Science.gov

Sample records for airway inflammation lung

  1. Early airway infection, inflammation, and lung function in cystic fibrosis

    PubMed Central

    Nixon, G; Armstrong, D; Carzino, R; Carlin, J; Olinsky, A; Robertson, C; Grimwood, K

    2002-01-01

    Aims: To determine the relation between lower airway infection and inflammation, respiratory symptoms, and lung function in infants and young children with cystic fibrosis (CF). Methods: A prospective study of children with CF aged younger than 3 years, diagnosed by a newborn screening programme. All were clinically stable and had testing as outpatients. Subjects underwent bronchial lavage (BL) and lung function testing by the raised volume rapid thoracoabdominal compression technique under general anaesthesia. BL fluid was cultured and analysed for neutrophil count, interleukin 8, and neutrophil elastase. Lung function was assessed by forced expiratory volume in 0.5, 0.75, and 1 second. Results: Thirty six children with CF were tested on 54 occasions. Lower airway infection shown by BL was associated with a 10% reduction in FEV0.5 compared with subjects without infection. No relation was identified between airway inflammation and lung function. Daily moist cough within the week before testing was reported on 20/54 occasions, but in only seven (35%) was infection detected. Independent of either infection status or airway inflammation, those with daily cough had lower lung function than those without respiratory symptoms at the time of BL (mean adjusted FEV0.5 195 ml and 236 ml respectively). Conclusions: In young children with CF, both respiratory symptoms and airway infection have independent, additive effects on lung function, unrelated to airway inflammation. Further studies are needed to understand the mechanisms of airway obstruction in these young patients. PMID:12244003

  2. S-Nitrosoglutathione Reductase Inhibition Regulates Allergen-Induced Lung Inflammation and Airway Hyperreactivity

    PubMed Central

    Bassett, David J. P.; Bradley, Matthews O.; Jaffar, Zeina

    2013-01-01

    Allergic asthma is characterized by Th2 type inflammation, leading to airway hyperresponsivenes, mucus hypersecretion and tissue remodeling. S-Nitrosoglutathione reductase (GSNOR) is an alcohol dehydrogenase involved in the regulation of intracellular levels of S-nitrosothiols. GSNOR activity has been shown to be elevated in human asthmatic lungs, resulting in diminished S-nitrosothiols and thus contributing to increased airway hyperreactivity. Using a mouse model of allergic airway inflammation, we report that intranasal administration of a new selective inhibitor of GSNOR, SPL-334, caused a marked reduction in airway hyperreactivity, allergen-specific T cells and eosinophil accumulation, and mucus production in the lungs in response to allergen inhalation. Moreover, SPL-334 treatment resulted in a significant decrease in the production of the Th2 cytokines IL-5 and IL-13 and the level of the chemokine CCL11 (eotaxin-1) in the airways. Collectively, these observations reveal that GSNOR inhibitors are effective not only in reducing airway hyperresponsiveness but also in limiting lung inflammatory responses mediated by CD4+ Th2 cells. These findings suggest that the inhibition of GSNOR may provide a novel therapeutic approach for the treatment of allergic airway inflammation. PMID:23936192

  3. Low-Dose Intestinal Trichuris muris Infection Alters the Lung Immune Microenvironment and Can Suppress Allergic Airway Inflammation.

    PubMed

    Chenery, Alistair L; Antignano, Frann; Burrows, Kyle; Scheer, Sebastian; Perona-Wright, Georgia; Zaph, Colby

    2015-12-07

    Immunological cross talk between mucosal tissues such as the intestine and the lung is poorly defined during homeostasis and disease. Here, we show that a low-dose infection with the intestinally restricted helminth parasite Trichuris muris results in the production of Th1 cell-dependent gamma interferon (IFN-γ) and myeloid cell-derived interleukin-10 (IL-10) in the lung without causing overt airway pathology. This cross-mucosal immune response in the lung inhibits the development of papain-induced allergic airway inflammation, an innate cell-mediated type 2 airway inflammatory disease. Thus, we identify convergent and nonredundant roles of adaptive and innate immunity in mediating cross-mucosal suppression of type 2 airway inflammation during low-dose helminth-induced intestinal inflammation. These results provide further insight in identifying novel intersecting immune pathways elicited by gut-to-lung mucosal cross talk.

  4. Low-Dose Intestinal Trichuris muris Infection Alters the Lung Immune Microenvironment and Can Suppress Allergic Airway Inflammation.

    PubMed

    Chenery, Alistair L; Antignano, Frann; Burrows, Kyle; Scheer, Sebastian; Perona-Wright, Georgia; Zaph, Colby

    2016-02-01

    Immunological cross talk between mucosal tissues such as the intestine and the lung is poorly defined during homeostasis and disease. Here, we show that a low-dose infection with the intestinally restricted helminth parasite Trichuris muris results in the production of Th1 cell-dependent gamma interferon (IFN-γ) and myeloid cell-derived interleukin-10 (IL-10) in the lung without causing overt airway pathology. This cross-mucosal immune response in the lung inhibits the development of papain-induced allergic airway inflammation, an innate cell-mediated type 2 airway inflammatory disease. Thus, we identify convergent and nonredundant roles of adaptive and innate immunity in mediating cross-mucosal suppression of type 2 airway inflammation during low-dose helminth-induced intestinal inflammation. These results provide further insight in identifying novel intersecting immune pathways elicited by gut-to-lung mucosal cross talk. PMID:26644379

  5. Multiple exposures to swine barn air induce lung inflammation and airway hyper-responsiveness

    PubMed Central

    Charavaryamath, Chandrashekhar; Janardhan, Kyathanahalli S; Townsend, Hugh G; Willson, Philip; Singh, Baljit

    2005-01-01

    Background Swine farmers repeatedly exposed to the barn air suffer from respiratory diseases. However the mechanisms of lung dysfunction following repeated exposures to the barn air are still largely unknown. Therefore, we tested a hypothesis in a rat model that multiple interrupted exposures to the barn air will cause chronic lung inflammation and decline in lung function. Methods Rats were exposed either to swine barn (8 hours/day for either one or five or 20 days) or ambient air. After the exposure periods, airway hyper-responsiveness (AHR) to methacholine (Mch) was measured and rats were euthanized to collect bronchoalveolar lavage fluid (BALF), blood and lung tissues. Barn air was sampled to determine endotoxin levels and microbial load. Results The air in the barn used in this study had a very high concentration of endotoxin (15361.75 ± 7712.16 EU/m3). Rats exposed to barn air for one and five days showed increase in AHR compared to the 20-day exposed and controls. Lungs from the exposed groups were inflamed as indicated by recruitment of neutrophils in all three exposed groups and eosinophils and an increase in numbers of airway epithelial goblet cells in 5- and 20-day exposure groups. Rats exposed to the barn air for one day or 20 days had more total leukocytes in the BALF and 20-day exposed rats had more airway epithelial goblet cells compared to the controls and those subjected to 1 and 5 exposures (P < 0.05). Bronchus-associated lymphoid tissue (BALT) in the lungs of rats exposed for 20 days contained germinal centers and mitotic cells suggesting activation. There were no differences in the airway smooth muscle cell volume or septal macrophage recruitment among the groups. Conclusion We conclude that multiple exposures to endotoxin-containing swine barn air induce AHR, increase in mucus-containing airway epithelial cells and lung inflammation. The data also show that prolonged multiple exposures may also induce adaptation in AHR response in the exposed

  6. Triggers of airway inflammation.

    PubMed

    Kerrebijn, K F

    1986-01-01

    Most asthmatics have hyperresponsive airways. This makes them more sensitive than non-asthmatics to bronchoconstricting environmental exposures which, in their turn, may enhance responsiveness. Airway inflammation is considered to be a key determinant of airway hyperresponsiveness: the fact that chronic airway inflammation in cystic fibrosis does not lead to airway hyperresponsiveness of any importance indicates, however, that the role of airway inflammation is complex and incompletely elucidated. The main inducers of airway inflammation are viral infections, antigens, occupational stimuli and pollutants. Although exercise, airway cooling and hyper- or hypotonic aerosols are potent stimuli of bronchoconstriction, it is questionable if airway inflammation is involved in their mode of action. Each of the above-mentioned stimuli is discussed, with emphasis laid on the relation of symptoms to mechanisms. PMID:3533597

  7. Identification of genes differentially regulated by vitamin D deficiency that alter lung pathophysiology and inflammation in allergic airways disease.

    PubMed

    Foong, Rachel E; Bosco, Anthony; Troy, Niamh M; Gorman, Shelley; Hart, Prue H; Kicic, Anthony; Zosky, Graeme R

    2016-09-01

    Vitamin D deficiency is associated with asthma risk. Vitamin D deficiency may enhance the inflammatory response, and we have previously shown that airway remodeling and airway hyperresponsiveness is increased in vitamin D-deficient mice. In this study, we hypothesize that vitamin D deficiency would exacerbate house dust mite (HDM)-induced inflammation and alterations in lung structure and function. A BALB/c mouse model of vitamin D deficiency was established by dietary manipulation. Responsiveness to methacholine, airway smooth muscle (ASM) mass, mucus cell metaplasia, lung and airway inflammation, and cytokines in bronchoalveolar lavage (BAL) fluid were assessed. Gene expression patterns in mouse lung samples were profiled by RNA-Seq. HDM exposure increased inflammation and inflammatory cytokines in BAL, baseline airway resistance, tissue elastance, and ASM mass. Vitamin D deficiency enhanced the HDM-induced influx of lymphocytes into BAL, ameliorated the HDM-induced increase in ASM mass, and protected against the HDM-induced increase in baseline airway resistance. RNA-Seq identified nine genes that were differentially regulated by vitamin D deficiency in the lungs of HDM-treated mice. Immunohistochemical staining confirmed that protein expression of midline 1 (MID1) and adrenomedullin was differentially regulated such that they promoted inflammation, while hypoxia-inducible lipid droplet-associated, which is associated with ASM remodeling, was downregulated. Protein expression studies in human bronchial epithelial cells also showed that addition of vitamin D decreased MID1 expression. Differential regulation of these genes by vitamin D deficiency could determine lung inflammation and pathophysiology and suggest that the effect of vitamin D deficiency on HDM-induced allergic airways disease is complex.

  8. Lung Function, Airway Inflammation, and Polycyclic Aromatic Hydrocarbons Exposure in Mexican Schoolchildren

    PubMed Central

    Barraza-Villarreal, Albino; Escamilla-Nuñez, Maria Consuelo; Schilmann, Astrid; Hernandez-Cadena, Leticia; Li, Zheng; Romanoff, Lovisa; Sjödin, Andreas; Del Río-Navarro, Blanca Estela; Díaz-Sanchez, David; Díaz-Barriga, Fernando; Sly, Peter; Romieu, Isabelle

    2015-01-01

    Objective To determine the association of exposure to polycyclic aromatic hydrocarbons (PAHs) with lung function and pH of exhaled breath condensate (EBC) in Mexican schoolchildren. Methods A pilot study was performed in a subsample of 64 schoolchildren from Mexico City. Lung function and pH of EBC were measured and metabolites of PAHs in urine samples were determined. The association was analyzed using robust regression models. Results A 10% increase in the concentrations of 2-hydroxyfluorene was significantly negatively associated with forced expiratory volume in 1 second (−11.2 mL, 95% CI: −22.2 to −0.02), forced vital capacity (−11.6 mL, 95% CI: −22.9 to −0.2), and pH of EBC (−0.035, 95% CI: −0.066 to −0.005). Conclusion Biomarkers of PAHs exposure were inversely associated with lung function and decrease of ph of EBC as a marker of airway inflammation in Mexican schoolchildren. PMID:24500378

  9. Air Pollution, Airway Inflammation, and Lung Function in a Cohort Study of Mexico City Schoolchildren

    PubMed Central

    Barraza-Villarreal, Albino; Sunyer, Jordi; Hernandez-Cadena, Leticia; Escamilla-Nuñez, Maria Consuelo; Sienra-Monge, Juan Jose; Ramírez-Aguilar, Matiana; Cortez-Lugo, Marlene; Holguin, Fernando; Diaz-Sánchez, David; Olin, Anna Carin; Romieu, Isabelle

    2008-01-01

    Background The biological mechanisms involved in inflammatory response to air pollution are not clearly understood. Objective In this study we assessed the association of short-term air pollutant exposure with inflammatory markers and lung function. Methods We studied a cohort of 158 asthmatic and 50 nonasthmatic school-age children, followed an average of 22 weeks. We conducted spirometric tests, measurements of fractional exhaled nitric oxide (FeNO), interleukin-8 (IL-8) in nasal lavage, and pH of exhaled breath condensate every 15 days during follow-up. Data were analyzed using linear mixed-effects models. Results An increase of 17.5 μg/m3 in the 8-hr moving average of PM2.5 levels (interquartile range) was associated with a 1.08-ppb increase in FeNO [95% confidence interval (CI), 1.01–1.16] and a 1.07-pg/mL increase in IL-8 (95% CI 0.98–1.19) in asthmatic children and a 1.16 pg/ml increase in IL-8 (95% CI, 1.00–1.36) in nonasthmatic children. The 5-day accumulated average of exposure to particulate matter < 2.5 μm in aerodynamic diamter (PM2.5) was significantly inversely associated with forced expiratory volume in 1 sec (FEV1) (p = 0.048) and forced vital capacity (FVC) (p = 0.012) in asthmatic children and with FVC (p = 0.021) in nonasthmatic children. FeNO and FEV1 were inversely associated (p = 0.005) in asthmatic children. Conclusions Exposure to PM2.5 resulted in acute airway inflammation and decrease in lung function in both asthmatic and nonasthmatic children. PMID:18560490

  10. Precursor B Cells Increase in the Lung during Airway Allergic Inflammation: A Role for B Cell-Activating Factor

    PubMed Central

    Malmhäll, Carina; Rådinger, Madeleine; Ramos-Ramirez, Patricia; Lu, You; Deák, Tünde; Semitekolou, Maria; Gaga, Mina; Sjöstrand, Margareta; Lötvall, Jan; Bossios, Apostolos

    2016-01-01

    Background B cells, key cells in allergic inflammation, differentiate in the bone marrow and their precursors include pro-B, pre-B and immature B cells. Eosinophil progenitor cells increase in the lung after allergen exposure. However, the existence and possible role of B cell precursors in the lung during allergic inflammation remains elusive. Methods A BALB/c mouse model of allergic airway inflammation was utilized to perform phenotypic and quantification analyses of pro-B and pre-B cells in the lung by flow cytometry. B cell maturation factors IL-7 and B cell-activating factor (BAFF) and their receptors (CD127 and BAFFR, BCMA, TACI, respectively) were also evaluated in the lung and serum. The effect of anti-BAFF treatment was investigated both in vivo (i.p. administration of BAFF-R-Ig fusion protein) and in vitro (colony forming cell assay). Finally, BAFF levels were examined in the bronchoalveolar lavage (BAL) of asthmatic patients and healthy controls. Results Precursor pro and pre-B cells increase in the lung after allergen exposure, proliferate in the lung tissue in vivo, express markers of chemotaxis (CCR10 and CXCR4) and co-stimulation (CD40, CD86) and are resistant to apoptosis (Bax). Precursor B cells express receptors for BAFF at baseline, while after allergen challenge both their ligand BAFF and the BCMA receptor expression increases in B cell precursors. Blocking BAFFR in the lung in vivo decreases eosinophils and proliferating precursor B cells. Blocking BAFFR in bone marrow cultures in vitro reduces pre-B colony formation units. BAFF is increased in the BAL of severe asthmatics. Conclusion Our data support the concept of a BAFF-mediated role for B cell precursors in allergic airway inflammation. PMID:27513955

  11. Tracking of Inhaled Near-Infrared Fluorescent Nanoparticles in Lungs of SKH-1 Mice with Allergic Airway Inflammation.

    PubMed

    Markus, M Andrea; Napp, Joanna; Behnke, Thomas; Mitkovski, Miso; Monecke, Sebastian; Dullin, Christian; Kilfeather, Stephen; Dressel, Ralf; Resch-Genger, Ute; Alves, Frauke

    2015-12-22

    Molecular imaging of inflammatory lung diseases, such as asthma, has been limited to date. The recruitment of innate immune cells to the airways is central to the inflammation process. This study exploits these cells for imaging purposes within the lung, using inhaled polystyrene nanoparticles loaded with the near-infrared fluorescence dye Itrybe (Itrybe-NPs). By means of in vivo and ex vivo fluorescence reflectance imaging of an ovalbumin-based allergic airway inflammation (AAI) model in hairless SKH-1 mice, we show that subsequent to intranasal application of Itrybe-NPs, AAI lungs display fluorescence intensities significantly higher than those in lungs of control mice for at least 24 h. Ex vivo immunofluorescence analysis of lung tissue demonstrates the uptake of Itrybe-NPs predominantly by CD68(+)CD11c(+)ECF-L(+)MHCII(low) cells, identifying them as alveolar M2 macrophages in the peribronchial and alveolar areas. The in vivo results were validated by confocal microscopy, overlapping tile analysis, and flow cytometry, showing an amount of Itrybe-NP-containing macrophages in lungs of AAI mice significantly larger than that in controls. A small percentage of NP-containing cells were identified as dendritic cells. Flow cytometry of tracheobronchial lymph nodes showed that Itrybe-NPs were negligible in lung draining lymph nodes 24 h after inhalation. This imaging approach may advance preclinical monitoring of AAI in vivo over time and aid the investigation of the role that macrophages play during lung inflammation. Furthermore, it allows for tracking of inhaled nanoparticles and can hence be utilized for studies of the fate of potential new nanotherapeutics.

  12. Hypertonic saline is effective in the prevention and treatment of mucus obstruction, but not airway inflammation, in mice with chronic obstructive lung disease.

    PubMed

    Graeber, Simon Y; Zhou-Suckow, Zhe; Schatterny, Jolanthe; Hirtz, Stephanie; Boucher, Richard C; Mall, Marcus A

    2013-09-01

    Recent evidence suggests that inadequate hydration of airway surfaces is a common mechanism in the pathogenesis of airway mucus obstruction. Inhaled hypertonic saline (HS) induces osmotic water flux, improving hydration of airway surfaces. However, trials in patients with obstructive lung diseases are limited. The aim of this study was to investigate effects of HS on mucus obstruction and airway inflammation in the prevention and treatment of obstructive lung disease in vivo. We, therefore, used the β-epithelial Na(+) channel (βENaC)-overexpressing mouse as a model of chronic obstructive lung disease and determined effects of preventive and late therapy with 3% HS and 7% HS on pulmonary mortality, airway mucus obstruction, and inflammation. We found that preventive treatment with 3% HS and 7% HS improved growth, reduced mortality, and reduced mucus obstruction in neonatal βENaC-overexpressing mice. In adult βENaC-overexpressing mice with chronic lung disease, mucus obstruction was significantly reduced by 7% HS, but not by 3% HS. Treatment with HS triggered airway inflammation with elevated keratinocyte chemoattractant levels and neutrophils in airways from wild-type mice, but reduced keratinocyte chemoattractant in chronic neutrophilic inflammation in adult βENaC-overexpressing mice. Our data demonstrate that airway surface rehydration with HS provides an effective preventive and late therapy of mucus obstruction with no consistent effects on inflammation in chronic lung disease. These results suggest that, through mucokinetic effects, HS may be beneficial for patients with a spectrum of obstructive lung diseases, and that additional strategies are required for effective treatment of associated airway inflammation.

  13. Interleukin-33 from Monocytes Recruited to the Lung Contributes to House Dust Mite-Induced Airway Inflammation in a Mouse Model

    PubMed Central

    Tashiro, Hiroki; Takahashi, Koichiro; Hayashi, Shinichiro; Kato, Go; Kurata, Keigo; Kimura, Shinya; Sueoka-Aragane, Naoko

    2016-01-01

    Background Interleukin-33 (IL-33) activates group 2 innate lymphoid cells (ILC2), resulting in T-helper-2 inflammation in bronchial asthma. Airway epithelial cells were reported as sources of IL-33 during apoptosis and necrosis. However, IL-33 is known to be from sources other than airway epithelial cells such as leukocytes, and the mechanisms of IL-33 production and release are not fully understood. The aim of this study was to clarify the role of IL-33 production by monocytes in airway inflammation. Methods BALB/c mice were sensitized and challenged with a house dust mite (HDM) preparation. Airway inflammation was assessed by quantifying inflammatory cells in bronchoalveolar lavage (BAL) fluid, and IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) levels in lung. Immunohistochemistry for IL-33 in lung sections was also performed. Ly6c, CD11b, and CD11c expression was examined by flow cytometry. Clodronate liposomes were used in the HDM-airway inflammation model to deplete circulating monocytes. Results The IL-33, but not IL-25 or TSLP, level in lung homogenates was markedly increased in HDM mice compared to control mice. IL-33-positive cells in the lungs were identified using immunohistochemistry and were increased in areas surrounding bronchi and vasculature. Furthermore, IL-33 levels were increased in mononuclear cells derived from lungs of HDM mice compared to controls. The expression of Ly6c in mononuclear cells was significantly higher in HDM mice than in controls. Treatment with clodronate liposomes led to inhibition of not only inflammatory cells in BAL fluid, airway hyper reactivity and Th2 cytokines in lung, but also IL-33 in lung. Conclusion IL-33 from monocytes recruited to the lung may contribute to the pathogenesis of HDM-induced airway inflammation. PMID:27310495

  14. Changes in lung function and airway inflammation among asthmatic children residing in a woodsmoke-impacted urban area.

    PubMed

    Allen, Ryan W; Mar, Therese; Koenig, Jane; Liu, L-J Sally; Gould, Timothy; Simpson, Christopher; Larson, Timothy

    2008-02-01

    Fine particulate matter (PM(2.5)) is associated with respiratory effects, and asthmatic children are especially sensitive. Preliminary evidence suggests that combustion-derived particles play an important role. Our objective was to evaluate effect estimates from different PM(2.5) exposure metrics in relation to airway inflammation and lung function among children residing in woodsmoke-impacted areas of Seattle. Nineteen children (ages 6-13 yr) with asthma were monitored during the heating season. We measured 24-h outdoor and personal concentrations of PM(2.5) and light-absorbing carbon (LAC). Levoglucosan (LG), a marker of woodsmoke, was also measured outdoors. We partitioned PM(2.5) exposure into its ambient-generated (E(ag)) and nonambient (E(na)) components. These exposure metrics were evaluated in relation to daily changes in exhaled nitric oxide (FE(NO)), a marker of airway inflammation, and four lung function measures: midexpiratory flow (MEF), peak expiratory flow (PEF), forced expiratory volume in the first second (FEV(1)), and forced vital capacity (FVC). E(ag), but not E(na), was correlated with combustion markers. Significant associations with respiratory health were seen only among participants not using inhaled corticosteroids. Increases in FE(NO) were associated with personal PM(2.5), personal LAC, and E(ag) but not with ambient PM(2.5) or its combustion markers. In contrast, MEF and PEF decrements were associated with ambient PM(2.5), its combustion markers, and E(ag), but not with personal PM(2.5) or personal LAC. FEV(1) was associated only with ambient LG. Our results suggest that lung function may be especially sensitive to the combustion-generated component of ambient PM(2.5), whereas airway inflammation may be more closely related to some other constituent of the ambient PM(2.5) mixture. PMID:18302050

  15. Abnormal epithelial structure and chronic lung inflammation after repair of chlorine-induced airway injury

    PubMed Central

    Mo, Yiqun; Chen, Jing; Humphrey, David M.; Fodah, Ramy A.; Warawa, Jonathan M.

    2014-01-01

    Chlorine is a toxic gas used in a variety of industrial processes and is considered a chemical threat agent. High-level chlorine exposure causes acute lung injury, but the long-term effects of acute chlorine exposure are unclear. Here we characterized chronic pulmonary changes following acute chlorine exposure in mice. A/J mice were exposed to 240 parts per million-hour chlorine or sham-exposed to air. Chlorine inhalation caused sloughing of bronchial epithelium 1 day after chlorine exposure, which was repaired with restoration of a pseudostratified epithelium by day 7. The repaired epithelium contained an abnormal distribution of epithelial cells containing clusters of club or ciliated cells rather than the uniformly interspersed pattern of these cells in unexposed mice. Although the damaged epithelium in A/J mice was repaired rapidly, and minimal airway fibrosis was observed, chlorine-exposed mice developed pneumonitis characterized by infiltration of alveoli with neutrophils and prominent, large, foamy macrophages. Levels of CXCL1/KC, CXCL5/LPS-induced CXC chemokine, granulocyte colony-stimulating factor, and VEGF in bronchoalveolar (BAL) fluid from chlorine-exposed mice showed steadily increasing trends over time. BAL protein levels were increased on day 4 and remained elevated out to day 28. The number of bacteria cultured from lungs of chlorine-exposed mice 4 wk after exposure was not increased compared with sham-exposed mice, indicating that the observed pneumonitis was not driven by bacterial infection of the lung. The results indicate that acute chlorine exposure may cause chronic abnormalities in the lungs despite rapid repair of injured epithelium. PMID:25398987

  16. Abnormal epithelial structure and chronic lung inflammation after repair of chlorine-induced airway injury.

    PubMed

    Mo, Yiqun; Chen, Jing; Humphrey, David M; Fodah, Ramy A; Warawa, Jonathan M; Hoyle, Gary W

    2015-01-15

    Chlorine is a toxic gas used in a variety of industrial processes and is considered a chemical threat agent. High-level chlorine exposure causes acute lung injury, but the long-term effects of acute chlorine exposure are unclear. Here we characterized chronic pulmonary changes following acute chlorine exposure in mice. A/J mice were exposed to 240 parts per million-hour chlorine or sham-exposed to air. Chlorine inhalation caused sloughing of bronchial epithelium 1 day after chlorine exposure, which was repaired with restoration of a pseudostratified epithelium by day 7. The repaired epithelium contained an abnormal distribution of epithelial cells containing clusters of club or ciliated cells rather than the uniformly interspersed pattern of these cells in unexposed mice. Although the damaged epithelium in A/J mice was repaired rapidly, and minimal airway fibrosis was observed, chlorine-exposed mice developed pneumonitis characterized by infiltration of alveoli with neutrophils and prominent, large, foamy macrophages. Levels of CXCL1/KC, CXCL5/LPS-induced CXC chemokine, granulocyte colony-stimulating factor, and VEGF in bronchoalveolar (BAL) fluid from chlorine-exposed mice showed steadily increasing trends over time. BAL protein levels were increased on day 4 and remained elevated out to day 28. The number of bacteria cultured from lungs of chlorine-exposed mice 4 wk after exposure was not increased compared with sham-exposed mice, indicating that the observed pneumonitis was not driven by bacterial infection of the lung. The results indicate that acute chlorine exposure may cause chronic abnormalities in the lungs despite rapid repair of injured epithelium.

  17. Effect of subchronic in vivo exposure to nitrogen dioxide on lung tissue inflammation, airway microvascular leakage, and in vitro bronchial muscle responsiveness in rats.

    PubMed Central

    Chitano, P; Rado, V; Di Stefano, A; Papi, A; Boniotti, A; Zancuoghi, G; Boschetto, P; Romano, M; Salmona, M; Ciaccia, A; Fabbri, L M; Mapp, C E

    1996-01-01

    OBJECTIVES: In a previous study on bronchoalveolar lavage fluid from rats exposed in vivo for seven days to 10 ppm nitrogen dioxide (NO2), it has been shown that there is an influx of macrophages into the airways. The present study investigated the effect of seven day exposure to 10 ppm NO2, on: (a) lung tissue inflammation and morphology; (b) airway microvascular leakage; (c) in vitro contractile response of main bronchi. METHODS: Lung tissue was studied by light microscopy, after fixing the lungs by inflation with 4% formalin at a pressure of 20 cm H2O. Microvascular leakage was measured by extravasation of Evans blue dye in the larynx, trachea, main bronchi, and intrapulmonary airways. Smooth muscle responsiveness was evaluated by concentration-responses curves to acetylcholine (10(-9)-10(-3) M), serotonin (10(-9)-10(-4) M), and voltage-response curves (12-28 V) to electrical field stimulation. RESULTS: Histology showed an increased total inflammation at the level of respiratory bronchioles and alveoli. No influx of inflammatory cells was found in the main bronchi. A loss of cilia in the epithelium of small airways and ectasia of alveolar capillaries was also found. By contrast, no alterations to microvascular permeability or modification of bronchial smooth muscle responsiveness was found. CONCLUSIONS: Subchronic exposure to 10 ppm NO2 causes airway inflammation and structural damage, but does not cause any persistent alteration to microvascular permeability or bronchial smooth muscle responsiveness in rats. Images Figure 1 PMID:8758032

  18. Silibinin attenuates allergic airway inflammation in mice

    SciTech Connect

    Choi, Yun Ho; Jin, Guang Yu; Guo, Hui Shu; Piao, Hong Mei; Li, Liang chang; Li, Guang Zhao; Lin, Zhen Hua; Yan, Guang Hai

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. Black-Right-Pointing-Pointer Silibinin reduces the levels of various cytokines into the lung of allergic mice. Black-Right-Pointing-Pointer Silibinin prevents the development of airway hyperresponsiveness in allergic mice. Black-Right-Pointing-Pointer Silibinin suppresses NF-{kappa}B transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-{kappa}B) pathway. Because NF-{kappa}B activation plays a pivotal role in the pathogenesis of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-{kappa}B activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-{kappa}B activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.

  19. Silencing Nociceptor Neurons Reduces Allergic Airway Inflammation.

    PubMed

    Talbot, Sébastien; Abdulnour, Raja-Elie E; Burkett, Patrick R; Lee, Seungkyu; Cronin, Shane J F; Pascal, Maud A; Laedermann, Cedric; Foster, Simmie L; Tran, Johnathan V; Lai, Nicole; Chiu, Isaac M; Ghasemlou, Nader; DiBiase, Matthew; Roberson, David; Von Hehn, Christian; Agac, Busranour; Haworth, Oliver; Seki, Hiroyuki; Penninger, Josef M; Kuchroo, Vijay K; Bean, Bruce P; Levy, Bruce D; Woolf, Clifford J

    2015-07-15

    Lung nociceptors initiate cough and bronchoconstriction. To elucidate if these fibers also contribute to allergic airway inflammation, we stimulated lung nociceptors with capsaicin and observed increased neuropeptide release and immune cell infiltration. In contrast, ablating Nav1.8(+) sensory neurons or silencing them with QX-314, a charged sodium channel inhibitor that enters via large-pore ion channels to specifically block nociceptors, substantially reduced ovalbumin- or house-dust-mite-induced airway inflammation and bronchial hyperresponsiveness. We also discovered that IL-5, a cytokine produced by activated immune cells, acts directly on nociceptors to induce the release of vasoactive intestinal peptide (VIP). VIP then stimulates CD4(+) and resident innate lymphoid type 2 cells, creating an inflammatory signaling loop that promotes allergic inflammation. Our results indicate that nociceptors amplify pathological adaptive immune responses and that silencing these neurons with QX-314 interrupts this neuro-immune interplay, revealing a potential new therapeutic strategy for asthma. PMID:26119026

  20. Silencing nociceptor neurons reduces allergic airway inflammation

    PubMed Central

    Talbot, Sébastien; Abdulnour, Raja-Elie E.; Burkett, Patrick R.; Lee, Seungkyu; Cronin, Shane J.F.; Pascal, Maud A.; Laedermann, Cedric; Foster, Simmie L.; Tran, Johnathan V.; Lai, Nicole; Chiu, Isaac M.; Ghasemlou, Nader; DiBiase, Matthew; Roberson, David; Von Hehn, Christian; Agac, Busranour; Haworth, Oliver; Seki, Hiroyuki; Penninger, Josef M.; Kuchroo, Vijay K.; Bean, Bruce P.; Levy, Bruce D.; Woolf, Clifford J.

    2015-01-01

    Summary Lung nociceptors initiate cough and bronchoconstriction. To elucidate if these fibers also contribute to allergic airway inflammation we stimulated lung nociceptors with capsaicin and observed increased neuropeptide release and immune cell infiltration. In contrast, ablating Nav1.8+ sensory neurons or silencing them with QX-314, a charged sodium channel inhibitor that enters via large pore ion channels to specifically block nociceptors, substantially reduced ovalbumin or house dust mite-induced airway inflammation and bronchial hyperresponsiveness. We also discovered that IL-5, a cytokine produced by activated immune cells, acts directly on nociceptors to induce release of vasoactive intestinal peptide (VIP). VIP then stimulates CD4+ and resident innate lymphoid type 2 cells, creating an inflammatory signaling loop that promotes allergic inflammation. Our results indicate that nociceptors amplify pathological adaptive immune responses and that silencing these neurons with QX-314 interrupts this neuro-immune interplay, revealing a potential new therapeutic strategy for asthma. PMID:26119026

  1. Selective NF-kappaB inhibition, but not dexamethasone, decreases acute lung injury in a newborn piglet airway inflammation model.

    PubMed

    von Bismarck, Philipp; Klemm, Karsten; García Wistädt, Carlos-Francisco; Winoto-Morbach, Supandi; Schütze, Stefan; Krause, Martin F

    2009-08-01

    Acute respiratory failure in neonates (e.g. ARDS, meconium aspiration pneumonitis, pneumonia) is characterized by an excessive inflammatory response, governing the migration of polymorpho-nuclear leukocytes (PMNLs) into lung tissue and causing consecutive impairment of gas exchange and lung function. Critical to this inflammatory response is the activation of nuclear factor-kappaB (NF-kappaB) that is required for transcription of the genes for many pro-inflammatory mediators. We asked whether the inhibition of NF-kappaB activity using either a selective inhibitor (IKK-NBD peptide) or dexamethasone would be more effective in decreasing NF-kappaB activity and chemokine expression in pulmonary cells. Changes in lung function were repeatedly assessed for 24h following induction of acute respiratory failure and therapeutic intervention. We conducted a randomized, controlled, prospective animal study with mechanically ventilated newborn piglets which underwent repeated airway lavage (20+/-2 [SEM]) to remove surfactant and to induce lung inflammation. Admixed to 100 mg kg(-1) surfactant, piglets then received either IKK-NBD peptide (S+IKK), a selective inhibitor of NF-kappaB activation, its control peptide without intrinsic activity, dexamethasone (S+Dexa), its solvent aqua, or an air bolus only (all groups n=8). After 24h of mechanical ventilation, the following differences were measured: PaO(2)/FiO(2) (S+IKK 230+/-9 mm Hg vs. S+Dexa 188+/-14, p<0.05); ventilation efficiency index (0.18+/-0.01 [3800/(PIP-PEEP)(*)f(*)PaCO(2)] vs. 0.14+/-0.01, p<0.05); extravascular lung water (24+/-1 ml kg(-1) vs. 29+/-2, p<0.05); PMNL in BAL fluid (112+/-21 cells microl(-1) vs. 208+/-34, p<0.05), IL-8 (351+/-117 pg ml(-1) vs. 491+/-144, p=ns) and leukotriene B(4) (23+/-7 pg ml(-1) vs. 71+/-11, p<0.01) in BAL fluid. NF-kappaB activity in the nucleus of pulmonary cells differed by 32+/-5% vs. 55+/-3, p<0.001. Differences between these two intervention groups were more pronounced in the

  2. Air pollution, airway inflammation and lung function in Mexico City school children

    EPA Science Inventory

    BACKGROUND: The biological mechanisms involved in inflammatory response to air pollution are not clearly understood. OBJECTIVE: In this study we assessed the association of short-term air pollutant exposure with inflammatory markers and lung function. METHODS: We studied a cohort...

  3. Dietary intake, lung function and airway inflammation in Mexico City school children exposed to air pollutants

    PubMed Central

    2009-01-01

    Introduction Air pollutant exposure has been associated with an increase in inflammatory markers and a decline in lung function in asthmatic children. Several studies suggest that dietary intake of fruits and vegetables might modify the adverse effect of air pollutants. Methods A total of 158 asthmatic children recruited at the Children's Hospital of Mexico and 50 non-asthmatic children were followed for 22 weeks. Pulmonary function was measured and nasal lavage collected and analyzed every 2 weeks. Dietary intake was evaluated using a 108-item food frequency questionnaire and a fruit and vegetable index (FVI) and a Mediterranean diet index (MDI) were constructed. The impact of these indices on lung function and interleukin-8 (IL-8) and their interaction with air pollutants were determined using mixed regression models with random intercept and random slope. Results FVI was inversely related to IL-8 levels in nasal lavage (p < 0.02) with a significant inverse trend (test for trend p < 0.001), MDI was positively related to lung function (p < 0.05), and children in the highest category of MDI had a higher FEV1 (test for trend p < 0.12) and FVC (test for trend p < 0.06) than children in the lowest category. A significant interaction was observed between FVI and ozone for FEV1 and FVC as was with MDI and ozone for FVC. No effect of diet was observed among healthy children. Conclusion Our results suggest that fruit and vegetable intake and close adherence to the Mediterranean diet have a beneficial effect on inflammatory response and lung function in asthmatic children living in Mexico City. PMID:20003306

  4. Improvements in cystic fibrosis lung disease and airway inflammation associated with etanercept therapy for rheumatoid arthritis: a case report.

    PubMed

    Visser, S; Martin, M; Serisier, D J

    2012-10-01

    Cystic fibrosis (CF) lung pathology is characterized by excessive neutrophilic inflammation and high tumor necrosis factor-alpha (TNF-α) levels. A cornerstone of CF management is reduction of the inflammatory burden in the lung. We present the case of a 19-year-old CF patient who demonstrated significant clinical improvement in her lung disease associated with a reduction in sputum percent neutrophils, following commencement of etanercept (TNF-α antagonist) for rheumatoid arthritis. She has not had any infectious complications or other significant adverse effects during 2 years of treatment. It may be time to reconsider TNF-α antagonists as potential anti-inflammatory agents for CF lung disease.

  5. Lung function and airway diseases.

    PubMed

    Weiss, Scott T

    2010-01-01

    Two studies report genome-wide association studies for lung function, using cross-sectional spirometric measurements in healthy individuals. They identify six genetic loci newly associated to natural variation in lung function, which may have implications for the related airway diseases of asthma and chronic obstructive pulmonary disease. PMID:20037613

  6. Diesel exhaust particles and airway inflammation

    EPA Science Inventory

    Purpose of review. Epidemiologic investigation has associated traffic-related air pollution with adverse human health outcomes. The capacity ofdiesel exhaust particles (DEP), a major emission source air pollution particle, to initiate an airway inflammation has subsequently been ...

  7. Early pulmonary inflammation and lung damage in children with cystic fibrosis.

    PubMed

    Schultz, André; Stick, Stephen

    2015-05-01

    Individuals with cystic fibrosis (CF) suffer progressive airway inflammation, infection and lung damage. Airway inflammation and infection are present from early in life, often before children are symptomatic. CF gene mutations cause changes in the CF transmembrane regulator protein that result in an aberrant airway microenvironment including airway surface liquid (ASL) dehydration, reduced ASL acidity, altered airway mucin and a dysregulated inflammatory response. This review discusses how an altered microenvironment drives CF lung disease before overt airway infection, the response of the CF airway to early infection, and methods to prevent inflammation and early lung disease.

  8. Role of Chitinase 3-Like-1 in Interleukin-18-Induced Pulmonary Type 1, Type 2, and Type 17 Inflammation; Alveolar Destruction; and Airway Fibrosis in the Murine Lung.

    PubMed

    Kang, Min-Jong; Yoon, Chang Min; Nam, Milang; Kim, Do-Hyun; Choi, Je-Min; Lee, Chun Geun; Elias, Jack A

    2015-12-01

    Chitinase 3-like 1 (Chi3l1), which is also called YKL-40 in humans and BRP-39 in mice, is the prototypic chitinase-like protein. Recent studies have highlighted its impressive ability to regulate the nature of tissue inflammation and the magnitude of tissue injury and fibroproliferative repair. This can be appreciated in studies that highlight its induction after cigarette smoke exposure, during which it inhibits alveolar destruction and the genesis of pulmonary emphysema. IL-18 is also known to be induced and activated by cigarette smoke, and, in murine models, the IL-18 pathway has been shown to be necessary and sufficient to generate chronic obstructive pulmonary disease-like inflammation, fibrosis, and tissue destruction. However, the relationship between Chi3l1 and IL-18 has not been defined. To address this issue we characterized the expression of Chi3l1/BRP-39 in control and lung-targeted IL-18 transgenic mice. We also characterized the effects of transgenic IL-18 in mice with wild-type and null Chi3l1 loci. The former studies demonstrated that IL-18 is a potent stimulator of Chi3l1/BRP-39 and that this stimulation is mediated via IFN-γ-, IL-13-, and IL-17A-dependent mechanisms. The latter studies demonstrated that, in the absence of Chi3l1/BRP-39, IL-18 induced type 2 and type 17 inflammation and fibrotic airway remodeling were significantly ameliorated, whereas type 1 inflammation, emphysematous alveolar destruction, and the expression of cytotoxic T lymphocyte perforin, granzyme, and retinoic acid early transcript 1 expression were enhanced. These studies demonstrate that IL-18 is a potent stimulator of Chi3l1 and that Chi3l1 is an important mediator of IL-18-induced inflammatory, fibrotic, alveolar remodeling, and cytotoxic responses.

  9. Pim1 kinase protects airway epithelial cells from cigarette smoke-induced damage and airway inflammation.

    PubMed

    de Vries, M; Heijink, I H; Gras, R; den Boef, L E; Reinders-Luinge, M; Pouwels, S D; Hylkema, M N; van der Toorn, M; Brouwer, U; van Oosterhout, A J M; Nawijn, M C

    2014-08-01

    Exposure to cigarette smoke (CS) is the main risk factor for developing chronic obstructive pulmonary disease and can induce airway epithelial cell damage, innate immune responses, and airway inflammation. We hypothesized that cell survival factors might decrease the sensitivity of airway epithelial cells to CS-induced damage, thereby protecting the airways against inflammation upon CS exposure. Here, we tested whether Pim survival kinases could protect from CS-induced inflammation. We determined expression of Pim kinases in lung tissue, airway inflammation, and levels of keratinocyte-derived cytokine (KC) and several damage-associated molecular patterns in bronchoalveolar lavage in mice exposed to CS or air. Human bronchial epithelial BEAS-2B cells were treated with CS extract (CSE) in the presence or absence of Pim1 inhibitor and assessed for loss of mitochondrial membrane potential, induction of cell death, and release of heat shock protein 70 (HSP70). We observed increased expression of Pim1, but not of Pim2 and Pim3, in lung tissue after exposure to CS. Pim1-deficient mice displayed a strongly enhanced neutrophilic airway inflammation upon CS exposure compared with wild-type controls. Inhibition of Pim1 activity in BEAS-2B cells increased the loss of mitochondrial membrane potential and reduced cell viability upon CSE treatment, whereas release of HSP70 was enhanced. Interestingly, we observed release of S100A8 but not of double-strand DNA or HSP70 in Pim1-deficient mice compared with wild-type controls upon CS exposure. In conclusion, we show that expression of Pim1 protects against CS-induced cell death in vitro and neutrophilic airway inflammation in vivo. Our data suggest that the underlying mechanism involves CS-induced release of S100A8 and KC. PMID:24816488

  10. Neurogenic inflammation in lung disease: burnt out?

    PubMed

    Rogers, D F

    1997-01-01

    Neurogenic inflammation results from activation of sensory nerves which, acting in an 'efferent' manner, release sensory neuropeptides to induce a wide variety of physiological and immunological responses. This process is easy to demonstrate experimentally in the airways of small laboratory animal species but in human airways is equivocal and, at best, minor compared with cholinergic neural control. Nevertheless, sensory neuropeptides (calcitonin gene-related peptide and the tachykinins, substance P and neurokinin A) induce airway responses in both laboratory animals and humans which suggest a potential for sensory-efferent control of human airways. In addition, there is indirect evidence for an increased 'expression' of sensory nerves and tachykinin receptors in asthma and bronchitis, which indicates that neurogenic inflammation contributes to pathophysiology of these airway conditions. In contrast, clinical trials using different classes of drugs to inhibit sensory nerve responses have failed to resolve whether neurogenic inflammation is involved in asthma, although there are concerns about the relevance of some of these studies. In contrast to their involvement in airway neurogenic inflammation, sensory nerves may be important in initiating protective reflexes, including coughing and sneezing, acting via their afferent pathways. Thus, although flickering, the concept of neurogenic inflammation in lung disease is not yet burnt out. However, it needs the rekindling of interest which re-evaluation as a protective process may bring, together with data from more appropriate clinical studies in asthma and chronic bronchitis. PMID:17657611

  11. Immunomodulatory Effects of Ambroxol on Airway Hyperresponsiveness and Inflammation

    PubMed Central

    Miyahara, Nobuaki; Matsubara, Shigeki; Taube, Christian; Kitamura, Kenichi; Hirano, Astushi; Tanimoto, Mitsune; Gelfand, Erwin W.

    2016-01-01

    Ambroxol is used in COPD and asthma to increase mucociliary clearance and regulate surfactant levels, perhaps through anti-oxidant and anti-inflammatory activities. To determine the role and effect of ambroxol in an experimental model of asthma, BALB/c mice were sensitized to ovalbumin (OVA) followed by 3 days of challenge. Airway hyperresponsiveness (AHR), lung cell composition and histology, and cytokine and protein carbonyl levels in bronchoalveolar lavage (BAL) fluid were determined. Ambroxol was administered either before the first OVA challenge or was begun after the last allergen challenge. Cytokine production levels from lung mononuclear cells (Lung MNCs) or alveolar macrophages (AM) were also determined. Administration of ambroxol prior to challenge suppressed AHR, airway eosinophilia, goblet cell metaplasia, and reduced inflammation in subepithelial regions. When given after challenge, AHR was suppressed but without effects on eosinophil numbers. Levels of IL-5 and IL-13 in BAL fluid were decreased when the drug was given prior to challenge; when given after challenge, increased levels of IL-10 and IL-12 were detected. Decreased levels of protein carbonyls were detected in BAL fluid following ambroxol treatment after challenge. In vitro, ambroxol increased levels of IL-10, IFN-γ, and IL-12 from Lung MNCs and AM, whereas IL-4, IL-5, and IL-13 production was not altered. Taken together, ambroxol was effective in preventing AHR and airway inflammation through upregulation of Th1 cytokines and protection from oxidative stress in the airways. PMID:27340385

  12. Elevated circulating PAI-1 levels are related to lung function decline, systemic inflammation, and small airway obstruction in chronic obstructive pulmonary disease

    PubMed Central

    Wang, Hao; Yang, Ting; Li, Diandian; Wu, Yanqiu; Zhang, Xue; Pang, Caishuang; Zhang, Junlong; Ying, Binwu; Wang, Tao; Wen, Fuqiang

    2016-01-01

    Background Plasminogen activator inhibitor-1 (PAI-1) and soluble urokinase-type plasminogen activator receptor (suPAR) participate in inflammation and tissue remolding in various diseases, but their roles in chronic obstructive pulmonary disease (COPD) are not yet clear. This study aimed to investigate if PAI-1 and suPAR were involved in systemic inflammation and small airway obstruction (SAO) in COPD. Methods Demographic and clinical characteristics, spirometry examination, and blood samples were obtained from 84 COPD patients and 51 healthy volunteers. Serum concentrations of PAI-1, suPAR, tissue inhibitor of metalloproteinase-1 (TIMP-1), Matrix metalloproteinase-9 (MMP-9), and C-reactive protein (CRP) were detected with Magnetic Luminex Screening Assay. Differences between groups were statistically analyzed using one-way analysis of variance or chi-square test. Pearson’s partial correlation test (adjusted for age, sex, body mass index, cigarette status, and passive smoke exposure) and multivariable linear analysis were used to explore the relationships between circulating PAI-1 and indicators of COPD. Results First, we found that serum PAI-1 levels but not suPAR levels were significantly increased in COPD patients compared with healthy volunteers (125.56±51.74 ng/mL versus 102.98±36.62 ng/mL, P=0.007). Then, the correlation analysis showed that circulating PAI-1 was inversely correlated with pulmonary function parameters including the ratio of forced expiratory volume in 1 second to forced vital capacity (FEV1/FVC), FEV1/Pre (justified r=−0.308, P<0.001; justified r=−0.295, P=0.001, respectively) and SAO indicators such as FEV3/FVC, MMEF25–75/Pre (justified r=−0.289, P=0.001; justified r=−0.273, P=0.002, respectively), but positively related to the inflammatory marker CRP (justified r=0.351, P<0.001), the small airway remolding biomarker TIMP-1, and MMP-9 (justified r=0.498, P<0.001; justified r=0.267, P=0.002, respectively). Besides, multivariable

  13. Novel concepts in airway inflammation and remodelling in asthma.

    PubMed

    Saglani, Sejal; Lloyd, Clare M

    2015-12-01

    The hallmark pathological features of asthma include airway eosinophilic inflammation and structural changes (remodelling) which are associated with an irreversible loss in lung function that tracks from childhood to adulthood. In parallel with changes in function, pathological abnormalities occur early, during the pre-school years, are established by school age and subsequently remain (even though symptoms may remit for periods during adulthood). Given the equal importance of inflammation and remodelling in asthma pathogenesis, there is a significant disparity in studies undertaken to investigate the contribution of each. The majority focus on the role of inflammation, and although novel therapeutics such as those targeted against T-helper cell type 2 (Th2) mediators have arisen, it is apparent that targeting inflammation alone has not allowed disease modification. Therefore, unless airway remodelling is addressed for future therapeutic strategies, it is unlikely that we will progress towards a cure for asthma. Having acknowledged these limitations, the focus of this review is to highlight the gaps in our current knowledge about the mechanisms underlying airway remodelling, the relationships between remodelling, inflammation and function, remodelling and clinical phenotypes, and the importance of utilising innovative and realistic pre-clinical models to uncover effective, disease-modifying therapeutic strategies. PMID:26541520

  14. Motorcycle exhaust particles induce airway inflammation and airway hyperresponsiveness in BALB/C mice.

    PubMed

    Lee, Chen-Chen; Liao, Jiunn-Wang; Kang, Jaw-Jou

    2004-06-01

    A number of large studies have reported that environmental pollutants from fossil fuel combustion can cause deleterious effects to the immune system, resulting in an allergic reaction leading to respiratory tract damage. In this study, we investigated the effect of motorcycle exhaust particles (MEP), a major pollutant in the Taiwan urban area, on airway inflammation and airway hyperresponsiveness in laboratory animals. BALB/c mice were instilled intratracheally (i.t.) with 1.2 mg/kg and 12 mg/kg of MEP, which was collected from two-stroke motorcycle engines. The mice were exposed 3 times i.t. with MEP, and various parameters for airway inflammation and hyperresponsiveness were sequentially analyzed. We found that MEP would induce airway and pulmonary inflammation characterized by infiltration of eosinophils, neutrophils, lymphocytes, and macrophages in bronchoalveolar lavage fluid (BALF) and inflammatory cell infiltration in lung. In addition, MEP treatment enhanced BALF interleukin-4 (IL-4), IL-5, and interferon-gamma (IFN-gamma) cytokine levels and serum IgE production. Bronchial response measured by unrestrained plethysmography with methacholine challenge showed that MEP treatment induced airway hyperresponsiveness (AHR) in BALB/c mice. The chemical components in MEP were further fractionated with organic solvents, and we found that the benzene-extracted fraction exerts a similar biological effect as seen with MEP, including airway inflammation, increased BALF IL-4, serum IgE production, and induction of AHR. In conclusion, we present evidence showing that the filter-trapped particles emitted from the unleaded-gasoline-fueled two-stroke motorcycle engine may induce proinflammatory and proallergic response profiles in the absence of exposure to allergen.

  15. Zinc oxide nanoparticles induce eosinophilic airway inflammation in mice.

    PubMed

    Huang, Kuo-Liang; Lee, Yi-Hsin; Chen, Hau-Inh; Liao, Huang-Shen; Chiang, Bor-Luen; Cheng, Tsun-Jen

    2015-10-30

    Zinc oxide nanoparticles (ZnO NPs) have been widely used in industry. The metal composition of PM2.5 might contribute to the higher prevalence of asthma. To investigate the effects of ZnO NPs on allergic airway inflammation, mice were first exposed to different concentrations of ZnO NPs (0.1 mg/kg, 0.5 mg/kg) or to a combination of ZnO NPs and chicken egg ovalbumin (OVA) by oropharyngeal aspiration on day 0 and day 7 and then were sacrificed 5 days later. The subsequent time course of airway inflammation in the mice after ZnO NPs exposure was evaluated on days 1, 7, and 14. To further determine the role of zinc ions, ZnCl2 was also administered. The inflammatory cell count, cytokine levels in the bronchoalveolar lavage fluid (BALF), and lung histopathology were examined. We found significant neutrophilia after exposure to high-dose ZnO NPs on day 1 and significant eosinophilia in the BALF at 7 days. However, the expression levels of the T helper 2 (Th2) cytokines IL-4, IL-5, and IL-13 increased significantly after 24h of exposure to only ZnO NPs and then decreased gradually. These results suggested that ZnO NPs could cause eosinophilic airway inflammation in the absence of allergens.

  16. Assessment of Airway Microbiota and Inflammation in Cystic Fibrosis Using Multiple Sampling Methods

    PubMed Central

    Wagner, Brandie D.; Robertson, Charles E.; Stevens, Mark J.; Szefler, Stanley J.; Accurso, Frank J.; Sagel, Scott D.; Harris, J. Kirk

    2015-01-01

    Rationale: Oropharyngeal (OP) swabs and induced sputum (IS) are used for airway bacteria surveillance in nonexpectorating children with cystic fibrosis (CF). Molecular analyses of these airway samples detect complex microbial communities. However, the optimal noninvasive sampling approach for microbiota analyses and the clinical relevance of microbiota, particularly its relationship to airway inflammation, is not well characterized. Objectives: The goals of this study were to compare molecular analyses of concurrently collected saliva, OP swabs, IS, and expectorated sputum (ES) from children with CF and to determine the association between microbiota, lung function, and airway inflammation. Methods: Saliva, OP swabs, IS, and ES were collected from 16 children with CF. Spirometry was performed. Measurements and Main Results: Respiratory and saliva samples (n = 61) were sequenced for bacterial microbial communities, and total and CF-specific bacterial quantitative PCR assays were performed. Airway samples underwent conventional culture for CF-specific pathogens. Neutrophil elastase, IL-1β, IL-1ra, IL-6, Il-8, TNF-α, and vascular endothelial growth factor were measured in ES and IS. Sequencing results from individual subjects were similar across samples, with greater between-subject than within-subject variation. However, Pseudomonas and Staphylococcus were detected in higher relative abundance from lower airways (ES and IS) compared with paired upper airway samples (OP and saliva). Pseudomonas, Staphylococcus, and Enterobacteriaceae correlated with increased airway inflammation. Divergence between microbiota in upper airway compared with lower airway samples, indicating greater differences between communities, was associated with increased sputum neutrophil elastase. Conclusions: Bacteria detected in IS samples resemble ES samples, whereas OP samples may underrepresent bacteria associated with airway inflammation. Divergence of lower airway communities from

  17. Ultrafine carbon black particles cause early airway inflammation and have adjuvant activity in a mouse allergic airway disease model.

    PubMed

    de Haar, Colin; Hassing, Ine; Bol, Marianne; Bleumink, Rob; Pieters, Raymond

    2005-10-01

    To gain more insight into the mechanisms of particulate matter (PM)-induced adjuvant activity, we studied the kinetics of airway toxicity/inflammation and allergic sensitization to ovalbumin (OVA) in response to ultrafine carbon black particles (CBP). Mice were exposed intranasally to OVA alone or in combination with different concentrations of CBP. Airway toxicity and inflammation were assessed at days 4 and 8. Immune adjuvant effects were studied in the lung draining peribronchial lymph nodes (PBLN) at day 8. Antigen-specific IgE was measured at days 21 and 28, whereas allergic airway inflammation was studied after OVA challenges (day 28). Results show that a total dose of 200 microg CBP per mouse, but not 20 microg or 2 microg, induced immediate airway inflammation. This 200 microg CBP was the only dose that had immune adjuvant activity, by inducing enlargement of the PBLN and increasing OVA-specific production of Th2 cytokines (IL-4, IL-5, and IL-10). The immune adjuvant activity of 200 microg CBP dosing was further examined. Whereas increased OVA-specific IgE levels in serum on day 21 confirms systemic sensitization, this was further supported by allergic airway inflammation after challenges with OVA. Our data show a link between early airway toxicity and adjuvant effects of CBP. In addition, results indicate that local cytokine production early after exposure to CBP is predictive of allergic airway inflammation. In addition this model appears suitable for studying the role of airway toxicity, inflammation and other mechanisms of particle adjuvant activity, and predicting the adjuvant potential of different particles.

  18. Adenovirus-mediated Foxp3 expression in lung epithelial cells reduces airway inflammation in ovalbumin and cockroach-induced asthma model.

    PubMed

    Park, Soojin; Chung, Hwan-Suck; Shin, Dasom; Jung, Kyung-Hwa; Lee, Hyunil; Moon, Junghee; Bae, Hyunsu

    2016-01-01

    Foxp3 is a master regulator of CD4(+)CD25(+) regulatory T-cell (Treg) function and is also a suppressor of SKP2 and HER2/ErbB2. There are an increasing number of reports describing the functions of Foxp3 in cell types other than Tregs. In this context, we evaluated the functions of Foxp3 in ovalbumin- and cockroach-induced asthma models. Foxp3-EGFP-expressing adenovirus or EGFP control adenovirus was administered intratracheally (i.t.), followed by challenge with ovalbumin (OVA) or cockroach extract to induce asthma. Th2 cytokine and immune cell profiles of bronchoalveolar lavage fluid (BALF), as well as serum IgE levels, were analyzed. Histological analyses were also conducted to demonstrate the effects of Foxp3 expression on airway remodeling, goblet cell hyperplasia and inflammatory responses in the lung. Adenoviral Foxp3 was expressed only in lung epithelial cells, and not in CD4(+) or CD8(+) cells. BALF from Foxp3 gene-delivered mice showed significantly reduced numbers of total immune cells, eosinophils, neutrophils, macrophages and lymphocytes in response to cockroach allergen or OVA. In addition, Foxp3 expression in the lung reduced the levels of Th2 cytokines and IgE in BALF and serum, respectively. Moreover, histopathological analysis also showed that Foxp3 expression substantially inhibited eosinophil infiltration into the airways, goblet cell hyperplasia and smooth muscle cell hypertrophy. Furthermore, when Tregs were depleted by diphtheria toxin in Foxp3(DTR) mice, the anti-asthmatic functions of Foxp3 were not altered in OVA-challenged asthma models. In this study, our results suggest that Foxp3 expression in lung epithelial cells, and not in Tregs, inhibited OVA- and cockroach extract-induced asthma. PMID:27633092

  19. Adenovirus-mediated Foxp3 expression in lung epithelial cells reduces airway inflammation in ovalbumin and cockroach-induced asthma model

    PubMed Central

    Park, Soojin; Chung, Hwan-Suck; Shin, Dasom; Jung, Kyung-Hwa; Lee, Hyunil; Moon, Junghee; Bae, Hyunsu

    2016-01-01

    Foxp3 is a master regulator of CD4+CD25+ regulatory T-cell (Treg) function and is also a suppressor of SKP2 and HER2/ErbB2. There are an increasing number of reports describing the functions of Foxp3 in cell types other than Tregs. In this context, we evaluated the functions of Foxp3 in ovalbumin- and cockroach-induced asthma models. Foxp3-EGFP-expressing adenovirus or EGFP control adenovirus was administered intratracheally (i.t.), followed by challenge with ovalbumin (OVA) or cockroach extract to induce asthma. Th2 cytokine and immune cell profiles of bronchoalveolar lavage fluid (BALF), as well as serum IgE levels, were analyzed. Histological analyses were also conducted to demonstrate the effects of Foxp3 expression on airway remodeling, goblet cell hyperplasia and inflammatory responses in the lung. Adenoviral Foxp3 was expressed only in lung epithelial cells, and not in CD4+ or CD8+ cells. BALF from Foxp3 gene-delivered mice showed significantly reduced numbers of total immune cells, eosinophils, neutrophils, macrophages and lymphocytes in response to cockroach allergen or OVA. In addition, Foxp3 expression in the lung reduced the levels of Th2 cytokines and IgE in BALF and serum, respectively. Moreover, histopathological analysis also showed that Foxp3 expression substantially inhibited eosinophil infiltration into the airways, goblet cell hyperplasia and smooth muscle cell hypertrophy. Furthermore, when Tregs were depleted by diphtheria toxin in Foxp3DTR mice, the anti-asthmatic functions of Foxp3 were not altered in OVA-challenged asthma models. In this study, our results suggest that Foxp3 expression in lung epithelial cells, and not in Tregs, inhibited OVA- and cockroach extract-induced asthma. PMID:27633092

  20. Recent advances in understanding inflammation and remodeling in the airways in chronic obstructive pulmonary disease.

    PubMed

    Sohal, Sukhwinder Singh; Ward, Chris; Danial, Wan; Wood-Baker, Richard; Walters, Eugene Haydn

    2013-06-01

    The authors have reviewed the current literature on airway inflammation and remodeling in smoking-related chronic obstructive pulmonary disease (COPD). Detailed data on airway remodeling in COPD are especially sparse and how these changes lead to decline in lung function is not well understood. Small airway fibrosis and obliteration are likely to be the main contributors to physiological airway dysfunction and occur earlier than any subsequent development of emphysema. One potential mechanism contributing to small airway fibrosis/obliteration and change in extracellular matrix is epithelial-mesenchymal transition. When associated with angiogenesis (so-called epithelial-mesenchymal transition type 3) it may well also be the link with the development of cancer, which is closely associated with COPD, predominantly in large airways. The authors have focused on our recent publications in these areas. Further investigations teasing out these mechanisms will help improve our understanding of key airway disease processes in COPD, which may have major therapeutic implications.

  1. Innate Immune Responses to Engineered Nanomaterials During Allergic Airway Inflammation

    NASA Astrophysics Data System (ADS)

    Shipkowski, Kelly Anne

    The field of nanotechnology is continually advancing, and increasing amounts of consumer goods are being produced using engineered nanomaterials (ENMs). The health risks of occupational and/or consumer exposure to ENMs are not completely understood, although significant research indicates that pulmonary exposure to nanomaterials induces toxic effects in the lungs of exposed animals. Multi-walled carbon nanotubes (MWCNTs) are a specific category of ENMs and consist of sheets of graphene rolled into cylinders that are multiple layers thick in order to strengthen their rigidity. MWCNTs have a fiber-like shape, similar to that of asbestos, which allows for a high aspect ratio and makes them difficult to clear from the lung. Studies with rodent models have demonstrated that pulmonary exposure to ENMs, in particular MWCNTs, results in acute lung inflammation and the subsequent development of chronic fibrosis, suggesting a potential human health risk to individuals involved in the manufacturing of products utilizing these nanomaterials. Induction of IL-1beta secretion via activation of the inflammasome is a prime mechanism of MWCNT-induced inflammation. The inflammasome is a multi-protein scaffold found in a variety of cell types that forms in response to a variety of immune signals, including particulates. Sensitization with allergens, such as house dust mite (HDM), increases levels of the T helper 2 (Th2) cytokines IL-4 and IL-13 in mice and in humans, and there is particular cause for concern in cases of MWCNT exposure in individuals with pre-existing allergic airway disease, such as asthma. MWCNT exposure exacerbates airway inflammation and fibrosis in animal models of pre-existing allergic asthma, suggesting that individuals suffering from asthma are more susceptible to the toxic pulmonary effects of MWCNT exposure. Asthma is an exceptionally prominent human disease, and therefore the goal of this research was to better understand how pre-existing allergic airway

  2. Airway Inflammation and Hypersensitivity Induced by Chronic Smoking

    PubMed Central

    Kou, Yu Ru; Kwong, Kevin; Lee, Lu-Yuan

    2011-01-01

    Airway hypersensitivity, characterized by enhanced excitability of airway sensory nerves, is a prominent pathophysiological feature in patients with airway inflammatory diseases. Although the underlying pathogenic mechanism is not fully understood, chronic airway inflammation is believed to be primarily responsible. Cigarette smoking is known to cause chronic airway inflammation, accompanied by airway hyperresponsiveness. Experimental evidence indicates that enhanced excitability of vagal bronchopulmonary sensory nerves and increased tachykinin synthesis in these nerves resulting from chronic inflammation are important contributing factors to the airway hyperresponsiveness. Multiple inflammatory mediators released from various types of structural and inflammatory cells are involved in the smoking-induced airway inflammation, which is mainly regulated by redox-sensitive signaling pathways and transcription factors. Furthermore, recent studies have reported potent sensitizing and stimulatory effects of these inflammatory mediators such as prostanoids and reactive oxygen species on these sensory nerves. In summary, these studies using cigarette smoking as an experimental approach have identified certain potentially important cell signaling pathways and underlying mechanisms of the airway hypersensitivity induced by chronic airway inflammation. PMID:21397052

  3. Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice.

    PubMed

    Mall, Marcus; Grubb, Barbara R; Harkema, Jack R; O'Neal, Wanda K; Boucher, Richard C

    2004-05-01

    Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene result in defective epithelial cAMP-dependent Cl(-) secretion and increased airway Na(+) absorption. The mechanistic links between these altered ion transport processes and the pathogenesis of cystic fibrosis lung disease, however, are unclear. To test the hypothesis that accelerated Na(+) transport alone can produce cystic fibrosis-like lung disease, we generated mice with airway-specific overexpression of epithelial Na(+) channels (ENaC). Here we show that increased airway Na(+) absorption in vivo caused airway surface liquid (ASL) volume depletion, increased mucus concentration, delayed mucus transport and mucus adhesion to airway surfaces. Defective mucus transport caused a severe spontaneous lung disease sharing features with cystic fibrosis, including mucus obstruction, goblet cell metaplasia, neutrophilic inflammation and poor bacterial clearance. We conclude that increasing airway Na(+) absorption initiates cystic fibrosis-like lung disease and produces a model for the study of the pathogenesis and therapy of this disease. PMID:15077107

  4. Immunolocalization of NLRP3 Inflammasome in Normal Murine Airway Epithelium and Changes following Induction of Ovalbumin-Induced Airway Inflammation.

    PubMed

    Tran, Hai B; Lewis, Martin D; Tan, Lor Wai; Lester, Susan E; Baker, Leonie M; Ng, Jia; Hamilton-Bruce, Monica A; Hill, Catherine L; Koblar, Simon A; Rischmueller, Maureen; Ruffin, Richard E; Wormald, Peter J; Zalewski, Peter D; Lang, Carol J

    2012-01-01

    Little is known about innate immunity and components of inflammasomes in airway epithelium. This study evaluated immunohistological evidence for NLRP3 inflammasomes in normal and inflamed murine (Balb/c) airway epithelium in a model of ovalbumin (OVA) induced allergic airway inflammation. The airway epithelium of control mice exhibited strong cytoplasmic staining for total caspase-1, ASC, and NLRP3, whereas the OVA mice exhibited strong staining for active caspase-1, with redistribution of caspase-1, IL-1β and IL-18, indicating possible activation of the NLRP3 inflammasome. Active caspase-1, NLRP3, and other inflammasome components were also detected in tissue eosinophils from OVA mice, and may potentially contribute to IL-1β and IL-18 production. In whole lung, inRNA expression of NAIP and procaspase-1 was increased in OVA mice, whereas NLRP3, IL-1β and IL-18 decreased. Some OVA-treated mice also had significantly elevated and tightly correlated serum levels of IL-1β and TNFα. In cultured normal human bronchial epithelial cells, LPS priming resulted in a significant increase in NLRP3 and II-lp protein expression. This study is the first to demonstrate NLRP3 inflammasome components in normal airway epithelium and changes with inflammation. We propose activation and/or luminal release of the inflammasome is a feature of allergic airway inflammation which may contribute to disease pathogenesis. PMID:22523501

  5. The Effects of Proresolution of Ellagic Acid in an Experimental Model of Allergic Airway Inflammation

    PubMed Central

    de Freitas Alves, Claudiney; Angeli, Giovanna Natalia; Favarin, Daniely Cornélio; Lemos de Andrade, Edinéia; Lazo Chica, Javier Emilio; Faccioli, Lúcia Helena; Roberto da Silva, Paulo; de Paula Rogerio, Alexandre

    2013-01-01

    Asthma is a disease of airway inflammation characterized by airway hyperresponsiveness, eosinophilic inflammation, and hypersecretion of mucus. Ellagic acid, a compound derived from medicinal plants and fruits, has shown anti-inflammatory activity in several experimental disease models. We used the classical experimental model, in BALB/c mice, of sensibilization with ovalbumin to determine the effect of ellagic acid (10 mg/kg; oral route) in the resolution of allergic airways response. Dexamethasone (1 mg/kg; subcutaneous route) was used as a positive control. The control group consisted of nonimmunized mice that received challenge with ovalbumin. Ellagic acid and dexamethasone or vehicle (water) were administered before or after intranasal allergen challenge. Ellagic acid accelerated the resolution of airways inflammation by decreasing total leukocytes and eosinophils numbers in the bronchoalveolar lavage fluid (BALF), the mucus production and lung inflammation in part by reducing IL-5 concentration, eosinophil peroxidase (EPO) activity, and P-selectin expression, but not activator protein 1 (AP-1) and nuclear factor kappa B (NF-κB) pathways. In addition, ellagic acid enhanced alveolar macrophage phagocytosis of IgG-OVA-coated beads ex vivo, a new proresolving mechanism for the clearance of allergen from the airways. Together, these findings identify ellagic acid as a potential therapeutic agent for accelerating the resolution of allergic airways inflammation. PMID:24376308

  6. IL-1β, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs.

    PubMed

    Bal, Suzanne M; Bernink, Jochem H; Nagasawa, Maho; Groot, Jelle; Shikhagaie, Medya M; Golebski, Kornel; van Drunen, Cornelis M; Lutter, Rene; Jonkers, Rene E; Hombrink, Pleun; Bruchard, Melanie; Villaudy, Julien; Munneke, J Marius; Fokkens, Wytske; Erjefält, Jonas S; Spits, Hergen; Ros, Xavier Romero

    2016-06-01

    Group 2 innate lymphoid cells (ILC2s) secrete type 2 cytokines, which protect against parasites but can also contribute to a variety of inflammatory airway diseases. We report here that interleukin 1β (IL-1β) directly activated human ILC2s and that IL-12 induced the conversion of these activated ILC2s into interferon-γ (IFN-γ)-producing ILC1s, which was reversed by IL-4. The plasticity of ILCs was manifested in diseased tissues of patients with severe chronic obstructive pulmonary disease (COPD) or chronic rhinosinusitis with nasal polyps (CRSwNP), which displayed IL-12 or IL-4 signatures and the accumulation of ILC1s or ILC2s, respectively. Eosinophils were a major cellular source of IL-4, which revealed cross-talk between IL-5-producing ILC2s and IL-4-producing eosinophils. We propose that IL-12 and IL-4 govern ILC2 functional identity and that their imbalance results in the perpetuation of type 1 or type 2 inflammation. PMID:27111145

  7. Hyperoxia promotes polarization of the immune response in ovalbumin-induced airway inflammation, leading to a TH17 cell phenotype

    PubMed Central

    Nagato, Akinori C; Bezerra, Frank S; Talvani, André; Aarestrup, Beatriz J; Aarestrup, Fernando M

    2015-01-01

    Previous studies have demonstrated that hyperoxia-induced stress and oxidative damage to the lungs of mice lead to an increase in IL-6, TNF-α, and TGF-β expression. Together, IL-6 and TGF-β have been known to direct T cell differentiation toward the TH17 phenotype. In the current study, we tested the hypothesis that hyperoxia promotes the polarization of T cells to the TH17 cell phenotype in response to ovalbumin-induced acute airway inflammation. Airway inflammation was induced in female BALB/c mice by intraperitoneal sensitization and intranasal introduction of ovalbumin, followed by challenge methacholine. After the methacholine challenge, animals were exposed to hyperoxic conditions in an inhalation chamber for 24 h. The controls were subjected to normoxia or aluminum hydroxide dissolved in phosphate buffered saline. After 24 h of hyperoxia, the number of macrophages and lymphocytes decreased in animals with ovalbumin-induced airway inflammation, whereas the number of neutrophils increased after ovalbumin-induced airway inflammation. The results showed that expression of Nrf2, iNOS, T-bet and IL-17 increased after 24 of hyperoxia in both alveolar macrophages and in lung epithelial cells, compared with both animals that remained in room air, and animals with ovalbumin-induced airway inflammation. Hyperoxia alone without the induction of airway inflammation lead to increased levels of TNF-α and CCL5, whereas hyperoxia after inflammation lead to decreased CCL2 levels. Histological evidence of extravasation of inflammatory cells into the perivascular and peribronchial regions of the lungs was observed after pulmonary inflammation and hyperoxia. Hyperoxia promotes polarization of the immune response toward the TH17 phenotype, resulting in tissue damage associated with oxidative stress, and the migration of neutrophils to the lung and airways. Elucidating the effect of hyperoxia on ovalbumin-induced acute airway inflammation is relevant to preventing or

  8. Temporal Changes in Glutaredoxin 1 and Protein S-Glutathionylation in Allergic Airway Inflammation

    PubMed Central

    Maki, Kanako; Nagai, Katsura; Suzuki, Masaru; Inomata, Takashi; Yoshida, Takayuki; Nishimura, Masaharu

    2015-01-01

    Introduction Asthma is a chronic inflammatory disorder of the airways, involving oxidative stress. Upon oxidative stress, glutathione covalently binds to protein thiols to protect them against irreversible oxidation. This posttranslational modification, known as protein S-glutathionylation, can be reversed by glutaredoxin 1 (Glrx1) under physiological condition. Glrx1 is known to increase in the lung tissues of a murine model of allergic airway inflammation. However, the temporal relationship between levels of Glrx1, protein S-glutathionylation, and glutathione in the lungs with allergic airway inflammation is not clearly understood. Methods BALB/c mice received 3 aerosol challenges with ovalbumin (OVA) following sensitization to OVA. They were sacrificed at 6, 24, 48, or 72 h, or 8 days (5 mice per group), and the levels of Glrx1, protein S-glutathionylation, glutathione, and 25 cytokines/chemokines were evaluated in bronchoalveolar lavage fluid (BALF) and/or lung tissue. Results Levels of Glrx1 in BALF were significantly elevated in the OVA 6 h (final challenge) group compared to those in the control, with concurrent increases in protein S-glutathionylation levels in the lungs, as well as total glutathione (reduced and oxidized) and oxidized glutathione in BALF. Protein S-glutathionylation levels were attenuated at 24 h, with significant increases in Glrx1 levels in lung tissues at 48 and 72 h. Glrx1 in alveolar macrophages was induced after 6 h. Glrx1 levels concomitantly increased with Th2/NF-κB-related cytokines and chemokines in BALF. Conclusions The temporal relationships of Glrx1 with protein S-glutathionylation, glutathione, and cytokines/chemokines were observed as dynamic changes in lungs with allergic airway inflammation, suggesting that Glrx1 and protein–SSG redox status may play important roles in the development of allergic airway inflammation. PMID:25874776

  9. Silymarin attenuates airway inflammation induced by cigarette smoke in mice.

    PubMed

    Li, Diandian; Xu, Dan; Wang, Tao; Shen, Yongchun; Guo, Shujin; Zhang, Xue; Guo, Lingli; Li, Xiaoou; Liu, Lian; Wen, Fuqiang

    2015-04-01

    Cigarette smoke (CS), which increases inflammation and oxidative stress, is a major risk factor for the development of COPD. In this study, we investigated the effects of silymarin, a polyphenolic flavonoid isolated from the seeds and fruits of milk thistle, on CS-induced airway inflammation and oxidative stress in mice and the possible mechanisms. BALB/c mice were exposed to CS for 2 h twice daily, 6 days per week for 4 weeks. Silymarin (25, 50 mg/kg·day) was administered intraperitoneally 1 h before CS exposure. Bronchoalveolar lavage fluid (BALF) was acquired for cell counting and the detection of pro-inflammatory cytokine levels. Lung tissue was collected for histological examination, myeloperoxidase (MPO) activity assay, superoxide dismutase (SOD) activities, and malondialdehyde (MDA) levels. The phosphorylation of ERK and p38 was evaluated by Western blotting. Pretreatment with silymarin significantly attenuated CS-induced thickening of the airway epithelium, peribronchial inflammatory cell infiltration, and lumen obstruction. The numbers of total cells, macrophages, and neutrophils, along with the MPO activity (a marker of neutrophil accumulation) in BALF, were remarkably decreased by silymarin in CS-exposed mice (all p<0.05). In addition, silymarin pretreatment dampened the secretion of TNF-α, IL-1β, and IL-8 in BALF. High-dose silymarin (50 mg/kg·day) administration also prevented CS-induced elevation in MDA levels and decrease in SOD activities (p<0.05). Furthermore, the CS-induced phosphorylation of ERK and p38 was also attenuated by silymarin (p<0.05). These results suggest that silymarin attenuated inflammation and oxidative stress induced by cigarette smoke. The anti-inflammatory effect might partly act through the mitogen-activated protein kinases (MAPK) pathway.

  10. Targeting TSLP With shRNA Alleviates Airway Inflammation and Decreases Epithelial CCL17 in a Murine Model of Asthma

    PubMed Central

    Chen, Yi-Lien; Chiang, Bor-Luen

    2016-01-01

    Airway epithelium defends the invasion from microorganisms and regulates immune responses in allergic asthma. Thymic stromal lymphopoietin (TSLP) from inflamed epithelium promotes maturation of dendritic cells (DCs) to prime Th2 responses via CCL17, which induces chemotaxis of CD4+ T cells to mediate inflammation. However, few studies have investigated the regulation of epithelial CCL17. In this study, we used shRNA against TSLP to clarify the role of TSLP in the airway inflammation and whether TSLP affects the airway inflammation via epithelial CCL17. Specific shTSLP was delivered by lentivirus and selected by the knockdown efficiency. Allergic mice were intratracheally pretreated with the lentivirus and followed by intranasal ovalbumin (OVA) challenges. The sera antibody levels, airway inflammation, airway hyper-responsiveness (AHR), cytokine levels in bronchoalveolar lavage fluids, and CCL17 expressions in lungs were determined. In vivo, TSLP attenuation reduced the AHR, decreased the airway inflammation, inhibited the maturations of DCs, and suppressed the migration of T cells. Furthermore, the expression of CCL17 was particularly decreased in bronchial epithelium. In vitro, CCL17 induction was regulated by TSLP. In conclusion, TSLP might coordinate airway inflammation partially via CCL17-mediated responses and this study provides the vital utility of TSLP to develop the therapeutic approach in allergic airway inflammation. PMID:27138176

  11. Klotho expression is reduced in COPD airway epithelial cells: effects on inflammation and oxidant injury.

    PubMed

    Gao, Wei; Yuan, Cheng; Zhang, Jingying; Li, Lingling; Yu, Like; Wiegman, Coen H; Barnes, Peter J; Adcock, Ian M; Huang, Mao; Yao, Xin

    2015-12-01

    COPD (chronic obstructive pulmonary disease) is associated with sustained inflammation, excessive injury, and accelerated lung aging. Human Klotho (KL) is an anti-aging protein that protects cells against inflammation and damage. In the present study, we quantified KL expression in the lungs of COPD patients and in an ozone-induced mouse model of COPD, and investigated the mechanisms that control KL expression and function in the airways. KL distribution and levels in human and mouse airways were measured by immunohistochemistry and Western blotting. The effect of CSE (cigarette smoke extract) on KL expression was detected in human bronchial epithelial cells. Moreover, the effect of KL on CSE-mediated inflammation and hydrogen peroxide-induced cellular injury/apoptosis was determined using siRNAs. KL expression was decreased in the lungs of smokers and further reduced in patients with COPD. Similarly, 6 weeks of exposure to ozone decreased KL levels in airway epithelial cells. CSE and TNFα (tumour necrosis factor α) decreased KL expression and release from airway epithelial cells, which was associated with enhanced pro-inflammatory cytokine expression. Moreover, KL depletion increased cell sensitivity to cigarette smoke-induced inflammation and oxidative stress-induced cell damage. These effects involved the NF-κB (nuclear factor κB), MAPK (mitogen-activated protein kinase) and Nrf2 (nuclear factor erythroid 2-related factor 2) pathways. Reduced KL expression in COPD airway epithelial cells was associated with increased oxidative stress, inflammation and apoptosis. These data provide new insights into the mechanisms associated with the accelerated lung aging in COPD development. PMID:26201096

  12. Effect of P2X4R on airway inflammation and airway remodeling in allergic airway challenge in mice

    PubMed Central

    CHEN, HONGXIA; XIA, QINGQING; FENG, XIAOQIAN; CAO, FANGYUAN; YU, HANG; SONG, YINLI; NI, XIUQIN

    2016-01-01

    P2X4 receptor (P2X4R) is the most widely expressed subtype of the P2XRs in the purinergic receptor family. Adenosine triphosphate (ATP), a ligand for this receptor, has been implicated in the pathogenesis of asthma. ATP-P2X4R signaling is involved in pulmonary vascular remodeling, and in the proliferation and differentiation of airway and alveolar epithelial cell lines. However, the role of P2X4R in asthma remains to be elucidated. This aim of the present study was to investigate the effects of P2X4R in a murine experimental asthma model. The asthmatic model was established by the inhalation of ovalbumin (OVA) in BALB/c mice. The mice were treated with P2X4R-specific agonists and antagonists to investigate the role of this receptor in vivo. Pathological changes in the bronchi and lung tissues were examined using hematoxylin and eosin staining, Masson's trichrome staining and Alcian blue staining. The inflammatory cells in the bronchoalveolar lavage fluid were counted, and the expression levels of P2X4R, α-smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA) were detected using western blotting. In the OVA-challenged mice, inflammation, infiltration, collagen deposition, mucus production, and the expression levels of P2X4R and PCNA were all increased; however, the expression of α-SMA was decreased, compared with the mice in the control group. Whereas treatment with the P2X4R agonist, ATP, enhanced the allergic reaction, treatment with the P2X4R antagonist, 5-BDBD, attenuated the allergic reaction. The results suggested that ATP-P2X4R signaling may not only contribute to airway inflammation, but it may also contribute to airway remodeling in allergic asthma in mice. PMID:26648454

  13. Adam8 Limits the Development of Allergic Airway Inflammation in Mice

    PubMed Central

    Knolle, Martin D.; Nakajima, Takahiro; Hergrueter, Anja; Gupta, Kushagra; Polverino, Francesca; Craig, Vanessa J.; Fyfe, Susanne E.; Zahid, Muhammad; Permaul, Perdita; Cernadas, Manuela; Montano, Gilbert; Tesfaigzi, Yohannes; Sholl, Lynette; Kobzik, Lester; Israel, Elliot; Owen, Caroline A.

    2013-01-01

    To determine whether a disintegrin and a metalloproteinase-8 (Adam8) regulates allergic airway inflammation (AAI) and airway hyper-responsiveness (AHR), we compared AAI and AHR in wild type (WT) versus Adam8−/− mice in different genetic backgrounds sensitized and challenged with ovalbumin (OVA) or house dust mite protein extract (HDM). OVA- and HDM-treated Adam8−/− mice had higher lung leukocyte counts, more airway mucus metaplasia, greater lung levels of some TH2 cytokines, and higher methacholine-induced increases in central airway resistance than allergen-treated WT mice. Studies of OVA-treated Adam8 bone marrow chimeric mice confirmed that leukocyte-derived Adam8 predominantly mediated Adam8’s anti-inflammatory activities in murine airways. Airway eosinophils and macrophages both expressed Adam8 in WT mice with AAI. Adam8 limited AAI and AHR in mice by reducing leukocyte survival because: 1) Adam8−/− mice with AAI had fewer apoptotic eosinophils and macrophages in their airways than WT mice with AAI; and 2) Adam8−/− macrophages and eosinophils had reduced rates of apoptosis compared with WT leukocytes when the intrinsic (but not the extrinsic) apoptosis pathway was triggered in the cells in vitro. ADAM8 was robustly expressed by airway granulocytes in lung sections from human asthma patients but, surprisingly, airway macrophages had less ADAM8 staining than airway eosinophils. Thus, ADAM8 has anti-inflammatory activities during AAI in mice by activating the intrinsic apoptosis pathway in myeloid leukocytes. Strategies that increase ADAM8 levels in myeloid leukocytes may have therapeutic efficacy in asthma. PMID:23670189

  14. Innate Immune Responses to Engineered Nanomaterials During Allergic Airway Inflammation

    NASA Astrophysics Data System (ADS)

    Shipkowski, Kelly Anne

    The field of nanotechnology is continually advancing, and increasing amounts of consumer goods are being produced using engineered nanomaterials (ENMs). The health risks of occupational and/or consumer exposure to ENMs are not completely understood, although significant research indicates that pulmonary exposure to nanomaterials induces toxic effects in the lungs of exposed animals. Multi-walled carbon nanotubes (MWCNTs) are a specific category of ENMs and consist of sheets of graphene rolled into cylinders that are multiple layers thick in order to strengthen their rigidity. MWCNTs have a fiber-like shape, similar to that of asbestos, which allows for a high aspect ratio and makes them difficult to clear from the lung. Studies with rodent models have demonstrated that pulmonary exposure to ENMs, in particular MWCNTs, results in acute lung inflammation and the subsequent development of chronic fibrosis, suggesting a potential human health risk to individuals involved in the manufacturing of products utilizing these nanomaterials. Induction of IL-1beta secretion via activation of the inflammasome is a prime mechanism of MWCNT-induced inflammation. The inflammasome is a multi-protein scaffold found in a variety of cell types that forms in response to a variety of immune signals, including particulates. Sensitization with allergens, such as house dust mite (HDM), increases levels of the T helper 2 (Th2) cytokines IL-4 and IL-13 in mice and in humans, and there is particular cause for concern in cases of MWCNT exposure in individuals with pre-existing allergic airway disease, such as asthma. MWCNT exposure exacerbates airway inflammation and fibrosis in animal models of pre-existing allergic asthma, suggesting that individuals suffering from asthma are more susceptible to the toxic pulmonary effects of MWCNT exposure. Asthma is an exceptionally prominent human disease, and therefore the goal of this research was to better understand how pre-existing allergic airway

  15. Methyl Protodioscin from the Roots of Asparagus cochinchinensis Attenuates Airway Inflammation by Inhibiting Cytokine Production.

    PubMed

    Lee, Ju Hee; Lim, Hun Jai; Lee, Chan Woo; Son, Kun-Ho; Son, Jong-Keun; Lee, Sang Kook; Kim, Hyun Pyo

    2015-01-01

    The present study was designed to find pharmacologically active compound against airway inflammation from the roots of Asparagus cochinchinensis. The 70% ethanol extract of the roots of A. cochinchinensis (ACE) was found to inhibit IL-6 production from IL-1β-treated lung epithelial cells (A549) and the major constituent, methyl protodioscin (MP), also strongly inhibited the production of IL-6, IL-8, and tumor necrosis factor- (TNF-) α from A549 cells at 10-100 μM. This downregulating effect of proinflammatory cytokine production was found to be mediated, at least in part, via inhibition of c-Jun N-terminal kinase (JNK) and c-Jun activation pathway. When examined on an in vivo model of airway inflammation in mice, lipopolysaccharide- (LPS-) induced acute lung injury, ACE, and MP significantly inhibited cell infiltration in the bronchoalveolar lavage fluid by the oral treatment at doses of 100-400 mg/kg and 30-60 mg/kg, respectively. MP also inhibited the production of proinflammatory cytokines such as IL-6, TNF-α, and IL-1β in lung tissue. All of these findings provide scientific evidence supporting the role of A. cochinchinensis as a herbal remedy in treating airway inflammation and also suggest a therapeutic value of MP on airway inflammatory disorders. PMID:26379748

  16. Methyl Protodioscin from the Roots of Asparagus cochinchinensis Attenuates Airway Inflammation by Inhibiting Cytokine Production

    PubMed Central

    Lee, Ju Hee; Lim, Hun Jai; Lee, Chan Woo; Son, Kun-Ho; Son, Jong-Keun; Lee, Sang Kook; Kim, Hyun Pyo

    2015-01-01

    The present study was designed to find pharmacologically active compound against airway inflammation from the roots of Asparagus cochinchinensis. The 70% ethanol extract of the roots of A. cochinchinensis (ACE) was found to inhibit IL-6 production from IL-1β-treated lung epithelial cells (A549) and the major constituent, methyl protodioscin (MP), also strongly inhibited the production of IL-6, IL-8, and tumor necrosis factor- (TNF-) α from A549 cells at 10–100 μM. This downregulating effect of proinflammatory cytokine production was found to be mediated, at least in part, via inhibition of c-Jun N-terminal kinase (JNK) and c-Jun activation pathway. When examined on an in vivo model of airway inflammation in mice, lipopolysaccharide- (LPS-) induced acute lung injury, ACE, and MP significantly inhibited cell infiltration in the bronchoalveolar lavage fluid by the oral treatment at doses of 100–400 mg/kg and 30–60 mg/kg, respectively. MP also inhibited the production of proinflammatory cytokines such as IL-6, TNF-α, and IL-1β in lung tissue. All of these findings provide scientific evidence supporting the role of A. cochinchinensis as a herbal remedy in treating airway inflammation and also suggest a therapeutic value of MP on airway inflammatory disorders. PMID:26379748

  17. Rapamycin decreases airway remodeling and hyperreactivity in a transgenic model of noninflammatory lung disease.

    PubMed

    Kramer, Elizabeth L; Hardie, William D; Mushaben, Elizabeth M; Acciani, Thomas H; Pastura, Patricia A; Korfhagen, Thomas R; Hershey, Gurjit Khurana; Whitsett, Jeffrey A; Le Cras, Timothy D

    2011-12-01

    Airway hyperreactivity (AHR) and remodeling are cardinal features of asthma and chronic obstructive pulmonary disease. New therapeutic targets are needed as some patients are refractory to current therapies and develop progressive airway remodeling and worsening AHR. The mammalian target of rapamycin (mTOR) is a key regulator of cellular proliferation and survival. Treatment with the mTOR inhibitor rapamycin inhibits inflammation and AHR in allergic asthma models, but it is unclear if rapamycin can directly inhibit airway remodeling and AHR, or whether its therapeutic effects are entirely mediated through immunosuppression. To address this question, we utilized transforming growth factor-α (TGF-α) transgenic mice null for the transcription factor early growth response-1 (Egr-1) (TGF-α Tg/Egr-1(ko/ko) mice). These mice develop airway smooth muscle thickening and AHR in the absence of altered lung inflammation, as previously reported. In this study, TGF-α Tg/Egr-1(ko/ko) mice lost body weight and developed severe AHR after 3 wk of lung-specific TGF-α induction. Rapamycin treatment prevented body weight loss, airway wall thickening, abnormal lung mechanics, and increases in airway resistance to methacholine after 3 wk of TGF-α induction. Increases in tissue damping and airway elastance were also attenuated in transgenic mice treated with rapamycin. TGF-α/Egr-1(ko/ko) mice on doxycycline for 8 wk developed severe airway remodeling. Immunostaining for α-smooth muscle actin and morphometric analysis showed that rapamycin treatment prevented airway smooth muscle thickening around small airways. Pentachrome staining, assessments of lung collagen and fibronectin mRNA levels, indicated that rapamycin also attenuated fibrotic pathways induced by TGF-α expression for 8 wk. Thus rapamycin reduced airway remodeling and AHR, demonstrating an important role for mTOR signaling in TGF-α-induced/EGF receptor-mediated reactive airway disease. PMID:21903885

  18. Rapamycin decreases airway remodeling and hyperreactivity in a transgenic model of noninflammatory lung disease.

    PubMed

    Kramer, Elizabeth L; Hardie, William D; Mushaben, Elizabeth M; Acciani, Thomas H; Pastura, Patricia A; Korfhagen, Thomas R; Hershey, Gurjit Khurana; Whitsett, Jeffrey A; Le Cras, Timothy D

    2011-12-01

    Airway hyperreactivity (AHR) and remodeling are cardinal features of asthma and chronic obstructive pulmonary disease. New therapeutic targets are needed as some patients are refractory to current therapies and develop progressive airway remodeling and worsening AHR. The mammalian target of rapamycin (mTOR) is a key regulator of cellular proliferation and survival. Treatment with the mTOR inhibitor rapamycin inhibits inflammation and AHR in allergic asthma models, but it is unclear if rapamycin can directly inhibit airway remodeling and AHR, or whether its therapeutic effects are entirely mediated through immunosuppression. To address this question, we utilized transforming growth factor-α (TGF-α) transgenic mice null for the transcription factor early growth response-1 (Egr-1) (TGF-α Tg/Egr-1(ko/ko) mice). These mice develop airway smooth muscle thickening and AHR in the absence of altered lung inflammation, as previously reported. In this study, TGF-α Tg/Egr-1(ko/ko) mice lost body weight and developed severe AHR after 3 wk of lung-specific TGF-α induction. Rapamycin treatment prevented body weight loss, airway wall thickening, abnormal lung mechanics, and increases in airway resistance to methacholine after 3 wk of TGF-α induction. Increases in tissue damping and airway elastance were also attenuated in transgenic mice treated with rapamycin. TGF-α/Egr-1(ko/ko) mice on doxycycline for 8 wk developed severe airway remodeling. Immunostaining for α-smooth muscle actin and morphometric analysis showed that rapamycin treatment prevented airway smooth muscle thickening around small airways. Pentachrome staining, assessments of lung collagen and fibronectin mRNA levels, indicated that rapamycin also attenuated fibrotic pathways induced by TGF-α expression for 8 wk. Thus rapamycin reduced airway remodeling and AHR, demonstrating an important role for mTOR signaling in TGF-α-induced/EGF receptor-mediated reactive airway disease.

  19. Sputum Leucine-Rich Alpha-2 Glycoprotein as a Marker of Airway Inflammation in Asthma

    PubMed Central

    Honda, Hiromi; Fujimoto, Minoru; Miyamoto, Shintaro; Ishikawa, Nobuhisa; Serada, Satoshi; Hattori, Noboru; Nomura, Shintaro; Kohno, Nobuoki; Yokoyama, Akihito; Naka, Tetsuji

    2016-01-01

    Background Asthma is a chronic inflammatory disease of airways, but an ideal biomarker that accurately reflects ongoing airway inflammation has not yet been established. The aim of this study was to examine the potential of sputum leucine-rich alpha-2 glycoprotein (LRG) as a new biomarker for airway inflammation in asthma. Methods We obtained induced sputum samples from patients with asthma (N = 64) and healthy volunteers (N = 22) and measured LRG concentration by sandwich enzyme-linked immunosorbent assay (ELISA). Ovalbumin (OVA)-induced asthma model mice were used to investigate the mechanism of LRG production during airway inflammation. The LRG concentrations in the bronchoalveolar lavage fluid (BALF) obtained from mice were determined by ELISA and mouse lung sections were stained with anti-LRG antibody and periodic acid-Schiff (PAS) reagent. Results Sputum LRG concentrations were significantly higher in patients with asthma than in healthy volunteers (p = 0.00686). Consistent with patients’ data, BALF LRG levels in asthma model mice were significantly higher than in control mice (p = 0.00013). Immunohistochemistry of lung sections from asthma model mice revealed that LRG was intensely expressed in a subpopulation of bronchial epithelial cells, which corresponded with PAS-positive mucus producing cells. Conclusion These findings suggest that sputum LRG is a promising biomarker of local inflammation in asthma. PMID:27611322

  20. Inflammasome, IL-1 and inflammation in ozone-induced lung injury

    PubMed Central

    Michaudel, Chloé; Couturier-Maillard, Aurélie; Chenuet, Pauline; Maillet, Isabelle; Mura, Catherine; Couillin, Isabelle; Gombault, Aurélie; Quesniaux, Valérie F; Huaux, François; Ryffel, Bernhard

    2016-01-01

    Exposure to ambient ozone causes airway hyperreactivity and lung inflammation, which represent an important health concern in humans. Recent clinical and experimental studies contributed to the understanding of the mechanisms of epithelial injury, inflammation and airway hyperreactivity, which is reviewed here. The present data suggest that ozone induced oxidative stress causes inflammasome activation with the release of IL-1, other cytokines and proteases driving lung inflammation leading to the destruction of alveolar epithelia with emphysema and respiratory failure. Insights in the pathogenic pathway may allow to identify novel biomarkers of ozone-induced lung disease and therapeutic targets. PMID:27168953

  1. Antigen-specific cytotoxic T lymphocytes target airway CD103+ and CD11b+ dendritic cells to suppress allergic inflammation.

    PubMed

    Daniels, N J; Hyde, E; Ghosh, S; Seo, K; Price, K M; Hoshino, K; Kaisho, T; Okada, T; Ronchese, F

    2016-01-01

    Allergic airway inflammation is driven by the recognition of inhaled allergen by T helper type 2 (Th2) cells in the airway and lung. Allergen-specific cytotoxic T lymphocytes (CTLs) can strongly reduce airway inflammation, however, the mechanism of their inhibitory activity is not fully defined. We used mouse models to show that allergen-specific CTLs reduced early cytokine production by Th2 cells in lung, and their subsequent accumulation and production of interleukin (IL)-4 and IL-13. In addition, treatment with specific CTLs also increased the proportion of caspase(+) dendritic cells (DCs) in mediastinal lymph node (MLN), and decreased the numbers of CD103(+) and CD11b(+) DCs in the lung. This decrease required expression of the cytotoxic mediator perforin in CTLs and of the appropriate MHC-antigen ligand on DCs, suggesting that direct CTL-DC contact was necessary. Lastly, lung imaging experiments revealed that in airway-challenged mice XCR1-GFP(+) DCs, corresponding to the CD103(+) DC subset, and XCR1-GFP(-) CD11c(+) cells, which include CD11b(+) DCs and alveolar macrophages, both clustered in the areas surrounding the small airways and were closely associated with allergen-specific CTLs. Thus, allergen-specific CTLs reduce allergic airway inflammation by depleting CD103(+) and CD11b(+) DC populations in the lung, and may constitute a mechanism through which allergic immune responses are regulated.

  2. Protective effect of soybean oil- or fish oil-rich diets on allergic airway inflammation

    PubMed Central

    Navarro-Xavier, Roberta Araujo; de Barros, Karina Vieira; de Andrade, Iracema Senna; Palomino, Zaira; Casarini, Dulce Elena; Flor Silveira, Vera Lucia

    2016-01-01

    Background The increased prevalence of asthma and allergic diseases in westernized societies has been associated with increased intake of diets rich in n-6 fatty acids (FAs) and poor in n-3 FAs. This study aimed to analyze the prophylactic effects of treatment with a soybean oil-rich diet (rich in n-6) or fish oil (rich in n-3) in an allergic airway inflammation model on lung inflammation score, leukocyte migration, T-helper cell (Th)-2 (interleukin [IL]-4, IL-5) and Th1 (interferon [IFN]-γ, tumor necrosis factor-α) cytokines, lipoxin A4, nitric oxide, bradykinin, and corticosterone levels in bronchoalveolar lavage (BAL) or lungs. Methods Male Wistar rats fed with soybean oil- or fish oil-rich diet or standard rat chow were sensitized twice with ovalbumin–alumen and challenged twice with ovalbumin aerosol. The BAL and lungs were examined 24 hours later. Results Both diets, rich in n-6 or n-3 FAs, impaired the allergic lung inflammation and reduced leukocyte migration, eosinophil and neutrophil percentages, and IL-4/IL-5/bradykinin levels in BAL and/or lungs, as well as increased the nitric oxide levels in BAL. The soybean oil-rich diet additionally increased the levels of lipoxin A4 and corticosterone in the lungs. Conclusion Data presented demonstrated that the n-6 FA-rich diet had protective effect upon allergic airway inflammation and was as anti-inflammatory as the n-3 FA-rich diet, although through different mechanisms, suggesting that both diets could be considered as complementary therapy or a prophylactic alternative for allergic airway inflammation. PMID:27274303

  3. Physical principle of airway design in human lungs

    NASA Astrophysics Data System (ADS)

    Park, Keunhwan; Son, Taeho; Kim, Wonjung; Kim, Ho-Young

    2014-11-01

    From an engineering perspective, lungs are natural microfluidic devices that extract oxygen from air. In the bronchial tree, airways branch by dichotomy with a systematic reduction of their diameters. It is generally accepted that in conducting airways, which air passes on the way to the acinar airways from the atmosphere, the reduction ratio of diameter is closely related to the minimization of viscous dissipation. Such a principle is formulated as the Hess-Murray law. However, in acinar airways, where oxygen transfer to alveolae occurs, the diameter reduction with progressive generations is more moderate than in conducting airways. Noting that the dominant transfer mechanism in acinar airways is diffusion rather than advection, unlike conducting airways, we construct a mathematical model for oxygen transfer through a series of acinar airways. Our model allows us to predict the optimal airway reduction ratio that maximizes the oxygen transfer in a finite airway volume, thereby rationalizing the observed airway reduction ratio in acinar airways.

  4. Fisetin, a bioactive flavonol, attenuates allergic airway inflammation through negative regulation of NF-κB.

    PubMed

    Goh, Fera Y; Upton, Nadine; Guan, Shouping; Cheng, Chang; Shanmugam, Muthu K; Sethi, Gautam; Leung, Bernard P; Wong, W S Fred

    2012-03-15

    Persistent activation of nuclear factor-κB (NF-κB) has been associated with the development of asthma. Fisetin (3,7,3',4'-tetrahydroxyflavone), a naturally occurring bioactive flavonol, has been shown to inhibit NF-κB activity. We hypothesized that fisetin may attenuate allergic asthma via negative regulation of the NF-κB activity. Female BALB/c mice sensitized and challenged with ovalbumin developed airway inflammation. Bronchoalveolar lavage fluid was assessed for total and differential cell counts, and cytokine and chemokine levels. Lung tissues were examined for cell infiltration and mucus hypersecretion, and the expression of inflammatory biomarkers. Airway hyperresponsiveness was monitored by direct airway resistance analysis. Fisetin dose-dependently inhibited ovalbumin-induced increases in total cell count, eosinophil count, and IL-4, IL-5 and IL-13 levels recovered in bronchoalveolar lavage fluid. It attenuated ovalbumin-induced lung tissue eosinophilia and airway mucus production, mRNA expression of adhesion molecules, chitinase, IL-17, IL-33, Muc5ac and inducible nitric oxide synthase in lung tissues, and airway hyperresponsiveness to methacholine. Fisetin blocked NF-κB subunit p65 nuclear translocation and DNA-binding activity in the nuclear extracts from lung tissues of ovalbumin-challenged mice. In normal human bronchial epithelial cells, fisetin repressed TNF-α-induced NF-κB-dependent reporter gene expression. Our findings implicate a potential therapeutic value of fisetin in the treatment of asthma through negative regulation of NF-κB pathway.

  5. The antidiabetic agent glibenclamide protects airway hyperresponsiveness and inflammation in mice.

    PubMed

    Cui, Wei; Zhang, Shufang; Cai, Zhijian; Hu, Xinlei; Zhang, Ruifeng; Wang, Yong; Li, Na; Chen, Zhihua; Zhang, Gensheng

    2015-04-01

    Glibenclamide has a newly discovered role in inflammation regulation besides its antidiabetic effect. As an inhibitor of ATP-sensitive potassium (KATP) channel, glibenclamide antagonizes the relaxation of the tracheal smooth muscle. This indicates that glibenclamide might attenuate airway inflammation while aggravate airway hyperresponsiveness (AHR) in asthmatics. Clinically, many diabetics with asthma are prescribed with glibenclamide to control blood glucose. However, whether glibenclamide could exert any effects on asthmatic inflammation remains unknown. Using an ovalbumin (OVA)-induced mouse model of asthma, we evaluated the effects of glibenclamide on the AHR and inflammation. Interestingly, glibenclamide reduced all the cardinal features of asthma in OVA-challenged mice, including AHR, airway inflammation, and T-helper type 2 (Th2) cytokines. Glibenclamide also downregulated OVA-induced expressions of vascular cell adhesion molecule 1 (VCAM-1) and phosphorylated signal transducer and activator of transcription 6 (p-STAT6) in the lung. In addition, increased sulfonylurea receptor 1 (SUR1) expression in the lung was observed after the OVA challenge. These findings suggest that the classic sulfonylurea glibenclamide plays an important protective role in the development of asthma, which not only provides the evidence for the safety of prescribed glibenclamide in diabetics combined with asthma but also indicates a possible new therapeutic for asthma via targeting glibenclamide-related pathways.

  6. Regulation of allergic lung inflammation by endothelial cell transglutaminase 2.

    PubMed

    Soveg, Frank; Abdala-Valencia, Hiam; Campbell, Jackson; Morales-Nebreda, Luisa; Mutlu, Gökhan M; Cook-Mills, Joan M

    2015-09-15

    Tissue transglutaminase 2 (TG2) is an enzyme with multiple functions, including catalysis of serotonin conjugation to proteins (serotonylation). Previous research indicates that TG2 expression is upregulated in human asthma and in the lung endothelium of ovalbumin (OVA)-challenged mice. It is not known whether endothelial cell TG2 is required for allergic inflammation. Therefore, to determine whether endothelial cell TG2 regulates allergic inflammation, mice with an endothelial cell-specific deletion of TG2 were generated, and these mice were sensitized and challenged in the airways with OVA. Deletion of TG2 in endothelial cells blocked OVA-induced serotonylation in lung endothelial cells, but not lung epithelial cells. Interestingly, deletion of endothelial TG2 reduced allergen-induced increases in respiratory system resistance, number of eosinophils in the bronchoalveolar lavage, and number of eosinophils in the lung tissue. Endothelial cell deletion of TG2 did not alter expression of adhesion molecules, cytokines, or chemokines that regulate leukocyte recruitment, consistent with other studies, demonstrating that deletion of endothelial cell signals does not alter lung cytokines and chemokines during allergic inflammation. Taken together, the data indicate that endothelial cell TG2 is required for allergic inflammation by regulating the recruitment of eosinophils into OVA-challenged lungs. In summary, TG2 functions as a critical signal for allergic lung responses. These data identify potential novel targets for intervention in allergy/asthma.

  7. TLR4 signalling in pulmonary stromal cells is critical for inflammation and immunity in the airways.

    PubMed

    Perros, Frederic; Lambrecht, Bart N; Hammad, Hamida

    2011-01-01

    Inflammation of the airways, which is often associated with life-threatening infection by Gram-negative bacteria or presence of endotoxin in the bioaerosol, is still a major cause of severe airway diseases. Moreover, inhaled endotoxin may play an important role in the development and progression of airway inflammation in asthma. Pathologic changes induced by endotoxin inhalation include bronchospasm, airflow obstruction, recruitment of inflammatory cells, injury of the alveolar epithelium, and disruption of pulmonary capillary integrity leading to protein rich fluid leak in the alveolar space. Mammalian Toll-like receptors (TLRs) are important signalling receptors in innate host defense. Among these receptors, TLR4 plays a critical role in the response to endotoxin. Lungs are a complex compartmentalized organ with separate barriers, namely the alveolar-capillary barrier, the microvascular endothelium, and the alveolar epithelium. An emerging theme in the field of lung immunology is that structural cells (SCs) of the airways such as epithelial cells (ECs), endothelial cells, fibroblasts and other stromal cells produce activating cytokines that determine the quantity and quality of the lung immune response. This review focuses on the role of TLR4 in the innate and adaptive immune functions of the pulmonary SCs. PMID:21943186

  8. TLR4 signalling in pulmonary stromal cells is critical for inflammation and immunity in the airways

    PubMed Central

    2011-01-01

    Inflammation of the airways, which is often associated with life-threatening infection by Gram-negative bacteria or presence of endotoxin in the bioaerosol, is still a major cause of severe airway diseases. Moreover, inhaled endotoxin may play an important role in the development and progression of airway inflammation in asthma. Pathologic changes induced by endotoxin inhalation include bronchospasm, airflow obstruction, recruitment of inflammatory cells, injury of the alveolar epithelium, and disruption of pulmonary capillary integrity leading to protein rich fluid leak in the alveolar space. Mammalian Toll-like receptors (TLRs) are important signalling receptors in innate host defense. Among these receptors, TLR4 plays a critical role in the response to endotoxin. Lungs are a complex compartmentalized organ with separate barriers, namely the alveolar-capillary barrier, the microvascular endothelium, and the alveolar epithelium. An emerging theme in the field of lung immunology is that structural cells (SCs) of the airways such as epithelial cells (ECs), endothelial cells, fibroblasts and other stromal cells produce activating cytokines that determine the quantity and quality of the lung immune response. This review focuses on the role of TLR4 in the innate and adaptive immune functions of the pulmonary SCs. PMID:21943186

  9. Early treatment of chlorine-induced airway hyperresponsiveness and inflammation with corticosteroids

    SciTech Connect

    Jonasson, Sofia; Wigenstam, Elisabeth; Koch, Bo; Bucht, Anders

    2013-09-01

    Chlorine (Cl{sub 2}) is an industrial gas that is highly toxic and irritating when inhaled causing tissue damage and an acute inflammatory response in the airways followed by a long-term airway dysfunction. The aim of this study was to evaluate whether early anti-inflammatory treatment can protect against the delayed symptoms in Cl{sub 2}-exposed mice. BALB/c mice were exposed by nose-only inhalation using 200 ppm Cl{sub 2} during 15 min. Assessment of airway hyperresponsiveness (AHR), inflammatory cell counts in bronchoalveolar lavage, occurrence of lung edema and lung fibrosis were analyzed 24 h or 14 days post-exposure. A single dose of the corticosteroid dexamethasone (10 or 100 mg/kg) was administered intraperitoneally 1, 3, 6, or 12 h following Cl{sub 2} exposure. High-dose of dexamethasone reduced the acute inflammation if administered within 6 h after exposure but treated animals still displayed a significant lung injury. The effect of dexamethasone administered within 1 h was dose-dependent; high-dose significantly reduced acute airway inflammation (100 mg/kg) but not treatment with the relatively low-dose (10 mg/kg). Both doses reduced AHR 14 days later, while lung fibrosis measured as collagen deposition was not significantly reduced. The results point out that the acute inflammation in the lungs due to Cl{sub 2} exposure only partly is associated with the long-term AHR. We hypothesize that additional pathogenic mechanisms apart from the inflammatory reactions contribute to the development of long-term airway dysfunction. By using this mouse model, we have validated early administration of corticosteroids in terms of efficacy to prevent acute lung injury and delayed symptoms induced by Cl{sub 2} exposure. - Highlights: • Inhalation of Cl{sub 2} may lead to a long-standing airway hyperresponsiveness. • The symptoms in Cl{sub 2}-exposed mice are similar to those described for RADS in humans. • Corticosteroids prevent delayed symptoms such as AHR in

  10. CCR9 Is a Key Regulator of Early Phases of Allergic Airway Inflammation

    PubMed Central

    López-Pacheco, C.; Soldevila, G.; Du Pont, G.; Hernández-Pando, R.

    2016-01-01

    Airway inflammation is the most common hallmark of allergic asthma. Chemokine receptors involved in leukocyte recruitment are closely related to the pathology in asthma. CCR9 has been described as a homeostatic and inflammatory chemokine receptor, but its role and that of its ligand CCL25 during lung inflammation remain unknown. To investigate the role of CCR9 as a modulator of airway inflammation, we established an OVA-induced allergic inflammation model in CCR9-deficient mice. Here, we report the expression of CCR9 and CCL25 as early as 6 hours post-OVA challenge in eosinophils and T-lymphocytes. Moreover, in challenged CCR9-deficient mice, cell recruitment was impaired at peribronchial and perivenular levels. OVA-administration in CCR9-deficient mice leads to a less inflammatory cell recruitment, which modifies the expression of IL-10, CCL11, and CCL25 at 24 hours after OVA challenge. In contrast, the secretion of IL-4 and IL-5 was not affected in CCR9-deficient mice compared to WT mice. These results demonstrate for the first time that CCR9 and CCL25 expressions are induced in the early stages of airway inflammation and they have an important role modulating eosinophils and lymphocytes recruitment at the first stages of inflammatory process, suggesting that they might be a potential target to regulate inflammation in asthma. PMID:27795621

  11. Obese mice are resistant to eosinophilic airway inflammation induced by diesel exhaust particles.

    PubMed

    Yanagisawa, Rie; Koike, Eiko; Ichinose, Takamichi; Takano, Hirohisa

    2014-06-01

    Particulate matter can exacerbate respiratory diseases such as asthma. Diesel exhaust particles are the substantial portion of ambient particulate matter with a <2.5 µm diameter in urban areas. Epidemiological data indicate increased respiratory health effects of particulate matter in obese individuals; however, the association between obesity and diesel exhaust particle-induced airway inflammation remains unclear. We aimed to investigate the differences in susceptibility to airway inflammation induced by exposure to diesel exhaust particles between obese mice (db/db) and lean mice (db/+m). Female db/db and db/+m mice were intratracheally administered diesel exhaust particles or vehicle every 2 weeks for a total of seven times. The cellular profile of bronchoalveolar lavage fluid and histological changes in the lungs were assessed and the lungs and serum were analyzed for the generation of cytokines, chemokines and soluble intercellular adhesion molecule 1. Diesel exhaust particle exposure-induced eosinophilic infiltration in db/+m mice accompanied by T-helper 2 cytokine, chemokine and soluble intercellular adhesion molecule 1 expression in the lungs. In contrast, it induced mild neutrophilic airway inflammation accompanied by elevated cytokines and chemokines in db/db mice. The lungs of db/db mice exhibited decreased expression of eosinophil activators/chemoattractants such as interleukin-5, interleukin-13 and eotaxin compared with those of db/+m mice. In addition, serum eotaxin and monocyte chemotactic protein-1 levels were significantly higher in db/db mice than in db/+m mice. In conclusion, obesity can affect susceptibility to diesel exhaust particle-induced airway inflammation, which is possibly due to differences in local and systemic inflammatory responses between lean and obese individuals.

  12. Identification of an interleukin 13-induced epigenetic signature in allergic airway inflammation

    PubMed Central

    Ooi, Aik T; Ram, Sonal; Kuo, Alan; Gilbert, Jennifer L; Yan, Weihong; Pellegrini, Matteo; Nickerson, Derek W; Chatila, Talal A; Gomperts, Brigitte N

    2012-01-01

    Epigenetic changes have been implicated in the pathogenesis of asthma. We sought to determine if IL13, a key cytokine in airway inflammation and remodeling, induced epigenetic DNA methylation and miRNAs expression changes in the airways in conjunction with its transcriptional gene regulation. Inducible expression of an IL13 transgene in the airways resulted in significant changes in DNA methylation in 177 genes, most of which were associated with the IL13 transcriptional signature in the airways. A large number of genes whose expression was induced by IL13 were found to have decreased methylation, including those involved in tissue remodeling (Olr1), leukocyte influx (Cxcl3, Cxcl5, CSFr2b), and the Th2 response (C3ar1, Chi3l4). Reciprocally, some genes whose expression was suppressed were found to have increased methylation (e.g. Itga8). In addition, miRNAs were identified with targets for lung development and Wnt signaling, amongst others. These results indicate that IL13 confers an epigenetic methylation and miRNA signature that accompanies its transcriptional program in the airways, which may play a critical role in airway inflammation and remodeling. PMID:22611474

  13. Influence of Asian Dust Particles on Immune Adjuvant Effects and Airway Inflammation in Asthma Model Mice

    PubMed Central

    Kurai, Jun; Watanabe, Masanari; Tomita, Katsuyuki; Yamasaki, Hiroyuki Sano Akira; Shimizu, Eiji

    2014-01-01

    Objective An Asian dust storm (ADS) contains airborne particles that affect conditions such as asthma, but the mechanism of exacerbation is unclear. The objective of this study was to compare immune adjuvant effects and airway inflammation induced by airborne particles collected on ADS days and the original ADS soil (CJ-1 soil) in asthma model mice. Methods Airborne particles were collected on ADS days in western Japan. NC/Nga mice were co-sensitized by intranasal instillation with ADS airborne particles and/or Dermatophagoides farinae (Df), and with CJ-1 soil and/or Df for 5 consecutive days. Df-sensitized mice were stimulated with Df challenge intranasally at 7 days after the last Df sensitization. At 24 hours after challenge, serum allergen specific antibody, differential leukocyte count and inflammatory cytokines in bronchoalveolar lavage fluid (BALF) were measured, and airway inflammation was examined histopathologically. Results Co-sensitization with ADS airborne particles and Df increased the neutrophil and eosinophil counts in BALF. Augmentation of airway inflammation was also observed in peribronchiolar and perivascular lung areas. Df-specific serum IgE was significantly elevated by ADS airborne particles, but not by CJ-1 soil. Levels of interleukin (IL)-5, IL-13, IL-6, and macrophage inflammatory protein-2 were higher in BALF in mice treated with ADS airborne particles. Conclusion These results suggest that substances attached to ADS airborne particles that are not in the original ADS soil may play important roles in immune adjuvant effects and airway inflammation. PMID:25386753

  14. Volatile Organic Compounds Enhance Allergic Airway Inflammation in an Experimental Mouse Model

    PubMed Central

    Bönisch, Ulrike; Böhme, Alexander; Kohajda, Tibor; Mögel, Iljana; Schütze, Nicole; von Bergen, Martin; Simon, Jan C.; Lehmann, Irina; Polte, Tobias

    2012-01-01

    Background Epidemiological studies suggest an association between exposure to volatile organic compounds (VOCs) and adverse allergic and respiratory symptoms. However, whether VOCs exhibit a causal role as adjuvants in asthma development remains unclear. Methods To investigate the effect of VOC exposure on the development of allergic airway inflammation Balb/c mice were exposed to VOCs emitted by new polyvinylchloride (PVC) flooring, sensitized with ovalbumin (OVA) and characterized in acute and chronic murine asthma models. Furthermore, prevalent evaporated VOCs were analyzed and mice were exposed to selected single VOCs. Results Exposure of mice to PVC flooring increased eosinophilic lung inflammation and OVA-specific IgE serum levels compared to un-exposed control mice. The increased inflammation was associated with elevated levels of Th2-cytokines. Long-term exposure to PVC flooring exacerbated chronic airway inflammation. VOCs with the highest concentrations emitted by new PVC flooring were N-methyl-2-pyrrolidone (NMP) and 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB). Exposure to NMP or TXIB also increased the allergic immune response in OVA-sensitized mice. In vitro or in vivo exposure to NMP or TXIB reduced IL-12 production in maturing dendritic cells (DCs) and enhanced airway inflammation after adoptive DC transfer into Balb/c mice. At higher concentrations both VOCs induced oxidative stress demonstrated by increased isoprostane and glutathione-S-transferase-pi1 protein levels in the lung of non-sensitized mice. Treatment of PVC flooring-exposed mice with N-acetylcysteine prevented the VOC-induced increase of airway inflammation. Conclusions Our results demonstrate that exposure to VOCs may increase the allergic immune response by interfering with DC function and by inducing oxidative stress and has therefore to be considerate as risk factor for the development of allergic diseases. PMID:22802943

  15. HIF-1 expression is associated with CCL2 chemokine expression in airway inflammatory cells: implications in allergic airway inflammation

    PubMed Central

    2012-01-01

    Background The pathogenesis of allergic airway inflammation in asthmatic patients is complex and characterized by cellular infiltrates and activity of many cytokines and chemokines. Both the transcription factor hypoxia inducible factor-1 (HIF-1) and chemokine CCL2 have been shown to play pivotal roles in allergic airway inflammation. The interrelationship between these two factors is not known. We hypothesized that the expression of HIF-1 and CCL2 may be correlated and that the expression of CCL2 may be under the regulation of HIF-1. Several lines of evidence are presented to support this hypothesis. Methods The effects of treating wild-type OVA (ovalbumin)-sensitized/challenged mice with ethyl-3,4-dihydroxybenzoate (EDHB), which upregulate HIF, on CCL2 expression, were determined. Mice conditionally knocked out for HIF-1β was examined for their ability to mount an allergic inflammatory response and CCL2 expression in the lung after intratracheal exposure to ovalbumin. The association of HIF-1α and CCL2 levels was also measured in endobronchial biopsies and bronchial fluid of asthma patients after challenge. Results We show that both HIF-1α and CCL2 were upregulated during an OVA (ovalbumin)-induced allergic response in mice. The levels of HIF-1α and CCL2 were significantly increased following treatment with a pharmacological agent which upregulates HIF-1α, ethyl-3,4-dihydroxybenzoate (EDHB). In contrast, the expression levels of HIF-1α and CCL2 were decreased in the lungs of mice that have been conditionally knocked out for ARNT (HIF-1β) following sensitization with OVA when compared to levels in wild type mice. In asthma patients, the levels of HIF-1α and CCL2 increased after challenge with the allergen. Conclusions These data suggest that CCL2 expression is regulated, in part, by HIF-1 in the lung. These findings also demonstrate that both CCL2 and HIF-1 are implicated in the pathogenesis of allergic airway inflammation. PMID:22823210

  16. Immunomodulation of airway epithelium cell activation by mesenchymal stromal cells ameliorates house dust mite-induced airway inflammation in mice.

    PubMed

    Duong, Khang M; Arikkatt, Jaisy; Ullah, M Ashik; Lynch, Jason P; Zhang, Vivian; Atkinson, Kerry; Sly, Peter D; Phipps, Simon

    2015-11-01

    Allergic asthma is underpinned by T helper 2 (Th2) inflammation. Redundancy in Th2 cytokine function and production by innate and adaptive immune cells suggests that strategies aimed at immunomodulation may prove more beneficial. Hence, we sought to determine whether administration of mesenchymal stromal cells (MSCs) to house dust mite (HDM) (Dermatophagoides pteronyssinus)-sensitized mice would suppress the development of Th2 inflammation and airway hyperresponsiveness (AHR) after HDM challenge. We report that the intravenous administration of allogeneic donor MSCs 1 hour before allergen challenge significantly attenuated the features of allergic asthma, including tissue eosinophilia, Th2 cytokine (IL-5 and IL-13) levels in bronchoalveolar lavage fluid, and AHR. The number of infiltrating type 2 innate lymphoid cells was not affected by MSC transfer, suggesting that MSCs may modulate the adaptive arm of Th2 immunity. The effect of MSC administration was long lasting; all features of allergic airway disease were significantly suppressed in response to a second round of HDM challenge 4 weeks after MSC administration. Further, we observed that MSCs decreased the release of epithelial cell-derived alarmins IL-1α and high mobility group box-1 in an IL-1 receptor antagonist-dependent manner. This significantly decreased the expression of the pro-Th2 cytokine IL-25 and reduced the number of activated and antigen-acquiring CD11c(+)CD11b(+) dendritic cells in the lung and mediastinal lymph nodes. Our findings suggest that MSC administration can ameliorate allergic airway inflammation by blunting the amplification of epithelial-derived inflammatory cytokines induced by HDM exposure and may offer long-term protection against Th2-mediated allergic airway inflammation and AHR.

  17. BLUNTING AIRWAYS EOSINOPHILIC INFLAMMATION RESULTS IN A DECREASED AIRWAY NEUTROPHIL RESPONSE TO INHALED LPS IN ATOPIC ASTHMATICS A ROLE FOR CD-14

    EPA Science Inventory

    Recent data demonstrate that atopic inflammation might enhance airway responses to inhaled LPS in individuals with atopic asthma by increasing CD14 expression on airway macrophages. We sought to determine whether blunting airway eosinophilic inflammation decreases CD14 expressio...

  18. Ozone-induced IL-17A and neutrophilic airway inflammation is orchestrated by the caspase-1-IL-1 cascade

    PubMed Central

    Che, Luanqing; Jin, Yan; Zhang, Chao; Lai, Tianwen; Zhou, Hongbin; Xia, Lixia; Tian, Baoping; Zhao, Yun; Liu, Juan; Wu, Yinfang; Wu, Yanping; Du, Jie; Li, Wen; Ying, Songmin; Chen, Zhihua; Shen, Huahao

    2016-01-01

    Ozone is a common environmental air pollutant leading to respiratory illness. The mechanisms regulating ozone-induced airway inflammation remain poorly understood. We hypothesize that ozone-triggered inflammasome activation and interleukin (IL)-1 production regulate neutrophilic airway inflammation through IL-17A. Pulmonary neutrophilic inflammation was induced by extended (72 h) low-dose (0.7 ppm) exposure to ozone. IL-1 receptor 1 (Il1r1)−/−, Il17a−/− mice and the caspase-1 inhibitor acetyl-YVAD-chloromethylketone (Ac-YVAD-cmk) were used for in vivo studies. Cellular inflammation and protein levels in bronchial alveolar lavage fluid (BALF), cytokines, and IL-17A-producing γδT-cells, as well as mitochondrial reactive oxygen species (ROS), mitochondrial DNA (mtDNA) release, and inflammasome activation in lung macrophages were analyzed. Ozone-induced neutrophilic airway inflammation, accompanied an increased production of IL-1β, IL-18, IL-17A, Granulocyte-colony stimulating factor (G-CSF), Interferon-γ inducible protein 10 (IP-10) and BALF protein in the lung. Ozone-induced IL-17A production was predominantly in γδT-cells, and Il17a-knockout mice exhibited reduced airway inflammation. Lung macrophages from ozone-exposed mice exhibited higher levels of mitochondrial ROS, enhanced cytosolic mtDNA, increased caspase-1 activation, and higher production of IL-1β. Il1r1-knockout mice or treatment with Ac-YVAD-cmk decreased the IL-17A production and subsequent airway inflammation. Taken together, we demonstrate that ozone-induced IL-17A and neutrophilic airway inflammation is orchestrated by the caspase-1-IL-1 cascade. PMID:26739627

  19. Specific allergen immunotherapy attenuates allergic airway inflammation in a rat model of Alstonia scholaris pollen induced airway allergy.

    PubMed

    Datta, Ankur; Moitra, Saibal; Hazra, Iman; Mondal, Somnath; Das, Prasanta Kumar; Singh, Manoj Kumar; Chaudhuri, Suhnrita; Bhattacharya, Debanjan; Tripathi, Santanu Kumar; Chaudhuri, Swapna

    2016-01-01

    Pollen grains are well established to be an important cause of respiratory allergy. Current pharmacologic therapies for allergic asthma do not cure the disease. Allergen specific immunotherapy is the only treatment method which re-directs the immune system away from allergic response leading to a long lasting effect. The mechanism by which immunotherapy achieves this goal is an area of active research world-wide. The present experimental study was designed to develop an experimental model of allergic lung inflammation based on a relevant human allergen, Alstonia scholaris pollen, and to establish the immunological and cellular features of specific allergen immunotherapy using this same pollen extract. Our results revealed that Alstonia scholaris pollen sensitization and challenge causes eosinophilic airway inflammation with mucin hypersecretion. This is associated with increased total IgE, increased expression of FcɛRI on lung mast cells and increased levels of IL-4, IL-5 & IL-13 as confirmed by ELISA, in-situ immunofluorescence and FACS assay. Allergen specific immunotherapy reduced airway inflammation and also decreased total IgE level, FcɛRI expression, IL-4, IL-5 & IL-13 levels. It was further noted that the reduction of these levels was more by intra-nasal route than by intra-peritoneal route. Thus we present a novel animal model of Alstonia scholaris pollen allergic disease and specific allergen immunotherapy which will pave the way towards the development of better treatment modalities.

  20. Specific allergen immunotherapy attenuates allergic airway inflammation in a rat model of Alstonia scholaris pollen induced airway allergy.

    PubMed

    Datta, Ankur; Moitra, Saibal; Hazra, Iman; Mondal, Somnath; Das, Prasanta Kumar; Singh, Manoj Kumar; Chaudhuri, Suhnrita; Bhattacharya, Debanjan; Tripathi, Santanu Kumar; Chaudhuri, Swapna

    2016-01-01

    Pollen grains are well established to be an important cause of respiratory allergy. Current pharmacologic therapies for allergic asthma do not cure the disease. Allergen specific immunotherapy is the only treatment method which re-directs the immune system away from allergic response leading to a long lasting effect. The mechanism by which immunotherapy achieves this goal is an area of active research world-wide. The present experimental study was designed to develop an experimental model of allergic lung inflammation based on a relevant human allergen, Alstonia scholaris pollen, and to establish the immunological and cellular features of specific allergen immunotherapy using this same pollen extract. Our results revealed that Alstonia scholaris pollen sensitization and challenge causes eosinophilic airway inflammation with mucin hypersecretion. This is associated with increased total IgE, increased expression of FcɛRI on lung mast cells and increased levels of IL-4, IL-5 & IL-13 as confirmed by ELISA, in-situ immunofluorescence and FACS assay. Allergen specific immunotherapy reduced airway inflammation and also decreased total IgE level, FcɛRI expression, IL-4, IL-5 & IL-13 levels. It was further noted that the reduction of these levels was more by intra-nasal route than by intra-peritoneal route. Thus we present a novel animal model of Alstonia scholaris pollen allergic disease and specific allergen immunotherapy which will pave the way towards the development of better treatment modalities. PMID:26667977

  1. Airway and lung remodelling in chronic pulmonary obstructive disease: a role for muscarinic receptor antagonists?

    PubMed

    Roth, Michael

    2015-01-01

    Lung tissue remodelling in chronic inflammatory lung diseases has long been regarded as a follow-up event to inflammation. Recent studies have indicated that, although airway and lung tissue remodelling is often independent of inflammation, it precedes or causes inflammation. None of the available therapies has a significant effect on airway and lung tissue remodelling in asthma, bronchiectasis, fibrosis and chronic obstructive pulmonary disease (COPD). The goal of stopping or reversing lung tissue remodelling is difficult, as the term summarizes the net effect of independent events, including (1) cell proliferation, (2) cell volume increase, (3) cell migration, (4) modified deposition and metabolism of specific extracellular matrix components, and (5) local action of infiltrated inflammatory cells. The extracellular matrix of the lung has a very high turnover, and thus small changes may accumulate to significant structural pathologies, which seem to be irreversible. The most important question is 'why are pathological changes of the lung structure irreversible and resistant to drugs?' Many drugs have the potential to reduce remodelling mechanisms in vitro but fail in clinical trials. New evidence suggests that muscarinic receptor inhibitors have the potential to improve lung function through modifying tissue remodelling. However, the role of muscarinic receptors in lung remodelling, especially their supportive role for other remodelling driving factors, needs to be further investigated. The focus of this review is the role of muscarinic receptors in lung tissue remodelling as it has been reported in the human lung.

  2. The relation of airway size to lung function

    NASA Astrophysics Data System (ADS)

    Leader, J. Ken; Zheng, Bin; Sciurba, Frank C.; Fuhrman, Carl R.; Bon, Jessica M.; Park, Sang C.; Pu, Jiantao; Gur, David

    2008-03-01

    Chronic obstructive pulmonary disease may cause airway remodeling, and small airways are the mostly likely site of associated airway flow obstruction. Detecting and quantifying airways depicted on a typical computed tomography (CT) images is limited by spatial resolution. In this study, we examined the association between lung function and airway size. CT examinations and spirometry measurement of forced expiratory volume in one second as a percent predicted (FEV I%) from 240 subjects were used in this study. Airway sections depicted in axial CT section were automatically detected and quantified. Pearson correlation coefficients (PCC) were computed to compare lung function across three size categories: (1) all detected airways, (2) the smallest 50% of detected airways, and (3) the largest 50% of detected airways using the CORANOVA test. The mean number of all airways detected per subject was 117.4 (+/- 40.1) with mean size ranging from 20.2 to 50.0 mm2. The correlation between lung function (i.e., FEV I) and airway morphometry associated with airway remodeling and airflow obstruction (i.e., lumen perimeter and wall area as a percent of total airway area) was significantly stronger for smaller compared to larger airways (p < 0.05). The PCCs between FEV I and all airways, the smallest 50%, and the largest 50% were 0.583, 0.617, 0.523, respectively, for lumen perimeter and -0.560, -0.584, and -0.514, respectively, for wall area percent. In conclusion, analyzing a set of smaller airways compared to larger airways may improve detection of an association between lung function and airway morphology change.

  3. SUSCEPTIBILITY TO POLLUTANT-INDUCED AIRWAY INFLAMMATION IS NEUROGENICALLY MEDIATED.

    EPA Science Inventory

    Neurogenic inflammation in the airways involves the activation of sensory irritant receptors (capsaicin, VR1) by noxious stimuli and the subsequent release of neuropeptides (e.g., SP, CGRP, NKA) from these fibers. Once released, these peptides initiate and sustain symptoms of ...

  4. NITROTYROSINE ATTENUATES RSV-INDUCED INFLAMMATION IN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Nitrotyrosine attenuates RSV-induced inflammation in airway epithelial cells. Joleen Soukup, Zuowei Li, Susanne Becker and Yuh-Chin Huang. NHEERL, ORD, USEPA, RTP, North Carolina, CEMALB, University of North Carolina, Chapel Hill, North Carolina

    Nitrotyrosine (NO2Tyr) is a...

  5. The combination of Bifidobacterium breve with non-digestible oligosaccharides suppresses airway inflammation in a murine model for chronic asthma.

    PubMed

    Sagar, Seil; Vos, Arjan P; Morgan, Mary E; Garssen, Johan; Georgiou, Niki A; Boon, Louis; Kraneveld, Aletta D; Folkerts, Gert

    2014-04-01

    Over the last decade, there has been a growing interest in the use of interventions that target the intestinal microbiota as a treatment approach for asthma. This study is aimed at exploring the therapeutic effects of long-term treatment with a combination of Bifidobacterium breve with non-digestible oligosaccharides on airway inflammation and remodeling. A murine ovalbumin-induced chronic asthma model was used. Pulmonary airway inflammation; mRNA expression of pattern recognition receptors, Th-specific cytokines and transcription factors in lung tissue; expression of Foxp3 in blood Th cells; in vitro T cell activation; mast cell degranulation; and airway remodeling were examined. The combination of B. breve with non-digestible oligosaccharides suppressed pulmonary airway inflammation; reduced T cell activation and mast cell degranulation; modulated expression of pattern recognition receptors, cytokines and transcription factors; and reduced airway remodeling. The treatment induced regulatory T cell responses, as shown by increased Il10 and Foxp3 transcription in lung tissue, and augmented Foxp3 protein expression in blood CD4+CD25+Foxp3+ T cells. This specific combination of beneficial bacteria with non-digestible oligosaccharides has strong anti-inflammatory properties, possibly via the induction of a regulatory T cell response, resulting in reduced airway remodeling and, therefore, may be beneficial in the treatment of chronic inflammation in allergic asthma.

  6. NF-κB Signaling in Fetal Lung Macrophages Disrupts Airway Morphogenesis

    PubMed Central

    Blackwell, Timothy S.; Hipps, Ashley N.; Yamamoto, Yasutoshi; Han, Wei; Barham, Whitney J.; Ostrowski, Michael C.; Yull, Fiona E.; Prince, Lawrence S.

    2011-01-01

    Bronchopulmonary dysplasia is a common pulmonary complication of extreme prematurity. Arrested lung development leads to bronchopulmonary dysplasia, but the molecular pathways that cause this arrest are unclear. Lung injury and inflammation increase disease risk, but the cellular site of the inflammatory response and the potential role of localized inflammatory signaling in inhibiting lung morphogenesis are not known. Here we show that tissue macrophages present in the fetal mouse lung mediate the inflammatory response to lipopolysaccharide and that macrophage activation inhibits airway morphogenesis. Macrophage depletion or targeted inactivation of the NF-κB signaling pathway protected airway branching in cultured lung explants from the effects of lipopolysaccharide. Macrophages also appear to be the primary cellular site of IL-1β production following lipopolysaccharide exposure. Conversely, targeted NF-κB activation in transgenic macrophages was sufficient to inhibit airway morphogenesis. Macrophage activation in vivo inhibited expression of multiple genes critical for normal lung development, leading to thickened lung interstitium, reduced airway branching, and perinatal death. We propose that fetal lung macrophage activation contributes to bronchopulmonary dysplasia by generating a localized inflammatory response that disrupts developmental signals critical for lung formation. PMID:21775686

  7. The effects of in utero vitamin D deficiency on airway smooth muscle mass and lung function.

    PubMed

    Foong, Rachel E; Bosco, Anthony; Jones, Anya C; Gout, Alex; Gorman, Shelley; Hart, Prue H; Zosky, Graeme R

    2015-11-01

    We have previously demonstrated increased airway smooth muscle (ASM) mass and airway hyperresponsiveness in whole-life vitamin D-deficient female mice. In this study, we aimed to uncover the molecular mechanisms contributing to altered lung structure and function. RNA was extracted from lung tissue of whole-life vitamin D-deficient and -replete female mice, and gene expression patterns were profiled by RNA sequencing. The data showed that genes involved in embryonic organ development, pattern formation, branching morphogenesis, Wingless/Int signaling, and inflammation were differentially expressed in vitamin D-deficient mice. Network analysis suggested that differentially expressed genes were connected by the hubs matrix metallopeptidase 9; NF-κ light polypeptide gene enhancer in B cells inhibitor, α; epidermal growth factor receptor; and E1A binding protein p300. Given our findings that developmental pathways may be altered, we investigated if the timing of vitamin D exposure (in utero vs. postnatal) had an impact on lung health outcomes. Gene expression was measured in in utero or postnatal vitamin D-deficient mice, as well as whole-life vitamin D-deficient and -replete mice at 8 weeks of age. Baseline lung function, airway hyperresponsiveness, and airway inflammation were measured and lungs fixed for lung structure assessment using stereological methods and quantification of ASM mass. In utero vitamin D deficiency was sufficient to increase ASM mass and baseline airway resistance and alter lung structure. There were increased neutrophils but decreased lymphocytes in bronchoalveolar lavage. Expression of inflammatory molecules S100A9 and S100A8 was mainly increased in postnatal vitamin D-deficient mice. These observations suggest that in utero vitamin D deficiency can alter lung structure and function and increase inflammation, contributing to symptoms in chronic diseases, such as asthma.

  8. GS143, an I{kappa}B ubiquitination inhibitor, inhibits allergic airway inflammation in mice

    SciTech Connect

    Hirose, Koichi; Wakashin, Hidefumi; Oki, Mie; Kagami, Shin-ichiro; Suto, Akira; Ikeda, Kei; Watanabe, Norihiko; Iwamoto, Itsuo; Furuichi, Yasuhiro; Nakajima, Hiroshi

    2008-09-26

    Asthma is characterized by airway inflammation with intense eosinophil infiltration and mucus hyper-production, in which antigen-specific Th2 cells play critical roles. Nuclear factor-{kappa}B (NF-{kappa}B) pathway has been demonstrated to be essential for the production of Th2 cytokines and chemokines in the airways in murine asthma models. In the present study, we examined the effect of GS143, a novel small-molecule inhibitor of I{kappa}B ubiquitination, on antigen-induced airway inflammation and Th2 cytokine production in mice. Intranasal administration of GS143 prior to antigen challenge suppressed antigen-induced NF-{kappa}B activation in the lung of sensitized mice. Intranasal administration of GS143 also inhibited antigen-induced eosinophil and lymphocyte recruitment into the airways as well as the expression of Th2 cytokines and eotaxin in the airways. Moreover, GS143 inhibited antigen-induced differentiation of Th2 cells but not of Th1 cells in vitro. Taken together, these results suggest that I{kappa}B ubiquitination inhibitor may have therapeutic potential against asthma.

  9. Acetyl salicylic acid inhibits Th17 airway inflammation via blockade of IL-6 and IL-17 positive feedback.

    PubMed

    Moon, Hyung-Geun; Kang, Chil Sung; Choi, Jun-Pyo; Choi, Dong Sic; Choi, Hyun Il; Choi, Yong Wook; Jeon, Seong Gyu; Yoo, Joo-Yeon; Jang, Myoung Ho; Gho, Yong Song; Kim, Yoon-Keun

    2013-01-18

    T-helper (Th)17 cell responses are important for the development of neutrophilic inflammatory disease. Recently, we found that acetyl salicylic acid (ASA) inhibited Th17 airway inflammation in an asthma mouse model induced by sensitization with lipopolysaccharide (LPS)-containing allergens. To investigate the mechanism(s) of the inhibitory effect of ASA on the development of Th17 airway inflammation, a neutrophilic asthma mouse model was generated by intranasal sensitization with LPS plus ovalbumin (OVA) and then challenged with OVA alone. Immunologic parameters and airway inflammation were evaluated 6 and 48 h after the last OVA challenge. ASA inhibited the production of interleukin (IL)-17 from lung T cells as well as in vitro Th17 polarization induced by IL-6. Additionally, ASA, but not salicylic acid, suppressed Th17 airway inflammation, which was associated with decreased expression of acetyl-STAT3 (downstream signaling of IL-6) in the lung. Moreover, the production of IL-6 from inflammatory cells, induced by IL-17, was abolished by treatment with ASA, whereas that induced by LPS was not. Altogether, ASA, likely via its acetyl moiety, inhibits Th17 airway inflammation by blockade of IL-6 and IL-17 positive feedback.

  10. Effects of local nasal immunotherapy in allergic airway inflammation: Using urea denatured Dermatophagoides pteronyssinus.

    PubMed

    Yu, Sheng-Jie; Liao, En-Chih; Tsai, Jaw-Ji

    2015-01-01

    Despite improvements in anti-allergy medication, the prevalence of allergic airway inflammation remains high, affecting up to 40% of the population worldwide. Allergen immunotherapy is effective for inducing tolerance but has the adverse effect of severe allergic reaction. This can be avoided by denaturing with urea. In this study, we demonstrated that the serum level of allergen-specific IgE in mice sensitized with native Dermatophagoides pteronyssinus (Der p) crude extract after receiving local nasal immunotherapy (LNIT) with urea-denatured Der p crude extract (DN-Dp) significantly decreased compared to that in the normal saline (NS) treatment group. Expressions of IL-4 were significantly reduced in lung tissues after treatment. Inflammation around the bronchial epithelium improved and airway hypersensitivity was down-regulated. LNIT with DN-Dp can down-regulate IL-1b, IL-6 and TNF-a expression and then decrease Der p-induced allergic airway inflammation. This therapeutic modality may be used as an alternative treatment for airway allergic diseases.

  11. The Murine Lung Microbiome Changes During Lung Inflammation and Intranasal Vancomycin Treatment.

    PubMed

    Barfod, Kenneth Klingenberg; Vrankx, Katleen; Mirsepasi-Lauridsen, Hengameh Chloé; Hansen, Jitka Stilund; Hougaard, Karin Sørig; Larsen, Søren Thor; Ouwenhand, Arthur C; Krogfelt, Karen Angeliki

    2015-01-01

    Most microbiome research related to airway diseases has focused on the gut microbiome. This is despite advances in culture independent microbial identification techniques revealing that even healthy lungs possess a unique dynamic microbiome. This conceptual change raises the question; if lung diseases could be causally linked to local dysbiosis of the local lung microbiota. Here, we manipulate the murine lung and gut microbiome, in order to show that the lung microbiota can be changed experimentally. We have used four different approaches: lung inflammation by exposure to carbon nano-tube particles, oral probiotics and oral or intranasal exposure to the antibiotic vancomycin. Bacterial DNA was extracted from broncho-alveolar and nasal lavage fluids, caecum samples and compared by DGGE. Our results show that: the lung microbiota is sex dependent and not just a reflection of the gut microbiota, and that induced inflammation can change lung microbiota. This change is not transferred to offspring. Oral probiotics in adult mice do not change lung microbiome detectible by DGGE. Nasal vancomycin can change the lung microbiome preferentially, while oral exposure does not. These observations should be considered in future studies of the causal relationship between lung microbiota and lung diseases. PMID:26668669

  12. The Murine Lung Microbiome Changes During Lung Inflammation and Intranasal Vancomycin Treatment

    PubMed Central

    Barfod, Kenneth Klingenberg; Vrankx, Katleen; Mirsepasi-Lauridsen, Hengameh Chloé; Hansen, Jitka Stilund; Hougaard, Karin Sørig; Larsen, Søren Thor; Ouwenhand, Arthur C.; Krogfelt, Karen Angeliki

    2015-01-01

    Most microbiome research related to airway diseases has focused on the gut microbiome. This is despite advances in culture independent microbial identification techniques revealing that even healthy lungs possess a unique dynamic microbiome. This conceptual change raises the question; if lung diseases could be causally linked to local dysbiosis of the local lung microbiota. Here, we manipulate the murine lung and gut microbiome, in order to show that the lung microbiota can be changed experimentally. We have used four different approaches: lung inflammation by exposure to carbon nano-tube particles, oral probiotics and oral or intranasal exposure to the antibiotic vancomycin. Bacterial DNA was extracted from broncho-alveolar and nasal lavage fluids, caecum samples and compared by DGGE. Our results show that: the lung microbiota is sex dependent and not just a reflection of the gut microbiota, and that induced inflammation can change lung microbiota. This change is not transferred to offspring. Oral probiotics in adult mice do not change lung microbiome detectible by DGGE. Nasal vancomycin can change the lung microbiome preferentially, while oral exposure does not. These observations should be considered in future studies of the causal relationship between lung microbiota and lung diseases. PMID:26668669

  13. Effects of multi-walled carbon nanotubes on a murine allergic airway inflammation model

    SciTech Connect

    Inoue, Ken-ichiro Koike, Eiko; Yanagisawa, Rie; Hirano, Seishiro; Nishikawa, Masataka; Takano, Hirohisa

    2009-06-15

    The development of nanotechnology has increased the risk of exposure to types of particles other than combustion-derived particles in the environment, namely, industrial nanomaterials. On the other hand, patients with bronchial asthma are sensitive to inhaled substances including particulate matters. This study examined the effects of pulmonary exposure to a type of nano-sized carbon nanotube (multi-walled nanotubes: MWCNT) on allergic airway inflammation in vivo and their cellular mechanisms in vitro. In vivo, ICR mice were divided into 4 experimental groups. Vehicle, MWCNT (50 {mu}g/animal), ovalbumin (OVA), and OVA + MWCNT were repeatedly administered intratracheally. Bronchoalveolar lavage (BAL) cellularity, lung histology, levels of cytokines related to allergic inflammation in lung homogenates/BAL fluids (BALFs), and serum immunoglobulin levels were studied. Also, we evaluated the impact of MWCNT (0.1-1 {mu}g/ml) on the phenotype and function of bone marrow-derived dendritic cells (DC) in vitro. MWCNT aggravated allergen-induced airway inflammation characterized by the infiltration of eosinophils, neutrophils, and mononuclear cells in the lung, and an increase in the number of goblet cells in the bronchial epithelium. MWCNT with allergen amplified lung protein levels of Th cytokines and chemokines compared with allergen alone. MWCNT exhibited adjuvant activity for allergen-specific IgG{sub 1} and IgE. MWCNT significantly increased allergen (OVA)-specific syngeneic T-cell proliferation, particularly at a lower concentration in vitro. Taken together, MWCNT can exacerbate murine allergic airway inflammation, at least partly, via the promotion of a Th-dominant milieu. In addition, the exacerbation may be partly through the inappropriate activation of antigen-presenting cells including DC.

  14. Glufosinate aerogenic exposure induces glutamate and IL-1 receptor dependent lung inflammation.

    PubMed

    Maillet, Isabelle; Perche, Olivier; Pâris, Arnaud; Richard, Olivier; Gombault, Aurélie; Herzine, Ameziane; Pichon, Jacques; Huaux, Francois; Mortaud, Stéphane; Ryffel, Bernhard; Quesniaux, Valérie F J; Montécot-Dubourg, Céline

    2016-11-01

    Glufosinate-ammonium (GLA), the active component of an herbicide, is known to cause neurotoxicity. GLA shares structural analogy with glutamate. It is a powerful inhibitor of glutamine synthetase (GS) and may bind to glutamate receptors. Since these potentials targets of GLA are present in lung and immune cells, we asked whether airway exposure to GLA may cause lung inflammation in mice. A single GLA exposure (1 mg/kg) induced seizures and inflammatory cell recruitment in the broncho-alveolar space, and increased myeloperoxidase (MPO), inducible NO synthase (iNOS), interstitial inflammation and disruption of alveolar septae within 6-24 h. Interleukin 1β (IL-1β) was increased and lung inflammation depended on IL-1 receptor 1 (IL-1R1). We demonstrate that glutamate receptor pathway is central, since the N-methyl-D-aspartate (NMDA) receptor inhibitor MK-801 prevented GLA-induced lung inflammation. Chronic exposure (0.2 mg/kg 3× per week for 4 weeks) caused moderate lung inflammation and enhanced airway hyperreactivity with significant increased airway resistance. In conclusion, GLA aerosol exposure causes glutamate signalling and IL-1R-dependent pulmonary inflammation with airway hyperreactivity in mice.

  15. The glutathione-S-transferase Mu 1 null genotype modulates ozone-induced airway inflammation in humans*

    EPA Science Inventory

    Background: The Glutathione-S-Transferase Mu 1 null genotype has been reported to be a risk factor for acute respiratory disease associated with increases in ambient air ozone. Ozone is known to cause an immediate decrease in lung function and increased airway inflammation. Howev...

  16. Is Health-Related Quality of Life Associated with Upper and Lower Airway Inflammation in Asthmatics?

    PubMed Central

    Scichilone, Nicola; Taormina, Salvatore; Pozzecco, Elena; Paternò, Alessandra; Baiardini, Ilaria; Canonica, Giorgio Walter; Bellia, Vincenzo

    2013-01-01

    Background. Allergic diseases impair health-related quality of life (HR-QoL). However, the relationship between airway inflammation and HR-QoL in patients with asthma and rhinitis has not been fully investigated. We explored whether the inflammation of upper and lower airways is associated with HR-QoL. Methods. Twenty-two mild allergic asthmatics with concomitant rhinitis (10 males, 38 ± 17 years) were recruited. The Rhinasthma was used to identify HR-QoL, and the Asthma Control Test (ACT) was used to assess asthma control. Subjects underwent lung function and exhaled nitric oxide (eNO) test, collection of exhaled breath condensate (EBC), and nasal wash. Results. The Rhinasthma Global Summary score (GS) was 25 ± 11. No relationships were found between GS and markers of nasal allergic inflammation (% eosinophils: r = 0.34, P = 0.24; ECP: r = 0.06, P = 0.87) or bronchial inflammation (pH of the EBC: r = 0.12, P = 0.44; bronchial NO: r = 0.27, P = 0.22; alveolar NO: r = 0.38, P = 0.10). The mean ACT score was 18. When subjects were divided into controlled (ACT ≥ 20) and uncontrolled (ACT < 20), the alveolar NO significantly correlated with GS in uncontrolled asthmatics (r = 0.60, P = 0.04). Conclusions. Upper and lower airways inflammation appears unrelated to HR-QoL associated with respiratory symptoms. These preliminary findings suggest that, in uncontrolled asthma, peripheral airway inflammation could be responsible for impaired HR-QoL. PMID:24073408

  17. CARMA3 Is Critical for the Initiation of Allergic Airway Inflammation.

    PubMed

    Causton, Benjamin; Ramadas, Ravisankar A; Cho, Josalyn L; Jones, Khristianna; Pardo-Saganta, Ana; Rajagopal, Jayaraj; Xavier, Ramnik J; Medoff, Benjamin D

    2015-07-15

    Innate immune responses to allergens by airway epithelial cells (AECs) help initiate and propagate the adaptive immune response associated with allergic airway inflammation in asthma. Activation of the transcription factor NF-κB in AECs by allergens or secondary mediators via G protein-coupled receptors (GPCRs) is an important component of this multifaceted inflammatory cascade. Members of the caspase recruitment domain family of proteins display tissue-specific expression and help mediate NF-κB activity in response to numerous stimuli. We have previously shown that caspase recruitment domain-containing membrane-associated guanylate kinase protein (CARMA)3 is specifically expressed in AECs and mediates NF-κB activation in these cells in response to stimulation with the GPCR agonist lysophosphatidic acid. In this study, we demonstrate that reduced levels of CARMA3 in normal human bronchial epithelial cells decreases the production of proasthmatic mediators in response to a panel of asthma-relevant GPCR ligands such as lysophosphatidic acid, adenosine triphosphate, and allergens that activate GPCRs such as Alternaria alternata and house dust mite. We then show that genetically modified mice with CARMA3-deficient AECs have reduced airway eosinophilia and proinflammatory cytokine production in a murine model of allergic airway inflammation. Additionally, we demonstrate that these mice have impaired dendritic cell maturation in the lung and that dendritic cells from mice with CARMA3-deficient AECs have impaired Ag processing. In conclusion, we show that AEC CARMA3 helps mediate allergic airway inflammation, and that CARMA3 is a critical signaling molecule bridging the innate and adaptive immune responses in the lung. PMID:26041536

  18. Eosinophilic airway inflammation: role in asthma and chronic obstructive pulmonary disease

    PubMed Central

    George, Leena; Brightling, Christopher E.

    2016-01-01

    The chronic lung diseases, asthma and chronic obstructive pulmonary disease (COPD), are common affecting over 500 million people worldwide and causing substantial morbidity and mortality. Asthma is typically associated with Th2-mediated eosinophilic airway inflammation, in contrast to neutrophilic inflammation observed commonly in COPD. However, there is increasing evidence that the eosinophil might play an important role in 10–40% of patients with COPD. Consistently in both asthma and COPD a sputum eosinophilia is associated with a good response to corticosteroid therapy and tailored strategies aimed to normalize sputum eosinophils reduce exacerbation frequency and severity. Advances in our understanding of the multistep paradigm of eosinophil recruitment to the airway, and the consequence of eosinophilic inflammation, has led to the development of new therapies to target these molecular pathways. In this article we discuss the mechanisms of eosinophilic trafficking, the tools to assess eosinophilic airway inflammation in asthma and COPD during stable disease and exacerbations and review current and novel anti-eosinophilic treatments. PMID:26770668

  19. Effects of diesel exposure on lung function and inflammation biomarkers from airway and peripheral blood of healthy volunteers in a chamber study

    PubMed Central

    2013-01-01

    Background Exposure to diesel exhaust causes inflammatory responses. Previous controlled exposure studies at a concentration of 300 μg/m3 of diesel exhaust particles mainly lasted for 1 h. We prolonged the exposure period and investigated how quickly diesel exhaust can induce respiratory and systemic effects. Methods Eighteen healthy volunteers were exposed twice to diluted diesel exhaust (PM1 ~300 μg/m3) and twice to filtered air (PM1 ~2 μg/m3) for 3 h, seated, in a chamber with a double-blind set-up. Immediately before and after exposure, we performed a medical examination, spirometry, rhinometry, nasal lavage and blood sampling. Nasal lavage and blood samples were collected again 20 h post-exposure. Symptom scores and peak expiratory flow (PEF) were assessed before exposure, and at 15, 75, and 135 min of exposure. Results Self-rated throat irritation was higher during diesel exhaust than filtered air exposure. Clinical signs of irritation in the upper airways were also significantly more common after diesel exhaust exposure (odds ratio=3.2, p<0.01). PEF increased during filtered air, but decreased during diesel exhaust exposure, with a statistically significant difference at 75 min (+4 L/min vs. -10 L/min, p=0.005). Monocyte and total leukocyte counts in peripheral blood were higher after exposure to diesel exhaust than filtered air 20 h post-exposure, and a trend (p=0.07) towards increased serum IL-6 concentrations was also observed 20 h post-exposure. Conclusions Diesel exhaust induced acute adverse effects such as symptoms and signs of irritation, decreased PEF, inflammatory markers in healthy volunteers. The effects were first seen at 75 min of exposure. PMID:24321138

  20. Emodin mitigates diesel exhaust particles-induced increase in airway resistance, inflammation and oxidative stress in mice.

    PubMed

    Nemmar, Abderrahim; Al-Salam, Suhail; Yuvaraju, Priya; Beegam, Sumaya; Ali, Badreldin H

    2015-08-15

    Clinical and experimental studies have reported that short-term exposure to particulate air pollution is associated with inflammation, oxidative stress and impairment of lung function. Emodin (1,3,8-trihydroxy-6-methylanthraquinone) has a strong antioxidant and anti-inflammatory actions. Therefore, in the present study, we evaluated the possible ameliorative effect of emodin on diesel exhaust particles (DEP)-induced impairment of lung function, inflammation and oxidative stress in mice. Mice were intratracheally instilled with DEP (20 μg/mouse) or saline (control). Emodin was administered intraperitoneally 1h before and 7h after pulmonary exposure to DEP. Twenty-four hours following DEP exposure, we evaluated airway resistance measured by forced oscillation technique, lung inflammation and oxidative stress. Emodin treatment abated the DEP-induced increase in airway resistance, and prevented the influx of neutrophils in bronchoalveolar lavage fluid. Similarly, lung histopathology confirmed the protective effect of emodin on DEP-induced lung inflammation. DEP induced a significant increase of proinflammatory cytokines in the lung including tumor necrosis factor α, interleukin 6 and interleukin 1β. The latter effect was significantly ameliorated by emodin. DEP caused a significant increase in lung lipid peroxidation, reactive oxygen species and a significant decrease of reduced glutathione concentration. These effects were significantly mitigated by emodin. We conclude that emodin significantly mitigated DEP-induced increase of airway resistance, lung inflammation and oxidative stress. Pending further pharmacological and toxicological studies, emodin may be considered a potentially useful pulmonary protective agent against particulate air pollution-induced lung toxicity.

  1. Influenza A infection enhances antigen-induced airway inflammation and hyper-responsiveness in young but not aged mice

    PubMed Central

    Birmingham, Janette M.; Gillespie, Virginia L.; Srivastava, Kamal; Li, Xiu-Min; Busse, Paula J.

    2015-01-01

    Background Although morbidity and mortality rates from asthma are highest in patients > 65 years of age, the effect of older age on airway inflammation in asthma is not well established. Objective To investigate age-related differences in the promotion of allergic inflammation after influenza A viral respiratory infection on antigen specific IgE production, antigen-induced airway inflammation and airway hyper-responsiveness in mice. Methods To accomplish this objective, the following model system was used. Young (six-week) and aged (18-month) BALB/c mice were first infected with a non-lethal dose of influenza virus A (H/HK×31). Mice were then ovalbumin (OVA) sensitized during the acute-infection (3-days post inoculation) and then chronically underwent challenge to the airways with OVA. Forty-eight hours after the final OVA-challenge, airway hyperresponsiveness (AHR), bronchoalveolar fluid (BALF) cellular and cytokine profile, antigen-specific IgE and IgG1, and lung tissue inflammation were measured. Results Age-specific differences were noted on the effect of a viral infection, allergic sensitization, airway inflammation and airway hyperresponsiveness. Serum OVA-specific IgE was significantly increased in only the aged mice infected with influenza virus. Despite greater morbidity (e.g. weight loss and sickness scores) during the acute infection in the 18-month old mice that were OVA-sensitized there was little effect on the AHR and BALF cellular differential. In contrast, BALF neutrophils and AHR increased, but eosinophils decreased in 6-week mice that were OVA-sensitized during an acute influenza infection. Conclusion With increased age in a mouse model, viral infection prior to antigen sensitization affects the airway and systemic allergic response differently. These differences may reflect distinct phenotypic features of allergic inflammation in older patients with asthma PMID:25039815

  2. Clarithromycin might attenuate the airway inflammation of smoke-exposed asthmatic mice via affecting HDAC2

    PubMed Central

    Hao, Min; Shu, Jun; Zhang, Xiaoyan; Luo, Qiongzhen; Pan, Lin; Guo, Jing

    2015-01-01

    Background Smoke has been proved to be one of the most dangerous ingredients leading to the unsatisfying treatment response of asthmatics to inhaled corticosteroids (ICS) therapy. Macrolides, a class of antibiotics, possess the traits of immunomodulation and anti-inflammation besides antimicrobial activity. Given that studies on the efficacy of macrolides on the refractory asthma patient have diverting conclusions, this article was carried on to investigate the effects of macrolide on the airway inflammation of smoke-exposed asthmatic mice. Methods BALB/c mice were chosen to be the subjects of this study. They were raised to establish asthma model (OVA group); and one asthma group were exposed to the smoke (SEA group), one asthma group were treat with clarithromycin (CAM group) after smoke exposure. Control group mice were used as parallel comparison. Total inspiratory resistance (RL), expiratory resistance of the lung (Re) and lung compliance (Cdyn) were the main index to evaluate airway hyperresponsiveness (AHR). The histopathological change was studied to assess lung tissue inflammation. Cell counts in bronchoalveolar lavage fluid (BALF) were also tested to represent airway inflammation. IL-4 and CXCL1 in BALF and serum were also used to evaluate the airway inflammation. Histone deacelytase2 (HDAC2) activity of lung tissues was measure by assay kit. HDAC2 expression in the lung tissue had been detected by western blot. Results Re, RL and Cdyn were monitored to represent airway responsiveness. All of the three indicators in SEA group were significantly different from control group, while clarithromycin improved airway responsiveness and the three indicator were statistically significant (P<0.01). Histopathology observation had showed massive infiltration of inflammatory cells in both OVA group and SEA group, while inflammation infiltration attenuated in CAM group. Total cell counts in SEA group was much higher than that in CAM group (P=0.019), so were neutrophils

  3. Airway irritation, inflammation, and toxicity in mice following inhalation of metal oxide nanoparticles.

    PubMed

    Larsen, Søren T; Jackson, Petra; Poulsen, Steen S; Levin, Marcus; Jensen, Keld A; Wallin, Håkan; Nielsen, Gunnar D; Koponen, Ismo K

    2016-11-01

    Metal oxide nanoparticles are used in a broad range of industrial processes and workers may be exposed to aerosols of the particles both during production and handling. Despite the widespread use of these particles, relatively few studies have been performed to investigate the toxicological effects in the airways following inhalation. In the present study, the acute (24 h) and persistent (13 weeks) effects in the airways after a single exposure to metal oxide nanoparticles were studied using a murine inhalation model. Mice were exposed 60 min to aerosols of either ZnO, TiO2, Al2O3 or CeO2 and the deposited doses in the upper and lower respiratory tracts were calculated. Endpoints were acute airway irritation, pulmonary inflammation based on analyses of bronchoalveolar lavage (BAL) cell composition, DNA damage assessed by the comet assay and pulmonary toxicity assessed by protein level in BAL fluid and histology. All studied particles reduced the tidal volume in a concentration-dependent manner accompanied with an increase in the respiratory rate. In addition, ZnO and TiO2 induced nasal irritation. BAL cell analyses revealed both neutrophilic and lymphocytic inflammation 24-h post-exposure to all particles except TiO2. The ranking of potency regarding induction of acute lung inflammation was Al2O3 = TiO2 < CeO2 ≪ ZnO. Exposure to CeO2 gave rise to a more persistent inflammation; both neutrophilic and lymphocytic inflammation was seen 13 weeks after exposure. As the only particles, ZnO caused a significant toxic effect in the airways while TiO2 gave rise to DNA-strand break as shown by the comet assay. PMID:27323801

  4. Airway irritation, inflammation, and toxicity in mice following inhalation of metal oxide nanoparticles

    PubMed Central

    Larsen, Søren T.; Jackson, Petra; Poulsen, Steen S.; Levin, Marcus; Jensen, Keld A.; Wallin, Håkan; Nielsen, Gunnar D.; Koponen, Ismo K.

    2016-01-01

    Abstract Metal oxide nanoparticles are used in a broad range of industrial processes and workers may be exposed to aerosols of the particles both during production and handling. Despite the widespread use of these particles, relatively few studies have been performed to investigate the toxicological effects in the airways following inhalation. In the present study, the acute (24 h) and persistent (13 weeks) effects in the airways after a single exposure to metal oxide nanoparticles were studied using a murine inhalation model. Mice were exposed 60 min to aerosols of either ZnO, TiO2, Al2O3 or CeO2 and the deposited doses in the upper and lower respiratory tracts were calculated. Endpoints were acute airway irritation, pulmonary inflammation based on analyses of bronchoalveolar lavage (BAL) cell composition, DNA damage assessed by the comet assay and pulmonary toxicity assessed by protein level in BAL fluid and histology. All studied particles reduced the tidal volume in a concentration-dependent manner accompanied with an increase in the respiratory rate. In addition, ZnO and TiO2 induced nasal irritation. BAL cell analyses revealed both neutrophilic and lymphocytic inflammation 24-h post-exposure to all particles except TiO2. The ranking of potency regarding induction of acute lung inflammation was Al2O3 = TiO2 < CeO2 ≪ ZnO. Exposure to CeO2 gave rise to a more persistent inflammation; both neutrophilic and lymphocytic inflammation was seen 13 weeks after exposure. As the only particles, ZnO caused a significant toxic effect in the airways while TiO2 gave rise to DNA-strand break as shown by the comet assay. PMID:27323801

  5. Airborne lipid antigens mobilize resident intravascular NKT cells to induce allergic airway inflammation.

    PubMed

    Scanlon, Seth T; Thomas, Seddon Y; Ferreira, Caroline M; Bai, Li; Krausz, Thomas; Savage, Paul B; Bendelac, Albert

    2011-09-26

    Airborne exposure to microbial cell wall lipids such as lipopolysaccharide triggers innate immune responses that regulate susceptibility to allergic airway inflammation. α-Glycosylceramides represent another widespread class of microbial lipids that directly stimulate innate-like, IL-4- and IL-13-producing, CD1d-restricted NKT cells. In this study, we demonstrate that NKT cells constitutively accumulate and reside in the microvasculature of the mouse lung. After a single airborne exposure to lipid antigen, they promptly extravasate to orchestrate the formation of peribronchiolar and interstitial lymphohistiocytic granulomas containing numerous eosinophils. Concomitant airborne exposure to ovalbumin (OVA) induces the priming of OVA-specific Th2 cells and IgE antibodies by the same dendritic cell coexpressing CD1d and MHC class II. Although NKT cell activation remains confined to the lipid-exposed lung and draining lymph nodes, Th2 cells recirculate and seed the lung of a parabiotic partner, conferring susceptibility to OVA challenge months after the initial exposure, in a manner independent of NKT cells and CD1d. Thus, transient recruitment and activation of lung-resident intravascular NKT cells can trigger long-term susceptibility to allergic airway inflammation.

  6. Inhibitory Effect of Sihuangxiechai Decoction on Ovalbumin-Induced Airway Inflammation in Guinea Pigs

    PubMed Central

    Huang, Xue Ping; Tao, En Xue; Feng, Zhan Qin; Yang, Zhao Lu; Zhang, Wei Fen

    2014-01-01

    The aim of this study was to investigate the effect of sihuangxiechai decoction on asthmatic Guinea pig model which was sensitized by intraperitoneal (i.p.) injection of ovalbumin (OVA) and challenged by OVA inhalation to induce chronic airway inflammation. Differential cell counts of cytospins were performed after staining with Giemsa solution. The quantity of leukocytes and its classification in bronchoalveolar lavage fluid (BALF) and blood were evaluated by blood cell analyzer and microscope. Histological analysis of the lung was performed by hematoxylin and eosin (H&E) staining. The levels of interleukin-4 (IL-4) and tumor necrosis factor-alpha (TNF-α) in BALF and serum were detected by radioimmunoassay (RIA). The total number of leukocytes in BALF and blood has no significant difference between Sihuangxiechaitang decoction treated group and dexamethasone (DXM) treated group but was significantly lower than those of asthma group. The percentage of eosinophils in lung tissues of sihuangxiechai decoction treated group was significantly lower than that of asthma group. The results demonstrated that the levels of IL-4 and TNF-α in the sihuangxiechai decoction treated group were significantly reduced compared with the asthma group. In conclusion, these findings demonstrate that sihuangxiechai decoction has a protective effect on OVA-induced asthma in reducing airway inflammation and airway hyperresponsiveness (AHR) in a Guinea pig model and may be useful as an adjuvant therapy for the treatment of bronchial asthma. PMID:25101137

  7. Clusterin Modulates Allergic Airway Inflammation by Attenuating CCL20-Mediated Dendritic Cell Recruitment.

    PubMed

    Hong, Gyong Hwa; Kwon, Hyouk-Soo; Moon, Keun-Ai; Park, So Young; Park, Sunjoo; Lee, Kyoung Young; Ha, Eun Hee; Kim, Tae-Bum; Moon, Hee-Bom; Lee, Heung Kyu; Cho, You Sook

    2016-03-01

    Recruitment and activation of dendritic cells (DCs) in the lungs are critical for Th2 responses in asthma, and CCL20 secreted from bronchial epithelial cells (BECs) is known to influence the recruitment of DCs. Because asthma is a disease that is closely associated with oxidative stress, we hypothesized that clusterin, an oxidative stress regulatory molecule, may have a role in the development of allergic airway inflammation. The aim of this study was to examine whether clusterin regulates CCL20 production from the BECs and the subsequent DC recruitment in the lungs. To verify the idea, clusterin knockout (Clu(-/-)), clusterin heterogeneous (Clu(+/-)), and wild-type mice were exposed intranasally to house dust mite (HDM) extract to induce allergic airway inflammation. We found that the total number of immune cells in bronchoalveolar lavage fluid and the lung was increased in Clu(-/-) and Clu(+/-) mice. Of these immune cells, inflammatory DCs (CD11b(+)CD11c(+)) and Ly6C(high) monocyte populations in the lung were significantly increased, which was accompanied by increased levels of various chemokines, including CCL20 in bronchoalveolar lavage fluid, and increased oxidative stress markers in the lung. Moreover, HDM-stimulated human BECs with either up- or downregulated clusterin expression showed that CCL20 secretion was negatively associated with clusterin expression. Interestingly, clusterin also reduced the level of intracellular reactive oxygen species, which is related to induction of CCL20 expression after HDM stimulation. Thus, the antioxidant property of clusterin is suggested to regulate the expression of CCL20 in BECs and the subsequent recruitment of inflammatory DCs in the airway. PMID:26826245

  8. Clusterin Modulates Allergic Airway Inflammation by Attenuating CCL20-Mediated Dendritic Cell Recruitment.

    PubMed

    Hong, Gyong Hwa; Kwon, Hyouk-Soo; Moon, Keun-Ai; Park, So Young; Park, Sunjoo; Lee, Kyoung Young; Ha, Eun Hee; Kim, Tae-Bum; Moon, Hee-Bom; Lee, Heung Kyu; Cho, You Sook

    2016-03-01

    Recruitment and activation of dendritic cells (DCs) in the lungs are critical for Th2 responses in asthma, and CCL20 secreted from bronchial epithelial cells (BECs) is known to influence the recruitment of DCs. Because asthma is a disease that is closely associated with oxidative stress, we hypothesized that clusterin, an oxidative stress regulatory molecule, may have a role in the development of allergic airway inflammation. The aim of this study was to examine whether clusterin regulates CCL20 production from the BECs and the subsequent DC recruitment in the lungs. To verify the idea, clusterin knockout (Clu(-/-)), clusterin heterogeneous (Clu(+/-)), and wild-type mice were exposed intranasally to house dust mite (HDM) extract to induce allergic airway inflammation. We found that the total number of immune cells in bronchoalveolar lavage fluid and the lung was increased in Clu(-/-) and Clu(+/-) mice. Of these immune cells, inflammatory DCs (CD11b(+)CD11c(+)) and Ly6C(high) monocyte populations in the lung were significantly increased, which was accompanied by increased levels of various chemokines, including CCL20 in bronchoalveolar lavage fluid, and increased oxidative stress markers in the lung. Moreover, HDM-stimulated human BECs with either up- or downregulated clusterin expression showed that CCL20 secretion was negatively associated with clusterin expression. Interestingly, clusterin also reduced the level of intracellular reactive oxygen species, which is related to induction of CCL20 expression after HDM stimulation. Thus, the antioxidant property of clusterin is suggested to regulate the expression of CCL20 in BECs and the subsequent recruitment of inflammatory DCs in the airway.

  9. Resolvin D1 and Resolvin E1 Promote the Resolution of Allergic Airway Inflammation via Shared and Distinct Molecular Counter-Regulatory Pathways

    PubMed Central

    Levy, Bruce D.

    2012-01-01

    Resolvins are generated from omega-3 fatty acids during inflammatory responses in the lung. These natural mediators interact with specific receptors to decrease lung inflammation and promote its resolution in healthy tissues. There are several lung diseases of chronic inflammation that fail to resolve, most notable asthma. This common disorder has a lifetime prevalence of nearly 10% and is characterized, in part, by chronic, non-resolving inflammation of the airway. Pro-resolving mediators are generated during asthma; however, their biosynthesis is decreased in severe and uncontrolled asthma, suggesting that the chronic, adaptive inflammation in asthmatic airways may result from a resolution defect. This article focuses on recent insights into the cellular and molecular mechanisms for resolvins that limit adaptive immune responses in healthy airways. PMID:23293638

  10. Does airway colonization cause systemic inflammation in bronchiectasis?

    PubMed

    Ergan Arsava, Begüm; Cöplü, Lütfi

    2011-01-01

    Recent evidence suggests the presence of accompanying systemic inflammation in chronic inflammatory airway diseases such as chronic obstructive pulmonary disease and asthma; however little is known regarding the presence of systemic inflammation in bronchiectasis. Although bronchiectasis was initially considered a stationary process, chronic bacterial colonization causes airway inflammation and progressive airway damage. The aim of this study was to determine the level of systemic inflammation in bronchiectasis patients and identify its relationship with colonization. White blood cell (WBC) count, erythrocyte sedimentation rate, serum C-reactive protein (CRP), plasma fibrinogen, interleukin-8, tumor necrosis factor-α and leptin levels were determined in clinically stable bronchiectasis patients (n= 50), and age- and sex-matched controls. Bronchiectasis patients were also analyzed according to colonization in sputum samples. There was no significant difference between bronchiectasis and control groups with respect to inflammatory markers but median (interquartile range-IQR) WBC count, CRP and fibrinogen levels were significantly higher in colonized patients (n= 14) when compared to non-colonized patients [8.2 (6.4-9.5) vs. 6.4 (5.8-7.7) x 103/mm3, 0.91 (0.45-1.29) vs. 0.42 (0.30-0.77) mg/dL, 433.5 (390.3-490.3) vs. 392.0 (327.0-416.0) mg/dL, respectively; p< 0.05]. There was no evidence supporting the presence of systemic inflammation in the overall bronchiectasis group when compared to controls. However, elevated WBC count, CRP and fibrinogen levels in patients with colonization suggest the presence of a systemic inflammatory response in clinically stable bronchiectasis patients with colonization. PMID:22233303

  11. Role of Sphingolipids in the Pathobiology of Lung Inflammation

    PubMed Central

    Ghidoni, Riccardo; Caretti, Anna; Signorelli, Paola

    2015-01-01

    Sphingolipid bioactivities in the respiratory airways and the roles of the proteins that handle them have been extensively investigated. Gas or inhaled particles or microorganisms come into contact with mucus components, epithelial cells, blood barrier, and immune surveillance within the airways. Lung structure and functionality rely on a complex interplay of polar and hydrophobic structures forming the surfactant layer and governing external-internal exchanges, such as glycerol-phospholipids sphingolipids and proteins. Sphingolipids act as important signaling mediators involved in the control of cell survival and stress response, as well as secreted molecules endowed with inflammation-regulatory activities. Most successful respiratory infection and injuries evolve in the alveolar compartment, the critical lung functional unit involved in gas exchange. Sphingolipid altered metabolism in this compartment is closely related to inflammatory reaction and ceramide increase, in particular, favors the switch to pathological hyperinflammation. This short review explores a few mechanisms underlying sphingolipid involvement in the healthy lung (surfactant production and endothelial barrier maintenance) and in a selection of lung pathologies in which the impact of sphingolipid synthesis and metabolism is most apparent, such as acute lung injury, or chronic pathologies such as cystic fibrosis and chronic obstructive pulmonary disease. PMID:26770018

  12. Histone deacetylase inhibitors suppress RSV infection and alleviate virus-induced airway inflammation

    PubMed Central

    Feng, Qiuqin; Su, Zhonglan; Song, Shiyu; Xu, Hui; Zhang, Bin; Yi, Long; Tian, Man; Wang, Hongwei

    2016-01-01

    Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants and young children. However, the majority of RSV-infected patients only show mild symptoms. Different severities of infection and responses among the RSV-infected population indicate that epigenetic regulation as well as personal genetic background may affect RSV infectivity. Histone deacetylase (HDAC) is an important epigenetic regulator in lung diseases. The present study aimed to explore the possible connection between HDAC expression and RSV-induced lung inflammation. To address this question, RSV-infected airway epithelial cells (BEAS-2B) were prepared and a mouse model of RSV infection was established, and then treated with various concentrations of HDAC inhibitors (HDACis), namely trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA). Viral replication and markers of virus-induced airway inflammation or oxidative stress were assessed. The activation of the nuclear factor-κB (NF-κB), cyclo-oxygenase-2 (COX-2), mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling pathways was evaluated by western blot analysis. Our results showed that RSV infection in airway epithelial cells (AECs) significantly decreased histone acetylation levels by altering HDAC2 expression. The treatment of RSV-infected AECs with HDACis significantly restricted RSV replication by upregulating the interferon-α (IFN-α) related signaling pathways. The treatment of RSV-infected AECs with HDACis also significantly inhibited RSV-induced pro-inflammatory cytokine release [interleukin (IL)-6 and IL-8] and oxidative stress-related molecule production [malondialdehyde (MDA), and nitrogen monoxide (NO)]. The activation of NF-κB, COX-2, MAPK and Stat3, which orchestrate pro-inflammatory gene expression and oxidative stress injury, was also significantly inhibited. Our in vivo study using a mouse model of RSV infection

  13. Histone deacetylase inhibitors suppress RSV infection and alleviate virus-induced airway inflammation.

    PubMed

    Feng, Qiuqin; Su, Zhonglan; Song, Shiyu; Χu, Hui; Zhang, Bin; Yi, Long; Tian, Man; Wang, Hongwei

    2016-09-01

    Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants and young children. However, the majority of RSV-infected patients only show mild symptoms. Different severities of infection and responses among the RSV-infected population indicate that epigenetic regulation as well as personal genetic background may affect RSV infectivity. Histone deacetylase (HDAC) is an important epigenetic regulator in lung diseases. The present study aimed to explore the possible connection between HDAC expression and RSV-induced lung inflammation. To address this question, RSV-infected airway epithelial cells (BEAS‑2B) were prepared and a mouse model of RSV infection was established, and then treated with various concentrations of HDAC inhibitors (HDACis), namely trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA). Viral replication and markers of virus-induced airway inflammation or oxidative stress were assessed. The activation of the nuclear factor-κB (NF-κB), cyclo-oxygenase-2 (COX-2), mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling pathways was evaluated by western blot analysis. Our results showed that RSV infection in airway epithelial cells (AECs) significantly decreased histone acetylation levels by altering HDAC2 expression. The treatment of RSV-infected AECs with HDACis significantly restricted RSV replication by upregulating the interferon-α (IFN-α) related signaling pathways. The treatment of RSV-infected AECs with HDACis also significantly inhibited RSV-induced pro-inflammatory cytokine release [interleukin (IL)-6 and IL-8] and oxidative stress-related molecule production [malondialdehyde (MDA), and nitrogen monoxide (NO)]. The activation of NF-κB, COX-2, MAPK and Stat3, which orchestrate pro‑inflammatory gene expression and oxidative stress injury, was also significantly inhibited. Our in vivo study using a mouse model of

  14. Overexpression of Dimethylarginine Dimethylaminohydrolase 1 Attenuates Airway Inflammation in a Mouse Model of Asthma

    PubMed Central

    Kinker, Kayla G.; Gibson, Aaron M.; Bass, Stacey A.; Day, Brandy P.; Deng, Jingyuan; Medvedovic, Mario; Figueroa, Julio A. Landero; Hershey, Gurjit K. Khurana; Chen, Weiguo

    2014-01-01

    Levels of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, are increased in lung, sputum, exhaled breath condensate and plasma samples from asthma patients. ADMA is metabolized primarily by dimethylarginine dimethylaminohydrolase 1 (DDAH1) and DDAH2. We determined the effect of DDAH1 overexpression on development of allergic inflammation in a mouse model of asthma. The expression of DDAH1 and DDAH2 in mouse lungs was determined by RT-quantitative PCR (qPCR). ADMA levels in bronchoalveolar lavage fluid (BALF) and serum samples were determined by mass spectrometry. Wild type and DDAH1-transgenic mice were intratracheally challenged with PBS or house dust mite (HDM). Airway inflammation was assessed by bronchoalveolar lavage (BAL) total and differential cell counts. The levels of IgE and IgG1 in BALF and serum samples were determined by ELISA. Gene expression in lungs was determined by RNA-Seq and RT-qPCR. Our data showed that the expression of DDAH1 and DDAH2 was decreased in the lungs of mice following HDM exposure, which correlated with increased ADMA levels in BALF and serum. Transgenic overexpression of DDAH1 resulted in decreased BAL total cell and eosinophil numbers following HDM exposure. Total IgE levels in BALF and serum were decreased in HDM-exposed DDAH1-transgenic mice compared to HDM-exposed wild type mice. RNA-Seq results showed downregulation of genes in the inducible nitric oxide synthase (iNOS) signaling pathway in PBS-treated DDAH1-transgenic mice versus PBS-treated wild type mice and downregulation of genes in IL-13/FOXA2 signaling pathway in HDM-treated DDAH1-transgenic mice versus HDM-treated wild type mice. Our findings suggest that decreased expression of DDAH1 and DDAH2 in the lungs may contribute to allergic asthma and overexpression of DDAH1 attenuates allergen-induced airway inflammation through modulation of Th2 responses. PMID:24465497

  15. IL1RL1 asthma risk variants regulate airway type 2 inflammation

    PubMed Central

    Gordon, Erin D.; Palandra, Joe; Wesolowska-Andersen, Agata; Ringel, Lando; Rios, Cydney L.; Lachowicz-Scroggins, Marrah E.; Sharp, Louis Z.; Everman, Jamie L.; MacLeod, Hannah J.; Lee, Jae W.; Mason, Robert J.; Matthay, Michael A.; Sheldon, Richard T.; Peters, Michael C.; Nocka, Karl H.; Fahy, John V.; Seibold, Max A.

    2016-01-01

    Genome-wide association studies of asthma have identified genetic variants in the IL1RL1 gene, but the molecular mechanisms conferring risk are unknown. IL1RL1 encodes the ST2 receptor (ST2L) for IL-33 and an inhibitory decoy receptor (sST2). IL-33 promotes type 2 inflammation, which is present in some but not all asthmatics. We find that two single nucleotide polymorphisms (SNPs) in IL1RL1 — rs1420101 and rs11685480 — are strongly associated with plasma sST2 levels, though neither is an expression quantitative trait locus (eQTL) in whole blood. Rather, rs1420101 and rs11685480 mark eQTLs in airway epithelial cells and distal lung parenchyma, respectively. We find that the genetically determined plasma sST2 reservoir, derived from the lung, neutralizes IL-33 activity, and these eQTL SNPs additively increase the risk of airway type 2 inflammation among asthmatics. These risk variants define a population of asthmatics at risk of IL-33–driven type 2 inflammation. PMID:27699235

  16. IL1RL1 asthma risk variants regulate airway type 2 inflammation

    PubMed Central

    Gordon, Erin D.; Palandra, Joe; Wesolowska-Andersen, Agata; Ringel, Lando; Rios, Cydney L.; Lachowicz-Scroggins, Marrah E.; Sharp, Louis Z.; Everman, Jamie L.; MacLeod, Hannah J.; Lee, Jae W.; Mason, Robert J.; Matthay, Michael A.; Sheldon, Richard T.; Peters, Michael C.; Nocka, Karl H.; Fahy, John V.; Seibold, Max A.

    2016-01-01

    Genome-wide association studies of asthma have identified genetic variants in the IL1RL1 gene, but the molecular mechanisms conferring risk are unknown. IL1RL1 encodes the ST2 receptor (ST2L) for IL-33 and an inhibitory decoy receptor (sST2). IL-33 promotes type 2 inflammation, which is present in some but not all asthmatics. We find that two single nucleotide polymorphisms (SNPs) in IL1RL1 — rs1420101 and rs11685480 — are strongly associated with plasma sST2 levels, though neither is an expression quantitative trait locus (eQTL) in whole blood. Rather, rs1420101 and rs11685480 mark eQTLs in airway epithelial cells and distal lung parenchyma, respectively. We find that the genetically determined plasma sST2 reservoir, derived from the lung, neutralizes IL-33 activity, and these eQTL SNPs additively increase the risk of airway type 2 inflammation among asthmatics. These risk variants define a population of asthmatics at risk of IL-33–driven type 2 inflammation.

  17. RNA interference against interleukin-5 attenuates airway inflammation and hyperresponsiveness in an asthma model.

    PubMed

    Chen, Shao-xing; Huang, Feng-ying; Tan, Guang-hong; Wang, Cai-chun; Huang, Yong-hao; Wang, Hua; Zhou, Song-lin; Chen, Fan; Lin, Ying-ying; Liu, Jun-bao

    2009-01-01

    Interleukin-5 (IL-5) accompanies the development of airway inflammation and hyperresponsiveness through the activation of eosinophils. Therefore, interference of IL-5 expression in lung tissue seems to be an accepted approach in asthma therapy. In this study, we designed a small interfering RNA (siRNA) to inhibit the expression of IL-5. The siRNAs against IL-5 were constructed in a lentivirus expressing system, and 1.5x10(6) IFU (inclusion-forming unit) lentiviruses were administered intratracheally to ovalbumin (OVA)-sensitized murine asthmatic models. Our results show that lentivirus-delivered siRNA against IL-5 efficiently inhibited the IL-5 messenger ribonucleic acid (mRNA) expression and significantly attenuated the inflammation in lung tissue. Significant decrease of eosinophils and inflammatory cells were found in peripheral blood, bronchoalveolar lavage fluid (BALF), and lung tissue. In addition, significant inhibition of airway hyperresponsiveness (AHR) was found in the mice treated with siRNA against IL-5. These observations demonstrate that siRNA delivered by means of the lentivirus system is possibly an efficacious therapeutic approach for asthma.

  18. Regulation of Airway Inflammation by G-protein Regulatory Motif Peptides of AGS3 protein.

    PubMed

    Choi, Il-Whan; Ahn, Do Whan; Choi, Jang-Kyu; Cha, Hee-Jae; Ock, Mee Sun; You, EunAe; Rhee, SangMyung; Kim, Kwang Chul; Choi, Yung Hyun; Song, Kyoung Seob

    2016-01-01

    Respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and lung infections have critical consequences on mortality and morbidity in humans. The aims of the present study were to examine the mechanisms by which CXCL12 affects MUC1 transcription and airway inflammation, which depend on activator of G-protein signaling (AGS) 3 and to identify specific molecules that suppress CXCL12-induced airway inflammation by acting on G-protein-coupled receptors. Herein, AGS3 suppresses CXCL12-mediated upregulation of MUC1 and TNFα by regulating Gαi. We found that the G-protein regulatory (GPR) motif peptide in AGS3 binds to Gαi and downregulates MUC1 expression; in contrast, this motif upregulates TNFα expression. Mutated GPR Q34A peptide increased the expression of MUC1 and TGFβ but decreased the expression of TNFα and IL-6. Moreover, CXCR4-induced dendritic extensions in 2D and 3D matrix cultures were inhibited by the GPR Q34A peptide compared with a wild-type GPR peptide. The GPR Q34A peptide also inhibited CXCL12-induced morphological changes and inflammatory cell infiltration in the mouse lung, and production of inflammatory cytokines in bronchoalveolar lavage (BAL) fluid and the lungs. Our data indicate that the GPR motif of AGS3 is critical for regulating MUC1/Muc1 expression and cytokine production in the inflammatory microenvironment. PMID:27270970

  19. Regulation of Airway Inflammation by G-protein Regulatory Motif Peptides of AGS3 protein

    PubMed Central

    Choi, IL-Whan; Ahn, Do Whan; Choi, Jang-Kyu; Cha, Hee-Jae; Ock, Mee Sun; You, EunAe; Rhee, SangMyung; Kim, Kwang Chul; Choi, Yung Hyun; Song, Kyoung Seob

    2016-01-01

    Respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and lung infections have critical consequences on mortality and morbidity in humans. The aims of the present study were to examine the mechanisms by which CXCL12 affects MUC1 transcription and airway inflammation, which depend on activator of G-protein signaling (AGS) 3 and to identify specific molecules that suppress CXCL12-induced airway inflammation by acting on G-protein-coupled receptors. Herein, AGS3 suppresses CXCL12-mediated upregulation of MUC1 and TNFα by regulating Gαi. We found that the G-protein regulatory (GPR) motif peptide in AGS3 binds to Gαi and downregulates MUC1 expression; in contrast, this motif upregulates TNFα expression. Mutated GPR Q34A peptide increased the expression of MUC1 and TGFβ but decreased the expression of TNFα and IL-6. Moreover, CXCR4-induced dendritic extensions in 2D and 3D matrix cultures were inhibited by the GPR Q34A peptide compared with a wild-type GPR peptide. The GPR Q34A peptide also inhibited CXCL12-induced morphological changes and inflammatory cell infiltration in the mouse lung, and production of inflammatory cytokines in bronchoalveolar lavage (BAL) fluid and the lungs. Our data indicate that the GPR motif of AGS3 is critical for regulating MUC1/Muc1 expression and cytokine production in the inflammatory microenvironment. PMID:27270970

  20. Cigarette smoke causes acute airway disease and exacerbates chronic obstructive lung disease in neonatal mice.

    PubMed

    Jia, Jie; Conlon, Thomas M; Ballester Lopez, Carolina; Seimetz, Michael; Bednorz, Mariola; Zhou-Suckow, Zhe; Weissmann, Norbert; Eickelberg, Oliver; Mall, Marcus A; Yildirim, Ali Önder

    2016-09-01

    Epidemiological evidence demonstrates a strong link between postnatal cigarette smoke (CS) exposure and increased respiratory morbidity in young children. However, how CS induces early onset airway disease in young children, and how it interacts with endogenous risk factors, remains poorly understood. We, therefore, exposed 10-day-old neonatal wild-type and β-epithelial sodium ion channel (β-ENaC)-transgenic mice with cystic fibrosis-like lung disease to CS for 4 days. Neonatal wild-type mice exposed to CS demonstrated increased numbers of macrophages and neutrophils in the bronchoalveolar lavage fluid (BALF), which was accompanied by increased levels of Mmp12 and Cxcl1 BALF from β-ENaC-transgenic mice contained greater numbers of macrophages, which did not increase following acute CS exposure; however, there was significant increase in airway neutrophilia compared with filtered air transgenic and CS-exposed wild-type controls. Interestingly, wild-type and β-ENaC-transgenic mice demonstrated epithelial airway and vascular remodeling following CS exposure. Morphometric analysis of lung sections revealed that CS exposure caused increased mucus accumulation in the airway lumen of neonatal β-ENaC-transgenic mice compared with wild-type controls, which was accompanied by an increase in the number of goblet cells and Muc5ac upregulation. We conclude that short-term CS exposure 1) induces acute airway disease with airway epithelial and vascular remodeling in neonatal wild-type mice; and 2) exacerbates airway inflammation, mucus hypersecretion, and mucus plugging in neonatal β-ENaC-transgenic mice with chronic lung disease. Our results in neonatal mice suggest that young children may be highly susceptible to develop airway disease in response to tobacco smoke exposure, and that adverse effects may be aggravated in children with underlying chronic lung diseases. PMID:27448665

  1. Regulation of IL-4 Receptor Signaling by STUB1 in Lung Inflammation

    PubMed Central

    Wei, Qin; Sha, Youbao; Bhattacharya, Abhisek; Fattah, Elmoataz Abdel; Bonilla, Diana; Jyothula, Soma S. S. K.; Pandit, Lavannya; Khurana Hershey, Gurjit K.

    2014-01-01

    Rationale: IL-4Rα, the common receptor component for IL-4 and IL-13, plays a critical role in IL-4– and IL-13–mediated signaling pathways that regulate airway inflammation and remodeling. However, the regulatory mechanisms underlying IL-4Rα turnover and its signal termination remain elusive. Objectives: To evaluate the role of STUB1 (STIP1 homology and U-Box containing protein 1) in regulating IL-4R signaling in airway inflammation. Methods: The roles of STUB1 in IL-4Rα degradation and its signaling were investigated by immunoblot, immunoprecipitation, and flow cytometry. The involvement of STUB1 in airway inflammation was determined in vivo by measuring lung inflammatory cells infiltration, mucus production, serum lgE levels, and alveolar macrophage M2 activation in STUB1−/− mice. STUB1 expression was evaluated in airway epithelium of patients with asthma and lung tissues of subjects with chronic obstructive pulmonary disease. Measurements and Main Results: STUB1 interacted with IL-4Rα and targeted it for ubiquitination-mediated proteasomal degradation, terminating IL-4 or IL-13 signaling. STUB1 knockout cells showed increased levels of IL-4Rα and sustained STAT6 activation, whereas STUB1 overexpression reduced IL-4Rα levels. Mice deficient in STUB1 had spontaneous airway inflammation, alternative M2 activation of alveolar macrophage, and increased serum IgE. STUB1 levels were increased in airways of subjects with asthma or chronic obstructive pulmonary disease, suggesting that up-regulation of STUB1 might be an important feedback mechanism to dampen IL-4R signaling in airway inflammation. Conclusions: Our study identified a previously uncharacterized role for STUB1 in regulating IL-4R signaling, which might provide a new strategy for attenuating airway inflammation. PMID:24251647

  2. Smoking-induced CXCL14 expression in the human airway epithelium links chronic obstructive pulmonary disease to lung cancer.

    PubMed

    Shaykhiev, Renat; Sackrowitz, Rachel; Fukui, Tomoya; Zuo, Wu-Lin; Chao, Ion Wa; Strulovici-Barel, Yael; Downey, Robert J; Crystal, Ronald G

    2013-09-01

    CXCL14, a recently described epithelial cytokine, plays putative multiple roles in inflammation and carcinogenesis. In the context that chronic obstructive pulmonary disease (COPD) and lung cancer are both smoking-related disorders associated with airway epithelial disorder and inflammation, we hypothesized that the airway epithelium responds to cigarette smoking with altered CXCL14 gene expression, contributing to the disease-relevant phenotype. Using genome-wide microarrays with subsequent immunohistochemical analysis, the data demonstrate that the expression of CXCL14 is up-regulated in the airway epithelium of healthy smokers and further increased in COPD smokers, especially within hyperplastic/metaplastic lesions, in association with multiple genes relevant to epithelial structural integrity and cancer. In vitro experiments revealed that the expression of CXCL14 is induced in the differentiated airway epithelium by cigarette smoke extract, and that epidermal growth factor mediates CXCL14 up-regulation in the airway epithelium through its effects on the basal stem/progenitor cell population. Analyses of two independent lung cancer cohorts revealed a dramatic up-regulation of CXCL14 expression in adenocarcinoma and squamous-cell carcinoma. High expression of the COPD-associated CXCL14-correlating cluster of genes was linked in lung adenocarcinoma with poor survival. These data suggest that the smoking-induced expression of CXCL14 in the airway epithelium represents a novel potential molecular link between smoking-associated airway epithelial injury, COPD, and lung cancer.

  3. The effect of ozone on inflammatory cell infiltration and airway hyperresponsiveness in the guinea pig lung

    SciTech Connect

    Schultheis, A.J.H.

    1993-01-01

    Inflammatory cells may contribute to the development of exaggerated bronchoconstrictor responses since a persistent link has been noted between pulmonary inflammation and airway hyperresponsiveness. In these studies guinea pigs were exposed to 2.0 ppm ozone for 4 hours, then immediately sacrificed or allowed to breathe filtered air for up to 14 days. Following ozone exposure there was an immediate massive neutrophil infiltration into the lung. Neutrophils in lung digest dropped to control values within 3-12 hours post-ozone but remained elevated in BAL fluid for 3 days. There was probable eosinophil degranulation within the first 24 hours post-ozone. Guinea pigs were hyperresponsive to vigal stimulation through 3 days post-ozone. Although they were also hyperresponsive to ACh, responses to MCh were unchanged. Neuronal M[sub 2] receptors were dysfunctional through 3 days post-ozone. There was resolution of inflammation, airway responsiveness, and neuronal M[sub 2] receptor function by 14 days post-exposure. This investigation has (1) confirmed an immediate lung inflammation following acute ozone exposure; (2) established that cells in BAL give a distorted reflection of inflammatory events in lung digest; (3) demonstrated that ozone-induced hyperresponsiveness is at least partially due to efferent cholinergic mechanisms without functional changes of muscarinic receptors on airway smooth muscle; (4) shown that ACh may not be an appropriate agent to test ozone-induced airway hyperresponsiveness; and (5) demonstrated that inhibitory neuronal M[sub 2] receptors are dysfunctional following ozone exposure. There was close linkage between these events, suggesting that they may be causally related. This investigation proposes a specific mechanism, dysfunction of neuronal M[sub 2] receptors, by which inflammatory cells could cause airway hyperresponsiveness following acute ozone exposure.

  4. Schistosoma mansoni Tegument (Smteg) Induces IL-10 and Modulates Experimental Airway Inflammation

    PubMed Central

    2016-01-01

    Background Previous studies have demonstrated that S. mansoni infection and inoculation of the parasite eggs and antigens are able to modulate airways inflammation induced by OVA in mice. This modulation was associated to an enhanced production of interleukin-10 and to an increased number of regulatory T cells. The S. mansoni schistosomulum is the first stage to come into contact with the host immune system and its tegument represents the host-parasite interface. The schistosomula tegument (Smteg) has never been studied in the context of modulation of inflammatory disorders, although immune evasion mechanisms take place in this phase of infection to guarantee the persistence of the parasite in the host. Methodology and Principal Findings The aim of this study was to evaluate the Smteg ability to modulate inflammation in an experimental airway inflammation model induced by OVA and to characterize the immune factors involved in this modulation. To achieve the objective, BALB/c mice were sensitized with ovalbumin (OVA) and then challenged with OVA aerosol after Smteg intraperitoneal inoculation. Protein extravasation and inflammatory cells were assessed in bronchoalveolar lavage and IgE levels were measured in serum. Additionally, lungs were excised for histopathological analyses, cytokine measurement and characterization of the cell populations. Inoculation with Smteg led to a reduction in the protein levels in bronchoalveolar lavage (BAL) and eosinophils in both BAL and lung tissue. In the lung tissue there was a reduction in inflammatory cells and collagen deposition as well as in IL-5, IL-13, IL-25 and CCL11 levels. Additionally, a decrease in specific anti-OVA IgE levels was observed. The reduction observed in these inflammatory parameters was associated with increased levels of IL-10 in lung tissues. Furthermore, Smteg/asthma mice showed high percentage of CD11b+F4/80+IL-10+ and CD11c+CD11b+IL-10+ cells in lungs. Conclusion Taken together, these findings

  5. Elimination of Aspergillus fumigatus conidia from the airways of mice with allergic airway inflammation

    PubMed Central

    2013-01-01

    Background Aspergillus fumigatus conidia can exacerbate asthma symptoms. Phagocytosis of conidia is a principal component of the host antifungal defense. We investigated whether allergic airway inflammation (AAI) affects the ability of phagocytic cells in the airways to internalize the resting fungal spores. Methods Using BALB/c mice with experimentally induced AAI, we tested the ability of neutrophils, macrophages, and dendritic cells to internalize A. fumigatus conidia at various anatomical locations. We used light microscopy and differential cell and conidium counts to determine the ingestion potential of neutrophils and macrophages present in bronchoalveolar lavage (BAL). To identify phagocyte-conidia interactions in conducting airways, conidia labeled with tetramethylrhodamine-(5-(and-6))-isothiocyanate were administered to the oropharyngeal cavity of mice. Confocal microscopy was used to quantify the ingestion potential of Ly-6G+ neutrophils and MHC II+ antigen-presenting cells located in the intraepithelial and subepithelial areas of conducting airways. Results Allergen challenge induced transient neutrophil recruitment to the airways. Application of A. fumigatus conidia at the acute phase of AAI provoked recurrent neutrophil infiltration, and consequently increased the number and the ingestion potential of the airway neutrophils. In the absence of recurrent allergen or conidia provocation, both the ingestion potential and the number of BAL neutrophils decreased. As a result, conidia were primarily internalized by alveolar macrophages in both AAI and control mice at 24 hours post-inhalation. Transient influx of neutrophils to conducting airways shortly after conidial application was observed in mice with AAI. In addition, the ingestion potential of conducting airway neutrophils in mice with induced asthma exceeded that of control mice. Although the number of neutrophils subsequently decreased, the ingestion capacity remained elevated in AAI mice, even at 24

  6. Aerobic training reverses airway inflammation and remodelling in an asthma murine model.

    PubMed

    Silva, R A; Vieira, R P; Duarte, A C S; Lopes, F D T Q S; Perini, A; Mauad, T; Martins, M A; Carvalho, C R F

    2010-05-01

    Aerobic training (AT) decreases dyspnoea and exercise-induced bronchospasm, and improves aerobic capacity and quality of life; however, the mechanisms for such benefits remain poorly understood. The aim of the present study was to evaluate the AT effects in a chronic model of allergic lung inflammation in mice after the establishment of airway inflammation and remodelling. Mice were divided into the control group, AT group, ovalbumin (OVA) group or OVA+AT group and exposed to saline or OVA. AT was started on day 28 for 60 min five times per week for 4 weeks. Respiratory mechanics, specific immunoglobulin (Ig)E and IgG(1), collagen and elastic fibres deposition, smooth muscle thickness, epithelial mucus, and peribronchial density of eosinophils, CD3+ and CD4+, IL-4, IL-5, IL-13, interferon-gamma, IL-2, IL-1ra, IL-10, nuclear factor (NF)-kappaB and Foxp3 were evaluated. The OVA group showed an increase in IgE and IgG(1), eosinophils, CD3+, CD4+, IL-4, IL-5, IL-13, NF-kappaB, collagen and elastic, mucus synthesis, smooth muscle thickness and lung tissue resistance and elastance. The OVA+AT group demonstrated an increase of IgE and IgG(1), and reduction of eosinophils, CD3+, CD4+, IL-4, IL-5, IL-13, NF-kappaB, airway remodelling, mucus synthesis, smooth muscle thickness and tissue resistance and elastance compared with the OVA group (p<0.05). The OVA+AT group also showed an increase in IL-10 and IL-1ra (p<0.05), independently of Foxp3. AT reversed airway inflammation and remodelling and T-helper cell 2 response, and improved respiratory mechanics. These results seem to occur due to an increase in the expression of IL-10 and IL-1ra and a decrease of NF-kappaB. PMID:19897558

  7. Simvastatin delivery via inhalation attenuates airway inflammation in a murine model of asthma.

    PubMed

    Xu, Lan; Dong, Xing-wei; Shen, Liang-liang; Li, Fen-fen; Jiang, Jun-xia; Cao, Rui; Yao, Hong-yi; Shen, Hui-juan; Sun, Yun; Xie, Qiang-min

    2012-04-01

    The dose-response of the pleiotropic effects of statins on airway inflammation has not yet been established and may differ from that of their cholesterol-lowering effects. High oral doses of statins may have adverse effects, and it may be possible to overcome the side effects and low clinical efficacy by administering statins via inhalation. In this study, we hypothesize that simvastatin is a potential anti-inflammatory drug with biological and pharmacokinetic properties suitable for delivery by the inhaled route. Mice were immunized with ovalbumin (OVA) and then challenged with aerosol OVA. Simvastatin was locally delivered by inhalation (i.h.) and intratracheal injection (i.t.) or systematically delivered by intraperitoneal injection (i.p.) and gavage (i.g.) during the OVA challenge. In a mouse model of asthma, i.h. simvastatin significantly and dose-dependently attenuated airway inflammation, remodeling and hyperresponsiveness in a RhoA-dependent pathway. Upon comparing the pharmacodynamics, i.h. simvastatin had a more potent effect than that of i.g. and i.p. simvastatin, and the i.h. or i.t. delivery routes led to a higher drug concentration in local lung tissue and a lower drug concentration in the plasma than that obtained by the i.g. These results suggest that simvastatin is a potential anti-inflammatory drug for airway inflammatory diseases with properties suitable for delivery by inhalation, which will probably reduce the side effects and increase clinical efficacy. PMID:22326624

  8. Lung morphometry changes in prevention of airway remodeling by protocatechuic aldehyde in asthmatic mice

    PubMed Central

    Zhang, Jiankai; Ma, Mulan; Qin, Dongyun; Huang, Jianping; Cui, Xiaojun; Wu, Yongfu; Yang, Huiling; Fu, Hui; Liao, Cui

    2015-01-01

    Airway remodeling can lead to irreversible airflow obstruction and persistent airway hyper-responsiveness, which is the pathological basis of refractory asthma. To investigate the preventive effect of protocatechuic aldehyde on airway remodeling in asthmatic mice by lung morphometry methods. BALB/c mice were used to establish model of airway remodeling by ovalbumin (OVA) inhalation. Bronchoalveolar lavage fluid (BALF) were collected for eosinophils (EOS) count and detection of interleukin 4 (IL-4), interleukin-13 (IL-13) and interferon (IFN-γ) content. The left lung pathological sections were performed HE, AB-PAS and Masson staining. The epithelial lamina thickness of the left main bronchus (Re), the smooth muscle layer thickness (Rm), the number of goblet cells and goblet cell area percentage (%Ac) and gas side of the road and vascular collagen deposition (%Aco, %Avc) situation were measured. Protocatechuic aldehyde gavage made the reduction of BALF EOS count. IL-4 and IL-13 levels also decreased, while the IFN-γ level increased. The left main bronchus Re, Rm, goblet cell count, Ac% and Aco% and Avc% reduced. Protocatechuic aldehyde can significantly control airway inflammation and prevent airway remodeling. PMID:26221226

  9. Dynamics of Surfactant Liquid Plugs at Bifurcating Lung Airway Models

    NASA Astrophysics Data System (ADS)

    Tavana, Hossein

    2013-11-01

    A surfactant liquid plug forms in the trachea during surfactant replacement therapy (SRT) of premature babies. Under air pressure, the plug propagates downstream and continuously divides into smaller daughter plugs at continuously branching lung airways. Propagating plugs deposit a thin film on airway walls to reduce surface tension and facilitate breathing. The effectiveness of SRT greatly depends on the final distribution of instilled surfactant within airways. To understand this process, we investigate dynamics of splitting of surfactant plugs in engineered bifurcating airway models. A liquid plug is instilled in the parent tube to propagate and split at the bifurcation. A split ratio, R, is defined as the ratio of daughter plug lengths in the top and bottom daughter airway tubes and studied as a function of the 3D orientation of airways and different flow conditions. For a given Capillary number (Ca), orienting airways farther away from a horizontal position reduced R due to the flow of a larger volume into the gravitationally favored daughter airway. At each orientation, R increased with 0.0005 < Ca < 0.05. This effect diminished by decrease in airways diameter. This approach will help elucidate surfactant distribution in airways and develop effective SRT strategies.

  10. The transcription factor PU.1 promotes alternative macrophage polarization and asthmatic airway inflammation.

    PubMed

    Qian, Feng; Deng, Jing; Lee, Yong Gyu; Zhu, Jimmy; Karpurapu, Manjula; Chung, Sangwoon; Zheng, Jun-Nian; Xiao, Lei; Park, Gye Young; Christman, John W

    2015-12-01

    The transcription factor PU.1 is involved in regulation of macrophage differentiation and maturation. However, the role of PU.1 in alternatively activated macrophage (AAM) and asthmatic inflammation has yet been investigated. Here we report that PU.1 serves as a critical regulator of AAM polarization and promotes the pathological progress of asthmatic airway inflammation. In response to the challenge of DRA (dust mite, ragweed, and Aspergillus) allergens, conditional PU.1-deficient (PU/ER(T)(+/-)) mice displayed attenuated allergic airway inflammation, including decreased alveolar eosinophil infiltration and reduced production of IgE, which were associated with decreased mucous glands and goblet cell hyperplasia. The reduced asthmatic inflammation in PU/ER(T)(+/-) mice was restored by adoptive transfer of IL-4-induced wild-type (WT) macrophages. Moreover, after treating PU/ER(T)(+/-) mice with tamoxifen to rescue PU.1 function, the allergic asthmatic inflammation was significantly restored. In vitro studies demonstrate that treatment of PU.1-deficient macrophages with IL-4 attenuated the expression of chitinase 3-like 3 (Ym-1) and resistin-like molecule alpha 1 (Fizz-1), two specific markers of AAM polarization. In addition, PU.1 expression in macrophages was inducible in response to IL-4 challenge, which was associated with phosphorylation of signal transducer and activator of transcription 6 (STAT6). Furthermore, DRA challenge in sensitized mice almost abrogated gene expression of Ym-1 and Fizz-1 in lung tissues of PU/ER(T)(+/-) mice compared with WT mice. These data, all together, indicate that PU.1 plays a critical role in AAM polarization and asthmatic inflammation.

  11. Ambient ozone causes upper airways inflammation in children.

    PubMed

    Frischer, T M; Kuehr, J; Pullwitt, A; Meinert, R; Forster, J; Studnicka, M; Koren, H

    1993-10-01

    Ozone constitutes a major air pollutant in Western Europe. During the summer national air quality standards are frequently exceeded, which justifies concern about the health effects of ozone at ambient concentrations. We studied upper airways inflammation after ozone exposure in 44 children by repeated nasal lavages from May to October 1991. During this time period five to eight lavages were performed for each child. On 14 days following high ozone exposure (daily maximum > or = 180 micrograms/m3) 148 nasal lavages were performed, and on 10 days following low ozone exposure (daily maximum < or = 140 micrograms/m3) 106 nasal lavages were performed. A significant increase of intra-individual mean polymorphonuclear leukocytes (PMN) counts from low ozone days (median, 20.27 x 10(3)) to high ozone days (median, 27.38 x 10(3); p < 0.01) was observed. Concomitant with a decrease of ozone concentrations in the fall mean PMN counts showed a downward trend. Linear regression analysis of log-PMN counts yielded a significant effect for ozone (p = 0.017). In a subsample humoral markers of inflammation were measured for each child's highest and lowest exposure. A significant increase was observed for eosinophilic cationic protein (median, 77.39 micrograms/L on low ozone days versus 138.6 micrograms/L on high ozone days; p < 0.05). Thus we conclude that ozone at ambient concentrations initiates a reversible inflammatory response of the upper airways in normal children.

  12. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) reduces vascular endothelial growth factor expression in allergen-induced airway inflammation.

    PubMed

    Lee, Kyung Sun; Kim, So Ri; Park, Seoung Ju; Lee, Ho Kyung; Park, Hee Sun; Min, Kyung Hoon; Jin, Sun Mi; Lee, Yong Chul

    2006-06-01

    Vascular endothelial growth factor (VEGF) plays a pivotal role in the pathogenesis of bronchial asthma. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) has been implicated in regulating cell survival signaling through the phosphoinositide 3-kinase (PI3K)/Akt pathway. The key role of PI3K in VEGF-mediated signal transduction is established. However, the effects of PTEN on VEGF-mediated signaling in asthma are unknown. This study aimed to determine the effect of PI3K inhibitors and PTEN on VEGF expression in allergen-induced airway inflammation. We have used a female C57BL/6 mouse model for asthma to determine the role of PTEN in allergen-induced airway inflammation, specifically in the expression of VEGF. Allergen-induced airway inflammation leads to increased activity of PI3K in lung tissue. These mice develop the following typical pathophysiological features of asthma in the lungs: increased numbers of inflammatory cells of the airways; airway hyper-responsiveness; increased expression of interleukin (IL)-4, IL-5, IL-13, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, regulated on activation normal T cell expressed and secreted (RANTES), and eotaxin; increased vascular permeability; and increased levels of VEGF. Administration of PI3K inhibitors or adenoviruses carrying PTEN cDNA reduced the symptoms of asthma and decreased the increased levels of plasma extravasation and VEGF in allergen-induced asthmatic lungs. These results indicate that PTEN reduces VEGF expression in allergen-induced airway inflammation.

  13. Association between lung function and airway wall density

    NASA Astrophysics Data System (ADS)

    Leader, J. Ken; Zheng, Bin; Fuhrman, Carl R.; Tedrow, John; Park, Sang C.; Tan, Jun; Pu, Jiantao; Drescher, John M.; Gur, David; Sciurba, Frank C.

    2009-02-01

    Computed tomography (CT) examination is often used to quantify the relation between lung function and airway remodeling in chronic obstructive pulmonary disease (COPD). In this preliminary study, we examined the association between lung function and airway wall computed attenuation ("density") in 200 COPD screening subjects. Percent predicted FVC (FVC%), percent predicted FEV1 (FEV1%), and the ratio of FEV1 to FVC as a percentage (FEV1/FVC%) were measured post-bronchodilator. The apical bronchus of the right upper lobe was manually selected from CT examinations for evaluation. Total airway area, lumen area, wall area, lumen perimeter and wall area as fraction of the total airway area were computed. Mean HU (meanHU) and maximum HU (maxHU) values were computed across pixels assigned membership in the wall and with a HU value greater than -550. The Pearson correlation coefficients (PCC) between FVC%, FEV1%, and FEV1/FVC% and meanHU were -0.221 (p = 0.002), -0.175 (p = 0.014), and -0.110 (p = 0.123), respectively. The PCCs for maxHU were only significant for FVC%. The correlations between lung function and the airway morphometry parameters were slightly stronger compared to airway wall density. MeanHU was significantly correlated with wall area (PCC = 0.720), airway area (0.498) and wall area percent (0.611). This preliminary work demonstrates that airway wall density is associated with lung function. Although the correlations in our study were weaker than a recent study, airway wall density initially appears to be an important parameter in quantitative CT analysis of COPD.

  14. Toxoplasma gondii infection blocks the development of allergic airway inflammation in BALB/c mice.

    PubMed

    Fenoy, I; Giovannoni, M; Batalla, E; Martin, V; Frank, F M; Piazzon, I; Goldman, A

    2009-02-01

    There is a link between increased allergy and a reduction of some infections in western countries. Epidemiological data also show that respiratory allergy is less frequent in people exposed to orofaecal and foodborne microbes such as Toxoplasma gondii. Infection with T. gondii induces a strong cell-mediated immunity with a highly polarized T helper type 1 (Th1) response in early stages of infection. Using a well-known murine model of allergic lung inflammation, we sought to investigate whether T. gondii infection could modulate the susceptibility to develop respiratory allergies. Both acute and chronic infection with T. gondii before allergic sensitization resulted in a diminished allergic inflammation, as shown by a decrease in bronchoalveolar lavage (BAL) eosinophilia, mononuclear and eosinophil cell infiltration around airways and vessels and goblet cell hyperplasia. Low allergen-specific immunoglobulin (Ig)E and IgG1 and high levels of allergen-specific IgG2a serum antibodies were detected. A decreased interleukin (IL)-4 and IL-5 production by lymph node cells was observed, while no antigen-specific interferon-gamma increase was detected. Higher levels of the regulatory cytokine IL-10 were found in BAL from infected mice. These results show that both acute and chronic parasite infection substantially blocked development of airway inflammation in adult BALB/c mice. Our results support the hypothesis that T. gondii infection contributes to protection against allergy in humans. PMID:19032550

  15. Small airways involvement in coal mine dust lung disease.

    PubMed

    Long, Joshua; Stansbury, Robert C; Petsonk, Edward L

    2015-06-01

    Inhalation of coal mine dust results in a spectrum of symptoms, dysfunction, and pathological changes in the respiratory tract that collectively have been labeled coal mine dust lung disease. Recent reports from periodic health surveillance among underground and surface coal miners in the United States have demonstrated an increasing prevalence and severity of dust diseases, and have also documented that some miners experience rapid disease progression. The coal macule is an inflammatory lesion associated with deposited dust, and occurs in the region of the most distal conducting airways and proximal respiratory bronchioles. Inflammatory changes in the small airways have long been recognized as the signature lung pathology among coal miners. Human and laboratory studies have suggested oxidant injury, and increased recruitment and activity of macrophages play important roles in dust-induced lung injury. However, the functional importance of the small airway changes was debated for many years. We reviewed published literature that documents a pervasive occurrence of both physiologic and structural abnormalities in small airways among coal miners and other workers exposed to airborne particulates. There is increasing evidence supporting an important association of abnormalities in the small peripheral airways with the development of respiratory symptoms, deficits in spirometry values, and accelerated declines in ventilatory lung function. Pathologic changes associated with mineral dust deposition in the small airways may be of particular importance in contemporary miners with rapidly progressive respiratory impairment.

  16. Exploring the context of the lung proteome within the airway mucosa following allergen challenge.

    PubMed

    Fehniger, Thomas E; Sato-Folatre, José-Gabriel; Malmström, Johan; Berglund, Magnus; Lindberg, Claes; Brange, Charlotte; Lindberg, Henrik; Marko-Varga, György

    2004-01-01

    The lung proteome is a dynamic collection of specialized proteins related to pulmonary function. Many cells of different derivations, activation states, and levels of maturity contribute to the changing environment, which produces the lung proteome. Inflammatory cells reacting to environmental challenge, for example from allergens, produce and secrete proteins which have profound effects on both resident and nonresident cells located in airways, alveoli, and the vascular tree which provides blood cells to the parenchyma alveolar bed for gas exchange. In an experimental model of allergic airway inflammation, we have compared control and allergen challenged lung compartments to determine global protein expression patterns using 2D-gel electrophoresis and subsequent spot identification by MS/MS mass spectrometry. We have then specifically isolated the epithelial mucosal layer, which lines conducting airways, from control and allergen challenged lungs, using laser capture technology and performed proteome identification on these selected cell samples. A central component of our investigations has been to contextually relate the histological features of the dynamic pulmonary environment to the changes in protein expression observed following challenge. Our results provide new information of the complexity of the submucosa/epithelium interface and the mechanisms behind the transformation of airway epithelium from normal steady states to functionally activated states. PMID:15113108

  17. Lung injury, inflammation and Akt signaling following inhalation of particulate hexavalent chromium

    SciTech Connect

    Beaver, Laura M.; Stemmy, Erik J.; Constant, Stephanie L.; Schwartz, Arnold; Little, Laura G.; Gigley, Jason P.; Chun, Gina; Sugden, Kent D.

    2009-02-15

    Certain particulate hexavalent chromium [Cr(VI)] compounds are human respiratory carcinogens that release genotoxic soluble chromate, and are associated with fibrosis, fibrosarcomas, adenocarcinomas and squamous cell carcinomas of the lung. We postulate that inflammatory processes and mediators may contribute to the etiology of Cr(VI) carcinogenesis, however the immediate (0-24 h) pathologic injury and immune responses after exposure to particulate chromates have not been adequately investigated. Our aim was to determine the nature of the lung injury, inflammatory response, and survival signaling responses following intranasal exposure of BALB/c mice to particulate basic zinc chromate. Factors associated with lung injury, inflammation and survival signaling were measured in airway lavage fluid and in lung tissue. A single chromate exposure induced an acute immune response in the lung, characterized by a rapid and significant increase in IL-6 and GRO-{alpha} levels, an influx of neutrophils, and a decline in macrophages in lung airways. Histological examination of lung tissue in animals challenged with a single chromate exposure revealed an increase in bronchiolar cell apoptosis and mucosal injury. Furthermore, chromate exposure induced injury and inflammation that progressed to alveolar and interstitial pneumonitis. Finally, a single Cr(VI) challenge resulted in a rapid and persistent increase in the number of airways immunoreactive for phosphorylation of the survival signaling protein Akt, on serine 473. These data illustrate that chromate induces both survival signaling and an inflammatory response in the lung, which we postulate may contribute to early oncogenesis.

  18. LUNG INJURY, INFLAMMATION AND AKT SIGNALING FOLLOWING INHALATION OF PARTICULATE HEXAVALENT CHROMIUM

    PubMed Central

    Beaver, Laura M.; Stemmy, Erik J.; Constant, Stephanie L.; Schwartz, Arnold; Little, Laura G.; Gigley, Jason P.; Chun, Gina; Sugden, Kent D.; Ceryak, Susan M.; Patierno, Steven R.

    2013-01-01

    Certain particulate hexavalent chromium [Cr(VI)] compounds are human respiratory carcinogens that release genotoxic soluble chromate, and are associated with fibrosis, fibrosarcomas, adenocarcinomas and squamous cell carcinomas of the lung. We postulate that inflammatory processes and mediators may contribute to the etiology of Cr(VI) carcinogenesis, however the immediate (0–24 hours) pathologic injury and immune responses after exposure to particulate chromates have not been adequately investigated. Our aim was to determine the nature of the lung injury, inflammatory response, and survival signaling responses following intranasal exposure of BALB/c mice to particulate basic zinc chromate. Factors associated with lung injury, inflammation and survival signaling were measured in airway lavage fluid and in lung tissue. A single chromate exposure induced an acute immune response in the lung, characterized by a rapid and significant increase in IL-6 and GRO-α levels, an influx of neutrophils, and a decline in macrophages in lung airways. Histological examination of lung tissue in animals challenged with a single chromate exposure revealed an increase in bronchiolar cell apoptosis and mucosal injury. Furthermore, chromate exposure induced injury and inflammation that progressed to alveolar and interstitial pneumonitis. Finally, a single Cr(VI) challenge resulted in a rapid and persistent increase in the number of airways immunoreactive for phosphorylation of the survival signaling protein Akt, on serine 473. These data illustrate that chromate induces both survival signaling and an inflammatory response in the lung, which we postulate may contribute to early oncogenesis. PMID:19109987

  19. Lung injury, inflammation and Akt signaling following inhalation of particulate hexavalent chromium.

    PubMed

    Beaver, Laura M; Stemmy, Erik J; Constant, Stephanie L; Schwartz, Arnold; Little, Laura G; Gigley, Jason P; Chun, Gina; Sugden, Kent D; Ceryak, Susan M; Patierno, Steven R

    2009-02-15

    Certain particulate hexavalent chromium [Cr(VI)] compounds are human respiratory carcinogens that release genotoxic soluble chromate, and are associated with fibrosis, fibrosarcomas, adenocarcinomas and squamous cell carcinomas of the lung. We postulate that inflammatory processes and mediators may contribute to the etiology of Cr(VI) carcinogenesis, however the immediate (0-24 h) pathologic injury and immune responses after exposure to particulate chromates have not been adequately investigated. Our aim was to determine the nature of the lung injury, inflammatory response, and survival signaling responses following intranasal exposure of BALB/c mice to particulate basic zinc chromate. Factors associated with lung injury, inflammation and survival signaling were measured in airway lavage fluid and in lung tissue. A single chromate exposure induced an acute immune response in the lung, characterized by a rapid and significant increase in IL-6 and GRO-alpha levels, an influx of neutrophils, and a decline in macrophages in lung airways. Histological examination of lung tissue in animals challenged with a single chromate exposure revealed an increase in bronchiolar cell apoptosis and mucosal injury. Furthermore, chromate exposure induced injury and inflammation that progressed to alveolar and interstitial pneumonitis. Finally, a single Cr(VI) challenge resulted in a rapid and persistent increase in the number of airways immunoreactive for phosphorylation of the survival signaling protein Akt, on serine 473. These data illustrate that chromate induces both survival signaling and an inflammatory response in the lung, which we postulate may contribute to early oncogenesis.

  20. MUC18 Regulates Lung Rhinovirus Infection and Inflammation

    PubMed Central

    Berman, Reena; Jiang, Di; Wu, Qun; Stevenson, Connor R.; Schaefer, Niccolette R.; Chu, Hong Wei

    2016-01-01

    Background MUC18 is upregulated in the lungs of asthma and COPD patients. It has been shown to have pro-inflammatory functions in cultured human airway epithelial cells during viral infections and in mice during lung bacterial infections. However, the in vivo role of MUC18 in the context of viral infections remains poorly understood. The goal of this study is to define the in vivo function of MUC18 during respiratory rhinovirus infection. Methods Muc18 wild-type (WT) and knockout (KO) mice were infected with human rhinovirus 1B (HRV-1B) and sacrificed after 1 day to determine the inflammatory and antiviral responses. To examine the direct effects of Muc18 on viral infection, tracheal epithelial cells isolated from WT and KO mice were grown under air-liquid interface and infected with HRV-1B. Finally, siRNA mediated knockdown of MUC18 was performed in human airway epithelial cells (AECs) to define the impact of MUC18 on human airway response to HRV-1B. Results Both viral load and neutrophilic inflammation were significantly decreased in Muc18 KO mice compared to WT mice. In the in vitro setting, viral load was significantly lower and antiviral gene expression was higher in airway epithelial cells of Muc18 KO mice than the WT mice. Furthermore, in MUC18 knockdown human AECs, viral load was decreased and antiviral gene expression was increased compared to controls. Conclusions Our study is the first to demonstrate MUC18’s pro-inflammatory and pro-viral function in an in vivo mouse model of rhinovirus infection. PMID:27701461

  1. Morin Attenuates Ovalbumin-Induced Airway Inflammation by Modulating Oxidative Stress-Responsive MAPK Signaling

    PubMed Central

    Ma, Yuan; Ge, Ai; Zhu, Wen; Liu, Ya-Nan; Ji, Ning-Fei; Zha, Wang-Jian; Zhang, Jia-Xiang; Zeng, Xiao-Ning

    2016-01-01

    Asthma is one of the most common inflammatory diseases characterized by airway hyperresponsiveness, inflammation, and remodeling. Morin, an active ingredient obtained from Moraceae plants, has been demonstrated to have promising anti-inflammatory activities in a range of disorders. However, its impacts on pulmonary diseases, particularly on asthma, have not been clarified. This study was designed to investigate whether morin alleviates airway inflammation in chronic asthma with an emphasis on oxidative stress modulation. In vivo, ovalbumin- (OVA-) sensitized mice were administered with morin or dexamethasone before challenge. Bronchoalveolar lavage fluid (BALF) and lung tissues were obtained to perform cell counts, histological analysis, and enzyme-linked immunosorbent assay. In vitro, human bronchial epithelial cells (BECs) were challenged by tumor necrosis factor alpha (TNF-α). The supernatant was collected for the detection of the proinflammatory proteins, and the cells were collected for reactive oxygen species (ROS)/mitogen-activated protein kinase (MAPK) evaluations. Severe inflammatory responses and remodeling were observed in the airways of the OVA-sensitized mice. Treatment with morin dramatically attenuated the extensive trafficking of inflammatory cells into the BALF and inhibited their infiltration around the respiratory tracts and vessels. Morin administration also significantly suppressed goblet cell hyperplasia and collagen deposition/fibrosis and dose-dependently inhibited the OVA-induced increases in IgE, TNF-α, interleukin- (IL-) 4, IL-13, matrix metalloproteinase-9, and malondialdehyde. In human BECs challenged by TNF-α, the levels of proteins such as eotaxin-1, monocyte chemoattractant protein-1, IL-8 and intercellular adhesion molecule-1, were consistently significantly decreased by morin. Western blotting and the 2′,7′-dichlorofluorescein assay revealed that the increases in intracellular ROS and MAPK phosphorylation were abolished by

  2. Morin Attenuates Ovalbumin-Induced Airway Inflammation by Modulating Oxidative Stress-Responsive MAPK Signaling.

    PubMed

    Ma, Yuan; Ge, Ai; Zhu, Wen; Liu, Ya-Nan; Ji, Ning-Fei; Zha, Wang-Jian; Zhang, Jia-Xiang; Zeng, Xiao-Ning; Huang, Mao

    2016-01-01

    Asthma is one of the most common inflammatory diseases characterized by airway hyperresponsiveness, inflammation, and remodeling. Morin, an active ingredient obtained from Moraceae plants, has been demonstrated to have promising anti-inflammatory activities in a range of disorders. However, its impacts on pulmonary diseases, particularly on asthma, have not been clarified. This study was designed to investigate whether morin alleviates airway inflammation in chronic asthma with an emphasis on oxidative stress modulation. In vivo, ovalbumin- (OVA-) sensitized mice were administered with morin or dexamethasone before challenge. Bronchoalveolar lavage fluid (BALF) and lung tissues were obtained to perform cell counts, histological analysis, and enzyme-linked immunosorbent assay. In vitro, human bronchial epithelial cells (BECs) were challenged by tumor necrosis factor alpha (TNF-α). The supernatant was collected for the detection of the proinflammatory proteins, and the cells were collected for reactive oxygen species (ROS)/mitogen-activated protein kinase (MAPK) evaluations. Severe inflammatory responses and remodeling were observed in the airways of the OVA-sensitized mice. Treatment with morin dramatically attenuated the extensive trafficking of inflammatory cells into the BALF and inhibited their infiltration around the respiratory tracts and vessels. Morin administration also significantly suppressed goblet cell hyperplasia and collagen deposition/fibrosis and dose-dependently inhibited the OVA-induced increases in IgE, TNF-α, interleukin- (IL-) 4, IL-13, matrix metalloproteinase-9, and malondialdehyde. In human BECs challenged by TNF-α, the levels of proteins such as eotaxin-1, monocyte chemoattractant protein-1, IL-8 and intercellular adhesion molecule-1, were consistently significantly decreased by morin. Western blotting and the 2',7'-dichlorofluorescein assay revealed that the increases in intracellular ROS and MAPK phosphorylation were abolished by morin

  3. Human mesenchymal stem cells resolve airway inflammation, hyperreactivity, and histopathology in a mouse model of occupational asthma.

    PubMed

    Martínez-González, Itziar; Cruz, Maria-Jesús; Moreno, Rafael; Morell, Ferran; Muñoz, Xavier; Aran, Josep M

    2014-10-01

    Occupational asthma (OA) is characterized by allergic airway inflammation and hyperresponsiveness, leading to progressive airway remodeling and a concomitant decline in lung function. The management of OA remains suboptimal in clinical practice. Thus, establishing effective therapies might overcome the natural history of the disease. We evaluated the ability of human adipose-tissue-derived mesenchymal stem cells (hASCs), either unmodified or engineered to secrete the IL-33 decoy receptor sST2, to attenuate the inflammatory and respiratory symptoms in a previously validated mouse model of OA to ammonium persulfate (AP). Twenty-four hours after a dermal AP sensitization and intranasal challenge regimen, the animals received intravenously 1 × 10(6) cells (either hASCs or hASCs overexpressing sST2) or saline and were analyzed at 1, 3, and 6 days after treatment. The infused hASCs induced an anti-inflammatory and restorative program upon reaching the AP-injured, asthmatic lungs, leading to early reduction of neutrophilic inflammation and total IgE production, preserved alveolar architecture with nearly absent lymphoplasmacytic infiltrates, negligible smooth muscle hyperplasia/hypertrophy in the peribronchiolar areas, and baseline airway hyperreactivity (AHR) to methacholine. Local sST2 overexpression barely increased the substantial efficacy displayed by unmodified hASCs. Thus, hASCs may represent a viable multiaction therapeutic capable to adequately respond to the AP-injured lung environment by resolving inflammation, tissue remodeling, and bronchial hyperresponsiveness typical of OA. PMID:24798370

  4. Human Mesenchymal Stem Cells Resolve Airway Inflammation, Hyperreactivity, and Histopathology in a Mouse Model of Occupational Asthma

    PubMed Central

    Martínez-González, Itziar; Moreno, Rafael; Morell, Ferran; Muñoz, Xavier

    2014-01-01

    Occupational asthma (OA) is characterized by allergic airway inflammation and hyperresponsiveness, leading to progressive airway remodeling and a concomitant decline in lung function. The management of OA remains suboptimal in clinical practice. Thus, establishing effective therapies might overcome the natural history of the disease. We evaluated the ability of human adipose-tissue-derived mesenchymal stem cells (hASCs), either unmodified or engineered to secrete the IL-33 decoy receptor sST2, to attenuate the inflammatory and respiratory symptoms in a previously validated mouse model of OA to ammonium persulfate (AP). Twenty-four hours after a dermal AP sensitization and intranasal challenge regimen, the animals received intravenously 1×106 cells (either hASCs or hASCs overexpressing sST2) or saline and were analyzed at 1, 3, and 6 days after treatment. The infused hASCs induced an anti-inflammatory and restorative program upon reaching the AP-injured, asthmatic lungs, leading to early reduction of neutrophilic inflammation and total IgE production, preserved alveolar architecture with nearly absent lymphoplasmacytic infiltrates, negligible smooth muscle hyperplasia/hypertrophy in the peribronchiolar areas, and baseline airway hyperreactivity (AHR) to methacholine. Local sST2 overexpression barely increased the substantial efficacy displayed by unmodified hASCs. Thus, hASCs may represent a viable multiaction therapeutic capable to adequately respond to the AP-injured lung environment by resolving inflammation, tissue remodeling, and bronchial hyperresponsiveness typical of OA. PMID:24798370

  5. A geranyl acetophenone targeting cysteinyl leukotriene synthesis prevents allergic airway inflammation in ovalbumin-sensitized mice

    SciTech Connect

    Ismail, Norazren; Jambari, Nuzul Nurahya; Zareen, Seema; Akhtar, Mohamad Nadeem; Shaari, Khozirah; Zamri-Saad, Mohamad; Tham, Chau Ling; Sulaiman, Mohd Roslan; Lajis, Nordin Hj; Israf, Daud Ahmad

    2012-03-01

    Asthma is associated with increased pulmonary inflammation and airway hyperresponsiveness. The current use of corticosteroids in the management of asthma has recently raised issues regarding safety and lack of responsiveness in 5–10% of asthmatic individuals. The aim of the present study was to investigate the therapeutic effect of a non-steroidal small molecule that has cysteinyl leukotriene (cysLT) inhibitory activity, upon attenuation of allergic lung inflammation in an acute murine model. Mice were sensitized with ovalbumin (OVA) and treated with several intraperitoneal doses (100, 20, 2 and 0.2 mg/kg) of 2,4,6,-trihydroxy-3-geranylacetophenone (tHGA). Bronchoalveolar lavage was performed, blood and lung samples were obtained and respiratory function was measured. OVA sensitization increased pulmonary inflammation and pulmonary allergic inflammation was significantly reduced at doses of 100, 20 and 2 mg/kg with no effect at the lowest dose of 0.2 mg/kg. The beneficial effects in the lung were associated with reduced eosinophilic infiltration and reduced secretion of Th2 cytokines and cysLTs. Peripheral blood reduction of total IgE was also a prominent feature. Treatment with tHGA significantly attenuated altered airway hyperresponsiveness as measured by the enhanced pause (Penh) response to incremental doses of methacholine. These data demonstrate that tHGA, a synthetic non-steroidal small molecule, can prevent acute allergic inflammation. This proof of concept opens further avenues of research and development of tHGA as an additional option to the current armamentarium of anti-asthma therapeutics. -- Highlights: ► Safer and effective anti-asthmatic drugs are in great demand. ► tHGA is a new 5-LO/cysLT inhibitor that inhibits allergic asthma in mice. ► tHGA is a natural compound that can be synthesized. ► Doses as low as 2 mg/kg alleviate lung pathology in experimental asthma. ► tHGA is a potential drug lead for the treatment of allergic asthma.

  6. Critical role of aldehydes in cigarette smoke-induced acute airway inflammation

    PubMed Central

    2013-01-01

    Background Cigarette smoking (CS) is the most important risk factor for COPD, which is associated with neutrophilic airway inflammation. We hypothesize, that highly reactive aldehydes are critical for CS-induced neutrophilic airway inflammation. Methods BALB/c mice were exposed to CS, water filtered CS (WF-CS) or air for 5 days. Levels of total particulate matter (TPM) and aldehydes in CS and WF-CS were measured. Six hours after the last exposure, inflammatory cells and cytokine levels were measured in lung tissue and bronchoalveolar lavage fluid (BALF). Furthermore, Beas-2b bronchial epithelial cells were exposed to CS extract (CSE) or WF-CS extract (WF-CSE) in the absence or presence of the aldehyde acrolein and IL-8 production was measured after 24 hrs. Results Compared to CS, in WF-CS strongly decreased (CS; 271.1 ± 41.5 μM, WF-CS; 58.5 ± 8.2 μM) levels of aldehydes were present whereas levels of TPM were only slightly reduced (CS; 20.78 ± 0.59 mg, WF-CS; 16.38 ± 0.36 mg). The numbers of mononuclear cells in BALF (p<0.01) and lung tissue (p<0.01) were significantly increased in the CS- and WF-CS-exposed mice compared to air control mice. Interestingly, the numbers of neutrophils (p<0.001) in BALF and neutrophils and eosinophils (p<0.05) in lung tissue were significantly increased in the CS-exposed but not in WF-CS-exposed mice as compared to air control mice. Levels of the neutrophil and eosinophil chemoattractants KC, MCP-1, MIP-1α and IL-5 were all significantly increased in lung tissue from CS-exposed mice compared to both WF-CS-exposed and air control mice. Interestingly, depletion of aldehydes in WF-CS extract significantly reduced IL-8 production in Beas-2b as compared to CSE, which could be restored by the aldehyde acrolein. Conclusion Aldehydes present in CS play a critical role in inflammatory cytokine production and neutrophilic- but not mononuclear airway inflammation. PMID:23594194

  7. Circadian rhythm reprogramming during lung inflammation.

    PubMed

    Haspel, Jeffrey A; Chettimada, Sukrutha; Shaik, Rahamthulla S; Chu, Jen-Hwa; Raby, Benjamin A; Cernadas, Manuela; Carey, Vincent; Process, Vanessa; Hunninghake, G Matthew; Ifedigbo, Emeka; Lederer, James A; Englert, Joshua; Pelton, Ashley; Coronata, Anna; Fredenburgh, Laura E; Choi, Augustine M K

    2014-09-11

    Circadian rhythms are known to regulate immune responses in healthy animals, but it is unclear whether they persist during acute illnesses where clock gene expression is disrupted by systemic inflammation. Here we use a genome-wide approach to investigate circadian gene and metabolite expression in the lungs of endotoxemic mice and find that novel cellular and molecular circadian rhythms are elicited in this setting. The endotoxin-specific circadian programme exhibits unique features, including a divergent group of rhythmic genes and metabolites compared with the basal state and a distinct periodicity and phase distribution. At the cellular level, endotoxin treatment also alters circadian rhythms of leukocyte counts within the lung in a bmal1-dependent manner, such that granulocytes rather than lymphocytes become the dominant oscillating cell type. Our results show that inflammation produces a complex re-organization of cellular and molecular circadian rhythms that are relevant to early events in lung injury.

  8. Obstructive Sleep Apnoea Modulates Airway Inflammation and Remodelling in Severe Asthma

    PubMed Central

    Taillé, Camille; Rouvel-Tallec, Anny; Stoica, Maria; Danel, Claire; Dehoux, Monique; Marin-Esteban, Viviana; Pretolani, Marina; Aubier, Michel; d’Ortho, Marie-Pia

    2016-01-01

    Background Obstructive sleep apnoea (OSA) is frequently observed in severe asthma but the causal link between the 2 diseases remains hypothetical. The role of OSA-related systemic and airway neutrophilic inflammation in asthma bronchial inflammation or remodelling has been rarely investigated. The aim of this study was to compare hallmarks of inflammation in induced sputum and features of airway remodelling in bronchial biopsies from adult patients with severe asthma with and without OSA. Materials and Methods An overnight polygraphy was performed in 55 patients referred for difficult-to-treat asthma, who complained of nocturnal respiratory symptoms, poor sleep quality or fatigue. We compared sputum analysis, reticular basement membrane (RBM) thickness, smooth muscle area, vascular density and inflammatory cell infiltration in bronchial biopsies. Results In total, 27/55 patients (49%) had OSA diagnosed by overnight polygraphy. Despite a moderate increase in apnoea-hypopnoea index (AHI; 14.2±1.6 event/h [5–35]), the proportion of sputum neutrophils was higher and that of macrophages lower in OSA than non-OSA patients, with higher levels of interleukin 8 and matrix metalloproteinase 9. The RBM was significantly thinner in OSA than non-OSA patients (5.8±0.4 vs. 7.8±0.4 μm, p<0.05). RBM thickness and OSA severity assessed by the AHI were negatively correlated (rho = -0.65, p<0.05). OSA and non-OSA patients did not differ in age, sex, BMI, lung function, asthma control findings or treatment. Conclusion Mild OSA in patients with severe asthma is associated with increased proportion of neutrophils in sputum and changes in airway remodelling. PMID:26934051

  9. Pulmonary C Fibers Modulate MMP-12 Production via PAR2 and Are Involved in the Long-Term Airway Inflammation and Airway Hyperresponsiveness Induced by Respiratory Syncytial Virus Infection

    PubMed Central

    Zang, Na; Zhuang, Jianguo; Deng, Yu; Yang, Zhimei; Ye, Zhixu; Xie, Xiaohong; Ren, Luo; Fu, Zhou; Luo, Zhengxiu; Xu, Fadi

    2015-01-01

    ABSTRACT Children with acute respiratory syncytial virus (RSV) infection often develop sequelae of persistent airway inflammation and wheezing. Pulmonary C fibers (PCFs) are involved in the generation of airway inflammation and resistance; however, their role in persistent airway diseases after RSV is unexplored. Here, we elucidated the pathogenesis of PCF activation in RSV-induced persistent airway disorders. PCF-degenerated and intact mice were used in the current study. Airway inflammation and airway resistance were evaluated. MMP408 and FSLLRY-NH2 were the selective antagonists for MMP-12 and PAR2, respectively, to investigate the roles of MMP-12 and PAR2 in PCFs mediating airway diseases. As a result, PCF degeneration significantly reduced the following responses to RSV infection: augmenting of inflammatory cells, especially macrophages, and infiltrating of inflammatory cells in lung tissues; specific airway resistance (sRaw) response to methacholine; and upregulation of MMP-12 and PAR2 expression. Moreover, the inhibition of MMP-12 reduced the total number of cells and macrophages in bronchiolar lavage fluid (BALF), as well infiltrating inflammatory cells, and decreased the sRaw response to methacholine. In addition, PAR2 was upregulated especially at the later stage of RSV infection. Downregulation of PAR2 ameliorated airway inflammation and resistance following RSV infection and suppressed the level of MMP-12. In all, the results suggest that PCF involvement in long-term airway inflammation and airway hyperresponsiveness occurred at least partially via modulating MMP-12, and the activation of PAR2 might be related to PCF-modulated MMP-12 production. Our initial findings indicated that the inhibition of PCF activity would be targeted therapeutically for virus infection-induced long-term airway disorders. IMPORTANCE The current study is critical to understanding that PCFs are involved in long-term airway inflammation and airway resistance after RSV infection

  10. Innate Type-2 Response to Alternaria Extract Enhances Ryegrass-induced Lung Inflammation

    PubMed Central

    Kim, Hee-Kyoo; Lund, Sean; Baum, Rachel; Rosenthal, Peter; Khorram, Naseem; Doherty, Taylor A.

    2014-01-01

    Background Exposure to the fungal allergen Alternaria alternata as well as ryegrass pollen has been implicated in severe asthma symptoms during thunderstorms. We have previously shown that Alternaria extract induces innate type 2 lung inflammation in mice. We hypothesized that the innate eosinophilic response to Alternaria extract may enhance lung inflammation induced by ryegrass. Methods Mice were sensitized to ryegrass allergen and administered a single challenge with Alternaria alternata extract before or after final ryegrass challenges. Levels of BAL eosinophils, neutrophils, Th2 cells, innate lymphoid cells (ILC2), IL-5 and IL-13 as well as inflammation and mucus were assessed. Results Mice receiving ryegrass sensitization and challenge developed an eosinophilic lung response. A single challenge with Alternaria extract given 3 days before or 3 days after ryegrass challenges resulted in increased eosinophils, peribronchial inflammation and mucus production in the airway compared with ryegrass only challenges. Type 2 innate lymphoid cell (ILC2) and Th2 cell recruitment to the airway was increased after Alternaria extract exposure in ryegrass challenged mice. Innate challenges with Alternaria extract induced BAL eosinophilia, Th2 cell recruitment as well as ILC2 expansion and proliferation. Conclusions A single exposure of Alternaria extract in ryegrass sensitized and challenged mice enhances the type-2 lung inflammatory response including airway eosinophilia, peribronchial infiltrate, and mucus production possibly through Th2 cell recruitment and ILC2 expansion. If translated to humans, exposures to both grass pollen and Alternaria may be a potential cause of thunderstorm-related asthma. PMID:24296722

  11. Basophils as a primary inducer of the T helper type 2 immunity in ovalbumin-induced allergic airway inflammation

    PubMed Central

    Zhong, Wenwei; Su, Wen; Zhang, Yanjie; Liu, Qi; Wu, Jinhong; Di, Caixia; Zhang, Zili; Xia, Zhenwei

    2014-01-01

    Antigen-induced allergic airway inflammation is mediated by T helper type 2 (Th2) cells and their cytokines, but the mechanism that initiates the Th2 immunity is not fully understood. Recent studies show that basophils play important roles in initiating Th2 immunity in some inflammatory models. Here we explored the role of basophils in ovalbumin (OVA) -induced airway allergic inflammation in BALB/c mice. We found that OVA sensitization and challenge resulted in a significant increase in the amount of basophils in blood and lung, along with the up-regulation of activation marker of CD200R. However, depletion of basophils with MAR-1 or Ba103 antibody attenuated airway inflammation, represented by the significantly decreased amount of the Th2 subset in spleen and draining lymph nodes, interlukin-4 level in lung and OVA-special immunoglobulin E (sIgE) levels in serum. On the other hand, adoptive transfer of basophils from OVA-challenged lung tissue to naive BALB/c mice provoked the Th2 immune response. In addition, pulmonary basophils from OVA-challenged mice were able to uptake DQ-OVA and express MHC class II molecules and CD40 in vivo, as well as to release interleukin-4 following stimulation by IgE–antigen complexes and promote Th2 polarization in vitro. These findings demonstrate that basophils may participate in Th2 immune responses in antigen-induced allergic airway inflammation and that they do so through facilitating antigen presentation and providing interleukin-4. PMID:24383680

  12. Type II congenital pulmonary airway malformation in an esophageal lung

    PubMed Central

    Martínez-Martínez, Blanca Estela; Furuya, María Elena Yuriko; Martínez-Muñiz, Irma; Vargas, Mario H; Flores-Salgado, Rosalinda

    2013-01-01

    A seven-month-old girl, born prematurely (birth weight 1000 g) from a twin pregnancy, was admitted to hospital due to recurrent pneumonia and atelectasis. She experienced cough and respiratory distress during feeding. The right hemithorax was smaller than the left, with diminished breath sounds and dullness. Chest x-rays revealed decreased lung volume and multiple radiolucent images in the right lung, as well as overdistention of the left lung. An esophagogram revealed three bronchial branches arising from the lower one-third of the esophagus, corresponding to the right lung and ending in a cul-de-sac. A diagnosis of esophageal lung was established. On bronchography, the right lung was absent and the trachea only continued into the left main bronchus. Echocardiography and angiotomography revealed agenesis of the pulmonary artery right branch. The surgical finding was an esophageal right lung, which was removed; the histopathological diagnosis was type II congenital pulmonary airway malformation in an esophageal lung. PMID:23762890

  13. Oxidative stress–induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease

    PubMed Central

    Wiegman, Coen H.; Michaeloudes, Charalambos; Haji, Gulammehdi; Narang, Priyanka; Clarke, Colin J.; Russell, Kirsty E.; Bao, Wuping; Pavlidis, Stelios; Barnes, Peter J.; Kanerva, Justin; Bittner, Anton; Rao, Navin; Murphy, Michael P.; Kirkham, Paul A.; Chung, Kian Fan; Adcock, Ian M.; Brightling, Christopher E.; Davies, Donna E.; Finch, Donna K.; Fisher, Andrew J.; Gaw, Alasdair; Knox, Alan J.; Mayer, Ruth J.; Polkey, Michael; Salmon, Michael; Singh, David

    2015-01-01

    Background Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress–induced pathology. Objective We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells. Methods Mice were exposed to ozone, and lung inflammation, airway hyperresponsiveness (AHR), and mitochondrial function were determined. Human ASM cells were isolated from bronchial biopsy specimens from healthy subjects, smokers, and patients with COPD. Inflammation and mitochondrial function in mice and human ASM cells were measured with and without the presence of the mitochondria-targeted antioxidant MitoQ. Results Mice exposed to ozone, a source of oxidative stress, had lung inflammation and AHR associated with mitochondrial dysfunction and reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial oxidative stress, and reduced mitochondrial complex I, III, and V expression. Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ reduced inflammation and AHR. ASM cells from patients with COPD have reduced ΔΨm, adenosine triphosphate content, complex expression, basal and maximum respiration levels, and respiratory reserve capacity compared with those from healthy control subjects, whereas mitochondrial reactive oxygen species (ROS) levels were increased. Healthy smokers were intermediate between healthy nonsmokers and patients with COPD. Hydrogen peroxide induced mitochondrial dysfunction in ASM cells from healthy subjects. MitoQ and Tiron inhibited TGF-β–induced ASM cell proliferation and CXCL8 release. Conclusions Mitochondrial dysfunction in patients with COPD is associated with excessive mitochondrial ROS levels, which contribute to enhanced inflammation and cell

  14. Maresin-1 reduces airway inflammation associated with acute and repetitive exposures to organic dust

    PubMed Central

    Nordgren, Tara M.; Bauer, Christopher D.; Heires, Art J.; Poole, Jill A.; Wyatt, Todd A.; West, William W.; Romberger, Debra J.

    2015-01-01

    Agriculture industry workers are at a higher risk for chronic bronchitis and obstructive pulmonary diseases, and current therapeutics are not entirely effective. We previously found that the specialized pro-resolving lipid mediator (SPM) maresin-1 (MaR1) reduced pro-inflammatory cytokine release and intracellular adhesion molecule-1 (ICAM-1) expression in bronchial epithelial cells exposed to extracts of organic dust (DE) derived from swine confinement facilities in vitro. The objective of this study was to determine whether MaR1 is effective at limiting lung inflammation associated with acute and repetitive exposures to DE in an established murine model of inhalant dust exposures. C57Bl/6 mice were treated with MaR1 or vehicle control and intranasally instilled with DE once or daily for 3 weeks. Bronchial alveolar lavage fluid was analyzed for total and differential cell counts and pro-inflammatory cytokine levels, and lung tissues were assessed for histopathology and ICAM-1 expression. In both single and repetitive DE exposure studies, MaR1 significantly decreased bronchoalveolar lavage neutrophil infiltration, IL-6, TNF-α, and CXCL1 levels without altering repetitive DE-induced bronchiolar/alveolar inflammation or lymphoid aggregate formation. Lung tissue ICAM-1 expression was also reduced in both single and repetitive exposure studies. These data suggest that MaR1 might contribute to an effective strategy to reduce airway inflammatory diseases induced by agricultural-related organic dust environmental exposures. PMID:25655838

  15. Maresin-1 reduces airway inflammation associated with acute and repetitive exposures to organic dust.

    PubMed

    Nordgren, Tara M; Bauer, Christopher D; Heires, Art J; Poole, Jill A; Wyatt, Todd A; West, William W; Romberger, Debra J

    2015-07-01

    Agriculture industry workers are at a higher risk for chronic bronchitis and obstructive pulmonary diseases, and current therapeutics are not entirely effective. We previously found that the specialized proresolving lipid mediator maresin-1 (MaR1) reduced proinflammatory cytokine release and intracellular adhesion molecule-1 (ICAM-1) expression in bronchial epithelial cells exposed to extracts of organic dust (DE) derived from swine confinement facilities in vitro. The objective of this study was to determine whether MaR1 is effective at limiting lung inflammation associated with acute and repetitive exposures to DE in an established murine model of inhalant dust exposures. C57Bl/6 mice were treated with MaR1 or vehicle control and intranasally instilled with DE once or daily for 3 weeks. Bronchioalveolar lavage fluid was analyzed for total and differential cell counts and proinflammatory cytokine levels, and lung tissues were assessed for histopathology and ICAM-1 expression. In both single and repetitive DE exposure studies, MaR1 significantly decreased bronchoalveolar lavage neutrophil infiltration, interleukin 6, tumor necrosis factor α, and chemokine C-X-C motif ligand 1 levels without altering repetitive DE-induced bronchioalveolar inflammation or lymphoid aggregate formation. Lung tissue ICAM-1 expression was also reduced in both single and repetitive exposure studies. These data suggest that MaR1 might contribute to an effective strategy to reduce airway inflammatory diseases induced by agricultural-related organic dust environmental exposures. PMID:25655838

  16. CD8+IL-17+ T Cells Mediate Neutrophilic Airway Obliteration in T-bet–Deficient Mouse Lung Allograft Recipients

    PubMed Central

    Dodd-o, Jeffrey M.; Coon, Tiffany A.; Miller, Hannah L.; Ganguly, Sudipto; Popescu, Iulia; O'Donnell, Christopher P.; Cardenes, Nayra; Levine, Melanie; Rojas, Mauricio; Weathington, Nathaniel M.; Zhao, Jing; Zhao, Yutong; McDyer, John F.

    2015-01-01

    Acute cellular rejection is a known risk factor for the development of obliterative bronchiolitis, which limits the long-term survival of lung transplant recipients. However, the T cell effector mechanisms in both of these processes remain incompletely understood. Using the mouse orthotopic lung transplant model, we investigated whether C57BL/6 T-bet−/− recipients of major histocompatibility complex (MHC)-mismatched BALB/c lung grafts develop rejection pathology and allospecific cytokine responses that differ from wild-type mice. T-bet−/− recipients demonstrated vigorous allograft rejection at 10 days, characterized by neutrophilic inflammation and predominantly CD8+ T cells producing allospecific IL-17 and/or IFN-γ, in contrast to IFN-γ–dominant responses in WT mice. CD4+ T cells produced IL-17 but not IFN-γ responses in T-bet−/− recipients, in contrast to WT controls. Costimulation blockade using anti-CD154 Ab significantly reduced allospecific CD8+IFN-γ+ responses in both T-bet−/− and WT mice but had no attenuating effect on lung rejection pathology in T-bet−/− recipients or on the development of obliterative airway inflammation that occurred only in T-bet−/− recipients. However, neutralization of IL-17A significantly attenuated costimulation blockade–resistant rejection pathology and airway inflammation in T-bet−/− recipients. In addition, CXCL1 (neutrophil chemokine) was increased in T-bet−/− allografts, and IL-17 induced CXCL1 from mouse lung epithelial cells in vitro. Taken together, our data show that T-bet–deficient recipients of complete MHC-mismatched lung allografts develop costimulation blockade–resistant rejection characterized by neutrophilia and obliterative airway inflammation that is predominantly mediated by CD8+IL-17+ T cells. Our data support T-bet–deficient mouse recipients of lung allografts as a viable animal model to study the immunopathogenesis of small airway injury in lung transplantation

  17. Lung Inflammation, Injury, and Proliferative Response after Repetitive Particulate Hexavalent Chromium Exposure

    PubMed Central

    Beaver, Laura M.; Stemmy, Erik J.; Schwartz, Arnold M.; Damsker, Jesse M.; Constant, Stephanie L.; Ceryak, Susan M.; Patierno, Steven R.

    2009-01-01

    Background Chronic inflammation is implicated in the development of several human cancers, including lung cancer. Certain particulate hexavalent chromium [Cr(VI)] compounds are well-documented human respiratory carcinogens that release genotoxic soluble chromate and are associated with fibrosis, fibrosarcomas, adenocarcinomas, and squamous cell carcinomas of the lung. Despite this, little is known about the pathologic injury and immune responses after repetitive exposure to particulate chromates. Objectives In this study we investigated the lung injury, inflammation, proliferation, and survival signaling responses after repetitive exposure to particulate chromate. Methods BALB/c mice were repetitively treated with particulate basic zinc chromate or saline using an intranasal exposure regimen. We assessed lungs for Cr(VI)-induced changes by bronchoalveolar lavage, histologic examination, and immunohistochemistry. Results Single exposure to Cr(VI) resulted in inflammation of lung tissue that persists for up to 21 days. Repetitive Cr(VI) exposure induced a neutrophilic inflammatory airway response 24 hr after each treatment. Neutrophils were subsequently replaced by increasing numbers of macrophages by 5 days after treatment. Repetitive Cr(VI) exposure induced chronic peribronchial inflammation with alveolar and interstitial pneumonitis dominated by lymphocytes and macrophages. Moreover, chronic toxic mucosal injury was observed and accompanied by increased airway pro-matrix metalloprotease-9. Injury and inflammation correlated with airways becoming immunoreactive for phosphorylation of the survival signaling protein Akt and the proliferation marker Ki-67. We observed a reactive proliferative response in epithelial cells lining airways of chromate-exposed animals. Conclusions These data illustrate that repetitive exposure to particulate chromate induces chronic injury and an inflammatory microenvironment that may promote Cr(VI) carcinogenesis. PMID:20049209

  18. Assessment of airway inflammation by exhaled breath condensate and impedance due to gastroesophageal reflux disease (GERD).

    PubMed

    Shimizu, Yasuo; Dobashi, Kunio; Nagoshi, Atsuto; Kawamura, Osamu; Mori, Masatomo

    2009-09-01

    Avoiding oxidative stress in the airways is important for the treatment of respiratory disease associated with gastroesophageal reflux disease (GERD). It is often difficult to decide whether GERD is causing airway inflammation or whether an airway disease is complicated by GERD. Measurement of exhaled breath condensate (EBC) is performed by cooling and collecting the airway lining fluid contained in exhaled air. A decrease of pH and an increase of the 8-isoprostane concentration in EBC have been observed in patients with mild to moderate asthma accompanied by GERD. There are still problems to be overcome before EBC can be used clinically, but pH and 8-isoprostane may be promising objective markers of airway inflammation due to GERD. The disease concept and diagnosis of GERD are constantly advancing, including the development of impedance methods. It is expected that treatment will be based on the latest diagnostic knowledge of GERD associated with respiratory disease and on monitoring of airway inflammation.

  19. Endogenous osteopontin promotes ozone-induced neutrophil recruitment to the lungs and airway hyperresponsiveness to methacholine

    PubMed Central

    Barreno, Ramon X.; Richards, Jeremy B.; Schneider, Daniel J.; Cromar, Kevin R.; Nadas, Arthur J.; Hernandez, Christopher B.; Hallberg, Lance M.; Price, Roger E.; Hashmi, Syed S.; Blackburn, Michael R.; Haque, Ikram U.

    2013-01-01

    Inhalation of ozone (O3), a common environmental pollutant, causes pulmonary injury, pulmonary inflammation, and airway hyperresponsiveness (AHR) in healthy individuals and exacerbates many of these same sequelae in individuals with preexisting lung disease. However, the mechanisms underlying these phenomena are poorly understood. Consequently, we sought to determine the contribution of osteopontin (OPN), a hormone and a pleiotropic cytokine, to the development of O3-induced pulmonary injury, pulmonary inflammation, and AHR. To that end, we examined indices of these aforementioned sequelae in mice genetically deficient in OPN and in wild-type, C57BL/6 mice 24 h following the cessation of an acute (3 h) exposure to filtered room air (air) or O3 (2 parts/million). In wild-type mice, O3 exposure increased bronchoalveolar lavage fluid (BALF) OPN, whereas immunohistochemical analysis demonstrated that there were no differences in the number of OPN-positive alveolar macrophages between air- and O3-exposed wild-type mice. O3 exposure also increased BALF epithelial cells, protein, and neutrophils in wild-type and OPN-deficient mice compared with genotype-matched, air-exposed controls. However, following O3 exposure, BALF neutrophils were significantly reduced in OPN-deficient compared with wild-type mice. When airway responsiveness to inhaled acetyl-β-methylcholine chloride (methacholine) was assessed using the forced oscillation technique, O3 exposure caused hyperresponsiveness to methacholine in the airways and lung parenchyma of wild-type mice, but not OPN-deficient mice. These results demonstrate that OPN is increased in the air spaces following acute exposure to O3 and functionally contributes to the development of O3-induced pulmonary inflammation and airway and lung parenchymal hyperresponsiveness to methacholine. PMID:23666750

  20. Airway-parenchymal interdependence after airway contraction in rat lung explants.

    PubMed

    Adler, A; Cowley, E A; Bates, J H; Eidelman, D H

    1998-07-01

    The constriction of pulmonary airways is limited by the tethering effect exerted by parenchymal attachments. To characterize this tethering effect at the scale of intraparenchymal airways, we studied the pattern of parenchymal distortion due to bronchoconstriction in a rat lung explant system. First, we measured the elastic modulus under tension for 2% (wt/vol) agarose alone (37.6 +/- 1.5 kPa) and for agarose-filled lung (5.7 +/- 1.3 kPa). The latter is similar to the elastic modulus of air-filled lung at total lung capacity (4.5-6 kPa) (S. J. Lai-Fook, T. A. Wilson, R. E. Hyatt, and J. R. Rodarte. J. Appl. Physiol. 40: 508-513, 1976), suggesting that explants can be used as a model of lung tissue distortion. Subsequently, confocal microscopic images of fluorescently labeled 0.5-mm-thick explants prepared from agarose-filled rat lungs inflated to total lung capacity (48 ml/kg) were acquired. Images were taken before and after airway constriction was induced by direct application of 10 mM methacholine, and the pattern of parenchymal distortion was measured from the displacement of tissue landmarks identified in each image for 14 explants. The magnitude of the radial component of tissue displacement was calculated as a function of distance from the airway wall and characterized by a parameter, b, describing the rate at which tissue movement decreased with radial distance. The parameter b was 0.994 +/- 0.19 (SE), which is close to the prediction of b = 1 of micromechanical modeling (T. A. Wilson. J. Appl. Physiol. 33: 472-478, 1972). There was significant variability in b, however, which was correlated with the fractional reduction in airway diameter (r = 0.496). Additionally, parenchymal distortion showed significant torsion with respect to the radial direction. This torsion was similar in concentric zones around the airway, suggesting that it originates from inhomogeneity in the parenchyma rather than inhomogeneous airway constriction. Our results demonstrate the

  1. Blockade of CD49d (alpha4 integrin) on intrapulmonary but not circulating leukocytes inhibits airway inflammation and hyperresponsiveness in a mouse model of asthma.

    PubMed Central

    Henderson, W R; Chi, E Y; Albert, R K; Chu, S J; Lamm, W J; Rochon, Y; Jonas, M; Christie, P E; Harlan, J M

    1997-01-01

    Immunized mice after inhalation of specific antigen have the following characteristic features of human asthma: airway eosinophilia, mucus and Th2 cytokine release, and hyperresponsiveness to methacholine. A model of late-phase allergic pulmonary inflammation in ovalbumin-sensitized mice was used to address the role of the alpha4 integrin (CD49d) in mediating the airway inflammation and hyperresponsiveness. Local, intrapulmonary blockade of CD49d by intranasal administration of CD49d mAb inhibited all signs of lung inflammation, IL-4 and IL-5 release, and hyperresponsiveness to methacholine. In contrast, CD49d blockade on circulating leukocytes by intraperitoneal CD49d mAb treatment only prevented the airway eosinophilia. In this asthma model, a CD49d-positive intrapulmonary leukocyte distinct from the eosinophil is the key effector cell of allergen-induced pulmonary inflammation and hyperresponsiveness. PMID:9399955

  2. Toxoplasma gondii infection induces suppression in a mouse model of allergic airway inflammation.

    PubMed

    Fenoy, Ignacio M; Chiurazzi, Romina; Sánchez, Vanesa R; Argenziano, Mariana A; Soto, Ariadna; Picchio, Mariano S; Martin, Valentina; Goldman, Alejandra

    2012-01-01

    Allergic asthma is an inflammatory disorder characterized by infiltration of the airway wall with inflammatory cells driven mostly by activation of Th2-lymphocytes, eosinophils and mast cells. There is a link between increased allergy and a reduction of some infections in Western countries. Epidemiological data also show that respiratory allergy is less frequent in people exposed to orofecal and foodborne microbes such as Toxoplasma gondii. We previously showed that both acute and chronic parasite T. gondii infection substantially blocked development of airway inflammation in adult BALB/c mice. Based on the high levels of IFN-γ along with the reduction of Th2 phenotype, we hypothesized that the protective effect might be related to the strong Th1 immune response elicited against the parasite. However, other mechanisms could also be implicated. The possibility that regulatory T cells inhibit allergic diseases has received growing support from both animal and human studies. Here we investigated the cellular mechanisms involved in T. gondii induced protection against allergy. Our results show for the first time that thoracic lymph node cells from mice sensitized during chronic T. gondii infection have suppressor activity. Suppression was detected both in vitro, on allergen specific T cell proliferation and in vivo, on allergic lung inflammation after adoptive transference from infected/sensitized mice to previously sensitized animals. This ability was found to be contact-independent and correlated with high levels of TGF-β and CD4(+)FoxP3(+) cells. PMID:22952678

  3. Aquaporin-3 potentiates allergic airway inflammation in ovalbumin-induced murine asthma.

    PubMed

    Ikezoe, Kohei; Oga, Toru; Honda, Tetsuya; Hara-Chikuma, Mariko; Ma, Xiaojun; Tsuruyama, Tatsuaki; Uno, Kazuko; Fuchikami, Jun-Ichi; Tanizawa, Kiminobu; Handa, Tomohiro; Taguchi, Yoshio; Verkman, Alan S; Narumiya, Shuh; Mishima, Michiaki; Chin, Kazuo

    2016-01-01

    Oxidative stress plays a pivotal role in the pathogenesis of asthma. Aquaporin-3 (AQP3) is a small transmembrane water/glycerol channel that may facilitate the membrane uptake of hydrogen peroxide (H2O2). Here we report that AQP3 potentiates ovalbumin (OVA)-induced murine asthma by mediating both chemokine production from alveolar macrophages and T cell trafficking. AQP3 deficient (AQP3(-/-)) mice exhibited significantly reduced airway inflammation compared to wild-type mice. Adoptive transfer experiments showed reduced airway eosinophilic inflammation in mice receiving OVA-sensitized splenocytes from AQP3(-/-) mice compared with wild-type mice after OVA challenge, consistently with fewer CD4(+) T cells from AQP3(-/-) mice migrating to the lung than from wild-type mice. Additionally, in vivo and vitro experiments indicated that AQP3 induced the production of some chemokines such as CCL24 and CCL22 through regulating the amount of cellular H2O2 in M2 polarized alveolar macrophages. These results imply a critical role of AQP3 in asthma, and AQP3 may be a novel therapeutic target. PMID:27165276

  4. Aquaporin-3 potentiates allergic airway inflammation in ovalbumin-induced murine asthma

    PubMed Central

    Ikezoe, Kohei; Oga, Toru; Honda, Tetsuya; Hara-Chikuma, Mariko; Ma, Xiaojun; Tsuruyama, Tatsuaki; Uno, Kazuko; Fuchikami, Jun-ichi; Tanizawa, Kiminobu; Handa, Tomohiro; Taguchi, Yoshio; Verkman, Alan S.; Narumiya, Shuh; Mishima, Michiaki; Chin, Kazuo

    2016-01-01

    Oxidative stress plays a pivotal role in the pathogenesis of asthma. Aquaporin-3 (AQP3) is a small transmembrane water/glycerol channel that may facilitate the membrane uptake of hydrogen peroxide (H2O2). Here we report that AQP3 potentiates ovalbumin (OVA)-induced murine asthma by mediating both chemokine production from alveolar macrophages and T cell trafficking. AQP3 deficient (AQP3−/−) mice exhibited significantly reduced airway inflammation compared to wild-type mice. Adoptive transfer experiments showed reduced airway eosinophilic inflammation in mice receiving OVA-sensitized splenocytes from AQP3−/− mice compared with wild-type mice after OVA challenge, consistently with fewer CD4+ T cells from AQP3−/− mice migrating to the lung than from wild-type mice. Additionally, in vivo and vitro experiments indicated that AQP3 induced the production of some chemokines such as CCL24 and CCL22 through regulating the amount of cellular H2O2 in M2 polarized alveolar macrophages. These results imply a critical role of AQP3 in asthma, and AQP3 may be a novel therapeutic target. PMID:27165276

  5. The effect of platelet activating factor antagonist on ozone-induced airway inflammation and bronchial hyperresponsiveness in guinea pigs

    SciTech Connect

    Tan, W.C.; Bethel, R.A. )

    1992-10-01

    We investigated the role of platelet-activating factor (PAF) in ozone-induced airway responses by examining the effects of L659,989, a potent PAF antagonist, on bronchial hyperresponsiveness and airway inflammation. Twenty-four male guinea pigs were studied in four equal groups. Total lung resistance (RL) in intubated and spontaneously breathing animals was measured in a constant-volume body plethysmograph. Dose-response curves to methacholine were determined in all animals at the start of the experiment. These were repeated on a separate day after the following types of treatments: air exposure in Group 1, intraperitoneally administered alcohol and air exposure in Group 2; intraperitoneally administered alcohol and ozone exposure in Group 3, and intraperitoneally administered L659,989 (a specific PAF antagonist), 5 mg/kg dissolved in alcohol, and ozone exposure in Group 4. Bronchoalveolar lavage (BAL) was performed after the second methacholine challenge, and the bronchial mucosa was also examined for inflammatory cells. Exposure to 3 ppm ozone for 2 h resulted in a three-doubling concentration increase in bronchial responsiveness, which was not significantly inhibited by prior treatment with L659,989. Ozone induced a 1.8-fold increase in BAL total cell count, increased eosinophilic influx into the airways, and increased eosinophilic infiltration in the bronchial mucosa, which were all not inhibited by L659,989 pretreatment. The results suggest that PAF may not have an essential role in ozone-induced airway hyperresponsiveness and nonallergic airway inflammation.

  6. In Utero Cigarette Smoke Affects Allergic Airway Disease But Does Not Alter the Lung Methylome.

    PubMed

    Eyring, Kenneth R; Pedersen, Brent S; Yang, Ivana V; Schwartz, David A

    2015-01-01

    Prenatal and postnatal cigarette smoke exposure enhances the risk of developing asthma. Despite this as well as other smoking related risks, 11% of women still smoke during pregnancy. We hypothesized that cigarette smoke exposure during prenatal development generates long lasting differential methylation altering transcriptional activity that correlates with disease. In a house dust mite (HDM) model of allergic airway disease, we measured airway hyperresponsiveness (AHR) and airway inflammation between mice exposed prenatally to cigarette smoke (CS) or filtered air (FA). DNA methylation and gene expression were then measured in lung tissue. We demonstrate that HDM-treated CS mice develop a more severe allergic airway disease compared to HDM-treated FA mice including increased AHR and airway inflammation. While DNA methylation changes between the two HDM-treated groups failed to reach genome-wide significance, 99 DMRs had an uncorrected p-value < 0.001. 6 of these 99 DMRs were selected for validation, based on the immune function of adjacent genes, and only 2 of the 6 DMRs confirmed the bisulfite sequencing data. Additionally, genes near these 6 DMRs (Lif, Il27ra, Tle4, Ptk7, Nfatc2, and Runx3) are differentially expressed between HDM-treated CS mice and HDM-treated FA mice. Our findings confirm that prenatal exposure to cigarette smoke is sufficient to modify allergic airway disease; however, it is unlikely that specific methylation changes account for the exposure-response relationship. These findings highlight the important role in utero cigarette smoke exposure plays in the development of allergic airway disease. PMID:26642056

  7. Inhaled extended-release microparticles of heparin elicit improved pulmonary pharmacodynamics against antigen-mediated airway hyper-reactivity and inflammation.

    PubMed

    Yildiz, Ayca; John, Elinor; Özsoy, Yildiz; Araman, Ahmet; Birchall, James C; Broadley, Kenneth J; Gumbleton, Mark

    2012-09-10

    Inhaled heparin appears to provide benefit in the management of airway hyper-reactivity and inflammation. The pharmacodynamics of inhaled heparin are however transient. Providing sustained heparin concentrations in the respiratory tract should provide for an extended duration of action. We examined the in-vivo efficacy of a nebulised controlled-release microparticle formulation of heparin in modifying antigen-induced airway hyper-reactivity (AHR) and lung inflammation. Heparin-loaded biodegradable poly (D,L-lactide-co-glycolide) microparticles were prepared by spray-drying. Aerosol properties for both nebulised heparin solution and heparin microparticles displayed characteristics consistent with heparin delivery to the respiratory tract. In vitro release assays showed heparin to be released from the microparticles over 8-12 h and for the heparin to remain functional. Temporal pharmacodynamic responses were studied in an ovalbumin-sensitised in vivo model exhibiting AHR and airway inflammation. Despite a reduced total dose of heparin deposited in the airways following nebulisation with heparin microparticles, this treatment led to a more sustained inhibitory effect upon AHR and airway inflammation than equivalent doses of nebulised heparin solution. The work supports extended-release heparin as an inhalation dosing strategy in experimental therapeutic applications aimed at improving the pharmacodynamics of heparin in the treatment of AHR and lung inflammation.

  8. Early growth response-1 suppresses epidermal growth factor receptor-mediated airway hyperresponsiveness and lung remodeling in mice.

    PubMed

    Kramer, Elizabeth L; Mushaben, Elizabeth M; Pastura, Patricia A; Acciani, Thomas H; Deutsch, Gail H; Khurana Hershey, Gurjit K; Korfhagen, Thomas R; Hardie, William D; Whitsett, Jeffrey A; Le Cras, Timothy D

    2009-10-01

    Transforming growth factor (TGF)-alpha and its receptor, the epidermal growth factor receptor, are induced after lung injury and are associated with remodeling in chronic pulmonary diseases, such as pulmonary fibrosis and asthma. Expression of TGF-alpha in the lungs of adult mice causes fibrosis, pleural thickening, and pulmonary hypertension, in addition to increased expression of a transcription factor, early growth response-1 (Egr-1). Egr-1 was increased in airway smooth muscle (ASM) and the vascular adventitia in the lungs of mice conditionally expressing TGF-alpha in airway epithelium (Clara cell secretory protein-rtTA(+/-)/[tetO](7)-TGF-alpha(+/-)). The goal of this study was to determine the role of Egr-1 in TGF-alpha-induced lung disease. To accomplish this, TGF-alpha-transgenic mice were crossed to Egr-1 knockout (Egr-1(ko/ko)) mice. The lack of Egr-1 markedly increased the severity of TGF-alpha-induced pulmonary disease, dramatically enhancing airway muscularization, increasing pulmonary fibrosis, and causing greater airway hyperresponsiveness to methacholine. Smooth muscle hyperplasia, not hypertrophy, caused the ASM thickening in the absence of Egr-1. No detectable increases in pulmonary inflammation were found. In addition to the airway remodeling disease, vascular remodeling and pulmonary hypertension were also more severe in Egr-1(ko/ko) mice. Thus, Egr-1 acts to suppress epidermal growth factor receptor-mediated airway and vascular muscularization, fibrosis, and airway hyperresponsiveness in the absence of inflammation. This provides a unique model to study the processes causing pulmonary fibrosis and ASM thickening without the complicating effects of inflammation.

  9. Epithelial barrier function: at the frontline of asthma immunology and allergic airway inflammation

    PubMed Central

    Georas, Steve N.; Rezaee, Fariba

    2014-01-01

    Airway epithelial cells form a barrier to the outside world, and are at the frontline of mucosal immunity. Epithelial apical junctional complexes are multi-protein subunits that promote cell-cell adhesion and barrier integrity. Recent studies in the skin and GI tract suggest that disruption of cell-cell junctions is required to initiate epithelial immune responses, but how this applies to mucosal immunity in the lung is not clear. Increasing evidence indicates that defective epithelial barrier function is a feature of airway inflammation in asthma. One challenge in this area is that barrier function and junctional integrity are difficult to study in the intact lung, but innovative approaches should provide new knowledge in this area in the near future. In this article, we review the structure and function of epithelial apical junctional complexes, emphasizing how regulation of the epithelial barrier impacts innate and adaptive immunity. We discuss why defective epithelial barrier function may be linked to Th2 polarization in asthma, and propose a rheostat model of barrier dysfunction that implicates the size of inhaled allergen particles as an important factor influencing adaptive immunity. PMID:25085341

  10. Short-chain fatty acids affect cystic fibrosis airway inflammation and bacterial growth.

    PubMed

    Ghorbani, Peyman; Santhakumar, Prisila; Hu, Qingda; Djiadeu, Pascal; Wolever, Thomas M S; Palaniyar, Nades; Grasemann, Hartmut

    2015-10-01

    The hypoxic environment of cystic fibrosis airways allows the persistence of facultative anaerobic bacteria, which can produce short-chain fatty acids (SCFAs) through fermentation. However, the relevance of SCFAs in cystic fibrosis lung disease is unknown. We show that SCFAs are present in sputum samples from cystic fibrosis patients in millimolar concentrations (mean±sem 1.99±0.36 mM).SCFAs positively correlated with sputum neutrophil count and higher SCFAs were predictive for impaired nitric oxide production. We studied the effects of the SCFAs acetate, propionate and butyrate on airway inflammatory responses using epithelial cell lines and primary cell cultures. SCFAs in concentrations present in cystic fibrosis airways (0.5-2.5 mM) affected the release of granulocyte-macrophage colony-stimulating factor, granulocyte colony-stimulating factor and interleukin (IL)-6. SCFAs also resulted in higher IL-8 release from stimulated cystic fibrosis transmembrane conductance regulator (CFTR) F508del-mutant compared to wild-type CFTR-corrected bronchial epithelial cells. At 25 mM propionate reduced IL-8 release in control but not primary cystic fibrosis epithelial cells. Low (0.5-2.5 mM) SCFA concentrations increased, while high (25-50 mM) concentrations decreased inducible nitric oxide synthase expression. In addition, SCFAs affected the growth of Pseudomonas aeruginosa in a concentration- and pH-dependent manner.Thus, our data suggest that SCFAs contribute to cystic fibrosis-specific alterations of responses to airway infection and inflammation.

  11. Protective effect of curcumin on acute airway inflammation of allergic asthma in mice through Notch1-GATA3 signaling pathway.

    PubMed

    Chong, Lei; Zhang, Weixi; Nie, Ying; Yu, Gang; Liu, Liu; Lin, Li; Wen, Shunhang; Zhu, Lili; Li, Changchong

    2014-10-01

    Curcumin, a natural product derived from the plant Curcuma longa, has been found to have anti-inflammatory, antineoplastic and antifibrosis effects. It has been reported that curcumin attenuates allergic airway inflammation in mice through inhibiting NF-κB and its downstream transcription factor GATA3. It also has been proved the antineoplastic effect of curcumin through down-regulating Notch1 receptor and its downstream nuclear transcription factor NF-κB levels. In this study, we aimed to investigate the anti-inflammatory effect of curcumin on acute allergic asthma and its underlying mechanisms. 36 male BALB/c mice were randomly divided into four groups (normal, asthma, asthma+budesonide and asthma+curcumin groups). BALF (bronchoalveolar lavage fluid) and lung tissues were analyzed for airway inflammation and the expression of Notch1, Notch2, Notch3, Notch4 and the downstream transcription factor GATA3. Our findings showed that the levels of Notch1 and Notch2 receptors were up-regulated in asthma group, accompanied by the increased expression of GATA3. But the expression of Notch2 receptor was lower than Notch1 receptor. Curcumin pretreatment improved the airway inflammatory cells infiltration and reversed the increasing levels of Notch1/2 receptors and GATA3. Notch3 receptor was not expressed in all of the four groups. Notch4 receptor protein and mRNA expression level in the four groups had no significant differences. The results of the present study suggested that Notch1 and Notch2 receptor, major Notch1 receptor, played an important role in the development of allergic airway inflammation and the inhibition of Notch1-GATA3 signaling pathway by curcumin can prevent the development and deterioration of the allergic airway inflammation. This may be a possible therapeutic option of allergic asthma.

  12. Acute pulmonary inflammation induced by exposure of the airways to staphylococcal enterotoxin type B in rats

    SciTech Connect

    Desouza, Ivani A. . E-mail: ivanidesouza@fcm.unicamp.br; Franco-Penteado, Carla F.; Camargo, Enilton A.; Lima, Carmen S.P.; Teixeira, Simone A.; Muscara, Marcelo N.; De Nucci, Gilberto; Antunes, Edson

    2006-11-15

    Staphylocococcus aureus is a gram-positive bacterium that produces several enterotoxins, which are responsible for most part of pathological conditions associated to staphylococcal infections, including lung inflammation. This study aimed to investigate the underlying inflammatory mechanisms involved in leukocyte recruitment in rats exposed to staphylococcal enterotoxin B (SEB). Rats were anesthetized with pentobarbital sodium and intratracheally injected with either SEB or sterile phosphate-buffered saline (PBS, 0.4 ml). Airways exposition to SEB (7.5-250 ng/trachea) caused a dose- and time-dependent neutrophil accumulation in BAL fluid, the maximal effects of which were observed at 4 h post-SEB exposure (250 ng/trachea). Eosinophils were virtually absent in BAL fluid, whereas mononuclear cell counts increased only at 24 h post-SEB. Significant elevations of granulocytes in bone marrow (mature and immature forms) and peripheral blood have also been detected. In BAL fluid, marked elevations in the levels of lipid mediators (LTB{sub 4} and PGE{sub 2}) and cytokines (TNF-{alpha}, IL-6 and IL-10) were observed after SEB instillation. The SEB-induced neutrophil accumulation in BAL fluid was reduced by pretreatment with dexamethasone (0.5 mg/kg), the COX-2 inhibitor celecoxib (3 mg/kg), the selective iNOS inhibitor compound 1400 W (5 mg/kg) and the lipoxygenase inhibitor AA-861 (200 {mu}g/kg). In separate experiments carried out with rat isolated peripheral neutrophils, SEB failed to induce neutrophil adhesion to serum-coated plates and chemotaxis. In conclusion, rat airways exposition to SEB causes a neutrophil-dependent lung inflammation at 4 h as result of the release of proinflammatory (NO, PGE{sub 2}, LTB{sub 4}, TNF-{alpha}, IL-6) and anti-inflammatory mediators (IL-10)

  13. Bromodomain and Extra Terminal (BET) Inhibitor Suppresses Macrophage-Driven Steroid-Resistant Exacerbations of Airway Hyper-Responsiveness and Inflammation

    PubMed Central

    Nguyen, Thi Hiep; Maltby, Steven; Eyers, Fiona; Foster, Paul S.; Yang, Ming

    2016-01-01

    Background Exacerbations of asthma are linked to significant decline in lung function and are often poorly controlled by corticosteroid treatment. Clinical investigations indicate that viral and bacterial infections play crucial roles in the onset of steroid-resistant inflammation and airways hyperresponsiveness (AHR) that are hallmark features of exacerbations. We have previously shown that interferon γ (IFNγ) and lipopolysaccharide (LPS) cooperatively activate pulmonary macrophages and induce steroid-resistant airway inflammation and AHR in mouse models. Furthermore, we have established a mouse model of respiratory syncytial virus (RSV)-induced exacerbation of asthma, which exhibits macrophage-dependent, steroid-resistant lung disease. Emerging evidence has demonstrated a key role for bromo- and extra-terminal (BET) proteins in the regulation of inflammatory gene expression in macrophages. We hypothesised that BET proteins may be involved in the regulation of AHR and airway inflammation in our steroid-resistant exacerbation models. Methodology/Principal Findings We investigated the effects of a BET inhibitor (I-BET-762) on the development of steroid-resistant AHR and airway inflammation in two mouse models. I-BET-762 administration decreased macrophage and neutrophil infiltration into the airways, and suppressed key inflammatory cytokines in both models. I-BET treatment also suppressed key inflammatory cytokines linked to the development of steroid-resistant inflammation such as monocyte chemoattractant protein 1 (MCP-1), keratinocyte-derived protein chemokine (KC), IFNγ, and interleukin 27 (IL-27). Attenuation of inflammation was associated with suppression of AHR. Conclusions/Significance Our results suggest that BET proteins play an important role in the regulation of steroid-resistant exacerbations of airway inflammation and AHR. BET proteins may be potential targets for the development of future therapies to treat steroid-resistant inflammatory components

  14. Aggregates of mutant CFTR fragments in airway epithelial cells of CF lungs: new pathologic observations.

    PubMed

    Du, Kai; Karp, Philip H; Ackerley, Cameron; Zabner, Joseph; Keshavjee, Shaf; Cutz, Ernest; Yeger, Herman

    2015-03-01

    Cystic fibrosis (CF) is caused by a mutation in the CF transmembrane conductance regulator (CFTR) gene resulting in a loss of Cl(-) channel function, disrupting ion and fluid homeostasis, leading to severe lung disease with airway obstruction due to mucus plugging and inflammation. The most common CFTR mutation, F508del, occurs in 90% of patients causing the mutant CFTR protein to misfold and trigger an endoplasmic reticulum based recycling response. Despite extensive research into the pathobiology of CF lung disease, little attention has been paid to the cellular changes accounting for the pathogenesis of CF lung disease. Here we report a novel finding of intracellular retention and accumulation of a cleaved fragment of F508del CFTR in concert with autophagic like phagolysosomes in the airway epithelium of patients with F508del CFTR. Aggregates consisting of poly-ubiquitinylated fragments of only the N-terminal domain of F508del CFTR but not the full-length molecule accumulate to appreciable levels. Importantly, these undegraded intracytoplasmic aggregates representing the NT-NBD1 domain of F508del CFTR were found in ciliated, in basal, and in pulmonary neuroendocrine cells. Aggregates were found in both native lung tissues and ex-vivo primary cultures of bronchial epithelial cells from CF donors, but not in normal control lungs. Our findings present a new, heretofore, unrecognized innate CF gene related cell defect and a potential contributing factor to the pathogenesis of CF lung disease. Mutant CFTR intracytoplasmic aggregates could be analogous to the accumulation of misfolded proteins in other degenerative disorders and in pulmonary "conformational protein-associated" diseases. Consequently, potential alterations to the functional integrity of airway epithelium and regenerative capacity may represent a critical new element in the pathogenesis of CF lung disease.

  15. Suhuang antitussive capsule at lower doses attenuates airway hyperresponsiveness, inflammation, and remodeling in a murine model of chronic asthma

    PubMed Central

    Zhang, Chao; Zhang, Lan-Hong; Wu, Yin-Fang; Lai, Tian-Wen; Wang, Hai-Sheng; Xiao, Hui; Che, Luan-Qing; Ying, Song-Min; Li, Wen; Chen, Zhi-Hua; Shen, Hua-Hao

    2016-01-01

    Suhuang antitussive capsule (Suhuang), a traditional Chinese medication, is found effective in treating chronic cough and cough variant asthma (CVA). This study aimed to determine the possible effects and underlying mechanisms of Suhuang on chronic ovalbumin (OVA)-induced airway hyperresponsiveness (AHR), inflammation, and remodeling in mice. Mice were randomly assigned to six experimental groups: control, OVA model with or without Suhuang (low dose: 3.5 g/kg, middle dose: 7.0 g/kg, high dose: 14.0 g/kg), or dexamethasone (2.5 mg/kg). AHR, inflammatory cells, cytokines in bronchoalveolar lavage fluid (BALF), lung pathology, mucus production, and airway remodeling were examined. We found Suhuang treated at lower doses effectively inhibited OVA-induced AHR, airway inflammation, mucus production and collagen deposition around the airway. High dose of Suhuang reduced most of the inflammatory hallmarks while exerted inconsiderable effects on the number of macrophages in BALF and AHR. At all doses, Suhuang significantly reduced the levels of interlukin (IL) -13 and transforming growth factor (TGF)-β1, but had little effects on IL-4, IL-5, IL-17A and interferon (IFN)-γ. Thus, Suhuang administration alleviates the pathological changes of chronic asthma likely through inhibition of IL-13 and TGF-β1. Suhuang might be a promising therapy for patients with allergic asthma in the future. PMID:26861679

  16. Suhuang antitussive capsule at lower doses attenuates airway hyperresponsiveness, inflammation, and remodeling in a murine model of chronic asthma.

    PubMed

    Zhang, Chao; Zhang, Lan-Hong; Wu, Yin-Fang; Lai, Tian-Wen; Wang, Hai-Sheng; Xiao, Hui; Che, Luan-Qing; Ying, Song-Min; Li, Wen; Chen, Zhi-Hua; Shen, Hua-Hao

    2016-01-01

    Suhuang antitussive capsule (Suhuang), a traditional Chinese medication, is found effective in treating chronic cough and cough variant asthma (CVA). This study aimed to determine the possible effects and underlying mechanisms of Suhuang on chronic ovalbumin (OVA)-induced airway hyperresponsiveness (AHR), inflammation, and remodeling in mice. Mice were randomly assigned to six experimental groups: control, OVA model with or without Suhuang (low dose: 3.5 g/kg, middle dose: 7.0 g/kg, high dose: 14.0 g/kg), or dexamethasone (2.5 mg/kg). AHR, inflammatory cells, cytokines in bronchoalveolar lavage fluid (BALF), lung pathology, mucus production, and airway remodeling were examined. We found Suhuang treated at lower doses effectively inhibited OVA-induced AHR, airway inflammation, mucus production and collagen deposition around the airway. High dose of Suhuang reduced most of the inflammatory hallmarks while exerted inconsiderable effects on the number of macrophages in BALF and AHR. At all doses, Suhuang significantly reduced the levels of interlukin (IL) -13 and transforming growth factor (TGF)-β1, but had little effects on IL-4, IL-5, IL-17A and interferon (IFN)-γ. Thus, Suhuang administration alleviates the pathological changes of chronic asthma likely through inhibition of IL-13 and TGF-β1. Suhuang might be a promising therapy for patients with allergic asthma in the future. PMID:26861679

  17. Lung clearance index in the assessment of airways disease.

    PubMed

    Horsley, Alex

    2009-06-01

    In the last few years there has been a growing interest in lung clearance index (LCI), a measure of lung physiology derived from multiple breath washout tests. This resurgence of interest was initially driven by the recognition that such assessments were capable of detecting early airways disease in children, and are more sensitive and easier to perform in this population than conventional lung function tests [Aurora P, Kozlowska W, Stocks J. Gas mixing efficiency from birth to adulthood measured by multiple-breath washout. Respir Physiol Neurobiol, 2005;148(1-2):125-39]. With an appreciation of the importance of earlier identification of airways dysfunction, and prevention of irreversible structural airway changes, methods of following airways disease in these "silent years" are especially important. LCI has now been reported in studies involving all age groups, from infants to adults [Lum S, Gustafsson P, Ljungberg H, Hulskamp G, Bush A, Carr SB, et al. Early detection of cystic fibrosis lung disease: multiple-breath washout versus raised volume tests. Thorax, 2007;62(4):341-7; Horsley AR, Gustafsson PM, Macleod K, Saunders CJ, Greening AP, Porteous D, et al. Lung clearance index is a sensitive, repeatable and practical measure of airways disease in adults with cystic fibrosis. Thorax, 2008;63:135-40], and has a narrow range of normal over this wide age range, making it especially suitable for long-term follow-up studies. In cystic fibrosis (CF) particularly, there is a pressing need for sensitive and repeatable clinical endpoints for therapeutic interventions [Rosenfeld M. An overview of endpoints for cystic fibrosis clinical trials: one size does not fit all. Proc Am Thorac Soc, 2007;4(4):299-301], and LCI has been proposed as an outcome measure in future CF gene therapy studies [Davies JC, Cunningham S, Alton EW, Innes JA. Lung clearance index in CF: a sensitive marker of lung disease severity. Thorax, 2008;63(2):96-7]. This review will consider how LCI is

  18. Inhibition of Phosphodiesterase-4 during Pneumococcal Pneumonia Reduces Inflammation and Lung Injury in Mice.

    PubMed

    Tavares, Luciana P; Garcia, Cristiana C; Vago, Juliana P; Queiroz-Junior, Celso M; Galvão, Izabela; David, Bruna A; Rachid, Milene A; Silva, Patrícia M R; Russo, Remo C; Teixeira, Mauro M; Sousa, Lirlândia P

    2016-07-01

    Pneumococcal pneumonia is a leading cause of mortality worldwide. The inflammatory response to bacteria is necessary to control infection, but it may also contribute to tissue damage. Phosphodiesterase-4 inhibitors, such as rolipram (ROL), effectively reduce inflammation. Here, we examined the impact of ROL in a pneumococcal pneumonia murine model. Mice were infected intranasally with 10(5)-10(6) CFU of Streptococcus pneumoniae, treated with ROL in a prophylactic or therapeutic schedule in combination, or not, with the antibiotic ceftriaxone. Inflammation and bacteria counts were assessed, and ex vivo phagocytosis assays were performed. ROL treatment during S. pneumoniae infection decreased neutrophil recruitment into lungs and airways and reduced lung injury. Prophylactic ROL treatment also decreased cytokine levels in the airways. Although modulation of inflammation by ROL ameliorated pneumonia, bacteria burden was not reduced. On the other hand, antibiotic therapy reduced bacteria without reducing neutrophil infiltration, cytokine level, or lung injury. Combined ROL and ceftriaxone treatment decreased lethality rates and was more efficient in reducing inflammation, by increasing proresolving protein annexin A1 (AnxA1) expression, and bacterial burden by enhancing phagocytosis. Lack of AnxA1 increased inflammation and lethality induced by pneumococcal infection. These data show that immunomodulatory effects of phosphodiesterase-4 inhibitors are useful during severe pneumococcal pneumonia and suggest their potential benefit as adjunctive therapy during infectious diseases. PMID:26677751

  19. Nerve growth factor and neurotrophin-3 mediate survival of pulmonary plasma cells during the allergic airway inflammation.

    PubMed

    Abram, Melanie; Wegmann, Michael; Fokuhl, Verena; Sonar, Sanchaita; Luger, Elke Olga; Kerzel, Sebastian; Radbruch, Andreas; Renz, Harald; Zemlin, Michael

    2009-04-15

    Allergen-specific Abs play a pivotal role in the induction and maintenance of allergic airway inflammation. During secondary immune responses, plasma cell survival and Ab production is mediated by extrinsic factors provided by the local environment (survival niches). It is unknown whether neurotrophins, a characteristic marker of allergic airway inflammation, influence plasma cell survival in the lung. Using a mouse model of allergic asthma, we found that plasma cells from the lung and spleen are distinct subpopulations exhibiting differential expression patterns of neurotrophins and their receptors (Trks). In vitro, the nerve growth factor (NGF) and neurotrophin-3 (NT3) led to a dose-dependent increase in viability of isolated pulmonary plasma cells due to up-regulation of the antiapoptotic Bcl2 pathway. In parallel, the expression of transcription factors that stimulate the production of immunoglobulins (X-box binding protein 1 and NF-kappaB subunit RelA) was enhanced in plasma cells treated with NGF and NT3. These findings were supported in vivo. When the NGF pathway was blocked by intranasal application of a selective TrkA inhibitor, sensitized mice showed reduced numbers of pulmonary plasma cells and developed lower levels of allergen-specific and total serum IgE in response to OVA inhalation. This suggests that in the allergic airway inflammation, NGF/TrkA-mediated pulmonary IgE production contributes significantly to serum-IgE levels. We conclude that the neurotrophins NGF and NT3 act as survival factors for pulmonary plasma cells and thus are important regulators of the local Ab production in the allergic airway disease.

  20. HIV Impairs Lung Epithelial Integrity and Enters the Epithelium to Promote Chronic Lung Inflammation.

    PubMed

    Brune, Kieran A; Ferreira, Fernanda; Mandke, Pooja; Chau, Eric; Aggarwal, Neil R; D'Alessio, Franco R; Lambert, Allison A; Kirk, Gregory; Blankson, Joel; Drummond, M Bradley; Tsibris, Athe M; Sidhaye, Venkataramana K

    2016-01-01

    Several clinical studies show that individuals with HIV are at an increased risk for worsened lung function and for the development of COPD, although the mechanism underlying this increased susceptibility is poorly understood. The airway epithelium, situated at the interface between the external environment and the lung parenchyma, acts as a physical and immunological barrier that secretes mucins and cytokines in response to noxious stimuli which can contribute to the pathobiology of chronic obstructive pulmonary disease (COPD). We sought to determine the effects of HIV on the lung epithelium. We grew primary normal human bronchial epithelial (NHBE) cells and primary lung epithelial cells isolated from bronchial brushings of patients to confluence and allowed them to differentiate at an air- liquid interface (ALI) to assess the effects of HIV on the lung epithelium. We assessed changes in monolayer permeability as well as the expression of E-cadherin and inflammatory modulators to determine the effect of HIV on the lung epithelium. We measured E-cadherin protein abundance in patients with HIV compared to normal controls. Cell associated HIV RNA and DNA were quantified and the p24 viral antigen was measured in culture supernatant. Surprisingly, X4, not R5, tropic virus decreased expression of E-cadherin and increased monolayer permeability. While there was some transcriptional regulation of E-cadherin, there was significant increase in lysosome-mediated protein degradation in cells exposed to X4 tropic HIV. Interaction with CXCR4 and viral fusion with the epithelial cell were required to induce the epithelial changes. X4 tropic virus was able to enter the airway epithelial cells but not replicate in these cells, while R5 tropic viruses did not enter the epithelial cells. Significantly, X4 tropic HIV induced the expression of intercellular adhesion molecule-1 (ICAM-1) and activated extracellular signal-regulated kinase (ERK). We demonstrate that HIV can enter airway

  1. Early cystic fibrosis lung disease: Role of airway surface dehydration and lessons from preventive rehydration therapies in mice.

    PubMed

    Mall, Marcus A; Graeber, Simon Y; Stahl, Mirjam; Zhou-Suckow, Zhe

    2014-07-01

    Cystic fibrosis (CF) lung disease starts in the first months of life and remains one of the most common fatal hereditary diseases. Early therapeutic interventions may provide an opportunity to prevent irreversible lung damage and improve outcome. Airway surface dehydration is a key disease mechanism in CF, however, its role in the in vivo pathogenesis and as therapeutic target in early lung disease remains poorly understood. Mice with airway-specific overexpression of the epithelial Na(+) channel (βENaC-Tg) recapitulate airway surface dehydration and phenocopy CF lung disease. Recent studies in neonatal βENaC-Tg mice demonstrated that airway surface dehydration produces early mucus plugging in the absence of mucus hypersecretion, which triggers airway inflammation, promotes bacterial infection and causes early mortality. Preventive rehydration therapy with hypertonic saline or amiloride effectively reduced mucus plugging and mortality in neonatal βENaC-Tg mice. These results support clinical testing of preventive/early rehydration strategies in infants and young children with CF. PMID:24561284

  2. Interaction of ozone exposure with airway hyperresponsiveness and inflammation induced by trimellitic anhydride in sensitized guinea pigs

    SciTech Connect

    Sun, Jian; Chung, K.Fan

    1997-09-01

    The effect of prior ozone (O{sub 3}) exposure on airway hyperresponsiveness and inflammation induced by trimellitic anhydride (TMA) has been investigated in TMA-sensitized guinea pigs. Airway responsiveness was measured as the concentration of acetylcholine needed to increase baseline lung resistance (RL) by 300% (PC300). Ozone (3 ppm, for 3 h) caused an increase in-log PC300 at 1 h after exposure, with return of -log PC300 to control levels at 8 h. Ozone also increased baseline RL at 8 h. TMA challenge increase -log PC300 in TMA-sensitized guinea pigs at 8 h after challenge from 3.85 {+-} 0.09 to 4.11 {+-} 0.09. Ozone exposure prior to TMA challenge prevented the induction of airway hyperresponsiveness with a mean -log PC300 of 3.51 {+-} 0.20, which was not different from that of control TMA-Sensitized group. Baseline RL was significantly higher in ozone-pretreated animals after TMA challenge when compared to those of either control or challenged with TMA alone. Ozone had no effect on TMA challenge-induced BAL eosinophilia and neutrophilia. We conclude that a single exposure to ozone inhibits the increase in airway responsiveness, but increases the bronchoconstrictor response induced by TMA in TMA-Sensitized guinea pigs; however, the inflammatory airway response to TMA is unchanged by preexposure to ozone. 29 refs., 2 figs., 1 tab.

  3. A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma.

    PubMed

    Caceres, Ana I; Brackmann, Marian; Elia, Maxwell D; Bessac, Bret F; del Camino, Donato; D'Amours, Marc; Witek, JoAnn S; Fanger, Chistopher M; Chong, Jayhong A; Hayward, Neil J; Homer, Robert J; Cohn, Lauren; Huang, Xiaozhu; Moran, Magdalene M; Jordt, Sven-Eric

    2009-06-01

    Asthma is an inflammatory disorder caused by airway exposures to allergens and chemical irritants. Studies focusing on immune, smooth muscle, and airway epithelial function revealed many aspects of the disease mechanism of asthma. However, the limited efficacies of immune-directed therapies suggest the involvement of additional mechanisms in asthmatic airway inflammation. TRPA1 is an irritant-sensing ion channel expressed in airway chemosensory nerves. TRPA1-activating stimuli such as cigarette smoke, chlorine, aldehydes, and scents are among the most prevalent triggers of asthma. Endogenous TRPA1 agonists, including reactive oxygen species and lipid peroxidation products, are potent drivers of allergen-induced airway inflammation in asthma. Here, we examined the role of TRPA1 in allergic asthma in the murine ovalbumin model. Strikingly, genetic ablation of TRPA1 inhibited allergen-induced leukocyte infiltration in the airways, reduced cytokine and mucus production, and almost completely abolished airway hyperreactivity to contractile stimuli. This phenotype is recapitulated by treatment of wild-type mice with HC-030031, a TRPA1 antagonist. HC-030031, when administered during airway allergen challenge, inhibited eosinophil infiltration and prevented the development of airway hyperreactivity. Trpa1(-/-) mice displayed deficiencies in chemically and allergen-induced neuropeptide release in the airways, providing a potential explanation for the impaired inflammatory response. Our data suggest that TRPA1 is a key integrator of interactions between the immune and nervous systems in the airways, driving asthmatic airway inflammation following inhaled allergen challenge. TRPA1 may represent a promising pharmacological target for the treatment of asthma and other allergic inflammatory conditions. PMID:19458046

  4. Distending Pressure Did Not Activate Acute Phase or Inflammatory Responses in the Airways and Lungs of Fetal, Preterm Lambs

    PubMed Central

    Petersen, Rebecca Y.; Royse, Emily; Kemp, Matthew W.; Miura, Yuichiro; Noe, Andres; Jobe, Alan H.; Hillman, Noah H.

    2016-01-01

    Background Mechanical ventilation at birth causes airway injury and lung inflammation in preterm sheep. Continuous positive airway pressure (CPAP) is being increasingly used clinically to transition preterm infants at birth. Objective To test if distending pressures will activate acute phase reactants and inflammatory changes in the airways of fetal, preterm lambs. Methods The head and chest of fetal lambs at 128±1 day GA were surgically exteriorized. With placental circulation intact, fetal lambs were then randomized to one of five 15 minute interventions: PEEP of 0, 4, 8, 12, or 16 cmH2O. Recruitment volumes were recorded. Fetal lambs remained on placental support for 30 min after the intervention. The twins of each 0 cmH2O animal served as controls. Fetal lung fluid (FLF), bronchoalveolar lavage fluid (BAL), right mainstem bronchi and peripheral lung tissue were evaluated for inflammation. Results Recruitment volume increased from 0.4±0.04 mL/kg at 4 cmH2O to 2.4±0.3 mL/kg at 16 cmH2O. The lambs were surfactant deficient, and all pressures were below the opening inflection pressure on pressure-volume curve. mRNA expression of early response genes and pro-inflammatory cytokines did not increase in airway tissue or lung tissue at any pressure compared to controls. FLF and BAL also did not have increases in early response proteins. No histologic changes or Egr-1 activation was present at the pressures used. Conclusion Distending pressures as high as 16 cmH2O did not recruit lung volume at birth and did not increase markers of injury in the lung or airways in non-breathing preterm fetal sheep. PMID:27463520

  5. Hyaluronan mediates airway hyperresponsiveness in oxidative lung injury

    PubMed Central

    Lazrak, Ahmed; Creighton, Judy; Yu, Zhihong; Komarova, Svetlana; Doran, Stephen F.; Aggarwal, Saurabh; Emala, Charles W.; Stober, Vandy P.; Trempus, Carol S.; Garantziotis, Stavros

    2015-01-01

    Chlorine (Cl2) inhalation induces severe oxidative lung injury and airway hyperresponsiveness (AHR) that lead to asthmalike symptoms. When inhaled, Cl2 reacts with epithelial lining fluid, forming by-products that damage hyaluronan, a constituent of the extracellular matrix, causing the release of low-molecular-weight fragments (L-HA, <300 kDa), which initiate a series of proinflammatory events. Cl2 (400 ppm, 30 min) exposure to mice caused an increase of L-HA and its binding partner, inter-α-trypsin-inhibitor (IαI), in the bronchoalveolar lavage fluid. Airway resistance following methacholine challenge was increased 24 h post-Cl2 exposure. Intratracheal administration of high-molecular-weight hyaluronan (H-HA) or an antibody against IαI post-Cl2 exposure decreased AHR. Exposure of human airway smooth muscle (HASM) cells to Cl2 (100 ppm, 10 min) or incubation with Cl2-exposed H-HA (which fragments it to L-HA) increased membrane potential depolarization, intracellular Ca2+, and RhoA activation. Inhibition of RhoA, chelation of intracellular Ca2+, blockade of cation channels, as well as postexposure addition of H-HA, reversed membrane depolarization in HASM cells. We propose a paradigm in which oxidative lung injury generates reactive species and L-HA that activates RhoA and Ca2+ channels of airway smooth muscle cells, increasing their contractility and thus causing AHR. PMID:25747964

  6. Alterations of the Lung Methylome in Allergic Airway Hyper-Responsiveness

    PubMed Central

    Cheng, Robert YS; Shang, Yan; Limjunyawong, Nathachit; Dao, Tyna; Das, Sandhya; Rabold, Richard; Sham, James SK; Mitzner, Wayne; Tang, Wan-Yee

    2014-01-01

    Asthma is a chronic airway disorder characterized by recurrent attacks of breathlessness and wheezing, affecting 300 million people around the world (available at: www.who.int). To date, genetic factors associated with asthma susceptibility have been unable to explain the full etiology of asthma. Recent studies have demonstrated that the epigenetic disruption of gene expression plays an equally important role in the development of asthma through interaction with our environment. We sensitized 6-week-old C57BL/6J mice with house-dust-mite (HDM) extracts intraperitoneally followed by 5 weeks of exposure to HDM challenges (three times a week) intratracheally. HDM-exposed mice showed an increase in airway hyper-responsiveness (AHR) and inflammation together with structural remodeling of the airways. We applied methylated DNA immunoprecipitation-next generation sequencing (MeDIP-seq) for profiling of DNA methylation changes in the lungs in response to HDM. We observed about 20 million reads by a single-run of massive parallel sequencing. We performed bioinformatics and pathway analysis on the raw sequencing data to identify differentially methylated candidate genes in HDM-exposed mice. Specifically, we have revealed that the transforming growth factor beta signaling pathway is epigenetically modulated by chronic exposure to HDM. Here, we demonstrated that a specific allergen may play a role in AHR through an epigenetic mechanism by disrupting the expression of genes in lungs that might be involved in airway inflammation and remodeling. Our findings provide new insights into the potential mechanisms by which environmental allergens induce allergic asthma and such insights may assist in the development of novel preventive and therapeutic options for this debilitative disease. PMID:24446183

  7. Deficiency of phospholipase A2 receptor exacerbates ovalbumin-induced lung inflammation.

    PubMed

    Tamaru, Shun; Mishina, Hideto; Watanabe, Yosuke; Watanabe, Kazuhiro; Fujioka, Daisuke; Takahashi, Soichiro; Suzuki, Koji; Nakamura, Takamitsu; Obata, Jun-Ei; Kawabata, Kenichi; Yokota, Yasunori; Murakami, Makoto; Hanasaki, Kohji; Kugiyama, Kiyotaka

    2013-08-01

    Secretory phospholipase A2 (sPLA2) plays a critical role in the genesis of lung inflammation through proinflammatory eicosanoids. A previous in vitro experiment showed a possible role of cell surface receptor for sPLA2 (PLA2R) in the clearance of extracellular sPLA2. PLA2R and groups IB and X sPLA2 are expressed in the lung. This study examined a pathogenic role of PLA2R in airway inflammation using PLA2R-deficient (PLA2R(-/-)) mice. Airway inflammation was induced by immunosensitization with OVA. Compared with wild-type (PLA2R(+/+)) mice, PLA2R(-/-) mice had a significantly greater infiltration of inflammatory cells around the airways, higher levels of groups IB and X sPLA2, eicosanoids, and Th2 cytokines, and higher numbers of eosinophils and neutrophils in bronchoalveolar lavage fluid after OVA treatment. In PLA2R(-/-) mice, intratracheally instilled [(125)I]-labeled sPLA2-IB was cleared much more slowly from bronchoalveolar lavage fluid compared with PLA2R(+/+) mice. The degradation of the instilled [(125)I]-labeled sPLA2-IB, as assessed by trichloroacetic acid-soluble radioactivity in bronchoalveolar lavage fluid after instillation, was lower in PLA2R(-/-) mice than in PLA2R(+/+) mice. In conclusion, PLA2R deficiency increased sPLA2-IB and -X levels in the lung through their impaired clearance from the lung, leading to exaggeration of lung inflammation induced by OVA treatment in a murine model.

  8. Tanreqing Injection Attenuates Lipopolysaccharide-Induced Airway Inflammation through MAPK/NF-κB Signaling Pathways in Rats Model

    PubMed Central

    Liu, Wei; Jiang, Hong-li; Cai, Lin-li; Yan, Min; Dong, Shou-jin; Mao, Bing

    2016-01-01

    Background. Tanreqing injection (TRQ) is a commonly used herbal patent medicine for treating inflammatory airway diseases in view of its outstanding anti-inflammatory properties. In this study, we explored the signaling pathways involved in contributions of TRQ to LPS-induced airway inflammation in rats. Methods/Design. Adult male Sprague Dawley (SD) rats randomly divided into different groups received intratracheal instillation of LPS and/or intraperitoneal injection of TRQ. Bronchoalveolar Lavage Fluid (BALF) and lung samples were collected at 24 h, 48 h, and 96 h after TRQ administration. Protein and mRNA levels of tumor necrosis factor- (TNF-) α, Interleukin- (IL-) 1β, IL-6, and IL-8 in BALF and lung homogenate were observed by ELISA and real-time PCR, respectively. Lung sections were stained for p38 MAPK and NF-κB detection by immunohistochemistry. Phospho-p38 MAPK, phosphor-extracellular signal-regulated kinases ERK1/2, phospho-SAPK/JNK, phospho-NF-κB p65, phospho-IKKα/β, and phospho-IκB-α were measured by western blot analysis. Results. The results showed that TRQ significantly counteracted LPS-stimulated release of TNF-α, IL-1β, IL-6, and IL-8, attenuated cells influx in BALF, mitigated mucus hypersecretion, suppressed phosphorylation of NF-κB p65, IκB-α, ΙKKα/β, ERK1/2, JNK, and p38 MAPK, and inhibited p38 MAPK and NF-κB p65 expression in rat lungs. Conclusions. Results of the current research indicate that TRQ possesses potent exhibitory effects in LPS-induced airway inflammation by, at least partially, suppressing the MAPKs and NF-κB signaling pathways, in a general dose-dependent manner. PMID:27366191

  9. Inhibitory effect of hydrogen sulfide on ozone-induced airway inflammation, oxidative stress, and bronchial hyperresponsiveness.

    PubMed

    Zhang, Pengyu; Li, Feng; Wiegman, Coen H; Zhang, Min; Hong, Yan; Gong, Jicheng; Chang, Yan; Zhang, Junfeng Jim; Adcock, Ian; Chung, Kian Fan; Zhou, Xin

    2015-01-01

    Exposure to ozone has been associated with airway inflammation, oxidative stress, and bronchial hyperresponsiveness. The goal of this study was to examine whether these adverse effects of ozone could be prevented or reversed by hydrogen sulfide (H2S) as a reducing agent. The H2S donor sodium (NaHS) (2 mg/kg) or vehicle (PBS) was intraperitoneally injected into mice 1 hour before and after 3-hour ozone (2.5 ppm) or air exposure, and the mice were studied 24 hours later. Preventive and therapeutic treatment with NaHS reduced the ozone-induced increases in the total cells, including neutrophils and macrophages; this treatment also reduced levels of cytokines, including TNF-α, chemokine (C-X-C motif) ligand 1, IL-6, and IL-1β levels in bronchial alveolar lavage fluid; inhibited bronchial hyperresponsiveness; and attenuated ozone-induced increases in total malondialdehyde in bronchoalveolar lavage fluid and decreases in the ratio of reduced glutathione/oxidized glutathione in the lung. Ozone exposure led to decreases in the H2S production rate and in mRNA and protein levels of cystathionine-β-synthetase and cystathionine-γ-lyase in the lung. These effects were prevented and reversed by NaHS treatment. Furthermore, NaHS prevented and reversed the phosphorylation of p38 mitogen-activated protein kinase and heat shock protein 27. H2S may have preventive and therapeutic value in the treatment of airway diseases that have an oxidative stress basis.

  10. p63(+)Krt5(+) distal airway stem cells are essential for lung regeneration.

    PubMed

    Zuo, Wei; Zhang, Ting; Wu, Daniel Zheng'An; Guan, Shou Ping; Liew, Audrey-Ann; Yamamoto, Yusuke; Wang, Xia; Lim, Siew Joo; Vincent, Matthew; Lessard, Mark; Crum, Christopher P; Xian, Wa; McKeon, Frank

    2015-01-29

    Lung diseases such as chronic obstructive pulmonary disease and pulmonary fibrosis involve the progressive and inexorable destruction of oxygen exchange surfaces and airways, and have emerged as a leading cause of death worldwide. Mitigating therapies, aside from impractical organ transplantation, remain limited and the possibility of regenerative medicine has lacked empirical support. However, it is clinically known that patients who survive sudden, massive loss of lung tissue from necrotizing pneumonia or acute respiratory distress syndrome often recover full pulmonary function within six months. Correspondingly, we recently demonstrated lung regeneration in mice following H1N1 influenza virus infection, and linked distal airway stem cells expressing Trp63 (p63) and keratin 5, called DASC(p63/Krt5), to this process. Here we show that pre-existing, intrinsically committed DASC(p63/Krt5) undergo a proliferative expansion in response to influenza-induced lung damage, and assemble into nascent alveoli at sites of interstitial lung inflammation. We also show that the selective ablation of DASC(p63/Krt5) in vivo prevents this regeneration, leading to pre-fibrotic lesions and deficient oxygen exchange. Finally, we demonstrate that single DASC(p63/Krt5)-derived pedigrees differentiate to type I and type II pneumocytes as well as bronchiolar secretory cells following transplantation to infected lung and also minimize the structural consequences of endogenous stem cell loss on this process. The ability to propagate these cells in culture while maintaining their intrinsic lineage commitment suggests their potential in stem cell-based therapies for acute and chronic lung diseases. PMID:25383540

  11. Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice.

    PubMed

    Rangasamy, Tirumalai; Guo, Jia; Mitzner, Wayne A; Roman, Jessica; Singh, Anju; Fryer, Allison D; Yamamoto, Masayuki; Kensler, Thomas W; Tuder, Rubin M; Georas, Steve N; Biswal, Shyam

    2005-07-01

    Oxidative stress has been postulated to play an important role in the pathogenesis of asthma; although a defect in antioxidant responses has been speculated to exacerbate asthma severity, this has been difficult to demonstrate with certainty. Nuclear erythroid 2 p45-related factor 2 (Nrf2) is a redox-sensitive basic leucine zipper transcription factor that is involved in the transcriptional regulation of many antioxidant genes. We show that disruption of the Nrf2 gene leads to severe allergen-driven airway inflammation and hyperresponsiveness in mice. Enhanced asthmatic response as a result of ovalbumin sensitization and challenge in Nrf2-disrupted mice was associated with more pronounced mucus cell hyperplasia and infiltration of eosinophils into the lungs than seen in wild-type littermates. Nrf2 disruption resulted in an increased expression of the T helper type 2 cytokines interleukin (IL)-4 and IL-13 in bronchoalveolar lavage fluid and in splenocytes after allergen challenge. The enhanced severity of the asthmatic response from disruption of the Nrf2 pathway was a result of a lowered antioxidant status of the lungs caused by lower basal expression, as well as marked attenuation, of the transcriptional induction of multiple antioxidant genes. Our studies suggest that the responsiveness of Nrf2-directed antioxidant pathways may act as a major determinant of susceptibility to allergen-mediated asthma. PMID:15998787

  12. Effects of an acute bout of moderate-intensity exercise on postprandial lipemia and airway inflammation.

    PubMed

    Johnson, Ariel M; Kurti, Stephanie P; Smith, Joshua R; Rosenkranz, Sara K; Harms, Craig A

    2016-03-01

    A high-fat meal (HFM) induces an increase in blood lipids (postprandial lipemia; PPL), systemic inflammation, and acute airway inflammation. While acute exercise has been shown to have anti-inflammatory and lipid-lowering effects, it is unknown whether exercise prior to an HFM will translate to reduced airway inflammation post-HFM. Our purpose was to determine the effects of an acute bout of exercise on airway inflammation post-HFM and to identify whether any protective effect of exercise on airway inflammation was associated with a reduction in PPL or systemic inflammation. In a randomized cross-over study, 12 healthy, 18- to 29-year-old men (age, 23.0 ± 3.2 years; height, 178.9 ± 5.5 cm; weight, 78.5 ± 11.7 kg) consumed an HFM (1 g fat/1 kg body weight) 12 h following exercise (EX; 60 min at 60% maximal oxygen uptake) or without exercise (CON). Fractional exhaled nitric oxide (FENO; measure of airway inflammation), triglycerides (TG), and inflammatory markers (high-sensitivity C-reactive protein, tumor-necrosis factor-alpha, and interleukin-6) were measured while fasted at 2 h and 4 h post-HFM. FENO increased over time (2 h: CON, p = 0.001; EX, p = 0.002, but not by condition (p = 0.991). TG significantly increased 2 and 4 h post-HFM (p < 0.001), but was not significant between conditions (p = 0.256). Inflammatory markers did not significantly increase by time or condition (p > 0.05). There were no relationships between FENO and TG or systemic inflammatory markers for any time point or condition (p > 0.05). In summary, an acute bout of moderate-intensity exercise performed 12 h prior to an HFM did not change postprandial airway inflammation or lipemia in healthy, 18- to 29-year-old men. PMID:26872295

  13. Repeated subacute ozone exposure of inbred mice: Airway inflammation and ventilation

    SciTech Connect

    Paquette, N.C.; Tankersley, C.G.; Zhang, L.Y.

    1994-11-01

    The present study was designed to assess the effects of repeated subacute ozone (O{sub 3}) exposure on pulmonary inflammation and ventilation in two inbred strains of mice differentially susceptible to a single O{sub 3} exposure. Susceptible C57BL/6J(B6) and resistant C3H/HeJ (C3) mice were exposed to 0.3 ppm O{sub 3} for 48 and 72 h and, after 14 days recovery, both strains were reexposed. Airway inflammation and lung injury were assessed by counting inflammatory cells and measuring total protein content and lactate dehydrogenase (LDH) activity in bronchoalveolar lavage (BAL) returns. Minute ventilation [V{sub E,} the product of breathing frequency (f), and tidal volume (V{sub T})] was measured prior to and immediately following each exposure. After the initial exposure, B6 mice developed greater O{sub 3}-induced increases in total protein, inflammatory cell influx, and LDH activity compared to C3 mice. In normal air, V{sub E} was also significantly elevated in B6, but not C3, mice after O{sub 3}. The hypercapnic f of B6 and hypercapnic V{sub T} of C3 mice were significantly altered after O{sub 3} exposure. Reexposure to O{sub 3} caused a smaller increase in the numbers of macrophages, lymphocytes, epithelial cells, and BAL protein in both strains, and no changes in LDH activity. However, the number of polymorphonuclear leukocytes significantly increased in B6 and C3 mice as compared to the initial O{sub 3} exposure. In both strains, the ventilatory responses to normal air or hypercapnia were largely reproducible after O{sub 3} reexposure. Results indicated that differential susceptibility to O{sub 3}-induced inflammation was maintained in B6 and C3 mice with O{sub 3} reexposure although the magnitude of the difference was reduced. Results also suggest that the ventilatory responses to O{sub 3} in B6 and C3 mice were reproducible with reexposure, and that airway inflammation and ventilation were not codependent. 34 refs., 4 figs., 1 tab.

  14. Nicotinic acetylcholine receptor expression in human airway correlates with lung function.

    PubMed

    Lam, David Chi-Leung; Luo, Susan Yang; Fu, Kin-Hang; Lui, Macy Mei-Sze; Chan, Koon-Ho; Wistuba, Ignacio Ivans; Gao, Boning; Tsao, Sai-Wah; Ip, Mary Sau-Man; Minna, John Dorrance

    2016-02-01

    Nicotine and its derivatives, by binding to nicotinic acetylcholine receptors (nAChRs) on bronchial epithelial cells, can regulate cellular signaling and inflammatory processes. Delineation of nAChR subtypes and their responses to nicotine stimulation in bronchial epithelium may provide information for therapeutic targeting in smoking-related inflammation in the airway. Expression of nAChR subunit genes in 60 bronchial epithelial biopsies and immunohistochemical staining for the subcellular locations of nAChR subunit expression were evaluated. Seven human bronchial epithelial cell lines (HBECs) were exposed to nicotine in vitro for their response in nAChR subunit gene expression to nicotine exposure and removal. The relative normalized amount of expression of nAChR α4, α5, and α7 and immunohistochemical staining intensity of nAChR α4, α5, and β3 expression showed significant correlation with lung function parameters. Nicotine stimulation in HBECs resulted in transient increase in the levels of nAChR α5 and α6 but more sustained increase in nAChR α7 expression. nAChR expression in bronchial epithelium was found to correlate with lung function. Nicotine exposure in HBECs resulted in both short and longer term responses in nAChR subunit gene expression. These results gave insight into the potential of targeting nAChRs for therapy in smoking-related inflammation in the airway. PMID:26608528

  15. Interleukin-17 Pathophysiology and Therapeutic Intervention in Cystic Fibrosis Lung Infection and Inflammation.

    PubMed

    Hsu, Daniel; Taylor, Patricia; Fletcher, Dave; van Heeckeren, Rolf; Eastman, Jean; van Heeckeren, Anna; Davis, Pamela; Chmiel, James F; Pearlman, Eric; Bonfield, Tracey L

    2016-09-01

    Cystic fibrosis (CF) is characterized by an excessive neutrophilic inflammatory response within the airway as a result of defective cystic fibrosis transmembrane receptor (CFTR) expression and function. Interleukin-17A induces airway neutrophilia and mucin production associated with Pseudomonas aeruginosa colonization, which is associated with the pathophysiology of cystic fibrosis. The objectives of this study were to use the preclinical murine model of cystic fibrosis lung infection and inflammation to investigate the role of IL-17 in CF lung pathophysiology and explore therapeutic intervention with a focus on IL-17. Cftr-deficient mice (CF mice) and wild-type mice (WT mice) infected with P. aeruginosa had robust IL-17 production early in the infection associated with a persistent elevated inflammatory response. Intratracheal administration of IL-17 provoked a neutrophilic response in the airways of WT and CF animals which was similar to that observed with P. aeruginosa infection. The neutralization of IL-17 prior to infection significantly improved the outcomes in the CF mice, suggesting that IL-17 may be a therapeutic target. We demonstrate in this report that the pathophysiological contribution of IL-17 may be due to the induction of chemokines from the epithelium which is augmented by a deficiency of Cftr and ongoing inflammation. These studies demonstrate the in vivo contribution of IL-17 in cystic fibrosis lung disease and the therapeutic validity of attenuating IL-17 activity in cystic fibrosis. PMID:27271746

  16. P2X7 receptor and caspase 1 activation are central to airway inflammation observed after exposure to tobacco smoke.

    PubMed

    Eltom, Suffwan; Stevenson, Christopher S; Rastrick, Joseph; Dale, Nicole; Raemdonck, Kristof; Wong, Sissie; Catley, Matthew C; Belvisi, Maria G; Birrell, Mark A

    2011-01-01

    Chronic Obstructive Pulmonary Disease (COPD) is a cigarette smoke (CS)-driven inflammatory airway disease with an increasing global prevalence. Currently there is no effective medication to stop the relentless progression of this disease. It has recently been shown that an activator of the P2X7/inflammasome pathway, ATP, and the resultant products (IL-1β/IL-18) are increased in COPD patients. The aim of this study was to determine whether activation of the P2X7/caspase 1 pathway has a functional role in CS-induced airway inflammation. Mice were exposed to CS twice a day to induce COPD-like inflammation and the role of the P2X7 receptor was investigated. We have demonstrated that CS-induced neutrophilia in a pre-clinical model is temporally associated with markers of inflammasome activation, (increased caspase 1 activity and release of IL-1β/IL-18) in the lungs. A selective P2X7 receptor antagonist and mice genetically modified so that the P2X7 receptors were non-functional attenuated caspase 1 activation, IL-1β release and airway neutrophilia. Furthermore, we demonstrated that the role of this pathway was not restricted to early stages of disease development by showing increased caspase 1 activation in lungs from a more chronic exposure to CS and from patients with COPD. This translational data suggests the P2X7/Inflammasome pathway plays an ongoing role in disease pathogenesis. These results advocate the critical role of the P2X7/caspase 1 axis in CS-induced inflammation, highlighting this as a possible therapeutic target in combating COPD. PMID:21915284

  17. Patients with chronic obstructive pulmonary disease and chronically colonized with Haemophilus influenzae during stable disease phase have increased airway inflammation

    PubMed Central

    Tufvesson, Ellen; Bjermer, Leif; Ekberg, Marie

    2015-01-01

    Background Some patients with chronic obstructive pulmonary disease (COPD) show increased airway inflammation and bacterial colonization during stable phase. The aim of this study was to follow COPD patients and investigate chronic colonization with pathogenic bacteria during stable disease phase, and relate these findings to clinical parameters, inflammatory pattern, lung function, and exacerbations. Methods Forty-three patients with COPD were included while in a stable state and followed up monthly until exacerbation or for a maximum of 6 months. The patients completed the Clinical COPD Questionnaire and Medical Research Council dyspnea scale questionnaires, and exhaled breath condensate was collected, followed by spirometry, impulse oscillometry, and sputum induction. Results Ten patients were chronically colonized (ie, colonized at all visits) with Haemophilus influenzae during stable phase. These patients had higher sputum levels of leukotriene B4 (P<0.001), 8-isoprostane (P=0.002), myeloperoxidase activity (P=0.028), and interleukin-8 (P=0.02) during stable phase when compared with other patients. In addition, they had lower forced vital capacity (P=0.035) and reactance at 5 Hz (P=0.034), but there was no difference in forced expiratory volume in 1 second (FEV1), FEV1 % predicted, forced vital capacity % predicted, exhaled breath condensate biomarkers, C-reactive protein, or Clinical COPD Questionnaire and Medical Research Council dyspnea scale results. Three patients had intermittent colonization (colonized at only some visits) of H. influenzae during stable phase, and had lower levels of inflammatory biomarkers in sputum when compared with the chronically colonized patients. The difference in airway inflammation seen during stable phase in patients chronically colonized with H. influenzae was not observed during exacerbations. Conclusion Some COPD patients who were chronically colonized with H. influenzae during stable phase showed increased airway

  18. Nose-only water-pipe smoking effects on airway resistance, inflammation, and oxidative stress in mice.

    PubMed

    Nemmar, Abderrahim; Raza, Haider; Yuvaraju, Priya; Beegam, Sumaya; John, Annie; Yasin, Javed; Hameed, Rasheed S; Adeghate, Ernest; Ali, Badreldin H

    2013-11-01

    Water-pipe smoking (WPS) is a common practice in the Middle East and is now gaining popularity in Europe and the United States. However, there is a limited number of studies on the respiratory effects of WPS. More specifically, the underlying pulmonary pathophysiological mechanisms related to WPS exposure are not understood. Presently, we assessed the respiratory effects of nose-only exposure to mainstream WPS generated by commercially available honey flavored "moasel" tobacco. The duration of the session was 30 min/day and 5 days/wk for 1 mo. Control mice were exposed to air only. Here, we measured in BALB/c mice the airway resistance using forced-oscillation technique. Lung inflammation was assessed histopathologically and by biochemical analysis of bronchoalveolar lavage (BAL) fluid, and oxidative stress was evaluated biochemically by measuring lipid peroxidation, reduced glutathione and several antioxidant enzymes. Pulmonary inflammation assessment showed an increase in neutrophil and lymphocyte numbers. Likewise, airway resistance was significantly increased in the WPS group compared with controls. Tumor necrosis factor α and interleukin 6 concentrations were significantly increased in BAL fluid. Lipid peroxidation in lung tissue was significantly increased whereas the level and activity of antioxidants including reduced glutathione, glutathione S transferase, and superoxide dismutase were all significantly decreased following WPS exposure, indicating the occurrence of oxidative stress. Moreover, carboxyhemoglobin levels were significantly increased in the WPS group. We conclude that 1-mo nose-only exposure to WPS significantly increased airway resistance, inflammation, and oxidative stress. Our results provide a mechanistic explanation for the limited clinical studies that reported the detrimental respiratory effects of WPS.

  19. Airway inflammation in Japanese COPD patients compared with smoking and nonsmoking controls

    PubMed Central

    Ishikawa, Nobuhisa; Hattori, Noboru; Kohno, Nobuoki; Kobayashi, Akihiro; Hayamizu, Tomoyuki; Johnson, Malcolm

    2015-01-01

    Purpose To assess the importance of inflammation in chronic obstructive pulmonary disease (COPD) by measuring airway and systemic inflammatory biomarkers in Japanese patients with the disease and relevant control groups. Patients and methods This was the first study of its type in Japanese COPD patients. It was a non-treatment study in which 100 participants were enrolled into one of three groups: nonsmoking controls, current or ex-smoking controls, and COPD patients. All participants underwent standard lung function assessments and provided sputum and blood samples from which the numbers of inflammatory cells and concentrations of biomarkers were measured, using standard procedures. Results The overall trends observed in levels of inflammatory cells and biomarkers in sputum and blood in COPD were consistent with previous reports in Western studies. Increasing levels of neutrophils, interleukin 8 (IL-8), surfactant protein D (SP-D), and Krebs von den Lungen 6 (KL-6) in sputum and clara cell 16 (CC-16), high-sensitivity C-reactive protein (hs-CRP), and KL-6 in serum and plasma fibrinogen were seen in the Japanese COPD patients compared with the non-COPD control participants. In sputum, significant correlations were seen between total cell count and matrix metalloproteinase 9 (MMP-9; P<0.001), neutrophils and MMP-9 (P<0.001), macrophages and KL-6 (P<0.01), total cell count and IL-8 (P<0.05), neutrophils and IL-8 (P<0.05), and macrophages and MMP-9 (P<0.05). Significant correlations were also observed between some inflammatory cells in sputum and biomarkers in serum, with the most significant between serum CC-16 and both total cell count (P<0.005) and neutrophils (P<0.005) in sputum. Conclusion These results provide evidence for the first time that COPD in Japanese patients is a multicomponent disease, involving both airway and systemic inflammation, in addition to airway obstruction. Therefore, intervention with anti-inflammatory therapy may provide additional

  20. Effects of bronchopulmonary inflammation induced by pseudomonas aeruginosa on adenovirus-mediated gene transfer to airway epithelial cells in mice.

    PubMed

    van Heeckeren, A; Ferkol, T; Tosi, M

    1998-03-01

    Cystic fibrosis (CF) patients have endobronchial inflammation caused by infection with mucoid Pseudomonas aeruginosa. Since adenovirus vectors are being studied for gene therapy for CF, we sought to determine whether bronchopulmonary inflammation would influence adenovirus-mediated gene transfer. We hypothesized that bronchopulmonary inflammation in mice inoculated with mucoid P. aeruginosa would be associated with a decrease in the efficacy of adenovirus-mediated gene transfer. Agarose beads embedded with mucoid P. aeruginosa (6 x 10(4) c.f.u. per mouse) were inoculated transtracheally into C57BL/6 mice. Control mice received sterile agarose beads. Ten days after inoculation with agarose beads, recombinant adenovirus containing the beta-galactosidase reporter gene (Ad2/beta Gal-2) was administered intranasally (1.1 x 10(9) IU per mouse), and mice were killed 3 days later. The extent of inflammation, determined by neutrophil numbers in bronchoalveolar lavage fluid and by areal lung inflammation, was significantly greater in mice inoculated with P. aeruginosa-laden agarose beads and Ad2/beta Gal-2 compared with controls. Mice that had received Pseudomonas-laden agarose beads and Ad2/beta Gal-2 had significantly fewer (P < 0.015) airway epithelial cells transduced (4.1 +/- 0.9%) compared with mice that received sterile agarose beads and Ad2/beta Gal-2 (9.4 +/- 1.4%). These results indicate that the efficacy of adenovirus-mediated gene transfer is reduced in Pseudomonas-induced bronchopulmonary inflammation.

  1. [Effects of carbocisteine on airway inflammation and related events in SO2-exposed rats].

    PubMed

    Ishibashi, Y; Okamura, T; Masumoto, Y; Tachiiri, T; Momo, K

    2001-01-01

    Airway inflammation leads to secretion of abnormal mucous glycoprotein and ciliary injury. To investigate the possible usefulness of carbocisteine against airway inflammation and events related to it, we conducted a study in SO2-exposed rats of the effects of carbocisteine and ambroxol, as an active control drug, on components of mucous glycoprotein (fucose, sialic acid and protein) in bronchoalveolar lavage fluid (BALF); on infiltration and activation of inflammatory cells in BALF; on tracheal and bronchial-ciliary lesions; and on cAMP levels in tracheal and alveolar tissues. Carbocisteine inhibited or improved all SO2-induced changes tested, and dosages of 125 and 250 mg/kg b.i.d. reduced fucose, sialic acid and protein contents, inflammatory cells (as markers of inflammation), free radicals, and elastase activity in BALF, and suppressed the development of ciliary lesions of the tracheal and bronchial mucosa, while ambroxol (10 mg/kg b.i.d.) showed no such effects. In addition, carbocisteine improved cAMP levels in the tracheal and alveolar tissues. These results indicate that carbocisteine is able to prevent the development of inflammation-related respiratory disease in this rat model, and that this remission of airway inflammation may be associated with carbocisteine-induced normalization of cAMP levels in tracheal and alveolar tissues as well as with its mucoregulant and anti-inflammatory effects. In conclusion, carbocisteine has a unique mucoregulant action and inhibits SO2-induced airway inflammation in a manner different from that of ambroxol.

  2. High-fat diet promotes lung fibrosis and attenuates airway eosinophilia after exposure to cockroach allergen in mice

    PubMed Central

    Ge, Xiao Na; Greenberg, Yana; Hosseinkhani, M. Reza; Long, Eric K.; Bahaie, Nooshin S.; Rao, Amrita; Ha, Sung Gil; Rao, Savita P.; Bernlohr, David A.; Sriramarao, P.

    2015-01-01

    Obesity is an important risk factor for asthma but the mechanistic basis for this association is not well understood. In the current study, the impact of obesity on lung inflammatory responses after allergen exposure was investigated. C57BL/6 mice maintained on a high-fat diet (HFD) or a normal diet (ND) after weaning were sensitized and challenged with cockroach allergen (CRA). Airway inflammation was assessed based on inflammatory cell recruitment, measurement of lung Th1-Th2 cytokines, chemokines, eicosanoids, and other proinflammatory mediators as well as airway hyperresponsiveness (AHR). CRA-challenged mice fed a HFD exhibited significantly decreased allergen-induced airway eosinophilia along with reduced lung IL-5, IL-13, LTC4, CCL11, and CCL2 levels as well as reduced mucus secretion and smooth muscle mass compared to ND fed mice. However, allergen-challenged HFD fed mice demonstrated significantly increased PAI-1 and reduced PGE2 levels in the lung relative to corresponding ND fed mice. Interestingly, saline-exposed HFD fed mice demonstrated elevated baseline levels of TGF-α1, arginase-1, hypoxia-inducible factor-1α, and lung collagen expression associated with decreased lung function compared to corresponding ND fed mice. These studies indicate that a HFD inhibits airway eosinophilia while altering levels of PAI-1 and PGE2 in response to CRA in mice. Further, a HFD can lead to the development of lung fibrosis even in the absence of allergen exposure which could be due to innate elevated levels of specific profibrotic factors, potentially affecting lung function during asthma. PMID:24102347

  3. The Ethanol Extract of Osmanthus fragrans Flowers Reduces Oxidative Stress and Allergic Airway Inflammation in an Animal Model

    PubMed Central

    Hung, Chien-Ya; Shi, Li-Shian; Wang, Jing-Yao; Tsai, Yu-Cheng; Ye, Yi-Ling

    2013-01-01

    The Osmanthus fragrans flower, a popular herb in Eastern countries, contains several antioxidant compounds. Ben Cao Gang Mu, traditional Chinese medical literature, describes the usefulness of these flowers for phlegm and stasis reduction, arrest of dysentery with blood in the bowel, and stomachache and diarrhea treatment. However, modern evidence regarding the therapeutic efficacy of these flowers is limited. This study was aimed at assessing the antioxidative effects of the ethanol extract of O. fragrans flowers (OFE) in vivo and evaluating its antioxidant maintenance and therapeutic effect on an allergic airway inflammation in mice. After OFE's oral administration to mice, the values obtained in the oxygen radical absorbance capacity assay as well as the glutathione concentration in the lungs and spleens of mice increased while thiobarbituric acid reactive substances decreased significantly, indicating OFE's significant in vivo antioxidant activity. OFE was also therapeutically efficacious in a mouse model of ovalbumin-induced allergic airway inflammation. Orally administered OFE suppressed ovalbumin-specific IgE production and inflammatory cell infiltration in the lung. Moreover, the antioxidative state of the mice improved. Thus, our findings confirm the ability of the O. fragrans flowers to reduce phlegm and suggest that OFE may be useful as an antiallergic agent. PMID:24386002

  4. Natural Killer Receptor 1 Dampens the Development of Allergic Eosinophilic Airway Inflammation.

    PubMed

    Elhaik Goldman, Shirin; Moshkovits, Itay; Shemesh, Avishai; Filiba, Ayelet; Tsirulsky, Yevgeny; Vronov, Elena; Shagan, Marilou; Apte, Ron N; Benharroch, D Aniel; Karo-Atar, Danielle; Dagan, Ron; Munitz, Ariel; Mizrachi Nebenzahl, Yaffa; Porgador, Angel

    2016-01-01

    The function of NCR1 was studied in a model of experimental asthma, classified as a type 1 hypersensitivity reaction, in mice. IgE levels were significantly increased in the serum of OVA immunized NCR1 deficient (NCR1gfp/gfp) mice in comparison to OVA immunized wild type (NCR1+/+) and adjuvant immunized mice. Histological analysis of OVA immunized NCR1gfp/gfp mice revealed no preservation of the lung structure and overwhelming peribronchial and perivascular granulocytes together with mononuclear cells infiltration. OVA immunized NCR+/+ mice demonstrated preserved lung structure and peribronchial and perivascular immune cell infiltration to a lower extent than that in NCR1gfp/gfp mice. Adjuvant immunized mice demonstrated lung structure preservation and no immune cell infiltration. OVA immunization caused an increase in PAS production independently of NCR1 presence. Bronchoalveolar lavage (BAL) revealed NCR1 dependent decreased percentages of eosinophils and increased percentages of lymphocytes and macrophages following OVA immunization. In the OVA immunized NCR1gfp/gfp mice the protein levels of eosinophils' (CCL24) and Th2 CD4+ T-cells' chemoattractants (CCL17, and CCL24) in the BAL are increased in comparison with OVA immunized NCR+/+ mice. In the presence of NCR1, OVA immunization caused an increase in NK cells numbers and decreased NCR1 ligand expression on CD11c+GR1+ cells and decreased NCR1 mRNA expression in the BAL. OVA immunization resulted in significantly increased IL-13, IL-4 and CCL17 mRNA expression in NCR1+/+ and NCR1gfp/gfp mice. IL-17 and TNFα expression increased only in OVA-immunized NCR1+/+mice. IL-6 mRNA increased only in OVA immunized NCR1gfp/gfp mice. Collectively, it is demonstrated that NCR1 dampens allergic eosinophilic airway inflammation. PMID:27580126

  5. Glyphosate-rich air samples induce IL-33, TSLP and generate IL-13 dependent airway inflammation.

    PubMed

    Kumar, Sudhir; Khodoun, Marat; Kettleson, Eric M; McKnight, Christopher; Reponen, Tiina; Grinshpun, Sergey A; Adhikari, Atin

    2014-11-01

    Several low weight molecules have often been implicated in the induction of occupational asthma. Glyphosate, a small molecule herbicide, is widely used in the world. There is a controversy regarding a role of glyphosate in developing asthma and rhinitis among farmers, the mechanism of which is unexplored. The aim of this study was to explore the mechanisms of glyphosate induced pulmonary pathology by utilizing murine models and real environmental samples. C57BL/6, TLR4-/-, and IL-13-/- mice inhaled extracts of glyphosate-rich air samples collected on farms during spraying of herbicides or inhaled different doses of glyphosate and ovalbumin. The cellular response, humoral response, and lung function of exposed mice were evaluated. Exposure to glyphosate-rich air samples as well as glyphosate alone to the lungs increased: eosinophil and neutrophil counts, mast cell degranulation, and production of IL-33, TSLP, IL-13, and IL-5. In contrast, in vivo systemic IL-4 production was not increased. Co-administration of ovalbumin with glyphosate did not substantially change the inflammatory immune response. However, IL-13-deficiency resulted in diminished inflammatory response but did not have a significant effect on airway resistance upon methacholine challenge after 7 or 21 days of glyphosate exposure. Glyphosate-rich farm air samples as well as glyphosate alone were found to induce pulmonary IL-13-dependent inflammation and promote Th2 type cytokines, but not IL-4 for glyphosate alone. This study, for the first time, provides evidence for the mechanism of glyphosate-induced occupational lung disease. PMID:25172162

  6. Natural Killer Receptor 1 Dampens the Development of Allergic Eosinophilic Airway Inflammation

    PubMed Central

    Elhaik Goldman, Shirin; Moshkovits, Itay; Shemesh, Avishai; Filiba, Ayelet; Tsirulsky, Yevgeny; Vronov, Elena; Shagan, Marilou; Apte, Ron N.; Benharroch, D aniel; Karo-Atar, Danielle; Dagan, Ron; Munitz, Ariel

    2016-01-01

    The function of NCR1 was studied in a model of experimental asthma, classified as a type 1 hypersensitivity reaction, in mice. IgE levels were significantly increased in the serum of OVA immunized NCR1 deficient (NCR1gfp/gfp) mice in comparison to OVA immunized wild type (NCR1+/+) and adjuvant immunized mice. Histological analysis of OVA immunized NCR1gfp/gfp mice revealed no preservation of the lung structure and overwhelming peribronchial and perivascular granulocytes together with mononuclear cells infiltration. OVA immunized NCR+/+ mice demonstrated preserved lung structure and peribronchial and perivascular immune cell infiltration to a lower extent than that in NCR1gfp/gfp mice. Adjuvant immunized mice demonstrated lung structure preservation and no immune cell infiltration. OVA immunization caused an increase in PAS production independently of NCR1 presence. Bronchoalveolar lavage (BAL) revealed NCR1 dependent decreased percentages of eosinophils and increased percentages of lymphocytes and macrophages following OVA immunization. In the OVA immunized NCR1gfp/gfp mice the protein levels of eosinophils’ (CCL24) and Th2 CD4+ T-cells’ chemoattractants (CCL17, and CCL24) in the BAL are increased in comparison with OVA immunized NCR+/+ mice. In the presence of NCR1, OVA immunization caused an increase in NK cells numbers and decreased NCR1 ligand expression on CD11c+GR1+ cells and decreased NCR1 mRNA expression in the BAL. OVA immunization resulted in significantly increased IL-13, IL-4 and CCL17 mRNA expression in NCR1+/+ and NCR1gfp/gfp mice. IL-17 and TNFα expression increased only in OVA-immunized NCR1+/+mice. IL-6 mRNA increased only in OVA immunized NCR1gfp/gfp mice. Collectively, it is demonstrated that NCR1 dampens allergic eosinophilic airway inflammation. PMID:27580126

  7. Glyphosate–rich air samples induce IL–33, TSLP and generate IL–13 dependent airway inflammation

    PubMed Central

    Kumar, Sudhir; Khodoun, Marat; Kettleson, Eric M.; McKnight, Christopher; Reponen, Tiina; Grinshpun, Sergey A.; Adhikari, Atin

    2014-01-01

    Several low weight molecules have often been implicated in the induction of occupational asthma. Glyphosate, a small molecule herbicide, is widely used in the world. There is a controversy regarding a role of glyphosate in developing asthma and rhinitis among farmers, the mechanism of which is unexplored. The aim of this study was to explore the mechanisms of glyphosate induced pulmonary pathology by utilizing murine models and real environmental samples. C57BL/6, TLR4−/−, and IL-13−/− mice inhaled extracts of glyphosate-rich air samples collected on farms during spraying of herbicides or inhaled different doses of glyphosate and ovalbumin. The cellular response, humoral response, and lung function of exposed mice were evaluated. Exposure to glyphosate-rich air samples as well as glyphosate alone to the lungs increased: eosinophil and neutrophil counts, mast cell degranulation, and production of IL-33, TSLP, IL-13, and IL-5. In contrast, in vivo systemic IL-4 production was not increased. Co-administration of ovalbumin with glyphosate did not substantially change the inflammatory immune response. However, IL-13-deficiency resulted in diminished inflammatory response but did not have a significant effect on airway resistance upon methacholine challenge after 7 or 21 days of glyphosate exposure. Glyphosate-rich farm air samples as well as glyphosate alone were found to induce pulmonary IL-13-dependent inflammation and promote Th2 type cytokines, but not IL-4 for glyphosate alone. This study, for the first time, provides evidence for the mechanism of glyphosate-induced occupational lung disease. PMID:25172162

  8. Glyphosate-rich air samples induce IL-33, TSLP and generate IL-13 dependent airway inflammation.

    PubMed

    Kumar, Sudhir; Khodoun, Marat; Kettleson, Eric M; McKnight, Christopher; Reponen, Tiina; Grinshpun, Sergey A; Adhikari, Atin

    2014-11-01

    Several low weight molecules have often been implicated in the induction of occupational asthma. Glyphosate, a small molecule herbicide, is widely used in the world. There is a controversy regarding a role of glyphosate in developing asthma and rhinitis among farmers, the mechanism of which is unexplored. The aim of this study was to explore the mechanisms of glyphosate induced pulmonary pathology by utilizing murine models and real environmental samples. C57BL/6, TLR4-/-, and IL-13-/- mice inhaled extracts of glyphosate-rich air samples collected on farms during spraying of herbicides or inhaled different doses of glyphosate and ovalbumin. The cellular response, humoral response, and lung function of exposed mice were evaluated. Exposure to glyphosate-rich air samples as well as glyphosate alone to the lungs increased: eosinophil and neutrophil counts, mast cell degranulation, and production of IL-33, TSLP, IL-13, and IL-5. In contrast, in vivo systemic IL-4 production was not increased. Co-administration of ovalbumin with glyphosate did not substantially change the inflammatory immune response. However, IL-13-deficiency resulted in diminished inflammatory response but did not have a significant effect on airway resistance upon methacholine challenge after 7 or 21 days of glyphosate exposure. Glyphosate-rich farm air samples as well as glyphosate alone were found to induce pulmonary IL-13-dependent inflammation and promote Th2 type cytokines, but not IL-4 for glyphosate alone. This study, for the first time, provides evidence for the mechanism of glyphosate-induced occupational lung disease.

  9. Endocrine disruptors found in food contaminants enhance allergic sensitization through an oxidative stress that promotes the development of allergic airway inflammation

    SciTech Connect

    Kato, Takuma; Tada-Oikawa, Saeko; Wang, Linan; Murata, Mariko; Kuribayashi, Kagemasa

    2013-11-15

    In the past few decades, there has been a significant increase in incidence of allergic diseases. The hygiene hypothesis may provide some clues to explain this rising trend, but it may also be attributable to other environmental factors that exert a proallergic adjuvant effects. However, there is limited information on the risks of developing allergic asthma and related diseases through the ingestion of environmental chemicals found in food contaminants. In the present study, we have shown that oral administration of tributyltin, used as a model environmental chemical, induced oxidative-stress status in the bronchial lymph node, mesenteric lymph node and spleen, but not in the lung, where the initial step of allergic asthma pathogenesis takes place. Mice exposed to tributyltin exhibited heightened Th2 immunity to the allergen with more severe airway inflammation. Tributyltin also induced Treg cells apoptosis preferentially over non-Treg cells. All these effects of tributyltin exposure were canceled by the administration of glutathione monoethyl ester. Meanwhile, tributyltin did not affect airway inflammation of mice transferred with allergen-specific Th2 cells. Collectively, these results suggest that tributyltin exerts its pathological effect during the sensitization phase through oxidative stress that enhances the development of allergic diseases. The current study dissects the pathogenic role of oxidative stress induced by oral exposure to an environmental chemical during the sensitization phase of allergic airway inflammation and would be important for developing therapeutics for prevention of allergic diseases. - Highlights: • Oral exposure to TBT exacerbates airway inflammation. • TBT induces oxidative stress in secondary lymphoid organs, but not in the lung. • TBT preferentially induces regulatory T cell apoptosis over non-Treg cells. • TBT does not enhance pre-existing airway inflammation in sensitized mice. • Chemicals in food contaminants

  10. AIRWAY IDENTIFICATION WITHIN PLANAR GAMMA CAMERA IMAGES USING COMPUTER MODELS OF LUNG MORPHOLOGY

    EPA Science Inventory

    The quantification of inhaled aerosols could be improved if a more comprehensive assessment of their spatial distribution patterns among lung airways were obtained. A common technique for quantifying particle deposition in human lungs is with planar gamma scintigraphy. However, t...

  11. Airway Fibrinogenolysis and the Initiation of Allergic Inflammation

    PubMed Central

    Millien, Valentine Ongeri; Lu, Wen; Mak, Garbo; Yuan, Xiaoyi; Knight, J. Morgan; Porter, Paul; Kheradmand, Farrah

    2014-01-01

    The past 15 years of allergic disease research have produced extraordinary improvements in our understanding of the pathogenesis of airway allergic diseases such as asthma. Whereas it was previously viewed as largely an immunoglobulin E-mediated process, the gradual recognition that T cells, especially Type 2 T helper (Th2) cells and Th17 cells, play a major role in asthma and related afflictions has inspired clinical trials targeting cytokine-based inflammatory pathways that show great promise. What has yet to be clarified about the pathogenesis of allergic inflammatory disorders, however, are the fundamental initiating factors, both exogenous and endogenous, that drive and sustain B- and T-cell responses that underlie the expression of chronic disease. Here we review how proteinases derived from diverse sources drive allergic responses. A central discovery supporting the proteinase hypothesis of allergic disease pathophysiology is the role played by airway fibrinogen, which in part appears to serve as a sensor of unregulated proteinase activity and which, when cleaved, both participates in a novel allergic signaling pathway through Toll-like receptor 4 and forms fibrin clots that contribute to airway obstruction. Unresolved at present is the ultimate source of airway allergenic proteinases. From among many potential candidates, perhaps the most intriguing is the possibility such enzymes derive from airway fungi. Together, these new findings expand both our knowledge of allergic disease pathophysiology and options for therapeutic intervention. PMID:25525732

  12. Evaluation of allergic lung inflammation by computed tomography in a rat model in vivo.

    PubMed

    Jobse, B N; Johnson, J R; Farncombe, T H; Labiris, R; Walker, T D; Goncharova, S; Jordana, M

    2009-06-01

    The ability of micro-computed tomography (CT) to noninvasively evaluate allergic pulmonary inflammation in an experimental model was investigated. In addition, two image segmentation methods and the value of respiratory gating were investigated in the context of this model. Brown Norway rats were exposed to one of four doses of house dust mite (HDM) extract (0, 0.15, 15 or 150 microg) delivered intratracheally every 24 h for 10 days. CT scanning was performed at baseline and after several longitudinal HDM exposures. Both thoracic- and lung-segmentation methods yielded similar results when standardisation practices were employed. While tissue histology correlated well with CT images, cell counts from bronchoalveolar lavage depicted greater inflammation than did density measures from CT images. Evidence from representative CT slices and transaxial density distribution indicated that inflammation was primarily associated with major airways and extended into the periphery from these focal points. Respiratory gating demonstrated that images of the inspiratory state provided greater contrast of inflammatory processes. Lastly, decreases in tidal volumes indicated significant mechanical respiratory changes in animals exposed to both 15 and 150 microg. In summary, CT image segmentation can extract pertinent data on in vivo allergic airway/lung inflammation. Furthermore, respiratory gating provides additional contrast and insight into these quantification practices.

  13. Role of selective blocking of bradykinin receptor subtypes in attenuating allergic airway inflammation in guinea pigs.

    PubMed

    El-Kady, Mohamed M; Girgis, Zarif I; Abd El-Rasheed, Eman A; Shaker, Olfat; Attallah, Magdy I; Soliman, Ahmed A

    2016-10-01

    The present study was designed to evaluate the potential role of bradykinin antagonists (R-715; bradykinin B1 receptor antagonist and icatibant; bradykinin B2 receptor antagonist) in treatment of allergic airway inflammation in comparison to dexamethasone and montelukast. R-715 as dexamethasone significantly decreased peribronchial leukocyte infiltration, bronchoalveolar lavage fluid (BALF) albumin and interleukin 1β as well as serum OVA-specific IgE level. Also, R-715 like montelukast significantly decreased BALF cell count (total and eosinophils). Icatibant showed negative results. The current findings suggest that selective bradykinin B1 receptor antagonists may have the therapeutic potential for the treatment of allergic airway inflammation. PMID:27321873

  14. Insulin modulates cytokine release and selectin expression in the early phase of allergic airway inflammation in diabetic rats

    PubMed Central

    2010-01-01

    Background Clinical and experimental data suggest that the inflammatory response is impaired in diabetics and can be modulated by insulin. The present study was undertaken to investigate the role of insulin on the early phase of allergic airway inflammation. Methods Diabetic male Wistar rats (alloxan, 42 mg/Kg, i.v., 10 days) and controls were sensitized by s.c. injection of ovalbumin (OA) in aluminium hydroxide 14 days before OA (1 mg/0.4 mL) or saline intratracheal challenge. The following analyses were performed 6 hours thereafter: a) quantification of interleukin (IL)-1β, tumor necrosis factor (TNF)-α and cytokine-induced neutrophil chemoattractant (CINC)-1 in the bronchoalveolar lavage fluid (BALF) by Enzyme-Linked Immunosorbent Assay, b) expression of E- and P- selectins on lung vessels by immunohistochemistry, and c) inflammatory cell infiltration into the airways and lung parenchyma. NPH insulin (4 IU, s.c.) was given i.v. 2 hours before antigen challenge. Results Diabetic rats exhibited significant reduction in the BALF concentrations of IL-1β (30%) and TNF-α (45%), and in the lung expression of P-selectin (30%) compared to non-diabetic animals. This was accompanied by reduced number of neutrophils into the airways and around bronchi and blood vessels. There were no differences in the CINC-1 levels in BALF, and E-selectin expression. Treatment of diabetic rats with NPH insulin, 2 hours before antigen challenge, restored the reduced levels of IL-1β, TNF-α and P-selectin, and neutrophil migration. Conclusion Data presented suggest that insulin modulates the production/release of TNF-α and IL-1β, the expression of P- and E-selectin, and the associated neutrophil migration into the lungs during the early phase of the allergic inflammatory reaction. PMID:20667094

  15. Reversal of established CD4+ type 2 T helper-mediated allergic airway inflammation and eosinophilia by therapeutic treatment with DNA vaccines limits progression towards chronic inflammation and remodelling

    PubMed Central

    Jarman, Elizabeth R; Lamb, Jonathan R

    2004-01-01

    Immunostimulatory DNA-based vaccines can prevent the induction of CD4+ type 2 T helper (Th2) cell-mediated airway inflammation in experimental models, when administered before or at the time of allergen exposure. Here we demonstrate their efficacy in limiting the progression of an established response to chronic pulmonary inflammation and airway remodelling on subsequent allergen challenge. Mice exhibiting Th2-mediated airway inflammation induced following sensitization and challenge with group 1 allergen derived from Dermatophagoides pteronyssinus group species (Der p 1), a major allergen of house dust mite, were treated with pDNA vaccines. Their airways were rechallenged and the extent of inflammation assessed. In plasma DNA (pDNA)-vaccinated mice, infiltration of inflammatory cells, goblet cell hyperplasia and mucus production were reduced and subepithelial fibrosis attenuated. The reduction in eosinophil numbers correlated with a fall in levels of the profibrotic mediator transforming growth factor (TGF)-β1 in bronchoalveolar lavage (BAL) and lung tissue. In addition to lung epithelial cells and resident alveolar macrophages, infiltrating eosinophils, the principle inflammatory cells recruited following allergen exposure, were a major source of TGF-β1. Protection, conferred irrespective of the specificity of the pDNA construct, did not correlate with a sustained increase in systemic interferon (IFN)-γ production but in a reduction in levels of the Th2 pro-inflammatory cytokines. Notably, there was a reduction in levels of interleukin (IL)-5 and IL-13 produced by systemic Der p 1 reactive CD4+ Th2 cells on in vitro stimulation as well as in IL-4 and IL-5 levels in BAL fluid. These data suggest that suppression of CD4+ Th2-mediated inflammation and eosinophilia were sufficient to attenuate progression towards airway remodelling. Immunostimulatory DNA may therefore have a therapeutic application in treatment of established allergic asthma in patients. PMID

  16. Inhibitory effect of n-butanol fraction of Moringa oleifera Lam. seeds on ovalbumin-induced airway inflammation in a guinea pig model of asthma.

    PubMed

    Mahajan, Shailaja G; Banerjee, Aryamitra; Chauhan, Bhupendrasinh F; Padh, Harish; Nivsarkar, Manish; Mehta, Anita A

    2009-01-01

    Moringaceae, which belongs to the Moringa oleifera Lam. family, is a well-known herb used in Asian medicine as an antiallergic drug. In the present study, the efficacy of the n-butanol extract of the seeds of the plant (MONB) is examined against ovalbumin-induced airway inflammation in guinea pigs. The test drugs (MONB or dexamethasone) are administered orally prior to challenge with aerosolized 0.5% ovalbumin. During the experimental period, bronchoconstriction tests are performed, and lung function parameters are measured. The blood and bronchoalveolar lavage fluid are collected to assess cellular content, and serum is used for cytokine (tumor necrosis factor-alpha, interleukin-4, and interleukin-6) assays. Histamine assays of lung tissue are performed using lung tissue homogenate. The results suggest that in ovalbumin-sensitized model control animals, tidal volume is decreased, respiration rate is increased, and both the total and differential cell counts in blood and bronchoalveolar lavage fluid are increased significantly compared with nonsensitized controls. MONB treatment shows improvement in all parameters except bronchoalveolar lavage tumor necrosis factor-alpha and interleukin-4. Moreover, MONB treatment demonstrates protection against acetylcholine-induced bronchoconstriction and airway inflammation. These results indicate that MONB has an inhibitory effect on airway inflammation. Thus, MONB possesses an antiasthmatic property through modulation of the relationship between Th1/Th2 cytokine imbalances.

  17. Antiinflammatory effects of bromodomain and extraterminal domain inhibition in cystic fibrosis lung inflammation

    PubMed Central

    Chen, Kong; Campfield, Brian T.; Wenzel, Sally E.; McAleer, Jeremy P.; Kreindler, James L.; Kurland, Geoffrey; Gopal, Radha; Wang, Ting; Chen, Wei; Eddens, Taylor; Quinn, Kathleen M.; Myerburg, Mike M.; Horne, William T.; Lora, Jose M.; Albrecht, Brian K.; Pilewski, Joseph M.; Kolls, Jay K.

    2016-01-01

    Significant morbidity in cystic fibrosis (CF) results from chronic lung inflammation, most commonly due to Pseudomonas aeruginosa infection. Recent data suggest that IL-17 contributes to pathological inflammation in the setting of abnormal mucosal immunity, and type 17 immunity–driven inflammatory responses may represent a target to block aberrant inflammation in CF. Indeed, transcriptomic analysis of the airway epithelium from CF patients undergoing clinical bronchoscopy revealed upregulation of IL-17 downstream signature genes, implicating a substantial contribution of IL-17–mediated immunity in CF lungs. Bromodomain and extraterminal domain (BET) chromatin modulators can regulate T cell responses, specifically Th17-mediated inflammation, by mechanisms that include bromodomain-dependent inhibition of acetylated histones at the IL17 locus. Here, we show that, in vitro, BET inhibition potently suppressed Th17 cell responses in explanted CF tissue and inhibited IL-17–driven chemokine production in human bronchial epithelial cells. In an acute P. aeruginosa lung infection murine model, BET inhibition decreased inflammation, without exacerbating infection, suggesting that BET inhibition may be a potential therapeutic target in patients with CF. PMID:27517095

  18. Moracin M inhibits airway inflammation by interrupting the JNK/c-Jun and NF-κB pathways in vitro and in vivo.

    PubMed

    Lee, Ju Hee; Ko, Hae Ju; Woo, Eun-Rhan; Lee, Sang Kook; Moon, Bong Soo; Lee, Chan Woo; Mandava, Suresh; Samala, Mallesham; Lee, Jongkook; Kim, Hyun Pyo

    2016-07-15

    The therapeutic effectiveness of moracins as 2-arylbenzofuran derivatives against airway inflammation was examined. Moracin M, O, and R were isolated from the root barks of Morus alba, and they inhibited interleukin (IL)-6 production from IL-1β-treated lung epithelial cells (A549) at 101-00μM. Among them, moracin M showed the strongest inhibitory effect (IC50=8.1μM). Downregulation of IL-6 expression by moracin M was mediated by interrupting the c-Jun N-terminal kinase (JNK)/c-Jun pathway. Moracin derivatives inhibited inducible nitric oxide synthase (iNOS)-catalyzed NO production from lipopolysaccharide (LPS)-treated alveolar macrophages (MH-S) at 50-100μM. In particular, moracin M inhibited NO production by downregulating iNOS. When orally administered, moracin M (20-60mg/kg) showed comparable inhibitory action with dexamethasone (30mg/kg) against LPS-induced lung inflammation, acute lung injury, in mice with that of dexamethasone (30mg/kg). The action mechanism included interfering with the activation of nuclear transcription factor-κB in inflamed lungs. Therefore, it is concluded that moracin M inhibited airway inflammation in vitro and in vivo, and it has therapeutic potential for treating lung inflammatory disorders. PMID:27138708

  19. Airway oxidative stress causes vascular and hepatic inflammation via upregulation of IL-17A in a murine model of allergic asthma.

    PubMed

    Al-Harbi, Naif O; Nadeem, Ahmed; Al-Harbi, Mohammed M; Ansari, Mushtaq A; AlSharari, Shakir D; Bahashwan, Saleh A; Attia, Sabry M; Al-Hosaini, Khaled A; Al Hoshani, Ali R; Ahmad, Sheikh F

    2016-05-01

    Oxidants are generated in asthmatic airways due to infiltration of inflammatory leukocytes and resident cells in the lung. Reactive oxygen species (ROS) such as hydrogen peroxide and superoxide radical may leak into systemic circulation when generated in uncontrolled manner and may impact vasculature. Our previous studies have shown an association between airway inflammation and systemic inflammation; however so far none has investigated the impact of airway oxidative inflammation on hepatic oxidative stress and Th1/Th2/Th17 cytokine markers in liver/vasculature in a murine model of asthma. Therefore, this study investigated the contribution of oxidative stress encountered in asthmatic airways in modulation of systemic/hepatic Th1/Th2/Th17 cytokines balance and hepatic oxidative stress. Mice were sensitized intraperitoneally with cockroach extract (CE) in the presence of aluminum hydroxide followed by several intranasal (i.n.) challenges with CE. Mice were then assessed for systemic/hepatic inflammation through assessment of Th1/Th2/Th17 cytokines and oxidative stress (iNOS, protein nitrotyrosine, lipid peroxides and myeloperoxidase activity). Challenge with CE led to increased Th2/Th17 cytokines in blood/liver and hepatic oxidative stress. However, only Th17 related pro-inflammatory markers were upregulated by hydrogen peroxide (H2O2) inhalation in vasculature and liver, whereas antioxidant treatment, N-acetyl cysteine (NAC) downregulated them. Hepatic oxidative stress was also upregulated by H2O2 inhalation, whereas NAC attenuated it. Therefore, our study shows that airway oxidative inflammation may contribute to systemic inflammation through upregulation of Th17 immune responses in blood/liver and hepatic oxidative stress. This might predispose these patients to increased risk for the development of cardiovascular disorders.

  20. Endotoxin-induced nitric oxide production rescues airway growth and maturation in atrophic fetal rat lung explants

    SciTech Connect

    Rae, C.; Cherry, J.I.; Land, F.M.; Land, S.C. . E-mail: s.c.land@dundee.ac.uk

    2006-10-13

    Inflammation induces premature maturation of the fetal lung but the signals causing this effect remain unclear. We determined if nitric oxide (NO) synthesis, evoked by Escherichia coli lipopolysaccharide (LPS, 2 {mu}g ml{sup -1}), participated in this process. Fetal rat lung airway surface complexity rose 2.5-fold over 96 h in response to LPS and was associated with increased iNOS protein expression and activity. iNOS inhibition by N6-(1-iminoethyl)-L-lysine-2HCl (L-NIL) abolished this and induced airway atrophy similar to untreated explants. Surfactant protein-C (SP-C) expression was also induced by LPS and abolished by L-NIL. As TGF{beta} suppresses iNOS activity, we determined if feedback regulation modulated NO-dependent maturation. LPS induced TGF{beta}1 release and SMAD4 nuclear translocation 96 h after treatment. Treatment of explants with a blocking antibody against TGF{beta}1 sustained NO production and airway morphogenesis whereas recombinant TGF{beta}1 antagonized these effects. Feedback regulation of NO synthesis by TGF{beta} may, thus, modulate airway branching and maturation of the fetal lung.

  1. Systemic and airway inflammation and the presence of emphysema in patients with COPD.

    PubMed

    Papaioannou, Andriana I; Mazioti, Argyro; Kiropoulos, Theodoros; Tsilioni, Irini; Koutsokera, Angela; Tanou, Kalliopi; Nikoulis, Dimitrios J; Georgoulias, Panagiotis; Zakynthinos, Epameinondas; Gourgoulianis, Konstantinos I; Kostikas, Konstantinos

    2010-02-01

    The aim of this study was to determine the impact of HRCT-confirmed emphysema on biomarkers evaluating airway and systemic inflammation in COPD patients. Forty-nine consecutive male COPD outpatients with stable COPD were divided in two groups according to the presence or absence of emphysema on HRCT. Patients underwent pulmonary function tests, plus assessment of exercise capacity, body composition and quality of life. Biomarkers were measured in serum (CRP, interleukin-6, TNF-alpha, leptin, adiponectin, osteocalcin, insulin growth factor-1, and systemic oxidative stress), in plasma (fibrinogen and VEGF) and in whole blood (B-type natriuretic peptide). TNF-alpha, 8-isoprostane and pH were additionally measured in exhaled breath condensate. Patients with emphysema had more severe lung function impairment, lower body-mass index and fat-free mass index, and poorer quality of life. Additionally, they presented increased systemic oxidative stress and plasma fibrinogen and lower BNP compared to patients without emphysema. After proper adjustment for disease severity, all differences remained with the exceptions of body-mass index, fat-free mass index and BNP. COPD patients with HRCT-confirmed emphysema present increased systemic oxidative stress and fibrinogen, suggesting that they may be more prone to the systemic consequences of COPD compared to patients without emphysema. PMID:19854037

  2. Molecular Imaging of Folate Receptor β–Positive Macrophages during Acute Lung Inflammation

    PubMed Central

    Zaynagetdinov, Rinat; Yull, Fiona E.; Polosukhin, Vasiliy V.; Gleaves, Linda A.; Tanjore, Harikrishna; Young, Lisa R.; Peterson, Todd E.; Manning, H. Charles; Prince, Lawrence S.; Blackwell, Timothy S.

    2015-01-01

    Characterization of markers that identify activated macrophages could advance understanding of inflammatory lung diseases and facilitate development of novel methodologies for monitoring disease activity. We investigated whether folate receptor β (FRβ) expression could be used to identify and quantify activated macrophages in the lungs during acute inflammation induced by Escherichia coli LPS. We found that FRβ expression was markedly increased in lung macrophages at 48 hours after intratracheal LPS. In vivo molecular imaging with a fluorescent probe (cyanine 5 polyethylene glycol folate) showed that the fluorescence signal over the chest peaked at 48 hours after intratracheal LPS and was markedly attenuated after depletion of macrophages. Using flow cytometry, we identified the cells responsible for uptake of cyanine 5–conjugated folate as FRβ+ interstitial macrophages and pulmonary monocytes, which coexpressed markers associated with an M1 proinflammatory macrophage phenotype. These findings were confirmed using a second model of acute lung inflammation generated by inducible transgenic expression of an NF-κB activator in airway epithelium. Using CC chemokine receptor 2–deficient mice, we found that FRβ+ macrophage/monocyte recruitment was dependent on the monocyte chemotactic protein-1/CC chemokine receptor 2 pathway. Together, our results demonstrate that folate-based molecular imaging can be used as a noninvasive approach to detect classically activated monocytes/macrophages recruited to the lungs during acute inflammation. PMID:25375039

  3. Effect of regular inhaled salbutamol on airway responsiveness and airway inflammation in rhinitic non-asthmatic subjects

    PubMed Central

    Evans, D. W.; Salome, C. M.; King, G. G.; Rimmer, S. J.; Seale, J. P.; Woolcock, A. J.

    1997-01-01

    BACKGROUND: Regular, inhaled beta 2 agonists may increase airway responsiveness in asthmatic subjects. The mechanism is not known but may be via an increase in airway inflammation. A study was undertaken to examine the effect of regular inhaled salbutamol on airway responsiveness to methacholine and hypertonic saline, on the maximal response plateau to methacholine, and on inflammatory cells in induced sputum in rhinitic non-asthmatic subjects. METHODS: Thirty subjects with a baseline maximal response plateau of > 15% fall in forced expiratory volume in one second (FEV1) entered a randomised, placebo controlled, parallel trial consisting of two weeks run in, four weeks of treatment, and two weeks washout. Methacholine challenges were performed at the beginning of the run in period, before treatment, after treatment, and after washout. Hypertonic saline challenges were performed before and after treatment and induced sputum samples were collected for differential cell counting. RESULTS: There was no change in airway responsiveness, maximal response plateau to methacholine, or in induced sputum eosinophils or mast cells. The maximum fall in FEV1 after hypertonic saline increased in the salbutamol group (median change 6.0%, interquartile range (IQR) 11.0) but did not change in the placebo group (median change 1.3%, IQR 5.5). CONCLUSIONS: Regular inhaled salbutamol for four weeks increases airway responsiveness to hypertonic saline but does not alter airway responsiveness to methacholine or cells in induced sputum in non-asthmatic individuals with rhinitis. The relevance of these findings to asthmatic subjects has not been established. 


 PMID:9059473

  4. Lipoxygenase Pathway Mediates Increases of Airway Resistance and Lung Inflation Induced by Exposure to Nanotitanium Dioxide in Rats

    PubMed Central

    Lee, Jyu-Feng; Tung, Shu-Ping; Wang, David; Yeh, Diana Yuwung; Fong, Yao; Young, Yu-Chung; Leu, Fur-Jiang

    2014-01-01

    Nanotitanium dioxide particle (nTiO2) inhalation has been reported to induce lung parenchymal injury. After inhalation of nTiO2, we monitored changes in 5-lipoxygenase, endothelial nitric oxide synthase (eNOS), and inducible nitric oxide synthase (iNOS) mRNA in rat lung tissue. Lung function parameters include specific airway resistance (SRaw), peak expiratory flow rate (PEF), functional residual capacity (FRC), and lung compliance (Cchord); blood white blood cell count (WBC), nitric oxide (NO), hydrogen peroxide, and lactic dehydrogenase (LDH); and lung lavage leukotriene C4, interleukin 6 (IL6), tumor necrotic factor α (TNFα), hydroxyl radicals, and NO. Leukotriene receptor antagonist MK571 and 5-lipoxygenase inhibitor MK886 were used for pharmacologic intervention. Compared to control, nTiO2 exposure induced near 5-fold increase in 5-lipoxygenase mRNA expression in lung tissue. iNOS mRNA increased while eNOS mRNA decreased. Lavage leukotriene C4; IL6; TNFα; NO; hydroxyl radicals; and blood WBC, NO, hydrogen peroxide, and LDH levels rose. Obstructive ventilatory insufficiency was observed. MK571 and MK886 both attenuated the systemic inflammation and lung function changes. We conclude that inhaled nTiO2 induces systemic inflammation, cytokine release, and oxidative and nitrosative stress in the lung. The lipoxygenase pathway products, mediated by oxygen radicals and WBC, play a critical role in the obstructive ventilatory insufficiency induced by nTiO2. PMID:24693335

  5. Autophagy is essential for ultrafine particle-induced inflammation and mucus hyperproduction in airway epithelium.

    PubMed

    Chen, Zhi-Hua; Wu, Yin-Fang; Wang, Ping-Li; Wu, Yan-Ping; Li, Zhou-Yang; Zhao, Yun; Zhou, Jie-Sen; Zhu, Chen; Cao, Chao; Mao, Yuan-Yuan; Xu, Feng; Wang, Bei-Bei; Cormier, Stephania A; Ying, Song-Min; Li, Wen; Shen, Hua-Hao

    2016-01-01

    Environmental ultrafine particulate matter (PM) is capable of inducing airway injury, while the detailed molecular mechanisms remain largely unclear. Here, we demonstrate pivotal roles of autophagy in regulation of inflammation and mucus hyperproduction induced by PM containing environmentally persistent free radicals in human bronchial epithelial (HBE) cells and in mouse airways. PM was endocytosed by HBE cells and simultaneously triggered autophagosomes, which then engulfed the invading particles to form amphisomes and subsequent autolysosomes. Genetic blockage of autophagy markedly reduced PM-induced expression of inflammatory cytokines, e.g. IL8 and IL6, and MUC5AC in HBE cells. Mice with impaired autophagy due to knockdown of autophagy-related gene Becn1 or Lc3b displayed significantly reduced airway inflammation and mucus hyperproduction in response to PM exposure in vivo. Interference of the autophagic flux by lysosomal inhibition resulted in accumulated autophagosomes/amphisomes, and intriguingly, this process significantly aggravated the IL8 production through NFKB1, and markedly attenuated MUC5AC expression via activator protein 1. These data indicate that autophagy is required for PM-induced airway epithelial injury, and that inhibition of autophagy exerts therapeutic benefits for PM-induced airway inflammation and mucus hyperproduction, although they are differentially orchestrated by the autophagic flux.

  6. Bronchial airway gene expression in smokers with lung or head and neck cancer

    PubMed Central

    Van Dyck, Eric; Nazarov, Petr V; Muller, Arnaud; Nicot, Nathalie; Bosseler, Manon; Pierson, Sandrine; Van Moer, Kris; Palissot, Valérie; Mascaux, Céline; Knolle, Ulrich; Ninane, Vincent; Nati, Romain; Bremnes, Roy M; Vallar, Laurent; Berchem, Guy; Schlesser, Marc

    2014-01-01

    Cigarette smoking is the major cause of cancers of the respiratory tract, including non-small cell lung cancer (NSCLC) and head and neck cancer (HNC). In order to better understand carcinogenesis of the lung and upper airways, we have compared the gene expression profiles of tumor-distant, histologically normal bronchial biopsy specimens obtained from current smokers with NSCLC or HNC (SC, considered as a single group), as well as nonsmokers (NS) and smokers without cancer (SNC). RNA from a total of 97 biopsies was used for gene expression profiling (Affymetrix HG-U133 Plus 2.0 array). Differentially expressed genes were used to compare NS, SNC, and SC, and functional analysis was carried out using Ingenuity Pathway Analysis (IPA). Smoking-related cancer of the respiratory tract was found to affect the expression of genes encoding xenobiotic biotransformation proteins, as well as proteins associated with crucial inflammation/immunity pathways and other processes that protect the airway from the chemicals in cigarette smoke or contribute to carcinogenesis. Finally, we used the prediction analysis for microarray (PAM) method to identify gene signatures of cigarette smoking and cancer, and uncovered a 15-gene signature that distinguished between SNC and SC with an accuracy of 83%. Thus, gene profiling of histologically normal bronchial biopsy specimens provided insight into cigarette-induced carcinogenesis of the respiratory tract and gene signatures of cancer in smokers. PMID:24497500

  7. The Effects of Maternal Exposure to Bisphenol A on Allergic Lung Inflammation into Adulthood

    PubMed Central

    Lawrence, B. Paige

    2012-01-01

    Bisphenol A (BPA) is a high–production volume chemical classified as an environmental estrogen and used primarily in the plastics industry. BPA’s increased usage correlates with rising BPA levels in people and a corresponding increase in the incidence of asthma. Due to limited studies, the contribution of maternal BPA exposure to allergic asthma pathogenesis is unclear. Using two established mouse models of allergic asthma, we examined whether developmental exposure to BPA alters hallmarks of allergic lung inflammation in adult offspring. Pregnant C57BL/6 dams were gavaged with 0, 0.5, 5, 50, or 500 μg BPA/kg/day from gestational day 6 until postnatal day 21. To induce allergic inflammation, adult offspring were mucosally sensitized with inhaled ovalbumin containing low-dose lipopolysaccharide or ip sensitized using ovalbumin with alum followed by ovalbumin aerosol challenge. In the mucosal sensitization model, female offspring that were maternally exposed to ≥ 50 μg BPA/kg/day displayed enhanced airway lymphocytic and lung inflammation, compared with offspring of control dams. Peritoneally sensitized, female offspring exposed to ≤ 50 μg BPA/kg/day presented dampened lung eosinophilia, compared with vehicle controls. Male offspring did not exhibit these differences in either sensitization model. Our data demonstrate that maternal exposure to BPA has subtle and qualitatively different effects on allergic inflammation, which are critically dependent upon route of allergen sensitization and sex. However, these subtle, yet persistent changes due to developmental exposure to BPA did not lead to significant differences in overall airway responsiveness, suggesting that early life exposure to BPA does not exacerbate allergic inflammation into adulthood. PMID:22821851

  8. Role of neutrophilic inflammation in ozone-induced epithelial alterations in the nasal airways of rats

    NASA Astrophysics Data System (ADS)

    Cho, Hye Youn

    Ozone is a principal oxidant air pollutant in photochemical smog. Epithelial cells lining the centriacinar region of lung and the proximal aspects of nasal passage are primary target sites for ozone-induced injury in laboratory animals. Acute exposure of rats to high ambient concentrations of ozone (e.g., 0.5 ppm) results in neutrophilic inflammation, epithelial hyperplasia and mucous cell metaplasia (MCM) in the nasal transitional epithelium (NTE) lining the proximal nasal airways. The principal purpose of the present study was to investigate the role of pre-metaplastic cellular responses, especially neutrophilic inflammation, in the pathogenesis of ozone-induced MCM in rat NTE. For this purpose, three specific hypotheses-based whole-animal inhalation studies were conducted. Male F344/N rats were exposed in whole-body inhalation chambers to 0 (filtered air) or 0.5 ppm ozone for 1-3 days (8 h/day). Histochemical, immunochemical, molecular and morphometric techniques were used to investigate the ozone-induced cellular and molecular events in the NTE. Two in vitro studies were also conducted to examine the effects of ozone-inducible cytokines (i.e., tumor necrosis factor-alpha; TNF- a, and interleukin-6; IL-6) on mucin gene (rMuc-5AC) expression. Ozone induced a rapid increase of rMuc-5AC mRNA in nasal tissues within hours after the start of exposure. It preceded the appearance of MCM, and persisted with MCM. Ozone-induced neutrophilic inflammation accompanied the mucin gene upregulation, but was resolved when MCM first appeared in the NTE. Antibody-mediated depletion of circulating neutrophils attenuated ozone-induced MCM, although it did not affect the ozone-induced epithelial hyperplasia and mucin mRNA upregulation. In another study, it was found that preexisting neutrophilic rhinitis induced by endotoxin augmented the ozone-induced MCM. However, pre-existing rhinitis did not alter the severity of ozone-induced epithelial hyperplasia and mucin gene upregulation

  9. Synthesis and evaluation of airway targeted PLGA nanoparticles for drug delivery in obstructive lung diseases.

    PubMed

    Vij, Neeraj

    2012-01-01

    Chronic airway inflammation is a hallmark of chronic obstructive airway diseases, including asthma, COPD (chronic obstructive pulmonary disease), and CF (cystic fibrosis). It is also a major challenge in delivery and therapeutic efficacy of nano-based delivery systems in these chronic airway conditions as nanoparticle (NP) need to bypass airways defense mechanisms as we recently discussed. NPs which are capable of overcoming airways defense mechanisms should allow targeted drug delivery to disease cells. Over the last decade there has been increasing interest in development of targeted NPs for cancer but relatively little effort on designing novel systems for treating chronic inflammatory and obstructive airway conditions. Here we describe methods for preparing drug loaded multifunctional nanoparticles for targeted delivery to specific cell types in airways. The formulations and methods for selective drug delivery, discussed here are currently under preclinical development in our laboratory for treating chronic airway conditions such as COPD, CF, and asthma.

  10. Airway segmentation and analysis for the study of mouse models of lung disease using micro-CT

    NASA Astrophysics Data System (ADS)

    Artaechevarria, X.; Pérez-Martín, D.; Ceresa, M.; de Biurrun, G.; Blanco, D.; Montuenga, L. M.; van Ginneken, B.; Ortiz-de-Solorzano, C.; Muñoz-Barrutia, A.

    2009-11-01

    Animal models of lung disease are gaining importance in understanding the underlying mechanisms of diseases such as emphysema and lung cancer. Micro-CT allows in vivo imaging of these models, thus permitting the study of the progression of the disease or the effect of therapeutic drugs in longitudinal studies. Automated analysis of micro-CT images can be helpful to understand the physiology of diseased lungs, especially when combined with measurements of respiratory system input impedance. In this work, we present a fast and robust murine airway segmentation and reconstruction algorithm. The algorithm is based on a propagating fast marching wavefront that, as it grows, divides the tree into segments. We devised a number of specific rules to guarantee that the front propagates only inside the airways and to avoid leaking into the parenchyma. The algorithm was tested on normal mice, a mouse model of chronic inflammation and a mouse model of emphysema. A comparison with manual segmentations of two independent observers shows that the specificity and sensitivity values of our method are comparable to the inter-observer variability, and radius measurements of the mainstem bronchi reveal significant differences between healthy and diseased mice. Combining measurements of the automatically segmented airways with the parameters of the constant phase model provides extra information on how disease affects lung function.

  11. Colonization of CF patients' upper airways with S. aureus contributes more decisively to upper airway inflammation than P. aeruginosa.

    PubMed

    Janhsen, Wibke Katharina; Arnold, Christin; Hentschel, Julia; Lehmann, Thomas; Pfister, Wolfgang; Baier, Michael; Böer, Klas; Hünniger, Kerstin; Kurzai, Oliver; Hipler, Uta-Christina; Mainz, Jochen Georg

    2016-10-01

    In cystic fibrosis (CF) patients' airways, inflammatory processes decisively contribute to remodeling and pulmonary destruction. The aims of this study were to compare upper airway (UAW) inflammation in the context of Staphylococcus aureus and Pseudomonas aeruginosa colonization in a longitudinal setting, and to examine further factors influencing UAW inflammation. Therefore, we analyzed soluble inflammatory mediators in noninvasively obtained nasal lavage (NL) of CF patients together with microbiology, medication, and relevant clinical parameters. NL, applying 10 mL of isotonic saline per nostril, was serially performed in 74 CF patients (326 samples). Concentrations of the inflammatory mediators' interleukin (IL)-1β, IL-6, IL-8, matrix metalloproteinase (MMP)-9, and its anti-protease TIMP-1 were quantified by bead-based multiplexed assay, neutrophil elastase (NE) via ELISA. Culture-based microbiology of the upper and lower airways (LAW), as well as serological and clinical findings, were compiled. Our results indicate that UAW colonization with S. aureus significantly impacts the concentration of all measured inflammatory mediators in NL fluid except TIMP-1, whereas these effects were not significant for P. aeruginosa. Patients with S. aureus colonization of both the UAW and LAW showed significantly increased concentrations of IL-1β, IL-6, IL-8, MMP-9, and slightly elevated concentrations of NE in NL fluid compared to non-colonized patients. This work elaborates a survey on S. aureus' virulence factors that may contribute to this underestimated pathology. Serial assessment of epithelial lining fluid by NL reveals that colonization of the UAW with S. aureus contributes more to CF airway inflammatory processes than hitherto expected. PMID:27377929

  12. Selenium and vitamin E deficiencies do not enhance lung inflammation from cigarette smoke in the hamster

    SciTech Connect

    Niewoehner, D.E.; Peterson, F.J.; Hoidal, J.R.

    1983-02-01

    The early lung inflammatory response to cigarette smoke may be oxidant-mediated. We fed Syrian hamsters a diet deficient in selenium and vitamin E to determine whether impairment of the lung's antioxidant defenses might worsen inflammation induced by cigarette smoke. After 8 wk, cigarette-smoke-exposed animals had characteristic inflammatory lesions in the distal airways. Increased numbers of phagocytes, predominantly macrophages, were recovered by lavage and these cells exhibited enhanced oxidative metabolism. Animals fed the deficient diet had profound depletions of selenium and vitamin E, but no alterations in the histologic appearance of smoke-induced inflammatory lesions, in the numbers of phagocytes recruited, or in the oxidative metabolism of these phagocytes. These results suggest that selenium and vitamin E are unimportant in protecting against cigarette-smoke-induced lung injury.

  13. Role of GSTM1 in Resistance for Lung Inflammation

    EPA Science Inventory

    Lung inflammation resulting from oxidant/antioxidant imbalance is a common feature of many lung diseases. In particular, the role of enzymes regulated by the NF-E2-related factor 2 (Nrf2) transcription factor has recently received increased attention. Among these antioxidant gene...

  14. Chemical compositions and properties of Schinus areira L. essential oil on airway inflammation and cardiovascular system of mice and rabbits.

    PubMed

    Bigliani, María C; Rossetti, Víctor; Grondona, Ezequiel; Lo Presti, Silvina; Paglini, Patricia M; Rivero, Virginia; Zunino, María P; Ponce, Andrés A

    2012-07-01

    The main purpose was to investigate the effects of essential plant-oil of Schinus areira L. on hemodynamic functions in rabbits, as well as myocardial contractile strength and airways inflammation associated to bacterial endotoxin lipopolysaccharide (LPS) in mice. This study shows the important properties of the essential oil (EO) of S. areira studied and these actions on lung with significant inhibition associated to LPS, all of which was assessed in mice bronchoalveolar lavage fluid and evidenced by stability of the percentage of alveolar macrophages, infiltration of polymorphonuclear leukocytes and tumor necrosis factor-α concentration, and without pathway modifications in conjugated dienes activity. Clinical status (morbidity or mortality), macroscopic morphology and lung/body weight index were unaffected by the administration of the EO S. areira. Furthermore, the ex vivo analysis of isolated hearts demonstrated the negative inotropic action of the EO of S. areira in a mice model, and in rabbits changes in the hemodynamic parameters, such as a reduction of systolic blood pressure. We conclude that EO S. areira could be responsible for modifications on the cardiovascular and/or airway parameters. PMID:22546367

  15. Chemical compositions and properties of Schinus areira L. essential oil on airway inflammation and cardiovascular system of mice and rabbits.

    PubMed

    Bigliani, María C; Rossetti, Víctor; Grondona, Ezequiel; Lo Presti, Silvina; Paglini, Patricia M; Rivero, Virginia; Zunino, María P; Ponce, Andrés A

    2012-07-01

    The main purpose was to investigate the effects of essential plant-oil of Schinus areira L. on hemodynamic functions in rabbits, as well as myocardial contractile strength and airways inflammation associated to bacterial endotoxin lipopolysaccharide (LPS) in mice. This study shows the important properties of the essential oil (EO) of S. areira studied and these actions on lung with significant inhibition associated to LPS, all of which was assessed in mice bronchoalveolar lavage fluid and evidenced by stability of the percentage of alveolar macrophages, infiltration of polymorphonuclear leukocytes and tumor necrosis factor-α concentration, and without pathway modifications in conjugated dienes activity. Clinical status (morbidity or mortality), macroscopic morphology and lung/body weight index were unaffected by the administration of the EO S. areira. Furthermore, the ex vivo analysis of isolated hearts demonstrated the negative inotropic action of the EO of S. areira in a mice model, and in rabbits changes in the hemodynamic parameters, such as a reduction of systolic blood pressure. We conclude that EO S. areira could be responsible for modifications on the cardiovascular and/or airway parameters.

  16. Mesenchymal stem cells alleviate airway inflammation and emphysema in COPD through down-regulation of cyclooxygenase-2 via p38 and ERK MAPK pathways

    PubMed Central

    Gu, Wen; Song, Lin; Li, Xiao-Ming; Wang, Di; Guo, Xue-Jun; Xu, Wei-Guo

    2015-01-01

    Bone marrow-derived mesenchymal stem cells (MSCs) have been identified as one possible strategy for the treatment of chronic obstructive pulmonary disease (COPD). Our previous studies have demonstrated that MSC administration has therapeutic potential in airway inflammation and emphysema via a paracrine mechanism. We proposed that MSCs reverse the inflammatory process and restore impaired lung function through their interaction with macrophages. In our study, the rats were exposed to cigarette smoke (CS), followed by the administration of MSCs into the lungs for 5 weeks. Here we show that MSC administration alleviated airway inflammation and emphysema through the down-regulation of cyclooxygenase-2 (COX-2) and COX-2-mediated prostaglandin E2 (PGE2) production, possibly through the effect on alveolar macrophages. In vitro co-culture experiments provided evidence that MSCs down-regulated COX-2/PGE2 in macrophages through inhibition of the activation-associated phosphorylation of p38 MAPK and ERK. Our data suggest that MSCs may relieve airway inflammation and emphysema in CS-exposed rat models, through the inhibition of COX-2/PGE2 in alveolar macrophages, mediated in part by the p38 MAPK and ERK pathways. This study provides a compelling mechanism for MSC treatment in COPD, in addition to its paracrine mechanism. PMID:25736434

  17. Targeted inhibition of KCa3.1 channel attenuates airway inflammation and remodeling in allergic asthma.

    PubMed

    Yu, Zhi-Hua; Xu, Jian-Rong; Wang, Yan-Xia; Xu, Guang-Ni; Xu, Zu-Peng; Yang, Kai; Wu, Da-Zheng; Cui, Yong-Yao; Chen, Hong-Zhuan

    2013-06-01

    KCa3.1 has been suggested to be involved in regulating cell activation, proliferation, and migration in multiple cell types, including airway inflammatory and structural cells. However, the contributions of KCa3.1 to airway inflammation and remodeling and subsequent airway hyperresponsiveness (AHR) in allergic asthma remain to be explored. The main purpose of this study was to elucidate the roles of KCa3.1 and the potential therapeutic value of KCa3.1 blockers in chronic allergic asthma. Using real-time PCR, Western blotting, or immunohistochemical analyses, we explored the precise role of KCa3.1 in the bronchi of allergic mice and asthmatic human bronchial smooth muscle cells (BSMCs). We found that KCa3.1 mRNA and protein expression were elevated in the bronchi of allergic mice, and double labeling revealed that up-regulation occurred primarily in airway smooth muscle cells. Triarylmethane (TRAM)-34, a KCa3.1 blocker, dose-dependently inhibited the generation and maintenance of the ovalbumin-induced airway inflammation associated with increased Th2-type cytokines and decreased Th1-type cytokine, as well as subepithelial extracellular matrix deposition, goblet-cell hyperplasia, and AHR in a murine model of asthma. Moreover, the pharmacological blockade and gene silencing of KCa3.1, which was evidently elevated after mitogen stimulation, suppressed asthmatic human BSMC proliferation and migration, and arrested the cell cycle at the G0/G1 phase. In addition, the KCa3.1 activator 1-ethylbenzimidazolinone-induced membrane hyperpolarization and intracellular calcium increase in asthmatic human BSMCs were attenuated by TRAM-34. We demonstrate for the first time an important role for KCa3.1 in the pathogenesis of airway inflammation and remodeling in allergic asthma, and we suggest that KCa3.1 blockers may represent a promising therapeutic strategy for asthma.

  18. Synthetic double-stranded RNA enhances airway inflammation and remodelling in a rat model of asthma.

    PubMed

    Takayama, Satoshi; Tamaoka, Meiyo; Takayama, Koji; Okayasu, Kaori; Tsuchiya, Kimitake; Miyazaki, Yasunari; Sumi, Yuki; Martin, James G; Inase, Naohiko

    2011-10-01

    Respiratory viral infections are frequently associated with exacerbations of asthma. Double-stranded RNA (dsRNA) produced during viral infections may be one of the stimuli for exacerbation. We aimed to assess the potential effect of dsRNA on certain aspects of chronic asthma through the administration of polyinosine-polycytidylic acid (poly I:C), synthetic dsRNA, to a rat model of asthma. Brown Norway rats were sensitized to ovalbumin and challenged three times to evoke airway remodelling. The effect of poly I:C on the ovalbumin-induced airway inflammation and structural changes was assessed from bronchoalveolar lavage fluid and histological findings. The expression of cytokines and chemokines was evaluated by real-time quantitative reverse transcription PCR and ELISA. Ovalbumin-challenged animals showed an increased number of total cells and eosinophils in bronchoalveolar lavage fluid compared with PBS-challenged controls. Ovalbumin-challenged animals treated with poly I:C showed an increased number of total cells and neutrophils in bronchoalveolar lavage fluid compared with those without poly I:C treatment. Ovalbumin-challenged animals showed goblet cell hyperplasia, increased airway smooth muscle mass, and proliferation of both airway epithelial cells and airway smooth muscle cells. Treatment with poly I:C enhanced these structural changes. Among the cytokines and chemokines examined, the expression of interleukins 12 and 17 and of transforming growth factor-β(1) in ovalbumin-challenged animals treated with poly I:C was significantly increased compared with those of the other groups. Double-stranded RNA enhanced airway inflammation and remodelling in a rat model of bronchial asthma. These observations suggest that viral infections may promote airway remodelling.

  19. Anti-CD69 monoclonal antibody treatment inhibits airway inflammation in a mouse model of asthma*

    PubMed Central

    Wang, Hui-ying; Dai, Yu; Wang, Jiao-li; Yang, Xu-yan; Jiang, Xin-guo

    2015-01-01

    Objective: Airway inflammation and airway hyper-responsiveness (AHR) are principle pathological manifestations of asthma. Cluster of differentiation 69 (CD69) is a well-known co-stimulatory factor associated with the activation, proliferation as well as apoptosis of immune cells. This study aims to examine the effect of anti-CD69 monoclonal antibody (mAb) on the pathophysiology of a mouse model of asthma. Methods: A murine model of ovalbumin (OVA)-induced allergic airway inflammation was used in this study. Briefly, mice were injected with 20 μg chicken OVA intraperitoneally on Days 0 and 14, followed by aerosol provocation with 1% (0.01 g/ml) OVA on Days 24, 25, and 26. Anti-CD69 mAb or isotype IgG was injected intraperitoneally after OVA challenge; dexamethasone (DXM) was administrated either before or after OVA challenge. AHR, mucus production, and eosinophil infiltration in the peribronchial area were examined. The levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-5 (IL-5) in bronchoalveolar lavage fluid (BALF) were also assayed as indices of airway inflammation on Day 28 following OVA injection. Results: Pretreatment with DXM together with anti-CD69 mAb treatment after OVA provocation completely inhibited AHR, eosinophil infiltration and mucus overproduction, and significantly reduced BALF IL-5. However, treatment with DXM alone after OVA challenge only partially inhibited AHR, eosinophil infiltration and mucus overproduction, and did not diminish BALF IL-5. Treatment with either DXM or anti-CD69 mAb did not alter the concentration of BALF GM-CSF. Conclusions: Anti-CD69 mAb treatment inhibits established airway inflammation as effectively as DXM pretreatment. This study provides a potential alternative therapeutic opportunity for the clinical management of asthma and its exacerbation. PMID:26160720

  20. β2-Adrenergic agonists attenuate organic dust-induced lung inflammation.

    PubMed

    Romberger, Debra J; Heires, Art J; Nordgren, Tara M; Poole, Jill A; Toews, Myron L; West, William W; Wyatt, Todd A

    2016-07-01

    Agricultural dust exposure results in significant lung inflammation, and individuals working in concentrated animal feeding operations (CAFOs) are at risk for chronic airway inflammatory diseases. Exposure of bronchial epithelial cells to aqueous extracts of hog CAFO dusts (HDE) leads to inflammatory cytokine production that is driven by protein kinase C (PKC) activation. cAMP-dependent protein kinase (PKA)-activating agents can inhibit PKC activation in epithelial cells, leading to reduced inflammatory cytokine production following HDE exposure. β2-Adrenergic receptor agonists (β2-agonists) activate PKA, and we hypothesized that β2-agonists would beneficially impact HDE-induced adverse airway inflammatory consequences. Bronchial epithelial cells were cultured with the short-acting β2-agonist salbutamol or the long-acting β2-agonist salmeterol prior to stimulation with HDE. β2-Agonist treatment significantly increased PKA activation and significantly decreased HDE-stimulated IL-6 and IL-8 production in a concentration- and time-dependent manner. Salbutamol treatment significantly reduced HDE-induced intracellular adhesion molecule-1 expression and neutrophil adhesion to epithelial cells. Using an established intranasal inhalation exposure model, we found that salbutamol pretreatment reduced airway neutrophil influx and IL-6, TNF-α, CXCL1, and CXCL2 release in bronchoalveolar lavage fluid following a one-time exposure to HDE. Likewise, when mice were pretreated daily with salbutamol prior to HDE exposure for 3 wk, HDE-induced neutrophil influx and inflammatory mediator production were also reduced. The severity of HDE-induced lung pathology in mice repetitively exposed to HDE for 3 wk was also decreased with daily salbutamol pretreatment. Together, these results support the need for future clinical investigations to evaluate the utility of β2-agonist therapies in the treatment of airway inflammation associated with CAFO dust exposure. PMID:27190062

  1. Intranasal sirna targeting c-kit reduces airway inflammation in experimental allergic asthma.

    PubMed

    Wu, Wei; Chen, Hui; Li, Ya-Ming; Wang, Sheng-Yu; Diao, Xin; Liu, Kai-Ge

    2014-01-01

    Allergic asthma is characterized by airway inflammation caused by infiltration and activation of inflammatory cells that produce cytokines. Many studies have revealed that c-kit, a proto-oncogene, and its ligand, stem cell factor (SCF), play an important role in the development of asthmatic inflammation. Intranasal small interference RNA (siRNA) nanoparticles targeting specific viral gene could inhibit airway inflammation. In this study, we assessed whether silencing of c-kit with intranasal small interference RNA could reduce inflammation in allergic asthma. A mouse model of experimental asthma was treated with intranasal administration of anti-c-kit siRNA to inhibit the expression of the c-kit gene. We assessed the inflammatory response in both anti-c-kit siRNA-treated and control mice. Local administration of siRNA effectively inhibited the expression of the c-kit gene and reduced airway mucus secretion and the infiltration of eosinophils in bronchoalveolar lavage fluid. Moreover, c-kit siRNA reduced the production of SCF, interleukin-4 (IL-4), and IL-5, but had no effect on interferon-γ (IFN-γ) generation. These results show that intranasal siRNA nanoparticles targeting c-kit can decrease the inflammatory response in experimental allergic asthma.

  2. S-adenosylmethionine reduces airway inflammation and fibrosis in a murine model of chronic severe asthma via suppression of oxidative stress.

    PubMed

    Yoon, Sun-Young; Hong, Gyong Hwa; Kwon, Hyouk-Soo; Park, Sunjoo; Park, So Young; Shin, Bomi; Kim, Tae-Bum; Moon, Hee-Bom; Cho, You Sook

    2016-06-03

    Increased oxidative stress has an important role in asthmatic airway inflammation and remodeling. A potent methyl donor, S-adenosylmethionine (SAMe), is known to protect against tissue injury and fibrosis through modulation of oxidative stress. The aim of this study was to evaluate the effect of SAMe on airway inflammation and remodeling in a murine model of chronic asthma. A mouse model was generated by repeated intranasal challenge with ovalbumin and Aspergillus fungal protease twice a week for 8 weeks. SAMe was orally administered every 24 h for 8 weeks. We performed bronchoalveolar lavage (BAL) fluid analysis and histopathological examination. The levels of various cytokines and 4-hydroxy-2-nonenal (HNE) were measured in the lung tissue. Cultured macrophages and fibroblasts were employed to evaluate the underlying anti-inflammatory and antifibrotic mechanisms of SAMe. The magnitude of airway inflammation and fibrosis, as well as the total BAL cell counts, were significantly suppressed in the SAMe-treated groups. A reduction in T helper type 2 pro-inflammatory cytokines and HNE levels was observed in mouse lung tissue after SAMe administration. Macrophages cultured with SAMe also showed reduced cellular oxidative stress and pro-inflammatory cytokine production. Moreover, SAMe treatment attenuated transforming growth factor-β (TGF-β)-induced fibronectin expression in cultured fibroblasts. SAMe had a suppressive effect on airway inflammation and fibrosis in a mouse model of chronic asthma, at least partially through the attenuation of oxidative stress and TGF-β-induced fibronectin expression. The results of this study suggest a potential role for SAMe as a novel therapeutic agent in chronic asthma.

  3. S-adenosylmethionine reduces airway inflammation and fibrosis in a murine model of chronic severe asthma via suppression of oxidative stress

    PubMed Central

    Yoon, Sun-Young; Hong, Gyong Hwa; Kwon, Hyouk-Soo; Park, Sunjoo; Park, So Young; Shin, Bomi; Kim, Tae-Bum; Moon, Hee-Bom; Cho, You Sook

    2016-01-01

    Increased oxidative stress has an important role in asthmatic airway inflammation and remodeling. A potent methyl donor, S-adenosylmethionine (SAMe), is known to protect against tissue injury and fibrosis through modulation of oxidative stress. The aim of this study was to evaluate the effect of SAMe on airway inflammation and remodeling in a murine model of chronic asthma. A mouse model was generated by repeated intranasal challenge with ovalbumin and Aspergillus fungal protease twice a week for 8 weeks. SAMe was orally administered every 24 h for 8 weeks. We performed bronchoalveolar lavage (BAL) fluid analysis and histopathological examination. The levels of various cytokines and 4-hydroxy-2-nonenal (HNE) were measured in the lung tissue. Cultured macrophages and fibroblasts were employed to evaluate the underlying anti-inflammatory and antifibrotic mechanisms of SAMe. The magnitude of airway inflammation and fibrosis, as well as the total BAL cell counts, were significantly suppressed in the SAMe-treated groups. A reduction in T helper type 2 pro-inflammatory cytokines and HNE levels was observed in mouse lung tissue after SAMe administration. Macrophages cultured with SAMe also showed reduced cellular oxidative stress and pro-inflammatory cytokine production. Moreover, SAMe treatment attenuated transforming growth factor-β (TGF-β)-induced fibronectin expression in cultured fibroblasts. SAMe had a suppressive effect on airway inflammation and fibrosis in a mouse model of chronic asthma, at least partially through the attenuation of oxidative stress and TGF-β-induced fibronectin expression. The results of this study suggest a potential role for SAMe as a novel therapeutic agent in chronic asthma. PMID:27256110

  4. Oxidative airway inflammation leads to systemic and vascular oxidative stress in a murine model of allergic asthma.

    PubMed

    Al-Harbi, Naif O; Nadeem, A; Al-Harbi, Mohamed M; Imam, F; Al-Shabanah, Othman A; Ahmad, Sheikh F; Sayed-Ahmed, Mohamed M; Bahashwan, Saleh A

    2015-05-01

    Oxidant-antioxidant imbalance plays an important role in repeated cycles of airway inflammation observed in asthma. It is when reactive oxygen species (ROS) overwhelm antioxidant defenses that a severe inflammatory state becomes apparent and may impact vasculature. Several studies have shown an association between airway inflammation and cardiovascular complications; however so far none has investigated the link between airway oxidative stress and systemic/vascular oxidative stress in a murine model of asthma. Therefore, this study investigated the contribution of oxidative stress encountered in asthmatic airways in modulation of vascular/systemic oxidant-antioxidant balance. Rats were sensitized intraperitoneally with ovalbumin (OVA) in the presence of aluminum hydroxide followed by several intranasal (i.n.) challenges with OVA. Rats were then assessed for airway and vascular inflammation, oxidative stress (ROS, lipid peroxides) and antioxidants measured as total antioxidant capacity (TAC) and thiol content. Challenge with OVA led to increased airway inflammation and oxidative stress with a concomitant increase in vascular inflammation and oxidative stress. Oxidative stress in the vasculature was significantly inhibited by antioxidant treatment, N-acetyl cysteine; whereas hydrogen peroxide (H2O2) inhalation worsened it. Therefore, our study shows that oxidative airway inflammation is associated with vascular/systemic oxidative stress which might predispose these patients to increased cardiovascular risk.

  5. Inflammation and lung maturation from stretch injury in preterm fetal sheep.

    PubMed

    Hillman, Noah H; Polglase, Graeme R; Pillow, J Jane; Saito, Masatoshi; Kallapur, Suhas G; Jobe, Alan H

    2011-02-01

    Mechanical ventilation is a risk factor for the development of bronchopulmonary dysplasia in premature infants. Fifteen minutes of high tidal volume (V(T)) ventilation induces inflammatory cytokine expression in small airways and lung parenchyma within 3 h. Our objective was to describe the temporal progression of cytokine and maturation responses to lung injury in fetal sheep exposed to a defined 15-min stretch injury. After maternal anesthesia and hysterotomy, 129-day gestation fetal lambs (n = 7-8/group) had the head and chest exteriorized. Each fetus was intubated, and airway fluid was gently removed. While placental support was maintained, the fetus received ventilation with an escalating V(T) to 15 ml/kg without positive end-expiratory pressure (PEEP) for 15 min using heated, humidified 100% nitrogen. The fetus was then returned to the uterus for 1, 6, or 24 h. Control lambs received a PEEP of 2 cmH(2)O for 15 min. Tissue samples from the lung and systemic organs were evaluated. Stretch injury increased the early response gene Egr-1 and increased expression of pro- and anti-inflammatory cytokines within 1 h. The injury induced granulocyte/macrophage colony-stimulating factor mRNA and matured monocytes to alveolar macrophages by 24 h. The mRNA for the surfactant proteins A, B, and C increased in the lungs by 24 h. The airway epithelium demonstrated dynamic changes in heat shock protein 70 (HSP70) over time. Serum cortisol levels did not increase, and induction of systemic inflammation was minimal. We conclude that a brief period of high V(T) ventilation causes a proinflammatory cascade, a maturation of lung monocytic cells, and an induction of surfactant protein mRNA.

  6. Inflammation and lung maturation from stretch injury in preterm fetal sheep.

    PubMed

    Hillman, Noah H; Polglase, Graeme R; Pillow, J Jane; Saito, Masatoshi; Kallapur, Suhas G; Jobe, Alan H

    2011-02-01

    Mechanical ventilation is a risk factor for the development of bronchopulmonary dysplasia in premature infants. Fifteen minutes of high tidal volume (V(T)) ventilation induces inflammatory cytokine expression in small airways and lung parenchyma within 3 h. Our objective was to describe the temporal progression of cytokine and maturation responses to lung injury in fetal sheep exposed to a defined 15-min stretch injury. After maternal anesthesia and hysterotomy, 129-day gestation fetal lambs (n = 7-8/group) had the head and chest exteriorized. Each fetus was intubated, and airway fluid was gently removed. While placental support was maintained, the fetus received ventilation with an escalating V(T) to 15 ml/kg without positive end-expiratory pressure (PEEP) for 15 min using heated, humidified 100% nitrogen. The fetus was then returned to the uterus for 1, 6, or 24 h. Control lambs received a PEEP of 2 cmH(2)O for 15 min. Tissue samples from the lung and systemic organs were evaluated. Stretch injury increased the early response gene Egr-1 and increased expression of pro- and anti-inflammatory cytokines within 1 h. The injury induced granulocyte/macrophage colony-stimulating factor mRNA and matured monocytes to alveolar macrophages by 24 h. The mRNA for the surfactant proteins A, B, and C increased in the lungs by 24 h. The airway epithelium demonstrated dynamic changes in heat shock protein 70 (HSP70) over time. Serum cortisol levels did not increase, and induction of systemic inflammation was minimal. We conclude that a brief period of high V(T) ventilation causes a proinflammatory cascade, a maturation of lung monocytic cells, and an induction of surfactant protein mRNA. PMID:21131401

  7. Effect of Continuous Positive Airway Pressure on Airway Inflammation and Oxidative Stress in Patients with Obstructive Sleep Apnea

    PubMed Central

    Tichanon, Promsrisuk; Sopida, Santamit; Orapin, Pasurivong; Watchara, Boonsawat; Banjamas, Intarapoka

    2016-01-01

    Background. Airway inflammation and oxidative stress may be linked in obstructive sleep apnea (OSA) patients. We determined the effectiveness of continuous positive airway pressure (CPAP) therapy in reducing fractional exhaled nitric oxide (FeNO) and malondialdehyde (MDA) levels in OSA patients. Methods. Thirteen patients with OSA and 13 normal controls were recruited. FeNO and MDA levels were measured in the controls and in OSA patients before and after three months of CPAP therapy. Results. FeNO and MDA levels were higher in the patients compared to the age and gender matched controls (FeNO: 25.9 ± 5.0 versus 17.5 ± 5.9 ppb, P < 0.001; MDA: 14.6 ± 7.8 versus 2.1 ± 0.3 μmol/L, P < 0.001). FeNO and MDA levels were lower post-CPAP compared to pre-CPAP (FeNO: 25.9 ± 5.0 versus 17.0 ± 2.3 ppb, P < 0.001; MDA: 14.6 ± 7.8 versus 10.0 ± 6.4 μmol/L, P < 0.01). Apnea-hypopnea index (15.9 ± 6.6 versus 4.1 ± 2.1/h, P < 0.001) and mean arterial pressure (P < 0.01) decreased following CPAP treatment. Daytime mean SpO2 (P < 0.05) increased. Conclusion. Our study demonstrates that CPAP therapy yields clinical benefits by reducing upper airway inflammation and oxidative stress in OSA patients. PMID:27445526

  8. Effect of Continuous Positive Airway Pressure on Airway Inflammation and Oxidative Stress in Patients with Obstructive Sleep Apnea.

    PubMed

    Tichanon, Promsrisuk; Wilaiwan, Khrisanapant; Sopida, Santamit; Orapin, Pasurivong; Watchara, Boonsawat; Banjamas, Intarapoka

    2016-01-01

    Background. Airway inflammation and oxidative stress may be linked in obstructive sleep apnea (OSA) patients. We determined the effectiveness of continuous positive airway pressure (CPAP) therapy in reducing fractional exhaled nitric oxide (FeNO) and malondialdehyde (MDA) levels in OSA patients. Methods. Thirteen patients with OSA and 13 normal controls were recruited. FeNO and MDA levels were measured in the controls and in OSA patients before and after three months of CPAP therapy. Results. FeNO and MDA levels were higher in the patients compared to the age and gender matched controls (FeNO: 25.9 ± 5.0 versus 17.5 ± 5.9 ppb, P < 0.001; MDA: 14.6 ± 7.8 versus 2.1 ± 0.3 μmol/L, P < 0.001). FeNO and MDA levels were lower post-CPAP compared to pre-CPAP (FeNO: 25.9 ± 5.0 versus 17.0 ± 2.3 ppb, P < 0.001; MDA: 14.6 ± 7.8 versus 10.0 ± 6.4 μmol/L, P < 0.01). Apnea-hypopnea index (15.9 ± 6.6 versus 4.1 ± 2.1/h, P < 0.001) and mean arterial pressure (P < 0.01) decreased following CPAP treatment. Daytime mean SpO2 (P < 0.05) increased. Conclusion. Our study demonstrates that CPAP therapy yields clinical benefits by reducing upper airway inflammation and oxidative stress in OSA patients.

  9. Wood Smoke Enhances Cigarette Smoke–Induced Inflammation by Inducing the Aryl Hydrocarbon Receptor Repressor in Airway Epithelial Cells

    PubMed Central

    Awji, Elias G.; Chand, Hitendra; Bruse, Shannon; Smith, Kevin R.; Colby, Jennifer K.; Mebratu, Yohannes; Levy, Bruce D.

    2015-01-01

    Our previous studies showed that cigarette smokers who are exposed to wood smoke (WS) are at an increased risk for chronic bronchitis and reduced lung function. The present study was undertaken to determine the mechanisms for WS-induced adverse effects. We studied the effect of WS exposure using four cohorts of mice. C57Bl/6 mice were exposed for 4 or 12 weeks to filtered air, to 10 mg/m3 WS for 2 h/d, to 250 mg/m3 cigarette smoke (CS) for 6 h/d, or to CS followed by WS (CW). Inflammation was absent in the filtered air and WS groups, but enhanced by twofold in the bronchoalveolar lavage of the CW compared with CS group as measured by neutrophil numbers and levels of the neutrophil chemoattractant, keratinocyte-derived chemokine. The levels of the anti-inflammatory lipoxin, lipoxin A4, were reduced by threefold along with cyclo-oxygenase (COX)-2 and microsomal prostaglandin E synthase (mPGES)-1 in airway epithelial cells and PGE2 levels in the bronchoalveolar lavage of CW compared with CS mice. We replicated, in primary human airway epithelial cells, the changes observed in mice. Immunoprecipitations showed that WS blocked the interaction of aryl hydrocarbon receptor (AHR) with AHR nuclear transporter to reduce expression of COX-2 and mPGES-1 by increasing expression of AHR repressor (AHRR). Collectively, these studies show that exposure to low concentrations of WS enhanced CS-induced inflammation by inducing AHRR expression to suppress AHR, COX-2, and mPGES-1 expression, and levels of PGE2 and lipoxin A4. Therefore, AHRR is a potential therapeutic target for WS-associated exacerbations of CS-induced inflammation. PMID:25137396

  10. [Effects of once-daily low-dose administration of sustained-release theophylline on airway inflammation and airway hyperresponsiveness in patients with asthma].

    PubMed

    Terao, Ichiro

    2002-04-01

    Bronchial asthma is eosinophilic airway inflammation with enhanced airway responsiveness induced by eosinophilic granule proteins such as eosinophilic cationic protein (ECP) that are released from eosinophils. In the present study using 30 outpatients with mild to moderate asthma who had no history of treatment with steroid inhalation, we examined the effects of 4-week low-dose (200 mg/day) treatment with Uniphyl Tablets, a sustained-release theophylline formulated for once-daily dosing, on airway inflammation and airway hyperresponsiveness, as well as on respiratory function. Uniphyl Tablets significantly (p < 0.01) decreased peripheral blood eosinophil count from 647.00 to 444.17/mm3 and ECP level (geometric mean) from 1318 to 741 ng/ml and improved airway hyperresponsiveness as indicated by a decrease in airway hyperresponsiveness (Dmin, geometric mean) from 1.15 to 6.70 units. FEV1.0 and PEF showed statistically significant (p < 0.01) improvement from 2.39 to 2.69 L and from 6.21 to 7.14 L/sec, respectively. V25 and V50 also showed statistically significant (p < 0.05) improvement. Mean blood theophylline concentration at the time the improvements were seen was 3.95 mg/mL. These results suggest that low-dose administration of Uniphyl Tablets has anti-airway inflammatory and anti-airway hyperresponsiveness effects in mild to moderate asthmatic patients.

  11. DEPOSITION DISTRICUTION AMONG THE PARALLEL PATHWAYS IN THE HUMAN LUNG CONDUCTING AIRWAY STRUCTURE.

    EPA Science Inventory

    DEPOSITION DISTRIBUTION AMONG THE PARALLEL PATHWAYS IN THE HUMAN LUNG CONDUCTING AIRWAY STRUCTURE. Chong S. Kim*, USEPA National Health and Environmental Effects Research Lab. RTP, NC 27711; Z. Zhang and C. Kleinstreuer, Department of Mechanical and Aerospace Engineering, North C...

  12. Chronic obstructive pulmonary disease and asthma-associated Proteobacteria, but not commensal Prevotella spp., promote Toll-like receptor 2-independent lung inflammation and pathology.

    PubMed

    Larsen, Jeppe M; Musavian, Hanieh S; Butt, Tariq M; Ingvorsen, Camilla; Thysen, Anna H; Brix, Susanne

    2015-02-01

    Recent studies of healthy human airways have revealed colonization by a distinct commensal bacterial microbiota containing Gram-negative Prevotella spp. However, the immunological properties of these bacteria in the respiratory system remain unknown. Here we compare the innate respiratory immune response to three Gram-negative commensal Prevotella strains (Prevotella melaninogenica, Prevotella nanceiensis and Prevotella salivae) and three Gram-negative pathogenic Proteobacteria known to colonize lungs of patients with chronic obstructive pulmonary disease (COPD) and asthma (Haemophilus influenzae B, non-typeable Haemophilus influenzae and Moraxella catarrhalis). The commensal Prevotella spp. and pathogenic Proteobacteria were found to exhibit intrinsic differences in innate inflammatory capacities on murine lung cells in vitro. In vivo in mice, non-typeable H. influenzae induced severe Toll-like receptor 2 (TLR2)-independent COPD-like inflammation characterized by predominant airway neutrophilia, expression of a neutrophilic cytokine/chemokine profile in lung tissue, and lung immunopathology. In comparison, P. nanceiensis induced a diminished neutrophilic airway inflammation and no detectable lung pathology. Interestingly, the inflammatory airway response to the Gram-negative bacteria P. nanceiensis was completely TLR2-dependent. These findings demonstrate weak inflammatory properties of Gram-negative airway commensal Prevotella spp. that may make colonization by these bacteria tolerable by the respiratory immune system.

  13. Calcium-sensing receptor antagonists abrogate airway hyperresponsiveness and inflammation in allergic asthma

    PubMed Central

    Yarova, Polina L.; Stewart, Alecia L.; Sathish, Venkatachalem; Britt, Rodney D; Thompson, Michael A.; Lowe, Alexander P. P.; Freeman, Michelle; Aravamudan, Bharathi; Kita, Hirohito; Brennan, Sarah C.; Schepelmann, Martin; Davies, Thomas; Yung, Sun; Cholisoh, Zakky; Kidd, Emma J.; Ford, William R.; Broadley, Kenneth J.; Rietdorf, Katja; Chang, Wenhan; Khayat, Mohd E. Bin; Ward, Donald T.; Corrigan, Christopher J.; Ward, Jeremy P. T.; Kemp, Paul J.; Pabelick, Christina M.; Prakash, Y. S.; Riccardi, Daniela

    2016-01-01

    Airway hyperresponsiveness and inflammation are fundamental hallmarks of allergic asthma that are accompanied by increases in certain polycations, such as eosinophil cationic protein. Levels of these cations in body fluids correlate with asthma severity. We show that polycations and elevated extracellular calcium activate the human recombinant and native calcium-sensing receptor (CaSR), leading to intracellular calcium mobilization, cyclic adenosine monophosphate breakdown, and p38 mitogen-activated protein kinase phosphorylation in airway smooth muscle (ASM) cells. These effects can be prevented by CaSR antagonists, termed calcilytics. Moreover, asthmatic patients and allergen-sensitized mice expressed more CaSR in ASMs than did their healthy counterparts. Indeed, polycations induced hyper-reactivity in mouse bronchi, and this effect was prevented by calcilytics and absent in mice with CaSR ablation from ASM. Calcilytics also reduced airway hyperresponsiveness and inflammation in allergen-sensitized mice in vivo. These data show that a functional CaSR is up-regulated in asthmatic ASM and targeted by locally produced polycations to induce hyperresponsiveness and inflammation. Thus, calcilytics may represent effective asthma therapeutics. PMID:25904744

  14. Effect of the oral thrombin inhibitor dabigatran on allergic lung inflammation induced by repeated house dust mite administration in mice.

    PubMed

    de Boer, Johannes D; Berkhout, Lea C; de Stoppelaar, Sacha F; Yang, Jack; Ottenhoff, Roelof; Meijers, Joost C M; Roelofs, Joris J T H; van't Veer, Cornelis; van der Poll, Tom

    2015-10-15

    Asthma is a chronic disease of the airways; asthma patients are hampered by recurrent symptoms of dyspnoea and wheezing caused by bronchial obstruction. Most asthma patients suffer from chronic allergic lung inflammation triggered by allergens such as house dust mite (HDM). Coagulation activation in the pulmonary compartment is currently recognized as a feature of allergic lung inflammation, and data suggest that coagulation proteases further drive inflammatory mechanisms. Here, we tested whether treatment with the oral thrombin inhibitor dabigatran attenuates allergic lung inflammation in a recently developed HDM-based murine asthma model. Mice were fed dabigatran (10 mg/g) or placebo chow during a 3-wk HDM airway exposure model. Dabigatran treatment caused systemic thrombin inhibitory activity corresponding with dabigatran levels reported in human trials. Surprisingly, dabigatran did not lead to inhibition of HDM-evoked coagulation activation in the lung as measured by levels of thrombin-antithrombin complexes and D-dimer. Repeated HDM administration caused an influx of eosinophils and neutrophils into the lungs, mucus production in the airways, and a T helper 2 response, as reflected by a rise in bronchoalveolar IL-4 and IL-5 levels and a systemic rise in IgE and HDM-IgG1. Dabigatran modestly improved HDM-induced lung pathology (P < 0.05) and decreased IL-4 levels (P < 0.01), without influencing other HDM-induced responses. Considering the limited effects of dabigatran in spite of adequate plasma levels, these results argue against clinical evaluation of dabigatran in patients with asthma.

  15. Systemic Administration of Human Bone Marrow-Derived Mesenchymal Stromal Cell Extracellular Vesicles Ameliorates Aspergillus Hyphal Extract-Induced Allergic Airway Inflammation in Immunocompetent Mice

    PubMed Central

    Cruz, Fernanda F.; Borg, Zachary D.; Goodwin, Meagan; Sokocevic, Dino; Wagner, Darcy E.; Coffey, Amy; Antunes, Mariana; Robinson, Kristen L.; Mitsialis, S. Alex; Kourembanas, Stella; Thane, Kristen; Hoffman, Andrew M.; McKenna, David H.; Rocco, Patricia R.M.

    2015-01-01

    An increasing number of studies demonstrate that administration of either conditioned media (CM) or extracellular vesicles (EVs) released by mesenchymal stromal cells (MSCs) derived from bone marrow and other sources are as effective as the MSCs themselves in mitigating inflammation and injury. The goal of the current study was to determine whether xenogeneic administration of CM or EVs from human bone marrow-derived MSCs would be effective in a model of mixed Th2/Th17, neutrophilic-mediated allergic airway inflammation, reflective of severe refractory asthma, induced by repeated mucosal exposure to Aspergillus hyphal extract (AHE) in immunocompetent C57Bl/6 mice. Systemic administration of both CM and EVs isolated from human and murine MSCs, but not human lung fibroblasts, at the onset of antigen challenge in previously sensitized mice significantly ameliorated the AHE-provoked increases in airway hyperreactivity (AHR), lung inflammation, and the antigen-specific CD4 T-cell Th2 and Th17 phenotype. Notably, both CM and EVs from human MSCs (hMSCs) were generally more potent than those from mouse MSCs (mMSCs) in most of the outcome measures. The weak cross-linking agent 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride was found to inhibit release of both soluble mediators and EVs, fully negating effects of systemically administered hMSCs but only partly inhibited the ameliorating effects of mMSCs. These results demonstrate potent xenogeneic effects of CM and EVs from hMSCs in an immunocompetent mouse model of allergic airway inflammation and they also show differences in mechanisms of action of hMSCs versus mMSCs to mitigate AHR and lung inflammation in this model. Significance There is a growing experience demonstrating benefit of mesenchymal stromal cell (MSC)-based cell therapies in preclinical models of asthma. In the current study, conditioned media (CM) and, in particular, the extracellular vesicle fraction obtained from the CM were as potent as the

  16. Nedocromil sodium and airway inflammation in vivo and in vitro.

    PubMed

    Devalia, J L; Rusznak, C; Abdelaziz, M M; Davies, R J

    1996-11-01

    We conducted a series of studies investigating the antiinflammatory effects of nedocromil sodium, with particular reference to its effects on human bronchial epithelial cells and eosinophils in vitro and on eosinophils in vivo. Nedocromil sodium produced a dose-related inhibition of ozone-induced IL-8 release from human bronchial epithelial cells and also attenuated the release of granulocyte macrophage colony-stimulating factor, tumor necrosis factor-alpha, and soluble intercellular adhesion molecule 1. The culture medium from human bronchial epithelial cell cultures, containing the proinflammatory cytokines IL-8, granulocyte macrophage colony-stimulating factor, "regulated on activation, normal T expressed and secreted," IL-1 beta, and tumor necrosis factor-alpha, increased eosinophil chemotaxis and eosinophil adhesion to cultured human endothelial cells. The chemotaxis and increased adhesion were blocked in the presence of nedocromil sodium. The drug also abrogated the epithelial cell dysfunction (assessed as ciliary beat frequency) induced by the presence of activated eosinophils and blocked the release of eosinophil cationic protein from the eosinophils. We also conducted a double-blind placebo-controlled study of the effects of regular albuterol 200 micrograms or nedocromil sodium 4 mg, both given four times daily for 16 weeks, on inflammatory cell numbers in bronchial biopsy and bronchoalveolar lavage samples. Assessed in terms of total and activated eosinophils in biopsy samples, inflammation decreased with nedocromil sodium and was significantly different from a deterioration with albuterol, although neither of these changes was significantly different from that with placebo treatment. Levels of eosinophil cationic protein in bronchoalveolar lavage samples showed a similar trend.

  17. Size effects of latex nanomaterials on lung inflammation in mice

    SciTech Connect

    Inoue, Ken-ichiro Takano, Hirohisa; Yanagisawa, Rie; Koike, Eiko; Shimada, Akinori

    2009-01-01

    Effects of nano-sized materials (nanomaterials) on sensitive population have not been well elucidated. This study examined the effects of pulmonary exposure to (latex) nanomaterials on lung inflammation related to lipopolysaccharide (LPS) or allergen in mice, especially in terms of their size-dependency. In protocol 1, ICR male mice were divided into 8 experimental groups that intratracheally received a single exposure to vehicle, latex nanomaterials (250 {mu}g/animal) with three sizes (25, 50, and 100 nm), LPS (75 {mu}g/animal), or LPS plus latex nanomaterials. In protocol 2, ICR male mice were divided into 8 experimental groups that intratracheally received repeated exposure to vehicle, latex nanomaterials (100 {mu}g/animal), allergen (ovalbumin: OVA; 1 {mu}g/animal), or allergen plus latex nanomaterials. In protocol 1, latex nanomaterials with all sizes exacerbated lung inflammation elicited by LPS, showing an overall trend of amplified lung expressions of proinflammatory cytokines. Furthermore, LPS plus nanomaterials, especially with size less than 50 nm, significantly elevated circulatory levels of fibrinogen, macrophage chemoattractant protein-1, and keratinocyte-derived chemoattractant, and von Willebrand factor as compared with LPS alone. The enhancement tended overall to be greater with the smaller nanomaterials than with the larger ones. In protocol 2, latex nanomaterials with all sizes did not significantly enhance the pathophysiology of allergic asthma, characterized by eosinophilic lung inflammation and Igs production, although latex nanomaterials with less than 50 nm significantly induced/enhanced neutrophilic lung inflammation. These results suggest that latex nanomaterials differentially affect two types of (innate and adaptive immunity-dominant) lung inflammation.

  18. Airway inflammation and IgE production induced by dust mite allergen-specific memory/effector Th2 cell line can be effectively attenuated by IL-35.

    PubMed

    Huang, Chiung-Hui; Loo, Evelyn Xiu-Ling; Kuo, I-Chun; Soh, Gim Hooi; Goh, Denise Li-Meng; Lee, Bee Wah; Chua, Kaw Yan

    2011-07-01

    CD4(+) memory/effector T cells play a central role in orchestrating the rapid and robust immune responses upon re-encounter with specific Ags. However, the immunologic mechanism(s) underlying these responses are still not fully understood. To investigate this, we generated an allergen (major house dust mite allergen, Blo t 5)-specific murine Th2 cell line that secreted IL-4, IL-5, IL-10, and IL-13, but not IL-9 or TNF-α, upon activation by the cognate Ag. These cells also exhibited CD44(high)CD62L(-) and CD127(+) (IL-7Rα(+)) phenotypes, which are characteristics of memory/effector T cells. Experiments involving adoptive transfer of this Th2 cell line in mice, followed by three intranasal challenges with Blo t 5, induced a dexamethasone-sensitive eosinophilic airway inflammation. This was accompanied by elevation of Th2 cytokines and CC- and CXC-motif chemokines, as well as recruitment of lymphocytes and polymorphic mononuclear cells into the lungs. Moreover, Blo t 5-specific IgE was detected 4 d after the last intranasal challenge, whereas elevation of Blo t 5-specific IgG1 was found at week two. Finally, pulmonary delivery of the pVAX-IL-35 DNA construct effectively downregulated Blo t 5-specific allergic airway inflammation, and i.m. injection of pVAX-IL-35 led to long-lasting suppression of circulating Blo t 5-specific and total IgE. This model provides a robust research tool to elucidate the immunopathogenic role of memory/effector Th2 cells in allergic airway inflammation. Our results suggested that IL-35 could be a potential therapeutic target for allergic asthma through its attenuating effects on allergen-specific CD4(+) memory/effector Th2 cell-mediated airway inflammation.

  19. Dermatophagoides pteronyssinus group 2 allergen bound to 8-OH modified adenine reduces the Th2-mediated airway inflammation without inducing a Th17 response and autoimmunity.

    PubMed

    Pratesi, Sara; Nencini, Francesca; Filì, Lucia; Occhiato, Ernesto G; Romagnani, Sergio; Parronchi, Paola; Maggi, Enrico; Vultaggio, Alessandra

    2016-09-01

    8-OH modified adenine bound to Dermatophagoides pteronyssinus group 2 (nDer p2-Conj), a novel allergen-TLR7 agonist conjugate, improves murine airway inflammation in priming and therapeutic settings, however no data are known on the activity of this construct on Th17 cells. The aim of the study was to evaluate if nDer p2-Conj elicited in vivo Th17 cells and Th17-driven autoimmune responses, by using both short- and long-term priming and therapeutic protocols in a nDer p2-driven model of murine airway inflammation. The conjugate induced the in vitro production of cytokines favouring the Th17 polarization by bone marrow-derived dendritic cells. In short-term protocols, the priming or treatment with the conjugate ameliorated the airway inflammation by shifting Th2 allergen-specific cells into T cells producing IFN-γ, IL-10, but not IL-17A. Similar results were found in long-term protocol where the conjugate down-regulated airway inflammation without any evidence of autoimmune response and B cell compartment expansion. nDer p2-Conj also failed to shorten the spontaneous onset of diabetes on conjugates-primed NOD/LtJ mice. We found that neutrophils in BALF, ROR-γt and IL-17A expression in lungs were increased in conjugate-treated IL-10KO mice. These data emphasize the role of conjugate-driven IL-10 production, which can regulate the activity of memory Th17 cells and prevent the onset of autoimmune response. PMID:27475304

  20. Effect of Obesity on Acute Ozone-Induced Changes in Airway Function, Reactivity, and Inflammation in Adult Females

    PubMed Central

    Bennett, William D.; Ivins, Sally; Alexis, Neil E.; Wu, Jihong; Bromberg, Philip A.; Brar, Sukhdev S.; Travlos, Gregory; London, Stephanie J.

    2016-01-01

    We previously observed greater ozone-induced lung function decrements in obese than non-obese women. Animal models suggest that obesity enhances ozone-induced airway reactivity and inflammation. In a controlled exposure study, we compared the acute effect of randomized 0.4ppm ozone and air exposures (2 h with intermittent light exercise) in obese (N = 20) (30Inflammation and obesity markers were assessed in the blood (pre, 4h post, and 20h post exposures) and induced-sputum (4h post-exposures and on 24h pre-exposure training day, no exercise): measures of C reactive protein (CRP) (blood only), leptin (blood only), adiponectin, interleukins IL-6, IL-1b, and IL-8, and tumor necrosis factor alpha, and sputum cell differential cell counts. The pre- to post-exposure decrease in forced vital capacity after ozone (adjusted for the change after air exposure) was significantly greater in the obese group (12.5+/-7.5 vs. 8.0+/-5.8%, p<0.05). Post ozone exposure, 6 obese and 6 non-obese subjects responded to methacholine at ≤ 10mg/ml (the maximum dose); the degree of hyperresponsiveness was similar for the two groups. Both BMI groups showed similar and significant ozone-induced increases in sputum neutrophils. Plasma IL-6 was increased by exercise (4 hr post air exposure vs. pre) only in the obese but returned to pre-air exposure levels at 20hr post-exposure. Plasma IL-6 was significantly increased at 4hr post ozone exposure in both groups and returned to pre-exposure levels by 20h post-exposure. These results confirm our previous findings of greater post-ozone spirometric decrements in obese young women. However, acute ozone-induced airway reactivity to methacholine and airway inflammation did not differ by obesity at the exposure and exercise levels used. PMID:27513854

  1. Effect of Obesity on Acute Ozone-Induced Changes in Airway Function, Reactivity, and Inflammation in Adult Females.

    PubMed

    Bennett, William D; Ivins, Sally; Alexis, Neil E; Wu, Jihong; Bromberg, Philip A; Brar, Sukhdev S; Travlos, Gregory; London, Stephanie J

    2016-01-01

    We previously observed greater ozone-induced lung function decrements in obese than non-obese women. Animal models suggest that obesity enhances ozone-induced airway reactivity and inflammation. In a controlled exposure study, we compared the acute effect of randomized 0.4ppm ozone and air exposures (2 h with intermittent light exercise) in obese (N = 20) (30Inflammation and obesity markers were assessed in the blood (pre, 4h post, and 20h post exposures) and induced-sputum (4h post-exposures and on 24h pre-exposure training day, no exercise): measures of C reactive protein (CRP) (blood only), leptin (blood only), adiponectin, interleukins IL-6, IL-1b, and IL-8, and tumor necrosis factor alpha, and sputum cell differential cell counts. The pre- to post-exposure decrease in forced vital capacity after ozone (adjusted for the change after air exposure) was significantly greater in the obese group (12.5+/-7.5 vs. 8.0+/-5.8%, p<0.05). Post ozone exposure, 6 obese and 6 non-obese subjects responded to methacholine at ≤ 10mg/ml (the maximum dose); the degree of hyperresponsiveness was similar for the two groups. Both BMI groups showed similar and significant ozone-induced increases in sputum neutrophils. Plasma IL-6 was increased by exercise (4 hr post air exposure vs. pre) only in the obese but returned to pre-air exposure levels at 20hr post-exposure. Plasma IL-6 was significantly increased at 4hr post ozone exposure in both groups and returned to pre-exposure levels by 20h post-exposure. These results confirm our previous findings of greater post-ozone spirometric decrements in obese young women. However, acute ozone-induced airway reactivity to methacholine and airway inflammation did not differ by obesity at the exposure and exercise levels used. PMID:27513854

  2. Lung hyperinflation and its reversibility in patients with airway obstruction of varying severity.

    PubMed

    Deesomchok, Athavudh; Webb, Katherine A; Forkert, Lutz; Lam, Yuk-Miu; Ofir, Dror; Jensen, Dennis; O'Donnell, Denis E

    2010-12-01

    The natural history of lung hyperinflation in patients with airway obstruction is unknown. In particular, little information exists about the extent of air trapping and its reversibility to bronchodilator therapy in those with mild airway obstruction. We completed a retrospective analysis of data from individuals with airway obstruction who attended our pulmonary function laboratory and had plethysmographic lung volume measurements pre- and post-bronchodilator (salbutamol). COPD was likely the predominant diagnosis but patients with asthma may have been included. We studied 2,265 subjects (61% male), age 65 ± 9 years (mean ± SD) with a post-bronchodilator FEV(1)/FVC <0.70. We examined relationships between indices of airway obstruction and lung hyperinflation, and measured responses to bronchodilation across subgroups stratified by GOLD criteria. In GOLD stage I, vital capacity (VC) and inspiratory capacity (IC) were in the normal range; pre-bronchodilator residual volume (RV), functional residual capacity (FRC) and specific airway resistance were increased to 135%, 119% and 250% of predicted, respectively. For the group as a whole, RV and FRC increased exponentially as FEV(1) decreased, while VC and IC decreased linearly. Regardless of baseline FEV(1), the most consistent improvement following bronchodilation was RV reduction, in terms of magnitude and responder rate. In conclusion, increases (above normal) in airway resistance and plethysmographic lung volumes were found in those with only minor airway obstruction. Indices of lung hyperinflation increased exponentially as airway obstruction worsened. Those with the greatest resting lung hyperinflation showed the largest bronchodilator-induced volume deflation effects. Reduced air trapping was the predominant response to acute bronchodilation across severity subgroups.

  3. Viral bronchiolitis in young rats causes small airway lesions that correlate with reduced lung function.

    PubMed

    Sorkness, Ronald L; Szakaly, Renee J; Rosenthal, Louis A; Sullivan, Ruth; Gern, James E; Lemanske, Robert F; Sun, Xin

    2013-11-01

    Viral illness with wheezing during infancy is associated with the inception of childhood asthma. Small airway dysfunction is a component of childhood asthma, but little is known about how viral illness at an early age may affect the structure and function of small airways. We used a well-characterized rat model of postbronchiolitis chronic airway dysfunction to address how postinfectious small airway lesions affect airway physiological function and if the structure/function correlates persist into maturity. Brown Norway rats were sham- or virus inoculated at 3 to 4 weeks of age and allowed to recover from the acute illness. At 3 to 14 months of age, physiology (respiratory system resistance, Newtonian resistance, tissue damping, and static lung volumes) was assessed in anesthetized, intubated rats. Serial lung sections revealed lesions in the terminal bronchioles that reduced luminal area and interrupted further branching, affecting 26% (range, 13-39%) of the small airways at 3 months of age and 22% (range, 6-40%) at 12 to 14 months of age. At 3 months of age (n = 29 virus; n = 7 sham), small airway lesions correlated with tissue damping (rs = 0.69) but not with Newtonian resistance (rs = 0.23), and Newtonian resistance was not elevated compared with control rats, indicating that distal airways were primarily responsible for the airflow obstruction. Older rats (n = 7 virus; n = 6 sham) had persistent small airway dysfunction and significantly increased Newtonian resistance in the postbronchiolitis group. We conclude that viral airway injury at an early age may induce small airway lesions that are associated quantitatively with small airway physiological dysfunction early on and that these defects persist into maturity.

  4. Cannabidiol improves lung function and inflammation in mice submitted to LPS-induced acute lung injury.

    PubMed

    Ribeiro, A; Almeida, V I; Costola-de-Souza, C; Ferraz-de-Paula, V; Pinheiro, M L; Vitoretti, L B; Gimenes-Junior, J A; Akamine, A T; Crippa, J A; Tavares-de-Lima, W; Palermo-Neto, J

    2015-02-01

    We have previously shown that the prophylactic treatment with cannabidiol (CBD) reduces inflammation in a model of acute lung injury (ALI). In this work we analyzed the effects of the therapeutic treatment with CBD in mice subjected to the model of lipopolysaccharide (LPS)-induced ALI on pulmonary mechanics and inflammation. CBD (20 and 80 mg/kg) was administered (i.p.) to mice 6 h after LPS-induced lung inflammation. One day (24 h) after the induction of inflammation the assessment of pulmonary mechanics and inflammation were analyzed. The results show that CBD decreased total lung resistance and elastance, leukocyte migration into the lungs, myeloperoxidase activity in the lung tissue, protein concentration and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) in the bronchoalveolar lavage supernatant. Thus, we conclude that CBD administered therapeutically, i.e. during an ongoing inflammatory process, has a potent anti-inflammatory effect and also improves the lung function in mice submitted to LPS-induced ALI. Therefore the present and previous data suggest that in the future cannabidiol might become a useful therapeutic tool for the attenuation and treatment of inflammatory lung diseases.

  5. Enlightened Mannhemia haemolytica lung inflammation in bovinized mice

    PubMed Central

    2014-01-01

    Polymorphonuclear cells diapedesis has an important contribution to the induced Mannhemia haemolytica (M. haemolytica) infection lung inflammation and IL-8 is the primary polymorphonuclear chemoattractant. Using a bovine IL-8/luciferase transiently transgenized mouse model, the orchestration among M. haemolytica, IL-8 promoter activation and neutrophilia was followed in real time by in vivo image analysis. PMID:24460618

  6. Dasatinib Reduces Lung Inflammation and Fibrosis in Acute Experimental Silicosis

    PubMed Central

    Cruz, Fernanda Ferreira; Horta, Lucas Felipe Bastos; Maia, Lígia de Albuquerque; Lopes-Pacheco, Miquéias; da Silva, André Benedito; Morales, Marcelo Marco; Gonçalves-de-Albuquerque, Cassiano Felippe; Takiya, Christina Maeda; de Castro-Faria-Neto, Hugo Caire; Rocco, Patricia Rieken Macedo

    2016-01-01

    Silicosis is an occupational lung disease with no effective treatment. We hypothesized that dasatinib, a tyrosine kinase inhibitor, might exhibit therapeutic efficacy in silica-induced pulmonary fibrosis. Silicosis was induced in C57BL/6 mice by a single intratracheal administration of silica particles, whereas the control group received saline. After 14 days, when the disease was already established, animals were randomly assigned to receive DMSO or dasatinib (1 mg/kg) by oral gavage, twice daily, for 14 days. On day 28, lung morphofunction, inflammation, and remodeling were investigated. RAW 264.7 cells (a macrophage cell line) were incubated with silica particles, followed by treatment or not with dasatinib, and evaluated for macrophage polarization. On day 28, dasatinib improved lung mechanics, increased M2 macrophage counts in lung parenchyma and granuloma, and was associated with reduction of fraction area of granuloma, fraction area of collapsed alveoli, protein levels of tumor necrosis factor-α, interleukin-1β, transforming growth factor-β, and reduced neutrophils, M1 macrophages, and collagen fiber content in lung tissue and granuloma in silicotic animals. Additionally, dasatinib reduced expression of iNOS and increased expression of arginase and metalloproteinase-9 in silicotic macrophages. Dasatinib was effective at inducing macrophage polarization toward the M2 phenotype and reducing lung inflammation and fibrosis, thus improving lung mechanics in a murine model of acute silicosis. PMID:26789403

  7. Intranasal Administration of Recombinant Mycobacterium smegmatis Inducing IL-17A Autoantibody Attenuates Airway Inflammation in a Murine Model of Allergic Asthma.

    PubMed

    Xu, Wanting; Chen, Ling; Guo, Sheng; Wu, Liangxia; Zhang, Jianhua

    2016-01-01

    Asthma is a chronic inflammatory disorder, previous studies have shown that IL-17A contributes to the development of asthma, and there is a positive correlation between the level of IL-17A and the severity of disease. Here, we constructed recombinant Mycobacterium smegmatis expressing fusion protein Ag85A-IL-17A (rMS-Ag85a-IL-17a) and evaluated whether it could attenuate allergic airway inflammation, and further investigated the underlying mechanism. In this work, the murine model of asthma was established with ovalbumin, and mice were intranasally vaccinated with rMS-Ag85a-IL-17a. Autoantibody of IL-17A in sera was detected, and the airway inflammatory cells infiltration, the local cytokines and chemokines production and the histopathological changes of lung tissue were investigated. We found that the administration of rMS-Ag85a-IL-17a induced the autoantibody of IL-17A in sera. The vaccination of rMS-Ag85a-IL-17a remarkably reduced the infiltration of inflammatory cells and the secretion of mucus in lung tissue and significantly decreased the numbers of the total cells, eosinophils and neutrophils in BALF. Th1 cells count in spleen, Th1 cytokine levels in BALF and supernatant of splenocytes and mediastinal lymph nodes, and T-bet mRNA in lung tissue were significantly increased with rMS-Ag85a-IL-17a administration. Meanwhile, rMS-Ag85a-IL-17a vaccination markedly decreased Th2 cells count, Th2 cytokine and Th17 cytokine levels in BALF and supernatant of splenocytes and mediastinal lymph nodes, and chemokines mRNA expression in lung tissue. These data confirmed that recombinant Mycobacterium smegmatis in vivo could induce autoantibody of IL-17A, which attenuated asthmatic airway inflammation.

  8. Intranasal Administration of Recombinant Mycobacterium smegmatis Inducing IL-17A Autoantibody Attenuates Airway Inflammation in a Murine Model of Allergic Asthma.

    PubMed

    Xu, Wanting; Chen, Ling; Guo, Sheng; Wu, Liangxia; Zhang, Jianhua

    2016-01-01

    Asthma is a chronic inflammatory disorder, previous studies have shown that IL-17A contributes to the development of asthma, and there is a positive correlation between the level of IL-17A and the severity of disease. Here, we constructed recombinant Mycobacterium smegmatis expressing fusion protein Ag85A-IL-17A (rMS-Ag85a-IL-17a) and evaluated whether it could attenuate allergic airway inflammation, and further investigated the underlying mechanism. In this work, the murine model of asthma was established with ovalbumin, and mice were intranasally vaccinated with rMS-Ag85a-IL-17a. Autoantibody of IL-17A in sera was detected, and the airway inflammatory cells infiltration, the local cytokines and chemokines production and the histopathological changes of lung tissue were investigated. We found that the administration of rMS-Ag85a-IL-17a induced the autoantibody of IL-17A in sera. The vaccination of rMS-Ag85a-IL-17a remarkably reduced the infiltration of inflammatory cells and the secretion of mucus in lung tissue and significantly decreased the numbers of the total cells, eosinophils and neutrophils in BALF. Th1 cells count in spleen, Th1 cytokine levels in BALF and supernatant of splenocytes and mediastinal lymph nodes, and T-bet mRNA in lung tissue were significantly increased with rMS-Ag85a-IL-17a administration. Meanwhile, rMS-Ag85a-IL-17a vaccination markedly decreased Th2 cells count, Th2 cytokine and Th17 cytokine levels in BALF and supernatant of splenocytes and mediastinal lymph nodes, and chemokines mRNA expression in lung tissue. These data confirmed that recombinant Mycobacterium smegmatis in vivo could induce autoantibody of IL-17A, which attenuated asthmatic airway inflammation. PMID:26974537

  9. Vitamin E Isoforms as Modulators of Lung Inflammation

    PubMed Central

    Abdala-Valencia, Hiam; Berdnikovs, Sergejs; Cook-Mills, Joan M.

    2013-01-01

    Asthma and allergic diseases are complex conditions caused by a combination of genetic and environmental factors. Clinical studies suggest a number of protective dietary factors for asthma, including vitamin E. However, studies of vitamin E in allergy commonly result in seemingly conflicting outcomes. Recent work indicates that allergic inflammation is inhibited by supplementation with the purified natural vitamin E isoform α-tocopherol but elevated by the isoform γ-tocopherol when administered at physiological tissue concentrations. In this review, we discuss opposing regulatory effects of α-tocopherol and γ-tocopherol on allergic lung inflammation in clinical trials and in animal studies. A better understanding of the differential regulation of inflammation by isoforms of vitamin E provides a basis towards the design of clinical studies and diets that would effectively modulate inflammatory pathways in lung disease. PMID:24184873

  10. COMPUTER SIMULATIONS OF LUNG AIRWAY STRUCTURES USING DATA-DRIVEN SURFACE MODELING TECHNIQUES

    EPA Science Inventory

    ABSTRACT

    Knowledge of human lung morphology is a subject critical to many areas of medicine. The visualization of lung structures naturally lends itself to computer graphics modeling due to the large number of airways involved and the complexities of the branching systems...

  11. Diverse macrophage populations mediate acute lung inflammation and resolution

    PubMed Central

    King, Landon S.; D'Alessio, Franco R.

    2014-01-01

    Acute respiratory distress syndrome (ARDS) is a devastating disease with distinct pathological stages. Fundamental to ARDS is the acute onset of lung inflammation as a part of the body's immune response to a variety of local and systemic stimuli. In patients surviving the inflammatory and subsequent fibroproliferative stages, transition from injury to resolution and recovery is an active process dependent on a series of highly coordinated events regulated by the immune system. Experimental animal models of acute lung injury (ALI) reproduce key components of the injury and resolution phases of human ARDS and provide a methodology to explore mechanisms and potential new therapies. Macrophages are essential to innate immunity and host defense, playing a featured role in the lung and alveolar space. Key aspects of their biological response, including differentiation, phenotype, function, and cellular interactions, are determined in large part by the presence, severity, and chronicity of local inflammation. Studies support the importance of macrophages to initiate and maintain the inflammatory response, as well as a determinant of resolution of lung inflammation and repair. We will discuss distinct roles for lung macrophages during early inflammatory and late resolution phases of ARDS using experimental animal models. In addition, each section will highlight human studies that relate to the diverse role of macrophages in initiation and resolution of ALI and ARDS. PMID:24508730

  12. Long-Term Effects of Diesel Exhaust Particles on Airway Inflammation and Remodeling in a Mouse Model

    PubMed Central

    Kim, Byeong-Gon; Lee, Pureun-Haneul; Lee, Shin-Hwa; Kim, Young-En; Shin, Mee-Yong; Kang, Yena; Bae, Seong-Hwan; Kim, Min-Jung; Rhim, TaiYoun; Park, Choon-Sik

    2016-01-01

    Purpose Diesel exhaust particles (DEPs) can induce and trigger airway hyperresponsiveness (AHR) and inflammation. The aim of this study was to investigate the effect of long-term DEP exposure on AHR, inflammation, lung fibrosis, and goblet cell hyperplasia in a mouse model. Methods BALB/c mice were exposed to DEPs 1 hour a day for 5 days a week for 3 months in a closed-system chamber attached to a ultrasonic nebulizer (low dose: 100 µg/m3 DEPs, high dose: 3 mg/m3 DEPs). The control group was exposed to saline. Enhanced pause was measured as an indicator of AHR. Animals were subjected to whole-body plethysmography and then sacrificed to determine the performance of bronchoalveolar lavage and histology. Results AHR was higher in the DEP group than in the control group, and higher in the high-dose DEP than in the low-dose DEP groups at 4, 8, and 12 weeks. The numbers of neutrophils and lymphocytes were higher in the high-dose DEP group than in the low-dose DEP group and control group at 4, 8, and 12 weeks. The levels of interleukin (IL)-5, IL-13, and interferon-γ were higher in the low-dose DEP group than in the control group at 12 weeks. The level of IL-10 was higher in the high-dose DEP group than in the control group at 12 weeks. The level of vascular endothelial growth factor was higher in the low-dose and high-dose DEP groups than in the control group at 12 weeks. The level of IL-6 was higher in the low-dose DEP group than in the control group at 12 weeks. The level of transforming growth factor-β was higher in the high-dose DEP group than in the control group at 4, 8, and 12 weeks. The collagen content and lung fibrosis in lung tissue was higher in the high-dose DEP group at 8 and 12 weeks. Conclusions These results suggest that long-term DEP exposure may increase AHR, inflammation, lung fibrosis, and goblet cell hyperplasia in a mouse model. PMID:26922935

  13. Serum amyloid A opposes lipoxin A₄ to mediate glucocorticoid refractory lung inflammation in chronic obstructive pulmonary disease.

    PubMed

    Bozinovski, Steven; Uddin, Mohib; Vlahos, Ross; Thompson, Michelle; McQualter, Jonathan L; Merritt, Anne-Sophie; Wark, Peter A B; Hutchinson, Anastasia; Irving, Louis B; Levy, Bruce D; Anderson, Gary P

    2012-01-17

    Chronic obstructive pulmonary disease (COPD) will soon be the third most common cause of death globally. Despite smoking cessation, neutrophilic mucosal inflammation persistently damages the airways and fails to protect from recurrent infections. This maladaptive and excess inflammation is also refractory to glucocorticosteroids (GC). Here, we identify serum amyloid A (SAA) as a candidate mediator of GC refractory inflammation in COPD. Extrahepatic SAA was detected locally in COPD bronchoalveolar lavage fluid, which correlated with IL-8 and neutrophil elastase, consistent with neutrophil recruitment and activation. Immunohistochemistry detected SAA was in close proximity to airway epithelium, and in vitro SAA triggered release of IL-8 and other proinflammatory mediators by airway epithelial cells in an ALX/FPR2 (formyl peptide receptor 2) receptor-dependent manner. Lipoxin A(4) (LXA(4)) can also interact with ALX/FPR2 receptors and lead to allosteric inhibition of SAA-initiated epithelial responses (pA(2) 13 nM). During acute exacerbation, peripheral blood SAA levels increased dramatically and were disproportionately increased relative to LXA(4). Human lung macrophages (CD68(+)) colocalized with SAA and GCs markedly increased SAA in vitro (THP-1, pEC(50) 43 nM). To determine its direct actions, SAA was administered into murine lung, leading to induction of CXC chemokine ligand 1/2 and a neutrophilic response that was inhibited by 15-epi-LXA(4) but not dexamethasone. Taken together, these findings identify SAA as a therapeutic target for inhibition and implicate SAA as a mediator of GC-resistant lung inflammation that can overwhelm organ protective signaling by lipoxins at ALX/FPR2 receptors.

  14. Spontaneous peristaltic airway contractions propel lung liquid through the bronchial tree of intact and fetal lung explants.

    PubMed

    Schittny, J C; Miserocchi, G; Sparrow, M P

    2000-07-01

    Spontaneous contractions of the fetal airways are a well recognized but poorly characterized phenomenon. In the present study spontaneous narrowing of the airways was analyzed in freshly isolated lungs from early to late gestation in fetal pigs and rabbits and in cultured fetal mouse lungs. Propagating waves of contraction traveling proximal to distal were observed in fresh lungs throughout gestation which displaced the lung liquid along the lumen. In the pseudoglandular and canalicular stages (fetal pigs) the frequency ranged from 2.3 to 3.3 contractions/min with a 39 to 46% maximum reduction of lumen diameter. In the saccular stage (rabbit) the frequency was 10 to 12/min with a narrowing of approximately 30%. In the organ cultures the waves of narrowing started at the trachea in whole lungs, or at the main bronchus in lobes (5.2 +/- 1.5 contractions/min, 22 +/- 8% reduction of lumen diameter), and as they proceeded distally along the epithelial tubes the luminal liquid was shifted toward the terminal tubules, which expanded the endbuds. As the tubules relaxed the flow of liquid was reversed. Thus the behavior of airway smooth muscle in the fetal lung is phasic in type (like gastrointestinal muscle) in contrast to that in postnatal lung, where it is tonic. An intraluminal positive pressure of 2.33 +/- 0.77 cm H(2)O was recorded in rabbit fetal trachea. It is proposed that the active tone of the smooth muscle maintains the positive intraluminal pressure and acts as a stimulus to lung growth via the force exerted across the airway wall and adjacent parenchyma. The expansion of the compliant endbuds by the fluid shifts at the airway tip may promote their growth into the surrounding mesenchyme.

  15. Cigarette Smoke, Bacteria, Mold, Microbial Toxins, and Chronic Lung Inflammation

    PubMed Central

    Pauly, John L.; Paszkiewicz, Geraldine

    2011-01-01

    Chronic inflammation associated with cigarette smoke fosters malignant transformation and tumor cell proliferation and promotes certain nonneoplastic pulmonary diseases. The question arises as to whether chronic inflammation and/or colonization of the airway can be attributed, at least in part, to tobacco-associated microbes (bacteria, fungi, and spores) and/or microbial toxins (endotoxins and mycotoxins) in tobacco. To address this question, a literature search of documents in various databases was performed. The databases included PubMed, Legacy Tobacco Documents Library, and US Patents. This investigation documents that tobacco companies have identified and quantified bacteria, fungi, and microbial toxins at harvest, throughout fermentation, and during storage. Also characterized was the microbial flora of diverse smoking and smokeless tobacco articles. Evidence-based health concerns expressed in investigations of microbes and microbial toxins in cigarettes, cigarette smoke, and smokeless tobacco products are reasonable; they warrant review by regulatory authorities and, if necessary, additional investigation to address scientific gaps. PMID:21772847

  16. Biodegradable antigen-associated PLG nanoparticles tolerize Th2-mediated allergic airway inflammation pre- and postsensitization.

    PubMed

    Smarr, Charles B; Yap, Woon Teck; Neef, Tobias P; Pearson, Ryan M; Hunter, Zoe N; Ifergan, Igal; Getts, Daniel R; Bryce, Paul J; Shea, Lonnie D; Miller, Stephen D

    2016-05-01

    Specific immunotherapy (SIT) is the most widely used treatment for allergic diseases that directly targets the T helper 2 (Th2) bias underlying allergy. However, the most widespread clinical applications of SIT require a long period of dose escalation with soluble antigen (Ag) and carry a significant risk of adverse reactions, particularly in highly sensitized patients who stand to benefit most from a curative treatment. Thus, the development of safer, more efficient methods to induce Ag-specific immune tolerance is critical to advancing allergy treatment. We hypothesized that antigen-associated nanoparticles (Ag-NPs), which we have used to prevent and treat Th1/Th17-mediated autoimmune disease, would also be effective for the induction of tolerance in a murine model of Th2-mediated ovalbumin/alum-induced allergic airway inflammation. We demonstrate here that antigen-conjugated polystyrene (Ag-PS) NPs, although effective for the prophylactic induction of tolerance, induce anaphylaxis in presensitized mice. Antigen-conjugated NPs made of biodegradable poly(lactide-co-glycolide) (Ag-PLG) are similarly effective prophylactically, are well tolerated by sensitized animals, but only partially inhibit Th2 responses when administered therapeutically. PLG NPs containing encapsulated antigen [PLG(Ag)], however, were well tolerated and effectively inhibited Th2 responses and airway inflammation both prophylactically and therapeutically. Thus, we illustrate progression toward PLG(Ag) as a biodegradable Ag carrier platform for the safe and effective inhibition of allergic airway inflammation without the need for nonspecific immunosuppression in animals with established Th2 sensitization. PMID:27091976

  17. Interleukin-8 in airway inflammation in patients with asthma and chronic obstructive pulmonary disease.

    PubMed

    Nocker, R E; Schoonbrood, D F; van de Graaf, E A; Hack, C E; Lutter, R; Jansen, H M; Out, T A

    1996-02-01

    We have investigated whether IL-8 is present in airway secretions from patients with asthma and chronic obstructive pulmonary disease (COPD) to obtain information on its possible role in airway inflammation in obstructive airways disease. In the bronchoalveolar lavage fluid (BALF) from 11 clinically stable patients with asthma the levels of IL-8 were increased compared to 10 healthy subjects (median: controls 21.5 pg/ml, asthma 244 pg/ml: p < 0.005). In the patients with asthma the levels of IL-8 correlated with the percentage neutrophils in the BALF (r = 0.81; p < 0.001) and with a parameter of the permeability of the respiratory membrane, the quotient (alpha 2-macroglobulin in BALF)/(alpha 2-macroglobulin in serum) (r = 0.66; p < 0.025). In the sputum sol phase of 9 patients with symptomatic asthma the levels of IL-8 were lower than in 9 patients with COPD (asthma: 6.4 ng/ml; COPD: 16.3 ng/ml; p < 0.02) and significantly correlated with those of neutrophilic myeloperoxidase (MPO; r = 0.85; p < 0.005). The increased levels of IL-8 in the airway secretions from both patients with asthma and COPD may be markers of an ongoing inflammatory process, which is more pronounced in patients with COPD. In patients with asthma the strong correlation between the levels of IL-8 and the percentage neutrophils and/or the levels of MPO points to a role of IL-8 in the recruitment and activation of neutrophils in the airway lumen.

  18. Intratracheal myriocin enhances allergen‐induced Th2 inflammation and airway hyper‐responsiveness

    PubMed Central

    Edukulla, Ramakrishna; Rehn, Kira Lee; Liu, Bo; McAlees, Jaclyn W.; Hershey, Gurjit K.; Wang, Yui Hsi; Lewkowich, Ian

    2016-01-01

    Introduction Ceramide is the central substrate of sphingolipid metabolism and plays a key role in cellular signal transduction pathways, regulating apoptosis, differentiation, and chemotaxis. Alterations in airway ceramide levels are observed in multiple pulmonary diseases and recent human genetic association studies have linked dysregulation of sphingolipid regulatory genes with asthma pathogenesis. Methods Utilizing myriocin, a potent inhibitor of sphingolipid synthesis, we evaluated the immune regulatory role of de novo ceramide generation in vitro and in vivo. Intratracheal myriocin was administered alone or during house dust mite sensitization (HDM) of BALB/C mice and airway hyper‐responsiveness (AHR) was evaluated by invasive plethysmography followed by bronchial lavage (BAL) cytology and cytokine quantification. Results Myriocin inhibits and HDM exposure activates de novo ceramide synthesis in bone marrow‐derived dendritic cells. Mice receiving intratracheal myriocin developed a mild airway neutrophilic infiltrate without inducing a significant increase in AHR. CXCL1 was elevated in the BAL fluid of myriocin‐treated mice while the neutrophilic chemotactic factors anaphylatoxin C5a, leukotriene B4, and IL‐17 were unaffected. HDM treatment combined with myriocin led to a dramatic enhancement of AHR (63% increase over HDM alone, p < 0.001) and increased granulocyte pulmonary infiltrates versus HDM or myriocin alone. Elevated Th2 T cell counts and Th2 cytokines/chemokines (IL5, IL13, CCL17) were observed in mice treated with combined HDM/myriocin compared to HDM alone. Myriocin‐treated pulmonary CD11c+ cells stimulated with HDM secreted significantly more CXCL1 than cells stimulated with HDM alone while HDM stimulated airway epithelial cells showed no change in CXCL1 secretion following myriocin treatment. Conclusions Intratracheal myriocin, likely acting via ceramide synthesis inhibition, enhances allergen‐induced airway inflammation

  19. Pluripotent Allospecific CD8+ Effector T Cells Traffic to Lung in Murine Obliterative Airway Disease

    PubMed Central

    West, Erin E.; Lavoie, Tera L.; Orens, Jonathan B.; Chen, Edward S.; Ye, Shui Q.; Finkelman, Fred D.; Garcia, Joe G. N.; McDyer, John F.

    2006-01-01

    Long-term success in lung transplantation is limited by obliterative bronchiolitis, whereas T cell effector mechanisms in this process remain incompletely understood. Using the mouse heterotopic allogeneic airway transplant model, we studied T cell effector responses during obliterative airways disease (OAD). Allospecific CD8+IFN-γ+ T cells were detected in airway allografts, with significant coexpression of TNF-α and granzyme B. Therefore, using IFN-γ as a surrogate marker, we assessed the distribution and kinetics of extragraft allo-specific T cells during OAD. Robust allospecific IFN-γ was produced by draining the lymph nodes, spleen, and lung mononuclear cells from allograft, but not isograft recipients by Day 14, and significantly decreased by Day 28. Although the majority of allospecific T cells were CD8+, allospecific CD4+ T cells were also detected in these compartments, with each employing distinct allorecognition pathways. An influx of pluripotent CD8+ effector cells with a memory phenotype were detected in the lung during OAD similar to those seen in the allografts and secondary lymphoid tissue. Antibody depletion of CD8+ T cells markedly reduced airway lumen obliteration and fibrosis at Day 28. Together, these data demonstrate that allospecific CD8+ effector T cells play an important role in OAD and traffic to the lung after heterotopic airway transplant, suggesting that the lung is an important immunologic site, and perhaps a reservoir, for effector cells during the rejection process. PMID:16195540

  20. Semaphorin 7A Aggravates Pulmonary Inflammation during Lung Injury

    PubMed Central

    Schneider, Mariella; Granja, Tiago Folgosa; Rosenberger, Peter

    2016-01-01

    The extent of pulmonary inflammation during lung injury ultimately determines patient outcome. Pulmonary inflammation is initiated by the migration of neutrophils into the alveolar space. Recent work has demonstrated that the guidance protein semaphorin 7A (SEMA7A) influences the migration of neutrophils into hypoxic tissue sites, yet, its role during lung injury is not well understood. Here, we report that the expression of SEMA7A is induced in vitro through pro-inflammatory cytokines. SEMA7A itself induces the production of pro-inflammatory cytokines in endothelial and epithelial cells, enhancing pulmonary inflammation. The induction of SEMA7A facilitates the transendothelial migration of neutrophils. In vivo, animals with deletion of SEMA7A expression showed reduced signs of pulmonary inflammatory changes following lipopolysaccharide challenge. We define here the role of SEMA7A in the development of lung injury and identify a potential pathway to interfere with these detrimental changes. Future anti-inflammatory strategies for the treatment of lung injury might be based on this finding. PMID:26752048

  1. The in vitro generation of lung and airway progenitor cells from human pluripotent stem cells

    PubMed Central

    Huang, Sarah X L; Green, Michael D; de Carvalho, Ana Toste; Mumau, Melanie; Chen, Ya-Wen; D’Souza, Sunita L.; Snoeck, Hans-Willem

    2015-01-01

    Lung and airway epithelial cells generated in vitro from human pluripotent stem cells have applications in regenerative medicine, modeling of lung disease, drug screening and studies of human lung development. Here we describe a strategy for directed differentiation of human pluripotent stem cells into developmental lung progenitors, and their subsequent differentiation into predominantly distal lung epithelial cells. The protocol entails four stages that recapitulate lung development and takes approximately 50 days. First, definitive endoderm is induced in the presence of high concentrations of Activin A. Subsequently, lung-biased anterior foregut endoderm is specified by sequential inhibition of BMP, TGF-β and Wnt signaling. Anterior foregut endoderm is then ventralized by applying Wnt, BMP, FGF and RA signaling to obtain lung and airway progenitors. Finally, these are further differentiated into more mature epithelial cells types using Wnt, FGF, c-AMP and glucocorticoid agonism. This protocol is conducted in defined conditions, does not involve genetic manipulation of the cells, and results in cultures where the majority of the cells express markers of various lung and airway epithelial cells, with a predominance of cells identifiable as functional type II alveolar epithelial cells. PMID:25654758

  2. Hepatic Cryoablation, But Not Radiofrequency Ablation, Results in Lung Inflammation

    PubMed Central

    Chapman, William C.; Debelak, Jacob P.; Wright Pinson, C.; Washington, M. Kay; Atkinson, James B.; Venkatakrishnan, Annapurna; Blackwell, Timothy S.; Christman, John W.

    2000-01-01

    Objective To compare the effects of 35% hepatic cryoablation with a similar degree of radiofrequency ablation (RFA) on lung inflammation, nuclear factor κB (NF-κB) activation, and production of NF-κB dependent cytokines. Summary Background Data Multisystem injury, including acute lung injury, is a severe complication associated with hepatic cryoablation of 30% to 35% or more of liver parenchyma, but this complication has not been reported with RFA. Methods Sprague-Dawley rats underwent 35% hepatic cryoablation or RFA and were killed at 1, 2, and 6 hours. Liver and lung tissue were freeze-clamped for measurement of NF-κB activation, which was detected by electrophoretic mobility shift assay. Serum concentrations of tumor necrosis factor α and macrophage inflammatory protein 2 were measured by enzyme-linked immunosorbent assay. Histologic studies of pulmonary tissue and electron microscopy of ablated liver tissue were compared among treatment groups. Results Histologic lung sections after cryoablation showed multiple foci of perivenular inflammation, with activated lymphocytes, foamy macrophages, and neutrophils. In animals undergoing RFA, inflammatory foci were not present. NF-κB activation was detected at 1 hour in both liver and lung tissue samples of animals undergoing cryoablation but not after RFA, and serum cytokine levels were significantly elevated in cryoablation versus RFA animals. Electron microscopy of cryoablation-treated liver tissue demonstrated disruption of the hepatocyte plasma membrane with extension of intact hepatocyte organelles into the space of Disse; RFA-treated liver tissue demonstrated coagulative destruction of hepatocyte organelles within an intact plasma membrane. To determine the stimulus for systemic inflammation, rats treated with cryoablation had either immediate resection of the ablated segment or delayed resection after a 15-minute thawing interval. Immediate resection of the cryoablated liver tissue prevented NF

  3. Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions

    SciTech Connect

    Jeong, Young-Il; Kim, Seung Hyun; Ju, Jung Won; Cho, Shin Hyeong; Lee, Won Ja; Park, Jin Wook; Park, Yeong-Min; Lee, Sang Eun

    2011-04-22

    Highlights: {yields} Treatment with Clonorchis sinensis-derived total protein attenuates OVA-induced airway inflammation and AHR to methacholine. {yields} Induction of CD4{sup +}CD25{sup +}Foxp3{sup +} T cells and IL-10 along with suppression of splenocyte proliferation by C. sinensis-derived total protein. {yields} C. sinensis-derived total protein interferes with the expression of co-stimulatory molecules in DCs. -- Abstract: Asthma is characterized by Th2-mediated inflammation, resulting in airway hyperresponsiveness (AHR) through airway remodeling. Recent epidemiological and experimental reports have suggested an inverse relationship between the development of allergy and helminth infections. Infection by Clonorchis sinensis, a liver fluke that resides in the bile duct of humans, is endemic predominantly in Asia including Korea and China. Using a murine model for asthma, we investigated the effects of C. sinensis-derived total protein (Cs-TP) on allergen-induced airway inflammation and the mechanism underlying the protective effects of Cs-TP administration on asthma. Treatment with Cs-TP attenuated OVA-induced airway inflammation and methacholine-induced AHR, as well as eosinophilia development, lymphocyte infiltration into the lung, and goblet cell metaplasia. This protective effect of Cs-TP is associated with markedly reduced OVA-specific IgE and Th1/Th2 cytokine production. Moreover, Cs-TP increased the number of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T (Treg) cells as well as their suppressive activity. In fact, proliferation of OVA-restimulated splenocytes was suppressed significantly. Cs-TP also inhibited the expression of such co-stimulatory molecules as CD80, CD86, and CD40 in LPS- or OVA-stimulated dendritic cells (DCs), suggesting that Cs-TP could interfere with the capacity of airway DCs to prime naive T cells. These data demonstrate the capacity of C. sinensis to ameliorate allergic asthma and broaden our understanding of the paradoxical

  4. Chinese herbal medicine formula Gu-Ben-Fang-Xiao-Tang attenuates airway inflammation by modulating Th17/Treg balance in an ovalbumin-induced murine asthma model

    PubMed Central

    Ruan, Guiying; Tao, Baohong; Wang, Dongguo; Li, Yong; Wu, Jingyi; Yin, Genquan

    2016-01-01

    Gu-Ben-Fang-Xiao-Tang (GBFXT) is a traditional Chinese medicine formula consisting of 11 medicinal plants, which has been used in the treatment of asthma. The present study aimed to determine the protective effects and the underlying mechanisms of GBFXT on ovalbumin (OVA)-induced allergic inflammation in a mouse model of allergic asthma. A total of 50 mice were randomly assigned to the following five experimental groups: Normal, model, montelukast (2.6 mg/kg), 12 g/kg GBFXT and 36 g/kg GBFXT groups. Airway responsiveness was measured using the forced oscillation technique, while differential cell count in the bronchoalveolar lavage fluid (BALF) was measured by Wright-Giemsa staining. Histological assessment was performed by hematoxylin and eosin staining, while BALF levels of Th17/Treg cytokines were measured by enzyme-linked immunosorbent assay, and the proportions of Th17 and Treg cells were evaluated by flow cytometry. The results showed that GBFXT suppressed airway hyperresponsiveness during methacholine-induced constriction, reduced the percentage of leukocytes and eosinophils, and resulted in decreased absolute neutrophil infiltration in lung tissue. In addition, GBFXT treatment significantly decreased the IL-17A cytokine level and increased the IL-10 cytokine level in the BALF. Furthermore, GBFXT significantly suppressed Th17 cells and increased Treg cells in asthmatic mice. In conclusion, the current results demonstrated that GBFXT may effectively inhibit the progression of airway inflammation in allergic asthma, partially by modulating the Th17/Treg cell balance. PMID:27588063

  5. Anastomotic Airway Complications After Lung Transplant: Clinical, Bronchoscopic and CT Correlation.

    PubMed

    Luecke, Kyle; Trujillo, Camilo; Ford, Jonathan; Decker, Summer; Pelaez, Andres; Hazelton, Todd R; Rojas, Carlos A

    2016-09-01

    The purpose of this article is to review the normal appearance and common complications of the airway anastomosis in lung transplant patients with emphasis on computed tomography images with bronchoscopic correlation. The spectrum of complications will be presented as early (<1 mo after transplant) or late (>1 mo). Variations in surgical technique as well as presentation and management options for airway complications will also be discussed. PMID:27428022

  6. Effects of the flavanone combination hesperetin-naringenin, and orange and grapefruit juices, on airway inflammation and remodeling in a murine asthma model.

    PubMed

    Seyedrezazadeh, Ensiyeh; Kolahian, Saeed; Shahbazfar, Amir-Ali; Ansarin, Khalil; Pour Moghaddam, Masoud; Sakhinia, Masoud; Sakhinia, Ebrahim; Vafa, Mohammadreza

    2015-04-01

    We investigated whether flavanones, hesperetin-naringenin, orange, and grapefruit juices reduce airway inflammation and remodeling in murine chronic asthma model. To establish chronic asthma, mice received house dust mite (HDM) for 3 days in 2 weeks, followed by twice per week for 4 weeks. Concurrently, during the last 4 weeks, mice received hesperetin plus naringenin (HN), orange plus grapefruit juice (OGJ), orange juice (OJ), or grapefruit juice (GJ); whereas the asthmatic control (AC) group and non-asthmatic control (NC) group consumed water ad libitum. In histopathological examination, no goblet cells metaplasia was observed in the HN, OJ, and GJ groups; also, intra-alveolar macrophages decreased compared with those of the AC group. Hesperetin plus naringenin significantly decreased subepithelial fibrosis, smooth muscle hypertrophy in airways, and lung atelectasis compared with the AC group. Also, there was a reduction of subepithelial fibrosis in airways in OJ and GJ groups compared with AC group, but it was not noticed in OGJ group. In bronchoalveolar lavage fluid, macrophages numbers decreased in OJ and OGJ groups, whereas eosinophil numbers were increased in OJ group compared with NC group. Our finding revealed that hesperetin plus naringenin ameliorate airway structural remodeling more than orange juice and grapefruit juice in murine model of HDM-induced asthma.

  7. Proteases in agricultural dust induce lung inflammation through PAR-1 and PAR-2 activation.

    PubMed

    Romberger, Debra J; Heires, Art J; Nordgren, Tara M; Souder, Chelsea P; West, William; Liu, Xiang-de; Poole, Jill A; Toews, Myron L; Wyatt, Todd A

    2015-08-15

    Workers exposed to aerosolized dust present in concentrated animal feeding operations (CAFOs) are susceptible to inflammatory lung diseases, such as chronic obstructive pulmonary disease. Extracts of dust collected from hog CAFOs [hog dust extract (HDE)] are potent stimulators of lung inflammatory responses in several model systems. The observation that HDE contains active proteases prompted the present study, which evaluated the role of CAFO dust proteases in lung inflammatory processes and tested whether protease-activated receptors (PARs) are involved in the signaling pathway for these events. We hypothesized that the damaging proinflammatory effect of HDE is due, in part, to the proteolytic activation of PARs, and inhibiting the proteases in HDE or disrupting PAR activation would attenuate HDE-mediated inflammatory indexes in bronchial epithelial cells (BECs), in mouse lung slices in vitro, and in a murine in vivo exposure model. Human BECs and mouse lung slice cultures stimulated with 5% HDE released significantly more of each of the cytokines measured (IL-6, IL-8, TNF-α, keratinocyte-derived chemokine/CXC chemokine ligand 1, and macrophage inflammatory protein-2/CXC chemokine ligand 2) than controls, and these effects were markedly diminished by protease inhibition. Inhibition of PARs also blunted the HDE-induced cytokine release from BECs. In addition, protease depletion inhibited HDE-induced BEC intracellular PKCα and PKCε activation. C57BL/6J mice administered 12.5% HDE intranasally, either once or daily for 3 wk, exhibited increased total cellular and neutrophil influx, bronchial alveolar fluid inflammatory cytokines, lung histopathology, and inflammatory scores compared with mice receiving protease-depleted HDE. These data suggest that proteases in dust from CAFOs are important mediators of lung inflammation, and these proteases and their receptors may provide novel targets for therapeutic intervention in CAFO dust-induced airways disease.

  8. Proteases in agricultural dust induce lung inflammation through PAR-1 and PAR-2 activation.

    PubMed

    Romberger, Debra J; Heires, Art J; Nordgren, Tara M; Souder, Chelsea P; West, William; Liu, Xiang-de; Poole, Jill A; Toews, Myron L; Wyatt, Todd A

    2015-08-15

    Workers exposed to aerosolized dust present in concentrated animal feeding operations (CAFOs) are susceptible to inflammatory lung diseases, such as chronic obstructive pulmonary disease. Extracts of dust collected from hog CAFOs [hog dust extract (HDE)] are potent stimulators of lung inflammatory responses in several model systems. The observation that HDE contains active proteases prompted the present study, which evaluated the role of CAFO dust proteases in lung inflammatory processes and tested whether protease-activated receptors (PARs) are involved in the signaling pathway for these events. We hypothesized that the damaging proinflammatory effect of HDE is due, in part, to the proteolytic activation of PARs, and inhibiting the proteases in HDE or disrupting PAR activation would attenuate HDE-mediated inflammatory indexes in bronchial epithelial cells (BECs), in mouse lung slices in vitro, and in a murine in vivo exposure model. Human BECs and mouse lung slice cultures stimulated with 5% HDE released significantly more of each of the cytokines measured (IL-6, IL-8, TNF-α, keratinocyte-derived chemokine/CXC chemokine ligand 1, and macrophage inflammatory protein-2/CXC chemokine ligand 2) than controls, and these effects were markedly diminished by protease inhibition. Inhibition of PARs also blunted the HDE-induced cytokine release from BECs. In addition, protease depletion inhibited HDE-induced BEC intracellular PKCα and PKCε activation. C57BL/6J mice administered 12.5% HDE intranasally, either once or daily for 3 wk, exhibited increased total cellular and neutrophil influx, bronchial alveolar fluid inflammatory cytokines, lung histopathology, and inflammatory scores compared with mice receiving protease-depleted HDE. These data suggest that proteases in dust from CAFOs are important mediators of lung inflammation, and these proteases and their receptors may provide novel targets for therapeutic intervention in CAFO dust-induced airways disease. PMID

  9. Proteases in agricultural dust induce lung inflammation through PAR-1 and PAR-2 activation

    PubMed Central

    Heires, Art J.; Nordgren, Tara M.; Souder, Chelsea P.; West, William; Liu, Xiang-de; Poole, Jill A.; Toews, Myron L.; Wyatt, Todd A.

    2015-01-01

    Workers exposed to aerosolized dust present in concentrated animal feeding operations (CAFOs) are susceptible to inflammatory lung diseases, such as chronic obstructive pulmonary disease. Extracts of dust collected from hog CAFOs [hog dust extract (HDE)] are potent stimulators of lung inflammatory responses in several model systems. The observation that HDE contains active proteases prompted the present study, which evaluated the role of CAFO dust proteases in lung inflammatory processes and tested whether protease-activated receptors (PARs) are involved in the signaling pathway for these events. We hypothesized that the damaging proinflammatory effect of HDE is due, in part, to the proteolytic activation of PARs, and inhibiting the proteases in HDE or disrupting PAR activation would attenuate HDE-mediated inflammatory indexes in bronchial epithelial cells (BECs), in mouse lung slices in vitro, and in a murine in vivo exposure model. Human BECs and mouse lung slice cultures stimulated with 5% HDE released significantly more of each of the cytokines measured (IL-6, IL-8, TNF-α, keratinocyte-derived chemokine/CXC chemokine ligand 1, and macrophage inflammatory protein-2/CXC chemokine ligand 2) than controls, and these effects were markedly diminished by protease inhibition. Inhibition of PARs also blunted the HDE-induced cytokine release from BECs. In addition, protease depletion inhibited HDE-induced BEC intracellular PKCα and PKCε activation. C57BL/6J mice administered 12.5% HDE intranasally, either once or daily for 3 wk, exhibited increased total cellular and neutrophil influx, bronchial alveolar fluid inflammatory cytokines, lung histopathology, and inflammatory scores compared with mice receiving protease-depleted HDE. These data suggest that proteases in dust from CAFOs are important mediators of lung inflammation, and these proteases and their receptors may provide novel targets for therapeutic intervention in CAFO dust-induced airways disease. PMID

  10. A prebiotic galactooligosaccharide mixture reduces severity of hyperpnoea-induced bronchoconstriction and markers of airway inflammation.

    PubMed

    Williams, Neil C; Johnson, Michael A; Shaw, Dominick E; Spendlove, Ian; Vulevic, Jelena; Sharpe, Graham R; Hunter, Kirsty A

    2016-09-01

    Gut microbes have a substantial influence on systemic immune function and allergic sensitisation. Manipulation of the gut microbiome through prebiotics may provide a potential strategy to influence the immunopathology of asthma. This study investigated the effects of prebiotic Bimuno-galactooligosaccharide (B-GOS) supplementation on hyperpnoea-induced bronchoconstriction (HIB), a surrogate for exercise-induced bronchoconstriction, and airway inflammation. A total of ten adults with asthma and HIB and eight controls without asthma were randomised to receive 5·5 g/d of either B-GOS or placebo for 3 weeks separated by a 2-week washout period. The peak fall in forced expiratory volume in 1 s (FEV1) following eucapnic voluntary hyperpnoea (EVH) defined HIB severity. Markers of airway inflammation were measured at baseline and after EVH. Pulmonary function remained unchanged in the control group. In the HIB group, the peak post-EVH fall in FEV1 at day 0 (-880 (sd 480) ml) was unchanged after placebo, but was attenuated by 40 % (-940 (sd 460) v. -570 (sd 310) ml, P=0·004) after B-GOS. In the HIB group, B-GOS reduced baseline chemokine CC ligand 17 (399 (sd 140) v. 323 (sd 144) pg/ml, P=0·005) and TNF-α (2·68 (sd 0·98) v. 2·18 (sd 0·59) pg/ml, P=0·040) and abolished the EVH-induced 29 % increase in TNF-α. Baseline C-reactive protein was reduced following B-GOS in HIB (2·46 (sd 1·14) v. 1·44 (sd 0·41) mg/l, P=0·015) and control (2·16 (sd 1·02) v. 1·47 (sd 0·33) mg/l, P=0·050) groups. Chemokine CC ligand 11 and fraction of exhaled nitric oxide remained unchanged. B-GOS supplementation attenuated airway hyper-responsiveness with concomitant reductions in markers of airway inflammation associated with HIB.

  11. A prebiotic galactooligosaccharide mixture reduces severity of hyperpnoea-induced bronchoconstriction and markers of airway inflammation.

    PubMed

    Williams, Neil C; Johnson, Michael A; Shaw, Dominick E; Spendlove, Ian; Vulevic, Jelena; Sharpe, Graham R; Hunter, Kirsty A

    2016-09-01

    Gut microbes have a substantial influence on systemic immune function and allergic sensitisation. Manipulation of the gut microbiome through prebiotics may provide a potential strategy to influence the immunopathology of asthma. This study investigated the effects of prebiotic Bimuno-galactooligosaccharide (B-GOS) supplementation on hyperpnoea-induced bronchoconstriction (HIB), a surrogate for exercise-induced bronchoconstriction, and airway inflammation. A total of ten adults with asthma and HIB and eight controls without asthma were randomised to receive 5·5 g/d of either B-GOS or placebo for 3 weeks separated by a 2-week washout period. The peak fall in forced expiratory volume in 1 s (FEV1) following eucapnic voluntary hyperpnoea (EVH) defined HIB severity. Markers of airway inflammation were measured at baseline and after EVH. Pulmonary function remained unchanged in the control group. In the HIB group, the peak post-EVH fall in FEV1 at day 0 (-880 (sd 480) ml) was unchanged after placebo, but was attenuated by 40 % (-940 (sd 460) v. -570 (sd 310) ml, P=0·004) after B-GOS. In the HIB group, B-GOS reduced baseline chemokine CC ligand 17 (399 (sd 140) v. 323 (sd 144) pg/ml, P=0·005) and TNF-α (2·68 (sd 0·98) v. 2·18 (sd 0·59) pg/ml, P=0·040) and abolished the EVH-induced 29 % increase in TNF-α. Baseline C-reactive protein was reduced following B-GOS in HIB (2·46 (sd 1·14) v. 1·44 (sd 0·41) mg/l, P=0·015) and control (2·16 (sd 1·02) v. 1·47 (sd 0·33) mg/l, P=0·050) groups. Chemokine CC ligand 11 and fraction of exhaled nitric oxide remained unchanged. B-GOS supplementation attenuated airway hyper-responsiveness with concomitant reductions in markers of airway inflammation associated with HIB. PMID:27523186

  12. Sarcoidosis of the upper and lower airways.

    PubMed

    Morgenthau, Adam S; Teirstein, Alvin S

    2011-12-01

    Sarcoidosis is a systemic granulomatous disease of undetermined etiology characterized by a variable clinical presentation and disease course. Although clinical granulomatous inflammation may occur within any organ system, more than 90% of sarcoidosis patients have lung disease. Sarcoidosis is considered an interstitial lung disease that is frequently characterized by restrictive physiologic dysfunction on pulmonary function tests. However, sarcoidosis also involves the airways (large and small), causing obstructive airways disease. It is one of a few interstitial lung diseases that affects the entire length of the respiratory tract - from the nose to the terminal bronchioles - and causes a broad spectrum of airways dysfunction. This article examines airway dysfunction in sarcoidosis. The anatomical structure of the airways is the organizational framework for our discussion. We discuss sarcoidosis involving the nose, sinuses, nasal passages, larynx, trachea, bronchi and small airways. Common complications of airways disease, such as, atelectasis, fibrosis, bullous leions, bronchiectasis, cavitary lesions and mycetomas, are also reviewed. PMID:22082167

  13. Primary lung and large airway neoplasms in children: current imaging evaluation with multidetector computed tomography.

    PubMed

    Amini, Behrang; Huang, Steven Y; Tsai, Jason; Benveniste, Marcelo F; Robledo, Hector H; Lee, Edward Y

    2013-07-01

    Multidetector computed tomography (MDCT) offers an important noninvasive imaging modality for confirmation and further characterization of primary lung and large airway neoplasms encountered in pediatric patients. Children represent a unique challenge in imaging, not only because of unique patient factors (eg, inability to follow instructions, motion, need for sedation) but because of the technical factors that must be optimized to reduce radiation dose. This article reviews an MDCT imaging algorithm, up-to-date imaging techniques, and clinical applications of MDCT for evaluating benign and malignant primary neoplasms of lung and large airway in infants and children.

  14. The NLRP3 inflammasome in pathogenic particle and fibre-associated lung inflammation and diseases.

    PubMed

    Sayan, Mutlay; Mossman, Brooke T

    2016-01-01

    The concept of the inflammasome, a macromolecular complex sensing cell stress or danger signals and initiating inflammation, was first introduced approximately a decade ago. Priming and activation of these intracellular protein platforms trigger the maturation of pro-inflammatory chemokines and cytokines, most notably, interleukin-1β (IL-1β) and IL-18, to promulgate innate immune defenses. Although classically studied in models of gout, Type II diabetes, Alzheimer's disease, and multiple sclerosis, the importance and mechanisms of action of inflammasome priming and activation have recently been elucidated in cells of the respiratory tract where they modulate the responses to a number of inhaled pathogenic particles and fibres. Most notably, inflammasome activation appears to regulate the balance between tissue repair and inflammation after inhalation of pathogenic pollutants such as asbestos, crystalline silica (CS), and airborne particulate matter (PM). Different types of fibres and particles may have distinct mechanisms of inflammasome interaction and outcome. This review summarizes the structure and function of inflammasomes, the interplay between various chemokines and cytokines and cell types of the lung and pleura after inflammasome activation, and the events leading to the development of non-malignant (allergic airway disease and chronic obstructive pulmonary disease (COPD), asbestosis, silicosis) and malignant (mesothelioma, lung cancer) diseases by pathogenic particulates. In addition, it emphasizes the importance of communication between cells of the immune system, target cells of these diseases, and components of the extracellular matrix (ECM) in regulation of inflammasome-mediated events. PMID:27650313

  15. The Therapeutic Potential of Targeting Cytokine Alarmins to Treat Allergic Airway Inflammation.

    PubMed

    Sy, Chandler B; Siracusa, Mark C

    2016-01-01

    Asthma is a heterogeneous disorder that results in recurrent attacks of breathlessness, coughing, and wheezing that affects millions of people worldwide. Although the precise causes of asthma are unclear, studies suggest that a combination of genetic predisposition and environmental exposure to various allergens and pathogens contribute to its development. Currently, the most common treatment to control asthma is a dual combination of β2-adrenergic receptor agonists and corticosteroids. However, studies have shown that some patients do not respond well to these medications, while others experience significant side effects. It is reported that the majority of asthmas are associated with T helper type 2 (TH2) responses. In these patients, allergen challenge initiates the influx of TH2 cells in the airways leading to an increased production of TH2-associated cytokines and the promotion of allergy-induced asthma. Therefore, biologics that target this pathway may provide an alternative method to treat the allergic airway inflammation associated with asthma. As of now, only two biologics (omalizumab and mepolizumab), which target immunoglobulin E and interleukin-5, respectively, are FDA-approved and being prescribed to asthmatics. However, recent studies have reported that targeting other components of the TH2 response also show great promise. In this review, we will briefly describe the immunologic mechanisms underlying allergic asthma. Furthermore, we will discuss the current therapeutic strategies used to treat asthma including their limitations. Finally, we will highlight the benefits of using biologics to treat asthma-associated allergic airway inflammation with an emphasis on the potential of targeting cytokine alarmins, especially thymic stromal lymphopoietin. PMID:27378934

  16. Cigarette smoke-induced necroptosis and DAMP release trigger neutrophilic airway inflammation in mice.

    PubMed

    Pouwels, Simon D; Zijlstra, G Jan; van der Toorn, Marco; Hesse, Laura; Gras, Renee; Ten Hacken, Nick H T; Krysko, Dmitri V; Vandenabeele, Peter; de Vries, Maaike; van Oosterhout, Antoon J M; Heijink, Irene H; Nawijn, Martijn C

    2016-02-15

    Recent data indicate a role for airway epithelial necroptosis, a regulated form of necrosis, and the associated release of damage-associated molecular patterns (DAMPs) in the development of chronic obstructive pulmonary disease (COPD). DAMPs can activate pattern recognition receptors (PRRs), triggering innate immune responses. We hypothesized that cigarette smoke (CS)-induced epithelial necroptosis and DAMP release initiate airway inflammation in COPD. Human bronchial epithelial BEAS-2B cells were exposed to cigarette smoke extract (CSE), and necrotic cell death (membrane integrity by propidium iodide staining) and DAMP release (i.e., double-stranded DNA, high-mobility group box 1, heat shock protein 70, mitochondrial DNA, ATP) were analyzed. Subsequently, BEAS-2B cells were exposed to DAMP-containing supernatant of CS-induced necrotic cells, and the release of proinflammatory mediators [C-X-C motif ligand 8 (CXCL-8), IL-6] was evaluated. Furthermore, mice were exposed to CS in the presence and absence of the necroptosis inhibitor necrostatin-1, and levels of DAMPs and inflammatory cell numbers were determined in bronchoalveolar lavage fluid. CSE induced a significant increase in the percentage of necrotic cells and DAMP release in BEAS-2B cells. Stimulation of BEAS-2B cells with supernatant of CS-induced necrotic cells induced a significant increase in the release of CXCL8 and IL-6, in a myeloid differentiation primary response gene 88-dependent fashion. In mice, exposure of CS increased the levels of DAMPs and numbers of neutrophils in bronchoalveolar lavage fluid, which was statistically reduced upon treatment with necrostatin-1. Together, we showed that CS exposure induces necrosis of bronchial epithelial cells and subsequent DAMP release in vitro, inducing the production of proinflammatory cytokines. In vivo, CS exposure induces neutrophilic airway inflammation that is sensitive to necroptosis inhibition. PMID:26719146

  17. Cigarette smoke-induced necroptosis and DAMP release trigger neutrophilic airway inflammation in mice.

    PubMed

    Pouwels, Simon D; Zijlstra, G Jan; van der Toorn, Marco; Hesse, Laura; Gras, Renee; Ten Hacken, Nick H T; Krysko, Dmitri V; Vandenabeele, Peter; de Vries, Maaike; van Oosterhout, Antoon J M; Heijink, Irene H; Nawijn, Martijn C

    2016-02-15

    Recent data indicate a role for airway epithelial necroptosis, a regulated form of necrosis, and the associated release of damage-associated molecular patterns (DAMPs) in the development of chronic obstructive pulmonary disease (COPD). DAMPs can activate pattern recognition receptors (PRRs), triggering innate immune responses. We hypothesized that cigarette smoke (CS)-induced epithelial necroptosis and DAMP release initiate airway inflammation in COPD. Human bronchial epithelial BEAS-2B cells were exposed to cigarette smoke extract (CSE), and necrotic cell death (membrane integrity by propidium iodide staining) and DAMP release (i.e., double-stranded DNA, high-mobility group box 1, heat shock protein 70, mitochondrial DNA, ATP) were analyzed. Subsequently, BEAS-2B cells were exposed to DAMP-containing supernatant of CS-induced necrotic cells, and the release of proinflammatory mediators [C-X-C motif ligand 8 (CXCL-8), IL-6] was evaluated. Furthermore, mice were exposed to CS in the presence and absence of the necroptosis inhibitor necrostatin-1, and levels of DAMPs and inflammatory cell numbers were determined in bronchoalveolar lavage fluid. CSE induced a significant increase in the percentage of necrotic cells and DAMP release in BEAS-2B cells. Stimulation of BEAS-2B cells with supernatant of CS-induced necrotic cells induced a significant increase in the release of CXCL8 and IL-6, in a myeloid differentiation primary response gene 88-dependent fashion. In mice, exposure of CS increased the levels of DAMPs and numbers of neutrophils in bronchoalveolar lavage fluid, which was statistically reduced upon treatment with necrostatin-1. Together, we showed that CS exposure induces necrosis of bronchial epithelial cells and subsequent DAMP release in vitro, inducing the production of proinflammatory cytokines. In vivo, CS exposure induces neutrophilic airway inflammation that is sensitive to necroptosis inhibition.

  18. Effects of Woodsmoke Exposure on Airway Inflammation in Rural Guatemalan Women

    PubMed Central

    Basu, Chandreyi; Diaz, Anaite; Pope, Daniel; Smith, Kirk R.; Smith-Sivertsen, Tone; Bruce, Nigel; Solomon, Colin; McCracken, John; Balmes, John R.

    2014-01-01

    Background More than two-fifths of the world’s population uses solid fuels, mostly biomass, for cooking. The resulting biomass smoke exposure is a major cause of chronic obstructive pulmonary disease (COPD) among women in developing countries. Objective To assess whether lower woodsmoke exposure from use of a stove with a chimney, compared to open fires, is associated with lower markers of airway inflammation in young women. Design We carried out a cross-sectional analysis on a sub-cohort of participants enrolled in a randomized controlled trial in rural Guatemala, RESPIRE. Participants We recruited 45 indigenous women at the end of the 18-month trial; 19 women who had been using the chimney stove for 18–24 months and 26 women still using open fires. Measurements We obtained spirometry and induced sputum for cell counts, gene expression of IL-8, TNF-α, MMP-9 and 12, and protein concentrations of IL-8, myeloperoxidase and fibronectin. Exhaled carbon monoxide (CO) and 48-hr personal CO tubes were measured to assess smoke exposure. Results MMP-9 gene expression was significantly lower in women using chimney stoves. Higher exhaled CO concentrations were significantly associated with higher gene expression of IL-8, TNF-α, and MMP-9. Higher 48-hr personal CO concentrations were associated with higher gene expression of IL-8, TNF- α, MMP-9 and MMP-12; reaching statistical significance for MMP-9 and MMP-12. Conclusions Compared to using an open wood fire for cooking, use of a chimney stove was associated with lower gene expression of MMP-9, a potential mediator of airway remodeling. Among all participants, indoor biomass smoke exposure was associated with higher gene expression of multiple mediators of airway inflammation and remodeling; these mechanisms may explain some of the observed association between prolonged biomass smoke exposure and COPD. PMID:24625755

  19. The Therapeutic Potential of Targeting Cytokine Alarmins to Treat Allergic Airway Inflammation

    PubMed Central

    Sy, Chandler B.; Siracusa, Mark C.

    2016-01-01

    Asthma is a heterogeneous disorder that results in recurrent attacks of breathlessness, coughing, and wheezing that affects millions of people worldwide. Although the precise causes of asthma are unclear, studies suggest that a combination of genetic predisposition and environmental exposure to various allergens and pathogens contribute to its development. Currently, the most common treatment to control asthma is a dual combination of β2-adrenergic receptor agonists and corticosteroids. However, studies have shown that some patients do not respond well to these medications, while others experience significant side effects. It is reported that the majority of asthmas are associated with T helper type 2 (TH2) responses. In these patients, allergen challenge initiates the influx of TH2 cells in the airways leading to an increased production of TH2-associated cytokines and the promotion of allergy-induced asthma. Therefore, biologics that target this pathway may provide an alternative method to treat the allergic airway inflammation associated with asthma. As of now, only two biologics (omalizumab and mepolizumab), which target immunoglobulin E and interleukin-5, respectively, are FDA-approved and being prescribed to asthmatics. However, recent studies have reported that targeting other components of the TH2 response also show great promise. In this review, we will briefly describe the immunologic mechanisms underlying allergic asthma. Furthermore, we will discuss the current therapeutic strategies used to treat asthma including their limitations. Finally, we will highlight the benefits of using biologics to treat asthma-associated allergic airway inflammation with an emphasis on the potential of targeting cytokine alarmins, especially thymic stromal lymphopoietin. PMID:27378934

  20. A common cold virus, rhinovirus 16, potentiates airway inflammation after segmental antigen bronchoprovocation in allergic subjects.

    PubMed Central

    Calhoun, W J; Dick, E C; Schwartz, L B; Busse, W W

    1994-01-01

    Many patients with asthma have increased wheezing with colds. We hypothesized that rhinovirus colds might increase asthma by augmenting airway allergic responses (histamine release and eosinophil influx) after antigen challenge. Seven allergic rhinitis patients and five normal volunteers were infected with rhinovirus type 16 (RV16) and evaluated by segmental bronchoprovocation and bronchoalveolar lavage. Segmental challenge with saline and antigen was performed 1 mo before infection, during the acute infection, and 1 mo after infection. Lavage was performed immediately and 48 h after antigen challenge. Data were analyzed by two-way analysis of variance, and a P value of < or = 0.05 was considered to be significant. All volunteers inoculated with RV16 developed an acute respiratory infection. BAL fluid obtained from allergic rhinitis subjects during the acute viral infection, and 1 mo after infection, showed the following significant RV16-associated changes after antigen challenge: (a) an enhanced release of histamine immediately after local antigen challenge; (b) persistent histamine leak 48 h afterwards; and (c) a greater recruitment of eosinophils to the airway 48 h after challenge. These changes were not seen in non-allergic volunteers infected with RV16 and challenged with antigen, nor in allergic volunteers repetitively challenged with antigen but not infected with RV16, nor in RV16 infected allergic volunteers sham challenged with saline. We conclude that rhinovirus upper respiratory infection significantly augments immediate and late allergic responses in the airways of allergic individuals after local antigen challenge. These data suggest that one mechanism of increased asthma during a cold is an accentuation of allergic responses in the airway which may then contribute to bronchial inflammation. PMID:7989575

  1. CD11b+ and Sca-1+ Cells Exert the Main Beneficial Effects of Systemically Administered Bone Marrow-Derived Mononuclear Cells in a Murine Model of Mixed Th2/Th17 Allergic Airway Inflammation

    PubMed Central

    Cruz, Fernanda F.; Borg, Zachary D.; Goodwin, Meagan; Coffey, Amy L.; Wagner, Darcy E.; Rocco, Patricia R.M.

    2016-01-01

    Systemic administration of bone marrow-derived mononuclear cells (BMDMCs) or bone marrow-derived mesenchymal stromal cells (MSCs) reduces inflammation and airway hyperresponsiveness (AHR) in a murine model of Th2-mediated eosinophilic allergic airway inflammation. However, since BMDMCs are a heterogeneous population that includes MSCs, it is unclear whether the MSCs alone are responsible for the BMDMC effects. To determine which BMDMC population(s) is responsible for ameliorating AHR and lung inflammation in a model of mixed Th2-eosinophilic and Th17-neutrophilic allergic airway inflammation, reminiscent of severe clinical asthma, BMDMCs obtained from normal C57Bl/6 mice were serially depleted of CD45, CD34, CD11b, CD3, CD19, CD31, or Sca-1 positive cells. The different resulting cell populations were then assessed for ability to reduce lung inflammation and AHR in mixed Th2/Th17 allergic airway inflammation induced by mucosal sensitization to and challenge with Aspergillus hyphal extract (AHE) in syngeneic C56Bl/6 mice. BMDMCs depleted of either CD11b-positive (CD11b+) or Sca-1-positive (Sca-1+) cells were unable to ameliorate AHR or lung inflammation in this model. Depletion of the other cell types did not diminish the ameliorating effects of BMDMC administration. In conclusion, in the current model of allergic inflammation, CD11b+ cells (monocytes, macrophages, dendritic cells) and Sca-1+ cells (MSCs) are responsible for the beneficial effects of BMDMCs. Significance This study shows that bone marrow-derived mononuclear cells (BMDMCs) are as effective as bone marrow-derived mesenchymal stromal cells (MSCs) in ameliorating experimental asthma. It also demonstrates that not only MSCs present in the pool of BMDMCs are responsible for BMDMCs’ beneficial effects but also monocytes, which are the most important cell population to trigger these effects. All of this is in the setting of a clinically relevant model of severe allergic airways inflammation and thus

  2. Activation of calpains mediates early lung neutrophilic inflammation in ventilator-induced lung injury

    PubMed Central

    Liu, Dejie; Yan, Zhibo; Minshall, Richard D.; Schwartz, David E.; Chen, Yuguo

    2012-01-01

    Lung inflammatory responses in the absence of infection are considered to be one of primary mechanisms of ventilator-induced lung injury. Here, we determined the role of calpain in the pathogenesis of lung inflammation attributable to mechanical ventilation. Male C57BL/6J mice were subjected to high (28 ml/kg) tidal volume ventilation for 2 h in the absence and presence of calpain inhibitor I (10 mg/kg). To address the isoform-specific functions of calpain 1 and calpain 2 during mechanical ventilation, we utilized a liposome-based delivery system to introduce small interfering RNAs targeting each isoform in pulmonary vasculature in vivo. Mechanical ventilation with high tidal volume induced rapid (within minutes) and persistent calpain activation and lung inflammation as evidenced by neutrophil recruitment, production of TNF-α and IL-6, pulmonary vascular hyperpermeability, and lung edema formation. Pharmaceutical calpain inhibition significantly attenuated these inflammatory responses caused by lung hyperinflation. Depletion of calpain 1 or calpain 2 had a protective effect against ventilator-induced lung inflammatory responses. Inhibition of calpain activity by means of siRNA silencing or pharmacological inhibition also reduced endothelial nitric oxide (NO) synthase (NOS-3)-mediated NO production and subsequent ICAM-1 phosphorylation following high tidal volume ventilation. These results suggest that calpain activation mediates early lung inflammation during ventilator-induced lung injury via NOS-3/NO-dependent ICAM-1 phosphorylation and neutrophil recruitment. Inhibition of calpain activation may therefore provide a novel and promising strategy for the prevention and treatment of ventilator-induced lung injury. PMID:22140070

  3. Allergen-triggered airway hyperresponsiveness and lung pathology in mice sensitized with the biopesticide Metarhizium anisopliae.

    PubMed

    Ward, M D; Madison, S L; Sailstad, D M; Gavett, S H; Selgrade, M K

    2000-02-21

    Metarhizium anisopliae is an entomopathogenic fungus recently licensed for indoor control of cockroaches, a major source of allergens. While M. anisopliae has been shown to be non-infectious and non-toxic to mammals there has been only limited research on potential allergenicity. Using a mouse model, we previously demonstrated allergic immune and inflammatory responses to this agent. The present study was designed to determine whether these responses were associated with changes in pulmonary responses, lung pathology, and the cytokine profile in bronchoalveolar lavage fluid (BALF). Soluble factors from fungal components were combined in equal protein amounts to form M. anisopliae crude antigen (MACA). BALB/C mice were intratracheally (i.t.) challenged with 10 microg MACA 14 days post intraperitoneal sensitization with 25 microg fungal antigen in aluminum hydroxide adjuvant. Physiological and cellular changes were examined. The mice were tested for airway hyperresponsiveness before (No Chal) and after (1, 3, and 8 days post challenge (DPIT)) MACA IT challenge. Subsequently, serum, BALF and the lungs were harvested. All treatment groups concurrently demonstrated significant non-specific pulmonary inflammation (neutrophil influx) and increased pulmonary sensitivity to methacholine (Mch) at 1 DPIT MACA challenge. Where as both adjuvant treated and naïve mice airway responses had returned to near normal levels by 3 DPIT, mice which were previously sensitized with MACA were still hyperresponsive to Mch challenge at 3 and 8 DPIT. This hyperresponsiveness correlates with eosinophil and lymphocyte influx, which is maximal at 3 DPIT and still elevated at 8 DPIT. Interleukin (IL) 5 was elevated for all treatment groups at 1 DPIT but only the MACA sensitized mice maintained elevated levels for both 3 and 8 DPIT. Furthermore, MACA sensitized mice had a more extensive inflammatory histopathology at all examined time points with peribronchial and perivascular infiltrates, like

  4. Effect of bone marrow derived mesenchymal stem cells on lung pathology and inflammation in ovalbumin-induced asthma in mouse

    PubMed Central

    Mohammadian, Maryam; Boskabady, Mohammad Hosein; Kashani, Iraj Ragerdi; Jahromi, Gila Pirzad; Omidi, Amene; Nejad, Amir Kavian; Khamse, Safoura; Sadeghipour, Hamid Reza

    2016-01-01

    Objective(s): Bone marrow-derived mesenchymal stem cells (BMSCs) have attracted significant interest to treat asthma and its complication. In this study, the effects of BMSCs on lung pathology and inflammation in an ovalbumin-induced asthma model in mouse were examined. Materials and Methods: BALB/c mice were divided into three groups: control group (animals were not sensitized), asthma group (animals were sensitized by ovalbumin), asthma+BMSC group (animals were sensitized by ovalbumin and treated with BMSCs). BMSCs were isolated and characterized and then labeled with Bromodeoxyuridine (BrdU). After that the cells transferred into asthmatic mice. Histopathological changes of the airways, BMSCs migration and total and differential white blood cell (WBC) count in bronchoalveolar lavage (BAL) fluid were evaluated. Results: A large number of BrdU-BMSCs were found in the lungs of mice treated with BMSCs. The histopathological changes, BAL total WBC counts and the percentage of neutrophils and eosinophils were increased in asthma group compared to the control group. Treatment with BMSCs significantly decreased airway pathological indices, inflammatory cell infiltration, and also goblet cell hyperplasia. Conclusion: The results of this study revealed that BMSCs therapy significantly suppressed the lung pathology and inflammation in the ovalbumin induced asthma model in mouse. PMID:27096065

  5. Changes in cystic fibrosis airway microbial community associated with a severe decline in lung function.

    PubMed

    Paganin, Patrizia; Fiscarelli, Ersilia Vita; Tuccio, Vanessa; Chiancianesi, Manuela; Bacci, Giovanni; Morelli, Patrizia; Dolce, Daniela; Dalmastri, Claudia; De Alessandri, Alessandra; Lucidi, Vincenzina; Taccetti, Giovanni; Mengoni, Alessio; Bevivino, Annamaria

    2015-01-01

    Cystic fibrosis (CF) is a genetic disease resulting in chronic polymicrobial infections of the airways and progressive decline in lung function. To gain insight into the underlying causes of severe lung diseases, we aimed at comparing the airway microbiota detected in sputum of CF patients with stable lung function (S) versus those with a substantial decline in lung function (SD). Microbiota composition was investigated by using culture-based and culture-independent methods, and by performing multivariate and statistical analyses. Culture-based methods identified some microbial species associated with a worse lung function, i.e. Pseudomonas aeruginosa, Rothia mucilaginosa, Streptococcus pneumoniae and Candida albicans, but only the presence of S. pneumoniae and R. mucilaginosa was found to be associated with increased severe decline in forced expiratory volume in 1 second (FEV1). Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis revealed a higher bacterial diversity than that detected by culture-based methods. Molecular signatures with a statistically significant odds ratio for SD status were detected, and classified as Pseudomonas, Burkholderia and Shewanella, while for other Terminal Restriction Fragments (T-RFs) no species assignation was achieved. The analysis of T-RFLP data using ecological biodiversity indices showed reduced Evenness in SD patients compared to S ones, suggesting an impaired ecology of the bacterial community in SD patients. Statistically significant differences of the ecological biodiversity indices among the three sub-groups of FEV1 (normal/mild vs moderate vs severe) were also found, suggesting that the patients with moderate lung disease experienced changes in the airway assembly of taxa. Overall, changes in CF airway microbial community associated with a severe lung function decline were detected, allowing us to define some discriminatory species as well as some discriminatory T-RFs that represent good candidates for the

  6. Low-dose oral cadmium increases airway reactivity and lung neuronal gene expression in mice.

    PubMed

    Chandler, Joshua D; Wongtrakool, Cherry; Banton, Sophia A; Li, Shuzhao; Orr, Michael L; Barr, Dana Boyd; Neujahr, David C; Sutliff, Roy L; Go, Young-Mi; Jones, Dean P

    2016-07-01

    Inhalation of cadmium (Cd) is associated with lung diseases, but less is known concerning pulmonary effects of Cd found in the diet. Cd has a decades-long half-life in humans and significant bioaccumulation occurs with chronic dietary intake. We exposed mice to low-dose CdCl2 (10 mg/L in drinking water) for 20 weeks, which increased lung Cd to a level similar to that of nonoccupationally exposed adult humans. Cd-treated mice had increased airway hyperresponsiveness to methacholine challenge, and gene expression array showed that Cd altered the abundance of 443 mRNA transcripts in mouse lung. In contrast to higher doses, low-dose Cd did not elicit increased metallothionein transcripts in lung. To identify pathways most affected by Cd, gene set enrichment of transcripts was analyzed. Results showed that major inducible targets of low-dose Cd were neuronal receptors represented by enriched olfactory, glutamatergic, cholinergic, and serotonergic gene sets. Olfactory receptors regulate chemosensory function and airway hypersensitivity, and these gene sets were the most enriched. Targeted metabolomics analysis showed that Cd treatment also increased metabolites in pathways of glutamatergic (glutamate), serotonergic (tryptophan), cholinergic (choline), and catecholaminergic (tyrosine) receptors in the lung tissue. Protein abundance measurements showed that the glutamate receptor GRIN2A was increased in mouse lung tissue. Together, these results show that in mice, oral low-dose Cd increased lung Cd to levels comparable to humans, increased airway hyperresponsiveness and disrupted neuronal pathways regulating bronchial tone. Therefore, dietary Cd may promote or worsen airway hyperresponsiveness in multiple lung diseases including asthma.

  7. Low-dose oral cadmium increases airway reactivity and lung neuronal gene expression in mice.

    PubMed

    Chandler, Joshua D; Wongtrakool, Cherry; Banton, Sophia A; Li, Shuzhao; Orr, Michael L; Barr, Dana Boyd; Neujahr, David C; Sutliff, Roy L; Go, Young-Mi; Jones, Dean P

    2016-07-01

    Inhalation of cadmium (Cd) is associated with lung diseases, but less is known concerning pulmonary effects of Cd found in the diet. Cd has a decades-long half-life in humans and significant bioaccumulation occurs with chronic dietary intake. We exposed mice to low-dose CdCl2 (10 mg/L in drinking water) for 20 weeks, which increased lung Cd to a level similar to that of nonoccupationally exposed adult humans. Cd-treated mice had increased airway hyperresponsiveness to methacholine challenge, and gene expression array showed that Cd altered the abundance of 443 mRNA transcripts in mouse lung. In contrast to higher doses, low-dose Cd did not elicit increased metallothionein transcripts in lung. To identify pathways most affected by Cd, gene set enrichment of transcripts was analyzed. Results showed that major inducible targets of low-dose Cd were neuronal receptors represented by enriched olfactory, glutamatergic, cholinergic, and serotonergic gene sets. Olfactory receptors regulate chemosensory function and airway hypersensitivity, and these gene sets were the most enriched. Targeted metabolomics analysis showed that Cd treatment also increased metabolites in pathways of glutamatergic (glutamate), serotonergic (tryptophan), cholinergic (choline), and catecholaminergic (tyrosine) receptors in the lung tissue. Protein abundance measurements showed that the glutamate receptor GRIN2A was increased in mouse lung tissue. Together, these results show that in mice, oral low-dose Cd increased lung Cd to levels comparable to humans, increased airway hyperresponsiveness and disrupted neuronal pathways regulating bronchial tone. Therefore, dietary Cd may promote or worsen airway hyperresponsiveness in multiple lung diseases including asthma. PMID:27401458

  8. Changes in cystic fibrosis airway microbial community associated with a severe decline in lung function.

    PubMed

    Paganin, Patrizia; Fiscarelli, Ersilia Vita; Tuccio, Vanessa; Chiancianesi, Manuela; Bacci, Giovanni; Morelli, Patrizia; Dolce, Daniela; Dalmastri, Claudia; De Alessandri, Alessandra; Lucidi, Vincenzina; Taccetti, Giovanni; Mengoni, Alessio; Bevivino, Annamaria

    2015-01-01

    Cystic fibrosis (CF) is a genetic disease resulting in chronic polymicrobial infections of the airways and progressive decline in lung function. To gain insight into the underlying causes of severe lung diseases, we aimed at comparing the airway microbiota detected in sputum of CF patients with stable lung function (S) versus those with a substantial decline in lung function (SD). Microbiota composition was investigated by using culture-based and culture-independent methods, and by performing multivariate and statistical analyses. Culture-based methods identified some microbial species associated with a worse lung function, i.e. Pseudomonas aeruginosa, Rothia mucilaginosa, Streptococcus pneumoniae and Candida albicans, but only the presence of S. pneumoniae and R. mucilaginosa was found to be associated with increased severe decline in forced expiratory volume in 1 second (FEV1). Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis revealed a higher bacterial diversity than that detected by culture-based methods. Molecular signatures with a statistically significant odds ratio for SD status were detected, and classified as Pseudomonas, Burkholderia and Shewanella, while for other Terminal Restriction Fragments (T-RFs) no species assignation was achieved. The analysis of T-RFLP data using ecological biodiversity indices showed reduced Evenness in SD patients compared to S ones, suggesting an impaired ecology of the bacterial community in SD patients. Statistically significant differences of the ecological biodiversity indices among the three sub-groups of FEV1 (normal/mild vs moderate vs severe) were also found, suggesting that the patients with moderate lung disease experienced changes in the airway assembly of taxa. Overall, changes in CF airway microbial community associated with a severe lung function decline were detected, allowing us to define some discriminatory species as well as some discriminatory T-RFs that represent good candidates for the

  9. Airway and Parenchymal Strains during Bronchoconstriction in the Precision Cut Lung Slice

    PubMed Central

    Hiorns, Jonathan E.; Bidan, Cécile M.; Jensen, Oliver E.; Gosens, Reinoud; Kistemaker, Loes E. M.; Fredberg, Jeffrey J.; Butler, Jim P.; Krishnan, Ramaswamy; Brook, Bindi S.

    2016-01-01

    The precision-cut lung slice (PCLS) is a powerful tool for studying airway reactivity, but biomechanical measurements to date have largely focused on changes in airway caliber. Here we describe an image processing tool that reveals the associated spatio-temporal changes in airway and parenchymal strains. Displacements of sub-regions within the PCLS are tracked in phase-contrast movies acquired after addition of contractile and relaxing drugs. From displacement maps, strains are determined across the entire PCLS or along user-specified directions. In a representative mouse PCLS challenged with 10−4M methacholine, as lumen area decreased, compressive circumferential strains were highest in the 50 μm closest to the airway lumen while expansive radial strains were highest in the region 50–100 μm from the lumen. However, at any given distance from the airway the strain distribution varied substantially in the vicinity of neighboring small airways and blood vessels. Upon challenge with the relaxant agonist chloroquine, although most strains disappeared, residual positive strains remained a long time after addition of chloroquine, predominantly in the radial direction. Taken together, these findings establish strain mapping as a new tool to elucidate local dynamic mechanical events within the constricting airway and its supporting parenchyma. PMID:27559314

  10. Airway and Parenchymal Strains during Bronchoconstriction in the Precision Cut Lung Slice.

    PubMed

    Hiorns, Jonathan E; Bidan, Cécile M; Jensen, Oliver E; Gosens, Reinoud; Kistemaker, Loes E M; Fredberg, Jeffrey J; Butler, Jim P; Krishnan, Ramaswamy; Brook, Bindi S

    2016-01-01

    The precision-cut lung slice (PCLS) is a powerful tool for studying airway reactivity, but biomechanical measurements to date have largely focused on changes in airway caliber. Here we describe an image processing tool that reveals the associated spatio-temporal changes in airway and parenchymal strains. Displacements of sub-regions within the PCLS are tracked in phase-contrast movies acquired after addition of contractile and relaxing drugs. From displacement maps, strains are determined across the entire PCLS or along user-specified directions. In a representative mouse PCLS challenged with 10(-4)M methacholine, as lumen area decreased, compressive circumferential strains were highest in the 50 μm closest to the airway lumen while expansive radial strains were highest in the region 50-100 μm from the lumen. However, at any given distance from the airway the strain distribution varied substantially in the vicinity of neighboring small airways and blood vessels. Upon challenge with the relaxant agonist chloroquine, although most strains disappeared, residual positive strains remained a long time after addition of chloroquine, predominantly in the radial direction. Taken together, these findings establish strain mapping as a new tool to elucidate local dynamic mechanical events within the constricting airway and its supporting parenchyma. PMID:27559314

  11. Dietary Fiber Intake Regulates Intestinal Microflora and Inhibits Ovalbumin-Induced Allergic Airway Inflammation in a Mouse Model

    PubMed Central

    Zhang, Zhiyu; Shi, Lei; Pang, Wenhui; Liu, Wenwen; Li, Jianfeng; Wang, Haibo; Shi, Guanggang

    2016-01-01

    Background Recently, academic studies suggest that global growth of airway allergic disease has a close association with dietary changes including reduced consumption of fiber. Therefore, appropriate dietary fiber supplementation might be potential to prevent airway allergic disease (AAD). Objective We investigated whether dietary fiber intake suppressed the induction of AAD and tried to elucidate the possible underlying mechanisms. Methods The control mice and AAD model mice fed with 4% standard-fiber chow, while low-fiber group of mice fed with a 1.75% low-fiber chow. The two fiber-intervened groups including mice, apart from a standard-fiber diet, were also intragastric (i.g.) administrated daily with poorly fermentable cellulose or readily fermentable pectin (0.4% of daily body weight), respectively. All animals except normal mice were sensitized and challenged with ovalbumin (OVA) to induce airway allergic inflammation. Hallmarks of AAD were examined by histological analysis and ELISA. The variation in intestinal bacterial composition was assessed by qualitative analysis of 16S ribosomal DNA (rDNA) content in fecal samples using real-time PCR. Results Low-fiber diet aggravated inflammatory response in ovalbumin-induced allergic mice, whereas dietary fiber intake significantly suppressed the allergic responses, attenuated allergic symptoms of nasal rubbing and sneezing, decreased the pathology of eosinophil infiltration and goblet cell metaplasia in the nasal mucosa and lung, inhibited serum OVA-specific IgE levels, and lowered the levels of Th2 cytokines in NALF and BALF, but, increased Th1 (IFN-γ) cytokines. Additionally, dietary fiber intake also increased the proportion of Bacteroidetes and Actinobacteria, and decreased Firmicutes and Proteobacteria. Levels of probiotic bacteria, such as Lactobacillus and Bifidobacterium, were upgraded significantly. Conclusion Long-term deficiency of dietary fiber intake increases the susceptibility to AAD, whereas proper

  12. The Effect of Lung Stretch during Sleep on Airway Mechanics in Overweight and Obese Asthma

    PubMed Central

    Campana, L.M.; Malhotra, A.; Suki, B.; Hess, L.; Israel, E.; Smales, E.; DeYoung, P.; Owens, R.L.

    2012-01-01

    Both obesity and sleep reduce lung volume and limit deep breaths, possibly contributing to asthma. We hypothesize that increasing lung volume dynamically during sleep would reduce airway resistance in asthma. Asthma (n=10) and control (n=10) subjects were studied during sleep at baseline and with increased lung volume via bi-level positive airway pressure (BPAP). Using forced oscillations, respiratory system resistance (Rrs) and reactance (Xrs) were measured during sleep and Rrs was partitioned to upper and lower airway resistance (Rup, Rlow) using an epiglottic pressure catheter. Rrs and Rup increased with sleep (p<0.01) and Xrs was decreased in REM (p=0.02) as compared to wake. Rrs, Rup, and Rlow, were larger (p<0.01) and Xrs was decreased (p<0.02) in asthma. On BPAP, Rrs and Rup were decreased (p<0.001) and Xrs increased (p<0.01), but Rlow was unchanged. High Rup was observed in asthma, which reduced with BPAP. We conclude that the upper airway is a major component of Rrs and larger lung volume changes may be required to alter Rlow. PMID:23041446

  13. DEVELOPMENT OF THE HUMAN LUNG MEASURED BY AEROSOL-DERIVED AIRWAY MORPHEMETRY (ADAM).

    EPA Science Inventory

    We measured, in vivo, the airspace calibers of the small airways and alveoli by ADAM in the lungs of children of ages 6 to 18 years and adults aged 18 to 80 years. ADAM utilizes the gravitational settling time of inhaled monodisperse particles to infer the vertical distance to th...

  14. Airway epithelial NF-kappaB activation modulates asbestos-induced inflammation and mucin production in vivo.

    PubMed

    Haegens, Astrid; Barrett, Trisha F; Gell, Joanna; Shukla, Arti; Macpherson, Maximilian; Vacek, Pamela; Poynter, Matthew E; Butnor, Kelly J; Janssen-Heininger, Yvonne M; Steele, Chad; Mossman, Brooke T

    2007-02-01

    To investigate the role of bronchiolar epithelial NF-kappaB activity in the development of inflammation and fibrogenesis in a murine model of asbestos inhalation, we used transgenic (Tg) mice expressing an IkappaBalpha mutant (IkappaBalphasr) resistant to phosphorylation-induced degradation and targeted to bronchial epithelium using the CC10 promoter. Sham and chrysotile asbestos-exposed CC10-IkappaBalphasr Tg(+) and Tg(-) mice were examined for altered epithelial cell proliferation and differentiation, cytokine profiles, lung inflammation, and fibrogenesis at 3, 9, and 40 days. KC, IL-6 and IL-1beta were increased (p < or = 0.05) in bronchoalveolar lavage fluid (BALF) from asbestos-exposed mice, but to a lesser extent (p < or = 0.05) in Tg(+) vs Tg(-) mice. Asbestos also caused increases in IL-4, MIP-1beta, and MCP-1 in BALF that were more elevated (p < or = 0.05) in Tg(+) mice at 9 days. Differential cell counts revealed eosinophils in BALF that increased (p < or = 0.05) in Tg(+) mice at 9 days, a time point corresponding with significantly increased numbers of bronchiolar epithelial cells staining positively for mucus production. At all time points, asbestos caused increased numbers of distal bronchiolar epithelial cells and peribronchiolar cells incorporating the proliferation marker, Ki-67. However, bronchiolar epithelial cell and interstitial cell labeling was diminished at 40 days (p < or = 0.05) in Tg(+) vs Tg(-) mice. Our findings demonstrate that airway epithelial NF-kappaB activity plays a role in orchestrating the inflammatory response as well as cell proliferation in response to asbestos.

  15. GENETIC DIFFERENCES IN IN VIVO/IN VITRO AIRWAY INJURY AND INFLAMMATION AFTER OIL FLY ASH EXPOSURE

    EPA Science Inventory

    GENETIC DIFFERENCES IN IN VIVO/ IN VITRO AIRWAY INJURY/ INFLAMMATION AFTER OIL FLY ASH EXPOSURE

    Janice Dye, Debora Andrews, Judy Richards, Annette King*, Urmila Kodavanti. US EPA & *SEE Program, RTP, NC.

    Oxidative stress is implicated in the pathogenesis and progres...

  16. Therapy with resveratrol attenuates obesity-associated allergic airway inflammation in mice.

    PubMed

    André, Diana Majolli; Calixto, Marina Ciarallo; Sollon, Carolina; Alexandre, Eduardo Costa; Leiria, Luiz O; Tobar, Natalia; Anhê, Gabriel Forato; Antunes, Edson

    2016-09-01

    Obesity and insulin resistance have been associated with deterioration in asthma outcomes. High oxidative stress and deficient activation of AMP-activated protein kinase (AMPK) have emerged as important regulators linking insulin resistance and inflammation. This study aimed to evaluate the effects of resveratrol on obesity-associated allergic pulmonary inflammation. Male C57/Bl6 mice fed with high-fat diet to induce obesity (obese group) or standard-chow diet (lean group) were treated or not with resveratrol (100mg/kg/day, two weeks). Mice were sensitized and challenged with ovalbumin (OVA). At 48h thereafter, bronchoalveolar lavage fluid was performed, and lungs collected for morphological studies and Western blot analysis. Treatment of obese mice with resveratrol significantly reduced hyperglycemia and insulin resistance, as well as the body measures (body mass, fat mass, % fat, and body area). OVA-challenge promoted a higher increase in pulmonary eosinophil infiltration in obese compared with lean mice, which was nearly abrogated by resveratrol treatment. Resveratrol markedly increased the phosphorylated AMPK expression in lung tissues of obese compared with lean mice. Resveratrol reduced the p47phox expression and reactive-oxygen species (ROS) production, and elevated the superoxide dismutase (SOD) levels in lung tissues of obese mice. The increased pulmonary levels of TNF-α and inducible nitric oxide synthase (iNOS) in obese mice were also normalized after resveratrol treatment. In lean mice, resveratrol failed to affect the levels of fasting glucose, p47phox, ROS levels, TNF-α, iNOS and phosphorylated AMPK. Resveratrol exhibits protective effects in obesity-associated lung inflammation that is accompanied by local AMPK activation and antioxidant property. PMID:27344038

  17. Construction of a Der p2-transgenic plant for the alleviation of airway inflammation.

    PubMed

    Lee, C C; Ho, H; Lee, K T; Jeng, S T; Chiang, B L

    2011-09-01

    In clinical therapy, the amount of antigen administered to achieve oral tolerance for allergic diseases is large, and the cost is a major consideration. In this study, we used tobacco plants to develop a large-scale protein production system for allergen-specific immunotherapy, and we investigated the mechanisms of oral tolerance induced by a transgenic plant-derived antigen. We used plants (tobacco leaves) transgenic for the Dermatophagoides pteronyssinus 2 (Der p2) antigen to produce Der p2. Mice received total protein extract from Der p2 orally once per day over 6 days (days 0-2 and days 6-8). Mice were also sensitized and challenged with yeast-derived recombinant Der p2 (rDer p2), after which the mice were examined for airway hyper-responsiveness and airway inflammation. After sensitization and challenge with rDer p2, mice that were fed with total protein extracted from transgenic plants showed decreases in serum Der p2-specific IgE and IgG1 titers, decreased IL-5 and eotaxin levels in bronchial alveolar lavage fluid, and eosinophil infiltration in the airway. In addition, hyper-responsiveness was also decreased in mice that were fed with total protein extracted from transgenic plants, and CD4(+)CD25(+)Foxp3(+) regulatory T cells were significantly increased in mediastinal and mesenteric lymph nodes. Furthermore, splenocytes isolated from transgenic plant protein-fed mice exhibited decreased proliferation and increased IL-10 secretion after stimulation with rDer p2. The data here suggest that allergen-expressing transgenic plants could be used for therapeutic purposes for allergic diseases.

  18. Effects of environmental pollutants on airways, allergic inflammation, and the immune response.

    PubMed

    Handzel, Z T

    2000-01-01

    Particulate and gaseous air pollutants are capable of damaging the airway epithelial lining and of shifting the local immune balance, thereby facilitating the induction of persistent inflammation. Epidemiological studies are inconclusive regarding whether air pollution increases the incidence of asthma and chronic bronchitis in the population. Clearly, environmental pollution can, however, precipitate attacks and emergency-room admissions in those already suffering from such conditions. The catastrophic potential of airborne pollution was demonstrated in the 1960s and 1970s, when inverted atmospheric pressure conditions trapped smog over cities on the Eastern coast of the United States and over Europe. This smog resulted in thousands of hospital admissions and dozens of deaths. With the general rise in the incidence of atopy and asthma in the Western population, it is of major public health interest to reduce, as much as possible, the exposure of such populations to anthropogenic and natural sources of pollution. PMID:11048334

  19. Trigger of bronchial hyperresponsiveness development may not always need eosinophilic airway inflammation in very early stage of asthma

    PubMed Central

    Obase, Yasushi; Kishikawa, Reiko; Kohno, Shigeru; Iwanaga, Tomoaki

    2016-01-01

    Background: Cough variant asthma (CVA), a suggested precursor of standard bronchial asthma (SBA), is characterized by positive bronchial hyperresponsiveness (BHR) and a chronic cough response to bronchodilator that persists for >8 weeks. Objective: Airway inflammation, BHR, and airway obstructive damage were analyzed to assess whether CVA represents early or mild-stage SBA. Methods: Patients with newly diagnosed CVA (n = 72) and SBA (n = 84) naive to oral or inhaled corticosteroids and without exacerbated asthma were subjected to spirometry, impulse oscillometry, BHR tests, sputum induction, and fractional exhaled nitric oxide measurements. Results: In the patients with CVA, spirometry demonstrated higher forced expiratory volume in 1 second (FEV1) to forced vital capacity ratio, FEV1 percent predicted, flow volume at 50% of vital capacity % predicted, and flow volume at 25% of vital capacity % predicted values, and impulse oscillometry demonstrated lower R5–Z20, AX, and Fres, and higher X5 values. In addition, the fractional exhaled nitric oxide and sputum eosinophil numbers were lower and the PC20 was higher than in patients with moderate SBA. However, these factors were similar in the patients with CVA and in the patients with intermittent mild SBA. A significantly smaller proportion of the patients with CVA had increased sputum eosinophils than the patients with intermittent mild SBA (p < 0.0001). However, interestingly, among the patients with CVA, no significant differences in the PC20 values were found between the patients with and those without increased sputum eosinophils. Conclusions: All measures of central and peripheral airway obstruction, eosinophilic inflammation, and airway hyperresponsiveness in patients with CVA were milder than in patients with moderate SBA but were similar to those of patients with intermittent mild SBA. In CVA, the BHR was not affected by airway eosinophilic inflammation, which indicated that the very early development of BHR

  20. Upregulation of autophagy decreases chlorine-induced mitochondrial injury and lung inflammation.

    PubMed

    Jurkuvenaite, Asta; Benavides, Gloria A; Komarova, Svetlana; Doran, Stephen F; Johnson, Michelle; Aggarwal, Saurabh; Zhang, Jianhua; Darley-Usmar, Victor M; Matalon, Sadis

    2015-08-01

    The mechanisms of toxicity during exposure of the airways to chlorinated biomolecules generated during the course of inflammation and to chlorine (Cl2) gas are poorly understood. We hypothesized that lung epithelial cell mitochondria are damaged by Cl2 exposure and activation of autophagy mitigates this injury. To address this, NCI-H441 (human lung adenocarcinoma epithelial) cells were exposed to Cl2 (100 ppm/15 min) and bioenergetics were assessed. One hour after Cl2, cellular bioenergetic function and mitochondrial membrane potential were decreased. These changes were associated with increased MitoSOX signal, and treatment with the mitochondrial redox modulator MitoQ attenuated these bioenergetic defects. At 6h postexposure, there was significant increase in autophagy, which was associated with an improvement of mitochondrial function. Pretreatment of H441 cells with trehalose (an autophagy activator) improved bioenergetic function, whereas 3-methyladenine (an autophagy inhibitor) resulted in increased bioenergetic dysfunction 1h after Cl2 exposure. These data indicate that Cl2 induces bioenergetic dysfunction, and autophagy plays a protective role in vitro. Addition of trehalose (2 vol%) to the drinking water of C57BL/6 mice for 6 weeks, but not 1 week, before Cl2 (400 ppm/30 min) decreased white blood cells in the bronchoalveolar lavage fluid at 6h after Cl2 by 70%. Acute administration of trehalose delivered through inhalation 24 and 1h before the exposure decreased alveolar permeability but not cell infiltration. These data indicate that Cl2 induces bioenergetic dysfunction associated with lung inflammation and suggests that autophagy plays a protective role.

  1. Airway inflammation and oxidative potential of air pollutant particles in a pediatric asthma panel

    PubMed Central

    Delfino, Ralph J.; Staimer, Norbert; Tjoa, Thomas; Gillen, Daniel L.; Schauer, James J.; Shafer, Martin M.

    2014-01-01

    Airborne particulate matter (PM) components from fossil fuel combustion can induce oxidative stress initiated by reactive oxygen species (ROS). Reported associations between worsening asthma and PM2.5 mass could be related to PM oxidative potential to induce airway oxidative stress and inflammation (hallmarks of asthma pathology). We followed 45 schoolchildren with persistent asthma in their southern California homes daily over 10 days with offline fractional exhaled nitric oxide (FENO), a biomarker of airway inflammation. Ambient exposures included daily average PM2.5, PM2.5 elemental and organic carbon (EC, OC), NO2, O3, and endotoxin. We assessed PM2.5 oxidative potential using both an abiotic and an in vitro bioassay on aqueous extracts of daily particle filters: (1) dithiothreitol (DTT) assay (abiotic), representing chemically produced ROS; and (2) ROS generated intracellularly in a rat alveolar macrophage model using the fluorescent probe 2′7′-dicholorohidroflourescin diacetate. We analyzed relations of FENO to air pollutants in mixed linear regression models. FENO was significantly positively associated with lag 1-day and 2-day averages of traffic-related markers (EC, OC, and NO2), DTT and macrophage ROS, but not PM2.5 mass. DTT associations were nearly twice as strong as other exposures per interquartile range: median FENO increased 8.7–9.9% per 0.43 nmole/min/m3 DTT. Findings suggest that future research in oxidative stress-related illnesses such as asthma and PM exposure would benefit from assessments of PM oxidative potential and composition. PMID:23673461

  2. Eicosanoid Mediators in the Airway Inflammation of Asthmatic Patients: What is New?

    PubMed

    Sanak, Marek

    2016-11-01

    Lipid mediators contribute to inflammation providing both pro-inflammatory signals and terminating the inflammatory process by activation of macrophages. Among the most significant biologically lipid mediators, these are produced by free-radical or enzymatic oxygenation of arachidonic acid named "eicosanoids". There were some novel eicosanoids identified within the last decade, and many of them are measurable in clinical samples by affordable chromatography-mass spectrometry equipment or sensitive immunoassays. In this review, we present some recent advances in understanding of the signaling by eicosanoid mediators during asthmatic airway inflammation. Eicosanoid profiling in the exhaled breath condensate, induced sputum, or their metabolites measurements in urine is complementary to the cellular phenotyping of asthmatic inflammation. Special attention is paid to aspirin-exacerbated respiratory disease, a phenotype of asthma manifested by the most profound changes in the profile of eicosanoids produced. A hallmark of this type of asthma with hypersensitivity to non-steroid anti-inflammatory drugs (NSAIDs) is to increase biosynthesis of cysteinyl leukotrienes on the systemic level. It depends on transcellular biosynthesis of leukotriene C₄ by platelets that adhere to granulocytes releasing leukotriene A₄. However, other abnormalities are also reported in this type of asthma as a resistance to anti-inflammatory activity of prostaglandin E₂ or a robust eosinophil interferon-γ response resulting in cysteinyl leukotrienes production. A novel mechanism is also discussed in which an isoprostane structurally related to prostaglandin E₂ is released into exhaled breath condensate during a provoked asthmatic attack. However, it is concluded that any single eicosanoid or even their complex profile can hardly provide a thorough explanation for the mechanism of asthmatic inflammation. PMID:27582398

  3. Eicosanoid Mediators in the Airway Inflammation of Asthmatic Patients: What is New?

    PubMed Central

    2016-01-01

    Lipid mediators contribute to inflammation providing both pro-inflammatory signals and terminating the inflammatory process by activation of macrophages. Among the most significant biologically lipid mediators, these are produced by free-radical or enzymatic oxygenation of arachidonic acid named "eicosanoids". There were some novel eicosanoids identified within the last decade, and many of them are measurable in clinical samples by affordable chromatography-mass spectrometry equipment or sensitive immunoassays. In this review, we present some recent advances in understanding of the signaling by eicosanoid mediators during asthmatic airway inflammation. Eicosanoid profiling in the exhaled breath condensate, induced sputum, or their metabolites measurements in urine is complementary to the cellular phenotyping of asthmatic inflammation. Special attention is paid to aspirin-exacerbated respiratory disease, a phenotype of asthma manifested by the most profound changes in the profile of eicosanoids produced. A hallmark of this type of asthma with hypersensitivity to non-steroid anti-inflammatory drugs (NSAIDs) is to increase biosynthesis of cysteinyl leukotrienes on the systemic level. It depends on transcellular biosynthesis of leukotriene C4 by platelets that adhere to granulocytes releasing leukotriene A4. However, other abnormalities are also reported in this type of asthma as a resistance to anti-inflammatory activity of prostaglandin E2 or a robust eosinophil interferon-γ response resulting in cysteinyl leukotrienes production. A novel mechanism is also discussed in which an isoprostane structurally related to prostaglandin E2 is released into exhaled breath condensate during a provoked asthmatic attack. However, it is concluded that any single eicosanoid or even their complex profile can hardly provide a thorough explanation for the mechanism of asthmatic inflammation. PMID:27582398

  4. Lung involvement in primary Sjögren's syndrome is mainly related to the small airway disease

    PubMed Central

    Papiris, S.; Maniati, M.; Constantopoulos, S.; Roussos, C.; Moutsopoulos, H.; Skopouli, F.

    1999-01-01

    inflammation, while interstitial inflammation coexisted in two patients.
CONCLUSION—The airway epithelia seem to be the main target of the inflammatory lesion of the lung in patients with primary Sjögren's syndrome. It seems to be common, subclinically leading to obstructive small airway physiological abnormalities.

 Keywords: small airway obstruction; computed tomography; autoimmune rheumatic disorders PMID:10343542

  5. Absorbed doses of lungs from radon retained in airway lumens of mice and rats.

    PubMed

    Sakoda, Akihiro; Ishimori, Yuu; Yamaoka, Kiyonori; Kataoka, Takahiro; Mitsunobu, Fumihiro

    2013-08-01

    This paper provides absorbed doses arising from radon gas in air retained in lung airway lumens. Because radon gas exposure experiments often use small animals, the calculation was performed for mice and rats. For reference, the corresponding computations were also done for humans. Assuming that radon concentration in airway lumens is the same as that in the environment, its progeny's production in and clearance from airways were simulated. Absorbed dose rates were obtained for three lung regions and the whole lung, considering that secretory and basal cells are sensitive to radiation. The results showed that absorbed dose rates for all lung regions and whole lung generally increase from mice to rats to humans. For example, the dose rates for the whole lung were 25.4 in mice, 41.7 in rats, and 59.9 pGy (Bq m⁻³)⁻¹ h⁻¹ in humans. Furthermore, these values were also compared with lung dose rates from two other types of exposures, that is, due to inhalation of radon or its progeny, which were already reported. It was confirmed that the direct inhalation of radon progeny in the natural environment, which is known as a cause of lung cancer, results in the highest dose rates for all species. Based on the present calculations, absorbed dose rates of the whole lung from radon gas were lower by a factor of about 550 (mice), 200 (rats), or 70 (humans) than those from radon progeny inhalation. The calculated dose rate values are comparatively small. Nevertheless, the present study is considered to contribute to our understanding of doses from inhalation of radon and its progeny.

  6. Traffic-related air pollutants and exhaled markers of airway inflammation and oxidative stress in New York City adolescents.

    PubMed

    Patel, Molini M; Chillrud, Steven N; Deepti, K C; Ross, James M; Kinney, Patrick L

    2013-02-01

    Exposures to ambient diesel exhaust particles have been associated with respiratory symptoms and asthma exacerbations in children; however, epidemiologic evidence linking short-term exposure to ambient diesel exhaust particles with airway inflammation is limited. We conducted a panel study with asthmatic and nonasthmatic adolescents to characterize associations between ambient diesel exhaust particle exposures and exhaled biological markers of airway inflammation and oxidative stress. Over four weeks, exhaled breath condensate was collected twice a week from 18 asthmatics and 18 nonasthmatics (ages 14-19 years) attending two New York City schools and analyzed for pH and 8-isoprostane as indicators of airway inflammation and oxidative stress, respectively. Air concentrations of black carbon, a diesel exhaust particle indicator, were measured outside schools. Air measurements of nitrogen dioxide, ozone, and fine particulate matter were obtained for the closest central monitoring sites. Relationships between ambient pollutants and exhaled biomarkers were characterized using mixed effects models. Among all subjects, increases in 1- to 5-day averages of black carbon were associated with decreases in exhaled breath condensate pH, indicating increased airway inflammation, and increases in 8-isoprostane, indicating increased oxidative stress. Increases in 1- to 5-day averages of nitrogen dioxide were associated with increases in 8-isoprostane. Ozone and fine particulate matter were inconsistently associated with exhaled biomarkers. Associations did not differ between asthmatics and nonasthmatics. The findings indicate that short-term exposure to traffic-related air pollutants may increase airway inflammation and/or oxidative stress in urban youth and provide mechanistic support for associations documented between traffic-related pollutant exposures and respiratory morbidity.

  7. Airway structure and alveolar emptying in the lungs of sea lions and dogs.

    NASA Technical Reports Server (NTRS)

    Denison, D. M.; Warrell, D. A.; West, J. B.

    1971-01-01

    Investigation of the effects of various cycles of compression and decompression on the alveolar volumes of the excised lungs of sea lions and dogs. The results obtained include the finding that, in comparison to dog lungs, sea lion lungs empty more completely on mild compression and much more completely on severe compression. These findings support Scholander's (1940) hypothesis that some marine mammals are protected from decompression sickness by cartilaginous reinforcement of the small airways which permits alveolar emptying during a dive, so isolating compressed gas from pulmonary capillary blood.

  8. Living near a Major Road in Beijing: Association with Lower Lung Function, Airway Acidification, and Chronic Cough

    PubMed Central

    Hu, Zhan-Wei; Zhao, Yan-Ni; Cheng, Yuan; Guo, Cui-Yan; Wang, Xi; Li, Nan; Liu, Jun-Qing; Kang, Hui; Xia, Guo-Guang; Hu, Ping; Zhang, Ping-Ji; Ma, Jing; Liu, Ying; Zhang, Cheng; Su, Li; Wang, Guang-Fa

    2016-01-01

    Background: The effects of near-road pollution on lung function in China have not been well studied. We aimed to investigate the effects of long-term exposure to traffic-related air pollution on lung function, airway inflammation, and respiratory symptoms. Methods: We enrolled 1003 residents aged 57.96 ± 8.99 years living in the Shichahai Community in Beijing. Distances between home addresses and the nearest major roads were measured to calculate home-road distance. We used the distance categories 1, 2, and 3, representing <100 m, 100–200 m, and >200 m, respectively, as the dose indicator for traffic-related air pollution exposure. Lung function, exhaled breath condensate (EBC) pH, and interleukin 6 levels were measured. As a follow-up, 398 participants had a second lung function assessment about 3 years later, and lung function decline was also examined as an outcome. We used regression analysis to assess the impacts of home-road distance on lung function and respiratory symptoms. As the EBC biomarker data were not normally distributed, we performed correlation analysis between home-road distance categories and EBC biomarkers. Results: Participants living a shorter distance from major roads had lower percentage of predicted value of forced expiratory volume in 1 s (FEV1% −1.54, 95% confidence interval [CI]: −0.20 to −2.89). The odds ratio for chronic cough was 2.54 (95% CI: 1.57–4.10) for category 1 and 1.97 (95% CI: 1.16–3.37) for category 2, compared with category 3. EBC pH was positively correlated with road distance (rank correlation coefficient of Spearman [rs] = 0.176, P < 0.001). Conclusions: Long-term exposure to traffic-related air pollution in people who live near major roads in Beijing is associated with lower lung function, airway acidification, and a higher prevalence of chronic cough. EBC pH is a potential useful biomarker for evaluating air pollution exposure. PMID:27625090

  9. IL-10 is necessary for the expression of airway hyperresponsiveness but not pulmonary inflammation after allergic sensitization

    NASA Astrophysics Data System (ADS)

    Mäkelä, M. J.; Kanehiro, A.; Borish, L.; Dakhama, A.; Loader, J.; Joetham, A.; Xing, Z.; Jordana, M.; Larsen, G. L.; Gelfand, E. W.

    2000-05-01

    Cytokines play an important role in modulating inflammatory responses and, as a result, airway tone. IL-10 is a regulatory cytokine that has been suggested for treatment of asthma because of its immunosuppressive and anti-inflammatory properties. In contrast to these suggestions, we demonstrate in a model of allergic sensitization that mice deficient in IL-10 (IL-10/) develop a pulmonary inflammatory response but fail to exhibit airway hyperresponsiveness in both in vitro and in vivo assessments of lung function. Reconstitution of these deficient mice with the IL-10 gene fully restores development of airway hyperresponsiveness comparable to control mice. These results identify an important role of IL-10, downstream of the inflammatory cascade, in regulating the tone of the airways after allergic sensitization and challenge.

  10. Airway epithelial inflammation-induced endoplasmic reticulum Ca2+ store expansion is mediated by X-box binding protein-1.

    PubMed

    Martino, Mary E B; Olsen, John C; Fulcher, Nanette B; Wolfgang, Matthew C; O'Neal, Wanda K; Ribeiro, Carla M P

    2009-05-29

    Inflamed cystic fibrosis (CF) human bronchial epithelia (HBE), or normal HBE exposed to supernatant from mucopurulent material (SMM) from CF airways, exhibit endoplasmic reticulum (ER)/Ca(2+) store expansion and amplified Ca(2+)-mediated inflammation. HBE inflammation triggers an unfolded protein response (UPR) coupled to mRNA splicing of X-box binding protein-1 (XBP-1). Because spliced XBP-1 (XBP-1s) promotes ER expansion in other cellular models, we hypothesized that XBP-1s is responsible for the ER/Ca(2+) store expansion in inflamed HBE. XBP-1s was increased in freshly isolated infected/inflamed CF in comparison with normal HBE. The link between airway epithelial inflammation, XBP-1s, and ER/Ca(2+) store expansion was then addressed in murine airways challenged with phosphate-buffered saline or Pseudomonas aeruginosa. P. aeruginosa-challenged mice exhibited airway epithelial ER/Ca(2+) store expansion, which correlated with airway inflammation. P. aeruginosa-induced airway inflammation triggered XBP-1s in ER stress-activated indicator (ERAI) mice. To evaluate the functional role of XBP-1s in airway inflammation linked to ER/Ca(2+) store expansion, control, XBP-1s, or dominant negative XBP-1 (DN-XBP-1) stably expressing 16HBE14o(-) cell lines were used. Studies with cells transfected with an unfolded protein response element (UPRE) luciferase reporter plasmid confirmed that the UPRE was activated or inhibited by expression of XBP-1s or DN-XBP-1, respectively. Expression of XBP-1s induced ER/Ca(2+) store expansion and potentiated bradykinin-increased interleukin (IL)-8 secretion, whereas expression of DN-XBP-1 inhibited bradykinin-dependent IL-8 secretion. In addition, expression of DN-XBP-1 blunted SMM-induced ER/Ca(2+) store expansion and SMM-induced IL-8 secretion. These findings suggest that, in inflamed HBE, XBP-1s is responsible for the ER/Ca(2+) store expansion that confers amplification of Ca(2+)-dependent inflammatory responses. PMID:19321437

  11. Carbon nanoparticles induce ceramide- and lipid raft-dependent signalling in lung epithelial cells: a target for a preventive strategy against environmentally-induced lung inflammation

    PubMed Central

    2012-01-01

    Background Particulate air pollution in lung epithelial cells induces pathogenic endpoints like proliferation, apoptosis, and pro-inflammatory reactions. The activation of the epidermal growth factor receptor (EGFR) is a key event responsible for signalling events involving mitogen activated protein kinases specific for these endpoints. The molecular events leading to receptor activation however are not well understood. These events are relevant for the toxicological evaluation of inhalable particles as well as for potential preventive strategies in situations when particulate air pollution cannot be avoided. The current study therefore had the objective to elucidate membrane-coupled events leading to EGFR activation and the subsequent signalling cascade in lung epithelial cells. Furthermore, we aimed to identify the molecular target of ectoine, a biophysical active substance which we described to prevent carbon nanoparticle-induced lung inflammation. Methods Membrane signalling events were investigated in isolated lipid rafts from lung epithelial cells with regard to lipid and protein content of the signalling platforms. Using positive and negative intervention approaches, lipid raft changes, subsequent signalling events, and lung inflammation were investigated in vitro in lung epithelial cells (RLE-6TN) and in vivo in exposed animals. Results Carbon nanoparticle treatment specifically led to an accumulation of ceramides in lipid rafts. Detailed analyses demonstrated a causal link of ceramides and subsequent EGFR activation coupled with a loss of the receptor in the lipid raft fractions. In vitro and in vivo investigations demonstrate the relevance of these events for carbon nanoparticle-induced lung inflammation. Moreover, the compatible solute ectoine was able to prevent ceramide-mediated EGFR phosphorylation and subsequent signalling as well as lung inflammation in vivo. Conclusion The data identify a so far unknown event in pro-inflammatory signalling and

  12. Bilateral vagotomy or atropine pre-treatment reduces experimental diesel-soot induced lung inflammation

    SciTech Connect

    McQueen, D.S. . E-mail: D.S.McQueen@ed.ac.uk; Donaldson, K.; McNeilly, J.D.; Barton, N.J.; Duffin, R.

    2007-02-15

    To investigate the role of the vagus nerve in acute inflammatory and cardiorespiratory responses to diesel particulate (DP) in the rat airway, we measured changes in respiration, blood pressure and neutrophils in lungs of urethane anesthetized Wistar rats 6-h post-instillation of DP (500 {mu}g) and studied the effect of mid-cervical vagotomy or atropine (1 mg kg{sup -1}) pre-treatment. In conscious rats, we investigated DP, with and without atropine pre-treatment. DP increased neutrophil level in BAL (bronchoalveolar lavage) fluid from intact anesthetized rats to 2.5 {+-} 0.7 x 10{sup 6} cells (n = 8), compared with saline instillation (0.3 {+-} 0.1 x 10{sup 6}, n = 7; P < 0.05). Vagotomy reduced DP neutrophilia to 0.8 {+-} 0.2 x 10{sup 6} cells (n = 8; P < 0.05 vs. intact); atropine reduced DP-induced neutrophilia to 0.3 {+-} 0.2 x 10{sup 6} (n = 4; P < 0.05). In conscious rats, DP neutrophilia of 8.5 {+-} 1.8 x 10{sup 6}, n = 4, was reduced by pre-treatment with atropine to 2.2 {+-} 1.2 x 10{sup 6} cells, n = 3. Hyperventilation occurred 6 h after DP in anesthetized rats with intact vagi, but not in bilaterally vagotomized or atropine pre-treated animals and was abolished by vagotomy (P < 0.05, paired test). There were no significant differences in the other variables (mean blood pressure, heart rate and heart rate variability) measured before and 360 min after DP. In conclusion, DP activates a pro-inflammatory vago-vagal reflex which is reduced by atropine. Muscarinic ACh receptors in the rat lung are involved in DP-induced neutrophilia, and hence muscarinic antagonists may reduce airway and/or cardiovascular inflammation evoked by inhaled atmospheric DP in susceptible individuals.

  13. Characterizing Lung Disease in Cystic Fibrosis with Magnetic Resonance Imaging and Airway Physiology

    PubMed Central

    Darquenne, Chantal; Elliott, Ann R.; Bailey, Barbara A.; Conrad, Douglas J.

    2016-01-01

    Translational investigations in cystic fibrosis (CF) have a need for improved quantitative and longitudinal measures of disease status. To establish a non-invasive quantitative MRI technique to monitor lung health in patients with CF and correlate MR metrics with airway physiology as measured by multiple breath washout (MBW). Data were collected in 12 CF patients and 12 healthy controls. Regional (central and peripheral lung) measures of fractional lung water density (FLD: air to 100% fluid) were acquired both at FRC and TLC on a 1.5T MRI. The median FLD (mFLD) and the FRC-to-TLC mFLD ratio were calculated for each region at both lung volumes. Spirometry and MBW data were also acquired for each subject. Ventilation inhomogeneities were quantified by the lung clearance index (LCI) and by indices Scond* and Sacin* that assess inhomogeneities in the conducting (central) and acinar (peripheral) lung regions, respectively. MBW indices and mFLD at TLC (both regions) were significantly elevated in CF (p<0.01) compared to controls. The mFLD at TLC (central: R = 0.82) and the FRC-to-TLC mFLD ratio (peripheral: R = -0.77) were strongly correlated with Scond* and LCI. CF patients had high lung water content at TLC when compared to controls. This is likely due to the presence of retained airway secretions and airway wall edema (more water) and to limited expansions of air trapping areas (less air) in CF subjects. FRC-to-TLC ratios of mFLD strongly correlated with central ventilation inhomogeneities. These combined measures may provide a useful marker of both retained mucus and air trapping in CF lungs. PMID:27337056

  14. The Role of Ion Channels to Regulate Airway Ciliary Beat Frequency During Allergic Inflammation.

    PubMed

    Joskova, M; Sutovska, M; Durdik, P; Koniar, D; Hargas, L; Banovcin, P; Hrianka, M; Khazaei, V; Pappova, L; Franova, S

    2016-01-01

    Overproduction of mucus is a hallmark of asthma. The aim of this study was to identify potentially effective therapies for removing excess mucus. The role of voltage-gated (Kir 6.1, KCa 1.1) and store-operated ion channels (SOC, CRAC) in respiratory cilia, relating to the tracheal ciliary beat frequency (CBF), was compared under the physiological and allergic airway conditions. Ex vivo experiments were designed to test the local effects of Kir 6.1, KCa 1.1 and CRAC ion channel modulators in a concentration-dependent manner on the CBF. Cilia, obtained with the brushing method, were monitored by a high-speed video camera and analyzed with ciliary analysis software. In natural conditions, a Kir 6.1 opener accelerated CBF, while CRAC blocker slowed it in a concentration-dependent manner. In allergic inflammation, the effect of Kir 6.1 opener was insignificant, with a tendency to decrease CBF. A cilio-inhibitory effect of a CRAC blocker, while gently reduced by allergic inflammation, remained significant. A KCa 1.1 opener turned out to significantly enhance the CBF under the allergic OVA-sensitized conditions. We conclude that optimally attuned concentration of KCa 1.1 openers or special types of bimodal SOC channel blockers, potentially given by inhalation, might benefit asthma. PMID:27369295

  15. The novel compound Sul-121 inhibits airway inflammation and hyperresponsiveness in experimental models of chronic obstructive pulmonary disease

    PubMed Central

    Han, Bing; Poppinga, Wilfred J.; Zuo, Haoxiao; Zuidhof, Annet B.; Bos, I. Sophie T.; Smit, Marieke; Vogelaar, Pieter; Krenning, Guido; Henning, Robert H.; Maarsingh, Harm; Halayko, Andrew J.; van Vliet, Bernard; Stienstra, Stef; Graaf, Adrianus Cornelis van der; Meurs, Herman; Schmidt, Martina

    2016-01-01

    COPD is characterized by persistent airflow limitation, neutrophilia and oxidative stress from endogenous and exogenous insults. Current COPD therapy involving anticholinergics, β2-adrenoceptor agonists and/or corticosteroids, do not specifically target oxidative stress, nor do they reduce chronic pulmonary inflammation and disease progression in all patients. Here, we explore the effects of Sul-121, a novel compound with anti-oxidative capacity, on hyperresponsiveness (AHR) and inflammation in experimental models of COPD. Using a guinea pig model of lipopolysaccharide (LPS)-induced neutrophilia, we demonstrated that Sul-121 inhalation dose-dependently prevented LPS-induced airway neutrophilia (up to ~60%) and AHR (up to ~90%). Non-cartilaginous airways neutrophilia was inversely correlated with blood H2S, and LPS-induced attenuation of blood H2S (~60%) was prevented by Sul-121. Concomitantly, Sul-121 prevented LPS-induced production of the oxidative stress marker, malondialdehyde by ~80%. In immortalized human airway smooth muscle (ASM) cells, Sul-121 dose-dependently prevented cigarette smoke extract-induced IL-8 release parallel with inhibition of nuclear translocation of the NF-κB subunit, p65 (each ~90%). Sul-121 also diminished cellular reactive oxygen species production in ASM cells, and inhibited nuclear translocation of the anti-oxidative response regulator, Nrf2. Our data show that Sul-121 effectively inhibits airway inflammation and AHR in experimental COPD models, prospectively through inhibition of oxidative stress. PMID:27229886

  16. Essential Role of Nuclear Factor κB in the Induction of Eosinophilia in Allergic Airway Inflammation

    PubMed Central

    Yang, Liyan; Cohn, Lauren; Zhang, Dong-Hong; Homer, Robert; Ray, Anuradha; Ray, Prabir

    1998-01-01

    The molecular mechanisms that contribute to an eosinophil-rich airway inflammation in asthma are unclear. A predominantly T helper 2 (Th2)-type cell response has been documented in allergic asthma. Here we show that mice deficient in the p50 subunit of nuclear factor (NF)- κB are incapable of mounting eosinophilic airway inflammation compared with wild-type mice. This deficiency was not due to a block in T cell priming or proliferation in the p50−/− mice, nor was it due to a defect in the expression of the cell adhesion molecules VCAM-1 and ICAM-1 that are required for the extravasation of eosinophils into the airways. The major defects in the p50−/− mice were the lack of production of the Th2 cytokine interleukin 5 and the chemokine eotaxin, which are crucial for proliferation and for differentiation and recruitment, respectively, of eosinophils into the asthmatic airway. Additionally, the p50−/− mice were deficient in the production of the chemokines macrophage inflammatory protein (MIP)-1α and MIP-1β that have been implicated in T cell recruitment to sites of inflammation. These results demonstrate a crucial role for NF-κB in vivo in the expression of important molecules that have been implicated in the pathogenesis of asthma. PMID:9802985

  17. Lung inflammation caused by inhaled toxicants: a review

    PubMed Central

    Wong, John; Magun, Bruce E; Wood, Lisa J

    2016-01-01

    Exposure of the lungs to airborne toxicants from different sources in the environment may lead to acute and chronic pulmonary or even systemic inflammation. Cigarette smoke is the leading cause of chronic obstructive pulmonary disease, although wood smoke in urban areas of underdeveloped countries is now recognized as a leading cause of respiratory disease. Mycotoxins from fungal spores pose an occupational risk for respiratory illness and also present a health hazard to those living in damp buildings. Microscopic airborne particulates of asbestos and silica (from building materials) and those of heavy metals (from paint) are additional sources of indoor air pollution that contributes to respiratory illness and is known to cause respiratory illness in experimental animals. Ricin in aerosolized form is a potential bioweapon that is extremely toxic yet relatively easy to produce. Although the aforementioned agents belong to different classes of toxic chemicals, their pathogenicity is similar. They induce the recruitment and activation of macrophages, activation of mitogen-activated protein kinases, inhibition of protein synthesis, and production of interleukin-1 beta. Targeting either macrophages (using nanoparticles) or the production of interleukin-1 beta (using inhibitors against protein kinases, NOD-like receptor protein-3, or P2X7) may potentially be employed to treat these types of lung inflammation without affecting the natural immune response to bacterial infections. PMID:27382275

  18. Lung inflammation caused by inhaled toxicants: a review.

    PubMed

    Wong, John; Magun, Bruce E; Wood, Lisa J

    2016-01-01

    Exposure of the lungs to airborne toxicants from different sources in the environment may lead to acute and chronic pulmonary or even systemic inflammation. Cigarette smoke is the leading cause of chronic obstructive pulmonary disease, although wood smoke in urban areas of underdeveloped countries is now recognized as a leading cause of respiratory disease. Mycotoxins from fungal spores pose an occupational risk for respiratory illness and also present a health hazard to those living in damp buildings. Microscopic airborne particulates of asbestos and silica (from building materials) and those of heavy metals (from paint) are additional sources of indoor air pollution that contributes to respiratory illness and is known to cause respiratory illness in experimental animals. Ricin in aerosolized form is a potential bioweapon that is extremely toxic yet relatively easy to produce. Although the aforementioned agents belong to different classes of toxic chemicals, their pathogenicity is similar. They induce the recruitment and activation of macrophages, activation of mitogen-activated protein kinases, inhibition of protein synthesis, and production of interleukin-1 beta. Targeting either macrophages (using nanoparticles) or the production of interleukin-1 beta (using inhibitors against protein kinases, NOD-like receptor protein-3, or P2X7) may potentially be employed to treat these types of lung inflammation without affecting the natural immune response to bacterial infections. PMID:27382275

  19. Anti-inflammatory effects of Tat-Annexin protein on ovalbumin-induced airway inflammation in a mouse model of asthma

    SciTech Connect

    Lee, Sun Hwa; Kim, Dae Won; Kim, Hye Ri; Woo, Su Jung; Kim, So Mi; Jo, Hyo Sang; Jeon, Seong Gyu; Cho, Sung-Woo; Park, Jong Hoon; Won, Moo Ho; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer We construct a cell permeable Tat-ANX1 fusion protein. Black-Right-Pointing-Pointer We examined the protective effects of Tat-ANX1 protein on OVA-induced asthma in animal models. Black-Right-Pointing-Pointer Transduced Tat-ANX1 protein protects from the OVA-induced production of cytokines and eosinophils in BAL fluid. Black-Right-Pointing-Pointer Tat-ANX1 protein markedly reduced OVA-induced MAPK in lung tissues. Black-Right-Pointing-Pointer Tat-ANX1 protein could be useful as a therapeutic agent for lung disorders including asthma. -- Abstract: Chronic airway inflammation is a key feature of bronchial asthma. Annexin-1 (ANX1) is an anti-inflammatory protein that is an important modulator and plays a key role in inflammation. Although the precise action of ANX1 remains unclear, it has emerged as a potential drug target for inflammatory diseases such as asthma. To examine the protective effects of ANX1 protein on ovalbumin (OVA)-induced asthma in animal models, we used a cell-permeable Tat-ANX1 protein. Mice sensitized and challenged with OVA antigen had an increased amount of cytokines and eosinophils in their bronchoalveolar lavage (BAL) fluid. However, administration of Tat-ANX1 protein before OVA challenge significantly decreased the levels of cytokines (interleukin (IL)-4, IL-5, and IL-13) and BAL fluid in lung tissues. Furthermore, OVA significantly increased the activation of mitogen-activated protein kinase (MAPK) in lung tissues, whereas Tat-ANX1 protein markedly reduced phosphorylation of MAPKs such as extracellular signal-regulated protein kinase, p38, and stress-activated protein kinase/c-Jun N-terminal kinase. These results suggest that transduced Tat-ANX1 protein may be a potential protein therapeutic agent for the treatment of lung disorders including asthma.

  20. The MIF Antagonist ISO-1 Attenuates Corticosteroid-Insensitive Inflammation and Airways Hyperresponsiveness in an Ozone-Induced Model of COPD

    PubMed Central

    Russell, Kirsty E.; Chung, Kian Fan; Clarke, Colin J.; Durham, Andrew L.; Mallia, Patrick; Johnston, Sebastian L.; Barnes, Peter J.; Hall, Simon R.; Simpson, Karen D.; Starkey, Malcolm R.; Hansbro, Philip M.; Adcock, Ian M.; Wiegman, Coen H.

    2016-01-01

    Introduction Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine associated with acute and chronic inflammatory disorders and corticosteroid insensitivity. Its expression in the airways of patients with chronic obstructive pulmonary disease (COPD), a relatively steroid insensitive inflammatory disease is unclear, however. Methods Sputum, bronchoalveolar lavage (BAL) macrophages and serum were obtained from non-smokers, smokers and COPD patients. To mimic oxidative stress-induced COPD, mice were exposed to ozone for six-weeks and treated with ISO-1, a MIF inhibitor, and/or dexamethasone before each exposure. BAL fluid and lung tissue were collected after the final exposure. Airway hyperresponsiveness (AHR) and lung function were measured using whole body plethysmography. HIF-1α binding to the Mif promoter was determined by Chromatin Immunoprecipitation assays. Results MIF levels in sputum and BAL macrophages from COPD patients were higher than those from non-smokers, with healthy smokers having intermediate levels. MIF expression correlated with that of HIF-1α in all patients groups and in ozone-exposed mice. BAL cell counts, cytokine mRNA and protein expression in lungs and BAL, including MIF, were elevated in ozone-exposed mice and had increased AHR. Dexamethasone had no effect on these parameters in the mouse but ISO-1 attenuated cell recruitment, cytokine release and AHR. Conclusion MIF and HIF-1α levels are elevated in COPD BAL macrophages and inhibition of MIF function blocks corticosteroid-insensitive lung inflammation and AHR. Inhibition of MIF may provide a novel anti-inflammatory approach in COPD. PMID:26752192

  1. Glucocorticoid Clearance and Metabolite Profiling in an In Vitro Human Airway Epithelium Lung Model.

    PubMed

    Rivera-Burgos, Dinelia; Sarkar, Ujjal; Lever, Amanda R; Avram, Michael J; Coppeta, Jonathan R; Wishnok, John S; Borenstein, Jeffrey T; Tannenbaum, Steven R

    2016-02-01

    The emergence of microphysiologic epithelial lung models using human cells in a physiologically relevant microenvironment has the potential to be a powerful tool for preclinical drug development and to improve predictive power regarding in vivo drug clearance. In this study, an in vitro model of the airway comprising human primary lung epithelial cells cultured in a microfluidic platform was used to establish a physiologic state and to observe metabolic changes as a function of glucocorticoid exposure. Evaluation of mucus production rate and barrier function, along with lung-specific markers, demonstrated that the lungs maintained a differentiated phenotype. Initial concentrations of 100 nM hydrocortisone (HC) and 30 nM cortisone (C) were used to evaluate drug clearance and metabolite production. Measurements made using ultra-high-performance liquid chromatography and high-mass-accuracy mass spectrometry indicated that HC metabolism resulted in the production of C and dihydrocortisone (diHC). When the airway model was exposed to C, diHC was identified; however, no conversion to HC was observed. Multicompartmental modeling was used to characterize the lung bioreactor data, and pharmacokinetic parameters, including elimination clearance and elimination half-life, were estimated. Polymerse chain reaction data confirmed overexpression of 11-β hydroxysteroid dehydrogenase 2 (11βHSD2) over 11βHSD1, which is biologically relevant to human lung. Faster metabolism was observed relative to a static model on elevated rates of C and diHC formation. Overall, our results demonstrate that this lung airway model has been successfully developed and could interact with other human tissues in vitro to better predict in vivo drug behavior.

  2. [Continuous positive airway pressure and high-frequency independent lung ventilation in patients with chronic obstructive lung diseases].

    PubMed

    Fedorova, E A; Vyzhigina, M A; Gal'perin, Iu S; Zhukova, S G; Titov, V A; Godin, A V

    2004-01-01

    The original hypoxemia, hypercapnia, high pulmonary hypertension, high resistance of microcirculation vessels, right volumetric ventricular overload, persistent sub-edema of pulmonary intersticium as well as disparity of ventilation and perfusion between both lungs are the main problems in patients with chronic obstructive disease of the lungs (CODL). Such patients are, as a rule, intolerant to the independent lung collaboration or artificial single-stage ventilation (ASV). Patients with respiratory insufficiency, stages 2 and 3, and with a pronounced impaired type of ventilation have originally a deranged blood gas composition, like hypoxemia or hypercapnia. The application of volume-controllable bi-pulmonary ASV in such patients maintains an adequate gas exchange hemodynamics. However, ASV is accompanied by a significantly reduced gas-exchange function of the single ventilated lung and by essentially worsened intrapulmonary hemodynamics. Therefore, what is needed is to use alternative methods of independent lung ventilation in order to eliminate the gas-exchange impairments and to enable surgical interventions at thoracic organs in such patients (who are intolerant to ASV). A choice of a method and means of oxygen supply to the independent lung is of great importance. The possibility to avoid a high pressure in the airways, while maintaining, simultaneously, an adequate gas exchange, makes the method related with maintaining a constant positive pressure in the airways (CPPA) a priority one in case of CODL patients. The use of constant high-frequency ventilation in the independent lung in patients with obstructive pulmonary lesions does not improve the gas exchange or hemodynamics. Simultaneously, a growing total pulmonary resistance and an increasing pressure in the pulmonary artery are observed. Consequently, the discussed method must not be used for the ventilation support of the independent lung in patients with the obstructive type of the impaired external

  3. Pinellia ternata Attenuates Mucus Secretion and Airway Inflammation after Inhaled Corticosteroid Withdrawal in COPD Rats.

    PubMed

    Du, Wei; Su, Jinyu; Ye, Dan; Wang, Yuegang; Huang, Qiaobing; Gong, Xiaowei

    2016-01-01

    Inhaled corticosteroids (ICS) are widely used to manage chronic obstructive pulmonary disease (COPD). However, withdrawal of ICS generally causes various adverse effects, warranting careful management of the ICS withdrawal. Pinellia ternata, a traditional Chinese herbal medicine, has been used to treat respiratory diseases in China for centuries. Here, we investigated its role in antagonizing ICS withdrawal-induced side effects, and explored the underlying mechanisms. The rat COPD model was established using a combination of passive cigarette smoking and intratracheal instillation of lipopolysaccharide (LPS). COPD rats were treated with saline or budesonide inhalation, or with budesonide inhalation followed by saline inhalation or Pinellia ternata gavage. The number of goblet cells and the level of mucin 5AC (MUC5AC) were enhanced by budesonide withdrawal. Pinellia ternata treatment significantly blocked these effects. Further, Pinellia ternata treatment reversed budesonide withdrawal-induced increase of interleukin 1[Formula: see text] (IL-1[Formula: see text] and tumor necrosis factor [Formula: see text] (TNF-[Formula: see text]) levels in bronchoalveolar lavage fluid (BALF). Extracellular signal-regulated kinase (ERK), but neither p38 nor c-Jun N-terminal kinase (JNK), was activated by budesonide withdrawal, and the activation was blocked by Pinellia ternata treatment. The MUC5AC expression was positively correlated with goblet cell number, IL-1[Formula: see text] and TNF-[Formula: see text] levels, and ERK activity. Pinellia ternata treatment protected the airway from ICS withdrawal-induced mucus hypersecretion and airway inflammation by inhibiting ERK activation. Pinellia ternata treatment may represent a novel therapeutic strategy to prevent ICS withdrawal-induced side effects in COPD patients. PMID:27430907

  4. Airway smooth muscle inflammation is regulated by microRNA-145 in COPD.

    PubMed

    O'Leary, Lawrence; Sevinç, Kenan; Papazoglou, Ilektra M; Tildy, Bernadett; Detillieux, Karen; Halayko, Andrew J; Chung, Kian Fan; Perry, Mark M

    2016-05-01

    Chronic obstructive pulmonary disease (COPD) is a common, highly debilitating disease of the airways, primarily caused by smoking. Chronic inflammation and structural remodelling are key pathological features of this disease, in part caused by the aberrant function of airway smooth muscle (ASM) cells under the regulation of transforming growth factor (TGF)-β. miRNA are short, noncoding gene transcripts involved in the negative regulation of specific target genes, through their interactions with mRNA. Previous studies have proposed that mRNA-145 (miR-145) may interact with SMAD3, an important downstream signalling molecule of the TGF-β pathway. TGF-β was used to stimulate primary human ASM cells isolated from healthy nonsmokers, healthy smokers and COPD patients. This resulted in a TGF-β-dependent increase in CXCL8 and IL-6 release, most notably in the cells from COPD patients. TGF-β stimulation increased SMAD3 expression, only in cells from COPD patients, with a concurrent increased miR-145 expression. Regulation of miR-145 was found to be negatively controlled by pathways involving the MAP kinases, MEK-1/2 and p38 MAPK. Subsequent, overexpression of miR-145 (using synthetic mimics) in ASM cells from patients with COPD suppressed IL-6 and CXCL8 release, to levels comparable to the nonsmoker controls. Therefore, this study suggests that miR-145 negatively regulates pro-inflammatory cytokine release from ASM cells in COPD by targeting SMAD3. PMID:27060571

  5. Impact of chronic systolic heart failure on lung structure-function relationships in large airways.

    PubMed

    Chase, Steven C; Wheatley, Courtney M; Olson, Lyle J; Beck, Kenneth C; Wentz, Robert J; Snyder, Eric M; Taylor, Bryan J; Johnson, Bruce D

    2016-07-01

    Heart failure (HF) is often associated with pulmonary congestion, reduced lung function, abnormal gas exchange, and dyspnea. We tested whether pulmonary congestion is associated with expanded vascular beds or an actual increase in extravascular lung water (EVLW) and how airway caliber is affected in stable HF Subsequently we assessed the influence of an inhaled short acting beta agonist (SABA). Thirty-one HF (7F; age, 62 ± 11 years; ht. 175 ± 9 cm; wt. 91 ± 17 kg; LVEF, 28 ± 15%) and 29 controls (11F; age; 56 ± 11 years; ht. 174 ± 8 cm; wt. 77 ± 14 kg) completed the study. Subjects performed PFTs and a chest computed tomography (CT) scan before and after SABA CT measures of attenuation, skew, and kurtosis were obtained from areas of lung tissue to assess EVLW Airway luminal areas and wall thicknesses were also measured : CT tissue density suggested increased EVLW in HF without differences in the ratio of airway wall thickness to luminal area or luminal area to TLC (skew: 2.85 ± 1.08 vs. 2.11 ± 0.79, P < 0.01; Kurtosis: 15.5 ± 9.5 vs. 9.3 ± 5.5 P < 0.01; control vs. HF). PFTs were decreased in HF at baseline (% predicted FVC:101 ± 15% vs. 83 ± 18%, P < 0.01;FEV1:103 ± 15% vs. 82 ± 19%, P < 0.01;FEF25-75: 118 ± 36% vs. 86 ± 36%, P < 0.01; control vs. HF). Airway luminal areas, but not CT measures, were correlated with PFTs at baseline. The SABA cleared EVLW and decreased airway wall thickness but did not change luminal area. Patients with HF had evidence of increased EVLW, but not an expanded bronchial circulation. Airway caliber was maintained relative to controls, despite reductions in lung volume and flow rates. SABA improved lung function, primarily by reducing EVLW.

  6. Bee venom phospholipase A2 suppresses allergic airway inflammation in an ovalbumin-induced asthma model through the induction of regulatory T cells.

    PubMed

    Park, Soojin; Baek, Hyunjung; Jung, Kyung-Hwa; Lee, Gihyun; Lee, Hyeonhoon; Kang, Geun-Hyung; Lee, Gyeseok; Bae, Hyunsu

    2015-12-01

    Bee venom (BV) is one of the alternative medicines that have been widely used in the treatment of chronic inflammatory diseases. We previously demonstrated that BV induces immune tolerance by increasing the population of regulatory T cells (Tregs) in immune disorders. However, the major component and how it regulates the immune response have not been elucidated. We investigated whether bee venom phospholipase A2 (bvPLA2) exerts protective effects that are mediated via Tregs in OVA-induced asthma model. bvPLA2 was administered by intraperitoneal injection into control and OVA-challenged mice. The Treg population, total and differential bronchoalveolar lavage fluid (BALF) cell count, Th2 cytokines, and lung histological features were assessed. Treg depletion was used to determine the involvement of Treg migration and the reduction of asthmatic symptoms. The CD206-dependence of bvPLA2-treated suppression of airway inflammation was evaluated in OVA-challenged CD206(-/-) mice. The bvPLA2 treatment induced the Tregs and reduced the infiltration of inflammatory cells into the lung in the OVA-challenged mice. Th2 cytokines in the bronchoalveolar lavage fluid (BALF) were reduced in bvPLA2-treated mice. Although bvPLA2 suppressed the number of inflammatory cells after OVA challenge, these effects were not observed in Treg-depleted mice. In addition, we investigated the involvement of CD206 in bvPLA2-mediated immune tolerance in OVA-induced asthma model. We observed a significant reduction in the levels of Th2 cytokines and inflammatory cells in the BALF of bvPLA2-treated OVA-induced mice but not in bvPLA2-treated OVA-induced CD206(-/-) mice. These results demonstrated that bvPLA2 can mitigate airway inflammation by the induction of Tregs in an OVA-induced asthma model. PMID:26734460

  7. Iraq Dust is Respirable, Sharp, Metal-Laden, and Induces Lung Inflammation with Fibrosis in Mice via IL-2 Upregulation and Depletion of Regulatory T Cells

    PubMed Central

    Szema, Anthony M.; Reeder, Richard J.; Harrington, Andrea D.; Schmidt, Millicent; Liu, Jingxuan; Golightly, Marc; Rueb, Todd; Hamidi, Sayyed A.

    2014-01-01

    Soldiers returning from Iraq have reported respiratory symptoms. Lung biopsies show constrictive bronchiolitis and vascular remodeling with polarizable crystals. We hypothesized that ground surface dust may be a contributing factor to Iraq Afghanistan War Lung Injury (IAW-LI) and analyzed soil grab samples from Camp Victory, Iraq to determine if particle sizes are respirable. Samples contain particles 2.5 micron in size and have sharp edges. Trace metals (including titanium), calcium and silicon are present. Mice with airway instillation of dust have polarizable crystals and septate inflammation. CD4+CD25+FOXP3+ regulatory T cells are decreased in spleen and thymus from mice exposed to dust. IL-2 is elevated from bronchoalveolar lavage taken from dust-exposed mice. Respirable Iraq dust leads to lung inflammation in mice similar to that seen in patients, particularly regarding polarizable crystals which, appear to be titanium. PMID:24603199

  8. Quantitative trait locus mapping of susceptibilities to butylated hydroxytoluene-induced lung tumor promotion and pulmonary inflammation in CXB mice.

    PubMed

    Malkinson, Alvin M; Radcliffe, Richard A; Bauer, Alison K

    2002-03-01

    We have reported previously [Bauer,A.K. et al. (2001) Exp. Lung Res., 27, 197-216] that the 13 CXB recombinant inbred mouse strains derived from BALB/cByJ and C57BL/6J progenitors vary in their responsiveness to both lung tumor promotion and pulmonary inflammation induced by chronic administration of butylated hydroxytoluene (BHT). Herein we have applied these data, along with markers known to be polymorphic among these strains, to conduct linkage analysis of these susceptibilities. This enabled us to assign provisional quantitative trait loci (QTL) that govern these strain variations in susceptibility as a genetic approach to assessing the influence of inflammation on tumorigenesis. A Chr 15 (39.1-55.6 cM) QTL regulated susceptibility to two-stage carcinogenesis, a protocol in which chronic BHT exposure followed a single urethane injection; a similar QTL on Chr 15 (46.7-61.7 cM) influenced BHT induction of cyclooxygenase-2 (COX-2) expression. A Chr 18 (37-41 cM) QTL modulated both the number of lung tumors induced by 3-methylcholanthrene (MCA) injection with subsequent treatment with BHT as well as BHT-induced ingress of macrophages into airways. Other chromosomal sites that affected either the degree of BHT-elicited macrophage infiltration, Chr 9 (48-61 cM), or COX-2 induction, Chr 10 (59-65 cM), were reported to influence susceptibility to lung tumorigenesis in other strains. The fact that common chromosomal locations regulate both inflammation and carcinogenesis suggests a pathogenic role of inflammatory mediators in tumor development that may be exploited for chemoprevention of lung cancer.

  9. Automated segmentation of lung airway wall area measurements from bronchoscopic optical coherence tomography imaging

    NASA Astrophysics Data System (ADS)

    Heydarian, Mohammadreza; Choy, Stephen; Wheatley, Andrew; McCormack, David; Coxson, Harvey O.; Lam, Stephen; Parraga, Grace

    2011-03-01

    Chronic Obstructive Pulmonary Disease (COPD) affects almost 600 million people and is currently the fourth leading cause of death worldwide. COPD is an umbrella term for respiratory symptoms that accompany destruction of the lung parenchyma and/or remodeling of the airway wall, the sum of which result in decreased expiratory flow, dyspnea and gas trapping. Currently, x-ray computed tomography (CT) is the main clinical method used for COPD imaging, providing excellent spatial resolution for quantitative tissue measurements although dose limitations and the fundamental spatial resolution of CT limit the measurement of airway dimensions beyond the 5th generation. To address this limitation, we are piloting the use of bronchoscopic Optical Coherence Tomography (OCT), by exploiting its superior spatial resolution of 5-15 micrometers for in vivo airway imaging. Currently, only manual segmentation of OCT airway lumen and wall have been reported but manual methods are time consuming and prone to observer variability. To expand the utility of bronchoscopic OCT, automatic and robust measurement methods are required. Therefore, our objective was to develop a fully automated method for segmenting OCT airway wall dimensions and here we explore several different methods of image-regeneration, voxel clustering and post-processing. Our resultant automated method used K-means or Fuzzy c-means to cluster pixel intensity and then a series of algorithms (i.e. cluster selection, artifact removal, de-noising) was applied to process the clustering results and segment airway wall dimensions. This approach provides a way to automatically and rapidly segment and reproducibly measure airway lumen and wall area.

  10. Correlation among regional ventilation, airway resistance and particle deposition in normal and severe asthmatic lungs

    NASA Astrophysics Data System (ADS)

    Choi, Sanghun; Hoffman, Eric A.; Tawhai, Merryn H.; Lin, Ching-Long

    2012-11-01

    Computational fluid dynamic simulations are performed to investigate flow characteristics and quantify particle deposition with normal and severe asthmatic lungs. Continuity and Navier-Stokes equations are solved with unstructured meshes and finite element method; a large eddy simulation model is adopted to capture turbulent and/or transitional flows created in the glottis. The human airway models are reconstructed from CT volumetric images, and the subject-specific boundary condition is imposed to the 3D ending branches with the aid of an image registration technique. As a result, several constricted airways are captured in CT images of severe asthmatic subjects, causing significant pressure drop with high air speed because the constriction of airways creates high flow resistance. The simulated instantaneous velocity fields obtained are then employed to track transport and deposition of 2.5 μm particles. It is found that high flow resistance regions are correlated with high particle-deposition regions. In other words, the constricted airways can induce high airway resistance and subsequently increase particle deposition in the regions. This result may be applied to understand the characteristics of deposition of pharmaceutical aerosols or bacteria. This work was supported in part by NIH grants R01-HL094315 and S10-RR022421.

  11. Ligation of TLR7 on CD19(+) CD1d(hi) B cells suppresses allergic lung inflammation via regulatory T cells.

    PubMed

    Khan, Adnan R; Amu, Sylvie; Saunders, Sean P; Hams, Emily; Blackshields, Gordon; Leonard, Martin O; Weaver, Casey T; Sparwasser, Tim; Sheils, Orla; Fallon, Padraic G

    2015-06-01

    B cells have been described as having the capacity to regulate cellular immune responses and suppress inflammatory processes. One such regulatory B-cell population is defined as IL-10-producing CD19(+) CD1d(hi) cells. Previous work has identified an expansion of these cells in mice infected with the helminth, Schistosoma mansoni. Here, microarray analysis of CD19(+) CD1d(hi) B cells from mice infected with S. mansoni demonstrated significantly increased Tlr7 expression, while CD19(+) CD1d(hi) B cells from uninfected mice also demonstrated elevated Tlr7 expression. Using IL-10 reporter, Il10(-/-) and Tlr7(-/-) mice, we formally demonstrate that TLR7 ligation of CD19(+) CD1d(hi) B cells increases their capacity to produce IL-10. In a mouse model of allergic lung inflammation, the adoptive transfer of TLR7-elicited CD19(+) CD1d(hi) B cells reduced airway inflammation and associated airway hyperresponsiveness. Using DEREG mice to deplete FoxP3(+) T regulatory cells in allergen-sensitized mice, we show that that TLR7-elicited CD19(+) CD1d(hi) B cells suppress airway hyperresponsiveness via a T regulatory cell dependent mechanism. These studies identify that TLR7 stimulation leads to the expansion of IL-10-producing CD19(+) CD1d(hi) B cells, which can suppress allergic lung inflammation via T regulatory cells.

  12. Ligation of TLR7 on CD19(+) CD1d(hi) B cells suppresses allergic lung inflammation via regulatory T cells.

    PubMed

    Khan, Adnan R; Amu, Sylvie; Saunders, Sean P; Hams, Emily; Blackshields, Gordon; Leonard, Martin O; Weaver, Casey T; Sparwasser, Tim; Sheils, Orla; Fallon, Padraic G

    2015-06-01

    B cells have been described as having the capacity to regulate cellular immune responses and suppress inflammatory processes. One such regulatory B-cell population is defined as IL-10-producing CD19(+) CD1d(hi) cells. Previous work has identified an expansion of these cells in mice infected with the helminth, Schistosoma mansoni. Here, microarray analysis of CD19(+) CD1d(hi) B cells from mice infected with S. mansoni demonstrated significantly increased Tlr7 expression, while CD19(+) CD1d(hi) B cells from uninfected mice also demonstrated elevated Tlr7 expression. Using IL-10 reporter, Il10(-/-) and Tlr7(-/-) mice, we formally demonstrate that TLR7 ligation of CD19(+) CD1d(hi) B cells increases their capacity to produce IL-10. In a mouse model of allergic lung inflammation, the adoptive transfer of TLR7-elicited CD19(+) CD1d(hi) B cells reduced airway inflammation and associated airway hyperresponsiveness. Using DEREG mice to deplete FoxP3(+) T regulatory cells in allergen-sensitized mice, we show that that TLR7-elicited CD19(+) CD1d(hi) B cells suppress airway hyperresponsiveness via a T regulatory cell dependent mechanism. These studies identify that TLR7 stimulation leads to the expansion of IL-10-producing CD19(+) CD1d(hi) B cells, which can suppress allergic lung inflammation via T regulatory cells. PMID:25763771

  13. Immunological Priming Requires Tregs and Interleukin-10-Producing Macrophages to Accelerate Resolution from Severe Lung Inflammation

    PubMed Central

    Eto, Yoshiki; Tripathi, Ashutosh; Mandke, Pooja; Mock, Jason R.; Garibaldi, Brian T.; Singer, Benjamin D.; Sidhaye, Venkataramana K.; Horton, Maureen R.; King, Landon S.; D'Alessio, Franco R.

    2014-01-01

    Overwhelming lung inflammation frequently occurs following exposure to both direct infectious and non-infectious agents, and is a leading cause of mortality world-wide. In that context, immunomodulatory strategies may be utilized to limit severity of impending organ damage. We sought to determine whether priming the lung by activating the immune system, or immunological priming, could accelerate resolution of severe lung inflammation. We assessed the importance of alveolar macrophages, regulatory T cells, and their potential interaction during immunological priming. We demonstrate that oropharyngeal delivery of low-dose lipopolysaccharide can immunologically prime the lung to augment alveolar macrophage production of interleukin-10 and enhance resolution of lung inflammation induced by a lethal dose of lipopolysaccharide or by pseudomonas bacterial pneumonia. Interleukin-10 deficient mice did not achieve priming and were unable to accelerate lung injury resolution. Depletion of lung macrophages or regulatory T cells during the priming response completely abrogated the positive effect of immunological priming on resolution of lung inflammation and significantly reduced alveolar macrophage interleukin-10 production. Finally, we demonstrated that oropharyngeal delivery of synthetic CpG-oligonucleotides elicited minimal lung inflammation compared to low-dose lipopolysaccharide, but nonetheless primed the lung to accelerate resolution of lung injury following subsequent lethal lipopolysaccharide exposure. Immunological priming is a viable immunomodulatory strategy used to enhance resolution in an experimental acute lung injury model with the potential for therapeutic benefit against a wide array of injurious exposures. PMID:24688024

  14. Vitamin D deficiency causes airway hyperresponsiveness, increases airway smooth muscle mass, and reduces TGF‐β expression in the lungs of female BALB/c mice

    PubMed Central

    Foong, Rachel E.; Shaw, Nicole C.; Berry, Luke J.; Hart, Prue H.; Gorman, Shelley; Zosky, Graeme R.

    2014-01-01

    Abstract Vitamin D deficiency is associated with disease severity in asthma. We tested whether there is a causal association between vitamin D deficiency, airway smooth muscle (ASM) mass, and the development of airway hyperresponsiveness (AHR). A physiologically relevant mouse model of vitamin D deficiency was developed by raising BALB/c mice on vitamin D‐deficient or ‐replete diets. AHR was assessed by measuring lung function responses to increasing doses of inhaled methacholine. Five‐micron sections from formalin‐fixed lungs were used for ASM measurement and assessment of lung structure using stereological methods. Transforming growth factor (TGF)‐β levels were measured in bronchoalveolar lavage fluid (BALF). Lungs were dissected from embryonic day (E) 17.5 vitamin D‐deficient and ‐replete fetal mice for quantification of ASM density and relative gene expression of TGF‐β signaling pathway molecules. Eight‐week‐old adult vitamin D‐deficient female mice had significantly increased airway resistance and ASM in the large airways compared with controls. Vitamin D‐deficient female mice had a smaller lung volume, volume of parenchyma, and alveolar septa. Both vitamin D‐deficient male and female mice had reduced TGF‐β levels in BALF. Vitamin D deficiency did not have an effect on ASM density in E17.5 mice, however, expression of TGF‐β1 and TGF‐β receptor I was downregulated in vitamin D‐deficient female fetal mice. Decreased expression of TGF‐β1 and TGF‐β receptor I during early lung development in vitamin D‐deficient mice may contribute to airway remodeling and AHR in vitamin D‐deficient adult female mice. This study provides a link between vitamin D deficiency and respiratory symptoms in chronic lung disease. PMID:24760528

  15. Slit2 regulates attractive eosinophil and repulsive neutrophil chemotaxis through differential srGAP1 expression during lung inflammation.

    PubMed

    Ye, Bu-Qing; Geng, Zhen H; Ma, Li; Geng, Jian-Guo

    2010-11-15

    Directional migration of leukocytes is an essential step in leukocyte trafficking during inflammatory responses. However, the molecular mechanisms governing directional chemotaxis of leukocytes remain poorly understood. The Slit family of guidance cues has been implicated for inhibition of leuocyte migration. We report that Clara cells in the bronchial epithelium secreted Slit2, whereas eosinophils and neutrophils expressed its cell-surface receptor, Robo1. Compared to neutrophils, eosinophils exhibited a significantly lower level of Slit-Robo GTPase-activating protein 1 (srGAP1), leading to activation of Cdc42, recruitment of PI3K to Robo1, enhancment of eotaxin-induced eosinophil chemotaxis, and exaggeration of allergic airway inflammation. Notably, OVA sensitization elicited a Slit2 gradient at so-called bronchus-alveoli axis, with a higher level of Slit2 in the bronchial epithelium and a lower level in the alveolar tissue. Aerosol administration of rSlit2 accelerated eosinophil infiltration, whereas i.v. administered Slit2 reduced eosinophil deposition. In contrast, Slit2 inactivated Cdc42 and suppressed stromal cell-derived factor-1α-induced chemotaxis of neutrophils for inhibiting endotoxin-induced lung inflammation, which were reversed by blockade of srGAP1 binding to Robo1. These results indicate that the newly identified Slit2 gradient at the bronchus-alveoli axis induces attractive PI3K signaling in eosinophils and repulsive srGAP1 signaling in neutrophils through differential srGAP1 expression during lung inflammation.

  16. The preterm lung and airway: past, present, and future.

    PubMed

    Martin, Richard J; Fanaroff, Avroy A

    2013-08-01

    The tremendous advancement that has occurred in neonatal intensive care over the last 40-50 years can be largely attributed to greater understanding of developmental pathobiology in the newborn lung. Nonetheless, this improved survival from respiratory distress syndrome has been associated with continuing longer-term morbidity in the form of bronchopulmonary dysplasia (BPD). As a result, neonatal lung injury is a renewed focus of scientific interest. The onset of such an injury may begin in the delivery room, and this has generated interest in minimizing oxygen therapy and aggressive ventilatory support during the transition from fetal to neonatal lung. Fortunately, antenatal steroid therapy and selective use of surfactant therapy are now widely practiced, although fine tuning of this therapy for selected populations is ongoing. Newer therapeutic approaches address many aspects of BPD, including the pro-inflammatory component that characterizes this disorder. Finally, there is a greater need to understand the epidemiology and pathogenesis of the longer-term respiratory morbidity, most notably asthma, that persists in the preterm survivors of neonatal intensive care.

  17. Critical role for syndecan-4 in dendritic cell migration during development of allergic airway inflammation.

    PubMed

    Polte, Tobias; Petzold, Susanne; Bertrand, Jessica; Schütze, Nicole; Hinz, Denise; Simon, Jan C; Lehmann, Irina; Echtermeyer, Frank; Pap, Thomas; Averbeck, Marco

    2015-07-13

    Syndecan-4 (SDC4), expressed on dendritic cells (DCs) and activated T cells, plays a crucial role in DC motility and has been shown as a potential target for activated T-cell-driven diseases. In the present study, we investigate the role of SDC4 in the development of T-helper 2 cell-mediated allergic asthma. Using SDC4-deficient mice or an anti-SDC4 antibody we show that the absence or blocking of SDC4 signalling in ovalbumin-sensitized mice results in a reduced asthma phenotype compared with control animals. Most importantly, even established asthma is significantly decreased using the anti-SDC4 antibody. The disturbed SDC4 signalling leads to an impaired motility and directional migration of antigen-presenting DCs and therefore, to a modified sensitization leading to diminished airway inflammation. Our results demonstrate that SDC4 plays an important role in asthma induction and indicate SDC4 as possible target for therapeutic intervention in this disease.

  18. Administration of mycobacterial Ag85A and IL-17A fusion protein attenuates airway inflammation in a murine model of asthma.

    PubMed

    Jin, Rong; Guo, Sheng; Wang, Mei-yi; Li, Yan-hua; Wu, Liang-Xia; Ma, Hui; Lowrie, Douglas B; Fan, Xiao-yong; Zhang, Jian-hua

    2013-12-01

    Interleukin (IL)-17A contributes to the development of asthma, especially in severe asthma which has characteristic neutrophil infiltration in airways. However, IL-17A-blocking antibody could escalate T helper (Th) 2 cytokines, such as IL-13, IL-4 in murine models. We aimed at determining the effect of mycobacterial Ag85A and IL-17A fusion protein—Ag85A-IL-17A on airway inflammation in a murine model of asthma. IL-17A recombinant protein fused mycobacterial immunodominant antigen Ag85A was constructed, expressed and purified. The fusion protein was then administrated into BALB/c mice and its anti-inflammatory effects in the infiltration of inflammatory cells, Th2/Th17 cytokines in BALF, histopathological changes of lung tissues as well as chemokines in lung tissues were evaluated in the murine model of asthma. We found that administration of mycobacterial Ag85A and IL-17A fusion protein induced IL-17A specific immunoglobulin (Ig)G in sera and significantly decreased IL-17A and IL-6 levels in bronchoalveolar lavage fluid (BALF). Ag85A-IL-17A vaccinated mice also showed marked reduction in the infiltration of inflammatory cells in peribronchiolar region and significant decrease in total cells, eosinophil cells and neutrophil cells in BALF. The increased levels of IL-13 and IL-4 in BALF of ovalbumin-sensitized mice were significantly reduced by the administration of Ag85A-IL-17A. Furthermore, CD3+CD4+IL-13+ splenocytes stimulated with OVA and CXCL1 mRNA, CCL2 mRNA and GATA-3 mRNA expressed in lung tissues were decreased markedly in Ag85A-IL-17A vaccinated group. Our results demonstrate remarkable antiallergic effects of Ag85A-IL-17A in a murine model of asthma and it may have protective effects on allergic asthma.

  19. Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination.

    PubMed

    Zhang, Jinshan; Xue, Jinling; Xu, Bi; Xie, Jiani; Qiao, Juan; Lu, Yun

    2016-02-13

    Lipopolysaccharide (LPS, also called endotoxin) is a pro-inflammatory constituent of gram negative bacteria and cyanobacteria, which causes a potential health risk in the process of routine urban application of reclaimed water, such as car wash, irrigation, scenic water refilling, etc. Previous studies indicated that the common disinfection treatment, chlorination, has little effect on endotoxin activity removal measured by Limulus amebocyte lysate (LAL) assay. However, in this study, significant decrease of acute inflammatory effects was observed in mouse lung, while LAL assay still presented a moderate increase of endotoxin activity. To explore the possible mechanisms, the nuclear magnetic resonance (NMR) results showed the chlorination happened in alkyl chain of LPS molecules, which could affect the interaction between LPS and LPS-binding protein. Also the size of LPS aggregates was found to drop significantly after treatment, which could be another results of chlorination caused polarity change. In conclusion, our observation demonstrated that chlorination is effective to reduce the LPS induced inflammation in lung, and it is recommended to use health effect-based methods to assess risk removal of water treatment technologies. PMID:26530889

  20. Increased alveolar soluble annexin V promotes lung inflammation and fibrosis.

    PubMed

    Buckley, Susan; Shi, Wei; Xu, Wei; Frey, Mark R; Moats, Rex; Pardo, Annie; Selman, Moises; Warburton, David

    2015-11-01

    The causes underlying the self-perpetuating nature of idiopathic pulmonary fibrosis (IPF), a progressive and usually lethal disease, remain unknown. We hypothesised that alveolar soluble annexin V contributes to lung fibrosis, based on the observation that human IPF bronchoalveolar lavage fluid (BALF) containing high annexin V levels promoted fibroblast involvement in alveolar epithelial wound healing that was reduced when annexin V was depleted from the BALF. Conditioned medium from annexin V-treated alveolar epithelial type 2 cells (AEC2), but not annexin V per se, induced proliferation of human fibroblasts and contained pro-fibrotic, IPF-associated proteins, as well as pro-inflammatory cytokines that were found to correlate tightly (r>0.95) with annexin V levels in human BALF. ErbB2 receptor tyrosine kinase in AECs was activated by annexin V, and blockade reduced the fibrotic potential of annexin V-treated AEC-conditioned medium. In vivo, aerosol delivery of annexin V to mouse lung induced inflammation, fibrosis and increased hydroxyproline, with activation of Wnt, transforming growth factor-β, mitogen-activated protein kinase and nuclear factor-κB signalling pathways, as seen in IPF. Chronically increased alveolar annexin V levels, as reflected in increased IPF BALF levels, may contribute to the progression of IPF by inducing the release of pro-fibrotic mediators. PMID:26160872

  1. Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition.

    PubMed

    Luciani, Alessandro; Villella, Valeria Rachela; Esposito, Speranza; Brunetti-Pierri, Nicola; Medina, Diego; Settembre, Carmine; Gavina, Manuela; Pulze, Laura; Giardino, Ida; Pettoello-Mantovani, Massimo; D'Apolito, Maria; Guido, Stefano; Masliah, Eliezer; Spencer, Brian; Quaratino, Sonia; Raia, Valeria; Ballabio, Andrea; Maiuri, Luigi

    2010-09-01

    Accumulation of unwanted/misfolded proteins in aggregates has been observed in airways of patients with cystic fibrosis (CF), a life-threatening genetic disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). Here we show how the defective CFTR results in defective autophagy and decreases the clearance of aggresomes. Defective CFTR-induced upregulation of reactive oxygen species (ROS) and tissue transglutaminase (TG2) drive the crosslinking of beclin 1, leading to sequestration of phosphatidylinositol-3-kinase (PI(3)K) complex III and accumulation of p62, which regulates aggresome formation. Both CFTR knockdown and the overexpression of green fluorescent protein (GFP)-tagged-CFTR(F508del) induce beclin 1 downregulation and defective autophagy in non-CF airway epithelia through the ROS-TG2 pathway. Restoration of beclin 1 and autophagy by either beclin 1 overexpression, cystamine or antioxidants rescues the localization of the beclin 1 interactome to the endoplasmic reticulum and reverts the CF airway phenotype in vitro, in vivo in Scnn1b-transgenic and Cftr(F508del) homozygous mice, and in human CF nasal biopsies. Restoring beclin 1 or knocking down p62 rescued the trafficking of CFTR(F508del) to the cell surface. These data link the CFTR defect to autophagy deficiency, leading to the accumulation of protein aggregates and to lung inflammation.

  2. Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma

    PubMed Central

    An, S.S.; Bai, T.R.; Bates, J.H.T.; Black, J.L.; Brown, R.H.; Brusasco, V.; Chitano, P.; Deng, L.; Dowell, M.; Eidelman, D.H.; Fabry, B.; Fairbank, N.J.; Ford, L.E.; Fredberg, J.J.; Gerthoffer, W.T.; Gilbert, S.H.; Gosens, R.; Gunst, S.J.; Halayko, A.J.; Ingram, R.H.; Irvin, C.G.; James, A.L.; Janssen, L.J.; King, G.G.; Knight, D.A.; Lauzon, A.M.; Lakser, O.J.; Ludwig, M.S.; Lutchen, K.R.; Maksym, G.N.; Martin, J.G.; Mauad, T.; McParland, B.E.; Mijailovich, S.M.; Mitchell, H.W.; Mitchell, R.W.; Mitzner, W.; Murphy, T.M.; Paré, P.D.; Pellegrino, R.; Sanderson, M.J.; Schellenberg, R.R.; Seow, C.Y.; Silveira, P.S.P.; Smith, P.G.; Solway, J.; Stephens, N.L.; Sterk, P.J.; Stewart, A.G.; Tang, D.D.; Tepper, R.S.; Tran, T.; Wang, L.

    2008-01-01

    Excessive airway obstruction is the cause of symptoms and abnormal lung function in asthma. As airway smooth muscle (ASM) is the effecter controlling airway calibre, it is suspected that dysfunction of ASM contributes to the pathophysiology of asthma. However, the precise role of ASM in the series of events leading to asthmatic symptoms is not clear. It is not certain whether, in asthma, there is a change in the intrinsic properties of ASM, a change in the structure and mechanical properties of the noncontractile components of the airway wall, or a change in the interdependence of the airway wall with the surrounding lung parenchyma. All these potential changes could result from acute or chronic airway inflammation and associated tissue repair and remodelling. Anti-inflammatory therapy, however, does not “cure” asthma, and airway hyperresponsiveness can persist in asthmatics, even in the absence of airway inflammation. This is perhaps because the therapy does not directly address a fundamental abnormality of asthma, that of exaggerated airway narrowing due to excessive shortening of ASM. In the present study, a central role for airway smooth muscle in the pathogenesis of airway hyperresponsiveness in asthma is explored. PMID:17470619

  3. A microfluidic model to study fluid dynamics of mucus plug rupture in small lung airways

    PubMed Central

    Hu, Yingying; Bian, Shiyao; Grotberg, John; Filoche, Marcel; White, Joshua; Takayama, Shuichi; Grotberg, James B.

    2015-01-01

    Fluid dynamics of mucus plug rupture is important to understand mucus clearance in lung airways and potential effects of mucus plug rupture on epithelial cells at lung airway walls. We established a microfluidic model to study mucus plug rupture in a collapsed airway of the 12th generation. Mucus plugs were simulated using Carbopol 940 (C940) gels at concentrations of 0.15%, 0.2%, 0.25%, and 0.3%, which have non-Newtonian properties close to healthy and diseased lung mucus. The airway was modeled with a polydimethylsiloxane microfluidic channel. Plug motion was driven by pressurized air. Global strain rates and shear stress were defined to quantitatively describe plug deformation and rupture. Results show that a plug needs to overcome yield stress before deformation and rupture. The plug takes relatively long time to yield at the high Bingham number. Plug length shortening is the more significant deformation than shearing at gel concentration higher than 0.15%. Although strain rates increase dramatically at rupture, the transient shear stress drops due to the shear-thinning effect of the C940 gels. Dimensionless time-averaged shear stress, Txy, linearly increases from 3.7 to 5.6 times the Bingham number as the Bingham number varies from 0.018 to 0.1. The dimensionless time-averaged shear rate simply equals to Txy/2. In dimension, shear stress magnitude is about one order lower than the pressure drop, and one order higher than yield stress. Mucus with high yield stress leads to high shear stress, and therefore would be more likely to cause epithelial cell damage. Crackling sounds produced with plug rupture might be more detectable for gels with higher concentration. PMID:26392827

  4. Surface tension of airway aspirates withdrawn during neonatal resuscitation reflects lung maturity.

    PubMed

    Stichtenoth, Guido; Walter, Gabi; Lange, Romy; Raith, Marco; Bernhard, Wolfgang; Herting, Egbert

    2014-08-01

    The indications for treatment of neonates with exogenous pulmonary surfactant are still discussed controversially. Some premature neonates are sufficiently treated by CPAP, others need conventional ventilation and/or surfactant. The available lung maturity tests have limitations. The captive bubble surfactometer (CBS) provides measurement of surface activity from rather small amounts of surfactant. This study aimed to determine surface activity from small volume aspirates of the upper airways of neonates by means of the CBS and to correlate the results with clinical data. Small upper airway aspirates from 159 neonates (gestational age 25-42 weeks) were withdrawn and concentrated 16.7-fold by ultracentrifugation and resuspension in saline. Surface activities after 5 min of adsorption were determined in the CBS and correlated to the perinatal data (e.g., gestational age, birth weight, gender), airway interventions (like CPAP, conventional ventilation) and surfactant treatment. Additionally, 27 samples were analyzed for surfactant specific phosphatidylcholine concentrations by using electrospray ionization tandem mass-spectroscopy. Surface activities show a significant correlation to gestational age, birth weight, and the need for airway interventions. Comparing the need for airway interventions versus surface activity, a receiver operating characteristic calculated a sensitivity of 0.77 and a specificity of 0.72 at a "cut off" of 44 mN/m. Surface activity correlates significantly with the phosphatidylcholine concentrations and the latter one correlates with the gestational age. Determination of surface activity from upper airway aspirates is feasible. Further clinical studies are needed to prove the predictive value of the method.

  5. The role of indoor pollution in the development and maintenance of chronic airway inflammation in children.

    PubMed

    Packeu, A; Chasseur, C; Bladt, S; Detandt, M

    2012-01-01

    Air pollution is one of the great problems of this century and it plays an important role in the increasing prevalence of chronic inflammatory problems in the upper airway in children. Since their lungs and immune system are not fully developed when exposure begins, newborns and children appear to be more sensitive to the effects of both outdoor and indoor air pollution. Furthermore, children spend most of their time indoors and are exposed more often to pollutants in indoor air. The link between health problems, chemical products and allergens (the latter mainly from cats and mites) has been extensively studied. Other important indoor contaminants are fungi, which are often present in damp buildings and can cause severe respiratory disease by producing spores, allergens, volatile irritant compounds and toxins. A proper identification of mould contamination of this kind is vital for correct diagnosis, treatment and the prevention of health problems, and improvements have been observed after the removal or cleaning of the contaminated materials and improvements to the ventilation of buildings. While a possible association between respiratory symptoms, such as rhinitis, and the presence of fungi in the indoor environment has been documented by several authors, other studies have observed no significant relationship. The development of standardised sampling, detection and diagnostic tests will be essential to understand the proper role of fungi in the indoor atmosphere and their impact on public health. PMID:23431612

  6. Lung inflammation biomarkers and lung function in children chronically exposed to arsenic.

    PubMed

    Olivas-Calderón, Edgar; Recio-Vega, Rogelio; Gandolfi, A Jay; Lantz, R Clark; González-Cortes, Tania; Gonzalez-De Alba, Cesar; Froines, John R; Espinosa-Fematt, Jorge A

    2015-09-01

    Evidence suggests that exposure to arsenic in drinking water during early childhood or in utero has been associated with an increase in respiratory symptoms or diseases in the adulthood, however only a few studies have been carried out during those sensitive windows of exposure. Recently our group demonstrated that the exposure to arsenic during early childhood or in utero in children was associated with impairment in the lung function and suggested that this adverse effect could be due to a chronic inflammation response to the metalloid. Therefore, we designed this cross-sectional study in a cohort of children associating lung inflammatory biomarkers and lung function with urinary As levels. A total of 275 healthy children were partitioned into four study groups according with their arsenic urinary levels. Inflammation biomarkers were measured in sputum by ELISA and the lung function was evaluated by spirometry. Fifty eight percent of the studied children were found to have a restrictive spirometric pattern. In the two highest exposed groups, the soluble receptor for advanced glycation end products' (sRAGE) sputum level was significantly lower and matrix metalloproteinase-9 (MMP-9) concentration was higher. When the biomarkers were correlated to the urinary arsenic species, negative associations were found between dimethylarsinic (DMA), monomethylarsonic percentage (%MMA) and dimethylarsinic percentage (%DMA) with sRAGE and positive associations between %DMA with MMP-9 and with the MMP-9/tissue inhibitor of metalloproteinase (TIMP-1) ratio. In conclusion, chronic arsenic exposure of children negatively correlates with sRAGE, and positively correlated with MMP-9 and MMP-9/TIMP-1 levels, and increases the frequency of an abnormal spirometric pattern. Arsenic-induced alterations in inflammatory biomarkers may contribute to the development of restrictive lung diseases.

  7. Lung inflammation biomarkers and lung function in children chronically exposed to arsenic.

    PubMed

    Olivas-Calderón, Edgar; Recio-Vega, Rogelio; Gandolfi, A Jay; Lantz, R Clark; González-Cortes, Tania; Gonzalez-De Alba, Cesar; Froines, John R; Espinosa-Fematt, Jorge A

    2015-09-01

    Evidence suggests that exposure to arsenic in drinking water during early childhood or in utero has been associated with an increase in respiratory symptoms or diseases in the adulthood, however only a few studies have been carried out during those sensitive windows of exposure. Recently our group demonstrated that the exposure to arsenic during early childhood or in utero in children was associated with impairment in the lung function and suggested that this adverse effect could be due to a chronic inflammation response to the metalloid. Therefore, we designed this cross-sectional study in a cohort of children associating lung inflammatory biomarkers and lung function with urinary As levels. A total of 275 healthy children were partitioned into four study groups according with their arsenic urinary levels. Inflammation biomarkers were measured in sputum by ELISA and the lung function was evaluated by spirometry. Fifty eight percent of the studied children were found to have a restrictive spirometric pattern. In the two highest exposed groups, the soluble receptor for advanced glycation end products' (sRAGE) sputum level was significantly lower and matrix metalloproteinase-9 (MMP-9) concentration was higher. When the biomarkers were correlated to the urinary arsenic species, negative associations were found between dimethylarsinic (DMA), monomethylarsonic percentage (%MMA) and dimethylarsinic percentage (%DMA) with sRAGE and positive associations between %DMA with MMP-9 and with the MMP-9/tissue inhibitor of metalloproteinase (TIMP-1) ratio. In conclusion, chronic arsenic exposure of children negatively correlates with sRAGE, and positively correlated with MMP-9 and MMP-9/TIMP-1 levels, and increases the frequency of an abnormal spirometric pattern. Arsenic-induced alterations in inflammatory biomarkers may contribute to the development of restrictive lung diseases. PMID:26048584

  8. Reduction of neutrophilic lung inflammation by inhalation of the compatible solute ectoine: a randomized trial with elderly individuals

    PubMed Central

    Unfried, Klaus; Krämer, Ursula; Sydlik, Ulrich; Autengruber, Andrea; Bilstein, Andreas; Stolz, Sabine; Marini, Alessandra; Schikowski, Tamara; Keymel, Stefanie; Krutmann, Jean

    2016-01-01

    Background Compatible solutes are natural substances that are known to stabilize cellular functions. Preliminary ex vivo and in vivo studies demonstrated that the compatible solute ectoine restores natural apoptosis rates of lung neutrophils and contributes to the resolution of lung inflammation. Due to the low toxicity and known compatibility of the substance, an inhalative application as an intervention strategy for humans suffering from diseases caused by neutrophilic inflammation, like COPD, had been suggested. As a first approach to test the feasibility and efficacy of such a treatment, we performed a population-based randomized trial. Objective The objective of the study was to test whether the daily inhalation of the registered ectoine-containing medical device (Ectoin® inhalation solution) leads to a reduction of neutrophilic cells and interleukin-8 (IL-8) levels in the sputum of persons with mild symptoms of airway disease due to lifelong exposure to environmental air pollution. Methods A double-blinded placebo-controlled trial was performed to study the efficacy and safety of an ectoine-containing therapeutic. Prior to and after both inhalation periods, lung function, inflammatory parameters in sputum, serum markers, and quality-of-life parameters were determined. Results While the other outcomes revealed no significant effects, sputum parameters were changed by the intervention. Nitrogen oxides (nitrate and nitrite) were significantly reduced after ectoine inhalation with a mean quotient of 0.65 (95% confidence interval 0.45–0.93). Extended analyses considering period effects revealed that the percentage of neutrophils in sputum was significantly lower after ectoine inhalation than in the placebo group (P=0.035) even after the washout phase. Conclusion The current study is the first human trial in which the effects of inhaled ectoine on neutrophilic lung inflammation were investigated. Besides demonstrating beneficial effects on inflammatory sputum

  9. Bubble Continuous Positive Airway Pressure Enhances Lung Volume and Gas Exchange in Preterm Lambs

    PubMed Central

    Pillow, J. Jane; Hillman, Noah; Moss, Timothy J. M.; Polglase, Graeme; Bold, Geoff; Beaumont, Chris; Ikegami, Machiko; Jobe, Alan H.

    2007-01-01

    Rationale: The technique used to provide continuous positive airway pressure (CPAP) to the newborn may influence lung function and breathing efficiency. Objectives: To compare differences in gas exchange physiology and lung injury resulting from treatment of respiratory distress with either bubble or constant pressure CPAP and to determine if the applied flow influences short-term outcomes. Methods: Lambs (133 d gestation; term is 150 d) born via cesarean section were weighed, intubated, and treated with CPAP for 3 hours. Two groups were treated with 8 L/minute applied flow using the bubble (n = 12) or the constant pressure (n = 12) technique. A third group (n = 10) received the bubble method with 12 L/minute bias flow. Measurements at study completion included arterial blood gases, oxygraphy, capnography, tidal flow, multiple breath washout, lung mechanics, static pressure–volume curves, and bronchoalveolar lavage fluid protein. Measurements and Main Results: Birth weight and arterial gas variables at 15 minutes were comparable. Flow (8 or 12 L/min) did not influence the 3-hour outcomes in the bubble group. Bubble technique was associated with a higher pH, PaO2, oxygen uptake, and area under the flow–volume curve, and a decreased alveolar protein, respiratory quotient, PaCO2, and ventilation inhomogeneity compared with the constant pressure group. Conclusions: Compared with constant pressure technique, bubble CPAP promotes enhanced airway patency during treatment of acute postnatal respiratory disease in preterm lambs and may offer protection against lung injury. PMID:17431223

  10. Proteomic Analysis of Lung Tissue in a Rat Acute Lung Injury Model: Identification of PRDX1 as a Promoter of Inflammation

    PubMed Central

    Liu, Dongdong; Mao, Pu; Huang, Yongbo; Liu, Yiting; Liu, Xiaoqing; Pang, Xiaoqing; Li, Yimin

    2014-01-01

    Acute respiratory distress syndrome (ARDS) remains a high morbidity and mortality disease entity in critically ill patients, despite decades of numerous investigations into its pathogenesis. To obtain global protein expression changes in acute lung injury (ALI) lung tissues, we employed a high-throughput proteomics method to identify key components which may be involved in the pathogenesis of ALI. In the present study, we analyzed lung tissue proteomes of Pseudomonas aeruginosa-induced ALI rats and identified eighteen proteins whose expression levels changed more than twofold as compared to normal controls. In particular, we found that PRDX1 expression in culture medium was elevated by a lipopolysaccharide (LPS) challenge in airway epithelial cells in vitro. Furthermore, overexpression of PRDX1 increased the expression of proinflammatory cytokines interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α), whereas knockdown of PRDX1 led to downregulated expression of cytokines induced by LPS. In conclusion, our findings provide a global alteration in the proteome of lung tissues in the ALI rat model and indicate that PRDX1 may play a critical role in the pathogenesis of ARDS by promoting inflammation and represent a novel strategy for the development of new therapies against ALI. PMID:25024510

  11. Basophil-associated OX40 ligand participates in the initiation of Th2 responses during airway inflammation.

    PubMed

    Di, Caixia; Lin, Xiaoliang; Zhang, Yanjie; Zhong, Wenwei; Yuan, Yufan; Zhou, Tong; Liu, Junling; Xia, Zhenwei

    2015-05-15

    Asthma is characterized by increased airway submucosal infiltration of T helper (Th) cells and myeloid cells that co-conspire to sustain a chronic inflammation. While recent studies have demonstrated that the myeloid basophils promote Th2 cells in response to various types of allergens, the underlying mechanisms are poorly understood. Here, we found for the first time that in a mouse model of allergic asthma basophils highly expressed OX40 ligand (OX40L) after activation. Interestingly, blockade of OX40-OX40L interaction suppressed basophils-primed Th2 cell differentiation in vitro and ameliorated ovalbumin (OVA)-induced allergic eosinophilic inflammation mediated by Th2 activation. In accordance, the adoptive transfer of basophils derived from mediastinal lymph nodes (MLN) of OVA-immunized mice triggered a robust Th2 response and eosinophilic inflammation in wild-type mice but largely muted in OX40(-/-) mice and mice receiving OX40L-blocked basophils. Taken together, our results reveal a critical role of OX40L presented by the activated basophils to initiate Th2 responses in an allergic asthma model, implicating OX40-OX40L signaling as a potential therapeutic target in the treatment of allergic airway inflammation. PMID:25839234

  12. The effect of smoke inhalation on lung function and airway responsiveness in wildland fire fighters.

    PubMed

    Liu, D; Tager, I B; Balmes, J R; Harrison, R J

    1992-12-01

    The current study was undertaken to evaluate the effect of smoke on forced expiratory volumes and airway responsiveness in wildland fire fighters during a season of active fire fighting. Sixty-three seasonal and full-time wildland fire fighters from five U.S. Department of Agriculture Forest Service (USDAFS) Hotshot crews in Northern California and Montana completed questionnaires, spirometry, and methacholine challenge testing before and after an active season of fire fighting in 1989. There were significant mean individual declines of 0.09, 0.15, and 0.44 L/s in postseason values of FVC, FEV1, and FEF25-75, respectively, compared with preseason values. There were no consistent significant relationships between mean individual declines of the spirometric parameters and the covariates: sex, smoking history, history of asthma or allergies, years as a fire fighter, upper/lower respiratory symptoms, or membership in a particular Hotshot crew. There was a statistically significant increase in airway responsiveness when comparing preseason methacholine dose-response slopes (DRS) with postseason dose-response slopes (p = 0.02). The increase in airway responsiveness appeared to be greatest in fire fighters with a history of lower respiratory symptoms or asthma, but it was not related to smoking history. These data suggest that wildland fire fighting is associated with decreases in lung function and increases in airway responsiveness independent of a history of cigarette smoking. Our findings are consistent with the results of previous studies of municipal fire fighters.

  13. The effect of smoke inhalation on lung function and airway responsiveness in wildland fire fighters

    SciTech Connect

    Liu, D.; Tager, I.B.; Balmes, J.R.; Harrison, R.J. )

    1992-12-01

    The current study was undertaken to evaluate the effect of smoke on forced expiratory volumes and airway responsiveness in wildland fire fighters during a season of active fire fighting. Sixty-three seasonal and full-time wildland fire fighters from five U.S. Department of Agriculture Forest Service (USDAFS) Hotshot crews in Northern California and Montana completed questionnaires, spirometry, and methacholine challenge testing before and after an active season of fire fighting in 1989. There were significant mean individual declines of 0.09, 0.15, and 0.44 L/s in postseason values of FVC, FEV1, and FEF25-75, respectively, compared with preseason values. There were no consistent significant relationships between mean individual declines of the spirometric parameters and the covariates: sex, smoking history, history of asthma or allergies, years as a fire fighter, upper/lower respiratory symptoms, or membership in a particular Hotshot crew. There was a statistically significant increase in airway responsiveness when comparing preseason methacholine dose-response slopes (DRS) with postseason dose-response slopes (p = 0.02). The increase in airway responsiveness appeared to be greatest in fire fighters with a history of lower respiratory symptoms or asthma, but it was not related to smoking history. These data suggest that wildland fire fighting is associated with decreases in lung function and increases in airway responsiveness independent of a history of cigarette smoking. Our findings are consistent with the results of previous studies of municipal fire fighters.

  14. Convective dispersion during steady flow in the conducting airways of the human lung.

    PubMed

    Fresconi, Frank E; Prasad, Ajay K

    2008-02-01

    The adverse health effects of inhaled particulate matter from the environment depend on its dispersion, transport, and deposition in the human airways. Similarly, precise targeting of deposition sites by pulmonary drug delivery systems also relies on characterizing the dispersion and transport of therapeutic aerosols in the respiratory tract. A variety of mechanisms may contribute to convective dispersion in the lung; simple axial streaming, augmented dispersion, and steady streaming are investigated in this effort. Flow visualization of a bolus during inhalation and exhalation, and dispersion measurements were conducted during steady flow in a three-generational, anatomically accurate in vitro model of the conducting airways to support this goal. Control variables included Reynolds number, flow direction, generation, and branch. Experiments illustrate transport patterns in the lumen cross section and map their relation to dispersion metrics. These results indicate that simple axial streaming, rather than augmented dispersion, is the dominant steady convective dispersion mechanism in symmetric Weibel generations 7-13 during normal respiration. Experimental evidence supports the branching nature of the airways as a possible contributor to steady streaming in the lung.

  15. The loss of Hoxa5 function promotes Notch-dependent goblet cell metaplasia in lung airways

    PubMed Central

    Boucherat, Olivier; Chakir, Jamila; Jeannotte, Lucie

    2012-01-01

    Summary Hox genes encode transcription factors controlling complex developmental processes in various organs. Little is known, however, about how HOX proteins control cell fate. Herein, we demonstrate that the goblet cell metaplasia observed in lung airways from Hoxa5−/− mice originates from the transdifferentiation of Clara cells. Reduced CC10 expression in Hoxa5−/− embryos indicates that altered cell specification occurs prior to birth. The loss of Hoxa5 function does not preclude airway repair after naphthalene exposure, but the regenerated epithelium presents goblet cell metaplasia and less CC10-positive cells, demonstrating the essential role of Hoxa5 for correct differentiation. Goblet cell metaplasia in Hoxa5−/− mice is a FOXA2-independent process. However, it is associated with increased Notch signaling activity. Consistent with these findings, expression levels of activated NOTCH1 and the effector gene HEY2 are enhanced in patients with chronic obstructive pulmonary disease. In vivo administration of a γ-secretase inhibitor attenuates goblet cell metaplasia in Hoxa5−/− mice, highlighting the contribution of Notch signaling to the phenotype and suggesting a potential therapeutic strategy to inhibit goblet cell differentiation and mucus overproduction in airway diseases. In summary, the loss of Hoxa5 function in lung mesenchyme impacts on epithelial cell fate by modulating Notch signaling. PMID:23213461

  16. Epithelial Notch signaling regulates lung alveolar morphogenesis and airway epithelial integrity

    PubMed Central

    Tsao, Po-Nien; Matsuoka, Chisa; Wei, Shu-Chen; Sato, Atsuyasu; Sato, Susumu; Hasegawa, Koichi; Chen, Hung-kuan; Ling, Thai-Yen; Mori, Munemasa; Cardoso, Wellington V.; Morimoto, Mitsuru

    2016-01-01

    Abnormal enlargement of the alveolar spaces is a hallmark of conditions such as chronic obstructive pulmonary disease and bronchopulmonary dysplasia. Notch signaling is crucial for differentiation and regeneration and repair of the airway epithelium. However, how Notch influences the alveolar compartment and integrates this process with airway development remains little understood. Here we report a prominent role of Notch signaling in the epithelial–mesenchymal interactions that lead to alveolar formation in the developing lung. We found that alveolar type II cells are major sites of Notch2 activation and show by Notch2-specific epithelial deletion (Notch2cNull) a unique contribution of this receptor to alveologenesis. Epithelial Notch2 was required for type II cell induction of the PDGF-A ligand and subsequent paracrine activation of PDGF receptor-α signaling in alveolar myofibroblast progenitors. Moreover, Notch2 was crucial in maintaining the integrity of the epithelial and smooth muscle layers of the distal conducting airways. Our data suggest that epithelial Notch signaling regulates multiple aspects of postnatal development in the distal lung and may represent a potential target for intervention in pulmonary diseases. PMID:27364009

  17. Lung inflammation biomarkers and lung function in children chronically exposed to arsenic

    SciTech Connect

    Olivas-Calderón, Edgar; Recio-Vega, Rogelio; Gandolfi, A. Jay; Lantz, R. Clark; González-Cortes, Tania; Gonzalez-De Alba, Cesar; Froines, John R.; Espinosa-Fematt, Jorge A.

    2015-09-01

    Evidence suggests that exposure to arsenic in drinking water during early childhood or in utero has been associated with an increase in respiratory symptoms or diseases in the adulthood, however only a few studies have been carried out during those sensitive windows of exposure. Recently our group demonstrated that the exposure to arsenic during early childhood or in utero in children was associated with impairment in the lung function and suggested that this adverse effect could be due to a chronic inflammation response to the metalloid. Therefore, we designed this cross-sectional study in a cohort of children associating lung inflammatory biomarkers and lung function with urinary As levels. A total of 275 healthy children were partitioned into four study groups according with their arsenic urinary levels. Inflammation biomarkers were measured in sputum by ELISA and the lung function was evaluated by spirometry. Fifty eight percent of the studied children were found to have a restrictive spirometric pattern. In the two highest exposed groups, the soluble receptor for advanced glycation end products' (sRAGE) sputum level was significantly lower and matrix metalloproteinase-9 (MMP-9) concentration was higher. When the biomarkers were correlated to the urinary arsenic species, negative associations were found between dimethylarsinic (DMA), monomethylarsonic percentage (%MMA) and dimethylarsinic percentage (%DMA) with sRAGE and positive associations between %DMA with MMP-9 and with the MMP-9/tissue inhibitor of metalloproteinase (TIMP-1) ratio. In conclusion, chronic arsenic exposure of children negatively correlates with sRAGE, and positively correlated with MMP-9 and MMP-9/TIMP-1 levels, and increases the frequency of an abnormal spirometric pattern. Arsenic-induced alterations in inflammatory biomarkers may contribute to the development of restrictive lung diseases. - Highlights: • First study in children evaluating lung inflammatory biomarkers and As levels

  18. Newly Recognized Occupational and Environmental Causes of Chronic Terminal Airways and Parenchymal Lung Disease

    PubMed Central

    Sauler, Maor; Gulati, Mridu

    2012-01-01

    Synopsis With the introduction of new materials and changes in manufacturing practices, occupational health investigators continue to uncover associations between novel exposures and chronic forms of diffuse parenchymal lung disease and terminal airways disease. In order to discern exposure disease relationships, clinicians must maintain a high index of suspicion for the potential toxicity of occupational and environmental exposures. This article details several newly recognized chronic parenchymal and terminal airways. Diseases related to exposure to Indium, Nylon Flock, Diacetyl used in the flavorings industry, nanoparticles, and the World Trade Center disaster are reviewed. Additionally, this article will review methods in worker surveillance as well as the potential use of biomarkers in the evaluation of exposure disease relationships. PMID:23153608

  19. The innate immune function of airway epithelial cells in inflammatory lung disease

    PubMed Central

    Hiemstra, Pieter S.; McCray, Paul B.; Bals, Robert

    2016-01-01

    The airway epithelium is now considered central to the orchestration of pulmonary inflammatory and immune responses, and is also key to tissue remodelling. It acts as a first barrier in the defence against a wide range of inhaled challenges, and is critically involved in the regulation of both innate and adaptive immune responses to these challenges. Recent progress in our understanding of the developmental regulation of this tissue, the differentiation pathways, recognition of pathogens and antimicrobial responses is now exploited to help understand how epithelial cell function and dysfunction contributes to the pathogenesis of a variety of inflammatory lung diseases. In the review, advances in our knowledge of the biology of airway epithelium, as well as its role and (dys)function in asthma, COPD and cystic fibrosis, are discussed. PMID:25700381

  20. Role of Neprilysin in Airway Inflammation Induced by Diesel Exhaust Emissions

    PubMed Central

    Wong, Simon S.; Sun, Nina N.; Fastje, Cynthia D.; Witten, Mark L.; Lantz, R. Clark; Lu, Bao; Sherrill, Duane L.; Gerard, Craig J.; Burgess, Jefferey L.

    2016-01-01

    In this study, we examined the role of neprilysin (NEP*), a key membrane-bound endopeptidase, in the inflammatory response induced by diesel exhaust emissions (DEE) in the airways through a number of approaches: in vitro, animal, and controlled human exposure. Our specific aims were (1) to examine the role of NEP in inflammatory injury induced by diesel exhaust particles (DEP) using Nep-intact (wild-type) and Nep-null mice; (2) to examine which components of DEP are associated with NEP downregulation in vitro; (3) to determine the molecular impact of DEP exposure and decreased NEP expression on airway epithelial cells’ gene expression in vitro, using a combination of RNA interference (RNAi) and microarray approaches; and (4) to evaluate the effects on NEP activity of human exposure to DEE. We report four main results: First, we found that exposure of normal mice to DEP consisting of standard reference material (SRM) 2975 via intratracheal installation can downregulate NEP expression in a concentration-dependent manner. The changes were accompanied by increases in the number of macrophages and epithelial cells, as well as proinflammatory cytokines, examined in bronchoalveolar lavage (BAL) fluid and cells. Nep-null mice displayed increased and/or additional inflammatory responses when compared with wild-type mice, especially in response to exposure to the higher dose of DEP that we used. These in vivo findings suggest that loss of NEP in mice could cause increased susceptibility to injury or exacerbate inflammatory responses after DEP exposure via release of specific cytokines from the lungs. Second, we found evidence, using in vitro studies, that downregulation of NEP by DEP in cultured human epithelial BEAS-2B cells was mostly attributable to DEP-adsorbed organic compounds, whereas the carbonaceous core and transition metal components of DEP had little or no effect on NEP messenger RNA (mRNA) expression. This NEP downregulation was not a specific response to DEP

  1. Reduced inflammation and improved airway expression using helper-dependent adenoviral vectors with a K18 promoter.

    PubMed

    Toietta, Gabriele; Koehler, David R; Finegold, Milton J; Lee, Brendan; Hu, Jim; Beaudet, Arthur L

    2003-05-01

    Efforts have been made to deliver transgenes to the airway epithelia of laboratory animals and humans to develop gene therapy for cystic fibrosis. These investigations have been disappointing due to combinations of transient and low-level gene expression, acute toxicity, and inflammation. We have developed new helper-dependent adenoviral vectors to deliver an epithelial cell-specific keratin 18 expression cassette driving the beta-galactosidase (beta-gal) or human alpha-fetoprotein (AFP) reporter genes. Following intranasal administration to mice, we found that the reporter genes were widely expressed in airway epithelial and submucosal cells, and secreted human AFP was also detectable in serum. In contrast to a first-generation adenoviral vector, inflammation was negligible at doses providing efficient transduction, and expression lasted longer than typically reported-up to 28 days with beta-gal and up to 15 weeks with human AFP. These results suggest that delivery to the airway of helper-dependent adenoviral vectors utilizing a tissue-specific promoter could be a significant advance in the development of gene therapy for cystic fibrosis. PMID:12718908

  2. The standardized herbal formula, PM014, ameliorated cigarette smoke-induced lung inflammation in a murine model of chronic obstructive pulmonary disease

    PubMed Central

    2013-01-01

    Background In this study, we evaluated the anti-inflammatory effect of PM014 on cigarette smoke induced lung disease in the murine animal model of chronic obstructive pulmonary disease (COPD). Methods Mice were exposed to cigarette smoke (CS) for 2 weeks to induce COPD-like lung inflammation. Two hours prior to cigarette smoke exposure, the treatment group was administered PM014 via an oral injection. To investigate the effects of PM014, we assessed PM014 functions in vivo, including immune cell infiltration, cytokine profiles in bronchoalveolar lavage (BAL) fluid and histopathological changes in the lung. The efficacy of PM014 was compared with that of the recently developed anti-COPD drug, roflumilast. Results PM014 substantially inhibited immune cell infiltration (neutrophils, macrophages, and lymphocytes) into the airway. In addition, IL-6, TNF-α and MCP-1 were decreased in the BAL fluid of PM014-treated mice compared to cigarette smoke stimulated mice. These changes were more prominent than roflumilast treated mice. The expression of PAS-positive cells in the bronchial layer was also significantly reduced in both PM014 and roflumilast treated mice. Conclusions These data suggest that PM014 exerts strong therapeutic effects against CS induced, COPD-like lung inflammation. Therefore, this herbal medicine may represent a novel therapeutic agent for lung inflammation in general, as well as a specific agent for COPD treatment. PMID:24010767

  3. Regenerative potential of human airway stem cells in lung epithelial engineering.

    PubMed

    Gilpin, Sarah E; Charest, Jonathan M; Ren, Xi; Tapias, Luis F; Wu, Tong; Evangelista-Leite, Daniele; Mathisen, Douglas J; Ott, Harald C

    2016-11-01

    Bio-engineered organs for transplantation may ultimately provide a personalized solution for end-stage organ failure, without the risk of rejection. Building upon the process of whole organ perfusion decellularization, we aimed to develop novel, translational methods for the recellularization and regeneration of transplantable lung constructs. We first isolated a proliferative KRT5(+)TP63(+) basal epithelial stem cell population from human lung tissue and demonstrated expansion capacity in conventional 2D culture. We then repopulated acellular rat scaffolds in ex vivo whole organ culture and observed continued cell proliferation, in combination with primary pulmonary endothelial cells. To show clinical scalability, and to test the regenerative capacity of the basal cell population in a human context, we then recellularized and cultured isolated human lung scaffolds under biomimetic conditions. Analysis of the regenerated tissue constructs confirmed cell viability and sustained metabolic activity over 7 days of culture. Tissue analysis revealed extensive recellularization with organized tissue architecture and morphology, and preserved basal epithelial cell phenotype. The recellularized lung constructs displayed dynamic compliance and rudimentary gas exchange capacity. Our results underline the regenerative potential of patient-derived human airway stem cells in lung tissue engineering. We anticipate these advances to have clinically relevant implications for whole lung bioengineering and ex vivo organ repair. PMID:27622532

  4. Measuring alveolar dimensions at total lung capacity by aerosol-derived airway morphometry.

    PubMed

    Zeman, K L; Bennett, W D

    1995-01-01

    A technique based on particle sedimentation, aerosol-derived airway morphometry (ADAM), was modified to investigate the morphometry of human lung airspaces at full inflation in 54 subjects with normal lung function, ages 18 to 69 years. The technique compares the recovered concentrations of monodisperse aerosol particles after gravitational settling during breath holds to determine effective airspace diameters (EADs) as a function of volumetric lung depth. The method is simple and non-invasive, requiring only several inhalations of aerosol to total lung capacity, breath holds at end inhalation and exhalation to residual volume (RV). The method is sensitive enough to detect differences in the smallest observed airspaces (EADmin) due to normal aging of healthy lungs when older subjects are compared to younger subjects. The average EADmin was larger (p = 0.009) for the oldest adults (293 +/- 54 um, s.d., 50-70 years, n = 13) at the deepest volumetric lung depth (near 40% of TLC into the lung) when compared to the youngest adults (250 +/- 38 um, s.d., 18-40 years, n = 22). The two groups had similar EADs at a depth of 5% of TLC. No gender difference in EADmin was found when comparing all males and females. No correlation was found between EADs and TLC implying number of alveolar airspaces rather than airspace size determines lung volume. The effects of changing the aerosol inhalation volume to TLC ratio was also investigated. Compared to the dichotomous Weibel morphometric model, the average EADs of 22 18-40 year old subjects were found to be equivalent near 1% TLC and 40% TLC, but were larger in size than the model between those extremes with a maximum difference occurring at approximately 3% TLC. This method appears to be extremely sensitive to in vivo changes in airspace dimensions and may prove useful in determining changes in these dimensions associated with normal lung development and early disease states.

  5. Survey of Foreign Body Aspiration in Airways and Lungs

    PubMed Central

    Samarei, R.

    2014-01-01

    Introduction: Foreign body aspiration is a very serious problem and the diversity of clinical protests in each geographic region has its own characteristics and common problems of childhood that is an important cause of mortality and morbidity. No area is separate from this problem and conducting this research is due to achieve basic information regarding foreign body aspiration. Materials and Methods: This was performed as descriptive - cross sectional study on 200 cases that has been hospitalized in Imam Khomeini Hospital, Urmia due to foreign body aspiration problem from 2009 to 2011. And all cases of foreign body aspiration records extracted and analyzed using SPSS 16 software. Results: Foreign body aspiration under 4 years was 57% and was more common in males than females; approximately 74% of patients were hospitalized in the first 10 days and 13% of patients did not remember the initial incident that led to the aspiration. Cough and shortness of breath and reduced lung sounds and wheezing were common symptoms. Chest radiographic findings are not specific and can be normal of a high percentage. The most common aspirated foreign body was food especially sunflower seeds. Right bronchus with 55% of cases was more common than the left bronchus and all patients were treated with rigid bronchoscopy, 24% of patients had complications, 15% had hospitalized with pneumonia. Totally, 75% of patients were urban residents. Discussion: We need to understand all the aspects related to foreign body aspiration and education to the community, to recognize symptoms and type of foreign body in terms of geographical area and to create a strong clinical suspicion in physicians and awareness of its prevalence that by reducing the incidence and early detecting and treatment can reduce the mortality and morbidity and prevent additional expenses. PMID:25363168

  6. Hsp72 Induces Inflammation and Regulates Cytokine Production in Airway Epithelium through a TLR4- and NF-κB-Dependent Mechanism1

    PubMed Central

    Chase, Margaret A.; Wheeler, Derek S.; Lierl, Kristin M.; Hughes, Valerie S.; Wong, Hector R.; Page, Kristen

    2009-01-01

    Heat shock proteins are generally regarded as intracellular proteins acting as molecular chaperones; however, Hsp72 is also detected in the extracellular compartment. Hsp72 has been identified in the bronchoalveolar lavage fluid (BALF) of patients with acute lung injury. To address whether Hsp72 directly activated airway epithelium, human bronchial epithelial cells (16HBE14o-) were treated with recombinant Hsp72. Hsp72 induced a dose-dependent increase in IL-8 expression, which was inhibited by the NF-κB inhibitor parthenolide. Hsp72 induced activation of NF-κB, as evidenced by NF-κB trans-activation and by p65 RelA and p50 NF-κB1 binding to DNA. Endotoxin contamination of the Hsp72 preparation was not responsible for these effects. Next, BALB/c mice were challenged with a single intratracheal inhalation of Hsp72 and killed 4 h later. Hsp72 induced significant up-regulation of KC, TNF-α, neutrophil recruitment, and myeloperoxidase in the BALF. A similar challenge with Hsp72 in TLR4 mutant mice did not stimulate the inflammatory response, stressing the importance of TLR4 in Hsp72-mediated lung inflammation. Last, cultured mouse tracheal epithelial cells (MTEC) from BALB/c and TLR4 mutant and wild-type mice were treated ex vivo with Hsp72. Hsp72 induced a significant increase in KC expression from BALB/c and wild-type MTEC in an NF-κB-dependent manner; however, TLR4 mutant MTEC had minimal cytokine release. Taken together, these data suggest that Hsp72 is released and biologically active in the BALF and can regulate airway epithelial cell cytokine expression in a TLR4 and NF-κB-dependent mechanism. PMID:17947709

  7. Secondary velocity fields in the conducting airways of the human lung.

    PubMed

    Fresconi, Frank E; Prasad, Ajay K

    2007-10-01

    An understanding of flow and dispersion in the human respiratory airways is necessary to assess the toxicological impact of inhaled particulate matter as well as to optimize the design of inhalable pharmaceutical aerosols and their delivery systems. Secondary flows affect dispersion in the lung by mixing solute in the lumen cross section. The goal of this study is to measure and interpret these secondary velocity fields using in vitro lung models. Particle image velocimetry experiments were conducted in a three-generational, anatomically accurate model of the conducting region of the lung. Inspiration and expiration flows were examined under steady and oscillatory flow conditions. Results illustrate secondary flow fields as a function of flow direction, Reynolds number, axial location with respect to the bifurcation junction, generation, branch, phase in the oscillatory cycle, and Womersley number. Critical Dean number for the formation of secondary vortices in the airways, as well as the strength and development length of secondary flow, is characterized. The normalized secondary velocity magnitude was similar on inspiration and expiration and did not vary appreciably with generation or branch. Oscillatory flow fields were not significantly different from corresponding steady flow fields up to a Womersley number of 1 and no instabilities related to shear were detected on flow reversal. These observations were qualitatively interpreted with respect to the simple streaming, augmented dispersion, and steady streaming convective dispersion mechanisms.

  8. A threshold lung volume for optimal mechanical effects on upper airway airflow dynamics: studies in an anesthetized rabbit model.

    PubMed

    Kairaitis, Kristina; Verma, Manisha; Amatoury, Jason; Wheatley, John R; White, David P; Amis, Terence C

    2012-04-01

    Increasing lung volume improves upper airway airflow dynamics via passive mechanisms such as reducing upper airway extraluminal tissue pressures (ETP) and increasing longitudinal tension via tracheal displacement. We hypothesized a threshold lung volume for optimal mechanical effects on upper airway airflow dynamics. Seven supine, anesthetized, spontaneously breathing New Zealand White rabbits were studied. Extrathoracic pressure was altered, and lung volume change, airflow, pharyngeal pressure, ETP laterally (ETPlat) and anteriorly (ETPant), tracheal displacement, and sternohyoid muscle activity (EMG%max) monitored. Airflow dynamics were quantified via peak inspiratory airflow, flow limitation upper airway resistance, and conductance. Every 10-ml lung volume increase resulted in caudal tracheal displacement of 2.1 ± 0.4 mm (mean ± SE), decreased ETPlat by 0.7 ± 0.3 cmH(2)O, increased peak inspiratory airflow of 22.8 ± 2.6% baseline (all P < 0.02), and no significant change in ETPant or EMG%max. Flow limitation was present in most rabbits at baseline, and abolished 15.7 ± 10.5 ml above baseline. Every 10-ml lung volume decrease resulted in cranial tracheal displacement of 2.6 ± 0.4 mm, increased ETPant by 0.9 ± 0.2 cmH(2)O, ETPlat was unchanged, increased EMG%max of 11.1 ± 0.3%, and a reduction in peak inspiratory airflow of 10.8 ± 1.0%baseline (all P < 0.01). Lung volume, resistance, and conductance relationships were described by exponential functions. In conclusion, increasing lung volume displaced the trachea caudally, reduced ETP, abolished flow limitation, but had little effect on resistance or conductance, whereas decreasing lung volume resulted in cranial tracheal displacement, increased ETP and increased resistance, and reduced conductance, and flow limitation persisted despite increased muscle activity. We conclude that there is a threshold for lung volume influences on upper airway airflow dynamics. PMID:22241061

  9. Acute Respiratory Distress Syndrome: Role of Oleic Acid-Triggered Lung Injury and Inflammation.

    PubMed

    Gonçalves-de-Albuquerque, Cassiano Felippe; Silva, Adriana Ribeiro; Burth, Patrícia; Castro-Faria, Mauro Velho; Castro-Faria-Neto, Hugo Caire

    2015-01-01

    Lung injury especially acute respiratory distress syndrome (ARDS) can be triggered by diverse stimuli, including fatty acids and microbes. ARDS affects thousands of people worldwide each year, presenting high mortality rate and having an economic impact. One of the hallmarks of lung injury is edema formation with alveoli flooding. Animal models are used to study lung injury. Oleic acid-induced lung injury is a widely used model resembling the human disease. The oleic acid has been linked to metabolic and inflammatory diseases; here we focus on lung injury. Firstly, we briefly discuss ARDS and secondly we address the mechanisms by which oleic acid triggers lung injury and inflammation. PMID:26640323

  10. Can resistive breathing injure the lung? Implications for COPD exacerbations

    PubMed Central

    Vassilakopoulos, Theodoros; Toumpanakis, Dimitrios

    2016-01-01

    In obstructive lung diseases, airway inflammation leads to bronchospasm and thus resistive breathing, especially during exacerbations. This commentary discusses experimental evidence that resistive breathing per se (the mechanical stimulus) in the absence of underlying airway inflammation leads to lung injury and inflammation (mechanotransduction). The potential implications of resistive breathing-induced mechanotrasduction in COPD exacerbations are presented along with the available clinical evidence. PMID:27713628

  11. IL-1R signalling is critical for regulation of multi-walled carbon nanotubes-induced acute lung inflammation in C57Bl/6 mice

    PubMed Central

    Girtsman, Teri Alyn; Beamer, Celine A; Wu, Nianqiang; Buford, Mary; Holian, Andrij

    2014-01-01

    Exposure to certain engineered nanomaterials has been associated with pathological changes in animal models raising concerns about potential human health effects. MWCNT have been reported to activate the NLRP3 inflammasome in vitro, correlating with lung inflammation and pathology, in vivo. In this study, we investigated the role of IL-1 signalling in pulmonary inflammatory responses in WT and IL-1R−/− mice after exposure to MWCNT. The results suggest that MWCNT were effective in inducing acute pulmonary inflammation. Additionally, WT mice demonstrated significant increased airway resistance 24 h post exposure to MWCNT, which was also blocked in the IL-1R−/− mice. In contrast, by 28 days post exposure to MWCNT, the inflammatory response that was initially absent in IL-1R−/− mice was elevated in comparison to the WT mice. These data suggest that IL-1R signalling plays a crucial role in the regulation of MWCNT-induced pulmonary inflammation. PMID:23094697

  12. Inhalation of honey reduces airway inflammation and histopathological changes in a rabbit model of ovalbumin-induced chronic asthma

    PubMed Central

    2014-01-01

    Background Honey is widely used in folk medicine to treat cough, fever, and inflammation. In this study, the effect of aerosolised honey on airway tissues in a rabbit model of ovalbumin (OVA)-induced asthma was investigated. The ability of honey to act either as a rescuing agent in alleviating asthma-related symptoms or as a preventive agent to preclude the occurrence of asthma was also assessed. Methods Forty New Zealand white rabbits were sensitized twice with mixture of OVA and aluminium hydroxide on days 1 and 14. Honey treatments were given from day 23 to day 25 at two different doses (25% (v/v) and 50% (v/v) of honey diluted in sterile phosphate buffer saline. In the aerosolised honey as a rescue agent group, animals were euthanized on day 28; for the preventive group, animals were further exposed to aerosolised OVA for 3 days starting from day 28 and euthanized on day 31. The effects of honey on inflammatory cell response, airway inflammation, and goblet cell hyperplasia were assessed for each animal. Results Histopathological analyses revealed that aerosolised honey resulted in structural changes of the epithelium, mucosa, and submucosal regions of the airway that caused by the induction with OVA. Treatment with aerosolised honey has reduced the number of airway inflammatory cells present in bronchoalveolar lavage fluid and inhibited the goblet cell hyperplasia. Conclusion In this study, aerosolised honey was used to effectively treat and manage asthma in rabbits, and it could prove to be a promising treatment for asthma in humans. Future studies with a larger sample size and studies at the gene expression level are needed to better understand the mechanisms by which aerosolised honey reduces asthma symptoms. PMID:24886260

  13. Breathlessness in elderly individuals is related to low lung function and reversibility of airway obstruction.

    PubMed

    Boezen, H M; Rijcken, B; Schouten, J P; Postma, D S

    1998-10-01

    The perception of breathlessness is a subject-related factor which is linked to respiratory disease, cardiac disease and overweight. We studied the distribution of breathlessness, its association with respiratory disease, cardiac disease and overweight, as well as its association with lung function, reversibility of airway obstruction ("reversibility") and peak expiratory flow (PEF) variability in an elderly population. Data on breathlessness (rated with Borg scale), lung function, reversibility, PEF variability, respiratory symptoms, cardiac disease and overweight were collected in a random sample of 210 elderly (>55 yrs old) who participated in a physical fitness test. Individuals with a Borg score >0 were taken to have breathlessness. Subjects with a Borg score >0 (n=50, 24%) were three to five times more likely to have a low lung function and large reversibility than subjects with a Borg score of zero, independent of the presence of respiratory symptoms, cardiac disease or overweight, although these three factors were all associated with low lung function and a large reversibility and PEF variability. Reversibility was not associated with PEF variability whatsoever. In elderly individuals, breathlessness is frequently present. Assessment of breathlessness using the Borg-scale seems an important clinical measurement, because it is an important independent predictor of lung function impairment in the elderly.

  14. Associations of Primary and Secondary Organic Aerosols With Airway and Systemic Inflammation in an Elderly Panel Cohort

    PubMed Central

    Delfino, Ralph J.; Staimer, Norbert; Tjoa, Thomas; Arhami, Mohammad; Polidori, Andrea; Gillen, Daniel L.; George, Steven C.; Shafer, Martin M.; Schauer, James J.; Sioutas, Constantinos

    2013-01-01

    Background Exposure-response information about particulate air-pollution constituents is needed to protect sensitive populations. Particulate matter <2.5 mm (PM2.5) components may induce oxidative stress through reactive-oxygen-species generation, including primary organics from combustion sources and secondary organics from photochemically oxidized volatile organic compounds. We evaluated differences in airway versus systemic inflammatory responses to primary versus secondary organic particle components, particle size fractions, and the potential of particles to induce cellular production of reactive oxygen species. Methods A total of 60 elderly subjects contributed up to 12 weekly measurements of fractional exhaled nitric oxide (NO; airway inflammation biomarker), and plasma interleukin-6 (IL-6; systemic inflammation biomarker). PM2.5 mass fractions were PM0.25 (<0.25 µm) and PM0.25–2.5 (0.25–2.5 µm). Primary organic markers included PM2.5 primary organic carbon, and PM0.25 polycyclic aromatic hydrocarbons and hopanes. Secondary organic markers included PM2.5 secondary organic carbon, and PM0.25 water soluble organic carbon and n-alkanoic acids. Gaseous pollutants included carbon monoxide (CO) and nitrogen oxides (NOx; combustion emissions markers), and ozone (O3; photochemistry marker). To assess PM oxidative potential, we exposed rat alveolar macrophages in vitro to aqueous extracts of PM0.25 filters and measured reactive-oxygen-species production. Biomarker associations with exposures were evaluated with mixed-effects models. Results Secondary organic markers, PM0.25–2.5, and O3 were positively associated with exhaled NO. Primary organic markers, PM0.25, CO, and NOx were positively associated with IL-6. Reactive oxygen species were associated with both outcomes. Conclusions Particle effects on airway versus systemic inflammation differ by composition, but overall particle potential to induce generation of cellular reactive oxygen species is related to

  15. Effect of differing doses of inhaled budesonide on markers of airway inflammation in patients with mild asthma

    PubMed Central

    Jatakanon, A.; Kharitonov, S.; Lim, S.; Barnes, P.

    1999-01-01

    BACKGROUND—It is desirable to prescribe the minimal effective dose of inhaled steroids to control asthma. To ensure that inflammation is suppressed whilst using the lowest possible dose, a sensitive and specific method for assessing airway inflammation is needed.
METHODS—The usefulness of exhaled nitric oxide (NO), sputum eosinophils, and methacholine airway responsiveness (PC20) for monitoring airway inflammatory changes following four weeks of treatment with an inhaled corticosteroid (budesonide via Turbohaler) were compared. Mild stable steroid naive asthmatic subjects were randomised into two double blind, placebo controlled studies. The first was a parallel group study involving three groups receiving either 100 µg/day budesonide (n = 8), 400 µg/day budesonide (n = 7), or a matched placebo (n = 6). The second was a crossover study involving 10 subjects randomised to receive 1600 µg budesonide or placebo. The groups were matched with respect to age, PC20, baseline FEV1 (% predicted), exhaled NO, and sputum eosinophilia.
RESULTS—There were significant improvements in FEV1 following 400 µg and 1600 µg budesonide (11.3% and 6.5%, respectively, p<0.05). This was accompanied by significant reductions in eosinophil numbers in induced sputum (0.7 and 0.9 fold, p<0.05). However, levels of exhaled NO were reduced following each budesonide dose while PC20 was improved only with 1600 µg budesonide. These results suggest that exhaled NO and PC20 may not reflect the control of airway inflammation as accurately as the number of eosinophils in sputum. There were dose dependent changes in exhaled NO, sputum eosinophils, and PC20 to inhaled budesonide but a plateau response of exhaled NO was found at a dose of 400 µg daily.
CONCLUSION—Monitoring the number of eosinophils in induced sputum may be the most accurate guide to establish the minimum dose of inhaled steroids needed to control inflammation. This, however, requires further studies involving a larger

  16. Schistosoma mansoni Venom Allergen Like Proteins Present Differential Allergic Responses in a Murine Model of Airway Inflammation

    PubMed Central

    Farias, Leonardo Paiva; Rodrigues, Dunia; Cunna, Vinicius; Rofatto, Henrique Krambeck; Faquim-Mauro, Eliana L.; Leite, Luciana C. C.

    2012-01-01

    Background The Schistosoma mansoni Venom-Allergen-Like proteins (SmVALs) are members of the SCP/TAPS (Sperm-coating protein/Tpx-1/Ag5/PR-1/Sc7) protein superfamily, which may be important in the host-pathogen interaction. Some of these molecules were suggested by us and others as potential immunomodulators and vaccine candidates, due to their functional classification, expression profile and predicted localization. From a vaccine perspective, one of the concerns is the potential allergic effect of these molecules. Methodology/Principal Findings Herein, we characterized the putative secreted proteins SmVAL4 and SmVAL26 and explored the mouse model of airway inflammation to investigate their potential allergenic properties. The respective recombinant proteins were obtained in the Pichia pastoris system and the purified proteins used to produce specific antibodies. SmVAL4 protein was revealed to be present only in the cercarial stage, increasing from 0–6 h in the secretions of newly transformed schistosomulum. SmVAL26 was identified only in the egg stage, mainly in the hatched eggs' fluid and also in the secretions of cultured eggs. Concerning the investigation of the allergic properties of these proteins in the mouse model of airway inflammation, SmVAL4 induced a significant increase in total cells in the bronchoalveolar lavage fluid, mostly due to an increase in eosinophils and macrophages, which correlated with increases in IgG1, IgE and IL-5, characterizing a typical allergic airway inflammation response. High titers of anaphylactic IgG1 were revealed by the Passive Cutaneous Anaphylactic (PCA) hypersensitivity assay. Additionally, in a more conventional protocol of immunization for vaccine trials, rSmVAL4 still induced high levels of IgG1 and IgE. Conclusions Our results suggest that members of the SmVAL family do present allergic properties; however, this varies significantly and therefore should be considered in the design of a schistosomiasis vaccine

  17. Low Level Laser Therapy Reduces the Development of Lung Inflammation Induced by Formaldehyde Exposure.

    PubMed

    Miranda da Silva, Cristiane; Peres Leal, Mayara; Brochetti, Robson Alexandre; Braga, Tárcio; Vitoretti, Luana Beatriz; Saraiva Câmara, Niels Olsen; Damazo, Amílcar Sabino; Ligeiro-de-Oliveira, Ana Paula; Chavantes, Maria Cristina; Lino-Dos-Santos-Franco, Adriana

    2015-01-01

    Lung diseases constitute an important public health problem and its growing level of concern has led to efforts for the development of new therapies, particularly for the control of lung inflammation. Low Level Laser Therapy (LLLT) has been highlighted as a non-invasive therapy with few side effects, but its mechanisms need to be better understood and explored. Considering that pollution causes several harmful effects on human health, including lung inflammation, in this study, we have used formaldehyde (FA), an environmental and occupational pollutant, for the induction of neutrophilic lung inflammation. Our objective was to investigate the local and systemic effects of LLLT after FA exposure. Male Wistar rats were exposed to FA (1%) or vehicle (distillated water) during 3 consecutive days and treated or not with LLLT (1 and 5 hours after each FA exposure). Non-manipulated rats were used as control. 24 h after the last FA exposure, we analyzed the local and systemic effects of LLLT. The treatment with LLLT reduced the development of neutrophilic lung inflammation induced by FA, as observed by the reduced number of leukocytes, mast cells degranulated, and a decreased myeloperoxidase activity in the lung. Moreover, LLLT also reduced the microvascular lung permeability in the parenchyma and the intrapulmonary bronchi. Alterations on the profile of inflammatory cytokines were evidenced by the reduced levels of IL-6 and TNF-α and the elevated levels of IL-10 in the lung. Together, our results showed that LLLT abolishes FA-induced neutrophilic lung inflammation by a reduction of the inflammatory cytokines and mast cell degranulation. This study may provide important information about the mechanisms of LLLT in lung inflammation induced by a pollutant.

  18. Low Level Laser Therapy Reduces the Development of Lung Inflammation Induced by Formaldehyde Exposure

    PubMed Central

    Miranda da Silva, Cristiane; Peres Leal, Mayara; Brochetti, Robson Alexandre; Braga, Tárcio; Vitoretti, Luana Beatriz; Saraiva Câmara, Niels Olsen; Damazo, Amílcar Sabino; Ligeiro-de-Oliveira, Ana Paula; Chavantes, Maria Cristina; Lino-dos-Santos-Franco, Adriana

    2015-01-01

    Lung diseases constitute an important public health problem and its growing level of concern has led to efforts for the development of new therapies, particularly for the control of lung inflammation. Low Level Laser Therapy (LLLT) has been highlighted as a non-invasive therapy with few side effects, but its mechanisms need to be better understood and explored. Considering that pollution causes several harmful effects on human health, including lung inflammation, in this study, we have used formaldehyde (FA), an environmental and occupational pollutant, for the induction of neutrophilic lung inflammation. Our objective was to investigate the local and systemic effects of LLLT after FA exposure. Male Wistar rats were exposed to FA (1%) or vehicle (distillated water) during 3 consecutive days and treated or not with LLLT (1 and 5 hours after each FA exposure). Non-manipulated rats were used as control. 24 h after the last FA exposure, we analyzed the local and systemic effects of LLLT. The treatment with LLLT reduced the development of neutrophilic lung inflammation induced by FA, as observed by the reduced number of leukocytes, mast cells degranulated, and a decreased myeloperoxidase activity in the lung. Moreover, LLLT also reduced the microvascular lung permeability in the parenchyma and the intrapulmonary bronchi. Alterations on the profile of inflammatory cytokines were evidenced by the reduced levels of IL-6 and TNF-α and the elevated levels of IL-10 in the lung. Together, our results showed that LLLT abolishes FA-induced neutrophilic lung inflammation by a reduction of the inflammatory cytokines and mast cell degranulation. This study may provide important information about the mechanisms of LLLT in lung inflammation induced by a pollutant. PMID:26569396

  19. Acute respiratory changes and pulmonary inflammation involving a pathway of TGF-β1 induction in a rat model of chlorine-induced lung injury.

    PubMed

    Wigenstam, Elisabeth; Elfsmark, Linda; Koch, Bo; Bucht, Anders; Jonasson, Sofia

    2016-10-15

    We investigated acute and delayed respiratory changes after inhalation exposure to chlorine (Cl2) with the aim to understand the pathogenesis of the long-term sequelae of Cl2-induced lung-injury. In a rat model of nose-only exposure we analyzed changes in airway hyperresponsiveness (AHR), inflammatory responses in airways, expression of pro-inflammatory markers and development of lung fibrosis during a time-course from 5h up to 90days after a single inhalation of Cl2. A single dose of dexamethasone (10mg/kg) was administered 1h following Cl2-exposure. A 15-min inhalation of 200ppm Cl2 was non-lethal in Sprague-Dawley rats. At 24h post exposure, Cl2-exposed rats displayed elevated numbers of leukocytes with an increase of neutrophils and eosinophils in bronchoalveolar lavage (BAL) and edema was shown both in lung tissue and the heart. At 24h, the inflammasome-associated cytokines IL-1β and IL-18 were detected in BAL. Concomitant with the acute inflammation a significant AHR was detected. At the later time-points, a delayed inflammatory response was observed together with signs of lung fibrosis as indicated by increased pulmonary macrophages, elevated TGF-β expression in BAL and collagen deposition around airways. Dexamethasone reduced the numbers of neutrophils in BAL at 24h but did not influence the AHR. Inhalation of Cl2 in rats leads to acute respiratory and cardiac changes as well as pulmonary inflammation involving induction of TGF-β1. The acute inflammatory response was followed by sustained macrophage response and lack of tissue repair. It was also found that pathways apart from the acute inflammatory response contribute to the Cl2-induced respiratory dysfunction. PMID:27586366

  20. Brain-Derived Neurotrophic Factor in the Airways

    PubMed Central

    Prakash, Y.S.; Martin, Richard J.

    2014-01-01

    In addition to their well-known roles in the nervous system, there is increasing recognition that neurotrophins such as brain derived neurotrophic factor (BDNF) as well as their receptors are expressed in peripheral tissues including the lung, and can thus potentially contribute to both normal physiology and pathophysiology of several diseases. The relevance of this family of growth factors lies in emerging clinical data indicating altered neurotrophin levels and function in a range of diseases including neonatal and adult asthma, sinusitis, influenza, and lung cancer. The current review focuses on 1) the importance of BDNF expression and signaling mechanisms in early airway and lung development, critical to both normal neonatal lung function and also its disruption in prematurity and insults such as inflammation and infection; 2) how BDNF, potentially derived from airway nerves modulate neurogenic control of airway tone, a key aspect of airway reflexes as well as dysfunctional responses to allergic inflammation; 3) the emerging idea that local BDNF production by resident airway cells such as epithelium and airway smooth muscle can contribute to normal airway structure and function, and to airway hyperreactivity and remodeling in diseases such as asthma. Furthermore, given its pleiotropic effects in the airway, BDNF may be a novel and appealing therapeutic target. PMID:24560686

  1. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury

    PubMed Central

    Balakrishna, Shrilatha; Song, Weifeng; Achanta, Satyanarayana; Doran, Stephen F.; Liu, Boyi; Kaelberer, Melanie M.; Yu, Zhihong; Sui, Aiwei; Cheung, Mui; Leishman, Emma; Eidam, Hilary S.; Ye, Guosen; Willette, Robert N.; Thorneloe, Kevin S.; Bradshaw, Heather B.; Matalon, Sadis

    2014-01-01

    The treatment of acute lung injury caused by exposure to reactive chemicals remains challenging because of the lack of mechanism-based therapeutic approaches. Recent studies have shown that transient receptor potential vanilloid 4 (TRPV4), an ion channel expressed in pulmonary tissues, is a crucial mediator of pressure-induced damage associated with ventilator-induced lung injury, heart failure, and infarction. Here, we examined the effects of two novel TRPV4 inhibitors in mice exposed to hydrochloric acid, mimicking acid exposure and acid aspiration injury, and to chlorine gas, a severe chemical threat with frequent exposures in domestic and occupational environments and in transportation accidents. Postexposure treatment with a TRPV4 inhibitor suppressed acid-induced pulmonary inflammation by diminishing neutrophils, macrophages, and associated chemokines and cytokines, while improving tissue pathology. These effects were recapitulated in TRPV4-deficient mice. TRPV4 inhibitors had similar anti-inflammatory effects in chlorine-exposed mice and inhibited vascular leakage, airway hyperreactivity, and increase in elastance, while improving blood oxygen saturation. In both models of lung injury we detected increased concentrations of N-acylamides, a class of endogenous TRP channel agonists. Taken together, we demonstrate that TRPV4 inhibitors are potent and efficacious countermeasures against severe chemical exposures, acting against exaggerated inflammatory responses, and protecting tissue barriers and cardiovascular function. PMID:24838754

  2. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury.

    PubMed

    Balakrishna, Shrilatha; Song, Weifeng; Achanta, Satyanarayana; Doran, Stephen F; Liu, Boyi; Kaelberer, Melanie M; Yu, Zhihong; Sui, Aiwei; Cheung, Mui; Leishman, Emma; Eidam, Hilary S; Ye, Guosen; Willette, Robert N; Thorneloe, Kevin S; Bradshaw, Heather B; Matalon, Sadis; Jordt, Sven-Eric

    2014-07-15

    The treatment of acute lung injury caused by exposure to reactive chemicals remains challenging because of the lack of mechanism-based therapeutic approaches. Recent studies have shown that transient receptor potential vanilloid 4 (TRPV4), an ion channel expressed in pulmonary tissues, is a crucial mediator of pressure-induced damage associated with ventilator-induced lung injury, heart failure, and infarction. Here, we examined the effects of two novel TRPV4 inhibitors in mice exposed to hydrochloric acid, mimicking acid exposure and acid aspiration injury, and to chlorine gas, a severe chemical threat with frequent exposures in domestic and occupational environments and in transportation accidents. Postexposure treatment with a TRPV4 inhibitor suppressed acid-induced pulmonary inflammation by diminishing neutrophils, macrophages, and associated chemokines and cytokines, while improving tissue pathology. These effects were recapitulated in TRPV4-deficient mice. TRPV4 inhibitors had similar anti-inflammatory effects in chlorine-exposed mice and inhibited vascular leakage, airway hyperreactivity, and increase in elastance, while improving blood oxygen saturation. In both models of lung injury we detected increased concentrations of N-acylamides, a class of endogenous TRP channel agonists. Taken together, we demonstrate that TRPV4 inhibitors are potent and efficacious countermeasures against severe chemical exposures, acting against exaggerated inflammatory responses, and protecting tissue barriers and cardiovascular function. PMID:24838754

  3. Exposure of brown Norway rats to diesel exhaust particles prior to ovalbumin (OVA) sensitization elicits IgE adjuvant activity but attenuates OVA-induced airway inflammation.

    PubMed

    Dong, Caroline C; Yin, Xuejun J; Ma, Jane Y C; Millecchia, Lyndell; Barger, Mark W; Roberts, Jenny R; Zhang, Xing-Dong; Antonini, James M; Ma, Joseph K H

    2005-11-01

    Exposure to diesel exhaust particles (DEP) during the sensitization process has been shown to increase antigen-specific IgE production and aggravate allergic airway inflammation in human and animal models. In this study, we evaluated the effect of short-term DEP exposure on ovalbumin (OVA)-mediated responses using a post-sensitization model. Brown Norway rats were first exposed to filtered air or DEP (20.6 +/- 2.7 mg/m3) for 4 h/day for five consecutive days. One day after the final air or DEP exposure (day 1), rats were sensitized with aerosolized OVA (40.5 +/- 6.3 mg/m3), and then again on days 8 and 15, challenged with OVA on day 29, and sacrificed on days 9 or 30, 24 h after the second OVA exposure or the final OVA challenge, respectively. Control animals received aerosolized saline instead of OVA. DEP were shown to elicit an adjuvant effect on the production of antigen-specific IgE and IgG on day 30. At both time points, no significant airway inflammatory responses and lung injury were found for DEP exposure alone. However, the OVA-induced inflammatory cell infiltration, acellular lactate dehydrogenase activity and albumin content in bronchoalveolar lavage (BAL) fluid, and numbers of T cells and their CD4+ and CD8+ subsets in lung-draining lymph nodes were markedly reduced by DEP on day 30 compared with the air-plus-OVA exposure group. The OVA-induced nitric oxide (NO) in the BAL fluid and production of NO, interleukin (IL)-10, and IL-12 by alveolar macrophages (AM) were also significantly lowered by DEP on day 30 as well as day 9. DEP or OVA alone decreased intracellular glutathione (GSH) in AM and lymphocytes on days 9 and 30. The combined DEP and OVA exposure resulted in further depletion of GSH in both cell types. These results show that short-term DEP exposure prior to sensitization had a delayed effect on enhancement of the sensitization in terms of allergen-specific IgE and IgG production, but caused an attenuation of the allergen-induced airway