Science.gov

Sample records for airway ion transport

  1. Relationship between airway ion transport and a mild pulmonary disease mutation in CFTR.

    PubMed

    Walker, L C; Venglarik, C J; Aubin, G; Weatherly, M R; McCarty, N A; Lesnick, B; Ruiz, F; Clancy, J P; Sorscher, E J

    1997-05-01

    Patients with cystic fibrosis (CF) display defects in airway ion transport, but the influence of airway transport phenotype on improved prognosis is not known. We studied airway bioelectric properties in five CF patients with the rare A455E mutation that is associated with mild pulmonary disease. We also evaluated five patients possessing premature truncation mutations (G542X and R553X) for which an association with mild pulmonary disease has not been as well established. We found no evidence in vivo that a mild lung disease mutation in the CF transmembrane regulator gene (CFTR) led to correction or partial correction of: (1) unstimulated Cl- secretion; (2) beta-agonist-activated Cl- secretion; (3) basal sodium reabsorption; or (4) amiloride-sensitive airway sodium transport. Early phase therapeutic trials in CF, including human gene transfer trials, rely heavily on improvements in airway potential difference to identify promising interventions and an improved prognosis. Based on our findings in a naturally occurring group of CF patients with an improved pulmonary prognosis (A455E), one can argue that marked clinical benefit might be possible without any improvement whatsoever in airway bioelectric phenotype. Moreover, if genetic modifiers exist that influence the severity of a particular CFTR mutation (e.g., A455E), these may be independent of human airway Cl-secretion in vivo, since we detected minimal Cl--secretory responses in patients with A455E. PMID:9154877

  2. Purinergic P2Y receptors in airway epithelia: from ion transport to immune functions.

    PubMed

    Hao, Yuan; Ko, Wing-hung

    2014-02-25

    The regulated transport of salt and water is essential to the integrated function of many organ systems, including the respiratory, reproductive, and digestive tracts. Airway epithelial fluid secretion is a passive process that is driven by osmotic forces, which are generated by ion transport. The main determinant of a luminally-directed osmotic gradient is the mucosal transport of chloride ions (Cl(-)) into the lumen. As with many epithelial cells, a number of classic signal transduction cascades are involved in the regulation of ion transport. There are two well-known intracellular signaling systems: an increase in intracellular Ca(2+) concentration ([Ca(2+)]i) and an increase in the rate of synthesis of cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP). Therefore, Cl(-) secretion is primarily activated via the opening of apical Ca(2+)- or cAMP-dependent Cl(-) channels at the apical membrane. The opening of basolateral Ca(2+)- or cAMP-activated K(+) channels, which hyperpolarizes the cell to maintain the driving force for Cl(-) exit through apical Cl(-) channels that are constitutively open, is also important in regulating transepithelial ion transport. P2Y receptors are expressed in the apical and/or basolateral membranes of virtually all polarized epithelia to control the transport of fluid and electrolytes. Human airway epithelial cells express multiple nucleotide receptors. Extracellular nucleotides, such as UTP and ATP, are calcium-mobilizing secretagogues. They are released into the extracellular space from airway epithelial cells and act on the same cell in an autocrine fashion to stimulate transepithelial ion transport. In addition, recent data support the role of P2Y receptors in releasing inflammatory cytokines in the bronchial epithelium and other immune cells. PMID:24553865

  3. Non-Genomic Estrogen Regulation of Ion Transport and Airway Surface Liquid Dynamics in Cystic Fibrosis Bronchial Epithelium

    PubMed Central

    Saint-Criq, Vinciane; Kim, Sung Hoon; Katzenellenbogen, John A.; Harvey, Brian J.

    2013-01-01

    Male cystic fibrosis (CF) patients survive longer than females and lung exacerbations in CF females vary during the estrous cycle. Estrogen has been reported to reduce the height of the airway surface liquid (ASL) in female CF bronchial epithelium. Here we investigated the effect of 17β-estradiol on the airway surface liquid height and ion transport in normal (NuLi-1) and CF (CuFi-1) bronchial epithelial monolayers. Live cell imaging using confocal microscopy revealed that airway surface liquid height was significantly higher in the non-CF cells compared to the CF cells. 17β-estradiol (0.1–10 nM) reduced the airway surface liquid height in non-CF and CF cells after 30 min treatment. Treatment with the nuclear-impeded Estrogen Dendrimer Conjugate mimicked the effect of free estrogen by reducing significantly the airway surface liquid height in CF and non-CF cells. Inhibition of chloride transport or basolateral potassium recycling decreased the airway surface liquid height and 17β-estradiol had no additive effect in the presence of these ion transporter inhibitors. 17β-estradiol decreased bumetanide-sensitive transepithelial short-circuit current in non-CF cells and prevented the forskolin-induced increase in ASL height. 17β-estradiol stimulated an amiloride-sensitive transepithelial current and increased ouabain-sensitive basolateral short-circuit current in CF cells. 17β-estradiol increased PKCδ activity in CF and non-CF cells. These results demonstrate that estrogen dehydrates CF and non-CF ASL, and these responses to 17β-estradiol are non-genomic rather than involving the classical nuclear estrogen receptor pathway. 17β-estradiol acts on the airway surface liquid by inhibiting cAMP-mediated chloride secretion in non-CF cells and increasing sodium absorption via the stimulation of PKCδ, ENaC and the Na+/K+ATPase in CF cells. PMID:24223826

  4. Model of ion transport regulation in chloride-secreting airway epithelial cells. Integrated description of electrical, chemical, and fluorescence measurements.

    PubMed Central

    Hartmann, T; Verkman, A S

    1990-01-01

    An electrokinetic model was developed to calculate the time course of electrical parameters, ion fluxes, and intracellular ion activities for experiments performed in airway epithelial cells. Model variables included cell [Na], [K], [Cl], volume, and membrane potentials. The model contained apical membrane Cl, Na, and K conductances, basolateral membrane K conductance, Na/K/2 Cl and Na/Cl symport, and 3 Na/2 K ATPase, and a paracellular conductance. Transporter permeabilities and ion saturabilities were determined from reported ion flux data and membrane potentials in intact canine trachea. Without additional assumptions, the model predicted accurately the measured short-circuit current (Isc), cellular conductances, voltage-divider ratios, open-circuit potentials, and the time course of cell ion composition in ion substitution experiments. The model was used to examine quantitatively: (a) the effect of transport inhibitors on Isc and membrane potentials, (b) the dual role of apical Cl and basolateral K conductance in cell secretion, (c) whether the basolateral symporter requires K, and (d) the regulation of apical Cl conductance by cAMP and Ca-dependent signaling pathways. Model predictions gave improved understanding of the interrelations among transporting systems and in many cases gave surprising predictions that were not obvious without a detailed model. The model developed here has direct application to secretory or absorptive epithelial cells in the kidney thick ascending limb, cornea, sweat duct, and intestine in normal and pathophysiological states such as cystic fibrosis and cholera. PMID:1698471

  5. Diacetyl and 2,3-pentanedione exposure of human cultured airway epithelial cells: Ion transport effects and metabolism of butter flavoring agents.

    PubMed

    Zaccone, Eric J; Goldsmith, W Travis; Shimko, Michael J; Wells, J R; Schwegler-Berry, Diane; Willard, Patsy A; Case, Shannon L; Thompson, Janet A; Fedan, Jeffrey S

    2015-12-15

    Inhalation of butter flavoring by workers in the microwave popcorn industry may result in “popcorn workers' lung.” In previous in vivo studies rats exposed for 6 h to vapor from the flavoring agents, diacetyl and 2,3-pentanedione, acquired flavoring concentration-dependent damage of the upper airway epithelium and airway hyporeactivity to inhaled methacholine. Because ion transport is essential for lung fluid balance,we hypothesized that alterations in ion transport may be an early manifestation of butter flavoring-induced toxicity.We developed a system to expose cultured human bronchial/tracheal epithelial cells (NHBEs) to flavoring vapors. NHBEs were exposed for 6 h to diacetyl or 2,3-pentanedione vapors (25 or ≥ 60 ppm) and the effects on short circuit current and transepithelial resistance (Rt) were measured. Immediately after exposure to 25 ppm both flavorings reduced Na+ transport,without affecting Cl- transport or Na+,K+-pump activity. Rt was unaffected. Na+ transport recovered 18 h after exposure. Concentrations (100-360 ppm) of diacetyl and 2,3-pentanedione reported earlier to give rise in vivo to epithelial damage, and 60 ppm, caused death of NHBEs 0 h post-exposure. Analysis of the basolateral medium indicated that NHBEs metabolize diacetyl and 2,3-pentanedione to acetoin and 2-hydroxy-3-pentanone, respectively. The results indicate that ion transport is inhibited transiently in airway epithelial cells by lower concentrations of the flavorings than those that result in morphological changes of the cells in vivo or in vitro. PMID:26454031

  6. Diacetyl and 2,3-pentanedione exposure of human cultured airway epithelial cells: Ion transport effects and metabolism of butter flavoring agents

    PubMed Central

    Zaccone, Eric J.; Goldsmith, W. Travis; Shimko, Michael J.; Wells, J.R.; Schwegler-Berry, Diane; Willard, Patsy A.; Case, Shannon L.; Thompson, Janet A.; Fedan, Jeffrey S.

    2016-01-01

    Inhalation of butter flavoring by workers in the microwave popcorn industry may result in “popcorn workers' lung.” In previous in vivo studies rats exposed for 6 h to vapor from the flavoring agents, diacetyl and 2,3-pentanedione, acquired flavoring concentration-dependent damage of the upper airway epithelium and airway hyporeactivity to inhaled methacholine. Because ion transport is essential for lung fluid balance, we hypothesized that alterations in ion transport may be an early manifestation of butter flavoring-induced toxicity. We developed a system to expose cultured human bronchial/tracheal epithelial cells (NHBEs) to flavoring vapors. NHBEs were exposed for 6 h to diacetyl or 2,3-pentanedione vapors (25 or ≥60 ppm) and the effects on short circuit current and transepithelial resistance (Rt) were measured. Immediately after exposure to 25 ppm both flavorings reduced Na+ transport, without affecting Cl− transport or Na+,K+-pump activity. Rt was unaffected. Na+ transport recovered 18 h after exposure. Concentrations (100–360 ppm) of diacetyl and 2,3-pentanedione reported earlier to give rise in vivo to epithelial damage, and 60 ppm, caused death of NHBEs 0 h post-exposure. Analysis of the basolateral medium indicated that NHBEs metabolize diacetyl and 2,3-pentanedione to acetoin and 2-hydroxy-3-pentanone, respectively. The results indicate that ion transport is inhibited transiently in airway epithelial cells by lower concentrations of the flavorings than those that result in morphological changes of the cells in vivo or in vitro. PMID:26454031

  7. Electrolyte transport properties in distal small airways from cystic fibrosis pigs with implications for host defense.

    PubMed

    Li, Xiaopeng; Tang, Xiao Xiao; Vargas Buonfiglio, Luis G; Comellas, Alejandro P; Thornell, Ian M; Ramachandran, Shyam; Karp, Philip H; Taft, Peter J; Sheets, Kelsey; Abou Alaiwa, Mahmoud H; Welsh, Michael J; Meyerholz, David K; Stoltz, David A; Zabner, Joseph

    2016-04-01

    While pathological and clinical data suggest that small airways are involved in early cystic fibrosis (CF) lung disease development, little is known about how the lack of cystic fibrosis transmembrane conductance regulator (CFTR) function contributes to disease pathogenesis in these small airways. Large and small airway epithelia are exposed to different airflow velocities, temperatures, humidity, and CO2 concentrations. The cellular composition of these two regions is different, and small airways lack submucosal glands. To better understand the ion transport properties and impacts of lack of CFTR function on host defense function in small airways, we adapted a novel protocol to isolate small airway epithelial cells from CF and non-CF pigs and established an organotypic culture model. Compared with non-CF large airways, non-CF small airway epithelia cultures had higher Cl(-) and bicarbonate (HCO3 (-)) short-circuit currents and higher airway surface liquid (ASL) pH under 5% CO2 conditions. CF small airway epithelia were characterized by minimal Cl(-) and HCO3 (-) transport and decreased ASL pH, and had impaired bacterial killing compared with non-CF small airways. In addition, CF small airway epithelia had a higher ASL viscosity than non-CF small airways. Thus, the activity of CFTR is higher in the small airways, where it plays a role in alkalinization of ASL, enhancement of antimicrobial activity, and lowering of mucus viscosity. These data provide insight to explain why the small airways are a susceptible site for the bacterial colonization. PMID:26801568

  8. Acute regulation of tight junction ion selectivity in human airway epithelia

    PubMed Central

    Flynn, Andrea N.; Itani, Omar A.; Moninger, Thomas O.; Welsh, Michael J.

    2009-01-01

    Electrolyte transport through and between airway epithelial cells controls the quantity and composition of the overlying liquid. Many studies have shown acute regulation of transcellular ion transport in airway epithelia. However, whether ion transport through tight junctions can also be acutely regulated is poorly understood both in airway and other epithelia. To investigate the paracellular pathway, we used primary cultures of differentiated human airway epithelia and assessed expression of claudins, the primary determinants of paracellular permeability, and measured transepithelial electrical properties, ion fluxes, and La3+ movement. Like many other tissues, airway epithelia expressed multiple claudins. Moreover, different cell types in the epithelium expressed the same pattern of claudins. To evaluate tight junction regulation, we examined the response to histamine, an acute regulator of airway function. Histamine stimulated a rapid and transient increase in the paracellular Na+ conductance, with a smaller increase in Cl− conductance. The increase was mediated by histamine H1 receptors and depended on an increase in intracellular Ca2+ concentration. These results suggest that ion flow through the paracellular pathway can be acutely regulated. Such regulation could facilitate coupling of the passive flow of counter ions to active transcellular transport, thereby controlling net transepithelial salt and water transport. PMID:19208806

  9. Loss of anion transport without increased sodium absorption characterizes newborn porcine cystic fibrosis airway epithelia.

    PubMed

    Chen, Jeng-Haur; Stoltz, David A; Karp, Philip H; Ernst, Sarah E; Pezzulo, Alejandro A; Moninger, Thomas O; Rector, Michael V; Reznikov, Leah R; Launspach, Janice L; Chaloner, Kathryn; Zabner, Joseph; Welsh, Michael J

    2010-12-10

    Defective transepithelial electrolyte transport is thought to initiate cystic fibrosis (CF) lung disease. Yet, how loss of CFTR affects electrolyte transport remains uncertain. CFTR⁻(/)⁻ pigs spontaneously develop lung disease resembling human CF. At birth, their airways exhibit a bacterial host defense defect, but are not inflamed. Therefore, we studied ion transport in newborn nasal and tracheal/bronchial epithelia in tissues, cultures, and in vivo. CFTR⁻(/)⁻ epithelia showed markedly reduced Cl⁻ and HCO₃⁻ transport. However, in contrast to a widely held view, lack of CFTR did not increase transepithelial Na(+) or liquid absorption or reduce periciliary liquid depth. Like human CF, CFTR⁻(/)⁻ pigs showed increased amiloride-sensitive voltage and current, but lack of apical Cl⁻ conductance caused the change, not increased Na(+) transport. These results indicate that CFTR provides the predominant transcellular pathway for Cl⁻ and HCO₃⁻ in porcine airway epithelia, and reduced anion permeability may initiate CF airway disease. PMID:21145458

  10. Airway surface liquid volume expansion induces rapid changes in amiloride-sensitive Na+ transport across upper airway epithelium-Implications concerning the resolution of pulmonary edema

    PubMed Central

    Azizi, Fouad; Arredouani, Abdelilah; Mohammad, Ramzi M

    2015-01-01

    During airway inflammation, airway surface liquid volume (ASLV) expansion may result from the movement of plasma proteins and excess liquid into the airway lumen due to extravasation and elevation of subepithelial hydrostatic pressure. We previously demonstrated that elevation of submucosal hydrostatic pressure increases airway epithelium permeability resulting in ASLV expansion by 500 μL cm−2 h−1. Liquid reabsorption by healthy airway epithelium is regulated by active Na+ transport at a rate of 5 μL cm−2 h−1. Thus, during inflammation the airway epithelium may be submerged by a large volume of luminal liquid. Here, we have investigated the mechanism by which ASLV expansion alters active epithelial Na+ transport, and we have characterized the time course of the change. We used primary cultures of tracheal airway epithelium maintained under air interface (basal ASLV, depth is 7 ± 0.5 μm). To mimic airway flooding, ASLV was expanded to a depth of 5 mm. On switching from basal to expanded ASLV conditions, short-circuit current (Isc, a measure of total transepithelial active ion transport) declined by 90% with a half-time (t1/2) of 1 h. 24 h after the switch, there was no significant change in ATP concentration nor in the number of functional sodium pumps as revealed by [3H]-ouabain binding. However, amiloride-sensitive uptake of 22Na+ was reduced by 70% upon ASLV expansion. This process is reversible since after returning cells back to air interface, Isc recovered with a t1/2 of 5–10 h. These results may have important clinical implications concerning the development of Na+ channels activators and resolution of pulmonary edema. PMID:26333829

  11. Ion transport in pigmentation

    PubMed Central

    Bellono, Nicholas W.; Oancea, Elena V.

    2014-01-01

    Skin melanocytes and ocular pigment cells contain specialized organelles called melanosomes, which are responsible for the synthesis of melanin, the major pigment in mammals. Defects in the complex mechanisms involved in melanin synthesis and regulation result in vision and pigmentation deficits, impaired development of the visual system,, and increased susceptibility to skin and eye cancers. Ion transport across cellular membranes is critical for many biological processes, including pigmentation, but the molecular mechanisms by which it regulates melanin synthesis, storage, and transfer are not understood. In this review we first discuss ion channels and transporters that function at the plasma membrane of melanocytes; in the second part we consider ion transport across the membrane of intracellular organelles, with emphasis on melanosomes. We discuss recently characterized lysosomal and endosomal ion channels and transporters associated with pigmentation phenotypes. We then review the evidence for melanosomal channels and transporters critical for pigmentation, discussing potential molecular mechanisms mediating their function. The studies investigating ion transport in pigmentation physiology open new avenues for future research and could reveal novel molecular mechanisms underlying melanogenesis. PMID:25034214

  12. Loss of anion transport without increased sodium absorption characterizes newborn porcine cystic fibrosis airway epithelia

    PubMed Central

    Chen, Jeng-Haur; Stoltz, David A.; Karp, Philip H.; Ernst, Sarah E.; Pezzulo, Alejandro A.; Moninger, Thomas O.; Rector, Michael V.; Reznikov, Leah R.; Launspach, Janice L.; Chaloner, Kathryn; Zabner, Joseph; Welsh, Michael J.

    2011-01-01

    SUMMARY Defective transepithelial electrolyte transport is thought to initiate cystic fibrosis (CF) lung disease. Yet, how loss of CFTR affects electrolyte transport remains uncertain. CFTR−/− pigs spontaneously develop lung disease resembling human CF. At birth, their airways exhibit a bacterial host defense defect, but are not inflamed. Therefore, we studied ion transport in newborn nasal and tracheal/bronchial epithelia in tissue, cultures, and in vivo. CFTR−/− epithelia showed markedly reduced Cl− and HCO3− transport. However, in contrast to a widely held view, lack of CFTR did not increase transepithelial Na+ or liquid absorption or reduce periciliary liquid depth. Like human CF, CFTR−/− pigs showed increased amiloride-sensitive voltage and current, but lack of apical Cl− conductance caused the change, not increased Na+ transport. These results indicate that CFTR provides the predominant transcellular pathway for Cl− and HCO3− in porcine airway epithelia, and reduced anion permeability may initiate CF airway disease. PMID:21145458

  13. Ion Phase Space Transport

    NASA Astrophysics Data System (ADS)

    Sheehan, Daniel Peter

    1987-09-01

    Experimental measurements are presented of ion phase space evolution in a collisionless magnetoplasma utilizing nonperturbing laser induced fluorescence (LIF) diagnostics. Ion configuration space and velocity space transport, and ion thermodynamic information were derived from the phase space diagrams for the following beam-plasma and obstacle-plasma systems:(UNFORMATTED TABLE OR EQUATION FOLLOWS) OBSTACLE & PLASMA SPECIES qquad disc & quad Ba ^+/e^ qquad disc & quad Ba^+/SF _6^-/e^ BEAM SPECIES & PLASMA SPECIES} qquad Ba^+ & quad Cs^+/e^ qquad Cs^+ & quad Ba^+/e^ qquad Ba^+ & quad Cs^+/SF_6 ^-/e^ qquad e^- & quad Ba^+ /e^ TABLE/EQUATION ENDS The ions were roughly mass symmetric. Plasma systems were reconstructed from multiple discrete Ba(II) ion velocity distributions with spatial, temporal, and velocity resolution of 1 mm^3, 2 musec, and 3 times 1010 cm ^3/sec^3 respectively. Phase space reconstructions indicated resonant ion response to the current-driven electrostatic ion cyclotron wave (EICW) in the case of an electron beam and to the ion cyclotron-cyclotron wave in the case of ion beams. Ion energization was observed in both systems. Local particle kinetic energy densities increase far above thermal levels in the presence of the EICW and ICCW. Time-resolved measurements of the EICW identified phase space particle bunching. The nonlinear evolution of f_{rm i}(x,v,t) was investigated for both beam systems. The near wake of conducting electrically floating disc obstacle was studied. Anomalous cross field diffusion (D_bot > 10 ^4 cm^2/sec) and ion energization were correlated with strong, low-frequency turbulence generated by the obstacle. Ion perpendicular kinetic energy densities doubled over thermal levels in the near wake. Upstream of the obstacle, l ~ 50 lambda_ {rm D}, a collisionless shock was indicated; far downstream, an ion flux peak was observed. Three negative ion plasma (NIP) sources were developed and characterized in the course of research: two

  14. Differential effects of cyclic and constant stress on ATP release and mucociliary transport by human airway epithelia.

    PubMed

    Button, Brian; Picher, Maryse; Boucher, Richard C

    2007-04-15

    In the lungs, the first line of defence against bacterial infection is the thin layer of airway surface liquid (ASL) lining the airway surface. The superficial airway epithelium exhibits complex regulatory pathways that blend ion transport to adjust ASL volume to maintain proper mucociliary clearance (MCC). We hypothesized that stresses generated by airflow and transmural pressures during breathing govern ASL volume by regulating the rate of epithelial ATP release. Luminal ATP, via interactions with apical membrane P2-purinoceptors, regulates the balance of active ion secretion versus absorption to maintain ASL volume at optimal levels for MCC. In this study we tested the hypothesis that cyclic compressive stress (CCS), mimicking normal tidal breathing, regulates ASL volume in airway epithelia. Polarized tracheobronchial epithelial cultures from normal and cystic fibrosis (CF) subjects responded to a range of CCS by increasing the rate of ATP release. In normal airway epithelia, the CCS-induced increase in ASL ATP concentration was sufficient to induce purinoceptor-mediated increases in ASL height and MCC, via inhibition of epithelial Na(+)-channel-mediated Na(+) absorption and stimulation of Cl(-) secretion through CFTR and the Ca(2+)-activated chloride channels. In contrast, static, non-oscillatory stress did not stimulate ATP release, ion transport or MCC, emphasizing the importance of rhythmic mechanical stress for airway defence. In CF airway cultures, which exhibit basal ASL depletion, CCS was partially effective, producing less ASL volume secretion than in normal cultures, but a level sufficient to restore MCC. The present data suggest that CCS may (1) regulate ASL volume in the normal lung and (2) improve clearance in the lungs of CF patients, potentially explaining the beneficial role of exercise in lung defence. PMID:17317749

  15. Airway irritation and cough evoked by acid: from human to ion channel

    PubMed Central

    Gu, Qihai; Lee, Lu-Yuan

    2011-01-01

    Inhalation or aspiration of acid solution evokes airway defense responses such as cough and reflex bronchoconstriction, resulting from activation of vagal bronchopulmonary C-fibers and Aδ afferents. The stimulatory effect of hydrogen ion on these sensory nerves is generated by activation of two major types of ion channels expressed in these neurons: a rapidly activating and inactivating current mediated through ASICs, and a slow sustaining current via activation of TRPV1. Recent studies have shown that these acid-evoked responses are elevated during airway inflammatory reaction, revealing the potential convergence of a wide array of inflammatory signaling on these ion channels. Since pH in the airway fluid drops substantially in patients with inflammatory airway diseases, these heightened stimulatory effects of acid on airway sensory nerves may play a part in the manifestation of airway irritation and excessive cough under those pathophysiological conditions. PMID:21543258

  16. Airflow, transport and regional deposition of aerosol particles during chronic bronchitis of human central airways.

    PubMed

    Farkhadnia, Fouad; Gorji, Tahereh B; Gorji-Bandpy, Mofid

    2016-03-01

    In the present study, the effects of airway blockage in chronic bronchitis disease on the flow patterns and transport/deposition of micro-particles in a human symmetric triple bifurcation lung airway model, i.e., Weibel's generations G3-G6 was investigated. A computational fluid and particle dynamics model was implemented, validated and applied in order to evaluate the airflow and particle transport/deposition in central airways. Three breathing patterns, i.e., resting, light activity and moderate exercise, were considered. Using Lagrangian approach for particle tracking and random particle injection, an unsteady particle tracking method was performed to simulate the transport and deposition of micron-sized aerosol particles in human central airways. Assuming laminar, quasi-steady, three-dimensional air flow and spherical non-interacting particles in sequentially bifurcating rigid airways, airflow patterns and particle transport/deposition in healthy and chronic bronchitis (CB) affected airways were evaluated and compared. Comparison of deposition efficiency (DE) of aerosols in healthy and occluded airways showed that at the same flow rates DE values are typically larger in occluded airways. While in healthy airways, particles deposit mainly around the carinal ridges and flow dividers-due to direct inertial impaction, in CB affected airways they deposit mainly on the tubular surfaces of blocked airways because of gravitational sedimentation. PMID:26541595

  17. The Epithelial Anion Transporter Pendrin Is Induced by Allergy and Rhinovirus Infection, Regulates Airway Surface Liquid, and Increases Airway Reactivity and Inflammation in an Asthma Model1

    PubMed Central

    Nakagami, Yasuhiro; Favoreto, Silvio; Zhen, Guohua; Park, Sung-Woo; Nguyenvu, Louis T.; Kuperman, Douglas A.; Dolganov, Gregory M.; Huang, Xiaozhu; Boushey, Homer A.; Avila, Pedro C.; Erle, David J.

    2008-01-01

    Asthma exacerbations can be triggered by viral infections or allergens. The Th2 cytokines IL-13 and IL-4 are produced during allergic responses and cause increases in airway epithelial cell mucus, electrolyte and water secretion into the airway surface liquid (ASL). Since ASL dehydration can cause airway inflammation and obstruction, ion transporters could play a role in pathogenesis of asthma exacerbations. We previously reported that expression of the epithelial cell anion transporter pendrin is markedly increased in response to IL-13. Here we show that pendrin plays a role in allergic airway disease and in regulation of ASL thickness. Pendrin-deficient mice had less allergen-induced airway hyperreactivity and inflammation than control mice although other aspects of the Th2 response were preserved. In cultures of IL-13-stimulated mouse tracheal epithelial cells, pendrin deficiency caused an increase in ASL thickness, suggesting that reductions in allergen-induced hyperreactivity and inflammation in pendrin-deficient mice result from improved ASL hydration. To determine whether pendrin might also play a role in virus-induced exacerbations of asthma, we measured pendrin mRNA expression in human subjects with naturally occurring common colds caused by rhinovirus and found a 4.9-fold-increase in mean expression during colds. Studies of cultured human bronchial epithelial cells indicated that this increase could be explained by the combined effects of rhinovirus and IFN-γ, a Th1 cytokine induced during virus infection. We conclude that pendrin regulates ASL thickness and may be an important contributor to asthma exacerbations induced by viral infections or allergens. PMID:18641360

  18. Aerosol transport and deposition efficiency in the respiratory airways

    NASA Astrophysics Data System (ADS)

    Nicolaou, Laura; Zaki, Tamer

    2015-11-01

    Prediction of aerosol deposition in the respiratory system is important for improving the efficiency of inhaled drug delivery and for assessing the toxicity of airborne pollutants. Particle deposition in the airways is typically described as a function of the Stokes number based on a reference flow timescale. This choice leads to significant scatter in deposition data since the velocity and length scales experienced by the particles as they are advected through the flow deviate considerably from the reference values in many sections of the airways. Therefore, the use of an instantaneous Stokes number based on the local properties of the flow field is proposed instead. We define the effective Stokes number as the time-average of the instantaneous value. Our results demonstrate that this average, or effective, Stokes number can deviate significantly from the reference value particularly in the intermediate Stokes number range. In addition, the effective Stokes number shows a very clear correlation with deposition efficiency, and is therefore a more appropriate parameter to describe aerosol transport.

  19. Odorant Transport and Deposition in the Canine Nasal Airways

    NASA Astrophysics Data System (ADS)

    Lawson, Michael; Craven, Brent; Settles, Gary; Paterson, Eric

    2009-11-01

    The canine nose functions similar to a chromatograph that imposes odorant-specific deposition patterns upon the thin mucus layer covering the nasal cavity. Here we use an anatomically-correct computational fluid dynamics (CFD) model to study airflow and odorant transport from the external environment through the nasal airways to the olfactory receptor layer beneath the mucus. The results show that deposition patterns are primarily influenced by the intricate olfactory flowfield and the odorant solubility in the mucus layer. Highly-soluble odorants are quickly absorbed near the entrance to the olfactory region, and thus do not reach the periphery with significant concentrations. In contrast, insoluble odorants are deposited more evenly and may even exit the olfactory region without being completely absorbed. Predicted odorant deposition patterns correspond with the anatomical organization of olfactory receptors known to occur in keen-scented (macrosmatic) mammals, providing a mechanism that helps explain the excellent olfactory acuity of the dog.

  20. Ion channel-transporter interactions.

    PubMed

    Neverisky, Daniel L; Abbott, Geoffrey W

    2015-01-01

    All living cells require membrane proteins that act as conduits for the regulated transport of ions, solutes and other small molecules across the cell membrane. Ion channels provide a pore that permits often rapid, highly selective and tightly regulated movement of ions down their electrochemical gradient. In contrast, active transporters can move moieties up their electrochemical gradient. The secondary active transporters (such as SLC superfamily solute transporters) achieve this by coupling uphill movement of the substrate to downhill movement of another ion, such as sodium. The primary active transporters (including H(+)/K(+)-ATPases and Na(+)/K(+)-ATPases) utilize ATP hydrolysis as an energy source to power uphill transport. It is well known that proteins in each of these classes work in concert with members of the other classes to ensure, for example, ion homeostasis, ion secretion and restoration of ion balance following action potentials. More recently, evidence is emerging of direct physical interaction between true ion channels, and some primary or secondary active transporters. Here, we review the first known members of this new class of macromolecular complexes that we term "chansporters", explore their biological roles and discuss the pathophysiological consequences of their disruption. We compare functional and/or physical interactions between the ubiquitous KCNQ1 potassium channel and various active transporters, and examine other newly discovered chansporter complexes that suggest we may be seeing the tip of the iceberg in a newly emerging signaling modality. PMID:27098917

  1. A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma.

    PubMed

    Caceres, Ana I; Brackmann, Marian; Elia, Maxwell D; Bessac, Bret F; del Camino, Donato; D'Amours, Marc; Witek, JoAnn S; Fanger, Chistopher M; Chong, Jayhong A; Hayward, Neil J; Homer, Robert J; Cohn, Lauren; Huang, Xiaozhu; Moran, Magdalene M; Jordt, Sven-Eric

    2009-06-01

    Asthma is an inflammatory disorder caused by airway exposures to allergens and chemical irritants. Studies focusing on immune, smooth muscle, and airway epithelial function revealed many aspects of the disease mechanism of asthma. However, the limited efficacies of immune-directed therapies suggest the involvement of additional mechanisms in asthmatic airway inflammation. TRPA1 is an irritant-sensing ion channel expressed in airway chemosensory nerves. TRPA1-activating stimuli such as cigarette smoke, chlorine, aldehydes, and scents are among the most prevalent triggers of asthma. Endogenous TRPA1 agonists, including reactive oxygen species and lipid peroxidation products, are potent drivers of allergen-induced airway inflammation in asthma. Here, we examined the role of TRPA1 in allergic asthma in the murine ovalbumin model. Strikingly, genetic ablation of TRPA1 inhibited allergen-induced leukocyte infiltration in the airways, reduced cytokine and mucus production, and almost completely abolished airway hyperreactivity to contractile stimuli. This phenotype is recapitulated by treatment of wild-type mice with HC-030031, a TRPA1 antagonist. HC-030031, when administered during airway allergen challenge, inhibited eosinophil infiltration and prevented the development of airway hyperreactivity. Trpa1(-/-) mice displayed deficiencies in chemically and allergen-induced neuropeptide release in the airways, providing a potential explanation for the impaired inflammatory response. Our data suggest that TRPA1 is a key integrator of interactions between the immune and nervous systems in the airways, driving asthmatic airway inflammation following inhaled allergen challenge. TRPA1 may represent a promising pharmacological target for the treatment of asthma and other allergic inflammatory conditions. PMID:19458046

  2. Pan American Airways/Naval Air Transport Service/destroyer base site showing brick ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Pan American Airways/Naval Air Transport Service/destroyer base site showing brick and concrete paving of patio, and circular planters. View facing east. - U.S. Naval Base, Pearl Harbor, Pearl City Peninsula, Pearl City, Honolulu County, HI

  3. Pan American Airways/Naval Air Transport Service/destroyer base site showing stone ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Pan American Airways/Naval Air Transport Service/destroyer base site showing stone wall around patio. View facing east-southeast. - U.S. Naval Base, Pearl Harbor, Pearl City Peninsula, Pearl City, Honolulu County, HI

  4. Ion transporters in brain tumors

    PubMed Central

    Cong, Damin; Zhu, Wen; Kuo, John S.; Hu, Shaoshan; Sun, Dandan

    2015-01-01

    Ion transporters are important in regulation of ionic homeostasis, cell volume, and cellular signal transduction under physiological conditions. They have recently emerged as important players in cancer progression. In this review, we discussed two important ion transporter proteins, sodium-potassium-chloride cotransporter isoform 1 (NKCC-1) and sodium-hydrogen exchanger isoform 1 (NHE-1) in Glioblastoma multiforme (GBM) and other malignant tumors. NKCC-1 is a Na+-dependent Cl− transporter that mediates the movement of Na+, K+, and Cl− ions across the plasma membrane and maintains cell volume and intracellular K+ and Cl− homeostasis. NHE-1 is a ubiquitously expressed cell membrane protein which regulates intracellular pH (pHi) and extracellular microdomain pH (pHe) homeostasis and cell volume. Here, we summarized recent pre-clinical experimental studies on NKCC-1 and NHE-1 in GBM and other malignant tumors, such as breast cancer, hepatocellular carcinoma, and lung cancer. These studies illustrated that pharmacological inhibition or down-regulation of these ion transporter proteins reduces proliferation, increases apoptosis, and suppresses migration and invasion of cancer cells. These new findings reveal the potentials of these ion transporters as new targets for cancer diagnosis and/or treatment. PMID:25620102

  5. Continuous mucociliary transport by primary human airway epithelial cells in vitro

    PubMed Central

    Sears, Patrick R.; Yin, Wei-Ning

    2015-01-01

    Mucociliary clearance (MCC) is an important innate defense mechanism that continuously removes inhaled pathogens and particulates from the airways. Normal MCC is essential for maintaining a healthy respiratory system, and impaired MCC is a feature of many airway diseases, including both genetic (cystic fibrosis, primary ciliary dyskinesia) and acquired (chronic obstructive pulmonary disease, bronchiectasis) disorders. Research into the fundamental processes controlling MCC, therefore, has direct clinical application, but has been limited in part due to the difficulty of studying this complex multicomponent system in vitro. In this study, we have characterized a novel method that allows human airway epithelial cells to differentiate into a mucociliary epithelium that transports mucus in a continuous circular track. The mucociliary transport device allows the measurement and manipulation of all features of mucociliary transport in a controlled in vitro system. In this initial study, the effect of ciliary beat frequency and mucus concentration on the speed of mucociliary transport was investigated. PMID:25979076

  6. AEROSOL TRANSPORT AND DEPOSITION IN SEQUENTIALLY BIFURCATING AIRWAYS

    EPA Science Inventory

    Deposition patterns and efficiencies of a dilute suspension of inhaled particles in three-dimensional double bifurcating airway models for both in-plane and 90 deg out-of-plane configurations have been numerically simulated assuming steady, laminar, constant-property air flow wit...

  7. Secondary ion collection and transport system for ion microprobe

    DOEpatents

    Ward, James W.; Schlanger, Herbert; McNulty, Jr., Hugh; Parker, Norman W.

    1985-01-01

    A secondary ion collection and transport system, for use with an ion microprobe, which is very compact and occupies only a small working distance, thereby enabling the primary ion beam to have a short focal length and high resolution. Ions sputtered from the target surface by the primary beam's impact are collected between two arcuate members having radii of curvature and applied voltages that cause only ions within a specified energy band to be collected. The collected ions are accelerated and focused in a transport section consisting of a plurality of spaced conductive members which are coaxial with and distributed along the desired ion path. Relatively high voltages are applied to alternate transport sections to produce accelerating electric fields sufficient to transport the ions through the section to an ion mass analyzer, while lower voltages are applied to the other transport sections to focus the ions and bring their velocity to a level compatible with the analyzing apparatus.

  8. Composite oxygen ion transport element

    DOEpatents

    Chen, Jack C.; Besecker, Charles J.; Chen, Hancun; Robinson, Earil T.

    2007-06-12

    A composite oxygen ion transport element that has a layered structure formed by a dense layer to transport oxygen ions and electrons and a porous support layer to provide mechanical support. The dense layer can be formed of a mixture of a mixed conductor, an ionic conductor, and a metal. The porous support layer can be fabricated from an oxide dispersion strengthened metal, a metal-reinforced intermetallic alloy, a boron-doped Mo.sub.5Si.sub.3-based intermetallic alloy or combinations thereof. The support layer can be provided with a network of non-interconnected pores and each of said pores communicates between opposite surfaces of said support layer. Such a support layer can be advantageously employed to reduce diffusion resistance in any type of element, including those using a different material makeup than that outlined above.

  9. Targeting ion transport in cancer

    PubMed Central

    Oosterwijk, E.; Gillies, R. J.

    2014-01-01

    The metabolism of cancer cells differs substantially from normal cells, including ion transport. Although this phenomenon has been long recognized, ion transporters have not been viewed as suitable therapeutic targets. However, the acidic pH values present in tumours which are well outside of normal limits are now becoming recognized as an important therapeutic target. Carbonic anhydrase IX (CAIX) is fundamental to tumour pH regulation. CAIX is commonly expressed in cancer, but lowly expressed in normal tissues and that presents an attractive target. Here, we discuss the possibilities of exploiting the acidic, hypoxic tumour environment as possible target for therapy. Additionally, clinical experience with CAIX targeting in cancer patients is discussed. PMID:24493755

  10. Heat transport through ion crystals

    NASA Astrophysics Data System (ADS)

    Freitas, Nahuel; Martinez, Esteban A.; Paz, Juan Pablo

    2016-01-01

    We study the thermodynamical properties of crystals of trapped ions which are laser cooled to two different temperatures in two separate regions. We show that these properties strongly depend on the structure of the ion crystal. Such structure can be changed by varying the trap parameters and undergoes a series of phase transitions from linear to zig-zag or helicoidal configurations. Thus, we show that these systems are ideal candidates to observe and control the transition from anomalous to normal heat transport. All structures behave as ‘heat superconductors’, with a thermal conductivity increasing linearly with system size and a vanishing thermal gradient inside the system. However, zig-zag and helicoidal crystals turn out to be hyper sensitive to disorder having a linear temperature profile and a length independent conductivity. Interestingly, disordered 2D ion crystals are heat insulators. Sensitivity to disorder is much smaller in the 1D case.

  11. Influence of short distance transportation on tracheal bacterial content and lower airway cytology in horses.

    PubMed

    Allano, Marion; Labrecque, Olivia; Rodriguez Batista, Edisleidy; Beauchamp, Guy; Bédard, Christian; Lavoie, Jean-Pierre; Leclere, Mathilde

    2016-08-01

    The aim of this study was to determine the effects of short distance transportation on airway mucus, cytology and bacterial culture to identify potential biases in the diagnosis of airway diseases in referral centres. Eight healthy adult horses were studied using a prospective cross-over design. Mucus scores, tracheal wash (cytology, bacterial culture) and bronchoalveolar lavage fluid (BALF; cytology) were obtained while stabled and following 2.5 h transportation (with and without hay). Neutrophil counts, percentages and BALF neutrophilia frequency increased following transport without hay (P <0.05). No effect was observed on tracheal cytology and bacterial count (P > 0.05). BALF neutrophilia could develop solely as a result of transportation or due to interactions between repeated transports, ambient temperature, head position or other environmental factors. PMID:27387726

  12. Pan American Airways/Naval Air Transport Service/destroyer base site at the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Pan American Airways/Naval Air Transport Service/destroyer base site at the east side showing walkway and building foundation. View facing west-northwest. - U.S. Naval Base, Pearl Harbor, Pearl City Peninsula, Pearl City, Honolulu County, HI

  13. Three pairs of bollards of Pan American Airways/Naval Air Transport ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Three pairs of bollards of Pan American Airways/Naval Air Transport Service/destroyer base site. (The third pair is visible beyond the trees). View facing south-southeast. - U.S. Naval Base, Pearl Harbor, Pearl City Peninsula, Pearl City, Honolulu County, HI

  14. TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS

    EPA Science Inventory

    TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS. Zhe Zhang*, Huawei Shi, Clement Kleinstreuer, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910; Chong S. Kim, National Health and En...

  15. Gravity effects of liquid plug transport in airway models

    NASA Astrophysics Data System (ADS)

    Suresh, V.; Grotberg, James B.

    2002-11-01

    Surfactant replacement therapy (SRT), which is commonly used to treat pulmonary surfactant deficiency in infants, and liquid ventilation both involve the instillation of a liquid bolus into the trachea. When the bolus forms an air-blown plug, optimal delivery of the surfactant or perfluorocarbon to various regions of the lung can depend on uniform dispersion through bifurcating airways. In higher generation airways gravitational and surface tension effects can influence plug rupture and plug shape, which in turn affects the mass split ratio at successive bifurcations. These effects are studied using a simplified theoretical model involving the quasi-steady motion of a liquid plug through a liquid-lined rigid cylindrical tube. A matched asymptotic expansion is used in the limit of small capillary numbers to determine the thickness of the trailing liquid film, shape of the plug and the pressure drop across it. It is found that rupture occurs when the pressure drop across the plug exceeds a critical value that depends on the Bond and capillary numbers. It is also found that gravitational effects can lead to unequal mass split ratios at bifurcations. The theoretical predictions are compared with bench-top experiments.

  16. Investigation of mucus transport in an idealized lung airway model using multiphase CFD analysis

    NASA Astrophysics Data System (ADS)

    Rajendran, Rahul; Banerjee, Arindam

    2015-11-01

    Mucus, a Bingham fluid is transported in the pulmonary airways by consistent beating of the cilia and exhibits a wide range of physical properties in response to the core air flow and various pathological conditions. A better understanding of the interfacial instability is required as it plays a crucial role in gas transport, mixing, mucus clearance and drug delivery. In the current study, mucus is modelled as a Newtonian fluid and the two phase gas-liquid flow in the airways is investigated using an inhomogeneous Eulerian-Eulerian approach. The complex interface between the phases is tracked using the conventional VOF (Volume of Fluid) method. Results from our CFD simulations which are performed in idealized single and double bifurcation geometries will be presented and the influence of airflow rate, mucus layer thickness, mucus viscosity, airway geometry (branching & diameter) and surface tension on mucus flow behavior will be discussed. Mean mucus layer thickness, pressure drop due to momentum transfer & increased airway resistance, mucus transport speed and the flow morphology will be compared to existing experimental and theoretical data.

  17. Molecular Ion Beam Transportation for Low Energy Ion Implantation

    SciTech Connect

    Kulevoy, T. V.; Kropachev, G. N.; Seleznev, D. N.; Yakushin, P. E.; Kuibeda, R. P.; Kozlov, A. V.; Koshelev, V. A.; Hershcovitch, A.; Johnson, B. M.; Gushenets, V. I.; Oks, E. M.; Polozov, S. M.; Poole, H. J.

    2011-01-07

    A joint research and development of steady state intense boron ion sources for 100's of electron-volt ion implanters has been in progress for the past five years. Current density limitation associated with extracting and transporting low energy ion beams result in lower beam currents that in turn adversely affects the process throughput. The transport channel with electrostatic lenses for decaborane (B{sub 10}H{sub 14}) and carborane (C{sub 2}B{sub 10}H{sub 12}) ion beams transportation was developed and investigated. The significant increase of ion beam intensity at the beam transport channel output is demonstrated. The transport channel simulation, construction and experimental results of ion beam transportation are presented.

  18. Cigarette smoke inhibition of ion transport in canine tracheal epithelium

    SciTech Connect

    Welsh, M.J.

    1983-06-01

    To determine the effect of cigarette smoke on airway epithelial ion transport, the electrical properties and transepithelial Na and Cl fluxes were measured in canine tracheal epithelium. In vivo, the inhalation of the smoke from one cigarette acutely and reversibly decreased the electrical potential difference across the tracheal epithelium. In vitro, exposure of the mucosal surface of the epithelium to cigarette smoke decreased the short circuit current and transepithelial resistance. The decrease in short circuit current was due to an inhibition of the rate of Cl secretion with minimal effect on the rate of Na absorption. The effect of cigarette smoke was reversible, was not observed upon exposure of the submucosal surface to smoke, and was most pronounced when secretion was stimulated. The particulate phase of smoke was largely responsible for the inhibitory effect, since filtering the smoke minimized the effect. The effect of cigarette smoke was not prevented by addition of antioxidants to the bathing solutions, suggesting that the inhibition of Cl secretion cannot be entirely attributed to an oxidant mechanism. These results indicate that cigarette smoke acutely inhibits active ion transport by tracheal epithelium, both in vivo and in vitro. This effect may explain, in part, both the abnormal mucociliary clearance and the airway disease observed in cigarette smokers.

  19. Solenoid transport for heavy ion fusion

    SciTech Connect

    Lee, Edward

    2004-06-15

    Solenoid transport of high current, heavy ion beams is considered for several stages of a heavy ion fusion driver. In general this option is more efficient than magnetic quadrupole transport at sufficiently low kinetic energy and/or large e/m, and for this reason it has been employed in electron induction linacs. Ideally an ion beam would be transported in a state of Brillouin flow, i.e. cold in the transverse plane and spinning at one half the cyclotron frequency. The design of appropriate solenoids and the equilibrium and stability of transported ion beams are discussed. An outline of application to a fusion driver is also presented.

  20. Fluid flow and particle transport in mechanically ventilated airways. Part II: particle transport.

    PubMed

    Alzahrany, Mohammed; Van Rhein, Timothy; Banerjee, Arindam; Salzman, Gary

    2016-07-01

    The flow mechanisms that play a role on aerosol deposition were identified and presented in a companion paper (Timothy et al. in Med Biol Eng Comput. doi: 10.1007/s11517-015-1407-3 , 2015). In the current paper, the effects of invasive conventional mechanical ventilation waveforms and endotracheal tube (ETT) on the aerosol transport were investigated. In addition to the enhanced deposition seen at the carinas of the airway bifurcations, enhanced deposition was also seen in the right main bronchus due to impaction and turbulent dispersion resulting from the fluid structures created by jet caused by the ETT. The orientation of the ETT toward right bronchus resulted in a substantial deposition inside right lung compared to left lung. The deposition inside right lung was ~12-fold higher than left lung for all considered cases, except for the case of using pressure-controlled sinusoidal waveform where a reduction of this ratio by ~50 % was found. The total deposition during pressure constant, volume ramp, and ascending ramp waveforms was similar and ~1.44 times higher than deposition fraction when using pressure sinusoidal waveform. Varying respiratory waveform demonstrated a significant role on the deposition enhancement factors and give evidence of drug aerosol concentrations in key deposition sites, which may be significant for drugs with negative side effects in high concentrations. These observations are thought to be important for ventilation treatment strategy. PMID:26541600

  1. Mechanisms of cilia-driven transport in the airways in the absence of mucus.

    PubMed

    Bermbach, Saskia; Weinhold, Karina; Roeder, Thomas; Petersen, Frank; Kugler, Christian; Goldmann, Torsten; Rupp, Jan; König, Peter

    2014-07-01

    Airway mucus is thought to be required for the clearance of inhaled particles by mucociliary transport, but this view has recently been challenged. To test if mucus is necessary for cilia-driven particle transport, we removed mucus from murine and human ex vivo airway preparations by thorough rinsing with buffer with or without additional dithiothreitol washing. The transport of particles with diameters of 4.5 μm, 200 nm, and 40 nm and of bacteria was analyzed by video microscopy. Complete removal of mucus was verified by wheat germ agglutinin staining and by scanning electron microscopy. In the absence of mucus, we observed efficient transport of particles and bacteria by direct cilia-mediated propulsion or via fluid flow generated by ciliary beating. Virus-sized particles had the tendency to attach to cilia. Because direct contact of particles with ciliated cells occurs in the absence of mucus, we examined if this direct interaction changes epithelial function. Neither bacteria- nor LPS-induced nuclear translocation of NF-κB p65 in ciliated cells occurred, indicating that mere contact between ciliated cells and bacteria during transport does not activate the epithelium. Attachment of virus-sized particles to cilia could induce mucus release and/or increase the ciliary beat frequency. Our results indicate that cilia-driven transport of particles with various sizes is possible in murine and human airways without the presence of mucus. If mucus-free transport fails, the epithelium can react by releasing mucus or increasing the ciliary beat frequency to maintain particle transport. PMID:24467665

  2. Mammalian ion-coupled solute transporters.

    PubMed Central

    Hediger, M A; Kanai, Y; You, G; Nussberger, S

    1995-01-01

    Active transport of solutes into and out of cells proceeds via specialized transporters that utilize diverse energy-coupling mechanisms. Ion-coupled transporters link uphill solute transport to downhill electrochemical ion gradients. In mammals, these transporters are coupled to the co-transport of H+, Na+, Cl- and/or to the countertransport of K+ or OH-. By contrast, ATP-dependent transporters are directly energized by the hydrolysis of ATP. The development of expression cloning approaches to select cDNA clones solely based on their capacity to induce transport function in Xenopus oocytes has led to the cloning of several ion-coupled transporter cDNAs and revealed new insights into structural designs, energy-coupling mechanisms and physiological relevance of the transporter proteins. Different types of mammalian ion-coupled transporters are illustrated by discussing transporters isolated in our own laboratory such as the Na+/glucose co-transporters SGLT1 and SGLT2, the H(+)-coupled oligopeptide transporters PepT1 and PepT2, and the Na(+)- and K(+)-dependent neuronal and epithelial high affinity glutamate transporter EAAC1. Most mammalian ion-coupled organic solute transporters studied so far can be grouped into the following transporter families: (1) the predominantly Na(+)-coupled transporter family which includes the Na+/glucose co-transporters SGLT1, SGLT2, SGLT3 (SAAT-pSGLT2) and the inositol transporter SMIT, (2) the Na(+)- and Cl(-)-coupled transporter family which includes the neurotransmitter transporters of gamma-amino-butyric acid (GABA), serotonin, dopamine, norepinephrine, glycine and proline as well as transporters of beta-amino acids, (3) the Na(+)- and K(+)-dependent glutamate/neurotransmitter family which includes the high affinity glutamate transporters EAAC1, GLT-1, GLAST, EAAT4 and the neutral amino acid transporters ASCT1 and SATT1 reminiscent of system ASC and (4) the H(+)-coupled oligopeptide transporter family which includes the intestinal H

  3. Fluid flow and particle transport in mechanically ventilated airways. Part I. Fluid flow structures.

    PubMed

    Van Rhein, Timothy; Alzahrany, Mohammed; Banerjee, Arindam; Salzman, Gary

    2016-07-01

    A large eddy simulation-based computational study of fluid flow and particle transport in upper tracheobronchial airways is carried out to investigate the effect of ventilation parameters on pulmonary fluid flow. Respiratory waveforms commonly used by commercial mechanical ventilators are used to study the effect of ventilation parameters and ventilation circuit on pulmonary fluid dynamics. A companion paper (Alzahrany et al. in Med Biol Eng Comput, 2014) reports our findings on the effect of the ventilation parameters and circuit on particle transport and aerosolized drug delivery. The endotracheal tube (ETT) was found to be an important geometric feature and resulted in a fluid jet that caused an increase in turbulence and created a recirculation zone with high wall shear stress in the main bronchi. Stronger turbulence was found in lower airways than would be found under normal breathing conditions due to the presence of the jet caused by the ETT. The pressure-controlled sinusoidal waveform induced the lowest wall shear stress on the airways wall. PMID:26563199

  4. Faster Heavy Ion Transport for HZETRN

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.

    2013-01-01

    The deterministic particle transport code HZETRN was developed to enable fast and accurate space radiation transport through materials. As more complex transport solutions are implemented for neutrons, light ions (Z < 2), mesons, and leptons, it is important to maintain overall computational efficiency. In this work, the heavy ion (Z > 2) transport algorithm in HZETRN is reviewed, and a simple modification is shown to provide an approximate 5x decrease in execution time for galactic cosmic ray transport. Convergence tests and other comparisons are carried out to verify that numerical accuracy is maintained in the new algorithm.

  5. The effect of ambroxol on chloride transport, CFTR and ENaC in cystic fibrosis airway epithelial cells.

    PubMed

    Varelogianni, Georgia; Hussain, Rashida; Strid, Hilja; Oliynyk, Igor; Roomans, Godfried M; Johannesson, Marie

    2013-11-01

    Ambroxol, a mucokinetic anti-inflammatory drug, has been used for treatment of cystic fibrosis (CF). The respiratory epithelium is covered by the airway surface liquid (ASL), the thickness and composition of which is determined by Cl(-) efflux via the cystic fibrosis transmembrane conductance regulator (CFTR) and Na(+) influx via the epithelial Na(+) channel (ENaC). In cells expressing wt-CFTR, ambroxol increased the Cl(-) conductance, but not the bicarbonate conductance of the CFTR channels. We investigated whether treatment with ambroxol enhances chloride transport and/or CFTR and ENaC expression in CF airway epithelial cells (CFBE) cells. CFBE cells were treated with 100 µM ambroxol for 2, 4 or 8 h. mRNA expression for CFTR and ENaC subunits was analysed by real-time polymerase chain reaction (RT-PCR); protein expression was measured by Western blot. The effect of ambroxol on Cl(-) transport was measured by Cl(-) efflux measurements with a fluorescent chloride probe. Ambroxol significantly stimulated Cl(-) efflux from CFBE cells (a sixfold increase after 8 h treatment), and enhanced the expression of the mRNA of CFTR and α-ENaC, and of the CFTR protein. No significant difference was observed in β-ENaC after exposure to ambroxol, whereas mRNA expression of γ-ENaC was reduced. No significant effects of ambroxol on the ENaC subunits were observed by Western blot. Ambroxol did not significantly affect the intracellular Ca(2+) concentration. Upregulation of CFTR and enhanced Cl(-) efflux after ambroxol treatment should promote transepithelial ion and water transport, which may improve hydration of the mucus, and therefore be beneficial to CF-patients. PMID:23765701

  6. Parametric variations of ion transport in TFTR

    SciTech Connect

    Scott, S.D.; Barnes, C.W.; Ernst, D.

    1993-03-18

    This paper is divided into three roughly independent sections. The first is a historical review of the twenty year history of experimental ion heat transport measurements from many tokamaks. The second is a study of ion heat transport in Ohmic TFTR plasmas which shows that {chi}i {approximately} {chi}e {approx} 15{chi}i{sup neo}. Thus, ion heat transport is demonstrated to be strongly anomalous even the absence of auxiliary heating. The third section describes the variation of {chi}i with local ion temperature in TFTR during auxiliary heating, with emphasis on characterizing the differecens between transport in the L-mode and supershot regimes. The results are consistent with the conjecture that improved ion energy confinement in supershot plasmas is caused by a high ratio of T{sub 1}/T{sub e}.

  7. REGIONAL DIFFERENCES IN BIOELECTRIC PROPERTIES AND ION FLOW IN EXCISED CANINE AIRWAYS

    EPA Science Inventory

    Absorption of airway liquid, as it moves from the large surface area of distal airways to more central airway surfaces, is considered to be essential for regulation of the depth of airway liquid. The short-circuited excised canine trachea, however, secretes C(-1) and absorbs a le...

  8. Monte Carlo Ion Transport Analysis Code.

    2009-04-15

    Version: 00 TRIPOS is a versatile Monte Carlo ion transport analysis code. It has been applied to the treatment of both surface and bulk radiation effects. The media considered is composed of multilayer polyatomic materials.

  9. Effects of dietary lectins on ion transport in epithelia.

    PubMed

    Kunzelmann, Karl; Sun, J; Schreiber, R; König, Jens

    2004-08-01

    Phytohemagglutinins are widely distributed in common food items. They constitute a heterogeneous group of proteins, which are often resistant to proteolysis in the gastrointestinal tract. Upon binding to the luminal membrane of intestinal cells, they can interfere with digestive, protective or secretory functions of the intestine. Phytohemagglutinins present in red kidney beans and jackbeans have been shown to induce diarrhea and hypersecretion in human airways, but the underlying mechanisms remain obscure. We examined how agglutinins from wheat germ (WGA), soy bean (SBA), red kidney beans (Pha-E, Pha-L), and jackbeans (Con-A) affect ion transport in mouse airways and large intestine using Ussing chamber techniques. We found that Pha-E, Pha-L, and Con-A but not WGA and SBA inhibit electrogenic Na(+) absorption dose dependently in both colon and trachea. The inhibitory effects of Con-A on Na(+) absorption were suppressed by the sugar mannose, by inhibition of phospholipase C (PLC) and protein kinase C (PKC). Thus, nutritional phytohemagglutinins block salt absorption in a PLC- and PKC-dependent manner, probably by inhibition of the epithelial Na(+) channel (ENaC). This effect may be therapeutically useful in patients suffering from cystic fibrosis. PMID:15237102

  10. Interfacial transport in lithium-ion conductors

    NASA Astrophysics Data System (ADS)

    Shaofei, Wang; Liquan, Chen

    2016-01-01

    Physical models of ion diffusion at different interfaces are reviewed. The use of impedance spectroscopy (IS), nuclear magnetic resonance (NMR), and secondary ion mass spectrometry (SIMS) techniques are also discussed. The diffusion of ions is fundamental to the operation of lithium-ion batteries, taking place not only within the grains but also across different interfaces. Interfacial ion transport usually contributes to the majority of the resistance in lithium-ion batteries. A greater understanding of the interfacial diffusion of ions is crucial to improving battery performance. Project supported by the Beijing S&T Project, China (Grant No. Z13111000340000), the National Natural Science Foundation of China (Grant Nos. 51325206 and 11234013) and the National Basic Research Program of China (Grant No. 2012CB932900).

  11. Rapid nongenomic actions of inhaled corticosteroids on long-acting β(2)-agonist transport in the airway.

    PubMed

    Horvath, Gabor; Mendes, Eliana S; Schmid, Nathalie; Schmid, Andreas; Conner, Gregory E; Fregien, Nevis L; Salathe, Matthias; Wanner, Adam

    2011-12-01

    Corticosteroids inhibit organic cation transporters (OCTs) that play an important role in drug absorption, tissue distribution and elimination. Corticosteroid sensitivity of bronchodilator trafficking in the airway tissue, however, is poorly understood. To assess the effects of inhaled corticosteroids on airway absorption and disposal mechanisms of long-acting β(2)-agonists, human airway epithelial and smooth muscle cell uptake of tritiated formoterol and salmeterol was measured in vitro. Corticosteroids caused a rapid, concentration-dependent inhibition of uptake of the cationic formoterol by airway smooth muscle cells, but not airway epithelial cells. Uptake of the non-charged lipophilic salmeterol was corticosteroid-insensitive in both cell types. In smooth muscle cells, inhaled corticosteroids inhibited formoterol uptake with a novel potency rank order: des-ciclesonide > budesonide > beclomethasone 17-monopropionate > beclomethasone dipropionate > ciclesonide > fluticasone. The inhibitory action was rapidly reversible, and was not enhanced by prolonged corticosteroid exposure or sensitive to a transcription inhibitor. Suppression of OCT3 expression using lentivirus-mediated production of shRNA reduced corticosteroid sensitivity of formoterol uptake by smooth muscle cells. Our data support a corticosteroid insensitive absorption and a corticosteroid-sensitive disposition mechanism for cationic long-acting β(2)-agonist bronchodilators in the airway. Potency rank order and other 'classical' features of anti-inflammatory effects do not apply to inhaled corticosteroids' rapid drug transport actions. PMID:21914487

  12. Capsaicinoids regulate airway anion transporters through Rho kinase- and cyclic AMP-dependent mechanisms.

    PubMed

    Hibino, Yoshitaka; Morise, Masahiro; Ito, Yasushi; Mizutani, Takefumi; Matsuno, Tadakatsu; Ito, Satoru; Hashimoto, Naozumi; Sato, Mitsuo; Kondo, Masashi; Imaizumi, Kazuyoshi; Hasegawa, Yoshinori

    2011-10-01

    To investigate the effects of capsaicinoids on airway anion transporters, we recorded and analyzed transepithelial currents in human airway epithelial Calu-3 cells. Application of capsaicin (100 μM) attenuated vectorial anion transport, estimated as short-circuit currents (I(SC)), before and after stimulation by forskolin (10 μM) with concomitant reduction of cytosolic cyclic AMP (cAMP) levels. The capsaicin-induced inhibition of I(SC) was also observed in the response to 8-bromo-cAMP (1 mM, a cell-permeable cAMP analog) and 3-isobutyl-1-methylxanthine (1 mM, an inhibitor of phosphodiesterases). The capsaicin-induced inhibition of I(SC) was attributed to suppression of bumetanide (an inhibitor of the basolateral Na(+)-K(+)-2 Cl(-) cotransporter 1)- and 4,4'-dinitrostilbene-2,2'-disulfonic acid (an inhibitor of basolateral HCO(3)(-)-dependent anion transporters)-sensitive components, which reflect anion uptake via basolateral cAMP-dependent anion transporters. In contrast, capsaicin potentiated apical Cl(-) conductance, which reflects conductivity through the cystic fibrosis transmembrane conductance regulator, a cAMP-regulated Cl(-) channel. All these paradoxical effects of capsaicin were mimicked by capsazepine. Forskolin application also increased phosphorylated myosin phosphatase target subunit 1, and the phosphorylation was prevented by capsaicin and capsazepine, suggesting that these capsaicinoids assume aspects of Rho kinase inhibitors. We also found that the increments in apical Cl(-) conductance were caused by conventional Rho kinase inhibitors, Y-27632 (20 μM) and HA-1077 (20 μM), with selective inhibition of basolateral Na(+)-K(+)-2 Cl(-) cotransporter 1. Collectively, capsaicinoids inhibit cAMP-mediated anion transport through down-regulation of basolateral anion uptake, paradoxically accompanied by up-regulation of apical cystic fibrosis transmembrane conductance regulator-mediated anion conductance. The latter is mediated by inhibition of Rho

  13. MR Imaging of Apparent 3He Gas Transport in Narrow Pipes and Rodent Airways

    SciTech Connect

    Minard, Kevin R.; Jacob, Rick E.; Laicher, Gernot; Einstein, Daniel R.; Kuprat, Andrew P.; Corley, Richard A.

    2008-10-01

    High sensitivity makes hyperpolarized 3He an attractive signal source for visualizing gas flow with magnetic resonance (MR) imaging. Its rapid Brownian motion, however, can blur observed flow lamina and alter measured diffusion rates when excited nuclei traverse shear-induced velocity gradients during data acquisition. Here, both effects are described analytically, and predicted values for measured transport during laminar flow through a straight, 3.2-mm-diameter pipe are validated using two-dimensional (2D) constant-time images of different binary gas mixtures. Results show explicitly how measured transport in narrow conduits is characterized by apparent values that depend on underlying gas dynamics and imaging time. In ventilated rats, this is found to obscure acquired airflow images. Flow splitting at airway branches is still evident, however, and use of 3D vector flow mapping is shown to provide a quantitative view of pulmonary gas supply that highlights the correlation of airflow dynamics with lung structure.

  14. MR Imaging of Apparent 3He Gas Transport in Narrow Pipes and Rodent Airways

    PubMed Central

    Minard, Kevin R.; Jacob, Richard E.; Laicher, Gernot; Einstein, Daniel R.; Kuprat, Andrew P.; Corley, Richard A.

    2013-01-01

    High sensitivity makes hyperpolarized 3He an attractive signal source for visualizing gas flow with magnetic resonance (MR) imaging. Its rapid Brownian motion, however, can blur observed flow lamina and alter measured diffusion rates when excited nuclei traverse shear-induced velocity gradients during data acquisition. Here, both effects are described analytically, and predicted values for measured transport during laminar flow through a straight, 3.2-mm-diameter pipe are validated using two-dimensional (2D) constant-time images of different binary gas mixtures. Results show explicitly how measured transport in narrow conduits is characterized by apparent values that depend on underlying gas dynamics and imaging time. In ventilated rats, this is found to obscure acquired airflow images. Nevertheless, flow splitting at airway branches is still evident and use of 3D vector flow mapping is shown to reveal surprising detail that highlights the correlation between gas dynamics and lung structure. PMID:18667344

  15. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2008-02-26

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  16. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2007-02-20

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  17. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; Van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2012-02-14

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  18. Liners for ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis; Miller, Christopher Francis

    2010-08-10

    Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.

  19. Nonperturbative methods in HZE ion transport

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Badavi, Francis F.; Costen, Robert C.; Shinn, Judy L.

    1993-01-01

    A nonperturbative analytic solution of the high charge and energy (HZE) Green's function is used to implement a computer code for laboratory ion beam transport. The code is established to operate on the Langley Research Center nuclear fragmentation model used in engineering applications. Computational procedures are established to generate linear energy transfer (LET) distributions for a specified ion beam and target for comparison with experimental measurements. The code is highly efficient and compares well with the perturbation approximations.

  20. The Effect of Gravity on Liquid Plug Transport in Airway Models

    NASA Astrophysics Data System (ADS)

    Suresh, Vinod; Grotberg, James B.

    2003-11-01

    The transport of liquid plugs through pulmonary airways occurs in medical therapies such as liquid ventilation and surfactant replacement therapy. Uniform distribution of the instilled liquid in the lung depends on liquid deposition and plug rupture, which are affected by a number of factors such as the liquid density ρ and viscosity μ, surface tension at the air-liquid interface σ, gravity g, propagation speed U and airway geometry. In this work we study the effect of gravity on the quasi-steady, pressure driven motion of a liquid plug through a two-dimensional channel of thickness 2a lined with a thin, uniform precursor liquid film. Lubrication theory and matched asymptotic expansions are used in the limit of small capillary numbers, Ca = μ U/σ, to determine the thickness of the trailing liquid film, shape of the plug and the pressure drop across it as functions of the Bond number, Bo = ρ ga^2/σ, and the orientation of the channel with respect to gravity. The trailing liquid film is found to be thicker on the lower plate than the upper. For certain orientations, the film thickness on the upper plate passes through a maximum as Bo is increased. It is found that plug rupture occurs when the pressure drop across the plug exceeds a critical value that depends on Bo, Ca and the orientation.

  1. Abnormal ion content, hydration and granule expansion of the secretory granules from cystic fibrosis airway glandular cells

    SciTech Connect

    Baconnais, S.; Delavoie, F. |; Zahm, J.M.; Milliot, M.; Castillon, N.; Terryn, C.; Banchet, V.; Michel, J.; Danos, O.; Merten, M.; Chinet, T.; Zierold, K.; Bonnet, N.; Puchelle, E. , E-Mail: edith.puchelle@univ-reims.fr; Balossier, G.

    2005-10-01

    The absence or decreased expression of cystic fibrosis transmembrane conductance regulator (CFTR) induces increased Na{sup +} absorption and hyperabsorption of the airway surface liquid (ASL) resulting in a dehydrated and hyperviscous ASL. Although the implication of abnormal airway submucosal gland function has been suggested, the ion and water content in the Cystic Fibrosis (CF) glandular secretory granules, before exocytosis, is unknown. We analyzed, in non-CF and CF human airway glandular cell lines (MM-39 and KM4, respectively), the ion content in the secretory granules by electron probe X-ray microanalysis and the water content by quantitative dark field imaging on freeze-dried cryosections. We demonstrated that the ion content (Na{sup +}, Mg{sup 2+}, P, S and Cl{sup -}) is significantly higher and the water content significantly lower in secretory granules from the CF cell line compared to the non-CF cell line. Using videomicroscopy, we observed that the secretory granule expansion was deficient in CF glandular cells. Transfection of CF cells with CFTR cDNA or inhibition of non-CF cells with CFTR{sub inh}-172, respectively restored or decreased the water content and granule expansion, in parallel with changes in ion content. We hypothesize that the decreased water and increased ion content in glandular secretory granules may contribute to the dehydration and increased viscosity of the ASL in CF.

  2. Transport of Light Ions in Matter

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Cucinotta, F. A.; Tai, H.; Shinn, J. L.; Chun, S. Y.; Tripathi, R. K.; Sihver, L.

    1998-01-01

    A recent set of light ion experiments are analyzed using the Green's function method of solving the Boltzmann equation for ions of high charge and energy (the GRNTRN transport code) and the NUCFRG2 fragmentation database generator code. Although the NUCFRG2 code reasonably represents the fragmentation of heavy ions, the effects of light ion fragmentation requires a more detailed nuclear model including shell structure and short range correlations appearing as tightly bound clusters in the light ion nucleus. The most recent NTJCFRG2 code is augmented with a quasielastic alpha knockout model and semiempirical adjustments (up to 30 percent in charge removal) in the fragmentation process allowing reasonable agreement with the experiments to be obtained. A final resolution of the appropriate cross sections must await the full development of a coupled channel reaction model in which shell structure and clustering can be accurately evaluated.

  3. Transport of Calcium Ions into Mitochondria.

    PubMed

    Xu, Zhaolong; Zhang, Dayong; He, Xiaolan; Huang, Yihong; Shao, Hongbo

    2016-06-01

    To uptake calcium ions of mitochondria is of significant functional connotation for cells, because calcium ions in mitochondria are involved in energy production, regulatory signals transfer, and mitochondrial permeability transition pore opening and even programmed cell death of apoptosis, further playing more roles in plant productivity and quality. Cytoplasmic calcium ions access into outer mitochondrial membrane (OMM) from voltage dependent anion-selective channel (VDAC) and were absorbed into inner mitochondrial membrane (IMM) by mitochondrial calcium uniporter (MCU), rapid mitochondrial calcium uptake (RaM) or mitochondrial ryanodine receptor (mRyR). Although both mitochondria and the mechanisms of calcium transport have been extensively studied, but there are still long-standing or even new challenges. Here we review the history and recent discoveries of the mitochondria calcium ions channel complex involved calcium assimilation, and discuss the role of calcium ions into mitochondria. PMID:27252588

  4. Numerical modelling of ion transport in flames

    NASA Astrophysics Data System (ADS)

    Han, Jie; Belhi, Memdouh; Bisetti, Fabrizio; Mani Sarathy, S.

    2015-11-01

    This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model's predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018.

  5. Models of muco-ciliary transport and tracer dispersion in airway surface liquid

    NASA Astrophysics Data System (ADS)

    Smith, David; Blake, John; Gaffney, Eamonn

    2003-11-01

    The airways of the lungs are protected by a thin layer of mucus ( 5-15 microns) which traps dust and other pathogens. The mucus plaque is secreted by specialised epithelial cells, then transported axially towards the pharynx by the action of a dense mat of beating cilia. The cilia beat in a watery `periciliary liquid' (PCL). According to previous theoretical analysis, axial transport of PCL is relatively small, consistent with an impermeable epithelium. However, tracer dispersion experiments by Matsui et al. (1998) appear to show large axial transport, consistent with a highly permeable epithelium. The resolution of the question of the amount of absorption of PCL is related to the issue of the pathogensis of cystic fibrosis lung disease. We present the results of a new model of mucociliary transport which combines the best features of several very different previous models. We also present a model of tracer dispersion and show how this can be used to interpret the findings of Matsui et al. and relate them to our theoretical results.

  6. [Use of transport medium in sputum bacterial culture examination of lower airway infection].

    PubMed

    Muraki, Masato; Kitaguchi, Sayako; Ichihashi, Hideo; Tsuji, Fumio; Ohmori, Takashi; Haraguchi, Ryuta; Tohda, Yuji

    2006-06-01

    Our medical institution does not have a bacterial culture facility, requiring outsourcing of bacterial culture tests. Due to the time elapsed from the time of specimen collection to culturing, the identification of causative bacteria in respiratory tract infections tends to be difficult. We therefore used transport medium for sputum bacteria examinations. Expectorated purulent or purulent-mucous sputum specimens were collected from 32 patients with lower respiratory tract infection. We divided each of the sputum specimens into the two treatment groups: transport medium (Seedswab gamma2) ndar and stad disinfection container. Paired samples prepared from each patient were sent out for bacterial culture together. The time elapsed from collection to delivery to the lab were as follows: day 0 (same day, n = 14 patients), day 1 (n = 15), day 2 (n = 2), and day 3 (n = 1). The identified causative bacteria were Streptococcus pneumoniae (n = 6 patients), Haemophilus influenzae (n =5), Pseudomonas aeruginosa (n = 4), Staphylococcus aureus (n = 2), Moraxella catarrhalis (n = 2), Klebsiella pneumoniae (n = 1), and Streptococcus agalactiae (n = 1). Samples prepared by each of the two methods gave similar results. The utility of transport medium for examination of general bacteria for lower airway infection from sputum samples was not demonstrated. The rate of detection of bacteria decreased, when the transport of samples was delayed. Therefore, we need to send the sputum specimens as quickly as possible. PMID:16841712

  7. Workshop on transport for a common ion driver

    SciTech Connect

    Olson, C.C.; Lee, E.; Langdon, B.

    1994-12-31

    This report contains research in the following areas related to beam transport for a common ion driver: multi-gap acceleration; neutralization with electrons; gas neutralization; self-pinched transport; HIF and LIF transport, and relevance to common ion driver; LIF and HIF reactor concepts and relevance to common ion driver; atomic physics for common ion driver; code capabilities and needed improvement.

  8. The Role of Ion Channels to Regulate Airway Ciliary Beat Frequency During Allergic Inflammation.

    PubMed

    Joskova, M; Sutovska, M; Durdik, P; Koniar, D; Hargas, L; Banovcin, P; Hrianka, M; Khazaei, V; Pappova, L; Franova, S

    2016-01-01

    Overproduction of mucus is a hallmark of asthma. The aim of this study was to identify potentially effective therapies for removing excess mucus. The role of voltage-gated (Kir 6.1, KCa 1.1) and store-operated ion channels (SOC, CRAC) in respiratory cilia, relating to the tracheal ciliary beat frequency (CBF), was compared under the physiological and allergic airway conditions. Ex vivo experiments were designed to test the local effects of Kir 6.1, KCa 1.1 and CRAC ion channel modulators in a concentration-dependent manner on the CBF. Cilia, obtained with the brushing method, were monitored by a high-speed video camera and analyzed with ciliary analysis software. In natural conditions, a Kir 6.1 opener accelerated CBF, while CRAC blocker slowed it in a concentration-dependent manner. In allergic inflammation, the effect of Kir 6.1 opener was insignificant, with a tendency to decrease CBF. A cilio-inhibitory effect of a CRAC blocker, while gently reduced by allergic inflammation, remained significant. A KCa 1.1 opener turned out to significantly enhance the CBF under the allergic OVA-sensitized conditions. We conclude that optimally attuned concentration of KCa 1.1 openers or special types of bimodal SOC channel blockers, potentially given by inhalation, might benefit asthma. PMID:27369295

  9. Ion Transport in 2-D Graphene Nanochannels

    NASA Astrophysics Data System (ADS)

    Xie, Quan; Foo, Elbert; Duan, Chuanhua

    2015-11-01

    Graphene membranes have recently attracted wide attention due to its great potential in water desalination and selective molecular sieving. Further developments of these membranes, including enhancing their mass transport rate and/or molecular selectivity, rely on the understanding of fundamental transport mechanisms through graphene membranes, which has not been studied experimentally before due to fabrication and measurement difficulties. Herein we report the fabrication of the basic constituent of graphene membranes, i.e. 2-D single graphene nanochannels (GNCs) and the study of ion transport in these channels. A modified bonding technique was developed to form GNCs with well-defined geometry and uniform channel height. Ion transport in such GNCs was studied using DC conductance measurement. Our preliminary results showed that the ion transport in GNCs is still governed by surface charge at low concentrations (10-6M to 10-4M). However, GNCs exhibits much higher ionic conductances than silica nanochannels with the same geometries in the surface-charge-governed regime. This conductance enhancement can be attributed to the pre-accumulation of charges on graphene surfaces. The work is supported by the Faculty Startup Fund (Boston University, USA).

  10. Regulation of human airway surface liquid.

    PubMed

    Widdicombe, J H; Widdicombe, J G

    1995-01-01

    Human airways are lined with a film of liquid from 5-100 microns in depth, consisting of a periciliary sol around and a mucous gel above the cilia. Microscopical studies have shown the sol to be invariably the same depth as the length of the cilia, and we discuss possible reasons for this. The composition and sources of the airway surface liquid are also described. In addition the forces regulating its volume are analyzed. Several airway diseases are characterised by dramatic changes in the volume and composition of airway liquid. We review recent research suggesting that the accumulation of airway mucous secretions in cystic fibrosis is caused by alterations in active transport of ions and water across both the surface and gland epithelia. PMID:7740210

  11. Dynamics of Ion Transport in Ionic Liquids.

    PubMed

    Lee, Alpha A; Kondrat, Svyatoslav; Vella, Dominic; Goriely, Alain

    2015-09-01

    A gap in understanding the link between continuum theories of ion transport in ionic liquids and the underlying microscopic dynamics has hindered the development of frameworks for transport phenomena in these concentrated electrolytes. Here, we construct a continuum theory for ion transport in ionic liquids by coarse graining a simple exclusion process of interacting particles on a lattice. The resulting dynamical equations can be written as a gradient flow with a mobility matrix that vanishes at high densities. This form of the mobility matrix gives rise to a charging behavior that is different to the one known for electrolytic solutions, but which agrees qualitatively with the phenomenology observed in experiments and simulations. PMID:26382685

  12. Effect of guaifenesin on mucin production, rheology, and mucociliary transport in differentiated human airway epithelial cells.

    PubMed

    Seagrave, JeanClare; Albrecht, Helmut; Park, Yong Sung; Rubin, Bruce; Solomon, Gail; Kim, K Chul

    2011-12-01

    Guaifenesin is widely used to alleviate symptoms of excessive mucus accumulation in the respiratory tract. However, its mechanism of action is poorly understood. The authors hypothesized that guaifenesin improves mucociliary clearance in humans by reducing mucin release, by decreasing mucus viscoelasticity, and by increasing mucociliary transport. To test these hypotheses, human differentiated airway epithelial cells, cultured at an air-liquid interface, were treated with clinically relevant concentrations of guaifenesin by addition to the basolateral medium. To evaluate the effect on mucin secretion, the authors used an anzyme-linked immunosorbent assay (ELISA) to measure the amounts of MUC5AC protein in apical surface fluid and cell lysates. To measure mucociliary transportability, additional cultures were treated for 1 or 6 hours with guaifenesin, and the movement of cell debris was measured from video data. Further, the authors measured mucus dynamic viscoelasticity using a micro cone and plate rheometer with nondestructive creep transformation. Guaifenesin suppressed mucin production in a dose-dependent manner at clinically relevant concentrations. The reduced mucin production was associated with increased mucociliary transport and decreased viscoelasticity of the mucus. Viability of the cultures was not significantly affected. These results suggest that guaifenesin could improve mucociliary clearance in humans by reducing the release and/or production of mucins, thereby altering mucus rheology. PMID:22044398

  13. Research of transport and deposition of aerosol in human airway replica

    NASA Astrophysics Data System (ADS)

    Lizal, Frantisek; Jedelsky, Jan; Elcner, Jakub; Durdina, Lukas; Halasova, Tereza; Mravec, Filip; Jicha, Miroslav

    2012-04-01

    Growing concern about knowledge of aerosol transport in human lungs is caused by great potential of use of inhaled pharmaceuticals. Second substantial motive for the research is an effort to minimize adverse effects of particular matter emitted by traffic and industry on human health. We created model geometry of human lungs to 7th generation of branching. This model geometry was used for fabrication of two physical models. The first one is made from thin walled transparent silicone and it allows a measurement of velocity and size of aerosol particles by Phase Doppler Anemometry (PDA). The second one is fabricated by stereolithographic method and it is designed for aerosol deposition measurements. We provided a series of measurements of aerosol transport in the transparent model and we ascertained remarkable phenomena linked with lung flow. The results are presented in brief. To gather how this phenomena affects aerosol deposition in human lungs we used the second model and we developed a technique for deposition fraction and deposition efficiency assessment. The results confirmed that non-symmetric and complicated shape of human airways essentially affects transport and deposition of aerosol. The research will now focus on deeper insight in aerosol deposition.

  14. Three-dimensional flow and vorticity transport in idealized airway model from laminar to turbulent regimes

    NASA Astrophysics Data System (ADS)

    Jalal, Sahar; van de Moortele, Tristan; Nemes, Andras; Eslam Panah, Azar; Coletti, Filippo

    2015-11-01

    The presence and intensity of secondary flows formed by the inhaled air during respiration has important consequences for gas exchange and particle transport in the lungs. Here we focus on the formation and persistence of such secondary flows by experimentally studying the steady inspiration in an idealized airway model. The geometry consists of a symmetric planar double bifurcation that respects the geometrical proportions of the human bronchial tree. Physiologically relevant Reynolds numbers from 100 to 5000 are investigated, ranging from laminar to turbulent regimes. The time-averaged, three-dimensional velocity fields are obtained from Magnetic Resonance Imaging (MRI), providing detailed distributions of vorticity, circulation, and secondary flow strength. Information on the velocity fluctuations are obtained by Particle Image Velocimetry (PIV). The measurements highlight the effect of the Reynolds number on the momentum transport, flow partitioning at the bifurcations, strength and sense of rotation of the longitudinal vortices. A marked change in topology is found at a specific Reynolds number, above which the influence of the upstream flow prevails over the effect of the local geometry. Finally, turbulence and its role in the mean vorticity transport are also discussed.

  15. Establishment and transformation of telomerase-immortalized human small airway epithelial cells by heavy ions

    NASA Astrophysics Data System (ADS)

    Zhao, Y. L.; Piao, C. Q.; Hei, T. K.

    Previous studies from this laboratory have identified a number of causally linked genes including the novel tumor suppressor Betaig-h3 that were differentially expressed in radiation induced tumorigenic BEP2D cells. To extend these studies using a genomically more stable bronchial cell line, we show here that ectopic expression of the catalytic subunit of telomerase (hTERT) in primary human small airway epithelial (SAE) cells resulted in the generation of several clonal cell lines that have been continuously in culture for more than 250 population doublings and are considered immortal. Comparably-treated control SAE cells infected with only the viral vector senesced after less than 10 population doublings. The immortalized clones demonstrated anchorage dependent growth and are non-tumorigenic in nude mice. These cells show no alteration in the p53 gene but a decrease in p16 expression. Exponentially growing SAEh cells were exposed to graded doses of 1 GeV/nucleon of 56Fe ions accelerated at the Brookhaven National Laboratory. Irradiated cells underwent gradual phenotypic alterations after extensive in vitro cultivation. Transformed cells developed through a series of successive steps before becoming anchorage independent in semisolid medium. These findings indicate that hTERT-immortalized cells, being diploid and chromosomal stable, should be a useful model in assessing mechanism of radiation carcinogenesis.

  16. High energy H- ion transport and stripping

    SciTech Connect

    Chou, W.; /Fermilab

    2005-05-01

    During the Proton Driver design study based on an 8 GeV superconducting RF H{sup -} linac, a major concern is the feasibility of transport and injection of high energy H{sup -} ions because the energy of H{sup -} beam would be an order of magnitude higher than the existing ones. This paper will focus on two key technical issues: (1) stripping losses during transport (including stripping by blackbody radiation, magnetic field and residual gases); (2) stripping efficiency of carbon foil during injection.

  17. High-powered pulsed-ion-beam acceleration and transport

    SciTech Connect

    Humphries, S. Jr.; Lockner, T.R.

    1981-11-01

    The state of research on intense ion beam acceleration and transport is reviewed. The limitations imposed on ion beam transport by space charge effects and methods available for neutralization are summarized. The general problem of ion beam neutralization in regions free of applied electric fields is treated. The physics of acceleration gaps is described. Finally, experiments on multi-stage ion acceleration are summarized.

  18. Ion transport through a graphene nanopore

    PubMed Central

    Hu, Guohui; Mao, Mao; Ghosal, Sandip

    2012-01-01

    Molecular dynamics simulation is utilized to investigate the ionic transport of NaCl in solution through a graphene nanopore under an applied electric field. Results show the formation of concentration polarization layers in the vicinity of the graphene sheet. The nonuniformity of the ion distribution gives rise to an electric pressure which drives vortical motions in the fluid if the electric field is sufficiently strong to overcome the influence of viscosity and thermal fluctuations. The relative importance of hydrodynamic transport and thermal fluctuations in determining the pore conductivity is investigated. A second important effect that is observed is the mass transport of water through the nanopore, with an average velocity proportional to the applied voltage and independent of the pore diameter. The flux arises as a consequence of the asymmetry in the ion distribution which can be attributed to differing mobilities of the sodium and chlorine ions, and, to the polarity of water molecules. The accumulation of liquid molecules in the vicinity of the nanopore due to reorientation of the water dipoles by the local electric field is seen to result in a local increase in the liquid density. Results confirm that the electric conductance is proportional to the nanopore diameter for the parameter regimes that we simulated. The occurrence of fluid vortices is found to result in an increase in the effective electrical conductance. PMID:22962262

  19. CRAC ion channels and airway defense reflexes in experimental allergic inflammation.

    PubMed

    Sutovska, M; Adamkov, M; Kocmalova, M; Mesarosova, L; Oravec, M; Franova, S

    2013-01-01

    Calcium release-activated calcium channels (CRAC) play unambiguous role in secretory functions of mast cells, T cells, and eosinophils. Less knowledge exists about the role of CRAC, widely distributed in airway smooth muscle (ASM) cells, in airway contractility. The presented study seeks to determine the possible participation of CRAC in ASM-based inflammatory airway disorders in guinea pigs. The acute and long-term administration (14 days) of the CRAC antagonist 3-fluoropyridine-4-carboxylic acid was used to examine the ASM contractility and associated reflexes in the guinea pig model of allergic airway inflammation by the following methods: (i) evaluation of specific airway resistance in vivo; (ii) evaluation of the contractile response of isolated ASM strips in vitro; and (iii) citric acid-induced cough reflex; (iv) measurement of exhaled NO levels (E(NO)). Allergic airway inflammation was induced by repetitive exposure of guinea pigs to ovalbumin (10(-6) M). The CRAC antagonist administered in a single dose to guinea pigs with confirmed allergic inflammation significantly reduced the cough response and the airway resistance, which corresponded with the findings in vitro. Long-term application of the CRAC antagonist had more strongly expressed effects. The results confirm the role of CRAC in the pathophysiology of experimental animal asthma and have a potential meaning for anti-asthma therapy. PMID:22836617

  20. Ion transport of Fr nuclear reaction products

    SciTech Connect

    Behr, J.A.; Cahn, S.B.; Dutta, S.B.

    1993-04-01

    Experiments planned for fundamental studies of radioactive atoms in magneto-optic traps require efficient deceleration and transport of nuclear reaction products to energies and locations where they can be trapped. The authors have built a low-energy ion transport system for Francium and other alkalis. A thick Au target is held on a W rod at 45{degrees} to the accelerator beam direction. The heavy-ion fusion reaction 115 MeV {sup 18}O + {sup 197}Au produces {sup 211,210,209}Fr recoil products which are stopped in the target. The target is heated to close to the melting point of Au to allow the Fr to diffuse to the surface, where it is ionized due to Au`s high work function, and is directly extracted by an electrode at 90{degrees} to the accelerator beam direction. The Fr is transported by electrostatic optics {approximately}1 m to a catcher viewed by an {alpha} detector: {ge}15% of the Fr produced in the target reaches the catcher. 2{times}10{sup 5} Fr/sec have been produced at the catcher, yielding at equilibrium a sample of 3x10{sup 7}Fr nuclei. This scheme physically decouples the target diffusion from the surface neutralization process, which can occur at a lower temperature more compatible with the neutral-atom trap.

  1. Ion age transport: developing devices beyond electronics

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2014-03-01

    There is more to current devices than conventional electronics. Increasingly research into the controlled movement of ions and molecules is enabling a range of new technologies. For example, as Weihua Guan, Sylvia Xin Li and Mark Reed at Yale University explain, 'It offers a unique opportunity to integrate wet ionics with dry electronics seamlessly'. In this issue they provide an overview of voltage-gated ion and molecule transport in engineered nanochannels. They cover the theory governing these systems and fabrication techniques, as well as applications, including biological and chemical analysis, and energy conversion [1]. Studying the movement of particles in nanochannels is not new. The transport of materials in rock pores led Klinkenberg to describe an analogy between diffusion and electrical conductivity in porous rocks back in 1951 [2]. And already in 1940, Harold Abramson and Manuel Gorin noted that 'When an electric current is applied across the living human skin, the skin may be considered to act like a system of pores through which transfer of substances like ragweed pollen extract may be achieved both by electrophoretic and by diffusion phenomena' [3]. Transport in living systems through pore structures on a much smaller scale has attracted a great deal of research in recent years as well. The selective transport of ions and small organic molecules across the cell membrane facilitates a number of functions including communication between cells, nerve conduction and signal transmission. Understanding these processes may benefit a wide range of potential applications such as selective separation, biochemical sensing, and controlled release and drug delivery processes. In Germany researchers have successfully demonstrated controlled ionic transport through nanopores functionalized with amine-terminated polymer brushes [4]. The polymer nanobrushes swell and shrink in response to changes in temperature, thus opening and closing the nanopore passage to ionic

  2. High current ion beam transport using solenoids

    SciTech Connect

    Hollinger, R.; Spaedtke, P.

    2008-02-15

    In the framework of the future project FAIR several upgrade programs and construction of new facilities are in progress such as the U{sup 4+} upgrade for the existing high current injector and the new 70 MeV proton injector. For both injectors solenoids in the low energy beam transport section are foreseen to inject the beam into the following rf accelerator. The paper presents beam quality measurements of high current ion beams behind a solenoid using a slit-grid emittance measurement device, viewing targets, and a pepper pot measurement device at the high current test bench at GSI.

  3. Transport and Deposition of Welding Fume Agglomerates in a Realistic Human Nasal Airway.

    PubMed

    Tian, Lin; Inthavong, Kiao; Lidén, Göran; Shang, Yidan; Tu, Jiyuan

    2016-07-01

    Welding fume is a complex mixture containing ultra-fine particles in the nanometer range. Rather than being in the form of a singular sphere, due to the high particle concentration, welding fume particles agglomerate into long straight chains, branches, or other forms of compact shapes. Understanding the transport and deposition of these nano-agglomerates in human respiratory systems is of great interest as welding fumes are a known health hazard. The neurotoxin manganese (Mn) is a common element in welding fumes. Particulate Mn, either as soluble salts or oxides, that has deposited on the olfactory mucosa in human nasal airway is transported along the olfactory nerve to the olfactory bulb within the brain. If this Mn is further transported to the basal ganglia of the brain, it could accumulate at the part of the brain that is the focal point of its neurotoxicity. Accounting for various dynamic shape factors due to particle agglomeration, the current computational study is focused on the exposure route, the deposition pattern, and the deposition efficiency of the inhaled welding fume particles in a realistic human nasal cavity. Particular attention is given to the deposition pattern and deposition efficiency of inhaled welding fume agglomerates in the nasal olfactory region. For particles in the nanoscale, molecular diffusion is the dominant transport mechanism. Therefore, Brownian diffusion, hydrodynamic drag, Saffman lift force, and gravitational force are included in the model study. The deposition efficiencies for single spherical particles, two kinds of agglomerates of primary particles, two-dimensional planar and straight chains, are investigated for a range of primary particle sizes and a range of number of primary particles per agglomerate. A small fraction of the inhaled welding fume agglomerates is deposited on the olfactory mucosa, approximately in the range 0.1-1%, and depends on particle size and morphology. The strong size dependence of the deposition

  4. WNK Kinases, Renal Ion Transport and Hypertension

    PubMed Central

    San-Cristobal, Pedro; de los Heros, Paola; Ponce-Coria, José; Moreno, Erika; Gamba, Gerardo

    2008-01-01

    Two members of a recently discovered family of protein kinases are the cause of an inherited disease known as pseudohypoaldosteronism type II (PHAII). These patients exhibit arterial hypertension together with hyperkalemia and metabolic acidosis. This is a mirror image of Gitelman disease that is due to inactivating mutations of the SLC12A3 gene that encodes the thiazide-sensitive Na+: Cl− cotransporter. The uncovered genes causing PHAII encode for serine/threonine kinases known as WNK1 and WNK4. Physiological and biochemical studies have revealed that WNK1 and WNK4 modulate the activity of several transport pathways of the aldosterone-sensitive distal nephron, thus increasing our understanding of how diverse renal ion transport proteins are coordinated to regulate normal blood pressure levels. Observations discussed in the present work place WNK1 and WNK4 as genes involved in the genesis of essential hypertension and as potential targets for the development of antihypertensive drugs. PMID:18547946

  5. Transport coefficients of He(+) ions in helium.

    PubMed

    Viehland, Larry A; Johnsen, Rainer; Gray, Benjamin R; Wright, Timothy G

    2016-02-21

    This paper demonstrates that the transport coefficients of (4)He(+) in (4)He can be calculated over wide ranges of E/N, the ratio of the electrostatic field strength to the gas number density, with the same level of precision as can be obtained experimentally if sufficiently accurate potential energy curves are available for the X(2)Σu (+) and A(2)Σg (+) states and one takes into account resonant charge transfer. We start by computing new potential energy curves for these states and testing their accuracy by calculating spectroscopic values for the separate states. It is established that the potentials obtained by extrapolation of results from d-aug-cc-pVXZ (X = 6, 7) basis sets using the CASSCF+MRCISD approach are each in exceptionally close agreement with the best potentials available and with experiment. The potentials are then used in a new computer program to determine the semi-classical phase shifts and the transport cross sections, and from these the gaseous ion transport coefficients are determined. In addition, new experimental values are reported for the mobilities of (4)He(+) in (4)He at 298.7 K, as a function of E/N, where careful consideration is given to minimizing various sources of uncertainty. Comparison with previously measured values establishes that only one set of previous data is reliable. Finally, the experimental and theoretical ion transport coefficients are shown to be in very good to excellent agreement, once corrections are applied to account for quantum-mechanical effects. PMID:26896985

  6. Transport coefficients of He+ ions in helium

    NASA Astrophysics Data System (ADS)

    Viehland, Larry A.; Johnsen, Rainer; Gray, Benjamin R.; Wright, Timothy G.

    2016-02-01

    This paper demonstrates that the transport coefficients of 4He+ in 4He can be calculated over wide ranges of E/N, the ratio of the electrostatic field strength to the gas number density, with the same level of precision as can be obtained experimentally if sufficiently accurate potential energy curves are available for the X2Σu+ and A2Σg+ states and one takes into account resonant charge transfer. We start by computing new potential energy curves for these states and testing their accuracy by calculating spectroscopic values for the separate states. It is established that the potentials obtained by extrapolation of results from d-aug-cc-pVXZ (X = 6, 7) basis sets using the CASSCF+MRCISD approach are each in exceptionally close agreement with the best potentials available and with experiment. The potentials are then used in a new computer program to determine the semi-classical phase shifts and the transport cross sections, and from these the gaseous ion transport coefficients are determined. In addition, new experimental values are reported for the mobilities of 4He+ in 4He at 298.7 K, as a function of E/N, where careful consideration is given to minimizing various sources of uncertainty. Comparison with previously measured values establishes that only one set of previous data is reliable. Finally, the experimental and theoretical ion transport coefficients are shown to be in very good to excellent agreement, once corrections are applied to account for quantum-mechanical effects.

  7. 78 FR 19024 - Lithium Ion Batteries in Transportation Public Forum

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... SAFETY BOARD Lithium Ion Batteries in Transportation Public Forum On Thursday and Friday, April 11-12, 2013, the National Transportation Safety Board (NTSB) will convene a forum titled, ``Lithium Ion... Inquiry. The forum is organized into three topic areas: Lithium ion battery design, development, and...

  8. Ion age transport: developing devices beyond electronics

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2014-03-01

    There is more to current devices than conventional electronics. Increasingly research into the controlled movement of ions and molecules is enabling a range of new technologies. For example, as Weihua Guan, Sylvia Xin Li and Mark Reed at Yale University explain, 'It offers a unique opportunity to integrate wet ionics with dry electronics seamlessly'. In this issue they provide an overview of voltage-gated ion and molecule transport in engineered nanochannels. They cover the theory governing these systems and fabrication techniques, as well as applications, including biological and chemical analysis, and energy conversion [1]. Studying the movement of particles in nanochannels is not new. The transport of materials in rock pores led Klinkenberg to describe an analogy between diffusion and electrical conductivity in porous rocks back in 1951 [2]. And already in 1940, Harold Abramson and Manuel Gorin noted that 'When an electric current is applied across the living human skin, the skin may be considered to act like a system of pores through which transfer of substances like ragweed pollen extract may be achieved both by electrophoretic and by diffusion phenomena' [3]. Transport in living systems through pore structures on a much smaller scale has attracted a great deal of research in recent years as well. The selective transport of ions and small organic molecules across the cell membrane facilitates a number of functions including communication between cells, nerve conduction and signal transmission. Understanding these processes may benefit a wide range of potential applications such as selective separation, biochemical sensing, and controlled release and drug delivery processes. In Germany researchers have successfully demonstrated controlled ionic transport through nanopores functionalized with amine-terminated polymer brushes [4]. The polymer nanobrushes swell and shrink in response to changes in temperature, thus opening and closing the nanopore passage to ionic

  9. CFD Simulation and Experimental Validation of Fluid Flow and Particle Transport in a Model of Alveolated Airways

    PubMed Central

    Ma, Baoshun; Ruwet, Vincent; Corieri, Patricia; Theunissen, Raf; Riethmuller, Michel; Darquenne, Chantal

    2009-01-01

    Accurate modeling of air flow and aerosol transport in the alveolated airways is essential for quantitative predictions of pulmonary aerosol deposition. However, experimental validation of such modeling studies has been scarce. The objective of this study is to validate CFD predictions of flow field and particle trajectory with experiments within a scaled-up model of alveolated airways. Steady flow (Re = 0.13) of silicone oil was captured by particle image velocimetry (PIV), and the trajectories of 0.5 mm and 1.2 mm spherical iron beads (representing 0.7 to 14.6 μm aerosol in vivo) were obtained by particle tracking velocimetry (PTV). At twelve selected cross sections, the velocity profiles obtained by CFD matched well with those by PIV (within 1.7% on average). The CFD predicted trajectories also matched well with PTV experiments. These results showed that air flow and aerosol transport in models of human alveolated airways can be simulated by CFD techniques with reasonable accuracy. PMID:20161301

  10. CFD Simulation and Experimental Validation of Fluid Flow and Particle Transport in a Model of Alveolated Airways.

    PubMed

    Ma, Baoshun; Ruwet, Vincent; Corieri, Patricia; Theunissen, Raf; Riethmuller, Michel; Darquenne, Chantal

    2009-05-01

    Accurate modeling of air flow and aerosol transport in the alveolated airways is essential for quantitative predictions of pulmonary aerosol deposition. However, experimental validation of such modeling studies has been scarce. The objective of this study is to validate CFD predictions of flow field and particle trajectory with experiments within a scaled-up model of alveolated airways. Steady flow (Re = 0.13) of silicone oil was captured by particle image velocimetry (PIV), and the trajectories of 0.5 mm and 1.2 mm spherical iron beads (representing 0.7 to 14.6 mum aerosol in vivo) were obtained by particle tracking velocimetry (PTV). At twelve selected cross sections, the velocity profiles obtained by CFD matched well with those by PIV (within 1.7% on average). The CFD predicted trajectories also matched well with PTV experiments. These results showed that air flow and aerosol transport in models of human alveolated airways can be simulated by CFD techniques with reasonable accuracy. PMID:20161301

  11. Transport of Ions Across the Inner Envelope Membrane of Chloroplasts

    SciTech Connect

    McCarty, R. E.

    2004-06-02

    The technical report outlines the results of nine years of research on how ions cross the inner envelope membrane of chloroplasts. The ions include protons, nitrite, calcium and ferrous iron. Bicarbonate transport was also studied.

  12. Ion transport proteins anchor and regulate the cytoskeleton.

    PubMed

    Denker, Sheryl P; Barber, Diane L

    2002-04-01

    Structurally diverse ion transport proteins anchor the spectrin-actin cytoskeleton to the plasma membrane by binding directly to linker proteins of the ankyrin and protein 4.1 families. Cytoskeletal anchoring regulates cell shape and restricts the activity of ion transport proteins to specialised membrane domains. New directions are being forged by recent findings that localised anchoring by ion transport proteins regulates the ordered assembly of actin filaments and the actin-dependent processes of cell adhesion and motility. PMID:11891121

  13. Principles of selective ion transport in channels and pumps.

    PubMed

    Gouaux, Eric; Mackinnon, Roderick

    2005-12-01

    The transport of ions across the membranes of cells and organelles is a prerequisite for many of life's processes. Transport often involves very precise selectivity for specific ions. Recently, atomic-resolution structures have been determined for channels or pumps that are selective for sodium, potassium, calcium, and chloride: four of the most abundant ions in biology. From these structures we can begin to understand the principles of selective ion transport in terms of the architecture and detailed chemistry of the ion conduction pathways. PMID:16322449

  14. Ion-mediated charge transport in ionomeric electrolytes.

    PubMed

    Lu, Keran; Maranas, Janna K; Milner, Scott T

    2016-05-01

    Ionomers, or single-ion conductors, serve as a model system to study ion transport in polymeric systems. Conductivity is a system property that depends on the net charge transport in the system. The mechanism through which ions are transported can dramatically change the contribution of an ion's self-motion (i.e. diffusion coefficient) to the conductivity of the system. For example, positive and negative ions diffusing as a pair have no net contribution to conductivity. In a coarse-grained molecular dynamics simulation of sodium-neutralized poly(PEO-co-sulfoisophthalate), we show that ion transport is mediated through consecutive coordination with ion pairs and higher order clusters due to the high density of ions. This transport mechanism is highly efficient and shows evidence of cation relaying. We show that larger ion aggregates can serve as ion-conducting paths for positive charges, and demonstrate how a highly ordered ion aggregate network can improve conductivity by enhancing correlated ion transport. PMID:27019986

  15. Fabrication of catalyzed ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis; Kibby, Charles Leonard

    2013-06-04

    Process for fabricating a catalyzed ion transport membrane (ITM). In one embodiment, an uncatalyzed ITM is (a) contacted with a non-reducing gaseous stream while heating to a temperature and for a time period sufficient to provide an ITM possessing anion mobility; (b) contacted with a reducing gaseous stream for a time period sufficient to provide an ITM having anion mobility and essentially constant oxygen stoichiometry; (c) cooled while contacting the ITM with the reducing gaseous stream to provide an ITM having essentially constant oxygen stoichiometry and no anion mobility; and (d) treated by applying catalyst to at least one of (1) a porous mixed conducting multicomponent metallic oxide (MCMO) layer contiguous with a first side of a dense layer of MCMO and (2) a second side of the dense MCMO layer. In another embodiment, these steps are carried out in the alternative order of (a), (d), (b), and (c).

  16. Pickup ion transport in the inner heliosphere

    NASA Astrophysics Data System (ADS)

    Saul, Lukas; Eberhard, Möbius

    2004-03-01

    Our location in the inner heliosphere shields us from cosmic rays which are deflected by the solar magnetic field. However, neutral particles penetrate freely through the nearly collisionless solar wind. When they near the sun, these atoms are susceptible to ionization, after which they are embedded in the solar wind plasma. We report here in situ measurments of such helium pickup ions by the SOHO spacecraft. We analyze their velocity distributions, which are shaped by the pickup process and resulting plasma transport in the solar wind. This is work done towards a PhD at UNH Durham Dept. of Physics and Dept. of Earth, Oceans, and Space. It is supported by NASA Graduate Student Research Program grant.

  17. Analysis of the theory of high energy ion transport

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1977-01-01

    Procedures for the approximation of the transport of high-energy ions are discussed on the basis of available data on ion nuclear reactions. A straightahead approximation appears appropriate for space applications. The assumption that the secondary-ion-fragment velocity is equal to that of the fragmenting nucleus is inferior to straightahead theory but is of sufficient accuracy if the primary ions display a broad energy spectrum. An iterative scheme for the solution of the inhomogenous integral transport equations holds promise for practical calculation. A model calculation shows that multiple charged ion fragments penetrate to greater depths in comparison with the free path of a primary heavy ion.

  18. Influence of ion streaming instabilities on transport near plasma boundaries

    NASA Astrophysics Data System (ADS)

    Baalrud, Scott D.

    2016-04-01

    Plasma boundary layers are susceptible to electrostatic instabilities driven by ion flows in presheaths and, when present, these instabilities can influence transport. In plasmas with a single species of positive ion, ion-acoustic instabilities are expected under conditions of low pressure and large electron-to-ion temperature ratio ({{T}e}/{{T}i}\\gg 1 ). In plasmas with two species of positive ions, ion-ion two-stream instabilities can also be excited. The stability phase-space is characterized using the Penrose criterion and approximate linear dispersion relations. Predictions for how these instabilities affect ion and electron transport in presheaths, including rapid thermalization due to instability-enhanced collisions and an instability-enhanced ion-ion friction force, are briefly reviewed. Recent experimental tests of these predictions are discussed along with research needs required for further validation. The calculated stability boundaries provide a guide to determine the experimental conditions at which these effects can be expected.

  19. Ion homeostasis, channels, and transporters: an update on cellular mechanisms.

    PubMed

    Dubyak, George R

    2004-12-01

    The steady-state maintenance of highly asymmetric concentrations of the major inorganic cations and anions is a major function of both plasma membranes and the membranes of intracellular organelles. Homeostatic regulation of these ionic gradients is critical for most functions. Due to their charge, the movements of ions across biological membranes necessarily involves facilitation by intrinsic membrane transport proteins. The functional characterization and categorization of membrane transport proteins was a major focus of cell physiological research from the 1950s through the 1980s. On the basis of these functional analyses, ion transport proteins were broadly divided into two classes: channels and carrier-type transporters (which include exchangers, cotransporters, and ATP-driven ion pumps). Beginning in the mid-1980s, these functional analyses of ion transport and homeostasis were complemented by the cloning of genes encoding many ion channels and transporter proteins. Comparison of the predicted primary amino acid sequences and structures of functionally similar ion transport proteins facilitated their grouping within families and superfamilies of structurally related membrane proteins. Postgenomics research in ion transport biology increasingly involves two powerful approaches. One involves elucidation of the molecular structures, at the atomic level in some cases, of model ion transport proteins. The second uses the tools of cell biology to explore the cell-specific function or subcellular localization of ion transport proteins. This review will describe how these approaches have provided new, and sometimes surprising, insights regarding four major questions in current ion transporter research. 1) What are the fundamental differences between ion channels and ion transporters? 2) How does the interaction of an ion transport protein with so-called adapter proteins affect its subcellular localization or regulation by various intracellular signal transduction

  20. Coupled ion Binding and Structural Transitions Along the Transport Cycle of Glutamate Transporters

    SciTech Connect

    Verdon, Gregory; Oh, SeCheol; Serio, Ryan N.; Boudker, Olga

    2014-05-19

    Membrane transporters that clear the neurotransmitter glutamate from synapses are driven by symport of sodium ions and counter-transport of a potassium ion. Previous crystal structures of a homologous archaeal sodium and aspartate symporter showed that a dedicated transport domain carries the substrate and ions across the membrane. We report new crystal structures of this homologue in ligand-free and ions-only bound outward- and inward-facing conformations. We then show that after ligand release, the apo transport domain adopts a compact and occluded conformation that can traverse the membrane, completing the transport cycle. Sodium binding primes the transport domain to accept its substrate and triggers extracellular gate opening, which prevents inward domain translocation until substrate binding takes place. Moreover, we describe a new cation-binding site ideally suited to bind a counter-transported ion. We suggest that potassium binding at this site stabilizes the translocation-competent conformation of the unloaded transport domain in mammalian homologues.

  1. Ion transport through electrolyte/polyelectrolyte multi-layers.

    PubMed

    Femmer, Robert; Mani, Ali; Wessling, Matthias

    2015-01-01

    Ion transport of multi-ionic solutions through layered electrolyte and polyelectrolyte structures are relevant in a large variety of technical systems such as micro and nanofluidic devices, sensors, batteries and large desalination process systems. We report a new direct numerical simulation model coined EnPEn: it allows to solve a set of first principle equations to predict for multiple ions their concentration and electrical potential profiles in electro-chemically complex architectures of n layered electrolytes E and n polyelectrolytes PE. EnPEn can robustly capture ion transport in sub-millimeter architectures with submicron polyelectrolyte layers. We proof the strength of EnPEn for three yet unsolved architectures: (a) selective Na over Ca transport in surface modified ion selective membranes, (b) ion transport and water splitting in bipolar membranes and (c) transport of weak electrolytes. PMID:26111456

  2. Ion transport through electrolyte/polyelectrolyte multi-layers

    PubMed Central

    Femmer, Robert; Mani, Ali; Wessling, Matthias

    2015-01-01

    Ion transport of multi-ionic solutions through layered electrolyte and polyelectrolyte structures are relevant in a large variety of technical systems such as micro and nanofluidic devices, sensors, batteries and large desalination process systems. We report a new direct numerical simulation model coined EnPEn: it allows to solve a set of first principle equations to predict for multiple ions their concentration and electrical potential profiles in electro-chemically complex architectures of n layered electrolytes E and n polyelectrolytes PE. EnPEn can robustly capture ion transport in sub-millimeter architectures with submicron polyelectrolyte layers. We proof the strength of EnPEn for three yet unsolved architectures: (a) selective Na over Ca transport in surface modified ion selective membranes, (b) ion transport and water splitting in bipolar membranes and (c) transport of weak electrolytes. PMID:26111456

  3. Ion transport through electrolyte/polyelectrolyte multi-layers

    NASA Astrophysics Data System (ADS)

    Femmer, Robert; Mani, Ali; Wessling, Matthias

    2015-06-01

    Ion transport of multi-ionic solutions through layered electrolyte and polyelectrolyte structures are relevant in a large variety of technical systems such as micro and nanofluidic devices, sensors, batteries and large desalination process systems. We report a new direct numerical simulation model coined EnPEn: it allows to solve a set of first principle equations to predict for multiple ions their concentration and electrical potential profiles in electro-chemically complex architectures of n layered electrolytes E and n polyelectrolytes PE. EnPEn can robustly capture ion transport in sub-millimeter architectures with submicron polyelectrolyte layers. We proof the strength of EnPEn for three yet unsolved architectures: (a) selective Na over Ca transport in surface modified ion selective membranes, (b) ion transport and water splitting in bipolar membranes and (c) transport of weak electrolytes.

  4. Free Energy Wells and Barriers to Ion Transport Across Membranes

    NASA Astrophysics Data System (ADS)

    Rempe, Susan

    2014-03-01

    The flow of ions across cellular membranes is essential to many biological processes. Ion transport is also important in synthetic materials used as battery electrolytes. Transport often involves specific ions and fast conduction. To achieve those properties, ion conduction pathways must solvate specific ions by just the ``right amount.'' The right amount of solvation avoids ion traps due to deep free energy wells, and avoids ion block due to high free energy barriers. Ion channel proteins in cellular membranes demonstrate this subtle balance in solvation of specific ions. Using ab initio molecular simulations, we have interrogated the link between binding site structure and ion solvation free energies in biological ion binding sites. Our results emphasize the surprisingly important role of the environment that surrounds ion-binding sites for fast transport of specific ions. We acknowledge support from Sandia's LDRD program. Sandia National Labs is a multi-program laboratory operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the US DOE's NNSA under contract DE-AC04-94AL85000.

  5. Chapter Five - Ubiquitination of Ion Channels and Transporters.

    PubMed

    Lamothe, S M; Zhang, S

    2016-01-01

    Ion channels and transporters play essential roles in excitable cells including cardiac, skeletal, and smooth muscle cells, neurons, and endocrine cells. Their dysfunction underlies the pathology of various diseases. Thus, the tight regulation of these transmembrane proteins is essential for cell physiology. While the ubiquitin system is involved in many aspects of cellular processes, this chapter focuses on the ubiquitin-mediated degradation of ion channels and transporters. Ubiquitination of ion channels and transporters is multifaceted and occurs at various cellular compartments such as the plasma membrane and the endoplasmic reticulum. While various molecules are involved in the ubiquitination of ion channels and transporters, E3 ubiquitin ligases play a central role in selectively targeting substrates for ubiquitination and will be a major focus in this chapter. To date, the Nedd4 family of E3 ubiquitin ligases and their regulations of ion channels and transporters have been extensively studied. In this chapter, we will first review Nedd4/Nedd4-2 and their regulations. We will then discuss how E3 ubiquitin ligases, especially Nedd4-2, regulate various ion channels and transporters including epithelial Na(+) channels, voltage-gated Na(+) channels, KCNQ and hERG K(+) channels, Cl(-) channels such as CFTR, transporters such as Na(+)/K(+) ATPase, and gap junctions. Furthermore, diseases caused by improper ubiquitination of ion channels and transporters will be discussed to highlight the process of ubiquitination and its biological as well as clinical significance. PMID:27378758

  6. Cholinergic regulation of epithelial ion transport in the mammalian intestine

    PubMed Central

    Hirota, C L; McKay, D M

    2006-01-01

    Acetylcholine (ACh) is critical in controlling epithelial ion transport and hence water movements for gut hydration. Here we review the mechanism of cholinergic control of epithelial ion transport across the mammalian intestine. The cholinergic nervous system affects basal ion flux and can evoke increased active ion transport events. Most studies rely on measuring increases in short-circuit current (ISC = active ion transport) evoked by adding ACh or cholinomimetics to intestinal tissue mounted in Ussing chambers. Despite subtle species and gut regional differences, most data indicate that, under normal circumstances, the effect of ACh on intestinal ion transport is mainly an increase in Cl- secretion due to interaction with epithelial M3 muscarinic ACh receptors (mAChRs) and, to a lesser extent, neuronal M1 mAChRs; however, AChR pharmacology has been plagued by a lack of good receptor subtype-selective compounds. Mice lacking M3 mAChRs display intact cholinergically-mediated intestinal ion transport, suggesting a possible compensatory mechanism. Inflamed tissues often display perturbations in the enteric cholinergic system and reduced intestinal ion transport responses to cholinomimetics. The mechanism(s) underlying this hyporesponsiveness are not fully defined. Inflammation-evoked loss of mAChR-mediated control of epithelial ion transport in the mouse reveals a role for neuronal nicotinic AChRs, representing a hitherto unappreciated braking system to limit ACh-evoked Cl- secretion. We suggest that: i) pharmacological analyses should be supported by the use of more selective compounds and supplemented with molecular biology techniques targeting specific ACh receptors and signalling molecules, and ii) assessment of ion transport in normal tissue must be complemented with investigations of tissues from patients or animals with intestinal disease to reveal control mechanisms that may go undetected by focusing on healthy tissue only. PMID:16981004

  7. AMPK agonists ameliorate sodium and fluid transport and inflammation in cystic fibrosis airway epithelial cells.

    PubMed

    Myerburg, Michael M; King, J Darwin; Oyster, Nicholas M; Fitch, Adam C; Magill, Amy; Baty, Catherine J; Watkins, Simon C; Kolls, Jay K; Pilewski, Joseph M; Hallows, Kenneth R

    2010-06-01

    The metabolic sensor AMP-activated kinase (AMPK) inhibits both the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) Cl(-) channel and epithelial Na(+) channel (ENaC), and may inhibit secretion of proinflammatory cytokines in epithelia. Here we have tested in primary polarized CF and non-CF human bronchial epithelial (HBE) cells the effects of AMPK activators, metformin and 5-aminoimidazole-4-carboxamide-1-beta-D-riboside (AICAR), on various parameters that contribute to CF lung disease: ENaC-dependent short-circuit currents (I(sc)), airway surface liquid (ASL) height, and proinflammatory cytokine secretion. AMPK activation after overnight treatment with either metformin (2-5 mM) or AICAR (1 mM) substantially inhibited ENaC-dependent I(sc) in both CF and non-CF airway cultures. Live-cell confocal images acquired 60 minutes after apical addition of Texas Red-dextran-containing fluid revealed significantly greater ASL heights after AICAR and metformin treatment relative to controls, suggesting that AMPK-dependent ENaC inhibition slows apical fluid reabsorption. Both metformin and AICAR decreased secretion of various proinflammatory cytokines, both with and without prior LPS stimulation. Finally, prolonged exposure to more physiologically relevant concentrations of metformin (0.03-1 mM) inhibited ENaC currents and decreased proinflammatory cytokine levels in CF HBE cells in a dose-dependent manner. These findings suggest that novel therapies to activate AMPK in the CF airway may be beneficial by blunting excessive sodium and ASL absorption and by reducing excessive airway inflammation, which are major contributors to CF lung disease. PMID:19617399

  8. Nondiffusive transport regimes for suprathermal ions in turbulent plasmas.

    PubMed

    Bovet, A; Fasoli, A; Ricci, P; Furno, I; Gustafson, K

    2015-04-01

    The understanding of the transport of suprathermal ions in the presence of turbulence is important for fusion plasmas in the burning regime that will characterize reactors, and for space plasmas to understand the physics of particle acceleration. Here, three-dimensional measurements of a suprathermal ion beam in the toroidal plasma device TORPEX are presented. These measurements demonstrate, in a turbulent plasma, the existence of subdiffusive and superdiffusive transport of suprathermal ions, depending on their energy. This result stems from the unprecedented combination of uniquely resolved measurements and first-principles numerical simulations that reveal the mechanisms responsible for the nondiffusive transport. The transport regime is determined by the interaction of the suprathermal ion orbits with the turbulent plasma dynamics, and is strongly affected by the ratio of the suprathermal ion energy to the background plasma temperature. PMID:25974432

  9. Ion channels and transporters in lymphocyte function and immunity

    PubMed Central

    Feske, Stefan; Skolnik, Edward Y.; Prakriya, Murali

    2013-01-01

    Preface Lymphocyte function is regulated by a network of ion channels and transporters in the plasma membrane of T and B cells. They modulate the cytoplasmic concentrations of diverse cations such as calcium, magnesium and zinc, which function as second messengers to regulate critical lymphocyte effector functions including cytokine production, differentiation and cytotoxicity. The repertoire of ion conducting proteins includes calcium release-activated calcium (CRAC) channels, P2X receptors, transient receptor potential (TRP) channels, potassium channels as well as magnesium and zinc transporters. This review discusses the roles of several ions channels and transporters in lymphocyte function and immunity. PMID:22699833

  10. Fast and efficient transport of large ion clouds

    NASA Astrophysics Data System (ADS)

    Kamsap, M. R.; Pedregosa-Gutierrez, J.; Champenois, C.; Guyomarc'h, D.; Houssin, M.; Knoop, M.

    2015-10-01

    The manipulation of trapped charged particles by electric fields is an accurate, robust, and reliable technique for many applications or experiments in high-precision spectroscopy. The transfer of an ion sample between multiple traps allows the use of a tailored environment in quantum information, cold chemistry, or frequency metrology experiments. In this article, we experimentally study the transport of ion clouds of up to 80 000 ions over a distance of 20 mm inside a linear radio-frequency trap. Ion transport is controlled by a transfer function, which is designed taking into account the local electric potentials. We observe that the ion response is very sensitive to the details of the description of the electric potential. Nevertheless, we show that fast transport—with a total duration of 100 μ s —results in transport efficiencies attaining values higher than 90% of the ion number, even with large ion clouds. For clouds smaller than 2000 ions, a 100% transfer efficiency is observed. Transport induced heating, which depends on the transport duration, is also analyzed.

  11. Intracellular calcium ions as regulators of renal tubular sodium transport.

    PubMed

    Windhager, E; Frindt, G; Yang, J M; Lee, C O

    1986-09-15

    This review addresses the putative role of intracellular calcium ions in the regulation of sodium transport by renal tubules. Cytoplasmic calcium-ion activities in proximal tubules of Necturus are less than 10(-7) M and can be increased by lowering the electrochemical potential gradient for sodium ions across the peritubular cell membrane, or by addition of quinidine or ionomycin to peritubular fluid. Whereas lowering of the peritubular Na concentration increases cytosolic [Ca++] and [H+], ionomycin, a calcium ionophore, raises intracellular [Ca++] without decreasing pHi. The intracellular calcium-ion level is maintained by transport processes in the plasma membrane and membranes of intracellular organelles, as well as by calcium-binding proteins. Calcium ions inhibit net transport of sodium by reducing the rate of sodium entry across the luminal cell membrane. In the collecting tubule this inhibition is caused, at least in part, by an indirect reduction in the activity of the amiloride-sensitive sodium channel. PMID:2430134

  12. The Transport of Ions Across Plant Cell Membranes.

    ERIC Educational Resources Information Center

    Baker, D. A.

    1981-01-01

    Presented is one of a series of articles designed to help science teachers keep current on ideas in specific areas of biology. This article provides information about ion transport in plant cells. (PB)

  13. Energetic ion transport by microturbulence is insignificant in tokamaks

    SciTech Connect

    Pace, D. C.; Petty, C. C.; Staebler, G. M.; Van Zeeland, M. A.; Waltz, R. E.; Austin, M. E.; Bass, E. M.; Budny, R. V.; Gorelenkova, M.; Grierson, B. A.; McCune, D. C.; Yuan, X.; Heidbrink, W. W.; Muscatello, C. M.; Zhu, Y. B.; Hillesheim, J. C.; Rhodes, T. L.; Wang, G.; Holcomb, C. T.; McKee, G. R.; and others

    2013-05-15

    Energetic ion transport due to microturbulence is investigated in magnetohydrodynamic-quiescent plasmas by way of neutral beam injection in the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)]. A range of on-axis and off-axis beam injection scenarios are employed to vary relevant parameters such as the character of the background microturbulence and the value of E{sub b}/T{sub e}, where E{sub b} is the energetic ion energy and T{sub e} the electron temperature. In all cases, it is found that any transport enhancement due to microturbulence is too small to observe experimentally. These transport effects are modeled using numerical and analytic expectations that calculate the energetic ion diffusivity due to microturbulence. It is determined that energetic ion transport due to coherent fluctuations (e.g., Alfvén eigenmodes) is a considerably larger effect and should therefore be considered more important for ITER.

  14. Simulation of Chamber Transport for Heavy-Ion-Fusion Drivers

    SciTech Connect

    Sharp, W M; Callahan, D A; Tabak, M; Yu, S S; Peterson, P F; Rose, D V; Welch, D R

    2003-09-25

    The heavy-ion fusion (HIF) community recently developed a power-plant design that meets the various requirements of accelerators, final focus, chamber transport, and targets. The point design is intended to minimize physics risk and is certainly not optimal for the cost of electricity. Recent chamber-transport simulations, however, indicate that changes in the beam ion species, the convergence angle, and the emittance might allow more-economical designs.

  15. Benchmarking of Neutron Production of Heavy-Ion Transport Codes

    SciTech Connect

    Remec, Igor; Ronningen, Reginald M.; Heilbronn, Lawrence

    2012-01-01

    Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in design and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models and codes and additional benchmarking are required.

  16. Computer Simulations of Ion Transport in Polymer Electrolyte Membranes.

    PubMed

    Mogurampelly, Santosh; Borodin, Oleg; Ganesan, Venkat

    2016-06-01

    Understanding the mechanisms and optimizing ion transport in polymer membranes have been the subject of active research for more than three decades. We present an overview of the progress and challenges involved with the modeling and simulation aspects of the ion transport properties of polymer membranes. We are concerned mainly with atomistic and coarser level simulation studies and discuss some salient work in the context of pure binary and single ion conducting polymer electrolytes, polymer nanocomposites, block copolymers, and ionic liquid-based hybrid electrolytes. We conclude with an outlook highlighting future directions. PMID:27070764

  17. Bicarbonate-dependent chloride transport drives fluid secretion by the human airway epithelial cell line Calu-3

    PubMed Central

    Shan, Jiajie; Liao, Jie; Huang, Junwei; Robert, Renaud; Palmer, Melissa L; Fahrenkrug, Scott C; O'Grady, Scott M; Hanrahan, John W

    2012-01-01

    Anion and fluid secretion are both defective in cystic fibrosis (CF); however, the transport mechanisms are not well understood. In this study, Cl− and HCO3− secretion was measured using genetically matched CF transmembrane conductance regulator (CFTR)-deficient and CFTR-expressing cell lines derived from the human airway epithelial cell line Calu-3. Forskolin stimulated the short-circuit current (Isc) across voltage-clamped monolayers, and also increased the equivalent short-circuit current (Ieq) calculated under open-circuit conditions. Isc was equivalent to the HCO3− net flux measured using the pH-stat technique, whereas Ieq was the sum of the Cl− and HCO3− net fluxes. Ieq and HCO3− fluxes were increased by bafilomycin and ZnCl2, suggesting that some secreted HCO3− is neutralized by parallel electrogenic H+ secretion. Ieq and fluid secretion were dependent on the presence of both Na+ and HCO3−. The carbonic anhydrase inhibitor acetazolamide abolished forskolin stimulation of Ieq and HCO3− secretion, suggesting that HCO3− transport under these conditions requires catalysed synthesis of carbonic acid. Cl− was the predominant anion in secretions under all conditions studied and thus drives most of the fluid transport. Nevertheless, 50–70% of Cl− and fluid transport was bumetanide-insensitive, suggesting basolateral Cl− loading by a sodium–potassium–chloride cotransporter 1 (NKCC1)-independent mechanism. Imposing a transepithelial HCO3− gradient across basolaterally permeabilized Calu-3 cells sustained a forskolin-stimulated current, which was sensitive to CFTR inhibitors and drastically reduced in CFTR-deficient cells. Net HCO3− secretion was increased by bilateral Cl− removal and therefore did not require apical Cl−/HCO3− exchange. The results suggest a model in which most HCO3− is recycled basolaterally by exchange with Cl−, and the resulting HCO3−-dependent Cl− transport provides an osmotic driving force for

  18. [Anomalous ion transport and feedback control

    SciTech Connect

    Not Available

    1993-01-01

    The slab branch of the ITG mode was produced by a d.c. ion acceleration heating scheme and definitively identified in CLM under the previous DOE grant. A transit-time rf heating scheme was used to produce a more Maxwellian ion population to produce and identify a more predictable slab ITG mode. These experiments are partly based on some theoretical work on the substantial effects of anisotropy in [eta][sub i] on the slab mode. The progress under the present DOE grant are described below.

  19. [Anomalous ion transport and feedback control

    SciTech Connect

    Not Available

    1993-08-01

    The slab branch of the ITG mode was produced by a d.c. ion acceleration heating scheme and definitively identified in CLM under the previous DOE grant. A transit-time rf heating scheme was used to produce a more Maxwellian ion population to produce and identify a more predictable slab ITG mode. These experiments are partly based on some theoretical work on the substantial effects of anisotropy in {eta}{sub i} on the slab mode. The progress under the present DOE grant are described below.

  20. Ion Acceleration and Transport in Solar Flares

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    1995-01-01

    The purpose of the work proposed for this grant was to develop a promising model for ion acceleration in impulsive solar flares. Solar flares are among the most energetic and interesting phenomena in the solar system, releasing up to 10(exp 32) ergs of energy over timescales ranging from a few tens of seconds to a few tens of minutes. Much of this energy appears as energetic electrons and ions, which produce a wide range of observable radiations. These radiations, in turn, are valuable diagnostics of the acceleration mechanism, the identification of which is the fundamental goal of solar flare research. The specific mechanism we proposed to investigate was based on cascading Alfven waves, the essence of which was as follows: During the primary flare energy release, it is widely believed that magnetic free energy is made available through the large-scale restructuring of the flare magnetic field. Any perturbation of a magnetic field will lead to the formation of MagnetoHydroDynamic (MHD) waves of wavelength comparable to the initial scale of the perturbation. Since the scalesize of a flare energy release region will likely be 10(exp 8)-10(exp 9) cm, the MHD waves will be of very long wavelength. However, it is well known that wave steepening will lead to a cascade of wave energy to smaller wavelengths. Now, MHD waves consist of two specific modes-the Alfven wave and the fast mode wave, and it is the Alfven wave which can interact with the ambient ions and accelerate them via cyclotron resonance. As the Alfven waves cascade to smaller wavenumbers, they can resonate with ions of progressively lower energy, until they eventually (actually, this is less than approx. 1 s) can resonate with ions in the thermal distribution. These ions are then energized out of the thermal background and, since lower-frequency waves are already present as a result of the cascading, to relativistic energies. Hence, cascading Alfven waves naturally accelerate ions from thermal to

  1. Stormtime transport of ring current and radiation belt ions

    SciTech Connect

    Chen, M.W.; Schulz, M.; Lyons, L.R.; Gorney, D.J.

    1993-04-01

    This is an investigation of stormtime particle transport that leads to formation of the ring current. The method is to trace the guiding-center motion of representative ions (having selected first adiabatic invariants [mu]) in response to model substorm-associated impulses in the convection electric field. The simulation results are compared qualitatively with existing analytically tractable idealizations of particle transport (direct convective access and radial diffusion) in order to assess the limits of validity of these approximations. For [mu] approximately less than 10 MeV/G (E approximately less than 10 keV at L equivalent to 3) the ion drift period on the final (ring-current) drift shell of interest (L equivalent to 3) exceeds the duration of the main phase of the model storm, and the authors find that the transport of ions to this drift shell is appropriately idealized as direct convective access, typically from open drift paths. Ion transport to a final closed drift path from an open (plasma-sheet) drift trajectory is possible for those portions of that drift path that lie outside the mean stormtime separatrix between closed and open drift trajectories, For [mu] approximately 10-25 MeV/G (110 keV approximately less than E approximately less than 280 keV at L equivalent to 3) the drift period at L equivalent to 3 is comparable to the postulated 3-hr duration of the storm, and the mode of transport is transitional between direct convective access and transport that resembles radial diffusion. (This particle population is transitional between the ring current and radiation belt). For [mu] approximately greater than 25 MeV/G (radiation-belt ions having E approximately greater than 280 keV at L equivalent to 3) the ion drift period is considerably shorter than the main phase of a typical storm, and ions gain access to the ring-current region essentially via radial diffusion.

  2. Ion mixing, hydration, and transport in aqueous ionic systems

    SciTech Connect

    Tse, Ying-Lung Steve; Voth, Gregory A.; Witten, Thomas A.

    2015-05-14

    The enhancement effect on the ion mobility of fluoride (and that of chloride) in a polycationic system, as the chloride content increases, is shown to also exist in other more simple ionic systems with cations such as the cesium ion and an organic ammonium ion. As the chloride content increases, in addition to the finding that there is more unbound water associated with the cation, we also observe that the average lifetime of a hydrogen bond decreases. This change to the hydrogen bonds is correlated to significant changes to both the structural and dynamical properties of water. The more disordered water structure and faster water dynamics are hypothesized to be also responsible for the enhanced ion mobilities. Furthermore, when either the chloride content or hydration level is changed, the self-diffusion constant of each co-ion changes by almost the same factor, implying the existence of a single universal transport mechanism that determines ion mobilities.

  3. Parallel Transport Quantum Logic Gates with Trapped Ions.

    PubMed

    de Clercq, Ludwig E; Lo, Hsiang-Yu; Marinelli, Matteo; Nadlinger, David; Oswald, Robin; Negnevitsky, Vlad; Kienzler, Daniel; Keitch, Ben; Home, Jonathan P

    2016-02-26

    We demonstrate single-qubit operations by transporting a beryllium ion with a controlled velocity through a stationary laser beam. We use these to perform coherent sequences of quantum operations, and to perform parallel quantum logic gates on two ions in different processing zones of a multiplexed ion trap chip using a single recycled laser beam. For the latter, we demonstrate individually addressed single-qubit gates by local control of the speed of each ion. The fidelities we observe are consistent with operations performed using standard methods involving static ions and pulsed laser fields. This work therefore provides a path to scalable ion trap quantum computing with reduced requirements on the optical control complexity. PMID:26967401

  4. Parallel Transport Quantum Logic Gates with Trapped Ions

    NASA Astrophysics Data System (ADS)

    de Clercq, Ludwig E.; Lo, Hsiang-Yu; Marinelli, Matteo; Nadlinger, David; Oswald, Robin; Negnevitsky, Vlad; Kienzler, Daniel; Keitch, Ben; Home, Jonathan P.

    2016-02-01

    We demonstrate single-qubit operations by transporting a beryllium ion with a controlled velocity through a stationary laser beam. We use these to perform coherent sequences of quantum operations, and to perform parallel quantum logic gates on two ions in different processing zones of a multiplexed ion trap chip using a single recycled laser beam. For the latter, we demonstrate individually addressed single-qubit gates by local control of the speed of each ion. The fidelities we observe are consistent with operations performed using standard methods involving static ions and pulsed laser fields. This work therefore provides a path to scalable ion trap quantum computing with reduced requirements on the optical control complexity.

  5. Ion mixing, hydration, and transport in aqueous ionic systems

    NASA Astrophysics Data System (ADS)

    Tse, Ying-Lung Steve; Voth, Gregory A.; Witten, Thomas A.

    2015-05-01

    The enhancement effect on the ion mobility of fluoride (and that of chloride) in a polycationic system, as the chloride content increases, is shown to also exist in other more simple ionic systems with cations such as the cesium ion and an organic ammonium ion. As the chloride content increases, in addition to the finding that there is more unbound water associated with the cation, we also observe that the average lifetime of a hydrogen bond decreases. This change to the hydrogen bonds is correlated to significant changes to both the structural and dynamical properties of water. The more disordered water structure and faster water dynamics are hypothesized to be also responsible for the enhanced ion mobilities. Furthermore, when either the chloride content or hydration level is changed, the self-diffusion constant of each co-ion changes by almost the same factor, implying the existence of a single universal transport mechanism that determines ion mobilities.

  6. Charged-Particle Bean Transport for Ion Trapping Experiments.

    NASA Astrophysics Data System (ADS)

    Raichle, Brian W.; Wingfield, Love M.

    2001-11-01

    Electrostatic Einsel lenses are being developed for beam transport for use in two distinct metastable atomic lifetime experiments using two separate rf-ion traps. Each system has been modeled using Simion software, and the lenses have been designed from commercially available eV-parts. The first application is part of an electron gun source. Electrons are produced by a conventional dispenser cathode and are transported 25 cm to the trap. The design goal is to create a beam divergence to fully illuminate the active trap volume, and to provide tunable electron energies from 50 to 500 eV. The second application is to transport ions 1 m from a laser ablation ion source to an rf ion trap. Laser ablation involves essentially boiling ions from a solid target with intense laser pulses. Here, the design goal is to maximize flux by maximizing the solid angle of acceptance to the trap, minimize radial velocity, and minimize the spread in axial velocity. Development of a laser ablation ion source external to the trap volume will allow a very low base pressure in the trap region, which will make possible the study of species with lifetimes approaching 1 s. In addition, laser ablation will produce intermediately-charged ions from non-conductive solid targets.

  7. Ion transport in circulatory and/or septic shock

    SciTech Connect

    Sayeed, M.M.

    1987-05-01

    This review surveys investigations of membrane ion transport in animals in hemorrhagic, endotoxic, or bacteremic shock. The focus of the review is on ion transport studies in the skeletal muscle and liver. Skeletal muscle Na/sup +/-K/sup +/ transport alterations have been shown during the induction of shock via hemorrhage, endotoxin, or live Gram-negative bacteria in the rodent, canine, and primate species. These alterations include impairment of active cellular K/sup +/ accumulation, increased permeability to /sup 24/Na/sup +/ and Cl/sup -/, and membrane depolarization. The ion transport alterations in the skeletal muscle are compatible with movement of extracellular fluid into the intracellular compartment. Such fluid movements can potentially lead to decreases in circulating plasma volume and thus to circulatory deficits in shock. Studies in the liver of rats subjected to hemorrhagic or endotoxic shock indicated the failure of electrogenic Na/sup +/ pump. Although the hepatic cellular membrane permeability to Na/sup +/ relative to permeability to K/sup +/ appeared unaltered in hemorrhagic shock, endotoxic shock caused an increase in permeability to Na/sup +/. Hepatic cellular /sup 45/Ca/sup +/ regulation also appeared to be adversely affected during endotoxic shock. Alterations in hepatic Na/sup +/-K/sup +/ transport and Ca/sup +/ regulation could contribute to impairment in hepatic glucose production during shock. Although mechanisms of altered membrane ion transport during shock states remain unknown, such changes could occur prior to any substantial loss of cellular metabolic energy.

  8. Ion Transport in Mercury's Magnetosphere during the MESSENGER Flyby

    NASA Astrophysics Data System (ADS)

    Schriver, David; Travnicek, Pavel; Paral, Jan; Slavin, James A.; Sarantos, Menelaos; Anderson, Brian J.; Korth, Haje; Zurbuchen, Thomas H.; Baker, Daniel N.; Killen, Rosemary M.

    2008-09-01

    Abstract Heavy ions including sodium (Na+) are known to populate Mercury's magnetosphere and were observed in situ during the first MESSENGER flyby on January 14, 2008 [1]. A study has been undertaken to examine the transport, distribution, and energization of ions during solar wind conditions corresponding approximately to those that occurred during the MESSENGER flyby. Three-dimensional global hybrid simulations of Mercury's magnetosphere, which provide a realistic self-consistent electric and magnetic field configuration at the time of the flyby [2], are used to trace heavy-ion particle trajectories throughout the system. Because electrons are included only as a massless fluid in the hybrid simulations, electron transport can be examined as well using this technique. To examine solar-wind sputtering as a source for ion ejection from the planet, heavy ions are launched outward from regions near the planet where hybrid simulations show strong particle precipitation, and their trajectories are followed until they either hit the planet or are picked up by the solar wind and lost downstream. The heavy ions can be transported throughout the magnetosphere of Mercury and become accelerated by non-adiabatic processes in the magnetotail current sheet, as well as near reconnection regions. Ions will also be launched from the magnetosheath and other regions to model planetary ion sources as a result of photon-stimulated desorption from the dayside surface of Mercury. The simulated heavy-ion distribution and the energy profile of such ions in Mercury's magnetosphere provide a basis for comparison with MESSENGER flyby data. References [1] Zurbuchen T. H. et al. (2008) Science, in press. [2] Travnicek P. et al. (2007), Geophys. Res. Lett., 34, L05104, doi:10.1029/2006GL028518.

  9. Gyrokinetic simulations of ion and impurity transport

    SciTech Connect

    Estrada-Mila, C.; Candy, J.; Waltz, R.E.

    2005-02-01

    A systematic study of turbulent particle and energy transport in both pure and multicomponent plasmas is presented. In this study, gyrokinetic results from the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] are supplemented with those from the GLF23 [R. E. Waltz, G. M. Staebler, W. Dorland et al., Phys. Plasmas 4, 2482 (1997)] transport model, as well as from quasilinear theory. Various results are obtained. The production of a particle pinch driven by temperature gradients (a thermal pinch) is demonstrated, and further shown to be weakened by finite electron collisionality. Helium transport and the effects of helium density gradient and concentration in a deuterium plasma are examined. Interestingly, it is found that the simple D-v (diffusion versus convective velocity) model of impurity flow is consistent with results obtained from nonlinear gyrokinetic simulations. Also studied is the transport in a 50-50 deuterium-tritium plasma, where a symmetry breaking is observed indicating the potential for fuel separation in a burning plasma. Quasilinear theory together with linear simulations shows that the symmetry breaking which enhances the tritium confinement arises largely from finite-Larmor-radius effects. To justify the numerical methods used in the paper, a variety of linear benchmarks and nonlinear grid refinement studies are detailed.

  10. Ion channels and transporters in tumour cell migration and invasion

    PubMed Central

    Schwab, Albrecht; Stock, Christian

    2014-01-01

    Cell migration is a central component of the metastatic cascade requiring a concerted action of ion channels and transporters (migration-associated transportome), cytoskeletal elements and signalling cascades. Ion transport proteins and aquaporins contribute to tumour cell migration and invasion among other things by inducing local volume changes and/or by modulating Ca2+ and H+ signalling. Targeting cell migration therapeutically bears great clinical potential, because it is a prerequisite for metastasis. Ion transport proteins appear to be attractive candidate target proteins for this purpose because they are easily accessible as membrane proteins and often overexpressed or activated in cancer. Importantly, a number of clinically widely used drugs are available whose anticipated efficacy as anti-tumour drugs, however, has now only begun to be evaluated. PMID:24493750

  11. Neoclassical electron and ion transport in toroidally rotating plasmas

    SciTech Connect

    Sugama, H.; Horton, W.

    1997-06-01

    Neoclassical transport processes of electrons and ions are investigated in detail for toroidally rotating axisymmetric plasmas with large flow velocities on the order of the ion thermal speed. The Onsager relations for the flow-dependent neoclassical transport coefficients are derived from the symmetry properties of the drift kinetic equation with the self-adjoint collision operator. The complete neoclassical transport matrix with the Onsager symmetry is obtained for the rotating plasma consisting of electrons and single-species ions in the Pfirsch{endash}Schl{umlt u}ter and banana regimes. It is found that the inward banana fluxes of particles and toroidal momentum are driven by the parallel electric field, which are phenomena coupled through the Onsager symmetric off-diagonal coefficients to the parallel currents caused by the radial thermodynamic forces conjugate to the inward fluxes, respectively. {copyright} {ital 1997 American Institute of Physics.}

  12. Functional properties of ion channels and transporters in tumour vascularization

    PubMed Central

    Fiorio Pla, Alessandra; Munaron, Luca

    2014-01-01

    Vascularization is crucial for solid tumour growth and invasion, providing metabolic support and sustaining metastatic dissemination. It is now accepted that ion channels and transporters play a significant role in driving the cancer growth at all stages. They may represent novel therapeutic, diagnostic and prognostic targets for anti-cancer therapies. On the other hand, although the expression and role of ion channels and transporters in the vascular endothelium is well recognized and subject of recent reviews, only recently has their involvement in tumour vascularization been recognized. Here, we review the current literature on ion channels and transporters directly involved in the angiogenic process. Particular interest will be focused on tumour angiogenesis in vivo as well as in the different steps that drive this process in vitro, such as endothelial cell proliferation, migration, adhesion and tubulogenesis. Moreover, we compare the ‘transportome’ system of tumour vascular network with the physiological one. PMID:24493751

  13. The straggling Green's function method for ion transport

    NASA Astrophysics Data System (ADS)

    Walker, Steven Andrew

    For many years work has been conducted on developing a concise theory and method for HZE ion transport capable of being validated in the laboratory. Previous attempts have ignored dispersion and energy downshift associated with nuclear fragmentation and energy and range straggling. Here we present a Green's function approach to ion transport that incorporates these missing elements. This work forms the basis for a new version of GRNTRN, a Green's function transport code. Comparisons of GRNTRN predictions and laboratory results for an 56Fe ion beam with average energy at the target of one GeV/amu or more are presented for various targets. Quantities compared are the energy deposited spectra for an Aluminum target and Graphite-Epoxy mix target, the fraction of primary beam surviving and track average LET for these and various other targets.

  14. Test ion transport in a collisional, field-reversed configuration

    NASA Astrophysics Data System (ADS)

    Roche, T.; McWilliams, R.; Heidbrink, W. W.; Bolte, N.; Garate, E. P.; Morehouse, M.; Slepchenkov, M.; Wessel, F.

    2014-08-01

    Diffusion of test-ions in a flux-coil generated, collisional, field-reversed configuration is measured via time-resolved tomographic reconstruction of Ar+ optical emission in the predominantly nitrogen plasma. Azimuthal test ion diffusion across magnetic field lines is found to be classical during the stable period of the discharge. Test ion radial confinement is enhanced by a radial electric field, reducing the observed outward radial transport rate below predictions based solely on classical cross-field diffusion rates. Test ion diffusion is ˜500 m2 s-1 during the stable period of the discharge. The electric field inferred from plasma potential measurements and from equilibrium calculations is consistent with the observed reduction in argon transport.

  15. Dust particle diffusion in ion beam transport region.

    PubMed

    Miyamoto, N; Okajima, Y; Romero, C F; Kuwata, Y; Kasuya, T; Wada, M

    2016-02-01

    Dust particles of μm size produced by a monoplasmatron ion source are observed by a laser light scattering. The scattered light signal from an incident laser at 532 nm wavelength indicates when and where a particle passes through the ion beam transport region. As the result, dusts with the size more than 10 μm are found to be distributed in the center of the ion beam, while dusts with the size less than 10 μm size are distributed along the edge of the ion beam. Floating potential and electron temperature at beam transport region are measured by an electrostatic probe. This observation can be explained by a charge up model of the dust in the plasma boundary region. PMID:26932116

  16. Dust particle diffusion in ion beam transport region

    NASA Astrophysics Data System (ADS)

    Miyamoto, N.; Okajima, Y.; Romero, C. F.; Kuwata, Y.; Kasuya, T.; Wada, M.

    2016-02-01

    Dust particles of μm size produced by a monoplasmatron ion source are observed by a laser light scattering. The scattered light signal from an incident laser at 532 nm wavelength indicates when and where a particle passes through the ion beam transport region. As the result, dusts with the size more than 10 μm are found to be distributed in the center of the ion beam, while dusts with the size less than 10 μm size are distributed along the edge of the ion beam. Floating potential and electron temperature at beam transport region are measured by an electrostatic probe. This observation can be explained by a charge up model of the dust in the plasma boundary region.

  17. Engineering Heteromaterials to Control Lithium Ion Transport Pathways

    DOE PAGESBeta

    Liu, Yang; Vishniakou, Siarhei; Yoo, Jinkyoung; Dayeh, Shadi A.

    2015-12-21

    Safe and efficient operation of lithium ion batteries requires precisely directed flow of lithium ions and electrons to control the first directional volume changes in anode and cathode materials. Understanding and controlling the lithium ion transport in battery electrodes becomes crucial to the design of high performance and durable batteries. Recent work revealed that the chemical potential barriers encountered at the surfaces of heteromaterials play an important role in directing lithium ion transport at nanoscale. Here, we utilize in situ transmission electron microscopy to demonstrate that we can switch lithiation pathways from radial to axial to grain-by-grain lithiation through themore » systematic creation of heteromaterial combinations in the Si-Ge nanowire system. Lastly, our systematic studies show that engineered materials at nanoscale can overcome the intrinsic orientation-dependent lithiation, and open new pathways to aid in the development of compact, safe, and efficient batteries.« less

  18. Engineering Heteromaterials to Control Lithium Ion Transport Pathways

    SciTech Connect

    Liu, Yang; Vishniakou, Siarhei; Yoo, Jinkyoung; Dayeh, Shadi A.

    2015-12-21

    Safe and efficient operation of lithium ion batteries requires precisely directed flow of lithium ions and electrons to control the first directional volume changes in anode and cathode materials. Understanding and controlling the lithium ion transport in battery electrodes becomes crucial to the design of high performance and durable batteries. Recent work revealed that the chemical potential barriers encountered at the surfaces of heteromaterials play an important role in directing lithium ion transport at nanoscale. Here, we utilize in situ transmission electron microscopy to demonstrate that we can switch lithiation pathways from radial to axial to grain-by-grain lithiation through the systematic creation of heteromaterial combinations in the Si-Ge nanowire system. Lastly, our systematic studies show that engineered materials at nanoscale can overcome the intrinsic orientation-dependent lithiation, and open new pathways to aid in the development of compact, safe, and efficient batteries.

  19. Engineering Heteromaterials to Control Lithium Ion Transport Pathways

    PubMed Central

    Liu, Yang; Vishniakou, Siarhei; Yoo, Jinkyoung; Dayeh, Shadi A.

    2015-01-01

    Safe and efficient operation of lithium ion batteries requires precisely directed flow of lithium ions and electrons to control the first directional volume changes in anode and cathode materials. Understanding and controlling the lithium ion transport in battery electrodes becomes crucial to the design of high performance and durable batteries. Recent work revealed that the chemical potential barriers encountered at the surfaces of heteromaterials play an important role in directing lithium ion transport at nanoscale. Here, we utilize in situ transmission electron microscopy to demonstrate that we can switch lithiation pathways from radial to axial to grain-by-grain lithiation through the systematic creation of heteromaterial combinations in the Si-Ge nanowire system. Our systematic studies show that engineered materials at nanoscale can overcome the intrinsic orientation-dependent lithiation, and open new pathways to aid in the development of compact, safe, and efficient batteries. PMID:26686655

  20. Engineering Heteromaterials to Control Lithium Ion Transport Pathways

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Vishniakou, Siarhei; Yoo, Jinkyoung; Dayeh, Shadi A.

    2015-12-01

    Safe and efficient operation of lithium ion batteries requires precisely directed flow of lithium ions and electrons to control the first directional volume changes in anode and cathode materials. Understanding and controlling the lithium ion transport in battery electrodes becomes crucial to the design of high performance and durable batteries. Recent work revealed that the chemical potential barriers encountered at the surfaces of heteromaterials play an important role in directing lithium ion transport at nanoscale. Here, we utilize in situ transmission electron microscopy to demonstrate that we can switch lithiation pathways from radial to axial to grain-by-grain lithiation through the systematic creation of heteromaterial combinations in the Si-Ge nanowire system. Our systematic studies show that engineered materials at nanoscale can overcome the intrinsic orientation-dependent lithiation, and open new pathways to aid in the development of compact, safe, and efficient batteries.

  1. The role of space charge compensation for ion beam extraction and ion beam transport (invited)

    SciTech Connect

    Spädtke, Peter

    2014-02-15

    Depending on the specific type of ion source, the ion beam is extracted either from an electrode surface or from a plasma. There is always an interface between the (almost) space charge compensated ion source plasma, and the extraction region in which the full space charge is influencing the ion beam itself. After extraction, the ion beam is to be transported towards an accelerating structure in most cases. For lower intensities, this transport can be done without space charge compensation. However, if space charge is not negligible, the positive charge of the ion beam will attract electrons, which will compensate the space charge, at least partially. The final degree of Space Charge Compensation (SCC) will depend on different properties, like the ratio of generation rate of secondary particles and their loss rate, or the fact whether the ion beam is pulsed or continuous. In sections of the beam line, where the ion beam is drifting, a pure electrostatic plasma will develop, whereas in magnetic elements, these space charge compensating electrons become magnetized. The transport section will provide a series of different plasma conditions with different properties. Different measurement tools to investigate the degree of space charge compensation will be described, as well as computational methods for the simulation of ion beams with partial space charge compensation.

  2. Electrostatic and magnetic transport of energetic ions in turbulent plasmas

    SciTech Connect

    Hauff, T.; Pueschel, M. J.; Jenko, F.; Dannert, T.

    2009-02-20

    Analytical and numerical work is used in tandem to address the problem of turbulent transport of energetic ions in magnetized plasmas. It is shown that orbit averaging is not valid under rather generic conditions, and that perpendicular decorrelation effects lead to a slow 1/E decay of the electrostatic particle diffusivity of beam ions, while the respective magnetic quantity is even independent of the particle energy E.

  3. Spatial organization of cilia tufts governs airways mucus transport: Application to severe asthma

    NASA Astrophysics Data System (ADS)

    Khelloufi, Mustapha Kamel; Gras, Delphine; Chanez, Pascal; Viallat, Annie

    2014-11-01

    We study the coupling between both density and spatial repartition of beating cilia tufts, and the coordinated transport of mucus in an in-vitro epithelial model. We use a fully differentiated model epithelium in air liquid interface (ALI) obtained from endo-bronchial biopsies from healthy subjects and patients with asthma. The asthma phenotype is known to persist in the model. Mucus transport is characterized by the trajectories and velocities of microscopic beads incorporated in the mucus layer. When the beating cilia tufts density is higher than dc = 11/100 × 100 μm2 a spherical spiral coordinated mucus transport is observed over the whole ALI chamber (radius = 6 mm). Below dc, local mucus coordinated transport is observed on small circular domains on the epithelium surface. We reveal that the radii of these domains scale with the beating cilia tufts density with a power 3.7. Surprisingly, this power law is independent on cilia beat frequency, concentration and rheological properties of mucus for healthy subject and patient with asthma. The rotating or linear mucus transport is related to dispersion of the cilia tufts on the epithelium surface. We show that impaired mucus transport observed in severe asthma model epithelia is due to a drastic lack and dysfunction of cilia tufts. The author acknowledges the support of the French Agence Nationale de la Recherche (ANR) under reference ANR-13-BSV5-0015-01.

  4. 17β-Estradiol inhibits Ca2+-dependent homeostasis of airway surface liquid volume in human cystic fibrosis airway epithelia

    PubMed Central

    Coakley, Ray D.; Sun, Hengrui; Clunes, Lucy A.; Rasmussen, Julia E.; Stackhouse, James R.; Okada, Seiko F.; Fricks, Ingrid; Young, Steven L.; Tarran, Robert

    2008-01-01

    Normal airways homeostatically regulate the volume of airway surface liquid (ASL) through both cAMP- and Ca2+-dependent regulation of ion and water transport. In cystic fibrosis (CF), a genetic defect causes a lack of cAMP-regulated CFTR activity, leading to diminished Cl– and water secretion from airway epithelial cells and subsequent mucus plugging, which serves as the focus for infections. Females with CF exhibit reduced survival compared with males with CF, although the mechanisms underlying this sex-related disadvantage are unknown. Despite the lack of CFTR, CF airways retain a limited capability to regulate ASL volume, as breathing-induced ATP release activates salvage purinergic pathways that raise intracellular Ca2+ concentration to stimulate an alternate pathway to Cl– secretion. We hypothesized that estrogen might affect this pathway by reducing the ability of airway epithelia to respond appropriately to nucleotides. We found that uridine triphosphate–mediated (UTP-mediated) Cl– secretion was reduced during the periovulatory estrogen maxima in both women with CF and normal, healthy women. Estrogen also inhibited Ca2+ signaling and ASL volume homeostasis in non-CF and CF airway epithelia by attenuating Ca2+ influx. This inhibition of Ca2+ signaling was prevented and even potentiated by estrogen antagonists such as tamoxifen, suggesting that antiestrogens may be beneficial in the treatment of CF lung disease because they increase Cl– secretion in the airways. PMID:19033671

  5. Endothelin and Renal Ion and Water Transport

    PubMed Central

    Speed, Joshua S.; Fox, Brandon M.; Johnston, Jermaine G.; Pollock, David M.

    2015-01-01

    The renal tubular epithelial cells produce more endothelin-1 (ET-1) than any other cell type in the body. Moving down the nephron, the amount of ET-1 produced appears fairly consistent until reaching the inner medullary collecting duct, which produces at least 10 times more ET-1 than any other segment. ET-1 inhibits Na+ transport in all parts of the nephron through activation of the ETB receptor, and to a minor extent, the ETA receptor. These effects are most prominent in the collecting duct where ETB receptor activation inhibits activity of the epithelial Na+ channel. Effects in other parts of the nephron include inhibition of Na+/H+ exchange in the proximal tubule and the Na+, K+, 2Cl− co-transporter in the thick ascending limb. In general, the renal epithelial ET-1 system is an integral part of the body’s response to a high salt intake in order to maintain homeostasis and normal blood pressure. Loss of ETB receptor function results in salt sensitive hypertension. The goal of this article is to review the role of renal ET-1 and how it affects Na+ and water transport throughout the nephron. PMID:25966345

  6. Transport of Ions through Vesicle Bilayers

    PubMed

    Kaiser; Hoffmann

    1996-12-01

    Stopped flow measurements to determine the permeability of vesicles are presented. The kinetics of the reaction between FeSCN2+ and F- ions is used to monitor the permeability of vesicles. Samples with vesicles that have been equilibrated with the iron complex are mixed with F- solutions. The reaction is followed by UV/VIS absorption. The influence of temperature and surfactant concentration on the membrane permeability of large unilamellar phospholipid vesicles was studied. A dramatic increase of the permeability of the LUVs is observed when 30 to 40 mol% of the surfactant OP-10 (main component of Triton X-100) is added to the lipid. It is assumed that the increased permeability is due to the stabilization of transient defects in the bilayers of the vesicles as shown previously by other groups. Furthermore, a strong binding of the iron (III) thiocyanate complex to the phospholipid is observed by UV/VIS spectroscopy and zeta-potential measurements. Additional experiments with vesicles from a fluorocarbon surfactant show a much higher permeability than the phospholipid system. Models for the diffusion of either the iron (III) complex or the fluoride ions through the vesicles bilayer are discussed for LUV as well as for vesicles from a fluorocarbon surfactant. The results indicate that the rate-determining step is the diffusion of the iron complex through the membrane. PMID:8954634

  7. Mechanism of electrodialytic ion transport through solvent extraction membranes

    SciTech Connect

    Moskvin, L.N.; Shmatko, A.G.; Krasnoperov, V.M.

    1987-02-01

    The authors construct a mathematical model for electrodialysis and solvent extraction via an ion-selective ion exchange membrane and accounts for the electrochemical, ion exchange, and diffusional behavior of the processes including their dependence on component concentration and current and voltage. The model is tested against experimental data for the electrodialytic transport of anionic platinum complexes of chlorides from hydrochloric acid solution through tributylphosphate membranes. The platinum concentration in the aqueous solution was determined by gamma spectroscopy obtained via platinum 191 as a radiotracer.

  8. Electrokinetic ion transport in confined micro-nanochannel.

    PubMed

    Wang, Junyao; Liu, Chong; Xu, Zheng

    2016-03-01

    In this paper, a confined micronanochannel is presented to concentrate ions in a restricted zone. A general model exploiting the Poisson-Nernst-Plank equations coupled with the Navier-Stokes equation is employed to simulate the electrokinetic ion transport. The influences of the micronanochannel dimension and the surface charge density on the potential distribution, the ion concentration, and the fluid flow are investigated. The numerical results show that the potential drop depends mainly on the nanochannel, instead of the confined channel. Both decreasing the width and increasing the length enhance the ion enrichment performance. For a given nanochannel, ultimate value of ion concentration may be determined by the potential at the center point of the nanochannel. The study also shows that the enrichment stability can be improved by increasing the micronanochannel width, decreasing the micronanochannel length and reducing the surface charge density. PMID:26995194

  9. Ion transport in sub-5-nm graphene nanopores

    NASA Astrophysics Data System (ADS)

    Suk, Myung E.; Aluru, N. R.

    2014-02-01

    Graphene nanopore is a promising device for single molecule sensing, including DNA bases, as its single atom thickness provides high spatial resolution. To attain high sensitivity, the size of the molecule should be comparable to the pore diameter. However, when the pore diameter approaches the size of the molecule, ion properties and dynamics may deviate from the bulk values and continuum analysis may not be accurate. In this paper, we investigate the static and dynamic properties of ions with and without an external voltage drop in sub-5-nm graphene nanopores using molecular dynamics simulations. Ion concentration in graphene nanopores sharply drops from the bulk concentration when the pore radius is smaller than 0.9 nm. Ion mobility in the pore is also smaller than bulk ion mobility due to the layered liquid structure in the pore-axial direction. Our results show that a continuum analysis can be appropriate when the pore radius is larger than 0.9 nm if pore conductivity is properly defined. Since many applications of graphene nanopores, such as DNA and protein sensing, involve ion transport, the results presented here will be useful not only in understanding the behavior of ion transport but also in designing bio-molecular sensors.

  10. Hall transport of divalent metal ion modified DNA lattices

    SciTech Connect

    Dugasani, Sreekantha Reddy; Lee, Keun Woo; Yoo, Sanghyun; Gnapareddy, Bramaramba; Bashar, Saima; Park, Sung Ha; Kim, Si Joon; Jung, Joohye; Jung, Tae Soo; Kim, Hyun Jae

    2015-06-29

    We investigate the Hall transport characteristics of double-crossover divalent metal ion (Cu{sup 2+}, Ni{sup 2+}, Zn{sup 2+}, and Co{sup 2+})-modified DNA (M-DNA) lattices grown on silica via substrate-assisted growth. The electronic characteristics of the M-DNA lattices are investigated by varying the concentration of the metal ions and then conducting Hall measurements, including resistivity, Hall mobility, carrier concentration, and magneto resistance. The tendency of the resistivity and Hall mobility was to initially decrease as the ion concentration increased, until reaching the saturation concentration (C{sub s}) of each metal ion, and then to increase as the ion concentration increased further. On the other hand, the carrier concentration revealed the opposite tendency as the resistivity and Hall mobility. The specific binding (≤C{sub s}) and the nonspecific aggregates (>C{sub s}) of the ions into the DNA lattices were significantly affected by the Hall characteristics. The numerical ranges of the Hall parameters revealed that the M-DNA lattices with metal ions had semiconductor-like characteristics. Consequently, the distinct characteristics of the electrical transport through M-DNA lattices will provide useful information on the practical use of such structures in physical devices and chemical sensors.

  11. Ion transport in sub-5-nm graphene nanopores

    SciTech Connect

    Suk, Myung E.; Aluru, N. R.

    2014-02-28

    Graphene nanopore is a promising device for single molecule sensing, including DNA bases, as its single atom thickness provides high spatial resolution. To attain high sensitivity, the size of the molecule should be comparable to the pore diameter. However, when the pore diameter approaches the size of the molecule, ion properties and dynamics may deviate from the bulk values and continuum analysis may not be accurate. In this paper, we investigate the static and dynamic properties of ions with and without an external voltage drop in sub-5-nm graphene nanopores using molecular dynamics simulations. Ion concentration in graphene nanopores sharply drops from the bulk concentration when the pore radius is smaller than 0.9 nm. Ion mobility in the pore is also smaller than bulk ion mobility due to the layered liquid structure in the pore-axial direction. Our results show that a continuum analysis can be appropriate when the pore radius is larger than 0.9 nm if pore conductivity is properly defined. Since many applications of graphene nanopores, such as DNA and protein sensing, involve ion transport, the results presented here will be useful not only in understanding the behavior of ion transport but also in designing bio-molecular sensors.

  12. Sources and Transport of Plasma Sheet Ions During Magnetospheric Substorms

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; El-Alaoui, M.; Peroomian, V.; Raeder, J.; Walker, R. J.; Frank, L. A.; Paterson, W. R.

    1998-01-01

    This study investigates the sources and transport of ions observed in the near-Earth plasma sheet during the growth and expansion phases of a magnetospheric substorm that took place on November 24, 1996. The sources and acceleration mechanisms of ions observed at Geotail were determined by calculating the trajectories of thousands of ions backward in time. We found that during the growth phase of the substorm, most of the ions reaching Geotail had origins in the low latitude boundary layer (LLBL) and were already in the magnetosphere when the growth phase began. Late in the growth phase and in the expansion phase more plasma mantle ions reached the Geotail location. Indeed, during the expansion phase more than 90% of the ions were from the mantle. The ions were accelerated enroute to the spacecraft; however, most of the energy gained was achieved by non-adiabatic acceleration during the ions' crossing of the equatorial current sheet just prior to the detection of the ions.

  13. Electrochemical control of ion transport through a mesoporous carbon membrane

    SciTech Connect

    Surwade, Sumedh P; Chai, Songhai; Choi, Jai-Pil; Wang, Xiqing; Lee, Jeseung; Vlassiouk, Ivan V; Mahurin, Shannon Mark; Dai, Sheng

    2014-01-01

    The transport of fluids through nanometer scale channels typically on the order of 1 -100 nm often exhibit unique properties compared to the bulk fluid. These phenomena occur because the channel dimensions and molecular size become comparable to the range of several important forces including electrostatic and van der Waals forces. Small changes in properties such as the electric double layer or surface charge can significantly affect molecular transport through the channels. Based on these emerging properties, a variety of nanofluidic devices such as nanofluidic transistors, nanofluidic diodes or lab-on-a-chip devices have been developed3-7 with a diverse range of applications including water purification, biomolecular sensing, DNA separation, and rectified ion transport. Nanofluidic devices are typically fabricated using expensive lithography techniques or sacrificial templates. Here we report a carbon-based, three-dimensional nanofluidic transport membrane that enables gated, or on/off, control of the transport of organic molecular species and metal ions using an applied electrical potential. In the absence of an applied potential, both cationic and anionic molecules freely diffuse across the membrane via a concentration gradient. However, when an electrochemical potential is applied, the transport of ions through the membrane is inhibited.

  14. Surgical Airway

    PubMed Central

    Patel, Sapna A; Meyer, Tanya K

    2014-01-01

    Close to 3% of all intubation attempts are considered difficult airways, for which a plan for a surgical airway should be considered. Our article provides an overview of the different types of surgical airways. This article provides a comprehensive review of the main types of surgical airways, relevant anatomy, necessary equipment, indications and contraindications, preparation and positioning, technique, complications, and tips for management. It is important to remember that the placement of a surgical airway is a lifesaving procedure and should be considered in any setting when one “cannot intubate, cannot ventilate”. PMID:24741501

  15. Feed gas contaminant removal in ion transport membrane systems

    DOEpatents

    Underwood, Richard Paul; Makitka, III, Alexander; Carolan, Michael Francis

    2012-04-03

    An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.

  16. Excess Surface Area in Bioelectrochemical Systems Causes ion Transport Limitations

    SciTech Connect

    Harrington, Timothy D.; Babauta, Jerome T.; Davenport, Emily K.; Renslow, Ryan S.; Beyenal, Haluk

    2015-05-01

    We investigated ion transport limitations on 3D graphite felt electrodes by growing Geobacter sulfurreducens biofilms with advection to eliminate external mass transfer limitations. We characterized ion transport limitations by: (i) showing that serially increasing NaCl concentration up to 200mM increased current linearly up to a total of þ273% vs. 0mM NaCl under advective conditions; (ii) growing the biofilm with a starting concentration of 200mM NaCl, which led to a maximum current increase of 400% vs. current generation without NaCl, and (iii) showing that un-colonized surface area remained even after steadystate current was reached. After accounting for iR effects, we confirmed that the excess surface area existed despite a non-zero overpotential. The fact that the biofilm was constrained from colonizing and producing further current under these conditions confirmed the biofilms under study here were ion transport-limited. Our work demonstrates that the use of high surface area electrodes may not increase current density when the system design allows ion transport limitations to become dominant.

  17. Excess surface area in bioelectrochemical systems causes ion transport limitations.

    PubMed

    Harrington, Timothy D; Babauta, Jerome T; Davenport, Emily K; Renslow, Ryan S; Beyenal, Haluk

    2015-05-01

    We investigated ion transport limitations on 3D graphite felt electrodes by growing Geobacter sulfurreducens biofilms with advection to eliminate external mass transfer limitations. We characterized ion transport limitations by: (i) showing that serially increasing NaCl concentration up to 200 mM increased current linearly up to a total of +273% vs. 0 mM NaCl under advective conditions; (ii) growing the biofilm with a starting concentration of 200 mM NaCl, which led to a maximum current increase of 400% vs. current generation without NaCl, and (iii) showing that un-colonized surface area remained even after steady-state current was reached. After accounting for iR effects, we confirmed that the excess surface area existed despite a non-zero overpotential. The fact that the biofilm was constrained from colonizing and producing further current under these conditions confirmed the biofilms under study here were ion transport-limited. Our work demonstrates that the use of high surface area electrodes may not increase current density when the system design allows ion transport limitations to become dominant. PMID:25421463

  18. Excess surface area in bioelectrochemical systems causes ion transport limitations

    PubMed Central

    Harrington, Timothy D.; Babauta, Jerome T.; Davenport, Emily K.; Renslow, Ryan S.; Beyenal, Haluk

    2014-01-01

    We investigated ion transport limitations on 3D graphite felt electrodes by growing Geobacter sulfurreducens biofilms with advection to eliminate external mass transfer limitations. We characterized ion transport limitations by: 1) showing that serially increasing NaCl concentration up to 200 mM increased current linearly up to a total of +273% vs. 0 mM NaCl under advective conditions, 2) growing the biofilm with a starting concentration of 200 mM NaCl, which led to a maximum current increase of 400% vs. current generation without NaCl, and 3) showing that un-colonized surface area remained even after steady-state current was reached. After accounting for iR effects, we confirmed that the excess surface area existed despite a non-zero overpotential at the electrode surface. The fact that the biofilm was constrained from colonizing and producing further current under these conditions confirmed the biofilms under study here were ion transport-limited. Our work demonstrates that the use of high surface area electrodes may not increase current density when the system design allows ion transport limitations to become dominant. PMID:25421463

  19. Neutral dynamics and ion energy transport in MST plasma

    NASA Astrophysics Data System (ADS)

    Xing, Zichuan; Nornberg, Mark; den Hartog, Daniel; Kumar, Santosh; Anderson, Jay

    2015-11-01

    Neutral dynamics can have a significant effect on ion energy transport through charge exchange collisions. Whereas previously charge exchange was considered a direct loss mechanism in MST plasmas, new analysis indicates that significant thermal charge exchange neutrals are reionized. Further, the temperatures of the neutral species in the core of the plasma are suspected to be much higher than room temperature, which has a large effect on ion energy losses due to charge exchange. The DEGAS2 Monte Carlo simulation code is applied to the MST reversed field pinch experiment to estimate the density and temperature profile of the neutral species. The result is then used to further examine the effect of the neutral species on ion energy transport in improved confinement plasmas. This enables the development of a model that accounts for collisional equilibration between species, classical convective and conductive energy transport, and energy loss due to charge exchange collisions. The goal is to quantify classical, stochastic, and anomalous ion heating and transport in RFP plasmas. Work supported by the US DOE. DEGAS2 is provided by PPPL and STRAHL is provided by Ralph Dux of the Max-Planck-Institut fur Plasmaphysik.

  20. Reduced Fast Ion Transport Model For The Tokamak Transport Code TRANSP

    SciTech Connect

    Podesta,, Mario; Gorelenkova, Marina; White, Roscoe

    2014-02-28

    Fast ion transport models presently implemented in the tokamak transport code TRANSP [R. J. Hawryluk, in Physics of Plasmas Close to Thermonuclear Conditions, CEC Brussels, 1 , 19 (1980)] are not capturing important aspects of the physics associated with resonant transport caused by instabilities such as Toroidal Alfv en Eigenmodes (TAEs). This work describes the implementation of a fast ion transport model consistent with the basic mechanisms of resonant mode-particle interaction. The model is formulated in terms of a probability distribution function for the particle's steps in phase space, which is consistent with the MonteCarlo approach used in TRANSP. The proposed model is based on the analysis of fast ion response to TAE modes through the ORBIT code [R. B. White et al., Phys. Fluids 27 , 2455 (1984)], but it can be generalized to higher frequency modes (e.g. Compressional and Global Alfv en Eigenmodes) and to other numerical codes or theories.

  1. Prospects of ion beam extraction and transport simulations (invited)

    SciTech Connect

    Spaedtke, Peter; Tinschert, K.; Lang, R.; Maeder, J.; Rossbach, J.; Stetson, J. W.; Celona, L.

    2008-02-15

    Beam profile measurements using viewing targets and emittance measurements with pepper pot devices have established new insights about the ion beam extracted from an electron cyclotron resonance ion source (ECRIS). In our measurements we have compared two different ECRISs of CAPRICE type, one source was equipped with a standard 1.0 T hexapole magnet, whereas for the other ion source a stronger hexapole magnet with a flux density of 1.2 T has been installed. The resulting ion beam profile for each individual charge state produced by different focal strengths of an optical element can be used to estimate the emittance, but it also shows the negative influence of the hexapole on the extracted ion beam. A hexapole correction would be desirable to improve further beam transport. A possible correction scheme will be discussed. All experimental observations can be reproduced by computer simulation if a magnetic plasma is assumed. When the Larmor radius for ions becomes small, collisions are negligible for the path of ions within the plasma. Low energy electrons are highly movable along the magnetic field lines and can compensate the ion space charge within the plasma chamber.

  2. Isothermal titration calorimetry of ion-coupled membrane transporters

    PubMed Central

    SeCheol, Oh

    2015-01-01

    Binding of ligands, ranging from proteins to ions, to membrane proteins is associated with absorption or release of heat that can be detected by isothermal titration calorimetry (ITC). Such measurements not only provide binding affinities but also afford direct access to thermodynamic parameters of binding - enthalpy, entropy and heat capacity. These parameters can be interpreted in a structural context, allow discrimination between different binding mechanisms and guide drug design. In this review, we introduce advantages and limitations of ITC as a methodology to study molecular interactions of membrane proteins. We further describe case studies where ITC was used to analyze thermodynamic linkage between ions and substrates in ion-coupled transporters. Similar type of linkage analysis will likely be applicable to a wide range of transporters, channels, and receptors. PMID:25676707

  3. Radial transport of storm time ring current ions

    SciTech Connect

    Lui, A.T.Y. )

    1993-01-01

    Radial transport of energetic ions for the development of the main phase of geomagnetic storms is investigated with data from the medium energy particle analyzer (MEPA) on the Charge Composition Explorer (CCE) spacecraft, which monitored protons (E[sub p] > 56 keV), helium ions (E[sub He] > 72 keV), and the carbon-nitrogen-oxygen group, which is mostly dominated by oxygen ions (E[sub O] > 137 keV). From a study of four geomagnetic storms, we show that the flux increase of these ions in the inner ring current region (L [approx lt] 5) can be accounted for by an inward displacement of the ring current population by [approximately]0.5 to 3.5 R[sub E]. There is a general trend that a larger inward displacement occurs at higher L shells than at lower ones. These results are in agreement with previous findings. The radially injected population consists of the prestorm population modified by substorm injections which occur on a much shorter rime scale than that of a storm main phase. It is also found that the inward displacement is relatively independent of ion mass and energy, suggesting that the radial transport of these energetic ions is effected primarily by convective motion from a large electric field or by diffusion resulting from magnetic field fluctuations. 27 refs., 5 figs.

  4. Radial transport of storm time ring current ions

    NASA Technical Reports Server (NTRS)

    Lui, A. T. Y.

    1993-01-01

    Radial transport of energetic ions for the development of the main phase of geomagnetic storms is investigated with data from the medium energy particle analyzer (MEPA) on the Charge Composition Explorer spacecraft, which monitored protons, helium ions, and the carbon-nitrogen-oxygen group, which is mostly dominated by oxygen ions. From a study of four geomagnetic storms, we show that the flux increase of these ions in the inner ring current region can be accounted for by an inward displacement of the ring current population by 0.5 to 3.5 R(E). There is a general trend that a larger inward displacement occurs at higher L shells than at lower ones. These results are in agreement with previous findings. The radially injected population consists of the prestorm population modified by substorm injections which occur on a much shorter time scale than that for a storm main phase. It is also found that the inward displacement is relatively independent of ion mass and energy, suggesting that the radial transport of these energetic ions is effected primarily by convective motion from a large electric field or by diffusion resulting from magnetic field fluctuations.

  5. Surface fluid absorption and secretion in small airways

    PubMed Central

    Shamsuddin, A K M; Quinton, P M

    2012-01-01

    Native small airways must remain wet enough to be pliable and support ciliary clearance, but dry enough to remain patent for gas flow. The airway epithelial lining must both absorb and secrete ions to maintain a critical level of fluid on its surface. Despite frequent involvement in lung diseases, the minuscule size has limited studies of peripheral airways. To meet this challenge, we used a capillary to construct an Ussing chamber (area <1 mm2) to measure electrolyte transport across small native airways (∼1 mm ø) from pig lung. Transepithelial potentials (Vt) were recorded in open circuit conditions while applying constant current pulses across the luminal surface of dissected airways to calculate transepithelial electrical conductance (Gt) and equivalent short circuit current () in the presence and absence of selected Na+ and Cl− transport inhibitors (amiloride, GlyH-101, Niflumic acid) and agonists (Forskolin + IBMX, UTP). Considered together the responses suggest an organ composed of both secreting and absorbing epithelia that constitutively and concurrently transport fluids into and out of the airway, i.e. in opposite directions. Since the epithelial lining of small airways is arranged in long, accordion-like rows of pleats and folds that run axially down the lumen, we surmise that cells within the pleats are mainly secretory while the cells of the folds are principally absorptive. This structural arrangement could provide local fluid transport from within the pleats toward the luminal folds that may autonomously regulate the local surface fluid volume for homeostasis while permitting acute responses to maintain clearance. PMID:22547637

  6. Ion and water transport in charge-modified graphene nanopores

    NASA Astrophysics Data System (ADS)

    Qiu, Ying-Hua; Li, Kun; Chen, Wei-Yu; Si, Wei; Tan, Qi-Yan; Chen, Yun-Fei

    2015-10-01

    Porous graphene has a high mechanical strength and an atomic-layer thickness that makes it a promising material for material separation and biomolecule sensing. Electrostatic interactions between charges in aqueous solutions are a type of strong long-range interaction that may greatly influence fluid transport through nanopores. In this study, molecular dynamic simulations were conducted to investigate ion and water transport through 1.05-nm diameter monolayer graphene nanopores, with their edges charge-modified. Our results indicated that these nanopores are selective to counterions when they are charged. As the charge amount increases, the total ionic currents show an increase-decrease profile while the co-ion currents monotonically decrease. The co-ion rejection can reach 76.5% and 90.2% when the nanopores are negatively and positively charged, respectively. The Cl- ion current increases and reaches a plateau, and the Na+ current decreases as the charge amount increases in systems in which Na+ ions act as counterions. In addition, charge modification can enhance water transport through nanopores. This is mainly due to the ion selectivity of the nanopores. Notably, positive charges on the pore edges facilitate water transport much more strongly than negative charges. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB707601 and 2011CB707605), the National Natural Science Foundation of China (Grant No. 50925519), the Fundamental Research Funds for the Central Universities, Funding of Jiangsu Provincial Innovation Program for Graduate Education, China (Grant No. CXZZ13_0087), and the Scientific Research Foundation of Graduate School of Southeast University (Grant No. YBJJ 1322).

  7. Radial Ion Transport in a Limited Axisymmetric Ecr Plasma.

    NASA Astrophysics Data System (ADS)

    Gibson, Gerald Warren, Jr.

    1995-01-01

    An experimental study of the radial transport of ions in the presence of a limiter for an axisymmetric plasma sustained by the resonant absorption of 2.45 GHz whistler waves is presented. In steady state, approximately 30% of the particles ionized in the core plasma flow radially into the scrape-off layer. The magnitude of radial ion flux is observed to be bounded from below by the radial electron transport rate and from above by the classical collisional ion transport rate of the cold edge ions. The system proves to be susceptible to a Kelvin-Helmholtz instability. The transport experiments were performed at a set input power of 300 W and over the neutral pressure range of 1-3 mTorr in Argon gas. The bulk ions possess a typical temperature of 1eV and do not obey a diffusion equation in the core plasma. Strong radial electric fields are observed and appear to provide the principal means by which radial ion diffusion is controlled. The presence of strongly sheared electric fields in this system excites a hydrodynamic instability of the Kelvin-Helmholtz type. The most frequently observed mode is driven by a region of depressed potential at the plasma edge. A theory for instability in the presence of a localized inverted Gaussian radial potential is presented and compared with experimental measurements. The convection of edge plasma into the core under influence of this mode leads to an increased edge temperature and, hence, enhanced axial losses from the scrape-off layer, thereby modifying the radial profile of the scrape-off layer. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  8. Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells

    NASA Astrophysics Data System (ADS)

    Ko, Sung-Kyun; Kim, Sung Kuk; Share, Andrew; Lynch, Vincent M.; Park, Jinhong; Namkung, Wan; van Rossom, Wim; Busschaert, Nathalie; Gale, Philip A.; Sessler, Jonathan L.; Shin, Injae

    2014-10-01

    Anion transporters based on small molecules have received attention as therapeutic agents because of their potential to disrupt cellular ion homeostasis. However, a direct correlation between a change in cellular chloride anion concentration and cytotoxicity has not been established for synthetic ion carriers. Here we show that two pyridine diamide-strapped calix[4]pyrroles induce coupled chloride anion and sodium cation transport in both liposomal models and cells, and promote cell death by increasing intracellular chloride and sodium ion concentrations. Removing either ion from the extracellular media or blocking natural sodium channels with amiloride prevents this effect. Cell experiments show that the ion transporters induce the sodium chloride influx, which leads to an increased concentration of reactive oxygen species, release of cytochrome c from the mitochondria and apoptosis via caspase activation. However, they do not activate the caspase-independent apoptotic pathway associated with the apoptosis-inducing factor. Ion transporters, therefore, represent an attractive approach for regulating cellular processes that are normally controlled tightly by homeostasis.

  9. Functions of Ion Transport Peptide and Ion Transport Peptide-Like in the Red Flour Beetle Tribolium castaneum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ion transport peptide (ITP) and ITP-like (ITPL) are highly conserved neuropeptides in insects and crustaceans. We investigated the alternatively spliced variants of ITP/ITPL in Tribolium castaneum to understand their functions. We identified three alternatively spliced transcripts named itp, itpl-...

  10. Carrier-mediated ion transport in lipid bilayer membranes.

    PubMed

    Laprade, R; Grenier, F; Pagé-Dansereau, M; Dansereau, J

    1984-08-01

    The electrical properties predicted by a widely accepted model for carrier-mediated ion transport in lipid bilayers are described. The different steps leading to ion transport and their associated rate constants are reaction at the interface between an ion in the aqueous phase and a carrier in the membrane (kRi), followed by translocation of the ion-carrier complex across the membrane interior (kis) and its dissociation at the other interface (kDi) after which the free carrier crosses back the membrane interior (ks). Results on glyceryl monooleate (GMO) membranes for a family of homologue carriers, the macrotetralide actin antibiotics (nonactin, monactin, dinactin, trinactin, and tetranactin) and a variety of ions (Na+, Cs+, Rb+, K+, NH4+, and Tl+) are presented. Internally consistent data obtained from steady-state electrical measurements (zero-current potential and conductance, current-voltage relationship) allow us to obtain the equilibrium permeability ratios for the different ions and show that for a given carrier kRi is relatively invariant from one ion to the other, except for Tl+ (larger), which implies that the ionic selectivity is controlled by the dissociation of the complex. The values of the individual rate constants obtained from current relaxation experiments are also presented and confirm the findings from steady-state measurements, as well as the isostericity concept for complexes of different ions with the same carrier (kis invariant). These also allow us to determine the aqueous phase membrane and torus membrane partition coefficients. Finally, the observed increase in kis from nonactin to tetranactin and, for all homologues, from GMO-decane to solvent-free GMO membranes, together with the concomitant decrease in kDi, can be explained in terms of modifications of electrostatic energy profiles induced by variations in carrier size and membrane thickness. PMID:6498590

  11. Role of Alfven instabilities in energetic ion transport

    SciTech Connect

    Bernabei, S.; Gorelenkov, N. N.; Budny, R.; Fredrickson, E. D.; Hosea, J. C.; Majeski, R.; Phillips, C. K.; Wilson, J. R.

    1999-09-20

    Experiments with plasma heating by waves at the ion cyclotron resonance of a minority species have shown that the heating efficiency degrades above a certain power threshold. It is found that this threshold is due to the destabilization of shear Alfven waves, which causes loss of fast ions. There are two distinct regimes characterized by low q{sub a} and high q{sub a}. In the first case, the fast ion distribution created by ICRF, lies entirely inside r{sub q=1}, away from the location of global TAE. This situation leads to the formation of a very strong fast ion population which stabilizes the sawteeth, but also excites Energetic Particle Modes (EPM), which transport fast ions outside r{sub q=1} causing the giant crash. At higher q{sub a}, the widening of the Alfven gap due to the steeper q profile, brings the global TAE ''in contact'' with the fast ion distribution. This results in an immediate and continuous depletion of fast ions from the core, which prevents the formation of the monster sawtooth and the excitation of EPM. (c) 1999 American Institute of Physics.

  12. Mechanism of unassisted ion transport across membrane bilayers

    NASA Technical Reports Server (NTRS)

    Wilson, M. A.; Pohorille, A.

    1996-01-01

    To establish how charged species move from water to the nonpolar membrane interior and to determine the energetic and structural effects accompanying this process, we performed molecular dynamics simulations of the transport of Na+ and Cl- across a lipid bilayer located between two water lamellae. The total length of molecular dynamics trajectories generated for each ion was 10 ns. Our simulations demonstrate that permeation of ions into the membrane is accompanied by the formation of deep, asymmetric thinning defects in the bilayer, whereby polar lipid head groups and water penetrate the nonpolar membrane interior. Once the ion crosses the midplane of the bilayer the deformation "switches sides"; the initial defect slowly relaxes, and a defect forms in the outgoing side of the bilayer. As a result, the ion remains well solvated during the process; the total number of oxygen atoms from water and lipid head groups in the first solvation shell remains constant. A similar membrane deformation is formed when the ion is instantaneously inserted into the interior of the bilayer. The formation of defects considerably lowers the free energy barrier to transfer of the ion across the bilayer and, consequently, increases the permeabilities of the membrane to ions, compared to the rigid, planar structure, by approximately 14 orders of magnitude. Our results have implications for drug delivery using liposomes and peptide insertion into membranes.

  13. Coupled polaronic and ion transport in nanocrystalline metal oxide electrodes

    NASA Astrophysics Data System (ADS)

    Rosso, Kevin

    2012-02-01

    We report new computational methods and fundamental understanding in the dynamics of coupled charge and ion transport in nanoscale metal oxides. The methods attack the multi-scale problem of simulating the collective diffusivities of ions and charge compensating e-/h+ carriers in single crystal particles, across particle-particle grain boundaries, and through networks of grains for select systems. Methods include embedded quantum mechanical clusters at the DFT and MP2 levels of theory for atomic-scale polaronic and ion transport kinetics, classical DFT-based free energy calculations for grain-scale conductivity in the framework of the Poisson-Nernst-Planck formalism, and phase field simulation of charged particle diffusivity for conductivity at the grain network scale. This combination of approaches is one of a kind in terms of its multi-scale range, scaling, and computational efficiency. We are presently focused on coupled electron and Li+ ion transport in polymorphs of TiO2, and also in mixed valence spinel oxides, for electrode conductivity optimization and improving energy storage materials performance for Li+ batteries.

  14. CFTR with a partially deleted R domain corrects the cystic fibrosis chloride transport defect in human airway epithelia in vitro and in mouse nasal mucosa in vivo

    PubMed Central

    Ostedgaard, Lynda S.; Zabner, Joseph; Vermeer, Daniel W.; Rokhlina, Tatiana; Karp, Philip H.; Stecenko, Arlene A.; Randak, Christoph; Welsh, Michael J.

    2002-01-01

    In developing gene therapy for cystic fibrosis (CF) airways disease, a transgene encoding a partially deleted CF transmembrane conductance regulator (CFTR) Cl− channel could be of value for vectors such as adeno-associated virus that have a limited packaging capacity. Earlier studies in heterologous cells indicated that the CFTR R (regulatory) domain is predominantly random coil and that parts of the R domain can be deleted without abolishing channel function. Therefore, we designed a series of CFTR variants with shortened R domains (between residues 708 and 835) and expressed them in well-differentiated cultures of CF airway epithelia. All of the variants showed normal targeting to the apical membrane, and for the constructs we tested, biosynthesis was like wild type. Moreover, all constructs generated transepithelial Cl− current in CF epithelia. Comparison of the Cl− transport suggested that the length of the R domain, the presence of phosphorylation sites, and other factors contribute to channel activity. A variant deleting residues 708–759 complemented CF airway epithelia to the same extent as wild-type CFTR and showed no current in the absence of cAMP stimulation. In addition, expression in nasal mucosa of CF mice corrected the Cl− transport defect. These data provide insight into the structure and function of the R domain and identify regions that can be deleted with retention of function. Thus they suggest a strategy for shortening the transgene used in CF gene therapy. PMID:11854474

  15. CFTR with a partially deleted R domain corrects the cystic fibrosis chloride transport defect in human airway epithelia in vitro and in mouse nasal mucosa in vivo.

    PubMed

    Ostedgaard, Lynda S; Zabner, Joseph; Vermeer, Daniel W; Rokhlina, Tatiana; Karp, Philip H; Stecenko, Arlene A; Randak, Christoph; Welsh, Michael J

    2002-03-01

    In developing gene therapy for cystic fibrosis (CF) airways disease, a transgene encoding a partially deleted CF transmembrane conductance regulator (CFTR) Cl- channel could be of value for vectors such as adeno-associated virus that have a limited packaging capacity. Earlier studies in heterologous cells indicated that the CFTR R (regulatory) domain is predominantly random coil and that parts of the R domain can be deleted without abolishing channel function. Therefore, we designed a series of CFTR variants with shortened R domains (between residues 708 and 835) and expressed them in well-differentiated cultures of CF airway epithelia. All of the variants showed normal targeting to the apical membrane, and for the constructs we tested, biosynthesis was like wild type. Moreover, all constructs generated transepithelial Cl- current in CF epithelia. Comparison of the Cl- transport suggested that the length of the R domain, the presence of phosphorylation sites, and other factors contribute to channel activity. A variant deleting residues 708-759 complemented CF airway epithelia to the same extent as wild-type CFTR and showed no current in the absence of cAMP stimulation. In addition, expression in nasal mucosa of CF mice corrected the Cl- transport defect. These data provide insight into the structure and function of the R domain and identify regions that can be deleted with retention of function. Thus they suggest a strategy for shortening the transgene used in CF gene therapy. PMID:11854474

  16. Mechanochemically synthesized fluorides: local structures and ion transport.

    PubMed

    Preishuber-Pflügl, Florian; Wilkening, Martin

    2016-06-01

    The performance of new sensors or advanced electrochemical energy storage devices strongly depends on the active materials chosen to realize such systems. In particular, their morphology may greatly influence their overall macroscopic properties. Frequently, limitations in classical ways of chemical preparation routes hamper the development of materials with tailored properties. Fortunately, such hurdles can be overcome by mechanochemical synthesis. The versatility of mechanosynthesis allows the provision of compounds that are not available through common synthesis routes. The mechanical treatment of two or three starting materials in high-energy ball mills enables the synthesis not only of new compounds but also of nanocrystalline materials with unusual properties such as enhanced ion dynamics. Fast ion transport is of crucial importance in electrochemical energy storage. It is worth noting that mechanosynthesis also provides access to metastable phases that cannot be synthesized by conventional solid state synthesis. Ceramic synthesis routes often yield the thermally, i.e., thermodynamically, stable products rather than metastable compounds. In this perspective we report the mechanochemical synthesis of nanocrystalline fluorine ion conductors that serve as model substances to understand the relationship between local structures and ion dynamics. While ion transport properties were complementarily probed via conductivity spectroscopy and nuclear magnetic relaxation, local structures of the phases prepared were investigated by high-resolution (19)F NMR spectroscopy carried out by fast magic angle spinning. The combination of nuclear and non-nuclear techniques also helped us to shed light on the mechanisms controlling mechanochemical reactions in general. PMID:27172256

  17. Imaging ion and molecular transport at subcellular resolution by secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chandra, Subhash; Morrison, George H.

    1995-05-01

    The transport of K+, Na+, and Ca2+ were imaged in individual cells with a Cameca IMS-3f ion microscope. Strict cryogenic frozen freeze-dry sample preparations were employed. Ion redistribution artifacts in conventional chemical preparations are discussed. Cryogenically prepared freeze-fractured freeze-dried cultured cells allowed the three-dimensional ion microscopic imaging of elements. As smaller structures in calcium images can be resolved with the 0.5 [mu]m spatial resolution, correlative techniques are needed to confirm their identity. The potentials of reflected light microscopy, scanning electron microscopy and laser scanning confocal microscopy are discussed for microfeature recognition in freeze-fractured freeze-dried cells. The feasibility of using frozen freeze-dried cells for imaging molecular transport at subcellular resolution was tested. Ion microscopy successfully imaged the transport of the isotopically tagged (13C, 15N) amino acid, -arginine. The labeled amino acid was imaged at mass 28 with a Cs+ primary ion beam as the 28(13C15N)- species. After a 4 h exposure of LLC-PK1 kidney cells to 4 mM labeled arginine, the amino acid was localized throughout the cell with a preferential incorporation into the nucleus and nucleolus. An example is also shown of the ion microscopic imaging of sodium borocaptate, an experimental therapeutic drug for brain tumors, in cryogenically prepared frozen freeze-dried Swiss 3T3 cells.

  18. Substrate Profile and Metal-ion Selectivity of Human Divalent Metal-ion Transporter-1*

    PubMed Central

    Illing, Anthony C.; Shawki, Ali; Cunningham, Christopher L.; Mackenzie, Bryan

    2012-01-01

    Divalent metal-ion transporter-1 (DMT1) is a H+-coupled metal-ion transporter that plays essential roles in iron homeostasis. DMT1 exhibits reactivity (based on evoked currents) with a broad range of metal ions; however, direct measurement of transport is lacking for many of its potential substrates. We performed a comprehensive substrate-profile analysis for human DMT1 expressed in RNA-injected Xenopus oocytes by using radiotracer assays and the continuous measurement of transport by fluorescence with the metal-sensitive PhenGreen SK fluorophore. We provide validation for the use of PhenGreen SK fluorescence quenching as a reporter of cellular metal-ion uptake. We determined metal-ion selectivity under fixed conditions using the voltage clamp. Radiotracer and continuous measurement of transport by fluorescence assays revealed that DMT1 mediates the transport of several metal ions that were ranked in selectivity by using the ratio Imax/K0.5 (determined from evoked currents at −70 mV): Cd2+ > Fe2+ > Co2+, Mn2+ ≫ Zn2+, Ni2+, VO2+. DMT1 expression did not stimulate the transport of Cr2+, Cr3+, Cu+, Cu2+, Fe3+, Ga3+, Hg2+, or VO+. 55Fe2+ transport was competitively inhibited by Co2+ and Mn2+. Zn2+ only weakly inhibited 55Fe2+ transport. Our data reveal that DMT1 selects Fe2+ over its other physiological substrates and provides a basis for predicting the contribution of DMT1 to intestinal, nasal, and pulmonary absorption of metal ions and their cellular uptake in other tissues. Whereas DMT1 is a likely route of entry for the toxic heavy metal cadmium, and may serve the metabolism of cobalt, manganese, and vanadium, we predict that DMT1 should contribute little if at all to the absorption or uptake of zinc. The conclusion in previous reports that copper is a substrate of DMT1 is not supported. PMID:22736759

  19. Internal Transport Barrier Driven by Redistribution of Energetic Ions

    SciTech Connect

    K.L. Wong; W.W. Heidbrink; E. Ruskov; C.C. Petty; C.M. Greenfield; R. Nazikian; R. Budny

    2004-11-12

    Alfven instabilities excited by energetic ions are used as a means to reduce the central magnetic shear in a tokamak via redistribution of energetic ions. When the central magnetic shear is low enough, ballooning modes become stable for any plasma pressure gradient and an internal transport barrier (ITB) with a steep pressure gradient can exist. This mechanism can sustain a steady-state ITB as demonstrated by experimental data from the DIII-D tokamak. It can also produce a shear in toroidal and poloidal plasma rotation. Possible application of this technique to use the energetic alpha particles for improvement of burning plasma performance is discussed.

  20. Polysiloxane-graft-PEG/Phosphonium Ionomer Morphology and Ion Transport

    NASA Astrophysics Data System (ADS)

    O'Reilly, Michael; Liang, Siwei; Bartels, Joshua; Runt, James; Colby, Ralph; Winey, Karen

    2013-03-01

    A series of random polysiloxane-based copolymer single ion conductors with phosphonium and polyethylene glycol side chains have been synthesized at various compositions and counterions. Morphology is investigated via X-ray scattering, and reveals microphase separation on extremely small length scales. Despite the low molecular weight of the PEG side chain, polysiloxane and PEG assemble into microdomains with covalently bound phosphonium cations at the interface. Exceptionally low glass transition temperatures in these microphase separated ionomers allow for high ionic mobility for both bulky, charge delocalized counterions as well as small, electronegative counterions. Morphology interpretation is complemented by measurement of ion transport properties via dielectric relaxation spectroscopy.

  1. Transport induced by ion cyclotron range of frequencies waves

    SciTech Connect

    Zhang, Debing Xu, Yingfeng; Wang, Shaojie

    2014-11-15

    The Vlasov equation, which includes the effect of the ion cyclotron range of frequencies (ICRF) waves, can be written as the Fokker-Planck equation which describes the quasilinear transport in phase space by using the Lie-transform method. The radial transport fluxes of particle, energy and parallel momentum driven by ICRF waves in the slab geometry have been derived. The results show that the ICRF-induced radial redistributions of particle, energy and parallel momentum are driven by the inhomogeneity in energy of the equilibrium distribution function, and related to the correlation between the excursion in the real space and the excursion in energy. For the case with strong asymmetry of k{sub y} spectrum, the ICRF-induced radial transport driven by the energy inhomogeneity dominates the ICRF-induced radial transport driven by the spatial inhomogeneity.

  2. Shear flow effects on ion thermal transport in tokamaks

    SciTech Connect

    Tajima, T.; Horton, W.; Dong, J.Q.; Kishimoto, Y.

    1995-03-01

    From various laboratory and numerical experiments, there is clear evidence that under certain conditions the presence of sheared flows in a tokamak plasma can significantly reduce the ion thermal transport. In the presence of plasma fluctuations driven by the ion temperature gradient, the flows of energy and momentum parallel and perpendicular to the magnetic field are coupled with each other. This coupling manifests itself as significant off-diagonal coupling coefficients that give rise to new terms for anomalous transport. The authors derive from the gyrokinetic equation a set of velocity moment equations that describe the interaction among plasma turbulent fluctuations, the temperature gradient, the toroidal velocity shear, and the poloidal flow in a tokamak plasma. Four coupled equations for the amplitudes of the state variables radially extended over the transport region by toroidicity induced coupling are derived. The equations show bifurcations from the low confinement mode without sheared flows to high confinement mode with substantially reduced transport due to strong shear flows. Also discussed is the reduced version with three state variables. In the presence of sheared flows, the radially extended coupled toroidal modes driven by the ion temperature gradient disintegrate into smaller, less elongated vortices. Such a transition to smaller spatial correlation lengths changes the transport from Bohm-like to gyrobohm-like. The properties of these equations are analyzed. The conditions for the improved confined regime are obtained as a function of the momentum-energy deposition rates and profiles. The appearance of a transport barrier is a consequence of the present theory.

  3. TRINIDY: Transport of ions and neutrons in dynamic materials

    NASA Astrophysics Data System (ADS)

    Spencer, Joshua B.

    The TRansport of Ions and Neutrons In DYnamic (TRINIDY) materials code is a new code designed to study the effects of high fluence ion and neutron radiation on solid surfaces. This is done in a quasi-deterministic way, in that the transport of pseudo-particles within target material is accomplished via a Monte Carlo approach while the changes within the target are calculated deterministically by use of a one-dimensional Lagrangian mesh into which each of the tracked pseudo-particles are either deposited or removed. After each cycle the mesh is allowed to relax to a solid state areal density adjusted for its new constituency. As a natural corollary to the change in material compositions in each mesh element comes the resultant change in thickness of the target. Within TRINIDY charged particles are transported by means of a Binary Collision Approximation (BCA) where the elastic nuclear and inelastic electronic stopping forces are decoupled in such a way that the projectile only interacts with one target atom at a time. TRINIDY builds on the legacy of the Transport of Ions in Matter (TRIM), TRIM-SP and TRIDYN codes, in that it uses Biersack's analytic approximation to the quantum scattering integral and a screened coulomb potential as the basic for the charged particle transport. The neutron transport within TRINIDY is based on 32-group elastic scattering and total absorption cross-section data which has been derived from the ENDF7 continuous neutron data sets for each of the naturally occurring elements Hydrogen through Uranium. This work is comprised of essentially three sections. First, there is a detailed technical description of the science behind TRINIDY. Secondly there will be a complete write-up of the validation and verification work done during the development of TRINIDY. Lastly, a series of practical demonstration of particular interest to the semi-conductor industry are presented to exemplify the use of TRINIDY within the realm of applied materials

  4. STOPPING AND BARYON TRANSPORT IN HEAVY ION REACTIONS.

    SciTech Connect

    VIDEBAEK, F.

    2005-02-05

    In this report I will give an experimental overview on nuclear stopping in hadron collisions, and relate observations to understanding of baryon transport. Baryon number transport is not only evidenced via net-proton distributions but also by the enhancement of strange baryons near mid-rapidity. Although the focus is on high-energy data obtained from pp and heavy ions from RHIC, relevant data from SPS and ISR will be considered. A discussion how the available data at higher energy relates and gives information on baryon junction, quark-diquark breaking will be made.

  5. Transport of Ions Out of the LEBIT Gas Stopping Cell

    NASA Astrophysics Data System (ADS)

    Schury, Peter; Bollen, Georg; Lofy, Patrick; Morrissey, David; Ringle, Ryan; Schwarz, Stefan; Sun, Tao; Wiggins, David; van Wasshenova, Daniel; Varentsov, Victor

    2002-10-01

    The Low Energy Beam and Ion Trap (LEBIT) project will convert high-energy ( 100 MeV/A) fragmentation beams into very low emittance, low energy (5 keV) beams. These brilliant beams are requisite for high precision experiments. In particular, they will be used for high precision mass measurements of short-lived species. To facilitate the conversion to a low energy beam, a high-pressure (1 bar) gas cell is utilized. To be extracted from the gas cell, the ions must pass through the 1 mm inner diameter nozzle at the end of the gas cell. After the gas cell, a series of three linear radio-frequency quadrupole (RFQ) ion guides carry the ions through differential pumping and into high vacuum. In contrast to similar systems used elsewhere we plan to drive these RFQs with square waves, which greatly simplifies the tuning and operation. In order to find optimum geometrical and operational parameters, ion trajectories were calculated based upon a combination of ion optics and gas flow. Our calculations show efficient transport through the system.

  6. Feed gas contaminant control in ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis; Minford, Eric; Waldron, William Emil

    2009-07-07

    Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

  7. Hormonal regulation of ion and water transport in anuran amphibians.

    PubMed

    Uchiyama, Minoru; Konno, Norifumi

    2006-05-15

    Amphibians occupy a wide variety of ecological habitats, and their adaptation is made possible through the specialization of the epithelia of their osmoregulatory organs, such as the skin, kidney, and urinary bladder, which control the hydromineral and acid-base balance of their internal medium. Amphibians can change drastically plasma Na+, Cl-, and urea levels and excretion rates in response to environmental stimuli such as acute desiccation and changes in external salinity. Several hormones and the autonomic nervous system act to control osmoregulation. Several ion channels including an epithelial sodium channel (ENaC), a urea transporter (UT), and water channels (AQPs) are found in epithelial tissues of their osmoregulatory organs. This mini review examines the currents status of our knowledge about hormone receptors for arginine vasotocin, angiotensin II and aldosterone, and membrane ion channels and transporters, such as ENaC, UT, and AQPs in amphibians. PMID:16472810

  8. Upper bound for heat transport due to ion temperature gradients

    SciTech Connect

    Kim, C.; Choi, K.

    1996-12-01

    Turbulent transport due to an ion temperature gradient is studied in the context of a fluid description in slab geometry. An upper bound on the heat transport is obtained through the use of a variational principle. The physical constraint of energy conservation that is included in the principle keeps the bound finite. Additional constraint is needed and employed for the magnetic shear effect to be accounted for. The bounding curve of the heat flux versus the ion temperature gradient, {eta}{sub {ital i}}, is presented along with the profiles of the fluctuations. The bound, after an extrapolation, is argued to be in the neighborhood of what numerical simulation predicts. {copyright} {ital 1996 American Institute of Physics.}

  9. Transport of radioactive ions in soil by electrokinetics

    SciTech Connect

    Buehler, M.F.; Surma, J.E.; Virden, J.W.

    1994-10-01

    An electrokinetic approach is being evaluated for in situ soil remediation at the Hanford Site in Richland, Washington. This approach uses an applied electric field to induce transport of both radioactive and hazardous waste ions in soil. The work discussed in this paper involves the development of a new method to monitor the movement of the radioactive ions within the soil during the electrokinetic process. A closed cell and a gamma counter were used to provide iii situ measurements of {sup 137}Cs and {sup 60}Co movement in Hanford soil. Preliminary results show that for an applied potential of 200 V over approximately 200 hr, {sup 137}Cs and {sup 60}60 were transported a distance of 4 to 5 in. The monitoring technique demonstrated the feasibility of using electrokinetics for soil separation applications.

  10. Ion transport and dehydration in sub-nanoscale pores

    NASA Astrophysics Data System (ADS)

    Sahu, Subin; di Ventra, Massimiliano; Zwolak, Michael

    Ions in solution develop tightly bound layers of water - hydration layers - which stabilize disassociation and enable ionic currents to flow. Sub-nanometer pores in a membrane enable ions to pass provided that they shed their hydration shell. This process has an associated large energy penalty that is predicted to give rise to ''quantized'' steps in the ionic conductance. Using all-atom molecular dynamics simulation, we demonstrate that the ionic current begins to show nonlinear behavior as the radius of the pore is reduced to the sub-nanometer scale. This nonlinear behavior is seen as a sharp rise in the pore resistance and excess noise in the current. Our work sheds light on basic mechanism of ion transport through sub-nanoscale pores. S. Sahu acknowledges support by UMD/CNST Cooperative Research Agreement, Award 70NANB10H193 through University of Maryland.

  11. Bivalent ion transport through graphene/PET nanopore

    NASA Astrophysics Data System (ADS)

    Yao, Huijun; Cheng, Yaxiong; Zeng, Jian; Mo, Dan; Duan, Jinglai; Liu, Jiande; Zhai, Pengfei; Sun, Youmei; Liu, Jie

    2016-05-01

    The PET suspended single graphene nanopore (G/PET) was produced by heavy ion irradiation and asymmetric chemical etching. The solutions of NiSO4, NiCl2, CuSO4 and CuCl2 with different concentration were adopted to study the transport properties of bivalent ion in single G/PET nanopore by measuring the I-V curves. The perfect "diode effect" and excellent rectification effect of G/PET nanopore were observed, and the huge rectification ratio up to 43.3 was obtained in NiSO4 solution. The great solution selectivity and ion current magnification effect of graphene/PET nanopore were also confirmed in our study.

  12. Fast ion transport induced by saturated infernal mode

    SciTech Connect

    Marchenko, V. S.

    2014-05-15

    Tokamak discharges with extended weak-shear central core are known to suffer from infernal modes when the core safety factor approaches the mode ratio. These modes can cause an outward convection of the well-passing energetic ions deposited in the core by fusion reactions and/or neutral beam injection. Convection mechanism consists in collisional slowing down of energetic ions trapped in the Doppler-precession resonance with a finite-amplitude infernal mode. Convection velocity can reach a few m/s in modern spherical tori. Possible relation of this transport with the enhanced fast ion losses in the presence of “long lived modes” in the MAST tokamak [I. T. Chapman et al., Nucl. Fusion 50, 045007 (2010)] is discussed.

  13. Regulation of lysosomal ion homeostasis by channels and transporters.

    PubMed

    Xiong, Jian; Zhu, Michael X

    2016-08-01

    Lysosomes are the major organelles that carry out degradation functions. They integrate and digest materials compartmentalized by endocytosis, phagocytosis or autophagy. In addition to more than 60 hydrolases residing in the lysosomes, there are also ion channels and transporters that mediate the flux or transport of H(+), Ca(2+), Na(+), K(+), and Cl(-) across the lysosomal membranes. Defects in ionic exchange can lead to abnormal lysosome morphology, defective vesicle trafficking, impaired autophagy, and diseases such as neurodegeneration and lysosomal storage disorders. The latter are characterized by incomplete lysosomal digestion and accumulation of toxic materials inside enlarged intracellular vacuoles. In addition to degradation, recent studies have revealed the roles of lysosomes in metabolic pathways through kinases such as mechanistic target of rapamycin (mTOR) and transcriptional regulation through calcium signaling molecules such as transcription factor EB (TFEB) and calcineurin. Owing to the development of new approaches including genetically encoded fluorescence probes and whole endolysosomal patch clamp recording techniques, studies on lysosomal ion channels have made remarkable progress in recent years. In this review, we will focus on the current knowledge of lysosome-resident ion channels and transporters, discuss their roles in maintaining lysosomal function, and evaluate how their dysfunction can result in disease. PMID:27430889

  14. Glial Na(+) -dependent ion transporters in pathophysiological conditions.

    PubMed

    Boscia, Francesca; Begum, Gulnaz; Pignataro, Giuseppe; Sirabella, Rossana; Cuomo, Ornella; Casamassa, Antonella; Sun, Dandan; Annunziato, Lucio

    2016-10-01

    Sodium dynamics are essential for regulating functional processes in glial cells. Indeed, glial Na(+) signaling influences and regulates important glial activities, and plays a role in neuron-glia interaction under physiological conditions or in response to injury of the central nervous system (CNS). Emerging studies indicate that Na(+) pumps and Na(+) -dependent ion transporters in astrocytes, microglia, and oligodendrocytes regulate Na(+) homeostasis and play a fundamental role in modulating glial activities in neurological diseases. In this review, we first briefly introduced the emerging roles of each glial cell type in the pathophysiology of cerebral ischemia, Alzheimer's disease, epilepsy, Parkinson's disease, Amyotrophic Lateral Sclerosis, and myelin diseases. Then, we discussed the current knowledge on the main roles played by the different glial Na(+) -dependent ion transporters, including Na(+) /K(+) ATPase, Na(+) /Ca(2+) exchangers, Na(+) /H(+) exchangers, Na(+) -K(+) -Cl(-) cotransporters, and Na(+) - HCO3- cotransporter in the pathophysiology of the diverse CNS diseases. We highlighted their contributions in cell survival, synaptic pathology, gliotransmission, pH homeostasis, and their role in glial activation, migration, gliosis, inflammation, and tissue repair processes. Therefore, this review summarizes the foundation work for targeting Na(+) -dependent ion transporters in glia as a novel strategy to control important glial activities associated with Na(+) dynamics in different neurological disorders. GLIA 2016;64:1677-1697. PMID:27458821

  15. An improved Green's function for ion beam transport.

    PubMed

    Tweed, J; Wilson, J W; Tripathi, R K

    2004-01-01

    Ion beam transport theory allows testing of material transmission properties in the laboratory environment generated by particle accelerators. This is a necessary step in materials development and evaluation for space use. The approximations used in solving the Boltzmann transport equation for the space setting are often not sufficient for laboratory work and those issues are the main emphasis of the present work. In consequence, an analytic solution of the linear Boltzmann equation is pursued in the form of a Green's function allowing flexibility in application to a broad range of boundary value problems. It has been established that simple solutions can be found for high charge and energy (HZE) ions by ignoring nuclear energy downshifts and dispersion. Such solutions were found to be supported by experimental evidence with HZE ion beams when multiple scattering was added. Lacking from the prior solutions were range and energy straggling and energy downshift with dispersion associated with nuclear events. Recently, we have found global solutions including these effects providing a broader class of HZE ion solutions. PMID:15880918

  16. Neutron imaging of ion transport in mesoporous carbon materials.

    PubMed

    Sharma, Ketki; Bilheux, Hassina Z; Walker, Lakeisha M H; Voisin, Sophie; Mayes, Richard T; Kiggans, Jim O; Yiacoumi, Sotira; DePaoli, David W; Dai, Sheng; Tsouris, Costas

    2013-07-28

    Neutron imaging is presented as a tool for quantifying the diffusion of ions inside porous materials, such as carbon electrodes used in the desalination process via capacitive deionization and in electrochemical energy-storage devices. Monolithic mesoporous carbon electrodes of ∼10 nm pore size were synthesized based on a soft-template method. The electrodes were used with an aqueous solution of gadolinium nitrate in an electrochemical flow-through cell designed for neutron imaging studies. Sequences of neutron images were obtained under various conditions of applied potential between the electrodes. The images revealed information on the direction and magnitude of ion transport within the electrodes. From the time-dependent concentration profiles inside the electrodes, the average value of the effective diffusion coefficient for gadolinium ions was estimated to be 2.09 ± 0.17 × 10(-11) m(2) s(-1) at 0 V and 1.42 ± 0.06 × 10(-10) m(2) s(-1) at 1.2 V. The values of the effective diffusion coefficient obtained from neutron imaging experiments can be used to evaluate model predictions of the ion transport rate in capacitive deionization and electrochemical energy-storage devices. PMID:23756558

  17. Ion Transporters and Abiotic Stress Tolerance in Plants

    PubMed Central

    Brini, Faïçal; Masmoudi, Khaled

    2012-01-01

    Adaptation of plants to salt stress requires cellular ion homeostasis involving net intracellular Na+ and Cl− uptake and subsequent vacuolar compartmentalization without toxic ion accumulation in the cytosol. Sodium ions can enter the cell through several low- and high-affinity K+ carriers. Some members of the HKT family function as sodium transporter and contribute to Na+ removal from the ascending xylem sap and recirculation from the leaves to the roots via the phloem vasculature. Na+ sequestration into the vacuole depends on expression and activity of Na+/H+ antiporter that is driven by electrochemical gradient of protons generated by the vacuolar H+-ATPase and the H+-pyrophosphatase. Sodium extrusion at the root-soil interface is presumed to be of critical importance for the salt tolerance. Thus, a very rapid efflux of Na+ from roots must occur to control net rates of influx. The Na+/H+ antiporter SOS1 localized to the plasma membrane is the only Na+ efflux protein from plants characterized so far. In this paper, we analyze available data related to ion transporters and plant abiotic stress responses in order to enhance our understanding about how salinity and other abiotic stresses affect the most fundamental processes of cellular function which have a substantial impact on plant growth development. PMID:27398240

  18. An improved Green's function for ion beam transport

    NASA Technical Reports Server (NTRS)

    Tweed, J.; Wilson, J. W.; Tripathi, R. K.

    2004-01-01

    Ion beam transport theory allows testing of material transmission properties in the laboratory environment generated by particle accelerators. This is a necessary step in materials development and evaluation for space use. The approximations used in solving the Boltzmann transport equation for the space setting are often not sufficient for laboratory work and those issues are the main emphasis of the present work. In consequence, an analytic solution of the linear Boltzmann equation is pursued in the form of a Green's function allowing flexibility in application to a broad range of boundary value problems. It has been established that simple solutions can be found for high charge and energy (HZE) ions by ignoring nuclear energy downshifts and dispersion. Such solutions were found to be supported by experimental evidence with HZE ion beams when multiple scattering was added. Lacking from the prior solutions were range and energy straggling and energy downshift with dispersion associated with nuclear events. Recently, we have found global solutions including these effects providing a broader class of HZE ion solutions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  19. Validation of Heavy Ion Transport Capabilities in PHITS

    NASA Astrophysics Data System (ADS)

    Ronningen, Reginald M.

    2007-03-01

    The performance of the Monte Carlo code system PHITS is validated for heavy ion transport capabilities by performing simulations and comparing results against experimental data from heavy ion reactions of benchmark quality. These data are from measurements of secondary neutron production cross sections in reactions of Xe at 400 MeV/u with lithium and lead targets, measurements of neutrons outside of thick concrete and iron shields, and measurements of isotope yields produced in the fragmentation of a 140 MeV/u 48Ca beam on a beryllium target and on a tantalum target. A practical example that tests magnetic field capabilities is shown for a simulated 48Ca beam at 500 MeV/u striking a lithium target to produce the rare isotope 44Si, with ion transport through a fragmentation-reaction magnetic pre-separator. The results of this study show that PHITS performs reliably for the simulation of radiation fields that is necessary for designing safe, reliable and cost effective future high-powered heavy-ion accelerators in rare isotope beam facilities.

  20. Validation of Heavy Ion Transport Capabilities in PHITS

    SciTech Connect

    Ronningen, Reginald M.

    2007-03-19

    The performance of the Monte Carlo code system PHITS is validated for heavy ion transport capabilities by performing simulations and comparing results against experimental data from heavy ion reactions of benchmark quality. These data are from measurements of secondary neutron production cross sections in reactions of Xe at 400 MeV/u with lithium and lead targets, measurements of neutrons outside of thick concrete and iron shields, and measurements of isotope yields produced in the fragmentation of a 140 MeV/u 48Ca beam on a beryllium target and on a tantalum target. A practical example that tests magnetic field capabilities is shown for a simulated 48Ca beam at 500 MeV/u striking a lithium target to produce the rare isotope 44Si, with ion transport through a fragmentation-reaction magnetic pre-separator. The results of this study show that PHITS performs reliably for the simulation of radiation fields that is necessary for designing safe, reliable and cost effective future high-powered heavy-ion accelerators in rare isotope beam facilities.

  1. Lithium-ion transport in inorganic solid state electrolyte

    NASA Astrophysics Data System (ADS)

    Jian, Gao; Yu-Sheng, Zhao; Si-Qi, Shi; Hong, Li

    2016-01-01

    An overview of ion transport in lithium-ion inorganic solid state electrolytes is presented, aimed at exploring and designing better electrolyte materials. Ionic conductivity is one of the most important indices of the performance of inorganic solid state electrolytes. The general definition of solid state electrolytes is presented in terms of their role in a working cell (to convey ions while isolate electrons), and the history of solid electrolyte development is briefly summarized. Ways of using the available theoretical models and experimental methods to characterize lithium-ion transport in solid state electrolytes are systematically introduced. Then the various factors that affect ionic conductivity are itemized, including mainly structural disorder, composite materials and interface effects between a solid electrolyte and an electrode. Finally, strategies for future material systems, for synthesis and characterization methods, and for theory and calculation are proposed, aiming to help accelerate the design and development of new solid electrolytes. Project supported by the National Natural Science Foundation of China (Grant No. 51372228), the Shanghai Pujiang Program, China (Grant No. 14PJ1403900), and the Shanghai Institute of Materials Genome from the Shanghai Municipal Science and Technology Commission, China (Grant No. 14DZ2261200).

  2. Transport of intense beams of highly charged ions

    NASA Astrophysics Data System (ADS)

    Winkler, M.; Gammino, S.; Ciavola, G.; Celona, L.; Spadtke, P.; Tinschert, K.

    2005-10-01

    The new generation of ion sources delivers beams with intensities of several mA. This requires a careful design of the analysing system and the low-energy beam transport (LEBT) from the source to the subsequent systems. At INFN-LNS, high intensity proton sources (TRIPS [L. Celona, G. Ciavola, S. Gammino et al ., Rev. Sci. Instrum. 75(5) 1423 (2004)], PM-TRIPS [G. Ciavola, L. Celona, S. Gammino et al ., Rev. Sci. Instrum. 75(5) 1453 (2004)]) as well as ECR ion sources for the production of highly charged high-intensity heavy ion beams are developed (SERSE [S. Gammino, G. Ciavola, L. Celona et al ., Rev. Sci. Instrum. 72(11) 4090 (2001), and references therein], GyroSERSE [S. Gammino et al ., Rev. Sci. Instrum. 75(5) 1637 (2004)], MS-ECRIS [G. Ciavola et al ., (2005), 11th Int. Conf. on Ion Sources, Caen, (in press)]). In this paper, we present ion-optical design studies of various LEBT systems for ion-sources devoted to the production of intense beams. Calculations were performed using the computer codes GIOS [H. Wollnik, J. Brezina and M. Berz, NIM A 258 (1987)], GICO [M. Berz, H.C. Hoffmann, and H. Wollnik, NIM A 258 (1987)], and TRANSPORT [K.L. Brown, F. Rothacker and D.C. Carey, SLAC-R-95-462, Fermilab-Pub-95/069, UC-414 (1995)]. Simulations take into account the expected phase space growth of the beam emittance due to space-charge effects and image aberrations introduced by the magnetic elements.

  3. The high current transport experiment for heavy ion inertial fusion

    SciTech Connect

    Prost, L.R.; Baca, D.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Henestroza, E.; Kwan, J.W.; Leitner, M.; Seidl, P.A.; Waldron, W.L.; Cohen, R.; Friedman, A.; Grote, D.; Lund, S.M.; Molvik, A.W.; Morse, E.

    2004-05-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density {approx} 0.2 {micro}C/m) over long pulse durations (4 {micro}s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K{sup +} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor ({approx}80%) is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low) nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  4. Ion Surfing: A new ion transport method for cryogenic gas catchers, simulations

    NASA Astrophysics Data System (ADS)

    Gehring, Amanda; Bollen, Georg; Brodeur, Maxime; Morrissey, Dave; Pang, Gregory

    2011-10-01

    Gas cells are the tool of choice to thermalize fast rare ion beams produced at projectile fragmentation facilities. After passing through solid degraders, the residual kinetic energy of the ions is dissipated through collisions with the gas atoms and ionization. Previously, ions were directed through a gas cell along a descending electrostatic potential gradient called a ``drag field.'' Some cells apply a drag field over electrodes with alternating (RF) fields to prevent the rare ions from colliding with the walls. ``Ion surfing'' is a new method proposed by Bollen which replaces the drag field with a traveling wave superimposed with RF on numerous, thin electrodes. Large potential differences are no longer required for transport over long distances, and the traveling wave can transport ions at a greater speed. This method is being tested for the new cryogenic linear gas cell of the National Superconducting Cyclotron Laboratory at Michigan State University. We will present the concept and simulation results. Work supported by the National Science Foundation and Department of Energy.

  5. Final Report - Ion Production and Transport in Atmospheric Pressure Ion Source Mass Spectrometers

    SciTech Connect

    Farnsworth, Paul B.; Spencer, Ross L.

    2014-05-14

    This document is the final report on a project that focused in the general theme of atmospheric-pressure ion production and transport for mass spectrometry. Within that general theme there were two main projects: the fundamental study of the transport of elemental ions through the vacuum interface of an inductively coupled plasma mass spectrometer (ICPMS), and fundamental studies of the ionization mechanisms in ambient desorption/ionization (ADI) sources for molecular mass spectrometry. In both cases the goal was to generate fundamental understanding of key instrumental processes that would lead to the development of instruments that were more sensitive and more consistent in their performance. The emphasis on consistency derives from the need for instruments that have the same sensitivity, regardless of sample type. In the jargon of analytical chemistry, such instruments are said to be free from matrix effects. In the ICPMS work each stage of ion production and of ion transport from the atmospheric pressure to the high-vacuum mass analyzer was studied. Factors controlling ion transport efficiency and consistency were identified at each stage of pressure reduction. In the ADI work the interactions between an electrospray plume and a fluorescent sample on a surface were examined microscopically. A new mechanism for analyte ion production in desorption electrospray ionization (DESI) was proposed. Optical spectroscopy was used to track the production of reactive species in plasmas used as ADI sources. Experiments with mixed-gas plasmas demonstrated that the addition of a small amount of hydrogen to a helium ADI plasma could boost the sensitivity for some analytes by over an order of magnitude.

  6. A Green's function method for heavy ion beam transport

    NASA Technical Reports Server (NTRS)

    Shinn, J. L.; Wilson, J. W.; Schimmerling, W.; Shavers, M. R.; Miller, J.; Benton, E. V.; Frank, A. L.; Badavi, F. F.

    1995-01-01

    The use of Green's function has played a fundamental role in transport calculations for high-charge high-energy (HZE) ions. Two recent developments have greatly advanced the practical aspects of implementation of these methods. The first was the formulation of a closed-form solution as a multiple fragmentation perturbation series. The second was the effective summation of the closed-form solution through nonperturbative techniques. The nonperturbative methods have been recently extended to an inhomogeneous, two-layer transport media to simulate the lead scattering foil present in the Lawrence Berkeley Laboratories (LBL) biomedical beam line used for cancer therapy. Such inhomogeneous codes are necessary for astronaut shielding in space. The transport codes utilize the Langley Research Center atomic and nuclear database. Transport code and database evaluation are performed by comparison with experiments performed at the LBL Bevalac facility using 670 A MeV 20Ne and 600 A MeV 56Fe ion beams. The comparison with a time-of-flight and delta E detector measurement for the 20Ne beam and the plastic nuclear track detectors for 56Fe show agreement up to 35%-40% in water and aluminium targets, respectively.

  7. A Green's function method for heavy ion beam transport.

    PubMed

    Shinn, J L; Wilson, J W; Schimmerling, W; Shavers, M R; Miller, J; Benton, E V; Frank, A L; Badavi, F F

    1995-08-01

    The use of Green's function has played a fundamental role in transport calculations for high-charge high-energy (HZE) ions. Two recent developments have greatly advanced the practical aspects of implementation of these methods. The first was the formulation of a closed-form solution as a multiple fragmentation perturbation series. The second was the effective summation of the closed-form solution through nonperturbative techniques. The nonperturbative methods have been recently extended to an inhomogeneous, two-layer transport media to simulate the lead scattering foil present in the Lawrence Berkeley Laboratories (LBL) biomedical beam line used for cancer therapy. Such inhomogeneous codes are necessary for astronaut shielding in space. The transport codes utilize the Langley Research Center atomic and nuclear database. Transport code and database evaluation are performed by comparison with experiments performed at the LBL Bevalac facility using 670 A MeV 20Ne and 600 A MeV 56Fe ion beams. The comparison with a time-of-flight and delta E detector measurement for the 20Ne beam and the plastic nuclear track detectors for 56Fe show agreement up to 35%-40% in water and aluminium targets, respectively. PMID:7480630

  8. Test particle study of ion transport in drift type turbulence

    SciTech Connect

    Vlad, M.; Spineanu, F.

    2013-12-15

    Ion transport regimes in drift type turbulence are determined in the frame of a realistic model for the turbulence spectrum based on numerical simulations. The model includes the drift of the potential with the effective diamagnetic velocity, turbulence anisotropy, and dominant waves. The effects of the zonal flow modes are also analyzed. A semi-analytical method that is able to describe trajectory stochastic trapping or eddying is used for obtaining the transport coefficients as function of the parameters of the turbulence. Analytical approximations of the transport coefficients are derived from the results. They show the transition from Bohm to gyro-Bohm scaling as plasma size increases in very good agreement with the numerical simulations.

  9. Ion Transport Dynamics in Acid Variable Charge Subsoils

    SciTech Connect

    Qafoku, Nik; Sumner, Malcolm E.; Toma, Mitsuru

    2005-06-06

    This is a mini-review of the research work conducted by the authors with the objective of studying ion transport in variable charge subsoils collected from different areas around the world. An attempt is made in these studies to relate the unique behavior manifested during ionic transport in these subsoils with their mineralogical, physical and chemical properties, which are markedly different from those in soils from temperate regions. The variable charge subsoils have a relatively high salt sorption capacity and anion exchange capacity (AEC) that retards anions downward movement. The AEC correlates closely with the anion retardation coefficients. Ca2+ applied with gypsum in topsoil may be transported to the subsoil and may improve the subsoil chemical properties. These results may help in developing appropriate management strategies under a range of mineralogical, physical, and chemical conditions.

  10. Suprathermal ion transport in simple magnetized torus configurations

    SciTech Connect

    Gustafson, K.; Ricci, P.; Bovet, A.; Furno, I.; Fasoli, A.

    2012-06-15

    Inspired by suprathermal ion experiments in the basic plasma experiment TORPEX, the transport of suprathermal ions in ideal interchange mode turbulence is theoretically examined in the simple magnetized torus configuration. We follow ion tracer trajectories as specified by ideal interchange mode turbulence imported from a numerical simulation of drift-reduced Braginskii equations. Using the variance of displacements, {sigma}{sup 2}(t){approx}t{sup {gamma}}, we find that {gamma} depends strongly on suprathermal ion injection energy and the relative magnitude of turbulent fluctuations. The value of {gamma} also changes significantly as a function of time after injection, through three distinguishable phases: ballistic, interaction, and asymmetric. During the interaction phase, we find the remarkable presence of three regimes of dispersion: superdiffusive, diffusive, and subdiffusive, depending on the energy of the suprathermal ions and the amplitude of the turbulent fluctuations. We contrast these results with those from a 'slab' magnetic geometry in which subdiffusion does not occur during the interaction phase. Initial results from TORPEX are consistent with data from a new synthetic diagnostic used to interpret our simulation results. The simplicity of the simple magnetized torus makes the present work of interest to analyses of more complicated contexts ranging from fusion devices to astrophysics and space plasma physics.

  11. Transport of energetic ions by low-n magnetic perturbations

    SciTech Connect

    Mynick, H.E.

    1992-10-01

    The stochastic transport of MeV ions induced by low-n magnetic perturbations is studied, focussing chiefly on the stochastic mechanism operative for passing particles in low frequency perturbations. Beginning with a single-harmonic form for the perturbing field, it iii first shown numerically and analytically that the stochastic threshold of energetic particles can be much lower than that of the magnetic field, contrary to earlier expectations, so that MHD perturbations could cause appreciable loss of energetic ions without destroying the bulk confinement. The analytic theory is then extended in a number of directions, to darity the relation of the present stochaistic mechanism to instances already found, to allow for more complex perturbations, and to consider the more general relationship between the stochasticity of magnetic fields, and that of particles of differing energies (and pitch angles) moving in those fields. It is shown that the stochastic threshold is in general a nonmonotonic function of energy, whose form can to some extent be tailored to achieve desired goals (e.g., burn control or ash removal) by a judicious choice of the perturbation. Illustrative perturbations are exhibited which are stochastic for low but not for high-energy ions, for high but not for low-energy ions, and for intermediate-energy ions, but not for low or high energy. The second possibility is the behavior needed for burn control; the third provides a possible mechanism for ash removal.

  12. Stormtime transport of ring current and radiation belt ions

    NASA Technical Reports Server (NTRS)

    Chen, Margaret W.; Schulz, Michael; Lyons, L. R.; Gorney, David J.

    1993-01-01

    This is an investigation of stormtime particle transport that leads to formation of the ring current. Our method is to trace the guiding-center motion of representative ions (having selected first adiabatic invariants mu) in response to model substorm-associated impulses in the convection electric field. We compare our simulation results qualitatively with existing analytically tractable idealizations of particle transport (direct convective access and radial diffusion) in order to assess the limits of validity of these approximations. For mu approximately less than 10 MeV/G (E approximately less than 10 keV at L equivalent to 3) the ion drift period on the final (ring-current) drift shell of interest (L equivalent to 3) exceeds the duration of the main phase of our model storm, and we find that the transport of ions to this drift shell is appropriately idealized as direct convective access, typically from open drift paths. Ion transport to a final closed drift path from an open (plasma-sheet) drift trajectory is possible for those portions of that drift path that lie outside the mean stormtime separatrix between closed and open drift trajectories, For mu approximately 10-25 MeV/G (110 keV approximately less than E approximately less than 280 keV at L equivalent to 3) the drift period at L equivalent to 3 is comparable to the postulated 3-hr duration of the storm, and the mode of transport is transitional between direct convective access and transport that resembles radial diffusion. (This particle population is transitional between the ring current and radiation belt). For mu approximately greater than 25 MeV/G (radiation-belt ions having E approximately greater than 280 keV at L equivalent to 3) the ion drift period is considerably shorter than the main phase of a typical storm, and ions gain access to the ring-current region essentially via radial diffusion. By computing the mean and mean-square cumulative changes in 1/L among (in this case) 12 representative

  13. Gene transfer of CFTR to airway epithelia: low levels of expression are sufficient to correct Cl- transport and overexpression can generate basolateral CFTR.

    PubMed

    Farmen, Sara L; Karp, Philip H; Ng, Philip; Palmer, Donna J; Koehler, David R; Hu, Jim; Beaudet, Arthur L; Zabner, Joseph; Welsh, Michael J

    2005-12-01

    Gene transfer of CFTR cDNA to airway epithelia is a promising approach to treat cystic fibrosis (CF). Most gene transfer vectors use strong viral promoters even though the endogenous CFTR promoter is very weak. To learn whether expressing CFTR at a low level in a fraction of cells would correct Cl(-) transport, we mixed freshly isolated wild-type and CF airway epithelial cells in varying proportions and generated differentiated epithelia. Epithelia with approximately 20% wild-type cells generated approximately 70% the transepithelial Cl(-) current of epithelia containing 100% wild-type cells. These data were nearly identical to those previously obtained with CFTR expressed under control of a strong promoter in a CF epithelial cell line. We also tested high level CFTR expression using the very strong cytomegalovirus (CMV) promoter as well as the cytokeratin-18 (K18) promoter. In differentiated airway epithelia, the CMV promoter generated 50-fold more transgene expression than the K18 promoter, but the K18 promoter generated more transepithelial Cl(-) current at high vector doses. Using functional studies, we found that with marked overexpression, some CFTR channels were present in the basolateral membrane where they shunted Cl(-) flow, thereby reducing net transepithelial Cl(-) transport. These results suggest that very little CFTR is required in a fraction of CF epithelial cells to complement Cl(-) transport because transepithelial Cl(-) flow is limited at the basolateral membrane. Thus they suggest a broad leeway in promoter strength for correcting the CF gene transfer, although at very high expression levels CFTR may be mislocalized to the basolateral membrane. PMID:16085675

  14. AMP-activated protein kinase (AMPK)–dependent and –independent pathways regulate hypoxic inhibition of transepithelial Na+ transport across human airway epithelial cells

    PubMed Central

    Tan, CD; Smolenski, RT; Harhun, MI; Patel, HK; Ahmed, SG; Wanisch, K; Yáñez-Muñoz, RJ; Baines, DL

    2012-01-01

    BACKGROUND AND PURPOSE Pulmonary transepithelial Na+ transport is reduced by hypoxia, but in the airway the regulatory mechanisms remain unclear. We investigated the role of AMPK and ROS in the hypoxic regulation of apical amiloride-sensitive Na+ channels and basolateral Na+K+ ATPase activity. EXPERIMENTAL APPROACH H441 human airway epithelial cells were used to examine the effects of hypoxia on Na+ transport, AMP : ATP ratio and AMPK activity. Lentiviral constructs were used to modify cellular AMPK abundance and activity; pharmacological agents were used to modify cellular ROS. KEY RESULTS AMPK was activated by exposure to 3% or 0.2% O2 for 60 min in cells grown in submerged culture or when fluid (0.1 mL·cm−2) was added to the apical surface of cells grown at the air–liquid interface. Only 0.2% O2 activated AMPK in cells grown at the air–liquid interface. AMPK activation was associated with elevation of cellular AMP : ATP ratio and activity of the upstream kinase LKB1. Hypoxia inhibited basolateral ouabain-sensitive Isc (Iouabain) and apical amiloride-sensitive Na+ conductance (GNa+). Modification of AMPK activity prevented the effect of hypoxia on Iouabain (Na+K+ ATPase) but not apical GNa+. Scavenging of superoxide and inhibition of NADPH oxidase prevented the effect of hypoxia on apical GNa+ (epithelial Na+ channels). CONCLUSIONS AND IMPLICATIONS Hypoxia activates AMPK-dependent and -independent pathways in airway epithelial cells. Importantly, these pathways differentially regulate apical Na+ channels and basolateral Na+K+ ATPase activity to decrease transepithelial Na+ transport. Luminal fluid potentiated the effect of hypoxia and activated AMPK, which could have important consequences in lung disease conditions. PMID:22509822

  15. Evidence for ion transport and molecular ion dominance in the Venus ionotail

    NASA Technical Reports Server (NTRS)

    Intriligator, D. S.; Brace, L. H.; Cloutier, P. A.; Grebowsky, J. M.; Hartle, R. E.; Kasprzak, W. T.; Knudsen, W. C.; Strangeway, R. J.

    1994-01-01

    We present analyses from the five Pioneer Venus Orbiter plasma experiments and the plasma wave experiment when a patch of plasma with enhanced densities was encountered in the near-Venus ionotail during atmospheric entry at an altitude of approximately 1100 km in the nightside ionosphere. Our analyses of the thermal and superthermal ion measurements in this plasma feature provides the first evidence that at times molecular ions in the 28-32 amu mass range are dominant over atomic mass species thus yielding evidence for a transport mechanism that reaches into the lower ionosphere. Analysis of plasma analyzer (OPA) observations at this time indicates the presence of ions measured in the rest frame of the spacecraft at approximately 27 and 37 volt energy per unit charge steps. In the rest frame of the planet these superthermal ions are flowing from the dawn direction at speeds (assuming they are O2(+)) of approximately 8 km/s and with a flow component downward (perpendicular to the ecliptic plane) at speeds of approximately 2 km/s. OPA analyses also determine the ion number flux, energy, flow angles, and angular distributions. Plasma wave bursts appear to indicate that plasma density decreases within and on the equatorward edge of the patch of enhanced plasma densities are associated with ion acoustic waves and relative ion streaming.

  16. Simulation of ion beam transport through the 400 Kv ion implanter at Michigan Ion Beam Laboratory

    SciTech Connect

    Naab, F. U.; Toader, O. F.; Was, G. S.

    2013-04-19

    The Michigan Ion Beam Laboratory houses a 400 kV ion implanter. An application that simulates the ion beam trajectories through the implanter from the ion source to the target was developed using the SIMION Registered-Sign code. The goals were to have a tool to develop an intuitive understanding of abstract physics phenomena and diagnose ion trajectories. Using this application, new implanter users of different fields in science quickly understand how the machine works and quickly learn to operate it. In this article we describe the implanter simulation application and compare the parameters of the implanter components obtained from the simulations with the measured ones. The overall agreement between the simulated and measured values of magnetic fields and electric potentials is {approx}10%.

  17. An Improved Green's Function for Ion Beam Transport

    NASA Technical Reports Server (NTRS)

    Tweed, J.; Wilson, J. W.; Tripathi, R. K.

    2003-01-01

    Ion beam transport theory allows testing of material transmission properties in the laboratory environment generated by particle accelerators. This is a necessary step in materials development and evaluation for space use. The approximations used in solving the Boltzmann transport equation for the space setting are often not sufficient for laboratory work and those issues are the main emphasis of the present work. In consequence, an analytic solution of the linear Boltzmann equation is pursued in the form of a Green's function allowing flexibility in application to a broad range of boundary value problems. It has been established that simple solutions can be found for the high charge and energy (HZE) by ignoring nuclear energy downshifts and dispersion. Such solutions were found to be supported by experimental evidence with HZE ion beams when multiple scattering was added. Lacking from the prior solutions were range and energy straggling and energy downshift with dispersion associated with nuclear events. Recently, we have found global solutions including these effects providing a broader class of HZE ion solutions.

  18. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.

    PubMed

    Guo, Wei; Tian, Ye; Jiang, Lei

    2013-12-17

    Both scientists and engineers are interested in the design and fabrication of synthetic nanofluidic architectures that mimic the gating functions of biological ion channels. The effort to build such structures requires interdisciplinary efforts at the intersection of chemistry, materials science, and nanotechnology. Biological ion channels and synthetic nanofluidic devices have some structural and chemical similarities, and therefore, they share some common features in regulating the traverse ionic flow. In the past decade, researchers have identified two asymmetric ion transport phenomena in synthetic nanofluidic structures, the rectified ionic current and the net diffusion current. The rectified ionic current is a diode-like current-voltage response that occurs when switching the voltage bias. This phenomenon indicates a preferential direction of transport in the nanofluidic system. The net diffusion current occurs as a direct product of charge selectivity and is generated from the asymmetric diffusion through charged nanofluidic channels. These new ion transport phenomena and the elaborate structures that occur in biology have inspired us to build functional nanofluidic devices for both fundamental research and practical applications. In this Account, we review our recent progress in the design and fabrication of biomimetic solid-state nanofluidic devices with asymmetric ion transport behavior. We demonstrate the origin of the rectified ionic current and the net diffusion current. We also identify several influential factors and discuss how to build these asymmetric features into nanofluidic systems by controlling (1) nanopore geometry, (2) surface charge distribution, (3) chemical composition, (4) channel wall wettability, (5) environmental pH, (6) electrolyte concentration gradient, and (7) ion mobility. In the case of the first four features, we build these asymmetric features directly into the nanofluidic structures. With the final three, we construct

  19. Overview of Particle and Heavy Ion Transport Code System PHITS

    NASA Astrophysics Data System (ADS)

    Sato, Tatsuhiko; Niita, Koji; Matsuda, Norihiro; Hashimoto, Shintaro; Iwamoto, Yosuke; Furuta, Takuya; Noda, Shusaku; Ogawa, Tatsuhiko; Iwase, Hiroshi; Nakashima, Hiroshi; Fukahori, Tokio; Okumura, Keisuke; Kai, Tetsuya; Chiba, Satoshi; Sihver, Lembit

    2014-06-01

    A general purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS, is being developed through the collaboration of several institutes in Japan and Europe. The Japan Atomic Energy Agency is responsible for managing the entire project. PHITS can deal with the transport of nearly all particles, including neutrons, protons, heavy ions, photons, and electrons, over wide energy ranges using various nuclear reaction models and data libraries. It is written in Fortran language and can be executed on almost all computers. All components of PHITS such as its source, executable and data-library files are assembled in one package and then distributed to many countries via the Research organization for Information Science and Technology, the Data Bank of the Organization for Economic Co-operation and Development's Nuclear Energy Agency, and the Radiation Safety Information Computational Center. More than 1,000 researchers have been registered as PHITS users, and they apply the code to various research and development fields such as nuclear technology, accelerator design, medical physics, and cosmic-ray research. This paper briefly summarizes the physics models implemented in PHITS, and introduces some important functions useful for specific applications, such as an event generator mode and beam transport functions.

  20. Osmoregulation in zebrafish: ion transport mechanisms and functional regulation

    PubMed Central

    Guh, Ying-Jey; Lin, Chia-Hao; Hwang, Pung-Pung

    2015-01-01

    Fish, like mammals, have to maintain their body fluid ionic and osmotic homeostasis through sophisticated iono-/osmoregulation mechanisms, which are conducted mainly by ionocytes of the gill (the skin in embryonic stages), instead of the renal tubular cells in mammals. Given the advantages in terms of genetic database availability and manipulation, zebrafish is an emerging model for research into regulatory and integrative physiology. At least five types of ionocytes, HR, NaR, NCC, SLC26, and KS cells, have been identified to carry out Na+ uptake/H+ secretion/NH4+ excretion, Ca2+ uptake, Na+/Cl- uptake, K+ secretion, and Cl- uptake/HCO3- secretion, respectively, through distinct sets of transporters. Several hormones, namely isotocin, prolactin, cortisol, stanniocalcin-1, calcitonin, endothelin-1, vitamin D, parathyorid hormone 1, catecholamines, and the renin-angiotensin-system, have been demonstrated to positively or negatively regulate ion transport through specific receptors at different ionocytes stages, at either the transcriptional/translational or posttranslational level. The knowledge obtained using zebrafish answered many long-term contentious or unknown issues in the field of fish iono-/osmoregulation. The homology of ion transport pathways and hormone systems also means that the zebrafish model informs studies on mammals or other animal species, thereby providing insights into related fields. PMID:26600749

  1. Ion transport and softening in a polymerized ionic liquid

    DOE PAGESBeta

    Kumar, Rajeev; Bocharova, Vera; Strelcov, Evgheni; Tselev, Alexander; Kravchenko, Ivan I.; Berdzinski, Stefan; Strehmel, Veronika; Ovchinnikova, Olga S.; Minutolo, Joseph A.; Sangoro, Joshua R.; et al

    2014-11-13

    Polymerized ionic liquids (PolyILs) are promising materials for various solid state electronic applications such as dye-sensitized solar cells, lithium batteries, actuators, field-effect transistors, light emitting electrochemical cells, and electrochromic devices. However, fundamental understanding of interconnection between ionic transport and mechanical properties in PolyILs is far from complete. In this paper, local charge transport and structural changes in films of a PolyIL are studied using an integrated experiment-theory based approach. Experimental data for the kinetics of charging and steady state current–voltage relations can be explained by taking into account the dissociation of ions under an applied electric field (known as themore » Wien effect). Onsager's theory of the Wien effect coupled with the Poisson–Nernst–Planck formalism for the charge transport is found to be in excellent agreement with the experimental results. The agreement between the theory and experiments allows us to predict structural properties of the PolyIL films. We have observed significant softening of the PolyIL films beyond certain threshold voltages and formation of holes under a scanning probe microscopy (SPM) tip, through which an electric field was applied. Finally, the observed softening is explained by the theory of depression in glass transition temperature resulting from enhanced dissociation of ions with an increase in applied electric field.« less

  2. Ion transport and softening in a polymerized ionic liquid

    SciTech Connect

    Kumar, Rajeev; Bocharova, Vera; Strelcov, Evgheni; Tselev, Alexander; Kravchenko, Ivan I.; Berdzinski, Stefan; Strehmel, Veronika; Ovchinnikova, Olga S.; Minutolo, Joseph A.; Sangoro, Joshua R.; Agapov, Alexander L.; Sokolov, Alexei P.; Kalinin, Sergei V.; Sumpter, Bobby G.

    2014-11-13

    Polymerized ionic liquids (PolyILs) are promising materials for various solid state electronic applications such as dye-sensitized solar cells, lithium batteries, actuators, field-effect transistors, light emitting electrochemical cells, and electrochromic devices. However, fundamental understanding of interconnection between ionic transport and mechanical properties in PolyILs is far from complete. In this paper, local charge transport and structural changes in films of a PolyIL are studied using an integrated experiment-theory based approach. Experimental data for the kinetics of charging and steady state current–voltage relations can be explained by taking into account the dissociation of ions under an applied electric field (known as the Wien effect). Onsager's theory of the Wien effect coupled with the Poisson–Nernst–Planck formalism for the charge transport is found to be in excellent agreement with the experimental results. The agreement between the theory and experiments allows us to predict structural properties of the PolyIL films. We have observed significant softening of the PolyIL films beyond certain threshold voltages and formation of holes under a scanning probe microscopy (SPM) tip, through which an electric field was applied. Finally, the observed softening is explained by the theory of depression in glass transition temperature resulting from enhanced dissociation of ions with an increase in applied electric field.

  3. Heavy ion beam transport in an inertial confinement fusion reactor

    SciTech Connect

    Barboza, N.

    1995-08-01

    A new code, bimc, is under development to determine if a beam of heavy ions can be focused to the necessary spot-size radius of about 2 mm within an inertial confinement reactor chamber where the background gas densities are on the order of 10{sup 14}--10{sup 15} cm{sup {minus}3} Lithium (or equivalent). Beam transport is expected to be strongly affected by stripping and collective plasma phenomena; however, if propagation is possible in this regime, it could lead to simplified reactor designs. The beam is modeled using a 2 1/2 D particle-in-cell (PIC) simulation code coupled with a Monte Carlo (MC) method for analyzing collisions. The MC code follows collisions between the beam ions and neutral background gas atoms that account for the generation of electrons and background gas ions (ionization), and an increase of the charge state of the beam ions (stripping). The PIC code models the complete dynamics of the interaction of the various charged particle species with the self generated electromagnetic fields. Details of the code model and preliminary results are presented.

  4. Site of Fluid Secretion in Small Airways.

    PubMed

    Flores-Delgado, Guillermo; Lytle, Christian; Quinton, Paul M

    2016-03-01

    The secretion and management of readily transportable airway surface liquid (ASL) along the respiratory tract is crucial for the clearance of debris and pathogens from the lungs. In proximal large airways, submucosal glands (SMGs) can produce ASL. However, in distal small airways, SMGs are absent, although the lumens of these airways are, uniquely, highly plicated. Little is known about the production and maintenance of ASL in small airways, but using electrophysiology, we recently found that native porcine small airways simultaneously secrete and absorb. How these airways can concurrently transport ASL in opposite directions is puzzling. Using high expression of the Na-K-2Cl cotransport (NKCC) 1 protein (SLC12a2) as a phenotypic marker for fluid secretory cells, immunofluorescence microscopy of porcine small airways revealed two morphologically separated sets of luminal epithelial cells. NKCC1 was abundantly expressed by most cells in the contraluminal regions of the pleats but highly expressed very infrequently by cells in the luminal folds of the epithelial plications. In larger proximal airways, the acini of SMGs expressed NKCC1 prominently, but cells expressing NKCC1 in the surface epithelium were sparse. Our findings indicate that, in the small airway, cells in the pleats of the epithelium secrete ASL, whereas, in the larger proximal airways, SMGs mainly secrete ASL. We propose a mechanism in which the locations of secretory cells in the base of pleats and of absorptive cells in luminal folds physically help maintain a constant volume of ASL in small airways. PMID:26562629

  5. Mechanisms and scalings of energetic ion transport via tokamak microturbulence

    SciTech Connect

    Hauff, T.; Jenko, F.

    2008-11-15

    The turbulent ExB advection of energetic ions in three-dimensional tokamak geometry is investigated both analytically and numerically. It is shown that orbit averaging (leading to a significant reduction of the diffusivity) is only valid for low magnetic shear. At moderate or high magnetic shear, a rather slow decrease of the diffusivity is found, proportional to (E/T{sub e}){sup -1} or (E/T{sub e}){sup -1.5} for particles with a large or small parallel velocity component, respectively. The decorrelation mechanisms responsible for this behavior are studied and explained in detail. Moreover, it is found that resonances between the toroidal drift of the particles and the diamagnetic drift of the turbulence can lead to an enhancement of the fast ion transport.

  6. Differentiation of human bronchial epithelial cells: role of hydrocortisone in development of ion transport pathways involved in mucociliary clearance.

    PubMed

    Zaidman, Nathan A; Panoskaltsis-Mortari, Angela; O'Grady, Scott M

    2016-08-01

    Glucocorticoids strongly influence the mucosal-defense functions performed by the bronchial epithelium, and inhaled corticosteroids are critical in the treatment of patients with inflammatory airway diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis. A common pathology associated with these diseases is reduced mucociliary clearance, a defense mechanism involving the coordinated transport of salt, water, and mucus by the bronchial epithelium, ultimately leading to retention of pathogens and particles in the airways and to further disease progression. In the present study we investigated the role of hydrocortisone (HC) in differentiation and development of the ion transport phenotype of normal human bronchial epithelial cells under air-liquid interface conditions. Normal human bronchial epithelial cells differentiated in the absence of HC (HC0) showed significantly less benzamil-sensitive short-circuit current than controls, as well as a reduced response after stimulation with the selective β2-adrenergic receptor agonist salbutamol. Apical membrane localization of epithelial Na(+) channel α-subunits was similarly reduced in HC0 cells compared with controls, supporting a role of HC in the trafficking and density of Na(+) channels in the plasma membrane. Additionally, glucocorticoid exposure during differentiation regulated the transcription of cystic fibrosis transmembrane conductance regulator and β2-adrenergic receptor mRNAs and appeared to be necessary for the expression of cystic fibrosis transmembrane conductance regulator-dependent anion secretion in response to β2-agonists. HC had no significant effect on surface cell differentiation but did modulate the expression of mucin mRNAs. These findings indicate that glucocorticoids support mucosal defense by regulating critical transport pathways essential for effective mucociliary clearance. PMID:27306366

  7. Cell signaling and ion transport across the fish gill epithelium.

    PubMed

    Evans, David H

    2002-08-01

    A large array of circulating and local signaling agents modulate transport of ions across the gill epithelium of fishes by either affecting transport directly or by altering the size and distribution of transporting cells in the epithelium. In some cases, these transport effects are in addition to cardiovascular effects of the same agents, which may affect the perfusion pathways in the gill vasculature and, in turn, affect epithelial transport indirectly. Prolactin is generally considered to function in freshwater, because it is the only agent that allows survival of some hypophysectomized fish species in freshwater. It appears to function by either reducing branchial permeability, Na,K-activated ATPase activity, or reducing the density of chloride cells. Cortisol was initially considered to produce virtually opposite effects (e.g., stimulation of Na,K-activated ATPase and of chloride cell size and density), but more recent studies have found that this steroid stimulates ionic uptake in freshwater fishes, as well as the activity of H-ATPase, an enzyme thought to be central to ionic uptake. Thus, cortisol may function in both high and low salinities. Growth hormone and insulin-like growth factor appear to act synergistically to affect ion regulation in seawater fishes, stimulating both Na,K-activated ATPase and Na-K-2Cl co-transporter activity, and chloride cell size, independent of their effects on growth. Some of the effects of the GH-IGF axis may be via stimulation of the number of cortisol receptors. Thyroid hormones appear to affect seawater ion regulation indirectly, by stimulating the GH-IGF axis. Natriuretic peptides were initially thought to stimulate gill ionic extrusion, but recent studies have not corroborated this finding, so it appears that the major mode of action of these peptides may be reduction of salt loading by inhibition of oral ingestion and intestinal ionic uptake. Receptors for both arginine vasotocin and angiotensin have been described in

  8. Energetic O+ and H+ Ions in the Plasma Sheet: Implications for the Transport of Ionospheric Ions

    NASA Technical Reports Server (NTRS)

    Ohtani, S.; Nose, M.; Christon, S. P.; Lui, A. T.

    2011-01-01

    The present study statistically examines the characteristics of energetic ions in the plasma sheet using the Geotail/Energetic Particle and Ion Composition data. An emphasis is placed on the O+ ions, and the characteristics of the H+ ions are used as references. The following is a summary of the results. (1) The average O+ energy is lower during solar maximum and higher during solar minimum. A similar tendency is also found for the average H+ energy, but only for geomagnetically active times; (2) The O+ -to -H+ ratios of number and energy densities are several times higher during solar maximum than during solar minimum; (3) The average H+ and O+ energies and the O+ -to -H+ ratios of number and energy densities all increase with geomagnetic activity. The differences among different solar phases not only persist but also increase with increasing geomagnetic activity; (4) Whereas the average H+ energy increases toward Earth, the average O+ energy decreases toward Earth. The average energy increases toward dusk for both the H+ and O+ ions; (5) The O+ -to -H+ ratios of number and energy densities increase toward Earth during all solar phases, but most clearly during solar maximum. These results suggest that the solar illumination enhances the ionospheric outflow more effectively with increasing geomagnetic activity and that a significant portion of the O+ ions is transported directly from the ionosphere to the near ]Earth region rather than through the distant tail.

  9. 8 GeV H- ions: Transport and injection

    SciTech Connect

    Chou, W.; Bryant, H.; Drozhdin, A.; Hill, C.; Kostin, M.; Macek, R.; Ostiguy, J.-F.; Rees, G.H.; Tang, Z.; Yoon, P.; /Fermilab /New Mexico U. /Los Alamos /Rutherford /Rochester U.

    2005-05-01

    Fermilab is working on the design of an 8 GeV superconducting RF H{sup -} linac called the Proton Driver. The energy of H{sup -} beam will be an order of magnitude higher than the existing ones. This brings up a number of technical challenges to transport and injection of H{sup -} ions. This paper will focus on the subjects of stripping losses (including stripping by blackbody radiation, field and residual gas) and carbon foil stripping efficiency, along with a brief discussion on other issues such as Stark states lifetime of hydrogen atoms, single and multiple Coulomb scattering, foil heating and stress, radiation activation, collimation and jitter correction, etc.

  10. Ion plateau transport near the tokamak magnetic axis

    SciTech Connect

    Shaing, K.C.; Hazeltine, R.D.

    1998-04-01

    Conventional neoclassical transport theory does not pertain near the magnetic axis, where orbital variation of the minor radius and the poloidal field markedly change the nature of guiding-center trajectories. Instead of the conventional tokamak banana-shaped trajectories, near-axis orbits, called potato orbits, are radially wider and lead to distinctive kinetic considerations. Here it is shown that there is a plateau regime for the near-axis case; the corresponding potato-plateau ion thermal conductivity is computed. {copyright} {ital 1998 American Institute of Physics.}

  11. Ion radial transport induced by ICRF waves in tokamaks

    SciTech Connect

    Chen, L.; Vaclavik, J.; Hammett, G.W.

    1987-05-01

    The wave-induced fluxes of energetic-trapped ions during ICRF heating of tokamak plasmas are calculated using quasilinear equations. A simple single particle model of this transport mechanism is also given. Both a convective flux proportional to k/sub phi/vertical bar E/sub +/vertical bar/sup 2/ and a diffusive flux proportional to k/sub phi//sup 2/vertical bar E/sub +/vertical bar/sup 2/ are found. Here, k/sub phi/ is the toroidal wave number and E/sub +/ is the left-hand polarized wave field. The convective flux may become significant for large k/sub phi/ if the wave spectrum is asymmetric in k/sub phi/. But for the conditions of most previous experiments, these calculations indicate that radial transport driven directly by the ICRF wave is unimportant.

  12. Nanoionics: ion transport and electrochemical storage in confined systems.

    PubMed

    Maier, J

    2005-11-01

    The past two decades have shown that the exploration of properties on the nanoscale can lead to substantially new insights regarding fundamental issues, but also to novel technological perspectives. Simultaneously it became so fashionable to decorate activities with the prefix 'nano' that it has become devalued through overuse. Regardless of fashion and prejudice, this article shows that the crystallizing field of 'nanoionics' bears the conceptual and technological potential that justifies comparison with the well-acknowledged area of nanoelectronics. Demonstrating this potential implies both emphasizing the indispensability of electrochemical devices that rely on ion transport and complement the world of electronics, and working out the drastic impact of interfaces and size effects on mass transfer, transport and storage. The benefits for technology are expected to lie essentially in the field of room-temperature devices, and in particular in artificial self-sustaining structures to which both nanoelectronics and nanoionics might contribute synergistically. PMID:16379070

  13. Ion temperature gradient driven transport in tokamaks with square shaping

    SciTech Connect

    Joiner, N.; Dorland, W.

    2010-06-15

    Advanced tokamak schemes which may offer significant improvement to plasma confinement on the usual large aspect ratio Dee-shaped flux surface configuration are of great interest to the fusion community. One possibility is to introduce square shaping to the flux surfaces. The gyrokinetic code GS2[Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1996)] is used to study linear stability and the resulting nonlinear thermal transport of the ion temperature gradient driven (ITG) mode in tokamak equilibria with square shaping. The maximum linear growth rate of ITG modes is increased by negative squareness (diamond shaping) and reduced by positive values (square shaping). The dependence of thermal transport produced by saturated ITG instabilities on squareness is not as clear. The overall trend follows that of the linear instability, heat and particle fluxes increase with negative squareness and decrease with positive squareness. This is contradictory to recent experimental results [Holcomb et al., Phys. Plasmas 16, 056116 (2009)] which show a reduction in transport with negative squareness. This may be reconciled as a reduction in transport (consistent with the experiment) is observed at small negative values of the squareness parameter.

  14. Ion transport and softening in a polymerized ionic liquid

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev; Bocharova, Vera; Strelcov, Evgheni; Tselev, Alexander; Kravchenko, Ivan I.; Berdzinski, Stefan; Strehmel, Veronika; Ovchinnikova, Olga S.; Minutolo, Joseph A.; Sangoro, Joshua R.; Agapov, Alexander L.; Sokolov, Alexei P.; Kalinin, Sergei V.; Sumpter, Bobby G.

    2014-12-01

    Polymerized ionic liquids (PolyILs) are promising materials for various solid state electronic applications such as dye-sensitized solar cells, lithium batteries, actuators, field-effect transistors, light emitting electrochemical cells, and electrochromic devices. However, fundamental understanding of interconnection between ionic transport and mechanical properties in PolyILs is far from complete. In this work, local charge transport and structural changes in films of a PolyIL are studied using an integrated experiment-theory based approach. Experimental data for the kinetics of charging and steady state current-voltage relations can be explained by taking into account the dissociation of ions under an applied electric field (known as the Wien effect). Onsager's theory of the Wien effect coupled with the Poisson-Nernst-Planck formalism for the charge transport is found to be in excellent agreement with the experimental results. The agreement between the theory and experiments allows us to predict structural properties of the PolyIL films. We have observed significant softening of the PolyIL films beyond certain threshold voltages and formation of holes under a scanning probe microscopy (SPM) tip, through which an electric field was applied. The observed softening is explained by the theory of depression in glass transition temperature resulting from enhanced dissociation of ions with an increase in applied electric field.Polymerized ionic liquids (PolyILs) are promising materials for various solid state electronic applications such as dye-sensitized solar cells, lithium batteries, actuators, field-effect transistors, light emitting electrochemical cells, and electrochromic devices. However, fundamental understanding of interconnection between ionic transport and mechanical properties in PolyILs is far from complete. In this work, local charge transport and structural changes in films of a PolyIL are studied using an integrated experiment-theory based approach

  15. Ion transport in a model gramicidin channel. Structure and thermodynamics.

    PubMed Central

    Roux, B; Karplus, M

    1991-01-01

    The potential of mean force for Na+ and K+ ions as a function of position in the interior of a periodic poly(L,D)-alanine model for the gramicidin beta-helix is calculated with a detailed atomic model and realistic interactions. The calculated free energy barriers are 4.5 kcal/mol for Na+ and 1.0 kcal/mol for K+. A decomposition of the free energy demonstrates that the water molecules make a significant contribution to the free energy of activation. There is an increase in entropy at the transition state associated with greater fluctuations. Analysis reveals that the free energy profile of ions in the periodic channel is controlled not by the large interaction energy involving the ion but rather by the weaker water-water, water-peptide and peptide-peptide hydrogen bond interactions. The interior of the channel retains much of the solvation properties of a liquid in its interactions with the cations. Of particular importance is the flexibility of the helix, which permits it to respond to the presence of an ion in a fluidlike manner. The distortion of the helix is local (limited to a few carbonyls) because the structure is too flexible to transmit a perturbation to large distances. The plasticity of the structure (i.e., the property to deform without generating a large energy stress) appears to be an essential factor in the transport of ions, suggesting that a rigid helix model would be inappropriate. Images FIGURE 1 FIGURE 10 PMID:1714305

  16. Modeling Fast Ion Transport in TAE Avalanches in NSTX

    SciTech Connect

    Fredrickson, E D; Bell, R E; Darrow, D; Gorelenkov, N N; Kramer, G; Kubota, S; Levinton, F M; Liu, D; Medley, S S; Podesta, M; Tritz, K

    2009-08-17

    Experiments on the National Spherical Torus Experiment [M. Ono, et al., Nucl. Fusion 40 (2000) 557 ] have found strong bursts of Toroidal Alfven Eigenmode (TAE) activity correlated with abrupt drops in the neutron rate. A fairly complete data set offers the opportunity to benchmark the NOVA [C. Z. Cheng, Phys. Reports 211, 1-51 (1992)] and ORBIT [R. B. White and M. S. Chance, Phys. Fluids 27, 2455 (1984)] codes in the low aspect ratio tokamak (ST) geometry. The internal structure of TAE were modeled with NOVA and good agreement is found with measurements made with an array of five fixed-frequency reflectometers. The fast-ion transport resulting from these bursts of multiple TAE were then modeled with the ORBIT code. The simulations are reasonably consistent with the observed drop in neutron rate. While these results represent our best attempts to find agreement, we believe that further refinements in both the simulation of the TAE structure and in the modeling of the fast ion transport are needed. Benchmarking stability codes against present experiments is an important step in developing the predictive capability needed to plan future experiments.

  17. Shortcuts to Adiabaticity in Transport of a Single Trapped Ion

    NASA Astrophysics Data System (ADS)

    An, Shuoming; Lv, Dingshun; Campo, Adolfo Del; Kim, Kihwan

    2015-05-01

    We report an experimental study on shortcuts to adiabaticity in the transport of a single 171Yb+ ion trapped in a harmonic potential. In these driving schemes, the application of a force induces a nonadiabatic dynamics in which excitations are tailored so as to preserve the ion motional state in the ground state upon completion of the process. We experimentally apply the laser induced force and realize three different protocols: (1) a transitionless driving with a counterdiabatic term out of phase with the displacement force, (2) a classical protocol assisted by counterdiabatic fields in phase with the main force, (3) and an engineered transport protocol based on the Fourier transform of the trap acceleration. We experimentally compare and discuss the robustness of these protocols under given experimental limitations such as trap frequency drifts. This work was supported by the National Basic Research Program of China under Grants No. 2011CBA00300 (No. 2011CBA00301), the National Natural Science Foundation of China 11374178, and the University of Massachusetts Boston (No. P20150000029279).

  18. Effect of Ion Cyclotron Heating on Fast Ion Transport and Plasma Rotation in Tokamaks

    NASA Astrophysics Data System (ADS)

    Chan, V. S.; Omelchenko, Y. A.; Chiu, S. C.

    2000-10-01

    Minority ion cyclotron heating can produce energetic ions with banana orbits which are finite compared with the minor radius of a tokamak. The radial transport of the fast ions in the presence of Coulomb collisions results in a radial current and a corresponding JxB torque density on the bulk plasma. Collisions with the bulk ions provides an additional frictional torque that adds to or opposes the magnetic torque. This study clarifies the various mechanisms which can contribute to the torque components including collision-induced finite orbit particle diffusion, wave-induced asymmetry in canonical momentum when doppler resonance is accounted for, and orbit asymmetry created by magnetic geometry. Ion dynamics are calculated with a Monte-Carlo code in which wave-induced energy diffusion is accounted for by a quasilinear operator. The code follows particle drift trajectories in a tokamak geometry under the influence of RF fields and collisions with the background plasma. Questions on the direction of plasma rotation under different conditions and validity of the Green's function approach in modeling RF-induced rotation will be addressed.

  19. Biofilm-dependent airway infections: a role for ambroxol?

    PubMed

    Cataldi, M; Sblendorio, V; Leo, A; Piazza, O

    2014-08-01

    Biofilms are a key factor in the development of both acute and chronic airway infections. Their relevance is well established in ventilator associated pneumonia, one of the most severe complications in critically ill patients, and in cystic fibrosis, the most common lethal genetic disease in Caucasians. Accumulating evidence suggests that biofilms could have also a role in chronic obstructive pulmonary disease and their involvement in bronchiectasis has been proposed as well. When they grow in biofilms, microorganisms become multidrug-resistant. Therefore the treatment of biofilm-dependent airway infections is problematic. Indeed, it still largely based on measures aiming to prevent the formation of biofilms or remove them once that they are formed. Here we review recent evidence suggesting that the mucokinetic drug ambroxol has specific anti-biofilm properties. We also discuss how additional pharmacological properties of this drug could be beneficial in biofilm-dependent airway infections. Specifically, we review the evidence showing that: 1-ambroxol exerts anti-inflammatory effects by inhibiting at multiple levels the activity of neutrophils, and 2-it improves mucociliary clearance by interfering with the activity of airway epithelium ion channels and transporters including sodium/bicarbonate and sodium/potassium/chloride cotransporters, cystic fibrosis transmembrane conductance regulator and aquaporins. As a whole, the data that we review here suggest that ambroxol could be helpful in biofilm-dependent airway infections. However, considering the limited clinical evidence available up to date, further clinical studies are required to support the use of ambroxol in these diseases. PMID:24252805

  20. Nucleotide-mediated airway clearance.

    PubMed

    Schmid, Andreas; Clunes, Lucy A; Salathe, Mathias; Verdugo, Pedro; Dietl, Paul; Davis, C William; Tarran, Robert

    2011-01-01

    A thin layer of airway surface liquid (ASL) lines the entire surface of the lung and is the first point of contact between the lung and the environment. Surfactants contained within this layer are secreted in the alveolar region and are required to maintain a low surface tension and to prevent alveolar collapse. Mucins are secreted into the ASL throughout the respiratory tract and serve to intercept inhaled pathogens, allergens and toxins. Their removal by mucociliary clearance (MCC) is facilitated by cilia beating and hydration of the ASL by active ion transport. Throughout the lung, secretion, ion transport and cilia beating are under purinergic control. Pulmonary epithelia release ATP into the ASL which acts in an autocrine fashion on P2Y(2) (ATP) receptors. The enzymatic network describes in Chap. 2 then mounts a secondary wave of signaling by surface conversion of ATP into adenosine (ADO), which induces A(2B) (ADO) receptor-mediated responses. This chapter offers a comprehensive description of MCC and the extensive ramifications of the purinergic signaling network on pulmonary surfaces. PMID:21560046

  1. Identification of intestinal ion transport defects in microvillus inclusion disease.

    PubMed

    Kravtsov, Dmitri V; Ahsan, Md Kaimul; Kumari, Vandana; van Ijzendoorn, Sven C D; Reyes-Mugica, Miguel; Kumar, Anoop; Gujral, Tarunmeet; Dudeja, Pradeep K; Ameen, Nadia A

    2016-07-01

    Loss of function mutations in the actin motor myosin Vb (Myo5b) lead to microvillus inclusion disease (MVID) and death in newborns and children. MVID results in secretory diarrhea, brush border (BB) defects, villus atrophy, and microvillus inclusions (MVIs) in enterocytes. How loss of Myo5b results in increased stool loss of chloride (Cl(-)) and sodium (Na(+)) is unknown. The present study used Myo5b loss-of-function human MVID intestine, polarized intestinal cell models of secretory crypt (T84) and villus resembling (CaCo2BBe, C2BBe) enterocytes lacking Myo5b in conjunction with immunofluorescence confocal stimulated emission depletion (gSTED) imaging, immunohistochemical staining, transmission electron microscopy, shRNA silencing, immunoblots, and electrophysiological approaches to examine the distribution, expression, and function of the major BB ion transporters NHE3 (Na(+)), CFTR (Cl(-)), and SLC26A3 (DRA) (Cl(-)/HCO3 (-)) that control intestinal fluid transport. We hypothesized that enterocyte maturation defects lead villus atrophy with immature secretory cryptlike enterocytes in the MVID epithelium. We investigated the role of Myo5b in enterocyte maturation. NHE3 and DRA localization and function were markedly reduced on the BB membrane of human MVID enterocytes and Myo5bKD C2BBe cells, while CFTR localization was preserved. Forskolin-stimulated CFTR ion transport in Myo5bKD T84 cells resembled that of control. Loss of Myo5b led to YAP1 nuclear retention, retarded enterocyte maturation, and a cryptlike phenotype. We conclude that preservation of functional CFTR in immature enterocytes, reduced functional expression of NHE3, and DRA contribute to Cl(-) and Na(+) stool loss in MVID diarrhea. PMID:27229121

  2. Neutron Transport Models and Methods for HZETRN and Coupling to Low Energy Light Ion Transport

    NASA Technical Reports Server (NTRS)

    Blattnig, S.R.; Slaba, T.C.; Heinbockel, J.H.

    2008-01-01

    Exposure estimates inside space vehicles, surface habitats, and high altitude aircraft exposed to space radiation are highly influenced by secondary neutron production. The deterministic transport code HZETRN has been identified as a reliable and efficient tool for such studies, but improvements to the underlying transport models and numerical methods are still necessary. In this paper, the forward-backward (FB) and directionally coupled forward-backward (DC) neutron transport models are derived, numerical methods for the FB model are reviewed, and a computationally efficient numerical solution is presented for the DC model. Both models are compared to the Monte Carlo codes HETCHEDS and FLUKA, and the DC model is shown to agree closely with the Monte Carlo results. Finally, it is found in the development of either model that the decoupling of low energy neutrons from the light ion (A<4) transport procedure adversely affects low energy light ion fluence spectra and exposure quantities. A first order correction is presented to resolve the problem, and it is shown to be both accurate and efficient.

  3. Neoclassical transport of energetic minority tail ions generated by ion-cyclotron resonance heating in tokamak geometry

    SciTech Connect

    Chang, C.S. . Courant Inst. of Mathematical Sciences); Hammett, G.W.; Goldston, R.J. . Plasma Physics Lab.)

    1990-01-01

    Neoclassical transport of energetic minority tail ions, which are generated by high powered electromagnetic waves of the Ion Cyclotron Range of Frequencies (ICRF) at the fundamental harmonic resonance, is studied analytically in tokamak geometry. The effect of Coulomb collisions on the tail ion transport is investigated in the present work. The total tail ion transport will be the sum of the present collision-driven transport and the wave-driven transport, which is due to the ICRF-wave scattering of the tail particles as reported in the literature. The transport coefficients have been calculated kinetically, and it is found that the large tail ion viscosity, driven by the localized ICRF-heating and Coulomb slowing-down collisions, induces purely convective particle transport of the tail species, while the energy transport is both convective and diffusive. The rate of radial particle transport is shown to be usually small, but the rate of radial energy transport is larger and may not be negligible compared to the Coulomb slowing-down rate. 18 refs., 2 figs.

  4. Lung epithelial ion transport in neonatal lung disease.

    PubMed

    Pitkänen, O

    2001-05-01

    Lung epithelial ion transport promotes salt and water movement across the fetal and neonatal lung epithelium. The mechanism is dependent on basolateral membrane Na-K-ATPase and the apical membrane Cl(-) and Na(+) channels. During fetal life active secretion of Cl(-) and parallel movement of Na(+) across the epithelium into the developing lung lumen induce accumulation of liquid into the future airspaces. Postnatally, however, absorption of fluid from the airspaces must start. Present evidence suggests that activation of Na(+) transport from the lumen into the basolateral direction drives fluid absorption and results in an essentially dry air-filled alveolus. In laboratory animals amiloride, a Na(+) channel blocker, induces respiratory distress and impedes lung fluid clearance. One of the epithelial amiloride-sensitive Na(+) channels, ENaC, is composed of three homologous subunits that differentially respond to glucocorticoid hormone. In newborn infants an increase in pulmonary fluid and a defective Na(+) transport associate with respiratory distress. The ontogeny, subunit composition and function of ENaC along the respiratory tract are currently under investigation. It will be interesting to find out whether the subunit composition and function of lung ENaC respond to the therapy of the critically ill newborn infant. PMID:11359039

  5. Transport of silver(I) ion through a supported liquid membrane using bathocuproine as a carrier

    SciTech Connect

    Saito, Takashi

    1998-04-01

    The active transport of silver ions through a supported liquid membrane (SLM) containing bathocuproine (4,7-diphenyl-2,9-dimethyl-1,10-phenanthroline) as a carrier was investigated under various experimental conditions. The magnitude of the permeation velocity of metallic ions through the SLM was in the order Ag{sup +} > Cd{sup 2+} {much_gt} Zn{sup 2+} > Cu{sup 2+} when nitrite ion was used as the pairing ion species that is cotransported with metallic ion. The permeation velocity of silver(I) ions through an SLM was dependent on the concentrations of the silver ion, bathocuproine, and nitrite ion. An equation for the transport of silver ions, consisting of three important factors, i.e., the concentrations of metallic ion, carrier, and pairing ion species, was derived.

  6. Polaronic Transport in Phosphate Glasses Containing Transition Metal Ions

    NASA Astrophysics Data System (ADS)

    Henderson, Mark

    The goal of this dissertation is to characterize the basic transport properties of phosphate glasses containing various amounts of TIs and to identify and explain any electronic phase transitions which may occur. The P2 O5-V2O5-WO3 (PVW) glass system will be analyzed to find the effect of TI concentration on conduction. In addition, the effect of the relative concentrations of network forming ions (SiO2 and P2O5) on transport will be studied in the P2O5-SiO2-Fe2O 3 (PSF) system. Also presented is a numerical study on a tight-binding model adapted for the purposes of modelling Gaussian traps, mimicking TI's, which are arranged in an extended network. The results of this project will contribute to the development of fundamental theories on the electronic transport in glasses containing mixtures of transition oxides as well as those containing multiple network formers without discernible phase separation. The present study on the PVW follows up on previous investigation into the effect on mixed transition ions in oxide glasses. Past research has focused on glasses containing transition metal ions from the 3d row. The inclusion of tungsten, a 5d transition metal, adds a layer of complexity through the mismatch of the energies of the orbitals contributing to localized states. The data have indicated that a transition reminiscent of a metal-insulator transition (MIT) occurs in this system as the concentration of tungsten increases. As opposed to some other MIT-like transitions found in phosphate glass systems, there seems to be no polaron to bipolaron conversion. Instead, the individual localization parameter for tungsten noticeably decreases dramatically at the transition point as well as the adiabaticity. Another distinctive feature of this project is the study of the PSF system, which contains two true network formers, phosphorous pentoxide (P2O 5) and silicon dioxide (SiO2). It is not usually possible to do a reliable investigation of the conduction properties of

  7. Transport of ions through the oil phase of W(1)/O/W(2) double emulsions.

    PubMed

    Cheng, Jing; Chen, Jian-Feng; Zhao, Min; Luo, Qing; Wen, Li-Xiong; Papadopoulos, Kyriakos D

    2007-01-01

    Using a capillary video microscopy technique, the ion transport at liquid-liquid interfaces and through a surfactant-containing emulsion liquid membrane was visually studied by preparing a double emulsion globule within the confined space of a thin-walled, transparent, cylindrical microtube. NaCl and AgNO(3) were selected as the model reactants and were prepared to form a NaCl/AgNO(3) pair across the oil film. By observing and measuring the formed AgCl deposition, it was found that both Cl(-) and Ag(+) could transport through a thick oil film and Ag(+) was transported faster than Cl(-). Interestingly, the ion transport was significantly retarded when the oil film became extremely thin (<1 microm). The results suggested that the transport of ions mainly depends on the "reverse micelle transport" mechanism, in which reverse micelles with entrapped ions and water molecules can be formed in a thick oil film and their construction will get impeded if the oil film becomes extremely thin, leading to different ion transport rates in these two cases. The direction of ion transport depends on the direction of the osmotic pressure gradient across the oil film and the ion transport is independent of the oil film thickness in the investigated thick range. Ions with smaller Pauling radii are more easily entrapped into the formed reverse micelles and therefore will be transported faster through the oil film than bigger ions. Oil-soluble surfactants facilitate ion transport; however, too much surfactant in the oil film will slow down the ion migration. In addition, this study showed no support for the "molecular diffusion" mechanism of ion transport through oils. PMID:17064722

  8. A parallel finite element simulator for ion transport through three-dimensional ion channel systems.

    PubMed

    Tu, Bin; Chen, Minxin; Xie, Yan; Zhang, Linbo; Eisenberg, Bob; Lu, Benzhuo

    2013-09-15

    A parallel finite element simulator, ichannel, is developed for ion transport through three-dimensional ion channel systems that consist of protein and membrane. The coordinates of heavy atoms of the protein are taken from the Protein Data Bank and the membrane is represented as a slab. The simulator contains two components: a parallel adaptive finite element solver for a set of Poisson-Nernst-Planck (PNP) equations that describe the electrodiffusion process of ion transport, and a mesh generation tool chain for ion channel systems, which is an essential component for the finite element computations. The finite element method has advantages in modeling irregular geometries and complex boundary conditions. We have built a tool chain to get the surface and volume mesh for ion channel systems, which consists of a set of mesh generation tools. The adaptive finite element solver in our simulator is implemented using the parallel adaptive finite element package Parallel Hierarchical Grid (PHG) developed by one of the authors, which provides the capability of doing large scale parallel computations with high parallel efficiency and the flexibility of choosing high order elements to achieve high order accuracy. The simulator is applied to a real transmembrane protein, the gramicidin A (gA) channel protein, to calculate the electrostatic potential, ion concentrations and I - V curve, with which both primitive and transformed PNP equations are studied and their numerical performances are compared. To further validate the method, we also apply the simulator to two other ion channel systems, the voltage dependent anion channel (VDAC) and α-Hemolysin (α-HL). The simulation results agree well with Brownian dynamics (BD) simulation results and experimental results. Moreover, because ionic finite size effects can be included in PNP model now, we also perform simulations using a size-modified PNP (SMPNP) model on VDAC and α-HL. It is shown that the size effects in SMPNP can

  9. Understanding ion transport in ion-containing polymers for energy applications

    NASA Astrophysics Data System (ADS)

    Choi, U. Hyeok

    A molecular-level understanding of dynamics in ion-containing polymers is of considerable interest for electromechanical transduction devices and electrochemical membranes. One example is the study of ion transport in ionomers which are polymers with one type of ion covalently bonded to the chain, allowing only the unattached counterions to move rapidly in response to an applied electric field. Since designing ionomers for facile ion transport is a great challenge, it is necessary to investigate structures, dynamics, and ionic interactions, giving rise to better understanding of the generation and transport processes of ionic carriers in ionomers. Therefore, the goal of this dissertation is to understand in detail the structure-property relations of single-ion conductors through morphological, electric, dielectric, and mechanical measurements. Polymerizable imidazolium-based ionic liquids and their polymers were characterized to study the effect of different pendent structures and different counterions on ionic conductivity, dielectric constant, and morphology. The larger counterions (Tf2N-) display higher ionic conductivity and mobility than the smaller counterions (PF6 - or BF4 -), owing to a lower glass transition temperature, as anticipated by ab initio calculations that show that the imidazolium cation is less prone to aggregation with Tf2N- counterions than with PF6 - or BF4 - counterions. This is also observed by rheological measurements, as the terminal relaxation time increases with decreasing size of counterions, attributed to the increase of ionic interactions. The diethyleneoxy units on the imidazlium cation afford higher mobility than the butyl or dodecyl terminal Nsubstituents, for both monomers and polymers, owing to a lower binding energy between the imidazolium cation and the counterions. All monomers and polymers studied exhibit two dipolar relaxations, assigned to the usual segmental motion (alpha ) associated with the glass transition and a

  10. Mutant of a Light-Driven Sodium Ion Pump Can Transport Cesium Ions.

    PubMed

    Konno, Masae; Kato, Yoshitaka; Kato, Hideaki E; Inoue, Keiichi; Nureki, Osamu; Kandori, Hideki

    2016-01-01

    Krokinobacter eikastus rhodopsin 2 (KR2) is a light-driven Na(+) pump found in marine bacterium. KR2 pumps Li(+) and Na(+), but it becomes an H(+) pump in the presence of K(+), Rb(+), and Cs(+). Site-directed mutagenesis of the cytoplasmic surface successfully converted KR2 into a light-driven K(+) pump, suggesting that ion selectivity is determined at the cytoplasmic surface. Here we extended this research and successfully created a light-driven Cs(+) pump. KR2 N61L/G263F pumps Cs(+) as well as other monovalent cations in the presence of a protonophore. Ion-transport activities correlated with the additive volume of the residues at 61 and 263. The result suggests that an ion-selectivity filter is affected by these two residues and functions by strict exclusion of K(+) and larger cations in the wild type (N61/G263). In contrast, introduction of large residues possibly destroys local structures of the ion-selectivity filter, leading to the permeation of K(+) (P61/W263) and Cs(+) (L61/F263). PMID:26740141

  11. Solenoidal Fields for Ion Beam Transport and Focusing

    SciTech Connect

    Lee, Edward P.; Leitner, Matthaeus

    2007-11-01

    In this report we calculate time-independent fields of solenoidal magnets that are suitable for ion beam transport and focusing. There are many excellent Electricity and Magnetism textbooks that present the formalism for magnetic field calculations and apply it to simple geometries [1-1], but they do not include enough relevant detail to be used for designing a charged particle transport system. This requires accurate estimates of fringe field aberrations, misaligned and tilted fields, peak fields in wire coils and iron, external fields, and more. Specialized books on magnet design, technology, and numerical computations [1-2] provide such information, and some of that is presented here. The AIP Conference Proceedings of the US Particle Accelerator Schools [1-3] contain extensive discussions of design and technology of magnets for ion beams - except for solenoids. This lack may be due to the fact that solenoids have been used primarily to transport and focus particles of relatively low momenta, e.g. electrons of less than 50 MeV and protons or H- of less than 1.0 MeV, although this situation may be changing with the commercial availability of superconducting solenoids with up to 20T bore field [1-4]. Internal reports from federal laboratories and industry treat solenoid design in detail for specific applications. The present report is intended to be a resource for the design of ion beam drivers for Inertial Fusion Energy [1-5] and Warm Dense Matter experiments [1-6], although it should also be useful for a broader range of applications. The field produced by specified currents and material magnetization can always be evaluated by solving Maxwell's equations numerically, but it is also desirable to have reasonably accurate, simple formulas for conceptual system design and fast-running beam dynamics codes, as well as for general understanding. Most of this report is devoted to such formulas, but an introduction to the Tosca{copyright} code [1-7] and some numerical

  12. Effects of double-layer polarization on ion transport.

    PubMed

    Hainsworth, A H; Hladky, S B

    1987-01-01

    It has been proposed that changes in ionic strength will alter the shape of current-voltage relations for ion transport across a lipid membrane. To investigate this effect, we measured currents across glyceryl monooleate membranes at applied potentials between 10 and 300 mV using either gramicidin and 1 mM NaCl or valinomycin and 1 mM KCl. A bridge circuit with an integrator as null detector was used to separate the capacitative and ionic components of the current. The changes in the current-voltage relations when ionic strength is varied between 1 and 100 mM are compared with predictions of Gouy-Chapman theory for the effects of these variations on polarization of the electrical diffuse double-layer. Double-layer polarization accounts adequately for the changes observed using membranes made permeable by either gramicidin or valinomycin. PMID:2432953

  13. Scalings of energetic particle transport by ion temperature gradient microturbulence

    SciTech Connect

    Zhang Wenlu; Decyk, Viktor; Holod, Ihor; Xiao Yong; Lin Zhihong; Chen Liu

    2010-05-15

    Transport scaling of energetic particles by ion temperature gradient microturbulence in magnetized plasmas is studied in massively paralleled gyrokinetic particle-in-cell simulations. It is found that the diffusivity decreases drastically at high particles energy (E) to plasma temperature (T) ratio because of the averaging effects of the large gyroradius and drift-orbit width, and the fast wave-particle decorrelation. At high energy, the diffusivity follows a (E/T){sup -1} scaling for purely passing particles, a (E/T){sup -2} scaling for deeply trapped particles and a (E/T){sup -1} scaling for particles with an isotropic velocity distribution since the diffusivity therein is contributed mostly by the passing particles.

  14. Ion secretion and isotonic transport in frog skin glands.

    PubMed

    Ussing, H H; Lind, F; Larsen, E H

    1996-07-01

    The aim of this study was to clarify the mechanism of isotonic fluid transport in frog skin glands. Stationary ion secretion by the glands was studied by measuring unidirectional fluxes of 24Na+, 42K+, and carrier-free 134Cs+ in paired frog skins bathed on both sides with Ringer's solution, and with 10(-5) M noradrenaline on the inside and 10(-4) M amiloride on the outside. At transepithelial thermodynamic equilibrium conditions, the 134Cs+ flux ratio, JoutCs/JinCs, varied in seven pairs of preparations from 6 to 36. Since carrier-free 134Cs+ entering the cells is irreversibly trapped in the cellular compartment (Ussing & Lind, 1996), the transepithelial net flux of 134Cs+ indicates that a paracellular flow of water is dragging 134Cs+ in the direction from the serosal- to outside solution. From the measured flux ratios it was calculated that the force driving the secretory flux of Cs+ varied from 30 to 61 mV among preparations. In the same experiments unidirectional Na+ fluxes were measured as well, and it was found that also Na+ was subjected to secretion. The ratio of unidirectional Na+ fluxes, however, was significantly smaller than would be predicted if the two ions were both flowing along the paracellular route dragged by the flow of water. This result indicates that Na+ and Cs+ do not take the same pathway through the glands. The flux ratio of unidirectional K+ fluxes indicated active secretion of K+. The time it takes for steady-state K+ fluxes to be established was significantly longer than that of the simultaneously measured Cs+ fluxes. These results allow the conclusion that - in addition to being transported between cells - K+ is submitted to active transport along a cellular pathway. Based on the recirculation theory, we propose a new model which accounts for stationary Na+, K+, Cl- and water secretion under thermodynamic equilibrium conditions. The new features of the model, as compared to the classical Silva-model for the shark-rectal gland, are: (i

  15. Physiological Impact of Abnormal Lipoxin A4 Production on Cystic Fibrosis Airway Epithelium and Therapeutic Potential

    PubMed Central

    Higgins, Gerard; McNally, Paul; Urbach, Valérie

    2015-01-01

    Lipoxin A4 has been described as a major signal for the resolution of inflammation and is abnormally produced in the lungs of patients with cystic fibrosis (CF). In CF, the loss of chloride transport caused by the mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel gene results in dehydration, mucus plugging, and reduction of the airway surface liquid layer (ASL) height which favour chronic lung infection and neutrophil based inflammation leading to progressive lung destruction and early death of people with CF. This review highlights the unique ability of LXA4 to restore airway surface hydration, to stimulate airway epithelial repair, and to antagonise the proinflammatory program of the CF airway, circumventing some of the most difficult aspects of CF pathophysiology. The report points out novel aspects of the cellular mechanism involved in the physiological response to LXA4, including release of ATP from airway epithelial cell via pannexin channel and subsequent activation of and P2Y11 purinoreceptor. Therefore, inadequate endogenous LXA4 biosynthesis reported in CF exacerbates the ion transport abnormality and defective mucociliary clearance, in addition to impairing the resolution of inflammation, thus amplifying the vicious circle of airway dehydration, chronic infection, and inflammation. PMID:25866809

  16. Novel aspects of cholinergic regulation of colonic ion transport.

    PubMed

    Bader, Sandra; Diener, Martin

    2015-06-01

    Nicotinic receptors are not only expressed by excitable tissues, but have been identified in various epithelia. One aim of this study was to investigate the expression of nicotinic receptors and their involvement in the regulation of ion transport across colonic epithelium. Ussing chamber experiments with putative nicotinic agonists and antagonists were performed at rat colon combined with reverse transcription polymerase chain reaction (RT-PCR) detection of nicotinic receptor subunits within the epithelium. Dimethylphenylpiperazinium (DMPP) and nicotine induced a tetrodotoxin-resistant anion secretion leading to an increase in short-circuit current (I sc) across colonic mucosa. The response was suppressed by the nicotinic receptor antagonist hexamethonium. RT-PCR experiments revealed the expression of α2, α4, α5, α6, α7, α10, and β4 nicotinic receptor subunits in colonic epithelium. Choline, the product of acetylcholine hydrolysis, is known for its affinity to several nicotinic receptor subtypes. As a strong acetylcholinesterase activity was found in colonic epithelium, the effect of choline on I sc was examined. Choline induced a concentration-dependent, tetrodotoxin-resistant chloride secretion which was, however, resistant against hexamethonium, but was inhibited by atropine. Experiments with inhibitors of muscarinic M1 and M3 receptors revealed that choline-evoked secretion was mainly due to a stimulation of epithelial M3 receptors. Although choline proved to be only a partial agonist, it concentration-dependently desensitized the response to acetylcholine, suggesting that it might act as a modulator of cholinergically induced anion secretion. Thus the cholinergic regulation of colonic ion transport - up to now solely explained by cholinergic submucosal neurons stimulating epithelial muscarinic receptors - is more complex than previously assumed. PMID:26236483

  17. Novel aspects of cholinergic regulation of colonic ion transport

    PubMed Central

    Bader, Sandra; Diener, Martin

    2015-01-01

    Nicotinic receptors are not only expressed by excitable tissues, but have been identified in various epithelia. One aim of this study was to investigate the expression of nicotinic receptors and their involvement in the regulation of ion transport across colonic epithelium. Ussing chamber experiments with putative nicotinic agonists and antagonists were performed at rat colon combined with reverse transcription polymerase chain reaction (RT-PCR) detection of nicotinic receptor subunits within the epithelium. Dimethylphenylpiperazinium (DMPP) and nicotine induced a tetrodotoxin-resistant anion secretion leading to an increase in short-circuit current (Isc) across colonic mucosa. The response was suppressed by the nicotinic receptor antagonist hexamethonium. RT-PCR experiments revealed the expression of α2, α4, α5, α6, α7, α10, and β4 nicotinic receptor subunits in colonic epithelium. Choline, the product of acetylcholine hydrolysis, is known for its affinity to several nicotinic receptor subtypes. As a strong acetylcholinesterase activity was found in colonic epithelium, the effect of choline on Isc was examined. Choline induced a concentration-dependent, tetrodotoxin-resistant chloride secretion which was, however, resistant against hexamethonium, but was inhibited by atropine. Experiments with inhibitors of muscarinic M1 and M3 receptors revealed that choline-evoked secretion was mainly due to a stimulation of epithelial M3 receptors. Although choline proved to be only a partial agonist, it concentration-dependently desensitized the response to acetylcholine, suggesting that it might act as a modulator of cholinergically induced anion secretion. Thus the cholinergic regulation of colonic ion transport – up to now solely explained by cholinergic submucosal neurons stimulating epithelial muscarinic receptors – is more complex than previously assumed. PMID:26236483

  18. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    NASA Astrophysics Data System (ADS)

    Hoarfrost, Megan Lane

    is incredible freedom in designing the block copolymer architecture in order to optimize the mechanical and other properties of the membrane without sacrificing conductivity. The derived scaling relationships are shown to be general for many block copolymer and ionic liquid chemistries. In certain cases, the mechanism of ion conduction in the ionic liquid is affected by block copolymer nanoconfinement. The introduction of excess neutral imidazole to [Im][TFSI] leads to enhanced proton conductivity as well as a high H+ transference number due to facilitated proton hopping between imidazole molecules. We show that there is increased proton hopping when the nonstoichiometric ionic liquid is confined to lamellar block copolymer nanodomains, which we hypothesize is due to changes in the hydrogen bond structure of the ionic liquid under confinement. This, in combination with unique ion aggregation behavior, leads to a lower activation energy for macroscopic ion transport compared to that in a corresponding homopolymer/ionic liquid mixture. Through this work, we further the understanding of the relationship between membrane composition, structure, and ion transport. The findings presented herein portend the rational design of nanostructured membranes having improved mechanical properties and conductivity.

  19. Crystal Structure of a Potassium Ion Transporter TrkH

    SciTech Connect

    Y Cao; X Jin; H Huang; M Getahun Derebe; E Levin; V Kabaleeswaran; Y Pan; M Punta; J Love; et al.

    2011-12-31

    The TrkH/TrkG/KtrB proteins mediate K{sup +} uptake in bacteria and probably evolved from simple K{sup +} channels by multiple gene duplications or fusions. Here we present the crystal structure of a TrkH from Vibrio parahaemolyticus. TrkH is a homodimer, and each protomer contains an ion permeation pathway. A selectivity filter, similar in architecture to those of K{sup +} channels but significantly shorter, is lined by backbone and side-chain oxygen atoms. Functional studies showed that TrkH is selective for permeation of K{sup +} and Rb{sup +} over smaller ions such as Na{sup +} or Li{sup +}. Immediately intracellular to the selectivity filter are an intramembrane loop and an arginine residue, both highly conserved, which constrict the permeation pathway. Substituting the arginine with an alanine significantly increases the rate of K{sup +} flux. These results reveal the molecular basis of K{sup +} selectivity and suggest a novel gating mechanism for this large and important family of membrane transport proteins.

  20. Ankyrin-based Cellular Pathways for Cardiac Ion Channel and Transporter Targeting and Regulation

    PubMed Central

    Cunha, Shane R.; Mohler, Peter J.

    2010-01-01

    The coordinate activities of ion channels and transporters regulate myocyte membrane excitability and normal cardiac function. Dysfunction in cardiac ion channel and transporter function may result in cardiac arrhythmias and sudden cardiac death. While the past fifteen years have linked defects in ion channel biophysical properties with human disease, more recent findings illustrate that ion channel and transporter localization within cardiomyocytes is equally critical for normal membrane excitability and tissue function. Ankyrins are a family of multifunctional adapter proteins required for the expression, membrane localization, and regulation of select cardiac ion channels and transporters. Notably, loss of ankyrin expression in mice, and ankyrin loss-of-function in humans is now associated with defects in myocyte excitability and cardiac physiology. Here, we provide an overview of the roles of ankyrin polypeptides in cardiac physiology, as well as review other recently identified pathways required for the membrane expression and regulation of key cardiac ion channels and transporters. PMID:20934528

  1. In-situ Investigation of Vanadium Ion Transport in Redox Flow Battery

    SciTech Connect

    Luo, Qingtao; Li, Liyu; Nie, Zimin; Wang, Wei; Wei, Xiaoliang; Li, Bin; Chen, Baowei; Yang, Zhenguo

    2012-06-27

    We will show a new method to differentiate the vanadium transport from concentration gradient and that from electric field. Flow batteries with vanadium and iron redox couples as the electro-active species were employed to investigate the transport behavior of vanadium ions in the presence of electric field. It was shown that electric field accelerated the positive-to-negative and reduced the negative-to-positive vanadium ions transport in charge process and affected the vanadium ions transport in an opposite way in discharge process. In addition, a method was designed to differentiate the concentration gradient-driven vanadium ions diffusion and electric field-driven vanadium ions migration. Simplified mathematical model was established to simulate the vanadium ions transport in real charge-discharge operation of flow battery. The concentration gradient diffusion coefficients and electric-migration coefficients of V2+, V3+, VO2+, and VO2+ across Nafion membrane were obtained by fitting the experimental data.

  2. Transport of cadmium(II) ion through a supported liquid membrane containing a bathocuproine

    SciTech Connect

    Saito, Takashi )

    1991-12-01

    The active transport of cadmium ions across a supported liquid membrane (SLM) containing a ligand based on a driving force supplied by the concentration gradient of the chloride ion is described. The SLM used is a microporous polypropylene membrane impregnated with a bathocuproine (4,7-diphenyl-2,9-dimethyl-1,10-phenanthroline) solution in dibenzyl ether as a carrier. The characteristics of the cadmium ion transport system are examined under various experimental conditions. The active transport of cadmium ions through an SLM is dependent on the concentrations of the cadmium ion, ligand, and chloride ion. An equation for the permeation velocity of cadmium ions, consisting of three important factors for this transport system, is proposed.

  3. Impact of Video Laryngoscopy on Advanced Airway Management by Critical Care Transport Paramedics and Nurses Using the CMAC Pocket Monitor

    PubMed Central

    Boehringer, Bradley; Choate, Michael; Hurwitz, Shelley; Tilney, Peter V. R.; Judge, Thomas

    2015-01-01

    Accurate endotracheal intubation for patients in extremis or at risk of physiologic decompensation is the gold standard for emergency medicine. Field intubation is a complex process and time to intubation, number of attempts, and hypoxia have all been shown to correlate with increases in morbidity and mortality. Expanding laryngoscope technology which incorporates active video, in addition to direct laryngoscopy, offers providers improved and varied tools to employ in management of the advanced airway. Over a nine-year period a helicopter emergency medical services team, comprised of a flight paramedic and flight nurse, intended to intubate 790 patients. Comparative data analysis was performed and demonstrated that the introduction of the CMAC video laryngoscope improved nearly every measure of success in airway management. Overall intubation success increased from 94.9% to 99.0%, first pass success rates increased from 75.4% to 94.9%, combined first and second pass success rates increased from 89.2% to 97.4%, and mean number of intubation attempts decreased from 1.33 to 1.08. PMID:26167501

  4. Controlling polymer translocation and ion transport via charge correlations.

    PubMed

    Buyukdagli, Sahin; Ala-Nissila, T

    2014-11-01

    We develop a correlation-corrected transport theory in order to predict ionic and polymer transport properties of membrane nanopores under physical conditions where mean-field electrostatics breaks down. The experimentally observed low KCl conductivity of open α-hemolysin pores is quantitatively explained by the presence of surface polarization effects. Upon the penetration of a DNA molecule into the pore, these polarization forces combined with the electroneutrality of DNA sets a lower boundary for the ionic current, explaining the weak salt dependence of blocked pore conductivities at dilute ion concentrations. The addition of multivalent counterions to the solution results in the reversal of the polymer charge and the direction of the electroosmotic flow. With trivalent spermidine or quadrivalent spermine molecules, the charge inversion is strong enough to stop the translocation of the polymer and to reverse its motion. This mechanism can be used efficiently in translocation experiments in order to improve the accuracy of DNA sequencing by minimizing the translocation velocity of the polymer. PMID:25310861

  5. Nanoscale transport of electrons and ions in water

    NASA Astrophysics Data System (ADS)

    Boynton, Paul Christopher

    The following dissertation discusses the theoretical study of water on the nanoscale, often involved with essential biological molecules such as DNA and proteins. First I introduce the study of water on the nanoscale and how experimentalists approach confinement with nanopores and nanogaps. Then I discuss the theoretical method we choose for understanding this important biological medium on the molecular level, namely classical molecular dynamics. This leads into transport mechanisms that utilize water on the nanoscale, in our case electronic and ionic transport. On the scale of mere nanometers or less electronic transport in water enters the tunneling regime, requiring the use of a quantum treatment. In addition, I discuss the importance of water in ionic transport and its known effects on biological phenomena such as ion selectivity. Water also has great influence over DNA and proteins, which are both introduced in the context of nanopore sequencing. Several techniques for nanopore sequencing are examined and the importance of protein sequencing is explained. In Chapter 2, we study the effect of volumetric constraints on the structure and electronic transport properties of distilled water in a nanopore with embedded electrodes. Combining classical molecular dynamics simulations with quantum scattering theory, we show that the structural motifs water assumes inside the pore can be probed directly by tunneling. In Chapter 3, we propose an improvement to the original sequencing by tunneling method, in which N pairs of electrodes are built in series along a synthetic nanochannel. Each current time series for each nucleobase is cross-correlated together, reducing noise in the signals. We show using random sampling of data from classical molecular dynamics, that indeed the sequencing error is significantly reduced as the number of pairs of electrodes, N, increases. In Chapter 4, we propose a new technique for de novo protein sequencing that involves translocating a

  6. Physics of electron and lithium-ion transport in electrode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Musheng, Wu; Bo, Xu; Chuying, Ouyang

    2016-01-01

    The physics of ionic and electrical conduction at electrode materials of lithium-ion batteries (LIBs) are briefly summarized here, besides, we review the current research on ionic and electrical conduction in electrode material incorporating experimental and simulation studies. Commercial LIBs have been widely used in portable electronic devices and are now developed for large-scale applications in hybrid electric vehicles (HEV) and stationary distributed power stations. However, due to the physical limits of the materials, the overall performance of today’s LIBs does not meet all the requirements for future applications, and the transport problem has been one of the main barriers to further improvement. The electron and Li-ion transport behaviors are important in determining the rate capacity of LIBs. Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA034201), the National Natural Science Foundation of China (Grant Nos. 11234013 and 11264014), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20133ACB21010 and 20142BAB212002), and the Foundation of Jiangxi Education Committee, China (Grant Nos. GJJ14254 and KJLD14024). C. Y. Ouyang is also supported by the “Gan-po talent 555” Project of Jiangxi Province, China.

  7. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes

    PubMed Central

    Volkov, Vadim

    2015-01-01

    Ion transport is the fundamental factor determining salinity tolerance in plants. The Review starts from differences in ion transport between salt tolerant halophytes and salt-sensitive plants with an emphasis on transport of potassium and sodium via plasma membranes. The comparison provides introductory information for increasing salinity tolerance. Effects of salt stress on ion transport properties of membranes show huge opportunities for manipulating ion fluxes. Further steps require knowledge about mechanisms of ion transport and individual genes of ion transport proteins. Initially, the Review describes methods to measure ion fluxes, the independent set of techniques ensures robust and reliable basement for quantitative approach. The Review briefly summarizes current data concerning Na+ and K+ concentrations in cells, refers to primary thermodynamics of ion transport and gives special attention to individual ion channels and transporters. Simplified scheme of a plant cell with known transport systems at the plasma membrane and tonoplast helps to imagine the complexity of ion transport and allows choosing specific transporters for modulating ion transport. The complexity is enhanced by the influence of cell size and cell wall on ion transport. Special attention is given to ion transporters and to potassium and sodium transport by HKT, HAK, NHX, and SOS1 proteins. Comparison between non-selective cation channels and ion transporters reveals potential importance of ion transporters and the balance between the two pathways of ion transport. Further on the Review describes in detail several successful attempts to overexpress or knockout ion transporters for changing salinity tolerance. Future perspectives are questioned with more attention given to promising candidate ion channels and transporters for altered expression. Potential direction of increasing salinity tolerance by modifying ion channels and transporters using single point mutations is discussed and

  8. Quantitative description of ion transport via plasma membrane of yeast and small cells

    PubMed Central

    Volkov, Vadim

    2015-01-01

    Modeling of ion transport via plasma membrane needs identification and quantitative understanding of the involved processes. Brief characterization of main ion transport systems of a yeast cell (Pma1, Ena1, TOK1, Nha1, Trk1, Trk2, non-selective cation conductance) and determining the exact number of molecules of each transporter per a typical cell allow us to predict the corresponding ion flows. In this review a comparison of ion transport in small yeast cell and several animal cell types is provided. The importance of cell volume to surface ratio is emphasized. The role of cell wall and lipid rafts is discussed in respect to required increase in spatial and temporary resolution of measurements. Conclusions are formulated to describe specific features of ion transport in a yeast cell. Potential directions of future research are outlined based on the assumptions. PMID:26113853

  9. Beam-transport study of an isocentric rotating ion gantry with minimum number of quadrupoles

    NASA Astrophysics Data System (ADS)

    Pavlovic, Márius; Griesmayer, Erich; Seemann, Rolf

    2005-06-01

    A beam-transport study of an isocentric gantry for ion therapy is presented. The gantry is designed with the number of quadrupoles down to the theoretical minimum, which is the feature published for the first time in this paper. This feature has been achieved without compromising the ion-optical functions of the beam-transport system that is capable of handling non-symmetric beams (beams with different emittances in vertical and horizontal plane), pencil-beam scanning, double-achromatic optics and beam-size control. Ion-optical properties of the beam-transport system are described, discussed and illustrated by computer simulations performed by the TRANSPORT-code.

  10. Lateral charge transport from heavy-ion tracks in integrated circuit chips

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.; Schwartz, H. R.; Nevill, L. R.

    1988-01-01

    A 256K DRAM has been used to study the lateral transport of charge (electron-hole pairs) induced by direct ionization from heavy-ion tracks in an IC. The qualitative charge transport has been simulated using a two-dimensional numerical code in cylindrical coordinates. The experimental bit-map data clearly show the manifestation of lateral charge transport in the creation of adjacent multiple-bit errors from a single heavy-ion track. The heavy-ion data further demonstrate the occurrence of multiple-bit errors from single ion tracks with sufficient stopping power. The qualitative numerical simulation results suggest that electric-field-funnel-aided (drift) collection accounts for single error generated by an ion passing through a charge-collecting junction, while multiple errors from a single ion track are due to lateral diffusion of ion-generated charge.

  11. Normal and Cystic Fibrosis Airway Surface Liquid Homeostasis

    PubMed Central

    Tarran, Robert; Button, Brian; Picher, Maryse; Paradiso, Anthony M.; Ribeiro, Carla M.; Lazarowski, Eduardo R.; Zhang, Liqun; Collins, Peter L.; Pickles, Raymond J.; Fredberg, Jeffrey J.; Boucher, Richard C.

    2010-01-01

    Mammalian airways normally regulate the volume of a thin liquid layer, the periciliary liquid (PCL), to facilitate the mucus clearance component of lung defense. Studies under standard (static) culture conditions revealed that normal airway epithelia possess an adenosine-regulated pathway that blends Na+ absorption and Cl− secretion to optimize PCL volume. In cystic fibrosis (CF), the absence of CF transmembrane conductance regulator results in a failure of adenosine regulation of PCL volume, which is predicted to initiate mucus stasis and infection. However, under conditions that mimic the phasic motion of the lung in vivo, ATP release into PCL was increased, CF ion transport was rebalanced, and PCL volume was restored to levels adequate for lung defense. This ATP signaling system was vulnerable, however, to insults that trigger CF bacterial infections, such as viral (respiratory syncitial virus) infections, which up-regulated extracellular ATPase activity and abolished motion-dependent ATP regulation of CF PCL height. These studies demonstrate (i) how the normal coordination of opposing ion transport pathways to maintain PCL volume is disrupted in CF, (ii) the hitherto unknown role of phasic motion in regulating key aspects of normal and CF innate airways defense, and (iii) that maneuvers directed at increasing motion-induced nucleotide release may be therapeutic in CF patients. PMID:16087672

  12. The Transport of Solar Ions Through the Earth's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Lennartsson, O. W.

    1999-01-01

    This report covers the initial phase of an investigation that was originally selected by NASA Headquarters for funding by a grant but was later transferred to NASA GSFC for continued funding under a new and separate contract. The principal objective of the investigation, led by Dr. O.W. Lennartsson, is to extract information about the solar origin plasma in Earth's magnetosphere, specifically about the entry and transport of this plasma, using energetic (10 eV/e to 18 keV/e) ion composition data from the Lockheed Plasma Composition Experiment on the NASA/ESA International Sun-Earth Explorer One (ISEE 1) satellite. These data were acquired many years ago, from November 1977 through March of 1982, but, because of subsequent failures of similar experiments on several other spacecraft, they are still the only substantial ion composition data available from Earth's magnetotail, beyond 10 R(sub E), in the critically important sub-kev to keV energy range. All of the Lockheed data now exist in a compacted scientific format, suitable for large-scale statistical investigations, which has been archived both at Lockheed Martin in Palo Alto and at the National Space Science Data Center (NSSDC) in Greenbelt. The completion of the archiving, by processing the remaining half of the data, was made possible by separate funding through a temporary NASA program for data restoration and was given priority over the data analysis by a no-cost extension of the subject grant. By chance, the period of performance coincided with an international study of source and loss processes of magnetospheric plasma, sponsored by the International Space Science Institute (ISSI) in Bern, Switzerland, for which Dr. Lennartsson was invited to serve as one of 12 co-chairs. This study meshed well with the continued analysis of the NASA/Lockheed ISEE ion composition data and provided a natural forum for a broader discussion of the results from this unique experiment. What follows is arranged, for the most

  13. Decoupling Mechanical and Ion Transport Properties in Polymer Electrolyte Membranes

    NASA Astrophysics Data System (ADS)

    McIntosh, Lucas D.

    Polymer electrolytes are mixtures of a polar polymer and salt, in which the polymer replaces small molecule solvents and provides a dielectric medium so that ions can dissociate and migrate under the influence of an external electric field. Beginning in the 1970s, research in polymer electrolytes has been primarily motivated by their promise to advance electrochemical energy storage and conversion devices, such as lithium ion batteries, flexible organic solar cells, and anhydrous fuel cells. In particular, polymer electrolyte membranes (PEMs) can improve both safety and energy density by eliminating small molecule, volatile solvents and enabling an all-solid-state design of electrochemical cells. The outstanding challenge in the field of polymer electrolytes is to maximize ionic conductivity while simultaneously addressing orthogonal mechanical properties, such as modulus, fracture toughness, or high temperature creep resistance. The crux of the challenge is that flexible, polar polymers best-suited for polymer electrolytes (e.g., poly(ethylene oxide)) offer little in the way of mechanical robustness. Similarly, polymers typically associated with superior mechanical performance (e.g., poly(methyl methacrylate)) slow ion transport due to their glassy polymer matrix. The design strategy is therefore to employ structured electrolytes that exhibit distinct conducting and mechanically robust phases on length scales of tens of nanometers. This thesis reports a remarkably simple, yet versatile synthetic strategy---termed polymerization-induced phase separation, or PIPS---to prepare PEMs exhibiting an unprecedented combination of both high conductivity and high modulus. This performance is enabled by co-continuous, isotropic networks of poly(ethylene oxide)/ionic liquid and highly crosslinked polystyrene. A suite of in situ, time-resolved experiments were performed to investigate the mechanism by which this network morphology forms, and it appears to be tied to the

  14. (In)validity of the constant field and constant currents assumptions in theories of ion transport.

    PubMed Central

    Syganow, A; von Kitzing, E

    1999-01-01

    Constant electric fields and constant ion currents are often considered in theories of ion transport. Therefore, it is important to understand the validity of these helpful concepts. The constant field assumption requires that the charge density of permeant ions and flexible polar groups is virtually voltage independent. We present analytic relations that indicate the conditions under which the constant field approximation applies. Barrier models are frequently fitted to experimental current-voltage curves to describe ion transport. These models are based on three fundamental characteristics: a constant electric field, negligible concerted motions of ions inside the channel (an ion can enter only an empty site), and concentration-independent energy profiles. An analysis of those fundamental assumptions of barrier models shows that those approximations require large barriers because the electrostatic interaction is strong and has a long range. In the constant currents assumption, the current of each permeating ion species is considered to be constant throughout the channel; thus ion pairing is explicitly ignored. In inhomogeneous steady-state systems, the association rate constant determines the strength of ion pairing. Among permeable ions, however, the ion association rate constants are not small, according to modern diffusion-limited reaction rate theories. A mathematical formulation of a constant currents condition indicates that ion pairing very likely has an effect but does not dominate ion transport. PMID:9929480

  15. Electro- and Magneto-Modulated Ion Transport through Graphene Oxide Membranes

    PubMed Central

    Sun, Pengzhan; Zheng, Feng; Wang, Kunlin; Zhong, Minlin; Wu, Dehai; Zhu, Hongwei

    2014-01-01

    The control of ion trans-membrane transport through graphene oxide (GO) membranes is achieved by electric and magnetic fields. Electric field can either increase or decrease the ion transport through GO membranes depending on its direction, and magnetic field can enhance the ion penetration monotonically. When electric field is applied across GO membrane, excellent control of ion fluidic flows can be done. With the magnetic field, the effective anchoring of ions is demonstrated but the modulation of the ion flowing directions does not occur. The mechanism of the electro- and magneto-modulated ion trans-membrane transport is investigated, indicating that the electric fields dominate the ion migration process while the magnetic fields tune the structure of nanocapillaries within GO membranes. Results also show that the ion selectivity of GO membranes can be tuned with the electric fields while the transport of ions can be enhanced synchronously with the magnetic fields. These excellent properties make GO membranes promising in areas such as field-induced mass transport control and membrane separation. PMID:25347969

  16. Mitochondrial Ion Channels/Transporters as Sensors and Regulators of Cellular Redox Signaling

    PubMed Central

    Ryu, Shin-Young; Jhun, Bong Sook; Hurst, Stephen

    2014-01-01

    Abstract Significance: Mitochondrial ion channels/transporters and the electron transport chain (ETC) serve as key sensors and regulators for cellular redox signaling, the production of reactive oxygen species (ROS) and nitrogen species (RNS) in mitochondria, and balancing cell survival and death. Although the functional and pharmacological characteristics of mitochondrial ion transport mechanisms have been extensively studied for several decades, the majority of the molecular identities that are responsible for these channels/transporters have remained a mystery until very recently. Recent Advances: Recent breakthrough studies uncovered the molecular identities of the diverse array of major mitochondrial ion channels/transporters, including the mitochondrial Ca2+ uniporter pore, mitochondrial permeability transition pore, and mitochondrial ATP-sensitive K+ channel. This new information enables us to form detailed molecular and functional characterizations of mitochondrial ion channels/transporters and their roles in mitochondrial redox signaling. Critical Issues: Redox-mediated post-translational modifications of mitochondrial ion channels/transporters and ETC serve as key mechanisms for the spatiotemporal control of mitochondrial ROS/RNS generation. Future Directions: Identification of detailed molecular mechanisms for redox-mediated regulation of mitochondrial ion channels will enable us to find novel therapeutic targets for many diseases that are associated with cellular redox signaling and mitochondrial ion channels/transporters. Antioxid. Redox Signal. 21, 987–1006. PMID:24180309

  17. Effect of the surface charge on ion transport through nanoslits

    NASA Astrophysics Data System (ADS)

    Schoch, Reto B.; van Lintel, Harald; Renaud, Philippe

    2005-10-01

    A description of ion transport through geometrically defined nanoslits is presented. It is characterized by the effective surface charge density and was obtained by impedance spectroscopy measurements of electrolytes with different physicochemical properties. The fluid channels were fabricated in a Pyrex-Pyrex field assisted bonding process with an intermediate layer of amorphous silicon. The height of the nanoslits was defined by the 50nm thickness of the amorphous silicon layer. Two microfluidic channels, containing electrodes for the characterization of the nanoslits, maintained fresh liquid on both sides of the nanoapertures. By changing the KCl concentration of the electrolyte, a conductance plateau (in log-log scale) was observed due to the dominance of the effective surface charge density, resulting in an excess of mobile counterions in the nanoslits at low salt concentrations. The effective surface charge density of the Pyrex nanoslits could be modified by changing the pH of the solution. It was verified that at higher pH values the nanoslit conductance increased. Field-effect experiments allowed changing the effective surface charge density as well. The polarity of the external voltage could be chosen such that the effective surface charge density was increased or decreased, resulting in a higher or lower nanoslit conductance. This regulation of ionic flow can be exploited for the fabrication of nanofluidic devices.

  18. Regulation of the divalent metal ion transporter via membrane budding

    PubMed Central

    Mackenzie, KimberlyD; Foot, Natalie J; Anand, Sushma; Dalton, Hazel E; Chaudhary, Natasha; Collins, Brett M; Mathivanan, Suresh; Kumar, Sharad

    2016-01-01

    The release of extracellular vesicles (EVs) is important for both normal physiology and disease. However, a basic understanding of the targeting of EV cargoes, composition and mechanism of release is lacking. Here we present evidence that the divalent metal ion transporter (DMT1) is unexpectedly regulated through release in EVs. This process involves the Nedd4-2 ubiquitin ligase, and the adaptor proteins Arrdc1 and Arrdc4 via different budding mechanisms. We show that mouse gut explants release endogenous DMT1 in EVs. Although we observed no change in the relative amount of DMT1 released in EVs from gut explants in Arrdc1 or Arrdc4 deficient mice, the extent of EVs released was significantly reduced indicating an adaptor role in biogenesis. Furthermore, using Arrdc1 or Arrdc4 knockout mouse embryonic fibroblasts, we show that both Arrdc1 and Arrdc4 are non-redundant positive regulators of EV release. Our results suggest that DMT1 release from the plasma membrane into EVs may represent a novel mechanism for the maintenance of iron homeostasis, which may also be important for the regulation of other membrane proteins. PMID:27462458

  19. Protein-protein interactions among ion channels regulate ion transport in the kidney.

    PubMed

    Boulpaep, E

    2009-01-01

    Epithelial ion transport in various organs has long been known to be controlled by extracellular agonists acting via membrane receptors or by intracellular messengers. Evidence is mounting for regulation of transport by direct interaction among membrane proteins or between a membrane transport protein and membrane-attached proteins. The membrane protein CFTR (Cystic Fibrosis Transmembrane Regulator) is widely expressed along the length of the nephron, but its role as a chloride channel does not appear to be critical for renal handling of salt and water. It is well established that the inward rectifying K channels (ROMK = Kir 1.1) in the thick ascending limb of Henle and in principal cells of the collecting duct are inhibited by millimolar concentrations of cytosolic Mg-ATP. However, the mechanism of this inhibition has been an enigma. We propose that the ATP-Binding Cassette (ABC) protein CFTR is a cofactor for Kir 1.1 regulation. Indeed, Mg-ATP sensitivity of Kir 1.1 is completely absent in two different mouse models of cystic fibrosis. In addition, the open-closed state of CFTR appears to provide a molecular gating switch that prevents or facilitates the ATP sensing of Kir 1.1. Does Mg-ATP sensing by the CFTR- Kir 1.1 complex play a role in coupling metabolism to ion transport? Physiological intracellular ATP concentrations in tubule cells are in the millimolar range, a saturating concentration for the gating of Kir 1.1 by Mg-ATP. Therefore, Kir 1.1 channels would be closed and unable to contribute to regulation of potassium secretion unless some other process modulated the CFTR-dependent ATP-sensitivity of Kir 1.1. The third component of the metabolic sensor-effector complex for Kir 1.1 regulation is most likely the AMP-regulated serine-threonine kinase, AMP kinase (AMPK). Changing levels in AMP rather than in ATP constitute the metabolic signal "sensed" by tubule cells. Because AMPK inhibits CFTR by modulating CFTR channel gating, we propose that renal K

  20. Temperature dependent dielectric properties and ion transportation in solid polymer electrolyte for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Sengwa, R. J.; Dhatarwal, Priyanka; Choudhary, Shobhna

    2016-05-01

    Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF4) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governed by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10-6 S cm-1 which suggests the suitability of the SPE film for rechargeable lithium batteries.

  1. Shielding analysis for a heavy ion beam chamber with plasma channels for ion transport

    SciTech Connect

    Sawan, M.E.; Peterson, R.R.; Yu, S.

    2000-06-28

    Neutronics analysis has been performed to assess the shielding requirements for the insulators and final focusing magnets in a modified HYLIFE-II target chamber that utilizes pre-formed plasma channels for heavy ion beam transport. Using 65 cm thick Flibe jet assemblies provides adequate shielding for the electrical insulator units. Additional shielding is needed in front of the final focusing superconducting quadrupole magnets. A shield with a thickness varying between 45 and 90 cm needs to be provided in front of the quadrupole unit. The final laser mirrors located along the channel axis are in the direct line-of-sight of source neutrons. Neutronics calculations were performed to determine the constraints on the placement of these mirrors to be lifetime components.

  2. Transport in JET H-mode Plasmas with Beam and Ion Cyclotron Heating

    SciTech Connect

    R.V. Budny, et. al.

    2012-07-13

    Ion Cyclotron (IC) Range of Frequency waves and neutral beam (NB) injection are planned for heating in ITER and other future tokamaks. It is important to understand transport in plasmas with NB and IC to plan, predict, and improve transport and confinement. Transport predictions require simulations of the heating profiles, and for this, accurate modeling of the IC and NB heating is needed.

  3. Transport implementation of the Bernstein–Vazirani algorithm with ion qubits

    NASA Astrophysics Data System (ADS)

    Fallek, S. D.; Herold, C. D.; McMahon, B. J.; Maller, K. M.; Brown, K. R.; Amini, J. M.

    2016-08-01

    Using trapped ion quantum bits in a scalable microfabricated surface trap, we perform the Bernstein–Vazirani algorithm. Our architecture takes advantage of the ion transport capabilities of such a trap. The algorithm is demonstrated using two- and three-ion chains. For three ions, an improvement is achieved compared to a classical system using the same number of oracle queries. For two ions and one query, we correctly determine an unknown bit string with probability 97.6(8)%. For three ions, we succeed with probability 80.9(3)%.

  4. Emergency airway puncture

    MedlinePlus

    Emergency airway puncture is the placement of a hollow needle through the throat into the airway. It ... Emergency airway puncture is done in an emergency situation, when someone is choking and all other efforts ...

  5. Control ion transport by tuning the crystalline morphology in polyethylene oxide-based solid electrolyte

    NASA Astrophysics Data System (ADS)

    Cheng, Shan; Li, Christopher; Smith, Derrick

    2013-03-01

    The crystalline structure of polyethylene oxide (PEO) strongly affects the ion transport in solid PEO-Lithium salt electrolytes. Four possible phases can exist in a PEO-LiClO4 electrolyte membrane, e.g. crystalline PEO, amorphous PEO, amorphous PEO-Li complex and crystalline PEO-Li complex. It has been widely accepted so far that ion can transport through either amorphous PEO phase or PEO-Li crystalline complex phase. The ion conduction mechanism of the former is based on ion hopping as well as PEO segment motion. In the latter case two PEO chains form cylindrical channels within which Lithium cation can transport. In this presentation, we will show that tuning the crystalline morphology can optimize ion conduction. This can be achieved by controlling the orientation of the PEO lamellae as well as PEO-Li crystalline complex to optimize the ion conducting pathways.

  6. Propionate alters ion transport by rabbit distal colon

    SciTech Connect

    Horvath, P.J.; Weiser, M.M.; Duffey, M.E.

    1986-03-01

    The primary anions of the colon are short-chain fatty acids (SCFA) produced by intestinal microorganisms from endogenous secretions and dietary fiber. The effects of the SCFA propionate on ion transport by the epithelium of rabbit distal colon were studied on tissues stripped of underlying musculature and mounted in Ussing chambers. When tissues were bathed with NaCl Ringer's solutions at 37/sup 0/C (5% CO/sub 2/-21mM HCO/sub 3/, pH 7.4) replacement of 33mM Cl/sup -/ in both tissue baths by propionate reduced short-circuit current (Isc) from 86 to 35 ..mu..A/cm/sup 2/ and increased transepithelial conductance (G/sub t/) from 3.6 to 5.6mS/cm/sup 2/. Unidirectional /sup 14/C-propionate flux measurements revealed that this ion was secreted at a rate of 0.5..mu..Eq/cm/sup 2/hr. Intracellular measurements with potential and pH sensitive microelectrodes showed that propionate reduced intracellular pH (PH/sub i/) from 6.84 to 6.68 (P < 0.02), depolarized the apical membrane potential (phi/sub a/) by 4mV (P < 0.02) and decreased the membrane fractional resistance (f/sub R/) from .78 to .71 (P < 0.001). Addition of 0.1mM amiloride to the mucosal bath reversed Isc to -18..mu..A/cm/sup 2/, decreased G/sub t/ to 5.3mS/cm/sup 2/, hyperpolarized phi/sub a/ by 5mV (P < 0.05) and increased f/sub R/ to 0.85 (P < 0.001). Amiloride had no effect on pH/sub i/. These results show that propionate can be secreted by rabbit distal colon and that exposure to this SCFA causes cell acidification and electrophysiological changes consistent with H/sup +/ secretion.

  7. Blockage of upper airway

    MedlinePlus

    ... Airway obstruction - acute upper Images Throat anatomy Choking Respiratory system References Cukor J, Manno M. Pediatric respiratory emergencies: upper airway obstruction and infections. In: Marx ...

  8. Using fluorometry and ion-sensitive microelectrodes to study the functional expression of heterologously-expressed ion channels and transporters in Xenopus oocytes

    PubMed Central

    Musa-Aziz, Raif; Boron, Walter F.; Parker, Mark D.

    2010-01-01

    The Xenopus laevis oocyte is a model system for the electrophysiological study of exogenous ion transporters. Three main reasons make the oocyte suitable for this purpose: (a) it has a large cell size (~1 mm diameter), (b) it has an established capacity to produce—from microinjected mRNAs or cRNAs—exogenous ion transporters with close-to-physiological post-translational modifications and actions, and (c) its membranes contain endogenous ion-transport activities which are usually smaller in magnitude than the activities of exogenously-expressed ion transporters. The expression of ion-transporters as green-fluorescent-protein fusions allows the fluorometric assay of transporter yield in living oocytes. Monitoring of transporter-mediated movement of ions such as Cl−, H+ (and hence base equivalents like OH−1 and HCO3−), K+, and Na+ is achieved by positioning the tips of ion-sensitive microelectrodes inside the oocyte and/or at the surface of the oocyte plasma membrane. The use of ion-sensitive electrodes is critical for studying net ion-movements mediated by electroneutral transporters. The combined use of fluorometry and electrophysiology expedites transporter study by allowing measurement of transporter yield prior to electrophysiological study and correlation of relative transporter yield with transport rates. PMID:20051266

  9. Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing

    PubMed Central

    Cheng, Chi; Jiang, Gengping; Garvey, Christopher J.; Wang, Yuanyuan; Simon, George P.; Liu, Jefferson Z.; Li, Dan

    2016-01-01

    Investigation of the transport properties of ions confined in nanoporous carbon is generally difficult because of the stochastic nature and distribution of multiscale complex and imperfect pore structures within the bulk material. We demonstrate a combined approach of experiment and simulation to describe the structure of complex layered graphene-based membranes, which allows their use as a unique porous platform to gain unprecedented insights into nanoconfined transport phenomena across the entire sub–10-nm scales. By correlation of experimental results with simulation of concentration-driven ion diffusion through the cascading layered graphene structure with sub–10-nm tuneable interlayer spacing, we are able to construct a robust, representative structural model that allows the establishment of a quantitative relationship among the nanoconfined ion transport properties in relation to the complex nanoporous structure of the layered membrane. This correlation reveals the remarkable effect of the structural imperfections of the membranes on ion transport and particularly the scaling behaviors of both diffusive and electrokinetic ion transport in graphene-based cascading nanochannels as a function of channel size from 10 nm down to subnanometer. Our analysis shows that the range of ion transport effects previously observed in simple one-dimensional nanofluidic systems will translate themselves into bulk, complex nanoslit porous systems in a very different manner, and the complex cascading porous circuities can enable new transport phenomena that are unattainable in simple fluidic systems. PMID:26933689

  10. Transport coefficients of gaseous ions in an electric field

    NASA Technical Reports Server (NTRS)

    Whealton, J. H.; Mason, E. A.

    1974-01-01

    A general theory of ion mobility formulated by Kihara (1953) is extended to ion diffusion and to mixtures of neutral gases. The theory assumes that only binary collisions between ions and neutral particles need to be taken into account and that the velocity distribution function of the neutral particles is Maxwellian. These assumptions make it possible to use a linearized Boltzmann equation. Questions of mobility are considered along with aspects of diffusion and deviations from Fick's law of diffusion.

  11. Ablation plasma transport using multicusp magnetic field for laser ion source

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Umezawa, M.; Uchino, T.; Ikegami, K.; Sasaki, T.; Kikuchi, T.; Harada, N.

    2016-05-01

    We propose a plasma guiding method using multicusp magnetic field to transport the ablation plasma keeping the density for developing laser ion sources. To investigate the effect of guiding using the magnetic field on the ablation plasma, we demonstrated the transport of the laser ablation plasma in the multicusp magnetic field. The magnetic field was formed with eight permanent magnets and arranged to limit the plasma expansion in the radial direction. We investigated the variation of the plasma ion current density and charge distribution during transport in the magnetic field. The results indicate that the plasma is confined in the radial direction during the transport in the multicusp magnetic field.

  12. Sources and transport systems for low energy extreme of ion implantation

    SciTech Connect

    Hershcovitch, A.; Batalin, V.A.; Bugaev, A.S.; Gushenets, V.I.; Alexeyenko, O.; Gurkova, E.; Johnson, B.M.; Kolomiets, A.A.; Kropachev, G.N.; Kuibeda, R.P.; Kulevoy, T.V.; Masunov, E.S.; Oks, E.M.; Pershin, V.I.; Polozov, S.M.; Poole, H.J.; Seleznev, D.N.; Storozhenko, P.A.; Vizir, A.; Svarovski, A.Ya.; Yakushin, P.; Yushkov, G.Yu.

    2010-06-06

    For the past seven years a joint research and development effort focusing on the design of steady state, intense ion sources has been in progress with the ultimate goal being to meet the two, energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. However, since the last Fortier is low energy ion implantation, focus of the endeavor has shifted to low energy ion implantation. For boron cluster source development, we started with molecular ions of decaborane (B{sub 10}H{sub 14}), octadecaborane (B{sub 18}H{sub 22}), and presently our focus is on carborane (C{sub 2}B{sub 10}H{sub 12}) ions developing methods for mitigating graphite deposition. Simultaneously, we are developing a pure boron ion source (without a working gas) that can form the basis for a novel, more efficient, plasma immersion source. Our Calutron-Berna ion source was converted into a universal source capable of switching between generating molecular phosphorous P{sub 4}{sup +}, high charge state ions, as well as other types of ions. Additionally, we have developed transport systems capable of transporting a very large variety of ion species, and simulations of a novel gasless/plasmaless ion beam deceleration method were also performed.

  13. Study on transport of negative ion plasma using dc laser photodetachment method

    SciTech Connect

    Shimamoto, S.; Kasuya, T.; Kimura, Y.; Miyamoto, N.; Wada, M.; Matsumoto, Y.

    2010-02-15

    Transport of negative ion containing plasma was studied in a hydrogen plasma by injecting a semiconductor laser to make an electron density perturbation by photodetachment of negative ions. Change due to laser irradiation on electron saturation current to a Langmuir probe and that on electron current extracted through an orifice biased at the anode potential were measured phase sensitively by a lock-in-amplifier. The measured transport velocity of the negative ion containing plasma was about 1.4x10{sup 5} cm/s for both cases. The photodetachment signal measured through the orifice had given a larger ratio of negative ion density to electron density. Change in transport of negative ion containing plasma around the Langmuir probe has been also investigated by detecting photodetachment signal onto electron current extracted through an orifice.

  14. Transport-limited water splitting at ion-selective interfaces during concentration polarization

    NASA Astrophysics Data System (ADS)

    Nielsen, Christoffer P.; Bruus, Henrik

    2014-04-01

    We present an analytical model of salt- and water-ion transport across an ion-selective interface based on an assumption of local equilibrium of the water-dissociation reaction. The model yields current-voltage characteristics and curves of water-ion current versus salt-ion current, which are in qualitative agreement with experimental results published in the literature. The analytical results are furthermore in agreement with direct numerical simulations. As part of the analysis, we find approximate solutions to the classical problem of pure salt transport across an ion-selective interface. These solutions provide closed-form expressions for the current-voltage characteristics, which include the overlimiting current due to the development of an extended space-charge region. Finally, we discuss how the addition of an acid or a base affects the transport properties of the system and thus provide predictions accessible to further experimental tests of the model.

  15. Coupling mechanical forces to electrical signaling: molecular motors and the intracellular transport of ion channels.

    PubMed

    Barry, Joshua; Gu, Chen

    2013-04-01

    Proper localization of various ion channels is fundamental to neuronal functions, including postsynaptic potential plasticity, dendritic integration, action potential initiation and propagation, and neurotransmitter release. Microtubule-based forward transport mediated by kinesin motors plays a key role in placing ion channel proteins to correct subcellular compartments. PDZ- and coiled-coil-domain proteins function as adaptor proteins linking ionotropic glutamate and GABA receptors to various kinesin motors, respectively. Recent studies show that several voltage-gated ion channel/transporter proteins directly bind to kinesins during forward transport. Three major regulatory mechanisms underlying intracellular transport of ion channels are also revealed. These studies contribute to understanding how mechanical forces are coupled to electrical signaling and illuminating pathogenic mechanisms in neurodegenerative diseases. PMID:22910031

  16. Coupling Mechanical Forces to Electrical Signaling: Molecular Motors and the Intracellular Transport of Ion Channels

    PubMed Central

    Barry, Joshua; Gu, Chen

    2013-01-01

    Proper localization of various ion channels is fundamental to neuronal functions, including postsynaptic potential plasticity, dendritic integration, action potential initiation and propagation, and neurotransmitter release. Microtubule-based forward transport mediated by kinesin motors plays a key role in placing ion channel proteins to correct subcellular compartments. PDZ- and coiled-coil-domain proteins function as adaptor proteins linking ionotropic glutamate and GABA receptors to various kinesin motors, respectively. Recent studies show that several voltage-gated ion channel/transporter proteins directly bind to kinesins during forward transport. Three major regulatory mechanisms underlying intracellular transport of ion channels are also revealed. These studies contribute to understanding how mechanical forces are coupled to electrical signaling and illuminating pathogenic mechanisms in neurodegenerative diseases. PMID:22910031

  17. Influence of target requirements on the production, acceleration, transport, and focusing of ion beams

    SciTech Connect

    Bangerter, R.O.; Mark, J.W.K.; Meeker, D.J.; Judd, D.L.

    1981-01-01

    We have calculated the energy gain of ion-driven fusion targets as a function of input energy, ion range, and focal spot radius. For heavy-ion drivers a given target gain, together with final-lens properties, determines a 6-D phase space volume which must exceed that occupied by the ion beam. Because of Liouville's theorem and the inevitability of some phase space dilutions, the beams's 6-D volume will increase between the ion source and the target. This imposes important requirements on accelerators and on transport and focusing systems.

  18. Mechanism of fragmentation and atomization of molecular ions in gasdynamic transport cell

    NASA Astrophysics Data System (ADS)

    Bazhenov, A. N.; Bulovich, S. V.; Gall, L. N.; Kretinina, A. V.; Lapushkin, M. N.; Gall, N. R.

    2010-04-01

    The fragmentation of molecular ions formed upon the electrospraying of a sample and transported through the gasdynamic system of a mass spectrometer equipped with an IESAP (Ion Extraction from Solution at Atmospheric Pressure) source has been experimentally studied. It is established that ion fragmentation in a Kantorowicz-Gray type cell takes place in the immediate vicinity of a skimmer port, apparently, as a result of collisions between ions (accelerated in an electric field) and stagnant gas. Molecular mechanisms of fragmentation are considered and it is concluded that this process can take place in a single ion-molecule collision event.

  19. Effect of Energetic-Ion-Driven MHD Instabilities on Energetic-Ion-Transport in Compact Helical System and Large Helical Device

    SciTech Connect

    Isobe, M.; Ogawa, K.; Toi, K.; Osakabe, M.; Nagaoka, K.; Shimizu, A.; Spong, Donald A; Okumura, S.

    2010-01-01

    This paper describes 1) representative results on excitation of energetic-particle mode (EPM) and toroidicity-induced Alfven eigenmode (TAE) and consequent beam-ion losses in CHS, and 2) recent results on beam-ion transport and/or losses while EPMs are destabilized in LHD. Bursting EPMs and TAEs are often excited by co-injected beam ions in the high-beam ion pressure environment and give a significant effect on co-going beam ions in both experiments. It seems that in CHS, resonant beam ions are lost within a relatively short-time scale once they are anomalously transported due to energetic-ion driven MHD modes, whereas unlike CHS, redistribution of beam ions due to energetic-ion driven MHD modes is seen in LHD, suggesting that not all anomalously transported beam ions escape from the plasma.

  20. White Paper on Ion Beam Transport for ICF: Issues, R&D Need,and Tri-Lab Plans

    SciTech Connect

    Olson, C.; Lee, E.; Langdon, B.

    2005-05-04

    To date, most resources for ion beam fusion have been devoted to development of accelerators and target physics; relatively few resources have gone into ion beam transport development. Because of theoretical studies and substantial experience with electron beam transport, the ion beam transport community is now poised to develop and optimize ion beam transport for ICF. Because of this Tri-Lab effort, a path for coordinated development of ion beam transport has been established. The rate of progress along this path will now be determined largely by the availability of resources.

  1. Electron transport in a collisional plasma with multiple ion species

    SciTech Connect

    Simakov, Andrei N. Molvig, Kim

    2014-02-15

    A generalization of the Braginskii electron fluid description [S. I. Braginskii, Sov. Phys. JETP 6, 358 (1958)] to the case of an unmagnetized collisional plasma with multiple ion species is presented. A description of the plasma ions with disparate masses is also discussed.

  2. Effect of radial plasma transport at the magnetic throat on axial ion beam formation

    NASA Astrophysics Data System (ADS)

    Zhang, Yunchao; Charles, Christine; Boswell, Rod

    2016-08-01

    Correlation between radial plasma transport and formation of an axial ion beam has been investigated in a helicon plasma reactor implemented with a convergent-divergent magnetic nozzle. The plasma discharge is sustained under a high magnetic field mode and a low magnetic field mode for which the electron energy probability function, the plasma density, the plasma potential, and the electron temperature are measured at the magnetic throat, and the two field modes show different radial parametric behaviors. Although an axial potential drop occurs in the plasma source for both field modes, an ion beam is only observed in the high field mode while not in the low field mode. The transport of energetic ions is characterized downstream of the plasma source using the delimited ion current and nonlocal ion current. A decay of ion beam strength is also observed in the diffusion chamber.

  3. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator.

    PubMed

    Jang, Hyojae; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok

    2016-02-01

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described. PMID:26932088

  4. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    NASA Astrophysics Data System (ADS)

    Jang, Hyojae; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok

    2016-02-01

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  5. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems

    NASA Astrophysics Data System (ADS)

    Dykstra, J. E.; Biesheuvel, P. M.; Bruning, H.; Ter Heijne, A.

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density.

  6. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems.

    PubMed

    Dykstra, J E; Biesheuvel, P M; Bruning, H; Ter Heijne, A

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density. PMID:25122405

  7. Gated ion transport through dense carbon nanotube membranes.

    PubMed

    Yu, Miao; Funke, Hans H; Falconer, John L; Noble, Richard D

    2010-06-23

    Gated ion diffusion is found widely in hydrophobic biological nanopores, upon changes in ligand binding, temperature, transmembrane voltage, and mechanical stress. Because water is the main media for ion diffusion in these hydrophobic biological pores, ion diffusion behavior through these nanochannels is expected to be influenced significantly when water wettability in hydrophobic biological nanopores is sensitive and changes upon small external changes. Here, we report for the first time that ion diffusion through highly hydrophobic nanopores (approximately 3 nm) showed a gated behavior due to change of water wettability on hydrophobic surface upon small temperature change or ultrasound. Dense carbon nanotube (CNT) membranes with both 3-nm CNTs and 3-nm interstitial pores were prepared by a solvent evaporation process and used as a model system to investigate ion diffusion behavior. Ion diffusion through these membranes exhibited a gated behavior. The ion flux was turned on and off, apparently because the water wettability of CNTs changed. At 298 K, ion diffusion through dense CNT membranes stopped after a few hours, but it dramatically increased when the temperature was increased 20 K or the membrane was subjected to ultrasound. Likewise, water adsorption on dense CNT membranes increased dramatically at a water activity of 0.53 when the temperature increased from 293 to 306 K, indicating capillary condensation. Water adsorption isotherms of dense CNT membranes suggest that the adsorbed water forms a discontinuous phase at 293 K, but it probably forms a continuous layer, probably in the interstitial CNT regions, at higher temperatures. When the ion diffusion channel was opened by a temperature increase or ultrasound, ions diffused through the CNT membranes at a rate similar to bulk diffusion in water. This finding may have implications for using CNT membrane for desalination and water treatment. PMID:20504021

  8. Role for Ion Transport in Porcine Vocal Fold Epithelial Defense to Acid Challenge

    PubMed Central

    Erickson-Levendoski, Elizabeth; Sivasankar, M. Preeti

    2012-01-01

    Objective The vocal fold epithelium is routinely exposed to gastric contents, including acid and pepsin, during laryngopharyngeal reflux events. The epithelium may possess intrinsic defenses to reflux. The first objective of the current study was to examine whether vocal fold epithelial ion transport is one potential mechanism of defense to gastric contents. The second objective was to determine whether ion transport in response to gastric contents is associated with the secretion of bicarbonate. Study Design Prospective design in excised porcine larynges. Setting Laboratory. Subjects and Methods Porcine vocal folds (N = 56) were exposed on the luminal surface to acid, pepsin, or sham challenges. Ion transport at baseline and following challenge exposure was measured using electrophysiological techniques. To examine specific ion transport mechanisms, vocal folds were pretreated with either a sodium channel blocker or bicarbonate channel blocker. Results Within 60 seconds of acid but not pepsin exposure, there was a significant increase in ion transport. This rapid increase in ion transport was transient and related to bicarbonate secretion. Conclusion The current data suggest that porcine vocal folds immediately increase bicarbonate secretion following exposure to acid. Bicarbonate secretion may act to neutralize acid. These findings contribute to the identification of the mechanisms underlying vocal fold defense to reflux and offer implications for the development of treatments for reflux-induced vocal fold injury. PMID:22086905

  9. Computational study of effect of water finger on ion transport through water-oil interface

    NASA Astrophysics Data System (ADS)

    Kikkawa, Nobuaki; Wang, Lingjian; Morita, Akihiro

    2016-07-01

    When an ion transports from water to oil through water-oil interface, it accompanies hydrated water molecules and transiently forms a chain of water, called "water finger." We thoroughly investigated the role of the water finger in chloride ion transport through water-dichloromethane interface by using molecular dynamics technique. We developed a proper coordinate w to describe the water finger structure and calculated the free energy landscape and the friction for the ion transport as a function of ion position z and the water finger coordinate w. It is clearly shown that the formation and break of water finger accompanies an activation barrier for the ion transport, which has been overlooked in the conventional free energy curve along the ion position z. The present analysis of the friction does not support the hypothesis of augmented local friction (reduced local diffusion coefficient) at the interface. These results mean that the experimentally observed rate constants of interfacial ion transfer are reduced from the diffusion-limited one because of the activation barrier associated to the water finger, not the anomalous local diffusion. We also found that the nascent ion just after the break of water finger has excessive hydration water than that in the oil phase.

  10. Computational study of effect of water finger on ion transport through water-oil interface.

    PubMed

    Kikkawa, Nobuaki; Wang, Lingjian; Morita, Akihiro

    2016-07-01

    When an ion transports from water to oil through water-oil interface, it accompanies hydrated water molecules and transiently forms a chain of water, called "water finger." We thoroughly investigated the role of the water finger in chloride ion transport through water-dichloromethane interface by using molecular dynamics technique. We developed a proper coordinate w to describe the water finger structure and calculated the free energy landscape and the friction for the ion transport as a function of ion position z and the water finger coordinate w. It is clearly shown that the formation and break of water finger accompanies an activation barrier for the ion transport, which has been overlooked in the conventional free energy curve along the ion position z. The present analysis of the friction does not support the hypothesis of augmented local friction (reduced local diffusion coefficient) at the interface. These results mean that the experimentally observed rate constants of interfacial ion transfer are reduced from the diffusion-limited one because of the activation barrier associated to the water finger, not the anomalous local diffusion. We also found that the nascent ion just after the break of water finger has excessive hydration water than that in the oil phase. PMID:27394116

  11. Benchmark solutions for the galactic heavy-ion transport equations with energy and spatial coupling

    NASA Technical Reports Server (NTRS)

    Ganapol, Barry D.; Townsend, Lawrence W.; Lamkin, Stanley L.; Wilson, John W.

    1991-01-01

    Nontrivial benchmark solutions are developed for the galactic heavy ion transport equations in the straightahead approximation with energy and spatial coupling. Analytical representations of the ion fluxes are obtained for a variety of sources with the assumption that the nuclear interaction parameters are energy independent. The method utilizes an analytical LaPlace transform inversion to yield a closed form representation that is computationally efficient. The flux profiles are then used to predict ion dose profiles, which are important for shield design studies.

  12. Heavy ion beam transport and interaction with ICF targets

    NASA Astrophysics Data System (ADS)

    Velarde, G.; Aragonés, J. M.; Gago, J. A.; Gámez, L.; González, M. C.; Honrubia, J. J.; Martínez-Val, J. M.; Mínguez, E.; Ocaña, J. L.; Otero, R.; Perlado, J. M.; Santolaya, J. M.; Serrano, J. F.; Velarde, P. M.

    1986-01-01

    Numerical simulation codes provide an essential tool for analyzing the very broad range of concepts and variables considered in ICF targets. In this paper, the relevant processes embodied in the NORCLA code, needed to simulate ICF targets driven by heavy ion beams will be presented. Atomic physic models developed at DENIM to improve the atomic data needed for ion beam plasma interaction will be explained. Concerning the stopping power, the average ionization potential following a Thomas-Fermi model has been calculated, and results are compared with full quantum calculations. Finally, a parametric study of multilayered single shell targets driven by heavy ion beams will be shown.

  13. Electrophoretic Transport of Na(+) and K(+) Ions Within Cyclic Peptide Nanotubes.

    PubMed

    Carvajal-Diaz, Jennifer A; Cagin, Tahir

    2016-08-18

    One of the most important applications of cyclic peptide nanotubes (CPNTs) is their potential to be used as artificial ion channels. Natural ion channels are large and complex membrane proteins, which are very expensive, difficult to isolate, and sensible to denaturation; for this reason, artificial ion channels are an important alternative, as they can be produced by simple and inexpensive synthetic chemistry paths, allowing manipulation of properties and enhancement of ion selectivity properties. Artificial ion channels can be used as component in molecular sensors and novel therapeutic agents. Here, the electrophoretic transport of Na(+) and K(+) ions within cyclic peptide nanotubes is investigated by using molecular dynamic simulations. The effect of electric field in the stability of peptide nanotubes was studied by calculating the root mean square deviation curves. Results show that the stability for CPNTs decreases for higher electric fields. Selective transport of cations within the hydrophilic tubes was observed and the negative Cl(-) ions did not enter the peptide nanotubes during the simulation. Radial distribution functions were calculated to describe structural properties and coordination numbers and changes in the first and second hydration shell were observed for the transport of Na(+) and K(+) inside of cyclic peptide nanotubes. However, no effect on coordination number was observed. Diffusion coefficients were calculated from the mean square deviation curves and the Na(+) ion showed higher mobility than the K(+) ion as observed in equivalent experimental studies. The values for diffusion coefficients are comparable with previous calculations in protein channels of equivalent sizes. PMID:27448165

  14. The effect of hyperpolarization-activated cyclic nucleotide-gated ion channel inhibitors on the vagal control of guinea pig airway smooth muscle tone

    PubMed Central

    McGovern, Alice E; Robusto, Jed; Rakoczy, Joanna; Simmons, David G; Phipps, Simon; Mazzone, Stuart B

    2014-01-01

    BACKGROUND AND PURPOSE Subtypes of the hyperpolarization-activated cyclic nucleotide-gated (HCN) family of cation channels are widely expressed on nerves and smooth muscle cells in many organ systems, where they serve to regulate membrane excitability. Here we have assessed whether HCN channel inhibitors alter the function of airway smooth muscle or the neurons that regulate airway smooth muscle tone. EXPERIMENTAL APPROACH The effects of the HCN channel inhibitors ZD7288, zatebradine and Cs+ were assessed on agonist and nerve stimulation-evoked changes in guinea pig airway smooth muscle tone using tracheal strips in vitro, an innervated tracheal tube preparation ex vivo or in anaesthetized mechanically ventilated guinea pigs in vivo. HCN channel expression in airway nerves was assessed using immunohistochemistry, PCR and in situ hybridization. KEY RESULTS HCN channel inhibition did not alter airway smooth muscle reactivity in vitro to exogenously administered smooth muscle spasmogens, but significantly potentiated smooth muscle contraction evoked by the sensory nerve stimulant capsaicin and electrical field stimulation of parasympathetic cholinergic postganglionic neurons. Sensory nerve hyperresponsiveness was also evident in in vivo following HCN channel blockade. Cs+, but not ZD7288, potentiated preganglionic nerve-dependent airway contractions and over time induced autorhythmic preganglionic nerve activity, which was not mimicked by inhibitors of potassium channels. HCN channel expression was most evident in vagal sensory ganglia and airway nerve fibres. CONCLUSIONS AND IMPLICATIONS HCN channel inhibitors had a previously unrecognized effect on the neural regulation of airway smooth muscle tone, which may have implications for some patients receiving HCN channel inhibitors for therapeutic purposes. PMID:24762027

  15. Difficult Airway Response Team: A Novel Quality Improvement Program for Managing Hospital-Wide Airway Emergencies

    PubMed Central

    Mark, Lynette J.; Herzer, Kurt R.; Cover, Renee; Pandian, Vinciya; Bhatti, Nasir I.; Berkow, Lauren C.; Haut, Elliott R.; Hillel, Alexander T.; Miller, Christina R.; Feller-Kopman, David J.; Schiavi, Adam J.; Xie, Yanjun J.; Lim, Christine; Holzmueller, Christine; Ahmad, Mueen; Thomas, Pradeep; Flint, Paul W.; Mirski, Marek A.

    2015-01-01

    or current tracheostomy. Twenty-three patients (6%) required emergent surgical airways. Sixty-two patients (17%) were stabilized and transported to the operating room for definitive airway management. There were no airway management-related deaths, sentinel events, or malpractice claims in adult patients managed by DART. Five in situ simulations conducted in the first program year improved DART's teamwork, communication, and response times and increased the functionality of the difficult airway carts. Over the 5-year period, we conducted 18 airway courses, through which more than 200 providers were trained. Conclusions DART is a comprehensive program for improving difficult airway management. Future studies will examine the comparative effectiveness of the DART program and evaluate how DART has impacted patient outcomes, operational efficiency, and costs of care. PMID:26086513

  16. Influence of nanoparticle-ion and nanoparticle-polymer interactions on ion transport and viscoelastic properties of polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Mogurampelly, Santosh; Sethuraman, Vaidyanathan; Pryamitsyn, Victor; Ganesan, Venkat

    2016-04-01

    We use atomistic simulations to probe the ion conductivities and mechanical properties of polyethylene oxide electrolytes containing Al2O3 nanoparticles. We specifically study the influence of repulsive polymer-nanoparticle and ion-nanoparticle interactions and compare the results with those reported for electrolytes containing the polymorph β-Al2O3 nanoparticles. We observe that incorporating repulsive nanoparticle interactions generally results in increased ionic mobilities and decreased elastic moduli for the electrolyte. Our results indicate that both ion transport and mechanical properties are influenced by the polymer segmental dynamics in the interfacial zones of the nanoparticle in the ion-doped systems. Such effects were seen to be determined by an interplay between the nanoparticle-polymer, nanoparticle-ion, and ion-polymer interactions. In addition, such interactions were also observed to influence the number of dissociated ions and the resulting conductivities. Within the perspective of the influence of nanoparticles on the polymer relaxation times in ion-doped systems, our results in the context of viscoelastic properties were consistent with the ionic mobilities. Overall, our results serve to highlight some issues that confront the efforts to use nanoparticle dispersions to simultaneously enhance the conductivity and the mechanical strength of polymer electrolyte.

  17. Development of a low-energy beam transport system at KBSI heavy-ion accelerator

    NASA Astrophysics Data System (ADS)

    Bahng, Jungbae; Lee, Byoung-Seob; Sato, Yoichi; Ok, Jung-Woo; Park, Jin Yong; Yoon, Jang-Hee; Choi, Seyong; Won, Mi-Sook; Kim, Eun-San

    2015-01-01

    The Korea Basic Science Institute has developed a heavy ion accelerator for fast neutron radiography [1]. To meet the requirements for fast neutron generation, we have developed an accelerator system that consists of an electron cyclotron resonance ion source (ECR-IS), low-energy beam transport (LEBT) system, radio-frequency quadrupole (RFQ), medium-energy beam transport system, and drift tube linac. In this paper, we present the development of the LEBT system as a part of the heavy ion accelerator system, which operates from the ECR-IS to the RFQ entrance.

  18. Studies of ion transport through a liquid membrane by using crown ethers

    SciTech Connect

    Gaikwad, A.G. , Trivandrum ); Noguchi, H.; Yoshio, Masaki )

    1991-01-01

    Studies on ion transport through a liquid membrane system composed of two extraction processes have been carried out. Kinetic models based on extraction processes with consideration of the controlled parameters were developed for mediated ion transport through liquid membranes, especially those using crown ethers as the ion carrier. A study of the concentration change in the receiving or source phase envisages the determination of the equilibrium constant by a kinetic method corresponding to the chemical reaction at the interface as well as the maximum initial flux through the membrane. The equilibrium constant values determined by the kinetic process were checked by the solvent extraction method.

  19. Electromagnetic fields and anomalous transports in heavy-ion collisions-a pedagogical review.

    PubMed

    Huang, Xu-Guang

    2016-07-01

    The hot and dense matter generated in heavy-ion collisions may contain domains which are not invariant under P and CP transformations. Moreover, heavy-ion collisions can generate extremely strong magnetic fields as well as electric fields. The interplay between the electromagnetic field and triangle anomaly leads to a number of macroscopic quantum phenomena in these P- and CP-odd domains known as anomalous transports. The purpose of this article is to give a pedagogical review of various properties of the electromagnetic fields, the anomalous transport phenomena, and their experimental signatures in heavy-ion collisions. PMID:27275776

  20. Electromagnetic fields and anomalous transports in heavy-ion collisions—a pedagogical review

    NASA Astrophysics Data System (ADS)

    Huang, Xu-Guang

    2016-07-01

    The hot and dense matter generated in heavy-ion collisions may contain domains which are not invariant under P and CP transformations. Moreover, heavy-ion collisions can generate extremely strong magnetic fields as well as electric fields. The interplay between the electromagnetic field and triangle anomaly leads to a number of macroscopic quantum phenomena in these P- and CP-odd domains known as anomalous transports. The purpose of this article is to give a pedagogical review of various properties of the electromagnetic fields, the anomalous transport phenomena, and their experimental signatures in heavy-ion collisions.

  1. Metal ion transport quantified by ICP-MS in intact cells

    PubMed Central

    Figueroa, Julio A. Landero; Stiner, Cory A.; Radzyukevich, Tatiana L.; Heiny, Judith A.

    2016-01-01

    The use of ICP-MS to measure metal ion content in biological tissues offers a highly sensitive means to study metal-dependent physiological processes. Here we describe the application of ICP-MS to measure membrane transport of Rb and K ions by the Na,K-ATPase in mouse skeletal muscles and human red blood cells. The ICP-MS method provides greater precision and statistical power than possible with conventional tracer flux methods. The method is widely applicable to studies of other metal ion transporters and metal-dependent processes in a range of cell types and conditions. PMID:26838181

  2. Integral Transport Analysis of Ions Flowing Through Neutral Gas

    NASA Astrophysics Data System (ADS)

    Emmert, Gilbert; Santarius, John; Alderson, Eric

    2011-10-01

    A computational model for the flow of energetic ions through a background neutral gas is being developed. Its essence is to consider reactions as creating a new source of ions or neutrals if the energy or charge state of the resulting particle is changed. For a given source boundary condition, the creation and annihilation of the various species is formulated as a 1-D Volterra integral equation that can quickly be solved numerically by finite differences. The current work focuses on radially converging, multiple-pass, 1-D ion flow through neutral gas and a nearly transparent, concentric anode and cathode pair in spherical geometry. This has been implemented as a computer code for atomic (3He, 3He+) and molecular (D, D2, D-, D+, D2+, D3+) ion and neutral species, and applied to modeling inertial-electrostatic confinement (IEC) devices. The inclusion of negative ions is a recent development. The code yields detailed energy spectra of the various ions and energetic neutral species. Comparisons with experimental data for a University of Wisconsin IEC device will be presented. Research supported by US Dept of Energy, grant DE-FG02-04ER54745, and by the Grainger Foundation.

  3. Transport of Helium Pickup Ions within the Focusing Cone: Reconciling STEREO Observations with IBEX

    NASA Astrophysics Data System (ADS)

    Quinn, P. R.; Schwadron, N. A.; Möbius, E.

    2016-06-01

    Recent observations of the pickup helium focusing cone by STEREO/Plasma and Suprathermal Ion Composition indicate an inflow longitude of the interstellar wind that differs from the observations of IBEX by 1\\buildrel{\\circ}\\over{.} 8+/- 2\\buildrel{\\circ}\\over{.} 4. It has been under debate whether the transport of helium pickup ions with an anisotropic velocity distribution is the cause of this difference. If so, the roughly field-aligned pickup ion streaming relative to the solar wind should create a shift in the pickup ion density relative to the focusing cone. A large pickup ion streaming depends on the size of the mean free path. Therefore, the observed longitudinal shift in the pickup ion density relative to the neutral focusing cone may carry fundamental information about the mean free path experienced by pickup ions inside 1 au. We test this hypothesis using the Energetic Particle Radiation Environment Module (EPREM) model by simulating the transport of helium pickup ions within the focusing cone finding a mean free path of {λ }\\parallel =0.19+0.29(-0.19) au. We calculate the average azimuthal velocity of pickup ions and find that the anisotropic distribution reaches ˜8% of the solar wind speed. Lastly, we isolate transport effects within EPREM, finding that pitch-angle scattering, adiabatic focusing, perpendicular diffusion, and particle drift contribute to shifting the focusing cone 20.00%, 69.43%, 10.56%, and \\lt 0.01 % , respectively. Thus we show with the EPREM model that the transport of pickup ions does indeed shift the peak of the focusing cone relative to the progenitor neutral atoms and this shift provides fundamental information on the scattering of pickup ions inside 1 au.

  4. Transport of Helium Pickup Ions within the Focusing Cone: Reconciling STEREO Observations with IBEX

    NASA Astrophysics Data System (ADS)

    Quinn, P. R.; Schwadron, N. A.; Möbius, E.

    2016-06-01

    Recent observations of the pickup helium focusing cone by STEREO/Plasma and Suprathermal Ion Composition indicate an inflow longitude of the interstellar wind that differs from the observations of IBEX by 1\\buildrel{\\circ}\\over{.} 8+/- 2\\buildrel{\\circ}\\over{.} 4. It has been under debate whether the transport of helium pickup ions with an anisotropic velocity distribution is the cause of this difference. If so, the roughly field-aligned pickup ion streaming relative to the solar wind should create a shift in the pickup ion density relative to the focusing cone. A large pickup ion streaming depends on the size of the mean free path. Therefore, the observed longitudinal shift in the pickup ion density relative to the neutral focusing cone may carry fundamental information about the mean free path experienced by pickup ions inside 1 au. We test this hypothesis using the Energetic Particle Radiation Environment Module (EPREM) model by simulating the transport of helium pickup ions within the focusing cone finding a mean free path of {λ }\\parallel =0.19+0.29(-0.19) au. We calculate the average azimuthal velocity of pickup ions and find that the anisotropic distribution reaches ∼8% of the solar wind speed. Lastly, we isolate transport effects within EPREM, finding that pitch-angle scattering, adiabatic focusing, perpendicular diffusion, and particle drift contribute to shifting the focusing cone 20.00%, 69.43%, 10.56%, and \\lt 0.01 % , respectively. Thus we show with the EPREM model that the transport of pickup ions does indeed shift the peak of the focusing cone relative to the progenitor neutral atoms and this shift provides fundamental information on the scattering of pickup ions inside 1 au.

  5. Quadrupole transport experiment with space charge dominated cesium ion beam

    SciTech Connect

    Faltens, A.; Keefe, D.; Kim, C.; Rosenblum, S.; Tiefenback, M.; Warwick, A.

    1984-08-01

    The purpose of the experiment is to investigate the beam current transport limit in a long quadrupole-focussed transport channel in the space charge dominated region where the space charge defocussing force is almost as large as the average focussing force of the channel.

  6. Airway Gland Structure and Function.

    PubMed

    Widdicombe, Jonathan H; Wine, Jeffrey J

    2015-10-01

    Submucosal glands contribute to airway surface liquid (ASL), a film that protects all airway surfaces. Glandular mucus comprises electrolytes, water, the gel-forming mucin MUC5B, and hundreds of different proteins with diverse protective functions. Gland volume per unit area of mucosal surface correlates positively with impaction rate of inhaled particles. In human main bronchi, the volume of the glands is ∼ 50 times that of surface goblet cells, but the glands diminish in size and frequency distally. ASL and its trapped particles are removed from the airways by mucociliary transport. Airway glands have a tubuloacinar structure, with a single terminal duct, a nonciliated collecting duct, then branching secretory tubules lined with mucous cells and ending in serous acini. They allow for a massive increase in numbers of mucus-producing cells without replacing surface ciliated cells. Active secretion of Cl(-) and HCO3 (-) by serous cells produces most of the fluid of gland secretions. Glands are densely innervated by tonically active, mutually excitatory airway intrinsic neurons. Most gland mucus is secreted constitutively in vivo, with large, transient increases produced by emergency reflex drive from the vagus. Elevations of [cAMP]i and [Ca(2+)]i coordinate electrolyte and macromolecular secretion and probably occur together for baseline activity in vivo, with cholinergic elevation of [Ca(2+)]i being mainly responsive for transient increases in secretion. Altered submucosal gland function contributes to the pathology of all obstructive diseases, but is an early stage of pathogenesis only in cystic fibrosis. PMID:26336032

  7. Nature of Transport across Sheared Zonal Flows in Electrostatic Ion-Temperature-Gradient Gyrokinetic Plasma Turbulence

    SciTech Connect

    Sanchez, R.; Newman, D. E.; Leboeuf, J.-N.; Decyk, V. K.; Carreras, B. A.

    2008-11-14

    It is shown that the usual picture for the suppression of turbulent transport across a stable sheared flow based on a reduction of diffusive transport coefficients is, by itself, incomplete. By means of toroidal gyrokinetic simulations of electrostatic, collisionless ion-temperature-gradient turbulence, it is found that the nature of the transport is altered fundamentally, changing from diffusive to anticorrelated and subdiffusive. Additionally, whenever the flows are self-consistently driven by turbulence, the transport gains an additional non-Gaussian character. These results suggest that a description of transport across sheared flows using effective diffusivities is oversimplified.

  8. Nature of Transport across Sheared Zonal Flows in Electrostatic Ion-Temperature-Gradient Gyrokinetic Plasma Turbulence

    SciTech Connect

    Sanchez, Raul; Newman, David E; Leboeuf, Jean-Noel; Decyk, Viktor; Carreras, Benjamin A

    2008-01-01

    It is shown that the usual picture for the suppression of turbulent transport across a stable sheared flow based on a reduction of diffusive transport coefficients is, by itself, incomplete. By means of toroidal gyrokinetic simulations of electrostatic, collisionless ion-temperature-gradient turbulence, it is found that the nature of the transport is altered fundamentally, changing from diffusive to anticorrelated and subdiffusive. Additionally, whenever the flows are self-consistently driven by turbulence, the transport gains an additional non-Gaussian character. These results suggest that a description of transport across sheared flows using effective diffusivities is oversimplified.

  9. Coupling Substrate and Ion Binding to Extracellular Gate of a Sodium-Dependent Aspartate Transporter

    SciTech Connect

    Boudker,O.; Ryan, R.; Yernool, D.; Shimamoto, K.; Gouaux, E.

    2007-01-01

    Secondary transporters are integral membrane proteins that catalyze the movement of substrate molecules across the lipid bilayer by coupling substrate transport to one or more ion gradients, thereby providing a mechanism for the concentrative uptake of substrates. Here we describe crystallographic and thermodynamic studies of Glt{sub Ph}, a sodium (Na{sup +})-coupled aspartate transporter, defining sites for aspartate, two sodium ions and D,L-threo-{beta}-benzyloxyaspartate, an inhibitor. We further show that helical hairpin 2 is the extracellular gate that controls access of substrate and ions to the internal binding sites. At least two sodium ions bind in close proximity to the substrate and these sodium-binding sites, together with the sodium-binding sites in another sodium-coupled transporter, LeuT, define an unwound {alpha}-helix as the central element of the ion-binding motif, a motif well suited to the binding of sodium and to participation in conformational changes that accompany ion binding and unbinding during the transport cycle.

  10. Ab initio transport coefficients of Ar⁺ ions in Ar for cold plasma jet modeling.

    PubMed

    Chicheportiche, A; Lepetit, B; Gadéa, F X; Benhenni, M; Yousfi, M; Kalus, R

    2014-06-01

    Collision cross sections and transport coefficients are calculated for Ar{+} ions, in the ground state {2}P_{3/2} and in the metastable state {2}P_{1/2}, colliding with their parent gas. Differential and integral collision cross sections are obtained using a numerical integration of the nuclear Schrödinger equation for several published interaction potentials. The Cohen-Schneider semi-empirical model is used for the inclusion of the spin-orbit interaction. The corresponding differential collision cross sections are then used in an optimized Monte Carlo code to calculate the ion transport coefficients for each initial ion state over a wide range of reduced electric field. Ion swarm data results are then compared with available experimental data for different proportions of ions in each state. This allows us to identify the most reliable interaction potential which reproduces ion transport coefficients falling within the experimental error bars. Such ion transport data will be used in electrohydrodynamic and chemical kinetic models of the low temperature plasma jet to quantify and to tune the active species production for a better use in biomedical applications. PMID:25019899

  11. Ab initio transport coefficients of Ar+ ions in Ar for cold plasma jet modeling

    NASA Astrophysics Data System (ADS)

    Chicheportiche, A.; Lepetit, B.; Gadéa, F. X.; Benhenni, M.; Yousfi, M.; Kalus, R.

    2014-06-01

    Collision cross sections and transport coefficients are calculated for Ar+ ions, in the ground state 2P3/2 and in the metastable state 2P1/2, colliding with their parent gas. Differential and integral collision cross sections are obtained using a numerical integration of the nuclear Schrödinger equation for several published interaction potentials. The Cohen-Schneider semi-empirical model is used for the inclusion of the spin-orbit interaction. The corresponding differential collision cross sections are then used in an optimized Monte Carlo code to calculate the ion transport coefficients for each initial ion state over a wide range of reduced electric field. Ion swarm data results are then compared with available experimental data for different proportions of ions in each state. This allows us to identify the most reliable interaction potential which reproduces ion transport coefficients falling within the experimental error bars. Such ion transport data will be used in electrohydrodynamic and chemical kinetic models of the low temperature plasma jet to quantify and to tune the active species production for a better use in biomedical applications.

  12. On the competitive uptake and transport of ions through differentiated root tissues.

    PubMed

    Foster, Kylie J; Miklavcic, Stanley J

    2014-01-01

    We simulate the competitive uptake and transport of a mixed salt system in the differentiated tissues of plant roots. The results are based on a physical model that includes both forced diffusion and convection by the transpiration stream. The influence of the Casparian strip on regulating apoplastic flow, the focus of the paper, is modelled by varying ion diffusive permeabilities, hydraulic reflection coefficients and water permeability for transport across the endodermis-pericycle interface. We find that reducing diffusive permeabilities leads to significantly altered ion concentration profiles in the pericycle and vascular cylinder regions, while increased convective reflectivities affect predominantly ion concentrations in the cortex and endodermis tissues. The self-consistent electric field arising from ion separation is a major influence on predicted ion fluxes and accumulation rates. PMID:24036203

  13. Anomalous ion heating from ambipolar-constrained magnetic fluctuation-induced transport

    SciTech Connect

    Gatto, R.; Terry, P. W.

    2001-01-01

    A kinetic theory for the anomalous heating of ions from energy stored in magnetic turbulence is presented. Imposing self consistency through the constitutive relations between particle distributions and fields, a turbulent Kirchhoff's law is derived that expresses a direct connection between rates of ion heating and electron thermal transport. This connection arises from the kinematics of electron motion along turbulent fields, which results in granular structures in the electron distribution. The drag exerted on these structures through emission into collective modes mediates ambipolar-constrained transport. Resonant damping of the collective modes by ions produces the heating. In collisionless plasmas the rate of ion damping controls the rate of emission, and hence the ambipolar-constrained electron heat flux. The heating rate is calculated for both a resonant and non-resonant magnetic fluctuation spectrum and compared with observations. The theoretical heating rate is sufficient to account for the observed two-fold rise in ion temperature during sawtooth events in experimental discharges.

  14. Role of ion density in growth, transport, and morphology of nanoparticles generated in plasmas

    NASA Astrophysics Data System (ADS)

    Chai, Kil Byoung; Choe, Wonho

    2012-08-01

    Spatial distribution, growth, and morphology of the nanoparticle were investigated in the plasmas with relatively low and high ion densities. Our experimental results reveal that cauliflower-shaped amorphous nanoparticles are dominantly distributed throughout the entire plasma in the low ion density plasma while spherical crystalline particles are spread near the plasma edge in the high ion density plasma. Only agglomeration growth step of the nanoparticles was observed without molecular accretion growth step in the high density plasma. Based on the experimental and numerical results, the role of ion density in the growth mechanism and transport of the nanoparticles is discussed.

  15. Real Space Mapping of Li-Ion Transport in Amorphous Si Anodes with Nanometer Resolution

    SciTech Connect

    Balke, Nina; Jesse, Stephen; Kim, Yoongu; Adamczyk, Leslie A; Tselev, Alexander; Ivanov, Ilia N; Dudney, Nancy J; Kalinin, Sergei V

    2010-01-01

    The electrical bias driven Li-ion motion in silicon anode materials in thin film battery heterostructures is investigated using electrochemical strain microscopy (ESM), which is a newly developed scanning probe microscopy based characterization method. ESM utilizes the intrinsic link between bias-controlled Li-ion concentration and molar volume of electrode materials, providing the capability for studies on the sub-20 nm scale, and allows the relationship between Li-ion flow and microstructure to be established. The evolution of Li-ion transport during the battery charging is directly observed.

  16. Monte Carlo Simulation Of H{sup -} Ion Transport

    SciTech Connect

    Diomede, P.; Longo, S.; Capitelli, M.

    2009-03-12

    In this work we study in detail the kinetics of H{sup -} ion swarms in velocity space: this provides a useful contrast to the usual literature in the field, where device features in configuration space are often included in detail but kinetic distributions are only marginally considered. To this aim a Monte Carlo model is applied, which includes several collision processes of H{sup -} ions with neutral particles as well as Coulomb collisions with positive ions. We characterize the full velocity distribution i.e. including its anisotropy, for different values of E/N, the atomic fraction and the H{sup +} mole fraction, which makes our results of interest for both source modeling and beam formation. A simple analytical theory, for highly dissociated hydrogen is formulated and checked by Monte Carlo calculations.

  17. Chamber transport of ''foot'' pulses for heavy-ion fusion

    SciTech Connect

    Sharp, W.M.; Callahan-Miller, D.A.; Tabak, M.; Yu, S.S.; Peterson, P.F.

    2002-02-20

    Indirect-drive targets for heavy-ion fusion must initially be heated by ''foot'' pulses that precede the main heating pulses by tens of nanoseconds. These pulses typically have a lower energy and perveance than the main pulses, and the fusion-chamber environment is different from that seen by later pulses. The preliminary particle-in-cell simulations of foot pulses here examine the sensitivity of the beam focusing to ion-beam perveance, background-gas density, and pre-neutralization by a plasma near the chamber entry port.

  18. Studies on Molecular and Ion Transport in Silicalite Membranes and Applications as Ion Separator for Redox Flow Battery

    NASA Astrophysics Data System (ADS)

    Yang, Ruidong

    Microporous zeolite membranes have been widely studied for molecular separations based on size exclusion or preferential adsorption-diffusion mechanisms. The MFI-type zeolite membranes were also demonstrated for brine water desalination by molecular sieving effect. In this research, the pure silica MFI-type zeolite (i.e. silicalite) membrane has been for the first time demonstrated for selective permeation of hydrated proton (i.e. H3O+) in acidic electrolyte solutions. The silicalite membrane allows for permeation of H 3O+ ions, but is inaccessible to the large hydrated multivalent vanadium ions due to steric effect. The silicalite membrane has been further demonstrated as an effective ion separator in the all-vanadium redox flow battery (RFB).The silicalite is nonionic and its proton conductivity relies on the electric field-driven H3O+ transport through the sub nanometer-sized pores under the RFB operation conditions. The silicalite membrane displayed a significantly reduced self-discharge rate because of its high proton-to-vanadium ion transport selectivity. However, the nonionic nature of the silicalite membrane and very small diffusion channel size render low proton conductivity and is therefore inefficient as ion exchange membranes (IEMs) for practical applications. The proton transport efficiency may be improved by reducing the membrane thickness. However, the zeolite thin films are extremely fragile and must be supported on mechanically strong and rigid porous substrates. In this work, silicalite-Nafion composite membranes were synthesized to achieve a colloidal silicalite skin on the Nafion thin film base. The "colloidal zeolite-ionic polymer" layered composite membrane combines the advantages of high proton-selectivity of the zeolite layer and the mechanical flexibility and low proton transport resistance of the ionic polymer membrane. The composite membrane exhibited higher proton/vanadium ion separation selectivity and lower electrical resistance than

  19. Regulation of Intestinal Glucose Absorption by Ion Channels and Transporters

    PubMed Central

    Chen, Lihong; Tuo, Biguang; Dong, Hui

    2016-01-01

    The absorption of glucose is electrogenic in the small intestinal epithelium. The major route for the transport of dietary glucose from intestinal lumen into enterocytes is the Na+/glucose cotransporter (SGLT1), although glucose transporter type 2 (GLUT2) may also play a role. The membrane potential of small intestinal epithelial cells (IEC) is important to regulate the activity of SGLT1. The maintenance of membrane potential mainly depends on the activities of cation channels and transporters. While the importance of SGLT1 in glucose absorption has been systemically studied in detail, little is currently known about the regulation of SGLT1 activity by cation channels and transporters. A growing line of evidence suggests that cytosolic calcium ([Ca2+]cyt) can regulate the absorption of glucose by adjusting GLUT2 and SGLT1. Moreover, the absorption of glucose and homeostasis of Ca2+ in IEC are regulated by cation channels and transporters, such as Ca2+ channels, K+ channels, Na+/Ca2+ exchangers, and Na+/H+ exchangers. In this review, we consider the involvement of these cation channels and transporters in the regulation of glucose uptake in the small intestine. Modulation of them may be a potential strategy for the management of obesity and diabetes. PMID:26784222

  20. Brownian dynamics study of ion transport in the vestibule of membrane channels.

    PubMed

    Li, S C; Hoyles, M; Kuyucak, S; Chung, S H

    1998-01-01

    Brownian dynamics simulations have been carried out to study the transport of ions in a vestibular geometry, which offers a more realistic shape for membrane channels than cylindrical tubes. Specifically, we consider a torus-shaped channel, for which the analytical solution of Poisson's equation is possible. The system is composed of the toroidal channel, with length and radius of the constricted region of 80 A and 4 A, respectively, and two reservoirs containing 50 sodium ions and 50 chloride ions. The positions of each of these ions executing Brownian motion under the influence of a stochastic force and a systematic electric force are determined at discrete time steps of 50 fs for up to 2.5 ns. All of the systematic forces acting on an ion due to the other ions, an external electric field, fixed charges in the channel protein, and the image charges induced at the water-protein boundary are explicitly included in the calculations. We find that the repulsive dielectric force arising from the induced surface charges plays a dominant role in channel dynamics. It expels an ion from the vestibule when it is deliberately put in it. Even in the presence of an applied electric potential of 100 mV, an ion cannot overcome this repulsive force and permeate the channel. Only when dipoles of a favorable orientation are placed along the sides of the transmembrane segment can an ion traverse the channel under the influence of a membrane potential. When the strength of the dipoles is further increased, an ion becomes detained in a potential well, and the driving force provided by the applied field is not sufficient to drive the ion out of the well. The trajectory of an ion navigating across the channel mostly remains close to the central axis of the pore lumen. Finally, we discuss the implications of these findings for the transport of ions across the membrane. PMID:9449307

  1. Inter-cusp Ion and Electron Transport in a Nstar-derivative Ion Thruster

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2001-01-01

    Diffusion of electrons and ions to anode surfaces between the magnetic cusps of a NASA Solar Electric Propulsion Technology Application Readiness ion thruster has been characterized. Ion flux measurements were made at the anode and at the screen grid electrode. The measurements indicated that the average ion current density at the anode and at the screen grid were approximately equal. Additionally, it was found that the electron flux to the anode between cusps is best described by the classical cross-field diffusion coefficient.

  2. Ion and Electron Transport in an Nstar-derivative Ion Thruster. Revised

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2001-01-01

    Diffusion of electrons and ions to anode surfaces between the magnetic cusps of a NASA Solar Electric Propulsion Technology Application Readiness ion thruster has been characterized. Ion flux measurements were made at the anode and at the screen grid electrode. The measurements indicated that the average ion current density at the anode and at the screen grid were approximately equal. Additionally, it was found that the electron flux to the anode between cusps is best described by the classical cross-field diffusion coefficient.

  3. Modeling Chamber Transport for Heavy-Ion Fusion

    SciTech Connect

    Sharp, W M; Niller, D A C; Tabak, M; Yu, S S; Peterson, P F; Welch, D R; Rose, D V; Olson, C L

    2002-08-02

    In a typical thick-liquid-wall scenario for heavy-ion fusion (HIF), between seventy and two hundred high-current beams enter the target chamber through ports and propagate about three meters to the target. Since molten-salt jets are planned to protect the chamber wall, the beams move through vapor from the jets, and collisions between beam ions and this background gas both strip the ions and ionize the gas molecules. Radiation from the preheated target causes further beam stripping and gas ionization. Due to this stripping, beams for heavy-ion fusion are expected to require substantial neutralization in a target chamber. Much recent research has, therefore, focused on beam neutralization by electron sources that were neglected in earlier simulations, including emission from walls and the target, photoionization by the target radiation, and pre-neutralization by a plasma generated along the beam path. When these effects are included in simulations with practicable beam and chamber parameters, the resulting focal spot is approximately the size required by a distributed radiator target.

  4. Modeling chamber transport for heavy-ion fusion

    SciTech Connect

    Sharp, W.M.; Callahan, D.A.; Tabak, M.; Yu, S.S.; Peterson, P.F.; Welch, D.R.; Rose, D.V.; Olson, C.L.

    2002-10-01

    In a typical thick-liquid-wall scenario for heavy-ion fusion (HIF), between seventy and two hundred high-current beams enter the target chamber through ports and propagate about three meters to the target. Since molten-salt jets are planned to protect the chamber wall, the beams move through vapor from the jets, and collisions between beam ions and this background gas both strip the ions and ionize the gas molecules. Radiation from the preheated target causes further beam stripping and gas ionization. Due to this stripping, beams for heavy-ion fusion are expected to require substantial neutralization in a target chamber. Much recent research has, therefore, focused on beam neutralization by electron sources that were neglected in earlier simulations, including emission from walls and the target, photoionization by the target radiation, and pre-neutralization by a plasma generated along the beam path. When these effects are included in simulations with practicable beam and chamber parameters, the resulting focal spot is approximately the size required by a distributed radiator target.

  5. Plasma neutralization models for intense ion beam transport in plasma

    SciTech Connect

    Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.; O'Rourke, Sean; Lee, Edward P.

    2003-05-01

    Plasma neutralization of an intense ion pulse is of interest for many applications, including plasma lenses, heavy ion fusion, cosmic ray propagation, etc. An analytical electron fluid model has been developed based on the assumption of long charge bunches (l{sub b} >> r{sub b}). Theoretical predictions are compared with the results of calculations utilizing a particle-in-cell (PIC) code. The cold electron fluid results agree well with the PIC simulations for ion beam propagation through a background plasma. The analytical predictions for the degree of ion beam charge and current neutralization also agree well with the results of the numerical simulations. The model predicts very good charge neutralization (>99%) during quasi-steady-state propagation, provided the beam pulse duration {tau}{sub b} is much longer than the electron plasma period 2{pi}/{omega}{sub p}, where {omega}{sub p} = (4{pi}e{sup 2}n{sub p}/m){sup 1/2} is the electron plasma frequency, and n{sub p} is the background plasma density. In the opposite limit, the beam pulse excites large-amplitude plasma waves. The analytical formulas derived in this paper can provide an important benchmark for numerical codes, and provide scaling relations for different beam and plasma parameters.

  6. Design and Characterization of a Neutralized-Transport Experiment for Heavy-Ion Fusion

    SciTech Connect

    Henderson, E; Eylon, S; Roy, P; Yu, S S; Anders, A; Bieniosek, F M; Greenway, W G; Logan, B G; MacGill, R A; Shuman, D B; Vanecek, D L; Waldron, W L; Sharp, W M; Houck, T L; Davidson, R C; Efthimion, P C; Gilson, E P; Sefkow, A B; Welch, D R; Rose, D V; Olson, C L

    2004-05-24

    In heavy-ion inertial-confinement fusion systems, intense beams of ions must be transported from the exit of the final focus magnet system through the fusion chamber to hit millimeter-sized spots on the target. Effective plasma neutralization of intense ion beams in this final transport is essential for a heavy-ion fusion power plant to be economically competitive. The physics of neutralized drift has been studied extensively with particle-in-cell simulations. To provide quantitative comparisons of theoretical predictions with experiment, the Virtual National Laboratory for Heavy Ion Fusion has completed the construction and has begun experimentation with the Neutralized Transport Experiment (NTX). The experiment consists of three main sections, each with its own physics issues. The injector is designed to generate a very high-brightness, space-charge-dominated potassium beam while still allowing variable perveance by a beam aperturing technique. The magnetic-focusing section, consisting of four pulsed magnetic quadrupoles, permits the study of beam tuning, as well as the effects of phase space dilution due to higher-order nonlinear fields. In the final section, a converging ion beam exiting the magnetic section is transported through a drift region with plasma sources for beam neutralization, and the final spot size is measured under various conditions of neutralization. In this paper, we discuss the design and characterization of the three sections in detail and present the first results from the experiment.

  7. Design and characterization of a neutralized-transport experiment for heavy-ion fusion

    SciTech Connect

    Henestroza, E.; Eylon, S.; Roy, P.K.; Yu, S.S.; Anders, A.; Bieniosek, F.M.; Greenway, W.G.; Logan, B.G.; MacGill, R.A.; Shuman, D.B.; Vanecek, D.L.; Waldron, W.L.; Sharp, W.M.; Houck, T.L.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Sefkow, A.B.; Welch, D.R.; Rose, D.V.; Olson, C.L.

    2004-03-14

    In heavy-ion inertial-confinement fusion systems, intense beams of ions must be transported from the exit of the final focus magnet system through the fusion chamber to hit millimeter-sized spots on the target. Effective plasma neutralization of intense ion beams in this final transport is essential for a heavy-ion fusion power plant to be economically competitive. The physics of neutralized drift has been studied extensively with particle-in-cell simulations. To provide quantitative comparisons of theoretical predictions with experiment, the Virtual National Laboratory for Heavy Ion Fusion has completed the construction and has begun experimentation with the Neutralized Transport Experiment (NTX). The experiment consists of three main sections, each with its own physics issues. The injector is designed to generate a very high-brightness, space-charge-dominated potassium beam while still allowing variable perveance by a beam aperturing technique. The magnetic-focusing section, consisting of four pulsed magnetic quadrupoles, permits the study of beam tuning, as well as the effects of phase space dilution due to higher-order nonlinear fields. In the final section, the converging ion beam exiting the magnetic section is transported through a drift region with plasma sources for beam neutralization, and the final spot size is measured under various conditions of neutralization. In this paper, we discuss the design and characterization of the three sections in detail and present initial results from the experiment.

  8. Endocrine regulation of ion transport in the avian lower intestine.

    PubMed

    Laverty, Gary; Elbrønd, Vibeke S; Arnason, Sighvatur S; Skadhauge, Erik

    2006-05-15

    The lower intestine (colon and coprodeum) of the domestic fowl maintains a very active, transporting epithelium, with a microvillus brush border, columnar epithelial cells, and a variety of transport systems. The colon of normal or high salt-acclimated hens expresses sodium-linked glucose and amino acid cotransporters, while the coprodeum is relatively inactive. Following acclimation to low salt diets, however, both colon and coprodeum shift to a pattern of high expression of electrogenic sodium channels, and the colonic cotransporter activity is simultaneously downregulated. These changes in the transport patterns seem to be regulated, at least in part, by aldosterone. Our recent work with this tissue has focused on whether aldosterone alone can account for the low salt pattern of transport. Other work has looked at the changes in morphology and in proportions of cell types that occur during chronic acclimation to high or low salt diets, and on a cAMP-activated chloride secretion pathway. Recent findings suggesting effects of other hormones on lower intestinal transport are also presented. PMID:16494879

  9. Ion transport in polyelectrolyte multilayer membranes: Electrochemical, spectroscopic, and computational analysis

    NASA Astrophysics Data System (ADS)

    Farhat, Tarek Rafic

    Diffusion of ions across thin membranes, whether polymeric or biological, is diverse and important field in science. In separation science, thin polymer films have potential application in the chemical and pharmaceutical industries. In this dissertation, ion transport on a recently discovered polymer thin films known as polyelectrolyte multilayer films is investigated. Unexpectedly, a polyelectrolyte multilayer membrane behaved unlike classical membranes and a new mechanism termed the "reluctant exchange" was proposed to explain their behavior. Ion transport in these membranes was studied electrochemically, using the rotating disc electrode voltammetry technique, to obtain flux characteristic of at least ten electroactive species The flux through membranes was found to be either a linear or nonlinear function of electrolyte concentration depending on the charge, the resonance form, and the membrane diffusion coefficient of the electroactive ion. The "reluctant exchange" lead to significant transport selectivity between ions, favoring species with lower charge. A triangular relation was established between the electroactive probe ions, the polyelectrolyte ion pair exchangers, and a variety of supporting electrolytes. In certain cases a blocking effect was detected, which was harnessed to study the effectiveness of these films at inhibiting pitting corrosion of stainless steel. Experimental analysis was extended to include in situ Attenuated Total Internal Reflectance-Fourier Transform Infra Red spectroscopy that verified the linear dependence of the population of extrinsic sites and the independence of the concentration of the probe ions on the concentration of the external salt solution. Finally, owing to the difficulty of detecting the hops of active probe ions across the ion pair exchangers, a theoretical approach was proposed to understand the molecular dynamics of the "reluctant exchange" mechanism. A visualization of ion transport across the polyelectrolyte

  10. Defective interactions of protein partner with ion channels and transporters as alternative mechanisms of membrane channelopathies

    PubMed Central

    Kline, Crystal F.; Mohler, Peter J.

    2013-01-01

    The past twenty years have revealed the existence of numerous ion channel mutations resulting in human pathology. Ion channels provide the basis of diverse cellular functions, ranging from hormone secretion, excitation-contraction coupling, cell signaling, immune response, and trans-epithelial transport. Therefore, the regulation of biophysical properties of channels is vital in human physiology. Only within the last decade has the role of non-ion channel components come to light in regard to ion channel spatial, temporal, and biophysical regulation in physiology. A growing number of auxiliary components have been determined to play elemental roles in excitable cell physiology, with dysfunction resulting in disorders and related manifestations. This review focuses on the broad implications of such dysfunction, focusing on disease-causing mutations that alter interactions between ion channels and auxiliary ion channel components in a diverse set of human excitable cell disease. PMID:23732236

  11. Ion transport and selectivity in biomimetic nanopores with pH-tunable zwitterionic polyelectrolyte brushes

    NASA Astrophysics Data System (ADS)

    Zeng, Zhenping; Yeh, Li-Hsien; Zhang, Mingkan; Qian, Shizhi

    2015-10-01

    Inspired by nature, functionalized nanopores with biomimetic structures have attracted growing interests in using them as novel platforms for applications of regulating ion and nanoparticle transport. To improve these emerging applications, we study theoretically for the first time the ion transport and selectivity in short nanopores functionalized with pH tunable, zwitterionic polyelectrolyte (PE) brushes. In addition to background salt ions, the study takes into account the presence of H+ and OH- ions along with the chemistry reactions between functional groups on PE chains and protons. Due to ion concentration polarization, the charge density of PE layers is not homogeneously distributed and depends significantly on the background salt concentration, pH, grafting density of PE chains, and applied voltage bias, thereby resulting in many interesting and unexpected ion transport phenomena in the nanopore. For example, the ion selectivity of the biomimetic nanopore can be regulated from anion-selective (cation-selective) to cation-selective (anion-selective) by diminishing (raising) the solution pH when a sufficiently small grafting density of PE chains, large voltage bias, and low background salt concentration are applied.

  12. Controlling FAMA by the Ptolemy II model of ion beam transport

    NASA Astrophysics Data System (ADS)

    Balvanović, R.; Rađenović, B.; Beličev, P.; Nešković, N.

    2009-08-01

    FAMA is a facility for modification and analysis of materials with ion beams. Due to the wide range of ion beams and energies used in the facility and its future expansion, the need has arisen for faster tuning of ion beams transport control parameters. With this aim, a new approach to modeling ion-beam transport system was developed, based on the Ptolemy II modeling and design framework. A model in Ptolemy II is a hierarchical aggregation of components called actors, which communicate with other actors using tokens, or pieces of data. Each ion optical element is modeled by a composite actor implementing beam matrix transformation function, while tokens carry beam matrix data. A basic library of models of typical ion optical elements is developed, and a complex model of FAMA ion beam transport system is hierarchically integrated with bottom-up approach. The model is extended to include control functions. The developed model is modular, flexible and extensible. The results obtained by simulation on the model demonstrate easy and efficient tuning of beam line control parameters. Fine tuning of control parameters, due to uncertainties inherent to modeling, still has to be performed on-line.

  13. The Structure and Transport of Water and Hydrated Ions Within Hydrophobic, Nanoscale Channels

    SciTech Connect

    Holt, J K; Herberg, J L; Wu, Y; Schwegler, E; Mehta, A

    2009-06-15

    The purpose of this project includes an experimental and modeling investigation into water and hydrated ion structure and transport at nanomaterials interfaces. This is a topic relevant to understanding the function of many biological systems such as aquaporins that efficiently shuttle water and ion channels that permit selective transport of specific ions across cell membranes. Carbon nanotubes (CNT) are model nanoscale, hydrophobic channels that can be functionalized, making them artificial analogs for these biological channels. This project investigates the microscopic properties of water such as water density distributions and dynamics within CNTs using Nuclear Magnetic Resonance (NMR) and the structure of hydrated ions at CNT interfaces via X-ray Absorption Spectroscopy (XAS). Another component of this work is molecular simulation, which can predict experimental measurables such as the proton relaxation times, chemical shifts, and can compute the electronic structure of CNTs. Some of the fundamental questions this work is addressing are: (1) what is the length scale below which nanoscale effects such as molecular ordering become important, (2) is there a relationship between molecular ordering and transport?, and (3) how do ions interact with CNT interfaces? These are questions of interest to the scientific community, but they also impact the future generation of sensors, filters, and other devices that operate on the nanometer length scale. To enable some of the proposed applications of CNTs as ion filtration media and electrolytic supercapacitors, a detailed knowledge of water and ion structure at CNT interfaces is critical.

  14. Epithelial Ion Transporters: A Physiological Model for Ion Effects on Freshwater Animals

    EPA Science Inventory

    Critical ions in freshwater animals are regulated in part by uptake from water through ionocytes on the gills or other epithelia. An ionoregulation literature review suggests a mechanism for adverse effects on freshwater animals is ion uptake inhibition associated with either ex...

  15. A multi-substrate single-file model for ion-coupled transporters.

    PubMed Central

    Su, A; Mager, S; Mayo, S L; Lester, H A

    1996-01-01

    Ion-coupled transporters are simulated by a model that differs from contemporary alternating-access schemes. Beginning with concepts derived from multi-ion pores, the model assumes that substrates (both inorganic ions and small organic molecules) hop a) between the solutions and binding sites and b) between binding sites within a single-file pore. No two substrates can simultaneously occupy the same site. Rate constants for hopping can be increased both a) when substrates in two sites attract each other into a vacant site between them and b) when substrates in adjacent sites repel each other. Hopping rate constants for charged substrates are also modified by the membrane field. For a three-site model, simulated annealing yields parameters to fit steady-state measurements of flux coupling, transport-associated currents, and charge movements for the GABA transporter GAT1. The model then accounts for some GAT1 kinetic data as well. The model also yields parameters that describe the available data for the rat 5-HT transporter and for the rabbit Na(+)-glucose transporter. The simulations show that coupled fluxes and other aspects of ion transport can be explained by a model that includes local substrate-substrate interactions but no explicit global conformational changes. Images FIGURE 1 FIGURE 2 FIGURE 9 PMID:8789093

  16. Time-dependent ion transport in heterogeneous permselective systems

    NASA Astrophysics Data System (ADS)

    Green, Yoav; Yossifon, Gilad

    2015-06-01

    The current study extends previous analytical and numerical solutions of chronopotentiometric response of one-dimensional systems consisting of three layers to the more realistic two-dimensional (2D) heterogeneous ion-permselective medium. An analytical solution for the transient concentration-polarization problem, under the local electroneutrality approximation and assumption of ideal permselectivity, was obtained using the Laplace transform and separation of variables technique. Then the 2D electric potential was obtained numerically and was compared to the full Poisson-Nernst-Planck solution. It was then shown that the resultant voltage drop across the system varies between the initial Ohmic response and that of the steady state accounting for concentration polarization. Also, the field-focusing effect in a 2D system is shown to result in a faster depletion of ions at the permselective interface.

  17. Simulation of chamber transport for heavy-ion fusion

    SciTech Connect

    Sharp, W.M.; Callahan, D.A.; Tabak, M.A.; Yu, S.S.; Peterson, P.F.; Rose, D.V.; Welch, D.R.; Davidson, R.C.; Kaganovich, I.D.; Startsev, E.; Olson, C.L.

    2002-10-04

    Beams for heavy-ion fusion (HIF) are expected to require substantial neutralization in a target chamber. Present targets call for higher beam currents and smaller focal spots than most earlier designs, leading to high space-charge fields. Collisional stripping by the background gas expected in the chamber further increases the beam charge. Simulations with no electron sources other than beam stripping and background-gas ionization show an acceptable focal spot only for high ion energies or for currents far below the values assumed in recent HIF power-plant scenarios. Much recent research has, therefore, focused on beam neutralization by electron sources that were neglected in earlier simulations, including emission from walls and the target, photoionization by radiation from the target, and pre-neutralization by a plasma generated along the beam path. The simulations summarized here indicate that these effects can significantly reduce the beam focal-spot size.

  18. Simulation of Chamber Transport for Heavy-Ion Fusion

    SciTech Connect

    Sharp, W M; Callahan Miller, D A; Tabak, M; Yu, S S; Peterson, P F; Rose, D V; Welch, D R; Davidson, R C; Kaganovich, I D; Startsev, E; Olson, C L

    2002-10-14

    Beams for heavy-ion fusion (HIF) are expected to require substantial neutralization in a target chamber. Present targets call for higher beam currents and smaller focal spots than most earlier designs, leading to high space-charge fields. Collisional stripping by the background gas expected in the chamber further increases the beam charge. Simulations with no electron sources other than beam stripping and background-gas ionization show an acceptable focal spot only for high ion energies or for currents far below the values assumed in recent HIF power-plant scenarios. Much recent research has, therefore, focused on beam neutralization by electron sources that were neglected in earlier simulations, including emission from walls and the target, photoionization by radiation from the target, and pre-neutralization by a plasma generated along the beam path. The simulations summarized here indicate that these effects can significantly reduce the beam focal-spot size.

  19. Anomalous Electron Transport Due to Multiple High Frequency Beam Ion Driven Alfven Eigenmode

    SciTech Connect

    Gorelenkov, N. N.; Stutman, D.; Tritz, K.; Boozer, A.; Delgardo-Aparicio, L.; Fredrickson, E.; Kaye, S.; White, R.

    2010-07-13

    We report on the simulations of recently observed correlations of the core electron transport with the sub-thermal ion cyclotron frequency instabilities in low aspect ratio plasmas of the National Spherical Torus Experiment (NSTX). In order to model the electron transport of the guiding center code ORBIT is employed. A spectrum of test functions of multiple core localized Global shear Alfven Eigenmode (GAE) instabilities based on a previously developed theory and experimental observations is used to examine the electron transport properties. The simulations exhibit thermal electron transport induced by electron drift orbit stochasticity in the presence of multiple core localized GAE.

  20. Transport of ions in presence of induced electric field and electrostatic turbulence - Source of ions injected into ring current

    NASA Technical Reports Server (NTRS)

    Cladis, J. B.; Francis, W. E.

    1985-01-01

    The transport of ions from the polar ionosphere to the inner magnetosphere during stormtime conditions has been computed using a Monte Carlo diffusion code. The effect of the electrostatic turbulence assumed to be present during the substorm expansion phase was simulated by a process that accelerated the ions stochastically perpendicular to the magnetic field with a diffusion coefficient proportional to the energization rate of the ions by the induced electric field. This diffusion process was continued as the ions were convected from the plasma sheet boundary layer to the double-spiral injection boundary. Inward of the injection boundary, the ions were convected adiabatically. By using as input an O(+) flux of 2.8 x 10 to the 8th per sq cm per s (w greater than 10 eV) and an H(+) flux of 5.5 x 10 to the 8th per sq cm per s (w greater than 0.63 eV), the computed distribution functions of the ions in the ring current were found to be in good agreement, over a wide range in L (4 to 8), with measurements made with the ISEE-1 satellite during a storm. This O(+) flux and a large part of the H(+) flux are consistent with the DE satellite measurements of the polar ionospheric outflow during disturbed times.

  1. Ion mobility and transport barriers in the tokamak plasmas

    SciTech Connect

    Xiao, H.; Hazeltine, R.D.; Valanju, P.M.; Zhang, Y.Z.

    1993-06-01

    The character of charged particle motion in an axisymmetric toroidal system with a constant radial electric field is investigated both analytically and numerically. Ion radial mobility caused by the combined effects of the radial electric field and charge exchange is found. A simple moment argument in the banana regime matches the simulation results well. Relation of present work and high confinement (H-mode) experiment is also discussed.

  2. Using Drugs to Probe the Variability of Trans-Epithelial Airway Resistance

    PubMed Central

    Tosoni, Kendra; Cassidy, Diane; Kerr, Barry; Land, Stephen C.; Mehta, Anil

    2016-01-01

    Background Precision medicine aims to combat the variability of the therapeutic response to a given medicine by delivering the right medicine to the right patient. However, the application of precision medicine is predicated on a prior quantitation of the variance of the reference range of normality. Airway pathophysiology provides a good example due to a very variable first line of defence against airborne assault. Humans differ in their susceptibility to inhaled pollutants and pathogens in part due to the magnitude of trans-epithelial resistance that determines the degree of epithelial penetration to the submucosal space. This initial ‘set-point’ may drive a sentinel event in airway disease pathogenesis. Epithelia differentiated in vitro from airway biopsies are commonly used to model trans-epithelial resistance but the ‘reference range of normality’ remains problematic. We investigated the range of electrophysiological characteristics of human airway epithelia grown at air-liquid interface in vitro from healthy volunteers focusing on the inter- and intra-subject variability both at baseline and after sequential exposure to drugs modulating ion transport. Methodology/Principal Findings Brushed nasal airway epithelial cells were differentiated at air-liquid interface generating 137 pseudostratified ciliated epithelia from 18 donors. A positively-skewed baseline range exists for trans-epithelial resistance (Min/Max: 309/2963 Ω·cm2), trans-epithelial voltage (-62.3/-1.8 mV) and calculated equivalent current (-125.0/-3.2 μA/cm2; all non-normal, P<0.001). A minority of healthy humans manifest a dramatic amiloride sensitivity to voltage and trans-epithelial resistance that is further discriminated by prior modulation of cAMP-stimulated chloride transport. Conclusions/Significance Healthy epithelia show log-order differences in their ion transport characteristics, likely reflective of their initial set-points of basal trans-epithelial resistance and sodium

  3. Transport of trivalent and hexavalent chromium through different ion-selective membranes in acidic aqueous media

    SciTech Connect

    Costa, R.F.D.; Rodrigues, M.A.S.; Ferreira, J.Z.

    1998-06-01

    The aim of this work was to evaluate the transport of trivalent and hexavalent chromium through anion- and cation-selective membranes using two- and three-compartment electrodialysis cells. Tests were done with acidic solutions of trivalent chromium ions, Cr{sup 3+}, and hexavalent chromium ions, Cr{sub 2}O{sub 7}{sup 2{minus}}. In each situation the transport of metallic ions through the membrane was evaluated. In the tests with trivalent chromium, Nafion 417 and Selemion CMT cation-selective membranes were used, and in the tests with hexavalent chromium, Selemion AMT membrane was used. The influence of SO{sub 4}{sup 2{minus}} ions and of the concentration of H{sup +} ions in the solutions was also analyzed. Results showed the oxidation of the Cr{sup 3+} ion at the anode and the reduction of the Cr{sub 2}O{sub 7}{sup 2{minus}} ion at the cathode. The maximum yield in the process was reached when hexavalent chromium solutions were used in the absence of sulfate ions and a Selemion AMT membrane in a three-compartment cell.

  4. Statistical Determinants of Selective Ionic Complexation: Ions in Solvent, Transport Proteins, and Other “Hosts”

    PubMed Central

    Bostick, David L.; Brooks, Charles L.

    2009-01-01

    To provide utility in understanding the molecular evolution of ion-selective biomembrane channels/transporters, globular proteins, and ionophoric compounds, as well as in guiding their modification and design, we present a statistical mechanical basis for deconstructing the impact of the coordination structure and chemistry of selective multidentate ionic complexes. The deconstruction augments familiar ideas in liquid structure theory to realize the ionic complex as an open ion-ligated system acting under the influence of an “external field” provided by the host (or surrounding medium). Using considerations derived from this basis, we show that selective complexation arises from exploitation of a particular ion's coordination preferences. These preferences derive from a balance of interactions much like that which dictates the Hofmeister effect. By analyzing the coordination-state space of small family IA and VIIA ions in simulated fluid media, we derive domains of coordinated states that confer selectivity for a given ion upon isolating and constraining particular attributes (order parameters) of a complex comprised of a given type of ligand. We demonstrate that such domains may be used to rationalize the ion-coordinated environments provided by selective ionophores and biological ion channels/transporters of known structure, and that they can serve as a means toward deriving rational design principles for ion-selective hosts. PMID:19486671

  5. Ion-stimulated mass transport in nanoscale morphology evolution

    NASA Astrophysics Data System (ADS)

    George, Henry Bola

    We observe temporal evolution of two distinct lateral length scales in surface topography following low energy, E, argon ion (Ar+) irradiation of Si(001). From real-space AFM topographs, we observe that the short-wavelength, lambda (high-wavenumber, q) evolve as nearly isotropic dots while the longer-lambda (low- q) features appear as isotropic "rings" at normal incidence and as anisotropic ripples at off-normal incidence with their wavevector orthogonal to the ion beam. We explain our results in terms of an interplay between smoothening by ion-enhanced viscous flow and roughening driven by ion sputtering (for high-q features) or elastic strain energy relief (for low- q features). Our proposed mechanisms also explain the weak temperature and flux dependence of both wavelengths. We also observe stable flat surfaces following irradiation at incidence angles greater than 20° from normal, E > 500 eV and temperature > 300°C. To explain non-diverging wavelengths as the smoothening boundary is approached, we present evidence that non-local terms are needed in the height evolution equation. We report the influence of pre-patterned boundaries in guiding ripples appearing during uniform irradiation at high temperatures. Compared to untemplated samples, we observe that the long-range order of the guided ripples is significantly enhanced. We develop a scalar figure of merit to characterize the degree of order of the patterns. We observe that templating is most efficient when the boundaries are separated by an integer multiple of the spontaneously arising wavelength. We report new observations following ion sculpting of nanopores. Among these are: (1) The formation of nanopores is not limited to insulators: we successfully close pores in other materials including silicon dioxide, amorphous silicon (semiconductor) and palladium silicide (metallic glass). (2) Pores retain "memory" of their initial radius: at the same instantaneous radius, pores that started off smaller require

  6. Malate transport and vacuolar ion channels in CAM plants.

    PubMed

    Cheffings, C M; Pantoja, O; Ashcroft, F M; Smith, J A

    1997-03-01

    Malate is a ubiquitous vacuolar anion in terrestrial plants that plays an important role in carbon metabolism and ionic homeostasis. In plants showing crassulacean acid metabolism (CAM), malate is accumulated as a central intermediary in the process of photosynthetic carbon assimilation, and it is also one of the major charge-balancing anions present in the vacuole. During the CAM cycle, malic acid produced as a result of dark CO(2) fixation accumulates in the vacuole at night (2 H(+) per malate), and is remobilized from the vacuole in the following light period. CAM plants thus provide a good model for studying both the mechanism and control of malate transport across the tonoplast. Thermodynamic considerations suggest that malate(2-) (the anionic species transported out of the cytosol) is passively distributed across the tonoplast. Malic acid accumulation could thus be explained by malate(2-) transport into the vacuole occurring electrophoretically in response to the transmembrane electrical potential difference established by the tonoplast H(+)-ATPase and/or H(+)-PPase. Recent studies using the patch-clamp technique have provided evidence for the existence of a vacuolar malate-selective anion channel (VMAL) in both CAM species and C(3) species. The VMAL current has a number of distinctive properties that include strong rectification (opening only at cytosolicside negative membrane potentials that would favour malate uptake into the vacuole), lack of Ca(2+) dependence, and slow activation kinetics. The kinetics of VMAL activation can be resolved into three components, consisting of an instantaneous current and two slower components with voltage-independent time constants of 0.76 s and 5.3 s in Kalanchoë daigremontiana. These characteristics suggest that the VMAL channel represents the major pathway for malate transport into the vacuole, although the strong rectification of the channel means there may be a separate, still-to-be-identified, transport mechanism for

  7. Chaotic electroconvection near ion-selective membranes: investigation of transport dynamics from a 3D DNS

    NASA Astrophysics Data System (ADS)

    Druzgalski, Clara; Mani, Ali

    2014-11-01

    We have investigated the transport dynamics of an electrokinetic instability that occurs when ions are driven from bulk fluids to ion-selective membranes due to externally applied electric fields. This phenomenon is relevant to a wide range of electrochemical applications including electrodialysis for fresh water production. Using data from our 3D DNS, we show how electroconvective instability, arising from concentration polarization, results in a chaotic flow that significantly alters the net ion transport rate across the membrane surface. The 3D DNS results, which fully resolve the spatiotemporal scales including the electric double layers, enable visualization of instantaneous snapshots of current density directly on the membrane surface, as well as analysis of transport statistics such as concentration variance and fluctuating advective fluxes. Furthermore, we present a full spectral analysis revealing broadband spectra in both concentration and flow fields and deduce the key parameter controlling the range of contributing scales.

  8. Electrical resistance and transport numbers of ion-exchange membranes used in electrodialytic soil remediation

    SciTech Connect

    Hansen, H.K.; Ottosen, L.M.; Villumsen, A.

    1999-08-01

    Electrodialytic soil remediation is a recently developed method to decontaminate heavy metal polluted soil using ion-exchange membranes. In this method one side of the ion-exchange membrane is in direct contact with the polluted soil. It is of great importance to known if this contact with the soil causes damage to the membrane. This work presents the result of transport number and electrical resistance measurements done on four sets of ion-exchange membranes (Ionics, Inc CR67 HMR412 cation-exchange membranes and Ionics, Inc AR204 SXZR anion-exchange membranes), which have been used in four different electrodialytic soil remediation experiments. The experiments showed that after the use in electrodialytic soil remediation, the ion-exchange membranes had transport numbers in the same magnitude as new membranes. The electrical resistance for six membranes did not differ from that of new membranes, whereas two membranes showed a slightly increased resistance.

  9. Upper airway test (image)

    MedlinePlus

    An upper airway biopsy is obtained by using a flexible scope called a bronchoscope. The scope is passed down through ... may be performed when an abnormality of the upper airway is suspected. It may also be performed as ...

  10. Electrogenic transport and K+ ion channel expression by the human endolymphatic sac epithelium

    PubMed Central

    Kim, Sung Huhn; Kim, Bo Gyung; Kim, Jin Young; Roh, Kyung Jin; Suh, Michelle J.; Jung, JinSei; Moon, In Seok; Moon, Sung K.; Choi, Jae Young

    2015-01-01

    The endolymphatic sac (ES) is a cystic organ that is a part of the inner ear and is connected to the cochlea and vestibule. The ES is thought to be involved in inner ear ion homeostasis and fluid volume regulation for the maintenance of hearing and balance function. Many ion channels, transporters, and exchangers have been identified in the ES luminal epithelium, mainly in animal studies, but there has been no functional study investigating ion transport using human ES tissue. We designed the first functional experiments on electrogenic transport in human ES and investigated the contribution of K+ channels in the electrogenic transport, which has been rarely identified, even in animal studies, using electrophysiological/pharmacological and molecular biological methods. As a result, we identified functional and molecular evidence for the essential participation of K+ channels in the electrogenic transport of human ES epithelium. The identified K+ channels involved in the electrogenic transport were KCNN2, KCNJ14, KCNK2, and KCNK6, and the K+ transports via those channels are thought to play an important role in the maintenance of the unique ionic milieu of the inner ear fluid. PMID:26655723

  11. A multi-ion generalized transport model of the polar wind

    NASA Technical Reports Server (NTRS)

    Demars, H. G.; Schunk, R. W.

    1994-01-01

    The higher-order generalizations of the equations of standard hydrodynamics, known collectively as generalized transport theories, have been used since the early 1980s to describe the terrestrial polar wind. Inherent in the structure of generalized transport theories is the ability to describe not only interparticle collisions but also certain non-Maxwellian processes, such as heat flow and viscous stress, that are characteristic of any plasma flow that is not collision dominated. Because the polar wind exhibits a transition from collision-dominated to collisionless flow, generalized transport theories possess advantages for polar wind modeling not shared by either collision-dominated models (such as standard hydrodynamics) or collisionless models (such as those based on solving the collisionless Boltzmann equation). In general, previous polar wind models have used generalized transport equations to describe electrons and only one species of ion (H(+)). If other ion species were included in the models at all, it was in a simplified or semiempirical manner. The model described in this paper is the first polar wind model that uses a generalized transport theory (bi-Maxwellian-based 16-moment theory) to describe all of the species, both major and minor, in the polar wind plasma. In the model, electrons and three ion species (H(+), He(+), O(+)) are assumed to be major and several ion species are assumed to be minor (NO(+), Fe(+), O(++)). For all species, a complete 16-moment transport formulation is used, so that profiles of density, drift velocity, parallel and perpendicular temperatures, and the field-aligned parallel and perpendicular energy flows are obtained. In the results presented here, emphasis is placed on describing those constituents of the polar wind that have received little attention in past studies. In particular, characteristic solutions are presented for supersonic H(+) outflow and for both supersonic and subsonic outflows of the major ion He

  12. Modeling Root Zone Effects on Preferred Pathways for the Passive Transport of Ions and Water in Plant Roots.

    PubMed

    Foster, Kylie J; Miklavcic, Stanley J

    2016-01-01

    We extend a model of ion and water transport through a root to describe transport along and through a root exhibiting a complexity of differentiation zones. Attention is focused on convective and diffusive transport, both radially and longitudinally, through different root tissue types (radial differentiation) and root developmental zones (longitudinal differentiation). Model transport parameters are selected to mimic the relative abilities of the different tissues and developmental zones to transport water and ions. For each transport scenario in this extensive simulations study, we quantify the optimal 3D flow path taken by water and ions, in response to internal barriers such as the Casparian strip and suberin lamellae. We present and discuss both transient and steady state results of ion concentrations as well as ion and water fluxes. We find that the peak in passive uptake of ions and water occurs at the start of the differentiation zone. In addition, our results show that the level of transpiration has a significant impact on the distribution of ions within the root as well as the rate of ion and water uptake in the differentiation zone, while not impacting on transport in the elongation zone. From our model results we infer information about the active transport of ions in the different developmental zones. In particular, our results suggest that any uptake measured in the elongation zone under steady state conditions is likely to be due to active transport. PMID:27446144

  13. History-dependent ion transport through conical nanopipettes and the implications in energy conversion dynamics at nanoscale interfaces

    DOE PAGESBeta

    Li, Yan; Wang, Dengchao; Kvetny, Maksim M.; Brown, Warren; Liu, Juan; Wang, Gangli

    2014-08-20

    The dynamics of ion transport at nanostructured substrate–solution interfaces play vital roles in high-density energy conversion, stochastic chemical sensing and biosensing, membrane separation, nanofluidics and fundamental nanoelectrochemistry. Advancements in these applications require a fundamental understanding of ion transport at nanoscale interfaces. The understanding of the dynamic or transient transport, and the key physical process involved, is limited, which contrasts sharply with widely studied steady-state ion transport features at atomic and nanometer scale interfaces. Here we report striking time-dependent ion transport characteristics at nanoscale interfaces in current–potential (I–V) measurements and theoretical analyses. First, a unique non-zero I–V cross-point and pinched I–Vmore » curves are established as signatures to characterize the dynamics of ion transport through individual conical nanopipettes. Moreoever, ion transport against a concentration gradient is regulated by applied and surface electrical fields. The concept of ion pumping or separation is demonstrated via the selective ion transport against concentration gradients through individual nanopipettes. Third, this dynamic ion transport process under a predefined salinity gradient is discussed in the context of nanoscale energy conversion in supercapacitor type charging–discharging, as well as chemical and electrical energy conversion. Our analysis of the emerging current–potential features establishes the urgently needed physical foundation for energy conversion employing ordered nanostructures. The elucidated mechanism and established methodology can be generalized into broadly-defined nanoporous materials and devices for improved energy, separation and sensing applications.« less

  14. History-dependent ion transport through conical nanopipettes and the implications in energy conversion dynamics at nanoscale interfaces

    SciTech Connect

    Li, Yan; Wang, Dengchao; Kvetny, Maksim M.; Brown, Warren; Liu, Juan; Wang, Gangli

    2014-08-20

    The dynamics of ion transport at nanostructured substrate–solution interfaces play vital roles in high-density energy conversion, stochastic chemical sensing and biosensing, membrane separation, nanofluidics and fundamental nanoelectrochemistry. Advancements in these applications require a fundamental understanding of ion transport at nanoscale interfaces. The understanding of the dynamic or transient transport, and the key physical process involved, is limited, which contrasts sharply with widely studied steady-state ion transport features at atomic and nanometer scale interfaces. Here we report striking time-dependent ion transport characteristics at nanoscale interfaces in current–potential (I–V) measurements and theoretical analyses. First, a unique non-zero I–V cross-point and pinched I–V curves are established as signatures to characterize the dynamics of ion transport through individual conical nanopipettes. Moreoever, ion transport against a concentration gradient is regulated by applied and surface electrical fields. The concept of ion pumping or separation is demonstrated via the selective ion transport against concentration gradients through individual nanopipettes. Third, this dynamic ion transport process under a predefined salinity gradient is discussed in the context of nanoscale energy conversion in supercapacitor type charging–discharging, as well as chemical and electrical energy conversion. Our analysis of the emerging current–potential features establishes the urgently needed physical foundation for energy conversion employing ordered nanostructures. The elucidated mechanism and established methodology can be generalized into broadly-defined nanoporous materials and devices for improved energy, separation and sensing applications.

  15. Modeling Root Zone Effects on Preferred Pathways for the Passive Transport of Ions and Water in Plant Roots

    PubMed Central

    Foster, Kylie J.; Miklavcic, Stanley J.

    2016-01-01

    We extend a model of ion and water transport through a root to describe transport along and through a root exhibiting a complexity of differentiation zones. Attention is focused on convective and diffusive transport, both radially and longitudinally, through different root tissue types (radial differentiation) and root developmental zones (longitudinal differentiation). Model transport parameters are selected to mimic the relative abilities of the different tissues and developmental zones to transport water and ions. For each transport scenario in this extensive simulations study, we quantify the optimal 3D flow path taken by water and ions, in response to internal barriers such as the Casparian strip and suberin lamellae. We present and discuss both transient and steady state results of ion concentrations as well as ion and water fluxes. We find that the peak in passive uptake of ions and water occurs at the start of the differentiation zone. In addition, our results show that the level of transpiration has a significant impact on the distribution of ions within the root as well as the rate of ion and water uptake in the differentiation zone, while not impacting on transport in the elongation zone. From our model results we infer information about the active transport of ions in the different developmental zones. In particular, our results suggest that any uptake measured in the elongation zone under steady state conditions is likely to be due to active transport. PMID:27446144

  16. Transport toward earth of ions sputtered from the moon's surface by the solar wind

    NASA Astrophysics Data System (ADS)

    Cladis, J. B.; Francis, W. E.; Vondrak, R. R.

    1994-01-01

    The transport of typical ions from the surface of the Moon to the vicinity of Earth was calculated using a test particle approach. It was assumed that the ions were sputtered from the surface by the solar wind, with fluxes in the range determined experimentally by Elphic et al. (1991), and were accelerated initially to 10 eV by the potential of the Moon on its sunlit side. Si(+) and Ca(+) ions were selected for this transport analysis because their masses are within two prominent ion mass groups that have high sputtering yields. In the solar wind the ion trajectories were traced in the following superimposed fields: (1) a steady magnetic field B0 at an angle of 45 deg to the solar wind velocity VSW, (2) the motional electric field Ezero = -V(sub SW x B0, and (3) turbulent magnetic and electric fields generated by hydromagnetic waves with a k-space power spectrum of absolute value of k-5/3 propagating along both directions of the magnetic field B0. Interactions with Earth's bow shock and magnetosphere were included. Case histories of the ions were recorded in the XGSM, YGSM plane and in various planes perpendicular to the E0 x B0 drift direction of the ions between the Moon and Earth. The number density, energy and angular distributions, and directional and omnidirectional fluxes of the ions were constructed from the case histories. It was found that the diffusion of the ions increases rapidly as the amplitude of the turbulence delta Brms increases beyond the value 0.04 B0. Recent measurements of lunar ions upstream of the bow shock by Hilchenbach et al. (1992) generally confirm the predicted behavior of the ions.

  17. The molecular mechanism of ion-dependent gating in secondary transporters.

    PubMed

    Zhao, Chunfeng; Noskov, Sergei Yu

    2013-10-01

    LeuT-like fold Na-dependent secondary active transporters form a large family of integral membrane proteins that transport various substrates against their concentration gradient across lipid membranes, using the free energy stored in the downhill concentration gradient of sodium ions. These transporters play an active role in synaptic transmission, the delivery of key nutrients, and the maintenance of osmotic pressure inside the cell. It is generally believed that binding of an ion and/or a substrate drives the conformational dynamics of the transporter. However, the exact mechanism for converting ion binding into useful work has yet to be established. Using a multi-dimensional path sampling (string-method) followed by all-atom free energy simulations, we established the principal thermodynamic and kinetic components governing the ion-dependent conformational dynamics of a LeuT-like fold transporter, the sodium/benzyl-hydantoin symporter Mhp1, for an entire conformational cycle. We found that inward-facing and outward-facing states of Mhp1 display nearly the same free energies with an ion absent from the Na2 site conserved across the LeuT-like fold transporters. The barrier separating an apo-state from inward-facing or outward-facing states of the transporter is very low, suggesting stochastic gating in the absence of ion/substrate bound. In contrast, the binding of a Na2 ion shifts the free energy stabilizing the outward-facing state and promoting substrate binding. Our results indicate that ion binding to the Na2 site may also play a key role in the intracellular thin gate dynamics modulation by altering its interactions with the transmembrane helix 5 (TM5). The Potential of Mean Force (PMF) computations for a substrate entrance displays two energy minima that correspond to the locations of the main binding site S1 and proposed allosteric S2 binding site. However, it was found that substrate's binds to the site S1 ∼5 kcal/mol more favorable than that to the

  18. Comparison between single- and dual-electrode ion source systems for low-energy ion transport

    SciTech Connect

    Vasquez, M. Jr.; Tokumura, S.; Kasuya, T.; Maeno, S.; Wada, M.

    2012-11-06

    Extraction of ions with energies below 100 eV has been demonstrated using a hot-cathode multi-cusp ion source equipped with extraction electrodes made of thin wires. Two electrode geometries, a single-electrode system, and a dual-electrode system were built and tested. The single-electrode configuration showed high ion beam current densities at shorter distances from the electrode but exhibited rapid attenuation as the distance from the electrode increased. Beam angular spread measurements showed similar beam divergence for both electrode configurations at low plasma densities. At high plasma densities and low extraction potentials, the single-electrode system showed the angular spread twice as large as that of the dual-electrode system. Energy distribution analyses showed a broader energy spread for ion beams extracted from a single-electrode set-up.

  19. Ion transport membrane module and vessel system with directed internal gas flow

    DOEpatents

    Holmes, Michael Jerome; Ohrn, Theodore R.; Chen, Christopher Ming-Poh

    2010-02-09

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

  20. Intrinsic slow charge response in the perovskite solar cells: Electron and ion transport

    SciTech Connect

    Shi, Jiangjian; Xu, Xin; Zhang, Huiyin; Luo, Yanhong; Li, Dongmei; Meng, Qingbo

    2015-10-19

    The intrinsic charge response and hysteresis characteristic in the perovskite solar cell has been investigated by an electrically modulated transient photocurrent technology. An ultraslow charge response process in the timescale of seconds is observed, which can be well explained by the ion migration in the perovskite CH{sub 3}NH{sub 3}PbI{sub 3} film driven by multiple electric fields derived from the heterojunction depletion charge, the external modulation, and the accumulated ion charge. Furthermore, theoretical calculation of charge transport reveals that the hysteresis behavior is also significantly influenced by the interfacial charge extraction velocity and the carrier transport properties inside the cell.

  1. Range and Energy Straggling in Ion Beam Transport

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Tai, Hsiang

    2000-01-01

    A first-order approximation to the range and energy straggling of ion beams is given as a normal distribution for which the standard deviation is estimated from the fluctuations in energy loss events. The standard deviation is calculated by assuming scattering from free electrons with a long range cutoff parameter that depends on the mean excitation energy of the medium. The present formalism is derived by extrapolating Payne's formalism to low energy by systematic energy scaling and to greater depths of penetration by a second-order perturbation. Limited comparisons are made with experimental data.

  2. A Comparison of Ion and Electron Energization and Transport Mechanisms in the Magnetotail During Substorms

    NASA Astrophysics Data System (ADS)

    Pan, Q.; Ashour-Abdalla, M.; Walker, R. J.; El-Alaoui, M.

    2014-12-01

    We report a recent study comparing electron and ion energization and transport mechanisms in the magnetotail during substorms. The simulation scheme combines global magnetohydrodynamic (MHD) modeling of the magnetosphere driven by realistic upstream solar wind conditions, with large-scale kinetics (LSK) simulations in which we calculate the trajectories of millions of test particles in the electric and magnetic fields from the MHD simulation. In particular, during a modest substorm event that occurred on February 7, 2009, we found multiple earthward propagating dipolarizations driven by reconnection outflow jets in the MHD simulation results. Ion trajectories in the ion LSK simulation show that ions that originating near the reconnection site first gained energy non-adiabatically, and then gained energy adiabatically as they "caught up with and then rode on" the earthward propagating dipolarizations. Consequently, the integrated high-energy (>25 keV) ion fluxes were enhanced where and when the dipolarizations intensified. High-speed flows in narrow channels controlled the earthward ion transport in the magnetotail due to the dominance of E×B drift. The mechanisms of non-local energization by dipolarizations and transport controlled by high-speed flows operate similarly for electrons as reported in studies of other events by Ashour-Abdalla et al. [2011] and Pan et al. [2014]. We perform an electron LSK simulation for the same February 7, 2009 event to examine these similarities.

  3. Non-diffusive transport of suprathermal ions by intermittent turbulent structures

    NASA Astrophysics Data System (ADS)

    Furno, I.; Bovet, A.; Fasoli, A.; Gauthey, C.; Gustafson, K.; Ricci, P.; van Milligen, B. Ph

    2016-01-01

    We report on recent experimental, numerical and theoretical investigations of suprathermal ion transport and turbulent plasma dynamics in TORPEX. TORPEX is a toroidal device in which field-aligned blobs are intermittently generated and propagate across a confining magnetic field. Suprathermal ions are locally injected using a miniaturized source and detected using gridded energy analyzers. We show evidence for subdiffusive and superdiffusive transport of suprathermal ions, using an unprecedented combination of uniquely resolved three-dimensional measurements and first-principles numerical simulation. We present time-resolved measurements of suprathermal ion current fluctuations, which exhibit a clear causality relation with blobs, as revealed by a transfer entropy method for the superdiffusive case. This link is further investigated by using a conditional sampling technique, which allows resolving the cross-field dynamics of both blobs and the suprathermal ion beam, revealing that suprathermal ions experiencing superdiffusive transport are associated with bursty displacement events, resulting in highly intermittent time traces. This work links observations usually inaccessible in fusion devices and astrophysical plasmas, namely energy resolved three-dimensional time-averaged measurements, with Eulerian time-resolved measurements, which are often the only accessible measurements in such systems.

  4. Thermal Ion Transport on the Moon and the Formation of the Lunar Swirls

    NASA Technical Reports Server (NTRS)

    Keller, John W.; Killen, R. M.; Stubbs, T. J.; Farrell, W. M.; Halekas, J. S.

    2011-01-01

    The bright "swirl" features observed on the lunar surface are generally associated with crustal magnetic anomalies. Prominent explanations that invoke these fields include: magnetic shielding in the form of a mini-magnetosphere, which impedes space weathering by the solar wind; magnetically controlled dust transport; and cometary or asteroidal impacts, that could result in shock magnetization with concomitant formation of the swirls. Here we consider another possibility in which the ambient magnetic and electric fields can transport and channel secondary ions produced by micrometeorite or solar wind ion impacts. We use a simplified model of the fields, which incorporates a two-dipole magnetic field model for Reiner Gamma, and typical solar wind conditions. We will present preliminarily results suggesting that ions created over significant regions of the lunar surface can be transported under the influence of local and interplanetary electromagnetic fields to narrow areas ncar arcas of high crustal magnetic field strength. The flux of these focused ions may be of sufficient intensity to chemically process (or otherwise bleach) the surface leading to the formation of the high albedo component of the lunar swirls. The theory is appealing since through a lensing effect, it is possible that this flux is sufficient to overcome other space weathering processes which would otherwise tend to erase the features. Also, with relatively low energy ions, and consistent with the observed focusing, the ion gyro radii in the local magnetic fields is small enough to resolve the swirls.

  5. Angular neutron transport investigation in the HZETRN free-space ion and nucleon transport and shielding computer program

    NASA Technical Reports Server (NTRS)

    Singleterry, R. C., Jr.; Wilson, J. W.

    1997-01-01

    Extension of the high charge and energy (HZE) transport computer program HZETRN for angular transport of neutrons is considered. For this paper, only light ion transport, He4 and lighter, will be analyzed using a pure solar proton source. The angular transport calculator is the ANISN/PC program which is being controlled by the HZETRN program. The neutron flux values are compared for straight-ahead transport and angular transport in one dimension. The shield material is aluminum and the target material is water. The thickness of these materials is varied; however, only the largest model calculated is reported which is 50 gm/sq cm of aluminum and 100 gm/sq cm of water. The flux from the ANISN/PC calculation is about two orders of magnitude lower than the flux from HZETRN for very low energy neutrons. It is only a magnitude lower for the neutrons in the 10 to 20 MeV range in the aluminum and two orders lower in the water. The major reason for this difference is in the transport modes: straight-ahead versus angular. The angular treatment allows a longer path length than the straight-ahead approximation. Another reason is the different cross section sets used by the ANISN/PC-BUGLE-80 mode and the HZETRN mode. The next step is to investigate further the differences between the two codes and isolate the differences to just the angular versus straight-ahead transport mode. Then, create a better coupling between the angular neutron transport and the charged particle transport.

  6. Careers in Airway Science.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    The Federal Aviation Administration (FAA) has initiated the Airway Science curriculum as a method of preparing the next generation of aviation technicians and managers. This document: (1) discusses the FAA's role in the Airway Science program; (2) describes some of the career fields that FAA offers to Airway Science graduates (air traffic control…

  7. Two-Dimensional Porous Carbon: Synthesis and Ion-Transport Properties.

    PubMed

    Zheng, Xiaoyu; Luo, Jiayan; Lv, Wei; Wang, Da-Wei; Yang, Quan-Hong

    2015-09-23

    Their chemical stability, high specific surface area, and electric conductivity enable porous carbon materials to be the most commonly used electrode materials for electrochemical capacitors (also known as supercapacitors). To further increase the energy and power density, engineering of the pore structures with a higher electrochemical accessible surface area, faster ion-transport path and a more-robust interface with the electrolyte is widely investigated. Compared with traditional porous carbons, two-dimensional (2D) porous carbon sheets with an interlinked hierarchical porous structure are a good candidate for supercapacitors due to their advantages in high aspect ratio for electrode packing and electron transport, hierarchical pore structures for ion transport, and short ion-transport length. Recent progress on the synthesis of 2D porous carbons is reported here, along with the improved electrochemical behavior due to enhanced ion transport. Challenges for the controlled preparation of 2D porous carbons with desired properties are also discussed; these require precise tuning of the hierarchical structure and a clarification of the formation mechanisms. PMID:26207982

  8. Experimental study of ion-beam self-pinched transport for MeV protons

    SciTech Connect

    Neri, J.M.; Young, F.C.; Stephanakis, S.J.; Ottinger, P.F.; Rose, D.V.; Hinshelwood, D.D.; Weber, B.V.

    1999-07-01

    A 100-kA, 1.2-MeV proton beam from a pinch-reflex ion diode on the Gamble II accelerator is used to test the concept of self-pinched ion transport. Self-pinched transport (SPT) uses the self-generated magnetic field from the ion beam to radially confine the ion beam. A proton beam is injected through a 3-cm radius aperture covered with a 2-{micro}m thick polycarbonate foil into a 10-cm radius transport region. The transport region is filled with helium at pressures of 30--250 mTorr, vacuum (10{sup {minus}4} Torr), or 1-Torr air. The beam is diagnosed with witness plates, multiple-pinhole-camera imaging onto radiochromic film, time- and space-resolved proton-scattering, and with prompt-{gamma} and nuclear-activation from LiF targets. Witness-plates and the multiple-pinhole-camera are used to determine the size, location, and uniformity of the beam at different distances from the injection aperture. A beam global divergence of 200 mrad is measured at 15 cm. At 50 cm, the beam fills the transport region. At 110 cm and 100- to 200-mTorr helium, there is evidence of beam filamentation. The measured increase in protons is consistent with the physical picture for SPT, and comparisons with IPROP simulations are in qualitative agreement with the measurements.

  9. Impact of beam transport method on chamber and driver design for heavy ion inertial fusion energy

    SciTech Connect

    Rose, D.V.; Welch, D.R.; Olson, C.L.; Yu, S.S.; Neff, S.; Sharp, W.M.

    2002-12-01

    In heavy ion inertial fusion energy systems, intense beams of ions must be transported from the exit of the final focus magnet system through the target chamber to hit millimeter spot sizes on the target. In this paper, we examine three different modes of beam propagation: neutralized ballistic transport, assisted pinched transport, and self-pinched transport. The status of our understanding of these three modes is summarized, and the constraints imposed by beam propagation upon the chamber environment, as well as their compatibility with various chamber and target concepts, are considered. We conclude that, on the basis of our present understanding, there is a reasonable range of parameter space where beams can propagate in thick-liquid wall, wetted-wall, and dry-wall chambers.

  10. Computational studies of transport in ion channels using metadynamics.

    PubMed

    Furini, Simone; Domene, Carmen

    2016-07-01

    Molecular dynamics simulations have played a fundamental role in numerous fields of science by providing insights into the structure and dynamics of complex systems at the atomistic level. However, exhaustive sampling by standard molecular dynamics is in most cases computationally prohibitive, and the time scales accessible remain significantly shorter than many biological processes of interest. In particular, in the study of ion channels, realistic models to describe permeation and gating require accounting for large numbers of particles and accurate interaction potentials, which severely limits the length of the simulations. To overcome such limitations, several advanced methods have been proposed among which is metadynamics. In this algorithm, an external bias potential to accelerate sampling along selected collective variables is introduced. This bias potential discourages visiting regions of the configurational space already explored. In addition, the bias potential provides an estimate of the free energy as a function of the collective variables chosen once the simulation has converged. In this review, recent contributions of metadynamics to the field of ion channels are discussed, including how metadynamics has been used to search for transition states, predict permeation pathways, treat conformational flexibility that underlies the coupling between gating and permeation, or compute free energy of permeation profiles. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov. PMID:26891818

  11. Role of Alfvén Instabilities in Energetic Ion Transport

    SciTech Connect

    Bell, M.G.; Bernabei, S.; Budny, R.; Darrow, D.; Fredrickson, E.D.; et al.

    1998-11-01

    Experiments of plasma heating at the ion cyclotron resonance of a minority specie have shown that the heating efficiency degrades above a certain power threshold. It is found that this threshold is due to the destabilization of a branch of shear Alfvén waves which causes a diffusive loss of fast ions, the Energetic Particle Modes. These modes not only play a fundamental role in the transport of the fast ions, but appear closely related to the formation of the giant sawteeth.

  12. Role of Alfv{acute e}n instabilities in energetic ion transport

    SciTech Connect

    Bernabei, S.; Bell, M.G.; Budny, R.; Darrow, D.; Fredrickson, E.D.; Gorelenkov, N.; Hosea, J.C.; Majeski, R.; Mazzucato, E.; Nazikian, R.; Phillips, C.K.; Rogers, J.H.; Schilling, G.; White, R.; Wilson, J.R.; Zonca, F.; Zweben, S.

    1999-05-01

    Experiments with plasma heating by waves at the ion cyclotron resonance of a minority species have shown that the heating efficiency degrades above a certain power threshold. It is found that this threshold is due to the destabilization of a branch of shear Alfv{acute e}n waves, the Energetic Particle Modes, which causes a diffusive loss of fast ions. These modes not only play a fundamental role in the transport of the fast ions, but appear closely related to the formation of giant sawteeth. {copyright} {ital 1999 American Institute of Physics.}

  13. Electric field-controlled water permeation coupled to ion transport through a nanopore

    NASA Astrophysics Data System (ADS)

    Dzubiella, J.; Allen, R. J.; Hansen, J.-P.

    2004-03-01

    We report molecular dynamics simulations of a generic hydrophobic nanopore connecting two reservoirs which are initially at different Na+ concentrations, as in a biological cell. The nanopore is impermeable to water under equilibrium conditions, but the strong electric field caused by the ionic concentration gradient drives water molecules in. The density and structure of water in the pore are highly field dependent. In a typical simulation run, we observe a succession of cation passages through the pore, characterized by approximately bulk mobility. These ion passages reduce the electric field, until the pore empties of water and closes to further ion transport, thus providing a possible mechanism for biological ion channel gating.

  14. An evaluation of energy-independent heavy ion transport coefficient approximations.

    PubMed

    Townsend, L W; Wilson, J W

    1988-04-01

    Using a one-dimensional transport theory for laboratory heavy ion propagation, evaluations of typical energy-independent transport coefficient approximations are made by comparing theoretical depth-dose predictions to published experimental values for incident 670 MeV/nucleon 20Ne beams in water. Results are presented for cases where the input nuclear absorption cross sections, or input fragmentation parameters, or both, are fixed. PMID:3350661

  15. Status of the SNS H- ion source and low-energy beam transport system

    SciTech Connect

    Keller, R.; Thomae, R.; Stockli, M.; Welton, R.

    2002-04-01

    The ion source and Low-Energy Transport (LEBT) system that will provide H{sup -} ion beams to the Spallation Neutron Source (SNS) Front End and the accelerator chain have been developed into a mature unit that will satisfy the operational needs through the commissioning and early operating phases of SNS. The ion source was derived from the SSC ion source, and many of its original features have been improved to achieve reliable operation at 6% duty factor, producing beam currents in the 35-mA range and above. The LEBT utilizes purely electrostatic focusing and includes static beam-steering elements and a pre-chopper. This paper will discuss the latest design features of the ion source and LEBT, give performance data for the integrated system, and report on relevant commissioning results obtained with the SNS RFQ accelerator. Perspectives for further improvements will be outlined in concluding remarks.

  16. Potential role of cytoplasmic calcium ions in the regulation of sodium transport in renal tubules.

    PubMed

    Frindt, G; Lee, C O; Yang, J M; Windhager, E E

    1988-01-01

    Experimental maneuvers that increase intracellular calcium ion levels inhibit sodium transport by renal tubules. In the isolated perfused renal tubule, intracellular calcium ion activity (aiCa) changes in response to alterations in the magnitude of the electrochemical potential gradient for sodium ions across the basolateral cell membrane. However, a potassium-induced depolarization of this cell boundary does not cause a rise but rather a fall in intracellular calcium ion levels. Ionomycin raises aiCa without causing intracellular acidification. This observation does not support the view that high cytosolic calcium produces intracellular acidification. At least in the case of ionomycin, the inhibition of sodium transport appears to be due to ionophore-induced increases in aiCa. The changes in intracellular calcium ion concentration found in the different experimental conditions studied were consistent with the notion that cytosolic calcium ions may mediate a feedback mechanism that links the luminal entry to the peritubular extrusion of sodium ions. The mechanisms by which cytosolic calcium alters entry is not yet clear but recent experiments suggest an indirect effect on sodium channel activity. PMID:3279295

  17. Regulation of the glutamine transporter SN1 by extracellular pH and intracellular sodium ions

    PubMed Central

    Bröer, Angelika; Albers, Alexandra; Setiawan, Iwan; Edwards, Robert H; Chaudhry, Farrukh A; Lang, Florian; Wagner, Carsten A; Bröer, Stefan

    2002-01-01

    The glutamine transporter SN1 has recently been identified as one of the major glutamine transporters in hepatocytes and brain astrocytes. It appears to be the molecular correlate of system N amino acid transport. Two different transport mechanisms have been proposed for this transporter. These are an electroneutral mechanism, in which glutamine uptake is coupled to an exchange of 1Na+ and 1H+, or an electrogenic mechanism coupled to the exchange of 2Na+ against 1H+. This study was performed to solve these discrepancies and to investigate the reversibility of the transporter. When SN1 was expressed in Xenopus laevis oocytes, glutamine uptake was accompanied by a cotransport of 2–3 Na+ ions as determined by 22Na+ fluxes. However, at the same time a rapid release of intracellular Na+ was observed indicating an active exchange of Na+ ions. The driving force of the proton electrochemical gradient was equivalent to that of the sodium electrochemical gradient. Acidification of the extracellular medium caused the transporter to run in reverse and to release glutamine. Determination of accumulation ratios at different driving forces were in agreement with an electroneutral 1Na+-glutamine cotransport-1H+ antiport. Inward currents that were observed during glutamine uptake were much smaller than expected for a stoichiometric cotransport of charges. A slippage mode in the transporter mechanism and pH-regulated endogenous oocyte cation channels are likely to contribute to the observed currents. PMID:11850497

  18. In Situ Investigation of Li and Na Ion Transport with Single Nanowire Electrochemical Devices.

    PubMed

    Xu, Xu; Yan, Mengyu; Tian, Xiaocong; Yang, Chuchu; Shi, Mengzhu; Wei, Qiulong; Xu, Lin; Mai, Liqiang

    2015-06-10

    In the past decades, Li ion batteries are widely considered to be the most promising rechargeable batteries for the rapid development of mobile devices and electric vehicles. There arouses great interest in Na ion batteries, especially in the field of static grid storage due to their much lower production cost compared with Li ion batteries. However, the fundamental mechanism of Li and Na ion transport in nanoscale electrodes of batteries has been rarely experimentally explored. This insight can guide the development and optimization of high-performance electrode materials. In this work, single nanowire devices with multicontacts are designed to obtain detailed information during the electrochemical reactions. This unique platform is employed to in situ investigate and compare the transport properties of Li and Na ions at a single nanowire level. To give different confinement for ions and electrons during the electrochemical processes, two different configurations of nanowire electrode are proposed; one is to fully immerse the nanowire in the electrolyte, and the other is by using photoresist to cover the nanowire with only one end exposed. For both configurations, the conductivity of nanowire decreases after intercalation/deintercalation for both Li and Na ions, indicating that they share the similar electrochemical reaction mechanisms in layered electrodes. However, the conductivity degradation and structure destruction for Na ions is more severe than those of Li ions during the electrochemical processes, which mainly results from the much larger volume of Na ions and greater energy barrier encountered by the limited layered spaces. Moreover, the battery performances of coin cells are compared to further confirm this conclusion. The present work provides a unique platform for in situ electrochemical and electrical probing, which will push the fundamental and practical research of nanowire electrode materials for energy storage applications. PMID:25989463

  19. Understanding ion and solvent transport in anion exchange membranes under humidified conditions

    NASA Astrophysics Data System (ADS)

    Sarode, Himanshu

    Anion exchange membranes (AEM) have been studied for more than a decade for potential applications in low temperature fuel cells and other electrochemical devices. They offer the advantage of faster reaction kinetics under alkaline conditions and ability to perform without costly platinum catalyst. Inherently slow diffusion of hydroxide ions compared to protons is a primary reason for synthesizing and studying the ion transport properties in AEMs. The aim of this thesis is to understand ion transport in novel AEMs using Pulse Gradient stimulated Spin Echo Nuclear Magnetic Resonance technique (PGSE NMR), water uptake, ionic conductivity, Small Angle X-ray Scattering (SAXS) etc. All experiments were performed under humidified conditions (80--95% relative humidity) and fuel cell operating temperatures of 30--90°C. In this work, the NMR tube design was modified for humidifying the entire NMR tube evenly from our previous design. We have developed a new protocol for replacing caustic hydroxide with harmless fluoride or bicarbonate ions for 19F and 13 C NMR diffusion experiments. After performing these NMR experiments, we have obtained in-depth understanding of the morphology linked ion transport in AEMs. We have obtained the highest fluoride self-diffusion coefficient of > 1 x 10-5 cm2/sec ( 55°C) for ETFE-g-PVBTMA membrane which is a result of low tortuosity of 1 obtained for the membrane. This faster fluoride transport combined with low tortuosity of the membrane resulted in > 100mS/cm hydroxide conductivity for the membrane. Polycyclooctene (PCOE) based triblock copolymers are also studied for in-depth understanding of molecular weight, IEC, mechanical and transport properties. Effect of melting temperature of PCOE has favorable effect on increasing ion conductivity and lowering activation energy. Mechanical properties of these types of membranes were studied showing detrimental effect of water plasticization which results in unsuitable mechanical properties

  20. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease.

    PubMed

    Zhang, Rui; Duhl, Tiffany; Salam, Muhammad T; House, James M; Flagan, Richard C; Avol, Edward L; Gilliland, Frank D; Guenther, Alex; Chung, Serena H; Lamb, Brian K; VanReken, Timothy M

    2013-03-01

    Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD) in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the WRF/CMAQ air-quality modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation) threshold conditions and is designed to be flexible with respect to its representation of vegetation species and plant functional types (PFTs). The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS), which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 km and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to underestimate walnut and peak oak pollen concentrations, and tends

  1. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Duhl, T.; Salam, M. T.; House, J. M.; Flagan, R. C.; Avol, E. L.; Gilliland, F. D.; Guenther, A.; Chung, S. H.; Lamb, B. K.; VanReken, T. M.

    2014-03-01

    Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD) in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the coupled Weather Research and Forecasting Community Multiscale Air Quality (WRF/CMAQ) modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation) threshold conditions and is designed to be flexible with respect to its representation of vegetation species and plant functional types (PFTs). The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California (USA) for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS), which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to

  2. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Duhl, T.; Salam, M. T.; House, J. M.; Flagan, R. C.; Avol, E. L.; Gilliland, F. D.; Guenther, A.; Chung, S. H.; Lamb, B. K.; VanReken, T. M.

    2013-03-01

    Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD) in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the WRF/CMAQ air-quality modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation) threshold conditions and is designed to be flexible with respect to its representation vegetation species and plant functional types (PFTs). The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS), which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 km and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to underestimate walnut and peak oak pollen concentrations, and tends to

  3. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease

    PubMed Central

    Zhang, Rui; Duhl, Tiffany; Salam, Muhammad T.; House, James M.; Flagan, Richard C.; Avol, Edward L.; Gilliland, Frank D.; Guenther, Alex; Chung, Serena H.; Lamb, Brian K.; VanReken, Timothy M.

    2014-01-01

    Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD) in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the WRF/CMAQ air-quality modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation) threshold conditions and is designed to be flexible with respect to its representation of vegetation species and plant functional types (PFTs). The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS), which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 km and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to underestimate walnut and peak oak pollen concentrations, and tends

  4. Fe(2+) substrate transport through ferritin protein cage ion channels influences enzyme activity and biomineralization.

    PubMed

    Behera, Rabindra K; Torres, Rodrigo; Tosha, Takehiko; Bradley, Justin M; Goulding, Celia W; Theil, Elizabeth C

    2015-09-01

    Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3·H2O), by moving cytoplasmic Fe(2+) through intracage ion channels to cage-embedded enzyme (2Fe(2+)/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe(2+) movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one -CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650 nm (DFP λ max). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe(3+)-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: (1) narrower interior ion channel openings/pores; (2) increased numbers of ion channel protein-metal binding sites, and (3) a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells. PMID:26202907

  5. Energetic-particle-driven instabilities and induced fast-ion transport in a reversed field pinch

    SciTech Connect

    Lin, L.; Brower, D. L.; Ding, W. X.; Anderson, J. K.; Capecchi, W.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Nornberg, M. D.; Reusch, J.; Sarff, J. S.; Liu, D.

    2014-05-15

    Multiple bursty energetic-particle (EP) driven modes with fishbone-like structure are observed during 1 MW tangential neutral-beam injection in a reversed field pinch (RFP) device. The distinguishing features of the RFP, including large magnetic shear (tending to add stability) and weak toroidal magnetic field (leading to stronger drive), provide a complementary environment to tokamak and stellarator configurations for exploring basic understanding of EP instabilities. Detailed measurements of the EP mode characteristics and temporal-spatial dynamics reveal their influence on fast ion transport. Density fluctuations exhibit a dynamically evolving, inboard-outboard asymmetric spatial structure that peaks in the core where fast ions reside. The measured mode frequencies are close to the computed shear Alfvén frequency, a feature consistent with continuum modes destabilized by strong drive. The frequency pattern of the dominant mode depends on the fast-ion species. Multiple frequencies occur with deuterium fast ions compared to single frequency for hydrogen fast ions. Furthermore, as the safety factor (q) decreases, the toroidal mode number of the dominant EP mode transits from n=5 to n=6 while retaining the same poloidal mode number m=1. The transition occurs when the m=1, n=5 wave-particle resonance condition cannot be satisfied as the fast-ion safety factor (q{sub fi}) decreases. The fast-ion temporal dynamics, measured by a neutral particle analyzer, resemble a classical predator-prey relaxation oscillation. It contains a slow-growth phase arising from the beam fueling followed by a rapid drop when the EP modes peak, indicating that the fluctuation-induced transport maintains a stiff fast-ion density profile. The inferred transport rate is strongly enhanced with the onset of multiple EP modes.

  6. Airway Surface Dehydration by Transforming Growth Factor β (TGF-β) in Cystic Fibrosis Is Due to Decreased Function of a Voltage-dependent Potassium Channel and Can Be Rescued by the Drug Pirfenidone.

    PubMed

    Manzanares, Dahis; Krick, Stefanie; Baumlin, Nathalie; Dennis, John S; Tyrrell, Jean; Tarran, Robert; Salathe, Matthias

    2015-10-16

    Transforming growth factor β1 (TGF-β1) is not only elevated in airways of cystic fibrosis (CF) patients, whose airways are characterized by abnormal ion transport and mucociliary clearance, but TGF-β1 is also associated with worse clinical outcomes. Effective mucociliary clearance depends on adequate airway hydration, governed by ion transport. Apically expressed, large-conductance, Ca(2+)- and voltage-dependent K(+) (BK) channels play an important role in this process. In this study, TGF-β1 decreased airway surface liquid volume, ciliary beat frequency, and BK activity in fully differentiated CF bronchial epithelial cells by reducing mRNA expression of the BK γ subunit leucine-rich repeat-containing protein 26 (LRRC26) and its function. Although LRRC26 knockdown itself reduced BK activity, LRRC26 overexpression partially reversed TGF-β1-induced BK dysfunction. TGF-β1-induced airway surface liquid volume hyper-absorption was reversed by the BK opener mallotoxin and the clinically useful TGF-β signaling inhibitor pirfenidone. The latter increased BK activity via rescue of LRRC26. Therefore, we propose that TGF-β1-induced mucociliary dysfunction in CF airways is associated with BK inactivation related to a LRRC26 decrease and is amenable to treatment with clinically useful TGF-β1 inhibitors. PMID:26338706

  7. Luminal cholinergic signalling in airway lining fluid: a novel mechanism for activating chloride secretion via Ca2+-dependent Cl− and K+ channels

    PubMed Central

    Hollenhorst, Monika I; Lips, Katrin S; Wolff, Miriam; Wess, Jürgen; Gerbig, Stefanie; Takats, Zoltan; Kummer, Wolfgang; Fronius, Martin

    2012-01-01

    BACKGROUND AND PURPOSE Recent studies detected the expression of proteins involved in cholinergic metabolism in airway epithelial cells, although the function of this non-neuronal cholinergic system is not known in detail. Thus, this study focused on the effect of luminal ACh as a regulator of transepithelial ion transport in epithelial cells. EXPERIMENTAL APPROACH RT-PCR experiments were performed using mouse tracheal epithelial cells for ChAT and organic cation transporter (OCT) transcripts. Components of tracheal airway lining fluid were analysed with desorption electrospray ionization (DESI) MS. Effects of nicotine on mouse tracheal epithelial ion transport were examined with Ussing-chamber experiments. KEY RESULTS Transcripts encoding ChAT and OCT1–3 were detected in mouse tracheal epithelial cells. The DESI experiments identified ACh in the airway lining fluid. Luminal ACh induced an immediate, dose-dependent increase in the transepithelial ion current (EC50: 23.3 µM), characterized by a transient peak and sustained plateau current. This response was not affected by the Na+-channel inhibitor amiloride. The Cl−-channel inhibitor niflumic acid or the K+-channel blocker Ba2+ attenuated the ACh effect. The calcium ionophore A23187 mimicked the ACh effect. Luminal nicotine or muscarine increased the ion current. Experiments with receptor gene-deficient animals revealed the participation of muscarinic receptor subtypes M1 and M3. CONCLUSIONS AND IMPLICATIONS The presence of luminal ACh and activation of transepithelial ion currents by luminal ACh receptors identifies a novel non-neuronal cholinergic pathway in the airway lining fluid. This pathway could represent a novel drug target in the airways. PMID:22300281

  8. The Physiologically Difficult Airway.

    PubMed

    Mosier, Jarrod M; Joshi, Raj; Hypes, Cameron; Pacheco, Garrett; Valenzuela, Terence; Sakles, John C

    2015-12-01

    Airway management in critically ill patients involves the identification and management of the potentially difficult airway in order to avoid untoward complications. This focus on difficult airway management has traditionally referred to identifying anatomic characteristics of the patient that make either visualizing the glottic opening or placement of the tracheal tube through the vocal cords difficult. This paper will describe the physiologically difficult airway, in which physiologic derangements of the patient increase the risk of cardiovascular collapse from airway management. The four physiologically difficult airways described include hypoxemia, hypotension, severe metabolic acidosis, and right ventricular failure. The emergency physician should account for these physiologic derangements with airway management in critically ill patients regardless of the predicted anatomic difficulty of the intubation. PMID:26759664

  9. The Physiologically Difficult Airway

    PubMed Central

    Mosier, Jarrod M.; Joshi, Raj; Hypes, Cameron; Pacheco, Garrett; Valenzuela, Terence; Sakles, John C.

    2015-01-01

    Airway management in critically ill patients involves the identification and management of the potentially difficult airway in order to avoid untoward complications. This focus on difficult airway management has traditionally referred to identifying anatomic characteristics of the patient that make either visualizing the glottic opening or placement of the tracheal tube through the vocal cords difficult. This paper will describe the physiologically difficult airway, in which physiologic derangements of the patient increase the risk of cardiovascular collapse from airway management. The four physiologically difficult airways described include hypoxemia, hypotension, severe metabolic acidosis, and right ventricular failure. The emergency physician should account for these physiologic derangements with airway management in critically ill patients regardless of the predicted anatomic difficulty of the intubation. PMID:26759664

  10. Bombardment induced ion transport - part IV: ionic conductivity of ultra-thin polyelectrolyte multilayer films.

    PubMed

    Wesp, Veronika; Hermann, Matthias; Schäfer, Martin; Hühn, Jonas; Parak, Wolfgang J; Weitzel, Karl-Michael

    2016-02-14

    The dependence of the ionic conductance of ultra-thin polyelectrolyte multilayer (PEM) films on the temperature and the number of bilayers has been investigated by the recently developed low energy bombardment induced ion transport (BIIT) method. To this end multilayers of alternating poly(sodium 4-styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) layers were deposited on a metal electrode and subsequently bombarded by a low energy potassium ion beam. Ions are transported through the film according to the laws of electro-diffusion towards a grounded backside electrode. They are neutralized at the interface between the polymer film and the metal electrode. The detected neutralization current scales linearly with the acceleration potential of the ion beam indicating Ohmic behavior for the (PAH/PSS)x multilayer, where x denotes the number of bilayers. The conductance exhibits a non-monotonic dependence on the number of bilayers, x. For 2 ≤ x ≤ 8 the conductance increases non-linearly with the number of bilayers. For x ≥ 8 the conductance decreases with increasing number of bilayers. The variation of the conductance is rationalized by a model accounting for the structure dependence of the conductivity. The thinnest sample for which the conductance has been measured is the single bilayer reflecting properties dominated by the interface. The activation energy for the ion transport is 0.49 eV. PMID:26411996

  11. Parallel transport gates in a mixed-species ion trap processor

    NASA Astrophysics Data System (ADS)

    Home, Jonathan

    Scaled up quantum information processors will require large numbers of parallel gate operations. For ion trap quantum processing, a promising approach is to perform these operations in separated regions of a multi-zone processing chip between which quantum information is transported either by distributed photonic entanglement or by deterministic shuttling of the ions through the array. However scaling the technology for controlling pulsed laser beams which address each of multiple regions appears challenging. I will describe recent work on the control of both beryllium and calcium ions by transporting ions through static laser beams. We have demonstrated both parallel individually addressed operations as well as sequences of operations. Work is in progress towards multi-qubit gates, which requires good control of the ion transport velocity. We have developed a number of techniques for measuring and optimizing velocities in our trap, enabling significant improvements in performance. In addition to direct results, I will give an overview of our multi-species apparatus, including recent results on high fidelity multi-qubit gates. We are grateful for funding from the Swiss National Science Foundation and the ETH Zurich.

  12. Specific spacecraft evaluation: Special report. [charged particle transport from a mercury ion thruster to spacecraft surfaces

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.

    1978-01-01

    Charged and neutral particle transport from an 8 cm mercury ion thruster to the surfaces of the P 80-1 spacecraft and to the Teal Ruby sensor and the ECOM-501 sensor of that spacecraft were investigated. Laboratory measurements and analyses were used to examine line-of-sight and nonline-of sight particle transport modes. The recirculation of Hg(+) ions in the magnetic field of the earth was analyzed for spacecraft velocity and Earth magnetic field vector configurations which are expected to occur in near Earth, circular, high inclination orbits. For these magnetic field and orbit conditions and for expected ion release distribution functions, in both angles and energies, the recirculation/re-interception of ions on spacecraft surfaces was evaluated. The refraction of weakly energetic ions in the electric fields of the thruster plasma plume and in the electric fields between this plasma plume and the material boundaries of the thruster, the thruster sputter shield, and the various spacecraft surfaces were examined. The neutral particle transport modes of interest were identified as sputtered metal atoms from the thruster beam shield. Results, conclusions, and future considerations are presented.

  13. Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    DOEpatents

    Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

    2014-01-28

    Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  14. Ion transporter NKCC1, modulator of neurogenesis in murine olfactory neurons.

    PubMed

    Haering, Claudia; Kanageswaran, Ninthujah; Bouvain, Pascal; Scholz, Paul; Altmüller, Janine; Becker, Christian; Gisselmann, Günter; Wäring-Bischof, Janine; Hatt, Hanns

    2015-04-10

    Olfaction is one of the most crucial senses for vertebrates regarding foraging and social behavior. Therefore, it is of particular interest to investigate the sense of smell, its function on a molecular level, the signaling proteins involved in the process and the mechanism of required ion transport. In recent years, the precise role of the ion transporter NKCC1 in olfactory sensory neuron (OSN) chloride accumulation has been a controversial subject. NKCC1 is expressed in OSNs and is involved in chloride accumulation of dissociated neurons, but it had not been shown to play a role in mouse odorant sensation. Here, we present electro-olfactogram recordings (EOG) demonstrating that NKCC1-deficient mice exhibit significant defects in perception of a complex odorant mixture (Henkel100) in both air-phase and submerged approaches. Using next generation sequencing (NGS) and RT-PCR experiments of NKCC1-deficient and wild type mouse transcriptomes, we confirmed the absence of a highly expressed ion transporter that could compensate for NKCC1. Additional histological investigations demonstrated a reduced number of cells in the olfactory epithelium (OE), resulting in a thinner neuronal layer. Therefore, we conclude that NKCC1 is an important transporter involved in chloride ion accumulation in the olfactory epithelium, but it is also involved in OSN neurogenesis. PMID:25713142

  15. Test of the interaction potential energy for Na+-H2 by gaseous ion transport data

    NASA Astrophysics Data System (ADS)

    Viehland, Larry A.; Buchachenko, Alexei A.

    2014-09-01

    Transport properties of Na+ ions in gaseous hydrogen are calculated using the recently developed "beyond Monchick-Mason" (BMM) approximation and an ab initio Na+-H2 potential energy surface. Good agreement with the experimental data on the reduced mobility and longitudinal diffusion coefficient proves the accuracy of the surface and the adequacy of the BMM method, allowing for its optimal parameterization.

  16. Vibrational excitons in ionophores: experimental probes for quantum coherence-assisted ion transport and selectivity in ion channels

    NASA Astrophysics Data System (ADS)

    Ganim, Ziad; Tokmakoff, Andrei; Vaziri, Alipasha

    2011-11-01

    Despite there being a large body of work, the exact molecular details underlying ion selectivity and transport in the potassium channel have not been fully uncovered. One major reason has been the lack of experimental methods that can probe these mechanisms dynamically on their biologically relevant timescales. Recently, it was suggested that quantum coherence and its interplay with thermal vibration might be involved in mediating ion selectivity and transport. In this paper, we present an experimental strategy for using time-resolved infrared spectroscopy to investigate these effects. We show the feasibility by demonstrating the infrared (IR) absorption and Raman spectroscopic signatures of the potassium-binding model molecules that mimic the transient interactions of potassium with binding sites of the selectivity filter during ion conduction. In addition to guiding our experiments on the real system, we have performed molecular dynamic-based simulations of the FTIR and two-dimensional IR (2DIR) spectra of the entire KcsA complex, which is the largest complex for which such modeling has been performed. We found that by combining isotope labeling with 2DIR spectroscopy, the signatures of potassium interaction with individual binding sites would be experimentally observable, and we identified specific labeling combinations that would maximize our expected experimental signatures.

  17. Dicationic Surfactants with Glycine Counter Ions for Oligonucleotide Transportation.

    PubMed

    Pietralik, Zuzanna; Skrzypczak, Andrzej; Kozak, Maciej

    2016-08-01

    Gemini surfactants are good candidates to bind, protect, and deliver nucleic acids. Herein, the concept of amino acids (namely glycine) as counter ions of gemini surfactants for gene therapy application was explored. This study was conducted on DNA and RNA oligomers and two quaternary bis-imidazolium salts, having 2,5-dioxahexane and 2,8-dioxanonane spacer groups. The toxicity level of surfactants was assessed by an MTT assay, and their ability to bind nucleic acids was tested through electrophoresis. The nucleic acid conformation was established based on circular dichroism and infrared spectroscopic analyses. The structures of the formed complexes were characterized by small-angle scattering of synchrotron radiation. Both studied surfactants appear to be suitable for gene therapy; however, although they vary by only three methylene groups in the spacer, they differ in binding ability and toxicity. The tested oligonucleotides maintained their native conformations upon surfactant addition and the studied lipoplexes formed a variety of structures. In systems based on a 2,5-dioxahexane spacer, a hexagonal phase was observed for DNA-surfactant complexes and a micellar phase was dominant with RNA. For the surfactant with a 2,8-dioxanonane spacer group, the primitive cubic phase prevailed. PMID:27214208

  18. Nuclear powered Mars cargo transport mission utilizing advanced ion propulsion

    SciTech Connect

    Galecki, D.L.; Patterson, M.J.

    1987-01-01

    Nuclear-powered ion propulsion technology was combined with detailed trajectory analysis to determine propulsion system and trajectory options for an unmanned cargo mission to Mars in support of manned Mars missions. A total of 96 mission scenarios were identified by combining two power levels, two propellants, four values of specific impulse per propellant, three starting altitudes, and two starting velocities. Sixty of these scenarios were selected for a detailed trajectory analysis; a complete propulsion system study was then conducted for 20 of these trajectories. Trip times ranged from 344 days for a xenon propulsion system operating at 300 kW total power and starting from lunar orbit with escape velocity, to 770 days for an argon propulsion system operating at 300 kW total power and starting from nuclear start orbit with circular velocity. Trip times for the 3 MW cases studied ranged from 356 to 413 days. Payload masses ranged from 5700 to 12,300 kg for the 300 kW power level, and from 72,200 to 81,500 kg for the 3 MW power level.

  19. Electric Field-Controlled Ion Transport In TiO2 Nanochannel.

    PubMed

    Li, Dan; Jing, Wenheng; Li, Shuaiqiang; Shen, Hao; Xing, Weihong

    2015-06-01

    On the basis of biological ion channels, we constructed TiO2 membranes with rigid channels of 2.3 nm to mimic biomembranes with flexible channels; an external electric field was employed to regulate ion transport in the confined channels at a high ionic strength in the absence of electrical double layer overlap. Results show that transport rates for both Na+ and Mg2+ were decreased irrespective of the direction of the electric field. Furthermore, a voltage-gated selective ion channel was formed, the Mg2+ channel closed at -2 V, and a reversed relative electric field gradient was at the same order of the concentration gradient, whereas the Na+ with smaller Stokes radius and lower valence was less sensitive to the electric field and thus preferentially occupied and passed the channel. Thus, when an external electric field is applied, membranes with larger nanochannels have promising applications in selective separation of mixture salts at a high concentration. PMID:25961963

  20. The ATR noninvasive detection of transported medicinal ions and the performance of newly designed iontophoresis instruments

    NASA Astrophysics Data System (ADS)

    Ueda, Toyotoshi; Watanabe, Yukio; Suzuki, Harue

    2005-02-01

    The attenuated total reflection and near-infrared diffusive-reflection methods are proposed as safe and powerful ways to detect and measure the quantity of medication transported by iontophoresis. Especially, the former method can evaluate the quantity of such negative ions as L-ascorbyl-2-phosphate in the top (horny) layer of epidermis (about 1 μm under the skin surface) using, respectively, characteristic ion's bands. Factors making iontophoresis more effective are discussed from the points of electric currents, duty ratio, frequency of superposing intermittent current, simultaneous supersonic perforation, etc. The use of intermittent direct current superposed by 40 kHz pulsed current and pulse irradiation of supersonic waves accelerated drastically the disappearing rate of transported ions from the horny layer with a life of 10 h to 1 min. This technique may be applied to a new and powerful drug delivery system into topical deep tissues.

  1. Absorption of intense microwaves and ion acoustic turbulence due to heat transport

    SciTech Connect

    De Groot, J.S.; Liu, J.M.; Matte, J.P.

    1994-02-04

    Measurements and calculations of the inverse bremsstrahlung absorption of intense microwaves are presented. The isotropic component of the electron distribution becomes flat-topped in agreement with detailed Fokker-Planck calculations. The plasma heating is reduced due to the flat-topped distributions in agreement with calculations. The calculations show that the heat flux at high microwave powers is very large, q{sub max} {approx} 0.3 n{sub e}v{sub e}T{sub e}. A new particle model to, calculate the heat transport inhibition due to ion acoustic turbulence in ICF plasmas is also presented. One-dimensional PIC calculations of ion acoustic turbulence excited due to heat transport are presented. The 2-D PIC code is presently being used to perform calculations of heat flux inhibition due to ion acoustic turbulence.

  2. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    SciTech Connect

    Valerio-Lizarraga, Cristhian A.; Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard; Leon-Monzon, Ildefonso; Midttun, Øystein

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  3. Towards a heavy-ion transport capability in the MARS15 Code

    SciTech Connect

    Mokhov, N. V.; Gudima, K. K.; Mashnik, S. G.; Rakhno, I. L.; Striganov, S.

    2004-04-01

    In order to meet the challenges of new accelerator and space projects and further improve modelling of radiation effects in microscopic objects, heavy-ion interaction and transport physics have been recently incorporated into the MARS15 Monte Carlo code. A brief description of new modules is given in comparison with experimental data. The MARS Monte Carlo code is widely used in numerous accelerator, detector, shielding and cosmic ray applications. The needs of the Relativistic Heavy-Ion Collider, Large Hadron Collider, Rare Isotope Accelerator and NASA projects have recently induced adding heavy-ion interaction and transport physics to the MARS15 code. The key modules of the new implementation are described below along with their comparisons to experimental data.

  4. Heat transfer enhancement in a lithium-ion cell through improved material-level thermal transport

    NASA Astrophysics Data System (ADS)

    Vishwakarma, Vivek; Waghela, Chirag; Wei, Zi; Prasher, Ravi; Nagpure, Shrikant C.; Li, Jianlin; Liu, Fuqiang; Daniel, Claus; Jain, Ankur

    2015-12-01

    While Li-ion cells offer excellent electrochemical performance for several applications including electric vehicles, they also exhibit poor thermal transport characteristics, resulting in reduced performance, overheating and thermal runaway. Inadequate heat removal from Li-ion cells originates from poor thermal conductivity within the cell. This paper identifies the rate-limiting material-level process that dominates overall thermal conduction in a Li-ion cell. Results indicate that thermal characteristics of a Li-ion cell are largely dominated by heat transfer across the cathode-separator interface rather than heat transfer through the materials themselves. This interfacial thermal resistance contributes around 88% of total thermal resistance in the cell. Measured value of interfacial resistance is close to that obtained from theoretical models that account for weak adhesion and large acoustic mismatch between cathode and separator. Further, to address this problem, an amine-based chemical bridging of the interface is carried out. This is shown to result in in four-times lower interfacial thermal resistance without deterioration in electrochemical performance, thereby increasing effective thermal conductivity by three-fold. This improvement is expected to reduce peak temperature rise during operation by 60%. By identifying and addressing the material-level root cause of poor thermal transport in Li-ion cells, this work may contributes towards improved thermal performance of Li-ion cells.

  5. Modeling of ion transport through a porous separator in vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Zhou, X. L.; Zhao, T. S.; An, L.; Zeng, Y. K.; Wei, L.

    2016-09-01

    In this work, we develop a two-dimensional, transient model to investigate the mechanisms of ion-transport through a porous separator in VRFBs and their effects on battery performance. Commercial-available separators with pore sizes of around 45 nm are particularly investigated and effects of key separator design parameters and operation modes are explored. We reveal that: i) the transport mechanism of vanadium-ion crossover through available separators is predominated by convection; ii) reducing the pore size below 15 nm effectively minimizes the convection-driven vanadium-ion crossover, while further reduction in migration- and diffusion-driven vanadium-ion crossover can be achieved only when the pore size is reduced to the level close to the sizes of vanadium ions; and iii) operation modes that can affect the pressure at the separator/electrode interface, such as the electrolyte flow rate, exert a significant influence on the vanadium-ion crossover rate through the available separators, indicating that it is critically important to equalize the pressure on each half-cell of a power pack in practical applications.

  6. Structural and fast ion transport properties of glassy and amorphous materials

    SciTech Connect

    Whitmore, D.H.; Georgopoulos, P.

    1989-11-01

    This research has dealt with ionic conductivity in two classes of electrolytes. Solid inorganic, as well as polymer. In the former case, a structural characterization study of the fast Ag{sup +} ion conducting glassy electrolyte Ag{sub 0.25}Ge{sub 0.19}Se{sub 0.56} was undertaken by means of differential anomalous x-ray scattering techniques. The Ag{sup +} ion transport behavior was probed with the aid of complex impedance spectroscopy and pulsed field gradient NMR measurements of the Ag{sup +} ion diffusivity. We found evidence suggesting that short (3.1--3.5 A) Ag-Ag distances are present. The observed prefactor for conductivity suggests that the number of mobile Ag{sup +} ions in this glass is significantly less than expected from its stoichiometry. The transport property results were examined in the light of our structural findings and analyses were attempted in terms of some reasonable microscopic models. The other major aspect of this research, dealing with amorphous poly(ethylene glycol)-LiCF{sub 3}SO{sub 3} electrolytes, involved measurements, via the pulsed field gradient NMR method, of the diffusivity of the polymer host, the cation (Li{sup +}) and the anion (CF{sub 3}SO{sub 3}{sup -}) in these complexes and the ionic conductivity, via complex impedance spectroscopy. Based on the conductivity prefactors, it appears that these amorphous polymer electrolytes exhibit classical Meyer-Nelder behavior; moreover, our ion transport results could be rationalized in terms of an ion association model (involving ion pairs and higher order aggregates).

  7. Light ion components of the galactic cosmic rays: Nuclear interactions and transport theory

    NASA Astrophysics Data System (ADS)

    Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Shinn, J. L.; Badhwar, G. D.; Dubey, R. R.

    Light nuclei are present in the primary galactic cosmic rays (GCR) and are produced in thick targets due to projectile or target fragmentation from both nucleon and heavy induced reactions. In the primary GCR, He-4 is the most abundant nucleus after H-1. However, there are also a substantial fluxes of H-2 and He-3. In this paper we describe theoretical models based on quantum multiple scattering theory for the description of light ion nuclear interactions. The energy dependence of the light ion fragmentation cross section is considered with comparisons of inclusive yields and secondary momentum distributions to experiments described. We also analyze the importance of a fast component of lights ions from proton and neutron induced target fragementation. These theoretical models have been incorporated into the cosmic ray transport code HZETRN and will be used to analyze the role of shielding materials in modulating the production and the energy spectrum of light ions.

  8. Macroscopic photocontrol of ion-transporting pathways of a nanostructured imidazolium-based photoresponsive liquid crystal.

    PubMed

    Soberats, Bartolome; Uchida, Emi; Yoshio, Masafumi; Kagimoto, Junko; Ohno, Hiroyuki; Kato, Takashi

    2014-07-01

    The photocontrol of the macroscopic alignment of nanostructured 2D ion-transporting pathways is described. The uniplanar homogeneous alignment of the thermotropic smectic (Sm) liquid-crystalline (LC) phase has been successfully achieved via photoinduced reorientation of the azobenzene groups of the imidazolium-based LC material. The ionic layers of the Sm LC phase are macroscopically oriented perpendicular to the surface of the glass substrate. The oriented films show anisotropic ion conduction in the Sm phase. This is the first example of the macroscopic photoalignment of ion-conductive LC arrays. Reversible switching of homeotropic and homogeneous alignments has also been achieved for the LC material. These materials and the alignment methodology may be useful in the development of ion-based circuits and memory devices. PMID:24958446

  9. Energization and transport of ions of ionospheric origin in the terrestrial magnetosphere

    NASA Technical Reports Server (NTRS)

    Waite, J. H., Jr.

    1995-01-01

    This serves as a final report entitled Energization and Transport of Ions of Ionospheric Origin in the Terrestrial Magnetosphere. The work has been predominantly focused on ion outflows identified in two data sets: (1) Prognoz 7; and (2) Dynamics Explorer. The study analyzed ion densities, temperatures, and flow velocities in the magnetotail. The work performed under this contract consisted of developing a program to load the raw data, compute the background subtraction of a strong sun pulse, and use the net counts to calculate the low order moments of the distribution function. The study confirms the results of ISEE that the the cusp is a major source of plasmasheet plasma and goes beyond this to discuss the use of ion velocities as a way to examine the motions of the magnetotail.

  10. Light ion components of the galactic cosmic rays: Nuclear interactions and transport theory

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Shinn, J. L.; Badhwar, G. D.; Dubey, R. R.

    1996-01-01

    Light nuclei are present in the primary galactic cosmic rays (GCR) and are produced in thick targets due to projectile or target fragmentation from both nucleon and heavy induced reactions. In the primary GCR, He-4 is the most abundant nucleus after H-1. However, there are also a substantial fluxes of H-2 and He-3. In this paper we describe theoretical models based on quantum multiple scattering theory for the description of light ion nuclear interactions. The energy dependence of the light ion fragmentation cross section is considered with comparisons of inclusive yields and secondary momentum distributions to experiments described. We also analyze the importance of a fast component of lights ions from proton and neutron induced target fragementation. These theoretical models have been incorporated into the cosmic ray transport code HZETRN and will be used to analyze the role of shielding materials in modulating the production and the energy spectrum of light ions.

  11. Dynamic model of ion and water transport in ionic polymer-metal composites

    NASA Astrophysics Data System (ADS)

    Zhu, Zicai; Chen, Hualing; Chang, Longfei; Li, Bo

    2011-12-01

    In the process of electro-mechanical transduction of ionic polymer-metal composites (IPMCs), the transport of ion and water molecule plays an important role. In this paper, the theoretical transport models of IPMCs are critically reviewed, with particular emphasis on the recent developments in the latest decade. The models can be divided into three classes, thermodynamics of irreversible process model, frictional model and Nernst-Planck (NP) equation model. To some extent the three models can be transformed into each other, but their differences are also obvious arising from the various mechanisms that considered in different models. The transport of ion and water molecule in IPMCs is compared with that in membrane electrode assembly and electrodialysis membrane to identify and clarify the fundamental transport mechanisms in IPMCs. And an improved transport model is proposed and simplified for numerical analysis. The model considers the convection effect rather than the diffusion as the major transport mechanism, and both the self-diffusion and the electroosmosis drag are accounted for in the water flux equation.

  12. Breathtaking TRP channels: TRPA1 and TRPV1 in airway chemosensation and reflex control.

    PubMed

    Bessac, Bret F; Jordt, Sven-Eric

    2008-12-01

    New studies have revealed an essential role for TRPA1, a sensory neuronal TRP ion channel, in airway chemosensation and inflammation. TRPA1 is activated by chlorine, reactive oxygen species, and noxious constituents of smoke and smog, initiating irritation and airway reflex responses. Together with TRPV1, the capsaicin receptor, TRPA1 may contribute to chemical hypersensitivity, chronic cough, and airway inflammation in asthma, COPD, and reactive airway dysfunction syndrome. PMID:19074743

  13. Transport-theory approach to ion-beam mixing and recoil implantation

    SciTech Connect

    Manning, I. )

    1990-12-01

    Ion bombardment of an amorphous target in slab geometry is considered, and ion-beam mixing and recoil implantation evaluated in the binary-collision approximation. A fundamental equation for target-atom redistribution during ion bombardment is formulated, which relates the redistribution flux to the source function for the creation of energetic atomic recoils and their range distribution; for the analysis, this equation plays the role of the Boltzmann transport equation. Expanding the target-atom density in a power series and truncating at the second term yields a flux equation and closed expressions for coefficients of recoil implantation and of ion-beam mixing. The flux equation plays a role analogous to that of Fick's law in diffusion. Lattice relaxations are taken into account by introducing flux transformations between laboratory and marker coordinate frames. The closed expressions for the coefficients are calculated and compared with experiment. The binary-collision contribution to ion-beam mixing turns out to be larger than heretofore thought. A new mechanism for ion-beam mixing emerges, which turns out to make a very significant contribution. There are even cases where the new mechanism far outweighs the cascade-mixing mechanism, thought to be the major contributor to binary-collision ion-beam mixing.

  14. Ion Transport through Membrane-Spanning Nanopores Studied by Molecular Dynamics Simulations and Continuum Electrostatics Calculations

    PubMed Central

    Peter, Christine; Hummer, Gerhard

    2005-01-01

    Narrow hydrophobic regions are a common feature of biological channels, with possible roles in ion-channel gating. We study the principles that govern ion transport through narrow hydrophobic membrane pores by molecular dynamics simulation of model membranes formed of hexagonally packed carbon nanotubes. We focus on the factors that determine the energetics of ion translocation through such nonpolar nanopores and compare the resulting free-energy barriers for pores with different diameters corresponding to the gating regions in closed and open forms of potassium channels. Our model system also allows us to compare the results from molecular dynamics simulations directly to continuum electrostatics calculations. Both simulations and continuum calculations show that subnanometer wide pores pose a huge free-energy barrier for ions, but a small increase in the pore diameter to ∼1 nm nearly eliminates that barrier. We also find that in those wider channels the ion mobility is comparable to that in the bulk phase. By calculating local electrostatic potentials, we show that the long range Coulomb interactions of ions are strongly screened in the wide water-filled channels. Whereas continuum calculations capture the overall energetics reasonably well, the local water structure, which is not accounted for in this model, leads to interesting effects such as the preference of hydrated ions to move along the pore wall rather than through the center of the pore. PMID:16006629

  15. Understanding transport simulations of heavy-ion collisions at 100 A and 400 A MeV: Comparison of heavy-ion transport codes under controlled conditions

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Chen, Lie-Wen; Tsang, ManYee Betty; Wolter, Hermann; Zhang, Ying-Xun; Aichelin, Joerg; Colonna, Maria; Cozma, Dan; Danielewicz, Pawel; Feng, Zhao-Qing; Le Fèvre, Arnaud; Gaitanos, Theodoros; Hartnack, Christoph; Kim, Kyungil; Kim, Youngman; Ko, Che-Ming; Li, Bao-An; Li, Qing-Feng; Li, Zhu-Xia; Napolitani, Paolo; Ono, Akira; Papa, Massimo; Song, Taesoo; Su, Jun; Tian, Jun-Long; Wang, Ning; Wang, Yong-Jia; Weil, Janus; Xie, Wen-Jie; Zhang, Feng-Shou; Zhang, Guo-Qiang

    2016-04-01

    Transport simulations are very valuable for extracting physics information from heavy-ion-collision experiments. With the emergence of many different transport codes in recent years, it becomes important to estimate their robustness in extracting physics information from experiments. We report on the results of a transport-code-comparison project. Eighteen commonly used transport codes were included in this comparison: nine Boltzmann-Uehling-Uhlenbeck-type codes and nine quantum-molecular-dynamics-type codes. These codes have been asked to simulate Au +Au collisions using the same physics input for mean fields and for in-medium nucleon-nucleon cross sections, as well as the same impact parameter, the similar initialization setup, and other calculational parameters at 100 A and 400 A MeV incident energy. Among the codes we compare one-body observables such as rapidity and transverse flow distributions. We also monitor nonobservables such as the initialization of the internal states of colliding nuclei and their stability, the collision rates, and the Pauli blocking. We find that not completely identical initializations may have contributed partly to different evolutions. Different strategies to determine the collision probabilities and to enforce the Pauli blocking also produce considerably different results. There is a substantial spread in the predictions for the observables, which is much smaller at the higher incident energy. We quantify the uncertainties in the collective flow resulting from the simulation alone as about 30% at 100 A MeV and 13% at 400 A MeV, respectively. We propose further steps within the code comparison project to test the different aspects of transport simulations in a box calculation of infinite nuclear matter. This should, in particular, improve the robustness of transport model predictions at lower incident energies, where abundant amounts of data are available.

  16. Controlling the transport of an ion: classical and quantum mechanical solutions

    NASA Astrophysics Data System (ADS)

    Fürst, H. A.; Goerz, M. H.; Poschinger, U. G.; Murphy, M.; Montangero, S.; Calarco, T.; Schmidt-Kaler, F.; Singer, K.; Koch, C. P.

    2014-07-01

    The accurate transport of an ion over macroscopic distances represents a challenging control problem due to the different length and time scales that enter and the experimental limitations on the controls that need to be accounted for. Here, we investigate the performance of different control techniques for ion transport in state-of-the-art segmented miniaturized ion traps. We employ numerical optimization of classical trajectories and quantum wavepacket propagation as well as analytical solutions derived from invariant based inverse engineering and geometric optimal control. The applicability of each of the control methods depends on the length and time scales of the transport. Our comprehensive set of tools allows us make a number of observations. We find that accurate shuttling can be performed with operation times below the trap oscillation period. The maximum speed is limited by the maximum acceleration that can be exerted on the ion. When using controls obtained from classical dynamics for wavepacket propagation, wavepacket squeezing is the only quantum effect that comes into play for a large range of trapping parameters. We show that this can be corrected by a compensating force derived from invariant based inverse engineering, without a significant increase in the operation time.

  17. Ion confinement and transport in a toroidal plasma with externally imposed radial electric fields

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Kim, Y. C.; Hong, H. Y.

    1979-01-01

    Strong electric fields were imposed along the minor radius of the toroidal plasma by biasing it with electrodes maintained at kilovolt potentials. Coherent, low-frequency disturbances characteristic of various magnetohydrodynamic instabilities were absent in the high-density, well-confined regime. High, direct-current radial electric fields with magnitudes up to 135 volts per centimeter penetrated inward to at least one-half the plasma radius. When the electric field pointed radially toward, the ion transport was inward against a strong local density gradient; and the plasma density and confinement time were significantly enhanced. The radial transport along the electric field appeared to be consistent with fluctuation-induced transport. With negative electrode polarity the particle confinement was consistent with a balance of two processes: a radial infusion of ions, in those sectors of the plasma not containing electrodes, that resulted from the radially inward fields; and ion losses to the electrodes, each of the which acted as a sink and drew ions out of the plasma. A simple model of particle confinement was proposed in which the particle confinement time is proportional to the plasma volume. The scaling predicted by this model was consistent with experimental measurements.

  18. Simulation and modeling of the Gamble II self-pinched ion beam transport experiment

    SciTech Connect

    Rose, D.V.; Ottinger, P.F.; Hinshelwood, D.D.

    1999-07-01

    Progress in numerical simulations and modeling of the self-pinched ion beam transport experiment at the Naval Research Laboratory (NRL) is reviewed. In the experiment, a 1.2-MeV, 100-kA proton beam enters a 1-m long, transport region filled with a low pressure gas (30--250 mTorr helium, or 1 Torr air). The time-dependent velocity distribution function of the injected ion beam is determined from an orbit code that uses a pinch-reflex ion diode model and the measured voltage and current from this diode on the Gamble II generator at NRL. This distribution function is used as the beam input condition for numerical simulations carried out using the hybrid particle-in-cell code IPROP. Results of the simulations will be described, and detailed comparisons will be made with various measurements, including line-integrated electron-density, proton-fluence, and beam radial-profile measurements. As observed in the experiment, the simulations show evidence of self-pinching for helium pressures between 35 and 80 mTorr. Simulations and measurements in 1 Torr air show ballistic transport. The relevance of these results to ion-driven inertial confinement fusion will be discussed.

  19. Free Energies of Ion Binding in the Bacterial CLC-ec1 Chloride Transporter with Implications for the Transport Mechanism and Selectivity.

    PubMed

    Chen, Zhihong; Beck, Thomas L

    2016-03-31

    The chloride channel/transporter family of proteins facilitates anion transport across biological membranes. There is extensive physiological and bioinformatic evidence that the channels and transporters are closely related. Each monomer of a homodimeric CLC transport protein contains a narrow selectivity filter. Investigating the ion binding properties inside the filter is crucial for understanding key mechanistic states during ion transit. Here computer simulations are used to explore the free energies of Cl(-) ions in the binding sites of the wild-type CLC-ec1 transporter and its mutant E148A. Specifically, a local molecular field theory approach for free energy calculations is exploited to compute the absolute free energies in water and in the protein binding sites. The calculations indicate a close synergy between anion binding and protonation of the external glutamate gate. Electrostatic differences between the bacterial CLC-ec1 and eukaryotic CmCLC transporters revealed by these and other simulations help to rationalize the observed differing structures in the pore region. In addition, quantum chemical calculations on the F(-), Cl(-), and Br(-) ions in the central binding site are used to examine ion selectivity. The calculations show a significant extent of charge transfer from the ion to the nearby residues. The computed free energies, in conjunction with experimental measurements, place constraints on proposed mechanisms for the transport cycle. PMID:26967203

  20. Transport, charge exchange and loss of energetic heavy ions in the earth's radiation belts - Applicability and limitations of theory

    NASA Astrophysics Data System (ADS)

    Spjeldvik, W. N.

    1981-11-01

    Computer simulations of processes which control the relative abundances of ions in the trapping regions of geospace are compared with observations from discriminating ion detectors. Energy losses due to Coulomb collisions between ions and exospheric neutrals are considered, along with charge exchange losses and internal charge exchanges. The time evolution of energetic ion fluxes of equatorially mirroring ions under radial diffusion is modelled to include geomagnetic and geoelectric fluctutations. Limits to the validity of diffusion transport theory are discussed, and the simulation is noted to contain provisions for six ionic charge states and the source effect on the radiation belt oxygen ion distributions. Comparisons are made with ion flux data gathered on Explorer 45 and ISEE-1 spacecraft and results indicate that internal charge exchanges cause the radiation belt ion charge state to be independent of source charge rate characteristics, and relative charge state distribution is independent of the radially diffusive transport rate below the charge state redistribution zone.

  1. Transport of bromide and other inorganic ions by infiltrating storm water beneath a farmland plot

    SciTech Connect

    Iqbal, M.Z.; Krothe, N.C.

    1996-11-01

    A hydrogeochemical study in the clay-soil mantled portion of a karst terrane in southern Indiana demonstrated preferential flow of soil water through macropore structures that are of higher permeability than the soil matrix. Variable transport of several inorganic ions, such as Cl{sup {minus}}, SO{sub 4}{sup 2{minus}}, Na{sup +}, Ca{sup ++}, and Mg{sup ++}, through the unsaturated zone was observed immediately after a major storm event in April, 1992. A KBr salt spray experiment during the storm led to recovery of bromide, a nonreactive, conservative ion, at a depth of 10 ft within 24 hours after the storm. The observed Br{sup {minus}} transport rate (5 in/hr) is approximately six times greater than the expected rate of transport in the absence of preferential flow. Temporal changes in cation to anion ratios demonstrated that anions are more mobile due to the process of anionic exclusion which drives more anions out of the clay matrix whereas cations are attenuated by adsorption on the clay particles due to their charge differences. In the absence of storm-water infiltration, the ion transport proceeds largely by matrix flow of soil water. The storm event also initiated considerable mixing of ground water through lateral flow within the aquifer. The ions, such as Cl{sup {minus}}, NO{sub 3}{sup {minus}}, Ca{sup ++}, and Mg{sup ++}, showed immediate dilution by storm water. Subsequently, ion concentrations in the aquifer increased to the initial level because of reequilibrium with soil matrix water released from the lower part of the unsaturated zone.

  2. Estrogen regulation of epithelial ion transport: Implications in health and disease.

    PubMed

    Saint-Criq, Vinciane; Rapetti-Mauss, Raphael; Yusef, Yamil R; Harvey, Brian J

    2012-08-01

    Estrogen, 17β-estradiol (E2), has been shown to modulate the activity of ion channels in a diverse range of epithelial tissues. The channel activation or inhibition responses to E2 are often rapid, occurring in seconds to minutes, independent of protein synthesis and gene transcription ('non-genomic' response). These rapid effects of E2 require activation of specific protein kinases or changes in intracellular calcium and pH which in turn modulate the conductance, open probability or number of channels in the plasmamembrane. Estrogen has also been shown to affect the expression of ion transporters over days ('genotropic' response) causing long-term sustained changes in transepithelial ion transport. It is now accepted that so called non-genomic responses are not stand-alone events and are necessary to prime the latent genomic response and even be critical for the full latent response to occur. In a number of epithelia the non-genomic and genotropic responses to estrogen are sex-specific and variable in potency and sensitivity to E2 depending on the stage of the estrous cycle. Of increasing interest is the effect these rapid and latent actions of E2 on ion transporters have on the physiological functions of epithelia. For example, estrogen regulation of a class of voltage-gated K(+) channels (KCNQ1) can determine the rate of Cl(-) secretion in the intestine. In whole-body terms, the combined effects of estrogen on a variety of ion channels which control fluid and electrolyte transport in the kidney, intestine and lung may be necessary for endometrial expansion and implantation of the blastocyte. PMID:22410439

  3. Acid-sensing by airway afferent nerves

    PubMed Central

    Lee, Lu-Yuan; Gu, Qihai; Xu, Fadi; Hong, Ju-Lun

    2013-01-01

    Inhalation of acid aerosol or aspiration of acid solution evokes a stimulatory effect on airway C-fiber and Aδ afferents, which in turn causes airway irritation and triggers an array of defense reflex responses (e.g., cough, reflex bronchoconstriction, etc.). Tissue acidosis can also occur locally in the respiratory tract as a result of ischemia or inflammation, such as in the airways of asthmatic patients during exacerbation. The action of proton on the airway sensory neurons is generated by activation of two different current species: a transient (rapidly activating and inactivating) current mediated through the acid-sensing ion channels, and a slowly activating and sustained current mediated through the transient receptor potential vanilloid type 1 (TRPV1) receptor. In view of the recent findings that the expression and/or sensitivity of TRPV1 are up-regulated in the airway sensory nerves during chronic inflammatory reaction, the proton-evoked irritant effects on these nerves may play an important part in the manifestation of various symptoms associated with airway inflammatory diseases. PMID:23524016

  4. Ion transport into cells exposed to monopolar and bipolar nanosecond pulses.

    PubMed

    Schoenbach, Karl H; Pakhomov, Andrei G; Semenov, Iurii; Xiao, Shu; Pakhomova, Olga N; Ibey, Bennett L

    2015-06-01

    Experiments with CHO cells exposed to 60 and 300 ns pulsed electric fields with amplitudes in the range from several kV/cm to tens of kV/cm showed a decrease of the uptake of calcium ions by more than an order of magnitude when, immediately after a first pulse, a second one of opposite polarity was applied. This effect is assumed to be due to the reversal of the electrophoretic transport of ions through the electroporated membrane during the second phase of the bipolar pulse. This assumption, however, is only valid if electrophoresis is the dominant transport mechanism, rather than diffusion. Comparison of calculated calcium ion currents with experimental results showed that for nanosecond pulses, electrophoresis is at least as important as diffusion. By delaying the second pulse with respect to the first one, the effect of reverse electrophoresis is reduced. Consequently, separating nanosecond pulses of opposite polarity by up to approximately hundred microseconds allows us to vary the uptake of ions from very small values to those obtained with two pulses of the same polarity. The measured calcium ion uptake obtained with bipolar pulses also allowed us to determine the membrane pore recovery time. The calculated recovery time constants are on the order of 10 μs. PMID:25212701

  5. Effects of orbit squeezing on ion transport in the banana regime in tokamaks

    SciTech Connect

    Shaing, K.C. ); Hazeltine, R.D. . Inst. for Fusion Studies)

    1992-02-01

    It is shown that ion transport in the banana regime in tokamaks is reduced in the presence of a strong shear in the radial electric field E{sub r}, as is often observed in the edge region. For simplicity, the ordering with {rho}{sub pi}{vert bar}d ln E{sub r}/dr{vert bar} {much gt} 1 but c{vert bar}E{sub r}{vert bar}/B{sub p}{upsilon}{sub ti} < 1 is adopted. Here, {rho}{sub pi} is the ion poloidal gyroradius, B{sub p} is the poloidal magnetic field strength, {upsilon}{sub ti} is the ion thermal speed, and c is the speed of light. A kinetic transport theory similar to those for bumpy tori and stellarators is developed to show that the ion thermal conductivity {chi}{sub i} is reduced by a factor of roughly S{sup {minus}3/2}, where S = 1 {minus} ({rho}{sub pi}d ln E{sub r}/dr)(cE{sub r}/B{sub {rho}}{upsilon}{sub ti}). The result reflects more than simple orbit squeezing: the fraction of trapped ions is also modified by S.

  6. Effects of orbit squeezing on ion transport in the banana regime in tokamaks

    SciTech Connect

    Shaing, K.C. ); Hazeltine, R.D. )

    1992-08-01

    It is shown that ion transport in the banana regime in tokamaks is reduced in the presence of a strong shear in the radial electric field {ital E}{sub {ital r}} , as is often observed in the edge region. For simplicity, the ordering with {rho}{sub {ital pi}}{vert bar}{ital d} ln {ital E}{sub {ital r} }/{ital dr}{vert bar} {much gt} 1 but {ital c}{vert bar}{ital E}{sub {ital r}}{vert bar}/{ital B}{sub {ital p}v}{sub {ital ti}} {lt} 1 is adopted. Here, {rho}{sub {ital pi}} is the ion poloidal gyroradius, {ital B}{sub {ital p}} is the poloidal magnetic field strength, {ital v}{sub {ital ti}} is the ion thermal speed, and {ital c} is the speed of light. A kinetic transport theory similar to those for bumpy tori and stellarators is developed to show that the ion thermal conductivity {chi}{sub {ital i}} is reduced by a factor of roughly {ital S}{sup {minus}3/2}, where {ital S} = 1 {minus} ({rho}{sub {ital pi} }{ital d} ln {ital E}{sub {ital r}} /{ital dr})({ital cE}{sub {ital r}} {ital B}{sub {ital pv}}{sub {ital ti}}). The result reflects more than simple orbit squeezing: The fraction of trapped ions is also modified by {ital S}.

  7. Effects of orbit squeezing on ion transport in the banana regime in tokamaks

    SciTech Connect

    Shaing, K.C.; Hazeltine, R.D.

    1992-02-01

    It is shown that ion transport in the banana regime in tokamaks is reduced in the presence of a strong shear in the radial electric field E{sub r}, as is often observed in the edge region. For simplicity, the ordering with {rho}{sub pi}{vert_bar}d ln E{sub r}/dr{vert_bar} {much_gt} 1 but c{vert_bar}E{sub r}{vert_bar}/B{sub p}{upsilon}{sub ti} < 1 is adopted. Here, {rho}{sub pi} is the ion poloidal gyroradius, B{sub p} is the poloidal magnetic field strength, {upsilon}{sub ti} is the ion thermal speed, and c is the speed of light. A kinetic transport theory similar to those for bumpy tori and stellarators is developed to show that the ion thermal conductivity {chi}{sub i} is reduced by a factor of roughly S{sup {minus}3/2}, where S = 1 {minus} ({rho}{sub pi}d ln E{sub r}/dr)(cE{sub r}/B{sub {rho}}{upsilon}{sub ti}). The result reflects more than simple orbit squeezing: the fraction of trapped ions is also modified by S.

  8. Ion transport into cells exposed to monopolar and bipolar nanosecond pulses

    PubMed Central

    Schoenbach, Karl H.; Pakhomov, Andrei G.; Semenov, Iurii; Xiao, Shu; Pakhomova, Olga N.; Ibey, Bennet L.

    2014-01-01

    Experiments with CHO cells exposed to 60 and 300 ns pulsed electric fields with amplitudes in the range from several kV/cm to tens of kV/cm, showed a decrease of the uptake of calcium ions by more than an order of magnitude when, immediately after a first pulse, a second one of opposite polarity was applied. This effect is assumed to be due to the reversal of the electrophoretic transport of ions through the electroporated membrane during the second phase of the bipolar pulse. This assumption, however, is only valid if electrophoresis is the dominant transport mechanism, rather than diffusion. Comparison of calculated calcium ion currents with experimental results showed that for nanosecond pulses, electrophoresis is at least as important as diffusion. By delaying the second pulse with respect to the first one, the effect of reverse electrophoresis is reduced. Consequently, separating nanosecond pulses of opposite polarity by up to approximately hundred microseconds allows us to vary the uptake of ions from very small values to that obtained with two pulses of the same polarity. The measured calcium ion uptake obtained with bipolar pulses also allowed us to determine the membrane pore recovery time. The calculated recovery time constants are on the order of ten microseconds. PMID:25212701

  9. Doping of Graphene by Low-Energy Ion Beam Implantation: Structural, Electronic, and Transport Properties.

    PubMed

    Willke, Philip; Amani, Julian A; Sinterhauf, Anna; Thakur, Sangeeta; Kotzott, Thomas; Druga, Thomas; Weikert, Steffen; Maiti, Kalobaran; Hofsäss, Hans; Wenderoth, Martin

    2015-08-12

    We investigate the structural, electronic, and transport properties of substitutional defects in SiC-graphene by means of scanning tunneling microscopy and magnetotransport experiments. Using ion incorporation via ultralow energy ion implantation, the influence of different ion species (boron, nitrogen, and carbon) can directly be compared. While boron and nitrogen atoms lead to an effective doping of the graphene sheet and can reduce or raise the position of the Fermi level, respectively, (12)C(+) carbon ions are used to study possible defect creation by the bombardment. For low-temperature transport, the implantation leads to an increase in resistance and a decrease in mobility in contrast to undoped samples. For undoped samples, we observe in high magnetic fields a positive magnetoresistance that changes to negative for the doped samples, especially for (11)B(+)- and (12)C(+)-ions. We conclude that the conductivity of the graphene sheet is lowered by impurity atoms and especially by lattice defects, because they result in weak localization effects at low temperatures. PMID:26120803

  10. Measurements of Fast-Ion Transport by Resonant Interaction at a Sawtooth Crash

    NASA Astrophysics Data System (ADS)

    Muscatello, C. M.; Heidbrink, W. W.

    2011-10-01

    Tokamak sawteeth consist of a reorganization of the plasma magnetic field and various plasma parameters. Observations indicate that distributions of superthermal ions can also be affected at the crash event. The bulk of energetic ions experiencing redistribution have passing orbits and low to moderate energies (<=100 keV) where transport due to flux-attachment is valid. Sawtooth experiments at DIII-D employing the fast-ion deuterium-alpha (FIDA) diagnostic suite indicate that even high-energy ions (>100 keV) can experience appreciable redistribution. The transport mechanism, in this case, is different; a class of trapped particles with near zero toroidal precession velocity and narrow orbit width can satisfy the nonlinear wave-particle resonance condition. Trapped within the magnetic well of the helical perturbation, the particle transforms to a ``superbanana'' orbit through the resonant interaction. The effect manifests as a plateau in the trapped fast-ion profile at the resonance layer. Work supported by the US DOE under SC-G903402 and DE-FC02-04ER54698.

  11. Engineering Airway Epithelium

    PubMed Central

    Soleas, John P.; Paz, Ana; Marcus, Paula; McGuigan, Alison; Waddell, Thomas K.

    2012-01-01

    Airway epithelium is constantly presented with injurious signals, yet under healthy circumstances, the epithelium maintains its innate immune barrier and mucociliary elevator function. This suggests that airway epithelium has regenerative potential (I. R. Telford and C. F. Bridgman, 1990). In practice, however, airway regeneration is problematic because of slow turnover and dedifferentiation of epithelium thereby hindering regeneration and increasing time necessary for full maturation and function. Based on the anatomy and biology of the airway epithelium, a variety of tissue engineering tools available could be utilized to overcome the barriers currently seen in airway epithelial generation. This paper describes the structure, function, and repair mechanisms in native epithelium and highlights specific and manipulatable tissue engineering signals that could be of great use in the creation of artificial airway epithelium. PMID:22523471

  12. Analysis of Ion Transport through a Single Channel of Gramicidin A in Bilayer Lipid Membranes.

    PubMed

    Kubota, Shintaro; Shirai, Osamu; Kitazumi, Yuki; Kano, Kenji

    2016-01-01

    Ion transport through a single channel of gramicidin A (GA) within the bilayer lipid membrane (BLM) between two aqueous phases (W1 and W2) has been analyzed based on the electroneutrality principle. The single-channel current increases in proportion to the magnitude of the applied membrane potential and is also dependent on the permeability coefficients of electrolyte ions (K(+) and Cl(-)). By varying the ratio of the concentration of KCl in W1 to that in W2, the ratio of the diffusion coefficient of K(+) in the BLM to that of Cl(-) in the BLM can be evaluated. PMID:26860564

  13. Formulated plastic separators for soluble electrode cells. [rubber-ion transport membranes

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1979-01-01

    The fabrication and milling of membranes comprising a hydrochloric acid-insoluble sheet of a mixture of a rubber and a powdered ion transport material are described. The sheet can be present as a coating upon a flexible and porous substrate. These membranes can be used in oxidation-reduction electrical accumulator cells wherein the reduction of one member of a couple is accompanied by the by the oxidation of the other member of the couple on the other side of the cell and this must be accompanied by a change in chloride ion concentration in both sides.

  14. Hypercapnia modulates cAMP signalling and cystic fibrosis transmembrane conductance regulator-dependent anion and fluid secretion in airway epithelia.

    PubMed

    Turner, Mark J; Saint-Criq, Vinciane; Patel, Waseema; Ibrahim, Salam H; Verdon, Bernard; Ward, Christopher; Garnett, James P; Tarran, Robert; Cann, Martin J; Gray, Michael A

    2016-03-15

    Hypercapnia is clinically defined as an arterial blood partial pressure of CO2 of above 40 mmHg and is a feature of chronic lung disease. In previous studies we have demonstrated that hypercapnia modulates agonist-stimulated cAMP levels through effects on transmembrane adenylyl cyclase activity. In the airways, cAMP is known to regulate cystic fibrosis transmembrane conductance regulator (CFTR)-mediated anion and fluid secretion, which contributes to airway surface liquid homeostasis. The aim of the current work was to investigate if hypercapnia could modulate cAMP-regulated ion and fluid transport in human airway epithelial cells. We found that acute exposure to hypercapnia significantly reduced forskolin-stimulated elevations in intracellular cAMP as well as both adenosine- and forskolin-stimulated increases in CFTR-dependent transepithelial short-circuit current, in polarised cultures of Calu-3 human airway cells. This CO2 -induced reduction in anion secretion was not due to a decrease in HCO3 (-) transport given that neither a change in CFTR-dependent HCO3 (-) efflux nor Na(+) /HCO3 (-) cotransporter-dependent HCO3 (-) influx were CO2 -sensitive. Hypercapnia also reduced the volume of forskolin-stimulated fluid secretion over 24 h, yet had no effect on the HCO3 (-) content of the secreted fluid. Our data reveal that hypercapnia reduces CFTR-dependent, electrogenic Cl(-) and fluid secretion, but not CFTR-dependent HCO3 (-) secretion, which highlights a differential sensitivity of Cl(-) and HCO3 (-) transporters to raised CO2 in Calu-3 cells. Hypercapnia also reduced forskolin-stimulated CFTR-dependent anion secretion in primary human airway epithelia. Based on current models of airways biology, a reduction in fluid secretion, associated with hypercapnia, would be predicted to have important consequences for airways hydration and the innate defence mechanisms of the lungs. PMID:26574187

  15. ATR-FTIR characterization of transport properties of benzoic acid ion-pairs in silicone membranes.

    PubMed

    Tantishaiyakul, Vimon; Phadoongsombut, Narubodee; Wongpuwarak, Wibul; Thungtiwachgul, Jatupit; Faroongsarng, Damrongsak; Wiwattanawongsa, Kamonthip; Rojanasakul, Yon

    2004-09-28

    A novel technique based on Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy was used to study the transport of benzoic acid ion-pairs/salts in silicone membranes. The benzoic acid ion-pairs were prepared using various counter-ions with different degrees of lipophilicity, e.g. triethylamine (TA), diethylamine (DE), tert-butylamine (t-BA), 2-amino-2-methyl-propanol (AMP), and 2-amino-2-methyl-propanediol (AMPD). Silicone membrane, treated or untreated with propylene glycol (PG), was placed on the surface of a ZnSe crystal and the transport solution was applied to the upper surface of the membrane. A mathematical model, based on Fick's second law describing the build up of permeant concentration at the membrane/crystal interface with time was applied to determine diffusion coefficients. Absorption due to the acid (1700 cm(-1)) or benzoate anion (1555 cm(-1)) was observed at different regions without the interference from PG or silicone membrane. Benzoate anion, a charged species, was observed to permeate the membrane. The permeation of benzoate anion from sodium benzoate and polar ion-pairs of AMP and AMPD was very low in contrast to their high-saturated concentrations in PG as compared to the t-BA ion-pair. This indicated that benzoate anion preferentially permeates the membrane as an ion-pair rather than a single anion; otherwise its permeation should correspond to its concentration in PG instead of the lipophilicity of the ion-pairs. Additionally, the diffusion coefficient values of benzoic acid and benzoate anions through the treated and untreated membranes were not statistically different. PMID:15363507

  16. Formations of negative ions in Sf6/N2 mixtures and their transport at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Okuyama, Yui; Sabo, Martin; Itoh, Haruo; Matejčík, Štefan

    2013-02-01

    Formation of negative ions initiated by interaction of thermal electrons and in the corona discharge (CD) in N2 with small admixture of SF6; was studied using the ion mobility spectrometry- orthogonal acceleration time-of-flight mass spectrometry (IMS-oaTOF) at atmospheric pressure. The negative ions have been analyzed by the ion mobility spectrometry and mass spectrometry (IMS-MS) and two-dimensional spectra (2D IMS-MS) have been recorded. We discuss the mechanisms of the negative ion formation in the N2/SF6 mixtures (0.003-0.018%) as well as the transport parameters of the ions in these mixtures. The values of the reduced ion mobilities of negative ions formed in these mixtures were determined (2.43 cm2/V s for HF2- (HF)n, 2.32 cm2/V s for NO3- (HF)n, 2.08 cm2/V s for SF5-, 2.01 cm2/V s for SOF5-, 2.00 for SOF4- 1.99 cm2/V s for SF6-, 1.83 cm2/V s for SOF5-(H2O)n and 1.73 for SOF5-(H2O)n(HF)m). The assignment of the ion mobility peaks was performed on the basis of the 2D IMS-MS spectra. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  17. Conquering the difficult airway.

    PubMed

    Gandy, William E

    2008-01-01

    Every medic should practice regularly for the inevitable difficult airway case. Practice should include review of the causes of difficult airways, as well as skill practice. Having a preassembled airway kit can make your response to an unexpected difficult situation easier. Of all the devices mentioned, the bougie is the airway practitioner's best friend. Using the BURP technique, if not contraindicated, together with the bougie will enable you to intubate many difficult patients with confidence. Remember, "If your patient cannot breathe, nothing else matters. PMID:18251307

  18. Ion and water distribution in pig lenses incubated at 0 degree C to disable ion transport pumps.

    PubMed

    Cameron, I L; Hardman, W E; Fullerton, G D; Kellermayer, M; Ludany, A; Miseta, A

    1991-01-01

    This study was designed to test how extended exposure of lenses to sera with different ionic strengths influences the distribution of ions and water in the lens. Pig lenses were incubated in cold sera (0 degree C), which were adjusted to variable concentrations of NaCl, and their K+, Na+, Cl-, and water contents were measured. Incubation at 0 degree C inhibits active transport processes and thereby allows equilibration of the mobile ions and water. The hypothesis was that lens water content (volume) would follow the ion-induced protein changes predicted by a model derived from previous osmotic studies on proteins. As expected, exposure of the lens to cold caused a gain of sodium and a partial loss of potassium. However, the potassium concentration in the lens remained several fold higher than that in the bathing solution (about 41 vs. 1.8-4.6 mM/kg H2O), indicating that a portion of the potassium within the cold-exposed lens was not free to diffuse. That the water content of the lens showed a negative rather than a positive relationship with the concentration of NaCl within the lens was explained by the idea that an increase in NaCl within the lens (up to at least 250 mM/kg H2O) causes a decrease in the osmotically unresponsive water volume associated with lens proteins. PMID:1799442

  19. Observation of Critical-Gradient Behavior in Alfvén-Eigenmode-Induced Fast-Ion Transport

    NASA Astrophysics Data System (ADS)

    Collins, C. S.; Heidbrink, W. W.; Austin, M. E.; Kramer, G. J.; Pace, D. C.; Petty, C. C.; Stagner, L.; Van Zeeland, M. A.; White, R. B.; Zhu, Y. B.

    2016-03-01

    Experiments in the DIII-D tokamak show that fast-ion transport suddenly becomes stiff above a critical threshold in the presence of many overlapping small-amplitude Alfvén eigenmodes (AEs). The threshold is phase-space dependent and occurs when particle orbits become stochastic due to resonances with AEs. Above threshold, equilibrium fast-ion density profiles are unchanged despite increased drive, and intermittent fast-ion losses are observed. Fast-ion D α spectroscopy indicates radially localized transport of the copassing population at radii that correspond to the location of midcore AEs. The observation of stiff fast-ion transport suggests that reduced models can be used to effectively predict alpha profiles, beam ion profiles, and losses to aid in the design of optimized scenarios for future burning plasma devices.

  20. Observation of Critical-Gradient Behavior in Alfvén-Eigenmode-Induced Fast-Ion Transport.

    PubMed

    Collins, C S; Heidbrink, W W; Austin, M E; Kramer, G J; Pace, D C; Petty, C C; Stagner, L; Van Zeeland, M A; White, R B; Zhu, Y B

    2016-03-01

    Experiments in the DIII-D tokamak show that fast-ion transport suddenly becomes stiff above a critical threshold in the presence of many overlapping small-amplitude Alfvén eigenmodes (AEs). The threshold is phase-space dependent and occurs when particle orbits become stochastic due to resonances with AEs. Above threshold, equilibrium fast-ion density profiles are unchanged despite increased drive, and intermittent fast-ion losses are observed. Fast-ion Dα spectroscopy indicates radially localized transport of the copassing population at radii that correspond to the location of midcore AEs. The observation of stiff fast-ion transport suggests that reduced models can be used to effectively predict alpha profiles, beam ion profiles, and losses to aid in the design of optimized scenarios for future burning plasma devices. PMID:26991180

  1. An evaluation of energy-independent heavy ion transport coefficient approximations

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.

    1988-01-01

    Utilizing a one-dimensional transport theory for heavy ion propagation, evaluations of typical energy-dependent transport coefficient approximations are made by comparing theoretical depth-dose predictions to published experimental values for incident 670 MeV/nucleon Ne-20 beams in water. Results are presented for cases where the input nuclear absorption cross sections, or input fragmentation parameters, or both, are fixed. The lack of fragment charge and mass concentration resulting from the use of Silberberg-Tsao fragmentation parameters continues to be the main source of disagreement between theory and experiment.

  2. Simulated kinetic effects of the corona and solar cycle on high altitude ion transport at Mars

    NASA Astrophysics Data System (ADS)

    Curry, S. M.; Liemohn, M.; Fang, X.; Brain, D.; Ma, Y.

    2013-06-01

    We present results from the Mars Test Particle (MTP) simulation as part of a community‒wide model comparison in order to quantify the role of different neutral atmospheric conditions in planetary ion transport and escape. This study examines the effects of individual ion motion by simulating particle trajectories for three cases: solar minimum without the neutral corona, solar minimum with the inclusion of the neutral corona, and solar maximum with the inclusion of the neutral corona. The MTP simulates 1.5 billion test particles through background electric and magnetic fields computed by a global magnetohydrodynamic model. By implementing virtual detectors in the simulation, the MTP has generated velocity space distributions of pickup ions and quantifies the ion acceleration at different spatial locations. The study found that the inclusion of a hot neutral corona greatly affects the total O+ production and subsequent loss, roughly doubling the total escape for solar minimum conditions and directly contributing to high energy sources above 10 keV. The solar cycle influences the amount of O+ flux observed by the virtual detectors, increasing the O+ flux and total escape by an order of magnitude from solar minimum to maximum. Additionally, solar maximum case induces greater mass loading of the magnetic fields, which decreases the gyroradius of the ions and redirects a significant ion population downtail to subsequently escape.

  3. Combination therapy with cystic fibrosis transmembrane conductance regulator modulators augment the airway functional microanatomy.

    PubMed

    Birket, Susan E; Chu, Kengyeh K; Houser, Grace H; Liu, Linbo; Fernandez, Courtney M; Solomon, George M; Lin, Vivian; Shastry, Suresh; Mazur, Marina; Sloane, Peter A; Hanes, Justin; Grizzle, William E; Sorscher, Eric J; Tearney, Guillermo J; Rowe, Steven M

    2016-05-15

    Recently approved therapies that modulate CFTR function have shown significant clinical benefit, but recent investigations regarding their molecular mechanism when used in combination have not been consistent with clinical results. We employed micro-optical coherence tomography as a novel means to assess the mechanism of action of CFTR modulators, focusing on the effects on mucociliary clearance. Primary human airway monolayers from patients with a G551D mutation responded to ivacaftor treatment with increased ion transport, airway surface liquid depth, ciliary beat frequency, and mucociliary transport rate, in addition to decreased effective viscosity of the mucus layer, a unique mechanism established by our findings. These endpoints are consistent with the benefit observed in G551D patients treated with ivacaftor, and identify a novel mechanism involving mucus viscosity. In monolayers derived from F508del patients, the situation is more complicated, compounded by disparate effects on CFTR expression and function. However, by combining ion transport measurements with functional imaging, we establish a crucial link between in vitro data and clinical benefit, a finding not explained by ion transport studies alone. We establish that F508del cells exhibit increased mucociliary transport and decreased mucus effective viscosity, but only when ivacaftor is added to the regimen. We further show that improvement in the functional microanatomy in vitro corresponds with lung function benefit observed in the clinical trials, whereas ion transport in vitro corresponds to changes in sweat chloride. Functional imaging reveals insights into clinical efficacy and CFTR biology that significantly impact our understanding of novel therapies. PMID:26968770

  4. Experimental investigations of plasma lens focusing and plasma channel transport of heavy ion beams

    SciTech Connect

    Tauschwitz, T.; Yu, S.S.; Eylon, S.; Reginato, L.; Leemans, W.; Rasmussen, J.O.; Bangerter, R.O.

    1995-04-01

    Final focusing of ion beams and propagation in a reactor chamber are crucial questions for heavy ion beam driven Fusion. An alternative solution to ballistic quadrupole focusing, as it is proposed in most reactor studies today, is the utilization of the magnetic field produced by a high current plasma discharge. This plasma lens focusing concept relaxes the requirements for low emittance and energy spread of the driver beam significantly and allows to separate the issues of focusing, which can be accomplished outside the reactor chamber, and of beam transport inside the reactor. For focusing a tapered wall-stabilized discharge is proposed, a concept successfully demonstrated at GSI, Germany. For beam transport a laser pre-ionized channel can be used.

  5. HZETRN: A heavy ion/nucleon transport code for space radiations

    NASA Astrophysics Data System (ADS)

    Wilson, John W.; Chun, Sang Y.; Badavi, Forooz F.; Townsend, Lawrence W.; Lamkin, Stanley L.

    1991-12-01

    The galactic heavy ion transport code (GCRTRN) and the nucleon transport code (BRYNTRN) are integrated into a code package (HZETRN). The code package is computer efficient and capable of operating in an engineering design environment for manned deep space mission studies. The nuclear data set used by the code is discussed including current limitations. Although the heavy ion nuclear cross sections are assumed constant, the nucleon-nuclear cross sections of BRYNTRN with full energy dependence are used. The relation of the final code to the Boltzmann equation is discussed in the context of simplifying assumptions. Error generation and propagation is discussed, and comparison is made with simplified analytic solutions to test numerical accuracy of the final results. A brief discussion of biological issues and their impact on fundamental developments in shielding technology is given.

  6. A 3D Model for Ion Beam Formation and Transport Simulation

    SciTech Connect

    Qiang, J.; Todd, D.; Leitner, D.

    2006-02-07

    In this paper, we present a three-dimensional model forself-consistently modeling ion beam formation from plasma ion sources andtransporting in low energy beam transport systems. A multi-sectionoverlapped computational domain has been used to break the originaltransport system into a number of weakly coupled subsystems. Within eachsubsystem, macro-particle tracking is used to obtain the charge densitydistribution in this subdomain. The three-dimensional Poisson equation issolved within the subdomain after each particle tracking to obtain theself-consistent space-charge forces and the particle tracking is repeateduntil the solution converges. Two new Poisson solvers based on acombination of the spectral method and the finite difference multigridmethod have been developed to solve the Poisson equation in cylindricalcoordinates for the straight beam transport section and in Frenet-Serretcoordinates for the bending magnet section. This model can have importantapplication in design and optimization of the low energy beam line opticsof the proposed Rare Isotope Accelerator (RIA) front end.

  7. High-intensity ion sources for accelerators with emphasis on H-beam formation and transport

    SciTech Connect

    Keller, Roderich

    2009-01-01

    This paper lays out the fundamental working principles of a variety of high-current ion sources for accelerators in a tutorial manner, and gives examples of specific source types such as d. c. discharge- and rf-driven multicusp sources. Penning-type and ECR-based sources while discussing those principles, pointing out general performance limits as well as the performance parameters of specific sources. Laser-based, two-chamber-. and surface-ionization sources are briefly mentioned. Main aspects of this review are particle feed. ionization mechanism, beam formation and beam transport. Issues seen with beam formation and low-energy transport of negative hydrogen-ion beams are treated in detail.

  8. Benchmark solutions for the galactic ion transport equations: Energy and spatially dependent problems

    NASA Astrophysics Data System (ADS)

    Ganapol, Barry D.; Townsend, Lawrence W.; Wilson, John W.

    1989-03-01

    Nontrivial benchmark solutions are developed for the galactic ion transport (GIT) equations in the straight-ahead approximation. These equations are used to predict potential radiation hazards in the upper atmosphere and in space. Two levels of difficulty are considered: (1) energy independent, and (2) spatially independent. The analysis emphasizes analytical methods never before applied to the GIT equations. Most of the representations derived have been numerically implemented and compared to more approximate calculations. Accurate ion fluxes are obtained (3 to 5 digits) for nontrivial sources. For monoenergetic beams, both accurate doses and fluxes are found. The benchmarks presented are useful in assessing the accuracy of transport algorithms designed to accommodate more complex radiation protection problems. In addition, these solutions can provide fast and accurate assessments of relatively simple shield configurations.

  9. Fast Na/+/-ion transport in skeleton structures. [solid electrolyte applications

    NASA Technical Reports Server (NTRS)

    Goodenough, J. B.; Hong, H. Y.-P.; Kafalas, J. A.

    1976-01-01

    The skeleton structures considered in the investigations consist of a rigid subarray with an interconnected interstitial space in which ions move in three dimensions. The classes of skeleton structures investigated include the Im3 phase of high-pressure KSbO3, the defect-pyrochlore structure illustrated by RbMgAlF6, and the carnegieite structure of high-temperature NaAlSiO4. A description is given of the results obtained in transport measurements involving dense polycrystalline ceramic disks. Results obtained in the case of the Na(+)-ion transport in Na3Zr2PSi2O12 appear particularly promising concerning the possible use of such substances in solid-electrolyte applications.

  10. HZETRN: A heavy ion/nucleon transport code for space radiations

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Chun, Sang Y.; Badavi, Forooz F.; Townsend, Lawrence W.; Lamkin, Stanley L.

    1991-01-01

    The galactic heavy ion transport code (GCRTRN) and the nucleon transport code (BRYNTRN) are integrated into a code package (HZETRN). The code package is computer efficient and capable of operating in an engineering design environment for manned deep space mission studies. The nuclear data set used by the code is discussed including current limitations. Although the heavy ion nuclear cross sections are assumed constant, the nucleon-nuclear cross sections of BRYNTRN with full energy dependence are used. The relation of the final code to the Boltzmann equation is discussed in the context of simplifying assumptions. Error generation and propagation is discussed, and comparison is made with simplified analytic solutions to test numerical accuracy of the final results. A brief discussion of biological issues and their impact on fundamental developments in shielding technology is given.

  11. Ion Collisional Transport Coefficients in the Solar Wind at 1 au

    NASA Astrophysics Data System (ADS)

    Hellinger, Petr

    2016-07-01

    Proton and alpha particle collisional transport coefficients (isotropization, relative deceleration frequencies, and heating rates) at 1 au are quantified using the Wind/Solar Wind Experiment data. In agreement with previous studies, the ion–ion Coulomb collisions are generally important for slow solar wind streams and tend to reduce the temperature anisotropies, the differential streaming, and the differences between the proton and alpha particle temperatures. In slow solar wind streams the Coulomb collisions between protons and alpha particles are important for the overall proton energetics, as well as the relative deceleration between the two species. It is also shown that ion temperature anisotropies and differential streaming need to be taken into account for evaluation of the collisional transport coefficients.

  12. Benchmark solutions for the galactic ion transport equations: Energy and spatially dependent problems

    NASA Technical Reports Server (NTRS)

    Ganapol, Barry D.; Townsend, Lawrence W.; Wilson, John W.

    1989-01-01

    Nontrivial benchmark solutions are developed for the galactic ion transport (GIT) equations in the straight-ahead approximation. These equations are used to predict potential radiation hazards in the upper atmosphere and in space. Two levels of difficulty are considered: (1) energy independent, and (2) spatially independent. The analysis emphasizes analytical methods never before applied to the GIT equations. Most of the representations derived have been numerically implemented and compared to more approximate calculations. Accurate ion fluxes are obtained (3 to 5 digits) for nontrivial sources. For monoenergetic beams, both accurate doses and fluxes are found. The benchmarks presented are useful in assessing the accuracy of transport algorithms designed to accommodate more complex radiation protection problems. In addition, these solutions can provide fast and accurate assessments of relatively simple shield configurations.

  13. Ion transport through chemically induced pores in protein-free phospholipid membranes.

    PubMed

    Gurtovenko, Andrey A; Anwar, Jamshed

    2007-11-29

    We address the possibility of being able to induce the trafficking of salt ions and other solutes across cell membranes without the use of specific protein-based transporters or pumps. On the basis of realistic atomic-scale molecular dynamics simulations, we demonstrate that transmembrane ionic leakage can be initiated by chemical means, in this instance through addition of dimethyl sulfoxide (DMSO), a solvent widely used in cell biology. Our results provide compelling evidence that the small amphiphilic solute DMSO is able to induce transient defects (water pores) in membranes and to promote a subsequent diffusive pore-mediated transport of salt ions. The findings are consistent with available experimental data and offer a molecular-level explanation for the experimentally observed activities of DMSO solvent as an efficient penetration enhancer and a cryoprotectant, as well as an analgesic. Our findings suggest that transient pore formation by chemical means could emerge as an important general principle for therapeutics. PMID:17983219

  14. A multiscale-compatible approach in modeling ionic transport in the electrolyte of (Lithium ion) batteries

    NASA Astrophysics Data System (ADS)

    Salvadori, A.; Grazioli, D.; Geers, M. G. D.; Danilov, D.; Notten, P. H. L.

    2015-10-01

    A novel approach in modeling the ionic transport in the electrolyte of Li-ion batteries is here presented. Diffusion and migration processes govern the transport of ions in solution in the absence of convection. In the porous electrode theory [1] it is common to model these processes via mass balance equations and electroneutrality. A parabolic set of equations arises, in terms of a non constant electric field which is afflicted by the paradox of being generated without electrical charges. To remedy this contradiction, Maxwell's equations have been used here, coupled to Faraday's law of electrochemical charge transfer. The set of continuity equations for mass and Maxwell's equations lead to a consistent model, with distinctive energy characteristics. Numerical examples show the robustness of the approach, which is well suited for multi-scale analyses [2,3].

  15. Electrokinetically-Driven Transport of DNA through Focused Ion Beam Milled Nanofluidic Channels

    PubMed Central

    Menard, Laurent D.; Ramsey, J. Michael

    2013-01-01

    The electrophoretically-driven transport of double-stranded λ-phage DNA through focused ion beam (FIB) milled nanochannels is described. Nanochannels were fabricated having critical dimensions (width and depth) corresponding to 0.5×, 1×, and 2× the DNA persistence length – or 25 nm, 50 nm, and 100 nm, respectively. The threshold field strength required to drive transport, the threading mobility, and the transport mobility were measured as a function of nanochannel size. As the nanochannel dimensions decreased, the entropic barrier to translocation increased and transport became more constrained. Equilibrium models of confinement provide a framework in which to understand the observed trends, although the dynamic nature of the experiments resulted in significant deviations from theory. It was also demonstrated that the use of dynamic wall coatings for the purpose of electroosmotic flow suppression can have a significant impact on transport dynamics that may obfuscate entropic contributions. The non-intermittent DNA transport through the FIB milled nanochannels demonstrates that they are well suited for use in nanofluidic devices. We expect that an understanding of the dynamic transport properties reported here will facilitate the incorporation of FIB-milled nanochannels in devices for single molecule and ensemble analyses. PMID:23234458

  16. Solute transport with equilibrium aqueous complexation and either sorption or ion exchange: Simulation methodology and applications

    USGS Publications Warehouse

    Lewis, F.M.; Voss, C.I.; Rubin, J.

    1987-01-01

    Methodologies that account for specific types of chemical reactions in the simulation of solute transport can be developed so they are compatible with solution algorithms employed in existing transport codes. This enables the simulation of reactive transport in complex multidimensional flow regimes, and provides a means for existing codes to account for some of the fundamental chemical processes that occur among transported solutes. Two equilibrium-controlled reaction systems demonstrate a methodology for accommodating chemical interaction into models of solute transport. One system involves the sorption of a given chemical species, as well as two aqueous complexations in which the sorbing species is a participant. The other reaction set involves binary ion exchange coupled with aqueous complexation involving one of the exchanging species. The methodology accommodates these reaction systems through the addition of nonlinear terms to the transport equations for the sorbing species. Example simulation results show (1) the effect equilibrium chemical parameters have on the spatial distributions of concentration for complexing solutes; (2) that an interrelationship exists between mechanical dispersion and the various reaction processes; (3) that dispersive parameters of the porous media cannot be determined from reactive concentration distributions unless the reaction is accounted for or the influence of the reaction is negligible; (4) how the concentration of a chemical species may be significantly affected by its participation in an aqueous complex with a second species which also sorbs; and (5) that these coupled chemical processes influencing reactive transport can be demonstrated in two-dimensional flow regimes. ?? 1987.

  17. Ion transport in a polymer-plastic solid soft matter electrolyte in the light of solvent dynamics and ion association.

    PubMed

    Patel, Monalisa; Menezes, Pramod V; Bhattacharyya, Aninda J

    2010-04-29

    Ion transport in a recently demonstrated promising soft matter solid plastic-polymer electrolyte is discussed here in the context of solvent dynamics and ion association. The plastic-polymer composite electrolytes display liquid-like ionic conductivity in the solid state, compliable mechanical strength (approximately 1 MPa), and wide electrochemical voltage stability (> or = 5 V). Polyacrylonitrile (PAN) dispersed in lithium perchlorate (LiClO(4))-succinonitrile (SN) was chosen as the model system for the study (abbreviated LiClO(4)-SN:PAN). Systematic observation of various mid-infrared isomer and ion association bands as a function of temperature and polymer concentration shows an effective increase in trans conformer concentration along with free Li(+) ion concentration. This strongly supports the view that enhancement in LiClO(4)-SN:PAN ionic conductivity over the neat plastic electrolyte (LiClO(4)-SN) is due to both increase in charge mobility and concentration. The ionic conductivity and infrared spectroscopy studies are supported by Brillouin light scattering. For the LiClO(4)-SN:PAN composites, a peak at 17 GHz was observed in addition to the normal trans-gauche isomerism (as in neat SN) at 12 GHz. The fast process is attributed to increased dynamics of those SN molecules whose energy barrier of transition from gauche to trans has reduced under influences induced by the changes in temperature and polymer concentration. The observations from ionic conductivity, spectroscopy, and light scattering studies were further supplemented by temperature dependent nuclear magnetic resonance (1)H and (7)Li line width measurements. PMID:20373767

  18. Basolateral chloride current in human airway epithelia.

    PubMed

    Itani, Omar A; Lamb, Fred S; Melvin, James E; Welsh, Michael J

    2007-10-01

    Electrolyte transport by airway epithelia regulates the quantity and composition of liquid covering the airways. Previous data indicate that airway epithelia can absorb NaCl. At the apical membrane, cystic fibrosis transmembrane conductance regulator (CFTR) provides a pathway for Cl(-) absorption. However, the pathways for basolateral Cl(-) exit are not well understood. Earlier studies, predominantly in cell lines, have reported that the basolateral membrane contains a Cl(-) conductance. However, the properties have varied substantially in different epithelia. To better understand the basolateral Cl(-) conductance in airway epithelia, we studied primary cultures of well-differentiated human airway epithelia. The basolateral membrane contained a Cl(-) current that was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). The current-voltage relationship was nearly linear, and the halide selectivity was Cl(-) > Br(-) > I(-). Several signaling pathways increased the current, including elevation of cellular levels of cAMP, activation of protein kinase C (PKC), and reduction of pH. In contrast, increasing cell Ca(2+) and inducing cell swelling had no effect. The basolateral Cl(-) current was present in both cystic fibrosis (CF) and non-CF airway epithelia. Likewise, airway epithelia from wild-type mice and mice with disrupted genes for ClC-2 or ClC-3 all showed similar Cl(-) currents. These data suggest that the basolateral membrane of airway epithelia possesses a Cl(-) conductance that is not due to CFTR, ClC-2, or ClC-3. Its regulation by cAMP and PKC signaling pathways suggests that coordinated regulation of Cl(-) conductance in both apical and basolateral membranes may be important in controlling transepithelial Cl(-) movement. PMID:17660331

  19. The influence of erythrocyte maturity on ion transport and membrane lipid composition in the rat.

    PubMed

    Vokurková, M; Rauchová, H; Dobešová, Z; Loukotová, J; Nováková, O; Kuneš, J; Zicha, J

    2016-01-01

    Significant relationships between ion transport and membrane lipid composition (cholesterol, total phospholipids and sphingomyelins) were found in erythrocytes of salt hypertensive Dahl rats. In these animals mean cellular hemoglobin content correlated negatively with Na(+)-K(+) pump activity and Na(+) leak but positively with Na(+)-K(+) cotransport activity. Immature erythrocytes exhibit lower mean cellular hemoglobin content (MCHC) than mature ones. The aim of the present study was to find a relationship between erythrocyte maturity, membrane lipid composition and ion transport activity in Wistar rats aged three months which were subjected to repeated hemorrhage (blood loss 2 ml/day for 6 days) to enrich circulating erythrocytes with immature forms. Immature and mature erythrocyte fractions in control and hemorrhaged rats were separated by repeated centrifugation. Hemorrhaged rats had increased number of reticulocytes but reduced hematocrit and MCHC compared to control rats. Immature erythrocytes of hemorrhaged rats differed from mature ones of control animals by elevated Na(+)-K(+) pump activity, reduced Na(+)-K(+) cotransport activity and increased Rb(+) leak. These ion transport changes in immature erythrocytes were accompanied by higher concentration of total phospholipids in their cell membranes. Membrane phospholipid content correlated positively with Na(+)-K(+) pump activity and cation leaks but negatively with Na(+)-K(+) cotransport activity. Moreover, they were also negatively related with MCHC which correlated negatively with Na(+)-K(+) pump activity and Rb(+) leak but positively with Na(+)-K(+) cotransport activity. Thus certain abnormalities of erythrocyte ion transport and membrane lipid composition detected in hypertensive animals might be caused by higher incidence of immature cells. PMID:26988297

  20. Ion transport membrane reactor systems and methods for producing synthesis gas

    DOEpatents

    Repasky, John Michael

    2015-05-12

    Embodiments of the present invention provide cost-effective systems and methods for producing a synthesis gas product using a steam reformer system and an ion transport membrane (ITM) reactor having multiple stages, without requiring inter-stage reactant injections. Embodiments of the present invention also provide techniques for compensating for membrane performance degradation and other changes in system operating conditions that negatively affect synthesis gas production.

  1. A high-density association screen of 155 ion transport genes for involvement with common migraine

    PubMed Central

    Nyholt, Dale R.; LaForge, K. Steven; Kallela, Mikko; Alakurtti, Kirsi; Anttila, Verneri; Färkkilä, Markus; Hämaläinen, Eija; Kaprio, Jaakko; Kaunisto, Mari A.; Heath, Andrew C.; Montgomery, Grant W.; Göbel, Hartmut; Todt, Unda; Ferrari, Michel D.; Launer, Lenore J.; Frants, Rune R.; Terwindt, Gisela M.; de Vries, Boukje; Verschuren, W.M. Monique; Brand, Jan; Freilinger, Tobias; Pfaffenrath, Volker; Straube, Andreas; Ballinger, Dennis G.; Zhan, Yiping; Daly, Mark J.; Cox, David R.; Dichgans, Martin; van den Maagdenberg, Arn M.J.M.; Kubisch, Christian; Martin, Nicholas G.; Wessman, Maija; Peltonen, Leena; Palotie, Aarno

    2008-01-01

    The clinical overlap between monogenic Familial Hemiplegic Migraine (FHM) and common migraine subtypes, and the fact that all three FHM genes are involved in the transport of ions, suggest that ion transport genes may underlie susceptibility to common forms of migraine. To test this leading hypothesis, we examined common variation in 155 ion transport genes using 5257 single nucleotide polymorphisms (SNPs) in a Finnish sample of 841 unrelated migraine with aura cases and 884 unrelated non-migraine controls. The top signals were then tested for replication in four independent migraine case–control samples from the Netherlands, Germany and Australia, totalling 2835 unrelated migraine cases and 2740 unrelated controls. SNPs within 12 genes (KCNB2, KCNQ3, CLIC5, ATP2C2, CACNA1E, CACNB2, KCNE2, KCNK12, KCNK2, KCNS3, SCN5A and SCN9A) with promising nominal association (0.00041 < P < 0.005) in the Finnish sample were selected for replication. Although no variant remained significant after adjusting for multiple testing nor produced consistent evidence for association across all cohorts, a significant epistatic interaction between KCNB2 SNP rs1431656 (chromosome 8q13.3) and CACNB2 SNP rs7076100 (chromosome 10p12.33) (pointwise P = 0.00002; global P = 0.02) was observed in the Finnish case–control sample. We conclude that common variants of moderate effect size in ion transport genes do not play a major role in susceptibility to common migraine within these European populations, although there is some evidence for epistatic interaction between potassium and calcium channel genes, KCNB2 and CACNB2. Multiple rare variants or trans-regulatory elements of these genes are not ruled out. PMID:18676988

  2. Electromagnetic gyrokinetic simulation of turbulent transport in high ion temperature discharge of Large Helical Device

    NASA Astrophysics Data System (ADS)

    Ishizawa, Akihiro; Watanabe, Tomo-Hiko; Sugama, Hideo; Maeyama, Shinya; Nunami, Masanori; Nakajima, Noriyoshi

    2014-10-01

    Turbulent transport in a high ion temperature discharge of Large Helical Device (LHD) is investigated by means of electromagnetic gyrokinetic simulations including kinetic electrons. A new electromagnetic gyrokinetic simulation code GKV+enables us to examine electron heat and particle fluxes as well as ion heat flux in finite beta heliotron/stellarator plasmas. This problem has not been previously explored because of numerical difficulties associated with complex three-dimensional magnetic structures as well as multiple spatio-temporal scales related to electromagnetic ion and electron dynamics. The turbulent fluxes, which are evaluated through a nonlinear simulation carried out in the K-super computer system, will be reported. This research uses computational resources of K at RIKEN Advanced Institute for Computational Science through the HPCI System Research project (Project ID: hp140044).

  3. Ion internal transport barrier in neutral beam heated plasmas on HL-2A

    NASA Astrophysics Data System (ADS)

    Yu, D. L.; Wei, Y. L.; Liu, L.; Dong, J. Q.; Ida, K.; Itoh, K.; Sun, A. P.; Cao, J. Y.; Shi, Z. B.; Wang, Z. X.; Xiao, Y.; Yuan, B. S.; Du, H. R.; He, X. X.; Chen, W. J.; Ma, Q.; Itoh, S.-I.; Zhao, K. J.; Zhou, Y.; Wang, J.; Ji, X. Q.; Zhong, W. L.; Li, Y. G.; Gao, J. M.; Deng, W.; Liu, Yi; Xu, Y.; Yan, L. W.; Yang, Q. W.; Ding, X. T.; Duan, X. R.; Liu, Yong; HL-2A Team

    2016-05-01

    Ion internal transport barriers (iITBs) are first observed in neutral beam injection (NBI) heated plasmas at the HL-2A tokamak. The position of the barrier foot, in the stationary state, coincides with the q  =  1 surface within its uncertainty of measurement. iITBs can develop more easily at the beginning of NBI heating. Also, iITBs are unstable for the sawtooth plasma. Simulations reveal that the thermal diffusivity of ions (χ i) inside the barrier can be as low as the neoclassical level. It is observed that the flow shear in the stationary iITB state reaches the level required for suppressing the ion temperature gradient mode instability, which indicates the important role of flow shear in sustaining the iITB.

  4. Electron energy transport in ion waves and its relevance to laser-produced plasmas

    SciTech Connect

    Bell, A.R.

    1983-01-01

    Electron energy transport in plasmas is examined in the context of ion waves which are intermediate between collisionless isothermal ion acoustic waves and collisional adiabatic sound waves. The conductivity is found to be much less than the Spitzer-Haerm result for wavelengths less than 1000 electron mean free paths. This is expected to be relevant to laser-produced ablating plasmas in which the temperature can vary considerably over a distance of 10 to 100 mean free paths. The reduction in conductivity is independent of the wave amplitude thus differing from the reduction due to saturation found recently by numerical solution of the Fokker--Planck equation. At short wavelengths the heat flow approaches an upper limit which depends on the phase velocity of the wave. Diffusive ion wave damping is strong over a large range of wavelengths.

  5. Toroidal ripple transport of beam ions in the mega-ampere spherical tokamak

    SciTech Connect

    McClements, K. G.

    2012-07-15

    The transport of injected beam ions due to toroidal magnetic field ripple in the mega-ampere spherical tokamak (MAST) is quantified using a full orbit particle tracking code, with collisional slowing-down and pitch-angle scattering by electrons and bulk ions taken into account. It is shown that the level of ripple losses is generally rather low, although it depends sensitively on the major radius of the outer midplane plasma edge; for typical values of this parameter in MAST plasmas, the reduction in beam heating power due specifically to ripple transport is less than 1%, and the ripple contribution to beam ion diffusivity is of the order of 0.1 m{sup 2} s{sup -1} or less. It is concluded that ripple effects make only a small contribution to anomalous transport rates that have been invoked to account for measured neutron rates and plasma stored energies in some MAST discharges. Delayed (non-prompt) losses are shown to occur close to the outer midplane, suggesting that banana-drift diffusion is the most likely cause of the ripple-induced losses.

  6. Animal toxins and renal ion transport: Another dimension in tropical nephrology.

    PubMed

    Sitprija, Visith; Sitprija, Siravit

    2016-05-01

    Renal vascular and tubular ion channels and transporters involved in toxin injury are reviewed. Vascular ion channels modulated by animal toxins, which result in haemodynamic alterations and changes in blood pressure, include ENaC/Degenerin/ASIC, ATP sensitive K channels (KATP ), Ca activated K channels (Kca) and voltage gated Ca channels, mostly L-type. Renal tubular Na channels and K channels are also targeted by animal toxins. NHE3 and ENaC are two important targets. NCC and NKCC may be involved indirectly by vasoactive mediators induced by inflammation. Most renal tubular K channels including voltage gated K channels (Kv1), KATP , ROMK1, BK and SK are blocked by scorpion toxins. Few are inhibited by bee, wasp and spider venoms. Due to small envenoming, incomplete block and several compensatory mechanisms in renal tubules, serum electrolyte charges are not apparent. Changes in serum electrolytes are observed in injury by large amount of venom when several channels or transporters are targeted. Envenomings by scorpions and bees are examples of toxins targeting multiple ion channels and transporters. PMID:26421422

  7. Systems biology of ion channels and transporters in tumor angiogenesis: An omics view.

    PubMed

    Munaron, L

    2015-10-01

    Solid tumors require the formation of new blood vessels to support their growth, invasiveness and metastatic potential. Tumor neovascularization is achieved by vasculogenesis from endothelial precursors and by sprouting angiogenesis from preexisting vessels. The complex sequence of events driving these processes, including endothelial activation, proliferation, migration and differentiation, is associated with fluxes of ions, water and other small molecules mediated by a great pool of ion channels and transporters (ICT). This 'transportome' is regulated by environmental factors as well as intracellular signaling molecules. In turn, ICT play a prominent role in the response to angiogenesis-related stimuli through canonical and 'unconventional' activities: indeed, there is an increasing recognition of the multifunctionality of several ion channels that could also be annotated as receptors, enzymes, scaffolding proteins, mechanical and chemical sensors. The investigation of ICT structure and function has been far from the experimental oncology for long time and these two domains converged only very recently. Furthermore, the systems biology viewpoint has not received much attention in the biology of cancer transportome. Modulating angiogenesis by interference with membrane transport has a great potential in cancer treatment and the application of an 'omics' logic will hopefully contribute to the overall advancement in the field. This review is an attempt to apply the systems biology approach to the analysis of ICT involved in tumor angiogenesis, with a particular focus on endothelial transportome diversity. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers. PMID:25450338

  8. Investigation of nonthermal particle effects on ionization dynamics in high current density ion beam transport experiments

    NASA Astrophysics Data System (ADS)

    Chung, H. K.; MacFarlane, J. J.; Wang, P.; Moses, G. A.; Bailey, J. E.; Olson, C. L.; Welch, D. R.

    1997-01-01

    Light ion inertial fusion experiments require the presence of a moderate density background gas in the transport region to provide charge and current neutralization for a high current density ion beam. In this article, we investigate the effects of nonthermal particles such as beam ions or non-Maxwellian electron distributions on the ionization dynamics of the background gas. In particular, we focus on the case of Li beams being transported in an argon gas. Nonthermal particles as well as thermal electrons are included in time-dependent collisional-radiative calculations to determine time-dependent atomic level populations and charge state distributions in a beam-produced plasma. We also briefly discuss the effects of beam ions and energetic electrons on the visible and vacuum ultraviolet (VUV) spectral regions. It is found that the mean charge state of the gas, and hence the electron density, is significantly increased by collisions with energetic particles. This higher ionization significantly impacts the VUV spectral region, where numerous resonance lines occur. On the other hand, the visible spectrum tends to be less affected because the closely spaced excited states are populated by lower energy thermal electrons.

  9. Ion transport in polycarbonate based solid polymer electrolytes: experimental and computational investigations.

    PubMed

    Sun, Bing; Mindemark, Jonas; V Morozov, Evgeny; Costa, Luciano T; Bergman, Martin; Johansson, Patrik; Fang, Yuan; Furó, István; Brandell, Daniel

    2016-03-30

    Among the alternative host materials for solid polymer electrolytes (SPEs), polycarbonates have recently shown promising functionality in all-solid-state lithium batteries from ambient to elevated temperatures. While the computational and experimental investigations of ion conduction in conventional polyethers have been extensive, the ion transport in polycarbonates has been much less studied. The present work investigates the ionic transport behavior in SPEs based on poly(trimethylene carbonate) (PTMC) and its co-polymer with ε-caprolactone (CL) via both experimental and computational approaches. FTIR spectra indicated a preferential local coordination between Li(+) and ester carbonyl oxygen atoms in the P(TMC20CL80) co-polymer SPE. Diffusion NMR revealed that the co-polymer SPE also displays higher ion mobilities than PTMC. For both systems, locally oriented polymer domains, a few hundred nanometers in size and with limited connections between them, were inferred from the NMR spin relaxation and diffusion data. Potentiostatic polarization experiments revealed notably higher cationic transference numbers in the polycarbonate based SPEs as compared to conventional polyether based SPEs. In addition, MD simulations provided atomic-scale insight into the structure-dynamics properties, including confirmation of a preferential Li(+)-carbonyl oxygen atom coordination, with a preference in coordination to the ester based monomers. A coupling of the Li-ion dynamics to the polymer chain dynamics was indicated by both simulations and experiments. PMID:26984668

  10. Lunar Ion Transport Near Magnetic Anomalies: Possible Implications for Swirl Formation

    NASA Technical Reports Server (NTRS)

    Keller, J. W.; Killen, R. M.; Stubbs, T. J.; Farrell, W. M.; Halekas, J. S.

    2011-01-01

    The bright swirling features on the lunar surface in areas around the Moon but most prominently at Reiner Gamma, have intrigued scientists for many years. After Apollo and later Lunar Prospector (LP} mapped the Lunar magnetic fields from orbit, it was observed that these features are generally associated with crustal magnetic anomalies. This led researchers to propose a number of explanations for the swirls that invoke these fields. Prominent among these include magnetic shielding in the form of a mini-magnetosphere which impedes space weathering by the solar wind, magnetically controlled dust transport, and cometary or asteroidal impacts that would result in shock magnetization with concomitant formation ofthe swirls. In this presentation, we will consider another possibility, that the ambient magnetic and electric fields can transport and channel secondary ions produced by micrometeorite or solar wind ion impacts. In this scenario, ions that are created in these impacts are under the influence of these fields and can drift for significant distances before encountering the magnetic anomalies when their trajectories are disrupted and concentrated onto nearby areas. These ions may then be responsible for chemical alteration of the surface leading either to a brightening effect or a disruption of space weathering processes. To test this hypothesis we have run ion trajectory simulations that show ions from regions about the magnetic anomalies can be channeled into very small areas near the anomalies and although questions remain as to nature of the mechanisms that could lead to brightening of the surface it appears that the channeling effect is consistent with the existence of the swirls.

  11. Intracellular Cl- as a signaling ion that potently regulates Na+/HCO3- transporters.

    PubMed

    Shcheynikov, Nikolay; Son, Aran; Hong, Jeong Hee; Yamazaki, Osamu; Ohana, Ehud; Kurtz, Ira; Shin, Dong Min; Muallem, Shmuel

    2015-01-20

    Cl(-) is a major anion in mammalian cells involved in transport processes that determines the intracellular activity of many ions and plasma membrane potential. Surprisingly, a role of intracellular Cl(-) (Cl(-) in) as a signaling ion has not been previously evaluated. Here we report that Cl(-) in functions as a regulator of cellular Na(+) and HCO3 (-) concentrations and transepithelial transport through modulating the activity of several electrogenic Na(+)-HCO3 (-) transporters. We describe the molecular mechanism(s) of this regulation by physiological Cl(-) in concentrations highlighting the role of GXXXP motifs in Cl(-) sensing. Regulation of the ubiquitous Na(+)-HCO3(-) co-transport (NBC)e1-B is mediated by two GXXXP-containing sites; regulation of NBCe2-C is dependent on a single GXXXP motif; and regulation of NBCe1-A depends on a cryptic GXXXP motif. In the basal state NBCe1-B is inhibited by high Cl(-) in interacting at a low affinity GXXXP-containing site. IP3 receptor binding protein released with IP3 (IRBIT) activation of NBCe1-B unmasks a second high affinity Cl(-) in interacting GXXXP-dependent site. By contrast, NBCe2-C, which does not interact with IRBIT, has a single high affinity N-terminal GXXP-containing Cl(-) in interacting site. NBCe1-A is unaffected by Cl(-) in between 5 and 140 mM. However, deletion of NBCe1-A residues 29-41 unmasks a cryptic GXXXP-containing site homologous with the NBCe1-B low affinity site that is involved in inhibition of NBCe1-A by Cl(-) in. These findings reveal a cellular Cl(-) in sensing mechanism that plays an important role in the regulation of Na(+) and HCO3 (-) transport, with critical implications for the role of Cl(-) in cellular ion homeostasis and epithelial fluid and electrolyte secretion. PMID:25561556

  12. Role of ion transporters in the bile acid-induced esophageal injury.

    PubMed

    Laczkó, Dorottya; Rosztóczy, András; Birkás, Klaudia; Katona, Máté; Rakonczay, Zoltán; Tiszlavicz, László; Róka, Richárd; Wittmann, Tibor; Hegyi, Péter; Venglovecz, Viktória

    2016-07-01

    Barrett's esophagus (BE) is considered to be the most severe complication of gastro-esophageal reflux disease (GERD), in which the prolonged, repetitive episodes of combined acidic and biliary reflux result in the replacement of the squamous esophageal lining by columnar epithelium. Therefore, the acid-extruding mechanisms of esophageal epithelial cells (EECs) may play an important role in the defense. Our aim was to identify the presence of acid/base transporters on EECs and to investigate the effect of bile acids on their expressions and functions. Human EEC lines (CP-A and CP-D) were acutely exposed to bile acid cocktail (BAC) and the changes in intracellular pH (pHi) and Ca(2+) concentration ([Ca(2+)]i) were measured by microfluorometry. mRNA and protein expression of ion transporters was investigated by RT-PCR, Western blot, and immunohistochemistry. We have identified the presence of a Na(+)/H(+) exchanger (NHE), Na(+)/HCO3 (-) cotransporter (NBC), and a Cl(-)-dependent HCO3 (-) secretory mechanism in CP-A and CP-D cells. Acute administration of BAC stimulated HCO3 (-) secretion in both cell lines and the NHE activity in CP-D cells by an inositol triphosphate-dependent calcium release. Chronic administration of BAC to EECs increased the expression of ion transporters compared with nontreated cells. A similar expression pattern was observed in biopsy samples from BE compared with normal epithelium. We have shown that acute administration of bile acids differently alters ion transport mechanisms of EECs, whereas chronic exposure to bile acids increases the expression of acid/base transporters. We speculate that these adaptive processes of EECs represent an important mucosal defense against the bile acid-induced epithelial injury. PMID:27198194

  13. Brachycephalic airway syndrome: management.

    PubMed

    Lodato, Dena L; Hedlund, Cheryl S

    2012-08-01

    Brachycephalic airway syndrome (BAS) is a group of primary and secondary abnormalities that result in upper airway obstruction. Several of these abnormalities can be addressed medically and/or surgically to improve quality of life. This article reviews potential complications, anesthetic considerations, recovery strategies, and outcomes associated with medical and surgical management of BAS. PMID:22935992

  14. Simvastatin Inhibits Airway Hyperreactivity

    PubMed Central

    Zeki, Amir A.; Franzi, Lisa; Last, Jerold; Kenyon, Nicholas J.

    2009-01-01

    Rationale: Statin use has been linked to improved lung health in asthma and chronic obstructive pulmonary disease. We hypothesize that statins inhibit allergic airway inflammation and reduce airway hyperreactivity via a mevalonate-dependent mechanism. Objectives: To determine whether simvastatin attenuates airway inflammation and improves lung physiology by mevalonate pathway inhibition. Methods: BALB/c mice were sensitized to ovalbumin over 4 weeks and exposed to 1% ovalbumin aerosol over 2 weeks. Simvastatin (40 mg/kg) or simvastatin plus mevalonate (20 mg/kg) was injected intraperitoneally before each ovalbumin exposure. Measurements and Main Results: Simvastatin reduced total lung lavage leukocytes, eosinophils, and macrophages (P < 0.05) in the ovalbumin-exposed mice. Cotreatment with mevalonate, in addition to simvastatin, reversed the antiinflammatory effects seen with simvastatin alone (P < 0.05). Lung lavage IL-4, IL-13, and tumor necrosis factor-α levels were all reduced by treatment with simvastatin (P < 0.05). Simvastatin treatment before methacholine bronchial challenge increased lung compliance and reduced airway hyperreactivity (P = 0.0001). Conclusions: Simvastatin attenuates allergic airway inflammation, inhibits key helper T cell type 1 and 2 chemokines, and improves lung physiology in a mouse model of asthma. The mevalonate pathway appears to modulate allergic airway inflammation, while the beneficial effects of simvastatin on lung compliance and airway hyperreactivity may be independent of the mevalonate pathway. Simvastatin and similar agents that modulate the mevalonate pathway may prove to be treatments for inflammatory airway diseases, such as asthma. PMID:19608720

  15. Bile acids stimulate chloride secretion through CFTR and calcium-activated Cl- channels in Calu-3 airway epithelial cells.

    PubMed

    Hendrick, Siobhán M; Mroz, Magdalena S; Greene, Catherine M; Keely, Stephen J; Harvey, Brian J

    2014-09-01

    Bile acids resulting from the aspiration of gastroesophageal refluxate are often present in the lower airways of people with cystic fibrosis and other respiratory distress diseases. Surprisingly, there is little or no information on the modulation of airway epithelial ion transport by bile acids. The secretory effect of a variety of conjugated and unconjugated secondary bile acids was investigated in Calu-3 airway epithelial cells grown under an air-liquid interface and mounted in Ussing chambers. Electrogenic transepithelial ion transport was measured as short-circuit current (Isc). The taurine-conjugated secondary bile acid, taurodeoxycholic acid (TDCA), was found to be the most potent modulator of basal ion transport. Acute treatment (5 min) of Calu-3 cells with TDCA (25 μM) on the basolateral side caused a stimulation of Isc, and removal of extracellular Cl(-) abolished this response. TDCA produced an increase in the cystic fibrosis transmembrane conductance regulator (CFTR)-dependent current that was abolished by pretreatment with the CFTR inhibitor CFTRinh172. TDCA treatment also increased Cl(-) secretion through calcium-activated chloride (CaCC) channels and increased the Na(+)/K(+) pump current. Acute treatment with TDCA resulted in a rapid cellular influx of Ca(2+) and increased cAMP levels in Calu-3 cells. Bile acid receptor-selective activation with INT-777 revealed TGR5 localized at the basolateral membrane as the receptor involved in TDCA-induced Cl(-) secretion. In summary, we demonstrate for the first time that low concentrations of bile acids can modulate Cl(-) secretion in airway epithelial cells, and this effect is dependent on both the duration and sidedness of exposure to the bile acid. PMID:24993131

  16. Controversies in Pediatric Perioperative Airways

    PubMed Central

    Klučka, Jozef; Štourač, Petr; Štoudek, Roman; Ťoukálková, Michaela; Harazim, Hana; Kosinová, Martina

    2015-01-01

    Pediatric airway management is a challenge in routine anesthesia practice. Any airway-related complication due to improper procedure can have catastrophic consequences in pediatric patients. The authors reviewed the current relevant literature using the following data bases: Google Scholar, PubMed, Medline (OVID SP), and Dynamed, and the following keywords: Airway/s, Children, Pediatric, Difficult Airways, and Controversies. From a summary of the data, we identified several controversies: difficult airway prediction, difficult airway management, cuffed versus uncuffed endotracheal tubes for securing pediatric airways, rapid sequence induction (RSI), laryngeal mask versus endotracheal tube, and extubation timing. The data show that pediatric anesthesia practice in perioperative airway management is currently lacking the strong evidence-based medicine (EBM) data that is available for adult subpopulations. A number of procedural steps in airway management are derived only from adult populations. However, the objective is the same irrespective of patient age: proper securing of the airway and oxygenation of the patient. PMID:26759809

  17. Structural Mechanism for Light-driven Transport by a New Type of Chloride Ion Pump, Nonlabens marinus Rhodopsin-3.

    PubMed

    Hosaka, Toshiaki; Yoshizawa, Susumu; Nakajima, Yu; Ohsawa, Noboru; Hato, Masakatsu; DeLong, Edward F; Kogure, Kazuhiro; Yokoyama, Shigeyuki; Kimura-Someya, Tomomi; Iwasaki, Wataru; Shirouzu, Mikako

    2016-08-19

    The light-driven inward chloride ion-pumping rhodopsin Nonlabens marinus rhodopsin-3 (NM-R3), from a marine flavobacterium, belongs to a phylogenetic lineage distinct from the halorhodopsins known as archaeal inward chloride ion-pumping rhodopsins. NM-R3 and halorhodopsin have distinct motif sequences that are important for chloride ion binding and transport. In this study, we present the crystal structure of a new type of light-driven chloride ion pump, NM-R3, at 1.58 Å resolution. The structure revealed the chloride ion translocation pathway and showed that a single chloride ion resides near the Schiff base. The overall structure, chloride ion-binding site, and translocation pathway of NM-R3 are different from those of halorhodopsin. Unexpectedly, this NM-R3 structure is similar to the crystal structure of the light-driven outward sodium ion pump, Krokinobacter eikastus rhodopsin 2. Structural and mutational analyses of NM-R3 revealed that most of the important amino acid residues for chloride ion pumping exist in the ion influx region, located on the extracellular side of NM-R3. In contrast, on the opposite side, the cytoplasmic regions of K. eikastus rhodopsin 2 were reportedly important for sodium ion pumping. These results provide new insight into ion selection mechanisms in ion pumping rhodopsins, in which the ion influx regions of both the inward and outward pumps are important for their ion selectivities. PMID:27365396

  18. Modelling of ion energy transport in perturbed magnetic field in collisionless toroidal plasma

    NASA Astrophysics Data System (ADS)

    Kanno, Ryutaro; Nunami, Masanori; Satake, Shinsuke; Takamaru, Hisanori; Okamoto, Masao; Ohyabu, Nobuyoshi

    2010-11-01

    Although all physical parameters of background plasma and magnetic field are fixed, it is not trivial that transport coefficients in an ergodic region bounded radially on both sides can be always evaluated as constants with respect to time because of non-Brownian motion of guiding centres in low-collisionality cases, as shown previously in mono-energetic test-particle simulations by Maluckov et al (2003 Physica A 322 13). Here the ergodic region consists of chaotic magnetic field lines caused by resonant magnetic perturbations (RMPs). In order to understand the fundamental properties of transport phenomena in the radially bounded ergodic region, a new computer simulation code based on the δf method solving the drift kinetic equation is developed and the energy transport of ions (protons) in the perturbed magnetic field is investigated in low-collisionality cases. We evaluate the ion thermal diffusivity as a constant with respect to time by using a quasi-steady-state solution of the guiding centre distribution function in five-dimensional phase space and find that the diffusivity depends on both the strength of the RMPs and the collision frequency. The diffusivity estimated by the δf simulation in the ergodic region is extremely small compared with the prediction of field-line diffusion theory. The radial transport is affected by the fact that the width of the ergodic region is finite.

  19. Cation and anion transport in a dicationic imidazolium-based plastic crystal ion conductor.

    PubMed

    Kidd, Bryce E; Lingwood, Mark D; Lee, Minjae; Gibson, Harry W; Madsen, Louis A

    2014-02-27

    Here we investigate the organic ionic plastic crystal 1,2-bis[N-(N'-hexylimidazolium-d2(4,5))]ethane 2PF6(-) in one of its solid plastic crystal phases by means of multinuclear solid-state (SS) NMR and pulsed-field-gradient NMR diffusometry. We quantify distinct cation and anion diffusion coefficients as well as the Arrhenius diffusion activation energies (Ea) in this dicationic imidazolium-based plastic crystal. Our studies suggest a change in transport mechanism for the cation upon varying thermal and magnetic treatment (9.4 T), evidenced by differences in cation and anion Ea. Moreover, variable temperature (2)H SSNMR line shapes support a change in local molecular environment upon slow cooling in B0. We quantify the percentage of mobile anions as a function of temperature with (19)F SSNMR, wherein two distinct spectral features are present. We also comment on the Arrhenius pre-exponential factor for diffusion (D0), giving insight into the number of degrees of freedom for transport for both cation and anion as a function of thermal treatment. Given the breadth and depth of our measurements, we propose that bulk ion transport is dominated by anion diffusion in ionic-liquid-like domain boundaries separating crystallites. This study elucidates fundamental properties of this plastic crystal, and allows for a more general and deeper understanding of ion transport within such materials. PMID:24495282

  20. Beam dynamics simulations of post low energy beam transport section in RAON heavy ion accelerator

    NASA Astrophysics Data System (ADS)

    Jin, Hyunchang; Jang, Ji-Ho; Jang, Hyojae; Hong, In-Seok

    2016-02-01

    RAON (Rare isotope Accelerator Of Newness) heavy ion accelerator of the rare isotope science project in Daejeon, Korea, has been designed to accelerate multiple-charge-state beams to be used for various science programs. In the RAON accelerator, the rare isotope beams which are generated by an isotope separation on-line system with a wide range of nuclei and charges will be transported through the post Low Energy Beam Transport (LEBT) section to the Radio Frequency Quadrupole (RFQ). In order to transport many kinds of rare isotope beams stably to the RFQ, the post LEBT should be devised to satisfy the requirement of the RFQ at the end of post LEBT, simultaneously with the twiss parameters small. We will present the recent lattice design of the post LEBT in the RAON accelerator and the results of the beam dynamics simulations from it. In addition, the error analysis and correction in the post LEBT will be also described.