitor is valproic acid (2-propylvaleric acid). Valproic acid is used clinically as an anti-epileptic drug and is a potent inhibitor of class I histone deacetylases but also inhibits class II histone deacetylases. We used valproic acid as a molecular model of histone deacetylase inhibition in vivo in chronic allergic airways disease mice with airway remodeling and airway hyperresponsiveness. Wild-type Balb/c mice with allergic airways disease were treated with valproic acid or vehicle control. Airway inflammation was assessed by bronchoalveolar lavage fluid cell counts and examination of lung tissue sections. Remodeling was assessed by morphometric analysis of histochemically stained slides and lung function was assessed by invasive plethysmography measurement of airway resistance. Valproic acid treatment did not affect inflammation parameters; however, valproic acid treatment resulted in reduced epithelial thickness as compared to vehicle treated mice (p < 0.01), reduced subepithelial collagen deposition (p < 0.05) and attenuated airway hyperresponsiveness (p < 0.05 and p < 0.01 for the two highest doses of methacholine, respectively). These findings show that treatment with valproic acid can reduce structural airway remodeling changes and hyperresponsiveness, providing further evidence for the potential use of histone deacetylase inhibitors for the treatment of asthma.

  12. Mechanisms and regulation of polymorphonuclear leukocyte and eosinophil adherence to human airway epithelial cells.

    PubMed

    Jagels, M A; Daffern, P J; Zuraw, B L; Hugli, T E

    1999-09-01

    Polymorphonuclear leukocytes (PMN) and eosinophils (Eos) are important cellular participants in a variety of acute and chronic inflammatory reactions in the airway. Histologic evidence has implicated direct interactions between these two subsets of leukocytes and airway epithelial cells during inflammation. A comprehensive characterization and comparison of physiologic stimuli and adhesion molecule involvement in granulocyte-epithelial-cell interactions done with nontransformed human airway epithelial cells has not been reported. We therefore examined the regulation and biochemical mechanisms governing granulocyte-epithelial-cell adhesion, using either purified PMN or Eos and primary cultures of human bronchial epithelial cells (HBECs). We investigated the involvement of a number of proinflammatory signals associated with allergic and nonallergic airway inflammation, as well as the contribution of several epithelial and leukocyte adhesion molecules, including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and members of the beta(1), beta(2), and beta(7) integrin families. ICAM-1 was expressed at low levels on cultured HBECs and was markedly upregulated after stimulation with interferon (IFN)-gamma or, to a lesser extent, with tumor necrosis factor (TNF)-alpha or interleukin (IL)-1. VCAM-1 was not present on resting HBECs, and was not upregulated after stimulation with IFN-gamma, IL-1, IL-4, or TNF-alpha. PMN adhesion to HBECs could be induced either through activation of PMN with IL-8, granulocyte-macrophage colony-stimulating factor (GM-CSF), or C5a, but not with IL-5 or by preactivation of HBECs with TNF-alpha or IFN-gamma. Blocking antibody studies indicated that PMN-HBEC adherence depended on beta(2) integrins, primarily alpha(M)beta(2) (Mac-1). Adherence of Eos to HBECs could be induced through activation of Eos with IL-5, GM-CSF, or C5a, but not with IL-8 or by prior activation of HBECs with TNF-alpha of IFN

  13. Group 2 Innate Lymphoid Cells Exhibit a Dynamic Phenotype in Allergic Airway Inflammation

    PubMed Central

    Li, Bobby W. S.; Stadhouders, Ralph; de Bruijn, Marjolein J. W.; Lukkes, Melanie; Beerens, Dior M. J. M.; Brem, Maarten D.; KleinJan, Alex; Bergen, Ingrid; Vroman, Heleen; Kool, Mirjam; van IJcken, Wilfred F. J.; Rao, Tata Nageswara; Fehling, Hans Jörg; Hendriks, Rudi W.

    2017-01-01

    Group 2 innate lymphoid cells (ILC2) are implicated in allergic asthma as an early innate source of the type 2 cytokines IL-5 and IL-13. However, their induction in house dust mite (HDM)-mediated airway inflammation additionally requires T cell activation. It is currently unknown whether phenotypic differences exist between ILC2s that are activated in a T cell-dependent or T cell-independent fashion. Here, we compared ILC2s in IL-33- and HDM-driven airway inflammation. Using flow cytometry, we found that surface expression levels of various markers frequently used to identify ILC2s were dependent on their mode of activation, highly variable over time, and differed between tissue compartments, including bronchoalveolar lavage (BAL) fluid, lung, draining lymph nodes, and spleen. Whereas in vivo IL-33-activated BAL fluid ILC2s exhibited an almost uniform CD25+CD127+T1/ST2+ICOS+KLRG1+ phenotype, at a comparable time point after HDM exposure BAL fluid ILC2s had a very heterogeneous surface marker phenotype. A major fraction of HDM-activated ILC2s were CD25lowCD127+T1/ST2low ICOSlowKLRG1low, but nevertheless had the capacity to produce large amounts of type 2 cytokines. HDM-activated CD25low ILC2s in BAL fluid and lung rapidly reverted to CD25high ILC2s upon in vivo stimulation with IL-33. Genome-wide transcriptional profiling of BAL ILC2s revealed ~1,600 differentially expressed genes: HDM-stimulated ILC2s specifically expressed genes involved in the regulation of adaptive immunity through B and T cell interactions, whereas IL-33-stimulated ILC2s expressed high levels of proliferation-related and cytokine genes. In both airway inflammation models ILC2s were present in the lung submucosa close to epithelial cells, as identified by confocal microscopy. In chronic HDM-driven airway inflammation ILC2s were also found inside organized cellular infiltrates near T cells. Collectively, our findings show that ILC2s are phenotypically more heterogeneous than previously thought

  14. Measuring T cell cytokines in allergic upper and lower airway inflammation: can we move to the clinic?

    PubMed

    Bullens, Dominique M A

    2007-06-01

    Recent insights regarding the development of allergic diseases such as allergic rhinitis, asthma and atopic eczema are based on the functional diversity of T helper (Th)1 and Th2 lymphocytes. Th2 cells (secreting Interleukin (IL)-4, IL-5, IL-9 and IL-13) are considered to be responsible for the induction and for many of the manifestations of atopic diseases. Local overproduction of Th2 cytokines at the site of allergic inflammation, and an intrinsic defect in the production of IFN-gamma by Th1 cells in atopic individuals, have now been reported by several authors. Both IFN-gamma and IL-10 have been suggested to play a modulatory role in the induction and maintenance of allergen-specific tolerance in healthy individuals. However, recent studies indicate that Th1 cells, secreting IFN-gamma might cause severe airway inflammation. On the other hand, 'inflammatory T cells' or Th17 cells, producing IL-17, could represent a link between T cell inflammation and granulocytic influx as observed in allergic airway inflammation. We focus in this review on local (at the side of inflammation) T cell cytokine production and cytokine production by circulating T cells (after in vitro restimulation) from individuals with allergic airway disease, rhinitis and/or asthma. We furthermore review the changes in local T cell cytokine production and/or cytokine production by circulating T cells (after restimulation in vitro) from allergic/asthmatic individuals after treatment with anti-inflammatory agents or immunotherapy. Finally, we discuss whether measuring these T cell cytokines in the airways might be of diagnostic importance or could help to follow-up patients with allergy/asthma.

  15. Cryptophyte farming by symbiotic ciliate host detected in situ

    PubMed Central

    Qiu, Dajun; Huang, Liangmin; Lin, Senjie

    2016-01-01

    Protist–alga symbiosis is widespread in the ocean, but its characteristics and function in situ remain largely unexplored. Here we report the symbiosis of the ciliate Mesodinium rubrum with cryptophyte cells during a red-tide bloom in Long Island Sound. In contrast to the current notion that Mesodinium retains cryptophyte chloroplasts or organelles, our multiapproach analyses reveal that in this bloom the endosymbiotic Teleaulax amphioxeia cells were intact and expressing genes of membrane transporters, nucleus-to-cytoplasm RNA transporters, and all major metabolic pathways. Among the most highly expressed were ammonium transporters in both organisms, indicating cooperative acquisition of ammonium as a major N nutrient, and genes for photosynthesis and cell division in the cryptophyte, showing active population proliferation of the endosymbiont. We posit this as a “Mesodinium-farming-Teleaulax” relationship, a model of protist–alga symbiosis worth further investigation by metatranscriptomic technology. PMID:27791006

  16. [Ciliate diversity and spatiotemporal variation in surface sediments of Yangtze River estuary hypoxic zone].

    PubMed

    Feng, Zhao; Kui-Dong, Xu; Zhao-Cui, Meng

    2012-12-01

    By using denaturing gradient gel electrophoresis (DGGE) and sequencing as well as Ludox-QPS method, an investigation was made on the ciliate diversity and its spatiotemporal variation in the surface sediments at three sites of Yangtze River estuary hypoxic zone in April and August 2011. The ANOSIM analysis indicated that the ciliate diversity had significant difference among the sites (R = 0.896, P = 0.0001), but less difference among seasons (R = 0.043, P = 0.207). The sequencing of 18S rDNA DGGE bands revealed that the most predominant groups were planktonic Choreotrichia and Oligotrichia. The detection by Ludox-QPS method showed that the species number and abundance of active ciliates were maintained at a higher level, and increased by 2-5 times in summer, as compared with those in spring. Both the Ludox-QPS method and the DGGE technique detected that the ciliate diversity at the three sites had the similar variation trend, and the Ludox-QPS method detected that there was a significant variation in the ciliate species number and abundance between different seasons. The species number detected by Ludox-QPS method was higher than that detected by DGGE bands. Our study indicated that the ciliates in Yangtze River estuary hypoxic zone had higher diversity and abundance, with the potential to supply food for the polyps of jellyfish.

  17. Neurokinin-1 receptor mediates stress-exacerbated allergic airway inflammation and airway hyperresponsiveness in mice.

    PubMed

    Joachim, Ricarda A; Sagach, Viktoriya; Quarcoo, David; Dinh, Q Thai; Arck, Petra C; Klapp, Burghard F

    2004-01-01

    A wealth of clinical observation has suggested that stress and asthma morbidity are associated. We have previously established a mouse model of stress-exacerbated allergic airway inflammation, which reflects major clinical findings. The aim of the current study was to investigate the role of the neurokinin- (NK-)1 receptor in the mediation of stress effects in allergic airway inflammation. BALB/c mice were systemically sensitized with ovalbumin (OVA) on assay days 1, 14, and 21 and repeatedly challenged with OVA aerosol on days 26 and 27. Sound stress was applied to the animals for 24 hours, starting with the first airway challenge. Additionally, one group of stressed and one group of nonstressed mice received the highly specific NK-1 receptor antagonist RP 67580. Bronchoalveolar lavage fluid was obtained, and cell numbers and differentiation were determined. Airway hyperreactivity was measured in vitro by electrical field stimulation of tracheal smooth-muscle elements. Application of stress in sensitized and challenged animals resulted in a significant increase in leukocyte number in the bronchoalveolar lavage fluid. Furthermore, stressed animals showed enhanced airway reactivity. The increase of inflammatory cells and airway reactivity was blocked by treatment of animals with the NK-1 receptor antagonist. These data indicate that the NK-1 receptor plays an important role in mediating stress effects in allergen-induced airway inflammation.

  18. Characterization of primary cilia in human airway smooth muscle cells.

    PubMed

    Wu, Jun; Du, Hui; Wang, Xiangling; Mei, Changlin; Sieck, Gary C; Qian, Qi

    2009-08-01

    Considerable evidence indicates a key role for primary cilia of mammalian cells in mechanochemical sensing. Dysfunctions of primary cilia have been linked to the pathogenesis of several human diseases. However, cilia-related research has been limited to a few cell and tissue types; to our knowledge, no literature exists on primary cilia in airway smooth muscle (ASM). The aim of this study was to characterize primary cilia in human ASM. Primary cilia of human bronchial smooth muscle cells (HBSMCs) were examined using immunofluorescence confocal microscopy, and scanning and transmission electron microscopy. HBSMC migration and injury repair were examined by scratch-wound and epidermal growth factor (EGF)-induced migration assays. Cross-sectional images of normal human bronchi revealed that primary cilia of HBSMCs within each ASM bundle aggregated at the same horizontal level, forming a "cilium layer." Individual cilia of HBSMCs projected into extracellular matrix and exhibited varying degrees of deflection. Mechanochemical sensing molecules, polycystins, and alpha2-, alpha5-, and beta1-integrins were enriched in cilia, as was EGF receptor, known to activate jointly with integrins during cell migration. Migration assays demonstrated a ciliary contribution to HBSMC migration and wound repair. The primary cilia of ASM cells exert a role in sensing and transducing extracellular mechanochemical signals and in ASM injury repair. Defects in ASM ciliary function could potentially affect airway wall maintenance and/or remodeling, possibly relating to the genesis of bronchiectasis in autosomal dominant polycystic kidney disease, a disease of ciliopathy.

  19. Fetal human airway smooth muscle cell production of leukocyte chemoattractants is differentially regulated by fluticasone.

    PubMed

    Pearson, Helen; Britt, Rodney D; Pabelick, Christine M; Prakash, Y S; Amrani, Yassine; Pandya, Hitesh C

    2015-12-01

    Adult human airway smooth muscle (ASM) produce cytokines involved in recruitment and survival of leukocytes within airway walls. Cytokine generation by adult ASM is glucocorticoid-sensitive. Whether developing lung ASM produces cytokines in a glucocorticoid-sensitive fashion is unknown. Cultured fetal human ASM cells stimulated with TNF-α (0-20 ng/ml) were incubated with TNF-α receptor-blocking antibodies, fluticasone (1 and 100 nm), or vehicle. Supernatants and cells were assayed for the production of CCL5, CXCL10, and CXCL8 mRNA and protein and glucocorticoid receptor phosphorylation. CCL5, CXCL10, and CXCL8 mRNA and protein production by fetal ASM cell was significantly and dose-dependently following TNF-α treatment. Cytokine mRNA and protein production were effectively blocked by TNF-α R1 and R2 receptor neutralizing antibodies but variably inhibited by fluticasone. TNF-α-induced TNF-R1 and R2 receptor mRNA expression was only partially attenuated by fluticasone. Glucocorticoid receptor phosphorylation at serine (Ser) 211 but not at Ser 226 was enhanced by fluticasone. Production of CCL5, CXCL10, and CXCL8 by fetal ASM appears to involve pathways that are both qualitatively and mechanistically distinct to those described for adult ASM. The findings imply developing ASM has potential to recruit leukocyte into airways and, therefore, of relevance to childhood airway diseases.

  20. Oxygen dose responsiveness of human fetal airway smooth muscle cells.

    PubMed

    Hartman, William R; Smelter, Dan F; Sathish, Venkatachalem; Karass, Michael; Kim, Sunchin; Aravamudan, Bharathi; Thompson, Michael A; Amrani, Yassine; Pandya, Hitesh C; Martin, Richard J; Prakash, Y S; Pabelick, Christina M

    2012-10-15

    Maintenance of blood oxygen saturation dictates supplemental oxygen administration to premature infants, but hyperoxia predisposes survivors to respiratory diseases such as asthma. Although much research has focused on oxygen effects on alveoli in the setting of bronchopulmonary dysplasia, the mechanisms by which oxygen affects airway structure or function relevant to asthma are still under investigation. We used isolated human fetal airway smooth muscle (fASM) cells from 18-20 postconceptual age lungs (canalicular stage) to examine oxygen effects on intracellular Ca(2+) ([Ca(2+)](i)) and cellular proliferation. fASM cells expressed substantial smooth muscle actin and myosin and several Ca(2+) regulatory proteins but not fibroblast or epithelial markers, profiles qualitatively comparable to adult human ASM. Fluorescence Ca(2+) imaging showed robust [Ca(2+)](i) responses to 1 μM acetylcholine (ACh) and 10 μM histamine (albeit smaller and slower than adult ASM), partly sensitive to zero extracellular Ca(2+). Compared with adult, fASM showed greater baseline proliferation. Based on this validation, we assessed fASM responses to 10% hypoxia through 90% hyperoxia and found enhanced proliferation at <60% oxygen but increased apoptosis at >60%, effects accompanied by appropriate changes in proliferative vs. apoptotic markers and enhanced mitochondrial fission at >60% oxygen. [Ca(2+)](i) responses to ACh were enhanced for <60% but blunted at >60% oxygen. These results suggest that hyperoxia has dose-dependent effects on structure and function of developing ASM, which could have consequences for airway diseases of childhood. Thus detrimental effects on ASM should be an additional consideration in assessing risks of supplemental oxygen in prematurity.

  1. Histone deacetylase inhibitors up-regulate LL-37 expression independent of toll-like receptor mediated signalling in airway epithelial cells.

    PubMed

    Liu, Quan; Liu, Juan; Roschmann, Kristina Irene Lisolette; van Egmond, Danielle; Golebski, Korneliusz; Fokkens, Wytske Johanna; Wang, Dehui; van Drunen, Cornelis Maria

    2013-04-11

    HDAC inhibitors have been proposed as anticancer agents. However, their roles in innate genes expression remain not well known. Cathelicidin LL-37 is one of the few human bactericidal peptides, but the regulation of histone acetylation on LL-37 expression in airway epithelium remains largely unknown. Therefore, we investigated the effects of two non-selective HDACi, trichostatin A (TSA) and sodium butyrate (SB), on the expression of the cathelicidin LL-37 in human airway epithelial cells. LL37 in human NCI-H292 airway epithelial cells and the primary cultures of normal nasal epithelial cells(PNEC) in response to HDAC inhibitors with or without poly (I:C) stimulation was assessed using real-time PCR and western blot. In parallel, IL-6 expression was evaluated by ELISA. Our results showed that HDAC inhibitors up-regulated LL-37 gene expression independent of poly (I:C) stimulation in PNEC as well as in NCI-H292 cells. HDAC inhibitors increased LL37 protein expression in NCI-H292 cells but not in PNEC. In addition, HDAC inhibitors significantly inhibited poly (I:C)-induced IL-6 production in both of the epithelial cells. In conclusion, HDAC inhibitors directly up-regulated LL-37 gene expression in human airway epithelial cells.

  2. Histone deacetylase inhibitors up-regulate LL-37 expression independent of toll-like receptor mediated signalling in airway epithelial cells

    PubMed Central

    2013-01-01

    HDAC inhibitors have been proposed as anticancer agents. However, their roles in innate genes expression remain not well known. Cathelicidin LL-37 is one of the few human bactericidal peptides, but the regulation of histone acetylation on LL-37 expression in airway epithelium remains largely unknown. Therefore, we investigated the effects of two non-selective HDACi, trichostatin A (TSA) and sodium butyrate (SB), on the expression of the cathelicidin LL-37 in human airway epithelial cells. LL37 in human NCI-H292 airway epithelial cells and the primary cultures of normal nasal epithelial cells(PNEC) in response to HDAC inhibitors with or without poly (I:C) stimulation was assessed using real-time PCR and western blot. In parallel, IL-6 expression was evaluated by ELISA. Our results showed that HDAC inhibitors up-regulated LL-37 gene expression independent of poly (I:C) stimulation in PNEC as well as in NCI-H292 cells. HDAC inhibitors increased LL37 protein expression in NCI-H292 cells but not in PNEC. In addition, HDAC inhibitors significantly inhibited poly (I:C)-induced IL-6 production in both of the epithelial cells. In conclusion, HDAC inhibitors directly up-regulated LL-37 gene expression in human airway epithelial cells. PMID:23577829

  3. Regulation of Cl^- Channels in Normal and Cystic Fibrosis Airway Epithelial Cells by Extracellular ATP

    NASA Astrophysics Data System (ADS)

    Stutts, M. J.; Chinet, T. C.; Mason, S. J.; Fullton, J. M.; Clarke, L. L.; Boucher, R. C.

    1992-03-01

    The rate of Cl^- secretion by human airway epithelium is determined, in part, by apical cell membrane Cl^- conductance. In cystic fibrosis airway epithelia, defective regulation of Cl^- conductance decreases the capability to secrete Cl^-. Here we report that extracytosolic ATP in the luminal bath of cultured human airway epithelia increased transepithelial Cl^- secretion and apical membrane Cl^- permeability. Single-channel studies in excised membrane patches revealed that ATP increased the open probability of outward rectifying Cl^- channels. The latter effect occurs through a receptor mechanism that requires no identified soluble second messengers and is insensitive to probes of G protein function. These results demonstrate a mode of regulation of anion channels by binding ATP at the extracellular surface. Regulation of Cl^- conductance by external ATP is preserved in cystic fibrosis airway epithelia.

  4. Bitter tasting compounds dilate airways by inhibiting airway smooth muscle calcium oscillations and calcium sensitivity

    PubMed Central

    Tan, Xiahui; Sanderson, Michael J

    2014-01-01

    Background and Purpose While selective, bitter tasting, TAS2R agonists can relax agonist-contracted airway smooth muscle (ASM), their mechanism of action is unclear. However, ASM contraction is regulated by Ca2+ signalling and Ca2+ sensitivity. We have therefore investigated how the TAS2R10 agonists chloroquine, quinine and denotonium regulate contractile agonist-induced Ca2+ signalling and sensitivity. Experimental Approach Airways in mouse lung slices were contracted with either methacholine (MCh) or 5HT and bronchodilation assessed using phase-contrast microscopy. Ca2+ signalling was measured with 2-photon fluorescence microscopy of ASM cells loaded with Oregon Green, a Ca2+-sensitive indicator (with or without caged-IP3). Effects on Ca2+ sensitivity were assessed on lung slices treated with caffeine and ryanodine to permeabilize ASM cells to Ca2+. Key Results The TAS2R10 agonists dilated airways constricted by either MCh or 5HT, accompanied by inhibition of agonist-induced Ca2+ oscillations. However, in non-contracted airways, TAS2R10 agonists, at concentrations that maximally dilated constricted airways, did not evoke Ca2+ signals in ASM cells. Ca2+ increases mediated by the photolysis of caged-IP3 were also attenuated by chloroquine, quinine and denotonium. In Ca2+-permeabilized ASM cells, the TAS2R10 agonists dilated MCh- and 5HT-constricted airways. Conclusions and Implications TAS2R10 agonists reversed bronchoconstriction by inhibiting agonist-induced Ca2+ oscillations while simultaneously reducing the Ca2+ sensitivity of ASM cells. Reduction of Ca2+ oscillations may be due to inhibition of Ca2+ release through IP3 receptors. Further characterization of bronchodilatory TAS2R agonists may lead to the development of novel therapies for the treatment of bronchoconstrictive conditions. PMID:24117140

  5. Morphology and Phylogeny of a New Species of Anaerobic Ciliate, Trimyema finlayi n. sp., with Endosymbiotic Methanogens.

    PubMed

    Lewis, William H; Sendra, Kacper M; Embley, T Martin; Esteban, Genoveva F

    2018-01-01

    Many anaerobic ciliated protozoa contain organelles of mitochondrial ancestry called hydrogenosomes. These organelles generate molecular hydrogen that is consumed by methanogenic Archaea, living in endosymbiosis within many of these ciliates. Here we describe a new species of anaerobic ciliate, Trimyema finlayi n. sp., by using silver impregnation and microscopy to conduct a detailed morphometric analysis. Comparisons with previously published morphological data for this species, as well as the closely related species, Trimyema compressum , demonstrated that despite them being similar, both the mean cell size and the mean number of somatic kineties are lower for T. finlayi than for T. compressum , which suggests that they are distinct species. This was also supported by analysis of the 18S rRNA genes from these ciliates, the sequences of which are 97.5% identical (6 substitutions, 1479 compared bases), and in phylogenetic analyses these sequences grouped with other 18S rRNA genes sequenced from previous isolates of the same respective species. Together these data provide strong evidence that T. finlayi is a novel species of Trimyema , within the class Plagiopylea. Various microscopic techniques demonstrated that T. finlayi n. sp. contains polymorphic endosymbiotic methanogens, and analysis of the endosymbionts' 16S rRNA gene showed that they belong to the genus Methanocorpusculum , which was confirmed using fluorescence in situ hybridization with specific probes. Despite the degree of similarity and close relationship between these ciliates, T. compressum contains endosymbiotic methanogens from a different genus, Methanobrevibacter . In phylogenetic analyses of 16S rRNA genes, the Methanocorpusculum endosymbiont of T. finlayi n. sp. grouped with sequences from Methanomicrobia, including the endosymbiont of an earlier isolate of the same species, ' Trimyema sp.,' which was sampled approximately 22 years earlier, at a distant (∼400 km) geographical location

  6. Effect of Loading History on Airway Smooth Muscle Cell-Matrix Adhesions.

    PubMed

    Irons, Linda; Owen, Markus R; O'Dea, Reuben D; Brook, Bindi S

    2018-06-05

    Integrin-mediated adhesions between airway smooth muscle (ASM) cells and the extracellular matrix (ECM) regulate how contractile forces generated within the cell are transmitted to its external environment. Environmental cues are known to influence the formation, size, and survival of cell-matrix adhesions, but it is not yet known how they are affected by dynamic fluctuations associated with tidal breathing in the intact airway. Here, we develop two closely related theoretical models to study adhesion dynamics in response to oscillatory loading of the ECM, representing the dynamic environment of ASM cells in vivo. Using a discrete stochastic-elastic model, we simulate individual integrin binding and rupture events and observe two stable regimes in which either bond formation or bond rupture dominate, depending on the amplitude of the oscillatory loading. These regimes have either a high or low fraction of persistent adhesions, which could affect the level of strain transmission between contracted ASM cells and the airway tissue. For intermediate loading, we observe a region of bistability and hysteresis due to shared loading between existing bonds; the level of adhesion depends on the loading history. These findings are replicated in a related continuum model, which we use to investigate the effect of perturbations mimicking deep inspirations (DIs). Because of the bistability, a DI applied to the high adhesion state could either induce a permanent switch to a lower adhesion state or allow a return of the system to the high adhesion state. Transitions between states are further influenced by the frequency of oscillations, cytoskeletal or ECM stiffnesses, and binding affinities, which modify the magnitudes of the stable adhesion states as well as the region of bistability. These findings could explain (in part) the transient bronchodilatory effect of a DI observed in asthmatics compared to a more sustained effect in normal subjects. Copyright © 2018 Biophysical

  7. The oral administration of bacterial extracts prevents asthma via the recruitment of regulatory T cells to the airways.

    PubMed

    Navarro, S; Cossalter, G; Chiavaroli, C; Kanda, A; Fleury, S; Lazzari, A; Cazareth, J; Sparwasser, T; Dombrowicz, D; Glaichenhaus, N; Julia, V

    2011-01-01

    The prevalence of asthma has steadily increased during the last decade, probably as the result of changes in the environment, including reduced microbial exposure during infancy. Accordingly, experimental studies have shown that deliberate infections with live pathogens prevent the development of allergic airway diseases in mice. Bacterial extracts are currently used in children suffering from repeated upper respiratory tract infections. In the present study, we have investigated whether bacterial extracts, commercially available as Broncho-Vaxom (BV), could prevent allergic airway disease in mice. Oral treatment with BV suppressed airway inflammation through interleukin-10 (IL-10)-dependent and MyD88 (myeloid differentiation primary response gene (88))-dependent mechanisms and induced the conversion of FoxP3 (forkhead box P3)(-) T cells into FoxP3(+) regulatory T cells. Furthermore, CD4(+) T cells purified from the trachea of BV-treated mice conferred protection against airway inflammation when adoptively transferred into sensitized mice. Therefore, treatment with BV could possibly be a safe and efficient strategy to prevent the development of allergic diseases in children.

  8. Centrin-like filaments in the cytopharyngeal apparatus of the ciliates Nassula and Furgasonia: evidence for a relationship with microtubular structures.

    PubMed

    Vigues, B; Blanchard, M P; Bouchard, P

    1999-01-01

    The cytopharyngeal apparatus in the Nassulinid ciliates Nassula and Furgasonia is a highly specialized microtubular/filamentous organelle designed for ingestion of organisms such as filamentous bacteria. From studies on living cells, it was previously shown that this organelle, also called "feeding basket," guides the filamentous bacteria and manipulates them to some extent during the early steps of ingestion. This results in a complex sequence of movements where the basket is successively dilated and constricted in its upper part. Whereas some of these movements (dilation) seem to be intrinsic to the microtubular components of the basket, others (constriction) are believed to be mediated by contractile filamentous structures [Tucker, 1968: J. Cell Sci. 3:493-514]. In this study, we have used antibodies raised against ciliate centrins to demonstrate these proteins by Western blot and immunocytochemical methods in Nassula and Furgasonia. In both ciliates, a 20-kDa centrin immunoanalog was localized in the upper (contractile) part of the cytopharyngeal apparatus. Immunoelectron microscopy revealed that cytopharyngeal centrin is engaged in filamentous material, forming a sphincter-like structure possibly involved in the movements of contraction. Interestingly, physical links were noted between filaments labeled for centrin and cytopharyngeal microtubules. The mechanistic implications of these findings are discussed.

  9. Innate Lymphoid Cells Mediate Pulmonary Eosinophilic Inflammation, Airway Mucous Cell Metaplasia, and Type 2 Immunity in Mice Exposed to Ozone.

    PubMed

    Kumagai, Kazuyoshi; Lewandowski, Ryan P; Jackson-Humbles, Daven N; Buglak, Nicholas; Li, Ning; White, Kaylin; Van Dyken, Steven J; Wagner, James G; Harkema, Jack R

    2017-08-01

    Exposure to elevated levels of ambient ozone in photochemical smog is associated with eosinophilic airway inflammation and nonatopic asthma in children. In the present study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced nonatopic asthma by using lymphoid cell-sufficient C57BL/6 mice, ILC-sufficient Rag2 -/- mice (devoid of T and B cells), and ILC-deficient Rag2 -/- Il2rg -/- mice (depleted of all lymphoid cells including ILCs). Mice were exposed to 0 or 0.8 parts per million ozone for 1 day or 9 consecutive weekdays (4 hr/day). A single exposure to ozone caused neutrophilic inflammation, airway epithelial injury, and reparative DNA synthesis in all strains of mice, irrespective of the presence or absence of ILCs. In contrast, 9-day exposures induced eosinophilic inflammation and mucous cell metaplasia only in the lungs of ILC-sufficient mice. Repeated ozone exposures also elicited increased messenger RNA expression of transcripts associated with type 2 immunity and airway mucus production in ILC-sufficient mice. ILC-deficient mice repeatedly exposed to ozone had no pulmonary pathology or increased gene expression related to type 2 immunity. These results suggest a new paradigm for the biologic mechanisms underlying the development of a phenotype of childhood nonatopic asthma that has been linked to ambient ozone exposures.

  10. Precision-cut vibratome slices allow functional live cell imaging of the pulmonary neuroepithelial body microenvironment in fetal mice.

    PubMed

    Schnorbusch, Kathy; Lembrechts, Robrecht; Brouns, Inge; Pintelon, Isabel; Timmermans, Jean-Pierre; Adriaensen, Dirk

    2012-01-01

    We recently developed an ex vivo lung slice model that allows for confocal live cell imaging (LCI) of neuroepithelial bodies (NEBs) in postnatal mouse lungs (postnatal days 1-21 and adult). NEBs are morphologically well-characterized, extensively innervated groups of neuroendocrine cells in the airway epithelium, which are shielded from the airway lumen by 'Clara-like' cells. The prominent presence of differentiated NEBs from early embryonic development onwards, strongly suggests that NEBs may exert important functions during late fetal and neonatal life. The main goal of the present study was to adapt the current postnatal LCI lung slice model to enable functional studies of fetal mouse lungs (gestational days 17-20).In vibratome lung slices of prenatal mice, NEBs could be unequivocally identified with the fluorescent stryryl pyridinium dye 4-Di-2-ASP. Changes in the intracellular free calcium concentration and in mitochondrial membrane potential could be monitored using appropriate functional fluorescent indicators (e.g. Fluo-4).It is clear that the described fetal mouse lung slice model is suited for LCI studies of Clara cells, ciliated cells, and the NEB microenvironment, and offers excellent possibilities to further unravel the significance of NEBs during the prenatal and perinatal period.

  11. Apigenin inhibits TGF-β1-induced proliferation and migration of airway smooth muscle cells.

    PubMed

    Li, Li-Hua; Lu, Bin; Wu, Hong-Ke; Zhang, Hao; Yao, Fei-Fei

    2015-01-01

    It is well known that the proliferation and migration of ASM cells (ASMCs) plays an important role in the pathogenesis of airway remodeling in asthma. Previous studies reported that apigenin can inhibit airway remodeling in a mouse asthma model. However, its effects on the proliferation and migration of ASMCs in asthma remain unknown. Therefore, the aim of our present study was to investigate the effects of apigenin on ASMC proliferation and migration, and explore the possible molecular mechanism. We found that apigenin inhibited transforming growth factor-β1 (TGF-β1)-induced ASMC proliferation. The cell cycle was blocked at G1/S-interphase by apigenin. It also suppressed TGF-β1-induced ASMCs migration. Furthermore, apigenin inhibited TGF-β1-induced Smad 2 and Smad 3 phosphorylation in ASMCs. Taken together, these results suggested that apigenin inhibited the proliferation and migration of TGF-β1-stimulated ASMCs by inhibiting Smad signaling pathway. These data might provide useful information for treating asthma and show that apigenin has potential for attenuating airway remodeling.

  12. SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES

    EPA Science Inventory

    SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES
    Y.M. Kim, A.G. Lenz, R. Silbajoris, I. Jaspers and J.M. Samet. Department of Environmental Sciences and Engineering and Center for Environmental Medicine, University of North Carolina, ...

  13. Fetal human airway smooth muscle cell production of leukocyte chemoattractants is differentially regulated by fluticasone

    PubMed Central

    Pearson, Helen; Britt, Rodney D.; Pabelick, Christine M.; Prakash, Y.S.; Amrani, Yassine; Pandya, Hitesh C.

    2016-01-01

    Background Adult human airway smooth muscle (ASM) produce cytokines involved in recruitment and survival of leukocytes within airway walls. Cytokine generation by adult ASM is glucocorticoid-sensitive. Whether developing lung ASM produces cytokines in a glucocorticoid-sensitive fashion is unknown. Methods Cultured fetal human ASM cells stimulated with TNF-α (0–20 ng/ml) were incubated with TNF-α receptor-blocking antibodies, fluticasone (1 and 100 nm), or vehicle. Supernatants and cells were assayed for the production of CCL5, CXCL10, and CXCL8 mRNA and protein and glucocorticoid receptor phosphorylation. Results CCL5, CXCL10, and CXCL8 mRNA and protein production by fetal ASM cell was significantly and dose-dependently following TNF-α treatment. Cytokine mRNA and protein production were effectively blocked by TNF-α R1 and R2 receptor neutralizing antibodies but variably inhibited by fluticasone. TNF-α-induced TNF-R1 and R2 receptor mRNA expression was only partially attenuated by fluticasone. Glucocorticoid receptor phosphorylation at serine (Ser) 211 but not at Ser 226 was enhanced by fluticasone. Conclusion Production of CCL5, CXCL10, and CXCL8 by fetal ASM appears to involve pathways that are both qualitatively and mechanistically distinct to those described for adult ASM. The findings imply developing ASM has potential to recruit leukocyte into airways and, therefore, of relevance to childhood airway diseases. PMID:26331770

  14. An essential role of mast cells in the development of airway hyperresponsiveness in a murine asthma model.

    PubMed

    Kobayashi, T; Miura, T; Haba, T; Sato, M; Serizawa, I; Nagai, H; Ishizaka, K

    2000-04-01

    Immunization of BALB/c mice with alum-adsorbed OVA, followed by three bronchoprovocations with aerosolized OVA, resulted in the development of airway hyperresponsiveness (AHR) and allergic inflammation in the lung accompanied by severe infiltration of eosinophils into airways. In this murine asthma model, administration of monoclonal anti-IL-5 Ab before each Ag challenge markedly inhibited airway eosinophilia, but the treatment did not affect the development of AHR. Immunization and aerosol challenges with OVA following the same protocol failed to induce AHR in the mast cell-deficient W/Wv mice, but induced AHR in their congenic littermates, i.e., WBB6F1 (+/+) mice. No significant difference was found between the W/Wv mice and +/+ mice with respect to the IgE and IgG1 anti-OVA Ab responses and to the airway eosinophilia after Ag provocations. It was also found that reconstitution of W/Wv mice with bone marrow-derived mast cells cultured from normal littermates restored the capacity of developing Ag-induced AHR, indicating that lack of mast cells was responsible for the failure of W/Wv mice to develop Ag-induced AHR under the experimental conditions. However, the OVA-immunized W/Wv mice developed AHR by increasing the frequency and Ag dose of bronchoprovocations. The results suggested that AHR could be developed by two distinct cellular mechanisms. One would go through mast cell activation and the other is IgE/mast cell independent but an eosinophil/IL-5-dependent mechanism.

  15. Molecular Innovation in Ciliates with Complex Genome Rearrangements

    NASA Astrophysics Data System (ADS)

    Neme, R.; Landweber, L. F.

    2017-07-01

    We study molecular innovation in several ciliate species with unique massive genome rearrangements to understand how a radically distinct genome architecture can shape the process of acquiring new functions, genes and structures.

  16. Role of canonical transient receptor potential channel-3 in acetylcholine-induced mouse airway smooth muscle cell proliferation.

    PubMed

    Chen, Xiao-Xu; Zhang, Jia-Hua; Pan, Bin-Hua; Ren, Hui-Li; Feng, Xiu-Ling; Wang, Jia-Ling; Xiao, Jun-Hua

    2017-10-15

    Canonical transient receptor potential channel-3 (TRPC3)-encoded Ca 2+ -permeable nonselective cation channel (NSCC) has been proven to be an important native constitutively active channel in airway smooth muscle cell (ASMC), which plays significant roles in physiological and pathological conditions by controlling Ca 2+ homeostasis in ASMC. Acetylcholine (ACh) is generally accepted as a contractile parasympathetic neurotransmitter in the airway. Recently studies have revealed the pathological role of ACh in airway remodeling, however, the mechanisms remain unclear. Here, we investigated the role of TRPC3 in ACh-induced ASMC proliferation. Primary mouse ASMCs were cultured with or without ACh treatment, then cell viability, TRPC3 expression, NSCC currents and [Ca 2+ ] i changes were examined by MTT assay, cell counting, Western blotting, standard whole-cell patch clamp recording and calcium imaging, respectively. Small interfering RNA (siRNA) technology was used to confirm the contribution of TRPC3 to ACh-induced ASMC proliferation. TRPC3 blocker Gd 3+ , antibody or siRNA largely inhibited ACh-induced up-regulation of TRPC3 protein, enhancement of NSCC currents, resting [Ca 2+ ] i and KCl-induced changes in [Ca 2+ ] i , eventually inhibiting ACh-induced ASMC proliferation. Our data suggested ACh could induce ASMC proliferation, and TRPC3 may be involved in ACh-induced ASMC proliferation that occurs with airway remodeling. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions.

    PubMed

    Humayun, Mouhita; Chow, Chung-Wai; Young, Edmond W K

    2018-05-01

    Chronic lung diseases (CLDs) are regulated by complex interactions between many different cell types residing in lung airway tissues. Specifically, interactions between airway epithelial cells (ECs) and airway smooth muscle cells (SMCs) have been shown in part to play major roles in the pathogenesis of CLDs, but the underlying molecular mechanisms are not well understood. To advance our understanding of lung pathophysiology and accelerate drug development processes, new innovative in vitro tissue models are needed that can reconstitute the complex in vivo microenvironment of human lung tissues. Organ-on-a-chip technologies have recently made significant strides in recapitulating physiological properties of in vivo lung tissue microenvironments. However, novel advancements are still needed to enable the study of airway SMC-EC communication with matrix interactions, and to provide higher throughput capabilities and manufacturability. We have developed a thermoplastic-based microfluidic lung airway-on-a-chip model that mimics the lung airway tissue microenvironment, and in particular, the interactions between SMCs, ECs, and supporting extracellular matrix (ECM). The microdevice is fabricated from acrylic using micromilling and solvent bonding techniques, and consists of three vertically stacked microfluidic compartments with a bottom media reservoir for SMC culture, a middle thin hydrogel layer, and an upper microchamber for achieving air-liquid interface (ALI) culture of the epithelium. A unique aspect of the design lies in the suspended hydrogel with upper and lower interfaces for EC and SMC culture, respectively. A mixture of type I collagen and Matrigel was found to promote EC adhesion and monolayer formation, and SMC adhesion and alignment. Optimal culturing protocols were established that enabled EC-SMC coculture for more than 31 days. Epithelial monolayers displayed common morphological markers including ZO-1 tight junctions and F-actin cell cortices, while

  18. Beyond the "Code": A Guide to the Description and Documentation of Biodiversity in Ciliated Protists (Alveolata, Ciliophora).

    PubMed

    Warren, Alan; Patterson, David J; Dunthorn, Micah; Clamp, John C; Achilles-Day, Undine E M; Aescht, Erna; Al-Farraj, Saleh A; Al-Quraishy, Saleh; Al-Rasheid, Khaled; Carr, Martin; Day, John G; Dellinger, Marc; El-Serehy, Hamed A; Fan, Yangbo; Gao, Feng; Gao, Shan; Gong, Jun; Gupta, Renu; Hu, Xiaozhong; Kamra, Komal; Langlois, Gaytha; Lin, Xiaofeng; Lipscomb, Diana; Lobban, Christopher S; Luporini, Pierangelo; Lynn, Denis H; Ma, Honggang; Macek, Miroslav; Mackenzie-Dodds, Jacqueline; Makhija, Seema; Mansergh, Robert I; Martín-Cereceda, Mercedes; McMiller, Nettie; Montagnes, David J S; Nikolaeva, Svetlana; Ong'ondo, Geoffrey Odhiambo; Pérez-Uz, Blanca; Purushothaman, Jasmine; Quintela-Alonso, Pablo; Rotterová, Johana; Santoferrara, Luciana; Shao, Chen; Shen, Zhuo; Shi, Xinlu; Song, Weibo; Stoeck, Thorsten; La Terza, Antonietta; Vallesi, Adriana; Wang, Mei; Weisse, Thomas; Wiackowski, Krzysztof; Wu, Lei; Xu, Kuidong; Yi, Zhenzhen; Zufall, Rebecca; Agatha, Sabine

    2017-07-01

    Recent advances in molecular technology have revolutionized research on all aspects of the biology of organisms, including ciliates, and created unprecedented opportunities for pursuing a more integrative approach to investigations of biodiversity. However, this goal is complicated by large gaps and inconsistencies that still exist in the foundation of basic information about biodiversity of ciliates. The present paper reviews issues relating to the taxonomy of ciliates and presents specific recommendations for best practice in the observation and documentation of their biodiversity. This effort stems from a workshop that explored ways to implement six Grand Challenges proposed by the International Research Coordination Network for Biodiversity of Ciliates (IRCN-BC). As part of its commitment to strengthening the knowledge base that supports research on biodiversity of ciliates, the IRCN-BC proposes to populate The Ciliate Guide, an online database, with biodiversity-related data and metadata to create a resource that will facilitate accurate taxonomic identifications and promote sharing of data. © 2017 The Authors Journal of Eukaryotic Microbiology published by Wiley Periodicals, Inc. on behalf of International Society of Protistologists.

  19. Oxygen dose responsiveness of human fetal airway smooth muscle cells

    PubMed Central

    Hartman, William R.; Smelter, Dan F.; Sathish, Venkatachalem; Karass, Michael; Kim, Sunchin; Aravamudan, Bharathi; Thompson, Michael A.; Amrani, Yassine; Pandya, Hitesh C.; Martin, Richard J.; Prakash, Y. S.

    2012-01-01

    Maintenance of blood oxygen saturation dictates supplemental oxygen administration to premature infants, but hyperoxia predisposes survivors to respiratory diseases such as asthma. Although much research has focused on oxygen effects on alveoli in the setting of bronchopulmonary dysplasia, the mechanisms by which oxygen affects airway structure or function relevant to asthma are still under investigation. We used isolated human fetal airway smooth muscle (fASM) cells from 18–20 postconceptual age lungs (canalicular stage) to examine oxygen effects on intracellular Ca2+ ([Ca2+]i) and cellular proliferation. fASM cells expressed substantial smooth muscle actin and myosin and several Ca2+ regulatory proteins but not fibroblast or epithelial markers, profiles qualitatively comparable to adult human ASM. Fluorescence Ca2+ imaging showed robust [Ca2+]i responses to 1 μM acetylcholine (ACh) and 10 μM histamine (albeit smaller and slower than adult ASM), partly sensitive to zero extracellular Ca2+. Compared with adult, fASM showed greater baseline proliferation. Based on this validation, we assessed fASM responses to 10% hypoxia through 90% hyperoxia and found enhanced proliferation at <60% oxygen but increased apoptosis at >60%, effects accompanied by appropriate changes in proliferative vs. apoptotic markers and enhanced mitochondrial fission at >60% oxygen. [Ca2+]i responses to ACh were enhanced for <60% but blunted at >60% oxygen. These results suggest that hyperoxia has dose-dependent effects on structure and function of developing ASM, which could have consequences for airway diseases of childhood. Thus detrimental effects on ASM should be an additional consideration in assessing risks of supplemental oxygen in prematurity. PMID:22923637

  20. Evidence for isolated evolution of deep-sea ciliate communities through geological separation and environmental selection.

    PubMed

    Stock, Alexandra; Edgcomb, Virginia; Orsi, William; Filker, Sabine; Breiner, Hans-Werner; Yakimov, Michail M; Stoeck, Thorsten

    2013-07-08

    Deep hypersaline anoxic basins (DHABs) are isolated habitats at the bottom of the eastern Mediterranean Sea, which originate from the ancient dissolution of Messinian evaporites. The different basins have recruited their original biota from the same source, but their geological evolution eventually constituted sharp environmental barriers, restricting genetic exchange between the individual basins. Therefore, DHABs are unique model systems to assess the effect of geological events and environmental conditions on the evolution and diversification of protistan plankton. Here, we examine evidence for isolated evolution of unicellular eukaryote protistan plankton communities driven by geological separation and environmental selection. We specifically focused on ciliated protists as a major component of protistan DHAB plankton by pyrosequencing the hypervariable V4 fragment of the small subunit ribosomal RNA. Geospatial distributions and responses of marine ciliates to differential hydrochemistries suggest strong physical and chemical barriers to dispersal that influence the evolution of this plankton group. Ciliate communities in the brines of four investigated DHABs are distinctively different from ciliate communities in the interfaces (haloclines) immediately above the brines. While the interface ciliate communities from different sites are relatively similar to each other, the brine ciliate communities are significantly different between sites. We found no distance-decay relationship, and canonical correspondence analyses identified oxygen and sodium as most important hydrochemical parameters explaining the partitioning of diversity between interface and brine ciliate communities. However, none of the analyzed hydrochemical parameters explained the significant differences between brine ciliate communities in different basins. Our data indicate a frequent genetic exchange in the deep-sea water above the brines. The "isolated island character" of the different brines

  1. Cigarette Smoke Upregulates PDE3 and PDE4 to Decrease cAMP in Airway Cells.

    PubMed

    Zuo, Haoxiao; Han, Bing; Poppinga, Wilfred J; Ringnalda, Lennard; Kistemaker, Loes E M; Halayko, Andrew J; Gosens, Reinoud; Nikolaev, Viacheslav O; Schmidt, Martina

    2018-05-03

    3', 5'-cyclic adenosine monophosphate (cAMP) is a central second messenger that broadly regulates cell function and can underpin pathophysiology. In chronic obstructive pulmonary disease (COPD), a lung disease primarily provoked by cigarette smoke (CS), the induction of cAMP-dependent pathways, via inhibition of hydrolyzing phosphodiesterases (PDEs), is a prime therapeutic strategy. Mechanisms that disrupt cAMP signaling in airway cells, in particular regulation of endogenous PDEs are poorly understood. We used a novel Förster resonance energy transfer (FRET) based cAMP biosensor in mouse in vivo, ex vivo precision cut lung slices (PCLS), and in human in vitro cell models to track the effects of CS exposure. Under fenoterol stimulated conditions, FRET responses to cilostamide were significantly increased in in vivo, ex vivo PCLS exposed to CS and in human airway smooth muscle cells exposed to CS extract. FRET signals to rolipram were only increased in the in vivo CS model. Under basal conditions, FRET responses to cilostamide and rolipram were significantly increased in in vivo, ex vivo PCLS exposed to CS. Elevated FRET signals to rolipram correlated with a protein upregulation of PDE4 subtypes. In ex vivo PCLS exposed to CS extract, rolipram reversed downregulation of ciliary beating frequency, whereas only cilostamide significantly increased airway relaxation of methacholine pre-contracted airways. We show that CS upregulates expression and activity of both PDE3 and PDE4, which regulate real-time cAMP dynamics. These mechanisms determine the availability of cAMP and can contribute to CS-induced pulmonary pathophysiology. This article is protected by copyright. All rights reserved.

  2. Conditionally reprogrammed primary airway epithelial cells maintain morphology, lineage and disease specific functional characteristics.

    PubMed

    Martinovich, Kelly M; Iosifidis, Thomas; Buckley, Alysia G; Looi, Kevin; Ling, Kak-Ming; Sutanto, Erika N; Kicic-Starcevich, Elizabeth; Garratt, Luke W; Shaw, Nicole C; Montgomery, Samuel; Lannigan, Francis J; Knight, Darryl A; Kicic, Anthony; Stick, Stephen M

    2017-12-21

    Current limitations to primary cell expansion led us to test whether airway epithelial cells derived from healthy children and those with asthma and cystic fibrosis (CF), co-cultured with an irradiated fibroblast feeder cell in F-medium containing 10 µM ROCK inhibitor could maintain their lineage during expansion and whether this is influenced by underlying disease status. Here, we show that conditionally reprogrammed airway epithelial cells (CRAECs) can be established from both healthy and diseased phenotypes. CRAECs can be expanded, cryopreserved and maintain phenotypes over at least 5 passages. Population doublings of CRAEC cultures were significantly greater than standard cultures, but maintained their lineage characteristics. CRAECs from all phenotypes were also capable of fully differentiating at air-liquid interface (ALI) and maintained disease specific characteristics including; defective CFTR channel function cultures and the inability to repair wounds. Our findings indicate that CRAECs derived from children maintain lineage, phenotypic and importantly disease-specific functional characteristics over a specified passage range.

  3. Coupling molecules and morphology to discover new clades of ciliates.

    NASA Astrophysics Data System (ADS)

    Grattepanche, J. D.; Maurer-Alcalá, X. X.; Tucker, S. J.; McManus, G. B.; Katz, L. A.

    2016-02-01

    In a previous study using high-throughput sequencing (Grattepanche et al submitted, oral presentation?), we observe the presence of two clades of spirotrich ciliates mainly present in marine deep-water along the New England coast. These clades, clusters X1 and X2, are characterized by several deletions in their SSU-rDNA and have been observed elsewhere as both identical and similar sequences have been deposited on GenBank from other environmental studies, but lack morphological description. In order to link molecules (SSU-rDNA sequence) to their morphology, we sample below the photic zone (between 60 to 400m of depth) in the New England coast (Northeast Atlantic) in a transect crossing the continental shelf. We designed an oligonucleotide probe specific for choreotrich and oligotrich ciliates and another specific to clusters X1 and X2 to describe these clades through a combination of Fluorescence In Situ Hybridization (FISH) and light microscopy. Our aim is to increase our knowledge on the morphology of these `unknown' clades of ciliates, which will allow for future ecological studies.

  4. A checklist of ciliate parasites (Ciliophora) of fishes from Mexico.

    PubMed

    Aguilar-Aguilar, Rogelio; Islas-Ortega, Alma Gabriela

    2015-10-02

    A database with all available published accounts of the ciliate parasite species of Mexican fishes was assembled. This information, along with records derived from own recent research, allow generating a checklist containing all the records, which is a necessary first step to address future questions in the areas of ecology, evolutionary biology and biogeography of these host-parasite associations. The checklist is presented as a parasite-host list, and a host-parasite list. The checklist contains 30 nominal species, from 9 genera and 8 families of ciliate parasites. Most of the primary records were done for exotic fish species, artificially introduced to Mexico for aquaculture purposes; however, recent works have been conducted in diverse species of native fishes. Excepting one, all the ciliate species listed here have been previously recorded for diverse fish species from different localities around the world. Based on the amount of information contained in this checklist, much more effort is necessary to accurately know the diversity of species of this type of parasites in fish fauna of Mexico.

  5. Kupffer's vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut.

    PubMed

    Essner, Jeffrey J; Amack, Jeffrey D; Nyholm, Molly K; Harris, Erin B; Yost, H Joseph

    2005-03-01

    Monocilia have been proposed to establish the left-right (LR) body axis in vertebrate embryos by creating a directional fluid flow that triggers asymmetric gene expression. In zebrafish, dorsal forerunner cells (DFCs) express a conserved ciliary dynein gene (left-right dynein-related1, lrdr1) and form a ciliated epithelium inside a fluid-filled organ called Kupffer's vesicle (KV). Here, videomicroscopy demonstrates that cilia inside KV are motile and create a directional fluid flow just prior to the onset of asymmetric gene expression in lateral cells. Laser ablation of DFCs and surgical disruption of KV provide direct evidence that ciliated KV cells are required during early somitogenesis for subsequent LR patterning in the brain, heart and gut. Antisense morpholinos against lrdr1 disrupt KV fluid flow and perturb LR development. Furthermore, lrdr1 morpholinos targeted to DFC/KV cells demonstrate that Lrdr1 functions in these ciliated cells to control LR patterning. This provides the first direct evidence, in any vertebrate, that impairing cilia function in derivatives of the dorsal organizer, and not in other cells that express ciliogenic genes, alters LR development. Finally, genetic analysis reveals novel roles for the T-box transcription factor no tail and the Nodal signaling pathway as upstream regulators of lrdr1 expression and KV morphogenesis. We propose that KV is a transient embryonic 'organ of asymmetry' that directs LR development by establishing a directional fluid flow. These results suggest that cilia are an essential component of a conserved mechanism that controls the transition from bilateral symmetry to LR asymmetry in vertebrates.

  6. Tracheobronchial air-liquid interface cell culture: a model for innate mucosal defense of the upper airways?

    PubMed Central

    Kesimer, Mehmet; Kirkham, Sara; Pickles, Raymond J.; Henderson, Ashley G.; Alexis, Neil E.; DeMaria, Genevieve; Knight, David; Thornton, David J.; Sheehan, John K.

    2009-01-01

    Human tracheobronchial epithelial cells grown in air-liquid interface culture have emerged as a powerful tool for the study of airway biology. In this study, we have investigated whether this culture system produces “mucus” with a protein composition similar to that of in vivo, induced airway secretions. Previous compositional studies of mucous secretions have greatly underrepresented the contribution of mucins, which are major structural components of normal mucus. To overcome this limitation, we have used a mass spectrometry-based approach centered on prior separation of the mucins from the majority of the other proteins. Using this approach, we have compared the protein composition of apical secretions (AS) from well-differentiated primary human tracheobronchial cells grown at air-liquid interface and human tracheobronchial normal induced sputum (IS). A total of 186 proteins were identified, 134 from AS and 136 from IS; 84 proteins were common to both secretions, with host defense proteins being predominant. The epithelial mucins MUC1, MUC4, and MUC16 and the gel-forming mucins MUC5B and MUC5AC were identified in both secretions. Refractometry showed that the gel-forming mucins were the major contributors by mass to both secretions. When the composition of the IS was corrected for proteins that were most likely derived from saliva, serum, and migratory cells, there was considerable similarity between the two secretions, in particular, in the category of host defense proteins, which includes the mucins. This shows that the primary cell culture system is an important model for study of aspects of innate defense of the upper airways related specifically to mucus consisting solely of airway cell products. PMID:18931053

  7. Heterodimerization controls localization of Duox-DuoxA NADPH oxidases in airway cells.

    PubMed

    Luxen, Sylvia; Noack, Deborah; Frausto, Monika; Davanture, Suzel; Torbett, Bruce E; Knaus, Ulla G

    2009-04-15

    Duox NADPH oxidases generate hydrogen peroxide at the air-liquid interface of the respiratory tract and at apical membranes of thyroid follicular cells. Inactivating mutations of Duox2 have been linked to congenital hypothyroidism, and epigenetic silencing of Duox is frequently observed in lung cancer. To study Duox regulation by maturation factors in detail, its association with these factors, differential use of subunits and localization was analyzed in a lung cancer cell line and undifferentiated or polarized lung epithelial cells. We show here that Duox proteins form functional heterodimers with their respective DuoxA subunits, in close analogy to the phagocyte NADPH oxidase. Characterization of novel DuoxA1 isoforms and mispaired Duox-DuoxA complexes revealed that heterodimerization is a prerequisite for reactive oxygen species production. Functional Duox1 and Duox2 localize to the leading edge of migrating cells, augmenting motility and wound healing. DuoxA subunits are responsible for targeting functional oxidases to distinct cellular compartments in lung epithelial cells, including Duox2 expression in ciliated cells in an ex vivo differentiated lung epithelium. As these locations probably define signaling specificity of Duox1 versus Duox2, these findings will facilitate monitoring Duox isoform expression in lung disease, a first step for early screening procedures and rational drug development.

  8. Infection and Propagation of Human Rhinovirus C in Human Airway Epithelial Cells

    PubMed Central

    Hao, Weidong; Bernard, Katie; Patel, Nita; Ulbrandt, Nancy; Feng, Hui; Svabek, Catherine; Wilson, Susan; Stracener, Christina; Wang, Kathy; Suzich, JoAnn; Blair, Wade

    2012-01-01

    Human rhinovirus species C (HRV-C) was recently discovered using molecular diagnostic techniques and is associated with lower respiratory tract disease, particularly in children. HRV-C cannot be propagated in immortalized cell lines, and currently sinus organ culture is the only system described that is permissive to HRV-C infection ex vivo. However, the utility of organ culture for studying HRV-C biology is limited. Here, we report that a previously described HRV-C derived from an infectious cDNA, HRV-C15, infects and propagates in fully differentiated human airway epithelial cells but not in undifferentiated cells. We demonstrate that this differentiated epithelial cell culture system supports infection and replication of a second virus generated from a cDNA clone, HRV-C11. We show that HRV-C15 virions preferentially bind fully differentiated airway epithelial cells, suggesting that the block to replication in undifferentiated cells is at the step of viral entry. Consistent with previous reports, HRV-C15 utilizes a cellular receptor other than ICAM-1 or LDLR for infection of differentiated epithelial cells. Furthermore, we demonstrate that HRV-C15 replication can be inhibited by an HRV 3C protease inhibitor (rupintrivir) but not an HRV capsid inhibitor previously under clinical development (pleconaril). The HRV-C cell culture system described here provides a powerful tool for studying the biology of HRV-C and the discovery and development of HRV-C inhibitors. PMID:23035218

  9. Matrix Metalloproteinase-1 Activation Contributes to Airway Smooth Muscle Growth and Asthma Severity

    PubMed Central

    Naveed, Shams-un-nisa; Clements, Debbie; Jackson, David J.; Philp, Christopher; Billington, Charlotte K.; Soomro, Irshad; Reynolds, Catherine; Harrison, Timothy W.; Johnston, Sebastian L.; Shaw, Dominick E.

    2017-01-01

    Rationale: Matrix metalloproteinase-1 (MMP-1) and mast cells are present in the airways of people with asthma. Objectives: To investigate whether MMP-1 could be activated by mast cells and increase asthma severity. Methods: Patients with stable asthma and healthy control subjects underwent spirometry, methacholine challenge, and bronchoscopy, and their airway smooth muscle cells were grown in culture. A second asthma group and control subjects had symptom scores, spirometry, and bronchoalveolar lavage before and after rhinovirus-induced asthma exacerbations. Extracellular matrix was prepared from decellularized airway smooth muscle cultures. MMP-1 protein and activity were assessed. Measurements and Main Results: Airway smooth muscle cells generated pro–MMP-1, which was proteolytically activated by mast cell tryptase. Airway smooth muscle treated with activated mast cell supernatants produced extracellular matrix, which enhanced subsequent airway smooth muscle growth by 1.5-fold (P < 0.05), which was dependent on MMP-1 activation. In asthma, airway pro–MMP-1 was 5.4-fold higher than control subjects (P = 0.002). Mast cell numbers were associated with airway smooth muscle proliferation and MMP-1 protein associated with bronchial hyperresponsiveness. During exacerbations, MMP-1 activity increased and was associated with fall in FEV1 and worsening asthma symptoms. Conclusions: MMP-1 is activated by mast cell tryptase resulting in a proproliferative extracellular matrix. In asthma, mast cells are associated with airway smooth muscle growth, MMP-1 levels are associated with bronchial hyperresponsiveness, and MMP-1 activation are associated with exacerbation severity. Our findings suggest that airway smooth muscle/mast cell interactions contribute to asthma severity by transiently increasing MMP activation, airway smooth muscle growth, and airway responsiveness. PMID:27967204

  10. Inducible nitric oxide synthase expression is reduced in cystic fibrosis murine and human airway epithelial cells.

    PubMed Central

    Kelley, T J; Drumm, M L

    1998-01-01

    It has been reported that exhaled nitric oxide levels are reduced in cystic fibrosis (CF) patients. We have examined the inducible isoform of nitric oxide synthase (iNOS) in the airways by immunostaining and found that iNOS is constitutively expressed in the airway epithelia of non-CF mouse and human tissues but essentially absent in the epithelium of CF airways. We explored potential consequences of lost iNOS expression and found that iNOS inhibition significantly increases mouse nasal trans-epithelial potential difference, and hindered the ability of excised mouse lungs to prevent growth of Pseudomonas aeruginosa. The absence of continuous nitric oxide production in epithelial cells of CF airways may play a role in two CF-associated characteristics: hyperabsorption of sodium and susceptibility to bacterial infections. PMID:9739054

  11. Temperature-dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells.

    PubMed

    Foxman, Ellen F; Storer, James A; Fitzgerald, Megan E; Wasik, Bethany R; Hou, Lin; Zhao, Hongyu; Turner, Paul E; Pyle, Anna Marie; Iwasaki, Akiko

    2015-01-20

    Most isolates of human rhinovirus, the common cold virus, replicate more robustly at the cool temperatures found in the nasal cavity (33-35 °C) than at core body temperature (37 °C). To gain insight into the mechanism of temperature-dependent growth, we compared the transcriptional response of primary mouse airway epithelial cells infected with rhinovirus at 33 °C vs. 37 °C. Mouse airway cells infected with mouse-adapted rhinovirus 1B exhibited a striking enrichment in expression of antiviral defense response genes at 37 °C relative to 33 °C, which correlated with significantly higher expression levels of type I and type III IFN genes and IFN-stimulated genes (ISGs) at 37 °C. Temperature-dependent IFN induction in response to rhinovirus was dependent on the MAVS protein, a key signaling adaptor of the RIG-I-like receptors (RLRs). Stimulation of primary airway cells with the synthetic RLR ligand poly I:C led to greater IFN induction at 37 °C relative to 33 °C at early time points poststimulation and to a sustained increase in the induction of ISGs at 37 °C relative to 33 °C. Recombinant type I IFN also stimulated more robust induction of ISGs at 37 °C than at 33 °C. Genetic deficiency of MAVS or the type I IFN receptor in infected airway cells permitted higher levels of viral replication, particularly at 37 °C, and partially rescued the temperature-dependent growth phenotype. These findings demonstrate that in mouse airway cells, rhinovirus replicates preferentially at nasal cavity temperature due, in part, to a less efficient antiviral defense response of infected cells at cool temperature.

  12. Ciliate diversity and distribution patterns in the sediments of a seamount and adjacent abyssal plains in the tropical Western Pacific Ocean.

    PubMed

    Zhao, Feng; Filker, Sabine; Stoeck, Thorsten; Xu, Kuidong

    2017-09-12

    Benthic ciliates and the environmental factors shaping their distribution are far from being completely understood. Likewise, deep-sea systems are amongst the least understood ecosystems on Earth. In this study, using high-throughput DNA sequencing, we investigated the diversity and community composition of benthic ciliates in different sediment layers of a seamount and an adjacent abyssal plain in the tropical Western Pacific Ocean with water depths ranging between 813 m and 4566 m. Statistical analyses were used to assess shifts in ciliate communities across vertical sediment gradients and water depth. Nine out of 12 ciliate classes were detected in the different sediment samples, with Litostomatea accounting for the most diverse group, followed by Plagiopylea and Oligohymenophorea. The novelty of ciliate genetic diversity was extremely high, with a mean similarity of 93.25% to previously described sequences. On a sediment depth gradient, ciliate community structure was more similar within the upper sediment layers (0-1 and 9-10 cm) compared to the lower sediment layers (19-20 and 29-30 cm) at each site. Some unknown ciliate taxa which were absent from the surface sediments were found in deeper sediments layers. On a water depth gradient, the proportion of unique OTUs was between 42.2% and 54.3%, and that of OTUs shared by all sites around 14%. However, alpha diversity of the different ciliate communities was relatively stable in the surface layers along the water depth gradient, and about 78% of the ciliate OTUs retrieved from the surface layer of the shallowest site were shared with the surface layers of sites deeper than 3800 m. Correlation analyses did not reveal any significant effects of measured environmental factors on ciliate community composition and structure. We revealed an obvious variation in ciliate community along a sediment depth gradient in the seamount and the adjacent abyssal plain and showed that water depth is a less important factor

  13. Following damage, the majority of bone marrow-derived airway cells express an epithelial marker.

    PubMed

    MacPherson, Heather; Keir, Pamela A; Edwards, Carol J; Webb, Sheila; Dorin, Julia R

    2006-12-19

    Adult-derived bone marrow stem cells are capable of reconstituting the haematopoietic system. However there is ongoing debate in the literature as to whether bone marrow derived cells have the ability to populate other tissues and express tissue specific markers. The airway has been an organ of major interest and was one of the first where this was demonstrated. We have previously demonstrated that the mouse airway can be repopulated by side population bone marrow transplanted cells. Here we investigate the frequency and phenotypic nature of these bone marrow derived cells. Female mice were engrafted with male whole bone marrow or side population (SP) cells and subjected to detergent-induced damage after 3 months. Donor cells were identified by Y chromosome fluorescence in situ hybridisation and their phenotype was assessed by immunohistochemistry on the same sections. Slides were visualised by a combination of widefield and deconvolved microscopy and whole cells were analysed on cytospin preparations. The frequencies of engraftment of male cells in the airway of mice that show this (9/10), range from 1.0-1.6% with whole marrow and 0.6-1.5% with SP cells. Undamaged controls have only between 0.1 and 0.2% male cells in the trachea. By widefield microscopy analysis we find 60.2% (53/88) of male donor derived cells express cytokeratins as a marker of epithelial cells. These results were reinforced using deconvolved microscopy and scored by two independent investigators. In addition cytospin analysis of cells dissociated from the damaged trachea of engrafted mice also reveals donor derived Y chromosome positive cells that are immunopositive for cytokeratin. Using cytokeratin and the universal haematopoietic marker CD45 immunohistochemistry, we find the donor derived cells fall into four phenotypic classes. We do not detect cytokeratin positive cells in whole bone marrow using cytokeratin immunostaining and we do not detect any cytokeratin mRNA in SP or bone marrow

  14. Differentiation of anchoring junctions in tracheal basal cells in the growing rat.

    PubMed

    Evans, M J; Cox, R A; Burke, A S; Moller, P C

    1992-02-01

    A function of airway basal cells is to attach ciliated and nonciliated columnar cells to the basal lamina. The significance of the basal cell in attachment is related to the height of the columnar epithelium. In taller epithelia, basal cells are more numerous and differentiated with respect to anchoring junctional adhesion mechanisms (desmosomes, hemidesmosomes, and the cytoskeleton) than in shorter epithelia. In this study, we determined if basal cell anchoring junctional adhesion mechanisms differentiated during growth of the airway. Tracheas from five 3-day-old, five 30-day-old, and five 90-day-old rats were prepared for electron microscopy and morphometrically studied by standard techniques. The circumference of the trachea increased from 2.5 +/- 0.2 to 7.5 +/- 0.4 mm during growth. The height of the columnar cell increased from 13.4 +/- 1.5 to 24.6 +/- 3.9 microns, and the number of basal cells per millimeter increased from 3.2 +/- 0.7 to 9.6 +/- 1.8 during growth. The number of desmosomes per basal cell profile increased significantly from 1.5 +/- 0.1 to 2.1 +/- 0.1, as did keratin filament volume density from 0.046 +/- 0.05 to 0.098 +/- 0.032. The amount of hemidesmosome attachment per basal cell did not increase significantly during growth of the airway. These data demonstrate that as tracheas grow in circumference, the columnar cells increase in height, basal cells increase in number, and anchoring junctional adhesion mechanisms differentiate in the basal cells. These changes are closely related to the height of the epithelium and result in maintaining a constant amount of attachment between the columnar epithelium and the basal lamina as the epithelium increases in height.

  15. Effect of Cypermethrin on the Growth of Ciliate Protozoan Paramecium caudatum.

    PubMed

    Dutta, Joydeep

    2015-01-01

    The objective of this study is to assess the effect of cypermethrin on the growth of ciliate protozoan Paramecium caudatum. Monoxenic culture of P. caudatum, were exposed to different doses (0.01, 0.05, 0.1, 0.15, and 0.2 µg/L) of cypermethrin along with control for 24, 48, 72, and 96 h time interval. The total numbers of live and dead cells were counted after trypan blue staining in Neubauer hemocytometer. Marked decrease in the number of living cells with the increase in the concentration of cypermethrin and with increasing exposure time intervals was recorded. The results indicate that cypermethrin is toxic to P. caudatum even at low concentrations when it enters in the aquatic system through runoff.

  16. Inflammation Promotes Airway Epithelial ATP Release via Calcium-Dependent Vesicular Pathways

    PubMed Central

    Okada, Seiko F.; Ribeiro, Carla M. P.; Sesma, Juliana I.; Seminario-Vidal, Lucia; Abdullah, Lubna H.; van Heusden, Catharina; Lazarowski, Eduardo R.

    2013-01-01

    ATP in airway surface liquid (ASL) controls mucociliary clearance functions via the activation of airway epithelial purinergic receptors. However, abnormally elevated ATP levels have been reported in inflamed airways, suggesting that excessive ATP in ASL contributes to airway inflammation. Despite these observations, little is known about the mechanisms of ATP accumulation in the ASL covering inflamed airways. In this study, links between cystic fibrosis (CF)–associated airway inflammation and airway epithelial ATP release were investigated. Primary human bronchial epithelial (HBE) cells isolated from CF lungs exhibited enhanced IL-8 secretion after 6 to 11 days, but not 28 to 35 days, in culture, compared with normal HBE cells. Hypotonic cell swelling–promoted ATP release was increased in 6- to 11-day-old CF HBE cells compared with non-CF HBE cells, but returned to normal values after 28 to 35 days in culture. The exposure of non-CF HBE cells to airway secretions isolated from CF lungs, namely, sterile supernatants of mucopurulent material (SMM), also caused enhanced IL-8 secretion and increased ATP release. The SMM-induced increase in ATP release was sensitive to Ca2+ chelation and vesicle trafficking/exocytosis inhibitors, but not to pannexin inhibition. Transcript levels of the vesicular nucleotide transporter, but not pannexin 1, were up-regulated after SMM exposure. SMM-treated cultures displayed increased basal mucin secretion, but mucin secretion was not enhanced in response to hypotonic challenge after the exposure of cells to either vehicle or SMM. We propose that CF airway inflammation up-regulates the capacity of airway epithelia to release ATP via Ca2+-dependent vesicular mechanisms not associated with mucin granule secretion. PMID:23763446

  17. Murine aggregation chimeras and wholemount imaging in airway stem cell biology.

    PubMed

    Rosewell, Ian R; Giangreco, Adam

    2012-01-01

    Local tissue stem cells are known to exist in mammalian lungs but their role in epithelial maintenance remains unclear. We therefore developed murine aggregation chimera and wholemount imaging techniques to assess the contribution of these cells to lung homeostasis and repair. In this chapter we provide further details regarding the generation of murine aggregation chimera mice and their subsequent use in wholemount lung imaging. We also describe methods related to the interpretation of this data that allows for quantitative assessment of airway stem cell activation versus quiescence. Using these techniques, it is possible to compare the growth and differentiation capacity of various lung epithelial cells in normal, repairing, and diseased states.

  18. Detonation Nanodiamond Toxicity in Human Airway Epithelial Cells Is Modulated by Air Oxidation

    EPA Science Inventory

    Detonational nanodiamonds (DND), a nanomaterial with an increasing range of industrial and biomedical applications, have previously been shown to induce a pro-inflammatory response in cultured human airway epithelial cells (HAEC). We now show that surface modifications induced by...

  19. Arsenic Alters ATP-Dependent Ca2+ Signaling in Human Airway Epithelial Cell Wound Response

    PubMed Central

    Sherwood, Cara L.; Lantz, R. Clark; Burgess, Jefferey L.; Boitano, Scott

    2011-01-01

    Arsenic is a natural metalloid toxicant that is associated with occupational inhalation injury and contaminates drinking water worldwide. Both inhalation of arsenic and consumption of arsenic-tainted water are correlated with malignant and nonmalignant lung diseases. Despite strong links between arsenic and respiratory illness, underlying cell responses to arsenic remain unclear. We hypothesized that arsenic may elicit some of its detrimental effects on the airway through limitation of innate immune function and, specifically, through alteration of paracrine ATP (purinergic) Ca2+ signaling in the airway epithelium. We examined the effects of acute (24 h) exposure with environmentally relevant levels of arsenic (i.e., < 4μM as Na-arsenite) on wound-induced Ca2+ signaling pathways in human bronchial epithelial cell line (16HBE14o-). We found that arsenic reduces purinergic Ca2+ signaling in a dose-dependent manner and results in a reshaping of the Ca2+ signaling response to localized wounds. We next examined arsenic effects on two purinergic receptor types: the metabotropic P2Y and ionotropic P2X receptors. Arsenic inhibited both P2Y- and P2X-mediated Ca2+ signaling responses to ATP. Both inhaled and ingested arsenic can rapidly reach the airway epithelium where purinergic signaling is essential in innate immune functions (e.g., ciliary beat, salt and water transport, bactericide production, and wound repair). Arsenic-induced compromise of such airway defense mechanisms may be an underlying contributor to chronic lung disease. PMID:21357385

  20. Functional Invariant NKT Cells in Pig Lungs Regulate the Airway Hyperreactivity: A Potential Animal Model

    PubMed Central

    Manickam, Cordelia; Khatri, Mahesh; Rauf, Abdul; Li, Xiangming; Tsuji, Moriya; Rajashekara, Gireesh; Dwivedi, Varun

    2015-01-01

    Important roles played by invariant natural killer T (iNKT) cells in asthma pathogenesis have been demonstrated. We identified functional iNKT cells and CD1d molecules in pig lungs. Pig iNKT cells cultured in the presence of α-GalCer proliferated and secreted Th1 and Th2 cytokines. Like in other animal models, direct activation of pig lung iNKT cells using α-GalCer resulted in acute airway hyperreactivity (AHR). Clinically, acute AHR-induced pigs had increased respiratory rate, enhanced mucus secretion in the airways, fever, etc. In addition, we observed petechial hemorrhages, infiltration of CD4+ cells, and increased Th2 cytokines in AHR-induced pig lungs. Ex vivo proliferated iNKT cells of asthma induced pigs in the presence of C-glycoside analogs of α-GalCer had predominant Th2 phenotype and secreted more of Th2 cytokine, IL-4. Thus, baby pigs may serve as a useful animal model to study iNKT cell-mediated AHR caused by various environmental and microbial CD1d-specific glycolipid antigens. PMID:21042929

  1. REGULATION OF CYTOKINE PRODUCTION IN HUMAN ALVEOLAR MACHROPHAGES AND AIRWAY EPITHELIAL CELLS IN RESPONSE TO AMBIENT AIR POLLUTION PARTICLES: FURTHER MECHANISTIC STUDIES

    EPA Science Inventory

    In order to better understand how ambient air particulate matter (PM) affect lung health, the two main airway cell types likely to interact with inhaled particles, alveolar macrophages (AM) and airway epithelial cells have been exposed to particles in vitro and followed for endp...

  2. Neutrophilic infiltration within the airway smooth muscle in patients with COPD

    PubMed Central

    Baraldo, S; Turato, G; Badin, C; Bazzan, E; Beghe, B; Zuin, R; Calabrese, F; Casoni, G; Maestrelli, P; Papi, A; Fabbri, L; Saetta, M

    2004-01-01

    Background: COPD is an inflammatory disorder characterised by chronic airflow limitation, but the extent to which airway inflammation is related to functional abnormalities is still uncertain. The interaction between inflammatory cells and airway smooth muscle may have a crucial role. Methods: To investigate the microlocalisation of inflammatory cells within the airway smooth muscle in COPD, surgical specimens obtained from 26 subjects undergoing thoracotomy (eight smokers with COPD, 10 smokers with normal lung function, and eight non-smoking controls) were examined. Immunohistochemical analysis was used to quantify the number of neutrophils, macrophages, mast cells, CD4+ and CD8+ cells localised within the smooth muscle of peripheral airways. Results: Smokers with COPD had an increased number of neutrophils and CD8+ cells in the airway smooth muscle compared with non-smokers. Smokers with normal lung function also had a neutrophilic infiltration in the airway smooth muscle, but to a lesser extent. When all the subjects were analysed as one group, neutrophilic infiltration was inversely related to forced expiratory volume in 1 second (% predicted). Conclusions: Microlocalisation of neutrophils and CD8+ cells in the airway smooth muscle in smokers with COPD suggests a possible role for these cells in the pathogenesis of smoking induced airflow limitation. PMID:15047950

  3. Steroid Treatment Reduces Allergic Airway Inflammation and Does Not Alter the Increased Numbers of Dendritic Cells and Calcitonin Gene-Related Peptide-Expressing Neurons in Airway Sensory Ganglia.

    PubMed

    Le, Duc Dung; Funck, Ulrike; Wronski, Sabine; Heck, Sebastian; Tschernig, Thomas; Bischoff, Markus; Sester, Martina; Herr, Christian; Bals, Robert; Welte, Tobias; Braun, Armin; Dinh, Quoc Thai

    2016-01-01

    Our previous data demonstrated that allergic airway inflammation induces migration of dendritic cells (DC) into airway sensory jugular and nodose ganglia (jugular-nodose ganglion complex; JNC). Here we investigated the effects of steroid treatment regarding the expression and migration of DC and calcitonin gene-related peptide (CGRP)-immunoreactive neurons of vagal sensory ganglia during allergic airway inflammation. A house dust mite (HDM) model for allergic airway inflammation was used. The mice received 0.3 mg fluticasone propionate per kilogram of body weight in the last 9 days. JNC slices were analyzed on MHC II, the neuronal marker PGP9.5, and the neuropeptide CGRP. Allergic airway inflammation increased the numbers of DC and CGRP-expressing neurons in the JNC significantly in comparison to the controls (DC/neurons: HDM 44.58 ± 1.6% vs. saline 33.29 ± 1.6%, p < 0.05; CGRP-positive neurons/total neurons: HDM 30.65 ± 1.9% vs. saline 19.49 ± 2.3%, p < 0.05). Steroid treatment did not have any effect on the numbers of DC and CGRP-expressing neurons in the JNC compared to HDM-treated mice. The present findings indicate an important role of DC and CGRP-containing neurons in the pathogenesis of allergic airway inflammation. However, steroid treatment did not have an effect on the population of DC and neurons displaying CGRP in the JNC, whereas steroid treatment was found to suppress allergic airway inflammation. © 2015 S. Karger AG, Basel.

  4. Adenosine Triphosphate Promotes Allergen-Induced Airway Inflammation and Th17 Cell Polarization in Neutrophilic Asthma.

    PubMed

    Zhang, Fang; Su, Xin; Huang, Gang; Xin, Xiao-Feng; Cao, E-Hong; Shi, Yi; Song, Yong

    2017-01-01

    Adenosine triphosphate (ATP) is a key mediator to alert the immune dysfunction by acting on P2 receptors. Here, we found that allergen challenge caused an increase of ATP secretion in a murine model of neutrophilic asthma, which correlated well with neutrophil counts and interleukin-17 production. When ATP signaling was blocked by intratracheal administration of the ATP receptor antagonist suramin before challenge, neutrophilic airway inflammation, airway hyperresponsiveness, and Th17-type responses were reduced significantly. Also, neutrophilic inflammation was abrogated when airway ATP levels were locally neutralized using apyrase. Furthermore, ATP promoted the Th17 polarization of splenic CD4 + T cells from DO11.10 mice in vitro. In addition, ovalbumin (OVA) challenge induced neutrophilic inflammation and Th17 polarization in DO11.10 mice, whereas administration of suramin before challenge alleviated these parameters. Thus, ATP may serve as a marker of neutrophilic asthma, and local blockade of ATP signaling might provide an alternative method to prevent Th17-mediated airway inflammation in neutrophilic asthma.

  5. Clusterin Modulates Allergic Airway Inflammation by Attenuating CCL20-Mediated Dendritic Cell Recruitment.

    PubMed

    Hong, Gyong Hwa; Kwon, Hyouk-Soo; Moon, Keun-Ai; Park, So Young; Park, Sunjoo; Lee, Kyoung Young; Ha, Eun Hee; Kim, Tae-Bum; Moon, Hee-Bom; Lee, Heung Kyu; Cho, You Sook

    2016-03-01

    Recruitment and activation of dendritic cells (DCs) in the lungs are critical for Th2 responses in asthma, and CCL20 secreted from bronchial epithelial cells (BECs) is known to influence the recruitment of DCs. Because asthma is a disease that is closely associated with oxidative stress, we hypothesized that clusterin, an oxidative stress regulatory molecule, may have a role in the development of allergic airway inflammation. The aim of this study was to examine whether clusterin regulates CCL20 production from the BECs and the subsequent DC recruitment in the lungs. To verify the idea, clusterin knockout (Clu(-/-)), clusterin heterogeneous (Clu(+/-)), and wild-type mice were exposed intranasally to house dust mite (HDM) extract to induce allergic airway inflammation. We found that the total number of immune cells in bronchoalveolar lavage fluid and the lung was increased in Clu(-/-) and Clu(+/-) mice. Of these immune cells, inflammatory DCs (CD11b(+)CD11c(+)) and Ly6C(high) monocyte populations in the lung were significantly increased, which was accompanied by increased levels of various chemokines, including CCL20 in bronchoalveolar lavage fluid, and increased oxidative stress markers in the lung. Moreover, HDM-stimulated human BECs with either up- or downregulated clusterin expression showed that CCL20 secretion was negatively associated with clusterin expression. Interestingly, clusterin also reduced the level of intracellular reactive oxygen species, which is related to induction of CCL20 expression after HDM stimulation. Thus, the antioxidant property of clusterin is suggested to regulate the expression of CCL20 in BECs and the subsequent recruitment of inflammatory DCs in the airway. Copyright © 2016 by The American Association of Immunologists, Inc.

  6. Tachykinin receptors and the airways.

    PubMed

    Frossard, N; Advenier, C

    1991-01-01

    The tachykinins, substance P, neurokinin A and neurokinin B, belong to a structural family of peptides. In mammalian airways, substance P and neurokinin A are colocalized to afferent C-fibres. Substance P-containing fibres are close to bronchial epithelium, smooth muscle, mucus glands and blood vessels. Sensory neuropeptides may be released locally, possibly as a result of a local reflex, and produce bronchial obstruction through activation of specific receptors on these various tissues. Three types of tachykinin receptors, namely NK-1, NK-2 and NK-3 receptors, have been characterized by preferential activation by substance P, neurokinin A and neurokinin B respectively. NK-1 and NK-2 receptors were recently cloned. The determination of receptor types involved in the effects of tachykinins in the airways has been done with synthetic agonists and antagonists binding specifically to NK-1, NK-2 and NK-3 receptors. Although the existence of species differences, the conclusion that bronchial smooth muscle contraction is mainly related to activation of NK-2 receptors on bronchial smooth muscle cell has been drawn. The hypothesis of a NK-2 receptor subclassification has been proposed with NK-2A receptor subtype in the guinea-pig airways. Other effects in the airways are related to stimulation of NK-1 receptors on mucus cells, vessels, epithelium and inflammatory cells. A non-receptor-mediated mechanism is also involved in the effect of substance P on inflammatory cells and mast cells.

  7. Peripheral killer cells do not differentiate between asthma patients with or without fixed airway obstruction.

    PubMed

    Tubby, Carolyn; Negm, Ola H; Harrison, Timothy; Tighe, Patrick J; Todd, Ian; Fairclough, Lucy C

    2017-06-01

    The three main types of killer cells - CD8 + T cells, NK cells and NKT cells - have been linked to asthma and chronic obstructive pulmonary disease (COPD). However, their role in a small subset of asthma patients displaying fixed airway obstruction (FAO), similar to that seen in COPD, has not been explored. The objective of the present study was to investigate killer cell numbers, phenotype and function in peripheral blood from asthma patients with FAO, asthma patients without FAO, and healthy individuals. Peripheral CD8 + T cells (CD8 + CD3 + CD56 - ), NK cells (CD56 + CD3 - ) and NKT-like cells (CD56 + CD3 + ) of 14 asthma patients with FAO (post-bronchodilator FEV/FVC <0.7, despite clinician-optimised treatment), 7 asthma patients without FAO (post-bronchodilator FEV/FVC ≥ 0.7), and 9 healthy individuals were studied. No significant differences were seen between the number, receptor expression, MAPK signalling molecule expression, cytotoxic mediator expression, and functional cytotoxicity of peripheral killer cells from asthma patients with FAO, asthma patients without FAO and healthy individuals. Peripheral killer cell numbers or functions do not differentiate between asthma patients with or without fixed airway obstruction.

  8. Horizontal gene transfer from Bacteria to rumen Ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment

    PubMed Central

    Ricard, Guénola; McEwan, Neil R; Dutilh, Bas E; Jouany, Jean-Pierre; Macheboeuf, Didier; Mitsumori, Makoto; McIntosh, Freda M; Michalowski, Tadeusz; Nagamine, Takafumi; Nelson, Nancy; Newbold, Charles J; Nsabimana, Eli; Takenaka, Akio; Thomas, Nadine A; Ushida, Kazunari; Hackstein, Johannes HP; Huynen, Martijn A

    2006-01-01

    Background The horizontal transfer of expressed genes from Bacteria into Ciliates which live in close contact with each other in the rumen (the foregut of ruminants) was studied using ciliate Expressed Sequence Tags (ESTs). More than 4000 ESTs were sequenced from representatives of the two major groups of rumen Cilates: the order Entodiniomorphida (Entodinium simplex, Entodinium caudatum, Eudiplodinium maggii, Metadinium medium, Diploplastron affine, Polyplastron multivesiculatum and Epidinium ecaudatum) and the order Vestibuliferida, previously called Holotricha (Isotricha prostoma, Isotricha intestinalis and Dasytricha ruminantium). Results A comparison of the sequences with the completely sequenced genomes of Eukaryotes and Prokaryotes, followed by large-scale construction and analysis of phylogenies, identified 148 ciliate genes that specifically cluster with genes from the Bacteria and Archaea. The phylogenetic clustering with bacterial genes, coupled with the absence of close relatives of these genes in the Ciliate Tetrahymena thermophila, indicates that they have been acquired via Horizontal Gene Transfer (HGT) after the colonization of the gut by the rumen Ciliates. Conclusion Among the HGT candidates, we found an over-representation (>75%) of genes involved in metabolism, specifically in the catabolism of complex carbohydrates, a rich food source in the rumen. We propose that the acquisition of these genes has greatly facilitated the Ciliates' colonization of the rumen providing evidence for the role of HGT in the adaptation to new niches. PMID:16472398

  9. Horizontal gene transfer from Bacteria to rumen Ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment.

    PubMed

    Ricard, Guénola; McEwan, Neil R; Dutilh, Bas E; Jouany, Jean-Pierre; Macheboeuf, Didier; Mitsumori, Makoto; McIntosh, Freda M; Michalowski, Tadeusz; Nagamine, Takafumi; Nelson, Nancy; Newbold, Charles J; Nsabimana, Eli; Takenaka, Akio; Thomas, Nadine A; Ushida, Kazunari; Hackstein, Johannes H P; Huynen, Martijn A

    2006-02-10

    The horizontal transfer of expressed genes from Bacteria into Ciliates which live in close contact with each other in the rumen (the foregut of ruminants) was studied using ciliate Expressed Sequence Tags (ESTs). More than 4000 ESTs were sequenced from representatives of the two major groups of rumen Cilates: the order Entodiniomorphida (Entodinium simplex, Entodinium caudatum, Eudiplodinium maggii, Metadinium medium, Diploplastron affine, Polyplastron multivesiculatum and Epidinium ecaudatum) and the order Vestibuliferida, previously called Holotricha (Isotricha prostoma, Isotricha intestinalis and Dasytricha ruminantium). A comparison of the sequences with the completely sequenced genomes of Eukaryotes and Prokaryotes, followed by large-scale construction and analysis of phylogenies, identified 148 ciliate genes that specifically cluster with genes from the Bacteria and Archaea. The phylogenetic clustering with bacterial genes, coupled with the absence of close relatives of these genes in the Ciliate Tetrahymena thermophila, indicates that they have been acquired via Horizontal Gene Transfer (HGT) after the colonization of the gut by the rumen Ciliates. Among the HGT candidates, we found an over-representation (>75%) of genes involved in metabolism, specifically in the catabolism of complex carbohydrates, a rich food source in the rumen. We propose that the acquisition of these genes has greatly facilitated the Ciliates' colonization of the rumen providing evidence for the role of HGT in the adaptation to new niches.

  10. The effects of exogenous lipid on THP-1 cells: an in vitro model of airway aspiration?

    PubMed

    Hayman, Yvette A; Sadofsky, Laura R; Williamson, James D; Hart, Simon P; Morice, Alyn H

    2017-01-01

    Chronic inflammatory diseases of the airways are associated with gastro-oesophageal reflux (GOR) and aspiration events. The observation of lipid-laden macrophages (LLMs) within the airway may indicate aspiration secondary to GOR. The proposed mechanism, that lipid droplets from undigested or partially digested food are aspirated leading to accumulation in scavenging macrophages, led us to hypothesise that an activated population of LLMs could interact with other immune cells to induce bronchial inflammation. To test this, we generated an in vitro model using differentiated THP-1 cells, which were treated with a high-fat liquid feed. Here, we show that THP-1 cells can take up lipid from the high-fat feed independent of actin polymerisation or CD36-dependent phagocytosis. These cells did not exhibit M1 or M2 polarisation. Gene array analysis confirmed over 8000 genes were upregulated by at least twofold following high fat exposure, and IL-8 was the most upregulated gene. Pathway analysis revealed upregulation of genes known to be involved in chronic obstructive pulmonary disease (COPD) pathophysiology. We suggest that aspiration and macrophage phagocytosis may be important mechanisms in the aetiology of diseases such as COPD and cystic fibrosis that are characterised by high levels of IL-8 within the airways.

  11. Mechanisms of mechanical strain memory in airway smooth muscle.

    PubMed

    Kim, Hak Rim; Hai, Chi-Ming

    2005-10-01

    We evaluated the hypothesis that mechanical deformation of airway smooth muscle induces structural remodeling of airway smooth muscle cells, thereby modulating mechanical performance in subsequent contractions. This hypothesis implied that past experience of mechanical deformation was retained (or "memorized") as structural changes in airway smooth muscle cells, which modulated the cell's subsequent contractile responses. We termed this phenomenon mechanical strain memory. Preshortening has been found to induce attenuation of both force and isotonic shortening velocity in cholinergic receptor-activated airway smooth muscle. Rapid stretching of cholinergic receptor-activated airway smooth muscle from an initial length to a final length resulted in post-stretch force and myosin light chain phosphorylation that correlated significantly with initial length. Thus post-stretch muscle strips appeared to retain memory of the initial length prior to rapid stretch (mechanical strain memory). Cytoskeletal recruitment of actin- and integrin-binding proteins and Erk 1/2 MAPK appeared to be important mechanisms of mechanical strain memory. Sinusoidal length oscillation led to force attenuation during oscillation and in subsequent contractions in intact airway smooth muscle, and p38 MAPK appeared to be an important mechanism. In contrast, application of local mechanical strain to cultured airway smooth muscle cells induced local actin polymerization and cytoskeletal stiffening. It is conceivable that deep inspiration-induced bronchoprotection may be a manifestation of mechanical strain memory such that mechanical deformation from past breathing cycles modulated the mechanical performance of airway smooth muscle in subsequent cycles in a continuous and dynamic manner.

  12. Type 2 innate lymphoid cells-new members of the "type 2 franchise" that mediate allergic airway inflammation.

    PubMed

    Mjösberg, Jenny; Spits, Hergen

    2012-05-01

    Type 2 innate lymphoid cells (ILC2s) are members of an ILC family, which contains NK cells and Rorγt(+) ILCs, the latter including lymphoid tissue inducer (LTi) cells and ILCs producing IL-17 and IL-22. ILC2s are dedicated to the production of IL-5 and IL-13 and, as such, ILC2s provide an early and important source of type 2 cytokines critical for helminth expulsion in the gut. Several studies have also demonstrated a role for ILC2s in airway inflammation. In this issue of the European Journal of Immunology, Klein Wolterink et al. [Eur. J. Immunol. 2012. 42: 1106-1116] show that ILC2s are instrumental in several models of experimental asthma where they significantly contribute to production of IL-5 and IL-13, key cytokines in airway inflammation. This study sheds light over the relative contribution of ILC2s versus T helper type 2 cells (Th2) in type 2 mediated allergen-specific inflammation in the airways as discussed in this commentary. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. SPDEF regulates goblet cell hyperplasia in the airway epithelium

    PubMed Central

    Park, Kwon-Sik; Korfhagen, Thomas R.; Bruno, Michael D.; Kitzmiller, Joseph A.; Wan, Huajing; Wert, Susan E.; Khurana Hershey, Gurjit K.; Chen, Gang; Whitsett, Jeffrey A.

    2007-01-01

    Goblet cell hyperplasia and mucous hypersecretion contribute to the pathogenesis of chronic pulmonary diseases including cystic fibrosis, asthma, and chronic obstructive pulmonary disease. In the present work, mouse SAM pointed domain-containing ETS transcription factor (SPDEF) mRNA and protein were detected in subsets of epithelial cells lining the trachea, bronchi, and tracheal glands. SPDEF interacted with the C-terminal domain of thyroid transcription factor 1, activating transcription of genes expressed selectively in airway epithelial cells, including Sftpa, Scgb1a1, Foxj1, and Sox17. Expression of Spdef in the respiratory epithelium of adult transgenic mice caused goblet cell hyperplasia, inducing both acidic and neutral mucins in vivo, and stainined for both acidic and neutral mucins in vivo. SPDEF expression was increased at sites of goblet cell hyperplasia caused by IL-13 and dust mite allergen in a process that was dependent upon STAT-6. SPDEF was induced following intratracheal allergen exposure and after Th2 cytokine stimulation and was sufficient to cause goblet cell differentiation of Clara cells in vivo. PMID:17347682

  14. Cholesterol depletion in cell membranes of human airway epithelial cells suppresses MUC5AC gene expression.

    PubMed

    Song, Kee Jae; Kim, Na Hyun; Lee, Gi Bong; Kim, Ji Hoon; Kwon, Jin Ho; Kim, Kyung-Su

    2013-05-01

    If cholesterol in the cell membrane is depleted by treating cells with methyl-β-cyclodextrin (MβCD), the activities of transmembrane receptors are altered in a cell-specific and/or receptor-specific manner. The proinflammatory cytokines, IL-1β is potent inducers of MUC5AC mRNA and protein synthesis in human airway epithelial cells. Cells activated by IL-1β showed increased phosphorylation of extracellular signal regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK). Thus, we investigated the effects of cholesterol depletion on the expression of MUC5AC in human airway epithelial cells and whether these alterations to MUC5AC expression were related to MAPK activity. After NCI-H292 cells were pretreated with 1% MβCD before adding IL-1β for 24 hours, MUC5AC mRNA expression was determined by reverse transcription- polymerase chain reaction (RT-PCR) and real time-PCR. Cholesterol depletion by MβCD was measured by modified microenzymatic fluorescence assay and filipin staining. The phosphorylation of IL-1 receptor, ERK and p38 MAPK, was analyzed by western blot. Cholesterol in the cell membrane was significantly depleted by treatment with MβCD on cells. IL-1β-induced MUC5AC mRNA expression was decreased by MβCD and this decrease occurred IL-1-receptor- specifically. Moreover, we have shown that MβCD suppressed the activation of ERK1/2 and p38 MAPK in cells activated with IL-1β. This result suggests that MβCD-mediated suppression of IL-1β-induced MUC5AC mRNA operated via the ERK- and p38 MAPK-dependent pathway. Cholesterol depletion in NCI-H292 cell membrane may be considered an anti-hypersecretory method since it effectively inhibits mucus secretion of respiratory epithelial cells.

  15. The transcription factor Etv5 controls TH17 cell development and allergic airway inflammation

    PubMed Central

    Pham, Duy; Sehra, Sarita; Sun, Xin; Kaplan, Mark H.

    2014-01-01

    Background The differentiation of TH17 cells, which promote pulmonary inflammation, requires the cooperation of a network of transcription factors. Objectives We sought to define the role of Etv5, an Ets-family transcription factor, in TH17 cell development and function. Methods TH17 development was examined in primary mouse T cells wherein Etv5 expression was altered by retroviral transduction, small interfering RNA targeting a specific gene, and mice with a conditional deletion of Etv5 in T cells. The direct function of Etv5 on the Il17 locus was tested with chromatin immunoprecipitation and reporter assays. The house dust mite–induced allergic inflammation model was used to test the requirement for Etv5-dependent TH17 functions in vivo. Results We identify Etv5 as a signal transducer and activator of transcription 3–induced positive regulator of TH17 development. Etv5 controls TH17 differentiation by directly promoting 0a and Il17f expression. Etv5 recruits histone-modifying enzymes to the Il17a–Il17f locus, resulting in increased active histone marks and decreased repressive histone marks. In a model of allergic airway inflammation, mice with Etv5-deficient T cells have reduced airway inflammation and IL-17A/F production in the lung and bronchoalveolar lavage fluid compared with wild-type mice, without changes in TH2 cytokine production. Conclusions These data define signal transducer and activator of transcription 3–dependent feed-forward control of TH17 cytokine production and a novel role for Etv5 in promoting T cell–dependent airway inflammation. PMID:24486067

  16. Evidence of solitary chemosensory cells in a large mammal: the diffuse chemosensory system in Bos taurus airways

    PubMed Central

    Tizzano, Marco; Merigo, Flavia; Sbarbati, Andrea

    2006-01-01

    The diffuse chemosensory system (DCS) of the respiratory apparatus is composed of solitary chemosensory cells (SCCs) that resemble taste cells but are not organized in end organs. The discovery of the DCS may open up new approaches to respiratory diseases. However, available data on mammalian SCCs have so far been collected from rodents, the airways of which display some differences from those of large mammals. Here we investigated the presence of the DCS and of SCCs in cows and bulls (Bos taurus), in which the airway cytology is similar to that in humans, focusing our attention on detection in the airways of molecules involved in the transduction cascade of taste [i.e. α-gustducin and phospholipase C of the β2 subtype (PLCβ2)]. The aim of the research was to extend our understanding of airway chemoreceptors and to compare the organization of the DCS in a large mammal with that in rodents. Using immunocytochemistry for α-gustducin, the taste buds of the tongue and arytenoid were visualized. In the trachea and bronchi, α-gustducin-immunoreactive SCCs were frequently found. Using immunocytochemistry for PLCβ2, the staining pattern was generally similar to those seen for α-gustducin. Immunoblotting confirmed the expression of α-gustducin in the tongue and in all the airway regions tested. The study demonstrated the presence of SCCs in cows and bulls, suggesting that DCSs are present in many mammalian species. The description of areas with a high density of SCCs in bovine bronchi seems to indicate that the view of the DCS as made up of isolated cells totally devoid of ancillary elements is probably an oversimplification. PMID:16928202

  17. Involvement of the MAPK and PI3K pathways in chitinase 3-like 1-regulated hyperoxia-induced airway epithelial cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Mi Na; Lee, Kyung Eun; Hong, Jung Yeon

    Highlights: Black-Right-Pointing-Pointer Hyperoxia induces apoptosis and chitinase 3-like 1 expression in human airway epithelial cells. Black-Right-Pointing-Pointer Presence of chitinase 3-like 1 affects airway epithelial cell death after hyperoxic exposure. Black-Right-Pointing-Pointer Silencing chitinase 3-like 1 manipulate the phosphorylation of ERK, p38 and Akt. -- Abstract: Background: Exposure to 100% oxygen causes hyperoxic acute lung injury characterized by cell death and injury of alveolar epithelial cells. Recently, the role of chitinase 3-like 1 (CHI3L1), a member of the glycosyl hydrolase 18 family that lacks chitinase activity, in oxidative stress was demonstrated in murine models. High levels of serum CHI3L1 have been associatedmore » with various diseases of the lung, such as asthma, chronic obstructive pulmonary disease, and cancer. However, the role of CHI3L1 in human airway epithelial cells undergoing oxidative stress remains unknown. In addition, the signaling pathways associated with CHI3L1 in this process are poorly understood. Purpose: In this study, we demonstrate the role of CHI3L1, along with the MAPK and PI3K signaling pathways, in hyperoxia-exposed airway epithelial cells. Method: The human airway epithelial cell line, BEAS-2B, was exposed to >95% oxygen (hyperoxia) for up to 72 h. Hyperoxia-induced cell death was determined by assessing cell viability, Annexin-V FITC staining, caspase-3 and -7 expression, and electron microscopy. CHI3L1 knockdown and overexpression studies were conducted in BEAS-2B cells to examine the role of CHI3L1 in hyperoxia-induced apoptosis. Activation of the MAPK and PI3K pathways was also investigated to determine the role of these signaling cascades in this process. Results: Hyperoxia exposure increased CHI3L1 expression and apoptosis in a time-dependent manner. CHI3L1 knockdown protected cells from hyperoxia-induced apoptosis. In contrast, CHI3L1 overexpression promoted cell death after hyperoxia exposure

  18. Phosphorus, nitrogen and chlorophyll-a are significant factors controlling ciliate communities in summer in the northern Beibu Gulf, South China Sea.

    PubMed

    Wang, Yibo; Zhang, Wenjing; Lin, Yuanshao; Cao, Wenqing; Zheng, Lianming; Yang, Jun

    2014-01-01

    Ciliates (protozoa) are ubiquitous components of plankton community and play important roles in aquatic ecosystems in regards of their abundance, biomass, diversity and energy turnover. Based on the stratified samples collected from the northern Beibu Gulf in August 2011, species composition, abundance, biomass, diversity and spatial pattern of planktonic ciliates were studied. Furthermore the main environmental factors controlling ciliate communities were determined. A total of 101 species belonging to 44 genera and 7 orders (i.e., Oligotrichida, Haptorida, Euplotida, Sessilida, Pleurostomatida, Scuticociliatida and Tintinnida) were identified. The variation of ciliate communities was significant at horizontal level, but that was not at vertical level. Based on cluster analysis, ciliate communities were divided into three main groups. Redundancy analysis (RDA) revealed that Group A, existing in the waters with higher concentration of phosphorus and nitrogen, was dominated by Tintinnidium primitivum. Group B in the waters with lower temperature and chlorophyll-a concentration, was dominated by Leegaardiella ovalis. Group C, existing in the waters with higher temperature and chlorophyll-a concentration, was dominated by large Strombidium spp. and Mesodinium rubrum. Combining multiple analytic methods, our results strongly supported that phosphorus, nitrogen and chlorophyll-a were the most significant factors affecting the ciliate communities in the northern Beibu Gulf in summer. Concentration of phosphorus and nitrogen primarily influenced ciliate biomass, implying a potential impact of eutrophication on ciliate growth. The correlation with chlorophyll-a concentration, on one hand indicate the response of ciliates to the food availability, and on the other hand, the ciliates containing chloroplasts or endosymbionts may contribute greatly to the chlorophyll-a.

  19. Calmyonemin: a 23 kDa analogue of algal centrin occurring in contractile myonemes of Eudiplodinium maggii (ciliate).

    PubMed

    David, C; Viguès, B

    1994-01-01

    Myonemes are bundles of thin filaments (3-6 nm in diameter) which mediate calcium-induced contraction of the whole or only parts of the cell body in a number of protists. In Eudiplodinium maggii, a rumen ciliate which lacks a uniform ciliation of the cell body, myonemes converge toward the bases of apical ciliary zones that can be retracted under stress conditions, entailing immobilization of the cell. An mAB (A69) has been produced that identifies a calcium-binding protein by immunoblot, immunoprecipitation experiments and specifically labels the myonemes in immunoelectron microscopy. Solubility properties, apparent molecular weight (23 kDa) and isoelectric point (4.9) of the myonemal protein, are similar to the values reported for the calcium-modulated contractile protein centrin. Western-blot analysis indicates that the 23 kDa protein cross-reacts antigenically with anti-centrin antibodies. In addition, the 23 kDa protein displays calcium-induced changes in both electrophoretic and chromatographic behaviour, and contains calcium-binding domains that conform to the EF-hand structure, as known for centrin. Based on these observations, we conclude that a calcium-binding protein with major similarities to centrin occurs in the myonemes of E. maggii. We postulate that this protein plays an essential role in myoneme-mediated retraction of the ciliature.

  20. Airway and alveolar nitric oxide production, lung function, and pulmonary blood flow in sickle cell disease.

    PubMed

    Lunt, Alan; Ahmed, Na'eem; Rafferty, Gerrard F; Dick, Moira; Rees, David; Height, Sue; Thein, Swee Lay; Greenough, Anne

    2016-02-01

    Children with sickle cell disease (SCD) often have obstructive lung function abnormalities which could be due to asthma or increased pulmonary blood volume; it is important to determine the underlying mechanism to direct appropriate treatment. In asthmatics, exhaled nitric oxide (FeNO) is elevated. FeNO, however, can also be raised due to increased alveolar production. Our aim, therefore, was to determine if airway or alveolar NO production differed between SCD children and ethnic and age-matched controls. Lung function, airway NO flux and alveolar NO production, and effective pulmonary blood flow were assessed in 18 SCD children and 18 ethnic and age-matched controls. The SCD children compared to the controls had a higher respiratory system resistance (P = 0.0008), alveolar NO production (P = 0.0224), and pulmonary blood flow (P < 0.0001), but not airway NO flux. There was no significant correlation between FeNO and respiratory system resistance in either group, but in the SCD children, there were correlations between alveolar NO production (P = 0.0006) and concentration (P < 0.0001) and pulmonary blood flow. Airway NO flux was not elevated in the SCD children nor correlated with airways obstruction, suggesting that airways obstruction, at least in some SCD children, is not due to asthma.

  1. TLR-2 IS INVOLVED IN AIRWAY EPITHELIAL CELL RESPONE TO AIR POLLUTION PARTICLES

    EPA Science Inventory

    Primary cultures of normal human airway epithelial cells (NHBE) respond to ambient air pollution particulate matter (PM) by increased production of the cytokine IL-8, and the induction of a number of oxidant stress response genes. Components of ambient air PM responsible for stim...

  2. Components of Streptococcus pneumoniae suppress allergic airways disease and NKT cells by inducing regulatory T cells.

    PubMed

    Thorburn, Alison N; Foster, Paul S; Gibson, Peter G; Hansbro, Philip M

    2012-05-01

    Asthma is an allergic airways disease (AAD) caused by dysregulated immune responses and characterized by eosinophilic inflammation, mucus hypersecretion, and airway hyperresponsiveness (AHR). NKT cells have been shown to contribute to AHR in some mouse models. Conversely, regulatory T cells (Tregs) control aberrant immune responses and maintain homeostasis. Recent evidence suggests that Streptococcus pneumoniae induces Tregs that have potential to be harnessed therapeutically for asthma. In this study, mouse models of AAD were used to identify the S. pneumoniae components that have suppressive properties, and the mechanisms underlying suppression were investigated. We tested the suppressive capacity of type-3-polysaccharide (T3P), isolated cell walls, pneumolysoid (Ply) and CpG. When coadministered, T3P + Ply suppressed the development of: eosinophilic inflammation, Th2 cytokine release, mucus hypersecretion, and AHR. Importantly, T3P + Ply also attenuated features of AAD when administered during established disease. We show that NKT cells contributed to the development of AAD and also were suppressed by T3P + Ply treatment. Furthermore, adoptive transfer of NKT cells induced AHR, which also could be reversed by T3P + Ply. T3P + Ply-induced Tregs were essential for the suppression of NKT cells and AAD, which was demonstrated by Treg depletion. Collectively, our results show that the S. pneumoniae components T3P + Ply suppress AAD through the induction of Tregs that blocked the activity of NKT cells. These data suggest that S. pneumoniae components may have potential as a therapeutic strategy for the suppression of allergic asthma through the induction of Tregs and suppression of NKT cells.

  3. Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells.

    PubMed

    Wu, Qun; Jiang, Di; Minor, Maisha; Chu, Hong Wei

    2014-01-01

    The use of electronic cigarettes (e-cigarettes) is rapidly increasing in the United States, especially among young people since e-cigarettes have been perceived as a safer alternative to conventional tobacco cigarettes. However, the scientific evidence regarding the human health effects of e-cigarettes on the lung is extremely limited. The major goal of our current study is to determine if e-cigarette use alters human young subject airway epithelial functions such as inflammatory response and innate immune defense against respiratory viral (i.e., human rhinovirus, HRV) infection. We examined the effects of e-cigarette liquid (e-liquid) on pro-inflammatory cytokine (e.g., IL-6) production, HRV infection and host defense molecules (e.g., short palate, lung, and nasal epithelium clone 1, SPLUNC1) in primary human airway epithelial cells from young healthy non-smokers. Additionally, we examined the role of SPLUNC1 in lung defense against HRV infection using a SPLUNC1 knockout mouse model. We found that nicotine-free e-liquid promoted IL-6 production and HRV infection. Addition of nicotine into e-liquid further amplified the effects of nicotine-free e-liquid. Moreover, SPLUNC1 deficiency in mice significantly increased lung HRV loads. E-liquid inhibited SPLUNC1 expression in primary human airway epithelial cells. These findings strongly suggest the deleterious health effects of e-cigarettes in the airways of young people. Our data will guide future studies to evaluate the impact of e-cigarettes on lung health in human populations, and help inform the public about potential health risks of e-cigarettes.

  4. Ciliate diversity, community structure, and novel taxa in lakes of the McMurdo Dry Valleys, Antarctica.

    PubMed

    Xu, Yuan; Vick-Majors, Trista; Morgan-Kiss, Rachael; Priscu, John C; Amaral-Zettler, Linda

    2014-10-01

    We report an in-depth survey of next-generation DNA sequencing of ciliate diversity and community structure in two permanently ice-covered McMurdo Dry Valley lakes during the austral summer and autumn (November 2007 and March 2008). We tested hypotheses on the relationship between species richness and environmental conditions including environmental extremes, nutrient status, and day length. On the basis of the unique environment that exists in these high-latitude lakes, we expected that novel taxa would be present. Alpha diversity analyses showed that extreme conditions-that is, high salinity, low oxygen, and extreme changes in day length-did not impact ciliate richness; however, ciliate richness was 30% higher in samples with higher dissolved organic matter. Beta diversity analyses revealed that ciliate communities clustered by dissolved oxygen, depth, and salinity, but not by season (i.e., day length). The permutational analysis of variance test indicated that depth, dissolved oxygen, and salinity had significant influences on the ciliate community for the abundance matrices of resampled data, while lake and season were not significant. This result suggests that the vertical trends in dissolved oxygen concentration and salinity may play a critical role in structuring ciliate communities. A PCR-based strategy capitalizing on divergent eukaryotic V9 hypervariable region ribosomal RNA gene targets unveiled two new genera in these lakes. A novel taxon belonging to an unknown class most closely related to Cryptocaryon irritans was also inferred from separate gene phylogenies. © 2014 Marine Biological Laboratory.

  5. Antarctic and Arctic populations of the ciliate Euplotes nobilii show common pheromone-mediated cell-cell signaling and cross-mating

    PubMed Central

    Di Giuseppe, Graziano; Erra, Fabrizio; Dini, Fernando; Alimenti, Claudio; Vallesi, Adriana; Pedrini, Bill; Wüthrich, Kurt; Luporini, Pierangelo

    2011-01-01

    Wild-type strains of the protozoan ciliate Euplotes collected from different locations on the coasts of Antarctica, Tierra del Fuego and the Arctic were taxonomically identified as the morpho-species Euplotes nobilii, based on morphometric and phylogenetic analyses. Subsequent studies of their sexual interactions revealed that mating combinations of Antarctic and Arctic strains form stable pairs of conjugant cells. These conjugant pairs were isolated and shown to complete mutual gene exchange and cross-fertilization. The biological significance of this finding was further substantiated by demonstrating that close homology exists among the three-dimensional structures determined by NMR of the water-borne signaling pheromones that are constitutively secreted into the extracellular space by these interbreeding strains, in which these molecules trigger the switch between the growth stage and the sexual stage of the life cycle. The fact that Antarctic and Arctic E. nobilii populations share the same gene pool and belong to the same biological species provides new support to the biogeographic model of global distribution of eukaryotic microorganisms, which had so far been based exclusively on studies of morphological and phylogenetic taxonomy. PMID:21300903

  6. Effect of Cypermethrin on the Growth of Ciliate Protozoan Paramecium caudatum

    PubMed Central

    Dutta, Joydeep

    2015-01-01

    Objective: The objective of this study is to assess the effect of cypermethrin on the growth of ciliate protozoan Paramecium caudatum. Materials and Methods: Monoxenic culture of P. caudatum, were exposed to different doses (0.01, 0.05, 0.1, 0.15, and 0.2 µg/L) of cypermethrin along with control for 24, 48, 72, and 96 h time interval. The total numbers of live and dead cells were counted after trypan blue staining in Neubauer hemocytometer. Results: Marked decrease in the number of living cells with the increase in the concentration of cypermethrin and with increasing exposure time intervals was recorded. Conclusion: The results indicate that cypermethrin is toxic to P. caudatum even at low concentrations when it enters in the aquatic system through runoff. PMID:26862268

  7. Extraordinary genome stability in the ciliate Paramecium tetraurelia

    PubMed Central

    Sung, Way; Tucker, Abraham E.; Doak, Thomas G.; Choi, Eunjin; Thomas, W. Kelley; Lynch, Michael

    2012-01-01

    Mutation plays a central role in all evolutionary processes and is also the basis of genetic disorders. Established base-substitution mutation rates in eukaryotes range between ∼5 × 10−10 and 5 × 10−8 per site per generation, but here we report a genome-wide estimate for Paramecium tetraurelia that is more than an order of magnitude lower than any previous eukaryotic estimate. Nevertheless, when the mutation rate per cell division is extrapolated to the length of the sexual cycle for this protist, the measure obtained is comparable to that for multicellular species with similar genome sizes. Because Paramecium has a transcriptionally silent germ-line nucleus, these results are consistent with the hypothesis that natural selection operates on the cumulative germ-line replication fidelity per episode of somatic gene expression, with the germ-line mutation rate per cell division evolving downward to the lower barrier imposed by random genetic drift. We observe ciliate-specific modifications of widely conserved amino acid sites in DNA polymerases as one potential explanation for unusually high levels of replication fidelity. PMID:23129619

  8. Isolation and Characterization of Current Human Coronavirus Strains in Primary Human Epithelial Cell Cultures Reveal Differences in Target Cell Tropism

    PubMed Central

    Dijkman, Ronald; Jebbink, Maarten F.; Koekkoek, Sylvie M.; Deijs, Martin; Jónsdóttir, Hulda R.; Molenkamp, Richard; Ieven, Margareta; Goossens, Herman; Thiel, Volker

    2013-01-01

    The human airway epithelium (HAE) represents the entry port of many human respiratory viruses, including human coronaviruses (HCoVs). Nowadays, four HCoVs, HCoV-229E, HCoV-OC43, HCoV-HKU1, and HCoV-NL63, are known to be circulating worldwide, causing upper and lower respiratory tract infections in nonhospitalized and hospitalized children. Studies of the fundamental aspects of these HCoV infections at the primary entry port, such as cell tropism, are seriously hampered by the lack of a universal culture system or suitable animal models. To expand the knowledge on fundamental virus-host interactions for all four HCoVs at the site of primary infection, we used pseudostratified HAE cell cultures to isolate and characterize representative clinical HCoV strains directly from nasopharyngeal material. Ten contemporary isolates were obtained, representing HCoV-229E (n = 1), HCoV-NL63 (n = 1), HCoV-HKU1 (n = 4), and HCoV-OC43 (n = 4). For each strain, we analyzed the replication kinetics and progeny virus release on HAE cell cultures derived from different donors. Surprisingly, by visualizing HCoV infection by confocal microscopy, we observed that HCoV-229E employs a target cell tropism for nonciliated cells, whereas HCoV-OC43, HCoV-HKU1, and HCoV-NL63 all infect ciliated cells. Collectively, the data demonstrate that HAE cell cultures, which morphologically and functionally resemble human airways in vivo, represent a robust universal culture system for isolating and comparing all contemporary HCoV strains. PMID:23427150

  9. Abrogation of Airway Hyperresponsiveness but not Inflammation by Rho kinase Insufficiency

    PubMed Central

    Kasahara, David I.; Ninin, Fernanda M.C.; Wurmbrand, Allison P.; Liao, James K.; Shore, Stephanie A.

    2015-01-01

    Background Major features of allergic asthma include airway hyperresponsiveness (AHR), eosinophilic inflammation, and goblet cell metaplasia. Rho kinase (ROCK) is a serine/threonine protein kinase that regulates the actin cytoskeleton. By doing so, it can modulate airway smooth muscle cell contraction and leukocyte migration and proliferation. This study was designed to determine the contributions of the two ROCK isoforms, ROCK1 and ROCK2, to AHR, inflammation and goblet cell metaplasia in a mast-cell dependent model of allergic airways disease. Methods and Results Repeated intranasal challenges with OVA caused AHR, eosinophilic inflammation, and goblet cell hyperplasia in wildtype (WT) mice. OVA-induced AHR was partially or completely abrogated in mice haploinsufficient for ROCK2 (ROCK2+/−) or ROCK1 (ROCK1+/−), respectively. In contrast, there was no effect of ROCK insufficiency on allergic airways inflammation, although both ROCK1 and ROCK2 insufficiency attenuated mast cell degranulation. Goblet cell hyperplasia, as indicated by PAS staining, was not different in ROCK1+/− versus WT mice. However, in ROCK2+/− mice, goblet cell hyperplasia was reduced in medium but not large airways. Maximal acetylcholine-induced force generation was reduced in tracheal rings from ROCK1+/− and ROCK2+/− versus WT mice. The ROCK inhibitor, fasudil, also reduced airway responsiveness in OVA-challenged mice, without affecting inflammatory responses. Conclusion In a mast cell model of allergic airways disease, ROCK1 and ROCK2 both contribute to AHR, likely through direct effects on smooth muscle cell and effects on mast-cell degranulation. In addition, ROCK2 but not ROCK1 plays a role in allergen-induced goblet cell hyperplasia. PMID:25323425

  10. Following damage, the majority of bone marrow-derived airway cells express an epithelial marker

    PubMed Central

    MacPherson, Heather; Keir, Pamela A; Edwards, Carol J; Webb, Sheila; Dorin, Julia R

    2006-01-01

    Background Adult-derived bone marrow stem cells are capable of reconstituting the haematopoietic system. However there is ongoing debate in the literature as to whether bone marrow derived cells have the ability to populate other tissues and express tissue specific markers. The airway has been an organ of major interest and was one of the first where this was demonstrated. We have previously demonstrated that the mouse airway can be repopulated by side population bone marrow transplanted cells. Here we investigate the frequency and phenotypic nature of these bone marrow derived cells. Methods Female mice were engrafted with male whole bone marrow or side population (SP) cells and subjected to detergent-induced damage after 3 months. Donor cells were identified by Y chromosome fluorescence in situ hybridisation and their phenotype was assessed by immunohistochemistry on the same sections. Slides were visualised by a combination of widefield and deconvolved microscopy and whole cells were analysed on cytospin preparations. Results The frequencies of engraftment of male cells in the airway of mice that show this (9/10), range from 1.0 – 1.6% with whole marrow and 0.6 – 1.5% with SP cells. Undamaged controls have only between 0.1 and 0.2% male cells in the trachea. By widefield microscopy analysis we find 60.2% (53/88) of male donor derived cells express cytokeratins as a marker of epithelial cells. These results were reinforced using deconvolved microscopy and scored by two independent investigators. In addition cytospin analysis of cells dissociated from the damaged trachea of engrafted mice also reveals donor derived Y chromosome positive cells that are immunopositive for cytokeratin. Using cytokeratin and the universal haematopoietic marker CD45 immunohistochemistry, we find the donor derived cells fall into four phenotypic classes. We do not detect cytokeratin positive cells in whole bone marrow using cytokeratin immunostaining and we do not detect any

  11. Pseudomonas Pyocyanin Increases Interleukin-8 Expression by Human Airway Epithelial Cells

    PubMed Central

    Denning, Gerene M.; Wollenweber, Laura A.; Railsback, Michelle A.; Cox, Charles D.; Stoll, Lynn L.; Britigan, Bradley E.

    1998-01-01

    Pseudomonas aeruginosa, an opportunistic human pathogen, causes acute pneumonia in patients with hospital-acquired infections and is commonly associated with chronic lung disease in individuals with cystic fibrosis (CF). Evidence suggests that the pathophysiological effects of P. aeruginosa are mediated in part by virulence factors secreted by the bacterium. Among these factors is pyocyanin, a redox active compound that increases intracellular oxidant stress. We find that pyocyanin increases release of interleukin-8 (IL-8) by both normal and CF airway epithelial cell lines and by primary airway epithelial cells. Moreover, pyocyanin synergizes with the inflammatory cytokines tumor necrosis factor alpha and IL-1α. RNase protection assays indicate that increased IL-8 release is accompanied by increased levels of IL-8 mRNA. The antioxidant n-acetyl cysteine, general inhibitors of protein tyrosine kinases, and specific inhibitors of mitogen-activated protein kinases diminish pyocyanin-dependent increases in IL-8 release. Conversely, inhibitors of protein kinases C (PKC) and PKA have no effect. In contrast to its effects on IL-8 expression, pyocyanin inhibits cytokine-dependent expression of the monocyte/macrophage/T-cell chemokine RANTES. Increased release of IL-8, a potent neutrophil chemoattractant, in response to pyocyanin could contribute to the marked infiltration of neutrophils and subsequent neutrophil-mediated tissue damage that are observed in Pseudomonas-associated lung disease. PMID:9826354

  12. Mechanisms altering airway smooth muscle cell Ca+ homeostasis in two asthma models.

    PubMed

    Kellner, Julia; Tantzscher, Juliane; Oelmez, Hamza; Edelmann, Martin; Fischer, Rainald; Huber, Rudolf Maria; Bergner, Albrecht

    2008-01-01

    Asthma is characterized by airway remodeling, altered mucus production and airway smooth muscle cell (ASMC) contraction causing extensive airway narrowing. In particular, alterations of ASMC contractility seem to be of crucial importance. The elevation of the cytoplasmic Ca(2+) concentration is a key event leading to ASMC contraction and changes in the agonist-induced Ca(2+) increase in ASMC have been reported in asthma. The aim of this study was to investigate mechanisms underlying these changes. Murine tracheal smooth muscle cells (MTSMC) from T-bet KO mice and human bronchial smooth muscle cells (HBSMC) incubated with IL-13 and IL-4 served as asthma models. Acetylcholine-induced changes in the cytoplasmic Ca(2+) concentration were recorded using fluorescence microscopy and the expression of Ca(2+) homeostasis regulating proteins was investigated with Western blot analysis. Acetylcholine-induced Ca(2+) transients were elevated in both asthma models. This correlated with an increased Ca(2+) content of the sarcoplasmic reticulum (SR). In MTSMC from T-bet KO mice, the expression of the SR Ca(2+) buffers calreticulin and calsequestrin was higher compared to wild-type mice. In HBSMC incubated with IL-13 or IL-4, the expression of ryanodine receptors, inositol-3-phosphate receptors and sarcoplasmic/endoplasmic reticulum Ca(2+) ATPases 2 was increased compared to HBSMC without incubation with interleukins. The enlarged acetylcholine-induced Ca(2+) transients could be reversed by blocking inositol-3-phosphate receptors. We conclude that in the murine asthma model the SR Ca(2+) buffer capacity is increased, while in the human asthma model the expression of SR Ca(2+) channels is altered. The investigation of the Ca(2+) homeostasis of ASMC has the potential to provide new therapeutical options in asthma. Copyright 2008 S. Karger AG, Basel.

  13. Short-term Influence of Drilling Fluid on Ciliates from Activated Sludge in Sequencing Batch Reactors.

    PubMed

    Babko, Roman; Kuzmina, Tatiana; Łagód, Grzegorz; Jaromin-Gleń, Katarzyna; Danko, Yaroslav; Pawłowska, Małgorzata; Pawłowski, Artur

    2017-01-01

    Spent drilling muds are the liquid residues of rock drilling operations. Due to a high concentration of suspended solids and potentially detrimental chemical properties, they can negatively affect microorganisms participating in wastewater treatment processes. We evaluated the addition of a potassium-polymer drilling fluid (DF) to activated sludge in laboratory sequencing batch reactors (SBRs) for municipal wastewater treatment. Ciliate assemblage, the most dynamic component of eukaryotes in activated sludge, and which is highly sensitive to changes in the system, was evaluated. The average ciliate abundance dropped by about 51% (SBR 2; 1% DF added) and 33% (SBR 3; 3% DF added) in comparison to the control (SBR 1; wastewater only). A decrease in the total number of ciliate species during the experiment was observed, from 25 to 24 in SBR 2 and from 17 to 13 in SBR 3. Moreover, a drop in the number of dominant (>100 individuals mL) ciliate species was observed during the experiment-from eight in the control to five in SBR 2 and four in SBR 3-signaling noticeable changes in the quantitative structure of ciliate species. The species analyzed showed different responses to DF addition. The most sensitive was , which is bacteriovorus. In contrast, two predators, and , showed no reaction to DF addition. Our results indicate that addition of potassium-polymer DF, in doses of 1 to 3% of the treated wastewater volume, had no toxic effects on ciliates, but qualitative and quantitative changes in their community were observed. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. The role of basal cells in adhesion of columnar epithelium to airway basement membrane.

    PubMed

    Evans, M J; Plopper, C G

    1988-08-01

    In this report, we present a new concept of the role of the basal cell in airway epithelium. Previously, the basal cell was thought to be the progenitor cell for the columnar epithelium. However, several studies have shown that this concept may not be correct. The morphologic aspects of the basal cell suggest that it could play a role in adhesion of the columnar epithelium to the basement membrane. Basal cells form attachments with columnar cells (desmosomes) and with the basement membrane (hemidesmosomes). Columnar cells do not form hemidesmosome attachments with the basement membrane. Basal cells could strengthen the adhesion of columnar cells to the basement membrane by forming hemidesmosome attachments to the basement membrane and desmosome attachments with adjacent columnar cells. Incidental evidence from 2 existing publications concerning airway microanatomy support this concept. As columnar cells grow taller, the proportion of the cell surface in contact with the basement membrane becomes progressively smaller, and thus the cell surface area related to adhesion also becomes smaller. It was found that the number of basal cells per millimeter of basement membrane was closely related to the height of the columnar cell epithelium (r = 0.98), but not to the number of columnar cells (r = 0.42). The consistency of the relationship between increased columnar cell height (and thus decreased surface area for adhesion) and the number of basal cells present (r = 0.98) supports the concept that the basal cell plays a role in adhesion of columnar cells to the basement membrane.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. De Novo Transcriptomes of a Mixotrophic and a Heterotrophic Ciliate from Marine Plankton

    PubMed Central

    Santoferrara, Luciana F.; Guida, Stephanie; Zhang, Huan; McManus, George B.

    2014-01-01

    Studying non-model organisms is crucial in the context of the current development of genomics and transcriptomics for both physiological experimentation and environmental characterization. We investigated the transcriptomes of two marine planktonic ciliates, the mixotrophic oligotrich Strombidium rassoulzadegani and the heterotrophic choreotrich Strombidinopsis sp., and their respective algal food using Illumina RNAseq. Our aim was to characterize the transcriptomes of these contrasting ciliates and to identify genes potentially involved in mixotrophy. We detected approximately 10,000 and 7,600 amino acid sequences for S. rassoulzadegani and Strombidinopsis sp., respectively. About half of these transcripts had significant BLASTP hits (E-value <10−6) against previously-characterized sequences, mostly from the model ciliate Oxytricha trifallax. Transcriptomes from both the mixotroph and the heterotroph species provided similar annotations for GO terms and KEGG pathways. Most of the identified genes were related to housekeeping activity and pathways such as the metabolism of carbohydrates, lipids, amino acids, nucleotides, and vitamins. Although S. rassoulzadegani can keep and use chloroplasts from its prey, we did not find genes clearly linked to chloroplast maintenance and functioning in the transcriptome of this ciliate. While chloroplasts are known sources of reactive oxygen species (ROS), we found the same complement of antioxidant pathways in both ciliates, except for one enzyme possibly linked to ascorbic acid recycling found exclusively in the mixotroph. Contrary to our expectations, we did not find qualitative differences in genes potentially related to mixotrophy. However, these transcriptomes will help to establish a basis for the evaluation of differential gene expression in oligotrichs and choreotrichs and experimental investigation of the costs and benefits of mixotrophy. PMID:24983246

  16. Clear cell and endometrioid carcinomas: are their differences attributable to distinct cells of origin?

    PubMed

    Cochrane, Dawn R; Tessier-Cloutier, Basile; Lawrence, Katherine M; Nazeran, Tayyebeh; Karnezis, Anthony N; Salamanca, Clara; Cheng, Angela S; McAlpine, Jessica N; Hoang, Lien N; Gilks, C Blake; Huntsman, David G

    2017-09-01

    Endometrial epithelium is the presumed tissue of origin for both eutopic and endometriosis-derived clear cell and endometrioid carcinomas. We had previously hypothesized that the morphological, biological and clinical differences between these carcinomas are due to histotype-specific mutations. Although some mutations and genomic landscape features are more likely to be found in one of these histotypes, we were not able to identify a single class of mutations that was exclusively present in one histotype and not the other. This lack of genomic differences led us to an alternative hypothesis that these cancers could arise from distinct cells of origin within endometrial tissue, and that it is the cellular context that accounts for their differences. In a proteomic screen, we identified cystathionine γ-lyase (CTH) as a marker for clear cell carcinoma, as it is expressed at high levels in clear cell carcinomas of the ovary and endometrium. In the current study, we analysed normal Müllerian tissues, and found that CTH is expressed in ciliated cells of endometrium (both eutopic endometrium and endometriosis) and fallopian tubes. We then demonstrated that other ciliated cell markers are expressed in clear cell carcinomas, whereas endometrial secretory cell markers are expressed in endometrioid carcinomas. The same differential staining of secretory and ciliated cells was demonstrable in a three-dimensional organoid culture system, in which stem cells were stimulated to differentiate into an admixture of secretory and ciliated cells. These data suggest that endometrioid carcinomas are derived from cells of the secretory cell lineage, whereas clear cell carcinomas are derived from, or have similarities to, cells of the ciliated cell lineage. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  17. Allergic Sensitization through the Airway Primes Th17-dependent Neutrophilia and Airway Hyperresponsiveness

    PubMed Central

    Wilson, Rhonda H.; Whitehead, Gregory S.; Nakano, Hideki; Free, Meghan E.; Kolls, Jay K.; Cook, Donald N.

    2009-01-01

    Rationale: In humans, immune responses to inhaled aeroallergens develop in the lung and draining lymph nodes. Many animal models of asthma bypass this route and instead use intraperitoneal injections of allergen using aluminum hydroxide as an adjuvant. Objectives: We investigated whether allergic sensitization through the airway elicits immune responses qualitatively different than those arising in the peritoneum. Methods: Mice were sensitized to allergen through the airway using low-dose LPS as an adjuvant, or through the peritoneum using aluminum hydroxide as an adjuvant. After a single allergen challenge, ELISA and flow cytometry were used to measure cytokines and leukocyte subsets. Invasive measurements of airway resistance were used to measure allergen-induced airway hyperreactivity (AHR). Measurements and Main Results: Sensitization through the peritoneum primed strong Th2 responses and eosinophilia, but not AHR, after a single allergen challenge. By contrast, allergic sensitization through the airway primed only modest Th2 responses, but strong Th17 responses. Th17 cells homed to the lung and released IL-17 into the airway on subsequent encounter with inhaled allergen. As a result, these mice developed IL-17–dependent airway neutrophilia and AHR. This AHR was neutrophil-dependent because it was abrogated in CXCR2-deficient mice and also in wild-type mice receiving a neutrophil-depleting antibody. Individually, neither IL-17 nor ongoing Th2 responses were sufficient to confer AHR, but together they acted synergistically to promote neutrophil recruitment, eosinophil recruitment and AHR. Conclusions: Allergic sensitization through the airway primes modest Th2 responses but strong Th17 responses that promote airway neutrophilia and acute AHR. These findings support a causal role for neutrophils in severe asthma. PMID:19661246

  18. Interactions of Aspergillus fumigatus Conidia with Airway Epithelial Cells: A Critical Review

    PubMed Central

    Croft, Carys A.; Culibrk, Luka; Moore, Margo M.; Tebbutt, Scott J.

    2016-01-01

    Aspergillus fumigatus is an environmental filamentous fungus that also acts as an opportunistic pathogen able to cause a variety of symptoms, from an allergic response to a life-threatening disseminated fungal infection. The infectious agents are inhaled conidia whose first point of contact is most likely to be an airway epithelial cell (AEC). The interaction between epithelial cells and conidia is multifaceted and complex, and has implications for later steps in pathogenesis. Increasing evidence has demonstrated a key role for the airway epithelium in the response to respiratory pathogens, particularly at early stages of infection; therefore, elucidating the early stages of interaction of conidia with AECs is essential to understand the establishment of infection in cohorts of at-risk patients. Here, we present a comprehensive review of the early interactions between A. fumigatus and AECs, including bronchial and alveolar epithelial cells. We describe mechanisms of adhesion, internalization of conidia by AECs, the immune response of AECs, as well as the role of fungal virulence factors, and patterns of fungal gene expression characteristic of early infection. A clear understanding of the mechanisms involved in the early establishment of infection by A. fumigatus could point to novel targets for therapy and prophylaxis. PMID:27092126

  19. Transforming Growth Factor β1 Function in Airway Remodeling and Hyperresponsiveness. The Missing Link?

    PubMed

    Ojiaku, Christie A; Yoo, Edwin J; Panettieri, Reynold A

    2017-04-01

    The pathogenesis of asthma includes a complex interplay among airway inflammation, hyperresponsiveness, and remodeling. Current evidence suggests that airway structural cells, including bronchial smooth muscle cells, myofibroblasts, fibroblasts, and epithelial cells, mediate all three aspects of asthma pathogenesis. Although studies show a connection between airway remodeling and changes in bronchomotor tone, the relationship between the two remains unclear. Transforming growth factor β1 (TGF-β1), a growth factor elevated in the airway of patients with asthma, plays a role in airway remodeling and in the shortening of various airway structural cells. However, the role of TGF-β1 in mediating airway hyperresponsiveness remains unclear. In this review, we summarize the literature addressing the role of TGF-β1 in airway remodeling and shortening. Through our review, we aim to further elucidate the role of TGF-β1 in asthma pathogenesis and the link between airway remodeling and airway hyperresponsiveness in asthma and to define TGF-β1 as a potential therapeutic target for reducing asthma morbidity and mortality.

  20. Recurrent milk aspiration produces changes in airway mechanics, lung eosinophilia, and goblet cell hyperplasia in a murine model.

    PubMed

    Janahi, I A; Elidemir, O; Shardonofsky, F R; Abu-Hassan, M N; Fan, L L; Larsen, G L; Blackburn, M R; Colasurdo, G N

    2000-12-01

    Recurrent aspiration of milk into the respiratory tract has been implicated in the pathogenesis of a variety of inflammatory lung disorders including asthma. However, the lack of animal models of aspiration-induced lung injury has limited our knowledge of the pathophysiological characteristics of this disorder. This study was designed to evaluate the effects of recurrent milk aspiration on airway mechanics and lung cells in a murine model. Under light anesthesia, BALB/c mice received daily intranasal instillations of whole cow's milk (n = 7) or sterile physiologic saline (n = 9) for 10 d. Respiratory system resistance (Rrs) and dynamic elastance (Edyn,rs) were measured in anesthetized, tracheotomized, paralyzed and mechanically ventilated mice 24 h after the last aspiration of milk. Rrs and Edyn,rs were derived from transrespiratory and plethysmographic pressure signals. In addition, airway responses to increasing concentrations of i.v. methacholine (Mch) were determined. Airway responses were measured in terms of PD(100) (dose of Mch causing 100% increase from baseline Rrs) and Rrs,max (% increase from baseline at the maximal plateau response) and expressed as % control (mean +/- SE). We found recurrent milk aspiration did not affect Edyn and baseline Rrs values. However, airway responses to Mch were increased after milk aspiration when compared with control mice. These changes in airway mechanics were associated with an increased percentage of lymphocytes and eosinophils in the bronchoalveolar lavage, mucus production, and lung inflammation. Our findings suggest that recurrent milk aspiration leads to alterations in airway function, lung eosinophilia, and goblet cell hyperplasia in a murine model.

  1. Effect of β-glucan on MUC4 and MUC5B expression in human airway epithelial cells.

    PubMed

    Kim, Yong-Dae; Bae, Chang Hoon; Song, Si-Youn; Choi, Yoon Seok

    2015-08-01

    β-Glucan is found in the cell walls of fungi, bacteria, and some plant tissues, and is detected by the innate immune system. Furthermore, this recognition is known to worsen respiratory symptoms in patients with allergic and inflammatory airway diseases. However, the means by which β-glucan affects the secretion of major mucins by human airway epithelial cells has not been elucidated. Therefore, in this study, the effect and signaling pathway of β-glucan on mucins MUC4 and MUC5B were investigated in human airway epithelial cells. In NCI-H292 cells and human normal nasal epithelial cells, the effect and signaling pathway of β-glucan on MUC4 and MUC5B expression were investigated using reverse transcriptase-polymerase chain reaction (RT-PCR), real-time PCR, enzyme immunoassay, and immunoblot analysis with specific inhibitors and small interfering RNA (siRNA). β-Glucan increased MUC4 and MUC5B expression and activated the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). SB203580 (a p38 MAPK inhibitor) and pyrrolidine dithiocarbamate (PDTC; a NF-κB inhibitor) inhibited β-glucan-induced MUC4 and MUC5B expression. In addition, siRNA knockdown of p38 MAPK blocked β-glucan-induced MUC4 and MUC5B mRNA expression and β-glucan-activated phosphorylation of NF-κB. Furthermore, Toll-like receptor 4 (TLR4) mRNA expression was increased by β-glucan, and siRNA knockdown of TLR4 blocked β-glucan-induced MUC4 and MUC5B mRNA expression and β-glucan-activated phosphorylation of p38 MAPK and NF-κB. These results demonstrate that in human airway epithelial cells β-glucan induces MUC4 and MUC5B expression via the TLR4-p38 MAPK-NF-κB signaling pathway. © 2015 ARS-AAOA, LLC.

  2. CULTURE CONDITIONS AFFECT HUMAN AIRWAY EPITHELIAL CELL RESPONSE TO DIESEL PARTICLE EXPOSURE IN VITRO

    EPA Science Inventory

    Diesel exhaust particles (DEP) are a ubiquitous ambient air contaminant that may contribute to the health effects of particulate matter inhalation. In vitro studies have shown that DEP exposure induces pro-inflammatory proteins in human airway epithelial cells (HAEC) with varying...

  3. IL-33: biological properties, functions, and roles in airway disease.

    PubMed

    Drake, Li Yin; Kita, Hirohito

    2017-07-01

    Interleukin (IL)-33 is a key cytokine involved in type 2 immunity and allergic airway diseases. Abundantly expressed in lung epithelial cells, IL-33 plays critical roles in both innate and adaptive immune responses in mucosal organs. In innate immunity, IL-33 and group 2 innate lymphoid cells (ILC2s) provide an essential axis for rapid immune responses and tissue homeostasis. In adaptive immunity, IL-33 interacts with dendritic cells, Th2 cells, follicular T cells, and regulatory T cells, where IL-33 influences the development of chronic airway inflammation and tissue remodeling. The clinical findings that both the IL-33 and ILC2 levels are elevated in patients with allergic airway diseases suggest that IL-33 plays an important role in the pathogenesis of these diseases. IL-33 and ILC2 may also serve as biomarkers for disease classification and to monitor the progression of diseases. In this article, we reviewed the current knowledge of the biology of IL-33 and discussed the roles of the IL-33 in regulating airway immune responses and allergic airway diseases. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Regulation of allergic airway inflammation by adoptive transfer of CD4+ T cells preferentially producing IL-10.

    PubMed

    Matsuda, Masaya; Doi, Kana; Tsutsumi, Tatsuya; Fujii, Shinya; Kishima, Maki; Nishimura, Kazuma; Kuroda, Ikue; Tanahashi, Yu; Yuasa, Rino; Kinjo, Toshihiko; Kuramoto, Nobuyuki; Mizutani, Nobuaki; Nabe, Takeshi

    2017-10-05

    Anti-inflammatory pharmacotherapy for asthma has mainly depended on the inhalation of glucocorticoids, which non-specifically suppress immune responses. If the anti-inflammatory cytokine interleukin (IL)-10 can be induced by a specific antigen, asthmatic airway inflammation could be suppressed when individuals are exposed to the antigen. The purpose of this study was to develop cellular immunotherapeutics for atopic diseases using IL-10-producing CD4 + T cells. Spleen cells isolated from ovalbumin (OVA)-sensitized mice were cultured with the antigen, OVA and growth factors, IL-21, IL-27 and TGF-β for 7 days. After the 7-day culture, the CD4 + T cells were purified using a murine CD4 magnetic beads system. When the induced CD4 + T cells were stimulated by OVA in the presence of antigen-presenting cells, IL-10 was preferentially produced in vitro. When CD4 + T cells were adoptively transferred to OVA-sensitized mice followed by intratracheal OVA challenges, IL-10 was preferentially produced in the serum and bronchoalveolar lavage fluid in vivo. IL-10 production coincided with the inhibition of eosinophilic airway inflammation and epithelial mucus plugging. Most of the IL-10-producing CD4 + T cells were negative for Foxp3 and GATA-3, transcription factors of naturally occurring regulatory T cells and Th2 cells, respectively, but double positive for LAG-3 and CD49b, surface markers of inducible regulatory T cells, Tr1 cells. Collectively, most of the induced IL-10-producing CD4 + T cells could be Tr1 cells, which respond to the antigen to produce IL-10, and effectively suppressed allergic airway inflammation. The induced Tr1 cells may be useful for antigen-specific cellular immunotherapy for atopic diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Inflammation alters regional mitochondrial Ca²+ in human airway smooth muscle cells.

    PubMed

    Delmotte, Philippe; Yang, Binxia; Thompson, Michael A; Pabelick, Christina M; Prakash, Y S; Sieck, Gary C

    2012-08-01

    Regulation of cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) in airway smooth muscle (ASM) is a key aspect of airway contractility and can be modulated by inflammation. Mitochondria have tremendous potential for buffering [Ca(2+)](cyt), helping prevent Ca(2+) overload, and modulating other intracellular events. Here, compartmentalization of mitochondria to different cellular regions may subserve different roles. In the present study, we examined the role of Ca(2+) buffering by mitochondria and mitochondrial Ca(2+) transport mechanisms in the regulation of [Ca(2+)](cyt) in enzymatically dissociated human ASM cells upon exposure to the proinflammatory cytokines TNF-α and IL-13. Cells were loaded simultaneously with fluo-3 AM and rhod-2 AM, and [Ca(2+)](cyt) and mitochondrial Ca(2+) concentration ([Ca(2+)](mito)) were measured, respectively, using real-time two-color fluorescence microscopy in both the perinuclear and distal, perimembranous regions of cells. Histamine induced a rapid increase in both [Ca(2+)](cyt) and [Ca(2+)](mito), with a significant delay in the mitochondrial response. Inhibition of the mitochondrial Na(+)/Ca(2+) exchanger (1 μM CGP-37157) increased [Ca(2+)](mito) responses in perinuclear mitochondria but not distal mitochondria. Inhibition of the mitochondrial uniporter (1 μM Ru360) decreased [Ca(2+)](mito) responses in perinuclear and distal mitochondria. CGP-37157 and Ru360 significantly enhanced histamine-induced [Ca(2+)](cyt). TNF-α and IL-13 both increased [Ca(2+)](cyt), which was associated with decreased [Ca(2+)](mito) in the case of TNF-α but not IL-13. The effects of TNF-α on both [Ca(2+)](cyt) and [Ca(2+)](mito) were affected by CGP-37157 but not by Ru360. Overall, these data demonstrate that in human ASM cells, mitochondria buffer [Ca(2+)](cyt) after agonist stimulation and its enhancement by inflammation. The differential regulation of [Ca(2+)](mito) in different parts of ASM cells may serve to locally regulate Ca(2+) fluxes from

  6. Salient features of the ciliated organ of asymmetry

    PubMed Central

    Amack, Jeffrey D.

    2014-01-01

    Many internal organs develop distinct left and right sides that are essential for their functions. In several vertebrate embryos, motile cilia generate an asymmetric fluid flow that plays an important role in establishing left-right (LR) signaling cascades. These ‘LR cilia’ are found in the ventral node and posterior notochordal plate in mammals, the gastrocoel roof plate in amphibians and Kupffer’s vesicle in teleost fish. I consider these transient ciliated structures as the ‘organ of asymmetry’ that directs LR patterning of the developing embryo. Variations in size and morphology of the organ of asymmetry in different vertebrate species have raised questions regarding the fundamental features that are required for LR determination. Here, I review current models for how LR asymmetry is established in vertebrates, discuss the cellular architecture of the ciliated organ of asymmetry and then propose key features of this organ that are critical for orienting the LR body axis. PMID:24481178

  7. Hyaluronic acid influence on platelet-induced airway smooth muscle cell proliferation.

    PubMed

    Svensson Holm, Ann-Charlotte B; Bengtsson, Torbjörn; Grenegård, Magnus; Lindström, Eva G

    2012-03-10

    Hyaluronic acid (HA) is one of the main components of the extracellular matrix (ECM) and is expressed throughout the body including the lung and mostly in areas surrounding proliferating and migrating cells. Furthermore, platelets have been implicated as important players in the airway remodelling process, e.g. due to their ability to induce airway smooth muscle cell (ASMC) proliferation. The aim of the present study was to investigate the role of HA, the HA-binding surface receptor CD44 and focal adhesion kinase (FAK) in platelet-induced ASMC proliferation. Proliferation of ASMC was measured using the MTS-assay, and we found that the CD44 blocking antibody and the HA synthase inhibitor 4-Methylumbelliferone (4-MU) significantly inhibited platelet-induced ASMC proliferation. The interaction between ASMC and platelets was studied by fluorescent staining of F-actin. In addition, the ability of ASMC to synthesise HA was investigated by fluorescent staining using biotinylated HA-binding protein and a streptavidin conjugate. We observed that ASMC produced HA and that a CD44 blocking antibody and 4-MU significantly inhibited platelet binding to the area surrounding the ASMC. Furthermore, the FAK-inhibitor PF 573228 inhibited platelet-induced ASMC proliferation. Co-culture of ASMC and platelets also resulted in increased phosphorylation of FAK as detected by Western blot analysis. In addition, 4-MU significantly inhibited the increased FAK-phosphorylation. In conclusion, our findings demonstrate that ECM has the ability to influence platelet-induced ASMC proliferation. Specifically, we propose that HA produced by ASMC is recognised by platelet CD44. The platelet/HA interaction is followed by FAK activation and increased proliferation of co-cultured ASMC. We also suggest that the mitogenic effect of platelets represents a potential important and novel mechanism that may contribute to airway remodelling. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Persistent induction of goblet cell differentiation in the airways: Therapeutic approaches.

    PubMed

    Reid, Andrew T; Veerati, Punnam Chander; Gosens, Reinoud; Bartlett, Nathan W; Wark, Peter A; Grainge, Chris L; Stick, Stephen M; Kicic, Anthony; Moheimani, Fatemeh; Hansbro, Philip M; Knight, Darryl A

    2018-05-01

    Dysregulated induction of goblet cell differentiation results in excessive production and retention of mucus and is a common feature of several chronic airways diseases. To date, therapeutic strategies to reduce mucus accumulation have focused primarily on altering the properties of the mucus itself, or have aimed to limit the production of mucus-stimulating cytokines. Here we review the current knowledge of key molecular pathways that are dysregulated during persistent goblet cell differentiation and highlights both pre-existing and novel therapeutic strategies to combat this pathology. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  9. Phenotype and Functional Features of Human Telomerase Reverse Transcriptase Immortalized Human Airway Smooth Muscle Cells from Asthmatic and Non-Asthmatic Donors.

    PubMed

    Burgess, J K; Ketheson, A; Faiz, A; Limbert Rempel, K A; Oliver, B G; Ward, J P T; Halayko, A J

    2018-01-16

    Asthma is an obstructive respiratory disease characterised by chronic inflammation with airway hyperresponsiveness. In asthmatic airways, there is an increase in airway smooth muscle (ASM) cell bulk, which differs from non-asthmatic ASM in characteristics. This study aimed to assess the usefulness of hTERT immortalisation of human ASM cells as a research tool. Specifically we compared proliferative capacity, inflammatory mediator release and extracellular matrix (ECM) production in hTERT immortalised and parent primary ASM cells from asthmatic and non-asthmatic donors. Our studies revealed no significant differences in proliferation, IL-6 and eotaxin-1 production, or CTGF synthesis between donor-matched parent and hTERT immortalised ASM cell lines. However, deposition of ECM proteins fibronectin and fibulin-1 was significantly lower in immortalised ASM cells compared to corresponding primary cells. Notably, previously reported differences in proliferation and inflammatory mediator release between asthmatic and non-asthmatic ASM cells were retained, but excessive ECM protein deposition in asthmatic ASM cells was lost in hTERT ASM cells. This study shows that hTERT immortalised ASM cells mirror primary ASM cells in proliferation and inflammatory profile characteristics. Moreover, we demonstrate both strengths and weaknesses of this immortalised cell model as a representation of primary ASM cells for future asthma pathophysiological research.

  10. Airway mechanics and methods used to visualize smooth muscle dynamics in vitro.

    PubMed

    Cooper, P R; McParland, B E; Mitchell, H W; Noble, P B; Politi, A Z; Ressmeyer, A R; West, A R

    2009-10-01

    Contraction of airway smooth muscle (ASM) is regulated by the physiological, structural and mechanical environment in the lung. We review two in vitro techniques, lung slices and airway segment preparations, that enable in situ ASM contraction and airway narrowing to be visualized. Lung slices and airway segment approaches bridge a gap between cell culture and isolated ASM, and whole animal studies. Imaging techniques enable key upstream events involved in airway narrowing, such as ASM cell signalling and structural and mechanical events impinging on ASM, to be investigated.

  11. Genetic control of indirect airway responsiveness in the rat.

    PubMed

    Pauwels, R A; Germonpré, P R; Kips, J C; Joos, G F

    1995-11-01

    Many of the airway responses to endogenous and exogenous stimuli are caused by indirect mechanisms such as the activation of neurons and/or inflammatory cells. In the present study we compare the bronchoconstrictor and the plasma protein extravasation response to adenosine and tachykinins in two highly inbred rat strains, F344 and BDE. BDE-rats have a bronchoconstrictor response to adenosine at lower doses. Challenge with the A3-adenosine receptor agonist APNEA demonstrates that the difference in airway responsiveness to adenosine between BDE- and F344-rats is probably related to a higher number of A3-receptors on the airway mast cells of BDE-rats. In contrast, F344-rats have a higher airway responsiveness to tachykinins than BDE-rats. Tachykinins cause bronchoconstriction in F344-rats mainly by an indirect mechanism, involving stimulation of NK1-receptors and mast cell activation. In BDE-rats they cause bronchoconstriction by a direct effect on airway smooth muscle via activation of NK2-receptors. Finally we also observed a difference between F344- and BDE-rats with regard to the mechanisms involved in the plasma protein extravasation in the airways caused by substance P or capsaicin. In F344-rats but not in BDE-rats mast cell activation and the release of 5-hydroxytryptamine is partly responsible for this plasma protein extravasation.

  12. On the nature of species: insights from Paramecium and other ciliates

    PubMed Central

    Hall, Meaghan S.; Katz, Laura A.

    2011-01-01

    The multiple species concepts currently in use by the scientific community (e.g. Morphological, Biological, Phylogenetic) are united in that they all aim to capture the process of divergence between populations. For example, the Biological Species Concept (BSC) defines a species as a natural group of organisms that is reproductively isolated from other such groups. Here we synthesize nearly a century of research on the ciliate genus Paramecium that highlights the shortcomings of our prevailing notions on the nature of species. In this lineage, there is discordance between morphology, mating behavior, and genetics, features assumed to be correlated, at least after sufficient time has passed, under all species concepts. Intriguingly, epigenetic phenomena are well documented in ciliates where they influence features such as germline/soma differentiation and mating type determination. Consequently, we hypothesize that divergence within ciliate populations is due to a dynamic interaction between genetic and epigenetic factors. The growing list of examples of epigenetic phenomena that potentially impact speciation (i.e. by influencing the dynamics of sex chromosomes, fate of hybrids, zygotic drive and genomic conflicts) suggests that interactions between genetics and epigenetics may also drive divergence in other eukaryotic lineages. PMID:21505762

  13. Interleukin-4 activates large-conductance, calciumactivated potassium (BKCa) channels in human airway smooth muscle cells

    PubMed Central

    Martin, Gilles; O’Connell, Robert J.; Pietrzykowski, Andrzej Z.; Treistman, Steven N.; Ethier, Michael F.; Madison, J. Mark

    2014-01-01

    Large-conductance, calcium-activated potassium (BKCa) channels are regulated by voltage and near-membrane calcium concentrations and are determinants of membrane potential and excitability in airway smooth muscle cells. Since the T helper–2 (Th2) cytokine, interleukin (IL)-4, is an important mediator of airway inflammation, we investigated whether IL-4 rapidly regulated BKCa activity in normal airway smooth muscle cells. On-cell voltage clamp recordings were made on subconfluent, cultured human bronchial smooth muscle cells (HBSMC). Interleukin-4 (50 ng ml−1), IL-13 (50 ng ml−1) or histamine (10 μm) was added to the bath during the recordings. Immunofluorescence studies with selective antibodies against the α and β1 subunits of BKCa were also performed. Both approaches demonstrated that HBSMC membranes contained large-conductance channels (>200 pS) with both calcium and voltage sensitivity, all of which is characteristic of the BKCa channel. Histamine caused a rapid increase in channel activity, as expected. A new finding was that perfusion with IL-4 stimulated rapid, large increases in BKCa channel activity (77.2 ± 63.3-fold increase, P < 0.05, n = 18). This large potentiation depended on the presence of external calcium. In contrast, IL-13 (50 ng ml−1) had little effect on BKCa channel activity, but inhibited the effect of IL-4. Thus, HBSMC contain functional BKCa channels whose activity is rapidly potentiated by the cytokine, IL-4, but not by IL-13.These findings are consistent with a model in which IL-4 rapidly increases near-membrane calcium concentrations to regulate BKCa activity. PMID:18403443

  14. A mechanical design principle for tissue structure and function in the airway tree.

    PubMed

    LaPrad, Adam S; Lutchen, Kenneth R; Suki, Béla

    2013-01-01

    With every breath, the dynamically changing mechanical pressures must work in unison with the cells and soft tissue structures of the lung to permit air to efficiently traverse the airway tree and undergo gas exchange in the alveoli. The influence of mechanics on cell and tissue function is becoming apparent, raising the question: how does the airway tree co-exist within its mechanical environment to maintain normal cell function throughout its branching structure of diminishing dimensions? We introduce a new mechanical design principle for the conducting airway tree in which mechanotransduction at the level of cells is driven to orchestrate airway wall structural changes that can best maintain a preferred mechanical microenvironment. To support this principle, we report in vitro radius-transmural pressure relations for a range of airway radii obtained from healthy bovine lungs and model the data using a strain energy function together with a thick-walled cylinder description. From this framework, we estimate circumferential stresses and incremental Young's moduli throughout the airway tree. Our results indicate that the conducting airways consistently operate within a preferred mechanical homeostatic state, termed mechanical homeostasis, that is characterized by a narrow range of circumferential stresses and Young's moduli. This mechanical homeostatic state is maintained for all airways throughout the tree via airway wall dimensional and mechanical relationships. As a consequence, cells within the airway walls throughout the airway tree experience similar oscillatory strains during breathing that are much smaller than previously thought. Finally, we discuss the potential implications of how the maintenance of mechanical homeostasis, while facilitating healthy tissue-level alterations necessary for maturation, may lead to airway wall structural changes capable of chronic asthma.

  15. A Mechanical Design Principle for Tissue Structure and Function in the Airway Tree

    PubMed Central

    LaPrad, Adam S.; Lutchen, Kenneth R.; Suki, Béla

    2013-01-01

    With every breath, the dynamically changing mechanical pressures must work in unison with the cells and soft tissue structures of the lung to permit air to efficiently traverse the airway tree and undergo gas exchange in the alveoli. The influence of mechanics on cell and tissue function is becoming apparent, raising the question: how does the airway tree co-exist within its mechanical environment to maintain normal cell function throughout its branching structure of diminishing dimensions? We introduce a new mechanical design principle for the conducting airway tree in which mechanotransduction at the level of cells is driven to orchestrate airway wall structural changes that can best maintain a preferred mechanical microenvironment. To support this principle, we report in vitro radius-transmural pressure relations for a range of airway radii obtained from healthy bovine lungs and model the data using a strain energy function together with a thick-walled cylinder description. From this framework, we estimate circumferential stresses and incremental Young's moduli throughout the airway tree. Our results indicate that the conducting airways consistently operate within a preferred mechanical homeostatic state, termed mechanical homeostasis, that is characterized by a narrow range of circumferential stresses and Young's moduli. This mechanical homeostatic state is maintained for all airways throughout the tree via airway wall dimensional and mechanical relationships. As a consequence, cells within the airway walls throughout the airway tree experience similar oscillatory strains during breathing that are much smaller than previously thought. Finally, we discuss the potential implications of how the maintenance of mechanical homeostasis, while facilitating healthy tissue-level alterations necessary for maturation, may lead to airway wall structural changes capable of chronic asthma. PMID:23737742

  16. Baicalin Inhibits Lipopolysaccharide-Induced Inflammation Through Signaling NF-κB Pathway in HBE16 Airway Epithelial Cells.

    PubMed

    Dong, Shou-jin; Zhong, Yun-qing; Lu, Wen-ting; Li, Guan-hong; Jiang, Hong-li; Mao, Bing

    2015-08-01

    Baicalin, a flavonoid monomer derived from Scutellaria baicalensis called Huangqin in mandarin, is the main active ingredient contributing to S. baicalensis' efficacy. It is known in China that baicalin has potential therapeutic effects on inflammatory diseases. However, its anti-inflammatory mechanism has still not been fully interpreted. We aim to investigate the anti-inflammatory effect of baicalin on lipopolysaccharide (LPS)-induced inflammation in HBE16 airway epithelial cells and also to explore the underlying signaling mechanisms. The anti-inflammatory action of baicalin was evaluated in human airway epithelial cells HBE16 treated with LPS. Airway epithelial cells HBE16 were pretreated with a range of concentrations of baicalin for 30 min and then stimulated with 10 μg/ml LPS. The secretions of interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) in cell culture supernatants were quantified by enzyme-linked immunosorbent assay (ELISA). The messenger RNA (mRNA) expressions of IL-6, IL-8, and TNF-α were tested by quantitative real-time polymerase chain reaction (real-time RT-PCR). Furthermore, Western blotting was used to determine whether the signaling pathway NF-κB was involved in the anti-inflammatory action of baicalin. The inflammatory cell model was successfully built with 10 μg/ml LPS for 24 h in our in vitro experiments. Both the secretions and the mRNA expressions of IL-6, IL-8, and TNF-α were significantly inhibited by baicalin. Moreover, the expression levels of phospho-IKKα/β and phospho-NF-κB p65 were downregulated, and the phospho-IκB-α level was upregulated by baicalin. These findings suggest that the anti-inflammatory properties of baicalin may be resulted from the inhibition of IL-6, IL-8, and TNF-α expression via preventing signaling NF-κB pathway in HBE16 airway epithelial cells. In addition, this study provides evidence to understand the therapeutic effects of baicalin on inflammatory diseases in

  17. Maintenance of memory-type pathogenic Th2 cells in the pathophysiology of chronic airway inflammation.

    PubMed

    Hirahara, Kiyoshi; Shinoda, Kenta; Endo, Yusuke; Ichikawa, Tomomi; Nakayama, Toshinori

    2018-01-01

    Immunological memory is critical for long-standing protection against microorganisms; however, certain antigen-specific memory CD4 + T helper (Th) cells drive immune-related pathology, including chronic allergic inflammation such as asthma. The IL-5-producing memory-type Tpath2 subset is important for the pathogenesis of chronic allergic inflammation. This memory-type pathogenic Th2 cell population (Tpath2) can be detected in various allergic inflammatory lesions. However, how these pathogenic populations are maintained at the local inflammatory site has remained unclear. We performed a series of experiments using mice model for chronic airway inflammation. We also investigated the human samples from patients with eosinophilic chronic rhinosinusitis. We recently reported that inducible bronchus-associated lymphoid tissue (iBALT) was shaped during chronic inflammation in the lung. We also found that memory-type Tpath2 cells are maintained within iBALT. The maintenance of the Tpath2 cells within iBALT is supported by specific cell subpopulations within the lung. Furthermore, ectopic lymphoid structures consisting of memory CD4 + T cells were found in nasal polyps of eosinophilic chronic rhinosinusitis patients, indicating that the persistence of inflammation is controlled by these structures. Thus, the cell components that organize iBALT formation may be therapeutic targets for chronic allergic airway inflammation.

  18. Multitissue Transcriptomics Delineates the Diversity of Airway T Cell Functions in Asthma.

    PubMed

    Singhania, Akul; Wallington, Joshua C; Smith, Caroline G; Horowitz, Daniel; Staples, Karl J; Howarth, Peter H; Gadola, Stephan D; Djukanović, Ratko; Woelk, Christopher H; Hinks, Timothy S C

    2018-02-01

    Asthma arises from the complex interplay of inflammatory pathways in diverse cell types and tissues. We sought to undertake a comprehensive transcriptomic assessment of the epithelium and airway T cells that remain understudied in asthma and investigate interactions between multiple cells and tissues. Epithelial brushings and flow-sorted CD3 + T cells from sputum and BAL were obtained from healthy subjects (n = 19) and patients with asthma (mild, moderate, and severe asthma; n = 46). Gene expression was assessed using Affymetrix HT HG-U133 + PM GeneChips, and results were validated by real-time quantitative PCR. In the epithelium, IL-13 response genes (POSTN, SERPINB2, and CLCA1), mast cell mediators (CPA3 and TPSAB1), inducible nitric oxide synthase, and cystatins (CST1, CST2, and CST4) were upregulated in mild asthma, but, except for cystatins, were suppressed by corticosteroids in moderate asthma. In severe asthma-with predominantly neutrophilic phenotype-several distinct processes were upregulated, including neutrophilia (TCN1 and MMP9), mucins, and oxidative stress responses. The majority of the disease signature was evident in sputum T cells in severe asthma, where 267 genes were differentially regulated compared with health, highlighting compartmentalization of inflammation. This signature included IL-17-inducible chemokines (CXCL1, CXCL2, CXCL3, IL8, and CSF3) and chemoattractants for neutrophils (IL8, CCL3, and LGALS3), T cells, and monocytes. A protein interaction network in severe asthma highlighted signatures of responses to bacterial infections across tissues (CEACAM5, CD14, and TLR2), including Toll-like receptor signaling. In conclusion, the activation of innate immune pathways in the airways suggests that activated T cells may be driving neutrophilic inflammation and steroid-insensitive IL-17 response in severe asthma.

  19. Staphylococcus aureus α-Toxin Induces Actin Filament Remodeling in Human Airway Epithelial Model Cells.

    PubMed

    Ziesemer, Sabine; Eiffler, Ina; Schönberg, Alfrun; Müller, Christian; Hochgräfe, Falko; Beule, Achim G; Hildebrandt, Jan-Peter

    2018-04-01

    Exposure of cultured human airway epithelial model cells (16HBE14o-, S9) to Staphylococcus aureus α-toxin (hemolysin A, Hla) induces changes in cell morphology and cell layer integrity that are due to the inability of the cells to maintain stable cell-cell or focal contacts and to properly organize their actin cytoskeletons. The aim of this study was to identify Hla-activated signaling pathways involved in regulating the phosphorylation level of the actin-depolymerizing factor cofilin. We used recombinant wild-type hemolysin A (rHla) and a variant of Hla (rHla-H35L) that is unable to form functional transmembrane pores to treat immortalized human airway epithelial cells (16HBE14o-, S9) as well as freshly isolated human nasal tissue. Our results indicate that rHla-mediated changes in cofilin phosphorylation require the formation of functional Hla pores in the host cell membrane. Formation of functional transmembrane pores induced hypophosphorylation of cofilin at Ser3, which was mediated by rHla-induced attenuation of p21-activated protein kinase and LIM kinase activities. Because dephosphorylation of pSer3-cofilin results in activation of this actin-depolymerizing factor, treatment of cells with rHla resulted in loss of actin stress fibers from the cells and destabilization of cell shape followed by the appearance of paracellular gaps in the cell layers. Activation of protein kinase A or activation of small GTPases (Rho, Rac, Cdc42) do not seem to be involved in this response.

  20. Airway inflammation in cystic fibrosis: molecular mechanisms and clinical implications.

    PubMed

    Cohen-Cymberknoh, Malena; Kerem, Eitan; Ferkol, Thomas; Elizur, Arnon

    2013-12-01

    Airway epithelial cells and immune cells participate in the inflammatory process responsible for much of the pathology found in the lung of patients with cystic fibrosis (CF). Intense bronchial neutrophilic inflammation and release of proteases and oxygen radicals perpetuate the vicious cycle and progressively damage the airways. In vitro studies suggest that CF transmembrane conductance regulator (CFTR)-deficient airway epithelial cells display signalling abnormalities and aberrant intracellular processes which lead to transcription of inflammatory mediators. Several transcription factors, especially nuclear factor-κB, are activated. In addition, the accumulation of abnormally processed CFTR in the endoplasmic reticulum results in unfolded protein responses that trigger 'cell stress' and apoptosis leading to dysregulation of the epithelial cells and innate immune function in the lung, resulting in exaggerated and ineffective airway inflammation. Measuring airway inflammation is crucial for initiating treatment and monitoring its effect. No inflammatory biomarker predictive for the clinical course of CF lung disease is currently known, although neutrophil elastase seems to correlate with lung function decline. CF animal models mimicking human lung disease may provide an important insight into the pathogenesis of lung inflammation in CF and identify new therapeutic targets.

  1. MicroRNA-142 Inhibits Proliferation and Promotes Apoptosis in Airway Smooth Muscle Cells During Airway Remodeling in Asthmatic Rats via the Inhibition of TGF-β -Dependent EGFR Signaling Pathway.

    PubMed

    Wang, Jing; Wang, Hu-Shan; Su, Zhen-Bo

    2018-06-27

    Asthma is a heterogeneous disease characterized by chronic airway inflammation resulting from airway hyper-responsiveness to diverse stimuli. In this study, we investigated whether microRNA-142 (miR-142) expression affects proliferation and apoptosis in airway smooth muscle cells (ASMCs) during airway remodeling in asthmatic rats. Thirty six Wistar rats were randomly classified into a control group and an model group. miR-142 mimics and inhibitors were constructed, and ASMCs were transfected using liposomes according to the following groups: blank, negative control (NC), miR-142 mimics, miR-142 inhibitors, si-TGF-β and miR-142 inhibitors + si-TGF-β. We verified that miR-142 targets TGF-β using a dual-luciferase reporter assay. The expression levels of miR-142, TGF-β, EGFR and apoptosis signaling pathway-related genes were determined using RT-qPCR and western blotting. Changes in cell proliferation, cell cycle progression and apoptosis were analyzed using MTT assays and flow cytometry. Rats with asthma had higher expression levels of EGFR and Akt and lower miR-142 levels. miR-142 was negatively correlated with TGF-β expression. In ASMCs, the expression of TGF-β, EGFR, Akt, phosphorylated-Akt (p-Akt), Bcl-2 and Bcl-xl and the rate of early apoptosis were decreased while expression of Bax and p21 and the proliferation rate were elevated with the upregulation of miR-142. The opposite results were observed with the downregulation of miR-142. Finally, the proliferative rate was decreased while the apoptosis rate was increased and expression levels of EGFR, Akt, p-Akt, Bcl-2 and Bcl-xl were reduced while Bax and p21 were elevated in the ASMCs transfected with miR-142 inhibitors and si-TGF-β. The results of our study suggest that miR-142 inhibits proliferation and promotes apoptosis in ASMCs during airway remodeling in asthmatic rats by inhibiting TGF-β expression via a mechanism involving the EGFR signaling pathway. © 2018 The Author(s). Published by S. Karger AG

  2. Ciliatoxicity in human primary bronchiolar epithelial cells after repeated exposure at the air-liquid interface with native mainstream smoke of K3R4F cigarettes with and without charcoal filter.

    PubMed

    Aufderheide, Michaela; Scheffler, Stefanie; Ito, Shigeaki; Ishikawa, Shinkichi; Emura, Makito

    2015-01-01

    Mucociliary clearance is the primary physical mechanism to protect the human airways against harmful effects of inhaled particles. Environmental factors play a significant role in the impairment of this defense mechanism, whereas cigarette smoke is discussed to be one of the clinically most important causes. Impaired mucociliary clearance in smokers has been connected to changes in ciliated cells such as decreased numbers, altered structure and beat frequency. Clinical studies have shown that cilia length is reduced in healthy smokers and that long-term exposure to cigarette smoke leads to reduced numbers of ciliated cells in mice. We present an in vitro model of primary normal human bronchiolar epithelial (NHBE) cells with in vivo like morphology to study the influence of cigarette mainstream smoke on ciliated cells. We exposed mucociliary differentiated cultures repeatedly to non-toxic concentrations of mainstream cigarette smoke (4 cigarettes, 5 days/week, 8 repetitions in total) at the air-liquid interface. Charcoal filter tipped cigarettes were compared to those being equipped with standard cellulose acetate filters. Histopathological analyses of the exposed cultures showed a reduction of cilia bearing cells, shortening of existing cilia and finally disappearance of all cilia in cigarette smoke exposed cells. In cultures exposed to charcoal filtered cigarette smoke, little changes in cilia length were seen after four exposure repetitions, but those effects were reversed after a two day recovery period. Those differences indicate that volatile organic compounds, being removed by the charcoal filter tip, affect primary bronchiolar epithelial cells concerning their cilia formation and function comparable with the in vivo situation. In conclusion, our in vitro model presents a valuable tool to study air-borne ciliatoxic compounds. Copyright © 2015 The Authors. Published by Elsevier GmbH.. All rights reserved.

  3. Type 2 innate lymphoid cell suppression by regulatory T cells attenuates airway hyperreactivity and requires inducible T-cell costimulator-inducible T-cell costimulator ligand interaction.

    PubMed

    Rigas, Diamanda; Lewis, Gavin; Aron, Jennifer L; Wang, Bowen; Banie, Homayon; Sankaranarayanan, Ishwarya; Galle-Treger, Lauriane; Maazi, Hadi; Lo, Richard; Freeman, Gordon J; Sharpe, Arlene H; Soroosh, Pejman; Akbari, Omid

    2017-05-01

    Atopic diseases, including asthma, exacerbate type 2 immune responses and involve a number of immune cell types, including regulatory T (Treg) cells and the emerging type 2 innate lymphoid cells (ILC2s). Although ILC2s are potent producers of type 2 cytokines, the regulation of ILC2 activation and function is not well understood. In the present study, for the first time, we evaluate how Treg cells interact with pulmonary ILC2s and control their function. ILC2s and Treg cells were evaluated by using in vitro suppression assays, cell-contact assays, and gene expression panels. Also, human ILC2s and Treg cells were adoptively transferred into NOD SCID γC-deficient mice, which were given isotype or anti-inducible T-cell costimulator ligand (ICOSL) antibodies and then challenged with IL-33 and assessed for airway hyperreactivity. We show that induced Treg cells, but not natural Treg cells, effectively suppress the production of the ILC2-driven proinflammatory cytokines IL-5 and IL-13 both in vitro and in vivo. Mechanistically, our data reveal the necessity of inducible T-cell costimulator (ICOS)-ICOS ligand cell contact for Treg cell-mediated ILC2 suppression alongside the suppressive cytokines TGF-β and IL-10. Using a translational approach, we then demonstrate that human induced Treg cells suppress syngeneic human ILC2s through ICOSL to control airway inflammation in a humanized ILC2 mouse model. These findings suggest that peripheral expansion of induced Treg cells can serve as a promising therapeutic target against ILC2-dependent asthma. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  4. Bioaerosols from a food waste composting plant affect human airway epithelial cell remodeling genes.

    PubMed

    Chang, Min-Wei; Lee, Chung-Ru; Hung, Hsueh-Fen; Teng, Kuo-Sheng; Huang, Hsin; Chuang, Chun-Yu

    2013-12-24

    The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 10(2) conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM), with coarse particles (2.5-10 μm) having higher endotoxin levels than did fine particles (0.5-2.5 μm). After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL)-6 release and activated epidermal growth factor receptor (EGFR), transforming growth factor (TGF)-β1 and cyclin-dependent kinase inhibitor 1 (p21 WAF1/CIP1) gene expression, but not of matrix metallopeptidase (MMP)-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers.

  5. Bioaerosols from a Food Waste Composting Plant Affect Human Airway Epithelial Cell Remodeling Genes

    PubMed Central

    Chang, Ming-Wei; Lee, Chung-Ru; Hung, Hsueh-Fen; Teng, Kuo-Sheng; Huang, Hsin; Chuang, Chun-Yu

    2013-01-01

    The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 102 conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM), with coarse particles (2.5–10 μm) having higher endotoxin levels than did fine particles (0.5–2.5 μm). After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL)-6 release and activated epidermal growth factor receptor (EGFR), transforming growth factor (TGF)-β1 and cyclin-dependent kinase inhibitor 1 (p21WAF1/CIP1) gene expression, but not of matrix metallopeptidase (MMP)-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers. PMID:24368426

  6. Inhibition of neutrophil elastase attenuates airway hyperresponsiveness and inflammation in a mouse model of secondary allergen challenge: neutrophil elastase inhibition attenuates allergic airway responses

    PubMed Central

    2013-01-01

    Background Chronic asthma is often associated with neutrophilic infiltration in the airways. Neutrophils contain elastase, a potent secretagogue in the airways, nonetheless the role for neutrophil elastase as well as neutrophilic inflammation in allergen-induced airway responses is not well defined. In this study, we have investigated the impact of neutrophil elastase inhibition on the development of allergic airway inflammation and airway hyperresponsiveness (AHR) in previously sensitized and challenged mice. Methods BALB/c mice were sensitized and challenged (primary) with ovalbumin (OVA). Six weeks later, a single OVA aerosol (secondary challenge) was delivered and airway inflammation and airway responses were monitored 6 and 48 hrs later. An inhibitor of neutrophil elastase was administered prior to secondary challenge. Results Mice developed a two-phase airway inflammatory response after secondary allergen challenge, one neutrophilic at 6 hr and the other eosinophilic, at 48 hr. PAR-2 expression in the lung tissues was enhanced following secondary challenge, and that PAR-2 intracellular expression on peribronchial lymph node (PBLN) T cells was also increased following allergen challenge of sensitized mice. Inhibition of neutrophil elastase significantly attenuated AHR, goblet cell metaplasia, and inflammatory cell accumulation in the airways following secondary OVA challenge. Levels of IL-4, IL-5 and IL-13, and eotaxin in BAL fluid 6 hr after secondary allergen challenge were significantly suppressed by the treatment. At 48 hr, treatment with the neutrophil elastase inhibitor significantly reduced the levels of IL-13 and TGF-β1 in the BAL fluid. In parallel, in vitro IL-13 production was significantly inhibited in spleen cells from sensitized mice. Conclusion These data indicate that neutrophil elastase plays an important role in the development of allergic airway inflammation and hyperresponsiveness, and would suggest that the neutrophil elastase inhibitor

  7. Mucosal-associated invariant T cells in autoimmunity, immune-mediated diseases and airways disease.

    PubMed

    Hinks, Timothy S C

    2016-05-01

    Mucosal-associated invariant T (MAIT) cells are a novel class of innate-like T cells, expressing a semi-invariant T-cell receptor (TCR) and able to recognize small molecules presented on the non-polymorphic MHC-related protein 1. Their intrinsic effector-memory phenotype, enabling secretion of pro-inflammatory cytokines, and their relative abundance in humans imply a significant potential to contribute to autoimmune processes. However, as MAIT cells were unknown until recently and specific immunological tools were unavailable, little is known of their roles in disease. Here I review observations from clinical studies and animal models of autoimmune and immune-mediated diseases including the roles of MAIT cells in systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease and airways diseases. MAIT cell deficiencies are frequently observed in peripheral blood, and at sites of disease such as the airways in asthma. However, MAIT cells have a specific sensitivity to suppression by therapeutic corticosteroids that may confound many of these observations, as may the tendency of the surface marker CD161 to activation-induced down-regulation. Nonetheless, the dependence on bacteria for the development of MAIT cells suggests a potentially important protective role linking the influences of early life microbial exposures and subsequent development of autoimmunity. Conversely, MAIT cells could contribute to chronic inflammation either through TCR-independent activation, or potentially by TCR recognition of as yet undiscovered ligands. Future research will be greatly facilitated by the immunological tools that are now available, including murine genetic models and human and murine specific tetramers. © 2016 The Authors. Immunology published by John Wiley & Sons Ltd.

  8. Ciliates and the rare biosphere-community ecology and population dynamics.

    PubMed

    Weisse, Thomas

    2014-01-01

    Application of deep sequencing technologies to environmental samples and some detailed morphological studies suggest that there is a vast, yet unexplored rare ciliate biosphere, tentatively defined in terms of operational taxonomic units. However, very few studies complemented molecular and phylogenetic data with morphological and ecological descriptions of the species inventory. This is mainly because the sampling effort increases strongly with decreasing species abundance. In spite of this limited knowledge, it is clear that species that are rare under certain environmental conditions (temporal rare biosphere) may become abundant when the physical, chemical, and biological variables of their habitat change. Furthermore, some species may always be present in low numbers if their dispersal rates are exceedingly high (accidental rare biosphere). An intriguing question is whether there are some species that are always rare, i.e., in every suitable environment. This permanent rare biosphere is conceptually different from the temporal rare biosphere. This review characterizes typical aquatic habitats of the rare ciliate biosphere, portrays different scenarios under which some or even many species may be permanently rare (background fauna), and identifies some fundamental questions that need to be addressed to achieve a better understanding of the population dynamics of the rare ciliate biosphere. © 2014 The Authors The Journal of Eukaryotic Microbiology published by Wiley Periodicals, Inc. on behalf of International Society of Protistologists.

  9. Bioaccumulation of ultraviolet sunscreen compounds (mycosporine-like amino acids) by the heterotrophic freshwater ciliate Bursaridium living in alpine lakes

    PubMed Central

    Sonntag, Bettina; Kammerlander, Barbara; Summerer, Monika

    2017-01-01

    Abstract Ciliates in shallow alpine lakes are exposed to high levels of incident solar ultraviolet radiation (UVR). We observed the presence of specific sunscreen compounds, the mycosporine-like amino acids (MAAs), in several populations of Bursaridium, a relatively large ciliate species found in such lakes. The populations from 3 highly UV transparent lakes revealed the presence of 7 MAAs (MG, SH, PR, PI, AS, US, and PE) in total concentrations of 3.6–52.4 10−5 μg μg−1 dry weight (DW) per individual, whereas in one glacially turbid and less UV transparent lake, no MAAs were detected in the Bursaridium population. The MAAs in the ciliates generally reflected the composition and relative amounts of the lakes’ seston MAAs, assuming that the ciliates fed on MAA-rich plankton. We experimentally found that naturally acquired MAAs prevented ciliate mortality under simulated UVR and photosynthetically active radiation (PAR) conditions. We further tested the dietary regulation of the MAAs-content in the ciliates under artificial UVR and PAR exposure and found an increase in MAAs concentrations in all treatments. Our assumption was that several stress factors other than irradiation were involved in the synthesis or up-regulation of MAAs. PMID:28690781

  10. CD8+IL-17+ T Cells Mediate Neutrophilic Airway Obliteration in T-bet–Deficient Mouse Lung Allograft Recipients

    PubMed Central

    Dodd-o, Jeffrey M.; Coon, Tiffany A.; Miller, Hannah L.; Ganguly, Sudipto; Popescu, Iulia; O'Donnell, Christopher P.; Cardenes, Nayra; Levine, Melanie; Rojas, Mauricio; Weathington, Nathaniel M.; Zhao, Jing; Zhao, Yutong; McDyer, John F.

    2015-01-01

    Acute cellular rejection is a known risk factor for the development of obliterative bronchiolitis, which limits the long-term survival of lung transplant recipients. However, the T cell effector mechanisms in both of these processes remain incompletely understood. Using the mouse orthotopic lung transplant model, we investigated whether C57BL/6 T-bet−/− recipients of major histocompatibility complex (MHC)-mismatched BALB/c lung grafts develop rejection pathology and allospecific cytokine responses that differ from wild-type mice. T-bet−/− recipients demonstrated vigorous allograft rejection at 10 days, characterized by neutrophilic inflammation and predominantly CD8+ T cells producing allospecific IL-17 and/or IFN-γ, in contrast to IFN-γ–dominant responses in WT mice. CD4+ T cells produced IL-17 but not IFN-γ responses in T-bet−/− recipients, in contrast to WT controls. Costimulation blockade using anti-CD154 Ab significantly reduced allospecific CD8+IFN-γ+ responses in both T-bet−/− and WT mice but had no attenuating effect on lung rejection pathology in T-bet−/− recipients or on the development of obliterative airway inflammation that occurred only in T-bet−/− recipients. However, neutralization of IL-17A significantly attenuated costimulation blockade–resistant rejection pathology and airway inflammation in T-bet−/− recipients. In addition, CXCL1 (neutrophil chemokine) was increased in T-bet−/− allografts, and IL-17 induced CXCL1 from mouse lung epithelial cells in vitro. Taken together, our data show that T-bet–deficient recipients of complete MHC-mismatched lung allografts develop costimulation blockade–resistant rejection characterized by neutrophilia and obliterative airway inflammation that is predominantly mediated by CD8+IL-17+ T cells. Our data support T-bet–deficient mouse recipients of lung allografts as a viable animal model to study the immunopathogenesis of small airway injury in lung transplantation

  11. THE EFFECT OF SIZE FRACTIONED PARTICULATE MATTER ON HUMAN AIRWAY EPITHELIAL CELLS IN VITRO

    EPA Science Inventory

    THE EFFECT OF SIZE FRACTIONATED PARTICULATE MATTER ON HUMAN AIRWAY EPITHELIAL CELLS IN VITRO. LA Dailey1, C Sioutas2, JM Soukup1, S Becker1, RB Devlin1. 1National Health & Environmental Effects Research Laboratory, USEPA, RTP, NC,USA; 2USC, Civil & Environmental Engineering, LA, ...

  12. Relationships between equine airway reactivity measured by flowmetric plethysmography and specific indicators of airway inflammation in horses with suspected inflammatory airway disease.

    PubMed

    Wichtel, M; Gomez, D; Burton, S; Wichtel, J; Hoffman, A

    2016-07-01

    Agreement between airway reactivity measured by flowmetric plethysmography and histamine bronchoprovocation, and lower airway inflammation measured by bronchoalveolar lavage (BAL) cytology, has not been studied in horses with suspected inflammatory airway disease (IAD). We tested the hypothesis that airway reactivity is associated with BAL cytology in horses presenting for unexplained poor performance and/or chronic cough. Prospective clinical study. Forty-five horses, predominantly young Standardbred racehorses, presenting for unexplained poor performance or chronic cough, underwent endoscopic evaluation, tracheal wash, flowmetric plethysmography with histamine bronchoprovocation and BAL. Histamine response was measured by calculating PC35, the concentration of nebulised histamine eliciting an increase in Δflow of 35%. In this population, there was no significant correlation between histamine response and cell populations in BAL cytology. When airway hyperreactivity (AHR) was defined as ≥35% increase in Δflow at a histamine concentration of <6 mg/ml, 24 of the 45 horses (53%) were determined to have AHR. Thirty-three (73%) had either abnormal BAL cytology or AHR, and were diagnosed with IAD on this basis. Of horses diagnosed with IAD, 9 (27%) had an abnormal BAL, 11 (33%) had AHR and 13 (39%) had both. Airway reactivity and BAL cytology did not show concordance in this population of horses presenting for unexplained poor performance and/or chronic cough. Failure to include tests of airway reactivity may lead to underdiagnosis of IAD in young Standardbred racehorses that present with clinical signs suggestive of IAD. © 2015 EVJ Ltd.

  13. The Pro-Proliferative Effects of Nicotine and Its Underlying Mechanism on Rat Airway Smooth Muscle Cells

    PubMed Central

    He, Fang; Li, Bing; Zhao, Zhuxiang; Zhou, Yumin; Hu, Guoping; Zou, Weifeng; Hong, Wei; Zou, Yimin; Jiang, Changbin; Zhao, Dongxing; Ran, Pixin

    2014-01-01

    Recent studies have shown that nicotine, a major component of cigarette smoke, can stimulate the proliferation of non-neuronal cells. Cigarette smoking can promote a variety of pulmonary and cardiovascular diseases, such as chronic obstructive pulmonary disease (COPD), atherosclerosis, and cancer. A predominant feature of COPD is airway remodeling, which includes increased airway smooth muscle (ASM) mass. The mechanisms underlying ASM remodeling in COPD have not yet been fully elucidated. Here, we show that nicotine induces a profound and time-dependent increase in DNA synthesis in rat airway smooth muscle cells (RASMCs) in vitro. Nicotine also significantly increased the number of RASMCs, which was associated with the increased expression of Cyclin D1, phosphorylation of the retinoblastoma protein (RB) and was dependent on the activation of Akt. The activation of Akt by nicotine occurred within minutes and depended upon the nicotinic acetylcholine receptors (nAchRs). Activated Akt increased the phosphorylation of downstream substrates such as GSK3β. Our data suggest that the binding of nicotine to the nAchRs on RASMCs can regulate cellular proliferation by activating the Akt pathway. PMID:24690900

  14. [Small airway diseases and immune deficiency].

    PubMed

    Burgel, P-R; Bergeron, A; Knoop, C; Dusser, D

    2016-02-01

    Innate or acquired immune deficiency may show respiratory manifestations, often characterized by small airway involvement. The purpose of this article is to provide an overview of small airway disease across the major causes of immune deficiency. In patients with common variable immune deficiency, recurrent lower airway infections may lead to bronchiolitis and bronchiectasis. Follicular and/or granulomatous bronchiolitis of unknown origin may also occur. Bronchiolitis obliterans is the leading cause of death after the first year in patients with lung transplantation. Bronchiolitis obliterans also occurs in patients with allogeneic haematopoietic stem cell transplantation, especially in the context of systemic graft-versus-host disease. Small airway diseases have different clinical expression and pathophysiology across various causes of immune deficiency. A better understanding of small airways disease pathogenesis in these settings may lead to the development of novel targeted therapies. Copyright © 2015 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  15. S100A8 protein attenuates airway hyperresponsiveness by suppressing the contraction of airway smooth muscle.

    PubMed

    Xu, Yu-Dong; Wang, Yu; Yin, Lei-Miao; Park, Gyoung-Hee; Ulloa, Luis; Yang, Yong-Qing

    2017-02-26

    Airway hyperresponsiveness (AHR) is a major clinical problem in allergic asthma mainly caused by the hypercontractility of airway smooth muscles (ASM). S100A8 is an important member of the S100 calcium-binding protein family with a potential to regulate cell contractility. Here, we analyze the potential of S100A8 to regulate allergen-induced AHR and ASM contraction. Treatment with recombinant S100A8 (rS100A8) diminished airway hyperresponsiveness in OVA-sensitized rats. ASM contraction assays showed that rS100A8 reduced hypercontractility in both isolated tracheal rings and primary ASM cells treated by acetylcholine. rS100A8 markedly rescued the phosphorylation level of myosin light chain induced by acetylcholine in ASM cells. These results show that rS100A8 plays a protective role in regulating AHR in asthma by inhibiting ASM contraction. These results support S100A8 as a novel therapeutic target to control ASM contraction in asthma. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Inhibition of the interactions between eosinophil cationic protein and airway epithelial cells by traditional Chinese herbs.

    PubMed

    Chang, Hao-Teng; Tseng, Louis J; Hung, Ta-Jen; Kao, Blacky T; Lin, Wei-Yong; Fan, Tan-chi; Chang, Margaret Dah-Tsyr; Pai, Tun-Wen

    2010-09-13

    The eosinophil cationic protein (ECP) is cytotoxic to bacteria, viruses, parasites and mammalian cells. Cells are damaged via processes of pore formation, permeability alteration and membrane leaking. Some clinical studies indicate that ECP gathers in the bronchial tract of asthma sufferers, damages bronchial and airway epithelial cells, and leads to in breathing tract inflammation; therefore, prevention of the cytotoxicity caused by ECP may serve as an approach to treat airway inflammation. To achieve the purpose, reduction of the ECP-cell interactions is rational. In this work, the Chinese herbal combinative network was generated to predict and identify the functional herbs from the pools of prescriptions. It was useful to select the node herbs and to demonstrate the relative binding ability between ECP and Beas-2B cells with or withour herb treatments. Eighty three Chinese herbs and prescriptions were tested and five effective herbs and six prescription candidates were selected. On the basis of effective single-herbal drugs and prescriptions, a combinative network was generated. We found that a single herb, Gan-cao, served as a node connecting five prescriptions. In addition, Sheng-di-huang, Dang-guei and Mu-tong also appeared in five, four and three kinds of prescriptions, respectively. The extracts of these three herbs indeed effectively inhibited the interactions between ECP and Beas-2B cells. According to the Chinese herbal combinative network, eight of the effective herbal extracts showed inhibitory effects for ECP internalizing into Beas-2B cells. The major components of Gang-cao and Sheng-di-huang, glycyrrhizic acid and verbascose, respectively, reduced the binding affinity between ECP and cells effectively. Since these Chinese herbs reduced the binding affinity between ECP and cells and inhibited subsequent ECP entrance into cells, they were potential for mitigating the airway inflammation symptoms. Additionally, we mentioned a new concept to study the

  17. Maintenance of airway epithelium in acutely rejected orthotopic vascularized mouse lung transplants.

    PubMed

    Okazaki, Mikio; Gelman, Andrew E; Tietjens, Jeremy R; Ibricevic, Aida; Kornfeld, Christopher G; Huang, Howard J; Richardson, Steven B; Lai, Jiaming; Garbow, Joel R; Patterson, G Alexander; Krupnick, Alexander S; Brody, Steven L; Kreisel, Daniel

    2007-12-01

    Lung transplantation remains the only therapeutic option for many patients suffering from end-stage pulmonary disease. Long-term success after lung transplantation is severely limited by the development of bronchiolitis obliterans. The murine heterotopic tracheal transplantation model has been widely used for studies investigating pathogenesis of obliterative airway disease and immunosuppressive strategies to prevent its development. Despite its utility, this model employs proximal airway that lacks airflow and is not vascularized. We have developed a novel model of orthotopic vascularized lung transplantation in the mouse, which leads to severe vascular rejection in allogeneic strain combinations. Here we characterize differences in the fate of airway epithelial cells in nonimmunosuppressed heterotopic tracheal and vascularized lung allograft models over 28 days. Up-regulation of growth factors that are thought to be critical for the development of airway fibrosis and interstitial collagen deposition were similar in both models. However, while loss of airway epithelial cells occurred in the tracheal model, airway epithelium remained intact and fully differentiated in lung allografts, despite profound vascular rejection. Moreover, we demonstrate expression of the anti-apoptotic protein Bcl-2 in airway epithelial cells of acutely rejected lung allografts. These findings suggest that in addition to alloimmune responses, other stimuli may be required for the destruction of airway epithelial cells. Thus, the model of vascularized mouse lung transplantation may provide a new and more physiologic experimental tool to study the interaction between immune and nonimmune mechanisms affecting airway pathology in lung allografts.

  18. 6-Mercaptopurine reduces cytokine and Muc5ac expression involving inhibition of NFκB activation in airway epithelial cells.

    PubMed

    Kurakula, Kondababu; Hamers, Anouk A; van Loenen, Pieter; de Vries, Carlie J M

    2015-06-19

    Mucus hypersecretion and excessive cytokine synthesis is associated with many of the pathologic features of chronic airway diseases such as asthma. 6-Mercaptopurine (6-MP) is an immunosuppressive drug that is widely used in several inflammatory disorders. Although 6-MP has been used to treat asthma, its function and mechanism of action in airway epithelial cells is unknown. Confluent NCI-H292 and MLE-12 epithelial cells were pretreated with 6-MP followed by stimulation with TNFα or PMA. mRNA levels of cytokines and mucins were measured by RT-PCR. Western blot analysis was performed to assess the phosphorylation of IκBα and luciferase assays were performed using an NFκB reporter plasmid to determine NFκB activity. Periodic Acid Schiff staining was used to assess the production of mucus. 6-MP displayed no effect on cell viability up to a concentration of 15 μM. RT-PCR analysis showed that 6-MP significantly reduces TNFα- and PMA-induced expression of several proinflammatory cytokines in NCI-H292 and MLE-12 cells. Consistent with this, we demonstrated that 6-MP strongly inhibits TNFα-induced phosphorylation of IκBα and thus attenuates NFκB luciferase reporter activity. In addition, 6-MP decreases Rac1 activity in MLE-12 cells. 6-MP down-regulates gene expression of the mucin Muc5ac, but not Muc2, through inhibition of activation of the NFκB pathway. Furthermore, PMA- and TNFα-induced mucus production, as visualized by Periodic Acid Schiff (PAS) staining, is decreased by 6-MP. Our data demonstrate that 6-MP inhibits Muc5ac gene expression and mucus production in airway epithelial cells through inhibition of the NFκB pathway, and 6-MP may represent a novel therapeutic target for mucus hypersecretion in airway diseases.

  19. Preventative effect of an herbal preparation (HemoHIM) on development of airway inflammation in mice via modulation of Th1/2 cells differentiation.

    PubMed

    Kim, Jong-Jin; Cho, Hyun Wook; Park, Hae-Ran; Jung, Uhee; Jo, Sung-Kee; Yee, Sung-Tae

    2013-01-01

    HemoHIM, an herbal preparation of three edible herbs (Angelica gigas Nakai, Cnidium officinale Makino, Paeonia japonica Miyabe) is known to increase the Th1 immune response as well as reduce the allergic response in human mast cells. Here, our goal was to determine whether or not HemoHIM could induce Th1 cell differentiation as well as inhibit the development of airway inflammation. To study Th1/Th2 cell differentiation, naive CD4(+) T cells isolated from C57BL/6 mouse spleens were cultured with or without HemoHIM. To examine airway inflammation, C57BL/6 mice were fed HemoHIM for 4 weeks before sensitization and provocation with ovalbumin (OVA). In an in vitro experiment, naive CD4(+) T cells displayed increased Th1 (IFN-γ(+) cell) as well as decreased Th2 (IL-4(+) cell) differentiation in a HemoHIM concentration-dependent manner. Furthermore, in an airway inflammation mice model, eosinophil numbers in BALF, serum levels of OVA-specific IgE and IgG1, and cytokine (IL-4, IL-5, and IL-13) levels in BALF and the supernatant of splenocytes all decreased upon HemoHIM (100 mg/kg body weight) pretreatment (4 weeks). These results show that HemoHIM attenuated allergic airway inflammation in the mouse model through regulation of the Th1/Th2 balance.

  20. Preventative Effect of an Herbal Preparation (HemoHIM) on Development of Airway Inflammation in Mice via Modulation of Th1/2 Cells Differentiation

    PubMed Central

    Kim, Jong-Jin; Cho, Hyun Wook; Park, Hae-Ran; Jung, Uhee; Jo, Sung-Kee; Yee, Sung-Tae

    2013-01-01

    HemoHIM, an herbal preparation of three edible herbs (Angelica gigas Nakai, Cnidium officinale Makino, Paeonia japonica Miyabe) is known to increase the Th1 immune response as well as reduce the allergic response in human mast cells. Here, our goal was to determine whether or not HemoHIM could induce Th1 cell differentiation as well as inhibit the development of airway inflammation. To study Th1/Th2 cell differentiation, naive CD4+ T cells isolated from C57BL/6 mouse spleens were cultured with or without HemoHIM. To examine airway inflammation, C57BL/6 mice were fed HemoHIM for 4 weeks before sensitization and provocation with ovalbumin (OVA). In an in vitro experiment, naive CD4+ T cells displayed increased Th1 (IFN-γ+ cell) as well as decreased Th2 (IL-4+ cell) differentiation in a HemoHIM concentration-dependent manner. Furthermore, in an airway inflammation mice model, eosinophil numbers in BALF, serum levels of OVA-specific IgE and IgG1, and cytokine (IL-4, IL-5, and IL-13) levels in BALF and the supernatant of splenocytes all decreased upon HemoHIM (100 mg/kg body weight) pretreatment (4 weeks). These results show that HemoHIM attenuated allergic airway inflammation in the mouse model through regulation of the Th1/Th2 balance. PMID:23844220

  1. Abnormal epithelial structure and chronic lung inflammation after repair of chlorine-induced airway injury

    PubMed Central

    Mo, Yiqun; Chen, Jing; Humphrey, David M.; Fodah, Ramy A.; Warawa, Jonathan M.

    2014-01-01

    Chlorine is a toxic gas used in a variety of industrial processes and is considered a chemical threat agent. High-level chlorine exposure causes acute lung injury, but the long-term effects of acute chlorine exposure are unclear. Here we characterized chronic pulmonary changes following acute chlorine exposure in mice. A/J mice were exposed to 240 parts per million-hour chlorine or sham-exposed to air. Chlorine inhalation caused sloughing of bronchial epithelium 1 day after chlorine exposure, which was repaired with restoration of a pseudostratified epithelium by day 7. The repaired epithelium contained an abnormal distribution of epithelial cells containing clusters of club or ciliated cells rather than the uniformly interspersed pattern of these cells in unexposed mice. Although the damaged epithelium in A/J mice was repaired rapidly, and minimal airway fibrosis was observed, chlorine-exposed mice developed pneumonitis characterized by infiltration of alveoli with neutrophils and prominent, large, foamy macrophages. Levels of CXCL1/KC, CXCL5/LPS-induced CXC chemokine, granulocyte colony-stimulating factor, and VEGF in bronchoalveolar (BAL) fluid from chlorine-exposed mice showed steadily increasing trends over time. BAL protein levels were increased on day 4 and remained elevated out to day 28. The number of bacteria cultured from lungs of chlorine-exposed mice 4 wk after exposure was not increased compared with sham-exposed mice, indicating that the observed pneumonitis was not driven by bacterial infection of the lung. The results indicate that acute chlorine exposure may cause chronic abnormalities in the lungs despite rapid repair of injured epithelium. PMID:25398987

  2. Low Doses of Exogenous Interferon-γ Attenuated Airway Inflammation Through Enhancing Fas/FasL-Induced CD4+ T Cell Apoptosis in a Mouse Asthma Model

    PubMed Central

    Yao, Yinan; Lu, Shan; Lu, Guohua

    2012-01-01

    To investigate whether low doses of exogenous interferon (IFN)-γ attenuate airway inflammation, and the underlying mechanisms, in asthma. C57BL/6 mice (n=42), after intraperitoneal ovalbumin (OVA) sensitization on day 0 and day 12, were challenged with OVA aerosol for 6 consecutive days. Different doses of IFN-γ were then administered intraperitoneally 5 min before each inhalation during OVA challenge. Airway hyperresponsiveness, airway inflammatory cells, cytokine profiles, and Fas/FasL expression on CD4+ T cells were evaluated in an asthma model. The effect of various IFN-γ doses on Fas/FasL expression and CD4+ T cell apoptosis were assessed in vitro. We demonstrated that low doses of IFN-γ reduced pulmonary infiltration of inflammatory cells, Th2 cytokine production, and goblet cells hyperplasia (P<0.05), while high doses of endogenous IFN-γ had almost no effect. We also found that low doses of IFN-γ relocated Fas/FasL to the CD4+ T cell surface in the asthma model (P<0.05) and increased FasL-induced apoptosis in vitro (P<0.05). Furthermore, treatment with MFL-3, an anti-FasL antibody, partially abolished the anti- inflammatory properties of IFN-γ in the airway rather than affecting the Th1/Th2 balance. This research has revealed an alternative mechanism in asthma that involves low doses of IFN-γ, which attenuate airway inflammation through enhancing Fas/FasL-induced CD4+ T cell apoptosis. PMID:22994871

  3. Notch3-Jagged signaling controls the pool of undifferentiated airway progenitors

    PubMed Central

    Mori, Munemasa; Mahoney, John E.; Stupnikov, Maria R.; Paez-Cortez, Jesus R.; Szymaniak, Aleksander D.; Varelas, Xaralabos; Herrick, Dan B.; Schwob, James; Zhang, Hong; Cardoso, Wellington V.

    2015-01-01

    Basal cells are multipotent airway progenitors that generate distinct epithelial cell phenotypes crucial for homeostasis and repair of the conducting airways. Little is known about how these progenitor cells expand and transition to differentiation to form the pseudostratified airway epithelium in the developing and adult lung. Here, we show by genetic and pharmacological approaches that endogenous activation of Notch3 signaling selectively controls the pool of undifferentiated progenitors of upper airways available for differentiation. This mechanism depends on the availability of Jag1 and Jag2, and is key to generating a population of parabasal cells that later activates Notch1 and Notch2 for secretory-multiciliated cell fate selection. Disruption of this mechanism resulted in aberrant expansion of basal cells and altered pseudostratification. Analysis of human lungs showing similar abnormalities and decreased NOTCH3 expression in subjects with chronic obstructive pulmonary disease suggests an involvement of NOTCH3-dependent events in the pathogenesis of this condition. PMID:25564622

  4. Chemosensors in the Nose: Guardians of the Airways

    PubMed Central

    Tizzano, Marco

    2013-01-01

    The G-protein-coupled receptor molecules and downstream effectors that are used by taste buds to detect sweet, bitter, and savory tastes are also utilized by chemoresponsive cells of the airways to detect irritants. Here, we describe the different cell types in the airways that utilize taste-receptor signaling to trigger protective epithelial and neural responses to potentially dangerous toxins and bacterial infection. PMID:23280357

  5. Airway Delivery of Soluble Factors from Plastic-Adherent Bone Marrow Cells Prevents Murine Asthma

    PubMed Central

    Ionescu, Lavinia I.; Alphonse, Rajesh S.; Arizmendi, Narcy; Morgan, Beverly; Abel, Melanie; Eaton, Farah; Duszyk, Marek; Vliagoftis, Harissios; Aprahamian, Tamar R.; Walsh, Kenneth

    2012-01-01

    Asthma affects an estimated 300 million people worldwide and accounts for 1 of 250 deaths and 15 million disability-adjusted life years lost annually. Plastic-adherent bone marrow–derived cell (BMC) administration holds therapeutic promise in regenerative medicine. However, given the low cell engraftment in target organs, including the lung, cell replacement cannot solely account for the reported therapeutic benefits. This suggests that BMCs may act by secreting soluble factors. BMCs also possess antiinflammatory and immunomodulatory properties and may therefore be beneficial for asthma. Our objective was to investigate the therapeutic potential of BMC-secreted factors in murine asthma. In a model of acute and chronic asthma, intranasal instillation of BMC conditioned medium (CdM) prevented airway hyperresponsiveness (AHR) and inflammation. In the chronic asthma model, CdM prevented airway smooth muscle thickening and peribronchial inflammation while restoring blunted salbutamol-induced bronchodilation. CdM reduced lung levels of the TH2 inflammatory cytokines IL-4 and IL-13 and increased levels of IL-10. CdM up-regulated an IL-10–induced and IL-10–secreting subset of T regulatory lymphocytes and promoted IL-10 expression by lung macrophages. Adiponectin (APN), an antiinflammatory adipokine found in CdM, prevented AHR, airway smooth muscle thickening, and peribronchial inflammation, whereas the effect of CdM in which APN was neutralized or from APN knock-out mice was attenuated compared with wild-type CdM. Our study provides evidence that BMC-derived soluble factors prevent murine asthma and suggests APN as one of the protective factors. Further identification of BMC-derived factors may hold promise for novel approaches in the treatment of asthma. PMID:21903873

  6. Airway delivery of soluble factors from plastic-adherent bone marrow cells prevents murine asthma.

    PubMed

    Ionescu, Lavinia I; Alphonse, Rajesh S; Arizmendi, Narcy; Morgan, Beverly; Abel, Melanie; Eaton, Farah; Duszyk, Marek; Vliagoftis, Harissios; Aprahamian, Tamar R; Walsh, Kenneth; Thébaud, Bernard

    2012-02-01

    Asthma affects an estimated 300 million people worldwide and accounts for 1 of 250 deaths and 15 million disability-adjusted life years lost annually. Plastic-adherent bone marrow-derived cell (BMC) administration holds therapeutic promise in regenerative medicine. However, given the low cell engraftment in target organs, including the lung, cell replacement cannot solely account for the reported therapeutic benefits. This suggests that BMCs may act by secreting soluble factors. BMCs also possess antiinflammatory and immunomodulatory properties and may therefore be beneficial for asthma. Our objective was to investigate the therapeutic potential of BMC-secreted factors in murine asthma. In a model of acute and chronic asthma, intranasal instillation of BMC conditioned medium (CdM) prevented airway hyperresponsiveness (AHR) and inflammation. In the chronic asthma model, CdM prevented airway smooth muscle thickening and peribronchial inflammation while restoring blunted salbutamol-induced bronchodilation. CdM reduced lung levels of the T(H)2 inflammatory cytokines IL-4 and IL-13 and increased levels of IL-10. CdM up-regulated an IL-10-induced and IL-10-secreting subset of T regulatory lymphocytes and promoted IL-10 expression by lung macrophages. Adiponectin (APN), an antiinflammatory adipokine found in CdM, prevented AHR, airway smooth muscle thickening, and peribronchial inflammation, whereas the effect of CdM in which APN was neutralized or from APN knock-out mice was attenuated compared with wild-type CdM. Our study provides evidence that BMC-derived soluble factors prevent murine asthma and suggests APN as one of the protective factors. Further identification of BMC-derived factors may hold promise for novel approaches in the treatment of asthma.

  7. Differential antiviral activities of respiratory syncytial virus (RSV) inhibitors in human airway epithelium.

    PubMed

    Mirabelli, Carmen; Jaspers, Martine; Boon, Mieke; Jorissen, Mark; Koukni, Mohamed; Bardiot, Dorothée; Chaltin, Patrick; Marchand, Arnaud; Neyts, Johan; Jochmans, Dirk

    2018-03-27

    We report the use of reconstituted 3D human airway epithelium cells (HuAECs) of bronchial origin in an air-liquid interface to study respiratory syncytial virus (RSV) infection and to assess the efficacy of RSV inhibitors in (pre-)clinical development. HuAECs were infected with RSV-A Long strain (0.01 CCID50/cell, where CCID50 represents 50% cell culture infectious dose in HEp2 cells) on the apical compartment of the culture. At the time of infection or at 1 or 3 days post-infection, selected inhibitors were added and refreshed daily on the basal compartment of the culture. Viral shedding was followed up by apical washes collected daily and quantifying viral RNA by RT-qPCR. RSV-A replicates efficiently in HuAECs and viral RNA is shed for weeks after infection. RSV infection reduces the ciliary beat frequency of the ciliated cells as of 4 days post-infection, with complete ciliary dyskinesia observed by day 10. Treatment with RSV fusion inhibitors resulted in an antiviral effect only when added at the time of infection. In contrast, the use of replication inhibitors (both nucleoside and non-nucleoside) elicited a marked antiviral effect even when the start of treatment was delayed until 1 day or even 3 days after infection. Levels of the inflammation marker RANTES (mRNA) increased ∼200-fold in infected, untreated cultures (at 3 weeks post-infection), but levels were comparable to those of uninfected cultures in the presence of PC786, an RSV replication inhibitor, suggesting that an efficient antiviral treatment might inhibit virus-induced inflammation in this model. Overall, HuAECs offer a robust and physiologically relevant model to study RSV replication and to assess the efficacy of antiviral compounds.

  8. Epigenetic dysregulation of interleukin 8 (CXCL8) hypersecretion in cystic fibrosis airway epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poghosyan, Anna, E-mail: pannagos@yahoo.com; Patel, Jamie K.; Clifford, Rachel L.

    Airway epithelial cells in cystic fibrosis (CF) overexpress Interleukin 8 (CXCL8) through poorly defined mechanisms. CXCL8 transcription is dependent on coordinated binding of CCAAT/enhancer binding protein (C/EBP)β, nuclear factor (NF)-κB, and activator protein (AP)-1 to the promoter. Here we show abnormal epigenetic regulation is responsible for CXCL8 overexpression in CF cells. Under basal conditions CF cells had increased bromodomain (Brd)3 and Brd4 recruitment and enhanced NF-κB and C/EBPβ binding to the CXCL8 promoter compared to non-CF cells due to trimethylation of histone H3 at lysine 4 (H3K4me3) and DNA hypomethylation at CpG6. IL-1β increased NF-κB, C/EBPβ and Brd4 binding. Furthermore, inhibitors ofmore » bromodomain and extra-terminal domain family (BET) proteins reduced CXCL8 production in CF cells suggesting a therapeutic target for the BET pathway. -- Highlights: •A regulatory mechanism of CXCL8 transcriptional control in CF airways is proposed. •There was an increased binding of NF-κB and C/EBPβ transcription factors. •There was enhanced recruitment of BET proteins to the CXCL8 promoter. •Epigenetic modifications are responsible for the aberrant CXCL8 transcription.« less

  9. First record of entodiniomorph ciliates in a carnivore, the maned wolf (Chrysocyon brachyurus), from Brazil.

    PubMed

    Vynne, Carly; Kinsella, John M

    2009-06-01

    The entodiniomorph ciliates (Ciliophora: Entodiniomorphida) are endosymbiotes widely found in the intestines of herbivorous mammals. These commensals commonly occur in the Artiodactyla and Perissodactyla and have also been described in the Proboscidea, Primates, Rodentia, and Diprotodontia. This study reports the first finding of a ciliate in a member of order Carnivora, the maned wolf (Chrysocyon brachyurus). Fecal samples from wild and captive maned wolves were screened using ethyl acetate sedimentation. Prevalence in fecal samples collected from free-ranging maned wolves in Brazil was 40% (6 of 15). Fecal samples from two of four captive individuals from the St. Louis Zoo also had the same species of ciliate. The largely frugivorous diet of the maned wolf likely explains the occurrence of these normally herbivore-associated endosymbiotes in a carnivore.

  10. The chemokine receptor CXCR3 and its splice variant are expressed in human airway epithelial cells.

    PubMed

    Kelsen, Steven G; Aksoy, Mark O; Yang, Yi; Shahabuddin, Syed; Litvin, Judith; Safadi, Fayez; Rogers, Thomas J

    2004-09-01

    Activation of the chemokine receptor CXCR3 by its cognate ligands induces several differentiated cellular responses important to the growth and migration of a variety of hematopoietic and structural cells. In the human respiratory tract, human airway epithelial cells (HAEC) release the CXCR3 ligands Mig/CXCL9, IP-10/CXCL10, and I-TAC/CXCL11. Simultaneous expression of CXCR3 by HAEC would have important implications for the processes of airway inflammation and repair. Accordingly, in the present study we sought to determine whether HAEC also express the classic CXCR3 chemokine receptor CXCR3-A and its splice variant CXCR3-B and hence may respond in autocrine fashion to its ligands. We found that cultured HAEC (16-HBE and tracheocytes) constitutively expressed CXCR3 mRNA and protein. CXCR3 mRNA levels assessed by expression array were approximately 35% of beta-actin expression. In contrast, CCR3, CCR4, CCR5, CCR8, and CX3CR1 were <5% beta-actin. Both CXCR3-A and -B were expressed. Furthermore, tracheocytes freshly harvested by bronchoscopy stained positively for CXCR3 by immunofluorescence microscopy, and 68% of cytokeratin-positive tracheocytes (i.e., the epithelial cell population) were positive for CXCR3 by flow cytometry. In 16-HBE cells, CXCR3 receptor density was approximately 78,000 receptors/cell when assessed by competitive displacement of 125I-labeled IP-10/CXCL10. Finally, CXCR3 ligands induced chemotactic responses and actin reorganization in 16-HBE cells. These findings indicate constitutive expression by HAEC of a functional CXC chemokine receptor, CXCR3. Our data suggest the possibility that autocrine activation of CXCR3 expressed by HAEC may contribute to airway inflammation and remodeling in obstructive lung disease by regulating HAEC migration.

  11. Ionotropic and metabotropic proton-sensing receptors involved in airway inflammation in allergic asthma.

    PubMed

    Aoki, Haruka; Mogi, Chihiro; Okajima, Fumikazu

    2014-01-01

    An acidic microenvironment has been shown to evoke a variety of airway responses, including cough, bronchoconstriction, airway hyperresponsiveness (AHR), infiltration of inflammatory cells in the lung, and stimulation of mucus hyperproduction. Except for the participation of transient receptor potential vanilloid-1 (TRPV1) and acid-sensing ion channels (ASICs) in severe acidic pH (of less than 6.0)-induced cough and bronchoconstriction through sensory neurons, the molecular mechanisms underlying extracellular acidic pH-induced actions in the airways have not been fully understood. Recent studies have revealed that ovarian cancer G protein-coupled receptor 1 (OGR1)-family G protein-coupled receptors, which sense pH of more than 6.0, are expressed in structural cells, such as airway smooth muscle cells and epithelial cells, and in inflammatory and immune cells, such as eosinophils and dendritic cells. They function in a variety of airway responses related to the pathophysiology of inflammatory diseases, including allergic asthma. In the present review, we discuss the roles of ionotropic TRPV1 and ASICs and metabotropic OGR1-family G protein-coupled receptors in the airway inflammation and AHR in asthma and respiratory diseases.

  12. Bose-Einstein condensates form in heuristics learned by ciliates deciding to signal 'social' commitments.

    PubMed

    Clark, Kevin B

    2010-03-01

    Fringe quantum biology theories often adopt the concept of Bose-Einstein condensation when explaining how consciousness, emotion, perception, learning, and reasoning emerge from operations of intact animal nervous systems and other computational media. However, controversial empirical evidence and mathematical formalism concerning decoherence rates of bioprocesses keep these frameworks from satisfactorily accounting for the physical nature of cognitive-like events. This study, inspired by the discovery that preferential attachment rules computed by complex technological networks obey Bose-Einstein statistics, is the first rigorous attempt to examine whether analogues of Bose-Einstein condensation precipitate learned decision making in live biological systems as bioenergetics optimization predicts. By exploiting the ciliate Spirostomum ambiguum's capacity to learn and store behavioral strategies advertising mating availability into heuristics of topologically invariant computational networks, three distinct phases of strategy use were found to map onto statistical distributions described by Bose-Einstein, Fermi-Dirac, and classical Maxwell-Boltzmann behavior. Ciliates that sensitized or habituated signaling patterns to emit brief periods of either deceptive 'harder-to-get' or altruistic 'easier-to-get' serial escape reactions began testing condensed on initially perceived fittest 'courting' solutions. When these ciliates switched from their first strategy choices, Bose-Einstein condensation of strategy use abruptly dissipated into a Maxwell-Boltzmann computational phase no longer dominated by a single fittest strategy. Recursive trial-and-error strategy searches annealed strategy use back into a condensed phase consistent with performance optimization. 'Social' decisions performed by ciliates showing no nonassociative learning were largely governed by Fermi-Dirac statistics, resulting in degenerate distributions of strategy choices. These findings corroborate

  13. Brain-Derived Neurotrophic Factor in the Airways

    PubMed Central

    Prakash, Y.S.; Martin, Richard J.

    2014-01-01

    In addition to their well-known roles in the nervous system, there is increasing recognition that neurotrophins such as brain derived neurotrophic factor (BDNF) as well as their receptors are expressed in peripheral tissues including the lung, and can thus potentially contribute to both normal physiology and pathophysiology of several diseases. The relevance of this family of growth factors lies in emerging clinical data indicating altered neurotrophin levels and function in a range of diseases including neonatal and adult asthma, sinusitis, influenza, and lung cancer. The current review focuses on 1) the importance of BDNF expression and signaling mechanisms in early airway and lung development, critical to both normal neonatal lung function and also its disruption in prematurity and insults such as inflammation and infection; 2) how BDNF, potentially derived from airway nerves modulate neurogenic control of airway tone, a key aspect of airway reflexes as well as dysfunctional responses to allergic inflammation; 3) the emerging idea that local BDNF production by resident airway cells such as epithelium and airway smooth muscle can contribute to normal airway structure and function, and to airway hyperreactivity and remodeling in diseases such as asthma. Furthermore, given its pleiotropic effects in the airway, BDNF may be a novel and appealing therapeutic target. PMID:24560686

  14. Airway Fibrinogenolysis and the Initiation of Allergic Inflammation

    PubMed Central

    Millien, Valentine Ongeri; Lu, Wen; Mak, Garbo; Yuan, Xiaoyi; Knight, J. Morgan; Porter, Paul; Kheradmand, Farrah

    2014-01-01

    The past 15 years of allergic disease research have produced extraordinary improvements in our understanding of the pathogenesis of airway allergic diseases such as asthma. Whereas it was previously viewed as largely an immunoglobulin E-mediated process, the gradual recognition that T cells, especially Type 2 T helper (Th2) cells and Th17 cells, play a major role in asthma and related afflictions has inspired clinical trials targeting cytokine-based inflammatory pathways that show great promise. What has yet to be clarified about the pathogenesis of allergic inflammatory disorders, however, are the fundamental initiating factors, both exogenous and endogenous, that drive and sustain B- and T-cell responses that underlie the expression of chronic disease. Here we review how proteinases derived from diverse sources drive allergic responses. A central discovery supporting the proteinase hypothesis of allergic disease pathophysiology is the role played by airway fibrinogen, which in part appears to serve as a sensor of unregulated proteinase activity and which, when cleaved, both participates in a novel allergic signaling pathway through Toll-like receptor 4 and forms fibrin clots that contribute to airway obstruction. Unresolved at present is the ultimate source of airway allergenic proteinases. From among many potential candidates, perhaps the most intriguing is the possibility such enzymes derive from airway fungi. Together, these new findings expand both our knowledge of allergic disease pathophysiology and options for therapeutic intervention. PMID:25525732

  15. Urban particulate matter increases human airway epithelial cell IL-1β secretion following scratch wounding and H1N1 influenza A exposure in vitro.

    PubMed

    Hirota, Jeremy A; Marchant, David J; Singhera, Gurpreet K; Moheimani, Fatemeh; Dorscheid, Delbert R; Carlsten, Christopher; Sin, Don; Knight, Darryl

    2015-01-01

    The airway epithelium represents the first line of defense against inhaled environmental insults including air pollution, allergens, and viruses. Epidemiological and experimental evidence has suggested a link between air pollution exposure and the symptoms associated with respiratory viral infections. We hypothesized that multiple insults integrated by the airway epithelium NLRP3 inflammasome would result in augmented IL-1β release and downstream cytokine production following respiratory virus exposure. We performed in vitro experiments with a human airway epithelial cell line (HBEC-6KT) that involved isolated or combination exposure to mechanical wounding, PM10, house dust mite, influenza A virus, and respiratory syncytial virus. We performed confocal microscopy to image the localization of PM10 within HBEC-6KT and ELISAs to measure soluble mediator production. Airway epithelial cells secrete IL-1β in a time-dependent fashion that is associated with internalization of PM10 particles. PM10 exposure primes human airway epithelial cells to subsequent models of cell damage and influenza A virus exposure. Prior PM10 exposure had no effect on IL-1β responses to RSV exposure. Finally we demonstrate that PM10-priming of human airway epithelial cell IL-1β and GM-CSF responses to influenza A exposure are sensitive to NLRP3 inflammasome inhibition. Our results suggest the NLRP3 inflammasome may contribute to exaggerated immune responses to influenza A virus following periods of poor air quality. Intervention strategies targeting the NLRP3 inflammasome in at risk individuals may restrict poor air quality priming of mucosal immune responses that result from subsequent viral exposures.

  16. FABP4 regulates eosinophil recruitment and activation in allergic airway inflammation.

    PubMed

    Ge, Xiao Na; Bastan, Idil; Dileepan, Mythili; Greenberg, Yana; Ha, Sung Gil; Steen, Kaylee A; Bernlohr, David A; Rao, Savita P; Sriramarao, P

    2018-04-26

    Fatty acid binding protein 4 (FABP4), a member of a family of lipid-binding proteins, is known to play a role in inflammation by virtue of its ability to regulate intracellular events such as lipid fluxes and signaling. Studies have indicated a pro-inflammatory role for FABP4 in allergic asthma, although its expression and function in eosinophils, the predominant inflammatory cells recruited to allergic airways, was not investigated. We examined expression of FABP4 in murine eosinophils and its role in regulating cell recruitment in vitro as well as in cockroach antigen (CRA)-induced allergic airway inflammation. CRA exposure led to airway recruitment of FABP4-expressing inflammatory cells, specifically eosinophils, in wild type (WT) mice. FABP4 expression in eosinophils was induced by TNF-α as well as IL-4 and IL-13. FABP4-deficient eosinophils exhibited markedly decreased cell spreading/formation of leading edges on vascular cell adhesion molecule-1 and significantly decreased adhesion to intercellular adhesion molecule-1 associated with reduced β2 integrin expression relative to WT cells. Further, FABP4-deficient eosinophils exhibited decreased migration, F-actin polymerization, calcium flux and ERK (1/2) phosphorylation in response to eotaxin-1. In vivo, CRA-challenged FABP4-deficient mice exhibited attenuated eosinophilia and significantly reduced airway inflammation (improved airway reactivity, lower IL-5, IL-13, TNFα and LTC4 levels, decreased airway structural changes) compared to WT mice. In conclusion, expression of FABP4 in eosinophils is induced during conditions of inflammation and plays a pro-inflammatory role in the development of allergic asthma by promoting eosinophil adhesion and migration and contributing to the development of various aspects of airway inflammation.

  17. Corticosteroid treatment inhibits airway hyperresponsiveness and lung injury in a murine model of chemical-induced airway inflammation.

    PubMed

    Wigenstam, Elisabeth; Jonasson, Sofia; Koch, Bo; Bucht, Anders

    2012-11-15

    Exposure to toxic alkylating mustard agents causes both acute and long-term effects to the lungs as indicated by increased number of inflammatory cells in airways, lung edema and lung tissue fibrosis. We have previously demonstrated that treatment with the corticosteroid dexamethasone 1 h after lung exposure to the nitrogen mustard analog melphalan protects mice from acute and sub-acute inflammatory responses, as well as from lung tissue fibrosis. In order to address the importance of early anti-inflammatory treatment, we investigated the therapeutic effect of dexamethasone administered 1, 2 or 6 h following exposure to melphalan. C57BL/6 mice were exposed to melphalan and treated with dexamethasone 1, 2 or 6 h after exposure. Twenty hours or 14 days post exposure mice were subjected to analysis of respiratory mechanics where the effects of incremental doses of methacholine on central and peripheral lung components were measured. We also determined the amount of inflammatory cells in the bronchoalveolar lavage fluid and measured the amount of collagen content in the lungs. Melphalan exposure increased airway hyperresponsiveness in both central and peripheral airways and induced an airway inflammation dominated by infiltration of macrophages and neutrophils. Dexamethasone given 1 h after exposure to melphalan provided better protection against airway inflammation than administration 2 or 6 h after exposure. Collagen deposition 14 days after exposure was decreased due to dexamethasone treatment. Early treatment with dexamethasone is important in order to reduce the airway hyperresponsiveness and inflammation caused by toxic alkylating mustards such as melphalan. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Comprehensive evaluation of poly(I:C) induced inflammatory response in an airway epithelial model

    PubMed Central

    Lever, Amanda R; Park, Hyoungshin; Mulhern, Thomas J; Jackson, George R; Comolli, James C; Borenstein, Jeffrey T; Hayden, Patrick J; Prantil-Baun, Rachelle

    2015-01-01

    Respiratory viruses invade the upper airway of the lung, triggering a potent immune response that often exacerbates preexisting conditions such as asthma and COPD. Poly(I:C) is a synthetic analog of viral dsRNA that induces the characteristic inflammatory response associated with viral infection, such as loss of epithelial integrity, and increased production of mucus and inflammatory cytokines. Here, we explore the mechanistic responses to poly(I:C) in a well-defined primary normal human bronchial epithelial (NHBE) model that recapitulates in vivo functions and responses. We developed functional and quantifiable methods to evaluate the physiology of our model in both healthy and inflamed states. Through gene and protein expression, we validated the differentiation state and population of essential cell subtypes (i.e., ciliated, goblet, club, and basal cells) as compared to the human lung. Assays for total mucus production, cytokine secretion, and barrier function were used to evaluate in vitro physiology and response to viral insult. Cells were treated apically with poly(I:C) and evaluated 48 h after induction. Results revealed a dose-dependent increase in goblet cell differentiation, as well as, an increase in mucus production relative to controls. There was also a dose-dependent increase in secretion of IL-6, IL-8, TNF-α, and RANTES. Epithelial barrier function, as measured by TEER, was maintained at 1501 ± 355 Ω*cm² postdifferentiation, but dropped significantly when challenged with poly(I:C). This study provides first steps toward a well-characterized model with defined functional methods for understanding dsRNA stimulated inflammatory responses in a physiologically relevant manner. PMID:25847914

  19. DNA rearrangements directed by non-coding RNAs in ciliates

    PubMed Central

    Mochizuki, Kazufumi

    2013-01-01

    Extensive programmed rearrangement of DNA, including DNA elimination, chromosome fragmentation, and DNA descrambling, takes place in the newly developed macronucleus during the sexual reproduction of ciliated protozoa. Recent studies have revealed that two distant classes of ciliates use distinct types of non-coding RNAs to regulate such DNA rearrangement events. DNA elimination in Tetrahymena is regulated by small non-coding RNAs that are produced and utilized in an RNAi-related process. It has been proposed that the small RNAs produced from the micronuclear genome are used to identify eliminated DNA sequences by whole-genome comparison between the parental macronucleus and the micronucleus. In contrast, DNA descrambling in Oxytricha is guided by long non-coding RNAs that are produced from the parental macronuclear genome. These long RNAs are proposed to act as templates for the direct descrambling events that occur in the developing macronucleus. Both cases provide useful examples to study epigenetic chromatin regulation by non-coding RNAs. PMID:21956937

  20. The secondary metabolite euplotin C induces apoptosis-like death in the marine ciliated protist Euplotes vannus.

    PubMed

    Cervia, Davide; Di Giuseppe, Graziano; Ristori, Chiara; Martini, Davide; Gambellini, Gabriella; Bagnoli, Paola; Dini, Fernando

    2009-01-01

    The sesquiterpenoid euplotin C is a secondary metabolite produced by the ciliated protist Euplotes crassus and provides a mechanism for damping populations of potential competitors. Indeed, E. crassus is virtually resistant to its own product while different non-producer species representing an unbiased sample of the marine, interstitial, ciliate diversity are sensitive. For instance, euplotin C exerts a marked disruption of different homeostatic mechanisms in Euplotes vannus. We demonstrate by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay that euplotin C quickly decreases viability and mitochondrial function of E. vannus with a very high efficacy and at micromolar potency. In addition, euplotin C induces apoptosis in E. vannus as 4,6-diamino-2-phenylindole and terminal transferase dUTP nick end labeling staining show the rapid condensation and fragmentation of nuclear material in cells treated with euplotin C. These effects occur without detectable permeabilisation or rupture of cell membranes and with no major changes in the overall morphology, although some traits, such as vacuolisation and disorganized microtubules, can be observed by transmission electron microscopy. In particular, E. vannus show profound changes of the mitochondrial ultrastructure. Finally, we also show that caspase activity in E. vannus is increased by euplotin C. These data elucidate the pro-apoptotic role of euplotin C and suggest a mechanism for its impact on natural selection.

  1. Selective accumulation of langerhans-type dendritic cells in small airways of patients with COPD

    PubMed Central

    2010-01-01

    Background Dendritic cells (DC) linking innate and adaptive immune responses are present in human lungs, but the characterization of different subsets and their role in COPD pathogenesis remain to be elucidated. The aim of this study is to characterize and quantify pulmonary myeloid DC subsets in small airways of current and ex-smokers with or without COPD. Methods Myeloid DC were characterized using flowcytometry on single cell suspensions of digested human lung tissue. Immunohistochemical staining for langerin, BDCA-1, CD1a and DC-SIGN was performed on surgical resection specimens from 85 patients. Expression of factors inducing Langerhans-type DC (LDC) differentiation was evaluated by RT-PCR on total lung RNA. Results Two segregated subsets of tissue resident pulmonary myeloid DC were identified in single cell suspensions by flowcytometry: the langerin+ LDC and the DC-SIGN+ interstitial-type DC (intDC). LDC partially expressed the markers CD1a and BDCA-1, which are also present on their known blood precursors. In contrast, intDC did not express langerin, CD1a or BDCA-1, but were more closely related to monocytes. Quantification of DC in the small airways by immunohistochemistry revealed a higher number of LDC in current smokers without COPD and in COPD patients compared to never smokers and ex-smokers without COPD. Importantly, there was no difference in the number of LDC between current and ex-smoking COPD patients. In contrast, the number of intDC did not differ between study groups. Interestingly, the number of BDCA-1+ DC was significantly lower in COPD patients compared to never smokers and further decreased with the severity of the disease. In addition, the accumulation of LDC in the small airways significantly correlated with the expression of the LDC inducing differentiation factor activin-A. Conclusions Myeloid DC differentiation is altered in small airways of current smokers and COPD patients resulting in a selective accumulation of the LDC subset which

  2. Inhibition by salmeterol and cilomilast of fluticasone-enhanced IP-10 release in airway epithelial cells.

    PubMed

    Reddy, P J; Aksoy, Mark O; Yang, Yi; Li, Xiu Xia; Ji, Rong; Kelsen, Steven G

    2008-02-01

    The CXC chemokines, IP-10/CXCL10 and IL-8/CXCL8, play a role in obstructive lung disease by attracting Th1/Tc1 lymphocytes and neutrophils, respectively. Inhaled corticosteroids (ICS) and long acting beta 2-agonists (LABA) are widely used. However, their effect(s) on the release of IP-10 and IL-8 by airway epithelial cells are poorly understood. This study examined the effects of fluticasone, salmeterol, and agents which raise intracellular cAMP (cilomilast and db-cAMP) on the expression of IP-10 and IL-8 protein and mRNA. Studies were performed in cultured human airway epithelial cells during cytokine-stimulated IP-10 and IL-8 release. Cytokine treatment (TNF-alpha, IL-1beta and IFN-gamma) increased IP-10 and IL-8 protein and mRNA levels. Fluticasone (0.1 nM to 1 microM) increased IP-10 but reduced IL-8 protein release without changing IP-10 mRNA levels assessed by real time RT-PCR. The combination of salmeterol (1 micro M) and cilomilast (1-10 mu M) reduced IP-10 but had no effect on IL-8 protein. Salmeterol alone (1 micro M) and db-cAMP alone (1 mM) antagonised the effects of fluticasone on IP-10 but not IL-8 protein. In human airway epithelial cells, inhibition by salmeterol of fluticasone-enhanced IP-10 release may be an important therapeutic effect of the LABA/ICS combination not present when the two drugs are used separately.

  3. Nogo-B regulates migration and contraction of airway smooth muscle cells by decreasing ARPC 2/3 and increasing MYL-9 expression.

    PubMed

    Xu, Wujian; Hong, Weijun; Shao, Yan; Ning, Yunye; Cai, Zailong; Li, Qiang

    2011-01-21

    Abnormal proliferation, apoptosis, migration and contraction of airway smooth muscle (ASM) cells in airway remodeling in asthma are basically excessive repair responses to a network of inflammatory mediators such as PDGF, but the mechanisms of such responses remain unclear. Nogo-B, a member of the reticulum family 4(RTN4), is known to play a key role in arteriogenesis and tissue repair. Further studies are needed to elucidate the role of Nogo-B in airway smooth muscle abnormalities. A mouse model of chronic asthma was established by repeated OVA inhalation and subjected to Nogo-B expression analysis using immunohistochemistry and Western Blotting. Then, primary human bronchial smooth muscle cells (HBSMCs) were cultured in vitro and a siRNA interference was performed to knockdown the expression of Nogo-B in the cells. The effects of Nogo-B inhibition on PDGF-induced HBSMCs proliferation, migration and contraction were evaluated. Finally, a proteomic analysis was conducted to unveil the underlying mechanisms responsible for the function of Nogo-B. Total Nogo-B expression was approximately 3.08-fold lower in chronic asthmatic mice compared to naïve mice, which was obvious in the smooth muscle layer of the airways. Interference of Nogo-B expression by siRNA resulted nearly 96% reduction in mRNA in cultured HBSMCs. In addition, knockdown of Nogo-B using specific siRNA significantly decreased PDGF-induced migration of HBSMCs by 2.3-fold, and increased the cellular contraction by 16% compared to negative controls, but had limited effects on PDGF-induced proliferation. Furthermore, using proteomic analysis, we demonstrate that the expression of actin related protein 2/3 complex subunit 5 (ARPC 2/3) decreased and, myosin regulatory light chain 9 isoform a (MYL-9) increased after Nogo-B knockdown. These data define a novel role for Nogo-B in airway remodeling in chronic asthma. Endogenous Nogo-B, which may exert its effects through ARPC 2/3 and MYL-9, is necessary for the

  4. Exploring the Transcriptome of Ciliated Cells Using In Silico Dissection of Human Tissues

    PubMed Central

    Ivliev, Alexander E.; 't Hoen, Peter A. C.; van Roon-Mom, Willeke M. C.; Peters, Dorien J. M.; Sergeeva, Marina G.

    2012-01-01

    Cilia are cell organelles that play important roles in cell motility, sensory and developmental functions and are involved in a range of human diseases, known as ciliopathies. Here, we search for novel human genes related to cilia using a strategy that exploits the previously reported tendency of cell type-specific genes to be coexpressed in the transcriptome of complex tissues. Gene coexpression networks were constructed using the noise-resistant WGCNA algorithm in 12 publicly available microarray datasets from human tissues rich in motile cilia: airways, fallopian tubes and brain. A cilia-related coexpression module was detected in 10 out of the 12 datasets. A consensus analysis of this module's gene composition recapitulated 297 known and predicted 74 novel cilia-related genes. 82% of the novel candidates were supported by tissue-specificity expression data from GEO and/or proteomic data from the Human Protein Atlas. The novel findings included a set of genes (DCDC2, DYX1C1, KIAA0319) related to a neurological disease dyslexia suggesting their potential involvement in ciliary functions. Furthermore, we searched for differences in gene composition of the ciliary module between the tissues. A multidrug-and-toxin extrusion transporter MATE2 (SLC47A2) was found as a brain-specific central gene in the ciliary module. We confirm the localization of MATE2 in cilia by immunofluorescence staining using MDCK cells as a model. While MATE2 has previously gained attention as a pharmacologically relevant transporter, its potential relation to cilia is suggested for the first time. Taken together, our large-scale analysis of gene coexpression networks identifies novel genes related to human cell cilia. PMID:22558177

  5. IL-33 promotes mouse keratinocyte-derived chemokine, an IL-8 homologue, expression in airway smooth muscle cells in ovalbumin-sensitized mice.

    PubMed

    Wu, Wei; Xu, Yuzhu; He, Xinliang; Lu, Yan; Guo, Yali; Yin, Zhuoran; Xie, Jungang; Zhao, Jianping

    2014-12-01

    Although it is recognized that IL-33 plays a key role in the onset of asthma, it is currently unclear whether IL-33 acts on any other target cells besides mast cells and Th2 cells in asthma. We investigated that whether airway smooth muscle cells (ASMCs) could contribute to asthma via stimulation with IL-33. To create a mouse model of acute asthma, murine ASMCs were isolated and cultured in vitro with IL-33. The ASMCs were divided into two groups, ASMCs from normal mice and ASMCs from ovalbumin-sensitized mice. The release of mouse KC was analyzed by PCR and ELISA. Immunocytochemical Staining of murine ASMCs for ST2 and IL-1RAcP was performed. IL-33 promoted KC expression, both in terms of mRNA and protien levels, in ASMCs from ovalbumin-sensitized mice. ST2 and IL-1RAcP were expressed in the membrane of ASMCs in ovalbumin-sensitized mice. IL-33 may contribute to the inflammation in the airways by acting on airway smooth muscle cells. IL-33 and ST2 may play important roles in allergic bronchial asthma.

  6. Patterns and Drivers of Vertical Distribution of the Ciliate Community from the Surface to the Abyssopelagic Zone in the Western Pacific Ocean.

    PubMed

    Zhao, Feng; Filker, Sabine; Xu, Kuidong; Huang, Pingping; Zheng, Shan

    2017-01-01

    The deep sea is one of the largest but least understood ecosystems on earth. Knowledge about the diversity and distribution patterns as well as drivers of microbial eukaryote (including ciliates) along the water column, particularly below the photic zone, is scarce. In this study, we investigated the diversity of pelagic ciliates, the main group of marine microeukaryotes, their vertical distribution from the surface to the abyssopelagic zone, as well as their horizontal distribution over a distance of 1,300 km in the Western Pacific Ocean, using high-throughput DNA and cDNA (complementary DNA) sequencing. No distance-decay relationship could be detected along the horizontal scale; instead, a distinct vertical distribution within the ciliate communities was revealed. The alpha diversity of the ciliate communities in the deep chlorophyll maximum (DCM) and the 200 m layer turned out to be significantly higher compared with the other water layers. The ciliate communities in the 200 m water layer appeared to be more similar to those in deeper layers from 1,000 m to about 5,000 m than to the surface and DCM ciliate communities. Dominant species in the bathypelagic and abyssopelagic zone, particularly some parasites, were also detected in the 200 m layer, but were almost absent in the surface layer. The 200 m layer, therefore, seems to be an important "species bank" for deep ocean layers. Statistical analyses further revealed significant effects of temperature and chlorophyll a on the partitioning of ciliate diversity, indicating that environmental factors are a stronger force in shaping marine pelagic ciliate communities than the geographic distance.

  7. Reality-and-Desire in Ciliates

    NASA Astrophysics Data System (ADS)

    Brijder, Robert; Hoogeboom, Hendrik Jan

    The theory of gene assembly in ciliates has a number of similarities with the theory of sorting by reversal. Both theories model processes that are based on splicing, and have a fixed begin and end product. The main difference is the type of splicing operations used to obtain the end product from the begin product. In this overview paper, we show how the concept of breakpoint graph, known from the theory of sorting by reversal, can be used in the theory of gene assembly. Our aim is to present the material in an intuitive and informal manner to allow for an efficient introduction into the subject.

  8. How the airway smooth muscle in cystic fibrosis reacts in proinflammatory conditions: implications for airway hyper-responsiveness and asthma in cystic fibrosis.

    PubMed

    McCuaig, Sarah; Martin, James G

    2013-04-01

    Among patients with cystic fibrosis there is a high prevalence (40-70%) of asthma signs and symptoms such as cough and wheezing and airway hyper-responsiveness to inhaled histamine or methacholine. Whether these abnormal airway responses are due to a primary deficiency in the cystic fibrosis transmembrane conductance regulator (CFTR) or are secondary to the inflammatory environment in the cystic fibrosis lungs is not clear. A role for the CFTR in smooth muscle function is emerging, and alterations in contractile signalling have been reported in CFTR-deficient airway smooth muscle. Persistent bacterial infection, especially with Pseudomonas aeruginosa, stimulates interleukin-8 release from the airway epithelium, resulting in neutrophilic inflammation. Increased neutrophilia and skewing of CFTR-deficient T-helper cells to type 2 helper T cells creates an inflammatory environment characterised by high concentrations of tumour necrosis factor α, interleukin-8, and interleukin-13, which might all contribute to increased contractility of airway smooth muscle in cystic fibrosis. An emerging role of interleukin-17, which is raised in patients with cystic fibrosis, in airway smooth muscle proliferation and hyper-responsiveness is apparent. Increased understanding of the molecular mechanisms responsible for the altered smooth muscle physiology in patients with cystic fibrosis might provide insight into airway dysfunction in this disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Meiosis gene inventory of four ciliates reveals the prevalence of a synaptonemal complex-independent crossover pathway.

    PubMed

    Chi, Jingyun; Mahé, Frédéric; Loidl, Josef; Logsdon, John; Dunthorn, Micah

    2014-03-01

    To establish which meiosis genes are present in ciliates, and to look for clues as to which recombination pathways may be treaded by them, four genomes were inventoried for 11 meiosis-specific and 40 meiosis-related genes. We found that the set of meiosis genes shared by Tetrahymena thermophila, Paramecium tetraurelia, Ichthyophthirius multifiliis, and Oxytricha trifallax is consistent with the prevalence of a Mus81-dependent class II crossover pathway that is considered secondary in most model eukaryotes. There is little evidence for a canonical class I crossover pathway that requires the formation of a synaptonemal complex (SC). This gene inventory suggests that meiotic processes in ciliates largely depend on mitotic repair proteins for executing meiotic recombination. We propose that class I crossovers and SCs were reduced sometime during the evolution of ciliates. Consistent with this reduction, we provide microscopic evidence for the presence only of degenerate SCs in Stylonychia mytilus. In addition, lower nonsynonymous to synonymous mutation rates of some of the meiosis genes suggest that, in contrast to most other nuclear genes analyzed so far, meiosis genes in ciliates are largely evolving at a slower rate than those genes in fungi and animals.

  10. Application of an indicator based on taxonomic relatedness of ciliated protozoan assemblages for marine environmental assessment.

    PubMed

    Xu, Henglong; Jiang, Yong; Al-Rasheid, Khaled A S; Al-Farraj, Saleh A; Song, Weibo

    2011-08-01

    Ciliated protozoa play important roles in aquatic ecosystems especially regarding their functions in micro-food web and have many advantages in environmental assessment compared with most other eukaryotic organisms. The aims of this study were focused on analyzing the application of an indicator based on taxonomic relatedness of ciliated protozoan assemblages for marine environmental assessment. The spatial taxonomic patterns and diversity measures in response to physical-chemical variables were studied based on data from samples collected during 1-year cycle in the semi-enclosed Jiaozhou Bay, northern China. The spatial patterns of ciliate communities were significantly correlated with the changes of environmental status. The taxonomic distinctness (Δ*) and the average taxonomic distinctness (Δ+) were significantly negatively correlated with the changes of nutrients (e.g., nitrate nitrogen and soluble active phosphate; P<0.05). Pairwise indices of Δ+ and the variation in taxonomic distinctness (Λ+) showed a decreasing trend of departure from the expected taxonomic breadth in response to the eutrophication stress and anthropogenic impact. The taxonomic relatedness (especially the pairwise Δ+ and Λ+) indices of ciliate communities are robust as an indicator with scientifically operational value in marine environmental assessment.

  11. Cytokine and Lipid Mediator Regulation of Group 2 Innate Lymphoid Cells (ILC2s) in Human Allergic Airway Disease.

    PubMed

    Cavagnero, Kellen; Doherty, Taylor A

    2017-08-01

    The recent discovery of group 2 innate lymphoid cells (ILC2s) has caused a paradigm shift in the understanding of allergic airway disease pathogenesis. Prior to the discovery of ILC2s, Th2 cells were largely thought to be the primary source of type 2 cytokines; however, activated ILC2s have since been shown to contribute significantly, and in some cases, dominantly to type 2 cytokine production. Since the discovery of ILC2s in 2010, many mediators have been shown to regulate their effector functions. Initial studies identified the epithelial derived cytokines IL-25, IL-33, and TSLP as activators of ILC2s, and recent studies have identified many additional cytokine and lipid mediators that are involved in ILC2 regulation. ILC2s and their mediators represent novel therapeutic targets for allergic airway diseases and intensive investigation is underway to better understand ILC2 biology and upstream and downstream pathways that lead to ILC2-driven airway pathology. In this review, we will focus on the cytokine and lipid mediators that regulate ILC2s in human allergic airway disease, as well as highlight newly discovered mediators of mouse ILC2s that may eventually translate to humans.

  12. Molecular architecture of the fruit fly's airway epithelial immune system.

    PubMed

    Wagner, Christina; Isermann, Kerstin; Fehrenbach, Heinz; Roeder, Thomas

    2008-09-29

    Airway epithelial cells not only constitute a physical barrier, but also the first line of defence against airborne pathogens. At the same time, they are constantly exposed to reactive oxygen species. Therefore, airway epithelia cells have to possess a sophisticated innate immune system and a molecular armamentarium to detoxify reactive oxygen species. It has become apparent that deregulation of epithelial innate immunity is a major reason for the development of chronic inflammatory lung diseases. To elucidate the molecular architecture of the innate immune system of airway epithelial cells, we choose the fruit fly Drosophila melanogaster as a model, because it has the simplest type of airways, consisting of epithelial cells only. Elucidating the structure of the innate immune system of this "airway epithelial cell culture" might enable us to understand why deregulatory processes in innate immune signalling cascades lead to long lasting inflammatory events. All airway epithelial cells of the fruit fly are able to launch an immune response. They contain only one functional signal transduction pathway that converges onto NF-kappaB factors, namely the IMD-pathway, which is homologous to the TNF-alpha receptor pathway. Although vital parts of the Toll-pathway are missing, dorsal and dif, the NF-kappaB factors dedicated to this signalling system, are present. Other pathways involved in immune regulation, such as the JNK- and the JAK/STAT-pathway, are completely functional in these cells. In addition, most peptidoglycan recognition proteins, representing the almost complete collection of pattern recognition receptors, are part of the epithelial cells equipment. Potential effector molecules are different antimicrobial peptides and lysozymes, but also transferrin that can inhibit bacterial growth through iron-depletion. Reactive oxygen species can be inactivated through the almost complete armamentarium of enzymatic antioxidants that has the fly to its disposal. The innate

  13. Functional diversity of benthic ciliate communities in response to environmental gradients in a wetland of Yangtze Estuary, China.

    PubMed

    Xu, Yuan; Fan, Xinpeng; Warren, Alan; Zhang, Liquan; Xu, Henglong

    2018-02-01

    Researches on the functional diversity of benthic ecosystems have mainly focused on macrofauna, and studies on functional structure of ciliate communities have been based only on trophic- or size-groups. Current research was carried out on the changing patterns of classical and functional diversity of benthic ciliates in response to environmental gradients at three sites in a wetland in Yangtze Estuary. The results showed that changes of environmental factors (e.g. salinity, sediment grain size and hydrodynamic conditions) in the Yangtze Estuary induce variability in species composition and functional trait distribution. Furthermore, increased species richness and diversity did not lead to significant changes in functional diversity due to functional redundancy. However, salt water intrusion of Yangtze Estuary during the dry season could cause reduced functional diversity of ciliate communities. Current study provides the first insight into the functional diversity of ciliate communities in response to environmental gradients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. A 'Good' muscle in a 'Bad' environment: the importance of airway smooth muscle force adaptation to airway hyperresponsiveness.

    PubMed

    Bossé, Ynuk; Chapman, David G; Paré, Peter D; King, Gregory G; Salome, Cheryl M

    2011-12-15

    Asthma is characterized by airway inflammation, with a consequent increase in spasmogens, and exaggerated airway narrowing in response to stimuli, termed airway hyperresponsiveness (AHR). The nature of any relationship between inflammation and AHR is less clear. Recent ex vivo data has suggested a novel mechanism by which inflammation may lead to AHR, in which increased basal ASM-tone, due to the presence of spasmogens in the airways, may "strengthen" the ASM and ultimately lead to exaggerated airway narrowing. This phenomenon was termed "force adaptation" [Bossé, Y., Chin, L.Y., Paré, P.D., Seow, C.Y., 2009. Adaptation of airway smooth muscle to basal tone: relevance to airway hyperresponsiveness. Am. J. Respir. Cell Mol. Biol. 40, 13-18]. However, it is unknown whether the magnitude of the effect of force adaptation ex vivo could contribute to exaggerated airway narrowing in vivo. Our aim was to utilize a computational model of ASM shortening in order to quantify the potential effect of force adaptation on airway narrowing when all other mechanical factors were kept constant. The shortening in the model is dictated by a balance between physiological loads and ASM force-generating capacity at different lengths. The results suggest that the magnitude of the effect of force adaptation on ASM shortening would lead to substantially more airway narrowing during bronchial challenge at any given airway generation. We speculate that the increased basal ASM-tone in asthma, due to the presence of inflammation-derived spasmogens, produces an increase in the force-generating capacity of ASM, predisposing to AHR during subsequent challenge. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS

    Exposure of humans to PM results in increased mortality and morbidity. Recent toxicology studies have shown a number of pathophysiological pulmonary and car...

  16. Chloride and potassium channels in cystic fibrosis airway epithelia

    NASA Astrophysics Data System (ADS)

    Welsh, Michael J.; Liedtke, Carole M.

    1986-07-01

    Cystic fibrosis, the most common lethal genetic disease in Caucasians, is characterized by a decreased permeability in sweat gland duct and airway epithelia. In sweat duct epithelium, a decreased Cl- permeability accounts for the abnormally increased salt content of sweat1. In airway epithelia a decreased Cl- permeability, and possibly increased sodium absorption, may account for the abnormal respiratory tract fluid2,3. The Cl- impermeability has been localized to the apical membrane of cystic fibrosis airway epithelial cells4. The finding that hormonally regulated Cl- channels make the apical membrane Cl- permeable in normal airway epithelial cells5 suggested abnormal Cl- channel function in cystic fibrosis. Here we report that excised, cell-free patches of membrane from cystic fibrosis epithelial cells contain Cl- channels that have the same conductive properties as Cl- channels from normal cells. However, Cl- channels from cystic fibrosis cells did not open when they were attached to the cell. These findings suggest defective regulation of Cl- channels in cystic fibrosis epithelia; to begin to address this issue, we performed two studies. First, we found that isoprenaline, which stimulates Cl- secretion, increases cellular levels of cyclic AMP in a similar manner in cystic fibrosis and non-cystic fibrosis epithelial cells. Second, we show that adrenergic agonists open calcium-activated potassium channels, indirectly suggesting that calcium-dependent stimulus-response coupling is intact in cystic fibrosis. These data suggest defective regulation of Cl- channels at a site distal to cAMP accumulation.

  17. Motorcycle exhaust particles induce airway inflammation and airway hyperresponsiveness in BALB/C mice.

    PubMed

    Lee, Chen-Chen; Liao, Jiunn-Wang; Kang, Jaw-Jou

    2004-06-01

    A number of large studies have reported that environmental pollutants from fossil fuel combustion can cause deleterious effects to the immune system, resulting in an allergic reaction leading to respiratory tract damage. In this study, we investigated the effect of motorcycle exhaust particles (MEP), a major pollutant in the Taiwan urban area, on airway inflammation and airway hyperresponsiveness in laboratory animals. BALB/c mice were instilled intratracheally (i.t.) with 1.2 mg/kg and 12 mg/kg of MEP, which was collected from two-stroke motorcycle engines. The mice were exposed 3 times i.t. with MEP, and various parameters for airway inflammation and hyperresponsiveness were sequentially analyzed. We found that MEP would induce airway and pulmonary inflammation characterized by infiltration of eosinophils, neutrophils, lymphocytes, and macrophages in bronchoalveolar lavage fluid (BALF) and inflammatory cell infiltration in lung. In addition, MEP treatment enhanced BALF interleukin-4 (IL-4), IL-5, and interferon-gamma (IFN-gamma) cytokine levels and serum IgE production. Bronchial response measured by unrestrained plethysmography with methacholine challenge showed that MEP treatment induced airway hyperresponsiveness (AHR) in BALB/c mice. The chemical components in MEP were further fractionated with organic solvents, and we found that the benzene-extracted fraction exerts a similar biological effect as seen with MEP, including airway inflammation, increased BALF IL-4, serum IgE production, and induction of AHR. In conclusion, we present evidence showing that the filter-trapped particles emitted from the unleaded-gasoline-fueled two-stroke motorcycle engine may induce proinflammatory and proallergic response profiles in the absence of exposure to allergen.

  18. The role of airway macrophages in apoptotic cell clearance following acute and chronic lung inflammation.

    PubMed

    Grabiec, Aleksander M; Hussell, Tracy

    2016-07-01

    Acute and chronic inflammatory responses in the lung are associated with the accumulation of large quantities of immune and structural cells undergoing apoptosis, which need to be engulfed by phagocytes in a process called 'efferocytosis'. Apoptotic cell recognition and removal from the lung is mediated predominantly by airway macrophages, though immature dendritic cells and non-professional phagocytes, such as epithelial cells and mesenchymal cells, can also display this function. Efficient clearance of apoptotic cells from the airways is essential for successful resolution of inflammation and the return to lung homeostasis. Disruption of this process leads to secondary necrosis of accumulating apoptotic cells, release of necrotic cell debris and subsequent uncontrolled inflammatory activation of the innate immune system by the released 'damage associated molecular patterns' (DAMPS). To control the duration of the immune response and prevent autoimmune reactions, anti-inflammatory signalling cascades are initiated in the phagocyte upon apoptotic cell uptake, mediated by a range of receptors that recognise specific phospholipids or proteins externalised on, or secreted by, the apoptotic cell. However, prolonged activation of apoptotic cell recognition receptors, such as the family of receptor tyrosine kinases Tyro3, Axl and MerTK (TAM), may delay or prevent inflammatory responses to subsequent infections. In this review, we will discuss recent advances in our understanding of the mechanism controlling apoptotic cell recognition and removal from the lung in homeostasis and during inflammation, the contribution of defective efferocytosis to chronic inflammatory lung diseases, such as chronic obstructive pulmonary disease, asthma and cystic fibrosis, and implications of the signals triggered by apoptotic cells in the susceptibility to pulmonary microbial infections.

  19. Diversity of Human and Macaque Airway Immune Cells at Baseline and during Tuberculosis Infection

    PubMed Central

    Myers, Amy J.; Jarvela, Jessica; Flynn, JoAnne; Rutledge, Tara; Bonfield, Tracey

    2016-01-01

    Immune cells of the distal airways serve as “first responders” of host immunity to the airborne pathogen Mycobacterium tuberculosis (Mtb). Mtb infection of cynomolgus macaques recapitulates the range of human outcomes from clinically silent latent tuberculosis infection (LTBI) to active tuberculosis of various degrees of severity. To further advance the application of this model to human studies, we compared profiles of bronchoalveolar lavage (BAL) cells of humans and cynomolgus macaques before and after Mtb infection. A simple gating strategy effectively defined BAL T-cell and phagocyte populations in both species. BAL from Mtb-naive humans and macaques showed similar differential cell counts. BAL T cells of macaques were composed of fewer CD4+cells but more CD8+ and CD4+CD8+ double-positive cells than were BAL T cells of humans. The most common mononuclear phagocyte population in BAL of both species displayed coexpression of HLA-DR, CD206, CD11b, and CD11c; however, multiple phagocyte subsets displaying only some of these markers were observed as well. Macaques with LTBI displayed a marked BAL lymphocytosis that was not observed in humans with LTBI. In macaques, the prevalence of specific mononuclear phagocyte subsets in baseline BAL correlated with ultimate outcomes of Mtb infection (i.e., LTBI versus active disease). Overall, these findings demonstrate the comparability of studies of pulmonary immunity to Mtb in humans and macaques. They also indicate a previously undescribed complexity of airway mononuclear phagocyte populations that suggests further lines of investigation relevant to understanding the mechanisms of both protection from and susceptibility to the development of active tuberculosis within the lung. PMID:27509488

  20. Concomitant Exposure to Ovalbumin and Endotoxin Augments Airway Inflammation but Not Airway Hyperresponsiveness in a Murine Model of Asthma

    PubMed Central

    Mac Sharry, John; Shalaby, Karim H.; Marchica, Cinzia; Farahnak, Soroor; Chieh-Li, Tien; Lapthorne, Susan; Qureshi, Salman T.; Shanahan, Fergus; Martin, James G.

    2014-01-01

    Varying concentrations of lipopolysaccharide (LPS) in ovalbumin (OVA) may influence the airway response to allergic sensitization and challenge. We assessed the contribution of LPS to allergic airway inflammatory responses following challenge with LPS-rich and LPS-free commercial OVA. BALB/c mice were sensitized with LPS-rich OVA and alum and then underwent challenge with the same OVA (10 µg intranasally) or an LPS-free OVA. Following challenge, bronchoalveolar lavage (BAL), airway responsiveness to methacholine and the lung regulatory T cell population (Treg) were assessed. Both OVA preparations induced BAL eosinophilia but LPS-rich OVA also evoked BAL neutrophilia. LPS-free OVA increased interleukin (IL)-2, IL-4 and IL-5 whereas LPS-rich OVA additionally increased IL-1β, IL-12, IFN-γ, TNF-α and KC. Both OVA-challenged groups developed airway hyperresponsiveness. TLR4-deficient mice challenged with either OVA preparation showed eosinophilia but not neutrophilia and had increased IL-5. Only LPS-rich OVA challenged mice had increased lung Tregs and LPS-rich OVA also induced in vitro Treg differentiation. LPS-rich OVA also induced a Th1 cytokine response in human peripheral blood mononuclear cells.We conclude that LPS-rich OVA evokes mixed Th1, Th2 and innate immune responses through the TLR-4 pathway, whereas LPS-free OVA evokes only a Th2 response. Contaminating LPS is not required for induction of airway hyperresponsiveness but amplifies the Th2 inflammatory response and is a critical mediator of the neutrophil, Th1 and T regulatory cell responses to OVA. PMID:24968337

  1. Inhibition of airway surface fluid absorption by cholinergic stimulation

    PubMed Central

    Joo, Nam Soo; Krouse, Mauri E.; Choi, Jae Young; Cho, Hyung-Ju; Wine, Jeffrey J.

    2016-01-01

    In upper airways airway surface liquid (ASL) depth and clearance rates are both increased by fluid secretion. Secretion is opposed by fluid absorption, mainly via the epithelial sodium channel, ENaC. In static systems, increased fluid depth activates ENaC and decreased depth inhibits it, suggesting that secretion indirectly activates ENaC to reduce ASL depth. We propose an alternate mechanism in which cholinergic input, which causes copious airway gland secretion, also inhibits ENaC-mediated absorption. The conjoint action accelerates clearance, and the increased transport of mucus out of the airways restores ASL depth while cleansing the airways. We were intrigued by early reports of cholinergic inhibition of absorption by airways in some species. To reinvestigate this phenomenon, we studied inward short-circuit currents (Isc) in tracheal mucosa from human, sheep, pig, ferret, and rabbit and in two types of cultured cells. Basal Isc was inhibited 20–70% by the ENaC inhibitor, benzamil. Long-lasting inhibition of ENaC-dependent Isc was also produced by basolateral carbachol in all preparations except rabbit and the H441 cell line. Atropine inhibition produced a slow recovery or prevented inhibition if added before carbachol. The mechanism for inhibition was not determined and is most likely multi-factorial. However, its physiological significance is expected to be increased mucus clearance rates in cholinergically stimulated airways. PMID:26846701

  2. Cell division and density of symbiotic Chlorella variabilis of the ciliate Paramecium bursaria is controlled by the host's nutritional conditions during early infection process.

    PubMed

    Kodama, Yuuki; Fujishima, Masahiro

    2012-10-01

    The association of ciliate Paramecium bursaria with symbiotic Chlorella sp. is a mutualistic symbiosis. However, both the alga-free paramecia and symbiotic algae can still grow independently and can be reinfected experimentally by mixing them. Effects of the host's nutritional conditions against the symbiotic algal cell division and density were examined during early reinfection. Transmission electron microscopy revealed that algal cell division starts 24 h after mixing with alga-free P. bursaria, and that the algal mother cell wall is discarded from the perialgal vacuole membrane, which encloses symbiotic alga. Labelling of the mother cell wall with Calcofluor White Stain, a cell-wall-specific fluorochrome, was used to show whether alga had divided or not. Pulse labelling of alga-free P. bursaria cells with Calcofluor White Stain-stained algae with or without food bacteria for P. bursaria revealed that the fluorescence of Calcofluor White Stain in P. bursaria with bacteria disappeared within 3 days after mixing, significantly faster than without bacteria. Similar results were obtained both under constant light and dark conditions. This report is the first describing that the cell division and density of symbiotic algae of P. bursaria are controlled by the host's nutritional conditions during early infection. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  3. Protective effects of anisodamine on cigarette smoke extract-induced airway smooth muscle cell proliferation and tracheal contractility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Guang-Ni; Yang, Kai; Xu, Zu-Peng

    2012-07-01

    Anisodamine, an antagonist of muscarinic acetylcholine receptors (mAChRs), has been used therapeutically to improve smooth muscle function, including microvascular, intestinal and airway spasms. Our previous studies have revealed that airway hyper-reactivity could be prevented by anisodamine. However, whether anisodamine prevents smoking-induced airway smooth muscle (ASM) cell proliferation remained unclear. In this study, a primary culture of rat ASM cells was used to evaluate an ASM phenotype through the ability of the cells to proliferate and express contractile proteins in response to cigarette smoke extract (CSE) and intervention of anisodamine. Our results showed that CSE resulted in an increase in cyclinmore » D1 expression concomitant with the G0/G1-to-S phase transition, and high expression of M2 and M3. Functional studies showed that tracheal hyper-contractility accompanied contractile marker α-SMA high-expression. These changes, which occur only after CSE stimulation, were prevented and reversed by anisodamine, and CSE-induced cyclin D1 expression was significantly inhibited by anisodamine and the specific inhibitor U0126, BAY11-7082 and LY294002. Thus, we concluded that the protective and reversal effects and mechanism of anisodamine on CSE-induced events might involve, at least partially, the ERK, Akt and NF-κB signaling pathways associated with cyclin D1 via mAChRs. Our study validated that anisodamine intervention on ASM cells may contribute to anti-remodeling properties other than bronchodilation. -- Highlights: ► CSE induces tracheal cell proliferation, hyper-contractility and α-SMA expression. ► Anisodamine reverses CSE-induced tracheal hyper-contractility and cell proliferation. ► ERK, PI3K, and NF-κB pathways and cyclin D1 contribute to the reversal effect.« less

  4. The active contribution of Toll-like receptors to allergic airway inflammation.

    PubMed

    Chen, Keqiang; Xiang, Yi; Yao, Xiaohong; Liu, Ying; Gong, Wanghua; Yoshimura, Teizo; Wang, Ji Ming

    2011-10-01

    Epithelia lining the respiratory tract represent a major portal of entry for microorganisms and allergens and are equipped with innate and adaptive immune signaling receptors for host protection. These include Toll-like receptors (TLRs) that recognize microbial components and evoke diverse responses in cells of the respiratory system. TLR stimulation by microorganism-derived molecules activates antigen presenting cells, control T helper (Th) 1, Th2, and Th17 immune cell differentiation, cytokine production by mast cells, and activation of eosinophils. It is clear that TLR are involved in the pathophysiology of allergic airway diseases such as asthma. Dendritic cells (DCs), a kind of antigen presenting cells, which play a key role in the induction of allergic airway inflammation, are privileged targets for pathogen associated molecular patterns (PAMPs). During the allergic responses, engagement of TLRs on DCs determines the Th2 polarization of the T cells. TLR signaling in mast cells increases the release of IL-5, and TLR activation of airway epithelial cells forces the generation of proallergic Th2 type of cytokines. Although these responses aim to protect the host, they may also result in inflammatory tissue damage in the airway. Under certain conditions, stimulation of TLRs, in particular, TLR9, may reduce Th2-dependent allergic inflammation by induction of Th1 responses. Therefore, understanding the complex regulatory roles of TLRs in the pathogenesis of allergic airway inflammation should facilitate the development of preventive and therapeutic measures for asthmatic patients. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Lithium-induced developmental anomalies in the spirotrich ciliate Stylonychia lemnae (Ciliophora, Hypotrichida).

    PubMed

    Makhija, Seema; Gupta, Renu; Toteja, Ravi

    2015-08-01

    Lithium is known to have profound biological effects of varying intensity in different life forms. In the present investigation, the effect of lithium was studied on the spirotrich ciliate Stylonychia lemnae. Lithium treatment brings about quantitative changes in the patterning of ciliary structures in S. lemnae. The dorsal surface of the affected cells develops supernumerary ciliary kineties due to excessive proliferation of the kinetosomes. The ventral surface on the other hand develops fewer than normal cirri formed from reduced numbers of ciliary primordia. The adoral zone of membranelles (AZM) fails to remodel properly as, in certain segments, membranelles become disarranged and misaligned. Lithium-induced changes are transitory as the normal pattern is restored during recovery after the cells are shifted to normal medium, suggesting non-genic regulation of cortical pattern. Lithium also affects the process of cell proliferation as the number of cells undergoing division is negligible as compared to reorganizing cells. The results point to the extremely complex and heterogeneous organization of the cellular cortex (plasma membrane and cytoskeleton) which is capable of exerting autonomous control over the phenotype and cortical pattern. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Remodeling of bovine oviductal epithelium by mitosis of secretory cells.

    PubMed

    Ito, Sayaka; Kobayashi, Yoshihiko; Yamamoto, Yuki; Kimura, Koji; Okuda, Kiyoshi

    2016-11-01

    Two types of oviductal epithelial cells, secretory and ciliated, play crucial roles in the first days after fertilization in mammals. Secretory cells produce various molecules promoting embryo development, while ciliated cells facilitate transport of oocytes and zygotes by ciliary beating. The proportions of the two cell types change during the estrous cycle. The proportion of ciliated cells on the oviductal luminal surface is abundant at the follicular phase, whereas the proportion of secretory cells gradually increases with the formation of the corpus luteum. In the present study, we hypothesize that the proportions of ciliated and secretory epithelial cells are regulated by mitosis. The proportion of the cells being positive for FOXJ1 (a ciliated cell marker) or Ki67 (a mitosis marker) in epithelial cells during the estrous cycle were immunohistochemically examined. Ki67 and FOXJ1 or PAX8 (a secretory cell marker), were double-stained to clarify which types of epithelial cells undergo mitosis. In the ampulla, the percentage of FOXJ1-positive cells was highest at the day of ovulation (Day 0) and decreased by about 50 % by Days 8-12, while in the isthmus it did not change during the estrous cycle. The proportion of Ki67-positive cells was highest at around the time of ovulation in both the ampulla and isthmus. All the Ki67-positive cells were PAX8-positive and FOXJ1-negative in both the ampulla and isthmus. These findings suggest that epithelial remodeling, which is regulated by differentiation and/or proliferation of secretory cells of the oviduct, provides the optimal environment for gamete transport, fertilization and embryonic development.

  7. Normoxic Cyclic GMP-independent Oxidative Signaling by Nitrite Enhances Airway Epithelial Cell Proliferation and Wound Healing

    PubMed Central

    Wang, Ling; Frizzell, Sheila A.; Zhao, Xuejun; Gladwin, Mark T.

    2013-01-01

    The airway epithelium provides important barrier and host defense functions. Recent studies reveal that nitrite is an endocrine reservoir of nitric oxide (NO) bioactivity that is converted to NO by enzymatic reductases along the physiological oxygen gradient. Nitrite signaling has been described as NO dependent activation mediated by reactions with deoxygenated redox active hemoproteins, such as hemoglobin, myoglobin, neuroglobin, xanthine oxidoreductase (XO) and NO synthase at low pH and oxygen tension. However, nitrite can also be readily oxidized to nitrogen dioxide (NO2•) via heme peroxidase reactions, suggesting the existence of alternative oxidative signaling pathways for nitrite under normoxic conditions. In the present study we examined normoxic signaling effects of sodium nitrite on airway epithelial cell wound healing. In an in vitro scratch injury model under normoxia, we exposed cultured monolayers of human airway epithelial cells to various concentrations of sodium nitrite and compared responses to NO donor. We found sodium nitrite potently enhanced airway epithelium wound healing at physiological concentrations (from 1uM). The effect of nitrite was blocked by the NO and NO2• scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (c-PTIO). Interestingly, nitrite treatment did not increase cyclic guanosine monophosphate (cGMP) levels under these normoxic conditions, even in the presence of a phosphodiesterase 5 inhibitor, suggesting cGMP independent signaling. Consistent with an oxidative signaling pathway requiring hydrogen peroxide (H2O2)/heme peroxidase/NO2• signaling, the effects of nitrite were potentiated by superoxide dismutase (SOD) and low concentration H2O2, whereas inhibited completely by catalase, followed by downstream extracellular-signal-regulated kinase (ERK) 1/2 activation. Our data represent the first description of normoxic nitrite signaling on lung epithelial cell proliferation and wound healing and suggest

  8. Baicalein Reduces Airway Injury in Allergen and IL-13 Induced Airway Inflammation

    PubMed Central

    Mabalirajan, Ulaganathan; Ahmad, Tanveer; Rehman, Rakhshinda; Leishangthem, Geeta Devi; Dinda, Amit Kumar; Agrawal, Anurag; Ghosh, Balaram; Sharma, Surendra Kumar

    2013-01-01

    Background Baicalein, a bioflavone present in the dry roots of Scutellaria baicalensis Georgi, is known to reduce eotaxin production in human fibroblasts. However, there are no reports of its anti-asthma activity or its effect on airway injury. Methodology/Principal Findings In a standard experimental asthma model, male Balb/c mice that were sensitized with ovalbumin (OVA), treated with baicalein (10 mg/kg, ip) or a vehicle control, either during (preventive use) or after OVA challenge (therapeutic use). In an alternate model, baicalein was administered to male Balb/c mice which were given either IL-4 or IL-13 intranasally. Features of asthma were determined by estimating airway hyperresponsiveness (AHR), histopathological changes and biochemical assays of key inflammatory molecules. Airway injury was determined with apoptotic assays, transmission electron microscopy and assessing key mitochondrial functions. Baicalein treatment reduced AHR and inflammation in both experimental models. TGF-β1, sub-epithelial fibrosis and goblet cell metaplasia, were also reduced. Furthermore, baicalein treatment significantly reduced 12/15-LOX activity, features of mitochondrial dysfunctions, and apoptosis of bronchial epithelia. Conclusion/Significance Our findings demonstrate that baicalein can attenuate important features of asthma, possibly through the reduction of airway injury and restoration of mitochondrial function. PMID:23646158

  9. The effects of gas humidification with high-flow nasal cannula on cultured human airway epithelial cells.

    PubMed

    Chidekel, Aaron; Zhu, Yan; Wang, Jordan; Mosko, John J; Rodriguez, Elena; Shaffer, Thomas H

    2012-01-01

    Humidification of inspired gas is important for patients receiving respiratory support. High-flow nasal cannula (HFNC) effectively provides temperature and humidity-controlled gas to the airway. We hypothesized that various levels of gas humidification would have differential effects on airway epithelial monolayers. Calu-3 monolayers were placed in environmental chambers at 37°C with relative humidity (RH) < 20% (dry), 69% (noninterventional comparator), and >90% (HFNC) for 4 and 8 hours with 10 L/min of room air. At 4 and 8 hours, cell viability and transepithelial resistance measurements were performed, apical surface fluid was collected and assayed for indices of cell inflammation and function, and cells were harvested for histology (n = 6/condition). Transepithelial resistance and cell viability decreased over time (P < 0.001) between HFNC and dry groups (P < 0.001). Total protein secretion increased at 8 hours in the dry group (P < 0.001). Secretion of interleukin (IL)-6 and IL-8 in the dry group was greater than the other groups at 8 hours (P < 0.001). Histological analysis showed increasing injury over time for the dry group. These data demonstrate that exposure to low humidity results in reduced epithelial cell function and increased inflammation.

  10. The Effects of Gas Humidification with High-Flow Nasal Cannula on Cultured Human Airway Epithelial Cells

    PubMed Central

    Chidekel, Aaron; Zhu, Yan; Wang, Jordan; Mosko, John J.; Rodriguez, Elena; Shaffer, Thomas H.

    2012-01-01

    Humidification of inspired gas is important for patients receiving respiratory support. High-flow nasal cannula (HFNC) effectively provides temperature and humidity-controlled gas to the airway. We hypothesized that various levels of gas humidification would have differential effects on airway epithelial monolayers. Calu-3 monolayers were placed in environmental chambers at 37°C with relative humidity (RH) < 20% (dry), 69% (noninterventional comparator), and >90% (HFNC) for 4 and 8 hours with 10 L/min of room air. At 4 and 8 hours, cell viability and transepithelial resistance measurements were performed, apical surface fluid was collected and assayed for indices of cell inflammation and function, and cells were harvested for histology (n = 6/condition). Transepithelial resistance and cell viability decreased over time (P < 0.001) between HFNC and dry groups (P < 0.001). Total protein secretion increased at 8 hours in the dry group (P < 0.001). Secretion of interleukin (IL)-6 and IL-8 in the dry group was greater than the other groups at 8 hours (P < 0.001). Histological analysis showed increasing injury over time for the dry group. These data demonstrate that exposure to low humidity results in reduced epithelial cell function and increased inflammation. PMID:22988501

  11. Paraneurons in the gills and airways of fishes.

    PubMed

    Zaccone, G; Fasulo, S; Ainis, L; Licata, A

    1997-04-01

    This chapter describes the distributional patterns of the neuroendocrine cells in the respiratory surfaces of fishes and their bioactive secretions which are compared with similar elements in higher vertebrates. The neuroendocrine cells in the airways of fishes differentiate as solitary and clustered cells, but the clusters are not converted into neuroepithelial bodies which are reported in terrestrial vertebrates. The dipnoan fish Protopterus has innervated neuroendocrine cells in the pneumatic duct region. In Polypterus and Amia the lungs have neuroendocrine cells that are apparently not innervated. Two types of neuroendocrine cells are found in the gill of teleost fishes. These cells are very different by their location, structure and immunohistochemistry. Advanced studies on functional morphology of neuroendocrine cells in fish airways are still necessary to increase our understanding of their multifunctional role in the gill area.

  12. Beneficial effects of ursodeoxycholic acid via inhibition of airway remodelling, apoptosis of airway epithelial cells, and Th2 immune response in murine model of chronic asthma.

    PubMed

    Işık, S; Karaman, M; Çilaker Micili, S; Çağlayan-Sözmen, Ş; Bağrıyanık, H Alper; Arıkan-Ayyıldız, Z; Uzuner, N; Karaman, Ö

    In previous studies, anti-inflammatory, anti-apoptotic and immunomodulatory effects of ursodeoxycholic acid (UDCA) on liver diseases have been shown. In this study, we aimed to investigate the effects of UDCA on airway remodelling, epithelial apoptosis, and T Helper (Th)-2 derived cytokine levels in a murine model of chronic asthma. Twenty-seven BALB/c mice were divided into five groups; PBS-Control, OVA-Placebo, OVA-50mg/kg UDCA, OVA-150mg/kg UDCA, OVA-Dexamethasone. Mice in groups OVA-50mg/kg UDCA, OVA-150mg/kg UDCA, OVA-Dexamethasone received the UDCA (50mg/kg), UDCA (150mg/kg), and dexamethasone, respectively. Epithelium thickness, sub-epithelial smooth muscle thickness, number of mast and goblet cells of samples isolated from the lung were measured. Immunohistochemical scorings of the lung tissue for matrix metalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEG-F), transforming growth factor-beta (TGF-β), terminal deoxynucleotidyl transferase-mediated dUTP nick endlabeling (TUNEL) and cysteine-dependent aspartate-specific proteases (caspase)-3 were determined. IL-4, IL-5, IL-13, Nitric oxide, ovalbumin-specific immunoglobulin (Ig) E levels were quantified. The dose of 150mg/kg UDCA treatment led to lower epithelial thickness, sub-epithelial smooth muscle thickness, goblet and mast cell numbers compared to placebo. Except for MMP-9 and TUNEL all immunohistochemical scores were similar in both UDCA treated groups and the placebo. All cytokine levels were significantly lower in group IV compared to the placebo. These findings suggested that the dose of 150mg/kg UDCA improved all histopathological changes of airway remodelling and its beneficial effects might be related to modulating Th-2 derived cytokines and the inhibition of apoptosis of airway epithelial cells. Copyright © 2017 SEICAP. Published by Elsevier España, S.L.U. All rights reserved.

  13. Macronuclear Genome Sequence of the Ciliate Tetrahymena thermophila, a Model Eukaryote

    PubMed Central

    Eisen, Jonathan A; Coyne, Robert S; Wu, Martin; Wu, Dongying; Thiagarajan, Mathangi; Wortman, Jennifer R; Badger, Jonathan H; Ren, Qinghu; Amedeo, Paolo; Jones, Kristie M; Tallon, Luke J; Delcher, Arthur L; Salzberg, Steven L; Silva, Joana C; Haas, Brian J; Majoros, William H; Farzad, Maryam; Carlton, Jane M; Smith, Roger K; Garg, Jyoti; Pearlman, Ronald E; Karrer, Kathleen M; Sun, Lei; Manning, Gerard; Elde, Nels C; Turkewitz, Aaron P; Asai, David J; Wilkes, David E; Wang, Yufeng; Cai, Hong; Collins, Kathleen; Stewart, B. Andrew; Lee, Suzanne R; Wilamowska, Katarzyna; Weinberg, Zasha; Ruzzo, Walter L; Wloga, Dorota; Gaertig, Jacek; Frankel, Joseph; Tsao, Che-Chia; Gorovsky, Martin A; Keeling, Patrick J; Waller, Ross F; Patron, Nicola J; Cherry, J. Michael; Stover, Nicholas A; Krieger, Cynthia J; del Toro, Christina; Ryder, Hilary F; Williamson, Sondra C; Barbeau, Rebecca A; Hamilton, Eileen P; Orias, Eduardo

    2006-01-01

    The ciliate Tetrahymena thermophila is a model organism for molecular and cellular biology. Like other ciliates, this species has separate germline and soma functions that are embodied by distinct nuclei within a single cell. The germline-like micronucleus (MIC) has its genome held in reserve for sexual reproduction. The soma-like macronucleus (MAC), which possesses a genome processed from that of the MIC, is the center of gene expression and does not directly contribute DNA to sexual progeny. We report here the shotgun sequencing, assembly, and analysis of the MAC genome of T. thermophila, which is approximately 104 Mb in length and composed of approximately 225 chromosomes. Overall, the gene set is robust, with more than 27,000 predicted protein-coding genes, 15,000 of which have strong matches to genes in other organisms. The functional diversity encoded by these genes is substantial and reflects the complexity of processes required for a free-living, predatory, single-celled organism. This is highlighted by the abundance of lineage-specific duplications of genes with predicted roles in sensing and responding to environmental conditions (e.g., kinases), using diverse resources (e.g., proteases and transporters), and generating structural complexity (e.g., kinesins and dyneins). In contrast to the other lineages of alveolates (apicomplexans and dinoflagellates), no compelling evidence could be found for plastid-derived genes in the genome. UGA, the only T. thermophila stop codon, is used in some genes to encode selenocysteine, thus making this organism the first known with the potential to translate all 64 codons in nuclear genes into amino acids. We present genomic evidence supporting the hypothesis that the excision of DNA from the MIC to generate the MAC specifically targets foreign DNA as a form of genome self-defense. The combination of the genome sequence, the functional diversity encoded therein, and the presence of some pathways missing from other model

  14. Application of the denaturing gradient gel electrophoresis (DGGE) technique as an efficient diagnostic tool for ciliate communities in soil.

    PubMed

    Jousset, Alexandre; Lara, Enrique; Nikolausz, Marcell; Harms, Hauke; Chatzinotas, Antonis

    2010-02-01

    Ciliates (or Ciliophora) are ubiquitous organisms which can be widely used as bioindicators in ecosystems exposed to anthropogenic and industrial influences. The evaluation of the environmental impact on soil ciliate communities with methods relying on morphology-based identification may be hampered by the large number of samples usually required for a statistically supported, reliable conclusion. Cultivation-independent molecular-biological diagnostic tools are a promising alternative to greatly simplify and accelerate such studies. In this present work a ciliate-specific fingerprint method based on the amplification of a phylogenetic marker gene (i.e. the 18S ribosomal RNA gene) with subsequent analysis by denaturing gradient gel electrophoresis (DGGE) was developed and used to monitor community shifts in a polycyclic aromatic hydrocarbon (PAH) polluted soil. The semi-nested approach generated ciliate-specific amplification products from all soil samples and allowed to distinguish community profiles from a PAH-polluted and a non-polluted control soil. Subsequent sequence analysis of excised bands provided evidence that polluted soil samples are dominated by organisms belonging to the class Colpodea. The general DGGE approach presented in this study might thus in principle serve as a fast and reproducible diagnostic tool, complementing and facilitating future ecological and ecotoxicological monitoring of ciliates in polluted habitats. Copyright 2009 Elsevier B.V. All rights reserved.

  15. IDENTIFICATION AND CHARACTERIZATION OF HUMAN AIRWAY EPITHELIAL CELL PROTEINS PHOSPHORYLATED IN RESPONSE TO PARTICULATE MATTER (PM) EXPOSURE.

    EPA Science Inventory

    Multiple studies conducted by NHEERL scientists in recent years have shown that acute exposure to metals found associated with combustion-derived particulate matter (PM) alters phosphoprotein metabolism in human airway epithelial cells causing intracellular signaling. This disreg...

  16. Efficient delivery of RNA interference oligonucleotides to polarized airway epithelia in vitro

    PubMed Central

    Ramachandran, Shyam; Krishnamurthy, Sateesh; Jacobi, Ashley M.; Wohlford-Lenane, Christine; Behlke, Mark A.; Davidson, Beverly L.

    2013-01-01

    Polarized and pseudostratified primary airway epithelia present barriers that significantly reduce their transfection efficiency and the efficacy of RNA interference oligonucleotides. This creates an impediment in studies of the airway epithelium, diminishing the utility of loss-of-function as a research tool. Here we outline methods to introduce RNAi oligonucleotides into primary human and porcine airway epithelia grown at an air-liquid interface and difficult-to-transfect transformed epithelial cell lines grown on plastic. At the time of plating, we reverse transfect small-interfering RNA (siRNA), Dicer-substrate siRNA, or microRNA oligonucleotides into cells by use of lipid or peptide transfection reagents. Using this approach we achieve significant knockdown in vitro of hypoxanthine-guanine phosphoribosyltransferase, IL-8, and CFTR expression at the mRNA and protein levels in 1–3 days. We also attain significant reduction of secreted IL-8 in polarized primary pig airway epithelia 3 days posttransfection and inhibition of CFTR-mediated Cl− conductance in polarized air-liquid interface cultures of human airway epithelia 2 wk posttransfection. These results highlight an efficient means to deliver RNA interference reagents to airway epithelial cells and achieve significant knockdown of target gene expression and function. The ability to reliably conduct loss-of-function assays in polarized primary airway epithelia offers benefits to research in studies of epithelial cell homeostasis, candidate gene function, gene-based therapeutics, microRNA biology, and targeting the replication of respiratory viruses. PMID:23624792

  17. Phosphoinositide 3-kinase gamma regulates airway smooth muscle contraction by modulating calcium oscillations.

    PubMed

    Jiang, Haihong; Abel, Peter W; Toews, Myron L; Deng, Caishu; Casale, Thomas B; Xie, Yan; Tu, Yaping

    2010-09-01

    Phosphoinositide 3-kinase gamma (PI3Kgamma) has been implicated in the pathogenesis of asthma, but its mechanism has been considered indirect, through release of inflammatory cell mediators. Because airway smooth muscle (ASM) contractile hyper-responsiveness plays a critical role in asthma, the aim of the present study was to determine whether PI3Kgamma can directly regulate contractility of ASM. Immunohistochemistry staining indicated expression of PI3Kgamma protein in ASM cells of mouse trachea and lung, which was confirmed by Western blot analysis in isolated mouse tracheal ASM cells. PI3Kgamma inhibitor II inhibited acetylcholine (ACh)-stimulated airway contraction of cultured precision-cut mouse lung slices in a dose-dependent manner with 75% inhibition at 10 muM. In contrast, inhibitors of PI3Kalpha, PI3Kbeta, or PI3Kdelta, at concentrations 40-fold higher than their reported IC(50) values for their primary targets, had no effect. It is noteworthy that airways in lung slices pretreated with PI3Kgamma inhibitor II still exhibited an ACh-induced initial contraction, but the sustained contraction was significantly reduced. Furthermore, the PI3Kgamma-selective inhibitor had a small inhibitory effect on the ACh-stimulated initial Ca(2+) transient in ASM cells of mouse lung slices or isolated mouse ASM cells but significantly attenuated the sustained Ca(2+) oscillations that are critical for sustained airway contraction. This report is the first to show that PI3Kgamma directly controls contractility of airways through regulation of Ca(2+) oscillations in ASM cells. Thus, in addition to effects on airway inflammation, PI3Kgamma inhibitors may also exert direct effects on the airway contraction that contribute to pathologic airway hyper-responsiveness.

  18. Phosphoinositide 3-Kinase γ Regulates Airway Smooth Muscle Contraction by Modulating Calcium Oscillations

    PubMed Central

    Jiang, Haihong; Abel, Peter W.; Toews, Myron L.; Deng, Caishu; Casale, Thomas B.; Xie, Yan

    2010-01-01

    Phosphoinositide 3-kinase γ (PI3Kγ) has been implicated in the pathogenesis of asthma, but its mechanism has been considered indirect, through release of inflammatory cell mediators. Because airway smooth muscle (ASM) contractile hyper-responsiveness plays a critical role in asthma, the aim of the present study was to determine whether PI3Kγ can directly regulate contractility of ASM. Immunohistochemistry staining indicated expression of PI3Kγ protein in ASM cells of mouse trachea and lung, which was confirmed by Western blot analysis in isolated mouse tracheal ASM cells. PI3Kγ inhibitor II inhibited acetylcholine (ACh)-stimulated airway contraction of cultured precision-cut mouse lung slices in a dose-dependent manner with 75% inhibition at 10 μM. In contrast, inhibitors of PI3Kα, PI3Kβ, or PI3Kδ, at concentrations 40-fold higher than their reported IC50 values for their primary targets, had no effect. It is noteworthy that airways in lung slices pretreated with PI3Kγ inhibitor II still exhibited an ACh-induced initial contraction, but the sustained contraction was significantly reduced. Furthermore, the PI3Kγ-selective inhibitor had a small inhibitory effect on the ACh-stimulated initial Ca2+ transient in ASM cells of mouse lung slices or isolated mouse ASM cells but significantly attenuated the sustained Ca2+ oscillations that are critical for sustained airway contraction. This report is the first to show that PI3Kγ directly controls contractility of airways through regulation of Ca2+ oscillations in ASM cells. Thus, in addition to effects on airway inflammation, PI3Kγ inhibitors may also exert direct effects on the airway contraction that contribute to pathologic airway hyper-responsiveness. PMID:20501633

  19. Abnormal epithelial structure and chronic lung inflammation after repair of chlorine-induced airway injury.

    PubMed

    Mo, Yiqun; Chen, Jing; Humphrey, David M; Fodah, Ramy A; Warawa, Jonathan M; Hoyle, Gary W

    2015-01-15

    Chlorine is a toxic gas used in a variety of industrial processes and is considered a chemical threat agent. High-level chlorine exposure causes acute lung injury, but the long-term effects of acute chlorine exposure are unclear. Here we characterized chronic pulmonary changes following acute chlorine exposure in mice. A/J mice were exposed to 240 parts per million-hour chlorine or sham-exposed to air. Chlorine inhalation caused sloughing of bronchial epithelium 1 day after chlorine exposure, which was repaired with restoration of a pseudostratified epithelium by day 7. The repaired epithelium contained an abnormal distribution of epithelial cells containing clusters of club or ciliated cells rather than the uniformly interspersed pattern of these cells in unexposed mice. Although the damaged epithelium in A/J mice was repaired rapidly, and minimal airway fibrosis was observed, chlorine-exposed mice developed pneumonitis characterized by infiltration of alveoli with neutrophils and prominent, large, foamy macrophages. Levels of CXCL1/KC, CXCL5/LPS-induced CXC chemokine, granulocyte colony-stimulating factor, and VEGF in bronchoalveolar (BAL) fluid from chlorine-exposed mice showed steadily increasing trends over time. BAL protein levels were increased on day 4 and remained elevated out to day 28. The number of bacteria cultured from lungs of chlorine-exposed mice 4 wk after exposure was not increased compared with sham-exposed mice, indicating that the observed pneumonitis was not driven by bacterial infection of the lung. The results indicate that acute chlorine exposure may cause chronic abnormalities in the lungs despite rapid repair of injured epithelium. Copyright © 2015 the American Physiological Society.

  20. A Jagged 1-Notch 4 molecular switch mediates airway inflammation induced by ultrafine particles.

    PubMed

    Xia, Mingcan; Harb, Hani; Saffari, Arian; Sioutas, Constantinos; Chatila, Talal A

    2018-04-05

    Exposure to traffic-related particulate matter promotes asthma and allergic diseases. However, the precise cellular and molecular mechanisms by which particulate matter exposure acts to mediate these effects remain unclear. We sought to elucidate the cellular targets and signaling pathways critical for augmentation of allergic airway inflammation induced by ambient ultrafine particles (UFP). We used in vitro cell-culture assays with lung-derived antigen-presenting cells and allergen-specific T cells and in vivo mouse models of allergic airway inflammation with myeloid lineage-specific gene deletions, cellular reconstitution approaches, and antibody inhibition studies. We identified lung alveolar macrophages (AM) as the key cellular target of UFP in promoting airway inflammation. Aryl hydrocarbon receptor-dependent induction of Jagged 1 (Jag1) expression in AM was necessary and sufficient for augmentation of allergic airway inflammation by UFP. UFP promoted T H 2 and T H 17 cell differentiation of allergen-specific T cells in a Jag1- and Notch 4-dependent manner. Treatment of mice with an anti-Notch 4 antibody abrogated exacerbation of allergic airway inflammation induced by UFP. UFP exacerbate allergic airway inflammation by promoting a Jag1-Notch 4-dependent interaction between AM and allergen-specific T cells, leading to augmented T H cell differentiation. Copyright © 2018 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  1. Chitin elicits CCL2 from airway epithelial cells and induces CCR2-dependent innate allergic inflammation in the lung

    PubMed Central

    Roy, René M.; Wüthrich, Marcel; Klein, Bruce S.

    2012-01-01

    Chitin exposure in the lung induces eosinophilia and alternative activation of macrophages, and is correlated with allergic airway disease. However, the mechanism underlying chitin-induced polarization of macrophages is poorly understood. Here, we show that chitin induces alternative activation of macrophages in vivo, but does not do so directly in vitro. We further show that airway epithelial cells bind chitin in vitro and produce CCL2 in response to chitin both in vitro and in vivo. Supernatants of chitin exposed epithelial cells promoted alternative activation of macrophages in vitro, whereas antibody neutralization of CCL2 in the supernate abolished the alternative activation of macrophages. CCL2 acted redundantly in vivo, but mice lacking the CCL2 receptor, CCR2, showed impaired alternative activation of macrophages in response to chitin, as measured by arginase I, CCL17 and CCL22 expression. Furthermore, CCR2KO mice exposed to chitin had diminished ROS products in the lung, blunted eosinophil and monocyte recruitment, and impaired eosinophil functions as measured by expression of CCL5, IL13 and CCL11. Thus, airway epithelial cells secrete CCL2 in response to chitin and CCR2 signaling mediates chitin-induced alternative activation of macrophages and allergic inflammation in vivo. PMID:22851704

  2. Epithelial organic cation transporters ensure pH-dependent drug absorption in the airway.

    PubMed

    Horvath, Gabor; Schmid, Nathalie; Fragoso, Miryam A; Schmid, Andreas; Conner, Gregory E; Salathe, Matthias; Wanner, Adam

    2007-01-01

    Most inhaled beta(2)-adrenergic agonist and anticholinergic bronchodilators have low lipid solubility because of their transient or permanent positive net charge at physiologic pH. Airway absorption of these cationic drugs is incompletely understood. We examined carrier-mediated mechanisms of cationic drug uptake by human airway epithelia. Airway tissues and epithelial cells, obtained from lung donors without preexisting lung disease, were evaluated for organic cation transporter expression by quantitative RT-PCR and immunofluorescence. For in vitro functional studies on primary airway epithelial cells, uptake of the cationic fluorophore 4-[4-(dimethylamino)-styryl]-N-methylpyridinium (ASP+) was characterized. Quantitative RT-PCR analysis demonstrated high mRNA levels for two polyspecific organic cation/carnitine transporters, OCTN1 and OCTN2, in human airway epithelia. Immunofluorescence of human airway sections confirmed OCTN1/2 protein expression, with a predominant localization to the apical portion of epithelial cells. Primary airway epithelial cells showed a carrier-mediated, temperature-sensitive and saturable uptake of ASP(+). Seventy-five to eighty percent of ASP(+) uptake was inhibited by L-carnitine, an OCTN2-carried zwitterion. The uptake was pH dependent, with approximately 3-fold lower rates at acidic (pH 5.7) than at alkaline (pH 8.2) extracellular pH. Albuterol and formoterol inhibited ASP(+) uptake, suggesting that all these molecules are carried by the same transport mechanism. These findings demonstrate the existence and functional role of a pH-dependent organic cation uptake machinery, namely OCTN1 and OCTN2, in human airway epithelia. We suggest that epithelial OCTN1/2 are involved in the delivery of inhaled cationic bronchodilators to the airway tissue.

  3. Assays for in vitro monitoring of human airway smooth muscle (ASM) and human pulmonary arterial vascular smooth muscle (VSM) cell migration.

    PubMed

    Goncharova, Elena A; Goncharov, Dmitry A; Krymskaya, Vera P

    2006-01-01

    Migration of human pulmonary vascular smooth muscle (VSM) cells contributes to vascular remodeling in pulmonary arterial hypertension and atherosclerosis. Evidence also indicates that, in part, migration of airway smooth muscle (ASM) cells may contribute to airway remodeling associated with asthma. Here we describe migration of VSM and ASM cells in vitro using Transwell or Boyden chamber assays. Because dissecting signaling mechanisms regulating cell migration requires molecular approaches, our protocol also describes how to assess migration of transfected VSM and ASM cells. Transwell or Boyden chamber assays can be completed in approximately 8 h and include plating of serum-deprived VSM or ASM cell suspension on membrane precoated with collagen, migration of cells toward chemotactic gradient and visual (Transwell) or digital (Boyden chamber) analysis of membrane. Although the Transwell assay is easy, the Boyden chamber assay requires hands-on experience; however, both assays are reliable cell-based approaches providing valuable information on how chemotactic and inflammatory factors modulate VSM and ASM migration.

  4. Inhibition of Protease-Epithelial Sodium Channel Signaling Improves Mucociliary Function in Cystic Fibrosis Airways.

    PubMed

    Reihill, James A; Walker, Brian; Hamilton, Robert A; Ferguson, Timothy E G; Elborn, J Stuart; Stutts, M Jackson; Harvey, Brian J; Saint-Criq, Vinciane; Hendrick, Siobhan M; Martin, S Lorraine

    2016-09-15

    In cystic fibrosis (CF) a reduction in airway surface liquid (ASL) height compromises mucociliary clearance, favoring mucus plugging and chronic bacterial infection. Inhibitors of the epithelial sodium channel (ENaC) have therapeutic potential in CF airways to reduce hyperstimulated sodium and fluid absorption to levels that can restore airway hydration. To determine whether a novel compound (QUB-TL1) designed to inhibit protease/ENaC signaling in CF airways restores ASL volume and mucociliary function. Protease activity was measured using fluorogenic activity assays. Differentiated primary airway epithelial cell cultures (F508del homozygotes) were used to determined ENaC activity (Ussing chamber recordings), ASL height (confocal microscopy), and mucociliary function (by tracking the surface flow of apically applied microbeads). Cell toxicity was measured using a lactate dehydrogenase assay. QUB-TL1 inhibits extracellularly located channel activating proteases (CAPs), including prostasin, matriptase, and furin, the activities of which are observed at excessive levels at the apical surface of CF airway epithelial cells. QUB-TL1-mediated CAP inhibition results in diminished ENaC-mediated Na(+) absorption in CF airway epithelial cells caused by internalization of a prominent pool of cleaved (active) ENaCγ from the cell surface. Importantly, diminished ENaC activity correlates with improved airway hydration status and mucociliary clearance. We further demonstrate QUB-TL1-mediated furin inhibition, which is in contrast to other serine protease inhibitors (camostat mesylate and aprotinin), affords protection against neutrophil elastase-mediated ENaC activation and Pseudomonas aeruginosa exotoxin A-induced cell death. QUB-TL1 corrects aberrant CAP activities, providing a mechanism to delay or prevent the development of CF lung disease in a manner independent of CF transmembrane conductance regulator mutation.

  5. ULTRAFINE CARBON PARTICLES INDUCE IL-8 EXPRESSION IN HUMAN AIRWAY EPITHELIAL CELLS THROUGH A POST-TRANSCRIPTIONAL MECHANISM

    EPA Science Inventory

    Ultrafine carbon particles induce IL-8 expression in human airway
    epithelial cells through a post-transcritpional mechanism
    Epidemiological studies suggest that ultrafine particles contribute to
    particulate matter (PM) - induced adverse health effects. IL-8 is an
    i...

  6. Black seed oil ameliorates allergic airway inflammation by inhibiting T-cell proliferation in rats.

    PubMed

    Shahzad, Muhammad; Yang, Xudong; Raza Asim, M B; Sun, Qingzhu; Han, Yan; Zhang, Fujun; Cao, Yongxiao; Lu, Shemin

    2009-02-01

    The black seeds, from the Ranunculaceae family, have been traditionally used by various cultures as a natural remedy for several ailments. In this study, we examined the effect of black seed oil as an immunomodulator in a rat model of allergic airway inflammation. Rats sensitized to ovalbumin and challenged intranasally with ovalbumin to induce an allergic inflammatory response were compared to ovalbumin-sensitized, intranasally ovalbumin-exposed rats pretreated with intraperitoneally administered black seed oil and to control rats. The levels of IgE, IgG1 and ova-specific T-cell proliferation in spleen were measured by ELISA. The pro-inflammatory cytokine IL-4, IL-5, IL-6 and TGF-beta1 mRNA expression levels were measured by reverse transcription polymerase chain reaction. The intraperitoneal administration of black seed oil inhibited the Th2 type immune response in rats by preventing inflammatory cell infiltration and pathological lesions in the lungs. It significantly decreased the nitric oxide production in BALF, total serum IgE, IgG1 and OVA-specific IgG1 along with IL-4, IL-5, IL-6 and TGF-beta1 mRNA expression. Black seed oil treatment resulted in decreased T-cell response evident by lesser delayed type hypersensitivity and lower T-cell proliferation in spleen. In conclusion, black seed oil exhibited a significant reduction in all the markers of allergic inflammation mainly by inhibiting the delayed type hypersensitivity and T-cell proliferation. The data suggests that inhibition of T-cell response may be responsible for immunomodulatory effect of black seed oil in the rat model of allergic airway inflammation.

  7. The contribution of airway smooth muscle to airway narrowing and airway hyperresponsiveness in disease.

    PubMed

    Martin, J G; Duguet, A; Eidelman, D H

    2000-08-01

    Airway hyperresponsiveness (AHR), the exaggerated response to constrictor agonists in asthmatic subjects, is incompletely understood. Changes in either the quantity or properties of airway smooth muscle (ASM) are possible explanations for AHR. Morphometric analyses demonstrate structural changes in asthmatic airways, including subepithelial fibrosis, gland hyperplasia/hypertrophy, neovascularization and an increase in ASM mass. Mathematical modelling of airway narrowing suggests that, of all the changes in structure, the increase in ASM mass is the most probable cause of AHR. An increase in ASM mass in the large airways is more closely associated with a greater likelihood of dying from asthma than increases in ASM mass in other locations within the airway tree. ASM contraction is opposed by the elastic recoil of the lungs and airways, which appears to limit the degree of bronchoconstriction in vivo. The cyclical nature of tidal breathing applies stresses to the airway wall that enhance the bronchodilating influence of the lung tissues on the contracting ASM, in all probability by disrupting cross-bridges. However, the increase in ASM mass in asthma may overcome the limitation resulting from the impedances to ASM shortening imposed by the lung parenchyma and airway wall tissues. Additionally, ASM with the capacity to shorten rapidly may achieve shorter lengths and cause a greater degree of bronchoconstriction when stimulated to contract than slower ASM. Changes in ASM properties are induced by the process of sensitization and allergen-exposure such as enhancement of phospholipase C activity and inositol phosphate turnover, and increases in myosin light chain kinase activity. Whether changes in ASM mass or biochemical/biomechanical properties form the basis for asthma remains to be determined.

  8. Unusually abundant and large ciliate xenomas in oysters, Crassostrea virginica, from Great Bay, New Hampshire, USA.

    PubMed

    McGurk, Emily Scarpa; Ford, Susan; Bushek, David

    2016-06-01

    During routine histological examination of oysters (Crassostrea virginica) from Great Bay, New Hampshire, USA, a high prevalence and intensity of ciliate xenomas has been noted since sampling began in 1997. Xenomas are hypertrophic lesions on the gills of bivalve molluscs caused by intracellular ciliates, likely Sphenophrya sp. Although not known to cause mortality in oysters, xenomas have not previously been reported at this high abundance. The objectives of this study were to characterize the xenomas, describe the ciliates, and gather baseline epizootiological data with correlations to environmental and biological parameters. Upon gross examination, xenomas appeared as white nodules, up to 3mm in diameter, located in the gill tissue and occasionally fusing into large masses along the gill filaments. Light microscopy of histological sections revealed xenomas located in the gill water tubes, which they often completely blocked. Higher magnification revealed dual nuclei, eight kineties, and conjugation of the ciliates. Transmission electron microscopy revealed dual nuclei that varied in density, a maximum of twenty cilia in each kinety radiating from the oral apparatus to the posterior, and a 9+2 axoneme structure within the cilia. These traits place the ciliates into the Order Rhynchodida, but insufficient molecular data exist to confirm classification of this ciliate to the Genus Sphenophrya. Since 1997, xenoma prevalence has fluctuated with peaks in 2000, 2004, and 2011. Infected oysters generally contained <30 xenomas, but 2.1% contained >100, sharply contrasting the rare prevalence and low intensity reported elsewhere. Prevalence increased with oyster size, leveling off near 50% in oysters >60mm. Infection intensity peaked in 70-90mm oysters and declined in larger oysters. Individual oyster condition was not associated with xenoma intensity, but sites with oysters in higher condition generally had a greater prevalence and intensity of xenoma infections

  9. Exposure to welding fumes and lower airway infection with Streptococcus pneumoniae.

    PubMed

    Suri, Reetika; Periselneris, Jimstan; Lanone, Sophie; Zeidler-Erdely, Patti C; Melton, Geoffrey; Palmer, Keith T; Andujar, Pascal; Antonini, James M; Cohignac, Vanessa; Erdely, Aaron; Jose, Ricardo J; Mudway, Ian; Brown, Jeremy; Grigg, Jonathan

    2016-02-01

    Welders are at increased risk of pneumococcal pneumonia. The mechanism for this association is not known. The capacity of pneumococci to adhere to and infect lower airway cells is mediated by host-expressed platelet-activating factor receptor (PAFR). We sought to assess the effect of mild steel welding fumes (MS-WF) on PAFR-dependent pneumococcal adhesion and infection to human airway cells in vitro and on pneumococcal airway infection in a mouse model. The oxidative potential of MS-WF was assessed by their capacity to reduce antioxidants in vitro. Pneumococcal adhesion and infection of A549, BEAS-2B, and primary human bronchial airway cells were assessed by means of quantitative bacterial culture and expressed as colony-forming units (CFU). After intranasal instillation of MS-WF, mice were infected with Streptococcus pneumoniae, and bronchoalveolar lavage fluid (BALF) and lung CFU values were determined. PAFR protein levels were assessed by using immunofluorescence and immunohistochemistry, and PAFR mRNA expression was assessed by using quantitative PCR. PAFR was blocked by CV-3988, and oxidative stress was attenuated by N-acetylcysteine. MS-WF exhibited high oxidative potential. In A549 and BEAS-2B cells MS-WF increased pneumococcal adhesion and infection and PAFR protein expression. Both CV-3988 and N-acetylcysteine reduced MS-WF-stimulated pneumococcal adhesion and infection of airway cells. MS-WF increased mouse lung PAFR mRNA expression and increased BALF and lung pneumococcal CFU values. In MS-WF-exposed mice CV-3988 reduced BALF CFU values. Hypersusceptibility of welders to pneumococcal pneumonia is in part mediated by the capacity of welding fumes to increase PAFR-dependent pneumococcal adhesion and infection of lower airway cells. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  10. Exposure to welding fumes and lower airway infection with Streptococcus pneumoniae

    PubMed Central

    Suri, Reetika; Periselneris, Jimstan; Lanone, Sophie; Zeidler-Erdely, Patti C.; Melton, Geoffrey; Palmer, Keith T.; Andujar, Pascal; Antonini, James M.; Cohignac, Vanessa; Erdely, Aaron; Jose, Ricardo J.; Mudway, Ian; Brown, Jeremy; Grigg, Jonathan

    2015-01-01

    Background Welders are at increased risk of pneumococcal pneumonia. The mechanism for this association is not known. The capacity of pneumococci to adhere to and infect lower airway cells is mediated by host-expressed platelet-activating factor receptor (PAFR). Objective We sought to assess the effect of mild steel welding fumes (MS-WF) on PAFR-dependent pneumococcal adhesion and infection to human airway cells in vitro and on pneumococcal airway infection in a mouse model. Methods The oxidative potential of MS-WF was assessed by their capacity to reduce antioxidants in vitro. Pneumococcal adhesion and infection of A549, BEAS-2B, and primary human bronchial airway cells were assessed by means of quantitative bacterial culture and expressed as colony-forming units (CFU). After intranasal instillation of MS-WF, mice were infected with Streptococcus pneumoniae, and bronchoalveolar lavage fluid (BALF) and lung CFU values were determined. PAFR protein levels were assessed by using immunofluorescence and immunohistochemistry, and PAFR mRNA expression was assessed by using quantitative PCR. PAFR was blocked by CV-3988, and oxidative stress was attenuated by N-acetylcysteine. Results: MS-WF exhibited high oxidative potential. In A549 and BEAS-2B cells MS-WF increased pneumococcal adhesion and infection and PAFR protein expression. Both CV-3988 and N-acetylcysteine reduced MS-WF–stimulated pneumococcal adhesion and infection of airway cells. MS-WF increased mouse lung PAFR mRNA expression and increased BALF and lung pneumococcal CFU values. In MS-WF–exposed mice CV-3988 reduced BALF CFU values. Conclusions Hypersusceptibility of welders to pneumococcal pneumonia is in part mediated by the capacity of welding fumes to increase PAFR-dependent pneumococcal adhesion and infection of lower airway cells. PMID:26277596

  11. Tumor necrosis factor regulates NMDA receptor-mediated airway smooth muscle contractile function and airway responsiveness.

    PubMed

    Anaparti, Vidyanand; Pascoe, Christopher D; Jha, Aruni; Mahood, Thomas H; Ilarraza, Ramses; Unruh, Helmut; Moqbel, Redwan; Halayko, Andrew J

    2016-08-01

    We have shown that N-methyl-d-aspartate receptors (NMDA-Rs) are receptor-operated calcium entry channels in human airway smooth muscle (HASM) during contraction. Tumor necrosis factor (TNF) augments smooth muscle contractility by influencing pathways that regulate intracellular calcium flux and can alter NMDA-R expression and activity in cortical neurons and glial cells. We hypothesized that NMDA-R-mediated Ca(2+) and contractile responses of ASM can be altered by inflammatory mediators, including TNF. In cultured HASM cells, we assessed TNF (10 ng/ml, 48 h) effect on NMDA-R subunit abundance by quantitative PCR, confocal imaging, and immunoblotting. We observed dose- and time-dependent changes in NMDA-R composition: increased obligatory NR1 subunit expression and altered regulatory NR2 and inhibitory NR3 subunits. Measuring intracellular Ca(2+) flux in Fura-2-loaded HASM cultures, we observed that TNF exposure enhanced cytosolic Ca(2+) mobilization and changed the temporal pattern of Ca(2+) flux in individual myocytes induced by NMDA, an NMDA-R selective analog of glutamate. We measured airway responses to NMDA in murine thin-cut lung slices (TCLS) from allergen-naive animals and observed significant airway contraction. However, NMDA acted as a bronchodilator in TCLS from house dust mice-challenged mice and in allergen-naive TCLS subjected to TNF exposure. All contractile or bronchodilator responses were blocked by a selective NMDA-R antagonist, (2R)-amino-5-phosphonopentanoate, and bronchodilator responses were prevented by N(G)-nitro-l-arginine methyl ester (nitric oxide synthase inhibitor) or indomethacin (cyclooxygenase inhibitor). Collectively, we show that TNF augments NMDA-R-mediated Ca(2+) mobilization in HASM cells, whereas in multicellular TCLSs allergic inflammation and TNF exposure leads to NMDA-R-mediated bronchodilation. These findings reveal the unique contribution of ionotrophic NMDA-R to airway hyperreactivity. Copyright © 2016 the American

  12. Th1 cytokine-induced syndecan-4 shedding by airway smooth muscle cells is dependent on mitogen-activated protein kinases.

    PubMed

    Tan, Xiahui; Khalil, Najwa; Tesarik, Candice; Vanapalli, Karunasri; Yaputra, Viki; Alkhouri, Hatem; Oliver, Brian G G; Armour, Carol L; Hughes, J Margaret

    2012-04-01

    In asthma, airway smooth muscle (ASM) chemokine secretion can induce mast cell recruitment into the airways. The functions of the mast cell chemoattractant CXCL10, and other chemokines, are regulated by binding to heparan sulphates such as syndecan-4. This study is the first demonstration that airway smooth muscle cells (ASMC) from people with and without asthma express and shed syndecan-4 under basal conditions. Syndecan-4 shedding was enhanced by stimulation for 24 h with the Th1 cytokines interleukin-1β (IL-1β) or tumor necrosis factor-α (TNF-α), but not interferon-γ (IFNγ), nor the Th2 cytokines IL-4 and IL-13. ASMC stimulation with IL-1β, TNF-α, and IFNγ (cytomix) induced the highest level of syndecan-4 shedding. Nonasthmatic and asthmatic ASM cell-associated syndecan-4 protein expression was also increased by TNF-α or cytomix at 4-8 h, with the highest levels detected in cytomix-stimulated asthmatic cells. Cell-associated syndecan-4 levels were decreased by 24 h, whereas shedding remained elevated at 24 h, consistent with newly synthesized syndecan-4 being shed. Inhibition of ASMC matrix metalloproteinase-2 did not prevent syndecan-4 shedding, whereas inhibition of ERK MAPK activation reduced shedding from cytomix-stimulated ASMC. Although ERK inhibition had no effect on syndecan-4 mRNA levels stimulated by cytomix, it did cause an increase in cell-associated syndecan-4 levels, consistent with the shedding being inhibited. In conclusion, ASMC produce and shed syndecan-4 and although this is increased by the Th1 cytokines, the MAPK ERK only regulates shedding. ASMC syndecan-4 production during Th1 inflammatory conditions may regulate chemokine activity and mast cell recruitment to the ASM in asthma.

  13. Ursodeoxycholic acid suppresses eosinophilic airway inflammation by inhibiting the function of dendritic cells through the nuclear farnesoid X receptor.

    PubMed

    Willart, M A M; van Nimwegen, M; Grefhorst, A; Hammad, H; Moons, L; Hoogsteden, H C; Lambrecht, B N; Kleinjan, A

    2012-12-01

    Ursodeoxycholic acid (UDCA) is the only known beneficial bile acid with immunomodulatory properties. Ursodeoxycholic acid prevents eosinophilic degranulation and reduces eosinophil counts in primary biliary cirrhosis. It is unknown whether UDCA would also modulate eosinophilic inflammation outside the gastrointestinal (GI) tract, such as eosinophilic airway inflammation seen in asthma. The working mechanism for its immunomodulatory effect is unknown. The immunosuppressive features of UDCA were studied in vivo, in mice, in an ovalbumin (OVA)-driven eosinophilic airway inflammation model. To study the mechanism of action of UDCA, we analyzed the effect of UDCA on eosinophils, T cells, and dendritic cell (DCs). DC function was studied in greater detail, focussing on migration and T-cell stimulatory strength in vivo and interaction with T cells in vitro as measured by time-lapse image analysis. Finally, we studied the capacity of UDCA to influence DC/T cell interaction. Ursodeoxycholic acid treatment of OVA-sensitized mice prior to OVA aerosol challenge significantly reduced eosinophilic airway inflammation compared with control animals. DCs expressed the farnesoid X receptor for UDCA. Ursodeoxycholic acid strongly promoted interleukin (IL)-12 production and enhanced the migration in DCs. The time of interaction between DCs and T cells was sharply reduced in vitro by UDCA treatment of the DCs resulting in a remarkable T-cell cytokine production. Ursodeoxycholic acid-treated DCs have less capacity than saline-treated DCs to induce eosinophilic inflammation in vivo in Balb/c mice. Ursodeoxycholic acid has the potency to suppress eosinophilic inflammation outside the GI tract. This potential comprises to alter critical function of DCs, in essence, the effect of UDCA on DCs through the modulation of the DC/T cell interaction. © 2012 John Wiley & Sons A/S.

  14. Role of IRE1α/XBP-1 in Cystic Fibrosis Airway Inflammation

    PubMed Central

    Ribeiro, Carla M. P.; Lubamba, Bob A.

    2017-01-01

    Cystic fibrosis (CF) pulmonary disease is characterized by chronic airway infection and inflammation. The infectious and inflamed CF airway environment impacts on the innate defense of airway epithelia and airway macrophages. The CF airway milieu induces an adaptation in these cells characterized by increased basal inflammation and a robust inflammatory response to inflammatory mediators. Recent studies have indicated that these responses depend on activation of the unfolded protein response (UPR). This review discusses the contribution of airway epithelia and airway macrophages to CF airway inflammatory responses and specifically highlights the functional importance of the UPR pathway mediated by IRE1/XBP-1 in these processes. These findings suggest that targeting the IRE1/XBP-1 UPR pathway may be a therapeutic strategy for CF airway disease. PMID:28075361

  15. Airway-parenchymal interdependence

    PubMed Central

    Paré, Peter D; Mitzner, Wayne

    2015-01-01

    In this manuscript we discuss the interaction of the lung parenchyma and the airways as well as the physiological and pathophysiological significance of this interaction. These two components of the respiratory organ can be thought of as two independent elastic structures but in fact the mechanical properties of one influence the behavior of the other. Traditionally the interaction has focused on the effects of the lung on the airways but there is good evidence that the opposite is also true, i.e., that the mechanical properties of the airways influence the elastic properties of the parenchyma. The interplay between components of the respiratory system including the airways, parenchyma and vasculature is often referred to as “interdependence.” This interdependence transmits the elastic recoil of the lung to create an effective pressure that dilates the airways as transpulmonary pressure and lung volume increase. By using a continuum mechanics analysis of the lung parenchyma, it is possible to predict the effective pressure between the airways and parenchyma, and these predictions can be empirically evaluated. Normal airway caliber is maintained by this pressure in the adventitial interstitium of the airway, and it counteracts airway compression during forced expiration as well as the ability of airway smooth muscle to narrow airways. Interdependence has physiological and pathophysiological significance. Weakening of the forces of interdependence contributes to airway dysfunction and gas exchange impairment in acute and chronic airway diseases including asthma and emphysema. PMID:23723029

  16. Long-Acting Beta Agonists Enhance Allergic Airway Disease.

    PubMed

    Knight, John M; Mak, Garbo; Shaw, Joanne; Porter, Paul; McDermott, Catherine; Roberts, Luz; You, Ran; Yuan, Xiaoyi; Millien, Valentine O; Qian, Yuping; Song, Li-Zhen; Frazier, Vincent; Kim, Choel; Kim, Jeong Joo; Bond, Richard A; Milner, Joshua D; Zhang, Yuan; Mandal, Pijus K; Luong, Amber; Kheradmand, Farrah; McMurray, John S; Corry, David B

    2015-01-01

    Asthma is one of the most common of medical illnesses and is treated in part by drugs that activate the beta-2-adrenoceptor (β2-AR) to dilate obstructed airways. Such drugs include long acting beta agonists (LABAs) that are paradoxically linked to excess asthma-related mortality. Here we show that LABAs such as salmeterol and structurally related β2-AR drugs such as formoterol and carvedilol, but not short-acting agonists (SABAs) such as albuterol, promote exaggerated asthma-like allergic airway disease and enhanced airway constriction in mice. We demonstrate that salmeterol aberrantly promotes activation of the allergic disease-related transcription factor signal transducer and activator of transcription 6 (STAT6) in multiple mouse and human cells. A novel inhibitor of STAT6, PM-242H, inhibited initiation of allergic disease induced by airway fungal challenge, reversed established allergic airway disease in mice, and blocked salmeterol-dependent enhanced allergic airway disease. Thus, structurally related β2-AR ligands aberrantly activate STAT6 and promote allergic airway disease. This untoward pharmacological property likely explains adverse outcomes observed with LABAs, which may be overcome by agents that antagonize STAT6.

  17. The anti-proliferative and anti-inflammatory response of COPD airway smooth muscle cells to hydrogen sulfide.

    PubMed

    Perry, Mark M; Tildy, Bernadett; Papi, Alberto; Casolari, Paolo; Caramori, Gaetano; Rempel, Karen Limbert; Halayko, Andrew J; Adcock, Ian; Chung, Kian Fan

    2018-05-09

    COPD is a common, highly debilitating disease of the airways, primarily caused by smoking. Chronic inflammation and structural remodelling are key pathological features of this disease caused, in part, by the aberrant function of airway smooth muscle (ASM). We have previously demonstrated that hydrogen sulfide (H 2 S) can inhibit ASM cell proliferation and CXCL8 release, from cells isolated from non-smokers. We examined the effect of H 2 S upon ASM cells from COPD patients. ASM cells were isolated from non-smokers, smokers and patients with COPD (n = 9). Proliferation and cytokine release (IL-6 and CXCL8) of ASM was induced by FCS, and measured by bromodeoxyuridine incorporation and ELISA, respectively. Exposure of ASM to H 2 S donors inhibited FCS-induced proliferation and cytokine release, but was less effective upon COPD ASM cells compared to the non-smokers and smokers. The mRNA and protein expression of the enzymes responsible for endogenous H 2 S production (cystathionine-β-synthase [CBS] and 3-mercaptopyruvate sulphur transferase [MPST]) were inhibited by H 2 S donors. Finally, we report that exogenous H 2 S inhibited FCS-stimulated phosphorylation of ERK-1/2 and p38 mitogen activated protein kinases (MAPKs), in the non-smoker and smoker ASM cells, with little effect in COPD cells. H 2 S production provides a novel mechanism for the repression of ASM proliferation and cytokine release. The ability of COPD ASM cells to respond to H 2 S is attenuated in COPD ASM cells despite the presence of the enzymes responsible for H 2 S production.

  18. Organic electrochemical transistor array for recording transepithelial ion transport of human airway epithelial cells.

    PubMed

    Yao, Chunlei; Xie, Changyan; Lin, Peng; Yan, Feng; Huang, Pingbo; Hsing, I-Ming

    2013-12-03

    An organic electrochemical transistor array is integrated with human airway epithelial cells. This integration provides a novel method to couple transepithelial ion transport with electrical current. Activation and inhibition of transepithelial ion transport are readily detected with excellent time resolution. The organic electrochemical transistor array serves as a promising platform for physiological studies and drug testing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Absence of Foxp3+ Regulatory T Cells during Allergen Provocation Does Not Exacerbate Murine Allergic Airway Inflammation

    PubMed Central

    Baru, Abdul Mannan; Ganesh, Venkateswaran; Krishnaswamy, Jayendra Kumar; Hesse, Christina; Untucht, Christopher; Glage, Silke; Behrens, Georg; Mayer, Christian Thomas; Puttur, Franz; Sparwasser, Tim

    2012-01-01

    Regulatory T cells (Tregs) play a non-redundant role in maintenance of immune homeostasis. This is achieved by suppressing both, priming of naïve cells and effector cell functions. Although Tregs have been implicated in modulating allergic immune responses, their influence on distinct phases of development of allergies remains unclear. In this study, by using bacterial artificial chromosome (BAC)-transgenic Foxp3-DTR (DEREG) mice we demonstrate that the absence of Foxp3+ Tregs during the allergen challenge surprisingly does not exacerbate allergic airway inflammation in BALB/c mice. As genetic disposition due to strain specificity may contribute significantly to development of allergies, we performed similar experiment in C57BL/6 mice, which are less susceptible to allergy in the model of sensitization used in this study. We report that the genetic background does not influence the consequence of this depletion regimen. These results signify the temporal regulation exerted by Foxp3+ Tregs in limiting allergic airway inflammation and may influence their application as potential therapeutics. PMID:23071726

  20. HRV signaling in airway epithelial cells is regulated by ITAM-mediated recruitment and activation of Syk.

    PubMed

    Lau, Christine; Castellanos, Patricia; Ranev, Dimitre; Wang, Xiaomin; Chow, Chung-Wai

    2011-05-01

    Human rhinovirus (HRV), cause of the common cold, is a leading cause of exacerbations of asthma and chronic obstruction pulmonary disease (COPD). Binding of HRV to ICAM (intercellular adhesion molecule)-1, its major receptor, induces a profound inflammatory response from airway epithelial cells. My laboratory has identified Syk tyrosine kinase to be an early regulator of HRV-ICAM-1 signalling: Syk mediates replication-independent p38 mitogen-activated protein (MAP) kinase and phosphatidyl-inositol 3 (PI3)-kinase activation, interleukin (IL)-8 expression, as well as HRV internalization via clathrin-mediated endocytosis. Syk activation is accompanied by formation of a protein complex consisting of ICAM-1, ezrin and Syk at the plasma membrane. However, the molecular mechanisms that regulate this process are not understood. In this report, we investigated the role of the Syk-SH2 domains and the ezrin ITAM (immuno-tyrosine activation motif)-like motif in HRV-induced cell activation using the human BEAS-2B airway epithelial cells. Our observations suggest that the ezrin-ITAM plays a role in Syk recruitment and activation by binding to the Syk tandem SH2 domains, as originally described in the canonical ITAM-mediating signal transduction pathway in hematopoietic cells. This report is the first to demonstrate ITAM-mediated signaling in non-hematopoietic cells, suggesting that this signaling paradigm may be more ubiquitous than previously recognized.

  1. Cellular and Molecular Biology of Airway Mucins

    PubMed Central

    Lillehoj, Erik P.; Kato, Kosuke; Lu, Wenju; Kim, Kwang C.

    2017-01-01

    Airway mucus constitutes a thin layer of airway surface liquid with component macromolecules that covers the luminal surface of the respiratory tract. The major function of mucus is to protect the lungs through mucociliary clearance of inhaled foreign particles and noxious chemicals. Mucus is comprised of water, ions, mucin glycoproteins, and a variety of other macromolecules, some of which possess anti-microbial, anti-protease, and anti-oxidant activities. Mucins comprise the major protein component of mucus and exist as secreted and cell-associated glycoproteins. Secreted, gel-forming mucins are mainly responsible for the viscoelastic property of mucus, which is crucial for effective mucociliary clearance. Cell-associated mucins shield the epithelial surface from pathogens through their extracellular domains and regulate intracellular signaling through their cytoplasmic regions. However, neither the exact structures of mucin glycoproteins, nor the manner through which their expression is regulated, are completely understood. This chapter reviews what is currently known about the cellular and molecular properties of airway mucins. PMID:23445810

  2. Porcine small intestine submucosal grafts improve remucosalization and progenitor cell recruitment to sites of upper airway tissue remodeling.

    PubMed

    Nayak, Jayakar V; Rathor, Aakanksha; Grayson, Jessica W; Bravo, Dawn T; Velasquez, Nathalia; Noel, Julia; Beswick, Daniel M; Riley, Kristen O; Patel, Zara M; Cho, Do-Yeon; Dodd, Robert L; Thamboo, Andrew; Choby, Garret W; Walgama, Evan; Harsh, Griffith R; Hwang, Peter H; Clemons, Lisa; Lowman, Deborah; Richman, Joshua S; Woodworth, Bradford A

    2018-06-01

    To better understand upper airway tissue regeneration, the exposed cartilage and bone at donor sites of tissue flaps may serve as in vivo "Petri dishes" for active wound healing. The pedicled nasoseptal flap (NSF) for skull-base reconstruction creates an exposed donor site within the nasal airway. The objective of this study is to evaluate whether grafting the donor site with a sinonasal repair cover graft is effective in promoting wound healing. In this multicenter, prospective trial, subjects were randomized to intervention (graft) or control (no graft) intraoperatively after NSF elevation. Individuals were evaluated at 2, 6, and 12 weeks postintervention with endoscopic recordings. Videos were graded (Likert scale) by 3 otolaryngologists blinded to intervention on remucosalization, crusting, and edema. Scores were analyzed for interrater reliability and cohorts compared. Biopsy and immunohistochemistry at the leading edge of wound healing was performed in select cases. Twenty-one patients were randomized to intervention and 26 to control. Subjects receiving the graft had significantly greater overall remucosalization (p = 0.01) than controls over 12 weeks. Although crusting was less in the small intestine submucosa (SIS) group, this was not statistically significant (p = 0.08). There was no overall effect on nasal edema (p = 0.2). Immunohistochemistry demonstrated abundant upper airway basal cell progenitors in 2 intervention samples, suggesting that covering grafts may facilitate tissue proliferation via progenitor cell expansion. This prospective, randomized, controlled trial indicates that a porcine SIS graft placed on exposed cartilage and bone within the upper airway confers improved remucosalization compared to current practice standards. © 2018 ARS-AAOA, LLC.

  3. Purification and characterization of factors produced by Aspergillus fumigatus which affect human ciliated respiratory epithelium.

    PubMed Central

    Amitani, R; Taylor, G; Elezis, E N; Llewellyn-Jones, C; Mitchell, J; Kuze, F; Cole, P J; Wilson, R

    1995-01-01

    The mechanisms by which Aspergillus fumigatus colonizes the respiratory mucosa are unknown. Culture filtrates of eight of nine clinical isolates of A. fumigatus slowed ciliary beat frequency and damaged human respiratory epithelium in vitro. These changes appeared to occur concurrently. Culture filtrates of two clinical isolates of Candida albicans had no effect on ciliated epithelium. We have purified and characterized cilioinhibitory factors of a clinical isolate of A. fumigatus. The cilioinhibitory activity was heat labile, reduced by dialysis, and partially extractable into chloroform. The activity was associated with both high- and low-molecular-weight factors, as determined by gel filtration on Sephadex G-50. A low-molecular-weight cilioinhibitory factor was further purified by reverse-phase high-performance liquid chromatography and shown by mass spectrometry to be gliotoxin, a known metabolite of A. fumigatus. Gliotoxin significantly slowed ciliary beat frequency in association with epithelial damage at concentrations above 0.2 microgram/ml; other Aspergillus toxins, i.e., fumagillin and helvolic acid, were also cilioinhibitory but at much higher concentrations. High-molecular-weight (> or = 35,000 and 25,000) cilioinhibitory materials had neither elastolytic nor proteolytic activity and remain to be identified. Thus, A. fumigatus produces a number of biologically active substances which slow ciliary beating and damage epithelium and which may influence colonization of the airways. PMID:7543879

  4. Purification and characterization of factors produced by Aspergillus fumigatus which affect human ciliated respiratory epithelium.

    PubMed

    Amitani, R; Taylor, G; Elezis, E N; Llewellyn-Jones, C; Mitchell, J; Kuze, F; Cole, P J; Wilson, R

    1995-09-01

    The mechanisms by which Aspergillus fumigatus colonizes the respiratory mucosa are unknown. Culture filtrates of eight of nine clinical isolates of A. fumigatus slowed ciliary beat frequency and damaged human respiratory epithelium in vitro. These changes appeared to occur concurrently. Culture filtrates of two clinical isolates of Candida albicans had no effect on ciliated epithelium. We have purified and characterized cilioinhibitory factors of a clinical isolate of A. fumigatus. The cilioinhibitory activity was heat labile, reduced by dialysis, and partially extractable into chloroform. The activity was associated with both high- and low-molecular-weight factors, as determined by gel filtration on Sephadex G-50. A low-molecular-weight cilioinhibitory factor was further purified by reverse-phase high-performance liquid chromatography and shown by mass spectrometry to be gliotoxin, a known metabolite of A. fumigatus. Gliotoxin significantly slowed ciliary beat frequency in association with epithelial damage at concentrations above 0.2 microgram/ml; other Aspergillus toxins, i.e., fumagillin and helvolic acid, were also cilioinhibitory but at much higher concentrations. High-molecular-weight (> or = 35,000 and 25,000) cilioinhibitory materials had neither elastolytic nor proteolytic activity and remain to be identified. Thus, A. fumigatus produces a number of biologically active substances which slow ciliary beating and damage epithelium and which may influence colonization of the airways.

  5. Alpha-1 Antitrypsin Mitigates the Inhibition of Airway Epithelial Cell Repair by Neutrophil Elastase.

    PubMed

    Garratt, Luke W; Sutanto, Erika N; Ling, Kak-Ming; Looi, Kevin; Iosifidis, Thomas; Martinovich, Kelly M; Shaw, Nicole C; Buckley, Alysia G; Kicic-Starcevich, Elizabeth; Lannigan, Francis J; Knight, Darryl A; Stick, Stephen M; Kicic, Anthony

    2016-03-01

    Neutrophil elastase (NE) activity is associated with many destructive lung diseases and is a predictor for structural lung damage in early cystic fibrosis (CF), which suggests normal maintenance of airway epithelium is prevented by uninhibited NE. However, limited data exist on how the NE activity in airways of very young children with CF affects function of the epithelia. The aim of this study was to determine if NE activity could inhibit epithelial homeostasis and repair and whether any functional effect was reversible by antiprotease alpha-1 antitrypsin (α1AT) treatment. Viability, inflammation, apoptosis, and proliferation were assessed in healthy non-CF and CF pediatric primary airway epithelial cells (pAECnon-CF and pAECCF, respectively) during exposure to physiologically relevant NE. The effect of NE activity on pAECCF wound repair was also assessed. We report that viability after 48 hours was significantly decreased by 100 nM NE in pAECnon-CF and pAECCF owing to rapid cellular detachment that was accompanied by inflammatory cytokine release. Furthermore, both phenotypes initiated an apoptotic response to 100 nM NE, whereas ≥ 50 nM NE activity significantly inhibited the proliferative capacity of cultures. Similar concentrations of NE also significantly inhibited wound repair of pAECCF, but this effect was reversed by the addition of α1AT. Collectively, our results demonstrate free NE activity is deleterious for epithelial homeostasis and support the hypothesis that proteases in the airway contribute directly to CF structural lung disease. Our results also highlight the need to investigate antiprotease therapies in early CF disease in more detail.

  6. [Preoperatiove Airway Bacterial Colonization: the Missing Link between Non-small Cell Lung Cancer Following Lobectomy and Postoperative Pneumonia?

    PubMed

    Gao, Ke; Lai, Yutian; Huang, Jian; Wang, Yifan; Wang, Xiaowei; Che, Guowei

    2017-04-20

    Surgical procedure is the main method of treating lung cancer. Meanwhile, postoperative pneumonia (POP) is the major cause of perioperative mortality in lung cancer surgery. The preoperative pathogenic airway bacterial colonization is an independent risk factor causing postoperative pulmonary complications (PPC). This cross-sectional study aimed to explore the relationship between preoperative pathogenic airway bacterial colonization and POP in lung cancer and to identify the high-risk factors of preoperative pathogenic airway bacterial colonization. A total of 125 patients with non-small cell lung cancer (NSCLC) underwent thoracic surgery in six hospitals of Chengdu between May 2015 and January 2016. Preoperative pathogenic airway bacterial colonization was detected in all patients via fiber bronchoscopy. Patients' PPC, high-risk factors, clinical characteristics, and the serum surfactant protein D (SP-D) level were also analyzed. The incidence of preoperative pathogenic airway bacterial colonization among NSCLC patients was 15.2% (19/125). Up to 22 strains were identified in the colonization positive group, with Gram-negative bacteria being dominant (86.36%, 19/22). High-risk factors of pathogenic airway bacterial colonization were age (≥75 yr) and smoking index (≥400 cigarettes/year). PPC incidence was significantly higher in the colonization-positive group (42.11%, 8/19) than that in the colonization-negative group (16.04%, 17/106)(P=0.021). POP incidence was significantly higher in the colonization-positive group (26.32%, 5/19) than that in the colonization-negative group (6.60%, 7/106)(P=0.019). The serum SP-D level of patients in the colonization-positive group was remarkably higher than that in the colonization-negative group [(31.25±6.09) vs (28.17±5.23)](P=0.023). The incidence of preoperative pathogenic airway bacterial colonization among NSCLC patients with POP was 41.67% (5/12). This value was 3.4 times higher than that among the patients without

  7. Oxidative stress in Nipah virus-infected human small airway epithelial cells.

    PubMed

    Escaffre, Olivier; Halliday, Hailey; Borisevich, Viktoriya; Casola, Antonella; Rockx, Barry

    2015-10-01

    Nipah virus (NiV) is a zoonotic emerging pathogen that can cause severe and often fatal respiratory disease in humans. The pathogenesis of NiV infection of the human respiratory tract remains unknown. Reactive oxygen species (ROS) produced by airway epithelial cells in response to viral infections contribute to lung injury by inducing inflammation and oxidative stress; however, the role of ROS in NiV-induced respiratory disease is unknown. To investigate whether NiV induces oxidative stress in human respiratory epithelial cells, we used oxidative stress markers and monitored antioxidant gene expression. We also used ROS scavengers to assess their role in immune response modulation. Oxidative stress was confirmed in infected cells and correlated with the reduction in antioxidant enzyme gene expression. Infected cells treated by ROS scavengers resulted in a significant decrease of the (F2)-8-isoprostane marker, inflammatory responses and virus replication. In conclusion, ROS are induced during NiV infection in human respiratory epithelium and contribute to the inflammatory response. Understanding how oxidative stress contributes to NiV pathogenesis is crucial for therapeutic development.

  8. Ciliates and the rare biosphere: a review.

    PubMed

    Dunthorn, Micah; Stoeck, Thorsten; Clamp, John; Warren, Alan; Mahé, Frédéric

    2014-01-01

    Here we provide a brief review of the rare biosphere from the perspective of ciliates and other microbial eukaryotes. We trace research on rarity from its lack of much in-depth focus in morphological and Sanger sequencing projects, to its central importance in analyses using high throughput sequencing strategies. The problem that the rare biosphere is potentially comprised of mostly errors is then discussed in the light of asking community-comparative, novel-diversity, and ecosystem-functioning questions. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.

  9. IL-17A Mediates a Selective Gene Expression Profile in Asthmatic Human Airway Smooth Muscle Cells

    PubMed Central

    Dragon, Stéphane; Hirst, Stuart J.; Lee, Tak H.

    2014-01-01

    Airway smooth muscle (ASM) cells are thought to contribute to the pathogenesis of allergic asthma by orchestrating and perpetuating airway inflammation and remodeling responses. In this study, we evaluated the IL-17RA signal transduction and gene expression profile in ASM cells from subjects with mild asthma and healthy individuals. Human primary ASM cells were treated with IL-17A and probed by the Affymetrix GeneChip array, and gene targets were validated by real-time quantitative RT-PCR. Genomic analysis underlined the proinflammatory nature of IL-17A, as multiple NF-κB regulatory factors and chemokines were induced in ASM cells. Transcriptional regulators consisting of primary response genes were overrepresented and displayed dynamic expression profiles. IL-17A poorly enhanced IL-1β or IL-22 gene responses in ASM cells from both subjects with mild asthma and healthy donors. Interestingly, protein modifications to the NF-κB regulatory network were not observed after IL-17A stimulation, although oscillations in IκBε expression were detected. ASM cells from subjects with mild asthma up-regulated more genes with greater overall variability in response to IL-17A than from healthy donors. Finally, in response to IL-17A, ASM cells displayed rapid activation of the extracellular signal–regulated kinase/ribosomal S6 kinase signaling pathway and increased nuclear levels of phosphorylated extracellular signal–regulated kinase. Taken together, our results suggest that IL-17A mediated modest gene expression response, which, in cooperation with the NF-κB signaling network, may regulate the gene expression profile in ASM cells. PMID:24393021

  10. Mesenchymal stem cells suppress lung inflammation and airway remodeling in chronic asthma rat model via PI3K/Akt signaling pathway

    PubMed Central

    Lin, Hai-Yan; Xu, Lei; Xie, Shuan-Shuan; Yu, Fei; Hu, Hai-Yang; Song, Xiao-Lian; Wang, Chang-Hui

    2015-01-01

    Background: Mesenchymal stem cells (MSCs) came out to attract wide attention and had become one of the hotspots of most diseases’ research in decades. But at present, the mechanisms of how MSCs work on chronic asthma remain undefined. Our study aims at verifying whether MSCs play a role in preventing inflammation and airway remodeling via PI3K/AKT signaling pathway in the chronic asthma rats model. Methods: First, an ovalbumin (OVA)-induced asthma model was built. MSCs were administered to ovalbumin-induced asthma rats. The total cells in a bronchial alveolar lavage fluid (BALF) and inflammatory mediators in BALF and serum were measured. Histological examination of lung tissue was performed to estimate the pathological changes. Additionally, the expression of phosphorylated-Akt (p-Akt) in all groups was measured by western blot and immunohistochemistry (IHC). Results: Compared to normal control group, the degree of airway inflammation and airway remodeling was significantly increased in asthma group. On the contrary, they were obviously inhibited in MSCs transplantation group. Moreover, the expression of p-Akt was increased in lung tissues of asthmatic rats, and suppressed by MSCs transplantation. Conclusion: Our results demonstrated that MSCs transplantation could suppress lung inflammation and airway remodeling via PI3K/Akt signaling pathway in rat asthma model. PMID:26464637

  11. Growth of airway epithelial cells at an air-liquid interface changes both the response to particle exposure and iron homeostasis.

    EPA Science Inventory

    RATIONALE: We tested the hypothesis that 1) relative to submerged cells, airway epithelial cells grown at an air-liquid interface and allowed to differentiate would have an altered response to particle exposure and 2) that these differences would be associated with indices of iro...

  12. Growth of airway epithelial cells at an air-liquid interface changes both the response to particle exposure and iron homeostasis

    EPA Science Inventory

    We tested the hypothesis that 1) relative to submerged cells, airway epithelial cells grown at an air-liquid interface and allowed to differentiate would have an altered response to particle exposure and 2) that these differences would be associated with indices of iron homeostas...

  13. Spatial and temporal traction response in human airway smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Tolic-Norrelykke, Iva Marija; Butler, James P.; Chen, Jianxin; Wang, Ning

    2002-01-01

    Tractions that cells exert on their substrates are essential in cell spreading, migration, and contraction. These tractions can be determined by plating the cells on a flexible gel and measuring the deformation of the gel by using fluorescent beads embedded just below the surface of the gel. In this article we describe the image correlation method (ICM) optimized for determining the displacement field of the gel under a contracting cell. For the calculation of the traction field from the displacement field we use the recently developed method of Fourier transform traction cytometry (FTTC). The ICM and FTTC methods are applied to human airway smooth muscle cells during stimulation with the contractile agonist histamine or the relaxing agonist isoproterenol. The overall intensity of the cell contraction (the median traction magnitude, the energy transferred from the cell to the gel, and the net contractile moment) increased after activation with histamine, and decreased after treatment with isoproterenol. Cells exhibited regional differences in the time course of traction during the treatment. Both temporal evolution and magnitude of traction increase induced by histamine varied markedly among different cell protrusions, whereas the nuclear region showed the smallest response. These results suggest that intracellular mediators of cell adhesion and contraction respond to contractile stimuli with different rates and intensities in different regions of the cell.

  14. Insulin decreases expression of the pro-inflammatory receptor Proteinase-Activated Receptor-2 on human airway epithelial cells.

    PubMed

    Gandhi, Vivek D; Palikhe, Nami Shrestha; Hamza, Shereen M; Dyck, Jason R B; Buteau, Jean; Vliagoftis, Harissios

    2018-06-08

    The authors show that insulin, a hormone with anti-inflammatory properties, decreases the expression of a pro-inflammatory receptor on airway epithelial cells. This observation may explain the heightened respiratory inflammation seen in patients with metabolic syndrome. Copyright © 2018. Published by Elsevier Inc.

  15. S-Nitrosoglutathione Reductase Inhibition Regulates Allergen-Induced Lung Inflammation and Airway Hyperreactivity

    PubMed Central

    Bassett, David J. P.; Bradley, Matthews O.; Jaffar, Zeina

    2013-01-01

    Allergic asthma is characterized by Th2 type inflammation, leading to airway hyperresponsivenes, mucus hypersecretion and tissue remodeling. S-Nitrosoglutathione reductase (GSNOR) is an alcohol dehydrogenase involved in the regulation of intracellular levels of S-nitrosothiols. GSNOR activity has been shown to be elevated in human asthmatic lungs, resulting in diminished S-nitrosothiols and thus contributing to increased airway hyperreactivity. Using a mouse model of allergic airway inflammation, we report that intranasal administration of a new selective inhibitor of GSNOR, SPL-334, caused a marked reduction in airway hyperreactivity, allergen-specific T cells and eosinophil accumulation, and mucus production in the lungs in response to allergen inhalation. Moreover, SPL-334 treatment resulted in a significant decrease in the production of the Th2 cytokines IL-5 and IL-13 and the level of the chemokine CCL11 (eotaxin-1) in the airways. Collectively, these observations reveal that GSNOR inhibitors are effective not only in reducing airway hyperresponsiveness but also in limiting lung inflammatory responses mediated by CD4+ Th2 cells. These findings suggest that the inhibition of GSNOR may provide a novel therapeutic approach for the treatment of allergic airway inflammation. PMID:23936192

  16. Sensitivity of chloride efflux vs. transepithelial measurements in mixed CF and normal airway epithelial cell populations.

    PubMed

    Illek, Beate; Lei, Dachuan; Fischer, Horst; Gruenert, Dieter C

    2010-01-01

    While the Cl(-) efflux assays are relatively straightforward, their ability to assess the efficacy of phenotypic correction in cystic fibrosis (CF) tissue or cells may be limited. Accurate assessment of therapeutic efficacy, i.e., correlating wild type CF transmembrane conductance regulator (CFTR) levels with phenotypic correction in tissue or individual cells, requires a sensitive assay. Radioactive chloride ((36)Cl) efflux was compared to Ussing chamber analysis for measuring cAMP-dependent Cl(-) transport in mixtures of human normal (16HBE14o-) and cystic fibrosis (CF) (CFTE29o- or CFBE41o-, respectively) airway epithelial cells. Cell mixtures with decreasing amounts of 16HBE14o- cells were evaluated. Efflux and Ussing chamber studies on mixed populations of normal and CF airway epithelial cells showed that, as the number of CF cells within the population was progressively increased, the cAMP-dependent Cl(-) decreased. The (36)Cl efflux assay was effective for measuring Cl(-) transport when ≥ 25% of the cells were normal. If < 25% of the cells were phenotypically wild-type (wt), the (36)Cl efflux assay was no longer reliable. Polarized CFBE41o- cells, also homozygous for the ΔF508 mutation, were used in the Ussing chamber studies. Ussing analysis detected cAMP-dependent Cl(-) currents in mixtures with ≥1% wild-type cells indicating that Ussing analysis is more sensitive than (36)Cl efflux analysis for detection of functional CFTR. Assessment of CFTR function by Ussing analysis is more sensitive than (36)Cl efflux analysis. Ussing analysis indicates that cell mixtures containing 10% 16HBE14o- cells showed 40-50% of normal cAMP-dependent Cl(-) transport that drops off exponentially between 10-1% wild-type cells. Copyright © 2010 S. Karger AG, Basel.

  17. Hyaluronan mediates airway hyperresponsiveness in oxidative lung injury

    PubMed Central

    Lazrak, Ahmed; Creighton, Judy; Yu, Zhihong; Komarova, Svetlana; Doran, Stephen F.; Aggarwal, Saurabh; Emala, Charles W.; Stober, Vandy P.; Trempus, Carol S.; Garantziotis, Stavros

    2015-01-01

    Chlorine (Cl2) inhalation induces severe oxidative lung injury and airway hyperresponsiveness (AHR) that lead to asthmalike symptoms. When inhaled, Cl2 reacts with epithelial lining fluid, forming by-products that damage hyaluronan, a constituent of the extracellular matrix, causing the release of low-molecular-weight fragments (L-HA, <300 kDa), which initiate a series of proinflammatory events. Cl2 (400 ppm, 30 min) exposure to mice caused an increase of L-HA and its binding partner, inter-α-trypsin-inhibitor (IαI), in the bronchoalveolar lavage fluid. Airway resistance following methacholine challenge was increased 24 h post-Cl2 exposure. Intratracheal administration of high-molecular-weight hyaluronan (H-HA) or an antibody against IαI post-Cl2 exposure decreased AHR. Exposure of human airway smooth muscle (HASM) cells to Cl2 (100 ppm, 10 min) or incubation with Cl2-exposed H-HA (which fragments it to L-HA) increased membrane potential depolarization, intracellular Ca2+, and RhoA activation. Inhibition of RhoA, chelation of intracellular Ca2+, blockade of cation channels, as well as postexposure addition of H-HA, reversed membrane depolarization in HASM cells. We propose a paradigm in which oxidative lung injury generates reactive species and L-HA that activates RhoA and Ca2+ channels of airway smooth muscle cells, increasing their contractility and thus causing AHR. PMID:25747964

  18. Computed tomography-guided tissue engineering of upper airway cartilage.

    PubMed

    Brown, Bryan N; Siebenlist, Nicholas J; Cheetham, Jonathan; Ducharme, Norm G; Rawlinson, Jeremy J; Bonassar, Lawrence J

    2014-06-01

    Normal laryngeal function has a large impact on quality of life, and dysfunction can be life threatening. In general, airway obstructions arise from a reduction in neuromuscular function or a decrease in mechanical stiffness of the structures of the upper airway. These reductions decrease the ability of the airway to resist inspiratory or expiratory pressures, causing laryngeal collapse. We propose to restore airway patency through methods that replace damaged tissue and improve the stiffness of airway structures. A number of recent studies have utilized image-guided approaches to create cell-seeded constructs that reproduce the shape and size of the tissue of interest with high geometric fidelity. The objective of the present study was to establish a tissue engineering approach to the creation of viable constructs that approximate the shape and size of equine airway structures, in particular the epiglottis. Computed tomography images were used to create three-dimensional computer models of the cartilaginous structures of the larynx. Anatomically shaped injection molds were created from the three-dimensional models and were seeded with bovine auricular chondrocytes that were suspended within alginate before static culture. Constructs were then cultured for approximately 4 weeks post-seeding and evaluated for biochemical content, biomechanical properties, and histologic architecture. Results showed that the three-dimensional molded constructs had the approximate size and shape of the equine epiglottis and that it is possible to seed such constructs while maintaining 75%+ cell viability. Extracellular matrix content was observed to increase with time in culture and was accompanied by an increase in the mechanical stiffness of the construct. If successful, such an approach may represent a significant improvement on the currently available treatments for damaged airway cartilage and may provide clinical options for replacement of damaged tissue during treatment of

  19. Airway inflammation in chronic obstructive pulmonary disease (COPD): a true paradox.

    PubMed

    Eapen, Mathew Suji; Myers, Stephen; Walters, Eugene Haydn; Sohal, Sukhwinder Singh

    2017-10-01

    Chronic obstructive pulmonary disease (COPD) is primarily an airway condition, which mainly affects cigarette smokers and presents with shortness of breath that is progressive and poorly reversible. In COPD research, there has been a long held belief that airway disease progression is due to inflammation. Although this may be true in the airway lumen with innate immunity activated by the effect of smoke or secondary to infection, the accurate picture of inflammatory cells in the airway wall, where the pathophysiological COPD remodeling occurs, is uncertain and debatable. Areas covered: The current review provides a comprehensive literature survey of the changes in the main inflammatory cells in human COPD patients and focuses on contrarian views that affect the prevailing dogma on inflammation. The review also delves into the role of oxidative stress and inflammasomes in modulating the immune response in COPD. Further, the effects of inflammation in affecting the epithelium, fibroblasts, and airway remodeling are discussed. Expert commentary: Inflammation as a driving force for airway wall damage and remodelling in early COPD is at the very least 'oversimplified' and is likely to be misleading. This has serious implications for rational thinking about the illness, including pathogenesis and designing therapy.

  20. Human influenza is more effective than avian influenza at antiviral suppression in airway cells.

    PubMed

    Hsu, Alan Chen-Yu; Barr, Ian; Hansbro, Philip M; Wark, Peter A

    2011-06-01

    Airway epithelial cells are the initial site of infection with influenza viruses. The innate immune responses of airway epithelial cells to infection are important in limiting virus replication and spread. However, relatively little is known about the importance of this innate antiviral response to infection. Avian influenza viruses are a potential source of future pandemics; therefore, it is critical to examine the effectiveness of the host antiviral system to different influenza viruses. We used a human influenza (H3N2) and a low-pathogenic avian influenza (H11N9) to assess and compare the antiviral responses of Calu-3 cells. After infection, H3N2 replicated more effectively than the H11N9 in Calu-3 cells. This was not due to differential expression of sialic acid residues on Calu-3 cells, but was attributed to the interference of host antiviral responses by H3N2. H3N2 induced a delayed antiviral signaling and impaired type I and type III IFN induction compared with the H11N9. The gene encoding for nonstructural (NS) 1 protein was transfected into the bronchial epithelial cells (BECs), and the H3N2 NS1 induced a greater inhibition of antiviral responses compared with the H11N9 NS1. Although the low-pathogenic avian influenza virus was capable of infecting BECs, the human influenza virus replicated more effectively than avian influenza virus in BECs, and this was due to a differential ability of the two NS1 proteins to inhibit antiviral responses. This suggests that the subversion of human antiviral responses may be an important requirement for influenza viruses to adapt to the human host and cause disease.

  1. Embryonic multipotent progenitors remodel the Drosophila airways during metamorphosis

    PubMed Central

    Pitsouli, Chrysoula; Perrimon, Norbert

    2010-01-01

    Adult structures in holometabolous insects such as Drosophila are generated by groups of imaginal cells dedicated to the formation of different organs. Imaginal cells are specified in the embryo and remain quiescent until the larval stages, when they proliferate and differentiate to form organs. The Drosophila tracheal system is extensively remodeled during metamorphosis by a small number of airway progenitors. Among these, the spiracular branch tracheoblasts are responsible for the generation of the pupal and adult abdominal airways. To understand the coordination of proliferation and differentiation during organogenesis of tubular organs, we analyzed the remodeling of Drosophila airways during metamorphosis. We show that the embryonic spiracular branch tracheoblasts are multipotent cells that express the homeobox transcription factor Cut, which is necessary for their survival and normal development. They give rise to three distinct cell populations at the end of larval development, which generate the adult tracheal tubes, the spiracle and the epidermis surrounding the spiracle. Our study establishes the series of events that lead to the formation of an adult tubular structure in Drosophila. PMID:20940225

  2. Activation of chloride channels in normal and cystic fibrosis airway epithelial cells by multifunctional calcium/calmodulin-dependent protein kinase

    NASA Astrophysics Data System (ADS)

    Wagner, John A.; Cozens, Alison L.; Schulman, Howard; Gruenert, Dieter C.; Stryer, Lubert; Gardner, Phyllis

    1991-02-01

    CYSTIC fibrosis is associated with defective regulation of apical membrane chloride channels in airway epithelial cells. These channels in normal cells are activated by cyclic AMP-dependent protein kinase1,2 and protein kinase C3,4. In cystic fibrosis these kinases fail to activate otherwise normal Cl- channels1-4. But Cl- flux in cystic fibrosis cells, as in normal cells, can be activated by raising intracellular Ca2+ (refs 5-10). We report here whole-cell patch clamp studies of normal and cystic fibrosis-derived airway epithelial cells showing that Cl- channel activation by Ca2+ is mediated by multifunctional Ca2+/calmodulin-dependent protein kinase. We find that intracellular application of activated kinase and ATP activates a Cl- current similar to that activated by a Ca2+ ionophore, that peptide inhibitors of either the kinase or calmodulin block Ca2+-dependent activation of Cl- channels, and that a peptide inhibitor of protein kinase C does not block Ca2+-dependent activation. Ca2+/calmodulin activation of Cl- channels presents a pathway with therapeutic potential for circumventing defective regulation of Cl- channels in cystic fibrosis.

  3. Group-2 innate lymphoid cells mediate ozone induced airway inflammation and hyperresponsiveness in mice

    PubMed Central

    Yang, Qi; Ge, Moyar Q.; Kokalari, Blerina; Redai, Imre G.; Wang, Xinxin; Kemeny, David M.; Bhandoola, Avinash; Haczku, Angela

    2015-01-01

    Background Patients with asthma are highly susceptible to air pollution and in particular, to the effects of ozone (O3) inhalation, but the underlying mechanisms remain unclear. Objective Using mouse models of O3-induced airway inflammation and hyperresponsiveness (AHR), we sought to investigate the role of the recently discovered group 2 innate lymphoid cells (ILC2). Methods C57BL/6 and Balb/c mice were exposed to Aspergillus fumigatus and/or O3 (2ppm, 2h). ILC2 were isolated by FACS sorting and studied for IL-5 and IL-13 mRNA expression. ILC2 were depleted with anti-Thy1.2 mAb and replaced by intratracheal transfer of ex vivo expanded Thy1.1 ILC2. Cytokines (ELISA, qPCR), inflammatory cell profile and AHR (FlexiVent) were assessed in the mice. Results In addition to neutrophil influx, O3 inhalation elicited the appearance of eosinophils and IL-5 in the airways of Balb/c but not C57BL/6 mice. Although O3 induced expression of IL-33, a known activator of ILC2 in the lung was similar between these strains, isolated pulmonary ILC2 from O3 exposed Balb/c mice had significantly greater IL-5 and IL-13 mRNA expression than those of C57BL/6 mice. This suggested that an altered ILC2 function in Balb/c mice may mediate the increased O3 responsiveness. Indeed, anti-Thy1.2 treatment abolished, whereas ILC2 add-back dramatically enhanced O3-induced AHR. Conclusions O3-induced activation of pulmonary ILC2 was necessary and sufficient to mediate asthma-like changes in Balb/c mice. This previously unrecognized role of ILC2 may help explain the heightened susceptibility of human asthmatic airways to O3 exposure. PMID:26282284

  4. Control of epithelial immune-response genes and implications for airway immunity and inflammation.

    PubMed

    Holtzman, M J; Look, D C; Sampath, D; Castro, M; Koga, T; Walter, M J

    1998-01-01

    A major goal of our research is to understand how immune cells (especially T cells) infiltrate the pulmonary airway during host defense and inflammatory disease (especially asthma). In that context, we have proposed that epithelial cells lining the airway provide critical biochemical signals for immune-cell influx and activation and that this epithelial-immune cell interaction is a critical feature of airway inflammation and hyperreactivity. In this brief report, we describe our progress in defining a subset of epithelial immune-response genes the expression of which is coordinated for viral defense both directly in response to replicating virus and indirectly under the control of a specific interferon-gamma signal transduction pathway featuring the Stat1 transcription factor as a critical relay signal between cytoplasm and nucleus. Unexpectedly, the same pathway is also activated during asthmatic airway inflammation in a setting where there is no apparent infection and no increase in interferon-gamma levels. The findings provide the first evidence of an overactive Stat1-dependent gene network in asthmatic airways and a novel molecular link between mucosal immunity and inflammation. The findings also offer the possibility that overactivity of Stat1-dependent genes might augment a subsequent T helper cell (Th1)-type response to virus or might combine with a heightened Th2-type response to allergen to account for more severe exacerbations of asthma.

  5. ACTIVATION OF THE EGF RECEPTOR SIGNALING PATHWAY IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO UTAH VALLEY PARTICULATE MATTER

    EPA Science Inventory

    Exposure to ambient particulate matter (PM) in the Utah Valley (UV) has previously been associated with a variety of adverse health effects. To investigate intracellular signaling mechanisms for pulmonary responses to UV PM inhalation, human primary airway epithelial cells (NHBE)...

  6. Nicotine-Induced Airway Smooth Muscle Cell Proliferation Involves TRPC6-Dependent Calcium Influx Via α7 nAChR.

    PubMed

    Hong, Wei; Peng, Gongyong; Hao, Binwei; Liao, Baoling; Zhao, Zhuxiang; Zhou, Yumin; Peng, Fang; Ye, Xiuqin; Huang, Lingmei; Zheng, Mengning; Pu, Jinding; Liang, Chunxiao; Yi, Erkang; Peng, Huanhuan; Li, Bing; Ran, Pixin

    2017-01-01

    The proliferation of human bronchial smooth muscle cells (HBSMCs) is a key pathophysiological component of airway remodeling in chronic obstructive pulmonary disease (COPD) for which pharmacotherapy is limited, and only slight improvements in survival have been achieved in recent decades. Cigarette smoke is a well-recognized risk factor for COPD; however, the pathogenesis of cigarette smoke-induced COPD remains incompletely understood. This study aimed to investigate the mechanisms by which nicotine affects HBSMC proliferation. Cell viability was assessed with a CCK-8 assay. Proliferation was measured by cell counting and EdU immunostaining. Fluorescence calcium imaging was performed to measure intracellular Ca2+ concentration ([Ca2+]i). The results showed that nicotine promotes HBSMC proliferation, which is accompanied by elevated store-operated calcium entry (SOCE), receptor-operated calcium entry (ROCE) and basal [Ca2+]i in HBSMCs. Moreover, we also confirmed that canonical transient receptor potential protein 6 (TRPC6) and α7 nicotinic acetylcholine receptor (α7 nAChR) are involved in nicotine-induced upregulation of cell proliferation. Furthermore, we verified that activation of the PI3K/Akt signaling pathway plays a pivotal role in nicotine-enhanced proliferation and calcium influx in HBSMCs. Inhibition of α7 nAChR significantly decreased Akt phosphorylation levels, and LY294002 inhibited the protein expression levels of TRPC6. Herein, these data provide compelling evidence that calcium entry via the α7 nAChR-PI3K/Akt-TRPC6 signaling pathway plays an important role in the physiological regulation of airway smooth muscle cell proliferation, representing an important target for augmenting airway remodeling. © 2017 The Author(s). Published by S. Karger AG, Basel.

  7. Ciliated median raphe cyst of perineum presenting as perianal polyp: a case report with immunohistochemical study, review of literature, and pathogenesis.

    PubMed

    Sagar, Jayesh; Sagar, Bethani; Patel, Adam F; Shak, D K

    2006-03-05

    Median raphe cyst is a very rare, benign congenital lesion occurring mainly on the ventral aspect of the penis, but can develop anywhere in the midline between the external urethral meatus and anus. We report a case of median raphe cyst in the perineum presenting as a perianal polyp in a 65-year-old, English white male with exceptionally rare ciliated epithelium. According to our knowledge, this is the third such case of ciliated median raphe cyst in the English literature. This case, also the first case of ciliated median raphe cyst in the perineum location, focuses on pathogenesis of median raphe cyst.

  8. The psychoactive substance of cannabis Δ9-tetrahydrocannabinol (THC) negatively regulates CFTR in airway cells.

    PubMed

    Chang, Sheng-Wei; Wellmerling, Jack; Zhang, Xiaoli; Rayner, Rachael E; Osman, Wissam; Mertz, Sara; Amer, Amal O; Peeples, Mark E; Boyaka, Prosper N; Cormet-Boyaka, Estelle

    2018-06-18

    Marijuana consumption is on the rise in the US but the health benefits of cannabis smoking are controversial and the impact of cannabis components on lung homeostasis is not well-understood. Lung function requires a fine regulation of the ion channel CFTR, which is responsible for fluid homeostasis and mucocilliary clearance. The goal of this study was to assess the effect that exposure to Δ9-tetrahydrocannabinol (THC), the psychoactive substance present in marijuana, has on CFTR expression and function. Cultures of human bronchial epithelial cell line 16HBE14o- and primary human airway epithelial cells were exposed to THC. The expression of CFTR protein was determined by immunoblotting and CFTR function was measured using Ussing chambers. We also used specific pharmacological inhibitors of EGFR and ERK to determine the role of this pathway in THC-induced regulation of CFTR. THC decreased CFTR protein expression in primary human bronchial epithelial cells. This decrease was associated with reduced CFTR-mediated short-circuit currents. THC also induced activation of the ERK MAPK pathway via activation of EGFR. Inhibition of EGFR or MEK/ERK prevented THC-induced down regulation of CFTR protein expression. THC negatively regulates CFTR and this is mediated through the EGFR/ERK axis. This study provides the first evidence that THC present in marijuana reduces the expression and function of CFTR in airway epithelial cells. Copyright © 2018. Published by Elsevier B.V.

  9. Adeno-Associated Virus Type 6 (AAV6) Vectors Mediate Efficient Transduction of Airway Epithelial Cells in Mouse Lungs Compared to That of AAV2 Vectors

    PubMed Central

    Halbert, Christine L.; Allen, James M.; Miller, A. Dusty

    2001-01-01

    Although vectors derived from adeno-associated virus type 2 (AAV2) promote gene transfer and expression in many somatic tissues, studies with animal models and cultured cells show that the apical surface of airway epithelia is resistant to transduction by AAV2 vectors. Approaches to increase transduction rates include increasing the amount of vector and perturbing the integrity of the epithelia. In this study, we explored the use of vectors based on AAV6 to increase transduction rates in airways. AAV vectors were made using combinations of rep, cap, and packaged genomes from AAV2 or AAV6. The packaged genomes encoded human placental alkaline phosphatase and contained terminal repeat sequences from AAV2 or AAV6. We found that transduction efficiency was primarily dependent on the source of Cap protein, defined here as the vector pseudotype. The AAV6 and AAV2 pseudotype vectors exhibited different tropisms in tissue-cultured cells, and cell transduction by AAV6 vectors was not inhibited by heparin, nor did they compete for entry in a transduction assay, indicating that AAV6 and AAV2 capsid bind different receptors. In vivo analysis of vectors showed that AAV2 pseudotype vectors gave high transduction rates in alveolar cells but much lower rates in the airway epithelium. In contrast, the AAV6 pseudotype vectors exhibited much more efficient transduction of epithelial cells in large and small airways, showing up to 80% transduction in some airways. These results, combined with our previous results showing lower immunogenicity of AAV6 than of AAV2 vectors, indicate that AAV6 vectors may provide significant advantages over AAV2 for gene therapy of lung diseases like cystic fibrosis. PMID:11413329

  10. Defective parasympathetic innervation is associated with airway branching abnormalities in experimental CDH

    PubMed Central

    Rhodes, Julie; Saxena, Deeksha; Zhang, GuangFeng; Gittes, George K.

    2015-01-01

    Developmental mechanisms leading to lung hypoplasia in congenital diaphragmatic hernia (CDH) remain poorly defined. Pulmonary innervation is defective in the human disease and in the rodent models of CDH. We hypothesize that defective parasympathetic innervation may contribute to airway branching abnormalities and, therefore, lung hypoplasia, during lung development in CDH. The murine nitrofen model of CDH was utilized to study the effect of the cholinergic agonist carbachol on embryonic day 11.5 (E11.5) lung explant cultures. Airway branching and contractions were quantified. In a subset of experiments, verapamil was added to inhibit airway contractions. Sox9 immunostaining and 5-bromo-2-deoxyuridine incorporation were used to identify and quantify the number and proliferation of distal airway epithelial progenitor cells. Intra-amniotic injections were used to determine the in vivo effect of carbachol. Airway branching and airway contractions were significantly decreased in nitrofen-treated lungs compared with controls. Carbachol resulted in increased airway contractions and branching in nitrofen-treated lungs. Nitrofen-treated lungs exhibited an increased number of proliferating Sox9-positive distal epithelial progenitor cells, which were decreased and normalized by treatment with carbachol. Verapamil inhibited the carbachol-induced airway contractions in nitrofen-treated lungs but had no effect on the carbachol-induced increase in airway branching, suggesting a direct carbachol effect independent of airway contractions. In vivo treatment of nitrofen-treated embryos via amniotic injection of carbachol at E10.5 resulted in modest increases in lung size and branching at E17.5. These results suggest that defective parasympathetic innervation may contribute to airway branching abnormalities in CDH. PMID:25934671

  11. Fundamentals of pulmonary drug delivery.

    PubMed

    Groneberg, D A; Witt, C; Wagner, U; Chung, K F; Fischer, A

    2003-04-01

    Aerosol administration of peptide-based drugs plays an important role in the treatment of pulmonary and systemic diseases and the unique cellular properties of airway epithelium offers a great potential to deliver new compounds. As the relative contributions from the large airways to the alveolar space are important to the local and systemic availability, the sites and mechanism of uptake and transport of different target compounds have to be characterized. Among the different respiratory cells, the ciliated epithelial cells of the larger and smaller airways and the type I and type II pneumocytes are the key players in pulmonary drug transport. With their diverse cellular characteristics, each of these cell types displays a unique uptake possibility. Next to the knowledge of these cellular aspects, the nature of aerosolized drugs, characteristics of delivery systems and the depositional and pulmonary clearance mechanisms display major targets to optimize pulmonary drug delivery. Based on the growing knowledge on pulmonary cell biology and pathophysiology due to modern methods of molecular biology, the future characterization of pulmonary drug transport pathways can lead to new strategies in aerosol drug therapy.

  12. CARMA3 Is Critical for the Initiation of Allergic Airway Inflammation

    PubMed Central

    Causton, Benjamin; Ramadas, Ravisankar A.; Cho, Josalyn L.; Jones, Khristianna; Pardo-Saganta, Ana; Rajagopal, Jayaraj; Xavier, Ramnik J.

    2015-01-01

    Innate immune responses to allergens by airway epithelial cells (AECs) help initiate and propagate the adaptive immune response associated with allergic airway inflammation in asthma. Activation of the transcription factor NF-κB in AECs by allergens or secondary mediators via G protein–coupled receptors (GPCRs) is an important component of this multifaceted inflammatory cascade. Members of the caspase recruitment domain family of proteins display tissue-specific expression and help mediate NF-κB activity in response to numerous stimuli. We have previously shown that caspase recruitment domain–containing membrane-associated guanylate kinase protein (CARMA)3 is specifically expressed in AECs and mediates NF-κB activation in these cells in response to stimulation with the GPCR agonist lysophosphatidic acid. In this study, we demonstrate that reduced levels of CARMA3 in normal human bronchial epithelial cells decreases the production of proasthmatic mediators in response to a panel of asthma-relevant GPCR ligands such as lysophosphatidic acid, adenosine triphosphate, and allergens that activate GPCRs such as Alternaria alternata and house dust mite. We then show that genetically modified mice with CARMA3-deficient AECs have reduced airway eosinophilia and proinflammatory cytokine production in a murine model of allergic airway inflammation. Additionally, we demonstrate that these mice have impaired dendritic cell maturation in the lung and that dendritic cells from mice with CARMA3-deficient AECs have impaired Ag processing. In conclusion, we show that AEC CARMA3 helps mediate allergic airway inflammation, and that CARMA3 is a critical signaling molecule bridging the innate and adaptive immune responses in the lung. PMID:26041536

  13. CRISPR-Cas9-mediated gene knockout in primary human airway epithelial cells reveals a proinflammatory role for MUC18.

    PubMed

    Chu, H W; Rios, C; Huang, C; Wesolowska-Andersen, A; Burchard, E G; O'Connor, B P; Fingerlin, T E; Nichols, D; Reynolds, S D; Seibold, M A

    2015-10-01

    Targeted knockout of genes in primary human cells using CRISPR-Cas9-mediated genome-editing represents a powerful approach to study gene function and to discern molecular mechanisms underlying complex human diseases. We used lentiviral delivery of CRISPR-Cas9 machinery and conditional reprogramming culture methods to knockout the MUC18 gene in human primary nasal airway epithelial cells (AECs). Massively parallel sequencing technology was used to confirm that the genome of essentially all cells in the edited AEC populations contained coding region insertions and deletions (indels). Correspondingly, we found mRNA expression of MUC18 was greatly reduced and protein expression was absent. Characterization of MUC18 knockout cell populations stimulated with TLR2, 3 and 4 agonists revealed that IL-8 (a proinflammatory chemokine) responses of AECs were greatly reduced in the absence of functional MUC18 protein. Our results show the feasibility of CRISPR-Cas9-mediated gene knockouts in AEC culture (both submerged and polarized), and suggest a proinflammatory role for MUC18 in airway epithelial response to bacterial and viral stimuli.

  14. Uptake and transport of B12-conjugated nanoparticles in airway epithelium☆

    PubMed Central

    Fowler, Robyn; Vllasaliu, Driton; Falcone, Franco H.; Garnett, Martin; Smith, Bryan; Horsley, Helen; Alexander, Cameron; Stolnik, Snow

    2013-01-01

    Non-invasive delivery of biotherapeutics, as an attractive alternative to injections, could potentially be achieved through the mucosal surfaces, utilizing nanoscale therapeutic carriers. However, nanoparticles do not readily cross the mucosal barriers, with the epithelium presenting a major barrier to their translocation. The transcytotic pathway of vitamin B12 has previously been shown to ‘ferry’ B12-decorated nanoparticles across intestinal epithelial (Caco-2) cells. However, such studies have not been reported for the airway epithelium. Furthermore, the presence in the airways of the cell machinery responsible for transepithelial trafficking of B12 is not widely reported. Using a combination of molecular biology and immunostaining techniques, our work demonstrates that the bronchial cell line, Calu-3, expresses the B12-intrinsic factor receptor, the transcobalamin II receptor and the transcobalamin II carrier protein. Importantly, the work showed that sub-200 nm model nanoparticles chemically conjugated to B12 were internalised and transported across the Calu-3 cell layers, with B12 conjugation not only enhancing cell uptake and transepithelial transport, but also influencing intracellular trafficking. Our work therefore demonstrates that the B12 endocytotic apparatus is not only present in this airway model, but also transports ligand-conjugated nanoparticles across polarised epithelial cells, indicating potential for B12-mediated delivery of nanoscale carriers of biotherapeutics across the airways. PMID:24008152

  15. Mechanosensitive ATP Release Maintains Proper Mucus Hydration of Airways

    PubMed Central

    Button, Brian; Okada, Seiko F.; Frederick, Charles Brandon; Thelin, William R.; Boucher, Richard C.

    2013-01-01

    The clearance of mucus from the airways protects the lungs from inhaled noxious and infectious materials. Proper hydration of the mucus layer enables efficient mucus clearance through beating of cilia on airway epithelial cells, and reduced clearance of excessively concentrated mucus occurs in patients with chronic obstructive pulmonary disease and cystic fibrosis. Key steps in the mucus transport process are airway epithelia sensing and responding to changes in mucus hydration. We reported that extracellular adenosine triphosphate (ATP) and adenosine were important luminal auto-crine and paracrine signals that regulated the hydration of the surface of human airway epithelial cultures through their action on apical membrane purinoceptors. Mucus hydration in human airway epithelial cultures was sensed by an interaction between cilia and the overlying mucus layer: Changes in mechanical strain, proportional to mucus hydration, regulated ATP release rates, adjusting fluid secretion to optimize mucus layer hydration. This system provided a feedback mechanism by which airways maintained mucus hydration in an optimum range for cilia propulsion. Understanding how airway epithelia can sense and respond to changes in mucus properties helps us to understand how the mucus clearance system protects the airways in health and how it fails in lung diseases such as cystic fibrosis. PMID:23757023

  16. Substance P released from intrinsic airway neurons contributes to ozone-enhanced airway hyperresponsiveness in ferret trachea.

    PubMed

    Wu, Zhong-Xin; Satterfield, Brian E; Dey, Richard D

    2003-08-01

    Exposure to ozone (O3) induces airway hyperresponsiveness mediated partly through the release of substance P (SP) from nerve terminals in the airway wall. Although substantial evidence suggests that SP is released by sensory nerves, SP is also present in neurons of airway ganglia. The purpose of this study was to investigate the role of intrinsic airway neurons in O3-enhanced airway responsiveness in ferret trachea. To remove the effects of sensory innervation, segments of ferret trachea were maintained in culture conditions for 24 h before in vitro exposure to 2 parts/million of O3 or air for 1 h. Sensory nerve depletion was confirmed by showing that capsaicin did not affect tracheal smooth muscle responsiveness to cholinergic agonist or contractility responses to electrical field stimulation (EFS). Contractions of isolated tracheal smooth muscle to EFS were significantly increased after in vitro O3 exposure, but the constrictor response to cholinergic agonist was not altered. Pretreatment with CP-99994, an antagonist of the neurokinin 1 receptor, attenuated the increased contraction to EFS after O3 exposure but had no effect in the air exposure group. The number of SP-positive neurons in longitudinal trunk ganglia, the extent of SP innervation to superficial muscular plexus nerve cell bodies, and SP nerve fiber density in tracheal smooth muscle all increased significantly after O3 exposure. The results show that release of SP from intrinsic airway neurons contributes to O3-enhanced tracheal smooth muscle responsiveness by facilitating acetylcholine release from cholinergic nerve terminals.

  17. Airway remodelling and inflammation in asthma are dependent on the extracellular matrix protein fibulin-1c.

    PubMed

    Liu, Gang; Cooley, Marion A; Nair, Prema M; Donovan, Chantal; Hsu, Alan C; Jarnicki, Andrew G; Haw, Tatt Jhong; Hansbro, Nicole G; Ge, Qi; Brown, Alexandra C; Tay, Hock; Foster, Paul S; Wark, Peter A; Horvat, Jay C; Bourke, Jane E; Grainge, Chris L; Argraves, W Scott; Oliver, Brian G; Knight, Darryl A; Burgess, Janette K; Hansbro, Philip M

    2017-12-01

    Asthma is a chronic inflammatory disease of the airways. It is characterized by allergic airway inflammation, airway remodelling, and airway hyperresponsiveness (AHR). Asthma patients, in particular those with chronic or severe asthma, have airway remodelling that is associated with the accumulation of extracellular matrix (ECM) proteins, such as collagens. Fibulin-1 (Fbln1) is an important ECM protein that stabilizes collagen and other ECM proteins. The level of Fbln1c, one of the four Fbln1 variants, which predominates in both humans and mice, is increased in the serum and airways fluids in asthma but its function is unclear. We show that the level of Fbln1c was increased in the lungs of mice with house dust mite (HDM)-induced chronic allergic airway disease (AAD). Genetic deletion of Fbln1c and therapeutic inhibition of Fbln1c in mice with chronic AAD reduced airway collagen deposition, and protected against AHR. Fbln1c-deficient (Fbln1c -/- ) mice had reduced mucin (MUC) 5 AC levels, but not MUC5B levels, in the airways as compared with wild-type (WT) mice. Fbln1c interacted with fibronectin and periostin that was linked to collagen deposition around the small airways. Fbln1c -/- mice with AAD also had reduced numbers of α-smooth muscle actin-positive cells around the airways and reduced airway contractility as compared with WT mice. After HDM challenge, these mice also had fewer airway inflammatory cells, reduced interleukin (IL)-5, IL-13, IL-33, tumour necrosis factor (TNF) and CXCL1 levels in the lungs, and reduced IL-5, IL-33 and TNF levels in lung-draining lymph nodes. Therapeutic targeting of Fbln1c reduced the numbers of GATA3-positive Th2 cells in the lymph nodes and lungs after chronic HDM challenge. Treatment also reduced the secretion of IL-5 and IL-13 from co-cultured dendritic cells and T cells restimulated with HDM extract. Human epithelial cells cultured with Fbln1c peptide produced more CXCL1 mRNA than medium-treated controls. Our data show

  18. Shikonin inhibits maturation of bone marrow-derived dendritic cells and suppresses allergic airway inflammation in a murine model of asthma

    PubMed Central

    Lee, Chen-Chen; Wang, Chien-Neng; Lai, Yu-Ting; Kang, Jaw-Jou; Liao, Jiunn-Wang; Chiang, Bor-Luen; Chen, Hui-Chen; Cheng, Yu-Wen

    2010-01-01

    BACKGROUND AND PURPOSE Shikonin exhibits a wide range of anti-inflammatory actions. Here, we assessed its effects on maturation of murine bone marrow-derived dendritic cells (BM-DCs) and on allergic reactions in a murine model of asthma. EXPERIMENTAL APPROACH Cultured murine BM-DCs were used to investigate the effects of shikonin on expression of cell surface markers and their stimulation of T-cell proliferation and cytokine production. The therapeutic potential of shikonin was evaluated in a model of allergic airway disease. KEY RESULTS Shikonin dose-dependently inhibited expression of major histocompatibility complex class II, CD80, CD86, CCR7 and OX40L on BM-DCs, induced by a mixture of ovalbumin (OVA; 100 µg·mL−1) and thymic stromal lymphopoietin (TSLP; 20 ng·mL−1). Shikonin-treated BM-DCs were poor stimulators of CD4+ T lymphocyte and induced lower levels of interleukin (IL)-4, IL-5, IL-13 and tumour necrosis factor (TNF)-α release by responding T-cells. After intratracheal instillation of shikonin in OVA-immunized mice, OVA challenge induced lower IL-4, IL-5, IL-13, TNF-α and eotaxin release in bronchial alveolar lavage fluid, lower IL-4 and IL-5 production in lung cells and mediastinal lymph node cells and attenuated OVA-induced lung eosinophilia and airway hyperresponsiveness. CONCLUSION AND IMPLICATIONS Shikonin effectively suppressed OVA + TSLP-induced BM-DC maturation in vitro and inhibited allergic inflammation and airway hyperresponsiveness in a murine model of asthma, showing good potential as a treatment for allergic asthma. Also, our model provides a novel platform for screening drugs for allergic diseases. PMID:20735407

  19. FABP4 induces asthmatic airway epithelial barrier dysfunction via ROS-activated FoxM1.

    PubMed

    Wu, Gaohui; Yang, Liteng; Xu, Yi; Jiang, Xiaohong; Jiang, Xiaomin; Huang, Lisha; Mao, Ling; Cai, Shaoxi

    2018-01-01

    Functional abnormal airway epithelial cells, along with activated inflammatory cells, resulting in chronic airway inflammation, are considered as the characteristic of asthma. Fatty Acid Binding Protein 4 (FABP4) takes part in glucose and lipid homeostasis, and also have an important role in allergic airway inflammation. However, whether FABP4 influence barrier function of airway epithelial cells is unknown. In vivo, a HDM-induced murine model of asthma was obtained to assessed airway inflammation and protein expression of E-cadherin and Forkhead Box M1 (FoxM1). In vitro, 16-HBE was cultured and was treated with hrFABP4, siFABP4, FABPF4 inhibitor BMS, or FoxM1 inhibitor RCM-1. IL-4, IL-5, and IL-13 level was determined by ELISA. Transepithelial electrical resistance (TER), paracellular permeability and E-cadherin-special immunofluorescence were measured to value airway epithelial barrier function. Intracellular ROS production was determined by DCF-DA fluorescence. FABP4 inhibitor BMS alleviate airway inflammation and destruction of E-cad in allergic mouse. Treatment with HDM or hrFABP4 aggravated inflammatory response, damaged airway epithelial barrier, which could be inhibited by siFABP4 and BMS. Treatment with HDM or hrFABP4 also enhanced levels of FoxM1, and Inhibited FoxM1 suppressed HDM- and hrFABP4-induced inflammation and airway epithelial barrier dysfunction. In addition, H 2 O 2 promoted FoxM1 expression, HDM and hrFABP4 induced-FoxM1 could be inhibited by NAC, leading to decreased inflammation and improved airway epithelial barrier. Upregulated ROS induced by FABP4 was of significance in activating FoxM1 leading to airway inflammation and epithelial barrier dysfunction. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Structural Development, Cellular Differentiation and Proliferation of the Respiratory Epithelium in the Bovine Fetal Lung.

    PubMed

    Drozdowska, J; Cousens, C; Finlayson, J; Collie, D; Dagleish, M P

    2016-01-01

    Fetal bovine lung samples of 11 different gestational ages were assigned to a classical developmental stage based on histological morphology. Immunohistochemistry was used to characterize the morphology of forming airways, proliferation rate of airway epithelium and the presence of epithelial cell types (i.e. ciliated cells, club cells, neuroepithelial cells (NECs) and type II pneumocytes). Typical structural organization of pseudoglandular (84-98 days gestational age [DGA]), canalicular (154-168 DGA) and alveolar (224-266 DGA) stages was recognized. In addition, transitional pseudoglandular-canalicular (112-126 DGA) and canalicular-saccular (182 DGA) morphologies were present. The embryonic stage was not observed. A significantly (P <0.05) higher proliferation rate of pulmonary epithelium, on average 5.5% and 4.4% in bronchi and bronchioles, respectively, was present in the transitional pseudoglandular-canalicular phase (112-126 DGA) compared with all other phases, while from 8 weeks before term (224-266 DGA) proliferation had almost ceased. The first epithelial cells identified by specific marker proteins in the earliest samples available for study (84 DGA) were ciliated cells and NECs. Club cells were present initially at 112 DGA and type II pneumocytes at 224 DGA. At the latest time points (224-226 DGA) these latter cell types were still present at a much lower percentage compared with adult cattle. This study characterized bovine fetal lung development by histological morphology and cellular composition of the respiratory epithelium and suggests that the apparent structural anatomical maturity of the bovine lung at term is not matched by functional maturity of the respiratory epithelium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Sinonasal solitary chemosensory cells "taste" the upper respiratory environment to regulate innate immunity.

    PubMed

    Lee, Robert J; Cohen, Noam A

    2014-01-01

    It is not fully understood how sinonasal epithelial cells detect the presence of pathogens and activate innate defense responses necessary for protecting the upper airway from infection. One mechanism is through bitter taste receptors (T2Rs), which are expressed in the sinonasal cavity. One T2R isoform, T2R38, is expressed in ciliated cells and detects quorum-sensing molecules from gram-negative bacteria, activating antimicrobial nitric oxide production. More recent studies have examined the role of T2Rs expressed in a sinonasal cell type that has only recently been identified in humans, the solitary chemosensory cell (SCC). We sought to provide an overview of SCCs and taste receptor function in human sinonasal defense as well as implications for chronic rhinosinusitis (CRS). A literature review of the current knowledge of SCCs and taste receptors in sinonasal physiology and CRS was conducted. Human sinonasal SCCs express both bitter T2R and sweet T1R2/3 receptors. Activation of SCC T2Rs activates a calcium signal that propagates to the surrounding epithelial cells and causes secretion of antimicrobial peptides. T1R2/3 sweet receptor activation by physiological airway surface liquid (ASL) glucose concentrations attenuates the T2R response, likely as a mechanism to prevent full activation of the T2R pathway except during times of infection, when pathogens may consume ASL glucose and reduce its concentration. SCCs appear to be important mediators of upper airway innate immunity, as the SCC T2Rs regulate antimicrobial peptide secretion, but further study is needed to determine the specific T2R isoforms involved as well as whether polymorphisms in these isoforms affect susceptibility to infection or patient outcomes in CRS. The inhibitory role of T1R2/3 sweet receptor suggests that T1R2/3 blockers may have therapeutic potential in some CRS patients, particularly those with diabetes mellitus. However, further clinical study of the relationship between infection and T1R2

  2. Primers to block the amplification of symbiotic apostome ciliate 18S rRNA gene in a PCR-based copepod diet study

    NASA Astrophysics Data System (ADS)

    Yi, Xiaoyan; Zhang, Huan; Liu, Guangxing

    2014-05-01

    Pelagic copepods play an important role in the marine food web. However, a full understanding of the ecological status of this zooplankton group depends on the careful study of their natural diets. In previous PCR-based copepod diet studies, we found many apostome ciliates that live symbiotically under the exoskeleton of the copepods, and their sequences were often over-represented in the 18S rRNA gene (18S rDNA) libraries. As a first step to address this issue, we designed three apostome ciliate 18S rDNA blocking primers, and tested their blocking efficiency against apostome ciliate 18s rDNA under various PCR conditions. Using a semi-quantitative PCR method, we optimized the conditions to efficiently amplify the 18S rDNA of the prey while simultaneously excluding the symbiotic apostome ciliates. This technique will facilitate PCR-based diet studies of copepods and other zooplankton in their natural environments.

  3. Autofluorescence multiphoton microscopy for visualization of tissue morphology and cellular dynamics in murine and human airways.

    PubMed

    Kretschmer, Sarah; Pieper, Mario; Hüttmann, Gereon; Bölke, Torsten; Wollenberg, Barbara; Marsh, Leigh M; Garn, Holger; König, Peter

    2016-08-01

    The basic understanding of inflammatory airway diseases greatly benefits from imaging the cellular dynamics of immune cells. Current imaging approaches focus on labeling specific cells to follow their dynamics but fail to visualize the surrounding tissue. To overcome this problem, we evaluated autofluorescence multiphoton microscopy for following the motion and interaction of cells in the airways in the context of tissue morphology. Freshly isolated murine tracheae from healthy mice and mice with experimental allergic airway inflammation were examined by autofluorescence multiphoton microscopy. In addition, fluorescently labeled ovalbumin and fluorophore-labeled antibodies were applied to visualize antigen uptake and to identify specific cell populations, respectively. The trachea in living mice was imaged to verify that the ex vivo preparation reflects the in vivo situation. Autofluorescence multiphoton microscopy was also tested to examine human tissue from patients in short-term tissue culture. Using autofluorescence, the epithelium, underlying cells, and fibers of the connective tissue, as well as blood vessels, were identified in isolated tracheae. Similar structures were visualized in living mice and in the human airway tissue. In explanted murine airways, mobile cells were localized within the tissue and we could follow their migration, interactions between individual cells, and their phagocytic activity. During allergic airway inflammation, increased number of eosinophil and neutrophil granulocytes were detected that moved within the connective tissue and immediately below the epithelium without damaging the epithelial cells or connective tissues. Contacts between granulocytes were transient lasting 3 min on average. Unexpectedly, prolonged interactions between granulocytes and antigen-uptaking cells were observed lasting for an average of 13 min. Our results indicate that autofluorescence-based imaging can detect previously unknown immune cell

  4. Eicosanoids modulate hyperpnea-induced late phase airway obstruction and hyperreactivity in dogs.

    PubMed

    Davis, Michael S; McCulloch, Sharron; Myers, Teresa; Freed, Arthur N

    2002-01-01

    A canine model of exercise-induced asthma was used to test the hypothesis that the development of a late phase response to hyperventilation depends on the acute production of pro-inflammatory mediators. Peripheral airway resistance, reactivity to hypocapnia and aerosol histamine, and bronchoalveolar lavage fluid (BALF) cell and eicosanoid content were measured in dogs approximately 5 h after dry air challenge (DAC). DAC resulted in late phase obstruction, hyperreactivity to histamine, and neutrophilic inflammation. Both cyclooxygenase and lipoxygenase inhibitors administered in separate experiments attenuated the late phase airway obstruction and hyperreactivity to histamine. Neither drug affected the late phase inflammation nor the concentrations of eicosanoids in the BALF obtained 5 h after DAC. This study confirms that hyperventilation of peripheral airways with unconditioned air causes late phase neutrophilia, airway obstruction, and hyperreactivity. The late phase changes in airway mechanics are related to the hyperventilation-induced release of both prostaglandins and leukotrienes, and appear to be independent of the late phase infiltration of inflammatory cells.

  5. ZN2+-INDUCED IL-8 EXPRESSION INVOLVES AP-1, JNK, AND ERK ACTIVITIES IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Exposure to zinc-laden particulate matter (PM) in ambient and occupational settings has been associated with proinflammatory responses in the lung. IL-8 is an important proinflammatory cytokine in the human lung and is induced in human airway epithelial cells exposed to zin...

  6. A simplified experimental model for clearance of some pathogenic bacteria using common bacterivorous ciliated spp. in Tigris river

    NASA Astrophysics Data System (ADS)

    Ali, Talib Hassan; Saleh, Dhuha Saad

    2014-03-01

    Bacteria-specific uptake rates of three different protozoan taxa on a pure and mixed bacterial community was studied by means of a simplified and functionally reproducible experimental model. The bacterial species Shigella flexneri, Escherichia coli and Salmonella typhi were isolated and classified from stool samples of patients suffering from diarrhea. Paramecium caudatum, Tetrahymena pyriformis and Halteria grandinella, free living ciliate Protozoans, were isolated and identified from Tigris river water. Pure and mixed ( E. coli + S. typhi), ( E. coli + Sh. flexneri) bacterial cultures were used with each ciliate genera to evaluate the following: predator duplication rate, prey reduction rate, clearance rate and net grazing rate. We used selective lactose fermentation phenomena of enteric bacteria on MacConkey medium for the quantification of bacteria cultural characteristics. The final bacteria concentration was reduced by growing protozoa of 98-99.9 % compared to protozoa-free controls. It showed that Tetrahymena pyriformis had the highest duplication rate (4.13 time/day) in both types of cultures (pure and mixed), followed by Paramecium caudatum and Halteria grandinella, respectively. Paramecium caudatum had the highest rate of ingestion in both types of cultures (26 × 103 bacteria/organism/hr) and yielded the longest time required for 90 % bacterial reduction in a pure suspension of S. typhi (166 h). Clearance rates of pathogenic bacteria by ciliates ranged between 106 nanoliter/organism/h by P. caudatum to S. typhi and 1.92 nanoliter/organism/h seen in T. pyriformis in ( E. coli + S. typhi) mixed culture. We used aquatic experimental microcosms under controlled conditions to explore bacteria-dependent ciliate growth and examined whether these ciliates could discriminate between equally sized bacterial preys in a mixture.

  7. Automated airway evaluation system for multi-slice computed tomography using airway lumen diameter, airway wall thickness and broncho-arterial ratio

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.; Lerallut, Jean-Francois

    2006-03-01

    Pulmonary diseases such as bronchiectasis, asthma, and emphysema are characterized by abnormalities in airway dimensions. Multi-slice computed tomography (MSCT) has become one of the primary means to depict these abnormalities, as the availability of high-resolution near-isotropic data makes it possible to evaluate airways at oblique angles to the scanner plane. However, currently, clinical evaluation of airways is typically limited to subjective visual inspection only: systematic evaluation of the airways to take advantage of high-resolution data has not proved practical without automation. We present an automated method to quantitatively evaluate airway lumen diameter, wall thickness and broncho-arterial ratios. In addition, our method provides 3D visualization of these values, graphically illustrating the location and extent of disease. Our algorithm begins by automatic airway segmentation to extract paths to the distal airways, and to create a map of airway diameters. Normally, airway diameters decrease as paths progress distally; failure to taper indicates abnormal dilatation. Our approach monitors airway lumen diameters along each airway path in order to detect abnormal profiles, allowing even subtle degrees of pathologic dilatation to be identified. Our method also systematically computes the broncho-arterial ratio at every terminal branch of the tree model, as a ratio above 1 indicates potentially abnormal bronchial dilatation. Finally, the airway wall thickness is computed at corresponding locations. These measurements are used to highlight abnormal branches for closer inspection, and can be summed to compute a quantitative global score for the entire airway tree, allowing reproducible longitudinal assessment of disease severity. Preliminary tests on patients diagnosed with bronchiectasis demonstrated rapid identification of lack of tapering, which also was confirmed by corresponding demonstration of elevated broncho-arterial ratios.

  8. Chloride channel blockers promote relaxation of TEA-induced contraction in airway smooth muscle

    PubMed Central

    Yim, Peter D.; Gallos, George; Perez-zoghbi, Jose F.; Trice, Jacquelyn; Zhang, Yi; Siviski, Matthew; Sonett, Joshua; Emala, Charles W.

    2014-01-01

    Enhanced airway smooth muscle (ASM) contraction is an important component in the pathophysiology of asthma. We have shown that ligand gated chloride channels modulate ASM contractile tone during the maintenance phase of an induced contraction, however the role of chloride flux in depolarization-induced contraction remains incompletely understood. To better understand the role of chloride flux under these conditions, muscle force (human ASM, guinea pig ASM), peripheral small airway luminal area (rat ASM) and airway smooth muscle plasma membrane electrical potentials (human cultured ASM) were measured. We found ex vivo guinea pig airway rings, human ASM strips and small peripheral airways in rat lungs slices relaxed in response to niflumic acid following depolarization-induced contraction induced by K+ channel blockade with tetraethylammonium chloride (TEA). In isolated human airway smooth muscle cells TEA induce depolarization as measured by a fluorescent indicator or whole cell patch clamp and this depolarization was reversed by niflumic acid. These findings demonstrate that ASM depolarization induced contraction is dependent on chloride channel activity. Targeting of chloride channels may be a novel approach to relax hypercontractile airway smooth muscle in bronchoconstrictive disorders. PMID:24662476

  9. Chloride channel blockers promote relaxation of TEA-induced contraction in airway smooth muscle.

    PubMed

    Yim, Peter D; Gallos, George; Perez-Zoghbi, Jose F; Trice, Jacquelyn; Zhang, Yi; Siviski, Matthew; Sonett, Joshua; Emala, Charles W

    2013-01-01

    Enhanced airway smooth muscle (ASM) contraction is an important component in the pathophysiology of asthma. We have shown that ligand gated chloride channels modulate ASM contractile tone during the maintenance phase of an induced contraction, however the role of chloride flux in depolarization-induced contraction remains incompletely understood. To better understand the role of chloride flux under these conditions, muscle force (human ASM, guinea pig ASM), peripheral small airway luminal area (rat ASM) and airway smooth muscle plasma membrane electrical potentials (human cultured ASM) were measured. We found ex vivo guinea pig airway rings, human ASM strips and small peripheral airways in rat lungs slices relaxed in response to niflumic acid following depolarization-induced contraction induced by K(+) channel blockade with tetraethylammonium chloride (TEA). In isolated human airway smooth muscle cells TEA induce depolarization as measured by a fluorescent indicator or whole cell patch clamp and this depolarization was reversed by niflumic acid. These findings demonstrate that ASM depolarization induced contraction is dependent on chloride channel activity. Targeting of chloride channels may be a novel approach to relax hypercontractile airway smooth muscle in bronchoconstrictive disorders.

  10. Regeneration of tracheal epithelium using mouse induced pluripotent stem cells.

    PubMed

    Ikeda, Masakazu; Imaizumi, Mitsuyoshi; Yoshie, Susumu; Otsuki, Koshi; Miyake, Masao; Hazama, Akihiro; Wada, Ikuo; Omori, Koichi

    2016-01-01

    Conclusion The findings demonstrated the potential use of induced pluripotent stem cells for regeneration of tracheal epithelium. Objective Autologous tissue implantation techniques using skin or cartilage are often applied in cases of tracheal defects with laryngeal inflammatory lesions and malignant tumor invasion. However, these techniques are invasive with an unstable clinical outcome. The purpose of this study was to investigate regeneration in a tracheal defect site of nude rats after implantation of ciliated epithelium that was differentiated from induced pluripotent stem cells. Method Embryoid bodies were formed from mouse induced pluripotent stem cells. They were cultured with growth factors for 5 days, and then cultured at the air-liquid interface. The degree of differentiation achieved prior to implantation was determined by histological findings and the results of real-time polymerase chain reaction. Embryoid bodies including ciliated epithelium were embedded into collagen gel that served as an artificial scaffold, and then implanted into nude rats, creating an 'air-liquid interface model'. Histological evaluation was performed 7 days after implantation. Results The ciliated epithelial structure survived on the lumen side of regenerated tissue. It was demonstrated histologically that the structure was composed of ciliated epithelial cells.

  11. Motile cilia of human airway epithelia contain hedgehog signaling components that mediate noncanonical hedgehog signaling.

    PubMed

    Mao, Suifang; Shah, Alok S; Moninger, Thomas O; Ostedgaard, Lynda S; Lu, Lin; Tang, Xiao Xiao; Thornell, Ian M; Reznikov, Leah R; Ernst, Sarah E; Karp, Philip H; Tan, Ping; Keshavjee, Shaf; Abou Alaiwa, Mahmoud H; Welsh, Michael J

    2018-02-06

    Differentiated airway epithelia produce sonic hedgehog (SHH), which is found in the thin layer of liquid covering the airway surface. Although previous studies showed that vertebrate HH signaling requires primary cilia, as airway epithelia mature, the cells lose primary cilia and produce hundreds of motile cilia. Thus, whether airway epithelia have apical receptors for SHH has remained unknown. We discovered that motile cilia on airway epithelial cells have HH signaling proteins, including patched and smoothened. These cilia also have proteins affecting cAMP-dependent signaling, including Gα i and adenylyl cyclase 5/6. Apical SHH decreases intracellular levels of cAMP, which reduces ciliary beat frequency and pH in airway surface liquid. These results suggest that apical SHH may mediate noncanonical HH signaling through motile cilia to dampen respiratory defenses at the contact point between the environment and the lung, perhaps counterbalancing processes that stimulate airway defenses. Copyright © 2018 the Author(s). Published by PNAS.

  12. Mechanisms of bicarbonate secretion: lessons from the airways.

    PubMed

    Bridges, Robert J

    2012-08-01

    Early studies showed that airway cells secrete HCO(3)(-) in response to cAMP-mediated agonists and HCO(3)(-) secretion was impaired in cystic fibrosis (CF). Studies with Calu-3 cells, an airway serous model with high expression of CFTR, also show the secretion of HCO(3)(-) when cells are stimulated with cAMP-mediated agonists. Activation of basolateral membrane hIK-1 K(+) channels inhibits HCO(3)(-) secretion and stimulates Cl(-) secretion. CFTR mediates the exit of both HCO(3)(-) and Cl(-) across the apical membrane. Entry of HCO(3)(-) on a basolateral membrane NBC or Cl(-) on the NKCC determines which anion is secreted. Switching between these two secreted anions is determined by the activity of hIK-1 K(+) channels.

  13. Diacetyl and 2,3-pentanedione exposure of human cultured airway epithelial cells: Ion transport effects and metabolism of butter flavoring agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaccone, Eric J.; Goldsmith, W. Travis; Shimko, Michael J.

    Inhalation of butter flavoring by workers in the microwave popcorn industry may result in “popcorn workers' lung.” In previous in vivo studies rats exposed for 6 h to vapor from the flavoring agents, diacetyl and 2,3-pentanedione, acquired flavoring concentration-dependent damage of the upper airway epithelium and airway hyporeactivity to inhaled methacholine. Because ion transport is essential for lung fluid balance, we hypothesized that alterations in ion transport may be an early manifestation of butter flavoring-induced toxicity. We developed a system to expose cultured human bronchial/tracheal epithelial cells (NHBEs) to flavoring vapors. NHBEs were exposed for 6 h to diacetyl ormore » 2,3-pentanedione vapors (25 or ≥ 60 ppm) and the effects on short circuit current and transepithelial resistance (R{sub t}) were measured. Immediately after exposure to 25 ppm both flavorings reduced Na{sup +} transport, without affecting Cl{sup −} transport or Na{sup +},K{sup +}-pump activity. R{sub t} was unaffected. Na{sup +} transport recovered 18 h after exposure. Concentrations (100–360 ppm) of diacetyl and 2,3-pentanedione reported earlier to give rise in vivo to epithelial damage, and 60 ppm, caused death of NHBEs 0 h post-exposure. Analysis of the basolateral medium indicated that NHBEs metabolize diacetyl and 2,3-pentanedione to acetoin and 2-hydroxy-3-pentanone, respectively. The results indicate that ion transport is inhibited transiently in airway epithelial cells by lower concentrations of the flavorings than those that result in morphological changes of the cells in vivo or in vitro. - Highlights: • Butter flavoring vapor effects on human cultured airway epithelium were studied. • Na transport was reduced by a 6-h exposure to 25 ppm diacetyl and 2,3-pentanedione. • Na transport recovered 18 h after exposure. • > 60 ppm transepithelial voltage and resistance were abolished; cells were damaged. • Cells metabolized diacetyl and 2,3-pentanedione

  14. The adipocyte fatty acid–binding protein aP2 is required in allergic airway inflammation

    PubMed Central

    Shum, Bennett O.V.; Mackay, Charles R.; Gorgun, Cem Z.; Frost, Melinda J.; Kumar, Rakesh K.; Hotamisligil, Gökhan S.; Rolph, Michael S.

    2006-01-01

    The adipocyte fatty acid–binding protein aP2 regulates systemic glucose and lipid metabolism. We report that aP2, in addition to being abundantly expressed by adipocytes, is also expressed by human airway epithelial cells and shows a striking upregulation following stimulation of epithelial cells with the Th2 cytokines IL-4 and IL-13. Regulation of aP2 mRNA expression by Th2 cytokines was highly dependent on STAT6, a transcription factor with a major regulatory role in allergic inflammation. We examined aP2-deficient mice in a model of allergic airway inflammation and found that infiltration of leukocytes, especially eosinophils, into the airways was highly dependent on aP2 function. T cell priming was unaffected by aP2 deficiency, suggesting that aP2 was acting locally within the lung, and analysis of bone marrow chimeras implicated non-hematopoietic cells, most likely bronchial epithelial cells, as the site of action of aP2 in allergic airway inflammation. Thus, aP2 regulates allergic airway inflammation and may provide a link between fatty acid metabolism and asthma. PMID:16841093

  15. Mast cell-dependent IL-33/ST2 signaling is protective against the development of airway hyperresponsiveness in a house dust mite mouse model of asthma.

    PubMed

    Zoltowska Nilsson, A M; Lei, Y; Adner, M; Nilsson, G P

    2018-03-01

    Interleukin-33 (IL-33) and its receptor ST2 have been influentially associated with the pathophysiology of asthma. Due to the divergent roles of IL-33 in regulating mast cell functions, there is a need to further characterize IL-33/ST2-dependent mast cell responses and their significance in the context of asthma. This study aimed to investigate how IL-33/ST2-dependent mast cell responses contribute to the development of airway hyperresponsiveness (AHR) and airway inflammation in a mouse model of house dust mite (HDM)-induced asthma. Mast cell-deficient C57BL/6-Kit W-sh (Wsh) mice engrafted with either wild-type (Wsh + MC-WT) or ST2-deficient bone marrow-derived mast cells (Wsh + MC-ST2KO) were exposed to HDM delivered intranasally. An exacerbated development of AHR in response to HDM was seen in Wsh + MC-ST2KO compared with Wsh + MC-WT mice. The contribution of this IL-33/ST2-dependent mast cell response to AHR seems to reside within the smaller airways in the peripheral parts of the lung, as suggested by the isolated yet marked effect on tissue resistance. Considering the absence of a parallel increase in cellular inflammation in bronchoalveolar lavage fluid (BALF) and lung, the aggravated AHR in Wsh + MC-ST2KO mice seems to be independent of cellular inflammation. We observed an association between the elevated AHR and reduced PGE 2 levels in BALF . Due to the protective properties of PGE 2 in airway responses, it is conceivable that IL-33/ST2-dependent mast cell induction of PGE 2 could be responsible for the dampening effect on AHR. In conclusion, we reveal that IL-33/ST2-dependent mast cell responses can have a protective, rather than causative role, in the development of AHR.

  16. HDAC2 Suppresses IL17A-Mediated Airway Remodeling in Human and Experimental Modeling of COPD.

    PubMed

    Lai, Tianwen; Tian, Baoping; Cao, Chao; Hu, Yue; Zhou, Jiesen; Wang, Yong; Wu, Yanping; Li, Zhouyang; Xu, Xuchen; Zhang, Min; Xu, Feng; Cao, Yuan; Chen, Min; Wu, Dong; Wu, Bin; Dong, Chen; Li, Wen; Ying, Songmin; Chen, Zhihua; Shen, Huahao

    2018-04-01

    Although airway remodeling is a central feature of COPD, the mechanisms underlying its development have not been fully elucidated. The goal of this study was to determine whether histone deacetylase (HDAC) 2 protects against cigarette smoke (CS)-induced airway remodeling through IL-17A-dependent mechanisms. Sputum samples and lung tissue specimens were obtained from control subjects and patients with COPD. The relationships between HDAC2, IL-17A, and airway remodeling were investigated. The effect of HDAC2 on IL-17A-mediated airway remodeling was assessed by using in vivo models of COPD induced by CS and in vitro culture of human bronchial epithelial cells and primary human fibroblasts exposed to CS extract, IL-17A, or both. HDAC2 and IL-17A expression in the sputum cells and lung tissue samples of patients with COPD were associated with bronchial wall thickening and collagen deposition. Il-17a deficiency (Il-17a -/- ) resulted in attenuation of, whereas Hdac2 deficiency (Hdac2 +/- ) exacerbated, CS-induced airway remodeling in mice. IL-17A deletion also attenuated airway remodeling in CS-exposed Hdac2 +/- mice. HDAC2 regulated IL-17A production partially through modulation of CD4 + T cells during T helper 17 cell differentiation and retinoid-related orphan nuclear receptor γt in airway epithelial cells. In vitro, IL-17A deficiency attenuated CS-induced mouse fibroblast activation from Hdac2 +/- mice. IL-17A-induced primary human fibroblast activation was at least partially mediated by autocrine production of transforming growth factor beta 1. These findings suggest that activation of HDAC2 and/or inhibition of IL-17A production could prevent the development of airway remodeling by suppressing airway inflammation and modulating fibroblast activation in COPD. Copyright © 2017. Published by Elsevier Inc.

  17. CLCA1 and TMEM16A: the link towards a potential cure for airway diseases.

    PubMed

    Brett, Tom J

    2015-10-01

    The hallmark traits of chronic obstructive airway diseases are inflammation, airway constriction due to hyperreactivity and mucus overproduction. The current common treatments for asthma and chronic obstructive pulmonary disease target the first two traits with none currently targeting mucus overproduction. The main source of obstructive mucus production is mucus cell metaplasia (MCM), the transdifferentiation of airway epithelial cells into mucus-producing goblet cells, in the small airways. Our current understanding of MCM is profusely incomplete. Few of the molecular players involved in driving MCM in humans have been identified and for many of those that have, their functions and mechanisms are unknown. This fact has limited the development of therapeutics that target mucus overproduction by inhibiting MCM. Current work in the field is aiming to change that.

  18. CARMA3 Is Critical for the Initiation of Allergic Airway Inflammation.

    PubMed

    Causton, Benjamin; Ramadas, Ravisankar A; Cho, Josalyn L; Jones, Khristianna; Pardo-Saganta, Ana; Rajagopal, Jayaraj; Xavier, Ramnik J; Medoff, Benjamin D

    2015-07-15

    Innate immune responses to allergens by airway epithelial cells (AECs) help initiate and propagate the adaptive immune response associated with allergic airway inflammation in asthma. Activation of the transcription factor NF-κB in AECs by allergens or secondary mediators via G protein-coupled receptors (GPCRs) is an important component of this multifaceted inflammatory cascade. Members of the caspase recruitment domain family of proteins display tissue-specific expression and help mediate NF-κB activity in response to numerous stimuli. We have previously shown that caspase recruitment domain-containing membrane-associated guanylate kinase protein (CARMA)3 is specifically expressed in AECs and mediates NF-κB activation in these cells in response to stimulation with the GPCR agonist lysophosphatidic acid. In this study, we demonstrate that reduced levels of CARMA3 in normal human bronchial epithelial cells decreases the production of proasthmatic mediators in response to a panel of asthma-relevant GPCR ligands such as lysophosphatidic acid, adenosine triphosphate, and allergens that activate GPCRs such as Alternaria alternata and house dust mite. We then show that genetically modified mice with CARMA3-deficient AECs have reduced airway eosinophilia and proinflammatory cytokine production in a murine model of allergic airway inflammation. Additionally, we demonstrate that these mice have impaired dendritic cell maturation in the lung and that dendritic cells from mice with CARMA3-deficient AECs have impaired Ag processing. In conclusion, we show that AEC CARMA3 helps mediate allergic airway inflammation, and that CARMA3 is a critical signaling molecule bridging the innate and adaptive immune responses in the lung. Copyright © 2015 by The American Association of Immunologists, Inc.

  19. Airway stents

    PubMed Central

    Keyes, Colleen

    2018-01-01

    Stents and tubes to maintain the patency of the airways are commonly used for malignant obstruction and are occasionally employed in benign disease. Malignant airway obstruction usually results from direct involvement of bronchogenic carcinoma, or by extension of carcinomas occurring in the esophagus or the thyroid. External compression from lymph nodes or metastatic disease from other organs can also cause central airway obstruction. Most malignant airway lesions are surgically inoperable due to advanced disease stage and require multimodality palliation, including stent placement. As with any other medical device, stents have significantly evolved over the last 50 years and deserve an in-depth understanding of their true capabilities and complications. Not every silicone stent is created equal and the same holds for metallic stents. Herein, we present an overview of the topic as well as some of the more practical and controversial issues surrounding airway stents. We also try to dispel the myths surrounding stent removal and their supposed use only in central airways. At the end, we come to the long-held conclusion that stents should not be used as first line treatment of choice, but after ruling out the possibility of curative surgical resection or repair. PMID:29707506

  20. Ozone and allergen exposure during postnatal development alters the frequency and airway distribution of CD25+ cells in infant rhesus monkeys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Lisa A.; California National Primate Research Center, University of California, Davis, CA 95616; Gerriets, Joan E.

    2009-04-01

    The epidemiologic link between air pollutant exposure and asthma has been supported by experimental findings, but the mechanisms are not understood. In this study, we evaluated the impact of combined ozone and house dust mite (HDM) exposure on the immunophenotype of peripheral blood and airway lymphocytes from rhesus macaque monkeys during the postnatal period of development. Starting at 30 days of age, monkeys were exposed to 11 cycles of filtered air, ozone, HDM aerosol, or ozone + HDM aerosol. Each cycle consisted of ozone delivered at 0.5 ppm for 5 days (8 h/day), followed by 9 days of filtered air;more » animals received HDM aerosol during the last 3 days of each ozone exposure period. Between 2-3 months of age, animals co-exposed to ozone + HDM exhibited a decline in total circulating leukocyte numbers and increased total circulating lymphocyte frequency. At 3 months of age, blood CD4+/CD25+ lymphocytes were increased with ozone + HDM. At 6 months of age, CD4+/CD25+ and CD8+/CD25+ lymphocyte populations increased in both blood and lavage of ozone + HDM animals. Overall volume of CD25+ cells within airway mucosa increased with HDM exposure. Ozone did not have an additive effect on volume of mucosal CD25+ cells in HDM-exposed animals, but did alter the anatomical distribution of this cell type throughout the proximal and distal airways. We conclude that a window of postnatal development is sensitive to air pollutant and allergen exposure, resulting in immunomodulation of peripheral blood and airway lymphocyte frequency and trafficking.« less