Science.gov

Sample records for airway ion transport

  1. Regulation of airway surface liquid volume and mucus transport by active ion transport.

    PubMed

    Tarran, Robert

    2004-01-01

    Mucus clearance is an important component of the lung's innate defense against disease, and the ability of the airways to clear mucus is strongly dependent on the volume of liquid on airway surfaces. Whether airway surface liquid (ASL) volume is maintained by passive surface forces or by active ion transport is controversial yet crucial to the understanding of how this system operates in both health and disease. In support of active ion transport being the major determinant of ASL volume, we have demonstrated that normal airway epithelia sense and autoregulate ASL height (volume) by adjusting the rates of Na+ absorption and Cl- secretion to maintain mucus transport.

  2. Allergic airway inflammation induces a pro-secretory epithelial ion transport phenotype in mice.

    PubMed

    Anagnostopoulou, P; Dai, L; Schatterny, J; Hirtz, S; Duerr, J; Mall, M A

    2010-12-01

    The airway epithelium is a central effector tissue in allergic inflammation and T-helper cell (Th) type 2-driven epithelial responses, such as mucus hypersecretion contribute to airflow obstruction in allergic airway disease. Previous in vitro studies demonstrated that Th2 cytokines also act as potent modulators of epithelial ion transport and fluid secretion, but the in vivo effect of allergic inflammation on airway ion transport remains unknown. We, therefore, induced allergic inflammation by intratracheal instillation of Aspergillus fumigatus extract or interleukin-13 in mice and determined effects on ion transport in native tracheal and bronchial tissues. We demonstrate that allergic inflammation enhanced basal Cl(-) secretion in both airway regions and inhibited epithelial Na(+) channel (ENaC)-mediated Na(+) absorption and increased Ca²(+)-dependent Cl(-) secretion in bronchi. Allergen-induced alterations in bronchial ion transport were associated with reduced transcript levels of α-, β- and γENaC, and were largely abrogated in signal transducer and activator of transcription (Stat)6(-/-) mice. Our studies demonstrate that Th2-dependent airway inflammation produced a pro-secretory ion transport phenotype in vivo, which was largely Stat6-dependent. These results suggest that Th2-mediated fluid secretion may improve airway surface hydration and clearance of mucus that is hypersecreted in allergic airway diseases such as asthma, and identify epithelial Stat6 signalling as a potential therapeutic target to promote mucus hydration and airway clearance.

  3. Organic electrochemical transistor array for recording transepithelial ion transport of human airway epithelial cells.

    PubMed

    Yao, Chunlei; Xie, Changyan; Lin, Peng; Yan, Feng; Huang, Pingbo; Hsing, I-Ming

    2013-12-03

    An organic electrochemical transistor array is integrated with human airway epithelial cells. This integration provides a novel method to couple transepithelial ion transport with electrical current. Activation and inhibition of transepithelial ion transport are readily detected with excellent time resolution. The organic electrochemical transistor array serves as a promising platform for physiological studies and drug testing.

  4. Nasal airway ion transport and lung function in young people with cystic fibrosis.

    PubMed

    Wallace, Helen L; Barker, Pierre M; Southern, Kevin W

    2003-09-01

    There is strong evidence that abnormal airway ion transport is the primary defect that initiates the pathophysiology of lung disease in cystic fibrosis (CF). To examine the relationship between airway ion transport abnormality and severity of lung disease, we measured nasal potential difference in 51 young people with CF using a validated modified technique. There was no correlation between any component of the ion transport measurement and clinical condition (respiratory function, chest radiograph score, or Shwachman clinical score). Thirty subjects, homozygous for the DeltaF508 mutation, were divided into those above and those below average respiratory function for their age. There was no significant difference in any of the ion transport parameters between those with above and below average pulmonary function. Of the 51 subjects, 10 had significant hyperpolarization after perfusion with a zero Cl- solution (> 5 mV). This Cl- secretory capacity did not correlate with above average lung function. These data do not support the assertion that the extent of lung disease in CF reflects the degree of ion transport abnormality. We suggest that although an ion transport abnormality initiates lung disease, other factors (e.g., environmental and genetic modifiers) are more influential in determining disease severity.

  5. Front-runners for pharmacotherapeutic correction of the airway ion transport defect in cystic fibrosis.

    PubMed

    Clunes, Mark T; Boucher, Richard C

    2008-06-01

    Although cystic fibrosis (CF) patients display multiorgan dysfunction (e.g. pancreas, gut, and lung) it is lung disease that is the leading cause of premature death in these patients. CF lung disease is characterized by persistent pulmonary infection and mucus plugging of the airways initiated by the failure of solute transport across the airway epithelium. Many drug therapies aim to alleviate the secondary characteristics of CF lung disease; however, new therapies in development are targeted at correcting the ion transport deficiency of CF. The goal is to hydrate airway surfaces by stimulating secretion (through activation of the CF transmembrane conductance regulator and calcium-activated chloride channels), and/or inhibiting absorption (through the epithelial sodium channel) thereby stimulating healthy mucociliary clearance. If mucociliary clearance can be stimulated sufficiently from an early age, then there is the possibility that secondary lung infection may be eradicated from the syndrome of CF disease.

  6. Front-Runners for pharmacotherapeutic correction of the airway ion transport defect in cystic fibrosis

    PubMed Central

    Clunes, Mark T.; Boucher, Richard C.

    2008-01-01

    Summary Although cystic fibrosis patients display multi organ dysfunction (e.g. pancreas, gut, lung) it is lung disease that is the leading cause of premature death in these patients. Cystic fibrosis lung disease is characterized by persistent pulmonary infection and mucus plugging of the airways initiated by failure of solute transport across the airway epithelium. Many drug therapies aim to alleviate the secondary characteristics of CF lung disease, however, new therapies in development are targeted at correcting the ion transport deficiency of CF. The goal is to hydrate airway surfaces by stimulating secretion (through activation of the cystic fibrosis transmembrane conductance regulator and calcium activated chloride channels), and/or inhibiting absorption (through the epithelial sodium channel) thereby stimulating healthy mucociliary clearance. If mucociliary clearance can be stimulated sufficiently from an early age then there is the possibility that secondary lung infection may be eradicated from the syndrome of CF disease. PMID:18468487

  7. Purinergic P2Y receptors in airway epithelia: from ion transport to immune functions.

    PubMed

    Hao, Yuan; Ko, Wing-hung

    2014-02-25

    The regulated transport of salt and water is essential to the integrated function of many organ systems, including the respiratory, reproductive, and digestive tracts. Airway epithelial fluid secretion is a passive process that is driven by osmotic forces, which are generated by ion transport. The main determinant of a luminally-directed osmotic gradient is the mucosal transport of chloride ions (Cl(-)) into the lumen. As with many epithelial cells, a number of classic signal transduction cascades are involved in the regulation of ion transport. There are two well-known intracellular signaling systems: an increase in intracellular Ca(2+) concentration ([Ca(2+)]i) and an increase in the rate of synthesis of cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP). Therefore, Cl(-) secretion is primarily activated via the opening of apical Ca(2+)- or cAMP-dependent Cl(-) channels at the apical membrane. The opening of basolateral Ca(2+)- or cAMP-activated K(+) channels, which hyperpolarizes the cell to maintain the driving force for Cl(-) exit through apical Cl(-) channels that are constitutively open, is also important in regulating transepithelial ion transport. P2Y receptors are expressed in the apical and/or basolateral membranes of virtually all polarized epithelia to control the transport of fluid and electrolytes. Human airway epithelial cells express multiple nucleotide receptors. Extracellular nucleotides, such as UTP and ATP, are calcium-mobilizing secretagogues. They are released into the extracellular space from airway epithelial cells and act on the same cell in an autocrine fashion to stimulate transepithelial ion transport. In addition, recent data support the role of P2Y receptors in releasing inflammatory cytokines in the bronchial epithelium and other immune cells.

  8. Non-Genomic Estrogen Regulation of Ion Transport and Airway Surface Liquid Dynamics in Cystic Fibrosis Bronchial Epithelium

    PubMed Central

    Saint-Criq, Vinciane; Kim, Sung Hoon; Katzenellenbogen, John A.; Harvey, Brian J.

    2013-01-01

    Male cystic fibrosis (CF) patients survive longer than females and lung exacerbations in CF females vary during the estrous cycle. Estrogen has been reported to reduce the height of the airway surface liquid (ASL) in female CF bronchial epithelium. Here we investigated the effect of 17β-estradiol on the airway surface liquid height and ion transport in normal (NuLi-1) and CF (CuFi-1) bronchial epithelial monolayers. Live cell imaging using confocal microscopy revealed that airway surface liquid height was significantly higher in the non-CF cells compared to the CF cells. 17β-estradiol (0.1–10 nM) reduced the airway surface liquid height in non-CF and CF cells after 30 min treatment. Treatment with the nuclear-impeded Estrogen Dendrimer Conjugate mimicked the effect of free estrogen by reducing significantly the airway surface liquid height in CF and non-CF cells. Inhibition of chloride transport or basolateral potassium recycling decreased the airway surface liquid height and 17β-estradiol had no additive effect in the presence of these ion transporter inhibitors. 17β-estradiol decreased bumetanide-sensitive transepithelial short-circuit current in non-CF cells and prevented the forskolin-induced increase in ASL height. 17β-estradiol stimulated an amiloride-sensitive transepithelial current and increased ouabain-sensitive basolateral short-circuit current in CF cells. 17β-estradiol increased PKCδ activity in CF and non-CF cells. These results demonstrate that estrogen dehydrates CF and non-CF ASL, and these responses to 17β-estradiol are non-genomic rather than involving the classical nuclear estrogen receptor pathway. 17β-estradiol acts on the airway surface liquid by inhibiting cAMP-mediated chloride secretion in non-CF cells and increasing sodium absorption via the stimulation of PKCδ, ENaC and the Na+/K+ATPase in CF cells. PMID:24223826

  9. Regulation of transepithelial ion transport and intracellular calcium by extracellular ATP in human normal and cystic fibrosis airway epithelium.

    PubMed Central

    Mason, S. J.; Paradiso, A. M.; Boucher, R. C.

    1991-01-01

    1 The role of extracellular nucleotides in regulation of ion transport activities (short circuit current, Isc) of human respiratory epithelia was studied. 2 Application of nucleotides to the apical or basolateral membrane of human nasal epithelium induced a concentration-dependent increase in Isc. 3 The rank order of potency of purine- or pyrimidine-induced changes in Isc of normal human nasal epithelium when applied to the apical membrane (UTP greater than or equal to ATP greater than ATP gamma S greater than 2MeSATP greater than ADP beta S much greater than beta gamma MeATP greater than or equal to alpha beta MeATP) or basolateral membrane (2MeSATP greater than UTP greater than ATP greater than ATP gamma S greater than alpha beta MeATP greater than beta gamma MeATP) is consistent with involvement of a P2 purinoceptor. A similar rank order of potencies was observed for nucleotide effects on intracellular calcium measured by Fura-2 fluorescence using microspectrofluorimetry. 4 Similar nucleotide potency in the regulation of ion transport and intracellular calcium in cystic fibrosis (CF) airway epithelium (UTP greater than or equal to ATP) was observed, suggesting purinoceptors might be used to stimulate ion transport processes that would promote hydration of airway secretions and facilitate their clearance from CF lungs. 5 These data provide evidence for the regulation of ion transport by P2 purinoceptors in normal and cystic fibrosis human airway epithelium. PMID:1718521

  10. Airway ion transport on the first postnatal day in infants delivered vaginally or by elective cesarean section.

    PubMed

    Gaillard, Erol A; Shaw, Nigel J; Wallace, Helen L; Subhedar, Nimish V; Southern, Kevin W

    2003-07-01

    To determine airway ion transport in term infants on the first day of postnatal life, and to test the hypothesis that infants born without labor have reduced sodium absorption, we measured nasal potential difference using a modified perfusion protocol suitable for newborn infants. We examined maximal stable baseline potential difference, the change after perfusion with 10(-4) M amiloride (Deltaamil), and the change after perfusion with a zero-chloride solution (Deltazero Cl-) in infants born after elective cesarean section (n = 21) or normal labor (n = 20). Maximal stable baseline potential difference was not different in the two cohorts (-24.0 mV, range -9 to -64 mV versus -25.5 mV, range -6 to -44 mV). The majority of infants in both cohorts showed a substantial fall in potential difference after amiloride perfusion, and there was little capacity for chloride secretion. These results demonstrate a fluid absorptive pattern in the airways on the first postnatal day. In these well infants, the ion transport phenotype was not dependent on the presence or absence of labor.

  11. The relative roles of passive surface forces and active ion transport in the modulation of airway surface liquid volume and composition.

    PubMed

    Tarran, R; Grubb, B R; Gatzy, J T; Davis, C W; Boucher, R C

    2001-08-01

    Two hypotheses have been proposed recently that offer different views on the role of airway surface liquid (ASL) in lung defense. The "compositional" hypothesis predicts that ASL [NaCl] is kept low (<50 mM) by passive forces to permit antimicrobial factors to act as a chemical defense. The "volume" hypothesis predicts that ASL volume (height) is regulated isotonically by active ion transport to maintain efficient mechanical mucus clearance as the primary form of lung defense. To compare these hypotheses, we searched for roles for: (1) passive forces (surface tension, ciliary tip capillarity, Donnan, and nonionic osmolytes) in the regulation of ASL composition; and (2) active ion transport in ASL volume regulation. In primary human tracheobronchial cultures, we found no evidence that a low [NaCl] ASL could be produced by passive forces, or that nonionic osmolytes contributed substantially to ASL osmolality. Instead, we found that active ion transport regulated ASL volume (height), and that feedback existed between the ASL and airway epithelia to govern the rate of ion transport and volume absorption. The mucus layer acted as a "reservoir" to buffer periciliary liquid layer height (7 microm) at a level optimal for mucus transport by donating or accepting liquid to or from the periciliary liquid layer, respectively. These data favor the active ion transport/volume model hypothesis to describe ASL physiology.

  12. Ambroxol-induced modification of ion transport in human airway Calu-3 epithelia.

    PubMed

    Hasegawa, Isao; Niisato, Naomi; Iwasaki, Yoshinobu; Marunaka, Yoshinori

    2006-05-05

    Ambroxol is often used as a mucolytic agent in various lung diseases. However, it is unclear how ambroxol acts on bronchial epithelial cells. To clarify the action of ambroxol, we studied the effects of ambroxol on the ion transport in human Calu-3 cells, a human submucosal serous cell line, measuring the transepithelial short-circuit current and conductance across monolayers of Calu-3 cells. Ambroxol of 100 microM diminished the terbutaline (a beta2-adrenergic agonist)-stimulated Cl-/HCO3(-)-dependent secretion without any decreases in the conductance of cystic fibrosis transmembrane conductance regulator (CFTR) channel locating on the apical membrane. On the other hand, under the basal (unstimulated) condition ambroxol increased the Cl(-)-dependent secretion with no significant change in the apical CFTR channel conductance and decreased the HCO3- secretion associated with a decrease in the apical CFTR channel conductance. Ambroxol had no major action on the epithelial Na+ channel (ENaC) or the ENaC-mediated Na+ absorption. These results indicate that in Calu-3 cells: (1) under the basal (unstimulated) condition ambroxol increases Cl- secretion by stimulating the entry step of Cl- and decreases HCO3- secretion by diminishing the activity of the CFTR channel and/or the Na+/HCO3(-)-dependent cotransporter, (2) under the adrenergic agonist-stimulated condition, ambroxol decreases Cl- secretion by acting on the Cl-/HCO3- exchanger, and (3) ambroxol has a more powerful action than the adrenergic agonist on the Cl-/HCO3- exchanger, leading fluid secretion to a moderately stimulated level from a hyper-stimulated level.

  13. Diacetyl and 2,3-pentanedione exposure of human cultured airway epithelial cells: Ion transport effects and metabolism of butter flavoring agents.

    PubMed

    Zaccone, Eric J; Goldsmith, W Travis; Shimko, Michael J; Wells, J R; Schwegler-Berry, Diane; Willard, Patsy A; Case, Shannon L; Thompson, Janet A; Fedan, Jeffrey S

    2015-12-15

    Inhalation of butter flavoring by workers in the microwave popcorn industry may result in “popcorn workers' lung.” In previous in vivo studies rats exposed for 6 h to vapor from the flavoring agents, diacetyl and 2,3-pentanedione, acquired flavoring concentration-dependent damage of the upper airway epithelium and airway hyporeactivity to inhaled methacholine. Because ion transport is essential for lung fluid balance,we hypothesized that alterations in ion transport may be an early manifestation of butter flavoring-induced toxicity.We developed a system to expose cultured human bronchial/tracheal epithelial cells (NHBEs) to flavoring vapors. NHBEs were exposed for 6 h to diacetyl or 2,3-pentanedione vapors (25 or ≥ 60 ppm) and the effects on short circuit current and transepithelial resistance (Rt) were measured. Immediately after exposure to 25 ppm both flavorings reduced Na+ transport,without affecting Cl- transport or Na+,K+-pump activity. Rt was unaffected. Na+ transport recovered 18 h after exposure. Concentrations (100-360 ppm) of diacetyl and 2,3-pentanedione reported earlier to give rise in vivo to epithelial damage, and 60 ppm, caused death of NHBEs 0 h post-exposure. Analysis of the basolateral medium indicated that NHBEs metabolize diacetyl and 2,3-pentanedione to acetoin and 2-hydroxy-3-pentanone, respectively. The results indicate that ion transport is inhibited transiently in airway epithelial cells by lower concentrations of the flavorings than those that result in morphological changes of the cells in vivo or in vitro.

  14. Diacetyl and 2,3-pentanedione exposure of human cultured airway epithelial cells: Ion transport effects and metabolism of butter flavoring agents

    PubMed Central

    Zaccone, Eric J.; Goldsmith, W. Travis; Shimko, Michael J.; Wells, J.R.; Schwegler-Berry, Diane; Willard, Patsy A.; Case, Shannon L.; Thompson, Janet A.; Fedan, Jeffrey S.

    2016-01-01

    Inhalation of butter flavoring by workers in the microwave popcorn industry may result in “popcorn workers' lung.” In previous in vivo studies rats exposed for 6 h to vapor from the flavoring agents, diacetyl and 2,3-pentanedione, acquired flavoring concentration-dependent damage of the upper airway epithelium and airway hyporeactivity to inhaled methacholine. Because ion transport is essential for lung fluid balance, we hypothesized that alterations in ion transport may be an early manifestation of butter flavoring-induced toxicity. We developed a system to expose cultured human bronchial/tracheal epithelial cells (NHBEs) to flavoring vapors. NHBEs were exposed for 6 h to diacetyl or 2,3-pentanedione vapors (25 or ≥60 ppm) and the effects on short circuit current and transepithelial resistance (Rt) were measured. Immediately after exposure to 25 ppm both flavorings reduced Na+ transport, without affecting Cl− transport or Na+,K+-pump activity. Rt was unaffected. Na+ transport recovered 18 h after exposure. Concentrations (100–360 ppm) of diacetyl and 2,3-pentanedione reported earlier to give rise in vivo to epithelial damage, and 60 ppm, caused death of NHBEs 0 h post-exposure. Analysis of the basolateral medium indicated that NHBEs metabolize diacetyl and 2,3-pentanedione to acetoin and 2-hydroxy-3-pentanone, respectively. The results indicate that ion transport is inhibited transiently in airway epithelial cells by lower concentrations of the flavorings than those that result in morphological changes of the cells in vivo or in vitro. PMID:26454031

  15. Electrolyte transport properties in distal small airways from cystic fibrosis pigs with implications for host defense

    PubMed Central

    Tang, Xiao Xiao; Vargas Buonfiglio, Luis G.; Comellas, Alejandro P.; Thornell, Ian M.; Ramachandran, Shyam; Karp, Philip H.; Taft, Peter J.; Sheets, Kelsey; Abou Alaiwa, Mahmoud H.; Welsh, Michael J.; Stoltz, David A.; Zabner, Joseph

    2016-01-01

    While pathological and clinical data suggest that small airways are involved in early cystic fibrosis (CF) lung disease development, little is known about how the lack of cystic fibrosis transmembrane conductance regulator (CFTR) function contributes to disease pathogenesis in these small airways. Large and small airway epithelia are exposed to different airflow velocities, temperatures, humidity, and CO2 concentrations. The cellular composition of these two regions is different, and small airways lack submucosal glands. To better understand the ion transport properties and impacts of lack of CFTR function on host defense function in small airways, we adapted a novel protocol to isolate small airway epithelial cells from CF and non-CF pigs and established an organotypic culture model. Compared with non-CF large airways, non-CF small airway epithelia cultures had higher Cl− and bicarbonate (HCO3−) short-circuit currents and higher airway surface liquid (ASL) pH under 5% CO2 conditions. CF small airway epithelia were characterized by minimal Cl− and HCO3− transport and decreased ASL pH, and had impaired bacterial killing compared with non-CF small airways. In addition, CF small airway epithelia had a higher ASL viscosity than non-CF small airways. Thus, the activity of CFTR is higher in the small airways, where it plays a role in alkalinization of ASL, enhancement of antimicrobial activity, and lowering of mucus viscosity. These data provide insight to explain why the small airways are a susceptible site for the bacterial colonization. PMID:26801568

  16. Ion transport by pulmonary epithelia.

    PubMed

    Hollenhorst, Monika I; Richter, Katrin; Fronius, Martin

    2011-01-01

    The lung surface of air-breathing vertebrates is formed by a continuous epithelium that is covered by a fluid layer. In the airways, this epithelium is largely pseudostratified consisting of diverse cell types such as ciliated cells, goblet cells, and undifferentiated basal cells, whereas the alveolar epithelium consists of alveolar type I and alveolar type II cells. Regulation and maintenance of the volume and viscosity of the fluid layer covering the epithelium is one of the most important functions of the epithelial barrier that forms the outer surface area of the lungs. Therefore, the epithelial cells are equipped with a wide variety of ion transport proteins, among which Na⁺, Cl⁻, and K⁺ channels have been identified to play a role in the regulation of the fluid layer. Malfunctions of pulmonary epithelial ion transport processes and, thus, impairment of the liquid balance in our lungs is associated with severe diseases, such as cystic fibrosis and pulmonary oedema. Due to the important role of pulmonary epithelial ion transport processes for proper lung function, the present paper summarizes the recent findings about composition, function, and ion transport properties of the airway epithelium as well as of the alveolar epithelium.

  17. Ion transport in pigmentation

    PubMed Central

    Bellono, Nicholas W.; Oancea, Elena V.

    2014-01-01

    Skin melanocytes and ocular pigment cells contain specialized organelles called melanosomes, which are responsible for the synthesis of melanin, the major pigment in mammals. Defects in the complex mechanisms involved in melanin synthesis and regulation result in vision and pigmentation deficits, impaired development of the visual system,, and increased susceptibility to skin and eye cancers. Ion transport across cellular membranes is critical for many biological processes, including pigmentation, but the molecular mechanisms by which it regulates melanin synthesis, storage, and transfer are not understood. In this review we first discuss ion channels and transporters that function at the plasma membrane of melanocytes; in the second part we consider ion transport across the membrane of intracellular organelles, with emphasis on melanosomes. We discuss recently characterized lysosomal and endosomal ion channels and transporters associated with pigmentation phenotypes. We then review the evidence for melanosomal channels and transporters critical for pigmentation, discussing potential molecular mechanisms mediating their function. The studies investigating ion transport in pigmentation physiology open new avenues for future research and could reveal novel molecular mechanisms underlying melanogenesis. PMID:25034214

  18. Ion transport in pigmentation.

    PubMed

    Bellono, Nicholas W; Oancea, Elena V

    2014-12-01

    Skin melanocytes and ocular pigment cells contain specialized organelles called melanosomes, which are responsible for the synthesis of melanin, the major pigment in mammals. Defects in the complex mechanisms involved in melanin synthesis and regulation result in vision and pigmentation deficits, impaired development of the visual system, and increased susceptibility to skin and eye cancers. Ion transport across cellular membranes is critical for many biological processes, including pigmentation, but the molecular mechanisms by which it regulates melanin synthesis, storage, and transfer are not understood. In this review we first discuss ion channels and transporters that function at the plasma membrane of melanocytes; in the second part we consider ion transport across the membrane of intracellular organelles, with emphasis on melanosomes. We discuss recently characterized lysosomal and endosomal ion channels and transporters associated with pigmentation phenotypes. We then review the evidence for melanosomal channels and transporters critical for pigmentation, discussing potential molecular mechanisms mediating their function. The studies investigating ion transport in pigmentation physiology open new avenues for future research and could reveal novel molecular mechanisms underlying melanogenesis.

  19. Airway surface liquid volume expansion induces rapid changes in amiloride-sensitive Na+ transport across upper airway epithelium-Implications concerning the resolution of pulmonary edema

    PubMed Central

    Azizi, Fouad; Arredouani, Abdelilah; Mohammad, Ramzi M

    2015-01-01

    During airway inflammation, airway surface liquid volume (ASLV) expansion may result from the movement of plasma proteins and excess liquid into the airway lumen due to extravasation and elevation of subepithelial hydrostatic pressure. We previously demonstrated that elevation of submucosal hydrostatic pressure increases airway epithelium permeability resulting in ASLV expansion by 500 μL cm−2 h−1. Liquid reabsorption by healthy airway epithelium is regulated by active Na+ transport at a rate of 5 μL cm−2 h−1. Thus, during inflammation the airway epithelium may be submerged by a large volume of luminal liquid. Here, we have investigated the mechanism by which ASLV expansion alters active epithelial Na+ transport, and we have characterized the time course of the change. We used primary cultures of tracheal airway epithelium maintained under air interface (basal ASLV, depth is 7 ± 0.5 μm). To mimic airway flooding, ASLV was expanded to a depth of 5 mm. On switching from basal to expanded ASLV conditions, short-circuit current (Isc, a measure of total transepithelial active ion transport) declined by 90% with a half-time (t1/2) of 1 h. 24 h after the switch, there was no significant change in ATP concentration nor in the number of functional sodium pumps as revealed by [3H]-ouabain binding. However, amiloride-sensitive uptake of 22Na+ was reduced by 70% upon ASLV expansion. This process is reversible since after returning cells back to air interface, Isc recovered with a t1/2 of 5–10 h. These results may have important clinical implications concerning the development of Na+ channels activators and resolution of pulmonary edema. PMID:26333829

  20. Ion Phase Space Transport

    NASA Astrophysics Data System (ADS)

    Sheehan, Daniel Peter

    1987-09-01

    Experimental measurements are presented of ion phase space evolution in a collisionless magnetoplasma utilizing nonperturbing laser induced fluorescence (LIF) diagnostics. Ion configuration space and velocity space transport, and ion thermodynamic information were derived from the phase space diagrams for the following beam-plasma and obstacle-plasma systems:(UNFORMATTED TABLE OR EQUATION FOLLOWS) OBSTACLE & PLASMA SPECIES qquad disc & quad Ba ^+/e^ qquad disc & quad Ba^+/SF _6^-/e^ BEAM SPECIES & PLASMA SPECIES} qquad Ba^+ & quad Cs^+/e^ qquad Cs^+ & quad Ba^+/e^ qquad Ba^+ & quad Cs^+/SF_6 ^-/e^ qquad e^- & quad Ba^+ /e^ TABLE/EQUATION ENDS The ions were roughly mass symmetric. Plasma systems were reconstructed from multiple discrete Ba(II) ion velocity distributions with spatial, temporal, and velocity resolution of 1 mm^3, 2 musec, and 3 times 1010 cm ^3/sec^3 respectively. Phase space reconstructions indicated resonant ion response to the current-driven electrostatic ion cyclotron wave (EICW) in the case of an electron beam and to the ion cyclotron-cyclotron wave in the case of ion beams. Ion energization was observed in both systems. Local particle kinetic energy densities increase far above thermal levels in the presence of the EICW and ICCW. Time-resolved measurements of the EICW identified phase space particle bunching. The nonlinear evolution of f_{rm i}(x,v,t) was investigated for both beam systems. The near wake of conducting electrically floating disc obstacle was studied. Anomalous cross field diffusion (D_bot > 10 ^4 cm^2/sec) and ion energization were correlated with strong, low-frequency turbulence generated by the obstacle. Ion perpendicular kinetic energy densities doubled over thermal levels in the near wake. Upstream of the obstacle, l ~ 50 lambda_ {rm D}, a collisionless shock was indicated; far downstream, an ion flux peak was observed. Three negative ion plasma (NIP) sources were developed and characterized in the course of research: two

  1. Loss of anion transport without increased sodium absorption characterizes newborn porcine cystic fibrosis airway epithelia

    PubMed Central

    Chen, Jeng-Haur; Stoltz, David A.; Karp, Philip H.; Ernst, Sarah E.; Pezzulo, Alejandro A.; Moninger, Thomas O.; Rector, Michael V.; Reznikov, Leah R.; Launspach, Janice L.; Chaloner, Kathryn; Zabner, Joseph; Welsh, Michael J.

    2011-01-01

    SUMMARY Defective transepithelial electrolyte transport is thought to initiate cystic fibrosis (CF) lung disease. Yet, how loss of CFTR affects electrolyte transport remains uncertain. CFTR−/− pigs spontaneously develop lung disease resembling human CF. At birth, their airways exhibit a bacterial host defense defect, but are not inflamed. Therefore, we studied ion transport in newborn nasal and tracheal/bronchial epithelia in tissue, cultures, and in vivo. CFTR−/− epithelia showed markedly reduced Cl− and HCO3− transport. However, in contrast to a widely held view, lack of CFTR did not increase transepithelial Na+ or liquid absorption or reduce periciliary liquid depth. Like human CF, CFTR−/− pigs showed increased amiloride-sensitive voltage and current, but lack of apical Cl− conductance caused the change, not increased Na+ transport. These results indicate that CFTR provides the predominant transcellular pathway for Cl− and HCO3− in porcine airway epithelia, and reduced anion permeability may initiate CF airway disease. PMID:21145458

  2. Fluid and electrolyte transport by cultured human airway epithelia.

    PubMed Central

    Smith, J J; Welsh, M J

    1993-01-01

    An understanding of the fluid and electrolyte transport properties of any epithelium requires knowledge of the direction, rate, and regulation of fluid transport and the composition of the fluid. Although human airway epithelial likely play a key role in controlling the quantity and composition of the respiratory tract fluid, evidence for such a role is not available. To obtain such knowledge, we measured fluid and electrolyte transport by cultured human nasal epithelia. Under basal conditions we found that epithelia absorbed Na+ and fluid; both processes were inhibited by addition of amiloride to the mucosal surface. These data suggest that active Na+ absorption is responsible for fluid absorption. Interestingly, Na+ absorption was not accompanied by the net absorption of Cl-; some other anion accompanied Na+. The combination of cAMP agonists and mucosal amiloride stimulated the secretion of NaCl-rich fluid. But surprisingly, the response to cAMP agonists in the absence of amiloride showed substantial intersubject variability: cAMP stimulated fluid secretion across some epithelia, for others, cAMP stimulated fluid absorption. The explanation for the differences in response is uncertain, but we speculate that the magnitude of apical membrane Na+ conductance may modulate the direction of fluid transport in response to cAMP. We also found that airway epithelial secrete H+ and absorb K+ under basal conditions; both processes were inhibited by cAMP agonists. Because the H+/K(+)-ATPase inhibitor, SCH 28080, inhibited K+ absorption, an apical membrane H+/K(+)-ATPase may be at least partly responsible for K+ and H+ transport. However, H+/K+ exchange could not entirely account for the luminal acidification. The finding that cAMP agonists inhibited luminal acidification may be explained by the recent finding that cAMP increases apical HCO3- conductance. These results provide new insights into how the intact airway epithelium may modify the composition of the respiratory

  3. Differential effects of cyclic and constant stress on ATP release and mucociliary transport by human airway epithelia

    PubMed Central

    Button, Brian; Picher, Maryse; Boucher, Richard C

    2007-01-01

    In the lungs, the first line of defence against bacterial infection is the thin layer of airway surface liquid (ASL) lining the airway surface. The superficial airway epithelium exhibits complex regulatory pathways that blend ion transport to adjust ASL volume to maintain proper mucociliary clearance (MCC). We hypothesized that stresses generated by airflow and transmural pressures during breathing govern ASL volume by regulating the rate of epithelial ATP release. Luminal ATP, via interactions with apical membrane P2-purinoceptors, regulates the balance of active ion secretion versus absorption to maintain ASL volume at optimal levels for MCC. In this study we tested the hypothesis that cyclic compressive stress (CCS), mimicking normal tidal breathing, regulates ASL volume in airway epithelia. Polarized tracheobronchial epithelial cultures from normal and cystic fibrosis (CF) subjects responded to a range of CCS by increasing the rate of ATP release. In normal airway epithelia, the CCS-induced increase in ASL ATP concentration was sufficient to induce purinoceptor-mediated increases in ASL height and MCC, via inhibition of epithelial Na+-channel-mediated Na+ absorption and stimulation of Cl− secretion through CFTR and the Ca2+-activated chloride channels. In contrast, static, non-oscillatory stress did not stimulate ATP release, ion transport or MCC, emphasizing the importance of rhythmic mechanical stress for airway defence. In CF airway cultures, which exhibit basal ASL depletion, CCS was partially effective, producing less ASL volume secretion than in normal cultures, but a level sufficient to restore MCC. The present data suggest that CCS may (1) regulate ASL volume in the normal lung and (2) improve clearance in the lungs of CF patients, potentially explaining the beneficial role of exercise in lung defence. PMID:17317749

  4. Biophysical Model of Ion Transport across Human Respiratory Epithelia Allows Quantification of Ion Permeabilities

    PubMed Central

    Garcia, Guilherme J.M.; Boucher, Richard C.; Elston, Timothy C.

    2013-01-01

    Lung health and normal mucus clearance depend on adequate hydration of airway surfaces. Because transepithelial osmotic gradients drive water flows, sufficient hydration of the airway surface liquid depends on a balance between ion secretion and absorption by respiratory epithelia. In vitro experiments using cultures of primary human nasal epithelia and human bronchial epithelia have established many of the biophysical processes involved in airway surface liquid homeostasis. Most experimental studies, however, have focused on the apical membrane, despite the fact that ion transport across respiratory epithelia involves both cellular and paracellular pathways. In fact, the ion permeabilities of the basolateral membrane and paracellular pathway remain largely unknown. Here we use a biophysical model for water and ion transport to quantify ion permeabilities of all pathways (apical, basolateral, paracellular) in human nasal epithelia cultures using experimental (Ussing Chamber and microelectrode) data reported in the literature. We derive analytical formulas for the steady-state short-circuit current and membrane potential, which are for polarized epithelia the equivalent of the Goldman-Hodgkin-Katz equation for single isolated cells. These relations allow parameter estimation to be performed efficiently. By providing a method to quantify all the ion permeabilities of respiratory epithelia, the model may aid us in understanding the physiology that regulates normal airway surface hydration. PMID:23442922

  5. Biophysical model of ion transport across human respiratory epithelia allows quantification of ion permeabilities.

    PubMed

    Garcia, Guilherme J M; Boucher, Richard C; Elston, Timothy C

    2013-02-05

    Lung health and normal mucus clearance depend on adequate hydration of airway surfaces. Because transepithelial osmotic gradients drive water flows, sufficient hydration of the airway surface liquid depends on a balance between ion secretion and absorption by respiratory epithelia. In vitro experiments using cultures of primary human nasal epithelia and human bronchial epithelia have established many of the biophysical processes involved in airway surface liquid homeostasis. Most experimental studies, however, have focused on the apical membrane, despite the fact that ion transport across respiratory epithelia involves both cellular and paracellular pathways. In fact, the ion permeabilities of the basolateral membrane and paracellular pathway remain largely unknown. Here we use a biophysical model for water and ion transport to quantify ion permeabilities of all pathways (apical, basolateral, paracellular) in human nasal epithelia cultures using experimental (Ussing Chamber and microelectrode) data reported in the literature. We derive analytical formulas for the steady-state short-circuit current and membrane potential, which are for polarized epithelia the equivalent of the Goldman-Hodgkin-Katz equation for single isolated cells. These relations allow parameter estimation to be performed efficiently. By providing a method to quantify all the ion permeabilities of respiratory epithelia, the model may aid us in understanding the physiology that regulates normal airway surface hydration.

  6. Acid-Sensing Ion Channel 1a Contributes to Airway Hyperreactivity in Mice

    PubMed Central

    Reznikov, Leah R.; Meyerholz, David K.; Adam, Ryan J.; Abou Alaiwa, Mahmoud; Jaffer, Omar; Michalski, Andrew S.; Powers, Linda S.; Price, Margaret P.; Stoltz, David A.; Welsh, Michael J.

    2016-01-01

    Neurons innervating the airways contribute to airway hyperreactivity (AHR), a hallmark feature of asthma. Several observations suggested that acid-sensing ion channels (ASICs), neuronal cation channels activated by protons, might contribute to AHR. For example, ASICs are found in vagal sensory neurons that innervate airways, and asthmatic airways can become acidic. Moreover, airway acidification activates ASIC currents and depolarizes neurons innervating airways. We found ASIC1a protein in vagal ganglia neurons, but not airway epithelium or smooth muscle. We induced AHR by sensitizing mice to ovalbumin and found that ASIC1a-/- mice failed to exhibit AHR despite a robust inflammatory response. Loss of ASIC1a also decreased bronchoalveolar lavage fluid levels of substance P, a sensory neuropeptide secreted from vagal sensory neurons that contributes to AHR. These findings suggest that ASIC1a is an important mediator of AHR and raise the possibility that inhibiting ASIC channels might be beneficial in asthma. PMID:27820848

  7. Modeling the dynamics of airway constriction: effects of agonist transport and binding.

    PubMed

    Amin, Samir D; Majumdar, Arnab; Frey, Urs; Suki, Béla

    2010-08-01

    Recent advances have revealed that during exogenous airway challenge, airway diameters cannot be adequately predicted by their initial diameters. Furthermore, airway diameters can also vary greatly in time on scales shorter than a breath. To better understand these phenomena, we developed a multiscale model that allowed us to simulate aerosol challenge in the airways during ventilation. The model incorporates agonist-receptor binding kinetics to govern the temporal response of airway smooth muscle contraction on individual airway segments, which, together with airway wall mechanics, determines local airway caliber. Global agonist transport and deposition are coupled with pressure-driven flow, linking local airway constrictions with global flow dynamics. During the course of challenge, airway constriction alters the flow pattern, redistributing the agonist to less constricted regions. This results in a negative feedback that may be a protective property of the normal lung. As a consequence, repetitive challenge can cause spatial constriction patterns to evolve in time, resulting in a loss of predictability of airway diameters. Additionally, the model offers new insights into several phenomena including the intra- and interbreath dynamics of airway constriction throughout the tree structure.

  8. Ion channel regulation of intracellular calcium and airway smooth muscle function.

    PubMed

    Perez-Zoghbi, Jose F; Karner, Charlotta; Ito, Satoru; Shepherd, Malcolm; Alrashdan, Yazan; Sanderson, Michael J

    2009-10-01

    Airway hyper-responsiveness associated with asthma is mediated by airway smooth muscle cells (SMCs) and has a complicated etiology involving increases in cell contraction and proliferation and the secretion of inflammatory mediators. Although these pathological changes are diverse, a common feature associated with their regulation is a change in intracellular Ca(2+) concentration ([Ca(2+)](i)). Because the [Ca(2+)](i) itself is a function of the activity and expression of a variety of ion channels, in both the plasma membrane and sarcoplasmic reticulum of the SMC, the modification of this ion channel activity may predispose airway SMCs to hyper-responsiveness. Our objective is to review how ion channels determine the [Ca(2+)](i) and influence the function of airway SMCs and emphasize the potential of ion channels as sites for therapeutic approaches to asthma.

  9. Ion transporters in brain tumors

    PubMed Central

    Cong, Damin; Zhu, Wen; Kuo, John S.; Hu, Shaoshan; Sun, Dandan

    2015-01-01

    Ion transporters are important in regulation of ionic homeostasis, cell volume, and cellular signal transduction under physiological conditions. They have recently emerged as important players in cancer progression. In this review, we discussed two important ion transporter proteins, sodium-potassium-chloride cotransporter isoform 1 (NKCC-1) and sodium-hydrogen exchanger isoform 1 (NHE-1) in Glioblastoma multiforme (GBM) and other malignant tumors. NKCC-1 is a Na+-dependent Cl− transporter that mediates the movement of Na+, K+, and Cl− ions across the plasma membrane and maintains cell volume and intracellular K+ and Cl− homeostasis. NHE-1 is a ubiquitously expressed cell membrane protein which regulates intracellular pH (pHi) and extracellular microdomain pH (pHe) homeostasis and cell volume. Here, we summarized recent pre-clinical experimental studies on NKCC-1 and NHE-1 in GBM and other malignant tumors, such as breast cancer, hepatocellular carcinoma, and lung cancer. These studies illustrated that pharmacological inhibition or down-regulation of these ion transporter proteins reduces proliferation, increases apoptosis, and suppresses migration and invasion of cancer cells. These new findings reveal the potentials of these ion transporters as new targets for cancer diagnosis and/or treatment. PMID:25620102

  10. Pan American Airways/Naval Air Transport Service/destroyer base site showing stone ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Pan American Airways/Naval Air Transport Service/destroyer base site showing stone wall around patio. View facing east-southeast. - U.S. Naval Base, Pearl Harbor, Pearl City Peninsula, Pearl City, Honolulu County, HI

  11. Pan American Airways/Naval Air Transport Service/destroyer base site showing brick ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Pan American Airways/Naval Air Transport Service/destroyer base site showing brick and concrete paving of patio, and circular planters. View facing east. - U.S. Naval Base, Pearl Harbor, Pearl City Peninsula, Pearl City, Honolulu County, HI

  12. Secondary ion collection and transport system for ion microprobe

    DOEpatents

    Ward, James W.; Schlanger, Herbert; McNulty, Jr., Hugh; Parker, Norman W.

    1985-01-01

    A secondary ion collection and transport system, for use with an ion microprobe, which is very compact and occupies only a small working distance, thereby enabling the primary ion beam to have a short focal length and high resolution. Ions sputtered from the target surface by the primary beam's impact are collected between two arcuate members having radii of curvature and applied voltages that cause only ions within a specified energy band to be collected. The collected ions are accelerated and focused in a transport section consisting of a plurality of spaced conductive members which are coaxial with and distributed along the desired ion path. Relatively high voltages are applied to alternate transport sections to produce accelerating electric fields sufficient to transport the ions through the section to an ion mass analyzer, while lower voltages are applied to the other transport sections to focus the ions and bring their velocity to a level compatible with the analyzing apparatus.

  13. Targeting ion transport in cancer.

    PubMed

    Oosterwijk, E; Gillies, R J

    2014-03-19

    The metabolism of cancer cells differs substantially from normal cells, including ion transport. Although this phenomenon has been long recognized, ion transporters have not been viewed as suitable therapeutic targets. However, the acidic pH values present in tumours which are well outside of normal limits are now becoming recognized as an important therapeutic target. Carbonic anhydrase IX (CAIX) is fundamental to tumour pH regulation. CAIX is commonly expressed in cancer, but lowly expressed in normal tissues and that presents an attractive target. Here, we discuss the possibilities of exploiting the acidic, hypoxic tumour environment as possible target for therapy. Additionally, clinical experience with CAIX targeting in cancer patients is discussed.

  14. Composite oxygen ion transport element

    DOEpatents

    Chen, Jack C.; Besecker, Charles J.; Chen, Hancun; Robinson, Earil T.

    2007-06-12

    A composite oxygen ion transport element that has a layered structure formed by a dense layer to transport oxygen ions and electrons and a porous support layer to provide mechanical support. The dense layer can be formed of a mixture of a mixed conductor, an ionic conductor, and a metal. The porous support layer can be fabricated from an oxide dispersion strengthened metal, a metal-reinforced intermetallic alloy, a boron-doped Mo.sub.5Si.sub.3-based intermetallic alloy or combinations thereof. The support layer can be provided with a network of non-interconnected pores and each of said pores communicates between opposite surfaces of said support layer. Such a support layer can be advantageously employed to reduce diffusion resistance in any type of element, including those using a different material makeup than that outlined above.

  15. Continuous mucociliary transport by primary human airway epithelial cells in vitro

    PubMed Central

    Sears, Patrick R.; Yin, Wei-Ning

    2015-01-01

    Mucociliary clearance (MCC) is an important innate defense mechanism that continuously removes inhaled pathogens and particulates from the airways. Normal MCC is essential for maintaining a healthy respiratory system, and impaired MCC is a feature of many airway diseases, including both genetic (cystic fibrosis, primary ciliary dyskinesia) and acquired (chronic obstructive pulmonary disease, bronchiectasis) disorders. Research into the fundamental processes controlling MCC, therefore, has direct clinical application, but has been limited in part due to the difficulty of studying this complex multicomponent system in vitro. In this study, we have characterized a novel method that allows human airway epithelial cells to differentiate into a mucociliary epithelium that transports mucus in a continuous circular track. The mucociliary transport device allows the measurement and manipulation of all features of mucociliary transport in a controlled in vitro system. In this initial study, the effect of ciliary beat frequency and mucus concentration on the speed of mucociliary transport was investigated. PMID:25979076

  16. AEROSOL TRANSPORT AND DEPOSITION IN SEQUENTIALLY BIFURCATING AIRWAYS

    EPA Science Inventory

    Deposition patterns and efficiencies of a dilute suspension of inhaled particles in three-dimensional double bifurcating airway models for both in-plane and 90 deg out-of-plane configurations have been numerically simulated assuming steady, laminar, constant-property air flow wit...

  17. An analysis of pollutant gas transport and absorption in pulmonary airways

    SciTech Connect

    Grotberg, J.B.; Sheth, B.V.; Mockros, L.F. )

    1990-05-01

    A mathematical model of ozone absorption, or for any soluble gas that has similar transport properties, is developed for a branching network of liquid-lined cylinders. In particular, we investigate specific flow regimes for finite length tubes where boundary layer phenomena and entrance effects exist in high Reynolds and Peclet (Pe) number airways. The smaller airways which have lower Reynolds and Peclet number flows are modelled by incorporating the detailed analysis found in (10) and modifying it for airways which have alveolated surfaces. We also consider a reacting gas and treat specific regimes where the reaction front is located at the air-liquid interface, within the liquid or at the liquid-tissue interface. Asymptotic methods are used in regions of the tracheobronchial tree where Pe much less than 1 and Pe much greater than 1. In addition, the fact that the radial transport parameter gamma much less than 1 for this toxin, and others such as nitrous oxides, is employed to simplify the analysis. The ozone concentrations, airway absorption and tissue dose are examined as a function of airway generation for several values of the governing parameters. The general result is a maximal dosing in airway generations 17 to 18 that is much larger (up to an order of magnitude) than the predictions of previous theories.

  18. Computational modeling of ion transport through nanopores.

    PubMed

    Modi, Niraj; Winterhalter, Mathias; Kleinekathöfer, Ulrich

    2012-10-21

    Nanoscale pores are ubiquitous in biological systems while artificial nanopores are being fabricated for an increasing number of applications. Biological pores are responsible for the transport of various ions and substrates between the different compartments of biological systems separated by membranes while artificial pores are aimed at emulating such transport properties. As an experimental method, electrophysiology has proven to be an important nano-analytical tool for the study of substrate transport through nanopores utilizing ion current measurements as a probe for the detection. Independent of the pore type, i.e., biological or synthetic, and objective of the study, i.e., to model cellular processes of ion transport or electrophysiological experiments, it has become increasingly important to understand the dynamics of ions in nanoscale confinements. To this end, numerical simulations have established themselves as an indispensable tool to decipher ion transport processes through biological as well as artificial nanopores. This article provides an overview of different theoretical and computational methods to study ion transport in general and to calculate ion conductance in particular. Potential new improvements in the existing methods and their applications are highlighted wherever applicable. Moreover, representative examples are given describing the ion transport through biological and synthetic nanopores as well as the high selectivity of ion channels. Special emphasis is placed on the usage of molecular dynamics simulations which already have demonstrated their potential to unravel ion transport properties at an atomic level.

  19. Pan American Airways/Naval Air Transport Service/destroyer base site at the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Pan American Airways/Naval Air Transport Service/destroyer base site at the east side showing walkway and building foundation. View facing west-northwest. - U.S. Naval Base, Pearl Harbor, Pearl City Peninsula, Pearl City, Honolulu County, HI

  20. Three pairs of bollards of Pan American Airways/Naval Air Transport ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Three pairs of bollards of Pan American Airways/Naval Air Transport Service/destroyer base site. (The third pair is visible beyond the trees). View facing south-southeast. - U.S. Naval Base, Pearl Harbor, Pearl City Peninsula, Pearl City, Honolulu County, HI

  1. TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS

    EPA Science Inventory

    TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS. Zhe Zhang*, Huawei Shi, Clement Kleinstreuer, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910; Chong S. Kim, National Health and En...

  2. Cigarette smoke inhibition of ion transport in canine tracheal epithelium

    SciTech Connect

    Welsh, M.J.

    1983-06-01

    To determine the effect of cigarette smoke on airway epithelial ion transport, the electrical properties and transepithelial Na and Cl fluxes were measured in canine tracheal epithelium. In vivo, the inhalation of the smoke from one cigarette acutely and reversibly decreased the electrical potential difference across the tracheal epithelium. In vitro, exposure of the mucosal surface of the epithelium to cigarette smoke decreased the short circuit current and transepithelial resistance. The decrease in short circuit current was due to an inhibition of the rate of Cl secretion with minimal effect on the rate of Na absorption. The effect of cigarette smoke was reversible, was not observed upon exposure of the submucosal surface to smoke, and was most pronounced when secretion was stimulated. The particulate phase of smoke was largely responsible for the inhibitory effect, since filtering the smoke minimized the effect. The effect of cigarette smoke was not prevented by addition of antioxidants to the bathing solutions, suggesting that the inhibition of Cl secretion cannot be entirely attributed to an oxidant mechanism. These results indicate that cigarette smoke acutely inhibits active ion transport by tracheal epithelium, both in vivo and in vitro. This effect may explain, in part, both the abnormal mucociliary clearance and the airway disease observed in cigarette smokers.

  3. Changes in ion transport in inflammatory disease.

    PubMed

    Eisenhut, Michael

    2006-03-29

    Ion transport is essential for maintenance of transmembranous and transcellular electric potential, fluid transport and cellular volume. Disturbance of ion transport has been associated with cellular dysfunction, intra and extracellular edema and abnormalities of epithelial surface liquid volume. There is increasing evidence that conditions characterized by an intense local or systemic inflammatory response are associated with abnormal ion transport. This abnormal ion transport has been involved in the pathogenesis of conditions like hypovolemia due to fluid losses, hyponatremia and hypokalemia in diarrhoeal diseases, electrolyte abnormalities in pyelonephritis of early infancy, septicemia induced pulmonary edema, and in hypersecretion and edema induced by inflammatory reactions of the mucosa of the upper respiratory tract. Components of membranous ion transport systems, which have been shown to undergo a change in function during an inflammatory response include the sodium potassium ATPase, the epithelial sodium channel, the Cystic Fibrosis Transmembrane Conductance Regulator and calcium activated chloride channels and the sodium potassium chloride co-transporter. Inflammatory mediators, which influence ion transport are tumor necrosis factor, gamma interferon, interleukins, transforming growth factor, leukotrienes and bradykinin. They trigger the release of specific messengers like prostaglandins, nitric oxide and histamine which alter ion transport system function through specific receptors, intracellular second messengers and protein kinases. This review summarizes data on in vivo measurements of changes in ion transport in acute inflammatory conditions and in vitro studies, which have explored the underlying mechanisms. Potential interventions directed at a correction of the observed abnormalities are discussed.

  4. Ion energy analyzer for measurement of ion turbulent transport

    NASA Astrophysics Data System (ADS)

    Sokolov, V.; Sen, A. K.

    2012-10-01

    For local measurement of radial ion thermal transport, we developed a novel time-resolved gridded ion energy analyzer. The turbulent thermal flux is obtained by correlating fluctuations of ion temperature, plasma density and plasma velocity. The simultaneous measurement of the ion current fluctuations from an ion energy analyzer tilde I_{IEA} (t) and the fluctuation of ion saturation current from a conventional Langmuir probe tilde I_{LP} (t) allow us to determine local fluctuations of ion temperature tilde T_i (t). To reduce the effect of plasma potential fluctuations in the energy analyzer measurements, we use special a compensative circuit loop.

  5. Uptake and transport of B12-conjugated nanoparticles in airway epithelium☆

    PubMed Central

    Fowler, Robyn; Vllasaliu, Driton; Falcone, Franco H.; Garnett, Martin; Smith, Bryan; Horsley, Helen; Alexander, Cameron; Stolnik, Snow

    2013-01-01

    Non-invasive delivery of biotherapeutics, as an attractive alternative to injections, could potentially be achieved through the mucosal surfaces, utilizing nanoscale therapeutic carriers. However, nanoparticles do not readily cross the mucosal barriers, with the epithelium presenting a major barrier to their translocation. The transcytotic pathway of vitamin B12 has previously been shown to ‘ferry’ B12-decorated nanoparticles across intestinal epithelial (Caco-2) cells. However, such studies have not been reported for the airway epithelium. Furthermore, the presence in the airways of the cell machinery responsible for transepithelial trafficking of B12 is not widely reported. Using a combination of molecular biology and immunostaining techniques, our work demonstrates that the bronchial cell line, Calu-3, expresses the B12-intrinsic factor receptor, the transcobalamin II receptor and the transcobalamin II carrier protein. Importantly, the work showed that sub-200 nm model nanoparticles chemically conjugated to B12 were internalised and transported across the Calu-3 cell layers, with B12 conjugation not only enhancing cell uptake and transepithelial transport, but also influencing intracellular trafficking. Our work therefore demonstrates that the B12 endocytotic apparatus is not only present in this airway model, but also transports ligand-conjugated nanoparticles across polarised epithelial cells, indicating potential for B12-mediated delivery of nanoscale carriers of biotherapeutics across the airways. PMID:24008152

  6. Muscarinic receptor subtypes in cilia-driven transport and airway epithelial development

    PubMed Central

    Klein, Maike K.; Haberberger, Rainer V.; Hartmann, Petra; Faulhammer, Petra; Lips, Katrin S.; Krain, Benjamin; Wess, Jürgen; Kummer, Wolfgang; König, Peter

    2014-01-01

    Ciliary beating of airway epithelial cells drives the removal of mucus and particles from the airways. Mucociliary transport and possibly airway epithelial development are governed by muscarinic acetylcholine receptors but the precise roles of the subtypes involved are unknown. This issue was addressed by determining cilia-driven particle transport, ciliary beat frequency, and the composition and ultrastructural morphology of the tracheal epithelium in M1–M5 muscarinic receptor gene-deficient mice. Knockout of M3 muscarinic receptors prevented an increase in particle transport speed and ciliary beat frequency in response to muscarine. Furthermore, the ATP response after application of muscarine was blunted. Pretreatment with atropine before application of muscarine restored the response to ATP. Additional knockout of the M2 receptor in these mice partially restored the muscarine effect most likely through the M1 receptor and normalized the ATP response. M1, M4, and M5 receptor deficient mice exhibited normal responses to muscarine. None of the investigated mutant mouse strains had any impairment of epithelial cellular structure or composition. In conclusion, M3 receptors stimulate whereas M2 receptors inhibit cilia-driven particle transport. The M1 receptor increases cilia-driven particle transport if the M3 and M2 receptor are missing. None of the receptors is necessary for epithelial development. PMID:19213795

  7. ION TRANSPORT IN NITELLOPSIS OBTUSA

    PubMed Central

    MacRobbie, Enid A. C.; Dainty, J.

    1958-01-01

    The distribution and rates of exchange of the ions sodium, potassium, and chloride in single internodal cells of the ecorticate characean, Nitellopsis obtusa, have been studied. In tracer experiments three kinetic compartments were found, the outermost "free space" of the cell, a compartment we have called "protoplasmic non-free space", and the cell sap. The concentrations in the vacuole were 54 mM Na+, 113 mM K+, and 206 mM Cl-. The steady state fluxes across the vacuolar membrane were 0.4 pmole Na+/cm.2 sec., 0.25 pmole K+/cm.2 sec., and 0.5 pmole Cl-/cm.2 sec. The protoplasmic Na/K ratio is equal to that in the vacuole but protoplasmic chloride is relatively much lower. Osmotic considerations suggest a layer 4 to 6 µ thick with sodium and potassium concentrations close to those in the vacuole. The fluxes between protoplasm and external solution were of the order of 8 pmoles Na+/cm.2 sec. and 4 pmoles K+/cm.2 sec. We suggest that the protoplasm is separated from the cell wall by an outer protoplasmic membrane at which an outward sodium transport maintains the high K/Na ratio of the cell interior, and from the vacuole by the tonoplast at which an inward chloride transport maintains the high vacuolar chloride. The tonoplast appears to be the site of the principal diffusion resistance of the cell, but the outer protoplasmic membrane probably of the main part of the potential. PMID:13587917

  8. Second-messenger regulation of sodium transport in mammalian airway epithelia.

    PubMed Central

    Graham, A; Steel, D M; Alton, E W; Geddes, D M

    1992-01-01

    1. Sodium absorption is the dominant ion transport process in conducting airways and is a major factor regulating the composition of airway surface liquid. However, little is known about the control of airway sodium transport by intracellular regulatory pathways. 2. In sheep tracheae and human bronchi mounted in Ussing chambers under short circuit conditions, the sodium current can be isolated by pretreating tissues with acetazolamide (100 microM) to inhibit bicarbonate secretion, bumetanide (100 microM) to inhibit chloride secretion and phloridzin (200 microM) to inhibit sodium-glucose cotransport. This sodium current consists of amiloride-sensitive (57%) and amiloride-insensitive (43%) components. 3. The regulation of the isolated sodium current by three second messenger pathways was studied using the calcium ionophore A23187 to elevate intracellular calcium, a combination of forskolin and the phosphodiesterase inhibitor zardaverine to elevate intracellular cyclic AMP, and the phorbol ester 12,13-phorbol dibutyrate (PDB) to stimulate protein kinase C. 4. In sheep trachea, A23187 produces a dose-related inhibition of the sodium current with maximal effect (38% of ISC) at 10 microM and IC50 1 microM. This response affects both the amiloride-sensitive and insensitive components of the sodium current and is not altered by prior stimulation of protein kinase C or elevation of intracellular cyclic AMP. In human bronchi, A23187 (10 microM) produced a significantly greater inhibition of ISC (68%), a response which was unaffected by prior treatment with PDB or forskolin-zardaverine. 5. In sheep trachea, stimulation of protein kinase C with PDB produced a dose-related inhibition of ISC maximal (56% of ISC) at 50 nM (IC50 7 nM). This response was abolished by amiloride (100 microM) pretreatment suggesting a selective effect on the amiloride-sensitive component of the sodium current. The response was not altered by prior elevation of intracellular calcium or cyclic AMP. PDB

  9. Faster Heavy Ion Transport for HZETRN

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.

    2013-01-01

    The deterministic particle transport code HZETRN was developed to enable fast and accurate space radiation transport through materials. As more complex transport solutions are implemented for neutrons, light ions (Z < 2), mesons, and leptons, it is important to maintain overall computational efficiency. In this work, the heavy ion (Z > 2) transport algorithm in HZETRN is reviewed, and a simple modification is shown to provide an approximate 5x decrease in execution time for galactic cosmic ray transport. Convergence tests and other comparisons are carried out to verify that numerical accuracy is maintained in the new algorithm.

  10. Simulation of nanoparticle transport in airways using Petrov-Galerkin finite element methods.

    PubMed

    Rajaraman, Prathish; Heys, Jeffrey J

    2014-01-01

    The transport and deposition properties of nanoparticles with a range of aerodynamic diameters ( 1 nm ≤ d ≤ 150 nm) were studied for the human airways. A finite element code was developed that solved both the Navier-Stokes and advection-diffusion equations monolithically. When modeling nanoparticle transport in the airways, the finite element method becomes unstable, and, in order resolve this issue, various stabilization methods were considered in terms of accuracy and computational cost. The stabilization methods considered here include the streamline upwind, streamline upwind Petrov-Galerkin, and Galerkin least squares approaches. In order to compare the various stabilization approaches, the approximate solution from each stabilization approach was compared to the analytical Graetz solution, which is a model for monodispersed, dilute particle transport in a straight cylinder. The optimal stabilization method, especially with regard to accuracy, was found to be the Galerkin least squares approach for the Graetz problem when the Péclet number was larger than 10(4). In the human airways geometry, the Galerkin least squares stabilization approach once more provided the most accurate approximate solution for particles with an aerodynamic diameter of 10 nm or larger, but mesh size had a much greater effect on accuracy than the choice of stabilization method. The choice of stabilization method had a greater impact than mesh size for particles with an aerodynamic diameter 10 nm or smaller, but the most accurate stabilization method was streamline upwind Petrov-Galerkin in these cases.

  11. Supramolecular gating of ion transport in nanochannels.

    PubMed

    Kumar, B V V S Pavan; Rao, K Venkata; Sampath, S; George, Subi J; Eswaramoorthy, Muthusamy

    2014-11-24

    Several covalent strategies towards surface charge-reversal in nanochannels have been reported with the purpose of manipulating ion transport. However, covalent routes lack dynamism, modularity and post-synthetic flexibility, and hence restrict their applicability in different environments. Here, we introduce a facile non-covalent approach towards charge-reversal in nanochannels (<10 nm) using strong charge-transfer interactions between dicationic viologen (acceptor) and trianionic pyranine (donor). The polarity of ion transport was switched from anion selective to ambipolar to cation selective by controlling the extent of viologen bound to the pyranine. We could also regulate the ion transport with respect to pH by selecting a donor with pH-responsive functional groups. The modularity of this approach further allows facile integration of various functional groups capable of responding to stimuli such as light and temperature to modulate the transport of ions as well as molecules.

  12. Ion channels and transporters in metastasis.

    PubMed

    Stock, Christian; Schwab, Albrecht

    2015-10-01

    An elaborate interplay between ion channels and transporters, components of the cytoskeleton, adhesion molecules, and signaling cascades provides the basis for each major step of the metastatic cascade. Ion channels and transporters contribute to cell motility by letting through or transporting ions essential for local Ca2+, pH and--in cooperation with water permeable aquaporins--volume homeostasis. Moreover, in addition to the actual ion transport they, or their auxiliary subunits, can display non-conducting activities. They can exert kinase activity in order to phosphorylate cytoskeletal constituents or their associates. They can become part of signaling processes by permeating Ca2+, by generating local pH-nanodomains or by being final downstream effectors. A number of channels and transporters are found at focal adhesions, interacting directly or indirectly with proteins of the extracellular matrix, with integrins or with components of the cytoskeleton. We also include the role of aquaporins in cell motility. They drive the outgrowth of lamellipodia/invadopodia or control the number of β1 integrins in the plasma membrane. The multitude of interacting ion channels and transporters (called transportome) including the associated signaling events holds great potential as therapeutic target(s) for anticancer agents that are aimed at preventing metastasis. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.

  13. The effect of ambroxol on chloride transport, CFTR and ENaC in cystic fibrosis airway epithelial cells.

    PubMed

    Varelogianni, Georgia; Hussain, Rashida; Strid, Hilja; Oliynyk, Igor; Roomans, Godfried M; Johannesson, Marie

    2013-11-01

    Ambroxol, a mucokinetic anti-inflammatory drug, has been used for treatment of cystic fibrosis (CF). The respiratory epithelium is covered by the airway surface liquid (ASL), the thickness and composition of which is determined by Cl(-) efflux via the cystic fibrosis transmembrane conductance regulator (CFTR) and Na(+) influx via the epithelial Na(+) channel (ENaC). In cells expressing wt-CFTR, ambroxol increased the Cl(-) conductance, but not the bicarbonate conductance of the CFTR channels. We investigated whether treatment with ambroxol enhances chloride transport and/or CFTR and ENaC expression in CF airway epithelial cells (CFBE) cells. CFBE cells were treated with 100 µM ambroxol for 2, 4 or 8 h. mRNA expression for CFTR and ENaC subunits was analysed by real-time polymerase chain reaction (RT-PCR); protein expression was measured by Western blot. The effect of ambroxol on Cl(-) transport was measured by Cl(-) efflux measurements with a fluorescent chloride probe. Ambroxol significantly stimulated Cl(-) efflux from CFBE cells (a sixfold increase after 8 h treatment), and enhanced the expression of the mRNA of CFTR and α-ENaC, and of the CFTR protein. No significant difference was observed in β-ENaC after exposure to ambroxol, whereas mRNA expression of γ-ENaC was reduced. No significant effects of ambroxol on the ENaC subunits were observed by Western blot. Ambroxol did not significantly affect the intracellular Ca(2+) concentration. Upregulation of CFTR and enhanced Cl(-) efflux after ambroxol treatment should promote transepithelial ion and water transport, which may improve hydration of the mucus, and therefore be beneficial to CF-patients.

  14. Vesicular nucleotide transporter regulates the nucleotide content in airway epithelial mucin granules

    PubMed Central

    Sesma, Juliana I.; Kreda, Silvia M.; Okada, Seiko F.; van Heusden, Catharina; Moussa, Lama; Jones, Lisa C.; O'Neal, Wanda K.; Togawa, Natsuko; Hiasa, Miki; Moriyama, Yoshinori

    2013-01-01

    Nucleotides within the airway surface liquid promote fluid secretion via activation of airway epithelial purinergic receptors. ATP is stored within and released from mucin granules as co-cargo with mucins, but the mechanism by which ATP, and potentially other nucleotides, enter the lumen of mucin granules is not known. We assessed the contribution of the recently identified SLC17A9 vesicle nucleotide transporter (VNUT) to the nucleotide availability within isolated mucin granules and further examined the involvement of VNUT in mucin granule secretion-associated nucleotide release. RT-PCR and Western blot analyses indicated that VNUT is abundantly expressed in airway epithelial goblet-like Calu-3 cells, migrating as a duplex with apparent mobility of 55 and 60 kDa. Subcellular fractionation studies indicated that VNUT55 was associated with high-density mucin granules, whereas VNUT60 was associated with low-density organelles. Immunofluorescence studies showed that recombinant VNUT localized to mucin granules and other organelles. Mucin granules isolated from VNUT short hairpin RNA-expressing cells exhibited a marked reduction of ATP, ADP, AMP, and UTP levels within granules. Ca2+-regulated vesicular ATP release was markedly reduced in these cells, but mucin secretion was not affected. These results suggest that VNUT is the relevant nucleotide transporter responsible for the uptake of cytosolic nucleotides into mucin granules. By controlling the entry of nucleotides into mucin granules, VNUT contributes to the release of purinergic signaling molecules necessary for the proper hydration of co-released mucins. PMID:23467297

  15. Vesicular nucleotide transporter regulates the nucleotide content in airway epithelial mucin granules.

    PubMed

    Sesma, Juliana I; Kreda, Silvia M; Okada, Seiko F; van Heusden, Catharina; Moussa, Lama; Jones, Lisa C; O'Neal, Wanda K; Togawa, Natsuko; Hiasa, Miki; Moriyama, Yoshinori; Lazarowski, Eduardo R

    2013-05-15

    Nucleotides within the airway surface liquid promote fluid secretion via activation of airway epithelial purinergic receptors. ATP is stored within and released from mucin granules as co-cargo with mucins, but the mechanism by which ATP, and potentially other nucleotides, enter the lumen of mucin granules is not known. We assessed the contribution of the recently identified SLC17A9 vesicle nucleotide transporter (VNUT) to the nucleotide availability within isolated mucin granules and further examined the involvement of VNUT in mucin granule secretion-associated nucleotide release. RT-PCR and Western blot analyses indicated that VNUT is abundantly expressed in airway epithelial goblet-like Calu-3 cells, migrating as a duplex with apparent mobility of 55 and 60 kDa. Subcellular fractionation studies indicated that VNUT55 was associated with high-density mucin granules, whereas VNUT60 was associated with low-density organelles. Immunofluorescence studies showed that recombinant VNUT localized to mucin granules and other organelles. Mucin granules isolated from VNUT short hairpin RNA-expressing cells exhibited a marked reduction of ATP, ADP, AMP, and UTP levels within granules. Ca(2+)-regulated vesicular ATP release was markedly reduced in these cells, but mucin secretion was not affected. These results suggest that VNUT is the relevant nucleotide transporter responsible for the uptake of cytosolic nucleotides into mucin granules. By controlling the entry of nucleotides into mucin granules, VNUT contributes to the release of purinergic signaling molecules necessary for the proper hydration of co-released mucins.

  16. 4,871 Emergency Airway Encounters by Air Medical Providers: A Report of the Air Transport Emergency Airway Management (NEAR VI: “A-TEAM”) Project

    PubMed Central

    Brown, Calvin A.; Cox, Kelly; Hurwitz, Shelley; Walls, Ron M.

    2014-01-01

    Introduction Pre-hospital airway management is a key component of resuscitation although the benefit of pre-hospital intubation has been widely debated. We report a large series of pre-hospital emergency airway encounters performed by air-transport providers in a large, multi-state system. Methods We retrospectively reviewed electronic intubation flight records from an 89 rotorcraft air medical system from January 01, 2007, through December 31, 2009. We report patient characteristics, intubation methods, success rates, and rescue techniques with descriptive statistics. We report proportions with 95% confidence intervals and binary comparisons using chi square test with p-values <0.05 considered significant. Results 4,871 patients had active airway management, including 2,186 (44.9%) medical and 2,685 (55.1%) trauma cases. There were 4,390 (90.1%) adult and 256 (5.3%) pediatric (age ≤ 14) intubations; 225 (4.6%) did not have an age recorded. 4,703 (96.6%) had at least one intubation attempt. Intubation was successful on first attempt in 3,710 (78.9%) and was ultimately successful in 4,313 (91.7%). Intubation success was higher for medical than trauma patients (93.4% versus 90.3%, p=0.0001 JT test). 168 encounters were managed primarily with an extraglottic device (EGD). Cricothyrotomy was performed 35 times (0.7%) and was successful in 33. Patients were successfully oxygenated and ventilated with an endotracheal tube, EGD, or surgical airway in 4809 (98.7%) encounters. There were no reported deaths from a failed airway. Conclusion Airway management, predominantly using rapid sequence intubation protocols, is successful within this high-volume, multi-state air-transport system. PMID:24672610

  17. Ion kinetic transport in TJ-II

    SciTech Connect

    Velasco, J. L.; Tarancon, A.; Castejon, F.; Fernandez, L. A.; Martin-Mayor, V.

    2008-11-02

    The ion Drift Kinetic Equation (DKE) which describes the ion collisional transport is solved for the TJ-II device plasmas. This non-linear equation is computed by performing a mean field iterative calculation. In each step of the calculation, a Fokker-Planck equation is solved by means of the Langevin approach: one million particles are followed in a realistic TJ-II magnetic configuration, taking into account collisions and electric field. This allows to avoid the assumptions made in the usual neoclassical approach, namely considering radially narrow particle trajectories, diffusive transport, energy conservation and infinite parallel transport. As a consequence, global features of transport, not present in the customary neoclassical models, appear: non-diffusive transport and asymmetries on the magnetic surfaces.

  18. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2007-02-20

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  19. Liners for ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis; Miller, Christopher Francis

    2010-08-10

    Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.

  20. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward [Allentown, PA; Carolan, Michael Francis [Allentown, PA; Chen, Christopher M [Allentown, PA; Armstrong, Phillip Andrew [Orefield, PA; Wahle, Harold W [North Canton, OH; Ohrn, Theodore R [Alliance, OH; Kneidel, Kurt E [Alliance, OH; Rackers, Keith Gerard [Louisville, OH; Blake, James Erik [Uniontown, OH; Nataraj, Shankar [Allentown, PA; Van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson [West Jordan, UT

    2012-02-14

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  1. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2008-02-26

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  2. Nonperturbative methods in HZE ion transport

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Badavi, Francis F.; Costen, Robert C.; Shinn, Judy L.

    1993-01-01

    A nonperturbative analytic solution of the high charge and energy (HZE) Green's function is used to implement a computer code for laboratory ion beam transport. The code is established to operate on the Langley Research Center nuclear fragmentation model used in engineering applications. Computational procedures are established to generate linear energy transfer (LET) distributions for a specified ion beam and target for comparison with experimental measurements. The code is highly efficient and compares well with the perturbation approximations.

  3. [Ion transport in the colon].

    PubMed

    Caprilli, R; Frieri, G; Marchetti, G; Giambartolomei, S

    1995-12-01

    The large bowel daily absorbs passively 1500 ml of water down an osmotic gradient created by active electrolyte transports. The system is sustained by the enzyme Na(+)-K+ ATPase, the so called sodium-pump, present on the basolateral membrane of colonocytes. Some pathologic conditions may increase the amount of intraluminal water by inhibiting fluid absorbtion or enhancing fluid secretion. Diarrhoea represents the clinical counterpart of these alterations. Three forms of diarrhoea can be recognized on the basis of pathophysiological alterations. Diarrhoea is due to reduced ionic absorbtion, increased secretion or increased endoluminal osmolality. The drugs used to induce bowel actions or gut lavage increase also intraluminal water content by modifying transmural ionic transports. Laxatives or purges act by increasing either water secretion on endoluminal osmolality and therefore may produce systemic idro-electrolyte imbalance. To avoid this inconvenient an isosmotic electrolyte balanced polyethylene glicol solution (PEG-ELS) has been achieved. In addition orally administred PEG-ELS solution cleans the colon during its intestinal transit without producing relevant transmural water-ionic movements. Aim of this article was to describe the normal ionic transport, and its alterations in pathologic and pharmacologic conditions. Details on PEG-ELS were also given. This solution provides for an effective colon preparation for endoscopic or surgical procedures and resulted to be safe for patients with delicate fluid-electrolyte balance.

  4. Transport of Light Ions in Matter

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Cucinotta, F. A.; Tai, H.; Shinn, J. L.; Chun, S. Y.; Tripathi, R. K.; Sihver, L.

    1998-01-01

    A recent set of light ion experiments are analyzed using the Green's function method of solving the Boltzmann equation for ions of high charge and energy (the GRNTRN transport code) and the NUCFRG2 fragmentation database generator code. Although the NUCFRG2 code reasonably represents the fragmentation of heavy ions, the effects of light ion fragmentation requires a more detailed nuclear model including shell structure and short range correlations appearing as tightly bound clusters in the light ion nucleus. The most recent NTJCFRG2 code is augmented with a quasielastic alpha knockout model and semiempirical adjustments (up to 30 percent in charge removal) in the fragmentation process allowing reasonable agreement with the experiments to be obtained. A final resolution of the appropriate cross sections must await the full development of a coupled channel reaction model in which shell structure and clustering can be accurately evaluated.

  5. Chamber transport for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Olson, Craig L.

    2014-01-01

    A brief review is given of research on chamber transport for HIF (heavy ion fusion) dating from the first HIF Workshop in 1976 to the present. Chamber transport modes are categorized into ballistic transport modes and channel-like modes. Four major HIF reactor studies are summarized (HIBALL-II, HYLIFE-II, Prometheus-H, OSIRIS), with emphasis on the chamber transport environment. In general, many beams are used to provide the required symmetry and to permit focusing to the required small spots. Target parameters are then discussed, with a summary of the individual heavy ion beam parameters required for HIF. The beam parameters are then classified as to their line charge density and perveance, with special emphasis on the perveance limits for radial space charge spreading, for the space charge limiting current, and for the magnetic (Alfven) limiting current. The major experiments on ballistic transport (SFFE, Sabre beamlets, GAMBLE II, NTX, NDCX) are summarized, with specific reference to the axial electron trapping limit for charge neutralization. The major experiments on channel-like transport (GAMBLE II channel, GAMBLE II self-pinch, LBNL channels, GSI channels) are discussed. The status of current research on HIF chamber transport is summarized, and the value of future NDCX-II transport experiments for the future of HIF is noted.

  6. Numerical modelling of ion transport in flames

    NASA Astrophysics Data System (ADS)

    Han, Jie; Belhi, Memdouh; Bisetti, Fabrizio; Mani Sarathy, S.

    2015-11-01

    This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model's predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018.

  7. Workshop on transport for a common ion driver

    SciTech Connect

    Olson, C.C.; Lee, E.; Langdon, B.

    1994-12-31

    This report contains research in the following areas related to beam transport for a common ion driver: multi-gap acceleration; neutralization with electrons; gas neutralization; self-pinched transport; HIF and LIF transport, and relevance to common ion driver; LIF and HIF reactor concepts and relevance to common ion driver; atomic physics for common ion driver; code capabilities and needed improvement.

  8. Effect of static vs. dynamic imaging on particle transport in CT-based numerical models of human central airways.

    PubMed

    Miyawaki, Shinjiro; Hoffman, Eric A; Lin, Ching-Long

    2016-10-01

    Advances in quantitative computed tomography (CT) has provided methods to assess the detailed structure of the pulmonary airways and parenchyma, providing the means of applying computational fluid dynamics-based modeling to better understand subject-specific differences in structure-to-function relationships. Most of the previous numerical studies, seeking to predict patterns of inhaled particle deposition, have considered airway geometry and regional ventilation derived from static images. Because geometric alterations of the airway and parenchyma associated with regional ventilation may greatly affect particle transport, we have sought to investigate the effect of rigid vs. deforming airways, linear vs. nonlinear airway deformations, and step-wise static vs. dynamic imaging on particle deposition with varying numbers of intermediate lung volume increments. Airway geometry and regional ventilation at different time points were defined by four-dimensional (space and time) dynamic or static CT images. Laminar, transitional, and turbulent air flows were reproduced with a three-dimensional eddy-resolving computational fluid dynamics model. Finally, trajectories of particles were computed with the Lagrangian tracking algorithm. The results demonstrated that static-imaging-based models can contribute 7% uncertainty to overall particle distribution and deposition primarily due to regional flow rate (ventilation) differences as opposed to geometric alterations. The effect of rigid vs. deforming airways on serial distribution of particles over generations was significantly smaller than reported in a previous study that used the symmetric Weibel geometric model with smaller flow rate. Rigid vs. deforming airways were also shown to affect parallel particle distribution over lobes by 8% and the differences associated with use of static vs. dynamic imaging was 18%. These differences demonstrate that estimates derived from static vs. dynamic imaging can significantly affect the

  9. MR Imaging of Apparent 3He Gas Transport in Narrow Pipes and Rodent Airways

    SciTech Connect

    Minard, Kevin R.; Jacob, Rick E.; Laicher, Gernot; Einstein, Daniel R.; Kuprat, Andrew P.; Corley, Richard A.

    2008-10-01

    High sensitivity makes hyperpolarized 3He an attractive signal source for visualizing gas flow with magnetic resonance (MR) imaging. Its rapid Brownian motion, however, can blur observed flow lamina and alter measured diffusion rates when excited nuclei traverse shear-induced velocity gradients during data acquisition. Here, both effects are described analytically, and predicted values for measured transport during laminar flow through a straight, 3.2-mm-diameter pipe are validated using two-dimensional (2D) constant-time images of different binary gas mixtures. Results show explicitly how measured transport in narrow conduits is characterized by apparent values that depend on underlying gas dynamics and imaging time. In ventilated rats, this is found to obscure acquired airflow images. Flow splitting at airway branches is still evident, however, and use of 3D vector flow mapping is shown to provide a quantitative view of pulmonary gas supply that highlights the correlation of airflow dynamics with lung structure.

  10. Features of ion transport in perfluorinated ion-exchange membranes

    SciTech Connect

    Timashev, S.F.

    1986-02-01

    The conditions for functioning for various systems and devices electrolyzers for ''chlorate'' electrolysis, current sources, etc.) with perfluorinated ion-exchange membranes and septums are determined to a considerable degree by the physicochemical properties of the perfluorinated materials. In this work, on the basis of concepts developed in streaming theory as to the topology of the ''infinite clusters'' (ICs), the author defines more precisely the form of the preexponential dependence of ion transport coefficients and draws conclusions on the character of heat evolution in a perfluorinated membrane when an electric current is passed through the membrane.

  11. The Extracellular Microenvironment Explains Variations in Passive Drug Transport across Different Airway Epithelial Cell Types

    PubMed Central

    Min, Kyoung Ah; Talattof, Arjang; Tsume, Yasuhiro; Stringer, Kathleen A.; Yu, Jing-yu; Lim, Dong Hyun; Rosania, Gus R.

    2013-01-01

    Purpose We sought to identify key variables in cellular architecture and physiology that might explain observed differences in the passive transport properties of small molecule drugs across different airway epithelial cell types. Methods Propranolol (PR) was selected as a weakly basic, model compound to compare the transport properties of primary (NHBE) vs. tumor-derived (Calu-3) cells. Differentiated on Transwell™ inserts, the architecture of pure vs. mixed cell co-cultures was studied with confocal microscopy followed by quantitative morphometric analysis. Cellular pharmacokinetic modeling was used to identify parameters that differentially affect PR uptake and transport across these two cell types. Results Pure Calu-3 and NHBE cells possessed different structural and functional properties. Nevertheless, mixed Calu-3 and NHBE cell co-cultures differentiated as stable cell monolayers. After measuring the total mass of PR, the fractional areas covered by Calu-3 and NHBE cells allowed deconvoluting the transport properties of each cell type. Based on the apparent thickness of the unstirred, cell surface aqueous layer, local differences in extracellular microenvironment explained the measured variations in passive PR uptake and permeation between Calu-3 and NHBE cells. Conclusion Mixed cell co-cultures can be used to compare the local effects of the extracellular microenvironment on drug uptake and transport across two epithelial cell types. PMID:23708857

  12. Abnormal ion content, hydration and granule expansion of the secretory granules from cystic fibrosis airway glandular cells

    SciTech Connect

    Baconnais, S.; Delavoie, F. |; Zahm, J.M.; Milliot, M.; Castillon, N.; Terryn, C.; Banchet, V.; Michel, J.; Danos, O.; Merten, M.; Chinet, T.; Zierold, K.; Bonnet, N.; Puchelle, E. , E-Mail: edith.puchelle@univ-reims.fr; Balossier, G.

    2005-10-01

    The absence or decreased expression of cystic fibrosis transmembrane conductance regulator (CFTR) induces increased Na{sup +} absorption and hyperabsorption of the airway surface liquid (ASL) resulting in a dehydrated and hyperviscous ASL. Although the implication of abnormal airway submucosal gland function has been suggested, the ion and water content in the Cystic Fibrosis (CF) glandular secretory granules, before exocytosis, is unknown. We analyzed, in non-CF and CF human airway glandular cell lines (MM-39 and KM4, respectively), the ion content in the secretory granules by electron probe X-ray microanalysis and the water content by quantitative dark field imaging on freeze-dried cryosections. We demonstrated that the ion content (Na{sup +}, Mg{sup 2+}, P, S and Cl{sup -}) is significantly higher and the water content significantly lower in secretory granules from the CF cell line compared to the non-CF cell line. Using videomicroscopy, we observed that the secretory granule expansion was deficient in CF glandular cells. Transfection of CF cells with CFTR cDNA or inhibition of non-CF cells with CFTR{sub inh}-172, respectively restored or decreased the water content and granule expansion, in parallel with changes in ion content. We hypothesize that the decreased water and increased ion content in glandular secretory granules may contribute to the dehydration and increased viscosity of the ASL in CF.

  13. High energy H- ion transport and stripping

    SciTech Connect

    Chou, W.; /Fermilab

    2005-05-01

    During the Proton Driver design study based on an 8 GeV superconducting RF H{sup -} linac, a major concern is the feasibility of transport and injection of high energy H{sup -} ions because the energy of H{sup -} beam would be an order of magnitude higher than the existing ones. This paper will focus on two key technical issues: (1) stripping losses during transport (including stripping by blackbody radiation, magnetic field and residual gases); (2) stripping efficiency of carbon foil during injection.

  14. [Use of transport medium in sputum bacterial culture examination of lower airway infection].

    PubMed

    Muraki, Masato; Kitaguchi, Sayako; Ichihashi, Hideo; Tsuji, Fumio; Ohmori, Takashi; Haraguchi, Ryuta; Tohda, Yuji

    2006-06-01

    Our medical institution does not have a bacterial culture facility, requiring outsourcing of bacterial culture tests. Due to the time elapsed from the time of specimen collection to culturing, the identification of causative bacteria in respiratory tract infections tends to be difficult. We therefore used transport medium for sputum bacteria examinations. Expectorated purulent or purulent-mucous sputum specimens were collected from 32 patients with lower respiratory tract infection. We divided each of the sputum specimens into the two treatment groups: transport medium (Seedswab gamma2) ndar and stad disinfection container. Paired samples prepared from each patient were sent out for bacterial culture together. The time elapsed from collection to delivery to the lab were as follows: day 0 (same day, n = 14 patients), day 1 (n = 15), day 2 (n = 2), and day 3 (n = 1). The identified causative bacteria were Streptococcus pneumoniae (n = 6 patients), Haemophilus influenzae (n =5), Pseudomonas aeruginosa (n = 4), Staphylococcus aureus (n = 2), Moraxella catarrhalis (n = 2), Klebsiella pneumoniae (n = 1), and Streptococcus agalactiae (n = 1). Samples prepared by each of the two methods gave similar results. The utility of transport medium for examination of general bacteria for lower airway infection from sputum samples was not demonstrated. The rate of detection of bacteria decreased, when the transport of samples was delayed. Therefore, we need to send the sputum specimens as quickly as possible.

  15. Models of muco-ciliary transport and tracer dispersion in airway surface liquid

    NASA Astrophysics Data System (ADS)

    Smith, David; Blake, John; Gaffney, Eamonn

    2003-11-01

    The airways of the lungs are protected by a thin layer of mucus ( 5-15 microns) which traps dust and other pathogens. The mucus plaque is secreted by specialised epithelial cells, then transported axially towards the pharynx by the action of a dense mat of beating cilia. The cilia beat in a watery `periciliary liquid' (PCL). According to previous theoretical analysis, axial transport of PCL is relatively small, consistent with an impermeable epithelium. However, tracer dispersion experiments by Matsui et al. (1998) appear to show large axial transport, consistent with a highly permeable epithelium. The resolution of the question of the amount of absorption of PCL is related to the issue of the pathogensis of cystic fibrosis lung disease. We present the results of a new model of mucociliary transport which combines the best features of several very different previous models. We also present a model of tracer dispersion and show how this can be used to interpret the findings of Matsui et al. and relate them to our theoretical results.

  16. Functional activity of L-carnitine transporters in human airway epithelial cells.

    PubMed

    Ingoglia, Filippo; Visigalli, Rossana; Rotoli, Bianca Maria; Barilli, Amelia; Riccardi, Benedetta; Puccini, Paola; Dall'Asta, Valeria

    2016-02-01

    Carnitine plays a physiologically important role in the β-oxidation of fatty acids, facilitating the transport of long-chain fatty acids across the inner mitochondrial membrane. Distribution of carnitine within the body tissues is mainly performed by novel organic cation transporter (OCTN) family, including the isoforms OCTN1 (SLC22A4) and OCTN2 (SLC22A5) expressed in human. We performed here a characterization of carnitine transport in human airway epithelial cells A549, Calu-3, NCl-H441, and BEAS-2B, by means of an integrated approach combining data of mRNA/protein expression with the kinetic and inhibition analyses of L-[(3)H]carnitine transport. Carnitine uptake was strictly Na(+)-dependent in all cell models. In A549 and BEAS-2B cells, carnitine uptake was mediated by one high-affinity component (Km<2 μM) identifiable with OCTN2. In both these cell models, indeed, carnitine uptake was maximally inhibited by betaine and strongly reduced by SLC22A5/OCTN2 silencing. Conversely, Calu-3 and NCl-H441 exhibited both a high (Km~20 μM) and a low affinity (Km>1 mM) transport component. While the high affinity component is identifiable with OCTN2, the low affinity uptake is mediated by ATB(0,+), a Na(+), and Cl(-)-coupled transport system for neutral and cationic amino acids, as demonstrated by the inhibition by leucine and arginine, as well as by SLC6A14/ATB(0,+) silencing. The presence of this transporter leads to a massive accumulation of carnitine inside the cells and may be of peculiar relevance in pathologic conditions of carnitine deficiency, such as those associated to OCTN2 defects.

  17. High-powered pulsed-ion-beam acceleration and transport

    SciTech Connect

    Humphries, S. Jr.; Lockner, T.R.

    1981-11-01

    The state of research on intense ion beam acceleration and transport is reviewed. The limitations imposed on ion beam transport by space charge effects and methods available for neutralization are summarized. The general problem of ion beam neutralization in regions free of applied electric fields is treated. The physics of acceleration gaps is described. Finally, experiments on multi-stage ion acceleration are summarized.

  18. Ion transport through a graphene nanopore

    PubMed Central

    Hu, Guohui; Mao, Mao; Ghosal, Sandip

    2012-01-01

    Molecular dynamics simulation is utilized to investigate the ionic transport of NaCl in solution through a graphene nanopore under an applied electric field. Results show the formation of concentration polarization layers in the vicinity of the graphene sheet. The nonuniformity of the ion distribution gives rise to an electric pressure which drives vortical motions in the fluid if the electric field is sufficiently strong to overcome the influence of viscosity and thermal fluctuations. The relative importance of hydrodynamic transport and thermal fluctuations in determining the pore conductivity is investigated. A second important effect that is observed is the mass transport of water through the nanopore, with an average velocity proportional to the applied voltage and independent of the pore diameter. The flux arises as a consequence of the asymmetry in the ion distribution which can be attributed to differing mobilities of the sodium and chlorine ions, and, to the polarity of water molecules. The accumulation of liquid molecules in the vicinity of the nanopore due to reorientation of the water dipoles by the local electric field is seen to result in a local increase in the liquid density. Results confirm that the electric conductance is proportional to the nanopore diameter for the parameter regimes that we simulated. The occurrence of fluid vortices is found to result in an increase in the effective electrical conductance. PMID:22962262

  19. Actuation and ion transportation of polyelectrolyte gels

    NASA Astrophysics Data System (ADS)

    Hong, Wei; Wang, Xiao

    2010-04-01

    Consisting of charged network swollen with ionic solution, polyelectrolyte gels are known for their salient characters including ion exchange and stimuli responsiveness. The active properties of polyelectrolyte gels are mostly due to the migration of solvent molecules and solute ions, and their interactions with the fixed charges on the network. In this paper, we extend the recently developed nonlinear field theory of polyelectrolyte gels by assuming that the kinetic process is limited by the rate of the transportation of mobile species. To study the coupled mechanical deformation, ion migration, and electric field, we further specialize the model to the case of a laterally constrained gel sheet. By solving the field equations in two limiting cases: the equilibrium state and the steady state, we calculate the mechanical responses of the gel to the applied electric field, and study the dependency on various parameters. The results recover the behavior observed in experiments in which polyelectrolyte gels are used as actuators, such as the ionic polymer metal composite. In addition, the model reveals the mechanism of the selectivity in ion transportation. Although by assuming specific material laws, the reduced system resembles those in most existing models in the literature, the theory can be easily generalized by using more realistic free-energy functions and kinetic laws. The adaptability of the theory makes it suitable for studying many similar material systems and phenomena.

  20. Research of transport and deposition of aerosol in human airway replica

    NASA Astrophysics Data System (ADS)

    Lizal, Frantisek; Jedelsky, Jan; Elcner, Jakub; Durdina, Lukas; Halasova, Tereza; Mravec, Filip; Jicha, Miroslav

    2012-04-01

    Growing concern about knowledge of aerosol transport in human lungs is caused by great potential of use of inhaled pharmaceuticals. Second substantial motive for the research is an effort to minimize adverse effects of particular matter emitted by traffic and industry on human health. We created model geometry of human lungs to 7th generation of branching. This model geometry was used for fabrication of two physical models. The first one is made from thin walled transparent silicone and it allows a measurement of velocity and size of aerosol particles by Phase Doppler Anemometry (PDA). The second one is fabricated by stereolithographic method and it is designed for aerosol deposition measurements. We provided a series of measurements of aerosol transport in the transparent model and we ascertained remarkable phenomena linked with lung flow. The results are presented in brief. To gather how this phenomena affects aerosol deposition in human lungs we used the second model and we developed a technique for deposition fraction and deposition efficiency assessment. The results confirmed that non-symmetric and complicated shape of human airways essentially affects transport and deposition of aerosol. The research will now focus on deeper insight in aerosol deposition.

  1. Chibby functions to preserve normal ciliary morphology through the regulation of intraflagellar transport in airway ciliated cells.

    PubMed

    Siller, Saul S; Burke, Michael C; Li, Feng-Qian; Takemaru, Ken-Ichi

    2015-01-01

    Airway cilia provide the coordinated motive force for mucociliary transport, which prevents the accumulation of mucus, debris, pollutants, and bacteria in our respiratory tracts. As airway cilia are constantly exposed to the environment and, hence, are an integral component of the pathogenesis of several congenital and chronic pulmonary disorders, it is necessary to understand the molecular mechanisms that control ciliated cell differentiation and ciliogenesis. We have previously reported that loss of the basal body protein Chibby (Cby) results in chronic upper airway infection in mice due to a significant reduction in the number of airway cilia. In the present work, we demonstrate that Cby is required for normal ciliary structure and proper distribution of proteins involved in the bidirectional intraflagellar transport (IFT) system, which consists of 2 distinct sub-complexes, IFT-A and IFT-B, and is essential for ciliary biogenesis and maintenance. In fully differentiated ciliated cells, abnormal paddle-like cilia with dilated ciliary tips are observed in Cby-/- airways and primary cultures of mouse tracheal epithelial cells (MTECs). In addition, IFT88, an IFT-B sub-complex protein, robustly accumulates within the dilated tips of both multicilia in Cby-/- MTECs and primary cilia in Cby-/- mouse embryonic fibroblasts (MEFs). Furthermore, we show that only IFT-B components, including IFT20 and IFT57, but not IFT-A and Bardet-Biedl syndrome (BBS) proteins, amass with IFT88 in these distended tips in Cby-/- ciliated cells. Taken together, our findings suggest that Cby plays a role in the proper distribution of IFT particles to preserve normal ciliary morphology in airway ciliated cells.

  2. Transport coefficients of He+ ions in helium

    NASA Astrophysics Data System (ADS)

    Johnsen, Rainer; Viehland, Larry; Gray, Benjamin; Wright, Timothy

    2016-09-01

    New experimental mobilities of 4He+ in 4He at 298.7 K, as a function of E/N, have been determined. Uncertainties in the mobilities were reduced to about 1% by using a shuttered drift tube. Comparison with previously measured values show that only one set of previous data is reliable. We demonstrate that the mobilities and diffusion coeffcients of 4He+ in 4He can be calculated over wide ranges of E/N with high precision if accurate potential energy curves are available for the X2Σu+ and A2Σg+ states, and if one takes into account resonant charge transfer and corrects for quantum-mechanical effects. Potentials, obtained by extrapolation of results from d-aug-cc-pVXZ (X =6,7) basis sets using the CASSCF +MRCISD approach were found to be in exceptionally close agreement with the best potentials available (separately) and with experiment, and those were subsequently used in a new computer program to determine semi-classical phase shifts and transport cross sections, from which the gaseous ion transport coefficients are determined. A new set of data for the mobilities of alpha particles (He2+) ions was obtained as a byproduct of the experiment, but the transport theory has not yet been completed.

  3. Ion transport of Fr nuclear reaction products

    SciTech Connect

    Behr, J.A.; Cahn, S.B.; Dutta, S.B.

    1993-04-01

    Experiments planned for fundamental studies of radioactive atoms in magneto-optic traps require efficient deceleration and transport of nuclear reaction products to energies and locations where they can be trapped. The authors have built a low-energy ion transport system for Francium and other alkalis. A thick Au target is held on a W rod at 45{degrees} to the accelerator beam direction. The heavy-ion fusion reaction 115 MeV {sup 18}O + {sup 197}Au produces {sup 211,210,209}Fr recoil products which are stopped in the target. The target is heated to close to the melting point of Au to allow the Fr to diffuse to the surface, where it is ionized due to Au`s high work function, and is directly extracted by an electrode at 90{degrees} to the accelerator beam direction. The Fr is transported by electrostatic optics {approximately}1 m to a catcher viewed by an {alpha} detector: {ge}15% of the Fr produced in the target reaches the catcher. 2{times}10{sup 5} Fr/sec have been produced at the catcher, yielding at equilibrium a sample of 3x10{sup 7}Fr nuclei. This scheme physically decouples the target diffusion from the surface neutralization process, which can occur at a lower temperature more compatible with the neutral-atom trap.

  4. Establishment and transformation of telomerase-immortalized human small airway epithelial cells by heavy ions

    NASA Astrophysics Data System (ADS)

    Zhao, Y. L.; Piao, C. Q.; Hei, T. K.

    Previous studies from this laboratory have identified a number of causally linked genes including the novel tumor suppressor Betaig-h3 that were differentially expressed in radiation induced tumorigenic BEP2D cells. To extend these studies using a genomically more stable bronchial cell line, we show here that ectopic expression of the catalytic subunit of telomerase (hTERT) in primary human small airway epithelial (SAE) cells resulted in the generation of several clonal cell lines that have been continuously in culture for more than 250 population doublings and are considered immortal. Comparably-treated control SAE cells infected with only the viral vector senesced after less than 10 population doublings. The immortalized clones demonstrated anchorage dependent growth and are non-tumorigenic in nude mice. These cells show no alteration in the p53 gene but a decrease in p16 expression. Exponentially growing SAEh cells were exposed to graded doses of 1 GeV/nucleon of 56Fe ions accelerated at the Brookhaven National Laboratory. Irradiated cells underwent gradual phenotypic alterations after extensive in vitro cultivation. Transformed cells developed through a series of successive steps before becoming anchorage independent in semisolid medium. These findings indicate that hTERT-immortalized cells, being diploid and chromosomal stable, should be a useful model in assessing mechanism of radiation carcinogenesis.

  5. Glycobiology of ion transport in the nervous system.

    PubMed

    Nowycky, Martha C; Wu, Gusheng; Ledeen, Robert W

    2014-01-01

    The nervous system is richly endowed with large transmembrane proteins that mediate ion transport, including gated ion channels as well as energy-consuming pumps and transporters. Transport proteins undergo N-linked glycosylation which can affect expression, location, stability, and function. The N-linked glycans of ion channels are large, contributing between 5 and 50 % of their molecular weight. Many contain a high density of negatively charged sialic acid residues which modulate voltage-dependent gating of ion channels. Changes in the size and chemical composition of glycans are responsible for developmental and cell-specific variability in the biophysical and functional properties of many ion channels. Glycolipids, principally gangliosides, exert considerable influence on some forms of ion transport, either through direct association with ion transport proteins or indirectly through association with proteins that activate transport through appropriate signaling. Examples of both pumps and ion channels have been revealed which depend on ganglioside regulation. While some of these processes are localized in the plasma membrane, ganglioside-regulated ion transport can also occur at various loci within the cell including the nucleus. This chapter will describe ion channel and ion pump structures with a focus on the functional effects of glycosylation on ion channel availability and function, and effects of alterations in glycosylation on nervous system function. It will also summarize highlights of the research on glycolipid/ganglioside-mediated regulation of ion transport.

  6. Transport and Deposition of Welding Fume Agglomerates in a Realistic Human Nasal Airway.

    PubMed

    Tian, Lin; Inthavong, Kiao; Lidén, Göran; Shang, Yidan; Tu, Jiyuan

    2016-07-01

    Welding fume is a complex mixture containing ultra-fine particles in the nanometer range. Rather than being in the form of a singular sphere, due to the high particle concentration, welding fume particles agglomerate into long straight chains, branches, or other forms of compact shapes. Understanding the transport and deposition of these nano-agglomerates in human respiratory systems is of great interest as welding fumes are a known health hazard. The neurotoxin manganese (Mn) is a common element in welding fumes. Particulate Mn, either as soluble salts or oxides, that has deposited on the olfactory mucosa in human nasal airway is transported along the olfactory nerve to the olfactory bulb within the brain. If this Mn is further transported to the basal ganglia of the brain, it could accumulate at the part of the brain that is the focal point of its neurotoxicity. Accounting for various dynamic shape factors due to particle agglomeration, the current computational study is focused on the exposure route, the deposition pattern, and the deposition efficiency of the inhaled welding fume particles in a realistic human nasal cavity. Particular attention is given to the deposition pattern and deposition efficiency of inhaled welding fume agglomerates in the nasal olfactory region. For particles in the nanoscale, molecular diffusion is the dominant transport mechanism. Therefore, Brownian diffusion, hydrodynamic drag, Saffman lift force, and gravitational force are included in the model study. The deposition efficiencies for single spherical particles, two kinds of agglomerates of primary particles, two-dimensional planar and straight chains, are investigated for a range of primary particle sizes and a range of number of primary particles per agglomerate. A small fraction of the inhaled welding fume agglomerates is deposited on the olfactory mucosa, approximately in the range 0.1-1%, and depends on particle size and morphology. The strong size dependence of the deposition

  7. Transport coefficients of He(+) ions in helium.

    PubMed

    Viehland, Larry A; Johnsen, Rainer; Gray, Benjamin R; Wright, Timothy G

    2016-02-21

    This paper demonstrates that the transport coefficients of (4)He(+) in (4)He can be calculated over wide ranges of E/N, the ratio of the electrostatic field strength to the gas number density, with the same level of precision as can be obtained experimentally if sufficiently accurate potential energy curves are available for the X(2)Σu (+) and A(2)Σg (+) states and one takes into account resonant charge transfer. We start by computing new potential energy curves for these states and testing their accuracy by calculating spectroscopic values for the separate states. It is established that the potentials obtained by extrapolation of results from d-aug-cc-pVXZ (X = 6, 7) basis sets using the CASSCF+MRCISD approach are each in exceptionally close agreement with the best potentials available and with experiment. The potentials are then used in a new computer program to determine the semi-classical phase shifts and the transport cross sections, and from these the gaseous ion transport coefficients are determined. In addition, new experimental values are reported for the mobilities of (4)He(+) in (4)He at 298.7 K, as a function of E/N, where careful consideration is given to minimizing various sources of uncertainty. Comparison with previously measured values establishes that only one set of previous data is reliable. Finally, the experimental and theoretical ion transport coefficients are shown to be in very good to excellent agreement, once corrections are applied to account for quantum-mechanical effects.

  8. A highly potent agonist to protease-activated receptor-2 reveals apical activation of the airway epithelium resulting in Ca2+-regulated ion conductance

    PubMed Central

    Sherwood, Cara L.; Daines, Michael O.; Price, Theodore J.; Vagner, Josef

    2014-01-01

    The airway epithelium provides a barrier that separates inhaled air and its various particulates from the underlying tissues. It provides key physiological functions in both sensing the environment and initiating appropriate innate immune defenses to protect the lung. Protease-activated receptor-2 (PAR2) is expressed both apically and basolaterally throughout the airway epithelium. One consequence of basolateral PAR2 activation is the rapid, Ca2+-dependent ion flux that favors secretion in the normally absorptive airway epithelium. However, roles for apically expressed PAR2 activation have not been demonstrated, in part due to the lack of specific, high-potency PAR2 ligands. In the present study, we used the newly developed PAR2 ligand 2at-LIGRLO(PEG3-Pam)-NH2 in combination with well-differentiated, primary cultured airway epithelial cells from wild-type and PAR2−/− mice to examine the physiological role of PAR2 in the conducting airway after apical activation. Using digital imaging microscopy of intracellular Ca2+ concentration changes, we verified ligand potency on PAR2 in primary cultured airway cells. Examination of airway epithelial tissue in an Ussing chamber showed that apical activation of PAR2 by 2at-LIGRLO(PEG3-Pam)-NH2 resulted in a transient decrease in transepithelial resistance that was due to increased apical ion efflux. We determined pharmacologically that this increase in ion conductance was through Ca2+-activated Cl− and large-conductance K+ channels that were blocked with a Ca2+-activated Cl− channel inhibitor and clotrimazole, respectively. Stimulation of Cl− efflux via PAR2 activation at the airway epithelial surface can increase airway surface liquid that would aid in clearing the airway of noxious inhaled agents. PMID:25143347

  9. Ion age transport: developing devices beyond electronics

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2014-03-01

    There is more to current devices than conventional electronics. Increasingly research into the controlled movement of ions and molecules is enabling a range of new technologies. For example, as Weihua Guan, Sylvia Xin Li and Mark Reed at Yale University explain, 'It offers a unique opportunity to integrate wet ionics with dry electronics seamlessly'. In this issue they provide an overview of voltage-gated ion and molecule transport in engineered nanochannels. They cover the theory governing these systems and fabrication techniques, as well as applications, including biological and chemical analysis, and energy conversion [1]. Studying the movement of particles in nanochannels is not new. The transport of materials in rock pores led Klinkenberg to describe an analogy between diffusion and electrical conductivity in porous rocks back in 1951 [2]. And already in 1940, Harold Abramson and Manuel Gorin noted that 'When an electric current is applied across the living human skin, the skin may be considered to act like a system of pores through which transfer of substances like ragweed pollen extract may be achieved both by electrophoretic and by diffusion phenomena' [3]. Transport in living systems through pore structures on a much smaller scale has attracted a great deal of research in recent years as well. The selective transport of ions and small organic molecules across the cell membrane facilitates a number of functions including communication between cells, nerve conduction and signal transmission. Understanding these processes may benefit a wide range of potential applications such as selective separation, biochemical sensing, and controlled release and drug delivery processes. In Germany researchers have successfully demonstrated controlled ionic transport through nanopores functionalized with amine-terminated polymer brushes [4]. The polymer nanobrushes swell and shrink in response to changes in temperature, thus opening and closing the nanopore passage to ionic

  10. 78 FR 19024 - Lithium Ion Batteries in Transportation Public Forum

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... SAFETY BOARD Lithium Ion Batteries in Transportation Public Forum On Thursday and Friday, April 11-12, 2013, the National Transportation Safety Board (NTSB) will convene a forum titled, ``Lithium Ion... Inquiry. The forum is organized into three topic areas: Lithium ion battery design, development, and...

  11. Quantitative description of ion transport in Donnan ion exchange membrane systems

    SciTech Connect

    Rush, W.E.; Baker, B.L.

    1980-05-01

    Presented are simplified mass transfer techniques describing the transfer of ions in continuous ion selective membrane systems in which the resistance to ion transport through the membrane is small in relation to the resistance to ion transport in the solution phase. Methods are developed through the application of the transfer unit concept to the Donnan equilibrium. This equilibrium describes the equilibrium ion concentration on either side of an ion selective membrane. Data from one cation selection system is presented as evidence of the validity of these methods. Further techniques are shown that will allow the determination of ion transport given only equipment parameters and solution diffusivities. Supporting data are shown.

  12. Transport of Ions Across the Inner Envelope Membrane of Chloroplasts

    SciTech Connect

    McCarty, R. E.

    2004-06-02

    The technical report outlines the results of nine years of research on how ions cross the inner envelope membrane of chloroplasts. The ions include protons, nitrite, calcium and ferrous iron. Bicarbonate transport was also studied.

  13. Fabrication of catalyzed ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis; Kibby, Charles Leonard

    2013-06-04

    Process for fabricating a catalyzed ion transport membrane (ITM). In one embodiment, an uncatalyzed ITM is (a) contacted with a non-reducing gaseous stream while heating to a temperature and for a time period sufficient to provide an ITM possessing anion mobility; (b) contacted with a reducing gaseous stream for a time period sufficient to provide an ITM having anion mobility and essentially constant oxygen stoichiometry; (c) cooled while contacting the ITM with the reducing gaseous stream to provide an ITM having essentially constant oxygen stoichiometry and no anion mobility; and (d) treated by applying catalyst to at least one of (1) a porous mixed conducting multicomponent metallic oxide (MCMO) layer contiguous with a first side of a dense layer of MCMO and (2) a second side of the dense MCMO layer. In another embodiment, these steps are carried out in the alternative order of (a), (d), (b), and (c).

  14. Analysis of the theory of high energy ion transport

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1977-01-01

    Procedures for the approximation of the transport of high-energy ions are discussed on the basis of available data on ion nuclear reactions. A straightahead approximation appears appropriate for space applications. The assumption that the secondary-ion-fragment velocity is equal to that of the fragmenting nucleus is inferior to straightahead theory but is of sufficient accuracy if the primary ions display a broad energy spectrum. An iterative scheme for the solution of the inhomogenous integral transport equations holds promise for practical calculation. A model calculation shows that multiple charged ion fragments penetrate to greater depths in comparison with the free path of a primary heavy ion.

  15. Influence of ion streaming instabilities on transport near plasma boundaries

    NASA Astrophysics Data System (ADS)

    Baalrud, Scott D.

    2016-04-01

    Plasma boundary layers are susceptible to electrostatic instabilities driven by ion flows in presheaths and, when present, these instabilities can influence transport. In plasmas with a single species of positive ion, ion-acoustic instabilities are expected under conditions of low pressure and large electron-to-ion temperature ratio ({{T}e}/{{T}i}\\gg 1 ). In plasmas with two species of positive ions, ion-ion two-stream instabilities can also be excited. The stability phase-space is characterized using the Penrose criterion and approximate linear dispersion relations. Predictions for how these instabilities affect ion and electron transport in presheaths, including rapid thermalization due to instability-enhanced collisions and an instability-enhanced ion-ion friction force, are briefly reviewed. Recent experimental tests of these predictions are discussed along with research needs required for further validation. The calculated stability boundaries provide a guide to determine the experimental conditions at which these effects can be expected.

  16. Membrane transport of several ions during peritoneal dialysis: mathematical modeling.

    PubMed

    Galach, Magda; Waniewski, Jacek

    2012-09-01

    Peritoneal dialysis utilizes a complex mass exchange device created by natural permselective membranes of the visceral and abdominal muscle tissues. In mathematical modeling of solute transport during peritoneal dialysis, each solute is typically considered as a neutral, independent particle. However, such mathematical models cannot predict transport parameters for small ions. Therefore, the impact of the electrostatic interactions between ions on the estimated transport parameters needs to be investigated. In this study, transport of sodium, chloride, and a third ion through a permselective membrane with characteristics of the peritoneal transport barrier was described using two models: a model with the Nernst-Planck (NP) equations for a set of interacting ions and a model with combined diffusive and convective transport of each ion separately (DC). Transport parameters for the NP model were calculated using the pore theory, while the parameters for the DC model were estimated by fitting the model to the predictions from the NP model. Solute concentration profiles in the membrane obtained by computer simulations based on these two models were similar, whereas the transport parameters (diffusive mass transport parameters and sieving coefficients) were generally different. The presence of the third ion could substantially modify the values of diffusive mass parameter for sodium and chloride ions estimated using the DC model compared with those predicted by NP. The extent of this modification depended on the molecular mass and concentration of the third ion, and the rate of volumetric flow. Closed formulas for the transport parameters of the DC model in terms of the NP model parameters, ion concentration profiles in the membrane, and volumetric flow across the membrane were derived. Their reliable approximations, which include only boundary ion concentrations instead of spatial intramembrane concentration profiles, were formulated. The precision of this approximation

  17. Ion transport in graphene nanofluidic channels.

    PubMed

    Xie, Quan; Xin, Fang; Park, Hyung Gyu; Duan, Chuanhua

    2016-12-01

    Carbon nanofluidic structures made of carbon nanotubes or graphene/graphene oxide have shown great promise in energy and environment applications due to the newly discovered fast and selective mass transport. However, they have yet to be utilized in nanofluidic devices for lab-on-a-chip applications because of great challenges in their fabrication and integration. Herein we report the fabrication of two-dimensional planar graphene nanochannel devices and the study of ion transport inside a graphene nanochannel array. A MEMS fabrication process that includes controlled nanochannel etching, graphene wet transfer, and vacuum anodic bonding is developed to fabricate graphene nanochannels where graphene conformally coats the channel surfaces. We observe higher ionic conductance inside the graphene nanochannels compared with silica nanochannels with the same geometries at low electrolyte concentrations (10(-6) M-10(-2) M). Enhanced electroosmotic flow due to the boundary slip at graphene surfaces is attributed to the measured higher conductance in the graphene nanochannels. Our results also suggest that the surface charge on the graphene surface, originating from the dissociation of oxygen-containing functional groups, is crucial to the enhanced electroosmotic flow inside the nanochannels.

  18. Coupled ion Binding and Structural Transitions Along the Transport Cycle of Glutamate Transporters

    SciTech Connect

    Verdon, Gregory; Oh, SeCheol; Serio, Ryan N.; Boudker, Olga

    2014-05-19

    Membrane transporters that clear the neurotransmitter glutamate from synapses are driven by symport of sodium ions and counter-transport of a potassium ion. Previous crystal structures of a homologous archaeal sodium and aspartate symporter showed that a dedicated transport domain carries the substrate and ions across the membrane. We report new crystal structures of this homologue in ligand-free and ions-only bound outward- and inward-facing conformations. We then show that after ligand release, the apo transport domain adopts a compact and occluded conformation that can traverse the membrane, completing the transport cycle. Sodium binding primes the transport domain to accept its substrate and triggers extracellular gate opening, which prevents inward domain translocation until substrate binding takes place. Moreover, we describe a new cation-binding site ideally suited to bind a counter-transported ion. We suggest that potassium binding at this site stabilizes the translocation-competent conformation of the unloaded transport domain in mammalian homologues.

  19. Ion transport in a pH-regulated nanopore.

    PubMed

    Yeh, Li-Hsien; Zhang, Mingkan; Qian, Shizhi

    2013-08-06

    Fundamental understanding of ion transport phenomena in nanopores is crucial for designing the next-generation nanofluidic devices. Due to surface reactions of dissociable functional groups on the nanopore wall, the surface charge density highly depends upon the proton concentration on the nanopore wall, which in turn affects the electrokinetic transport of ions, fluid, and particles within the nanopore. Electrokinetic ion transport in a pH-regulated nanopore, taking into account both multiple ionic species and charge regulation on the nanopore wall, is theoretically investigated for the first time. The model is verified by the experimental data of nanopore conductance available in the literature. The results demonstrate that the spatial distribution of the surface charge density at the nanopore wall and the resulting ion transport phenomena, such as ion concentration polarization (ICP), ion selectivity, and conductance, are significantly affected by the background solution properties, such as the pH and salt concentration.

  20. NAD(P)H oxidase and renal epithelial ion transport

    PubMed Central

    Schreck, Carlos

    2011-01-01

    A fundamental requirement for cellular vitality is the maintenance of plasma ion concentration within strict ranges. It is the function of the kidney to match urinary excretion of ions with daily ion intake and nonrenal losses to maintain a stable ionic milieu. NADPH oxidase is a source of reactive oxygen species (ROS) within many cell types, including the transporting renal epithelia. The focus of this review is to describe the role of NADPH oxidase-derived ROS toward local renal tubular ion transport in each nephron segment and to discuss how NADPH oxidase-derived ROS signaling within the nephron may mediate ion homeostasis. In each case, we will attempt to identify the various subunits of NADPH oxidase and reactive oxygen species involved and the ion transporters, which these affect. We will first review the role of NADPH oxidase on renal Na+ and K+ transport. Finally, we will review the relationship between tubular H+ efflux and NADPH oxidase activity. PMID:21270341

  1. Ion transport through electrolyte/polyelectrolyte multi-layers

    PubMed Central

    Femmer, Robert; Mani, Ali; Wessling, Matthias

    2015-01-01

    Ion transport of multi-ionic solutions through layered electrolyte and polyelectrolyte structures are relevant in a large variety of technical systems such as micro and nanofluidic devices, sensors, batteries and large desalination process systems. We report a new direct numerical simulation model coined EnPEn: it allows to solve a set of first principle equations to predict for multiple ions their concentration and electrical potential profiles in electro-chemically complex architectures of n layered electrolytes E and n polyelectrolytes PE. EnPEn can robustly capture ion transport in sub-millimeter architectures with submicron polyelectrolyte layers. We proof the strength of EnPEn for three yet unsolved architectures: (a) selective Na over Ca transport in surface modified ion selective membranes, (b) ion transport and water splitting in bipolar membranes and (c) transport of weak electrolytes. PMID:26111456

  2. Free Energy Wells and Barriers to Ion Transport Across Membranes

    NASA Astrophysics Data System (ADS)

    Rempe, Susan

    2014-03-01

    The flow of ions across cellular membranes is essential to many biological processes. Ion transport is also important in synthetic materials used as battery electrolytes. Transport often involves specific ions and fast conduction. To achieve those properties, ion conduction pathways must solvate specific ions by just the ``right amount.'' The right amount of solvation avoids ion traps due to deep free energy wells, and avoids ion block due to high free energy barriers. Ion channel proteins in cellular membranes demonstrate this subtle balance in solvation of specific ions. Using ab initio molecular simulations, we have interrogated the link between binding site structure and ion solvation free energies in biological ion binding sites. Our results emphasize the surprisingly important role of the environment that surrounds ion-binding sites for fast transport of specific ions. We acknowledge support from Sandia's LDRD program. Sandia National Labs is a multi-program laboratory operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the US DOE's NNSA under contract DE-AC04-94AL85000.

  3. Nondiffusive transport regimes for suprathermal ions in turbulent plasmas.

    PubMed

    Bovet, A; Fasoli, A; Ricci, P; Furno, I; Gustafson, K

    2015-04-01

    The understanding of the transport of suprathermal ions in the presence of turbulence is important for fusion plasmas in the burning regime that will characterize reactors, and for space plasmas to understand the physics of particle acceleration. Here, three-dimensional measurements of a suprathermal ion beam in the toroidal plasma device TORPEX are presented. These measurements demonstrate, in a turbulent plasma, the existence of subdiffusive and superdiffusive transport of suprathermal ions, depending on their energy. This result stems from the unprecedented combination of uniquely resolved measurements and first-principles numerical simulations that reveal the mechanisms responsible for the nondiffusive transport. The transport regime is determined by the interaction of the suprathermal ion orbits with the turbulent plasma dynamics, and is strongly affected by the ratio of the suprathermal ion energy to the background plasma temperature.

  4. The effect of varying tonicity on nasal epithelial ion transport in cystic fibrosis.

    PubMed

    Davies, Michael G; Geddes, Duncan M; Alton, Eric W F W

    2005-04-01

    There is reasonable evidence that the fluid layer of the airway epithelium is exposed to changes in tonicity. The inspiration of cool, dry air causes an increased tonicity, whereas this tonicity may be decreased by glandular secretions. We hypothesized that the cystic fibrosis transmembrane conductance regulator (CFTR) is involved in the responses to changes in tonicity and that these may be altered in cystic fibrosis (CF). Using nasal potential difference (PD) protocols in 8 subjects with CF and 10 subjects without CF, we investigated the effects of hyper- and hypotonicity on ion transport processes. We found significant differences between the two groups. In response to a hypertonic challenge (mannitol 500 mM), there was a decreased PD in both groups, suggesting decreased sodium absorption. However, after the prior inhibition of sodium transport using amiloride, there was an increased PD in the non-CF group alone, suggesting CFTR-mediated chloride secretion in response to luminal hypertonicity. For the hypotonic solution, we found that hypotonicity inhibited CFTR-mediated chloride secretion in the non-CF group. These data suggest that CFTR plays a role in the recognition and regulation of airway fluid tonicity.

  5. Action of N-acylated ambroxol derivatives on secretion of chloride ions in human airway epithelia.

    PubMed

    Yamada, Takahiro; Takemura, Yoshizumi; Niisato, Naomi; Mitsuyama, Etsuko; Iwasaki, Yoshinobu; Marunaka, Yoshinori

    2009-03-13

    We report the effects of new N-acylated ambroxol derivatives (TEI-588a, TEI-588b, TEI-589a, TEI-589b, TEI-602a and TEI-602b: a, aromatic amine-acylated derivative; b, aliphatic amine-acylated derivative) induced from ambroxol (a mucolytic agent to treat human lung diseases) on Cl(-) secretion in human submucosal serous Calu-3 cells under a Na(+)/K(+)/2Cl(-) cotransporter-1 (NKCC1)-mediated hyper-secreting condition. TEI-589a, TEI-589b and TEI-602a diminished hyper-secretion of Cl(-) by diminishing the activity of NKCC1 without blockade of apical Cl(-) channel (TEI-589a>TEI-602a>TEI-589b), while any other tested compounds including ambroxol had no effects on Cl(-) secretion. These indicate that the inhibitory action of an aromatic amine-acylated derivative on Cl(-) secretion is stronger that that of an aliphatic amine-acylated derivative, and that 3-(2,5-dimethyl)furoyl group has a strong action in inhibition of Cl(-) secretion than cyclopropanoyl group. We here indicate that TEI-589a, TEI-589b and TEI-602a reduce hyper-secretion to an appropriate level in the airway, providing a possibility that the compound can be an effective drug in airway obstructive diseases including COPD by reducing the airway resistance under a hyper-secreting condition.

  6. The Transport of Ions Across Plant Cell Membranes.

    ERIC Educational Resources Information Center

    Baker, D. A.

    1981-01-01

    Presented is one of a series of articles designed to help science teachers keep current on ideas in specific areas of biology. This article provides information about ion transport in plant cells. (PB)

  7. Energetic ion transport by microturbulence is insignificant in tokamaks

    SciTech Connect

    Pace, D. C.; Petty, C. C.; Staebler, G. M.; Van Zeeland, M. A.; Waltz, R. E.; Austin, M. E.; Bass, E. M.; Budny, R. V.; Gorelenkova, M.; Grierson, B. A.; McCune, D. C.; Yuan, X.; Heidbrink, W. W.; Muscatello, C. M.; Zhu, Y. B.; Hillesheim, J. C.; Rhodes, T. L.; Wang, G.; Holcomb, C. T.; McKee, G. R.; and others

    2013-05-15

    Energetic ion transport due to microturbulence is investigated in magnetohydrodynamic-quiescent plasmas by way of neutral beam injection in the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)]. A range of on-axis and off-axis beam injection scenarios are employed to vary relevant parameters such as the character of the background microturbulence and the value of E{sub b}/T{sub e}, where E{sub b} is the energetic ion energy and T{sub e} the electron temperature. In all cases, it is found that any transport enhancement due to microturbulence is too small to observe experimentally. These transport effects are modeled using numerical and analytic expectations that calculate the energetic ion diffusivity due to microturbulence. It is determined that energetic ion transport due to coherent fluctuations (e.g., Alfvén eigenmodes) is a considerably larger effect and should therefore be considered more important for ITER.

  8. Solid Electrolytes: Alkali-Ion Transport in Skeleton Structures

    DTIC Science & Technology

    1976-06-30

    side if necessary and identify by block number) solid electrolytes alkali -ion transport sodium -sulfur batteries fast -ion transport O ABSTRACT...molten Na 2 S4 for 10 days at 400’C indicated chemical stability, similar testing i-1 molten sodium was initiated, and it has been established that...tests under dynamic conditions are necessary before long-term stability of tile material can be established. Tests for stability in molten sodium have

  9. AMPK agonists ameliorate sodium and fluid transport and inflammation in cystic fibrosis airway epithelial cells.

    PubMed

    Myerburg, Michael M; King, J Darwin; Oyster, Nicholas M; Fitch, Adam C; Magill, Amy; Baty, Catherine J; Watkins, Simon C; Kolls, Jay K; Pilewski, Joseph M; Hallows, Kenneth R

    2010-06-01

    The metabolic sensor AMP-activated kinase (AMPK) inhibits both the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) Cl(-) channel and epithelial Na(+) channel (ENaC), and may inhibit secretion of proinflammatory cytokines in epithelia. Here we have tested in primary polarized CF and non-CF human bronchial epithelial (HBE) cells the effects of AMPK activators, metformin and 5-aminoimidazole-4-carboxamide-1-beta-D-riboside (AICAR), on various parameters that contribute to CF lung disease: ENaC-dependent short-circuit currents (I(sc)), airway surface liquid (ASL) height, and proinflammatory cytokine secretion. AMPK activation after overnight treatment with either metformin (2-5 mM) or AICAR (1 mM) substantially inhibited ENaC-dependent I(sc) in both CF and non-CF airway cultures. Live-cell confocal images acquired 60 minutes after apical addition of Texas Red-dextran-containing fluid revealed significantly greater ASL heights after AICAR and metformin treatment relative to controls, suggesting that AMPK-dependent ENaC inhibition slows apical fluid reabsorption. Both metformin and AICAR decreased secretion of various proinflammatory cytokines, both with and without prior LPS stimulation. Finally, prolonged exposure to more physiologically relevant concentrations of metformin (0.03-1 mM) inhibited ENaC currents and decreased proinflammatory cytokine levels in CF HBE cells in a dose-dependent manner. These findings suggest that novel therapies to activate AMPK in the CF airway may be beneficial by blunting excessive sodium and ASL absorption and by reducing excessive airway inflammation, which are major contributors to CF lung disease.

  10. AMPK Agonists Ameliorate Sodium and Fluid Transport and Inflammation in Cystic Fibrosis Airway Epithelial Cells

    PubMed Central

    Myerburg, Michael M.; King, J Darwin; Oyster, Nicholas M.; Fitch, Adam C.; Magill, Amy; Baty, Catherine J.; Watkins, Simon C.; Kolls, Jay K.; Pilewski, Joseph M.; Hallows, Kenneth R.

    2010-01-01

    The metabolic sensor AMP-activated kinase (AMPK) inhibits both the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) Cl− channel and epithelial Na+ channel (ENaC), and may inhibit secretion of proinflammatory cytokines in epithelia. Here we have tested in primary polarized CF and non-CF human bronchial epithelial (HBE) cells the effects of AMPK activators, metformin and 5-aminoimidazole-4-carboxamide-1-β-D-riboside (AICAR), on various parameters that contribute to CF lung disease: ENaC-dependent short-circuit currents (Isc), airway surface liquid (ASL) height, and proinflammatory cytokine secretion. AMPK activation after overnight treatment with either metformin (2–5 mM) or AICAR (1 mM) substantially inhibited ENaC-dependent Isc in both CF and non-CF airway cultures. Live-cell confocal images acquired 60 minutes after apical addition of Texas Red–dextran-containing fluid revealed significantly greater ASL heights after AICAR and metformin treatment relative to controls, suggesting that AMPK-dependent ENaC inhibition slows apical fluid reabsorption. Both metformin and AICAR decreased secretion of various proinflammatory cytokines, both with and without prior LPS stimulation. Finally, prolonged exposure to more physiologically relevant concentrations of metformin (0.03–1 mM) inhibited ENaC currents and decreased proinflammatory cytokine levels in CF HBE cells in a dose-dependent manner. These findings suggest that novel therapies to activate AMPK in the CF airway may be beneficial by blunting excessive sodium and ASL absorption and by reducing excessive airway inflammation, which are major contributors to CF lung disease. PMID:19617399

  11. Bio-inspired smart single asymmetric hourglass nanochannels for continuous shape and ion transport control.

    PubMed

    Zhang, Huacheng; Hou, Xu; Yang, Zhe; Yan, Dadong; Li, Lin; Tian, Ye; Wang, Huanting; Jiang, Lei

    2015-02-18

    Inspired by biological asymmetric ion channels, new shape-tunable and pH-responsive asymmetric hourglass single nanochannel systems demonstrate unique ion-transport properties. It is found that the change in shape and pH cooperatively control the ion transport within the nanochannel ranging from asymmetric shape with asymmetric ion transport, to asymmetric shape with symmetric ion transport and symmetric shape with symmetric ion transport.

  12. Ozone activates airway nerves via the selective stimulation of TRPA1 ion channels.

    PubMed

    Taylor-Clark, Thomas E; Undem, Bradley J

    2010-02-01

    Inhalation of ozone is a major health risk in industrialized nations. Ozone can impair lung function and induce respiratory symptoms through sensory neural-mediated pathways, yet the specific interaction of ozone with airway sensory nerves has yet to be elucidated. Here we demonstrate, using a vagally innervated ex vivo tracheal-lung mouse preparation, that ozone selectively and directly evokes action potential discharge in a subset of nociceptive bronchopulmonary nerves, namely slow conducting C-fibres. Sensitivity to ozone correlated with the transient receptor potential (TRP) A1 agonist, cinnamaldehyde, with ozone having no effect on cinnamaldehyde-insensitive fibres. C-fibre responses to ozone were abolished by ruthenium red (TRP inhibitor). Ozone also stimulated a subset of nociceptive sensory neurones isolated from vagal ganglia of wild-type mice, but failed to activate neurones isolated from transient receptor potential ankyrin 1 (TRPA1) knockout mice. Ozone activated HEK293 cells transfected with TRPA1, but failed to activate non-transfected HEK293 or HEK293 transfected with the capsaicin-sensitive transient receptor potential vanilloid 1 (TRPV1) channel. Thus, ozone is not an indiscriminate neuronal activator, but rather it potently and selectively activates a subset of airway C-fibres by directly stimulating TRPA1.

  13. Ion transport during growth and differentiation.

    PubMed

    Venkatasubramanian, J; Sahi, J; Rao, M C

    2000-01-01

    The major function of the adult colon is to reabsorb fluid from the chyme. This ability to conserve salt and water is especially important in newborns, where reserves are small and diarrhea is frequent. Although much is known about regulation of Cl- transport in the adult colon, postnatal changes in electrolyte transport are not well characterized. We have established an in vitro model to study colonic epithelial cells (colonocytes) at different stages of development. Primary cultures were isolated from newborn, weanling, and adult rabbit colon and properties such as growth and Cl- transport characterized. The isolation procedure yielded a crypt-enriched population of cells, and the cell yield per gram mucosa increased with age. The colonocytes also showed an age-related decrease in attachment to extracellular matrix, with maximum attachment seen with Matrigel and collagen IV. The crypt enrichment was confirmed by demonstrating that the cell population was capable of transporting Cl-, which was stimulated by agents such as forskolin and phorbol esters at all ages. Agents that increased intracellular cGMP, however, did not increase Cl- transport at any age. It was interesting to observe that the secondary bile acid, taurodeoxycholate, stimulated Cl- transport only in the adult but not newborn or weanling distal colonocytes. We have demonstrated that rabbit distal colonocytes can be kept viable in culture and transport Cl- at all ages. However, the regulation of Cl- transport changes during ontogeny and depends on the signaling pathway.

  14. Stormtime transport of ring current and radiation belt ions

    NASA Technical Reports Server (NTRS)

    Chen, Margaret W.; Schulz, Michael; Lyons, Larry R.; Gorney, David J.

    1993-01-01

    A dynamical guiding-center simulation model is used to study the stormtime ion transport which leads to the formation of the ring current and diffusion in the radiation belts. Representative ions guiding-center motion in response to model storm-associated impulses in the convection electric field is traced for a range of ion mu values. The present numerical results are compared with previously formulated limiting idealization of particle transport in order to assess the limits of validity of these approximations. For ions having drift periods that exceed the duration of the main phase of the storm, their inward transport to form the stormtime ring current is appropriately described as direct convective access. For ions having drift periods comparable to the duration of the main phase of the storm, there is a transition between direct convective access and transport that resembles radial diffusion. Lower-energy ring-current ions at L of about 3 are freshly injected there from open adiabatic trajectories, whereas the higher-energy ring-current population consists of a mixture of freshly injected and previously trapped ions.

  15. Ion transport controlled by nanoparticle-functionalized membranes.

    PubMed

    Barry, Edward; McBride, Sean P; Jaeger, Heinrich M; Lin, Xiao-Min

    2014-12-17

    From proton exchange membranes in fuel cells to ion channels in biological membranes, the well-specified control of ionic interactions in confined geometries profoundly influences the transport and selectivity of porous materials. Here we outline a versatile new approach to control a membrane's electrostatic interactions with ions by depositing ligand-coated nanoparticles around the pore entrances. Leveraging the flexibility and control by which ligated nanoparticles can be synthesized, we demonstrate how ligand terminal groups such as methyl, carboxyl and amine can be used to tune the membrane charge density and control ion transport. Further functionality, exploiting the ligands as binding sites, is demonstrated for sulfonate groups resulting in an enhancement of the membrane charge density. We then extend these results to smaller dimensions by systematically varying the underlying pore diameter. As a whole, these results outline a previously unexplored method for the nanoparticle functionalization of membranes using ligated nanoparticles to control ion transport.

  16. Ambipolarity and transport with resonant ion diffusion in EBT

    SciTech Connect

    Jaeger, E.F.; Hedrick, C.L.; Hastings, D.E.; Tolliver, J.S.

    1983-10-01

    Using recently derived analytic expressions for resonant and nonresonant neoclassical transport coefficients in EBT, we calculate the ambipolar potential required to maintain quasi-charge neutrality in the presence of a high-energy ion tail produced by nonclassical heating. The electric field obeys a differential rather than an algebraic equation. Solution of this equation gives a potential proportional to the local magnetic field strength and thus a rigid rotation of low-energy ions near the magnetic axis. Radial-transport calculations using this potential give improved agreement with experimental data for neutral density and particle lifetime. However, high-energy ion orbits in the calculated potential exhibit banana widths larger than assumed in the resonant transport theory. The required density of high-energy ions is therefore larger than would be expected if realistic banana widths could be included.

  17. Atomic transport in ion mixed Pd/Co bilayer

    NASA Astrophysics Data System (ADS)

    Chae, K. H.; Jang, H. G.; Song, J. H.; Woo, J. J.; Choi, B. S.; Jeong, K.; Whang, C. N.

    1993-06-01

    Isotropic and anisotropic atomic transport in an ion beam mixed Pd/Co bilayer have been studied from the shifts of a marker layer in Rutherford backscattering spectroscopy. A thin layer of Au (1 nm) was embedded as a marker at the interface between Pd and Co layers. 80 keV Ar + was used to irradiate the marker sample at 90K. The Pd/Co system shows near isotropic atomic transport ( JPd/ JCo = 0.86) due to the thermal spike effect. We present a simple relationship between the ration of atomic fluxes induced by ion mixing and the activation energies for the normal impurity diffusion of constituents in a bilayer to describe quantitatively the isotropic and anisotropic atomic transport in thermal spike induced ion mixing. Thermal spike induced atomic transport is closely related with the activation energy for normal impurity diffusion.

  18. Heterogeneous processes affecting metal ion transport in the presence of organic ligands: Reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Kantar, Cetin

    2007-04-01

    The development of models to accurately simulate metal ion transport through saturated systems under variable chemical conditions, e.g., in systems containing organic ligands (L) such as natural organic matter (NOM), has two essential aspects: (1) establishing the ability to simulate metal ion sorption to aquifer solids over a range of metal/ligand ratios; and (2) to incorporate this ability to simulate metal speciation over a range in chemical conditions (e.g., pH, ligand activity) into mass transport models. Modeling approaches to evaluate metal ion sorption and transport in the presence of NOM include: (1) isotherm-based transport models, and (2) multicomponent (MC) transport models. The accuracy of transport models depends on how well the chemical interactions affecting metal ion transport in the presence of organic ligands (e.g., metal/ligand complexation) are described in transport equations. The isotherm-based transport models often fail to accurately describe metal ion transport in the presence of NOM since these models treat NOM as a single solute despite the fact that NOM is a multicomponent mixture of subcomponents with different chemical and polyfunctional behavior. On the other hand, the calculations presented in this study suggest that a multicomponent reactive transport model, in conjunction with a mechanistic modeling approach for the description of metal ion binding by NOM in a manner conducive to the application of surface complexation modeling (SCM), can effectively be used as an important predictive tool in simulating metal ion sorption and transport under variable chemical conditions in the presence of NOM.

  19. Microsecond simulations of DNA and ion transport in nanopores with novel ion-ion and ion-nucleotides effective potentials.

    PubMed

    De Biase, Pablo M; Markosyan, Suren; Noskov, Sergei

    2014-04-05

    We developed a novel scheme based on the grand-canonical Monte Carlo/Brownian dynamics simulations and have extended it to studies of ion currents across three nanopores with the potential for single-stranded DNA (ssDNA) sequencing: solid-state nanopore Si₃N₄, α-hemolysin, and E111N/M113Y/K147N mutant. To describe nucleotide-specific ion dynamics compatible with ssDNA coarse-grained model, we used the inverse Monte Carlo protocol, which maps the relevant ion-nucleotide distribution functions from all-atom molecular dynamics (MD) simulations. Combined with the previously developed simulation platform for Brownian dynamics simulations of ion transport, it allows for microsecond- and millisecond-long simulations of ssDNA dynamics in the nanopore with a conductance computation accuracy that equals or exceeds that of all-atom MD simulations. In spite of the simplifications, the protocol produces results that agree with the results of previous studies on ion conductance across open channels and provide direct correlations with experimentally measured blockade currents and ion conductances that have been estimated from all-atom MD simulations.

  20. Parallel Transport Quantum Logic Gates with Trapped Ions

    NASA Astrophysics Data System (ADS)

    de Clercq, Ludwig E.; Lo, Hsiang-Yu; Marinelli, Matteo; Nadlinger, David; Oswald, Robin; Negnevitsky, Vlad; Kienzler, Daniel; Keitch, Ben; Home, Jonathan P.

    2016-02-01

    We demonstrate single-qubit operations by transporting a beryllium ion with a controlled velocity through a stationary laser beam. We use these to perform coherent sequences of quantum operations, and to perform parallel quantum logic gates on two ions in different processing zones of a multiplexed ion trap chip using a single recycled laser beam. For the latter, we demonstrate individually addressed single-qubit gates by local control of the speed of each ion. The fidelities we observe are consistent with operations performed using standard methods involving static ions and pulsed laser fields. This work therefore provides a path to scalable ion trap quantum computing with reduced requirements on the optical control complexity.

  1. Ion mixing, hydration, and transport in aqueous ionic systems

    SciTech Connect

    Tse, Ying-Lung Steve; Voth, Gregory A.; Witten, Thomas A.

    2015-05-14

    The enhancement effect on the ion mobility of fluoride (and that of chloride) in a polycationic system, as the chloride content increases, is shown to also exist in other more simple ionic systems with cations such as the cesium ion and an organic ammonium ion. As the chloride content increases, in addition to the finding that there is more unbound water associated with the cation, we also observe that the average lifetime of a hydrogen bond decreases. This change to the hydrogen bonds is correlated to significant changes to both the structural and dynamical properties of water. The more disordered water structure and faster water dynamics are hypothesized to be also responsible for the enhanced ion mobilities. Furthermore, when either the chloride content or hydration level is changed, the self-diffusion constant of each co-ion changes by almost the same factor, implying the existence of a single universal transport mechanism that determines ion mobilities.

  2. Ion transport in circulatory and/or septic shock

    SciTech Connect

    Sayeed, M.M.

    1987-05-01

    This review surveys investigations of membrane ion transport in animals in hemorrhagic, endotoxic, or bacteremic shock. The focus of the review is on ion transport studies in the skeletal muscle and liver. Skeletal muscle Na/sup +/-K/sup +/ transport alterations have been shown during the induction of shock via hemorrhage, endotoxin, or live Gram-negative bacteria in the rodent, canine, and primate species. These alterations include impairment of active cellular K/sup +/ accumulation, increased permeability to /sup 24/Na/sup +/ and Cl/sup -/, and membrane depolarization. The ion transport alterations in the skeletal muscle are compatible with movement of extracellular fluid into the intracellular compartment. Such fluid movements can potentially lead to decreases in circulating plasma volume and thus to circulatory deficits in shock. Studies in the liver of rats subjected to hemorrhagic or endotoxic shock indicated the failure of electrogenic Na/sup +/ pump. Although the hepatic cellular membrane permeability to Na/sup +/ relative to permeability to K/sup +/ appeared unaltered in hemorrhagic shock, endotoxic shock caused an increase in permeability to Na/sup +/. Hepatic cellular /sup 45/Ca/sup +/ regulation also appeared to be adversely affected during endotoxic shock. Alterations in hepatic Na/sup +/-K/sup +/ transport and Ca/sup +/ regulation could contribute to impairment in hepatic glucose production during shock. Although mechanisms of altered membrane ion transport during shock states remain unknown, such changes could occur prior to any substantial loss of cellular metabolic energy.

  3. Membrane ion transport in non-excitable tissues.

    PubMed

    Nehrke, Keith

    2014-12-23

    The facilitated movement of ions across cell membranes can be characterized as occurring through active (ATP-dependent), secondary active (coupled), or passive transport processes. Each of these processes is mediated by a diverse group of membrane proteins. Over the past fifteen years, studies of membrane transport in C. elegans have benefited from the fact that worms are anatomically simple, easily and economically cultured, and genetically tractable. These experimental advantages have been instrumental in defining how membrane transport processes contribute to whole organism physiology. The focus of this review is to survey the recent advances in our understanding of membrane transport that have arisen from integrative physiological approaches in the nematode C. elegans.

  4. Gyrokinetic simulations of ion and impurity transport

    NASA Astrophysics Data System (ADS)

    Estrada-Mila, C.; Candy, J.; Waltz, R. E.

    2005-02-01

    A systematic study of turbulent particle and energy transport in both pure and multicomponent plasmas is presented. In this study, gyrokinetic results from the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] are supplemented with those from the GLF23 [R. E. Waltz, G. M. Staebler, W. Dorland et al., Phys. Plasmas 4, 2482 (1997)] transport model, as well as from quasilinear theory. Various results are obtained. The production of a particle pinch driven by temperature gradients (a thermal pinch) is demonstrated, and further shown to be weakened by finite electron collisionality. Helium transport and the effects of helium density gradient and concentration in a deuterium plasma are examined. Interestingly, it is found that the simple D-v (diffusion versus convective velocity) model of impurity flow is consistent with results obtained from nonlinear gyrokinetic simulations. Also studied is the transport in a 50-50 deuterium-tritium plasma, where a symmetry breaking is observed indicating the potential for fuel separation in a burning plasma. Quasilinear theory together with linear simulations shows that the symmetry breaking which enhances the tritium confinement arises largely from finite-Larmor-radius effects. To justify the numerical methods used in the paper, a variety of linear benchmarks and nonlinear grid refinement studies are detailed.

  5. Fast Ion Transport in the MST Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Bonofiglo, P. J.; Anderson, J. K.; Capecchi, W.; Kim, J.; Sears, S. H.; Egedal, J.

    2016-10-01

    The reversed field pinch (RFP) provides a unique environment to study fast ion confinement and transport. The magnetic topology of the RFP establishes guiding center drifts along flux surfaces, resulting in naturally well-confined fast ions. Past experiments reveal reduced confinement and a redistribution of fast ions with beam-driven instabilities or transition to a 3D equilibrium state. A fast ion transport model characterized by a temporally and spatially dependent diffusion profile describes the fast ion evolution. The diffusion coefficient varies as the square of the measured mode amplitude, and the width is inferred from comparison with correlated density fluctuations. In studying multiple interacting modes, the model reproduces the dynamic NPA-measured 20 % drop in core fast ion concentration. In the case of long-lived frequency chirping modes, there is a consistent time evolution of the fast ion distribution and measured mode frequency on a spatially varying Alfven continuum. Additional studies probe the dynamics of energetic particle modes (EPMs) during the growth of the core-localized kink mode and the rapid loss of fast ion confinement as a transition to a 3D equilibrium occurs. This research is supported by US DOE.

  6. Engineering Heteromaterials to Control Lithium Ion Transport Pathways

    PubMed Central

    Liu, Yang; Vishniakou, Siarhei; Yoo, Jinkyoung; Dayeh, Shadi A.

    2015-01-01

    Safe and efficient operation of lithium ion batteries requires precisely directed flow of lithium ions and electrons to control the first directional volume changes in anode and cathode materials. Understanding and controlling the lithium ion transport in battery electrodes becomes crucial to the design of high performance and durable batteries. Recent work revealed that the chemical potential barriers encountered at the surfaces of heteromaterials play an important role in directing lithium ion transport at nanoscale. Here, we utilize in situ transmission electron microscopy to demonstrate that we can switch lithiation pathways from radial to axial to grain-by-grain lithiation through the systematic creation of heteromaterial combinations in the Si-Ge nanowire system. Our systematic studies show that engineered materials at nanoscale can overcome the intrinsic orientation-dependent lithiation, and open new pathways to aid in the development of compact, safe, and efficient batteries. PMID:26686655

  7. Transport Properties of Negative Ions in HBR Plasmas

    NASA Astrophysics Data System (ADS)

    Stojanovic, Vladimir; Ivanovic, Nenad; Radmilovic-Radjenovic, Marija; Raspopovic, Zoran; Bojarov, Aleksandar; Petrovic, Zoran

    2014-10-01

    Low temperature plasma in halogenated gases is standard environment for dry etching of semiconductors. Amount of negative ions in HBr plasmas determines electronegativity so modeling etching devices requires data for anion transport properties. In this work we present cross section set for Br- ions in HBr assembled by using Denpoh-Nanbu theory. The threshold energy values were calculated by known heats of formation. The calculated total cross section accounts for ion-induced-dipole and ion-permanent-dipole interaction by using the local-dipole model. The total cross section was corrected to fit the reduced mobility obtained by SACM (Statistical Adiabatic Channel Model) approximation. Existing cross section measurements were used to scale calculated cross sections. Finally, we used Monte Carlo method to determine transport parameters for Br- as a function of reduced electric fields that can be used in fluid and hybrid plasma models.

  8. Ion transport in porous media studied by NMR.

    PubMed

    Pel, L; Huinink, H P; Kopinga, K; Rijniers, L A; Kaasschieter, E F

    2001-01-01

    Moisture and salt transport in masonry can give rise to damages. Therefore a detailed knowledge of the moisture and salt transport is essential for understanding the durability of masonry. A special NMR apparatus has been made allowing quasi-simultaneous measurements of both moisture and Na profiles in porous building materials. Using this apparatus both the absorption of a 4 M NaCl solution in a calcium silicate brick and the drying of a 3 M NaCl capillary saturated fired-clay brick have been studied. It was found that during the absorption process the Na ions clearly stay behind, which this is caused by adsorption of these ions to the pore surface. For the drying it was found that at the beginning of the drying process the ions accumulate near the surface. As the drying rate decreases, diffusion becomes dominant and the ion profile levels off again.

  9. Engineering Heteromaterials to Control Lithium Ion Transport Pathways

    SciTech Connect

    Liu, Yang; Vishniakou, Siarhei; Yoo, Jinkyoung; Dayeh, Shadi A.

    2015-12-21

    Safe and efficient operation of lithium ion batteries requires precisely directed flow of lithium ions and electrons to control the first directional volume changes in anode and cathode materials. Understanding and controlling the lithium ion transport in battery electrodes becomes crucial to the design of high performance and durable batteries. Recent work revealed that the chemical potential barriers encountered at the surfaces of heteromaterials play an important role in directing lithium ion transport at nanoscale. Here, we utilize in situ transmission electron microscopy to demonstrate that we can switch lithiation pathways from radial to axial to grain-by-grain lithiation through the systematic creation of heteromaterial combinations in the Si-Ge nanowire system. Lastly, our systematic studies show that engineered materials at nanoscale can overcome the intrinsic orientation-dependent lithiation, and open new pathways to aid in the development of compact, safe, and efficient batteries.

  10. Engineering Heteromaterials to Control Lithium Ion Transport Pathways

    DOE PAGES

    Liu, Yang; Vishniakou, Siarhei; Yoo, Jinkyoung; ...

    2015-12-21

    Safe and efficient operation of lithium ion batteries requires precisely directed flow of lithium ions and electrons to control the first directional volume changes in anode and cathode materials. Understanding and controlling the lithium ion transport in battery electrodes becomes crucial to the design of high performance and durable batteries. Recent work revealed that the chemical potential barriers encountered at the surfaces of heteromaterials play an important role in directing lithium ion transport at nanoscale. Here, we utilize in situ transmission electron microscopy to demonstrate that we can switch lithiation pathways from radial to axial to grain-by-grain lithiation through themore » systematic creation of heteromaterial combinations in the Si-Ge nanowire system. Lastly, our systematic studies show that engineered materials at nanoscale can overcome the intrinsic orientation-dependent lithiation, and open new pathways to aid in the development of compact, safe, and efficient batteries.« less

  11. The role of space charge compensation for ion beam extraction and ion beam transport (invited)

    SciTech Connect

    Spädtke, Peter

    2014-02-15

    Depending on the specific type of ion source, the ion beam is extracted either from an electrode surface or from a plasma. There is always an interface between the (almost) space charge compensated ion source plasma, and the extraction region in which the full space charge is influencing the ion beam itself. After extraction, the ion beam is to be transported towards an accelerating structure in most cases. For lower intensities, this transport can be done without space charge compensation. However, if space charge is not negligible, the positive charge of the ion beam will attract electrons, which will compensate the space charge, at least partially. The final degree of Space Charge Compensation (SCC) will depend on different properties, like the ratio of generation rate of secondary particles and their loss rate, or the fact whether the ion beam is pulsed or continuous. In sections of the beam line, where the ion beam is drifting, a pure electrostatic plasma will develop, whereas in magnetic elements, these space charge compensating electrons become magnetized. The transport section will provide a series of different plasma conditions with different properties. Different measurement tools to investigate the degree of space charge compensation will be described, as well as computational methods for the simulation of ion beams with partial space charge compensation.

  12. Realistic modeling of chamber transport for heavy-ion fusion

    SciTech Connect

    Sharp, W.M.; Grote, D.P.; Callahan, D.A.; Tabak, M.; Henestroza, E.; Yu, S.S.; Peterson, P.F.; Welch, D.R.; Rose, D.V.

    2003-05-01

    Transport of intense heavy-ion beams to an inertial-fusion target after final focus is simulated here using a realistic computer model. It is found that passing the beam through a rarefied plasma layer before it enters the fusion chamber can largely neutralize the beam space charge and lead to a usable focal spot for a range of ion species and input conditions.

  13. Hyperglycaemia and Pseudomonas aeruginosa acidify cystic fibrosis airway surface liquid by elevating epithelial monocarboxylate transporter 2 dependent lactate-H+ secretion

    PubMed Central

    Garnett, James Peter; Kalsi, Kameljit K.; Sobotta, Mirko; Bearham, Jade; Carr, Georgina; Powell, Jason; Brodlie, Malcolm; Ward, Christopher; Tarran, Robert; Baines, Deborah L.

    2016-01-01

    The cystic fibrosis (CF) airway surface liquid (ASL) provides a nutrient rich environment for bacterial growth including elevated glucose, which together with defective bacterial killing due to aberrant HCO3− transport and acidic ASL, make the CF airways susceptible to colonisation by respiratory pathogens such as Pseudomonas aeruginosa. Approximately half of adults with CF have CF related diabetes (CFRD) and this is associated with increased respiratory decline. CF ASL contains elevated lactate concentrations and hyperglycaemia can also increase ASL lactate. We show that primary human bronchial epithelial (HBE) cells secrete lactate into ASL, which is elevated in hyperglycaemia. This leads to ASL acidification in CFHBE, which could only be mimicked in non-CF HBE following HCO3− removal. Hyperglycaemia-induced changes in ASL lactate and pH were exacerbated by the presence of P. aeruginosa and were attenuated by inhibition of monocarboxylate lactate-H+ co-transporters (MCTs) with AR-C155858. We conclude that hyperglycaemia and P. aeruginosa induce a metabolic shift which increases lactate generation and efflux into ASL via epithelial MCT2 transporters. Normal airways compensate for MCT-driven H+ secretion by secreting HCO3−, a process which is dysfunctional in CF airway epithelium leading to ASL acidification and that these processes may contribute to worsening respiratory disease in CFRD. PMID:27897253

  14. Hyperglycaemia and Pseudomonas aeruginosa acidify cystic fibrosis airway surface liquid by elevating epithelial monocarboxylate transporter 2 dependent lactate-H(+) secretion.

    PubMed

    Garnett, James Peter; Kalsi, Kameljit K; Sobotta, Mirko; Bearham, Jade; Carr, Georgina; Powell, Jason; Brodlie, Malcolm; Ward, Christopher; Tarran, Robert; Baines, Deborah L

    2016-11-29

    The cystic fibrosis (CF) airway surface liquid (ASL) provides a nutrient rich environment for bacterial growth including elevated glucose, which together with defective bacterial killing due to aberrant HCO3(-) transport and acidic ASL, make the CF airways susceptible to colonisation by respiratory pathogens such as Pseudomonas aeruginosa. Approximately half of adults with CF have CF related diabetes (CFRD) and this is associated with increased respiratory decline. CF ASL contains elevated lactate concentrations and hyperglycaemia can also increase ASL lactate. We show that primary human bronchial epithelial (HBE) cells secrete lactate into ASL, which is elevated in hyperglycaemia. This leads to ASL acidification in CFHBE, which could only be mimicked in non-CF HBE following HCO3(-) removal. Hyperglycaemia-induced changes in ASL lactate and pH were exacerbated by the presence of P. aeruginosa and were attenuated by inhibition of monocarboxylate lactate-H(+) co-transporters (MCTs) with AR-C155858. We conclude that hyperglycaemia and P. aeruginosa induce a metabolic shift which increases lactate generation and efflux into ASL via epithelial MCT2 transporters. Normal airways compensate for MCT-driven H(+) secretion by secreting HCO3(-), a process which is dysfunctional in CF airway epithelium leading to ASL acidification and that these processes may contribute to worsening respiratory disease in CFRD.

  15. Mechanism of electrodialytic ion transport through solvent extraction membranes

    SciTech Connect

    Moskvin, L.N.; Shmatko, A.G.; Krasnoperov, V.M.

    1987-02-01

    The authors construct a mathematical model for electrodialysis and solvent extraction via an ion-selective ion exchange membrane and accounts for the electrochemical, ion exchange, and diffusional behavior of the processes including their dependence on component concentration and current and voltage. The model is tested against experimental data for the electrodialytic transport of anionic platinum complexes of chlorides from hydrochloric acid solution through tributylphosphate membranes. The platinum concentration in the aqueous solution was determined by gamma spectroscopy obtained via platinum 191 as a radiotracer.

  16. Ion transport through macrocapillaries - Oscillations due to charge patch formation

    NASA Astrophysics Data System (ADS)

    Kulkarni, D. D.; Lyle, L. A. M.; Sosolik, C. E.

    2016-09-01

    We present results on ion transport through large bore capillaries (macrocapillaries) that probe both the geometric and ion-guided aspects of this ion delivery mechanism. We have demonstrated that guiding in macrocapillaries exhibits position- and angle-dependent transmission properties which are directly related to the capillary material (either metal or insulator) and geometry. Specifically, we have passed 1 keV Rb+ ions through glass and metal macrocapillaries, and have observed oscillations for the transmitted ion current passing through the insulating capillaries. Straightforward calculations show that these oscillations can be attributed to beam deflections from charge patches that form on the interior walls of the capillary. The absence of these oscillations in the metal capillary data serve as further confirmation of the role of charge patch formation.

  17. Electrokinetic ion transport in confined micro-nanochannel.

    PubMed

    Wang, Junyao; Liu, Chong; Xu, Zheng

    2016-03-01

    In this paper, a confined micronanochannel is presented to concentrate ions in a restricted zone. A general model exploiting the Poisson-Nernst-Plank equations coupled with the Navier-Stokes equation is employed to simulate the electrokinetic ion transport. The influences of the micronanochannel dimension and the surface charge density on the potential distribution, the ion concentration, and the fluid flow are investigated. The numerical results show that the potential drop depends mainly on the nanochannel, instead of the confined channel. Both decreasing the width and increasing the length enhance the ion enrichment performance. For a given nanochannel, ultimate value of ion concentration may be determined by the potential at the center point of the nanochannel. The study also shows that the enrichment stability can be improved by increasing the micronanochannel width, decreasing the micronanochannel length and reducing the surface charge density.

  18. Membrane Assembly and Ion Transport Ability of a Fluorinated Nanopore

    PubMed Central

    Godbout, Raphaël; Légaré, Sébastien; Auger, Maud; Carpentier, Claudia; Otis, François; Auger, Michèle; Lagüe, Patrick; Voyer, Normand

    2016-01-01

    A novel 21-residue peptide incorporating six fluorinated amino acids was prepared. It was designed to fold into an amphiphilic alpha helical structure of nanoscale length with one hydrophobic face and one fluorinated face. The formation of a fluorous interface serves as the main vector for the formation of a superstructure in a bilayer membrane. Fluorescence assays showed this ion channel's ability to facilitate the translocation of alkali metal ions through a phospholipid membrane, with selectivity for sodium ions. Computational studies showed that a tetramer structure is the most probable and stable supramolecular assembly for the active ion channel structure. The results illustrate the possibility of exploiting multiple Fδ-:M+ interactions for ion transport and using fluorous interfaces to create functional nanostructures. PMID:27835700

  19. Hall transport of divalent metal ion modified DNA lattices

    SciTech Connect

    Dugasani, Sreekantha Reddy; Lee, Keun Woo; Yoo, Sanghyun; Gnapareddy, Bramaramba; Bashar, Saima; Park, Sung Ha; Kim, Si Joon; Jung, Joohye; Jung, Tae Soo; Kim, Hyun Jae

    2015-06-29

    We investigate the Hall transport characteristics of double-crossover divalent metal ion (Cu{sup 2+}, Ni{sup 2+}, Zn{sup 2+}, and Co{sup 2+})-modified DNA (M-DNA) lattices grown on silica via substrate-assisted growth. The electronic characteristics of the M-DNA lattices are investigated by varying the concentration of the metal ions and then conducting Hall measurements, including resistivity, Hall mobility, carrier concentration, and magneto resistance. The tendency of the resistivity and Hall mobility was to initially decrease as the ion concentration increased, until reaching the saturation concentration (C{sub s}) of each metal ion, and then to increase as the ion concentration increased further. On the other hand, the carrier concentration revealed the opposite tendency as the resistivity and Hall mobility. The specific binding (≤C{sub s}) and the nonspecific aggregates (>C{sub s}) of the ions into the DNA lattices were significantly affected by the Hall characteristics. The numerical ranges of the Hall parameters revealed that the M-DNA lattices with metal ions had semiconductor-like characteristics. Consequently, the distinct characteristics of the electrical transport through M-DNA lattices will provide useful information on the practical use of such structures in physical devices and chemical sensors.

  20. Origins and Transport of Ions during Magnetospheric Substorms

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, Maha; El-Alaoui, Mostafa; Peroomian, Vahe; Raeder, Joachim; Walker, Ray J.; Frank, L. A.; Paterson, W. R.

    1999-01-01

    We investigate the origins and the transport of ions observed in the near-Earth plasma sheet during the growth and expansion phases of a magnetospheric substorm that occurred on November 24, 1996. Ions observed at Geotail were traced backward in time in time-dependent magnetic and electric fields to determine their origins and the acceleration mechanisms responsible for their energization. Results from this investigation indicate that, during the growth phase of the substorm, most of the ions reaching Geotail had origins in the low latitude boundary layer (LLBL) and had alread@, entered the magnetosphere when the growth phase began. Late in the growth phase and in the expansion phase a higher proportion of the ions reaching Geotail had their origin in the plasma mantle. Indeed, during the expansion phase more than 90% of the ions seen by Geotail were from the mantle. The ions were accelerated enroute to the spacecraft; however, most of the ions' energy gain was achieved by non-adiabatic acceleration while crossing the equatorial current sheet just prior to their detection by Geotail. In general, the plasma mantle from both southern and northern hemispheres supplied non-adiabatic ions to Geotail, whereas the LLBL supplied mostly adiabatic ions to the distributions measured by the spacecraft.

  1. Bicarbonate-dependent chloride transport drives fluid secretion by the human airway epithelial cell line Calu-3

    PubMed Central

    Shan, Jiajie; Liao, Jie; Huang, Junwei; Robert, Renaud; Palmer, Melissa L; Fahrenkrug, Scott C; O'Grady, Scott M; Hanrahan, John W

    2012-01-01

    Anion and fluid secretion are both defective in cystic fibrosis (CF); however, the transport mechanisms are not well understood. In this study, Cl− and HCO3− secretion was measured using genetically matched CF transmembrane conductance regulator (CFTR)-deficient and CFTR-expressing cell lines derived from the human airway epithelial cell line Calu-3. Forskolin stimulated the short-circuit current (Isc) across voltage-clamped monolayers, and also increased the equivalent short-circuit current (Ieq) calculated under open-circuit conditions. Isc was equivalent to the HCO3− net flux measured using the pH-stat technique, whereas Ieq was the sum of the Cl− and HCO3− net fluxes. Ieq and HCO3− fluxes were increased by bafilomycin and ZnCl2, suggesting that some secreted HCO3− is neutralized by parallel electrogenic H+ secretion. Ieq and fluid secretion were dependent on the presence of both Na+ and HCO3−. The carbonic anhydrase inhibitor acetazolamide abolished forskolin stimulation of Ieq and HCO3− secretion, suggesting that HCO3− transport under these conditions requires catalysed synthesis of carbonic acid. Cl− was the predominant anion in secretions under all conditions studied and thus drives most of the fluid transport. Nevertheless, 50–70% of Cl− and fluid transport was bumetanide-insensitive, suggesting basolateral Cl− loading by a sodium–potassium–chloride cotransporter 1 (NKCC1)-independent mechanism. Imposing a transepithelial HCO3− gradient across basolaterally permeabilized Calu-3 cells sustained a forskolin-stimulated current, which was sensitive to CFTR inhibitors and drastically reduced in CFTR-deficient cells. Net HCO3− secretion was increased by bilateral Cl− removal and therefore did not require apical Cl−/HCO3− exchange. The results suggest a model in which most HCO3− is recycled basolaterally by exchange with Cl−, and the resulting HCO3−-dependent Cl− transport provides an osmotic driving force for

  2. Electrochemical control of ion transport through a mesoporous carbon membrane

    SciTech Connect

    Surwade, Sumedh P; Chai, Songhai; Choi, Jai-Pil; Wang, Xiqing; Lee, Jeseung; Vlassiouk, Ivan V; Mahurin, Shannon Mark; Dai, Sheng

    2014-01-01

    The transport of fluids through nanometer scale channels typically on the order of 1 -100 nm often exhibit unique properties compared to the bulk fluid. These phenomena occur because the channel dimensions and molecular size become comparable to the range of several important forces including electrostatic and van der Waals forces. Small changes in properties such as the electric double layer or surface charge can significantly affect molecular transport through the channels. Based on these emerging properties, a variety of nanofluidic devices such as nanofluidic transistors, nanofluidic diodes or lab-on-a-chip devices have been developed3-7 with a diverse range of applications including water purification, biomolecular sensing, DNA separation, and rectified ion transport. Nanofluidic devices are typically fabricated using expensive lithography techniques or sacrificial templates. Here we report a carbon-based, three-dimensional nanofluidic transport membrane that enables gated, or on/off, control of the transport of organic molecular species and metal ions using an applied electrical potential. In the absence of an applied potential, both cationic and anionic molecules freely diffuse across the membrane via a concentration gradient. However, when an electrochemical potential is applied, the transport of ions through the membrane is inhibited.

  3. Roles of ion transport in control of cell motility.

    PubMed

    Stock, Christian; Ludwig, Florian T; Hanley, Peter J; Schwab, Albrecht

    2013-01-01

    Cell motility is an essential feature of life. It is essential for reproduction, propagation, embryonic development, and healing processes such as wound closure and a successful immune defense. If out of control, cell motility can become life-threatening as, for example, in metastasis or autoimmune diseases. Regardless of whether ciliary/flagellar or amoeboid movement, controlled motility always requires a concerted action of ion channels and transporters, cytoskeletal elements, and signaling cascades. Ion transport across the plasma membrane contributes to cell motility by affecting the membrane potential and voltage-sensitive ion channels, by inducing local volume changes with the help of aquaporins and by modulating cytosolic Ca(2+) and H(+) concentrations. Voltage-sensitive ion channels serve as voltage detectors in electric fields thus enabling galvanotaxis; local swelling facilitates the outgrowth of protrusions at the leading edge while local shrinkage accompanies the retraction of the cell rear; the cytosolic Ca(2+) concentration exerts its main effect on cytoskeletal dynamics via motor proteins such as myosin or dynein; and both, the intracellular and the extracellular H(+) concentration modulate cell migration and adhesion by tuning the activity of enzymes and signaling molecules in the cytosol as well as the activation state of adhesion molecules at the cell surface. In addition to the actual process of ion transport, both, channels and transporters contribute to cell migration by being part of focal adhesion complexes and/or physically interacting with components of the cytoskeleton. The present article provides an overview of how the numerous ion-transport mechanisms contribute to the various modes of cell motility.

  4. Feed gas contaminant removal in ion transport membrane systems

    DOEpatents

    Underwood, Richard Paul [Allentown, PA; Makitka, III, Alexander; Carolan, Michael Francis [Allentown, PA

    2012-04-03

    An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.

  5. Alpha characterization inside pipes using ion-transport technology

    NASA Astrophysics Data System (ADS)

    Rojas, S. P.; Rawool-Sullivan, M. W.; Williams, K. G.; Vaccarella, J. A.

    Many DOE facilities have several miles of waste pipe systems that are internally contaminated with various and often undetermined radio nuclides. Unfortunately, currently acceptable alpha detection technologies are inefficient, time consuming, and do not address the problems presented by small diameter or curved pipes. In general, the problem of detecting alpha contamination on the inside surface of pipes is complicated by the fact that alphas do not penetrate the pipe walls. Unlike their conventional counterparts, alpha detectors based on ion transport technology sense alpha particles by collecting the ions created in ambient air as the particle loses its kinetic energy. The ions inside the pipe are transported by a fan-generated air current to an electrode inside the detector, which is attached to one end of the pipe. The collected charge at the electrode is proportional to the number of ions created inside the pipe, which in turn is proportional to the number of alphas emitted. Typically, monitoring for alpha contamination inside pipes or ductwork involves disrupting the operation to access as much surface area as possible for standard alpha monitoring. The detector based on ion transport technology effectively minimizes such disruption and in many circumstances will allow for in situ monitoring of a system that might otherwise not be practically accessible to standard methods.

  6. Excess Surface Area in Bioelectrochemical Systems Causes ion Transport Limitations

    SciTech Connect

    Harrington, Timothy D.; Babauta, Jerome T.; Davenport, Emily K.; Renslow, Ryan S.; Beyenal, Haluk

    2015-05-01

    We investigated ion transport limitations on 3D graphite felt electrodes by growing Geobacter sulfurreducens biofilms with advection to eliminate external mass transfer limitations. We characterized ion transport limitations by: (i) showing that serially increasing NaCl concentration up to 200mM increased current linearly up to a total of þ273% vs. 0mM NaCl under advective conditions; (ii) growing the biofilm with a starting concentration of 200mM NaCl, which led to a maximum current increase of 400% vs. current generation without NaCl, and (iii) showing that un-colonized surface area remained even after steadystate current was reached. After accounting for iR effects, we confirmed that the excess surface area existed despite a non-zero overpotential. The fact that the biofilm was constrained from colonizing and producing further current under these conditions confirmed the biofilms under study here were ion transport-limited. Our work demonstrates that the use of high surface area electrodes may not increase current density when the system design allows ion transport limitations to become dominant.

  7. Plasma Transport in a Magnetic Multicusp Negative Hydrogen Ion Source

    DTIC Science & Technology

    1991-12-01

    the Extraction Electrode ............................ 4-4 Analysis of the Effect of Temperature Gradients on the Flux...Measured vs Predicted Ion Species Percentages ......... 5-31 x Abstract An analysis of plasma transport through the magnetic filter in mag- netic...diffusion through the magnetic filter field into the extraction chamber. The goal was not, however, simply to calculate the plasma potential. Analysis of

  8. Excess surface area in bioelectrochemical systems causes ion transport limitations

    PubMed Central

    Harrington, Timothy D.; Babauta, Jerome T.; Davenport, Emily K.; Renslow, Ryan S.; Beyenal, Haluk

    2014-01-01

    We investigated ion transport limitations on 3D graphite felt electrodes by growing Geobacter sulfurreducens biofilms with advection to eliminate external mass transfer limitations. We characterized ion transport limitations by: 1) showing that serially increasing NaCl concentration up to 200 mM increased current linearly up to a total of +273% vs. 0 mM NaCl under advective conditions, 2) growing the biofilm with a starting concentration of 200 mM NaCl, which led to a maximum current increase of 400% vs. current generation without NaCl, and 3) showing that un-colonized surface area remained even after steady-state current was reached. After accounting for iR effects, we confirmed that the excess surface area existed despite a non-zero overpotential at the electrode surface. The fact that the biofilm was constrained from colonizing and producing further current under these conditions confirmed the biofilms under study here were ion transport-limited. Our work demonstrates that the use of high surface area electrodes may not increase current density when the system design allows ion transport limitations to become dominant. PMID:25421463

  9. Excess surface area in bioelectrochemical systems causes ion transport limitations.

    PubMed

    Harrington, Timothy D; Babauta, Jerome T; Davenport, Emily K; Renslow, Ryan S; Beyenal, Haluk

    2015-05-01

    We investigated ion transport limitations on 3D graphite felt electrodes by growing Geobacter sulfurreducens biofilms with advection to eliminate external mass transfer limitations. We characterized ion transport limitations by: (i) showing that serially increasing NaCl concentration up to 200 mM increased current linearly up to a total of +273% vs. 0 mM NaCl under advective conditions; (ii) growing the biofilm with a starting concentration of 200 mM NaCl, which led to a maximum current increase of 400% vs. current generation without NaCl, and (iii) showing that un-colonized surface area remained even after steady-state current was reached. After accounting for iR effects, we confirmed that the excess surface area existed despite a non-zero overpotential. The fact that the biofilm was constrained from colonizing and producing further current under these conditions confirmed the biofilms under study here were ion transport-limited. Our work demonstrates that the use of high surface area electrodes may not increase current density when the system design allows ion transport limitations to become dominant.

  10. Facilitated Ion Transport in Smectic Ordered Ionic Liquid Crystals.

    PubMed

    Lee, Jin Hong; Han, Kee Sung; Lee, Je Seung; Lee, Albert S; Park, Seo Kyung; Hong, Sung Yun; Lee, Jong-Chan; Mueller, Karl T; Hong, Soon Man; Koo, Chong Min

    2016-11-01

    A novel ionic mixture of an imidazolium-based room-temperature ionic liquid containing ethylene-oxide-functionalized phosphite anions is fabricated, which, when doped with lithium salt, self-assembles into a smectic-ordered ionic liquid crystal through Coulombic interactions between the ion species. Interestingly, the smectic order in the ionic-liquid-crystal ionogel facilitates ionic transport.

  11. Reduced Fast Ion Transport Model For The Tokamak Transport Code TRANSP

    SciTech Connect

    Podesta,, Mario; Gorelenkova, Marina; White, Roscoe

    2014-02-28

    Fast ion transport models presently implemented in the tokamak transport code TRANSP [R. J. Hawryluk, in Physics of Plasmas Close to Thermonuclear Conditions, CEC Brussels, 1 , 19 (1980)] are not capturing important aspects of the physics associated with resonant transport caused by instabilities such as Toroidal Alfv en Eigenmodes (TAEs). This work describes the implementation of a fast ion transport model consistent with the basic mechanisms of resonant mode-particle interaction. The model is formulated in terms of a probability distribution function for the particle's steps in phase space, which is consistent with the MonteCarlo approach used in TRANSP. The proposed model is based on the analysis of fast ion response to TAE modes through the ORBIT code [R. B. White et al., Phys. Fluids 27 , 2455 (1984)], but it can be generalized to higher frequency modes (e.g. Compressional and Global Alfv en Eigenmodes) and to other numerical codes or theories.

  12. Facilitated Ion Transport in Smectic Ordered Ionic Liquid Crystals

    SciTech Connect

    Lee, Jin Hong; Han, Kee Sung; Lee, Je Seung; Lee, Albert S.; Park, Seo Kyung; Hong, Sung Yun; Lee, Jong-Chan; Mueller, Karl T.; Hong, Soon Man; Koo, Chong Min

    2016-09-08

    We investigated a novel ionic mixture of an imidazolium-based room temperature IL containing ethylene oxide functionalized phosphite anion and a lithium salt that self-assembles into a smectic-ordered IL crystal. The two key features in this work are the unique origin of the smectic order of the ionic mixtures and the facilitated ion transport behavior in the smectic ordered IL crystal. In fact, the IL crystals are self-assembled through Coulombic interactions between ion species, not through the hydrophilic-phobic interactions between charged ion heads and hydrophobic long alkyl pendants or the steric interaction between mesogenic moieties. Furthermore, the smectic order in the IL crystal ionogel facilitates exceptional and remarkable ionic transport. Large ionic conductivity, viscoelastic robustness, and additional electrochemical stability of the IL crystal ionogels provide promising opportunities for future electrochemical applications.

  13. Isothermal titration calorimetry of ion-coupled membrane transporters.

    PubMed

    Boudker, Olga; Oh, SeCheol

    2015-04-01

    Binding of ligands, ranging from proteins to ions, to membrane proteins is associated with absorption or release of heat that can be detected by isothermal titration calorimetry (ITC). Such measurements not only provide binding affinities but also afford direct access to thermodynamic parameters of binding--enthalpy, entropy and heat capacity. These parameters can be interpreted in a structural context, allow discrimination between different binding mechanisms and guide drug design. In this review, we introduce advantages and limitations of ITC as a methodology to study molecular interactions of membrane proteins. We further describe case studies where ITC was used to analyze thermodynamic linkage between ions and substrates in ion-coupled transporters. Similar type of linkage analysis will likely be applicable to a wide range of transporters, channels, and receptors.

  14. Cystic fibrosis lung disease starts in the small airways: can we treat it more effectively?

    PubMed

    Tiddens, Harm A W M; Donaldson, Scott H; Rosenfeld, Margaret; Paré, Peter D

    2010-02-01

    The aims of this article are to summarize existing knowledge regarding the pathophysiology of small airways disease in cystic fibrosis (CF), to speculate about additional mechanisms that might play a role, and to consider the available or potential options to treat it. In the first section, we review the evidence provided by pathologic, physiologic, and imaging studies suggesting that obstruction of small airways begins early in life and is progressive. In the second section we discuss how the relationships between CF transmembrane conductance regulator (CFTR), ion transport, the volume of the periciliary liquid layer and airway mucus might lead to defective mucociliary clearance in small airways. In addition, we discuss how chronic endobronchial bacterial infection and a chronic neutrophilic inflammatory response increase the viscosity of CF secretions and exacerbate the clearance problem. Next, we discuss how the mechanical properties of small airways could be altered early in the disease process and how remodeling can contribute to small airways disease. In the final section, we discuss how established therapies impact small airways disease and new directions that may lead to improvement in the treatment of small airways disease. We conclude that there are many reasons to believe that small airways play an important role in the pathophysiology of (early) CF lung disease. Therapy should be aimed to target the small airways more efficiently, especially with drugs that can correct the basic defect at an early stage of disease.

  15. Ion and water transport in charge-modified graphene nanopores

    NASA Astrophysics Data System (ADS)

    Qiu, Ying-Hua; Li, Kun; Chen, Wei-Yu; Si, Wei; Tan, Qi-Yan; Chen, Yun-Fei

    2015-10-01

    Porous graphene has a high mechanical strength and an atomic-layer thickness that makes it a promising material for material separation and biomolecule sensing. Electrostatic interactions between charges in aqueous solutions are a type of strong long-range interaction that may greatly influence fluid transport through nanopores. In this study, molecular dynamic simulations were conducted to investigate ion and water transport through 1.05-nm diameter monolayer graphene nanopores, with their edges charge-modified. Our results indicated that these nanopores are selective to counterions when they are charged. As the charge amount increases, the total ionic currents show an increase-decrease profile while the co-ion currents monotonically decrease. The co-ion rejection can reach 76.5% and 90.2% when the nanopores are negatively and positively charged, respectively. The Cl- ion current increases and reaches a plateau, and the Na+ current decreases as the charge amount increases in systems in which Na+ ions act as counterions. In addition, charge modification can enhance water transport through nanopores. This is mainly due to the ion selectivity of the nanopores. Notably, positive charges on the pore edges facilitate water transport much more strongly than negative charges. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB707601 and 2011CB707605), the National Natural Science Foundation of China (Grant No. 50925519), the Fundamental Research Funds for the Central Universities, Funding of Jiangsu Provincial Innovation Program for Graduate Education, China (Grant No. CXZZ13_0087), and the Scientific Research Foundation of Graduate School of Southeast University (Grant No. YBJJ 1322).

  16. Ionizing radiation, ion transports, and radioresistance of cancer cells

    PubMed Central

    Huber, Stephan M.; Butz, Lena; Stegen, Benjamin; Klumpp, Dominik; Braun, Norbert; Ruth, Peter; Eckert, Franziska

    2013-01-01

    The standard treatment of many tumor entities comprises fractionated radiation therapy which applies ionizing radiation to the tumor-bearing target volume. Ionizing radiation causes double-strand breaks in the DNA backbone that result in cell death if the number of DNA double-strand breaks exceeds the DNA repair capacity of the tumor cell. Ionizing radiation reportedly does not only act on the DNA in the nucleus but also on the plasma membrane. In particular, ionizing radiation-induced modifications of ion channels and transporters have been reported. Importantly, these altered transports seem to contribute to the survival of the irradiated tumor cells. The present review article summarizes our current knowledge on the underlying mechanisms and introduces strategies to radiosensitize tumor cells by targeting plasma membrane ion transports. PMID:23966948

  17. Adenosine deaminase 1 and concentrative nucleoside transporters 2 and 3 regulate adenosine on the apical surface of human airway epithelia: implications for inflammatory lung diseases.

    PubMed

    Hirsh, Andrew J; Stonebraker, Jaclyn R; van Heusden, Catja A; Lazarowski, Eduardo R; Boucher, Richard C; Picher, Maryse

    2007-09-11

    Adenosine is a multifaceted signaling molecule mediating key aspects of innate and immune lung defenses. However, abnormally high airway adenosine levels exacerbate inflammatory lung diseases. This study identifies the mechanisms regulating adenosine elimination from the apical surface of human airway epithelia. Experiments conducted on polarized primary cultures of nasal and bronchial epithelial cells showed that extracellular adenosine is eliminated by surface metabolism and cellular uptake. The conversion of adenosine to inosine was completely inhibited by the adenosine deaminase 1 (ADA1) inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA). The reaction exhibited Km and Vmax values of 24 microM and 0.14 nmol x min(-1) x cm(-2). ADA1 (not ADA2) mRNA was detected in human airway epithelia. The adenosine/mannitol permeability coefficient ratio (18/1) indicated a minor contribution of paracellular absorption. Adenosine uptake was Na+-dependent and was inhibited by the concentrative nucleoside transporter (CNT) blocker phloridzin but not by the equilibrative nucleoside transporter (ENT) blocker dipyridamole. Apparent Km and Vmax values were 17 microM and 7.2 nmol x min(-1) x cm(-2), and transport selectivity was adenosine = inosine = uridine > guanosine = cytidine > thymidine. CNT3 mRNA was detected throughout the airways, while CNT2 was restricted to nasal epithelia. Inhibition of adenosine elimination by EHNA or phloridzin raised apical adenosine levels by >3-fold and stimulated IL-13 and MCP-1 secretion by 6-fold. These responses were reproduced by the adenosine receptor agonist 5'-(N-ethylcarboxamido)adenosine (NECA) and blocked by the adenosine receptor antagonist, 8-(p-sulfophenyl) theophylline (8-SPT). This study shows that adenosine elimination on human airway epithelia is mediated by ADA1, CNT2, and CNT3, which constitute important regulators of adenosine-mediated inflammation.

  18. Functions of Ion Transport Peptide and Ion Transport Peptide-Like in the Red Flour Beetle Tribolium castaneum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ion transport peptide (ITP) and ITP-like (ITPL) are highly conserved neuropeptides in insects and crustaceans. We investigated the alternatively spliced variants of ITP/ITPL in Tribolium castaneum to understand their functions. We identified three alternatively spliced transcripts named itp, itpl-...

  19. Spatial organization of cilia tufts governs airways mucus transport: Application to severe asthma

    NASA Astrophysics Data System (ADS)

    Khelloufi, Mustapha Kamel; Gras, Delphine; Chanez, Pascal; Viallat, Annie

    2014-11-01

    We study the coupling between both density and spatial repartition of beating cilia tufts, and the coordinated transport of mucus in an in-vitro epithelial model. We use a fully differentiated model epithelium in air liquid interface (ALI) obtained from endo-bronchial biopsies from healthy subjects and patients with asthma. The asthma phenotype is known to persist in the model. Mucus transport is characterized by the trajectories and velocities of microscopic beads incorporated in the mucus layer. When the beating cilia tufts density is higher than dc = 11/100 × 100 μm2 a spherical spiral coordinated mucus transport is observed over the whole ALI chamber (radius = 6 mm). Below dc, local mucus coordinated transport is observed on small circular domains on the epithelium surface. We reveal that the radii of these domains scale with the beating cilia tufts density with a power 3.7. Surprisingly, this power law is independent on cilia beat frequency, concentration and rheological properties of mucus for healthy subject and patient with asthma. The rotating or linear mucus transport is related to dispersion of the cilia tufts on the epithelium surface. We show that impaired mucus transport observed in severe asthma model epithelia is due to a drastic lack and dysfunction of cilia tufts. The author acknowledges the support of the French Agence Nationale de la Recherche (ANR) under reference ANR-13-BSV5-0015-01.

  20. Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells

    NASA Astrophysics Data System (ADS)

    Ko, Sung-Kyun; Kim, Sung Kuk; Share, Andrew; Lynch, Vincent M.; Park, Jinhong; Namkung, Wan; van Rossom, Wim; Busschaert, Nathalie; Gale, Philip A.; Sessler, Jonathan L.; Shin, Injae

    2014-10-01

    Anion transporters based on small molecules have received attention as therapeutic agents because of their potential to disrupt cellular ion homeostasis. However, a direct correlation between a change in cellular chloride anion concentration and cytotoxicity has not been established for synthetic ion carriers. Here we show that two pyridine diamide-strapped calix[4]pyrroles induce coupled chloride anion and sodium cation transport in both liposomal models and cells, and promote cell death by increasing intracellular chloride and sodium ion concentrations. Removing either ion from the extracellular media or blocking natural sodium channels with amiloride prevents this effect. Cell experiments show that the ion transporters induce the sodium chloride influx, which leads to an increased concentration of reactive oxygen species, release of cytochrome c from the mitochondria and apoptosis via caspase activation. However, they do not activate the caspase-independent apoptotic pathway associated with the apoptosis-inducing factor. Ion transporters, therefore, represent an attractive approach for regulating cellular processes that are normally controlled tightly by homeostasis.

  1. Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells.

    PubMed

    Ko, Sung-Kyun; Kim, Sung Kuk; Share, Andrew; Lynch, Vincent M; Park, Jinhong; Namkung, Wan; Van Rossom, Wim; Busschaert, Nathalie; Gale, Philip A; Sessler, Jonathan L; Shin, Injae

    2014-10-01

    Anion transporters based on small molecules have received attention as therapeutic agents because of their potential to disrupt cellular ion homeostasis. However, a direct correlation between a change in cellular chloride anion concentration and cytotoxicity has not been established for synthetic ion carriers. Here we show that two pyridine diamide-strapped calix[4]pyrroles induce coupled chloride anion and sodium cation transport in both liposomal models and cells, and promote cell death by increasing intracellular chloride and sodium ion concentrations. Removing either ion from the extracellular media or blocking natural sodium channels with amiloride prevents this effect. Cell experiments show that the ion transporters induce the sodium chloride influx, which leads to an increased concentration of reactive oxygen species, release of cytochrome c from the mitochondria and apoptosis via caspase activation. However, they do not activate the caspase-independent apoptotic pathway associated with the apoptosis-inducing factor. Ion transporters, therefore, represent an attractive approach for regulating cellular processes that are normally controlled tightly by homeostasis.

  2. Mechanism of unassisted ion transport across membrane bilayers

    NASA Technical Reports Server (NTRS)

    Wilson, M. A.; Pohorille, A.

    1996-01-01

    To establish how charged species move from water to the nonpolar membrane interior and to determine the energetic and structural effects accompanying this process, we performed molecular dynamics simulations of the transport of Na+ and Cl- across a lipid bilayer located between two water lamellae. The total length of molecular dynamics trajectories generated for each ion was 10 ns. Our simulations demonstrate that permeation of ions into the membrane is accompanied by the formation of deep, asymmetric thinning defects in the bilayer, whereby polar lipid head groups and water penetrate the nonpolar membrane interior. Once the ion crosses the midplane of the bilayer the deformation "switches sides"; the initial defect slowly relaxes, and a defect forms in the outgoing side of the bilayer. As a result, the ion remains well solvated during the process; the total number of oxygen atoms from water and lipid head groups in the first solvation shell remains constant. A similar membrane deformation is formed when the ion is instantaneously inserted into the interior of the bilayer. The formation of defects considerably lowers the free energy barrier to transfer of the ion across the bilayer and, consequently, increases the permeabilities of the membrane to ions, compared to the rigid, planar structure, by approximately 14 orders of magnitude. Our results have implications for drug delivery using liposomes and peptide insertion into membranes.

  3. Transport of ions injected by AMPTE magnetotail releases

    NASA Technical Reports Server (NTRS)

    Cladis, J. B.; Francis, W. E.

    1989-01-01

    The BA and Li ions released in the magnetotail by the AMPTE IRM satellite were not observed in the inner magnetosphere with the AMPTE CCE satellite. In an effort to understand these results, Cladis and Francis (1988) modeled the expansion and ionization of the released atoms and computed several hundred guiding-center trajectories of the ions to sample the motion of each ion cloud. Here, the transport calculations are improved, principally by computing the full gyration motion of the ions in a more realistic model of the geomagnetic tail. The results indicate that the Ba(+) ions were convected inward along a narrow corridor, which was at least 2 earth radii away from the satellite in the case of the first Ba release and at least 3 earth radii away in the case of the second Ba release. Even if the ions had reached the satellite, their energies would have been too low to be detected. The Li(+) ions from both releases drifted inward over broad regions which overlapped the satellite in space and time. However, their fluxes at the satellite were somewhat too low to be detected.

  4. Characterization of Rat Meibomian Gland Ion and Fluid Transport

    PubMed Central

    Yu, Dongfang; Davis, Richard M.; Aita, Megumi; Burns, Kimberlie A.; Clapp, Phillip W.; Gilmore, Rodney C.; Chua, Michael; O'Neal, Wanda K.; Schlegel, Richard; Randell, Scott H.; C. Boucher, Richard

    2016-01-01

    Purpose We establish novel primary rat meibomian gland (MG) cell culture systems and explore the ion transport activities of the rat MG. Methods Freshly excised rat MG tissues were characterized as follows: (1) mRNA expression of selected epithelial ion channels/transporters were measured by RT-PCR, (2) localization of epithelial sodium channel (ENaC) mRNAs was performed by in situ hybridization, and (3) protein expression and localization of βENaC, the Na+/K+/Cl− cotransporter (NKCC), and the Na+/K+ ATPase were evaluated by immunofluorescence. Primary isolated rat MG cells were cocultured with 3T3 feeder cells and a Rho-associated kinase (ROCK) inhibitor (Y-27632) for expansion. Passaged rat MG cells were cultured as planar sheets under air-liquid interface (ALI) conditions for gene expression and electrophysiologic studies. Passaged rat MG cells also were cultured in matrigel matrices to form spheroids, which were examined ultrastructurally by transmission electron microscopy (TEM) and functionally using swelling assays. Results Expression of multiple ion channel/transporter genes was detected in rat MG tissues. β-ENaC mRNA and protein were localized more to MG peripheral acinar cells than central acinar cells or ductular epithelial cells. Electrophysiologic studies of rat MG cell planar cultures demonstrated functional sodium, chloride, and potassium channels, and cotransporters activities. Transmission electron microscopic analyses of rat MG spheroids revealed highly differentiated MG cells with abundant lysosomal lamellar bodies. Rat MG spheroids culture-based measurements demonstrated active volume regulation by ion channels. Conclusions This study demonstrates the presence and function of ion channels and volume transport by rat MG. Two novel primary MG cell culture models that may be useful for MG research were established. PMID:27127933

  5. Visualizing ion relaxation in the transport of short DNA fragments.

    PubMed Central

    Allison, S A; Wang, H; Laue, T M; Wilson, T J; Wooll, J O

    1999-01-01

    Ion relaxation plays an important role in a wide range of phenomena involving the transport of charged biomolecules. Ion relaxation is responsible for reducing sedimentation and diffusion constants, reducing electrophoretic mobilities, increasing intrinsic viscosities, and, for biomolecules that lack a permanent electric dipole moment, provides a mechanism for orienting them in an external electric field. Recently, a numerical boundary element method was developed to solve the coupled Navier-Stokes, Poisson, and ion transport equations for a polyion modeled as a rigid body of arbitrary size, shape, and charge distribution. This method has subsequently been used to compute the electrophoretic mobilities and intrinsic viscosities of a number of model proteins and DNA fragments. The primary purpose of the present work is to examine the effect of ion relaxation on the ion density and fluid velocity fields around short DNA fragments (20 and 40 bp). Contour density as well as vector field diagrams of the various scalar and vector fields are presented and discussed at monovalent salt concentrations of 0.03 and 0.11 M. In addition, the net charge current fluxes in the vicinity of the DNA fragments at low and high salt concentrations are briefly examined and discussed. PMID:10233066

  6. Noise-induced transport in the motion of trapped ions

    NASA Astrophysics Data System (ADS)

    Cormick, Cecilia; Schmiegelow, Christian T.

    2016-11-01

    The interplay of noise and quantum coherence in transport gives rise to rich dynamics relevant for a variety of systems. In this work, we put forward a proposal for an experiment testing noise-induced transport in the vibrational modes of a chain of trapped ions. We focus on the case of transverse modes, considering multiple-isotope chains and an "angle trap," where the transverse trapping varies along the chain. This variation induces localization of the motional modes and therefore suppresses transport. By suitably choosing the action of laser fields that couple to the internal and external degrees of freedom of the ions, we show how to implement effective local dephasing on the modes, broadening the vibrational resonances. This leads to an overlap of the local mode frequencies, giving rise to a pronounced increase in the transport of excitations along the chain. We propose an implementation and measurement scheme which require neither ground-state cooling nor low heating rates, and we illustrate our results with a simulation of the dynamics for a chain of three ions.

  7. Light-induced modification of plant plasma membrane ion transport.

    PubMed

    Marten, I; Deeken, R; Hedrich, R; Roelfsema, M R G

    2010-09-01

    Light is not only the driving force for electron and ion transport in the thylakoid membrane, but also regulates ion transport in various other membranes of plant cells. Light-dependent changes in ion transport at the plasma membrane and associated membrane potential changes have been studied intensively over the last century. These studies, with various species and cell types, revealed that apart from regulation by chloroplasts, plasma membrane transport can be controlled by phytochromes, phototropins or channel rhodopsins. In this review, we compare light-dependent plasma membrane responses of unicellular algae (Eremosphaera and Chlamydomonas), with those of a multicellular alga (Chara), liverworts (Conocephalum), mosses (Physcomitrella) and several angiosperm cell types. Light-dependent plasma membrane responses of Eremosphaera and Chara are characterised by the dominant role of K(+) channels during membrane potential changes. In most other species, the Ca(2+)-dependent activation of plasma membrane anion channels represents a general light-triggered event. Cell type-specific responses are likely to have evolved by modification of this general response or through the development of additional light-dependent signalling pathways. Future research to elucidate these light-activated signalling chains is likely to benefit from the recent identification of S-type anion channel genes and proteins capable of regulating these channels.

  8. Substrate Profile and Metal-ion Selectivity of Human Divalent Metal-ion Transporter-1*

    PubMed Central

    Illing, Anthony C.; Shawki, Ali; Cunningham, Christopher L.; Mackenzie, Bryan

    2012-01-01

    Divalent metal-ion transporter-1 (DMT1) is a H+-coupled metal-ion transporter that plays essential roles in iron homeostasis. DMT1 exhibits reactivity (based on evoked currents) with a broad range of metal ions; however, direct measurement of transport is lacking for many of its potential substrates. We performed a comprehensive substrate-profile analysis for human DMT1 expressed in RNA-injected Xenopus oocytes by using radiotracer assays and the continuous measurement of transport by fluorescence with the metal-sensitive PhenGreen SK fluorophore. We provide validation for the use of PhenGreen SK fluorescence quenching as a reporter of cellular metal-ion uptake. We determined metal-ion selectivity under fixed conditions using the voltage clamp. Radiotracer and continuous measurement of transport by fluorescence assays revealed that DMT1 mediates the transport of several metal ions that were ranked in selectivity by using the ratio Imax/K0.5 (determined from evoked currents at −70 mV): Cd2+ > Fe2+ > Co2+, Mn2+ ≫ Zn2+, Ni2+, VO2+. DMT1 expression did not stimulate the transport of Cr2+, Cr3+, Cu+, Cu2+, Fe3+, Ga3+, Hg2+, or VO+. 55Fe2+ transport was competitively inhibited by Co2+ and Mn2+. Zn2+ only weakly inhibited 55Fe2+ transport. Our data reveal that DMT1 selects Fe2+ over its other physiological substrates and provides a basis for predicting the contribution of DMT1 to intestinal, nasal, and pulmonary absorption of metal ions and their cellular uptake in other tissues. Whereas DMT1 is a likely route of entry for the toxic heavy metal cadmium, and may serve the metabolism of cobalt, manganese, and vanadium, we predict that DMT1 should contribute little if at all to the absorption or uptake of zinc. The conclusion in previous reports that copper is a substrate of DMT1 is not supported. PMID:22736759

  9. Transportation behavior of alkali ions through a cell membrane ion channel. A quantum chemical description of a simplified isolated model.

    PubMed

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans

    2012-08-01

    Quantum chemical model calculations were carried out for modeling the ion transport through an isolated ion channel of a cell membrane. An isolated part of a natural ion channel was modeled. The model channel was a calixarene derivative, hydrated sodium and potassium ions were the models of the transported ion. The electrostatic potential of the channel and the energy of the channel-ion system were calculated as a function of the alkali ion position. Both attractive and repulsive ion-channel interactions were found. The calculations - namely the dependence of the system energy and the atomic charges of the water molecules with respect to the position of the alkali ion in the channel - revealed the molecular-structural background of the potassium selectivity of this artificial ion channel. It was concluded that the studied ion channel mimics real biological ion channel quite well.

  10. Regional differences in rat conjunctival ion transport activities.

    PubMed

    Yu, Dongfang; Thelin, William R; Rogers, Troy D; Stutts, M Jackson; Randell, Scott H; Grubb, Barbara R; Boucher, Richard C

    2012-10-01

    Active ion transport and coupled osmotic water flow are essential to maintain ocular surface health. We investigated regional differences in the ion transport activities of the rat conjunctivas and compared these activities with those of cornea and lacrimal gland. The epithelial sodium channel (ENaC), sodium/glucose cotransporter 1 (Slc5a1), transmembrane protein 16 (Tmem16a, b, f, and g), cystic fibrosis transmembrane conductance regulator (Cftr), and mucin (Muc4, 5ac, and 5b) mRNA expression was characterized by RT-PCR. ENaC proteins were measured by Western blot. Prespecified regions (palpebral, fornical, and bulbar) of freshly isolated conjunctival tissues and cell cultures were studied electrophysiologically with Ussing chambers. The transepithelial electrical potential difference (PD) of the ocular surface was also measured in vivo. The effect of amiloride and UTP on the tear volume was evaluated in lacrimal gland excised rats. All selected genes were detected but with different expression patterns. We detected αENaC protein in all tissues, βENaC in palpebral and fornical conjunctiva, and γENaC in all tissues except lacrimal glands. Electrophysiological studies of conjunctival tissues and cell cultures identified functional ENaC, SLC5A1, CFTR, and TMEM16. Fornical conjunctiva exhibited the most active ion transport under basal conditions amongst conjunctival regions. PD measurements confirmed functional ENaC-mediated Na(+) transport on the ocular surface. Amiloride and UTP increased tear volume in lacrimal gland excised rats. This study demonstrated that the different regions of the conjunctiva exhibited a spectrum of ion transport activities. Understanding the specific functions of distinct regions of the conjunctiva may foster a better understanding of the physiology maintaining hydration of the ocular surface.

  11. Regional differences in rat conjunctival ion transport activities

    PubMed Central

    Yu, Dongfang; Thelin, William R.; Rogers, Troy D.; Stutts, M. Jackson; Randell, Scott H.; Grubb, Barbara R.

    2012-01-01

    Active ion transport and coupled osmotic water flow are essential to maintain ocular surface health. We investigated regional differences in the ion transport activities of the rat conjunctivas and compared these activities with those of cornea and lacrimal gland. The epithelial sodium channel (ENaC), sodium/glucose cotransporter 1 (Slc5a1), transmembrane protein 16 (Tmem16a, b, f, and g), cystic fibrosis transmembrane conductance regulator (Cftr), and mucin (Muc4, 5ac, and 5b) mRNA expression was characterized by RT-PCR. ENaC proteins were measured by Western blot. Prespecified regions (palpebral, fornical, and bulbar) of freshly isolated conjunctival tissues and cell cultures were studied electrophysiologically with Ussing chambers. The transepithelial electrical potential difference (PD) of the ocular surface was also measured in vivo. The effect of amiloride and UTP on the tear volume was evaluated in lacrimal gland excised rats. All selected genes were detected but with different expression patterns. We detected αENaC protein in all tissues, βENaC in palpebral and fornical conjunctiva, and γENaC in all tissues except lacrimal glands. Electrophysiological studies of conjunctival tissues and cell cultures identified functional ENaC, SLC5A1, CFTR, and TMEM16. Fornical conjunctiva exhibited the most active ion transport under basal conditions amongst conjunctival regions. PD measurements confirmed functional ENaC-mediated Na+ transport on the ocular surface. Amiloride and UTP increased tear volume in lacrimal gland excised rats. This study demonstrated that the different regions of the conjunctiva exhibited a spectrum of ion transport activities. Understanding the specific functions of distinct regions of the conjunctiva may foster a better understanding of the physiology maintaining hydration of the ocular surface. PMID:22814399

  12. Internal Transport Barrier Driven by Redistribution of Energetic Ions

    SciTech Connect

    K.L. Wong; W.W. Heidbrink; E. Ruskov; C.C. Petty; C.M. Greenfield; R. Nazikian; R. Budny

    2004-11-12

    Alfven instabilities excited by energetic ions are used as a means to reduce the central magnetic shear in a tokamak via redistribution of energetic ions. When the central magnetic shear is low enough, ballooning modes become stable for any plasma pressure gradient and an internal transport barrier (ITB) with a steep pressure gradient can exist. This mechanism can sustain a steady-state ITB as demonstrated by experimental data from the DIII-D tokamak. It can also produce a shear in toroidal and poloidal plasma rotation. Possible application of this technique to use the energetic alpha particles for improvement of burning plasma performance is discussed.

  13. Polysiloxane-graft-PEG/Phosphonium Ionomer Morphology and Ion Transport

    NASA Astrophysics Data System (ADS)

    O'Reilly, Michael; Liang, Siwei; Bartels, Joshua; Runt, James; Colby, Ralph; Winey, Karen

    2013-03-01

    A series of random polysiloxane-based copolymer single ion conductors with phosphonium and polyethylene glycol side chains have been synthesized at various compositions and counterions. Morphology is investigated via X-ray scattering, and reveals microphase separation on extremely small length scales. Despite the low molecular weight of the PEG side chain, polysiloxane and PEG assemble into microdomains with covalently bound phosphonium cations at the interface. Exceptionally low glass transition temperatures in these microphase separated ionomers allow for high ionic mobility for both bulky, charge delocalized counterions as well as small, electronegative counterions. Morphology interpretation is complemented by measurement of ion transport properties via dielectric relaxation spectroscopy.

  14. Transport induced by ion cyclotron range of frequencies waves

    SciTech Connect

    Zhang, Debing Xu, Yingfeng; Wang, Shaojie

    2014-11-15

    The Vlasov equation, which includes the effect of the ion cyclotron range of frequencies (ICRF) waves, can be written as the Fokker-Planck equation which describes the quasilinear transport in phase space by using the Lie-transform method. The radial transport fluxes of particle, energy and parallel momentum driven by ICRF waves in the slab geometry have been derived. The results show that the ICRF-induced radial redistributions of particle, energy and parallel momentum are driven by the inhomogeneity in energy of the equilibrium distribution function, and related to the correlation between the excursion in the real space and the excursion in energy. For the case with strong asymmetry of k{sub y} spectrum, the ICRF-induced radial transport driven by the energy inhomogeneity dominates the ICRF-induced radial transport driven by the spatial inhomogeneity.

  15. Liquid secretion properties of airway submucosal glands

    PubMed Central

    Ballard, Stephen T; Inglis, Sarah K

    2004-01-01

    The tracheobronchial submucosal glands secrete liquid that is important for hydrating airway surfaces, supporting mucociliary transport, and serving as a fluid matrix for numerous secreted macromolecules including the gel-forming mucins. This review details the essential structural elements of airway glands and summarizes what is currently known regarding the ion transport processes responsible for producing the liquid component of gland secretion. Liquid secretion most likely arises from serous cells and is principally under neural control with muscarinic agonists, substance P, and vasoactive intestinal peptide (VIP) functioning as effective secretogogues. Liquid secretion is driven by the active transepithelial secretion of both Cl− and HCO3− and at least a portion of this process is mediated by the cystic fibrosis transmembrane conductance regulator (CFTR), which is highly expressed in glands. The potential role of submucosal glands in cystic fibrosis lung disease is discussed. PMID:14660706

  16. Stanniocalcin-1 Controls Ion Regulation Functions of Ion-transporting Epithelium Other than Calcium Balance

    PubMed Central

    Chou, Ming-Yi; Lin, Chia-Hao; Chao, Pei-Lin; Hung, Jo-Chi; Cruz, Shelly A.; Hwang, Pung-Pung

    2015-01-01

    Stanniocalcin-1 (STC-1) was first identified to involve in Ca2+ homeostasis in teleosts, and was thought to act as a hypocalcemic hormone in vertebrate. Recent studies suggested that STC-1 exhibits broad effects on ion balance, not confines to Ca2+, but the mechanism of this regulation process remains largely unknown. Here, we used zebrafish embryos as an alternative in vivo model to investigate how STC-1 regulates transepithelial ion transport function in ion-transporting epithelium. Expression of stc-1 mRNA in zebrafish embryos was increased in high-Ca2+ environments but decreased by acidic and ion-deficient treatments while overexpression of stc-1 impaired the hypotonic acclimation by decreasing whole body Ca2+, Na+, and Cl- contents and H+ secretion ability. Injection of STC-1 mRNA also down-regulated mRNA expressions of epithelial Ca2+ channel, H+-ATPase, and Na+-Cl- cotransporter, suggesting the roles of STC-1 in regulation of ions other than Ca2+. Knockdown of STC-1 caused an increase in ionocyte progenitors (foxi3a as the marker) and mature ionocytes (ion transporters as the markers), but did not affect epithelium stem cells (p63 as the marker) in the embryonic skin. Overexpression of STC-1 had the corresponding opposite effect on ionocyte progenitors, mature ionocytes in the embryonic skin. Taken together, STC-1 negatively regulates the number of ionocytes to reduce ionocyte functions. This process is important for body fluid ionic homeostasis, which is achieved by the regulation of ion transport functions in ionocytes. The present findings provide new insights into the broader functions of STC-1, a hypocalcemic hormone. PMID:25561895

  17. Modeling of negative ion transport in a plasma source

    NASA Astrophysics Data System (ADS)

    Riz, David; Paméla, Jérôme

    1998-08-01

    A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The ion trajectory is calculated by numerically solving the 3-D motion equation, while the atomic processes of destruction, of elastic collision H-/H+ and of charge exchange H-/H0 are handled at each time step by a Monte-Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have allowed to explain, either quantitatively or qualitatively, several phenomena observed in negative ion sources, such as the isotopic H-/D- effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm-3), negative ions can reach the extraction region provided if they are produced at a distance lower than 2 cm from the plasma grid in the case of «volume production» (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.

  18. Feed gas contaminant control in ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis; Minford, Eric; Waldron, William Emil

    2009-07-07

    Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

  19. Transport of radioactive ions in soil by electrokinetics

    SciTech Connect

    Buehler, M.F.; Surma, J.E.; Virden, J.W.

    1994-10-01

    An electrokinetic approach is being evaluated for in situ soil remediation at the Hanford Site in Richland, Washington. This approach uses an applied electric field to induce transport of both radioactive and hazardous waste ions in soil. The work discussed in this paper involves the development of a new method to monitor the movement of the radioactive ions within the soil during the electrokinetic process. A closed cell and a gamma counter were used to provide iii situ measurements of {sup 137}Cs and {sup 60}Co movement in Hanford soil. Preliminary results show that for an applied potential of 200 V over approximately 200 hr, {sup 137}Cs and {sup 60}60 were transported a distance of 4 to 5 in. The monitoring technique demonstrated the feasibility of using electrokinetics for soil separation applications.

  20. Hormonal regulation of ion and water transport in anuran amphibians.

    PubMed

    Uchiyama, Minoru; Konno, Norifumi

    2006-05-15

    Amphibians occupy a wide variety of ecological habitats, and their adaptation is made possible through the specialization of the epithelia of their osmoregulatory organs, such as the skin, kidney, and urinary bladder, which control the hydromineral and acid-base balance of their internal medium. Amphibians can change drastically plasma Na+, Cl-, and urea levels and excretion rates in response to environmental stimuli such as acute desiccation and changes in external salinity. Several hormones and the autonomic nervous system act to control osmoregulation. Several ion channels including an epithelial sodium channel (ENaC), a urea transporter (UT), and water channels (AQPs) are found in epithelial tissues of their osmoregulatory organs. This mini review examines the currents status of our knowledge about hormone receptors for arginine vasotocin, angiotensin II and aldosterone, and membrane ion channels and transporters, such as ENaC, UT, and AQPs in amphibians.

  1. Predicting Carbonate Ion Transport in Alkaline Anion Exchange Materials

    DTIC Science & Technology

    2012-01-01

    Schematic of the permeation cell experiment used to measure transient CO2 flux across the polymer electrolyte membrane. Experimental result vs. model trend...Microstructure on Charge Transfer, Mass Transfer, and Electrochemical Reactions in Solid Oxide Fuel Cells ; Part 2. Ion and Water Transport in Alkaline Anion...through the use of the Fuel Cell Technologies Test Station such as the relative humidity and flow rate of the feed gases, the cell temperature, and the

  2. Fast ion transport induced by saturated infernal mode

    SciTech Connect

    Marchenko, V. S.

    2014-05-15

    Tokamak discharges with extended weak-shear central core are known to suffer from infernal modes when the core safety factor approaches the mode ratio. These modes can cause an outward convection of the well-passing energetic ions deposited in the core by fusion reactions and/or neutral beam injection. Convection mechanism consists in collisional slowing down of energetic ions trapped in the Doppler-precession resonance with a finite-amplitude infernal mode. Convection velocity can reach a few m/s in modern spherical tori. Possible relation of this transport with the enhanced fast ion losses in the presence of “long lived modes” in the MAST tokamak [I. T. Chapman et al., Nucl. Fusion 50, 045007 (2010)] is discussed.

  3. Bivalent ion transport through graphene/PET nanopore

    NASA Astrophysics Data System (ADS)

    Yao, Huijun; Cheng, Yaxiong; Zeng, Jian; Mo, Dan; Duan, Jinglai; Liu, Jiande; Zhai, Pengfei; Sun, Youmei; Liu, Jie

    2016-05-01

    The PET suspended single graphene nanopore (G/PET) was produced by heavy ion irradiation and asymmetric chemical etching. The solutions of NiSO4, NiCl2, CuSO4 and CuCl2 with different concentration were adopted to study the transport properties of bivalent ion in single G/PET nanopore by measuring the I-V curves. The perfect "diode effect" and excellent rectification effect of G/PET nanopore were observed, and the huge rectification ratio up to 43.3 was obtained in NiSO4 solution. The great solution selectivity and ion current magnification effect of graphene/PET nanopore were also confirmed in our study.

  4. Glial Na(+) -dependent ion transporters in pathophysiological conditions.

    PubMed

    Boscia, Francesca; Begum, Gulnaz; Pignataro, Giuseppe; Sirabella, Rossana; Cuomo, Ornella; Casamassa, Antonella; Sun, Dandan; Annunziato, Lucio

    2016-10-01

    Sodium dynamics are essential for regulating functional processes in glial cells. Indeed, glial Na(+) signaling influences and regulates important glial activities, and plays a role in neuron-glia interaction under physiological conditions or in response to injury of the central nervous system (CNS). Emerging studies indicate that Na(+) pumps and Na(+) -dependent ion transporters in astrocytes, microglia, and oligodendrocytes regulate Na(+) homeostasis and play a fundamental role in modulating glial activities in neurological diseases. In this review, we first briefly introduced the emerging roles of each glial cell type in the pathophysiology of cerebral ischemia, Alzheimer's disease, epilepsy, Parkinson's disease, Amyotrophic Lateral Sclerosis, and myelin diseases. Then, we discussed the current knowledge on the main roles played by the different glial Na(+) -dependent ion transporters, including Na(+) /K(+) ATPase, Na(+) /Ca(2+) exchangers, Na(+) /H(+) exchangers, Na(+) -K(+) -Cl(-) cotransporters, and Na(+) - HCO3- cotransporter in the pathophysiology of the diverse CNS diseases. We highlighted their contributions in cell survival, synaptic pathology, gliotransmission, pH homeostasis, and their role in glial activation, migration, gliosis, inflammation, and tissue repair processes. Therefore, this review summarizes the foundation work for targeting Na(+) -dependent ion transporters in glia as a novel strategy to control important glial activities associated with Na(+) dynamics in different neurological disorders. GLIA 2016;64:1677-1697.

  5. Ion Transport in Polymerized Ionic Liquid Block and Random Copolymers

    NASA Astrophysics Data System (ADS)

    Elabd, Yossef; Ye, Yuesheng; Choi, Jae-Hong; Winey, Karen

    2012-02-01

    Polymerized ionic liquid (PIL) block copolymers, a new type of solid-state polymer electrolyte, are of interest for energy conversion and storage devices, such as fuel cells, batteries, supercapacitors, and solar cells. In this study, a series of PIL diblock and random copolymers with various PIL compositions were synthesized. These consisted of an IL monomer and a non-ionic monomer, 1-[(2-methacryloyloxy)ethyl]-3-butylimidazolium bis(trifluoromethanesulfonyl)imide (MEBIm-TFSI) and methyl methacrylate (MMA), and 1-[(2-acryloyloxy)ethyl]-3-butylimidazolium bis(trifluoromethanesulfonyl)imide (AEBIm-TFSI) and styrene (S), respectively, were synthesized. The anion conductivity (ion transport) and morphology were measured in all of the polymers with EIS, SAXS/WAXS, and TEM. Ion transport in block copolymers are significantly higher than random copolymers at the same PIL composition and are highly dependent on the block copolymer nanostructure. The relationship between ion transport mechanisms and the phase behavior of these materials will be discussed.

  6. Regulation of lysosomal ion homeostasis by channels and transporters.

    PubMed

    Xiong, Jian; Zhu, Michael X

    2016-08-01

    Lysosomes are the major organelles that carry out degradation functions. They integrate and digest materials compartmentalized by endocytosis, phagocytosis or autophagy. In addition to more than 60 hydrolases residing in the lysosomes, there are also ion channels and transporters that mediate the flux or transport of H(+), Ca(2+), Na(+), K(+), and Cl(-) across the lysosomal membranes. Defects in ionic exchange can lead to abnormal lysosome morphology, defective vesicle trafficking, impaired autophagy, and diseases such as neurodegeneration and lysosomal storage disorders. The latter are characterized by incomplete lysosomal digestion and accumulation of toxic materials inside enlarged intracellular vacuoles. In addition to degradation, recent studies have revealed the roles of lysosomes in metabolic pathways through kinases such as mechanistic target of rapamycin (mTOR) and transcriptional regulation through calcium signaling molecules such as transcription factor EB (TFEB) and calcineurin. Owing to the development of new approaches including genetically encoded fluorescence probes and whole endolysosomal patch clamp recording techniques, studies on lysosomal ion channels have made remarkable progress in recent years. In this review, we will focus on the current knowledge of lysosome-resident ion channels and transporters, discuss their roles in maintaining lysosomal function, and evaluate how their dysfunction can result in disease.

  7. Regulation of lysosomal ion homeostasis by channels and transporters

    PubMed Central

    Xiong, Jian; Zhu, Michael X.

    2016-01-01

    Lysosomes are the major organelles that carry out degradation functions. They integrate and digest materials compartmentalized by endocytosis, phagocytosis or autophagy. In addition to more than 60 hydrolases residing in the lysosomes, there are also ion channels and transporters that mediate the flux or transport of H+, Ca2+, Na+, K+, and Cl− across the lysosomal membranes. Defects in ionic exchange can lead to abnormal lysosome morphology, defective vesicle trafficking, impaired autophagy, and diseases such as neurodegeneration and lysosomal storage disorders. The latter are characterized by incomplete lysosomal digestion and accumulation of toxic materials inside enlarged intracellular vacuoles. In addition to degradation, recent studies have revealed the roles of lysosomes in metabolic pathways through kinases such as mechanistic target of rapamycin (mTOR) and transcriptional regulation through calcium signaling molecules such as transcription factor EB (TFEB) and calcineurin. Owing to the development of new approaches including genetically encoded fluorescence probes and whole endolysosomal patch clamp recording techniques, studies on lysosomal ion channels have made remarkable progress in recent years. In this review, we will focus on the current knowledge of lysosome-resident ion channels and transporters, discuss their roles in maintaining lysosomal function, and evaluate how their dysfunction can result in disease. PMID:27430889

  8. An improved Green's function for ion beam transport

    NASA Technical Reports Server (NTRS)

    Tweed, J.; Wilson, J. W.; Tripathi, R. K.

    2004-01-01

    Ion beam transport theory allows testing of material transmission properties in the laboratory environment generated by particle accelerators. This is a necessary step in materials development and evaluation for space use. The approximations used in solving the Boltzmann transport equation for the space setting are often not sufficient for laboratory work and those issues are the main emphasis of the present work. In consequence, an analytic solution of the linear Boltzmann equation is pursued in the form of a Green's function allowing flexibility in application to a broad range of boundary value problems. It has been established that simple solutions can be found for high charge and energy (HZE) ions by ignoring nuclear energy downshifts and dispersion. Such solutions were found to be supported by experimental evidence with HZE ion beams when multiple scattering was added. Lacking from the prior solutions were range and energy straggling and energy downshift with dispersion associated with nuclear events. Recently, we have found global solutions including these effects providing a broader class of HZE ion solutions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  9. Validation of Heavy Ion Transport Capabilities in PHITS

    NASA Astrophysics Data System (ADS)

    Ronningen, Reginald M.

    2007-03-01

    The performance of the Monte Carlo code system PHITS is validated for heavy ion transport capabilities by performing simulations and comparing results against experimental data from heavy ion reactions of benchmark quality. These data are from measurements of secondary neutron production cross sections in reactions of Xe at 400 MeV/u with lithium and lead targets, measurements of neutrons outside of thick concrete and iron shields, and measurements of isotope yields produced in the fragmentation of a 140 MeV/u 48Ca beam on a beryllium target and on a tantalum target. A practical example that tests magnetic field capabilities is shown for a simulated 48Ca beam at 500 MeV/u striking a lithium target to produce the rare isotope 44Si, with ion transport through a fragmentation-reaction magnetic pre-separator. The results of this study show that PHITS performs reliably for the simulation of radiation fields that is necessary for designing safe, reliable and cost effective future high-powered heavy-ion accelerators in rare isotope beam facilities.

  10. Transport of intense beams of highly charged ions

    NASA Astrophysics Data System (ADS)

    Winkler, M.; Gammino, S.; Ciavola, G.; Celona, L.; Spadtke, P.; Tinschert, K.

    2005-10-01

    The new generation of ion sources delivers beams with intensities of several mA. This requires a careful design of the analysing system and the low-energy beam transport (LEBT) from the source to the subsequent systems. At INFN-LNS, high intensity proton sources (TRIPS [L. Celona, G. Ciavola, S. Gammino et al ., Rev. Sci. Instrum. 75(5) 1423 (2004)], PM-TRIPS [G. Ciavola, L. Celona, S. Gammino et al ., Rev. Sci. Instrum. 75(5) 1453 (2004)]) as well as ECR ion sources for the production of highly charged high-intensity heavy ion beams are developed (SERSE [S. Gammino, G. Ciavola, L. Celona et al ., Rev. Sci. Instrum. 72(11) 4090 (2001), and references therein], GyroSERSE [S. Gammino et al ., Rev. Sci. Instrum. 75(5) 1637 (2004)], MS-ECRIS [G. Ciavola et al ., (2005), 11th Int. Conf. on Ion Sources, Caen, (in press)]). In this paper, we present ion-optical design studies of various LEBT systems for ion-sources devoted to the production of intense beams. Calculations were performed using the computer codes GIOS [H. Wollnik, J. Brezina and M. Berz, NIM A 258 (1987)], GICO [M. Berz, H.C. Hoffmann, and H. Wollnik, NIM A 258 (1987)], and TRANSPORT [K.L. Brown, F. Rothacker and D.C. Carey, SLAC-R-95-462, Fermilab-Pub-95/069, UC-414 (1995)]. Simulations take into account the expected phase space growth of the beam emittance due to space-charge effects and image aberrations introduced by the magnetic elements.

  11. Effects of electrolytes on ion transport in Chitosan membranes

    NASA Astrophysics Data System (ADS)

    Rupiasih, N. N.

    2016-11-01

    Recently, charged polymer membranes are widely used for water purification applications involving control of water and ion transport, such as reverse osmosis and electrodialysis. In this study, we have explored the effects of electrolyte solutions on ion transport properties of chitosan synthetic membranes via concentration gradient driven transport. Also, the water uptake of those membranes, before (control) as well used membranes have studied. The membrane used was chitosan membrane 2%. The electrolyte solutions used were HCl, KCl, CaCl2, MgCl2 and AlCl3, with various concentrations of 0.1 mM, 1 mM, 10 mM, 100 mM and 1000 mM. Ion transport experiments were carried out in a cell membrane model which composed of two compartments and the potential difference of membrane was measured using Ag/AgCl calomel electrodes. Those measurements were conducted at ambient temperature 28.8 °C. The results showed that the current density (J) increased with increased in concentration gradient of solution. The current density was higher in electrolyte solution which has higher molar conductivity than those of a solution with a small molar conductivity. Meanwhile the current density was smaller in electrolyte solution which has larger Stokes radii than those of a solution with small Stokes radii. Except membrane which has been used in HCl solution, the water uptakes of the used membranes were greater than the control membrane. These results can develop and validate a common framework to interpret data of concentration gradient driven transport in chitosan synthetic membranes and to use it to design of membranes with improved performance.

  12. The high current transport experiment for heavy ion inertial fusion

    SciTech Connect

    Prost, L.R.; Baca, D.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Henestroza, E.; Kwan, J.W.; Leitner, M.; Seidl, P.A.; Waldron, W.L.; Cohen, R.; Friedman, A.; Grote, D.; Lund, S.M.; Molvik, A.W.; Morse, E.

    2004-05-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density {approx} 0.2 {micro}C/m) over long pulse durations (4 {micro}s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K{sup +} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor ({approx}80%) is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low) nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  13. Final Report - Ion Production and Transport in Atmospheric Pressure Ion Source Mass Spectrometers

    SciTech Connect

    Farnsworth, Paul B.; Spencer, Ross L.

    2014-05-14

    This document is the final report on a project that focused in the general theme of atmospheric-pressure ion production and transport for mass spectrometry. Within that general theme there were two main projects: the fundamental study of the transport of elemental ions through the vacuum interface of an inductively coupled plasma mass spectrometer (ICPMS), and fundamental studies of the ionization mechanisms in ambient desorption/ionization (ADI) sources for molecular mass spectrometry. In both cases the goal was to generate fundamental understanding of key instrumental processes that would lead to the development of instruments that were more sensitive and more consistent in their performance. The emphasis on consistency derives from the need for instruments that have the same sensitivity, regardless of sample type. In the jargon of analytical chemistry, such instruments are said to be free from matrix effects. In the ICPMS work each stage of ion production and of ion transport from the atmospheric pressure to the high-vacuum mass analyzer was studied. Factors controlling ion transport efficiency and consistency were identified at each stage of pressure reduction. In the ADI work the interactions between an electrospray plume and a fluorescent sample on a surface were examined microscopically. A new mechanism for analyte ion production in desorption electrospray ionization (DESI) was proposed. Optical spectroscopy was used to track the production of reactive species in plasmas used as ADI sources. Experiments with mixed-gas plasmas demonstrated that the addition of a small amount of hydrogen to a helium ADI plasma could boost the sensitivity for some analytes by over an order of magnitude.

  14. Modeling plasmalemma ion transport of the aquatic plant Egeria densa.

    PubMed

    Buschmann, P; Sack, H; Köhler, A E; Dahse, I

    1996-11-01

    Fresh-water plants generate extraordinarily high electric potential differences at the plasma membrane. For a deeper understanding of the underlying transport processes a mathematical model of the electrogenic plasmalemma ion transport was developed based on experimental data mainly obtained from Egeria densa. The model uses a general nonlinear network approach and assumes coupling of the transporters via membrane potential. A proton pump, an outward-rectifying K+ channel, an inward-rectifying K+ channel, a Cl- channel and a (2H-Cl)+ symporter are considered to be elements of the system. The model takes into consideration the effects of light, external pH and ionic content of the bath medium on ion transport. As a result it does not only satisfactorily describe the membrane potential as a function of these external physiological factors but also succeeds in simulating the effects of specific inhibitors as well as I-V-curves obtained with the patch-clamp technique in the whole cell mode. The quality of the model was checked by stability and sensitivity analyses.

  15. A Green's function method for heavy ion beam transport

    NASA Technical Reports Server (NTRS)

    Shinn, J. L.; Wilson, J. W.; Schimmerling, W.; Shavers, M. R.; Miller, J.; Benton, E. V.; Frank, A. L.; Badavi, F. F.

    1995-01-01

    The use of Green's function has played a fundamental role in transport calculations for high-charge high-energy (HZE) ions. Two recent developments have greatly advanced the practical aspects of implementation of these methods. The first was the formulation of a closed-form solution as a multiple fragmentation perturbation series. The second was the effective summation of the closed-form solution through nonperturbative techniques. The nonperturbative methods have been recently extended to an inhomogeneous, two-layer transport media to simulate the lead scattering foil present in the Lawrence Berkeley Laboratories (LBL) biomedical beam line used for cancer therapy. Such inhomogeneous codes are necessary for astronaut shielding in space. The transport codes utilize the Langley Research Center atomic and nuclear database. Transport code and database evaluation are performed by comparison with experiments performed at the LBL Bevalac facility using 670 A MeV 20Ne and 600 A MeV 56Fe ion beams. The comparison with a time-of-flight and delta E detector measurement for the 20Ne beam and the plastic nuclear track detectors for 56Fe show agreement up to 35%-40% in water and aluminium targets, respectively.

  16. Test particle study of ion transport in drift type turbulence

    SciTech Connect

    Vlad, M.; Spineanu, F.

    2013-12-15

    Ion transport regimes in drift type turbulence are determined in the frame of a realistic model for the turbulence spectrum based on numerical simulations. The model includes the drift of the potential with the effective diamagnetic velocity, turbulence anisotropy, and dominant waves. The effects of the zonal flow modes are also analyzed. A semi-analytical method that is able to describe trajectory stochastic trapping or eddying is used for obtaining the transport coefficients as function of the parameters of the turbulence. Analytical approximations of the transport coefficients are derived from the results. They show the transition from Bohm to gyro-Bohm scaling as plasma size increases in very good agreement with the numerical simulations.

  17. Ionic requirements of proximal tubular sodium transport. II. Hydrogen ion.

    PubMed

    Green, R; Giebisch, G

    1975-11-01

    Simultaneous perfusion to proximal convoluted tubules and peritubular capillaries was used to study the effects of different perfusion fluids on sodium reabsorption and hydrogen secretion, which was calculated as bicarbonate reabsorption and titratable acid. Results show that sodium reabsorption was not tightly coupled to hydrogen secretion. Bicarbonate stimulates both sodium reabsorption and hydrogen secretion, but Tris stimulates only sodium reabsorption. Imposing an adverse chloride gradient across the proximal tubule (C1- peritubular greater than C1- luminal) decreased sodium reabsorption but did not diminish hydrogen secretion. Diamox inhibited both net sodium and hydrogen transport. It is concluded that there is not firm linkage between sodium reabsorption and hydrogen secretion and that bicarbonate probably stimulates sodium transport by a number of mechanisms, including an effect on the sodium transport unrelated to its ability to increase hydrogen ion secretion.

  18. Surface fluid absorption and secretion in small airways

    PubMed Central

    Shamsuddin, A K M; Quinton, P M

    2012-01-01

    Native small airways must remain wet enough to be pliable and support ciliary clearance, but dry enough to remain patent for gas flow. The airway epithelial lining must both absorb and secrete ions to maintain a critical level of fluid on its surface. Despite frequent involvement in lung diseases, the minuscule size has limited studies of peripheral airways. To meet this challenge, we used a capillary to construct an Ussing chamber (area <1 mm2) to measure electrolyte transport across small native airways (∼1 mm ø) from pig lung. Transepithelial potentials (Vt) were recorded in open circuit conditions while applying constant current pulses across the luminal surface of dissected airways to calculate transepithelial electrical conductance (Gt) and equivalent short circuit current () in the presence and absence of selected Na+ and Cl− transport inhibitors (amiloride, GlyH-101, Niflumic acid) and agonists (Forskolin + IBMX, UTP). Considered together the responses suggest an organ composed of both secreting and absorbing epithelia that constitutively and concurrently transport fluids into and out of the airway, i.e. in opposite directions. Since the epithelial lining of small airways is arranged in long, accordion-like rows of pleats and folds that run axially down the lumen, we surmise that cells within the pleats are mainly secretory while the cells of the folds are principally absorptive. This structural arrangement could provide local fluid transport from within the pleats toward the luminal folds that may autonomously regulate the local surface fluid volume for homeostasis while permitting acute responses to maintain clearance. PMID:22547637

  19. Transport of energetic ions by low-n magnetic perturbations

    SciTech Connect

    Mynick, H.E.

    1992-10-01

    The stochastic transport of MeV ions induced by low-n magnetic perturbations is studied, focussing chiefly on the stochastic mechanism operative for passing particles in low frequency perturbations. Beginning with a single-harmonic form for the perturbing field, it iii first shown numerically and analytically that the stochastic threshold of energetic particles can be much lower than that of the magnetic field, contrary to earlier expectations, so that MHD perturbations could cause appreciable loss of energetic ions without destroying the bulk confinement. The analytic theory is then extended in a number of directions, to darity the relation of the present stochaistic mechanism to instances already found, to allow for more complex perturbations, and to consider the more general relationship between the stochasticity of magnetic fields, and that of particles of differing energies (and pitch angles) moving in those fields. It is shown that the stochastic threshold is in general a nonmonotonic function of energy, whose form can to some extent be tailored to achieve desired goals (e.g., burn control or ash removal) by a judicious choice of the perturbation. Illustrative perturbations are exhibited which are stochastic for low but not for high-energy ions, for high but not for low-energy ions, and for intermediate-energy ions, but not for low or high energy. The second possibility is the behavior needed for burn control; the third provides a possible mechanism for ash removal.

  20. Modeling of negative ion transport in a plasma source (invited)

    NASA Astrophysics Data System (ADS)

    Riz, David; Paméla, Jérôme

    1998-02-01

    A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The H-/D- trajectory is calculated by numerically solving the 3D motion equation, while the atomic processes of destruction, of elastic collision with H+/D+ and of charge exchange with H0/D0 are handled at each time step by a Monte Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have been allowed to explain, either quantitatively or qualitatively, several phenomena observed in negative ion sources, such as the isotopic H-/D- effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that, in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm-3), negative ions can reach the extraction region provided they are produced at a distance lower than 2 cm from the plasma grid in the case of volume production (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.

  1. Stormtime transport of ring current and radiation belt ions

    NASA Technical Reports Server (NTRS)

    Chen, Margaret W.; Schulz, Michael; Lyons, L. R.; Gorney, David J.

    1993-01-01

    This is an investigation of stormtime particle transport that leads to formation of the ring current. Our method is to trace the guiding-center motion of representative ions (having selected first adiabatic invariants mu) in response to model substorm-associated impulses in the convection electric field. We compare our simulation results qualitatively with existing analytically tractable idealizations of particle transport (direct convective access and radial diffusion) in order to assess the limits of validity of these approximations. For mu approximately less than 10 MeV/G (E approximately less than 10 keV at L equivalent to 3) the ion drift period on the final (ring-current) drift shell of interest (L equivalent to 3) exceeds the duration of the main phase of our model storm, and we find that the transport of ions to this drift shell is appropriately idealized as direct convective access, typically from open drift paths. Ion transport to a final closed drift path from an open (plasma-sheet) drift trajectory is possible for those portions of that drift path that lie outside the mean stormtime separatrix between closed and open drift trajectories, For mu approximately 10-25 MeV/G (110 keV approximately less than E approximately less than 280 keV at L equivalent to 3) the drift period at L equivalent to 3 is comparable to the postulated 3-hr duration of the storm, and the mode of transport is transitional between direct convective access and transport that resembles radial diffusion. (This particle population is transitional between the ring current and radiation belt). For mu approximately greater than 25 MeV/G (radiation-belt ions having E approximately greater than 280 keV at L equivalent to 3) the ion drift period is considerably shorter than the main phase of a typical storm, and ions gain access to the ring-current region essentially via radial diffusion. By computing the mean and mean-square cumulative changes in 1/L among (in this case) 12 representative

  2. Evidence for ion transport and molecular ion dominance in the Venus ionotail

    NASA Technical Reports Server (NTRS)

    Intriligator, D. S.; Brace, L. H.; Cloutier, P. A.; Grebowsky, J. M.; Hartle, R. E.; Kasprzak, W. T.; Knudsen, W. C.; Strangeway, R. J.

    1994-01-01

    We present analyses from the five Pioneer Venus Orbiter plasma experiments and the plasma wave experiment when a patch of plasma with enhanced densities was encountered in the near-Venus ionotail during atmospheric entry at an altitude of approximately 1100 km in the nightside ionosphere. Our analyses of the thermal and superthermal ion measurements in this plasma feature provides the first evidence that at times molecular ions in the 28-32 amu mass range are dominant over atomic mass species thus yielding evidence for a transport mechanism that reaches into the lower ionosphere. Analysis of plasma analyzer (OPA) observations at this time indicates the presence of ions measured in the rest frame of the spacecraft at approximately 27 and 37 volt energy per unit charge steps. In the rest frame of the planet these superthermal ions are flowing from the dawn direction at speeds (assuming they are O2(+)) of approximately 8 km/s and with a flow component downward (perpendicular to the ecliptic plane) at speeds of approximately 2 km/s. OPA analyses also determine the ion number flux, energy, flow angles, and angular distributions. Plasma wave bursts appear to indicate that plasma density decreases within and on the equatorward edge of the patch of enhanced plasma densities are associated with ion acoustic waves and relative ion streaming.

  3. An Improved Green's Function for Ion Beam Transport

    NASA Technical Reports Server (NTRS)

    Tweed, J.; Wilson, J. W.; Tripathi, R. K.

    2003-01-01

    Ion beam transport theory allows testing of material transmission properties in the laboratory environment generated by particle accelerators. This is a necessary step in materials development and evaluation for space use. The approximations used in solving the Boltzmann transport equation for the space setting are often not sufficient for laboratory work and those issues are the main emphasis of the present work. In consequence, an analytic solution of the linear Boltzmann equation is pursued in the form of a Green's function allowing flexibility in application to a broad range of boundary value problems. It has been established that simple solutions can be found for the high charge and energy (HZE) by ignoring nuclear energy downshifts and dispersion. Such solutions were found to be supported by experimental evidence with HZE ion beams when multiple scattering was added. Lacking from the prior solutions were range and energy straggling and energy downshift with dispersion associated with nuclear events. Recently, we have found global solutions including these effects providing a broader class of HZE ion solutions.

  4. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.

    PubMed

    Guo, Wei; Tian, Ye; Jiang, Lei

    2013-12-17

    Both scientists and engineers are interested in the design and fabrication of synthetic nanofluidic architectures that mimic the gating functions of biological ion channels. The effort to build such structures requires interdisciplinary efforts at the intersection of chemistry, materials science, and nanotechnology. Biological ion channels and synthetic nanofluidic devices have some structural and chemical similarities, and therefore, they share some common features in regulating the traverse ionic flow. In the past decade, researchers have identified two asymmetric ion transport phenomena in synthetic nanofluidic structures, the rectified ionic current and the net diffusion current. The rectified ionic current is a diode-like current-voltage response that occurs when switching the voltage bias. This phenomenon indicates a preferential direction of transport in the nanofluidic system. The net diffusion current occurs as a direct product of charge selectivity and is generated from the asymmetric diffusion through charged nanofluidic channels. These new ion transport phenomena and the elaborate structures that occur in biology have inspired us to build functional nanofluidic devices for both fundamental research and practical applications. In this Account, we review our recent progress in the design and fabrication of biomimetic solid-state nanofluidic devices with asymmetric ion transport behavior. We demonstrate the origin of the rectified ionic current and the net diffusion current. We also identify several influential factors and discuss how to build these asymmetric features into nanofluidic systems by controlling (1) nanopore geometry, (2) surface charge distribution, (3) chemical composition, (4) channel wall wettability, (5) environmental pH, (6) electrolyte concentration gradient, and (7) ion mobility. In the case of the first four features, we build these asymmetric features directly into the nanofluidic structures. With the final three, we construct

  5. Overview of Particle and Heavy Ion Transport Code System PHITS

    NASA Astrophysics Data System (ADS)

    Sato, Tatsuhiko; Niita, Koji; Matsuda, Norihiro; Hashimoto, Shintaro; Iwamoto, Yosuke; Furuta, Takuya; Noda, Shusaku; Ogawa, Tatsuhiko; Iwase, Hiroshi; Nakashima, Hiroshi; Fukahori, Tokio; Okumura, Keisuke; Kai, Tetsuya; Chiba, Satoshi; Sihver, Lembit

    2014-06-01

    A general purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS, is being developed through the collaboration of several institutes in Japan and Europe. The Japan Atomic Energy Agency is responsible for managing the entire project. PHITS can deal with the transport of nearly all particles, including neutrons, protons, heavy ions, photons, and electrons, over wide energy ranges using various nuclear reaction models and data libraries. It is written in Fortran language and can be executed on almost all computers. All components of PHITS such as its source, executable and data-library files are assembled in one package and then distributed to many countries via the Research organization for Information Science and Technology, the Data Bank of the Organization for Economic Co-operation and Development's Nuclear Energy Agency, and the Radiation Safety Information Computational Center. More than 1,000 researchers have been registered as PHITS users, and they apply the code to various research and development fields such as nuclear technology, accelerator design, medical physics, and cosmic-ray research. This paper briefly summarizes the physics models implemented in PHITS, and introduces some important functions useful for specific applications, such as an event generator mode and beam transport functions.

  6. Ion transport and softening in a polymerized ionic liquid

    SciTech Connect

    Kumar, Rajeev; Bocharova, Vera; Strelcov, Evgheni; Tselev, Alexander; Kravchenko, Ivan I.; Berdzinski, Stefan; Strehmel, Veronika; Ovchinnikova, Olga S.; Minutolo, Joseph A.; Sangoro, Joshua R.; Agapov, Alexander L.; Sokolov, Alexei P.; Kalinin, Sergei V.; Sumpter, Bobby G.

    2014-11-13

    Polymerized ionic liquids (PolyILs) are promising materials for various solid state electronic applications such as dye-sensitized solar cells, lithium batteries, actuators, field-effect transistors, light emitting electrochemical cells, and electrochromic devices. However, fundamental understanding of interconnection between ionic transport and mechanical properties in PolyILs is far from complete. In this paper, local charge transport and structural changes in films of a PolyIL are studied using an integrated experiment-theory based approach. Experimental data for the kinetics of charging and steady state current–voltage relations can be explained by taking into account the dissociation of ions under an applied electric field (known as the Wien effect). Onsager's theory of the Wien effect coupled with the Poisson–Nernst–Planck formalism for the charge transport is found to be in excellent agreement with the experimental results. The agreement between the theory and experiments allows us to predict structural properties of the PolyIL films. We have observed significant softening of the PolyIL films beyond certain threshold voltages and formation of holes under a scanning probe microscopy (SPM) tip, through which an electric field was applied. Finally, the observed softening is explained by the theory of depression in glass transition temperature resulting from enhanced dissociation of ions with an increase in applied electric field.

  7. Ion transport and softening in a polymerized ionic liquid

    DOE PAGES

    Kumar, Rajeev; Bocharova, Vera; Strelcov, Evgheni; ...

    2014-11-13

    Polymerized ionic liquids (PolyILs) are promising materials for various solid state electronic applications such as dye-sensitized solar cells, lithium batteries, actuators, field-effect transistors, light emitting electrochemical cells, and electrochromic devices. However, fundamental understanding of interconnection between ionic transport and mechanical properties in PolyILs is far from complete. In this paper, local charge transport and structural changes in films of a PolyIL are studied using an integrated experiment-theory based approach. Experimental data for the kinetics of charging and steady state current–voltage relations can be explained by taking into account the dissociation of ions under an applied electric field (known as themore » Wien effect). Onsager's theory of the Wien effect coupled with the Poisson–Nernst–Planck formalism for the charge transport is found to be in excellent agreement with the experimental results. The agreement between the theory and experiments allows us to predict structural properties of the PolyIL films. We have observed significant softening of the PolyIL films beyond certain threshold voltages and formation of holes under a scanning probe microscopy (SPM) tip, through which an electric field was applied. Finally, the observed softening is explained by the theory of depression in glass transition temperature resulting from enhanced dissociation of ions with an increase in applied electric field.« less

  8. Study of negative ion transport phenomena in a plasma source

    NASA Astrophysics Data System (ADS)

    Riz, D.; Paméla, J.

    1996-07-01

    NIETZSCHE (Negative Ions Extraction and Transport ZSimulation Code for HydrogEn species) is a negative ion (NI) transport code developed at Cadarache. This code calculates NI trajectories using a 3D Monte-Carlo technique, taking into account the main destruction processes, as well as elastic collisions (H-/H+) and charge exchanges (H-/H0). It determines the extraction probability of a NI created at a given position. According to the simulations, we have seen that in the case of volume production, only NI produced close to the plasma grid (PG) can be extracted. Concerning the surface production, we have studied how NI produced on the PG and accelerated by the plasma sheath backward into the source could be extracted. We demonstrate that elastic collisions and charge exchanges play an important role, which in some conditions dominates the magnetic filter effect, which acts as a magnetic mirror. NI transport in various conditions will be discussed: volume/surface production, high/low plasmas density, tent filter/transverse filter.

  9. Osmoregulation in zebrafish: ion transport mechanisms and functional regulation

    PubMed Central

    Guh, Ying-Jey; Lin, Chia-Hao; Hwang, Pung-Pung

    2015-01-01

    Fish, like mammals, have to maintain their body fluid ionic and osmotic homeostasis through sophisticated iono-/osmoregulation mechanisms, which are conducted mainly by ionocytes of the gill (the skin in embryonic stages), instead of the renal tubular cells in mammals. Given the advantages in terms of genetic database availability and manipulation, zebrafish is an emerging model for research into regulatory and integrative physiology. At least five types of ionocytes, HR, NaR, NCC, SLC26, and KS cells, have been identified to carry out Na+ uptake/H+ secretion/NH4+ excretion, Ca2+ uptake, Na+/Cl- uptake, K+ secretion, and Cl- uptake/HCO3- secretion, respectively, through distinct sets of transporters. Several hormones, namely isotocin, prolactin, cortisol, stanniocalcin-1, calcitonin, endothelin-1, vitamin D, parathyorid hormone 1, catecholamines, and the renin-angiotensin-system, have been demonstrated to positively or negatively regulate ion transport through specific receptors at different ionocytes stages, at either the transcriptional/translational or posttranslational level. The knowledge obtained using zebrafish answered many long-term contentious or unknown issues in the field of fish iono-/osmoregulation. The homology of ion transport pathways and hormone systems also means that the zebrafish model informs studies on mammals or other animal species, thereby providing insights into related fields. PMID:26600749

  10. Ion transport through a T-intersection of nanofluidic channels.

    PubMed

    Daiguji, Hirofumi; Adachi, Takuma; Tatsumi, Naoya

    2008-08-01

    Ion transport through a T-intersection of two silica nanochannels (a main channel, 5-mum long and 30-nm wide, and a subchannel, 5-microm long and 15-nm wide) with a surface charge distribution was investigated based on continuum dynamics calculations. The surface charge within 250 nm of the intersection in the main channel and the entire subchannel was positive and that in the main channel outside this intersection region was negative. This nanofluidic system is analogous to a p-n-p transistor. The calculation results revealed that, by adjusting the electric potentials at the ends of the nanochannels, the ionic current could be (1) cut off, (2) regulated in the main channel, (3) diverged into the main and subchannels, (4) turned from the main channel to the subchannel, and (5) merged into the subchannel. A series connection of this nanofluidic system can therefore be used in biotechnological applications for electrophoretic separation and for sorting of ions and biomolecules.

  11. IUPAP Award: Ion transport in 2D materials

    NASA Astrophysics Data System (ADS)

    Bao, Wenzhong

    Intercalation in 2D materials drastically influences both physical and chemical properties, which leads to a new degree of freedom for fundamental studies and expands the potential applications of 2D materials. In this talk, I will discuss our work in the past two years related to ion intercalation of 2D materials, including insertion of Li and Na ions in graphene and MoS2. We focused on both fundamental mechanism and potential application, e.g. we measured in-situ optical transmittance spectra and electrical transport properties of few-layer graphene (FLG) nanostructures upon electrochemical lithiation/delithiation. By observing a simultaneous increase of both optical transmittance and DC conductivity, strikingly different from other materials, we proposed its application as a next generation transparent electrode.

  12. Auxin effects on ion transport in Chara corallina.

    PubMed

    Zhang, Suyun; de Boer, Albertus H; van Duijn, Bert

    2016-04-01

    The plant hormone auxin has been widely studied with regard to synthesis, transport, signaling and functions among the land plants while there is still a lack of knowledge about the possible role for auxin regulation mechanisms in algae with "plant-like" structures. Here we use the alga Chara corallina as a model to study aspects of auxin signaling. In this respect we measured auxin on membrane potential changes and different ion fluxes (K(+), H(+)) through the plasma membrane. Results showed that auxin, mainly IAA, could hyperpolarize the membrane potential of C. corallina internodal cells. Ion flux measurements showed that the auxin-induced membrane potential change may be based on the change of K(+) permeability and/or channel activity rather than through the activation of proton pumps as known in land plants.

  13. Energetic O+ and H+ Ions in the Plasma Sheet: Implications for the Transport of Ionospheric Ions

    NASA Technical Reports Server (NTRS)

    Ohtani, S.; Nose, M.; Christon, S. P.; Lui, A. T.

    2011-01-01

    The present study statistically examines the characteristics of energetic ions in the plasma sheet using the Geotail/Energetic Particle and Ion Composition data. An emphasis is placed on the O+ ions, and the characteristics of the H+ ions are used as references. The following is a summary of the results. (1) The average O+ energy is lower during solar maximum and higher during solar minimum. A similar tendency is also found for the average H+ energy, but only for geomagnetically active times; (2) The O+ -to -H+ ratios of number and energy densities are several times higher during solar maximum than during solar minimum; (3) The average H+ and O+ energies and the O+ -to -H+ ratios of number and energy densities all increase with geomagnetic activity. The differences among different solar phases not only persist but also increase with increasing geomagnetic activity; (4) Whereas the average H+ energy increases toward Earth, the average O+ energy decreases toward Earth. The average energy increases toward dusk for both the H+ and O+ ions; (5) The O+ -to -H+ ratios of number and energy densities increase toward Earth during all solar phases, but most clearly during solar maximum. These results suggest that the solar illumination enhances the ionospheric outflow more effectively with increasing geomagnetic activity and that a significant portion of the O+ ions is transported directly from the ionosphere to the near ]Earth region rather than through the distant tail.

  14. Ion plateau transport near the tokamak magnetic axis

    SciTech Connect

    Shaing, K.C.; Hazeltine, R.D.

    1998-04-01

    Conventional neoclassical transport theory does not pertain near the magnetic axis, where orbital variation of the minor radius and the poloidal field markedly change the nature of guiding-center trajectories. Instead of the conventional tokamak banana-shaped trajectories, near-axis orbits, called potato orbits, are radially wider and lead to distinctive kinetic considerations. Here it is shown that there is a plateau regime for the near-axis case; the corresponding potato-plateau ion thermal conductivity is computed. {copyright} {ital 1998 American Institute of Physics.}

  15. 8 GeV H- ions: Transport and injection

    SciTech Connect

    Chou, W.; Bryant, H.; Drozhdin, A.; Hill, C.; Kostin, M.; Macek, R.; Ostiguy, J.-F.; Rees, G.H.; Tang, Z.; Yoon, P.; /Fermilab /New Mexico U. /Los Alamos /Rutherford /Rochester U.

    2005-05-01

    Fermilab is working on the design of an 8 GeV superconducting RF H{sup -} linac called the Proton Driver. The energy of H{sup -} beam will be an order of magnitude higher than the existing ones. This brings up a number of technical challenges to transport and injection of H{sup -} ions. This paper will focus on the subjects of stripping losses (including stripping by blackbody radiation, field and residual gas) and carbon foil stripping efficiency, along with a brief discussion on other issues such as Stark states lifetime of hydrogen atoms, single and multiple Coulomb scattering, foil heating and stress, radiation activation, collimation and jitter correction, etc.

  16. What's new in ion transports in the cochlea?

    PubMed

    Couloigner, Vincent; Sterkers, Olivier; Ferrary, Evelyne

    2006-10-01

    Recent advances in the field of the physiology of inner ear fluids permitted the characterization of the molecular mechanisms involved in critical processes such as the absorption of K(+) through cochlear sensory hair cells (mechanoelectrical transduction) or the secretion of K(+) by marginal cells of the stria vascularis. In addition, new pathways for ion circulations were evidenced. Mutations of transporters involved in some of these pathways, especially in K(+) recycling through gap junction systems, and in local pH regulation, are among the most frequent etiologies of genetic deafness in humans.

  17. Charge transport studies of proton and ion conducting materials

    NASA Astrophysics Data System (ADS)

    Versek, Craig Wm

    The development of a high-throughput impedance spectroscopy instrumentation platform for conductivity characterization of ion transport materials is outlined. Collaborative studies using this system are summarized. Charge conduction mechanisms and conductivity data for small molecule proton conducting liquids, pyrazole, imidazole, 1,2,3-triazole, 1,2,4-triazole, and select mixtures of these compounds are documented. Furthermore, proton diffusivity measurements using a Pulse Field Gradient Nuclear Magnetic Resonance (PFG NMR) technique for imidazole and 1,2,3-triazole binary mixtures are compared. Studies of azole functionalized discotic and linear mesogens with conductivity, structural, and thermal characterizations are detailed.

  18. Ion radial transport induced by ICRF waves in tokamaks

    SciTech Connect

    Chen, L.; Vaclavik, J.; Hammett, G.W.

    1987-05-01

    The wave-induced fluxes of energetic-trapped ions during ICRF heating of tokamak plasmas are calculated using quasilinear equations. A simple single particle model of this transport mechanism is also given. Both a convective flux proportional to k/sub phi/vertical bar E/sub +/vertical bar/sup 2/ and a diffusive flux proportional to k/sub phi//sup 2/vertical bar E/sub +/vertical bar/sup 2/ are found. Here, k/sub phi/ is the toroidal wave number and E/sub +/ is the left-hand polarized wave field. The convective flux may become significant for large k/sub phi/ if the wave spectrum is asymmetric in k/sub phi/. But for the conditions of most previous experiments, these calculations indicate that radial transport driven directly by the ICRF wave is unimportant.

  19. Ion Transport in Isolated Protoplasts from Tobacco Suspension Cells

    PubMed Central

    Mettler, Irvin J.; Leonard, Robert T.

    1979-01-01

    An investigation was conducted into the feasibility of using enzymically isolated protoplasts from suspension-cultured cells of Nicotiana glutinosa L. to study ion transport. Transport of K+ (86Rb), 36Cl−, H232PO4− and 45Ca2+ from 1 millimolar salt solutions was determined after separation of intact protoplasts from nonabsorbed tracers by centrifugation through a Ficoll step gradient. Influx of K+, Cl−, and H2PO4− measured over a 30-minute period was reduced (up to 99%) by respiratory inhibitors such as 5 micrograms per milliliter oligomycin, 0.1 millimolar dinitrophenol, 0.1 millimolar cyanide, or N2 gas. In contrast, Ca2+ influx was not tightly coupled to respiratory energy production. The influx of K+ was highest between pH 6.5 and 7.5 whereas the influx of H2PO4− and Cl− was greatest between pH 4.5 and 5.5. Influx of K+ and Cl− was maximal at 35 and 45 C, respectively, and was almost completely inhibited below 10 C. Fusicoccin (0.01 millimolar) stimulated K+ influx by more than 200% but had no effect on the influx of either Cl− or H2PO4−. Apparent H+ efflux, as measured by decrease in solution pH, was enhanced by K+, stimulated further by 0.01 millimolar fusicoccin, and inhibited by 0.1 millimolar dinitrophenol or 5 micrograms per milliliter oligomycin. The measured ionic fluxes into protoplasts were similar to those obtained with intact cultured cells. The results indicate that enzymic removal of the cell wall produced no significant alteration in the transport properties of the protoplast, and that it is feasible to use isolated protoplasts for studies on ion transport. Images PMID:16660675

  20. Ion and solute transport by Prestin in Drosophila and Anopheles.

    PubMed

    Hirata, Taku; Czapar, Anna; Brin, Lauren; Haritonova, Alyona; Bondeson, Daniel P; Linser, Paul; Cabrero, Pablo; Thompson, James; Dow, Julian A T; Romero, Michael F

    2012-04-01

    The gut and Malpighian tubules of insects are the primary sites of active solute and water transport for controlling hemolymph and urine composition, pH, and osmolarity. These processes depend on ATPase (pumps), channels and solute carriers (Slc proteins). Maturation of genomic databases enables us to identify the putative molecular players for these processes. Anion transporters of the Slc4 family, AE1 and NDAE1, have been reported as HCO(3)(-) transporters, but are only part of the story. Here we report Dipteran (Drosophila melanogaster (d) and Anopheles gambiae (Ag)) anion exchangers, belonging to the Slc26 family, which are multi-functional anion exchangers. One Drosophila and two Ag homologues of mammalian Slc26a5 (Prestin) and Slc26a6 (aka, PAT1, CFEX) were identified and designated dPrestin, AgPrestinA and AgPrestinB. dPrestin and AgPrestinB show electrogenic anion exchange (Cl(-)/nHCO(3)(-), Cl(-)/SO(4)(2-) and Cl(-)/oxalate(2-)) in an oocyte expression system. Since these transporters are the only Dipteran Slc26 proteins whose transport is similar to mammalian Slc26a6, we submit that Dipteran Prestin are functional and even molecular orthologues of mammalian Slc26a6. OSR1 kinase increases dPrestin ion transport, implying another set of physiological processes controlled by WNK/SPAK signaling in epithelia. All of these mRNAs are highly expressed in the gut and Malpighian tubules. Dipteran Prestin proteins appear suited for central roles in bicarbonate, sulfate and oxalate metabolism including generating the high pH conditions measured in the Dipteran midgut lumen. Finally, we present and discuss Drosophila genetic models that integrate these processes.

  1. Ion transport and softening in a polymerized ionic liquid

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev; Bocharova, Vera; Strelcov, Evgheni; Tselev, Alexander; Kravchenko, Ivan I.; Berdzinski, Stefan; Strehmel, Veronika; Ovchinnikova, Olga S.; Minutolo, Joseph A.; Sangoro, Joshua R.; Agapov, Alexander L.; Sokolov, Alexei P.; Kalinin, Sergei V.; Sumpter, Bobby G.

    2014-12-01

    Polymerized ionic liquids (PolyILs) are promising materials for various solid state electronic applications such as dye-sensitized solar cells, lithium batteries, actuators, field-effect transistors, light emitting electrochemical cells, and electrochromic devices. However, fundamental understanding of interconnection between ionic transport and mechanical properties in PolyILs is far from complete. In this work, local charge transport and structural changes in films of a PolyIL are studied using an integrated experiment-theory based approach. Experimental data for the kinetics of charging and steady state current-voltage relations can be explained by taking into account the dissociation of ions under an applied electric field (known as the Wien effect). Onsager's theory of the Wien effect coupled with the Poisson-Nernst-Planck formalism for the charge transport is found to be in excellent agreement with the experimental results. The agreement between the theory and experiments allows us to predict structural properties of the PolyIL films. We have observed significant softening of the PolyIL films beyond certain threshold voltages and formation of holes under a scanning probe microscopy (SPM) tip, through which an electric field was applied. The observed softening is explained by the theory of depression in glass transition temperature resulting from enhanced dissociation of ions with an increase in applied electric field.Polymerized ionic liquids (PolyILs) are promising materials for various solid state electronic applications such as dye-sensitized solar cells, lithium batteries, actuators, field-effect transistors, light emitting electrochemical cells, and electrochromic devices. However, fundamental understanding of interconnection between ionic transport and mechanical properties in PolyILs is far from complete. In this work, local charge transport and structural changes in films of a PolyIL are studied using an integrated experiment-theory based approach

  2. Ion transport in a model gramicidin channel. Structure and thermodynamics.

    PubMed Central

    Roux, B; Karplus, M

    1991-01-01

    The potential of mean force for Na+ and K+ ions as a function of position in the interior of a periodic poly(L,D)-alanine model for the gramicidin beta-helix is calculated with a detailed atomic model and realistic interactions. The calculated free energy barriers are 4.5 kcal/mol for Na+ and 1.0 kcal/mol for K+. A decomposition of the free energy demonstrates that the water molecules make a significant contribution to the free energy of activation. There is an increase in entropy at the transition state associated with greater fluctuations. Analysis reveals that the free energy profile of ions in the periodic channel is controlled not by the large interaction energy involving the ion but rather by the weaker water-water, water-peptide and peptide-peptide hydrogen bond interactions. The interior of the channel retains much of the solvation properties of a liquid in its interactions with the cations. Of particular importance is the flexibility of the helix, which permits it to respond to the presence of an ion in a fluidlike manner. The distortion of the helix is local (limited to a few carbonyls) because the structure is too flexible to transmit a perturbation to large distances. The plasticity of the structure (i.e., the property to deform without generating a large energy stress) appears to be an essential factor in the transport of ions, suggesting that a rigid helix model would be inappropriate. Images FIGURE 1 FIGURE 10 PMID:1714305

  3. The cystic fibrosis transmembrane conductance regulator Cl⁻ channel: a versatile engine for transepithelial ion transport.

    PubMed

    Li, Hongyu; Cai, Zhiwei; Chen, Jeng-Haur; Ju, Min; Xu, Zhe; Sheppard, David N

    2007-08-25

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a unique member of the ATP-binding cassette (ABC) transporter superfamily that forms a Cl(-) channel with complex regulation. CFTR is composed of five domains: two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs) and a unique regulatory domain (RD). The MSDs assemble to form a low conductance (6-10 pS) anion-selective pore with deep intracellular and shallow extracellular vestibules separated by a selectivity filter. The NBDs form a head-to-tail dimer with two ATP-binding sites (termed sites 1 and 2) located at the dimer interface. Anion flow through CFTR is gated by the interaction of ATP with sites 1 and 2 powering cycles of NBD dimer association and dissociation and hence, conformational changes in the MSDs that open and close the channel pore. The RD is an unstructured domain with multiple consensus phosphorylation sites, phosphorylation of which stimulates CFTR function by enhancing the interaction of ATP with the NBDs. Tight spatial and temporal control of CFTR activity is achieved by macromolecular signalling complexes in which scaffolding proteins colocalise CFTR and plasma membrane receptors with protein kinases and phosphatases. Moreover, a macromolecular complex composed of CFTR and metabolic enzymes (a CFTR metabolon) permits CFTR activity to be coupled tightly to metabolic pathways within cells so that CFTR inhibition conserves vital energy stores. CFTR is expressed in epithelial tissues throughout the body, lining ducts and tubes. It functions to control the quantity and composition of epithelial secretions by driving either the absorption or secretion of salt and water. Of note, in the respiratory airways CFTR plays an additional important role in host defence. Malfunction of CFTR disrupts transepithelial ion transport leading to a wide spectrum of human disease.

  4. Shortcuts to Adiabaticity in Transport of a Single Trapped Ion

    NASA Astrophysics Data System (ADS)

    An, Shuoming; Lv, Dingshun; Campo, Adolfo Del; Kim, Kihwan

    2015-05-01

    We report an experimental study on shortcuts to adiabaticity in the transport of a single 171Yb+ ion trapped in a harmonic potential. In these driving schemes, the application of a force induces a nonadiabatic dynamics in which excitations are tailored so as to preserve the ion motional state in the ground state upon completion of the process. We experimentally apply the laser induced force and realize three different protocols: (1) a transitionless driving with a counterdiabatic term out of phase with the displacement force, (2) a classical protocol assisted by counterdiabatic fields in phase with the main force, (3) and an engineered transport protocol based on the Fourier transform of the trap acceleration. We experimentally compare and discuss the robustness of these protocols under given experimental limitations such as trap frequency drifts. This work was supported by the National Basic Research Program of China under Grants No. 2011CBA00300 (No. 2011CBA00301), the National Natural Science Foundation of China 11374178, and the University of Massachusetts Boston (No. P20150000029279).

  5. Modeling Fast Ion Transport in TAE Avalanches in NSTX

    SciTech Connect

    Fredrickson, E D; Bell, R E; Darrow, D; Gorelenkov, N N; Kramer, G; Kubota, S; Levinton, F M; Liu, D; Medley, S S; Podesta, M; Tritz, K

    2009-08-17

    Experiments on the National Spherical Torus Experiment [M. Ono, et al., Nucl. Fusion 40 (2000) 557 ] have found strong bursts of Toroidal Alfven Eigenmode (TAE) activity correlated with abrupt drops in the neutron rate. A fairly complete data set offers the opportunity to benchmark the NOVA [C. Z. Cheng, Phys. Reports 211, 1-51 (1992)] and ORBIT [R. B. White and M. S. Chance, Phys. Fluids 27, 2455 (1984)] codes in the low aspect ratio tokamak (ST) geometry. The internal structure of TAE were modeled with NOVA and good agreement is found with measurements made with an array of five fixed-frequency reflectometers. The fast-ion transport resulting from these bursts of multiple TAE were then modeled with the ORBIT code. The simulations are reasonably consistent with the observed drop in neutron rate. While these results represent our best attempts to find agreement, we believe that further refinements in both the simulation of the TAE structure and in the modeling of the fast ion transport are needed. Benchmarking stability codes against present experiments is an important step in developing the predictive capability needed to plan future experiments.

  6. Activation of ion transport systems during cell volume regulation

    SciTech Connect

    Eveloff, J.L.; Warnock, D.G.

    1987-01-01

    This review discusses the activation of transport pathways during volume regulation, including their characteristics, the possible biochemical pathways that may mediate the activation of transport pathways, and the relations between volume regulation and transepithelial transport in renal cells. Many cells regulate their volume when exposed to an anisotonic medium. The changes in cell volume are caused by activation of ion transport pathways, plus the accompanying osmotically driven water movement such that cell volume returns toward normal levels. The swelling of hypertonically shrunken cells is termed regulatory volume increase (RVI) and involves an influx of NaCl into the cell via either activation of Na-Cl, Na-K-2Cl cotransport systems, or Na/sup +/-H/sup +/ and Cl/sup -/-HCO/sub 3//sup -/ exchangers. The reshrinking of hypotonically swollen cells is termed regulatory volume decrease (RVD) and involves an efflux of KCl and water from the cell by activation of either separate K/sup +/ and Cl/sup -/ conductances, a K-Cl cotransport system, or parallel K/sup +/-H/sup +/ and Cl/sup -/-HCO/sub 3//sup -/ exchangers. The biochemical mechanisms involved in the activation of transport systems are largely unknown, however, the phosphoinositide pathway may be implicated in RVI; phorbol esters, cGMP, and Ca/sup 2 +/ affect the process of volume regulation. Renal tubular cells, as well as the blood cells that transverse the medulla, are subjected to increasing osmotic gradients from the corticomedullary junction to the papillary tip, as well as changing interstitial and tubule fluid osmolarity, depending on the diuretic state of the animal. Medullary cells from the loop of Henle and the papilla can volume regulate by activating Na-K-2Cl cotransport or Na/sup +/-H/sup +/ and Cl/sup -/-HCO/sub 3//sup -/ exchange systems.

  7. Radiation protection considerations along a radioactive ion beam transport line

    NASA Astrophysics Data System (ADS)

    Sarchiapone, Lucia; Zafiropoulos, Demetre

    2016-09-01

    The goal of the SPES project is to produce accelerated radioactive ion beams for Physics studies at “Laboratori Nazionali di Legnaro” (INFN, Italy). This accelerator complex is scheduled to be built by 2016 for an effective operation in 2017. Radioactive species are produced in a uranium carbide target, by the interaction of 200 μA of protons at 40 MeV. All of the ionized species in the 1+ state come out of the target (ISOL method), and pass through a Wien filter for a first selection and an HMRS (high mass resolution spectrometer). Then they are transported by an electrostatic beam line toward a charge state breeder (where the 1+ to n+ multi-ionization takes place) before selection and reacceleration at the already existing superconducting linac. The work concerning dose evaluations, activation calculation, and radiation protection constraints related to the transport of the radioactive ion beam (RIB) from the target to the mass separator will be described in this paper. The FLUKA code has been used as tool for those calculations needing Monte Carlo simulations, in particular for the evaluation of the dose rate due to the presence of the radioactive beam in the selection/interaction points. The time evolution of a radionuclide inventory can be computed online with FLUKA for arbitrary irradiation profiles and decay times. The activity evolution is analytically evaluated through the implementation of the Bateman equations. Furthermore, the generation and transport of decay radiation (limited to gamma, beta- and beta+ emissions) is possible, referring to a dedicated database of decay emissions using mostly information obtained from NNDC, sometimes supplemented with other data and checked for consistency. When the use of Monte Carlo simulations was not feasible, the Bateman equations, or possible simplifications, have been used directly.

  8. Neoclassical transport of energetic minority tail ions generated by ion-cyclotron resonance heating in tokamak geometry

    SciTech Connect

    Chang, C.S. . Courant Inst. of Mathematical Sciences); Hammett, G.W.; Goldston, R.J. . Plasma Physics Lab.)

    1990-01-01

    Neoclassical transport of energetic minority tail ions, which are generated by high powered electromagnetic waves of the Ion Cyclotron Range of Frequencies (ICRF) at the fundamental harmonic resonance, is studied analytically in tokamak geometry. The effect of Coulomb collisions on the tail ion transport is investigated in the present work. The total tail ion transport will be the sum of the present collision-driven transport and the wave-driven transport, which is due to the ICRF-wave scattering of the tail particles as reported in the literature. The transport coefficients have been calculated kinetically, and it is found that the large tail ion viscosity, driven by the localized ICRF-heating and Coulomb slowing-down collisions, induces purely convective particle transport of the tail species, while the energy transport is both convective and diffusive. The rate of radial particle transport is shown to be usually small, but the rate of radial energy transport is larger and may not be negligible compared to the Coulomb slowing-down rate. 18 refs., 2 figs.

  9. Neutron Transport Models and Methods for HZETRN and Coupling to Low Energy Light Ion Transport

    NASA Technical Reports Server (NTRS)

    Blattnig, S.R.; Slaba, T.C.; Heinbockel, J.H.

    2008-01-01

    Exposure estimates inside space vehicles, surface habitats, and high altitude aircraft exposed to space radiation are highly influenced by secondary neutron production. The deterministic transport code HZETRN has been identified as a reliable and efficient tool for such studies, but improvements to the underlying transport models and numerical methods are still necessary. In this paper, the forward-backward (FB) and directionally coupled forward-backward (DC) neutron transport models are derived, numerical methods for the FB model are reviewed, and a computationally efficient numerical solution is presented for the DC model. Both models are compared to the Monte Carlo codes HETCHEDS and FLUKA, and the DC model is shown to agree closely with the Monte Carlo results. Finally, it is found in the development of either model that the decoupling of low energy neutrons from the light ion (A<4) transport procedure adversely affects low energy light ion fluence spectra and exposure quantities. A first order correction is presented to resolve the problem, and it is shown to be both accurate and efficient.

  10. Polaronic Transport in Phosphate Glasses Containing Transition Metal Ions

    NASA Astrophysics Data System (ADS)

    Henderson, Mark

    The goal of this dissertation is to characterize the basic transport properties of phosphate glasses containing various amounts of TIs and to identify and explain any electronic phase transitions which may occur. The P2 O5-V2O5-WO3 (PVW) glass system will be analyzed to find the effect of TI concentration on conduction. In addition, the effect of the relative concentrations of network forming ions (SiO2 and P2O5) on transport will be studied in the P2O5-SiO2-Fe2O 3 (PSF) system. Also presented is a numerical study on a tight-binding model adapted for the purposes of modelling Gaussian traps, mimicking TI's, which are arranged in an extended network. The results of this project will contribute to the development of fundamental theories on the electronic transport in glasses containing mixtures of transition oxides as well as those containing multiple network formers without discernible phase separation. The present study on the PVW follows up on previous investigation into the effect on mixed transition ions in oxide glasses. Past research has focused on glasses containing transition metal ions from the 3d row. The inclusion of tungsten, a 5d transition metal, adds a layer of complexity through the mismatch of the energies of the orbitals contributing to localized states. The data have indicated that a transition reminiscent of a metal-insulator transition (MIT) occurs in this system as the concentration of tungsten increases. As opposed to some other MIT-like transitions found in phosphate glass systems, there seems to be no polaron to bipolaron conversion. Instead, the individual localization parameter for tungsten noticeably decreases dramatically at the transition point as well as the adiabaticity. Another distinctive feature of this project is the study of the PSF system, which contains two true network formers, phosphorous pentoxide (P2O 5) and silicon dioxide (SiO2). It is not usually possible to do a reliable investigation of the conduction properties of

  11. Electron/Ion Transport Enhancer in High Capacity Li-Ion Battery Anodes

    DOE PAGES

    Kwon, Yo Han; Minnici, Krysten; Huie, Matthew M.; ...

    2016-08-30

    In this paper, magnetite (Fe3O4) was used as a model high capacity metal oxide active material to demonstrate advantages derived from consideration of both electron and ion transport in the design of composite battery electrodes. The conjugated polymer, poly[3-(potassium-4-butanoate) thiophene] (PPBT), was introduced as a binder component, while polyethylene glycol (PEG) was coated onto the surface of Fe3O4 nanoparticles. The introduction of PEG reduced aggregate size, enabled effective dispersion of the active materials and facilitated ionic conduction. As a binder for the composite electrode, PPBT underwent electrochemical doping which enabled the formation of effective electrical bridges between the carbon andmore » Fe3O4 components, allowing for more efficient electron transport. Additionally, the PPBT carboxylic moieties effect a porous structure, and stable electrode performance. Finally, the methodical consideration of both enhanced electron and ion transport by introducing a carboxylated PPBT binder and PEG surface treatment leads to effectively reduced electrode resistance, which improved cycle life performance and rate capabilities.« less

  12. Electron/Ion Transport Enhancer in High Capacity Li-Ion Battery Anodes

    SciTech Connect

    Kwon, Yo Han; Minnici, Krysten; Huie, Matthew M.; Takeuchi, Kenneth J.; Takeuchi, Esther S.; Marschilok, Amy C.; Reichmanis, Elsa

    2016-08-30

    In this paper, magnetite (Fe3O4) was used as a model high capacity metal oxide active material to demonstrate advantages derived from consideration of both electron and ion transport in the design of composite battery electrodes. The conjugated polymer, poly[3-(potassium-4-butanoate) thiophene] (PPBT), was introduced as a binder component, while polyethylene glycol (PEG) was coated onto the surface of Fe3O4 nanoparticles. The introduction of PEG reduced aggregate size, enabled effective dispersion of the active materials and facilitated ionic conduction. As a binder for the composite electrode, PPBT underwent electrochemical doping which enabled the formation of effective electrical bridges between the carbon and Fe3O4 components, allowing for more efficient electron transport. Additionally, the PPBT carboxylic moieties effect a porous structure, and stable electrode performance. Finally, the methodical consideration of both enhanced electron and ion transport by introducing a carboxylated PPBT binder and PEG surface treatment leads to effectively reduced electrode resistance, which improved cycle life performance and rate capabilities.

  13. A parallel finite element simulator for ion transport through three-dimensional ion channel systems.

    PubMed

    Tu, Bin; Chen, Minxin; Xie, Yan; Zhang, Linbo; Eisenberg, Bob; Lu, Benzhuo

    2013-09-15

    A parallel finite element simulator, ichannel, is developed for ion transport through three-dimensional ion channel systems that consist of protein and membrane. The coordinates of heavy atoms of the protein are taken from the Protein Data Bank and the membrane is represented as a slab. The simulator contains two components: a parallel adaptive finite element solver for a set of Poisson-Nernst-Planck (PNP) equations that describe the electrodiffusion process of ion transport, and a mesh generation tool chain for ion channel systems, which is an essential component for the finite element computations. The finite element method has advantages in modeling irregular geometries and complex boundary conditions. We have built a tool chain to get the surface and volume mesh for ion channel systems, which consists of a set of mesh generation tools. The adaptive finite element solver in our simulator is implemented using the parallel adaptive finite element package Parallel Hierarchical Grid (PHG) developed by one of the authors, which provides the capability of doing large scale parallel computations with high parallel efficiency and the flexibility of choosing high order elements to achieve high order accuracy. The simulator is applied to a real transmembrane protein, the gramicidin A (gA) channel protein, to calculate the electrostatic potential, ion concentrations and I - V curve, with which both primitive and transformed PNP equations are studied and their numerical performances are compared. To further validate the method, we also apply the simulator to two other ion channel systems, the voltage dependent anion channel (VDAC) and α-Hemolysin (α-HL). The simulation results agree well with Brownian dynamics (BD) simulation results and experimental results. Moreover, because ionic finite size effects can be included in PNP model now, we also perform simulations using a size-modified PNP (SMPNP) model on VDAC and α-HL. It is shown that the size effects in SMPNP can

  14. Multiple ion temperature gradient driven modes in transport barriers

    NASA Astrophysics Data System (ADS)

    Han, M. K.; Wang, Zheng-Xiong; Dong, J. Q.; Du, Huarong

    2017-04-01

    The ion temperature gradient (ITG) modes in transport barriers (TBs) of tokamak plasmas are numerically studied with a code solving gyrokinetic integral eigenvalue equations in toroidal configurations. It is found that multiple ITG modes with conventional and unconventional ballooning mode structures can be excited simultaneously in TBs with steep gradients of ion temperature and density. The characteristics of the modes, including the dependence of the mode frequencies, growth rate and structure on plasma parameters, are systematically investigated. Unconventional modes with large mode-number l (where l denotes a certain parity and peak number in ballooning space) dominate in the large {{k}θ}{ρs} region ({{k}θ}{ρs}≥slant 1.2 ), while the conventional mode with l=0 dominates in the medium {{k}θ}{ρs} region (0.4≤slant {{k}θ}{ρs}<1.2 ), and unconventional modes with small mode-number l dominate in the small {{k}θ}{ρs} region ({{k}θ}{ρs}<0.4 ). Thus, the {{k}θ}{ρs} spectra of these conventional and unconventional modes at steep gradients are qualitatively different from those of the conventional ITG modes at small or medium gradients, in which the growth rate of the only ITG mode with l=0 reaches maximum at the medium value {{k}θ}{ρs}=0.6 . Through scanning ion temperature gradient {{\\varepsilon}T\\text{i}} and density gradient {{\\varepsilon}n} separately, it is proven that the synergetic effect of {{\\varepsilon}T\\text{i}} and {{\\varepsilon}n} , rather than {{\\varepsilon}T\\text{i}} alone, drives the unconventional ITG modes in TBs. Moreover, it is found that the critical value of {{\\varepsilon}n} for driving the unconventional ITG modes with large l number increases with increasing {{k}θ}{ρs} . In addition, the effects of magnetic shear on conventional and unconventional ITG modes in the high confinement regime (H-mode) are analyzed in detail, and compared with equivalent effects on conventional modes in the low and intermediate gradient

  15. Thick airway surface liquid volume and weak mucin expression in pendrin-deficient human airway epithelia

    PubMed Central

    Lee, Hyun Jae; Yoo, Jee Eun; Namkung, Wan; Cho, Hyung-Ju; Kim, Kyubo; Kang, Joo Wan; Yoon, Joo-Heon; Choi, Jae Young

    2015-01-01

    Pendrin is an anion exchanger whose mutations are known to cause hearing loss. However, recent data support the linkage between pendrin expression and airway diseases, such as asthma. To evaluate the role of pendrin in the regulation of the airway surface liquid (ASL) volume and mucin expression, we investigated the function and expression of pendrin and ion channels and anion exchangers. Human nasal epithelial cells were cultured from 16 deaf patients carrying pendrin mutations (DFNB4) and 17 controls. The cells were treated with IL-13 to induce mucus hypersecretion. Airway surface liquid thickness was measured and real-time polymerase chain reaction was performed targeting various transporters and MUC5AC. Anion exchanger activity was measured using a pH-sensitive fluorescent probe. Periodic acid-Schiff staining was performed on the cultured cells and inferior turbinate tissues. The ASL layer of the nasal epithelia from DFNB4 subjects was thicker than the controls, and the difference became more prominent following IL-13 stimulation. There was no difference in anion exchange activity after IL-13 treatment in the cells from DFNB4 patients, while it increased in the controls. Goblet cell metaplasia induced by IL-13 treatment seen in the controls was not observed in the DFNB4 cells. Furthermore, the periodic acid-Schiff staining-positive area was lesser in the inferior turbinate tissues from DFNB4 patients that those from controls. Pendrin plays a critical role in ASL volume regulation and mucin expression as pendrin-deficient airway epithelial cells are refractory to stimulation with IL-13. Specific blockers targeting pendrin in the airways may therefore have therapeutic potential in the treatment of allergic airway diseases. PMID:26243215

  16. Understanding ion transport in ion-containing polymers for energy applications

    NASA Astrophysics Data System (ADS)

    Choi, U. Hyeok

    A molecular-level understanding of dynamics in ion-containing polymers is of considerable interest for electromechanical transduction devices and electrochemical membranes. One example is the study of ion transport in ionomers which are polymers with one type of ion covalently bonded to the chain, allowing only the unattached counterions to move rapidly in response to an applied electric field. Since designing ionomers for facile ion transport is a great challenge, it is necessary to investigate structures, dynamics, and ionic interactions, giving rise to better understanding of the generation and transport processes of ionic carriers in ionomers. Therefore, the goal of this dissertation is to understand in detail the structure-property relations of single-ion conductors through morphological, electric, dielectric, and mechanical measurements. Polymerizable imidazolium-based ionic liquids and their polymers were characterized to study the effect of different pendent structures and different counterions on ionic conductivity, dielectric constant, and morphology. The larger counterions (Tf2N-) display higher ionic conductivity and mobility than the smaller counterions (PF6 - or BF4 -), owing to a lower glass transition temperature, as anticipated by ab initio calculations that show that the imidazolium cation is less prone to aggregation with Tf2N- counterions than with PF6 - or BF4 - counterions. This is also observed by rheological measurements, as the terminal relaxation time increases with decreasing size of counterions, attributed to the increase of ionic interactions. The diethyleneoxy units on the imidazlium cation afford higher mobility than the butyl or dodecyl terminal Nsubstituents, for both monomers and polymers, owing to a lower binding energy between the imidazolium cation and the counterions. All monomers and polymers studied exhibit two dipolar relaxations, assigned to the usual segmental motion (alpha ) associated with the glass transition and a

  17. Mutant of a Light-Driven Sodium Ion Pump Can Transport Cesium Ions.

    PubMed

    Konno, Masae; Kato, Yoshitaka; Kato, Hideaki E; Inoue, Keiichi; Nureki, Osamu; Kandori, Hideki

    2016-01-07

    Krokinobacter eikastus rhodopsin 2 (KR2) is a light-driven Na(+) pump found in marine bacterium. KR2 pumps Li(+) and Na(+), but it becomes an H(+) pump in the presence of K(+), Rb(+), and Cs(+). Site-directed mutagenesis of the cytoplasmic surface successfully converted KR2 into a light-driven K(+) pump, suggesting that ion selectivity is determined at the cytoplasmic surface. Here we extended this research and successfully created a light-driven Cs(+) pump. KR2 N61L/G263F pumps Cs(+) as well as other monovalent cations in the presence of a protonophore. Ion-transport activities correlated with the additive volume of the residues at 61 and 263. The result suggests that an ion-selectivity filter is affected by these two residues and functions by strict exclusion of K(+) and larger cations in the wild type (N61/G263). In contrast, introduction of large residues possibly destroys local structures of the ion-selectivity filter, leading to the permeation of K(+) (P61/W263) and Cs(+) (L61/F263).

  18. Solenoidal Fields for Ion Beam Transport and Focusing

    SciTech Connect

    Lee, Edward P.; Leitner, Matthaeus

    2007-11-01

    In this report we calculate time-independent fields of solenoidal magnets that are suitable for ion beam transport and focusing. There are many excellent Electricity and Magnetism textbooks that present the formalism for magnetic field calculations and apply it to simple geometries [1-1], but they do not include enough relevant detail to be used for designing a charged particle transport system. This requires accurate estimates of fringe field aberrations, misaligned and tilted fields, peak fields in wire coils and iron, external fields, and more. Specialized books on magnet design, technology, and numerical computations [1-2] provide such information, and some of that is presented here. The AIP Conference Proceedings of the US Particle Accelerator Schools [1-3] contain extensive discussions of design and technology of magnets for ion beams - except for solenoids. This lack may be due to the fact that solenoids have been used primarily to transport and focus particles of relatively low momenta, e.g. electrons of less than 50 MeV and protons or H- of less than 1.0 MeV, although this situation may be changing with the commercial availability of superconducting solenoids with up to 20T bore field [1-4]. Internal reports from federal laboratories and industry treat solenoid design in detail for specific applications. The present report is intended to be a resource for the design of ion beam drivers for Inertial Fusion Energy [1-5] and Warm Dense Matter experiments [1-6], although it should also be useful for a broader range of applications. The field produced by specified currents and material magnetization can always be evaluated by solving Maxwell's equations numerically, but it is also desirable to have reasonably accurate, simple formulas for conceptual system design and fast-running beam dynamics codes, as well as for general understanding. Most of this report is devoted to such formulas, but an introduction to the Tosca{copyright} code [1-7] and some numerical

  19. Effects of double-layer polarization on ion transport.

    PubMed Central

    Hainsworth, A H; Hladky, S B

    1987-01-01

    It has been proposed that changes in ionic strength will alter the shape of current-voltage relations for ion transport across a lipid membrane. To investigate this effect, we measured currents across glyceryl monooleate membranes at applied potentials between 10 and 300 mV using either gramicidin and 1 mM NaCl or valinomycin and 1 mM KCl. A bridge circuit with an integrator as null detector was used to separate the capacitative and ionic components of the current. The changes in the current-voltage relations when ionic strength is varied between 1 and 100 mM are compared with predictions of Gouy-Chapman theory for the effects of these variations on polarization of the electrical diffuse double-layer. Double-layer polarization accounts adequately for the changes observed using membranes made permeable by either gramicidin or valinomycin. PMID:2432953

  20. Effects of double-layer polarization on ion transport.

    PubMed

    Hainsworth, A H; Hladky, S B

    1987-01-01

    It has been proposed that changes in ionic strength will alter the shape of current-voltage relations for ion transport across a lipid membrane. To investigate this effect, we measured currents across glyceryl monooleate membranes at applied potentials between 10 and 300 mV using either gramicidin and 1 mM NaCl or valinomycin and 1 mM KCl. A bridge circuit with an integrator as null detector was used to separate the capacitative and ionic components of the current. The changes in the current-voltage relations when ionic strength is varied between 1 and 100 mM are compared with predictions of Gouy-Chapman theory for the effects of these variations on polarization of the electrical diffuse double-layer. Double-layer polarization accounts adequately for the changes observed using membranes made permeable by either gramicidin or valinomycin.

  1. [Sodium ion transportation system and its possible mechanisms in bacteria].

    PubMed

    Yang, Li-Fu; Zhao, Bai-Suo; Yang, Su-Sheng

    2007-12-01

    Sodium ion with high concentration is toxic to living cells, and microorganisms adapt to the environment containing high concentration of salt by the strategies of salt-in-cytoplasm and compatible solutes. The Na+ extrusion system plays important roles in maintaining cytoplasmic Na+ homeostasis and pH level in microbial cells. Two possible mechanisms of Na+ circulation across the cytoplasmic membrane have been proposed, namely primary Na+ pump and secondary Na+/H+ antiporter. Primary sodium pumps coupled the extrusion of Na+ to respiration, and the activity of which was insensitive to uncoupler CCCP ( carbonyl-cyanide m-chlorophenylhydrazone). There were two types of secondary Na+/H+ antiporters-encoding genes designated single gene and multiple subunits, respectively. The types of transportation systems for Na+, possible mechanisms of Na+ extrusion, and projects for further study in bacteria are reviewed.

  2. Novel aspects of cholinergic regulation of colonic ion transport

    PubMed Central

    Bader, Sandra; Diener, Martin

    2015-01-01

    Nicotinic receptors are not only expressed by excitable tissues, but have been identified in various epithelia. One aim of this study was to investigate the expression of nicotinic receptors and their involvement in the regulation of ion transport across colonic epithelium. Ussing chamber experiments with putative nicotinic agonists and antagonists were performed at rat colon combined with reverse transcription polymerase chain reaction (RT-PCR) detection of nicotinic receptor subunits within the epithelium. Dimethylphenylpiperazinium (DMPP) and nicotine induced a tetrodotoxin-resistant anion secretion leading to an increase in short-circuit current (Isc) across colonic mucosa. The response was suppressed by the nicotinic receptor antagonist hexamethonium. RT-PCR experiments revealed the expression of α2, α4, α5, α6, α7, α10, and β4 nicotinic receptor subunits in colonic epithelium. Choline, the product of acetylcholine hydrolysis, is known for its affinity to several nicotinic receptor subtypes. As a strong acetylcholinesterase activity was found in colonic epithelium, the effect of choline on Isc was examined. Choline induced a concentration-dependent, tetrodotoxin-resistant chloride secretion which was, however, resistant against hexamethonium, but was inhibited by atropine. Experiments with inhibitors of muscarinic M1 and M3 receptors revealed that choline-evoked secretion was mainly due to a stimulation of epithelial M3 receptors. Although choline proved to be only a partial agonist, it concentration-dependently desensitized the response to acetylcholine, suggesting that it might act as a modulator of cholinergically induced anion secretion. Thus the cholinergic regulation of colonic ion transport – up to now solely explained by cholinergic submucosal neurons stimulating epithelial muscarinic receptors – is more complex than previously assumed. PMID:26236483

  3. Role of ion transport in control of apoptotic cell death.

    PubMed

    Lang, Florian; Hoffmann, Else K

    2012-07-01

    Cell shrinkage is a hallmark and contributes to signaling of apoptosis. Apoptotic cell shrinkage requires ion transport across the cell membrane involving K(+) channels, Cl(-) or anion channels, Na(+)/H(+) exchange, Na(+),K(+),Cl(-) cotransport, and Na(+)/K(+)ATPase. Activation of K(+) channels fosters K(+) exit with decrease of cytosolic K(+) concentration, activation of anion channels triggers exit of Cl(-), organic osmolytes, and HCO3(-). Cellular loss of K(+) and organic osmolytes as well as cytosolic acidification favor apoptosis. Ca(2+) entry through Ca(2+)-permeable cation channels may result in apoptosis by affecting mitochondrial integrity, stimulating proteinases, inducing cell shrinkage due to activation of Ca(2+)-sensitive K(+) channels, and triggering cell-membrane scrambling. Signaling involved in the modification of cell-volume regulatory ion transport during apoptosis include mitogen-activated kinases p38, JNK, ERK1/2, MEKK1, MKK4, the small G proteins Cdc42, and/or Rac and the transcription factor p53. Osmosensing involves integrin receptors, focal adhesion kinases, and tyrosine kinase receptors. Hyperosmotic shock leads to vesicular acidification followed by activation of acid sphingomyelinase, ceramide formation, release of reactive oxygen species, activation of the tyrosine kinase Yes with subsequent stimulation of CD95 trafficking to the cell membrane. Apoptosis is counteracted by mechanisms involved in regulatory volume increase (RVI), by organic osmolytes, by focal adhesion kinase, and by heat-shock proteins. Clearly, our knowledge on the interplay between cell-volume regulatory mechanisms and suicidal cell death is still far from complete and substantial additional experimental effort is needed to elucidate the role of cell-volume regulatory mechanisms in suicidal cell death.

  4. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    NASA Astrophysics Data System (ADS)

    Hoarfrost, Megan Lane

    is incredible freedom in designing the block copolymer architecture in order to optimize the mechanical and other properties of the membrane without sacrificing conductivity. The derived scaling relationships are shown to be general for many block copolymer and ionic liquid chemistries. In certain cases, the mechanism of ion conduction in the ionic liquid is affected by block copolymer nanoconfinement. The introduction of excess neutral imidazole to [Im][TFSI] leads to enhanced proton conductivity as well as a high H+ transference number due to facilitated proton hopping between imidazole molecules. We show that there is increased proton hopping when the nonstoichiometric ionic liquid is confined to lamellar block copolymer nanodomains, which we hypothesize is due to changes in the hydrogen bond structure of the ionic liquid under confinement. This, in combination with unique ion aggregation behavior, leads to a lower activation energy for macroscopic ion transport compared to that in a corresponding homopolymer/ionic liquid mixture. Through this work, we further the understanding of the relationship between membrane composition, structure, and ion transport. The findings presented herein portend the rational design of nanostructured membranes having improved mechanical properties and conductivity.

  5. Ion transport through a T-intersection of nanofluidic channels

    NASA Astrophysics Data System (ADS)

    Daiguji, Hirofumi; Adachi, Takuma; Tatsumi, Naoya

    2008-08-01

    Ion transport through a T-intersection of two silica nanochannels (a main channel, 5-μm long and 30-nm wide, and a subchannel, 5-μm long and 15-nm wide) with a surface charge distribution was investigated based on continuum dynamics calculations. The surface charge within 250nm of the intersection in the main channel and the entire subchannel was positive and that in the main channel outside this intersection region was negative. This nanofluidic system is analogous to a p-n-p transistor. The calculation results revealed that, by adjusting the electric potentials at the ends of the nanochannels, the ionic current could be (1) cut off, (2) regulated in the main channel, (3) diverged into the main and subchannels, (4) turned from the main channel to the subchannel, and (5) merged into the subchannel. A series connection of this nanofluidic system can therefore be used in biotechnological applications for electrophoretic separation and for sorting of ions and biomolecules.

  6. Complement activation of electrogenic ion transport in isolated rat colon.

    PubMed

    McCole, D F; Otti, B; Newsholme, P; Baird, A W

    1997-11-15

    The complement cascade is an important component in many immune and inflammatory reactions and may contribute to both the diarrhoea and inflammation associated with inflammatory bowel disease. Isolated rat colonic mucosae were voltage clamped in Ussing chambers. Basolateral addition of zymosan-activated whole human serum (ZAS) induced a rapid onset, transient inward short circuit current (SCC). This response was concentration dependent and was significantly attenuated by pre-heating ZAS at 60 degrees C for 30 min. Depletion of complement from normal human serum with cobra venom factor (CVF) significantly lowered SCC responses. Chloride was the primary charge carrying ion as responses to ZAS were abolished in the presence of the loop diuretic bumetanide. The complement component C3a stimulated ion transport but not to the same extent as whole serum. Exogenous C5 was without effect. The cyclooxygenase inhibitor piroxicam significantly attenuated the response to ZAS. These findings support the possibility that complement activation may contribute to the pathophysiology of secretory diarrhoea since activation of electrogenic chloride secretion converts intestinal epithelia to a state of net fluid secretion.

  7. Electroosmotically induced hydraulic pumping on microchips: differential ion transport

    PubMed

    Culbertson; Ramsey; Ramsey

    2000-05-15

    The theory behind and operation of an electroosmotically induced hydraulic pump for microfluidic devices is reported. This microchip functional element consists of a tee intersection with one inlet channel and two outlet channels. The inlet channel is maintained at high voltage while one outlet channel is kept at ground and the other channel has no electric potential applied. A pressure-induced flow of buffer is created in both outlet channels of the tee by reducing electroosmosis in the ground channel relative to that of the inlet channel. Spatially selective reduction of electroosmosis is accomplished by coating the walls of the ground channel with a viscous polymer. The pump is shown to differentially transport ions down the two outlet channels. This ion discrimination ability of the pump is examined as a function of an analyte's electrophoretic velocity. In addition, we demonstrate that an anion can be rejected from the ground channel and made to flow only into the field-free channel if the electrophoretic velocity of the anion is greater than the pressure-generated flow in the ground channel. The velocity threshold at which anion rejection occurs can be selectively tuned by changing the flow resistance in the field-free channel relative to the ground channel.

  8. In-situ Investigation of Vanadium Ion Transport in Redox Flow Battery

    SciTech Connect

    Luo, Qingtao; Li, Liyu; Nie, Zimin; Wang, Wei; Wei, Xiaoliang; Li, Bin; Chen, Baowei; Yang, Zhenguo

    2012-06-27

    We will show a new method to differentiate the vanadium transport from concentration gradient and that from electric field. Flow batteries with vanadium and iron redox couples as the electro-active species were employed to investigate the transport behavior of vanadium ions in the presence of electric field. It was shown that electric field accelerated the positive-to-negative and reduced the negative-to-positive vanadium ions transport in charge process and affected the vanadium ions transport in an opposite way in discharge process. In addition, a method was designed to differentiate the concentration gradient-driven vanadium ions diffusion and electric field-driven vanadium ions migration. Simplified mathematical model was established to simulate the vanadium ions transport in real charge-discharge operation of flow battery. The concentration gradient diffusion coefficients and electric-migration coefficients of V2+, V3+, VO2+, and VO2+ across Nafion membrane were obtained by fitting the experimental data.

  9. Controlling polymer translocation and ion transport via charge correlations.

    PubMed

    Buyukdagli, Sahin; Ala-Nissila, T

    2014-11-04

    We develop a correlation-corrected transport theory in order to predict ionic and polymer transport properties of membrane nanopores under physical conditions where mean-field electrostatics breaks down. The experimentally observed low KCl conductivity of open α-hemolysin pores is quantitatively explained by the presence of surface polarization effects. Upon the penetration of a DNA molecule into the pore, these polarization forces combined with the electroneutrality of DNA sets a lower boundary for the ionic current, explaining the weak salt dependence of blocked pore conductivities at dilute ion concentrations. The addition of multivalent counterions to the solution results in the reversal of the polymer charge and the direction of the electroosmotic flow. With trivalent spermidine or quadrivalent spermine molecules, the charge inversion is strong enough to stop the translocation of the polymer and to reverse its motion. This mechanism can be used efficiently in translocation experiments in order to improve the accuracy of DNA sequencing by minimizing the translocation velocity of the polymer.

  10. Lateral Transport of Ions into the Xylem of Corn Roots

    PubMed Central

    Läuchli, André; Spurr, Arthur R.; Epstein, Emanuel

    1971-01-01

    When an excised corn (Zea mays) root pretreated with chloride was exposed for 10 minutes to pulse labeling with 30Cl and then transferred to unlabeled chloride, the activity in the xylem exudate reached a maximum about 4 minutes after pulse labeling was discontinued and then declined sharply. The rate at which labeled chloride was transported across the root into the xylem and basipetally therein was on the order of 75 to 250 centimeters per hour. Consequently, symplasmic movement of chloride in corn roots is fast and may not be rate-limiting in transfer from the root surface to the xylem. Experiments on pulse labeling with 22Na gave similar results. A large fraction of the absorbed 22Na was not translocated into the exudate but was tightly sequestered in a cell compartment, probably the vacuole. Electron probe analysis was used to reveal the pattern of potassium distribution in cross sections taken 10 to 11 millimeters from the tip. The cytoplasm and vacuoles of the xylem parenchyma cells accumulated potassium to a much greater extent than cortical and other stelar cells. Ultrastructural studies showed that the cytoplasm of the xylem parenchyma cells contains numerous membrane systems. It was concluded that the xylem parenchyma cells secrete ions from the symplasm into the conducting vessels, and it was suggested that this secretion is driven across the plasmalemma by a carrier-mediated transport. Images PMID:16657747

  11. Nanoscale transport of electrons and ions in water

    NASA Astrophysics Data System (ADS)

    Boynton, Paul Christopher

    The following dissertation discusses the theoretical study of water on the nanoscale, often involved with essential biological molecules such as DNA and proteins. First I introduce the study of water on the nanoscale and how experimentalists approach confinement with nanopores and nanogaps. Then I discuss the theoretical method we choose for understanding this important biological medium on the molecular level, namely classical molecular dynamics. This leads into transport mechanisms that utilize water on the nanoscale, in our case electronic and ionic transport. On the scale of mere nanometers or less electronic transport in water enters the tunneling regime, requiring the use of a quantum treatment. In addition, I discuss the importance of water in ionic transport and its known effects on biological phenomena such as ion selectivity. Water also has great influence over DNA and proteins, which are both introduced in the context of nanopore sequencing. Several techniques for nanopore sequencing are examined and the importance of protein sequencing is explained. In Chapter 2, we study the effect of volumetric constraints on the structure and electronic transport properties of distilled water in a nanopore with embedded electrodes. Combining classical molecular dynamics simulations with quantum scattering theory, we show that the structural motifs water assumes inside the pore can be probed directly by tunneling. In Chapter 3, we propose an improvement to the original sequencing by tunneling method, in which N pairs of electrodes are built in series along a synthetic nanochannel. Each current time series for each nucleobase is cross-correlated together, reducing noise in the signals. We show using random sampling of data from classical molecular dynamics, that indeed the sequencing error is significantly reduced as the number of pairs of electrodes, N, increases. In Chapter 4, we propose a new technique for de novo protein sequencing that involves translocating a

  12. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part II: Dry powder inhaler application.

    PubMed

    Kolanjiyil, Arun V; Kleinstreuer, Clement; Sadikot, Ruxana T

    2016-11-03

    Pulmonary drug delivery is becoming a favored route for administering drugs to treat both lung and systemic diseases. Examples of lung diseases include asthma, cystic fibrosis and chronic obstructive pulmonary disease (COPD) as well as respiratory distress syndrome (ARDS) and pulmonary fibrosis. Special respiratory drugs are administered to the lungs, using an appropriate inhaler device. Next to the pressurized metered-dose inhaler (pMDI), the dry powder inhaler (DPI) is a frequently used device because of the good drug stability and a minimal need for patient coordination. Specific DPI-designs and operations greatly affect drug-aerosol formation and hence local lung deposition. Simulating the fluid-particle dynamics after use of a DPI allows for the assessment of drug-aerosol deposition and can also assist in improving the device configuration and operation. In Part I of this study a first-generation whole lung-airway model (WLAM) was introduced and discussed to analyze particle transport and deposition in a human respiratory tract model. In the present Part II the drug-aerosols are assumed to be injected into the lung airways from a DPI mouth-piece, forming the mouth-inlet. The total as well as regional particle depositions in the WLAM, as inhaled from a DPI, were successfully compared with experimental data sets reported in the open literature. The validated modeling methodology was then employed to study the delivery of curcumin aerosols into lung airways using a commercial DPI. Curcumin has been implicated to possess high therapeutic potential as an antioxidant, anti-inflammatory and anti-cancer agent. However, efficacy of curcumin treatment is limited because of the low bioavailability of curcumin when ingested. Hence, alternative drug administration techniques, e.g., using inhalable curcumin-aerosols, are under investigation. Based on the present results, it can be concluded that use of a DPI leads to low lung deposition efficiencies because large amounts of

  13. Physics of electron and lithium-ion transport in electrode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Musheng, Wu; Bo, Xu; Chuying, Ouyang

    2016-01-01

    The physics of ionic and electrical conduction at electrode materials of lithium-ion batteries (LIBs) are briefly summarized here, besides, we review the current research on ionic and electrical conduction in electrode material incorporating experimental and simulation studies. Commercial LIBs have been widely used in portable electronic devices and are now developed for large-scale applications in hybrid electric vehicles (HEV) and stationary distributed power stations. However, due to the physical limits of the materials, the overall performance of today’s LIBs does not meet all the requirements for future applications, and the transport problem has been one of the main barriers to further improvement. The electron and Li-ion transport behaviors are important in determining the rate capacity of LIBs. Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA034201), the National Natural Science Foundation of China (Grant Nos. 11234013 and 11264014), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20133ACB21010 and 20142BAB212002), and the Foundation of Jiangxi Education Committee, China (Grant Nos. GJJ14254 and KJLD14024). C. Y. Ouyang is also supported by the “Gan-po talent 555” Project of Jiangxi Province, China.

  14. Copper ion redox state is critical for its effects on ion transport pathways and methaemoglobin formation in trout erythrocytes.

    PubMed

    Bogdanova, Anna Yu; Gassmann, Max; Nikinmaa, Mikko

    2002-01-22

    We have studied the mechanism of copper uptake by the cells, its oxidative action and effects on ion transport systems using rainbow trout erythrocytes. Cupric ions enter trout erythrocytes as negatively charged complexes with chloride and hydroxyl anions via the band 3-mediated Cl-/HCO3- exchanger. Replacement of Cl- by gluconate, and complexation of cupric ions with histidine abolish rapid Cu2+ uptake. Within the cell cupric ions interact with haemoglobin, causing methaemoglobin formation by direct electron transfer from heme Fe2+ to Cu2+, and consecutive proton release. Ascorbate-mediated reduction of cupric ions to cuprous decreases copper-induced metHb formation and proton release. Moreover, cuprous ions stimulate Na+H+ exchange and residual Na+ transport causing net Na+ accumulation in the cells. The effect requires copper binding to an externally facing thiol group. Copper-induced Na+ accumulation is accompanied by K+ loss occurring mainly via K+-Cl- cotransporter. Taurine efflux is also stimulated by copper exposure. However, net loss of osmolytes is not as pronounced as Na+ uptake and modest swelling of the cells occurs after 5 min of copper exposure. Taken together the results indicate that copper toxicity, including copper transport into the cells and its interactions with ion transport processes, depend on the valency and complex formation of copper ions.

  15. The importance of dehydration in determining ion transport in narrow pores.

    PubMed

    Richards, Laura A; Schäfer, Andrea I; Richards, Bryce S; Corry, Ben

    2012-06-11

    The transport of hydrated ions through narrow pores is important for a number of processes such as the desalination and filtration of water and the conductance of ions through biological channels. Here, molecular dynamics simulations are used to systematically examine the transport of anionic drinking water contaminants (fluoride, chloride, nitrate, and nitrite) through pores ranging in effective radius from 2.8 to 6.5 Å to elucidate the role of hydration in excluding these species during nanofiltration. Bulk hydration properties (hydrated size and coordination number) are determined for comparison with the situations inside the pores. Free energy profiles for ion transport through the pores show energy barriers depend on pore size, ion type, and membrane surface charge and that the selectivity sequence can change depending on the pore size. Ion coordination numbers along the trajectory showed that partial dehydration of the transported ion is the main contribution to the energy barriers. Ion transport is greatly hindered when the effective pore radius is smaller than the hydrated radius, as the ion has to lose some associated water molecules to enter the pore. Small energy barriers are still observed when pore sizes are larger than the hydrated radius due to re-orientation of the hydration shell or the loss of more distant water. These results demonstrate the importance of ion dehydration in transport through narrow pores, which increases the current level of mechanistic understanding of membrane-based desalination and transport in biological channels.

  16. Poster 5: Day to night ion transport flow and its variation with SLT

    NASA Astrophysics Data System (ADS)

    Ma, Yingjuan; Nagy, Andy F.

    2016-06-01

    In this presentation, we will examine the day to night ion transport flow at Titan based on 3D MHD model results. As this flow is influenced by the relative direction of the upstream co-rotation plasma flow as Titan moved along its orbit, we will present and compare the day-to-night ion transport flow at four different SLTs.

  17. Biofilm-dependent airway infections: a role for ambroxol?

    PubMed

    Cataldi, M; Sblendorio, V; Leo, A; Piazza, O

    2014-08-01

    Biofilms are a key factor in the development of both acute and chronic airway infections. Their relevance is well established in ventilator associated pneumonia, one of the most severe complications in critically ill patients, and in cystic fibrosis, the most common lethal genetic disease in Caucasians. Accumulating evidence suggests that biofilms could have also a role in chronic obstructive pulmonary disease and their involvement in bronchiectasis has been proposed as well. When they grow in biofilms, microorganisms become multidrug-resistant. Therefore the treatment of biofilm-dependent airway infections is problematic. Indeed, it still largely based on measures aiming to prevent the formation of biofilms or remove them once that they are formed. Here we review recent evidence suggesting that the mucokinetic drug ambroxol has specific anti-biofilm properties. We also discuss how additional pharmacological properties of this drug could be beneficial in biofilm-dependent airway infections. Specifically, we review the evidence showing that: 1-ambroxol exerts anti-inflammatory effects by inhibiting at multiple levels the activity of neutrophils, and 2-it improves mucociliary clearance by interfering with the activity of airway epithelium ion channels and transporters including sodium/bicarbonate and sodium/potassium/chloride cotransporters, cystic fibrosis transmembrane conductance regulator and aquaporins. As a whole, the data that we review here suggest that ambroxol could be helpful in biofilm-dependent airway infections. However, considering the limited clinical evidence available up to date, further clinical studies are required to support the use of ambroxol in these diseases.

  18. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes

    PubMed Central

    Volkov, Vadim

    2015-01-01

    Ion transport is the fundamental factor determining salinity tolerance in plants. The Review starts from differences in ion transport between salt tolerant halophytes and salt-sensitive plants with an emphasis on transport of potassium and sodium via plasma membranes. The comparison provides introductory information for increasing salinity tolerance. Effects of salt stress on ion transport properties of membranes show huge opportunities for manipulating ion fluxes. Further steps require knowledge about mechanisms of ion transport and individual genes of ion transport proteins. Initially, the Review describes methods to measure ion fluxes, the independent set of techniques ensures robust and reliable basement for quantitative approach. The Review briefly summarizes current data concerning Na+ and K+ concentrations in cells, refers to primary thermodynamics of ion transport and gives special attention to individual ion channels and transporters. Simplified scheme of a plant cell with known transport systems at the plasma membrane and tonoplast helps to imagine the complexity of ion transport and allows choosing specific transporters for modulating ion transport. The complexity is enhanced by the influence of cell size and cell wall on ion transport. Special attention is given to ion transporters and to potassium and sodium transport by HKT, HAK, NHX, and SOS1 proteins. Comparison between non-selective cation channels and ion transporters reveals potential importance of ion transporters and the balance between the two pathways of ion transport. Further on the Review describes in detail several successful attempts to overexpress or knockout ion transporters for changing salinity tolerance. Future perspectives are questioned with more attention given to promising candidate ion channels and transporters for altered expression. Potential direction of increasing salinity tolerance by modifying ion channels and transporters using single point mutations is discussed and

  19. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes.

    PubMed

    Volkov, Vadim

    2015-01-01

    Ion transport is the fundamental factor determining salinity tolerance in plants. The Review starts from differences in ion transport between salt tolerant halophytes and salt-sensitive plants with an emphasis on transport of potassium and sodium via plasma membranes. The comparison provides introductory information for increasing salinity tolerance. Effects of salt stress on ion transport properties of membranes show huge opportunities for manipulating ion fluxes. Further steps require knowledge about mechanisms of ion transport and individual genes of ion transport proteins. Initially, the Review describes methods to measure ion fluxes, the independent set of techniques ensures robust and reliable basement for quantitative approach. The Review briefly summarizes current data concerning Na(+) and K(+) concentrations in cells, refers to primary thermodynamics of ion transport and gives special attention to individual ion channels and transporters. Simplified scheme of a plant cell with known transport systems at the plasma membrane and tonoplast helps to imagine the complexity of ion transport and allows choosing specific transporters for modulating ion transport. The complexity is enhanced by the influence of cell size and cell wall on ion transport. Special attention is given to ion transporters and to potassium and sodium transport by HKT, HAK, NHX, and SOS1 proteins. Comparison between non-selective cation channels and ion transporters reveals potential importance of ion transporters and the balance between the two pathways of ion transport. Further on the Review describes in detail several successful attempts to overexpress or knockout ion transporters for changing salinity tolerance. Future perspectives are questioned with more attention given to promising candidate ion channels and transporters for altered expression. Potential direction of increasing salinity tolerance by modifying ion channels and transporters using single point mutations is discussed and

  20. Quantitative description of ion transport via plasma membrane of yeast and small cells

    PubMed Central

    Volkov, Vadim

    2015-01-01

    Modeling of ion transport via plasma membrane needs identification and quantitative understanding of the involved processes. Brief characterization of main ion transport systems of a yeast cell (Pma1, Ena1, TOK1, Nha1, Trk1, Trk2, non-selective cation conductance) and determining the exact number of molecules of each transporter per a typical cell allow us to predict the corresponding ion flows. In this review a comparison of ion transport in small yeast cell and several animal cell types is provided. The importance of cell volume to surface ratio is emphasized. The role of cell wall and lipid rafts is discussed in respect to required increase in spatial and temporary resolution of measurements. Conclusions are formulated to describe specific features of ion transport in a yeast cell. Potential directions of future research are outlined based on the assumptions. PMID:26113853

  1. Quantitative description of ion transport via plasma membrane of yeast and small cells.

    PubMed

    Volkov, Vadim

    2015-01-01

    Modeling of ion transport via plasma membrane needs identification and quantitative understanding of the involved processes. Brief characterization of main ion transport systems of a yeast cell (Pma1, Ena1, TOK1, Nha1, Trk1, Trk2, non-selective cation conductance) and determining the exact number of molecules of each transporter per a typical cell allow us to predict the corresponding ion flows. In this review a comparison of ion transport in small yeast cell and several animal cell types is provided. The importance of cell volume to surface ratio is emphasized. The role of cell wall and lipid rafts is discussed in respect to required increase in spatial and temporary resolution of measurements. Conclusions are formulated to describe specific features of ion transport in a yeast cell. Potential directions of future research are outlined based on the assumptions.

  2. Lateral charge transport from heavy-ion tracks in integrated circuit chips

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.; Schwartz, H. R.; Nevill, L. R.

    1988-01-01

    A 256K DRAM has been used to study the lateral transport of charge (electron-hole pairs) induced by direct ionization from heavy-ion tracks in an IC. The qualitative charge transport has been simulated using a two-dimensional numerical code in cylindrical coordinates. The experimental bit-map data clearly show the manifestation of lateral charge transport in the creation of adjacent multiple-bit errors from a single heavy-ion track. The heavy-ion data further demonstrate the occurrence of multiple-bit errors from single ion tracks with sufficient stopping power. The qualitative numerical simulation results suggest that electric-field-funnel-aided (drift) collection accounts for single error generated by an ion passing through a charge-collecting junction, while multiple errors from a single ion track are due to lateral diffusion of ion-generated charge.

  3. The Influence of the Driving Voltage and Ion Concentration on the Lateral Ion Transport in Nematic Liquid Crystal Displays

    NASA Astrophysics Data System (ADS)

    Stojmenovik, Goran; Neyts, Kristiaan; Vermael, Stefaan; Verschueren, Alwin R. M.; van Asselt, Rob

    2005-08-01

    Nematic liquid crystal displays (LCDs) contain ions that influence the electrooptical characteristics of the display. A typical super-twisted nematic (STN) display for mobile phone applications becomes darker at a standard driving frequency if it contains many impurity ions. We have discovered that ions can travel in the plane of the glass plates in the absence of a lateral electric field, leading to lateral nonhomogeneity in transmission (dark and bright stripes). In this paper, we present our research on the lateral ion transport dependence on the driving square wave (SQW) amplitude and dc component at a wide range of ion concentrations. The existence of a dc component, a high ion concentration and high SQW amplitudes increase the lateral ion speed.

  4. The Transport of Solar Ions Through the Earth's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Lennartsson, O. W.

    1999-01-01

    This report covers the initial phase of an investigation that was originally selected by NASA Headquarters for funding by a grant but was later transferred to NASA GSFC for continued funding under a new and separate contract. The principal objective of the investigation, led by Dr. O.W. Lennartsson, is to extract information about the solar origin plasma in Earth's magnetosphere, specifically about the entry and transport of this plasma, using energetic (10 eV/e to 18 keV/e) ion composition data from the Lockheed Plasma Composition Experiment on the NASA/ESA International Sun-Earth Explorer One (ISEE 1) satellite. These data were acquired many years ago, from November 1977 through March of 1982, but, because of subsequent failures of similar experiments on several other spacecraft, they are still the only substantial ion composition data available from Earth's magnetotail, beyond 10 R(sub E), in the critically important sub-kev to keV energy range. All of the Lockheed data now exist in a compacted scientific format, suitable for large-scale statistical investigations, which has been archived both at Lockheed Martin in Palo Alto and at the National Space Science Data Center (NSSDC) in Greenbelt. The completion of the archiving, by processing the remaining half of the data, was made possible by separate funding through a temporary NASA program for data restoration and was given priority over the data analysis by a no-cost extension of the subject grant. By chance, the period of performance coincided with an international study of source and loss processes of magnetospheric plasma, sponsored by the International Space Science Institute (ISSI) in Bern, Switzerland, for which Dr. Lennartsson was invited to serve as one of 12 co-chairs. This study meshed well with the continued analysis of the NASA/Lockheed ISEE ion composition data and provided a natural forum for a broader discussion of the results from this unique experiment. What follows is arranged, for the most

  5. The Transport of Solar Ions Through the Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Lennartsson, O. W.

    1999-01-01

    This report covers the initial phase of an investigation that was originally selected by NASA Headquarters for funding by a grant but was later transferred to NASA GSFC for continued funding under a new and separate contract. The principal objective of the investigation, led by Dr. O.W. Lennartsson, is to extract information about the solar origin plasma in Earth's magnetosphere, specifically about the entry and transport of this plasma, using energetic (10 eV/e to 18 keV/e) ion composition data from the Lockheed Plasma Composition Experiment on the NASA/ESA International Sun-Earth Explorer One (ISEE 1) satellite. These data were acquired many years ago, from November 1977 through March of 1982, but, because of subsequent failures of similar experiments on several other spacecraft, they are still the only substantial ion composition data available from Earth's magnetotail, beyond 10 RE, in the critically important sub-kev to keV energy range. All of the Lockheed data now exist in a compacted scientific format, suitable for large-scale statistical investigations, which has been archived both at Lockheed Martin in Palo Alto and at the National Space Science Data Center (NSSDC) in Greenbelt. The completion of the archiving, by processing the remaining half of the data, was made possible by separate funding through a temporary NASA program for data restoration and was given priority over the data analysis by a no-cost extension of the subject grant. By chance, the period of performance coincided with an international study of source and loss processes of magnetospheric plasma, sponsored by the International Space Science Institute (ISSI) in Bern, Switzerland, for which Dr. Lennartsson was invited to serve as one of 12 co-chairs. This study meshed well with the continued analysis of the NASA/Lockheed ISEE ion composition data and provided a natural forum for a broader discussion of the results from this unique experiment. What follows is arranged, for the most part, in

  6. Decoupling Mechanical and Ion Transport Properties in Polymer Electrolyte Membranes

    NASA Astrophysics Data System (ADS)

    McIntosh, Lucas D.

    Polymer electrolytes are mixtures of a polar polymer and salt, in which the polymer replaces small molecule solvents and provides a dielectric medium so that ions can dissociate and migrate under the influence of an external electric field. Beginning in the 1970s, research in polymer electrolytes has been primarily motivated by their promise to advance electrochemical energy storage and conversion devices, such as lithium ion batteries, flexible organic solar cells, and anhydrous fuel cells. In particular, polymer electrolyte membranes (PEMs) can improve both safety and energy density by eliminating small molecule, volatile solvents and enabling an all-solid-state design of electrochemical cells. The outstanding challenge in the field of polymer electrolytes is to maximize ionic conductivity while simultaneously addressing orthogonal mechanical properties, such as modulus, fracture toughness, or high temperature creep resistance. The crux of the challenge is that flexible, polar polymers best-suited for polymer electrolytes (e.g., poly(ethylene oxide)) offer little in the way of mechanical robustness. Similarly, polymers typically associated with superior mechanical performance (e.g., poly(methyl methacrylate)) slow ion transport due to their glassy polymer matrix. The design strategy is therefore to employ structured electrolytes that exhibit distinct conducting and mechanically robust phases on length scales of tens of nanometers. This thesis reports a remarkably simple, yet versatile synthetic strategy---termed polymerization-induced phase separation, or PIPS---to prepare PEMs exhibiting an unprecedented combination of both high conductivity and high modulus. This performance is enabled by co-continuous, isotropic networks of poly(ethylene oxide)/ionic liquid and highly crosslinked polystyrene. A suite of in situ, time-resolved experiments were performed to investigate the mechanism by which this network morphology forms, and it appears to be tied to the

  7. Defective postsecretory maturation of MUC5B mucin in cystic fibrosis airways

    PubMed Central

    Abdullah, Lubna H.; Evans, Jessica R.; Wang, T. Tiffany; Ford, Amina A.; Makhov, Alexander M.; Nguyen, Kristine; Coakley, Raymond D.; Griffith, Jack D.; Davis, C. William; Ballard, Stephen T.

    2017-01-01

    In cystic fibrosis (CF), airway mucus becomes thick and viscous, and its clearance from the airways is impaired. The gel-forming mucins undergo an ordered “unpacking/maturation” process after granular release that requires an optimum postsecretory environment, including hydration and pH. We hypothesized that this unpacking process is compromised in the CF lung due to abnormal transepithelial fluid transport that reduces airway surface hydration and alters ionic composition. Using human tracheobronchial epithelial cells derived from non-CF and CF donors and mucus samples from human subjects and domestic pigs, we investigated the process of postsecretory mucin unfolding/maturation, how these processes are defective in CF airways, and the probable mechanism underlying defective unfolding. First, we found that mucins released into a normal lung environment transform from a compact granular form to a linear form. Second, we demonstrated that this maturation process is defective in the CF airway environment. Finally, we demonstrated that independent of HCO3− and pH levels, airway surface dehydration was the major determinant of this abnormal unfolding process. This defective unfolding/maturation process after granular release suggests that the CF extracellular environment is ion/water depleted and likely contributes to abnormal mucus properties in CF airways prior to infection and inflammation. PMID:28352653

  8. (In)validity of the constant field and constant currents assumptions in theories of ion transport.

    PubMed Central

    Syganow, A; von Kitzing, E

    1999-01-01

    Constant electric fields and constant ion currents are often considered in theories of ion transport. Therefore, it is important to understand the validity of these helpful concepts. The constant field assumption requires that the charge density of permeant ions and flexible polar groups is virtually voltage independent. We present analytic relations that indicate the conditions under which the constant field approximation applies. Barrier models are frequently fitted to experimental current-voltage curves to describe ion transport. These models are based on three fundamental characteristics: a constant electric field, negligible concerted motions of ions inside the channel (an ion can enter only an empty site), and concentration-independent energy profiles. An analysis of those fundamental assumptions of barrier models shows that those approximations require large barriers because the electrostatic interaction is strong and has a long range. In the constant currents assumption, the current of each permeating ion species is considered to be constant throughout the channel; thus ion pairing is explicitly ignored. In inhomogeneous steady-state systems, the association rate constant determines the strength of ion pairing. Among permeable ions, however, the ion association rate constants are not small, according to modern diffusion-limited reaction rate theories. A mathematical formulation of a constant currents condition indicates that ion pairing very likely has an effect but does not dominate ion transport. PMID:9929480

  9. Electro- and Magneto-Modulated Ion Transport through Graphene Oxide Membranes

    PubMed Central

    Sun, Pengzhan; Zheng, Feng; Wang, Kunlin; Zhong, Minlin; Wu, Dehai; Zhu, Hongwei

    2014-01-01

    The control of ion trans-membrane transport through graphene oxide (GO) membranes is achieved by electric and magnetic fields. Electric field can either increase or decrease the ion transport through GO membranes depending on its direction, and magnetic field can enhance the ion penetration monotonically. When electric field is applied across GO membrane, excellent control of ion fluidic flows can be done. With the magnetic field, the effective anchoring of ions is demonstrated but the modulation of the ion flowing directions does not occur. The mechanism of the electro- and magneto-modulated ion trans-membrane transport is investigated, indicating that the electric fields dominate the ion migration process while the magnetic fields tune the structure of nanocapillaries within GO membranes. Results also show that the ion selectivity of GO membranes can be tuned with the electric fields while the transport of ions can be enhanced synchronously with the magnetic fields. These excellent properties make GO membranes promising in areas such as field-induced mass transport control and membrane separation. PMID:25347969

  10. Mitochondrial Ion Channels/Transporters as Sensors and Regulators of Cellular Redox Signaling

    PubMed Central

    Ryu, Shin-Young; Jhun, Bong Sook; Hurst, Stephen

    2014-01-01

    Abstract Significance: Mitochondrial ion channels/transporters and the electron transport chain (ETC) serve as key sensors and regulators for cellular redox signaling, the production of reactive oxygen species (ROS) and nitrogen species (RNS) in mitochondria, and balancing cell survival and death. Although the functional and pharmacological characteristics of mitochondrial ion transport mechanisms have been extensively studied for several decades, the majority of the molecular identities that are responsible for these channels/transporters have remained a mystery until very recently. Recent Advances: Recent breakthrough studies uncovered the molecular identities of the diverse array of major mitochondrial ion channels/transporters, including the mitochondrial Ca2+ uniporter pore, mitochondrial permeability transition pore, and mitochondrial ATP-sensitive K+ channel. This new information enables us to form detailed molecular and functional characterizations of mitochondrial ion channels/transporters and their roles in mitochondrial redox signaling. Critical Issues: Redox-mediated post-translational modifications of mitochondrial ion channels/transporters and ETC serve as key mechanisms for the spatiotemporal control of mitochondrial ROS/RNS generation. Future Directions: Identification of detailed molecular mechanisms for redox-mediated regulation of mitochondrial ion channels will enable us to find novel therapeutic targets for many diseases that are associated with cellular redox signaling and mitochondrial ion channels/transporters. Antioxid. Redox Signal. 21, 987–1006. PMID:24180309

  11. Solid-State Laser, Resonant Ionization Laser Ion Source (Rilis) and Laser Beam Transport at Radioactive Ion Beam Facilities

    NASA Astrophysics Data System (ADS)

    Lassen, J.; Bricault, P.; Dombsky, M.; Izdebski, F.; Lavoie, J. P.; Gillner, M.; Gottwald, T.; Hellbusch, F.; Teigelhöfer, A.; Voss, A.; Wendt, K. D. A.

    2009-03-01

    The inception of laser resonance ionization spectroscopy and its application as a resonant ionization laser ion source (RILIS) took place merely 20 years ago with pulsed dye lasers [1-5]. By now next generation radioactive ion beam (RIB) facilities are being planned or built. Understanding and considering the unique RILIS requirements in the layout of next generation RIB facilities will allow for cost-effective implementation of this versatile ion source. This discussion touches on laser beam transport and RILIS requirements not necessarily obvious to experts in conventional ion sources.

  12. Regulation of the divalent metal ion transporter via membrane budding

    PubMed Central

    Mackenzie, KimberlyD; Foot, Natalie J; Anand, Sushma; Dalton, Hazel E; Chaudhary, Natasha; Collins, Brett M; Mathivanan, Suresh; Kumar, Sharad

    2016-01-01

    The release of extracellular vesicles (EVs) is important for both normal physiology and disease. However, a basic understanding of the targeting of EV cargoes, composition and mechanism of release is lacking. Here we present evidence that the divalent metal ion transporter (DMT1) is unexpectedly regulated through release in EVs. This process involves the Nedd4-2 ubiquitin ligase, and the adaptor proteins Arrdc1 and Arrdc4 via different budding mechanisms. We show that mouse gut explants release endogenous DMT1 in EVs. Although we observed no change in the relative amount of DMT1 released in EVs from gut explants in Arrdc1 or Arrdc4 deficient mice, the extent of EVs released was significantly reduced indicating an adaptor role in biogenesis. Furthermore, using Arrdc1 or Arrdc4 knockout mouse embryonic fibroblasts, we show that both Arrdc1 and Arrdc4 are non-redundant positive regulators of EV release. Our results suggest that DMT1 release from the plasma membrane into EVs may represent a novel mechanism for the maintenance of iron homeostasis, which may also be important for the regulation of other membrane proteins. PMID:27462458

  13. Shielding analysis for a heavy ion beam chamber with plasma channels for ion transport

    SciTech Connect

    Sawan, M.E.; Peterson, R.R.; Yu, S.

    2000-06-28

    Neutronics analysis has been performed to assess the shielding requirements for the insulators and final focusing magnets in a modified HYLIFE-II target chamber that utilizes pre-formed plasma channels for heavy ion beam transport. Using 65 cm thick Flibe jet assemblies provides adequate shielding for the electrical insulator units. Additional shielding is needed in front of the final focusing superconducting quadrupole magnets. A shield with a thickness varying between 45 and 90 cm needs to be provided in front of the quadrupole unit. The final laser mirrors located along the channel axis are in the direct line-of-sight of source neutrons. Neutronics calculations were performed to determine the constraints on the placement of these mirrors to be lifetime components.

  14. Temperature dependent dielectric properties and ion transportation in solid polymer electrolyte for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Sengwa, R. J.; Dhatarwal, Priyanka; Choudhary, Shobhna

    2016-05-01

    Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF4) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governed by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10-6 S cm-1 which suggests the suitability of the SPE film for rechargeable lithium batteries.

  15. Crystal structure of a SLC11 (NRAMP) transporter reveals the basis for transition-metal ion transport.

    PubMed

    Ehrnstorfer, Ines A; Geertsma, Eric R; Pardon, Els; Steyaert, Jan; Dutzler, Raimund

    2014-11-01

    Members of the SLC11 (NRAMP) family transport iron and other transition-metal ions across cellular membranes. These membrane proteins are present in all kingdoms of life with a high degree of sequence conservation. To gain insight into the determinants of ion selectivity, we have determined the crystal structure of Staphylococcus capitis DMT (ScaDMT), a close prokaryotic homolog of the family. ScaDMT shows a familiar architecture that was previously identified in the amino acid permease LeuT. The protein adopts an inward-facing conformation with a substrate-binding site located in the center of the transporter. This site is composed of conserved residues, which coordinate Mn2+, Fe2+ and Cd2+ but not Ca2+. Mutations of interacting residues affect ion binding and transport in both ScaDMT and human DMT1. Our study thus reveals a conserved mechanism for transition-metal ion selectivity within the SLC11 family.

  16. Physiological impact of abnormal lipoxin A₄ production on cystic fibrosis airway epithelium and therapeutic potential.

    PubMed

    Higgins, Gerard; Ringholz, Fiona; Buchanan, Paul; McNally, Paul; Urbach, Valérie

    2015-01-01

    Lipoxin A4 has been described as a major signal for the resolution of inflammation and is abnormally produced in the lungs of patients with cystic fibrosis (CF). In CF, the loss of chloride transport caused by the mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel gene results in dehydration, mucus plugging, and reduction of the airway surface liquid layer (ASL) height which favour chronic lung infection and neutrophil based inflammation leading to progressive lung destruction and early death of people with CF. This review highlights the unique ability of LXA4 to restore airway surface hydration, to stimulate airway epithelial repair, and to antagonise the proinflammatory program of the CF airway, circumventing some of the most difficult aspects of CF pathophysiology. The report points out novel aspects of the cellular mechanism involved in the physiological response to LXA4, including release of ATP from airway epithelial cell via pannexin channel and subsequent activation of and P2Y11 purinoreceptor. Therefore, inadequate endogenous LXA4 biosynthesis reported in CF exacerbates the ion transport abnormality and defective mucociliary clearance, in addition to impairing the resolution of inflammation, thus amplifying the vicious circle of airway dehydration, chronic infection, and inflammation.

  17. Transport implementation of the Bernstein-Vazirani algorithm with ion qubits

    NASA Astrophysics Data System (ADS)

    Fallek, S. D.; Herold, C. D.; McMahon, B. J.; Maller, K. M.; Brown, K. R.; Amini, J. M.

    2016-08-01

    Using trapped ion quantum bits in a scalable microfabricated surface trap, we perform the Bernstein-Vazirani algorithm. Our architecture takes advantage of the ion transport capabilities of such a trap. The algorithm is demonstrated using two- and three-ion chains. For three ions, an improvement is achieved compared to a classical system using the same number of oracle queries. For two ions and one query, we correctly determine an unknown bit string with probability 97.6(8)%. For three ions, we succeed with probability 80.9(3)%.

  18. Molecular mechanism of ion-ion and ion-substrate coupling in the Na+-dependent leucine transporter LeuT.

    PubMed

    Caplan, David A; Subbotina, Julia O; Noskov, Sergei Yu

    2008-11-15

    Ion-coupled transport of neurotransmitter molecules by neurotransmitter:sodium symporters (NSS) play an important role in the regulation of neuronal signaling. One of the major events in the transport cycle is ion-substrate coupling and formation of the high-affinity occluded state with bound ions and substrate. Molecular mechanisms of ion-substrate coupling and the corresponding ion-substrate stoichiometry in NSS transporters has yet to be understood. The recent determination of a high-resolution structure for a bacterial homolog of Na(+)/Cl(-)-dependent neurotransmitter transporters, LeuT, offers a unique opportunity to analyze the functional roles of the multi-ion binding sites within the binding pocket. The binding pocket of LeuT contains two metal binding sites. The first ion in site NA1 is directly coupled to the bound substrate (Leu) with the second ion in the neighboring site (NA2) only approximately 7 A away. Extensive, fully atomistic, molecular dynamics, and free energy simulations of LeuT in an explicit lipid bilayer are performed to evaluate substrate-binding affinity as a function of the ion load (single versus double occupancy) and occupancy by specific monovalent cations. It was shown that double ion occupancy of the binding pocket is required to ensure substrate coupling to Na(+) and not to Li(+) or K(+) cations. Furthermore, it was found that presence of the ion in site NA2 is required for structural stability of the binding pocket as well as amplified selectivity for Na(+) in the case of double ion occupancy.

  19. Selective transport of copper(II) ions across a liquid membrane mediated by Piroxicam.

    PubMed

    Sadeghi, Susan; Mohammadzadeh, Darush; Imampur, Jalal Shakhs

    2005-09-01

    Piroxicam was found to be a highly selective carrier for uphill transport of Cu2+ ions through a chloroform liquid membrane. The transport occurs via a counterflow of protons from the receiving phase to the source phase. The effects of several parameters on the transport of Cu2+ ions, such as the carrier concentration, pH of the source phase, composition of the receiving phase, and duration are described. A high transport efficiency (98+/-2%) was provided by the carrier for Cu2+ ions in a receiving phase of 0.01 mol l(-1) sulfuric acid after 4 h. Different metal ion transport experiments showed that Cu2+ ions were selectively transported over other ions, such as Co2+, Ni2+, Cd2+, Pb2+, Zn2+, UO2(2+) and ZrO2(2+) . In the presence of fluoride ions (used as a suitable masking agent in the source phase), the interfering effects of UO2(2+) and ZrO2(2+) ions were eliminated. The applicability of the method was tested on a real sample, and the results obtained show that it is potentially useful for solvent extraction of copper.

  20. Hydrogen peroxide scavenger, catalase, alleviates ion transport dysfunction in murine colitis.

    PubMed

    Barrett, Kim E; McCole, Declan F

    2016-11-01

    Reactive oxygen species (ROS) such as hydrogen peroxide (H2 O2 ) contribute to epithelial damage and ion transport dysfunction (key events in inflammatory diarrhoea) in inflammatory bowel disease (IBD). The aim of this study was to identify if H2 O2 mediates suppression of colonic ion transport function in the murine dextran sulfate sodium (DSS) colitis model by using the H2 O2 degrading enzyme, catalase. Colitis was induced by administering DSS (4%) in drinking water for 5 days followed by 3 days on normal H2 O. Mice were administered either pegylated catalase or saline at day -1, 0 and +1 of DSS treatment. Ion transport responses to the Ca(2+) -dependent agonist, carbachol (CCh), or the cAMP-dependent agonist, forskolin, were measured across distal colonic mucosa mounted in Ussing chambers. Parameters of DSS-induced inflammation (loss in body weight, decreased colon length, altered stool consistency), were only partially alleviated by catalase while histology was only minimally improved. However, catalase significantly reversed the DSS-induced reduction in baseline ion transport as well as colonic Isc responses to CCh. However, ion transport responses to forskolin were not significantly restored. Catalase also reduced activation of ERK MAP kinase in the setting of colitis, and increased expression of the Na(+) -K(+) -2Cl(-) cotransporter, NKCC1, consistent with restoration of ion transport function. Ex vivo treatment of inflamed colonic mucosae with catalase also partially restored ion transport function. Therefore, catalase partially prevents, and rescues, the loss of ion transport properties in DSS colitis even in the setting of unresolved tissue inflammation. These findings indicate a prominent role for ROS in ion transport dysfunction in colitis and may suggest novel strategies for the treatment of inflammatory diarrhoea.

  1. Transport and extraction of radioactive ions stopped in superfluid helium

    NASA Astrophysics Data System (ADS)

    Huang, W. X.; Dendooven, P.; Gloos, K.; Takahashi, N.; Arutyunov, K.; Pekola, J. P.; Äystö, J.

    2003-05-01

    A new approach to convert a high energy beam to a low energy one, which is essential for the next generation radioactive ion beam facilities, has been proposed and tested at Jyväskylä, Finland. An open 223Ra alpha-decay-recoil source has been used to produce radioactive ions in superfluid helium. The alpha spectra demonstrate that the recoiling 219Rn ions have been extracted out of liquid helium. This first observation of the extraction of heavy positive ions across the superfluid helium surface was possible thanks to the high sensitivity of radioactivity detection. An efficiency of 36% was obtained for the ion extraction out of liquid helium.

  2. Understanding Ion Transport in Polymerized Ionic Liquids using Dielectric Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hyeok Choi, U.; Chen, Hong; Liu, Wenjuan; Elabd, Yossef A.; Colby, Ralph H.

    2009-03-01

    In order to deduce the mechanism of ion conduction in ion-containing polymers, not only the conductivity needs to be measured but also the number density and mobility of conducting ions must be determined using broadband dielectric spectroscopy, covering broad frequency and temperature ranges. To obtain a transference number of unity, one ionic charge is covalently bonded to the polymer so that only the counterions can contribute to ion conduction. In this study, imidazolium-containing monomer was synthesized and polymerized to make a cationic homopolymer with either tetrafluoroborate or bis(trifluoromethanesulfonyl)imide anionic counterions. These ions can associate into pairs and larger aggregates. The degree of ion pairing can be estimated from the temperature dependence of the dielectric constant and knowledge of the dipole moment of the ion pair, using the 1936 Onsager equation. Using the 1953 Macdonald model makes it possible to determine concentration and mobility of mobile counterions from analysis of electrode polarization in dielectric spectroscopy.

  3. A Green's function method for high charge and energy ion transport

    NASA Technical Reports Server (NTRS)

    Chun, S. Y.; Khandelwal, G. S.; Wilson, J. W.

    1996-01-01

    A heavy-ion transport code using Green's function methods is developed. The low-order perturbation terms exhibiting the greatest energy variation are used as dominant energy-dependent terms, and the higher order collision terms are evaluated using nonperturbative methods. The recently revised NUCFRG database is used to evaluate the solution for comparison with experimental data for 625A MeV 20Ne and 517A MeV 40Ar ion beams. Improved agreements with the attenuation characteristics for neon ions are found, and reasonable agreement is obtained for the transport of argon ions in water.

  4. Using fluorometry and ion-sensitive microelectrodes to study the functional expression of heterologously-expressed ion channels and transporters in Xenopus oocytes

    PubMed Central

    Musa-Aziz, Raif; Boron, Walter F.; Parker, Mark D.

    2010-01-01

    The Xenopus laevis oocyte is a model system for the electrophysiological study of exogenous ion transporters. Three main reasons make the oocyte suitable for this purpose: (a) it has a large cell size (~1 mm diameter), (b) it has an established capacity to produce—from microinjected mRNAs or cRNAs—exogenous ion transporters with close-to-physiological post-translational modifications and actions, and (c) its membranes contain endogenous ion-transport activities which are usually smaller in magnitude than the activities of exogenously-expressed ion transporters. The expression of ion-transporters as green-fluorescent-protein fusions allows the fluorometric assay of transporter yield in living oocytes. Monitoring of transporter-mediated movement of ions such as Cl−, H+ (and hence base equivalents like OH−1 and HCO3−), K+, and Na+ is achieved by positioning the tips of ion-sensitive microelectrodes inside the oocyte and/or at the surface of the oocyte plasma membrane. The use of ion-sensitive electrodes is critical for studying net ion-movements mediated by electroneutral transporters. The combined use of fluorometry and electrophysiology expedites transporter study by allowing measurement of transporter yield prior to electrophysiological study and correlation of relative transporter yield with transport rates. PMID:20051266

  5. Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing

    PubMed Central

    Cheng, Chi; Jiang, Gengping; Garvey, Christopher J.; Wang, Yuanyuan; Simon, George P.; Liu, Jefferson Z.; Li, Dan

    2016-01-01

    Investigation of the transport properties of ions confined in nanoporous carbon is generally difficult because of the stochastic nature and distribution of multiscale complex and imperfect pore structures within the bulk material. We demonstrate a combined approach of experiment and simulation to describe the structure of complex layered graphene-based membranes, which allows their use as a unique porous platform to gain unprecedented insights into nanoconfined transport phenomena across the entire sub–10-nm scales. By correlation of experimental results with simulation of concentration-driven ion diffusion through the cascading layered graphene structure with sub–10-nm tuneable interlayer spacing, we are able to construct a robust, representative structural model that allows the establishment of a quantitative relationship among the nanoconfined ion transport properties in relation to the complex nanoporous structure of the layered membrane. This correlation reveals the remarkable effect of the structural imperfections of the membranes on ion transport and particularly the scaling behaviors of both diffusive and electrokinetic ion transport in graphene-based cascading nanochannels as a function of channel size from 10 nm down to subnanometer. Our analysis shows that the range of ion transport effects previously observed in simple one-dimensional nanofluidic systems will translate themselves into bulk, complex nanoslit porous systems in a very different manner, and the complex cascading porous circuities can enable new transport phenomena that are unattainable in simple fluidic systems. PMID:26933689

  6. Global anomalous transport of ICRH- and NBI-heated fast ions

    NASA Astrophysics Data System (ADS)

    Wilkie, G. J.; Pusztai, I.; Abel, I.; Dorland, W.; Fülöp, T.

    2017-04-01

    By taking advantage of the trace approximation, one can gain an enormous computational advantage when solving for the global turbulent transport of impurities. In particular, this makes feasible the study of non-Maxwellian transport coupled in radius and energy, allowing collisions and transport to be accounted for on similar time scales, as occurs for fast ions. In this work, we study the fully-nonlinear ITG-driven trace turbulent transport of locally heated and injected fast ions. Previous results indicated the existence of MeV-range minorities heated by cyclotron resonance, and an associated density pinch effect. Here, we build upon this result using the t3core code to solve for the distribution of these minorities, consistently including the effects of collisions, gyrokinetic turbulence, and heating. Using the same tool to study the transport of injected fast ions, we contrast the qualitative features of their transport with that of the heated minorities. Our results indicate that heated minorities are more strongly affected by microturbulence than injected fast ions. The physical interpretation of this difference provides a possible explanation for the observed synergy when neutral beam injection (NBI) heating is combined with ion cyclotron resonance heating (ICRH). Furthermore, we move beyond the trace approximation to develop a model which allows one to easily account for the reduction of anomalous transport due to the presence of fast ions in electrostatic turbulence.

  7. Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing.

    PubMed

    Cheng, Chi; Jiang, Gengping; Garvey, Christopher J; Wang, Yuanyuan; Simon, George P; Liu, Jefferson Z; Li, Dan

    2016-02-01

    Investigation of the transport properties of ions confined in nanoporous carbon is generally difficult because of the stochastic nature and distribution of multiscale complex and imperfect pore structures within the bulk material. We demonstrate a combined approach of experiment and simulation to describe the structure of complex layered graphene-based membranes, which allows their use as a unique porous platform to gain unprecedented insights into nanoconfined transport phenomena across the entire sub-10-nm scales. By correlation of experimental results with simulation of concentration-driven ion diffusion through the cascading layered graphene structure with sub-10-nm tuneable interlayer spacing, we are able to construct a robust, representative structural model that allows the establishment of a quantitative relationship among the nanoconfined ion transport properties in relation to the complex nanoporous structure of the layered membrane. This correlation reveals the remarkable effect of the structural imperfections of the membranes on ion transport and particularly the scaling behaviors of both diffusive and electrokinetic ion transport in graphene-based cascading nanochannels as a function of channel size from 10 nm down to subnanometer. Our analysis shows that the range of ion transport effects previously observed in simple one-dimensional nanofluidic systems will translate themselves into bulk, complex nanoslit porous systems in a very different manner, and the complex cascading porous circuities can enable new transport phenomena that are unattainable in simple fluidic systems.

  8. Sources and transport systems for low energy extreme of ion implantation

    SciTech Connect

    Hershcovitch, A.; Batalin, V.A.; Bugaev, A.S.; Gushenets, V.I.; Alexeyenko, O.; Gurkova, E.; Johnson, B.M.; Kolomiets, A.A.; Kropachev, G.N.; Kuibeda, R.P.; Kulevoy, T.V.; Masunov, E.S.; Oks, E.M.; Pershin, V.I.; Polozov, S.M.; Poole, H.J.; Seleznev, D.N.; Storozhenko, P.A.; Vizir, A.; Svarovski, A.Ya.; Yakushin, P.; Yushkov, G.Yu.

    2010-06-06

    For the past seven years a joint research and development effort focusing on the design of steady state, intense ion sources has been in progress with the ultimate goal being to meet the two, energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. However, since the last Fortier is low energy ion implantation, focus of the endeavor has shifted to low energy ion implantation. For boron cluster source development, we started with molecular ions of decaborane (B{sub 10}H{sub 14}), octadecaborane (B{sub 18}H{sub 22}), and presently our focus is on carborane (C{sub 2}B{sub 10}H{sub 12}) ions developing methods for mitigating graphite deposition. Simultaneously, we are developing a pure boron ion source (without a working gas) that can form the basis for a novel, more efficient, plasma immersion source. Our Calutron-Berna ion source was converted into a universal source capable of switching between generating molecular phosphorous P{sub 4}{sup +}, high charge state ions, as well as other types of ions. Additionally, we have developed transport systems capable of transporting a very large variety of ion species, and simulations of a novel gasless/plasmaless ion beam deceleration method were also performed.

  9. Study of ion beam transport from the SECRAL electron cyclotron resonance ion source at the Institute of Modern Physics.

    PubMed

    Cao, Y; Lu, W; Zhang, W H; Sha, S; Yang, Y; Ma, B H; Wang, H; Zhu, Y H; Guo, J W; Fang, X; Lin, S H; Li, X X; Feng, Y C; Li, J Y; Zhao, H Y; Ma, H Y; Zhang, X Z; Guo, X H; Wu, Q; Sun, L T; Zhao, H W; Xie, D Z

    2012-02-01

    Ion beam transport from the Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) electron cyclotron resonance ion source was studied at the Institute of Modern Physics during 2010. Particle-in-cell simulations and experimental results have shown that both space charge and magnetic aberrations lead to a larger beam envelope and emittance growth. In the existing SECRAL extraction beam line, it has been shown that raising the solenoid lens magnetic field reduces aberrations in the subsequent dipole and results in lower emittance. Detailed beam emittance measurements are presented in this paper.

  10. Transport-limited water splitting at ion-selective interfaces during concentration polarization

    NASA Astrophysics Data System (ADS)

    Nielsen, Christoffer P.; Bruus, Henrik

    2014-04-01

    We present an analytical model of salt- and water-ion transport across an ion-selective interface based on an assumption of local equilibrium of the water-dissociation reaction. The model yields current-voltage characteristics and curves of water-ion current versus salt-ion current, which are in qualitative agreement with experimental results published in the literature. The analytical results are furthermore in agreement with direct numerical simulations. As part of the analysis, we find approximate solutions to the classical problem of pure salt transport across an ion-selective interface. These solutions provide closed-form expressions for the current-voltage characteristics, which include the overlimiting current due to the development of an extended space-charge region. Finally, we discuss how the addition of an acid or a base affects the transport properties of the system and thus provide predictions accessible to further experimental tests of the model.

  11. Coupling mechanical forces to electrical signaling: molecular motors and the intracellular transport of ion channels.

    PubMed

    Barry, Joshua; Gu, Chen

    2013-04-01

    Proper localization of various ion channels is fundamental to neuronal functions, including postsynaptic potential plasticity, dendritic integration, action potential initiation and propagation, and neurotransmitter release. Microtubule-based forward transport mediated by kinesin motors plays a key role in placing ion channel proteins to correct subcellular compartments. PDZ- and coiled-coil-domain proteins function as adaptor proteins linking ionotropic glutamate and GABA receptors to various kinesin motors, respectively. Recent studies show that several voltage-gated ion channel/transporter proteins directly bind to kinesins during forward transport. Three major regulatory mechanisms underlying intracellular transport of ion channels are also revealed. These studies contribute to understanding how mechanical forces are coupled to electrical signaling and illuminating pathogenic mechanisms in neurodegenerative diseases.

  12. Tuning heat transport in trapped-ion chains across a structural phase transition

    NASA Astrophysics Data System (ADS)

    Ruiz, A.; Alonso, D.; Plenio, M. B.; del Campo, A.

    2014-06-01

    We analyze the heat transport in an ion chain that is confined in a strongly anisotropic Paul trap. To drive a heat current across the chain different pairs of counterpropagating laser beams are applied to the ions on the edges. The lasers behave as heat reservoirs operating at different temperatures, and a nonequilibrium heat flow can be sustained. The control of the spatial distribution of the ions in the chain by variation of the trapping frequencies makes ion chains an ideal testbed to study heat transport properties in finite open systems of low dimensionality with tunable nonlinearities. We explore heat transport across a structural phase transition between the linear and zigzag configurations, identifying the condition for optimal heat transport.

  13. White Paper on Ion Beam Transport for ICF: Issues, R&D Need,and Tri-Lab Plans

    SciTech Connect

    Olson, C.; Lee, E.; Langdon, B.

    2005-05-04

    To date, most resources for ion beam fusion have been devoted to development of accelerators and target physics; relatively few resources have gone into ion beam transport development. Because of theoretical studies and substantial experience with electron beam transport, the ion beam transport community is now poised to develop and optimize ion beam transport for ICF. Because of this Tri-Lab effort, a path for coordinated development of ion beam transport has been established. The rate of progress along this path will now be determined largely by the availability of resources.

  14. Ion Transport in Low-Level Electrostatic Turbulence

    NASA Astrophysics Data System (ADS)

    Edrich, D.; McWilliams, R.; Zintl, M.

    1998-11-01

    Diffusion of test ions was found to depend nonlinearly on electrostatic turbulence amplitude for small fluctuations. Previous work(R. McWilliams, M. Okubo, and N. Wolf, Phys. Fluids B2,523(1990)) showed a linear dependence of ion diffusion on fluctuation level for normalized ion density fluctuations above 1%. Other work(R. McWilliams and Mason Okubo, Phys. Fluids 30,2849(1987)) showed classical diffusion for fluctuations below 0.2%. The present experiment studied the effect of turbulence on ion diffusion for fluctuation levels of 0.2 - 1%. In this region there is a nonlinear transition in diffusion from classical to the linear dependence on fluctuation level. The experiments were performed in a barium plasma with n ≈ 10^10 cm-3, Ti ≈ Te ≈ 0.2 eV in a linear magnetic field of 4 kG. Laser induced fluorescence (LIF) was used to characterize the plasma ions(M. Zintl and R. McWilliams, Rev. Sci. Instrum. 65, 2574 (1994)) and perform the diffusion measurements. The controlled level of electrostatic turbulence was created via parametric decay of lower hybrid waves (well above ion plasma and ion gyrofrequencies) into broadband electrostatic ion cyclotron waves.

  15. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    NASA Astrophysics Data System (ADS)

    Jang, Hyojae; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok

    2016-02-01

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  16. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems.

    PubMed

    Dykstra, J E; Biesheuvel, P M; Bruning, H; Ter Heijne, A

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density.

  17. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems

    NASA Astrophysics Data System (ADS)

    Dykstra, J. E.; Biesheuvel, P. M.; Bruning, H.; Ter Heijne, A.

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density.

  18. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    SciTech Connect

    Jang, Hyojae Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok

    2016-02-15

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  19. Effect of radial plasma transport at the magnetic throat on axial ion beam formation

    NASA Astrophysics Data System (ADS)

    Zhang, Yunchao; Charles, Christine; Boswell, Rod

    2016-08-01

    Correlation between radial plasma transport and formation of an axial ion beam has been investigated in a helicon plasma reactor implemented with a convergent-divergent magnetic nozzle. The plasma discharge is sustained under a high magnetic field mode and a low magnetic field mode for which the electron energy probability function, the plasma density, the plasma potential, and the electron temperature are measured at the magnetic throat, and the two field modes show different radial parametric behaviors. Although an axial potential drop occurs in the plasma source for both field modes, an ion beam is only observed in the high field mode while not in the low field mode. The transport of energetic ions is characterized downstream of the plasma source using the delimited ion current and nonlocal ion current. A decay of ion beam strength is also observed in the diffusion chamber.

  20. Computational study of effect of water finger on ion transport through water-oil interface.

    PubMed

    Kikkawa, Nobuaki; Wang, Lingjian; Morita, Akihiro

    2016-07-07

    When an ion transports from water to oil through water-oil interface, it accompanies hydrated water molecules and transiently forms a chain of water, called "water finger." We thoroughly investigated the role of the water finger in chloride ion transport through water-dichloromethane interface by using molecular dynamics technique. We developed a proper coordinate w to describe the water finger structure and calculated the free energy landscape and the friction for the ion transport as a function of ion position z and the water finger coordinate w. It is clearly shown that the formation and break of water finger accompanies an activation barrier for the ion transport, which has been overlooked in the conventional free energy curve along the ion position z. The present analysis of the friction does not support the hypothesis of augmented local friction (reduced local diffusion coefficient) at the interface. These results mean that the experimentally observed rate constants of interfacial ion transfer are reduced from the diffusion-limited one because of the activation barrier associated to the water finger, not the anomalous local diffusion. We also found that the nascent ion just after the break of water finger has excessive hydration water than that in the oil phase.

  1. Computational study of effect of water finger on ion transport through water-oil interface

    NASA Astrophysics Data System (ADS)

    Kikkawa, Nobuaki; Wang, Lingjian; Morita, Akihiro

    2016-07-01

    When an ion transports from water to oil through water-oil interface, it accompanies hydrated water molecules and transiently forms a chain of water, called "water finger." We thoroughly investigated the role of the water finger in chloride ion transport through water-dichloromethane interface by using molecular dynamics technique. We developed a proper coordinate w to describe the water finger structure and calculated the free energy landscape and the friction for the ion transport as a function of ion position z and the water finger coordinate w. It is clearly shown that the formation and break of water finger accompanies an activation barrier for the ion transport, which has been overlooked in the conventional free energy curve along the ion position z. The present analysis of the friction does not support the hypothesis of augmented local friction (reduced local diffusion coefficient) at the interface. These results mean that the experimentally observed rate constants of interfacial ion transfer are reduced from the diffusion-limited one because of the activation barrier associated to the water finger, not the anomalous local diffusion. We also found that the nascent ion just after the break of water finger has excessive hydration water than that in the oil phase.

  2. Promotion of Water Channels for Enhanced Ion Transport in 14 nm Diameter Carbon Nanotubes.

    PubMed

    Sheng, Jiadong; Zhu, Qi; Zeng, Xian; Yang, Zhaohui; Zhang, Xiaohua

    2017-03-29

    Ion transport plays an important role in solar-to-electricity conversion, drug delivery, and a variety of biological processes. Carbon nanotube (CNT) is a promising material as an ion transporter in the applications of the mimicking of natural ion channels, desalination, and energy harvesting. Here, we demonstrate a unique, enhanced ion transport through a vertically aligned multiwall CNT membrane after the application of an electric potential across CNT membranes. Interestingly, electrowetting arising from the application of an electric potential is critical for the enhancement of overall ion transport rate through CNT membranes. The wettability of a liquid with high surface tension on the interior channel walls of CNTs increases during an electric potential treatment and promotes the formation of water channels in CNTs. The formation of water channels in CNTs induces an increase in overall ion diffusion through CNT membranes. This phenomenon is also related to a decrease in the charge transfer resistance of CNTs (Rct) after an electric potential is applied. Correspondingly, the enhanced ion flow rate gives rise to an enhancement in the capacitive performance of CNT based membranes. Our observations might have profound impact on the development of CNT based energy storage devices as well as artificial ion channels.

  3. Benchmark solutions for the galactic heavy-ion transport equations with energy and spatial coupling

    NASA Technical Reports Server (NTRS)

    Ganapol, Barry D.; Townsend, Lawrence W.; Lamkin, Stanley L.; Wilson, John W.

    1991-01-01

    Nontrivial benchmark solutions are developed for the galactic heavy ion transport equations in the straightahead approximation with energy and spatial coupling. Analytical representations of the ion fluxes are obtained for a variety of sources with the assumption that the nuclear interaction parameters are energy independent. The method utilizes an analytical LaPlace transform inversion to yield a closed form representation that is computationally efficient. The flux profiles are then used to predict ion dose profiles, which are important for shield design studies.

  4. Unraveling the mechanism of selective ion transport in hydrophobic subnanometer channels.

    PubMed

    Li, Hui; Francisco, Joseph S; Zeng, Xiao Cheng

    2015-09-01

    Recently reported synthetic organic nanopore (SONP) can mimic a key feature of natural ion channels, i.e., selective ion transport. However, the physical mechanism underlying the K(+)/Na(+) selectivity for the SONPs is dramatically different from that of natural ion channels. To achieve a better understanding of the selective ion transport in hydrophobic subnanometer channels in general and SONPs in particular, we perform a series of ab initio molecular dynamics simulations to investigate the diffusivity of aqua Na(+) and K(+) ions in two prototype hydrophobic nanochannels: (i) an SONP with radius of 3.2 Å, and (ii) single-walled carbon nanotubes (CNTs) with radii of 3-5 Å (these radii are comparable to those of the biological potassium K(+) channels). We find that the hydration shell of aqua Na(+) ion is smaller than that of aqua K(+) ion but notably more structured and less yielding. The aqua ions do not lower the diffusivity of water molecules in CNTs, but in SONP the diffusivity of aqua ions (Na(+) in particular) is strongly suppressed due to the rugged inner surface. Moreover, the aqua Na(+) ion requires higher formation energy than aqua K(+) ion in the hydrophobic nanochannels. As such, we find that the ion (K(+) vs. Na(+)) selectivity of the (8, 8) CNT is ∼20× higher than that of SONP. Hence, the (8, 8) CNT is likely the most efficient artificial K(+) channel due in part to its special interior environment in which Na(+) can be fully solvated, whereas K(+) cannot. This work provides deeper insights into the physical chemistry behind selective ion transport in nanochannels.

  5. Trimodal Control of Ion-Transport Activity on Cyclo-oligo-(1→6)-β-D-glucosamine-Based Artificial Ion-Transport Systems.

    PubMed

    Roy, Arundhati; Saha, Tanmoy; Gening, Marina L; Titov, Denis V; Gerbst, Alexey G; Tsvetkov, Yury E; Nifantiev, Nikolay E; Talukdar, Pinaki

    2015-11-23

    Cyclo-oligo-(1→6)-β-D-glucosamines functionalized with hydrophobic tails are reported as a new class of transmembrane ion-transport system. These macrocycles with hydrophilic cavities were introduced as an alternative to cyclodextrins, which are supramolecular systems with hydrophobic cavities. The transport activities of these glycoconjugates were manipulated by altering the oligomericity of the macrocycles, as well as the length and number of attached tails. Hydrophobic tails of 3 different sizes were synthesized and coupled with each glucosamine scaffold through the amide linkage to obtain 18 derivatives. The ion-transport activity increased from di- to tetrameric glucosamine macrocycles, but decreased further when flexible pentameric glucosamine was introduced. The ion-transport activity also increased with increasing length of attached linkers. For a fixed length of linkers, the transport activity decreased when the number of such tails was reduced. All glycoconjugates displayed a uniform anion-selectivity sequence: Cl(-) >Br(-) >I(-) . From theoretical studies, hydrogen bonding between the macrocycle backbone and the anion bridged through water molecules was observed.

  6. Selected List of Low Energy Beam Transport Facilities for Light-Ion, High-Intensity Accelerators

    SciTech Connect

    Prost, L. R.

    2016-02-17

    This paper presents a list of Low Energy Beam Transport (LEBT) facilities for light-ion, high-intensity accelerators. It was put together to facilitate comparisons with the PXIE LEBT design choices. A short discussion regarding the importance of the beam perveance in the choice of the transport scheme follows.

  7. Structure and dynamics of ion transport through gramicidin A.

    PubMed Central

    Mackay, D H; Berens, P H; Wilson, K R; Hagler, A T

    1984-01-01

    Molecular dynamics calculations in which all atoms were allowed to move were performed on a water-filled ion channel of the polypeptide dimer gramicidin A (approximately 600 atoms total) in the head-to-head Urry model conformation. Comparisons were made among nine simulations in which four different ions (lithium, sodium, potassium, and cesium) were each placed at two different locations in the channel as well as a reference simulation with only water present. Each simulation lasted for 5 ps and was carried out at approximately 300 K. The structure and dynamics of the peptide and interior waters were found to depend strongly on the ion tested and upon its location along the pore. Speculations on the solution and diffusion of ions in gramicidin are offered based on the observations in our model that smaller ions tended to lie off axis and to distort the positions of the carbonyl oxygens more to achieve proper solvation and that the monomer-monomer junction was more distortable than the center of the monomer. With the potential energy surface used, the unique properties of the linear chain of interior water molecules were found to be important for optimal solvation of the various ions. Strongly correlated motions persisting over 25 A among the waters in the interior single-file column were observed. PMID:6206901

  8. Metal ion transport quantified by ICP-MS in intact cells.

    PubMed

    Figueroa, Julio A Landero; Stiner, Cory A; Radzyukevich, Tatiana L; Heiny, Judith A

    2016-02-03

    The use of ICP-MS to measure metal ion content in biological tissues offers a highly sensitive means to study metal-dependent physiological processes. Here we describe the application of ICP-MS to measure membrane transport of Rb and K ions by the Na,K-ATPase in mouse skeletal muscles and human red blood cells. The ICP-MS method provides greater precision and statistical power than possible with conventional tracer flux methods. The method is widely applicable to studies of other metal ion transporters and metal-dependent processes in a range of cell types and conditions.

  9. Metal ion transport quantified by ICP-MS in intact cells

    PubMed Central

    Figueroa, Julio A. Landero; Stiner, Cory A.; Radzyukevich, Tatiana L.; Heiny, Judith A.

    2016-01-01

    The use of ICP-MS to measure metal ion content in biological tissues offers a highly sensitive means to study metal-dependent physiological processes. Here we describe the application of ICP-MS to measure membrane transport of Rb and K ions by the Na,K-ATPase in mouse skeletal muscles and human red blood cells. The ICP-MS method provides greater precision and statistical power than possible with conventional tracer flux methods. The method is widely applicable to studies of other metal ion transporters and metal-dependent processes in a range of cell types and conditions. PMID:26838181

  10. Dependence of the lateral ion transport on the driving frequency in nematic liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Stojmenovik, G.; Vermael, S.; Neyts, K.; Asselt, R. van; Verschueren, A. R. M.

    2004-10-01

    The presence of ions in a liquid crystal (LC) influences the transmission characteristics of LC displays. These ions follow the electric field perpendicular to the electrodes and move back and forth under the influence of the ac field. Because of their charge, they can distort the electric field, which leads to transmission changes. Recently it was discovered that due to the LC anisotropy, ion motion parallel with the plane of the electrodes (perpendicular to the electric field) is also possible, even without lateral fields. After driving a pixel for a long time, the ions will accumulate at one pixel edge, which leads to unwanted image artifacts. In this paper, we investigate the frequency dependence of the lateral ion transport in twisted nematic liquid crystal displays at high and low ion concentrations, different ion mobilities, and LC rotational viscosities, for a fixed voltage just above the LC threshold.

  11. Influence of inhalation anesthetics on ion transport across a planar bilayer lipid membrane.

    PubMed

    Hichiri, Kei; Shirai, Osamu; Kano, Kenji

    2012-01-01

    Ion transport from one aqueous phase (W1) to another (W2) across a planar bilayer lipid membrane (BLM) in the presence of inhalation anesthetics was electrochemically investigated. In the absence of inhalation anesthetics in the BLM system, no ion transport current flowed between W1 and W2 across the BLM. When inhalation anesthetics such as halothane, chloroform, diethyl ether and trichloroethylene were added to the two aqueous phases or the BLM, the ion transport current quite clearly appeared. When the ratio of the concentration of KCl or NaCl in W1 to that in W2 was varied, the zero current potential across the BLM was shifted. By considering the magnitude of the potential shift, we concluded that the ion transport current can be predominantly ascribed to the transport of Cl(-) across the BLM. Since the dielectric constants of these anesthetics are larger than that of the inner hydrophobic domain of the BLM, the concentration of hydrophilic electrolyte ions in the BLM increases with the increase in the dielectric constant of the inner hydrophobic domain caused by addition of these anesthetics. These situations lead to an increase in the ion permeability coefficient.

  12. Coupling Substrate and Ion Binding to Extracellular Gate of a Sodium-Dependent Aspartate Transporter

    SciTech Connect

    Boudker,O.; Ryan, R.; Yernool, D.; Shimamoto, K.; Gouaux, E.

    2007-01-01

    Secondary transporters are integral membrane proteins that catalyze the movement of substrate molecules across the lipid bilayer by coupling substrate transport to one or more ion gradients, thereby providing a mechanism for the concentrative uptake of substrates. Here we describe crystallographic and thermodynamic studies of Glt{sub Ph}, a sodium (Na{sup +})-coupled aspartate transporter, defining sites for aspartate, two sodium ions and D,L-threo-{beta}-benzyloxyaspartate, an inhibitor. We further show that helical hairpin 2 is the extracellular gate that controls access of substrate and ions to the internal binding sites. At least two sodium ions bind in close proximity to the substrate and these sodium-binding sites, together with the sodium-binding sites in another sodium-coupled transporter, LeuT, define an unwound {alpha}-helix as the central element of the ion-binding motif, a motif well suited to the binding of sodium and to participation in conformational changes that accompany ion binding and unbinding during the transport cycle.

  13. The Phillips airway.

    PubMed

    Haridas, R P; Wilkinson, D J

    2012-07-01

    The Phillips airway was developed by George Ramsay Phillips. There is no known original description of the airway and the earliest known reference to it is from 1919. The airway and its modifications are described.

  14. Ab initio transport coefficients of Ar+ ions in Ar for cold plasma jet modeling

    NASA Astrophysics Data System (ADS)

    Chicheportiche, A.; Lepetit, B.; Gadéa, F. X.; Benhenni, M.; Yousfi, M.; Kalus, R.

    2014-06-01

    Collision cross sections and transport coefficients are calculated for Ar+ ions, in the ground state 2P3/2 and in the metastable state 2P1/2, colliding with their parent gas. Differential and integral collision cross sections are obtained using a numerical integration of the nuclear Schrödinger equation for several published interaction potentials. The Cohen-Schneider semi-empirical model is used for the inclusion of the spin-orbit interaction. The corresponding differential collision cross sections are then used in an optimized Monte Carlo code to calculate the ion transport coefficients for each initial ion state over a wide range of reduced electric field. Ion swarm data results are then compared with available experimental data for different proportions of ions in each state. This allows us to identify the most reliable interaction potential which reproduces ion transport coefficients falling within the experimental error bars. Such ion transport data will be used in electrohydrodynamic and chemical kinetic models of the low temperature plasma jet to quantify and to tune the active species production for a better use in biomedical applications.

  15. Bioinspired ion-transport properties of solid-state single nanochannels and their applications in sensing.

    PubMed

    Tian, Ye; Wen, Liping; Hou, Xu; Hou, Guanglei; Jiang, Lei

    2012-07-16

    Biological ion channels are able to control ion-transport processes precisely because of their intriguing properties, such as selectivity, rectification, and gating. Learning from nature, scientists have developed a promising system--solid-state single nanochannels--to mimic biological ion-transport properties. These nanochannels have many impressive properties, such as excess surface charge, making them selective; the ability to be produced or modified asymmetrically, endowing them with rectification; and chemical reactivity of the inner surface, imparting them with desired gating properties. Based on these unique characteristics, solid-state single nanochannels have been explored in various applications, such as sensing. In this context, we summarize recent developments of bioinspired solid-state single nanochannels with ion-transport properties that resemble their biological counterparts, including selectivity, rectification, and gating; their applications in sensing are also introduced briefly.

  16. Regulation of transepithelial ion transport in the rat late distal colon by the sympathetic nervous system.

    PubMed

    Zhang, X; Li, Y; Zhang, X; Duan, Z; Zhu, J

    2015-01-01

    The colorectum (late distal colon) is innervated by the sympathetic nervous system, and many colorectal diseases are related to disorders of the sympathetic nervous system. The sympathetic regulation of colorectal ion transport is rarely reported. The present study aims to investigate the effect of norepinephrine (NE) in the normal and catecholamine-depleted condition to clarify the regulation of the sympathetic adrenergic system in ion transport in the rat colorectum. NE-induced ion transport in the rats colorectum was measured by short-circuit current (I(sc)) recording; the expression of beta-adrenoceptors and NE transporter (NET) were quantified by real-time PCR, and western blotting. When the endogenous catecholamine was depleted by reserpine, the baseline I(sc) in the colorectum was increased significantly comparing to controls. NE evoked downward deltaI(sc) in colorectum of treated rats was 1.8-fold of controls. The expression of beta(2)-adrenoceptor protein in the colorectal mucosa was greater than the control, though the mRNA level was reduced. However, NET expression was significantly lower in catecholamine-depleted rats compared to the controls. In conclusion, the sympathetic nervous system plays an important role in regulating basal ion transport in the colorectum. Disorders of sympathetic neurotransmitters result in abnormal ion transport, beta-adrenoceptor and NET are involved in the process.

  17. Experimental investigation of the fast-ion transport in the ASDEX Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    Geiger, Benedikt; Dux, Ralph; Ryter, Francois; Tardini, Giovanni; Garcia-Munoz, Manuel; ASDEX Upgrade Team

    2013-10-01

    The radial transport of fast-ions is an active field of investigation in fusion devices. In particular, in the presence of MHD instabilities, fast-ions can be redistributed and even ejected from the plasma. This reduces the plasma heating and current drive efficiencies and must consequently be investigated and avoided in view of future fusion devices. In ASDEX Upgrade, sawtooth crashes in NBI heated plasmas have been observed to induce a very strong radial redistribution of the fast-ion population, as measured by fast-ion D-alpha (FIDA) spectroscopy. Modelling done with TRANSP assuming the Kadomstev sawtooth model very well reproduces the experimental measurements. In contrast to the strong anomalous fast-ion transport due to sawtooth crashes, the transport of the fast ions is found to be neo-classical in the absence of significant MHD activity. This is shown by the measurement of the redistributed fast-ions in the time interval following the crashes and by dedicated experiments with off-axis NBI deposition. All the measurements in MHD quiescent plasmas are well reproduced by the neo-classical fast-ion distribution functions from the TRANSP code.

  18. On the competitive uptake and transport of ions through differentiated root tissues.

    PubMed

    Foster, Kylie J; Miklavcic, Stanley J

    2014-01-07

    We simulate the competitive uptake and transport of a mixed salt system in the differentiated tissues of plant roots. The results are based on a physical model that includes both forced diffusion and convection by the transpiration stream. The influence of the Casparian strip on regulating apoplastic flow, the focus of the paper, is modelled by varying ion diffusive permeabilities, hydraulic reflection coefficients and water permeability for transport across the endodermis-pericycle interface. We find that reducing diffusive permeabilities leads to significantly altered ion concentration profiles in the pericycle and vascular cylinder regions, while increased convective reflectivities affect predominantly ion concentrations in the cortex and endodermis tissues. The self-consistent electric field arising from ion separation is a major influence on predicted ion fluxes and accumulation rates.

  19. Role of ion density in growth, transport, and morphology of nanoparticles generated in plasmas

    NASA Astrophysics Data System (ADS)

    Chai, Kil Byoung; Choe, Wonho

    2012-08-01

    Spatial distribution, growth, and morphology of the nanoparticle were investigated in the plasmas with relatively low and high ion densities. Our experimental results reveal that cauliflower-shaped amorphous nanoparticles are dominantly distributed throughout the entire plasma in the low ion density plasma while spherical crystalline particles are spread near the plasma edge in the high ion density plasma. Only agglomeration growth step of the nanoparticles was observed without molecular accretion growth step in the high density plasma. Based on the experimental and numerical results, the role of ion density in the growth mechanism and transport of the nanoparticles is discussed.

  20. Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution.

    PubMed

    Balke, Nina; Jesse, Stephen; Kim, Yoongu; Adamczyk, Leslie; Tselev, Alexander; Ivanov, Ilia N; Dudney, Nancy J; Kalinin, Sergei V

    2010-09-08

    The electrical bias driven Li-ion motion in silicon anode materials in thin film battery heterostructures is investigated using electrochemical strain microscopy (ESM), which is a newly developed scanning probe microscopy based characterization method. ESM utilizes the intrinsic link between bias-controlled Li-ion concentration and molar volume of electrode materials, providing the capability for studies on the sub-20 nm scale, and allows the relationship between Li-ion flow and microstructure to be established. The evolution of Li-ion transport during the battery charging is directly observed.

  1. Ion acoustic turbulence and transport in a plasma in a strong electric field

    NASA Astrophysics Data System (ADS)

    Bychenkov, V. Iu.; Gradov, O. M.; Silin, V. P.

    1984-01-01

    A theory is derived for the nonlinear state which is established in a plasma when the ion acoustic instability is suppressed by nonlinear induced wave scattering by ions, and there is a quasi-linear relaxation of electrons among turbulent fluctuations. The behavior of the ion acoustic noise spectrum and of transport processes in strong fields, where the anomalous plasma resistance is a square-root function of the field intensity, is found. In this region of electric fields there is a universal distribution of the ion acoustic fluctuations in the magnitude of the wave vector and in angle for the turbulence spectrum.

  2. Real Space Mapping of Li-Ion Transport in Amorphous Si Anodes with Nanometer Resolution

    SciTech Connect

    Balke, Nina; Jesse, Stephen; Kim, Yoongu; Adamczyk, Leslie A; Tselev, Alexander; Ivanov, Ilia N; Dudney, Nancy J; Kalinin, Sergei V

    2010-01-01

    The electrical bias driven Li-ion motion in silicon anode materials in thin film battery heterostructures is investigated using electrochemical strain microscopy (ESM), which is a newly developed scanning probe microscopy based characterization method. ESM utilizes the intrinsic link between bias-controlled Li-ion concentration and molar volume of electrode materials, providing the capability for studies on the sub-20 nm scale, and allows the relationship between Li-ion flow and microstructure to be established. The evolution of Li-ion transport during the battery charging is directly observed.

  3. Blockage of upper airway

    MedlinePlus

    ... Airway obstruction - acute upper Images Throat anatomy Choking Respiratory system References Cukor J, Manno M. Pediatric respiratory emergencies: upper airway obstruction and infections. In: Marx ...

  4. Copper effects on ion transport across lamprey erythrocyte membrane: Cl(-)/OH(-) exchange induced by cuprous ions.

    PubMed

    Bogdanova, A Y; Virkki, L V; Gusev, G P; Nikinmaa, M

    1999-09-15

    We studied the effects of prelytic copper concentrations on cell volume, intracellular pH, and ion transport in lamprey erythrocytes. Ion fluxes and pH were measured by radioactive tracer technique, patch clamp, and flame photometry. Prelytic CuSO(4) concentration of 100 microM caused anion-dependent intracellular acidification and increase in Cl(-) influx after 2 min lag-phase. In the presence of ascorbate copper effect was amplified and lag-phase was skipped. Pretreatment of the cells with N-phenyl maleimide abolished copper-induced changes completely. Copper treatment caused an increase in Na(+) fluxes in both directions and a net Na(+) uptake. Copper-induced Na(+) transport was partially amiloride(MIA)-sensitive representing Na(+)/H(+) exchange. The nature of the amiloride-insensitive fraction of copper-activated Na(+) influx remains unknown. Cell swelling after 15 min of copper exposure induced regulatory volume decrease response involving KCl extrusion via K(+) and Cl(-) volume-sensitive channels. We suggest that the effects of copper on ion transport fit the following sequence of events: (i) cupric ions are reduced to cuprous state on the membrane surface, (ii) electroneutral pairs CuCl and CuOH mediate chloride/hydroxyl exchange, as shown before for trialkyltin, dissipating transmembrane pH gradient, and (iii) changes in intracellular pH result in the activation of the Na(+)/H(+) exchange and consecutive volume changes cause the RVD response.

  5. Chamber transport of ''foot'' pulses for heavy-ion fusion

    SciTech Connect

    Sharp, W.M.; Callahan-Miller, D.A.; Tabak, M.; Yu, S.S.; Peterson, P.F.

    2002-02-20

    Indirect-drive targets for heavy-ion fusion must initially be heated by ''foot'' pulses that precede the main heating pulses by tens of nanoseconds. These pulses typically have a lower energy and perveance than the main pulses, and the fusion-chamber environment is different from that seen by later pulses. The preliminary particle-in-cell simulations of foot pulses here examine the sensitivity of the beam focusing to ion-beam perveance, background-gas density, and pre-neutralization by a plasma near the chamber entry port.

  6. Studies on Molecular and Ion Transport in Silicalite Membranes and Applications as Ion Separator for Redox Flow Battery

    NASA Astrophysics Data System (ADS)

    Yang, Ruidong

    Microporous zeolite membranes have been widely studied for molecular separations based on size exclusion or preferential adsorption-diffusion mechanisms. The MFI-type zeolite membranes were also demonstrated for brine water desalination by molecular sieving effect. In this research, the pure silica MFI-type zeolite (i.e. silicalite) membrane has been for the first time demonstrated for selective permeation of hydrated proton (i.e. H3O+) in acidic electrolyte solutions. The silicalite membrane allows for permeation of H 3O+ ions, but is inaccessible to the large hydrated multivalent vanadium ions due to steric effect. The silicalite membrane has been further demonstrated as an effective ion separator in the all-vanadium redox flow battery (RFB).The silicalite is nonionic and its proton conductivity relies on the electric field-driven H3O+ transport through the sub nanometer-sized pores under the RFB operation conditions. The silicalite membrane displayed a significantly reduced self-discharge rate because of its high proton-to-vanadium ion transport selectivity. However, the nonionic nature of the silicalite membrane and very small diffusion channel size render low proton conductivity and is therefore inefficient as ion exchange membranes (IEMs) for practical applications. The proton transport efficiency may be improved by reducing the membrane thickness. However, the zeolite thin films are extremely fragile and must be supported on mechanically strong and rigid porous substrates. In this work, silicalite-Nafion composite membranes were synthesized to achieve a colloidal silicalite skin on the Nafion thin film base. The "colloidal zeolite-ionic polymer" layered composite membrane combines the advantages of high proton-selectivity of the zeolite layer and the mechanical flexibility and low proton transport resistance of the ionic polymer membrane. The composite membrane exhibited higher proton/vanadium ion separation selectivity and lower electrical resistance than

  7. Regulation of Intestinal Glucose Absorption by Ion Channels and Transporters

    PubMed Central

    Chen, Lihong; Tuo, Biguang; Dong, Hui

    2016-01-01

    The absorption of glucose is electrogenic in the small intestinal epithelium. The major route for the transport of dietary glucose from intestinal lumen into enterocytes is the Na+/glucose cotransporter (SGLT1), although glucose transporter type 2 (GLUT2) may also play a role. The membrane potential of small intestinal epithelial cells (IEC) is important to regulate the activity of SGLT1. The maintenance of membrane potential mainly depends on the activities of cation channels and transporters. While the importance of SGLT1 in glucose absorption has been systemically studied in detail, little is currently known about the regulation of SGLT1 activity by cation channels and transporters. A growing line of evidence suggests that cytosolic calcium ([Ca2+]cyt) can regulate the absorption of glucose by adjusting GLUT2 and SGLT1. Moreover, the absorption of glucose and homeostasis of Ca2+ in IEC are regulated by cation channels and transporters, such as Ca2+ channels, K+ channels, Na+/Ca2+ exchangers, and Na+/H+ exchangers. In this review, we consider the involvement of these cation channels and transporters in the regulation of glucose uptake in the small intestine. Modulation of them may be a potential strategy for the management of obesity and diabetes. PMID:26784222

  8. Regulation of Intestinal Glucose Absorption by Ion Channels and Transporters.

    PubMed

    Chen, Lihong; Tuo, Biguang; Dong, Hui

    2016-01-14

    The absorption of glucose is electrogenic in the small intestinal epithelium. The major route for the transport of dietary glucose from intestinal lumen into enterocytes is the Na⁺/glucose cotransporter (SGLT1), although glucose transporter type 2 (GLUT2) may also play a role. The membrane potential of small intestinal epithelial cells (IEC) is important to regulate the activity of SGLT1. The maintenance of membrane potential mainly depends on the activities of cation channels and transporters. While the importance of SGLT1 in glucose absorption has been systemically studied in detail, little is currently known about the regulation of SGLT1 activity by cation channels and transporters. A growing line of evidence suggests that cytosolic calcium ([Ca(2+)]cyt) can regulate the absorption of glucose by adjusting GLUT2 and SGLT1. Moreover, the absorption of glucose and homeostasis of Ca(2+) in IEC are regulated by cation channels and transporters, such as Ca(2+) channels, K⁺ channels, Na⁺/Ca(2+) exchangers, and Na⁺/H⁺ exchangers. In this review, we consider the involvement of these cation channels and transporters in the regulation of glucose uptake in the small intestine. Modulation of them may be a potential strategy for the management of obesity and diabetes.

  9. Time-Dependent Ion Diode Physics and Ion Beam Transport in Stabilized Plasma Channels.

    DTIC Science & Technology

    1981-01-31

    pro- duce cylindrical and ballistically focussed ion beams. These diodes consist of a conducting anode which is pulsed positive, typically to one half... flashover of the foil from charge-accumulation, and u.v. ionization fromi the electron pinch. NUNN" PINCHED-BEAM ION DIODE £14, Anode Foil Hollow...time history are shown, along with a biased probe measurement of the ion current pulse . For the case of a conducting 25 micron aluminum anode

  10. Brownian dynamics study of ion transport in the vestibule of membrane channels.

    PubMed

    Li, S C; Hoyles, M; Kuyucak, S; Chung, S H

    1998-01-01

    Brownian dynamics simulations have been carried out to study the transport of ions in a vestibular geometry, which offers a more realistic shape for membrane channels than cylindrical tubes. Specifically, we consider a torus-shaped channel, for which the analytical solution of Poisson's equation is possible. The system is composed of the toroidal channel, with length and radius of the constricted region of 80 A and 4 A, respectively, and two reservoirs containing 50 sodium ions and 50 chloride ions. The positions of each of these ions executing Brownian motion under the influence of a stochastic force and a systematic electric force are determined at discrete time steps of 50 fs for up to 2.5 ns. All of the systematic forces acting on an ion due to the other ions, an external electric field, fixed charges in the channel protein, and the image charges induced at the water-protein boundary are explicitly included in the calculations. We find that the repulsive dielectric force arising from the induced surface charges plays a dominant role in channel dynamics. It expels an ion from the vestibule when it is deliberately put in it. Even in the presence of an applied electric potential of 100 mV, an ion cannot overcome this repulsive force and permeate the channel. Only when dipoles of a favorable orientation are placed along the sides of the transmembrane segment can an ion traverse the channel under the influence of a membrane potential. When the strength of the dipoles is further increased, an ion becomes detained in a potential well, and the driving force provided by the applied field is not sufficient to drive the ion out of the well. The trajectory of an ion navigating across the channel mostly remains close to the central axis of the pore lumen. Finally, we discuss the implications of these findings for the transport of ions across the membrane.

  11. Inter-cusp Ion and Electron Transport in a Nstar-derivative Ion Thruster

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2001-01-01

    Diffusion of electrons and ions to anode surfaces between the magnetic cusps of a NASA Solar Electric Propulsion Technology Application Readiness ion thruster has been characterized. Ion flux measurements were made at the anode and at the screen grid electrode. The measurements indicated that the average ion current density at the anode and at the screen grid were approximately equal. Additionally, it was found that the electron flux to the anode between cusps is best described by the classical cross-field diffusion coefficient.

  12. Ion and Electron Transport in an Nstar-derivative Ion Thruster. Revised

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2001-01-01

    Diffusion of electrons and ions to anode surfaces between the magnetic cusps of a NASA Solar Electric Propulsion Technology Application Readiness ion thruster has been characterized. Ion flux measurements were made at the anode and at the screen grid electrode. The measurements indicated that the average ion current density at the anode and at the screen grid were approximately equal. Additionally, it was found that the electron flux to the anode between cusps is best described by the classical cross-field diffusion coefficient.

  13. Ion transport its regulation in the endolymphatic sac: suggestions for clinical aspects of Meniere's disease.

    PubMed

    Mori, Nozomu; Miyashita, Takenori; Inamoto, Ryuhei; Matsubara, Ai; Mori, Terushige; Akiyama, Kosuke; Hoshikawa, Hiroshi

    2017-04-01

    Ion transport and its regulation in the endolymphatic sac (ES) are reviewed on the basis of recent lines of evidence. The morphological and physiological findings demonstrate that epithelial cells in the intermediate portion of the ES are more functional in ion transport than those in the other portions. Several ion channels, ion transporters, ion exchangers, and so on have been reported to be present in epithelial cells of ES intermediate portion. An imaging study has shown that mitochondria-rich cells in the ES intermediate portion have a higher activity of Na(+), K(+)-ATPase and a higher Na(+) permeability than other type of cells, implying that molecules related to Na(+) transport, such as epithelial sodium channel (ENaC), Na(+)-K(+)-2Cl(-) cotransporter 2 (NKCC2) and thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC), may be present in mitochondria-rich cells. Accumulated lines of evidence suggests that Na(+) transport is most important in the ES, and that mitochondria-rich cells play crucial roles in Na(+) transport in the ES. Several lines of evidence support the hypothesis that aldosterone may regulate Na(+) transport in ES, resulting in endolymph volume regulation. The presence of molecules related to acid/base transport, such as H(+)-ATPase, Na(+)-H(+) exchanger (NHE), pendrin (SLC26A4), Cl(-)-HCO3(-) exchanger (SLC4A2), and carbonic anhydrase in ES epithelial cells, suggests that acid/base transport is another important one in the ES. Recent basic and clinical studies suggest that aldosterone may be involved in the effect of salt-reduced diet treatment in Meniere's disease.

  14. Airway surface liquid homeostasis in cystic fibrosis: pathophysiology and therapeutic targets.

    PubMed

    Haq, Iram J; Gray, Michael A; Garnett, James P; Ward, Christopher; Brodlie, Malcolm

    2016-03-01

    Cystic fibrosis (CF) is a life-limiting disease characterised by recurrent respiratory infections, inflammation and lung damage. The volume and composition of the airway surface liquid (ASL) are important in maintaining ciliary function, mucociliary clearance and antimicrobial properties of the airway. In CF, these homeostatic mechanisms are impaired, leading to a dehydrated and acidic ASL. ASL volume depletion in CF is secondary to defective anion transport by the abnormal cystic fibrosis transmembrane conductance regulator protein (CFTR). Abnormal CFTR mediated bicarbonate transport creates an unfavourable, acidic environment, which impairs antimicrobial function and alters mucus properties and clearance. These disease mechanisms create a disordered airway milieu, consisting of thick mucopurulent secretions and chronic bacterial infection. In addition to CFTR, there are additional ion channels and transporters in the apical airway epithelium that play a role in maintaining ASL homeostasis. These include the epithelial sodium channel (ENaC), the solute carrier 26A (SLC26A) family of anion exchangers, and calcium-activated chloride channels. In this review we discuss how the ASL is abnormal in CF and how targeting these alternative channels and transporters could provide an attractive therapeutic strategy to correct the underlying ASL abnormalities evident in CF.

  15. Native Small Airways Secrete Bicarbonate

    PubMed Central

    Quinton, Paul M.

    2014-01-01

    Since the discovery of Cl− impermeability in cystic fibrosis (CF) and the cloning of the responsible channel, CF pathology has been widely attributed to a defect in epithelial Cl− transport. However, loss of bicarbonate (HCO3−) transport also plays a major, possibly more critical role in CF pathogenesis. Even though HCO3− transport is severely affected in the native pancreas, liver, and intestines in CF, we know very little about HCO3− secretion in small airways, the principle site of morbidity in CF. We used a novel, mini-Ussing chamber system to investigate the properties of HCO3− transport in native porcine small airways (∼ 1 mm φ). We assayed HCO3− transport across small airway epithelia as reflected by the transepithelial voltage, conductance, and equivalent short-circuit current with bilateral 25-mM HCO3− plus 125-mM NaGlu Ringer’s solution in the presence of luminal amiloride (10 μM). Under these conditions, because no major transportable anions other than HCO3− were present, we took the equivalent short-circuit current to be a direct measure of active HCO3− secretion. Applying selective agonists and inhibitors, we show constitutive HCO3− secretion in small airways, which can be stimulated significantly by β-adrenergic– (cAMP) and purinergic (Ca2+) -mediated agonists, independently. These results indicate that two separate components for HCO3− secretion, likely via CFTR- and calcium-activated chloride channel–dependent processes, are physiologically regulated for likely roles in mucus clearance and antimicrobial innate defenses of small airways. PMID:24224935

  16. Modeling Chamber Transport for Heavy-Ion Fusion

    SciTech Connect

    Sharp, W M; Niller, D A C; Tabak, M; Yu, S S; Peterson, P F; Welch, D R; Rose, D V; Olson, C L

    2002-08-02

    In a typical thick-liquid-wall scenario for heavy-ion fusion (HIF), between seventy and two hundred high-current beams enter the target chamber through ports and propagate about three meters to the target. Since molten-salt jets are planned to protect the chamber wall, the beams move through vapor from the jets, and collisions between beam ions and this background gas both strip the ions and ionize the gas molecules. Radiation from the preheated target causes further beam stripping and gas ionization. Due to this stripping, beams for heavy-ion fusion are expected to require substantial neutralization in a target chamber. Much recent research has, therefore, focused on beam neutralization by electron sources that were neglected in earlier simulations, including emission from walls and the target, photoionization by the target radiation, and pre-neutralization by a plasma generated along the beam path. When these effects are included in simulations with practicable beam and chamber parameters, the resulting focal spot is approximately the size required by a distributed radiator target.

  17. Modeling chamber transport for heavy-ion fusion

    SciTech Connect

    Sharp, W.M.; Callahan, D.A.; Tabak, M.; Yu, S.S.; Peterson, P.F.; Welch, D.R.; Rose, D.V.; Olson, C.L.

    2002-10-01

    In a typical thick-liquid-wall scenario for heavy-ion fusion (HIF), between seventy and two hundred high-current beams enter the target chamber through ports and propagate about three meters to the target. Since molten-salt jets are planned to protect the chamber wall, the beams move through vapor from the jets, and collisions between beam ions and this background gas both strip the ions and ionize the gas molecules. Radiation from the preheated target causes further beam stripping and gas ionization. Due to this stripping, beams for heavy-ion fusion are expected to require substantial neutralization in a target chamber. Much recent research has, therefore, focused on beam neutralization by electron sources that were neglected in earlier simulations, including emission from walls and the target, photoionization by the target radiation, and pre-neutralization by a plasma generated along the beam path. When these effects are included in simulations with practicable beam and chamber parameters, the resulting focal spot is approximately the size required by a distributed radiator target.

  18. Design and Characterization of a Neutralized-Transport Experiment for Heavy-Ion Fusion

    SciTech Connect

    Henderson, E; Eylon, S; Roy, P; Yu, S S; Anders, A; Bieniosek, F M; Greenway, W G; Logan, B G; MacGill, R A; Shuman, D B; Vanecek, D L; Waldron, W L; Sharp, W M; Houck, T L; Davidson, R C; Efthimion, P C; Gilson, E P; Sefkow, A B; Welch, D R; Rose, D V; Olson, C L

    2004-05-24

    In heavy-ion inertial-confinement fusion systems, intense beams of ions must be transported from the exit of the final focus magnet system through the fusion chamber to hit millimeter-sized spots on the target. Effective plasma neutralization of intense ion beams in this final transport is essential for a heavy-ion fusion power plant to be economically competitive. The physics of neutralized drift has been studied extensively with particle-in-cell simulations. To provide quantitative comparisons of theoretical predictions with experiment, the Virtual National Laboratory for Heavy Ion Fusion has completed the construction and has begun experimentation with the Neutralized Transport Experiment (NTX). The experiment consists of three main sections, each with its own physics issues. The injector is designed to generate a very high-brightness, space-charge-dominated potassium beam while still allowing variable perveance by a beam aperturing technique. The magnetic-focusing section, consisting of four pulsed magnetic quadrupoles, permits the study of beam tuning, as well as the effects of phase space dilution due to higher-order nonlinear fields. In the final section, a converging ion beam exiting the magnetic section is transported through a drift region with plasma sources for beam neutralization, and the final spot size is measured under various conditions of neutralization. In this paper, we discuss the design and characterization of the three sections in detail and present the first results from the experiment.

  19. Design and characterization of a neutralized-transport experiment for heavy-ion fusion

    SciTech Connect

    Henestroza, E.; Eylon, S.; Roy, P.K.; Yu, S.S.; Anders, A.; Bieniosek, F.M.; Greenway, W.G.; Logan, B.G.; MacGill, R.A.; Shuman, D.B.; Vanecek, D.L.; Waldron, W.L.; Sharp, W.M.; Houck, T.L.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Sefkow, A.B.; Welch, D.R.; Rose, D.V.; Olson, C.L.

    2004-03-14

    In heavy-ion inertial-confinement fusion systems, intense beams of ions must be transported from the exit of the final focus magnet system through the fusion chamber to hit millimeter-sized spots on the target. Effective plasma neutralization of intense ion beams in this final transport is essential for a heavy-ion fusion power plant to be economically competitive. The physics of neutralized drift has been studied extensively with particle-in-cell simulations. To provide quantitative comparisons of theoretical predictions with experiment, the Virtual National Laboratory for Heavy Ion Fusion has completed the construction and has begun experimentation with the Neutralized Transport Experiment (NTX). The experiment consists of three main sections, each with its own physics issues. The injector is designed to generate a very high-brightness, space-charge-dominated potassium beam while still allowing variable perveance by a beam aperturing technique. The magnetic-focusing section, consisting of four pulsed magnetic quadrupoles, permits the study of beam tuning, as well as the effects of phase space dilution due to higher-order nonlinear fields. In the final section, the converging ion beam exiting the magnetic section is transported through a drift region with plasma sources for beam neutralization, and the final spot size is measured under various conditions of neutralization. In this paper, we discuss the design and characterization of the three sections in detail and present initial results from the experiment.

  20. Visualization and quantification of transmembrane ion transport into giant unilamellar vesicles.

    PubMed

    Valkenier, Hennie; López Mora, Néstor; Kros, Alexander; Davis, Anthony P

    2015-02-09

    Transmembrane ion transporters (ionophores) are widely investigated as supramolecular agents with potential for biological activity. Tests are usually performed in synthetic membranes that are assembled into large unilamellar vesicles (LUVs). However transport must be followed through bulk properties of the vesicle suspension, because LUVs are too small for individual study. An alternative approach is described whereby ion transport can be revealed and quantified through direct observation. The method employs giant unilamellar vesicles (GUVs), which are 20-60 μm in diameter and readily imaged by light microscopy. This allows characterization of individual GUVs containing transporter molecules, followed by studies of transport through fluorescence emission from encapsulated indicators. The method provides new levels of certainty and relevance, given that the GUVs are similar in size to living cells. It has been demonstrated using a highly active anion carrier, and should aid the development of compounds for treating channelopathies such as cystic fibrosis.

  1. Independence of hydrogen ion secretion and transport of other electrolytes in turtle bladder.

    PubMed

    Steinmetz, P R; Omachi, R S; Frazier, H S

    1967-10-01

    The relationship between hydrogen ion secretion and the transport of other electrloytes was examined in the isolated urinary bladder of the water turtle. Symmetrical solutions which were free from exogenous carbon dioxide and bicarbonate bathed the two surfaces of the preparation, and the spontaneous electrical potential of the bladder was nullified by a voltage clamp. Active transport of sodium from mucosal to serosal medium was confirmed by simultaneous bidirectional flux measurements and found to be slightly, but not significantly, greater than the short-circuit current. In the absence of sodium in the bathing solutions, the normal potential difference across the bladder reversed and the current required to nullify this reversed potential difference had the same magnitude as the simultaneously measured rate of hydrogen ion secretion. The results indicate that, under these experimental conditions, the bladder transports sodium and hydrogen ion actively, but that chloride movement does not contribute to the short-circuit current. The rate of secretion of hydrogen ion was not affected by replacement of the sodium in the bathing media by cesium, or by inhibition of sodium transport by dinitrophenol. Acidification continued when chloride in the solutions was replaced by sulfate, or when potassium or calcium was removed from the solution bathing the mucosal surface. Secretion of hydrogen ion by the turtle bladder is not dependent on the simultaneous transport of other electrolytes across the bladder.

  2. Mechanisms involved in the transport of mercuric ions in target tissues.

    PubMed

    Bridges, Christy C; Zalups, Rudolfs K

    2017-01-01

    Mercury exists in the environment in various forms, all of which pose a risk to human health. Despite guidelines regulating the industrial release of mercury into the environment, humans continue to be exposed regularly to various forms of this metal via inhalation or ingestion. Following exposure, mercuric ions are taken up by and accumulate in numerous organs, including brain, intestine, kidney, liver, and placenta. In order to understand the toxicological effects of exposure to mercury, a thorough understanding of the mechanisms that facilitate entry of mercuric ions into target cells must first be obtained. A number of mechanisms for the transport of mercuric ions into target cells and organs have been proposed in recent years. However, the ability of these mechanisms to transport mercuric ions and the regulatory features of these carriers have not been characterized completely. The purpose of this review is to summarize the current findings related to the mechanisms that may be involved in the transport of inorganic and organic forms of mercury in target tissues and organs. This review will describe mechanisms known to be involved in the transport of mercury and will also propose additional mechanisms that may potentially be involved in the transport of mercuric ions into target cells.

  3. Ion channels/transporters as epigenetic regulators? -a microRNA perspective.

    PubMed

    Jiang, XiaoHua; Zhang, Jie Ting; Chan, Hsiao Chang

    2012-09-01

    MicroRNA (miRNA) alterations in response to changes in an extracellular microenvironment have been observed and considered as one of the major mechanisms for epigenetic modifications of the cell. While enormous efforts have been made in the understanding of the role of miRNAs in regulating cellular responses to the microenvironment, the mechanistic insight into how extracellular signals can be transduced into miRNA alterations in cells is still lacking. Interestingly, recent studies have shown that ion channels/transporters, which are known to conduct or transport ions across the cell membrane, also exhibit changes in levels of expression and activities in response to changes of extracellular microenvironment. More importantly, alterations in expression and function of ion channels/transporters have been shown to result in changes in miRNAs that are known to change in response to alteration of the microenvironment. In this review, we aim to summarize the recent data demonstrating the ability of ion channels/transporters to transduce extracellular signals into miRNA changes and propose a potential link between cells and their microenvironment through ion channels/transporters. At the same time, we hope to provide new insights into epigenetic regulatory mechanisms underlying a number of physiological and pathological processes, including embryo development and cancer metastasis.

  4. Indispensable Role of Ion Channels and Transporters in the Auditory System.

    PubMed

    Mittal, Rahul; Aranke, Mayank; Debs, Luca H; Nguyen, Desiree; Patel, Amit P; Grati, M'hamed; Mittal, Jeenu; Yan, Denise; Chapagain, Prem; Eshraghi, Adrien A; Liu, Xue Zhong

    2017-04-01

    Ear is a complex system where appropriate ionic composition is essential for maintaining the tissue homeostasis and hearing function. Ion transporters and channels present in the auditory system plays a crucial role in maintaining proper ionic composition in the ear. The extracellular fluid, called endolymph, found in the cochlea of the mammalian inner ear is particularly unique due to its electrochemical properties. At an endocochlear potential of about +80 mV, signaling initiated by acoustic stimuli at the level of the hair cells is dependent on the unusually high potassium (K(+) ) concentration of endolymph. There are ion channels and transporters that exists in the ear to ensure that K(+) is continually being cycled into the stria media endolymph. This review is focused on the discussion of the molecular and genetic basis of previously and newly recognized ion channels and transporters that support sensory hair cell excitation based on recent knock-in and knock-out studies of these channels. This article also addresses the molecular and genetic defects and the pathophysiology behind Meniere's disease as well as how the dysregulation of these ion transporters can result in severe defects in hearing or even deafness. Understanding the role of ion channels and transporters in the auditory system will facilitate in designing effective treatment modalities against ear disorders including Meniere's disease and hearing loss. J. Cell. Physiol. 232: 743-758, 2017. © 2016 Wiley Periodicals, Inc.

  5. Controlling FAMA by the Ptolemy II model of ion beam transport

    NASA Astrophysics Data System (ADS)

    Balvanović, R.; Rađenović, B.; Beličev, P.; Nešković, N.

    2009-08-01

    FAMA is a facility for modification and analysis of materials with ion beams. Due to the wide range of ion beams and energies used in the facility and its future expansion, the need has arisen for faster tuning of ion beams transport control parameters. With this aim, a new approach to modeling ion-beam transport system was developed, based on the Ptolemy II modeling and design framework. A model in Ptolemy II is a hierarchical aggregation of components called actors, which communicate with other actors using tokens, or pieces of data. Each ion optical element is modeled by a composite actor implementing beam matrix transformation function, while tokens carry beam matrix data. A basic library of models of typical ion optical elements is developed, and a complex model of FAMA ion beam transport system is hierarchically integrated with bottom-up approach. The model is extended to include control functions. The developed model is modular, flexible and extensible. The results obtained by simulation on the model demonstrate easy and efficient tuning of beam line control parameters. Fine tuning of control parameters, due to uncertainties inherent to modeling, still has to be performed on-line.

  6. Structure-Functional Basis of Ion Transport in Sodium–Calcium Exchanger (NCX) Proteins

    PubMed Central

    Giladi, Moshe; Shor, Reut; Lisnyansky, Michal; Khananshvili, Daniel

    2016-01-01

    The membrane-bound sodium–calcium exchanger (NCX) proteins shape Ca2+ homeostasis in many cell types, thus participating in a wide range of physiological and pathological processes. Determination of the crystal structure of an archaeal NCX (NCX_Mj) paved the way for a thorough and systematic investigation of ion transport mechanisms in NCX proteins. Here, we review the data gathered from the X-ray crystallography, molecular dynamics simulations, hydrogen–deuterium exchange mass-spectrometry (HDX-MS), and ion-flux analyses of mutants. Strikingly, the apo NCX_Mj protein exhibits characteristic patterns in the local backbone dynamics at particular helix segments, thereby possessing characteristic HDX profiles, suggesting structure-dynamic preorganization (geometric arrangements of catalytic residues before the transition state) of conserved α1 and α2 repeats at ion-coordinating residues involved in transport activities. Moreover, dynamic preorganization of local structural entities in the apo protein predefines the status of ion-occlusion and transition states, even though Na+ or Ca2+ binding modifies the preceding backbone dynamics nearby functionally important residues. Future challenges include resolving the structural-dynamic determinants governing the ion selectivity, functional asymmetry and ion-induced alternating access. Taking into account the structural similarities of NCX_Mj with the other proteins belonging to the Ca2+/cation exchanger superfamily, the recent findings can significantly improve our understanding of ion transport mechanisms in NCX and similar proteins. PMID:27879668

  7. Ion transport and selectivity in biomimetic nanopores with pH-tunable zwitterionic polyelectrolyte brushes.

    PubMed

    Zeng, Zhenping; Yeh, Li-Hsien; Zhang, Mingkan; Qian, Shizhi

    2015-10-28

    Inspired by nature, functionalized nanopores with biomimetic structures have attracted growing interests in using them as novel platforms for applications of regulating ion and nanoparticle transport. To improve these emerging applications, we study theoretically for the first time the ion transport and selectivity in short nanopores functionalized with pH tunable, zwitterionic polyelectrolyte (PE) brushes. In addition to background salt ions, the study takes into account the presence of H(+) and OH(-) ions along with the chemistry reactions between functional groups on PE chains and protons. Due to ion concentration polarization, the charge density of PE layers is not homogeneously distributed and depends significantly on the background salt concentration, pH, grafting density of PE chains, and applied voltage bias, thereby resulting in many interesting and unexpected ion transport phenomena in the nanopore. For example, the ion selectivity of the biomimetic nanopore can be regulated from anion-selective (cation-selective) to cation-selective (anion-selective) by diminishing (raising) the solution pH when a sufficiently small grafting density of PE chains, large voltage bias, and low background salt concentration are applied.

  8. Simulation study of Alfven eigenmode induced energetic-ion transport in LHD

    NASA Astrophysics Data System (ADS)

    Nishimura, Seiya; Todo, Yasushi; Nakajima, Noriyoshi; Osakabe, Masaki; Yamamoto, Satoshi; Spong, Donald A.; Suzuki, Yasuhiro

    2012-10-01

    For the achievement of magnetic confinement fusion, the interaction between Alfven eigenmodes (AEs) and energetic ions is an important issue to be resolved. In the Large Helical Device(LHD), the AE bursts and the energetic-ion transport and losses have been observed during the neutral beam injection. However, it has not been clarified yet how the 3-dimensional magnetic field affects the AE induced energetic-ion transport. It is worth investigating this problem since the particle dynamics in the 3-dimensional configuration such as the helical trapping might enhance the transport. In this study, we perform the reduced simulation, where the AE spatial profile calculated with AE3D code is assumed to be constant in time and the evolution of the amplitude and the frequency is computed in a way consistent with the interaction between the energetic ions and AE. The energetic-ion dynamics is followed in the electromagnetic field that is the sum of the equilibrium field by HINT code and the AE perturbation. It is found that the AE amplitude continues to increase gradually after the exponential growth for the isotropic energetic-ion velocity distribution, whereas the saturation takes place for the beam-type distribution. We will report on the detailed analysis of the energetic-ion dynamics.

  9. The Structure and Transport of Water and Hydrated Ions Within Hydrophobic, Nanoscale Channels

    SciTech Connect

    Holt, J K; Herberg, J L; Wu, Y; Schwegler, E; Mehta, A

    2009-06-15

    The purpose of this project includes an experimental and modeling investigation into water and hydrated ion structure and transport at nanomaterials interfaces. This is a topic relevant to understanding the function of many biological systems such as aquaporins that efficiently shuttle water and ion channels that permit selective transport of specific ions across cell membranes. Carbon nanotubes (CNT) are model nanoscale, hydrophobic channels that can be functionalized, making them artificial analogs for these biological channels. This project investigates the microscopic properties of water such as water density distributions and dynamics within CNTs using Nuclear Magnetic Resonance (NMR) and the structure of hydrated ions at CNT interfaces via X-ray Absorption Spectroscopy (XAS). Another component of this work is molecular simulation, which can predict experimental measurables such as the proton relaxation times, chemical shifts, and can compute the electronic structure of CNTs. Some of the fundamental questions this work is addressing are: (1) what is the length scale below which nanoscale effects such as molecular ordering become important, (2) is there a relationship between molecular ordering and transport?, and (3) how do ions interact with CNT interfaces? These are questions of interest to the scientific community, but they also impact the future generation of sensors, filters, and other devices that operate on the nanometer length scale. To enable some of the proposed applications of CNTs as ion filtration media and electrolytic supercapacitors, a detailed knowledge of water and ion structure at CNT interfaces is critical.

  10. Transepithelial ion transport across duct cells of the salivary gland.

    PubMed

    Ohana, E

    2015-10-01

    Fluid and electrolyte secretions are vital for all epithelia and when aberrant lead to numerous pathophysiological conditions. Electrolyte transport across epithelia generates the osmotic force for fluid movement and is mediated by several membrane proteins expressed on both apical and basolateral poles of epithelial cells. Sodium and chloride are crucial for regulation of fluid secretion, thus regulating salivary volume. Bicarbonate (HCO3-), on the other hand, is the major pH buffer; hence, aberrant HCO3- secretion is a major factor in diseases such as cystic fibrosis (CF) causing altered mucin hydration and solubilization. Here, the structure-function mechanisms of the major membrane transporters involved in salivary duct electrolyte transport are reviewed focusing on transepithelial movement of Cl(-) and HCO3-.

  11. Ion transport in the zebrafish kidney from a human disease angle: possibilities, considerations, and future perspectives.

    PubMed

    Kersten, Simone; Arjona, Francisco J

    2017-01-01

    Unique experimental advantages, such as its embryonic/larval transparency, high-throughput nature, and ease of genetic modification, underpin the rapid emergence of the zebrafish (Danio rerio) as a preeminent model in biomedical research. Particularly in the field of nephrology, the zebrafish provides a promising model for studying the physiological implications of human solute transport processes along consecutive nephron segments. However, although the zebrafish might be considered a valuable model for numerous renal ion transport diseases and functional studies of many channels and transporters, not all human renal electrolyte transport mechanisms and human diseases can be modeled in the zebrafish. With this review, we explore the ontogeny of zebrafish renal ion transport, its nephron structure and function, and thereby demonstrate the clinical translational value of this model. By critical assessment of genomic and amino acid conservation of human proteins involved in renal ion handling (channels, transporters, and claudins), kidney and nephron segment conservation, and renal electrolyte transport physiology in the zebrafish, we provide researchers and nephrologists with an indication of the possibilities and considerations of the zebrafish as a model for human renal ion transport. Combined with advanced techniques envisioned for the future, implementation of the zebrafish might expand beyond unraveling pathophysiological mechanisms that underlie distinct genetic or environmentally, i.e., pharmacological and lifestyle, induced renal transport deficits. Specifically, the ease of drug administration and the exploitation of improved genetic approaches might argue for the adoption of the zebrafish as a model for preclinical personalized medicine for distinct renal diseases and renal electrolyte transport proteins.

  12. Theoretical Study of Ion Transport in the Gramicidin a Channel

    NASA Astrophysics Data System (ADS)

    Roux, Benoi T.

    Modern techniques are used to study the permeation process of ions through the gramicidin A channel. The conformation of the gramicidin molecule is investigated experimentally in dimethylsulfoxide/acetone using the techniques of two-dimensional NMR spectroscopy. An empirical energy function is developed from ab initio calculations to represent the interaction of Li^{+}, Na^{+} and K^ {+} ions with the backbone of polypeptides; the parameters are tested in dense systems with free energy simulations. The dynamics of the gramicidin A channel dimer in the absence of water and ions is studied in the harmonic approximation by a vibrational analysis of the atomic motions relative to their equilibrium positions. The behavior of the water molecules in the channel is studied with a molecular dynamics simulation of a fully solvated Gramicidin A dimer embedded in a model membrane. the potential of mean force and the mobility of Na^{+ }, K^{+} and water are calculated in the interior of a gramicidin-like periodic poly (L,D)-alanine beta -helix. The potential of mean force of Na^ {+} ion along the axis of the gramicidin A channel is calculated with a molecular dynamics simulation of a fully solvated Gramicidin A dimer embedded in a model membrane; the gramicidin channel is modeled as a right -handed head-to-head beta-helix dimer. Binding sites are found at the extremities of the channel; no large activation energy barrier is caused by the dehydration process at the entrance of the channel. In the appendices, Statistical Mechanical theories are used to investigate the equilibrium and dynamical properties of the liquid state. A theory of aqueous solutions is used to provide an interpretation for the Born model of ion hydration at the molecular level; the Born radius of hydration is interpreted in terms of the first peak in the solute-solvent radial distribution function. We show that some proposed closures for the RISM equation of Chandler and Andersen possess no solution because

  13. Identification of a chloride ion binding site in Na+/Cl -dependent transporters.

    PubMed

    Forrest, Lucy R; Tavoulari, Sotiria; Zhang, Yuan-Wei; Rudnick, Gary; Honig, Barry

    2007-07-31

    The recent determination of the crystal structure of the leucine transporter from Aquifex aeolicus (aaLeuT) has provided significant insights into the function of neurotransmitter:sodium symporters. Transport by aaLeuT is Cl(-) independent, whereas many neurotransmitter:sodium symporters from higher organisms depend on Cl(-) ions. However, the only Cl(-) ion identified in the aaLeuT structure interacts with nonconserved residues in extracellular loops, and thus the relevance of this binding site is unclear. Here, we use calculations of pK(A)s and homology modeling to predict the location of a functionally important Cl(-) binding site in serotonin transporter and other Cl(-)-dependent transporters. We validate our model through the site-directed mutagenesis of residues predicted to coordinate the Cl(-) ion and through the observation of sequence conservation patterns in other Cl(-)-dependent transporters. The proposed site is located midway across the membrane and is formed by residues from transmembrane helices 2, 6, and 7. It is close to the Na1 sodium binding site, thus providing an explanation for the coupling of Cl(-) and Na(+) ions during transport. Other implications of the model are also discussed.

  14. A multi-substrate single-file model for ion-coupled transporters.

    PubMed Central

    Su, A; Mager, S; Mayo, S L; Lester, H A

    1996-01-01

    Ion-coupled transporters are simulated by a model that differs from contemporary alternating-access schemes. Beginning with concepts derived from multi-ion pores, the model assumes that substrates (both inorganic ions and small organic molecules) hop a) between the solutions and binding sites and b) between binding sites within a single-file pore. No two substrates can simultaneously occupy the same site. Rate constants for hopping can be increased both a) when substrates in two sites attract each other into a vacant site between them and b) when substrates in adjacent sites repel each other. Hopping rate constants for charged substrates are also modified by the membrane field. For a three-site model, simulated annealing yields parameters to fit steady-state measurements of flux coupling, transport-associated currents, and charge movements for the GABA transporter GAT1. The model then accounts for some GAT1 kinetic data as well. The model also yields parameters that describe the available data for the rat 5-HT transporter and for the rabbit Na(+)-glucose transporter. The simulations show that coupled fluxes and other aspects of ion transport can be explained by a model that includes local substrate-substrate interactions but no explicit global conformational changes. Images FIGURE 1 FIGURE 2 FIGURE 9 PMID:8789093

  15. Transport of ions in presence of induced electric field and electrostatic turbulence - Source of ions injected into ring current

    NASA Technical Reports Server (NTRS)

    Cladis, J. B.; Francis, W. E.

    1985-01-01

    The transport of ions from the polar ionosphere to the inner magnetosphere during stormtime conditions has been computed using a Monte Carlo diffusion code. The effect of the electrostatic turbulence assumed to be present during the substorm expansion phase was simulated by a process that accelerated the ions stochastically perpendicular to the magnetic field with a diffusion coefficient proportional to the energization rate of the ions by the induced electric field. This diffusion process was continued as the ions were convected from the plasma sheet boundary layer to the double-spiral injection boundary. Inward of the injection boundary, the ions were convected adiabatically. By using as input an O(+) flux of 2.8 x 10 to the 8th per sq cm per s (w greater than 10 eV) and an H(+) flux of 5.5 x 10 to the 8th per sq cm per s (w greater than 0.63 eV), the computed distribution functions of the ions in the ring current were found to be in good agreement, over a wide range in L (4 to 8), with measurements made with the ISEE-1 satellite during a storm. This O(+) flux and a large part of the H(+) flux are consistent with the DE satellite measurements of the polar ionospheric outflow during disturbed times.

  16. Transport of ions in presence of induced electric field and electrostatic turbulence - source of ions injected into ring current

    SciTech Connect

    Cladis, J.B.; Francis, W.E.

    1985-01-01

    The transport of ions from the polar ionosphere to the inner magnetosphere during stormtime conditions has been computed using a Monte Carlo diffusion code. The effect of the electrostatic turbulence assumed to be present during the substorm expansion phase was simulated by a process that accelerated the ions stochastically perpendicular to the magnetic field with a diffusion coefficient proportional to the energization rate of the ions by the induced electric field. This diffusion process was continued as the ions were convected from the plasma sheet boundary layer to the double-spiral injection boundary. Inward of the injection boundary, the ions were convected adiabatically. By using as input an O(+) flux of 2.8 x 10 to the 8th per sq cm per s (w greater than 10 eV) and an H(+) flux of 5.5 x 10 to the 8th per sq cm per s (w greater than 0.63 eV), the computed distribution functions of the ions in the ring current were found to be in good agreement, over a wide range in L (4 to 8), with measurements made with the ISEE-1 satellite during a storm. This O(+) flux and a large part of the H(+) flux are consistent with the DE satellite measurements of the polar ionospheric outflow during disturbed times. 19 references.

  17. Ion channels and drug transporters as targets for anthelmintics

    PubMed Central

    Greenberg, Robert M.

    2014-01-01

    Infections with parasitic helminths such as schistosomes and soil-transmitted nematodes are hugely prevalent and responsible for a major portion of the global health and economic burdens associated with neglected tropical diseases. In addition, many of these parasites infect livestock and plants used in agriculture, resulting in further impoverishment. Treatment and control of these pathogens rely on anthelmintic drugs, which are few in number, and against which drug resistance can develop rapidly. The neuromuscular system of the parasite, and in particular, the ion channels and associated receptors underlying excitation and signaling, have proven to be outstanding targets for anthelmintics. This review will survey the different ion channels found in helminths, focusing on their unique characteristics and pharmacological sensitivities. It will also briefly review the literature on helminth multidrug efflux that may modulate parasite susceptibility to anthelmintics and may prove useful targets for new or repurposed agents that can enhance parasite drug susceptibility and perhaps overcome drug resistance. PMID:25554739

  18. Time Scales of Ion Transport in Imidazolium-based Polymers

    NASA Astrophysics Data System (ADS)

    Choi, U. Hyeok; Ye, Yuesheng; Lee, Minjae; Gibson, Harry; Elabd, Yossef; Runt, James; Colby, Ralph

    2011-03-01

    We synthesize and characterize ionic polymers with imidazolium cations covalently attached to the polymer chain and various ionic liquid counterions for ionic actuators. The imidazolium cations are attached to the polymers with flexible alkyl spacer chains and also have a variety of alkyl and alkyl ether termini. The anionic counterions are also varied; tetrafluoroborate (BF4) , hexafluorophosphate (PF6) and bis(trifluoromethanesulfonyl)imide (TFSI) were mainly used in this study. Dielectric relaxation spectroscopy (DRS) is utilized to measure the dielectric constant and conductivity, as a function of temperature. The 1953 Macdonald model is applied to estimate the number density of conducting ions and their mobility, from electrode polarization at low frequencies in DRS. The 1988 Dyre model is used to determine ion hopping times from the frequency-dependent conductivity at higher frequencies. The consequence of polymer structural variations will be elucidated for these vital characteristics.

  19. Time-dependent ion transport in heterogeneous permselective systems

    NASA Astrophysics Data System (ADS)

    Green, Yoav; Yossifon, Gilad

    2015-06-01

    The current study extends previous analytical and numerical solutions of chronopotentiometric response of one-dimensional systems consisting of three layers to the more realistic two-dimensional (2D) heterogeneous ion-permselective medium. An analytical solution for the transient concentration-polarization problem, under the local electroneutrality approximation and assumption of ideal permselectivity, was obtained using the Laplace transform and separation of variables technique. Then the 2D electric potential was obtained numerically and was compared to the full Poisson-Nernst-Planck solution. It was then shown that the resultant voltage drop across the system varies between the initial Ohmic response and that of the steady state accounting for concentration polarization. Also, the field-focusing effect in a 2D system is shown to result in a faster depletion of ions at the permselective interface.

  20. Ion mobility and transport barriers in the tokamak plasmas

    SciTech Connect

    Xiao, H.; Hazeltine, R.D.; Valanju, P.M.; Zhang, Y.Z.

    1993-06-01

    The character of charged particle motion in an axisymmetric toroidal system with a constant radial electric field is investigated both analytically and numerically. Ion radial mobility caused by the combined effects of the radial electric field and charge exchange is found. A simple moment argument in the banana regime matches the simulation results well. Relation of present work and high confinement (H-mode) experiment is also discussed.

  1. Anomalous Electron Transport Due to Multiple High Frequency Beam Ion Driven Alfven Eigenmode

    SciTech Connect

    Gorelenkov, N. N.; Stutman, D.; Tritz, K.; Boozer, A.; Delgardo-Aparicio, L.; Fredrickson, E.; Kaye, S.; White, R.

    2010-07-13

    We report on the simulations of recently observed correlations of the core electron transport with the sub-thermal ion cyclotron frequency instabilities in low aspect ratio plasmas of the National Spherical Torus Experiment (NSTX). In order to model the electron transport of the guiding center code ORBIT is employed. A spectrum of test functions of multiple core localized Global shear Alfven Eigenmode (GAE) instabilities based on a previously developed theory and experimental observations is used to examine the electron transport properties. The simulations exhibit thermal electron transport induced by electron drift orbit stochasticity in the presence of multiple core localized GAE.

  2. Nanoparticle permeation induces water penetration, ion transport, and lipid flip-flop.

    PubMed

    Song, Bo; Yuan, Huajun; Pham, Sydney V; Jameson, Cynthia J; Murad, Sohail

    2012-12-11

    Nanoparticles are generally considered excellent candidates for targeted drug delivery. However, ion leakage and cytotoxicity induced by nanoparticle permeation is a potential problem in such drug delivery schemes because of the toxic effect of many ions. In this study, we have carried out a series of coarse-grained molecular dynamics simulations to investigate the water penetration, ion transport, and lipid molecule flip-flop in a protein-free phospholipid bilayer membrane during nanoparticle permeation. The effect of ion concentration gradient, pressure differential across the membrane, nanoparticle size, and permeation velocity have been examined in this work. Some conclusions from our studies include (1) The number of water molecules in the interior of the membrane during the nanoparticle permeation increases with the nanoparticle size and the pressure differential across the membrane but is unaffected by the nanoparticle permeation velocity or the ion concentration gradient. (2) Ion transport is sensitive to the size of nanoparticle as well as the ion concentration gradient between two sides of the membrane; no anion/cation selectivity is observed for small nanoparticle permeation, while anions are preferentially translocated through the membrane when the size of nanoparticle is large enough. (3) Incidences of lipid molecule flip-flop increases with the size of nanoparticle and ion concentration gradient and decreases with the pressure differential and the nanoparticle permeation velocity.

  3. Electrogenic transport and K(+) ion channel expression by the human endolymphatic sac epithelium.

    PubMed

    Kim, Sung Huhn; Kim, Bo Gyung; Kim, Jin Young; Roh, Kyung Jin; Suh, Michelle J; Jung, JinSei; Moon, In Seok; Moon, Sung K; Choi, Jae Young

    2015-12-14

    The endolymphatic sac (ES) is a cystic organ that is a part of the inner ear and is connected to the cochlea and vestibule. The ES is thought to be involved in inner ear ion homeostasis and fluid volume regulation for the maintenance of hearing and balance function. Many ion channels, transporters, and exchangers have been identified in the ES luminal epithelium, mainly in animal studies, but there has been no functional study investigating ion transport using human ES tissue. We designed the first functional experiments on electrogenic transport in human ES and investigated the contribution of K(+) channels in the electrogenic transport, which has been rarely identified, even in animal studies, using electrophysiological/pharmacological and molecular biological methods. As a result, we identified functional and molecular evidence for the essential participation of K(+) channels in the electrogenic transport of human ES epithelium. The identified K(+) channels involved in the electrogenic transport were KCNN2, KCNJ14, KCNK2, and KCNK6, and the K(+) transports via those channels are thought to play an important role in the maintenance of the unique ionic milieu of the inner ear fluid.

  4. Electrogenic transport and K+ ion channel expression by the human endolymphatic sac epithelium

    PubMed Central

    Kim, Sung Huhn; Kim, Bo Gyung; Kim, Jin Young; Roh, Kyung Jin; Suh, Michelle J.; Jung, JinSei; Moon, In Seok; Moon, Sung K.; Choi, Jae Young

    2015-01-01

    The endolymphatic sac (ES) is a cystic organ that is a part of the inner ear and is connected to the cochlea and vestibule. The ES is thought to be involved in inner ear ion homeostasis and fluid volume regulation for the maintenance of hearing and balance function. Many ion channels, transporters, and exchangers have been identified in the ES luminal epithelium, mainly in animal studies, but there has been no functional study investigating ion transport using human ES tissue. We designed the first functional experiments on electrogenic transport in human ES and investigated the contribution of K+ channels in the electrogenic transport, which has been rarely identified, even in animal studies, using electrophysiological/pharmacological and molecular biological methods. As a result, we identified functional and molecular evidence for the essential participation of K+ channels in the electrogenic transport of human ES epithelium. The identified K+ channels involved in the electrogenic transport were KCNN2, KCNJ14, KCNK2, and KCNK6, and the K+ transports via those channels are thought to play an important role in the maintenance of the unique ionic milieu of the inner ear fluid. PMID:26655723

  5. Measurement of energetic-particle-driven core magnetic fluctuations and induced fast-ion transport

    NASA Astrophysics Data System (ADS)

    Lin, L.; Ding, W. X.; Brower, D. L.; Koliner, J. J.; Eilerman, S.; Reusch, J. A.; Anderson, J. K.; Nornberg, M. D.; Sarff, J. S.; Waksman, J.; Liu, D.

    2013-03-01

    Internal fluctuations arising from energetic-particle-driven instabilities, including both density and radial magnetic field, are measured in a reversed-field-pinch plasma. The fluctuations peak near the core where fast ions reside and shift outward along the major radius as the instability transits from the n = 5 to n = 4 mode. During this transition, strong nonlinear three-wave interaction among multiple modes accompanied by enhanced fast-ion transport is observed.

  6. History-dependent ion transport through conical nanopipettes and the implications in energy conversion dynamics at nanoscale interfaces

    SciTech Connect

    Li, Yan; Wang, Dengchao; Kvetny, Maksim M.; Brown, Warren; Liu, Juan; Wang, Gangli

    2014-08-20

    The dynamics of ion transport at nanostructured substrate–solution interfaces play vital roles in high-density energy conversion, stochastic chemical sensing and biosensing, membrane separation, nanofluidics and fundamental nanoelectrochemistry. Advancements in these applications require a fundamental understanding of ion transport at nanoscale interfaces. The understanding of the dynamic or transient transport, and the key physical process involved, is limited, which contrasts sharply with widely studied steady-state ion transport features at atomic and nanometer scale interfaces. Here we report striking time-dependent ion transport characteristics at nanoscale interfaces in current–potential (I–V) measurements and theoretical analyses. First, a unique non-zero I–V cross-point and pinched I–V curves are established as signatures to characterize the dynamics of ion transport through individual conical nanopipettes. Moreoever, ion transport against a concentration gradient is regulated by applied and surface electrical fields. The concept of ion pumping or separation is demonstrated via the selective ion transport against concentration gradients through individual nanopipettes. Third, this dynamic ion transport process under a predefined salinity gradient is discussed in the context of nanoscale energy conversion in supercapacitor type charging–discharging, as well as chemical and electrical energy conversion. Our analysis of the emerging current–potential features establishes the urgently needed physical foundation for energy conversion employing ordered nanostructures. The elucidated mechanism and established methodology can be generalized into broadly-defined nanoporous materials and devices for improved energy, separation and sensing applications.

  7. Modeling Root Zone Effects on Preferred Pathways for the Passive Transport of Ions and Water in Plant Roots

    PubMed Central

    Foster, Kylie J.; Miklavcic, Stanley J.

    2016-01-01

    We extend a model of ion and water transport through a root to describe transport along and through a root exhibiting a complexity of differentiation zones. Attention is focused on convective and diffusive transport, both radially and longitudinally, through different root tissue types (radial differentiation) and root developmental zones (longitudinal differentiation). Model transport parameters are selected to mimic the relative abilities of the different tissues and developmental zones to transport water and ions. For each transport scenario in this extensive simulations study, we quantify the optimal 3D flow path taken by water and ions, in response to internal barriers such as the Casparian strip and suberin lamellae. We present and discuss both transient and steady state results of ion concentrations as well as ion and water fluxes. We find that the peak in passive uptake of ions and water occurs at the start of the differentiation zone. In addition, our results show that the level of transpiration has a significant impact on the distribution of ions within the root as well as the rate of ion and water uptake in the differentiation zone, while not impacting on transport in the elongation zone. From our model results we infer information about the active transport of ions in the different developmental zones. In particular, our results suggest that any uptake measured in the elongation zone under steady state conditions is likely to be due to active transport. PMID:27446144

  8. Modeling Root Zone Effects on Preferred Pathways for the Passive Transport of Ions and Water in Plant Roots.

    PubMed

    Foster, Kylie J; Miklavcic, Stanley J

    2016-01-01

    We extend a model of ion and water transport through a root to describe transport along and through a root exhibiting a complexity of differentiation zones. Attention is focused on convective and diffusive transport, both radially and longitudinally, through different root tissue types (radial differentiation) and root developmental zones (longitudinal differentiation). Model transport parameters are selected to mimic the relative abilities of the different tissues and developmental zones to transport water and ions. For each transport scenario in this extensive simulations study, we quantify the optimal 3D flow path taken by water and ions, in response to internal barriers such as the Casparian strip and suberin lamellae. We present and discuss both transient and steady state results of ion concentrations as well as ion and water fluxes. We find that the peak in passive uptake of ions and water occurs at the start of the differentiation zone. In addition, our results show that the level of transpiration has a significant impact on the distribution of ions within the root as well as the rate of ion and water uptake in the differentiation zone, while not impacting on transport in the elongation zone. From our model results we infer information about the active transport of ions in the different developmental zones. In particular, our results suggest that any uptake measured in the elongation zone under steady state conditions is likely to be due to active transport.

  9. History-dependent ion transport through conical nanopipettes and the implications in energy conversion dynamics at nanoscale interfaces

    DOE PAGES

    Li, Yan; Wang, Dengchao; Kvetny, Maksim M.; ...

    2014-08-20

    The dynamics of ion transport at nanostructured substrate–solution interfaces play vital roles in high-density energy conversion, stochastic chemical sensing and biosensing, membrane separation, nanofluidics and fundamental nanoelectrochemistry. Advancements in these applications require a fundamental understanding of ion transport at nanoscale interfaces. The understanding of the dynamic or transient transport, and the key physical process involved, is limited, which contrasts sharply with widely studied steady-state ion transport features at atomic and nanometer scale interfaces. Here we report striking time-dependent ion transport characteristics at nanoscale interfaces in current–potential (I–V) measurements and theoretical analyses. First, a unique non-zero I–V cross-point and pinched I–Vmore » curves are established as signatures to characterize the dynamics of ion transport through individual conical nanopipettes. Moreoever, ion transport against a concentration gradient is regulated by applied and surface electrical fields. The concept of ion pumping or separation is demonstrated via the selective ion transport against concentration gradients through individual nanopipettes. Third, this dynamic ion transport process under a predefined salinity gradient is discussed in the context of nanoscale energy conversion in supercapacitor type charging–discharging, as well as chemical and electrical energy conversion. Our analysis of the emerging current–potential features establishes the urgently needed physical foundation for energy conversion employing ordered nanostructures. The elucidated mechanism and established methodology can be generalized into broadly-defined nanoporous materials and devices for improved energy, separation and sensing applications.« less

  10. Transport toward earth of ions sputtered from the moon's surface by the solar wind

    NASA Astrophysics Data System (ADS)

    Cladis, J. B.; Francis, W. E.; Vondrak, R. R.

    1994-01-01

    The transport of typical ions from the surface of the Moon to the vicinity of Earth was calculated using a test particle approach. It was assumed that the ions were sputtered from the surface by the solar wind, with fluxes in the range determined experimentally by Elphic et al. (1991), and were accelerated initially to 10 eV by the potential of the Moon on its sunlit side. Si(+) and Ca(+) ions were selected for this transport analysis because their masses are within two prominent ion mass groups that have high sputtering yields. In the solar wind the ion trajectories were traced in the following superimposed fields: (1) a steady magnetic field B0 at an angle of 45 deg to the solar wind velocity VSW, (2) the motional electric field Ezero = -V(sub SW x B0, and (3) turbulent magnetic and electric fields generated by hydromagnetic waves with a k-space power spectrum of absolute value of k-5/3 propagating along both directions of the magnetic field B0. Interactions with Earth's bow shock and magnetosphere were included. Case histories of the ions were recorded in the XGSM, YGSM plane and in various planes perpendicular to the E0 x B0 drift direction of the ions between the Moon and Earth. The number density, energy and angular distributions, and directional and omnidirectional fluxes of the ions were constructed from the case histories. It was found that the diffusion of the ions increases rapidly as the amplitude of the turbulence delta Brms increases beyond the value 0.04 B0. Recent measurements of lunar ions upstream of the bow shock by Hilchenbach et al. (1992) generally confirm the predicted behavior of the ions.

  11. Comparison between single- and dual-electrode ion source systems for low-energy ion transport

    SciTech Connect

    Vasquez, M. Jr.; Tokumura, S.; Kasuya, T.; Maeno, S.; Wada, M.

    2012-11-06

    Extraction of ions with energies below 100 eV has been demonstrated using a hot-cathode multi-cusp ion source equipped with extraction electrodes made of thin wires. Two electrode geometries, a single-electrode system, and a dual-electrode system were built and tested. The single-electrode configuration showed high ion beam current densities at shorter distances from the electrode but exhibited rapid attenuation as the distance from the electrode increased. Beam angular spread measurements showed similar beam divergence for both electrode configurations at low plasma densities. At high plasma densities and low extraction potentials, the single-electrode system showed the angular spread twice as large as that of the dual-electrode system. Energy distribution analyses showed a broader energy spread for ion beams extracted from a single-electrode set-up.

  12. Modeling of charge transport in ion bipolar junction transistors.

    PubMed

    Volkov, Anton V; Tybrandt, Klas; Berggren, Magnus; Zozoulenko, Igor V

    2014-06-17

    Spatiotemporal control of the complex chemical microenvironment is of great importance to many fields within life science. One way to facilitate such control is to construct delivery circuits, comprising arrays of dispensing outlets, for ions and charged biomolecules based on ionic transistors. This allows for addressability of ionic signals, which opens up for spatiotemporally controlled delivery in a highly complex manner. One class of ionic transistors, the ion bipolar junction transistors (IBJTs), is especially attractive for these applications because these transistors are functional at physiological conditions and have been employed to modulate the delivery of neurotransmitters to regulate signaling in neuronal cells. Further, the first integrated complementary ionic circuits were recently developed on the basis of these ionic transistors. However, a detailed understanding of the device physics of these transistors is still lacking and hampers further development of components and circuits. Here, we report on the modeling of IBJTs using Poisson's and Nernst-Planck equations and the finite element method. A two-dimensional model of the device is employed that successfully reproduces the main characteristics of the measurement data. On the basis of the detailed concentration and potential profiles provided by the model, the different modes of operation of the transistor are analyzed as well as the transitions between the different modes. The model correctly predicts the measured threshold voltage, which is explained in terms of membrane potentials. All in all, the results provide the basis for a detailed understanding of IBJT operation. This new knowledge is employed to discuss potential improvements of ion bipolar junction transistors in terms of miniaturization and device parameters.

  13. Epithelial ion transport in rabbit corneas following myopic keratomileusis.

    PubMed

    Swinger, C A; Candia, O A; Marcus, S; Barker, B A; Kornmehl, E W

    1986-08-01

    In isolated rabbit corneas that had undergone lamellar keratectomy or myopic keratomileusis, the stimulation of chloride transport by 10(-5) M epinephrine was completely inhibited at 1 week following surgery. At 28 days following surgery, both groups responded to 10(-7) M epinephrine. The response to 10(-5) M amphotericin B was normal both at 1 week and at 28 days following surgery. We conclude that, although the Na-K pump was not affected by the lamellar keratectomy and cryolathing, that either the epithelial beta receptors and/or the cAMP pathway were temporarily inhibited for at least 1 week following surgery. A lamellar keratectomy, therefore, can have an adverse effect on the epithelial transport system of the corneal epithelium even though the epithelium may appear normal clinically.

  14. Nucleotide release provides a mechanism for airway surface liquid homeostasis.

    PubMed

    Lazarowski, Eduardo R; Tarran, Robert; Grubb, Barbara R; van Heusden, Catharina A; Okada, Seiko; Boucher, Richard C

    2004-08-27

    Nucleotides within the airway surface liquid (ASL) regulate airway epithelial ion transport rates by Ca(2+) -and protein kinase C-dependent mechanisms via activation of specific P2Y receptors. Extracellular adenine nucleotides also serve as precursors for adenosine, which promotes cyclic AMP-mediated activation of the cystic fibrosis transmembrane regulator chloride channel via A(2b) adenosine receptors. A biological role for extracellular ATP in ASL volume homeostasis has been suggested by the demonstration of regulated ATP release from airway epithelia. However, nucleotide hydrolysis at the airway surface makes it difficult to assess the magnitude of ATP release and the relative abundance of adenyl purines and, hence, to define their biological functions. We have combined ASL microsampling and high performance liquid chromatography analysis of fluorescent 1,N(6)-ethenoadenine derivatives to measure adenyl purines in ASL. We found that adenosine, AMP, and ADP accumulated in high concentrations relative to ATP within the ASL covering polarized primary human normal or cystic fibrosis airway epithelial cells. By using immortalized epithelial cell monolndogenayers that eously express a luminal A(2b) adenosine receptor, we found that basal as well asforskolin-promoted cyclic AMP production was reduced by exogenous adenosine deaminase, suggesting that A(2b) receptors sense endogenous adenosine within the ASL. The physiological role of adenosine was further established by illustrating that adenosine removal or inhibition of adenosine receptors in primary cultures impaired ASL volume regulation. Our data reveal a complex pattern of nucleotides/nucleosides in ASL under resting conditions and suggest that adenosine may play a key role in regulating ASL volume homeostasis.

  15. Nucleotide Release Provides a Mechanism for Airway Surface Liquid Homeostasis*

    PubMed Central

    Lazarowski, Eduardo R.; Tarran, Robert; Grubb, Barbara R.; van Heusden, Catharina A.; Okada, Seiko; Boucher, Richard C.

    2010-01-01

    Nucleotides within the airway surface liquid (ASL) regulate airway epithelial ion transport rates by Ca2+- and protein kinase C-dependent mechanisms via activation of specific P2Y receptors. Extracellular adenine nucleotides also serve as precursors for adenosine, which promotes cyclic AMP-mediated activation of the cystic fibrosis transmembrane regulator chloride channel via A2b adenosine receptors. A biological role for extracellular ATP in ASL volume homeostasis has been suggested by the demonstration of regulated ATP release from airway epithelia. However, nucleotide hydrolysis at the airway surface makes it difficult to assess the magnitude of ATP release and the relative abundance of adenyl purines and, hence, to define their biological functions. We have combined ASL microsampling and high performance liquid chromatography analysis of fluorescent 1,N6-ethenoadenine derivatives to measure adenyl purines in ASL. We found that adenosine, AMP, and ADP accumulated in high concentrations relative to ATP within the ASL covering polarized primary human normal or cystic fibrosis airway epithelial cells. By using immortalized epithelial cell monolayers that endogenously express a luminal A2b adenosine receptor, we found that basal as well as forskolin-promoted cyclic AMP production was reduced by exogenous adenosine deaminase, suggesting that A2b receptors sense endogenous adenosine within the ASL. The physiological role of adenosine was further established by illustrating that adenosine removal or inhibition of adenosine receptors in primary cultures impaired ASL volume regulation. Our data reveal a complex pattern of nucleotides/nucleosides in ASL under resting conditions and suggest that adenosine may play a key role in regulating ASL volume homeostasis. PMID:15210701

  16. The molecular mechanism of ion-dependent gating in secondary transporters.

    PubMed

    Zhao, Chunfeng; Noskov, Sergei Yu

    2013-10-01

    LeuT-like fold Na-dependent secondary active transporters form a large family of integral membrane proteins that transport various substrates against their concentration gradient across lipid membranes, using the free energy stored in the downhill concentration gradient of sodium ions. These transporters play an active role in synaptic transmission, the delivery of key nutrients, and the maintenance of osmotic pressure inside the cell. It is generally believed that binding of an ion and/or a substrate drives the conformational dynamics of the transporter. However, the exact mechanism for converting ion binding into useful work has yet to be established. Using a multi-dimensional path sampling (string-method) followed by all-atom free energy simulations, we established the principal thermodynamic and kinetic components governing the ion-dependent conformational dynamics of a LeuT-like fold transporter, the sodium/benzyl-hydantoin symporter Mhp1, for an entire conformational cycle. We found that inward-facing and outward-facing states of Mhp1 display nearly the same free energies with an ion absent from the Na2 site conserved across the LeuT-like fold transporters. The barrier separating an apo-state from inward-facing or outward-facing states of the transporter is very low, suggesting stochastic gating in the absence of ion/substrate bound. In contrast, the binding of a Na2 ion shifts the free energy stabilizing the outward-facing state and promoting substrate binding. Our results indicate that ion binding to the Na2 site may also play a key role in the intracellular thin gate dynamics modulation by altering its interactions with the transmembrane helix 5 (TM5). The Potential of Mean Force (PMF) computations for a substrate entrance displays two energy minima that correspond to the locations of the main binding site S1 and proposed allosteric S2 binding site. However, it was found that substrate's binds to the site S1 ∼5 kcal/mol more favorable than that to the

  17. Range and Energy Straggling in Ion Beam Transport

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Tai, Hsiang

    2000-01-01

    A first-order approximation to the range and energy straggling of ion beams is given as a normal distribution for which the standard deviation is estimated from the fluctuations in energy loss events. The standard deviation is calculated by assuming scattering from free electrons with a long range cutoff parameter that depends on the mean excitation energy of the medium. The present formalism is derived by extrapolating Payne's formalism to low energy by systematic energy scaling and to greater depths of penetration by a second-order perturbation. Limited comparisons are made with experimental data.

  18. Ion transport membrane module and vessel system with directed internal gas flow

    DOEpatents

    Holmes, Michael Jerome; Ohrn, Theodore R.; Chen, Christopher Ming-Poh

    2010-02-09

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

  19. Intrinsic slow charge response in the perovskite solar cells: Electron and ion transport

    SciTech Connect

    Shi, Jiangjian; Xu, Xin; Zhang, Huiyin; Luo, Yanhong; Li, Dongmei; Meng, Qingbo

    2015-10-19

    The intrinsic charge response and hysteresis characteristic in the perovskite solar cell has been investigated by an electrically modulated transient photocurrent technology. An ultraslow charge response process in the timescale of seconds is observed, which can be well explained by the ion migration in the perovskite CH{sub 3}NH{sub 3}PbI{sub 3} film driven by multiple electric fields derived from the heterojunction depletion charge, the external modulation, and the accumulated ion charge. Furthermore, theoretical calculation of charge transport reveals that the hysteresis behavior is also significantly influenced by the interfacial charge extraction velocity and the carrier transport properties inside the cell.

  20. Effect of an equilibrium phase transition on multiphase transport in relativistic heavy ion collisions

    SciTech Connect

    Yu Meiling; Du Jiaxin; Liu Lianshou

    2006-10-15

    The hadronization scheme for parton transport in relativistic heavy ion collisions is considered in detail. It is pointed out that the traditional scheme for particles being freezed out one by one leads to serious problem on unreasonable long lifetime of partons. A collective phase transition following a supercooling is implemented in a simple way. It turns out that the modified model with a sudden phase transition is able to reproduce the experimental longitudinal distributions of final state particles better than the original one does. The encouraging results indicate that equilibrium phase transition should be taken into proper account in parton transport models for relativistic heavy ion collisions.

  1. Does Membrane Thickness Affect the Transport of Selective Ions Mediated by Ionophores in Synthetic Membranes?

    PubMed

    Lomora, Mihai; Dinu, Ionel Adrian; Itel, Fabian; Rigo, Serena; Spulber, Mariana; Palivan, Cornelia G

    2015-08-31

    Biomimetic polymer nanocompartments (polymersomes) with preserved architecture and ion-selective membrane permeability represent cutting-edge mimics of cellular compartmentalization. Here it is studied whether the membrane thickness affects the functionality of ionophores in respect to the transport of Ca(2+) ions in synthetic membranes of polymersomes, which are up to 2.6 times thicker than lipid membranes (5 nm). Selective permeability toward calcium ions is achieved by proper insertion of ionomycin, and demonstrated by using specific fluorescence markers encapsulated in their inner cavities. Preservation of polymersome architecture is shown by a combination of light scattering, transmission electron microscopy, and fluorescence spectroscopy. By using a combination of stopped-flow and fluorescence spectroscopy, it is shown that ionomycin can function and transport calcium ions across polymer membranes with thicknesses in the range 10.7-13.4 nm (7.1-8.9 times larger than the size of the ionophore). Thicker membranes induce a decrease in transport, but do not block it due to the intrinsic flexibility of these synthetic membranes. The design of ion selective biomimetic nanocompartments represents a new path toward the development of cellular ion nanosensors and nano-reactors, in which calcium sensitive biomacromolecules can be triggered for specific biological functions.

  2. Conformational cycle and ion-coupling mechanism of the Na+/hydantoin transporter Mhp1

    PubMed Central

    Kazmier, Kelli; Sharma, Shruti; Islam, Shahidul M.; Roux, Benoît; Mchaourab, Hassane S.

    2014-01-01

    Ion-dependent transporters of the LeuT-fold couple the uptake of physiologically essential molecules to transmembrane ion gradients. Defined by a conserved 5-helix inverted repeat that encodes common principles of ion and substrate binding, the LeuT-fold has been captured in outward-facing, occluded, and inward-facing conformations. However, fundamental questions relating to the structural basis of alternating access and coupling to ion gradients remain unanswered. Here, we used distance measurements between pairs of spin labels to define the conformational cycle of the Na+-coupled hydantoin symporter Mhp1 from Microbacterium liquefaciens. Our results reveal that the inward-facing and outward-facing Mhp1 crystal structures represent sampled intermediate states in solution. Here, we provide a mechanistic context for these structures, mapping them into a model of transport based on ion- and substrate-dependent conformational equilibria. In contrast to the Na+/leucine transporter LeuT, our results suggest that Na+ binding at the conserved second Na+ binding site does not change the energetics of the inward- and outward-facing conformations of Mhp1. Comparative analysis of ligand-dependent alternating access in LeuT and Mhp1 lead us to propose that different coupling schemes to ion gradients may define distinct conformational mechanisms within the LeuT-fold class. PMID:25267652

  3. Dual Mechanisms of Ion Absorption in Relation to Long Distance Transport in Plants

    PubMed Central

    Luttge, Ulrich; Laties, George G.

    1966-01-01

    The characteristics of ion transport to the shoots of young corn seedlings were studied with respect to the nature of the isotherm through a wide concentration range, the competitive influence of closely related ions upon the transport of a given ion, and the influence of the counter-ion. Both with respect to 36Cl and 86Rb transport, the characteristics of the process in every way resemble uptake by non-vacuolate root tips wherein the plasma membrane is the only membrane involved in absorption, and where system 1 — of the 2 systems which can be shown to participate in absorption by vacuolate tissue — is the only system operative. Net ion uptake by the roots per se was shown to display both the high affinity (system 1) and low affinity (system 2) mechanisms. It is concluded that the symplastic theory of ion movement to the xylem is valid, and that the contention that system 1 operates at the plasma membrane while system 2 functions at the tonoplast is strengthened. PMID:16656435

  4. Conformational cycle and ion-coupling mechanism of the Na+/hydantoin transporter Mhp1.

    PubMed

    Kazmier, Kelli; Sharma, Shruti; Islam, Shahidul M; Roux, Benoît; Mchaourab, Hassane S

    2014-10-14

    Ion-dependent transporters of the LeuT-fold couple the uptake of physiologically essential molecules to transmembrane ion gradients. Defined by a conserved 5-helix inverted repeat that encodes common principles of ion and substrate binding, the LeuT-fold has been captured in outward-facing, occluded, and inward-facing conformations. However, fundamental questions relating to the structural basis of alternating access and coupling to ion gradients remain unanswered. Here, we used distance measurements between pairs of spin labels to define the conformational cycle of the Na(+)-coupled hydantoin symporter Mhp1 from Microbacterium liquefaciens. Our results reveal that the inward-facing and outward-facing Mhp1 crystal structures represent sampled intermediate states in solution. Here, we provide a mechanistic context for these structures, mapping them into a model of transport based on ion- and substrate-dependent conformational equilibria. In contrast to the Na(+)/leucine transporter LeuT, our results suggest that Na(+) binding at the conserved second Na(+) binding site does not change the energetics of the inward- and outward-facing conformations of Mhp1. Comparative analysis of ligand-dependent alternating access in LeuT and Mhp1 lead us to propose that different coupling schemes to ion gradients may define distinct conformational mechanisms within the LeuT-fold class.

  5. Difficult Airway Response Team: A Novel Quality Improvement Program for Managing Hospital-Wide Airway Emergencies

    PubMed Central

    Mark, Lynette J.; Herzer, Kurt R.; Cover, Renee; Pandian, Vinciya; Bhatti, Nasir I.; Berkow, Lauren C.; Haut, Elliott R.; Hillel, Alexander T.; Miller, Christina R.; Feller-Kopman, David J.; Schiavi, Adam J.; Xie, Yanjun J.; Lim, Christine; Holzmueller, Christine; Ahmad, Mueen; Thomas, Pradeep; Flint, Paul W.; Mirski, Marek A.

    2015-01-01

    or current tracheostomy. Twenty-three patients (6%) required emergent surgical airways. Sixty-two patients (17%) were stabilized and transported to the operating room for definitive airway management. There were no airway management-related deaths, sentinel events, or malpractice claims in adult patients managed by DART. Five in situ simulations conducted in the first program year improved DART's teamwork, communication, and response times and increased the functionality of the difficult airway carts. Over the 5-year period, we conducted 18 airway courses, through which more than 200 providers were trained. Conclusions DART is a comprehensive program for improving difficult airway management. Future studies will examine the comparative effectiveness of the DART program and evaluate how DART has impacted patient outcomes, operational efficiency, and costs of care. PMID:26086513

  6. Two-Dimensional Porous Carbon: Synthesis and Ion-Transport Properties.

    PubMed

    Zheng, Xiaoyu; Luo, Jiayan; Lv, Wei; Wang, Da-Wei; Yang, Quan-Hong

    2015-09-23

    Their chemical stability, high specific surface area, and electric conductivity enable porous carbon materials to be the most commonly used electrode materials for electrochemical capacitors (also known as supercapacitors). To further increase the energy and power density, engineering of the pore structures with a higher electrochemical accessible surface area, faster ion-transport path and a more-robust interface with the electrolyte is widely investigated. Compared with traditional porous carbons, two-dimensional (2D) porous carbon sheets with an interlinked hierarchical porous structure are a good candidate for supercapacitors due to their advantages in high aspect ratio for electrode packing and electron transport, hierarchical pore structures for ion transport, and short ion-transport length. Recent progress on the synthesis of 2D porous carbons is reported here, along with the improved electrochemical behavior due to enhanced ion transport. Challenges for the controlled preparation of 2D porous carbons with desired properties are also discussed; these require precise tuning of the hierarchical structure and a clarification of the formation mechanisms.

  7. Experimental study of ion-beam self-pinched transport for MeV protons

    SciTech Connect

    Neri, J.M.; Young, F.C.; Stephanakis, S.J.; Ottinger, P.F.; Rose, D.V.; Hinshelwood, D.D.; Weber, B.V.

    1999-07-01

    A 100-kA, 1.2-MeV proton beam from a pinch-reflex ion diode on the Gamble II accelerator is used to test the concept of self-pinched ion transport. Self-pinched transport (SPT) uses the self-generated magnetic field from the ion beam to radially confine the ion beam. A proton beam is injected through a 3-cm radius aperture covered with a 2-{micro}m thick polycarbonate foil into a 10-cm radius transport region. The transport region is filled with helium at pressures of 30--250 mTorr, vacuum (10{sup {minus}4} Torr), or 1-Torr air. The beam is diagnosed with witness plates, multiple-pinhole-camera imaging onto radiochromic film, time- and space-resolved proton-scattering, and with prompt-{gamma} and nuclear-activation from LiF targets. Witness-plates and the multiple-pinhole-camera are used to determine the size, location, and uniformity of the beam at different distances from the injection aperture. A beam global divergence of 200 mrad is measured at 15 cm. At 50 cm, the beam fills the transport region. At 110 cm and 100- to 200-mTorr helium, there is evidence of beam filamentation. The measured increase in protons is consistent with the physical picture for SPT, and comparisons with IPROP simulations are in qualitative agreement with the measurements.

  8. Impact of beam transport method on chamber and driver design for heavy ion inertial fusion energy

    SciTech Connect

    Rose, D.V.; Welch, D.R.; Olson, C.L.; Yu, S.S.; Neff, S.; Sharp, W.M.

    2002-12-01

    In heavy ion inertial fusion energy systems, intense beams of ions must be transported from the exit of the final focus magnet system through the target chamber to hit millimeter spot sizes on the target. In this paper, we examine three different modes of beam propagation: neutralized ballistic transport, assisted pinched transport, and self-pinched transport. The status of our understanding of these three modes is summarized, and the constraints imposed by beam propagation upon the chamber environment, as well as their compatibility with various chamber and target concepts, are considered. We conclude that, on the basis of our present understanding, there is a reasonable range of parameter space where beams can propagate in thick-liquid wall, wetted-wall, and dry-wall chambers.

  9. Angular neutron transport investigation in the HZETRN free-space ion and nucleon transport and shielding computer program

    SciTech Connect

    Singleterry, R.C. Jr.; Wilson, J.W.

    1997-05-01

    Extension of the high charge and energy (HZE) transport computer program HZETRN for angular transport of neutrons is considered. For this paper, only light ion transport, He{sup 4} and lighter, will be analyzed using a pure solar proton source. The angular transport calculator is the ANISN/PC program which is being controlled by the HZETRN program. The neutron flux values are compared for straight-ahead transport and angular transport in one dimension. The shield material is aluminum and the target material is water. The thickness of these materials is varied; however, only the largest model calculated is reported which is 50 gm/cm{sup 2} of aluminum and 100 gm/cm{sup 2} of water. The flux from the ANISN/PC calculation is about two orders of magnitude lower than the flux from HZETRN for very low energy neutrons. It is only a magnitude lower for the neutrons in the 10 to 20 MeV range in the aluminum and two orders lower in the water. The major reason for this difference is in the transport modes: straight-ahead versus angular. The angular treatment allows a longer path length than the straight-ahead approximation. Another reason is the different cross section sets used by the ANISN/PC-BUGLE-80 mode and the HZETRN mode. The next step is to investigate further the differences between the two codes and isolate the differences to just the angular versus straight-ahead transport mode. Then, create a better coupling between the angular neutron transport and the charged particle transport.

  10. Angular neutron transport investigation in the HZETRN free-space ion and nucleon transport and shielding computer program

    NASA Technical Reports Server (NTRS)

    Singleterry, R. C., Jr.; Wilson, J. W.

    1997-01-01

    Extension of the high charge and energy (HZE) transport computer program HZETRN for angular transport of neutrons is considered. For this paper, only light ion transport, He4 and lighter, will be analyzed using a pure solar proton source. The angular transport calculator is the ANISN/PC program which is being controlled by the HZETRN program. The neutron flux values are compared for straight-ahead transport and angular transport in one dimension. The shield material is aluminum and the target material is water. The thickness of these materials is varied; however, only the largest model calculated is reported which is 50 gm/sq cm of aluminum and 100 gm/sq cm of water. The flux from the ANISN/PC calculation is about two orders of magnitude lower than the flux from HZETRN for very low energy neutrons. It is only a magnitude lower for the neutrons in the 10 to 20 MeV range in the aluminum and two orders lower in the water. The major reason for this difference is in the transport modes: straight-ahead versus angular. The angular treatment allows a longer path length than the straight-ahead approximation. Another reason is the different cross section sets used by the ANISN/PC-BUGLE-80 mode and the HZETRN mode. The next step is to investigate further the differences between the two codes and isolate the differences to just the angular versus straight-ahead transport mode. Then, create a better coupling between the angular neutron transport and the charged particle transport.

  11. Computational studies of transport in ion channels using metadynamics.

    PubMed

    Furini, Simone; Domene, Carmen

    2016-07-01

    Molecular dynamics simulations have played a fundamental role in numerous fields of science by providing insights into the structure and dynamics of complex systems at the atomistic level. However, exhaustive sampling by standard molecular dynamics is in most cases computationally prohibitive, and the time scales accessible remain significantly shorter than many biological processes of interest. In particular, in the study of ion channels, realistic models to describe permeation and gating require accounting for large numbers of particles and accurate interaction potentials, which severely limits the length of the simulations. To overcome such limitations, several advanced methods have been proposed among which is metadynamics. In this algorithm, an external bias potential to accelerate sampling along selected collective variables is introduced. This bias potential discourages visiting regions of the configurational space already explored. In addition, the bias potential provides an estimate of the free energy as a function of the collective variables chosen once the simulation has converged. In this review, recent contributions of metadynamics to the field of ion channels are discussed, including how metadynamics has been used to search for transition states, predict permeation pathways, treat conformational flexibility that underlies the coupling between gating and permeation, or compute free energy of permeation profiles. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.

  12. Transport properties of hectorite based nanocomposite single ion conductors

    NASA Astrophysics Data System (ADS)

    Singhal, Ruchi Gupta; Capracotta, Michael D.; Martin, James D.; Khan, Saad A.; Fedkiw, Peter S.

    The ionic conductivity and rheological properties of clay filled nanocomposite electrolytes are reported. These electrolytes, which have potential use in lithium-ion batteries, consist of lithium-exchanged hectorite, a 2:1 layered smectite clay, dispersed in ethylene carbonate (EC) or a mixture of EC+polyethylene glycol di-methyl ether (PEG-dm, 250 MW). All samples exhibit elastic, gel-like characteristics and room temperature conductivities of order 0.1 mS/cm. A maximum in conductivity is observed at about 25 wt.% clay concentration. A maximum in hectorite basal layer spacing is also observed in the same concentration range, suggesting a direct correlation between conductivity and layer spacing. The elastic modulus and yield stress increase by two orders of magnitude and the conductivity increases by one order of magnitude with increase in hectorite concentration from 5 to 25%, which indicates the significant influence of hectorite content in determining the characteristics of these single-ion conductors. The solvent composition plays a secondary role in this regard, with addition of PEG-dm to the base EC+hectorite electrolyte producing moderate improvement in conductivity. Similarly, the addition of PEG-dm to EC+hectorite affects an increase by only a factor of three in the elastic modulus and yield stress of the electrolyte.

  13. An update on the regulation of photosynthesis by thylakoid ion channels and transporters in Arabidopsis.

    PubMed

    Spetea, Cornelia; Herdean, Andrei; Allorent, Guillaume; Carraretto, Luca; Finazzi, Giovanni; Szabo, Ildikò

    2017-03-23

    In natural variable environments, plants rapidly adjust photosynthesis for optimal balance between light absorption and utilization. There is increasing evidence suggesting that ion fluxes across the chloroplast thylakoid membrane play an important role in this regulation, by affecting the proton motive force, and consequently photosynthesis and thylakoid membrane ultrastructure. This minireview presents an update on the thylakoid ion channels and transporters characterized in Arabidopsis thaliana as being involved in these processes, as well as an outlook at the evolutionary conservation of their functions in other photosynthetic organisms. This is a contribution to shed light on the thylakoid network of ion fluxes and how they help plants to adjust photosynthesis in variable light environments.

  14. Solid-State Chemistry on the Nanoscale: Ion Transport through Interstitial Sites or Vacancies?

    PubMed

    Bothe, Cornelia; Kornowski, Andreas; Tornatzky, Hans; Schmidtke, Christian; Lange, Holger; Maultzsch, Janina; Weller, Horst

    2015-11-16

    How can ion-exchange process occur in nanocrystals without the size and shape changing and why is the ion transport much faster than in classical interdiffusion processes in macrocrystalline solids? We have investigated these processes at the molecular level by means of high-resolution and analytical electron microscopy in temperature-dependent kinetic experiments for several model reactions. The results clearly show a diffusion process that proceeds exclusively through the interstitial lattice positions with a subsequent "kick out" to remove individual ions from lattice sites without the formation of vacancies. This mechanism has not been observed in nanocrystalline systems before.

  15. Controlling and measuring quantum transport of heat in trapped-ion crystals.

    PubMed

    Bermudez, A; Bruderer, M; Plenio, M B

    2013-07-26

    Measuring heat flow through nanoscale devices poses formidable practical difficulties as there is no "ampere meter" for heat. We propose to overcome this problem in a chain of trapped ions, where laser cooling the chain edges to different temperatures induces a heat current of local vibrations (vibrons). We show how to efficiently control and measure this current, including fluctuations, by coupling vibrons to internal ion states. This demonstrates that ion crystals provide an ideal platform for studying quantum transport, e.g., through thermal analogues of quantum wires and quantum dots. Notably, ion crystals may give access to measurements of the elusive bosonic fluctuations in heat currents and the onset of Fourier's law. Our results are strongly supported by numerical simulations for a realistic implementation with specific ions and system parameters.

  16. Optimization of the molecular dynamics method for simulations of DNA and ion transport through biological nanopores.

    PubMed

    Wells, David B; Bhattacharya, Swati; Carr, Rogan; Maffeo, Christopher; Ho, Anthony; Comer, Jeffrey; Aksimentiev, Aleksei

    2012-01-01

    Molecular dynamics (MD) simulations have become a standard method for the rational design and interpretation of experimental studies of DNA translocation through nanopores. The MD method, however, offers a multitude of algorithms, parameters, and other protocol choices that can affect the accuracy of the resulting data as well as computational efficiency. In this chapter, we examine the most popular choices offered by the MD method, seeking an optimal set of parameters that enable the most computationally efficient and accurate simulations of DNA and ion transport through biological nanopores. In particular, we examine the influence of short-range cutoff, integration timestep and force field parameters on the temperature and concentration dependence of bulk ion conductivity, ion pairing, ion solvation energy, DNA structure, DNA-ion interactions, and the ionic current through a nanopore.

  17. ION TRANSPORT IN ISOLATED RABBIT ILEUM. 3. CHLORIDE FLUXES.

    PubMed

    SCHULTZ, S G; ZALUSKY, R; GASS, A E

    1964-11-01

    Unidirectional Cl fluxes across in vitro segments of rabbit ileum have been determined both in the absence and in the presence of an electrochemical potential gradient. The results indicate that Cl transport in this preparation can be attributed to purely passive forces uninfluenced by solvent drag or exchange diffusion. Furthermore, on the basis of this and previous studies, it has been demonstrated that the sum of the partial ionic conductances of Na and Cl accounts for at least 90 per cent of the total tissue conductance.

  18. In Situ Investigation of Li and Na Ion Transport with Single Nanowire Electrochemical Devices.

    PubMed

    Xu, Xu; Yan, Mengyu; Tian, Xiaocong; Yang, Chuchu; Shi, Mengzhu; Wei, Qiulong; Xu, Lin; Mai, Liqiang

    2015-06-10

    In the past decades, Li ion batteries are widely considered to be the most promising rechargeable batteries for the rapid development of mobile devices and electric vehicles. There arouses great interest in Na ion batteries, especially in the field of static grid storage due to their much lower production cost compared with Li ion batteries. However, the fundamental mechanism of Li and Na ion transport in nanoscale electrodes of batteries has been rarely experimentally explored. This insight can guide the development and optimization of high-performance electrode materials. In this work, single nanowire devices with multicontacts are designed to obtain detailed information during the electrochemical reactions. This unique platform is employed to in situ investigate and compare the transport properties of Li and Na ions at a single nanowire level. To give different confinement for ions and electrons during the electrochemical processes, two different configurations of nanowire electrode are proposed; one is to fully immerse the nanowire in the electrolyte, and the other is by using photoresist to cover the nanowire with only one end exposed. For both configurations, the conductivity of nanowire decreases after intercalation/deintercalation for both Li and Na ions, indicating that they share the similar electrochemical reaction mechanisms in layered electrodes. However, the conductivity degradation and structure destruction for Na ions is more severe than those of Li ions during the electrochemical processes, which mainly results from the much larger volume of Na ions and greater energy barrier encountered by the limited layered spaces. Moreover, the battery performances of coin cells are compared to further confirm this conclusion. The present work provides a unique platform for in situ electrochemical and electrical probing, which will push the fundamental and practical research of nanowire electrode materials for energy storage applications.

  19. Understanding ion and solvent transport in anion exchange membranes under humidified conditions

    NASA Astrophysics Data System (ADS)

    Sarode, Himanshu

    Anion exchange membranes (AEM) have been studied for more than a decade for potential applications in low temperature fuel cells and other electrochemical devices. They offer the advantage of faster reaction kinetics under alkaline conditions and ability to perform without costly platinum catalyst. Inherently slow diffusion of hydroxide ions compared to protons is a primary reason for synthesizing and studying the ion transport properties in AEMs. The aim of this thesis is to understand ion transport in novel AEMs using Pulse Gradient stimulated Spin Echo Nuclear Magnetic Resonance technique (PGSE NMR), water uptake, ionic conductivity, Small Angle X-ray Scattering (SAXS) etc. All experiments were performed under humidified conditions (80--95% relative humidity) and fuel cell operating temperatures of 30--90°C. In this work, the NMR tube design was modified for humidifying the entire NMR tube evenly from our previous design. We have developed a new protocol for replacing caustic hydroxide with harmless fluoride or bicarbonate ions for 19F and 13 C NMR diffusion experiments. After performing these NMR experiments, we have obtained in-depth understanding of the morphology linked ion transport in AEMs. We have obtained the highest fluoride self-diffusion coefficient of > 1 x 10-5 cm2/sec ( 55°C) for ETFE-g-PVBTMA membrane which is a result of low tortuosity of 1 obtained for the membrane. This faster fluoride transport combined with low tortuosity of the membrane resulted in > 100mS/cm hydroxide conductivity for the membrane. Polycyclooctene (PCOE) based triblock copolymers are also studied for in-depth understanding of molecular weight, IEC, mechanical and transport properties. Effect of melting temperature of PCOE has favorable effect on increasing ion conductivity and lowering activation energy. Mechanical properties of these types of membranes were studied showing detrimental effect of water plasticization which results in unsuitable mechanical properties

  20. Millimeter microwave effect on ion transport across lipid bilayer membranes.

    PubMed

    Alekseev, S I; Ziskin, M C

    1995-01-01

    The effects of millimeter microwaves in the frequency range of 54-76 GHz on capacitance and conductance of lipid bilayer membranes (BLM) were studied. Some of the membranes were modified by gramicidin A and amphotericin B or by tetraphenylboron anions (TPhB-). The millimeter microwaves were pulse-modulated (PW) at repetition rates ranging from 1 to 100 pps, PW at 1000 pps, or unmodulated continuous waves (CW). The maximum output power at the waveguide outlet was 20 mW. It was found that CW irradiation decreased the unmodified BLM capacitance by 1.2% +/- 0.5%. At the same time, membrane current induced by TPhB- transport increased by 5% +/- 1%. The changes in conductance of ionic channels formed by gramicidin A and amphotericin B were small (0.6% +/- 0.4%). No "resonance-like" effects of mm-wave irradiation on membrane capacitance, ionic channel currents, or TPhB- transport were detected. All changes in membrane capacitance and currents were independent of the modulation employed and were equivalent to heating by approximately 1.1 degrees C.

  1. Strain-tolerant High Capacity Silicon Anodes via Directed Lithium Ion Transport for High Energy Density Lithium-ion Batteries

    NASA Astrophysics Data System (ADS)

    Goldman, Jason

    2012-02-01

    Energy storage is an essential component of modern technology, with applications including public infrastructure, transportation systems, and consumer electronics. Lithium-ion batteries are the preeminent form of energy storage when high energy / moderate power densities are required. Improvements to lithium-ion battery energy / power density through the adoption of silicon anodes—with approximately an order of magnitude greater gravimetric capacity than traditional carbon-based anodes--have been limited by ˜300% strains during electrochemical lithium insertion which result in short operational lifetimes. In two different systems we demonstrated improvements to silicon-based anode performance via directed lithium ion transport. The first system demonstrated a crystallographic-dependent anisotropic electrochemical lithium insertion in single-crystalline silicon anode microstructures. Exploiting this anisotropy, we highlight model silicon anode architectures that limit the maximum strain during electrochemical lithium insertion. This self-strain-limiting is a result of selecting a specific microstructure design such that during lithiation the anisotropic evolution of strain, above a given threshold, blocks further lithium intercalation. Exemplary design rules have achieved self-strain-limited charging capacities ranging from 677 mAhg-1 to 2833 mAhg-1. A second system with variably encapsulated silicon-based anodes demonstrated greater than 98% of their initial capacity after 130+ cycles. This anode also can operate stably at high energy/power densities. A lithium-ion battery with this anode was able to continuously (dis)charge in 10 minutes, corresponding to a power / energy density of ˜1460 W/kg and ˜243 Wh/kg--up to 780% greater power density and 220% higher energy density than conventional lithium-ion batteries. Anodes were also demonstrated with areal capacities of 12.7 mAh/cm^2, two orders of magnitude greater than traditional thin-film silicon anodes.[4pt

  2. Pharmacology of airway afferent nerve activity

    PubMed Central

    Undem, Bradley J; Carr, Michael J

    2001-01-01

    Afferent nerves in the airways serve to regulate breathing pattern, cough, and airway autonomic neural tone. Pharmacologic agents that influence afferent nerve activity can be subclassified into compounds that modulate activity by indirect means (e.g. bronchial smooth muscle spasmogens) and those that act directly on the nerves. Directly acting agents affect afferent nerve activity by interacting with various ion channels and receptors within the membrane of the afferent terminals. Whether by direct or indirect means, most compounds that enter the airspace will modify afferent nerve activity, and through this action alter airway physiology. PMID:11686889

  3. Fe(2+) substrate transport through ferritin protein cage ion channels influences enzyme activity and biomineralization.

    PubMed

    Behera, Rabindra K; Torres, Rodrigo; Tosha, Takehiko; Bradley, Justin M; Goulding, Celia W; Theil, Elizabeth C

    2015-09-01

    Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3·H2O), by moving cytoplasmic Fe(2+) through intracage ion channels to cage-embedded enzyme (2Fe(2+)/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe(2+) movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one -CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650 nm (DFP λ max). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe(3+)-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: (1) narrower interior ion channel openings/pores; (2) increased numbers of ion channel protein-metal binding sites, and (3) a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells.

  4. Energetic-particle-driven instabilities and induced fast-ion transport in a reversed field pinch

    SciTech Connect

    Lin, L.; Brower, D. L.; Ding, W. X.; Anderson, J. K.; Capecchi, W.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Nornberg, M. D.; Reusch, J.; Sarff, J. S.; Liu, D.

    2014-05-15

    Multiple bursty energetic-particle (EP) driven modes with fishbone-like structure are observed during 1 MW tangential neutral-beam injection in a reversed field pinch (RFP) device. The distinguishing features of the RFP, including large magnetic shear (tending to add stability) and weak toroidal magnetic field (leading to stronger drive), provide a complementary environment to tokamak and stellarator configurations for exploring basic understanding of EP instabilities. Detailed measurements of the EP mode characteristics and temporal-spatial dynamics reveal their influence on fast ion transport. Density fluctuations exhibit a dynamically evolving, inboard-outboard asymmetric spatial structure that peaks in the core where fast ions reside. The measured mode frequencies are close to the computed shear Alfvén frequency, a feature consistent with continuum modes destabilized by strong drive. The frequency pattern of the dominant mode depends on the fast-ion species. Multiple frequencies occur with deuterium fast ions compared to single frequency for hydrogen fast ions. Furthermore, as the safety factor (q) decreases, the toroidal mode number of the dominant EP mode transits from n=5 to n=6 while retaining the same poloidal mode number m=1. The transition occurs when the m=1, n=5 wave-particle resonance condition cannot be satisfied as the fast-ion safety factor (q{sub fi}) decreases. The fast-ion temporal dynamics, measured by a neutral particle analyzer, resemble a classical predator-prey relaxation oscillation. It contains a slow-growth phase arising from the beam fueling followed by a rapid drop when the EP modes peak, indicating that the fluctuation-induced transport maintains a stiff fast-ion density profile. The inferred transport rate is strongly enhanced with the onset of multiple EP modes.

  5. Energetic-particle-driven instabilities and induced fast-ion transport in a reversed field pincha)

    NASA Astrophysics Data System (ADS)

    Lin, L.; Anderson, J. K.; Brower, D. L.; Capecchi, W.; Ding, W. X.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Liu, D.; Nornberg, M. D.; Reusch, J.; Sarff, J. S.

    2014-05-01

    Multiple bursty energetic-particle (EP) driven modes with fishbone-like structure are observed during 1 MW tangential neutral-beam injection in a reversed field pinch (RFP) device. The distinguishing features of the RFP, including large magnetic shear (tending to add stability) and weak toroidal magnetic field (leading to stronger drive), provide a complementary environment to tokamak and stellarator configurations for exploring basic understanding of EP instabilities. Detailed measurements of the EP mode characteristics and temporal-spatial dynamics reveal their influence on fast ion transport. Density fluctuations exhibit a dynamically evolving, inboard-outboard asymmetric spatial structure that peaks in the core where fast ions reside. The measured mode frequencies are close to the computed shear Alfvén frequency, a feature consistent with continuum modes destabilized by strong drive. The frequency pattern of the dominant mode depends on the fast-ion species. Multiple frequencies occur with deuterium fast ions compared to single frequency for hydrogen fast ions. Furthermore, as the safety factor (q) decreases, the toroidal mode number of the dominant EP mode transits from n =5 to n =6 while retaining the same poloidal mode number m =1. The transition occurs when the m =1, n =5 wave-particle resonance condition cannot be satisfied as the fast-ion safety factor (qfi) decreases. The fast-ion temporal dynamics, measured by a neutral particle analyzer, resemble a classical predator-prey relaxation oscillation. It contains a slow-growth phase arising from the beam fueling followed by a rapid drop when the EP modes peak, indicating that the fluctuation-induced transport maintains a stiff fast-ion density profile. The inferred transport rate is strongly enhanced with the onset of multiple EP modes.

  6. Specific spacecraft evaluation: Special report. [charged particle transport from a mercury ion thruster to spacecraft surfaces

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.

    1978-01-01

    Charged and neutral particle transport from an 8 cm mercury ion thruster to the surfaces of the P 80-1 spacecraft and to the Teal Ruby sensor and the ECOM-501 sensor of that spacecraft were investigated. Laboratory measurements and analyses were used to examine line-of-sight and nonline-of sight particle transport modes. The recirculation of Hg(+) ions in the magnetic field of the earth was analyzed for spacecraft velocity and Earth magnetic field vector configurations which are expected to occur in near Earth, circular, high inclination orbits. For these magnetic field and orbit conditions and for expected ion release distribution functions, in both angles and energies, the recirculation/re-interception of ions on spacecraft surfaces was evaluated. The refraction of weakly energetic ions in the electric fields of the thruster plasma plume and in the electric fields between this plasma plume and the material boundaries of the thruster, the thruster sputter shield, and the various spacecraft surfaces were examined. The neutral particle transport modes of interest were identified as sputtered metal atoms from the thruster beam shield. Results, conclusions, and future considerations are presented.

  7. Bombardment induced ion transport - part IV: ionic conductivity of ultra-thin polyelectrolyte multilayer films.

    PubMed

    Wesp, Veronika; Hermann, Matthias; Schäfer, Martin; Hühn, Jonas; Parak, Wolfgang J; Weitzel, Karl-Michael

    2016-02-14

    The dependence of the ionic conductance of ultra-thin polyelectrolyte multilayer (PEM) films on the temperature and the number of bilayers has been investigated by the recently developed low energy bombardment induced ion transport (BIIT) method. To this end multilayers of alternating poly(sodium 4-styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) layers were deposited on a metal electrode and subsequently bombarded by a low energy potassium ion beam. Ions are transported through the film according to the laws of electro-diffusion towards a grounded backside electrode. They are neutralized at the interface between the polymer film and the metal electrode. The detected neutralization current scales linearly with the acceleration potential of the ion beam indicating Ohmic behavior for the (PAH/PSS)x multilayer, where x denotes the number of bilayers. The conductance exhibits a non-monotonic dependence on the number of bilayers, x. For 2 ≤ x ≤ 8 the conductance increases non-linearly with the number of bilayers. For x ≥ 8 the conductance decreases with increasing number of bilayers. The variation of the conductance is rationalized by a model accounting for the structure dependence of the conductivity. The thinnest sample for which the conductance has been measured is the single bilayer reflecting properties dominated by the interface. The activation energy for the ion transport is 0.49 eV.

  8. Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    DOEpatents

    Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

    2014-01-28

    Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  9. Towards a heavy-ion transport capability in the MARS15 code

    SciTech Connect

    Nikolai V. Mokhov et al.

    2004-05-12

    In order to meet the challenges of new accelerator and space projects and further improve modeling of radiation effects in microscopic objects, heavy-ion interaction and transport physics have been recently incorporated into the MARS15 Monte Carlo code. A brief description of new modules is given in comparison with experimental data.

  10. Ion Transporter NKCC1, Modulator of Neurogenesis in Murine Olfactory Neurons*

    PubMed Central

    Haering, Claudia; Kanageswaran, Ninthujah; Bouvain, Pascal; Scholz, Paul; Altmüller, Janine; Becker, Christian; Gisselmann, Günter; Wäring-Bischof, Janine; Hatt, Hanns

    2015-01-01

    Olfaction is one of the most crucial senses for vertebrates regarding foraging and social behavior. Therefore, it is of particular interest to investigate the sense of smell, its function on a molecular level, the signaling proteins involved in the process and the mechanism of required ion transport. In recent years, the precise role of the ion transporter NKCC1 in olfactory sensory neuron (OSN) chloride accumulation has been a controversial subject. NKCC1 is expressed in OSNs and is involved in chloride accumulation of dissociated neurons, but it had not been shown to play a role in mouse odorant sensation. Here, we present electro-olfactogram recordings (EOG) demonstrating that NKCC1-deficient mice exhibit significant defects in perception of a complex odorant mixture (Henkel100) in both air-phase and submerged approaches. Using next generation sequencing (NGS) and RT-PCR experiments of NKCC1-deficient and wild type mouse transcriptomes, we confirmed the absence of a highly expressed ion transporter that could compensate for NKCC1. Additional histological investigations demonstrated a reduced number of cells in the olfactory epithelium (OE), resulting in a thinner neuronal layer. Therefore, we conclude that NKCC1 is an important transporter involved in chloride ion accumulation in the olfactory epithelium, but it is also involved in OSN neurogenesis. PMID:25713142

  11. Triggers of airway inflammation.

    PubMed

    Kerrebijn, K F

    1986-01-01

    Most asthmatics have hyperresponsive airways. This makes them more sensitive than non-asthmatics to bronchoconstricting environmental exposures which, in their turn, may enhance responsiveness. Airway inflammation is considered to be a key determinant of airway hyperresponsiveness: the fact that chronic airway inflammation in cystic fibrosis does not lead to airway hyperresponsiveness of any importance indicates, however, that the role of airway inflammation is complex and incompletely elucidated. The main inducers of airway inflammation are viral infections, antigens, occupational stimuli and pollutants. Although exercise, airway cooling and hyper- or hypotonic aerosols are potent stimuli of bronchoconstriction, it is questionable if airway inflammation is involved in their mode of action. Each of the above-mentioned stimuli is discussed, with emphasis laid on the relation of symptoms to mechanisms.

  12. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks.

    PubMed

    Horike, Satoshi; Umeyama, Daiki; Kitagawa, Susumu

    2013-11-19

    Ion conduction and transport in solids are both interesting and useful and are found in widely distinct materials, from those in battery-related technologies to those in biological systems. Scientists have approached the synthesis of ion-conductive compounds in a variety of ways, in the areas of organic and inorganic chemistry. Recently, based on their ion-conducting behavior, porous coordination polymers (PCPs) and metal-organic frameworks (MOFs) have been recognized for their easy design and the dynamic behavior of the ionic components in the structures. These PCP/MOFs consist of metal ions (or clusters) and organic ligands structured via coordination bonds. They could have highly concentrated mobile ions with dynamic behavior, and their characteristics have inspired the design of a new class of ion conductors and transporters. In this Account, we describe the state-of-the-art of studies of ion conductivity by PCP/MOFs and nonporous coordination polymers (CPs) and offer future perspectives. PCP/MOF structures tend to have high hydrophilicity and guest-accessible voids, and scientists have reported many water-mediated proton (H(+)) conductivities. Chemical modification of organic ligands can change the hydrated H(+) conductivity over a wide range. On the other hand, the designable structures also permit water-free (anhydrous) H(+) conductivity. The incorporation of protic guests such as imidazole and 1,2,4-triazole into the microchannels of PCP/MOFs promotes the dynamic motion of guest molecules, resulting in high H(+) conduction without water. Not only the host-guest systems, but the embedding of protic organic groups on CPs also results in inherent H(+) conductivity. We have observed high H(+) conductivities under anhydrous conditions and in the intermediate temperature region of organic and inorganic conductors. The keys to successful construction are highly mobile ionic species and appropriate intervals of ion-hopping sites in the structures. Lithium (Li

  13. Nuclear powered Mars cargo transport mission utilizing advanced ion propulsion

    SciTech Connect

    Galecki, D.L.; Patterson, M.J.

    1987-01-01

    Nuclear-powered ion propulsion technology was combined with detailed trajectory analysis to determine propulsion system and trajectory options for an unmanned cargo mission to Mars in support of manned Mars missions. A total of 96 mission scenarios were identified by combining two power levels, two propellants, four values of specific impulse per propellant, three starting altitudes, and two starting velocities. Sixty of these scenarios were selected for a detailed trajectory analysis; a complete propulsion system study was then conducted for 20 of these trajectories. Trip times ranged from 344 days for a xenon propulsion system operating at 300 kW total power and starting from lunar orbit with escape velocity, to 770 days for an argon propulsion system operating at 300 kW total power and starting from nuclear start orbit with circular velocity. Trip times for the 3 MW cases studied ranged from 356 to 413 days. Payload masses ranged from 5700 to 12,300 kg for the 300 kW power level, and from 72,200 to 81,500 kg for the 3 MW power level.

  14. An ion-transporting ATPase encodes multiple apical localization signals

    PubMed Central

    1993-01-01

    Epithelial cells accumulate distinct populations of membrane proteins at their two plasmalemmal domains. We have examined the molecular signals which specify the differential subcellular distributions of two closely related ion pumps. The Na,K-ATPase is normally restricted to the basolateral membranes of numerous epithelial cell types, whereas the H,K-ATPase is a component of the apical surfaces of the parietal cells of the gastric epithelium. We have expressed full length and chimeric H,K-ATPase/Na,K-ATPase cDNAs in polarized renal proximal tubular epithelial cells (LLC-PK1). We find that both the alpha and beta subunits of the H,K-ATPase encode independent signals that specify apical localization. Furthermore, the H,K-ATPase beta-subunit possesses a sequence which mediates its participation in the endocytic pathway. The interrelationship between epithelial sorting and endocytosis signals suggested by these studies supports the redefinition of apical and basolateral as functional, rather than simply topographic domains. PMID:8385670

  15. On the transport of ions released in the magnetotail by the AMPTE-IRM satellite

    NASA Technical Reports Server (NTRS)

    Cladis, J. B.; Francis, W. E.

    1988-01-01

    The Ba and Li ions releasd into the magnetotail in spring 1985 by the AMPTE-IRM satellite were not observed subsequently in the inner magnetosphere with the AMPTE-CCE satellite. These results were studied by using a Monte Carlo code to compute the transport of the ions. For each release several hundred ion guiding-center trajectories were computed under simulated magnetospheric conditions, using the Tsyganenko-Usmanov (1982) magnetic-field model and the Millstone Hill convection-electric-field model (Oliver et al., 1983). The corotation and convection electric fields were mapped to altitudes above the ionosphere, assuming the magnetic-field lines to be equipotentials. The initial conditions of the ions, at the times at which the ions were picked up by the electric field, were estimated by taking into consideration the release conditions and the early-time collective effects. The results indicate that the Ba(+) ions were not observed because the CCE satellite was not along the drift paths of the ions, and the Li(+) ions were not observed because their fluxes at the satellite were too low.

  16. Simulation of charge transport in ion channels and nanopores with anisotropic permittivity

    PubMed Central

    Mashl, R. Jay; Lee, Kyu Il; Jakobsson, Eric; Ravaioli, Umberto

    2010-01-01

    Ion channels are part of nature's solution for regulating biological environments. Every ion channel consists of a chain of amino acids carrying a strong and sharply varying permanent charge, folded in such a way that it creates a nanoscopic aqueous pore spanning the otherwise mostly impermeable membranes of biological cells. These naturally occurring proteins are particularly interesting to device engineers seeking to understand how such nanoscale systems realize device-like functions. Availability of high-resolution structural information from X-ray crystallography, as well as large-scale computational resources, makes it possible to conduct realistic ion channel simulations. In general, a hierarchy of simulation methodologies is needed to study different aspects of a biological system like ion channels. Biology Monte Carlo (BioMOCA), a three-dimensional coarse-grained particle ion channel simulator, offers a powerful and general approach to study ion channel permeation. BioMOCA is based on the Boltzmann Transport Monte Carlo (BTMC) and Particle-Particle-Particle-Mesh (P3M) methodologies developed at the University of Illinois at Urbana-Champaign. In this paper we briefly discuss the various approaches to simulating ion flow in channel systems that are currently being pursued by the biophysics and engineering communities, and present the effect of having anisotropic dielectric constants on ion flow through a number of nanopores with different effective diameters. PMID:20445807

  17. Electrokinetic ion transport through unsaturated soil: 2. Application to a heterogeneous field site.

    PubMed

    Mattson, Earl D; Bowman, Robert S; Lindgren, Eric R

    2002-01-01

    Results of a field demonstration of electrokinetic transport of acetate through an unsaturated heterogeneous soil are compared to numerical modeling predictions. The numerical model was based on the groundwater flow and transport codes MODFLOW and MT3D modified to account for electrically induced ion transport. The 6-month field demonstration was conducted in an unsaturated layered soil profile where the soil moisture content ranged from 4% to 28% (m3 m(-3)). Specially designed ceramic-cased electrodes maintained a steady-state moisture content and electric potential field between the electrodes during the field demonstration. Acetate, a byproduct of acetic acid neutralization of the cathode electrolysis reaction, was transported from the cathode to the anode by electromigration. Field demonstration results indicated preferential transport of acetate through soil layers exhibiting higher moisture content/electrical conductivity. These field transport results agree with theoretical predictions that electromigration velocity is proportional to a power function of the effective moisture content. A numerical model using a homogeneous moisture content/electrical conductivity domain did not adequately predict the acetate field results. Numerical model predictions using a three-layer electrical conductivity/moisture content profile agreed qualitatively with the observed acetate distribution. These results suggest that field heterogeneities must be incorporated into electrokinetic models to predict ion transport at the field-scale.

  18. Towards a heavy-ion transport capability in the MARS15 Code

    SciTech Connect

    Mokhov, N. V.; Gudima, K. K.; Mashnik, S. G.; Rakhno, I. L.; Striganov, S.

    2004-04-01

    In order to meet the challenges of new accelerator and space projects and further improve modelling of radiation effects in microscopic objects, heavy-ion interaction and transport physics have been recently incorporated into the MARS15 Monte Carlo code. A brief description of new modules is given in comparison with experimental data. The MARS Monte Carlo code is widely used in numerous accelerator, detector, shielding and cosmic ray applications. The needs of the Relativistic Heavy-Ion Collider, Large Hadron Collider, Rare Isotope Accelerator and NASA projects have recently induced adding heavy-ion interaction and transport physics to the MARS15 code. The key modules of the new implementation are described below along with their comparisons to experimental data.

  19. Electric Field-Controlled Ion Transport In TiO2 Nanochannel.

    PubMed

    Li, Dan; Jing, Wenheng; Li, Shuaiqiang; Shen, Hao; Xing, Weihong

    2015-06-03

    On the basis of biological ion channels, we constructed TiO2 membranes with rigid channels of 2.3 nm to mimic biomembranes with flexible channels; an external electric field was employed to regulate ion transport in the confined channels at a high ionic strength in the absence of electrical double layer overlap. Results show that transport rates for both Na+ and Mg2+ were decreased irrespective of the direction of the electric field. Furthermore, a voltage-gated selective ion channel was formed, the Mg2+ channel closed at -2 V, and a reversed relative electric field gradient was at the same order of the concentration gradient, whereas the Na+ with smaller Stokes radius and lower valence was less sensitive to the electric field and thus preferentially occupied and passed the channel. Thus, when an external electric field is applied, membranes with larger nanochannels have promising applications in selective separation of mixture salts at a high concentration.

  20. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions.

    PubMed

    Valerio-Lizarraga, Cristhian A; Lallement, Jean-Baptiste; Leon-Monzon, Ildefonso; Lettry, Jacques; Midttun, Øystein; Scrivens, Richard

    2014-02-01

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H(-) beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  1. Absorption of intense microwaves and ion acoustic turbulence due to heat transport

    SciTech Connect

    De Groot, J.S.; Liu, J.M.; Matte, J.P.

    1994-02-04

    Measurements and calculations of the inverse bremsstrahlung absorption of intense microwaves are presented. The isotropic component of the electron distribution becomes flat-topped in agreement with detailed Fokker-Planck calculations. The plasma heating is reduced due to the flat-topped distributions in agreement with calculations. The calculations show that the heat flux at high microwave powers is very large, q{sub max} {approx} 0.3 n{sub e}v{sub e}T{sub e}. A new particle model to, calculate the heat transport inhibition due to ion acoustic turbulence in ICF plasmas is also presented. One-dimensional PIC calculations of ion acoustic turbulence excited due to heat transport are presented. The 2-D PIC code is presently being used to perform calculations of heat flux inhibition due to ion acoustic turbulence.

  2. Characteristics of hydrogen ion transport in urinary bladder of water turtle.

    PubMed

    Steinmetz, P R

    1967-10-01

    The mechanism of acidification by the urinary bladder of the water turtle was studied in an in vitro system which permitted control and measurement of electrical and concentration driving forces. The rate of hydrogen ion secretion was measured by means of a pH stat technique in the absence of exogenous carbon dioxide and bicarbonate. Transport of hydrogen ion into the solution bathing the mucosal surface of the bladder was associated with the appearance of alkali in the serosal compartment. The mean rate of hydrogen ion secretion in the absence of electrical and concentration gradients across the bladder was 0.96 mumole/hr. The secretion rate was only slightly greater in the presence of the spontaneous potential difference. The maximal hydrogen ion gradient that could be generated by the bladder was 3.33 pH units in the presence of the spontaneous voltage and 3.02 pH units in the short-circuited state. Hydrogen ion secretion was markedly reduced by acetazolamide and anaerobiosis, which indicated that under our experimental conditions acidification depended on the production and enzymatic hydration of metabolic carbon dioxide. On the basis of the stoichiometry of the pH changes across the membrane under different conditions, it is suggested that the active transport mechanism for hydrogen ion is located near the mucosal surface of the epithelial cell and that the alkali generated in back of the pump moves passively into the serosal fluid along an electrochemical gradient.

  3. Modeling of ion transport through a porous separator in vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Zhou, X. L.; Zhao, T. S.; An, L.; Zeng, Y. K.; Wei, L.

    2016-09-01

    In this work, we develop a two-dimensional, transient model to investigate the mechanisms of ion-transport through a porous separator in VRFBs and their effects on battery performance. Commercial-available separators with pore sizes of around 45 nm are particularly investigated and effects of key separator design parameters and operation modes are explored. We reveal that: i) the transport mechanism of vanadium-ion crossover through available separators is predominated by convection; ii) reducing the pore size below 15 nm effectively minimizes the convection-driven vanadium-ion crossover, while further reduction in migration- and diffusion-driven vanadium-ion crossover can be achieved only when the pore size is reduced to the level close to the sizes of vanadium ions; and iii) operation modes that can affect the pressure at the separator/electrode interface, such as the electrolyte flow rate, exert a significant influence on the vanadium-ion crossover rate through the available separators, indicating that it is critically important to equalize the pressure on each half-cell of a power pack in practical applications.

  4. Heat transfer enhancement in a lithium-ion cell through improved material-level thermal transport

    SciTech Connect

    Vishwakarma, Vivek; Waghela, Chirag; Wei, Zi; Prasher, Ravi; Nagpure, Shrikant C.; Li, Jianlin; Liu, Fuqiang; Daniel, Claus; Jain, Ankur

    2016-09-25

    We report that while Li-ion cells offer excellent electrochemical performance for several applications including electric vehicles, they also exhibit poor thermal transport characteristics, resulting in reduced performance, overheating and thermal runaway. Inadequate heat removal from Li-ion cells originates from poor thermal conductivity within the cell. This paper identifies the rate-limiting material-level process that dominates overall thermal conduction in a Li-ion cell. Results indicate that thermal characteristics of a Li-ion cell are largely dominated by heat transfer across the cathode-separator interface rather than heat transfer through the materials themselves. This interfacial thermal resistance contributes around 88% of total thermal resistance in the cell. Measured value of interfacial resistance is close to that obtained from theoretical models that account for weak adhesion and large acoustic mismatch between cathode and separator. Further, to address this problem, an amine-based chemical bridging of the interface is carried out. This is shown to result in in four-times lower interfacial thermal resistance without deterioration in electrochemical performance, thereby increasing effective thermal conductivity by three-fold. This improvement is expected to reduce peak temperature rise during operation by 60%. Finally, by identifying and addressing the material-level root cause of poor thermal transport in Li-ion cells, this work may contribute towards improved thermal performance of Li-ion cells.

  5. Defective interactions of protein partner with ion channels and transporters as alternative mechanisms of membrane channelopathies.

    PubMed

    Kline, Crystal F; Mohler, Peter J

    2014-02-01

    The past twenty years have revealed the existence of numerous ion channel mutations resulting in human pathology. Ion channels provide the basis of diverse cellular functions, ranging from hormone secretion, excitation-contraction coupling, cell signaling, immune response, and trans-epithelial transport. Therefore, the regulation of biophysical properties of channels is vital in human physiology. Only within the last decade has the role of non-ion channel components come to light in regard to ion channel spatial, temporal, and biophysical regulation in physiology. A growing number of auxiliary components have been determined to play elemental roles in excitable cell physiology, with dysfunction resulting in disorders and related manifestations. This review focuses on the broad implications of such dysfunction, focusing on disease-causing mutations that alter interactions between ion channels and auxiliary ion channel components in a diverse set of human excitable cell disease. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé

  6. The Two Na+ Sites in the Human Serotonin Transporter Play Distinct Roles in the Ion Coupling and Electrogenicity of Transport*

    PubMed Central

    Felts, Bruce; Pramod, Akula Bala; Sandtner, Walter; Burbach, Nathan; Bulling, Simon; Sitte, Harald H.; Henry, L. Keith

    2014-01-01

    Neurotransmitter transporters of the SLC6 family of proteins, including the human serotonin transporter (hSERT), utilize Na+, Cl−, and K+ gradients to induce conformational changes necessary for substrate translocation. Dysregulation of ion movement through monoamine transporters has been shown to impact neuronal firing potentials and could play a role in pathophysiologies, such as depression and anxiety. Despite multiple crystal structures of prokaryotic and eukaryotic SLC transporters indicating the location of both (or one) conserved Na+-binding sites (termed Na1 and Na2), much remains uncertain in regard to the movements and contributions of these cation-binding sites in the transport process. In this study, we utilize the unique properties of a mutation of hSERT at a single, highly conserved asparagine on TM1 (Asn-101) to provide several lines of evidence demonstrating mechanistically distinct roles for Na1 and Na2. Mutations at Asn-101 alter the cation dependence of the transporter, allowing Ca2+ (but not other cations) to functionally replace Na+ for driving transport and promoting 5-hydroxytryptamine (5-HT)-dependent conformational changes. Furthermore, in two-electrode voltage clamp studies in Xenopus oocytes, both Ca2+ and Na+ illicit 5-HT-induced currents in the Asn-101 mutants and reveal that, although Ca2+ promotes substrate-induced current, it does not appear to be the charge carrier during 5-HT transport. These findings, in addition to functional evaluation of Na1 and Na2 site mutants, reveal separate roles for Na1 and Na2 and provide insight into initiation of the translocation process as well as a mechanism whereby the reported SERT stoichiometry can be obtained despite the presence of two putative Na+-binding sites. PMID:24293367

  7. The two Na+ sites in the human serotonin transporter play distinct roles in the ion coupling and electrogenicity of transport.

    PubMed

    Felts, Bruce; Pramod, Akula Bala; Sandtner, Walter; Burbach, Nathan; Bulling, Simon; Sitte, Harald H; Henry, L Keith

    2014-01-17

    Neurotransmitter transporters of the SLC6 family of proteins, including the human serotonin transporter (hSERT), utilize Na(+), Cl(-), and K(+) gradients to induce conformational changes necessary for substrate translocation. Dysregulation of ion movement through monoamine transporters has been shown to impact neuronal firing potentials and could play a role in pathophysiologies, such as depression and anxiety. Despite multiple crystal structures of prokaryotic and eukaryotic SLC transporters indicating the location of both (or one) conserved Na(+)-binding sites (termed Na1 and Na2), much remains uncertain in regard to the movements and contributions of these cation-binding sites in the transport process. In this study, we utilize the unique properties of a mutation of hSERT at a single, highly conserved asparagine on TM1 (Asn-101) to provide several lines of evidence demonstrating mechanistically distinct roles for Na1 and Na2. Mutations at Asn-101 alter the cation dependence of the transporter, allowing Ca(2+) (but not other cations) to functionally replace Na(+) for driving transport and promoting 5-hydroxytryptamine (5-HT)-dependent conformational changes. Furthermore, in two-electrode voltage clamp studies in Xenopus oocytes, both Ca(2+) and Na(+) illicit 5-HT-induced currents in the Asn-101 mutants and reveal that, although Ca(2+) promotes substrate-induced current, it does not appear to be the charge carrier during 5-HT transport. These findings, in addition to functional evaluation of Na1 and Na2 site mutants, reveal separate roles for Na1 and Na2 and provide insight into initiation of the translocation process as well as a mechanism whereby the reported SERT stoichiometry can be obtained despite the presence of two putative Na(+)-binding sites.

  8. Cohesive energy effects on the atomic transport induced by ion beam mixing

    NASA Astrophysics Data System (ADS)

    Chang, G. S.; Jung, S. M.; Song, J. H.; Kim, H. B.; Woo, J. J.; Byun, D. H.; Whang, C. N.

    1997-01-01

    Atomic transport in the radiation enhanced diffusion (RED) region has been studied from the shifts of a marker layer in ion beam mixed {Pd}/{Co} and {Pd}/{Au} bilayers. 80 keV Ar + with a dose of 1.5 × 10 16 ions/cm 2 were irradiated into the bilayers at temperature region from 90 K to 700 K. In the {Pd}/{Co} system, the atomic flux of Pd ( JPd) transported across the interface is nearly same with JCo in the thermal spike region, while JPd is always larger than JCo in the RED regio However, in the {Pd}/{Au} system, JPd is nearly same with JAu in both of the thermal spike and RED regions. We have developed a model to describe the atomic transport in the RED region, which predicts that the atom with small cohesive energy has more mobility than that with large cohesive energy.

  9. Guanine-based amphiphiles: synthesis, ion transport properties and biological activity.

    PubMed

    Musumeci, Domenica; Irace, Carlo; Santamaria, Rita; Milano, Domenico; Tecilla, Paolo; Montesarchio, Daniela

    2015-03-01

    Novel amphiphilic guanine derivatives, here named Gua1 and Gua2, have been prepared through few, simple and efficient synthetic steps. In ion transport experiments through phospholipid bilayers, carried out to evaluate their ability to mediate H(+) transport, Gua2 showed high activity. When this compound was investigated for ion-selective transport activities, no major differences were observed in the behaviour with cations while, in the case of anions, selective activity was observed in the series I(-)>Br(-)>Cl(-)>F(-). The bioactivity of these guanine analogues has been evaluated on a panel of human tumour and non-tumour cell lines in preliminary in vitro cytotoxicity assays, showing a relevant antiproliferative profile for Gua2.

  10. [PLASMALEMMAL ION TRANSPORT IN POLLEN TUBES IS REGULATED BY HYDROGEN PEROXIDE].

    PubMed

    Maksimov, N M; Breygina, M A; Yermakov, I P

    2015-01-01

    Pollen tube growth is a key step in the life cycle of seed plants, which defines the success of sexual reproduction. One of the most important contributions to this process is made by ion transport through plasmalemma, which is tightly coordinated in time and space. Different classes of signaling molecules are involved in the regulation of transmembrane ion transport including reactive oxygen species as it has been recently demonstrated. Here, using subprotoplasts isolated from pollen tubes, we have demonstrated a connection between hydrogen peroxide, on one side, and two groups of targets on the plasma membrane, on the other side: nifedipine-sensitive Ca(2+)-permeable channels and transport systems controlling membrane potential. H2O2 interaction with these targets causes the increase in cytoplasmic Ca2+ concentration and plasmalemma hyperpolarization. One of the consequences of target modification was acceleration of cell wall regeneration.

  11. Energetic-particle-driven instabilities and induced fast-ion transport in a reversed field pinch

    NASA Astrophysics Data System (ADS)

    Lin, Liang

    2013-10-01

    Multiple bursty energetic-particle (EP) modes with fishbone-like structures are observed during 1 MW tangential neutral-beam injection into MST reversed field pinch (RFP) plasmas. The distinguishing features of the RFP, including large magnetic shear (tending to add stability) and weak toroidal magnetic field (leading to large fast ion beta and stronger drive), provide a complementary environment to tokamak and stellarator configurations for exploring basic understanding of these instabilities. Detailed measurements of the EP mode characteristics and temporal-spatial dynamics reveal their influence on fast ion transport and interaction with global tearing modes. Internal magnetic field fluctuations associated with the EP modes are directly observed for the first time by Faraday-effect polarimetry (frequency ~ 90 kHz and amplitude ~ 2 G). Simultaneously measured density fluctuations exhibit a dynamically evolving and asymmetric spatial structure that peaks near the core where fast ions reside and shifts outward as the instability evolves. Furthermore, the EP mode frequencies appear at ~k∥VA , consistent with continuum modes destabilized by strong drive. The fast-ion temporal dynamics, measured by a neutral particle analyzer, resemble a classical predator-prey relaxation oscillation. It contains a slow-growing phase arising from the beam fueling followed by a rapid drop (~ 15 %) when the EP modes peak, indicating the fluctuation-induced transport maintains a stiff fast-ion density profile. The inferred transport rate is strongly enhanced (× 2) with the onset of multiple nonlinearly-interacting EP modes. The fast ions also impact global tearing modes, reducing their amplitudes by up to 65%. This mode reduction is lessened following the EP-bursts, further evidence for fast ion redistribution that weakens the suppression mechanism. Possible tearing mode suppression mechanisms will be discussed. Work supported by US DoE.

  12. In Vivo Airway Surface Liquid Cl− Analysis with Solid-State Electrodes

    PubMed Central

    Caldwell, Ray A.; Grubb, Barbara R.; Tarran, Robert; Boucher, Richard C.; Knowles, Michael R.; Barker, Pierre M.

    2002-01-01

    The pathogenesis of cystic fibrosis (CF) airways disease remains controversial. Hypotheses that link mutations in CFTR and defects in ion transport to CF lung disease predict that alterations in airway surface liquid (ASL) isotonic volume, or ion composition, are critically important. ASL [Cl−] is pivotal in discriminating between these hypotheses, but there is no consensus on this value given the difficulty in measuring [Cl−] in the “thin” ASL (∼30 μm) in vivo. Consequently, a miniaturized solid-state electrode with a shallow depth of immersion was constructed to measure ASL [Cl−] in vivo. In initial experiments, the electrode measured [Cl−] in physiologic salt solutions, small volume (7.6 μl) test solutions, and in in vitro cell culture models, with ≥93% accuracy. Based on discrepancies in reported values and/or absence of data, ASL Cl− measurements were made in the following airway regions and species. First, ASL [Cl−] was measured in normal human nasal cavity and averaged 117.3 ± 11.2 mM (n = 6). Second, ASL [Cl−] measured in large airway (tracheobronchial) regions were as follows: rabbit trachea and bronchus = 114.3 ± 1.8 mM; (n = 6) and 126.9 ± 1.7 mM; (n = 3), respectively; mouse trachea = 112.8 ± 4.2 mM (n = 13); and monkey bronchus = 112.3 ± 10.9 mM (n = 3). Third, Cl− measurements were made in small (1–2 mm) diameter airways of the rabbit (108.3 ± 7.1 mM, n = 5) and monkey (128.5 ± 6.8 mM, n = 3). The measured [Cl−], in excess of 100 mM throughout all airway regions tested in multiple species, is consistent with the isotonic volume hypothesis to describe ASL physiology. PMID:11773234

  13. Using Drugs to Probe the Variability of Trans-Epithelial Airway Resistance

    PubMed Central

    Tosoni, Kendra; Cassidy, Diane; Kerr, Barry; Land, Stephen C.; Mehta, Anil

    2016-01-01

    Background Precision medicine aims to combat the variability of the therapeutic response to a given medicine by delivering the right medicine to the right patient. However, the application of precision medicine is predicated on a prior quantitation of the variance of the reference range of normality. Airway pathophysiology provides a good example due to a very variable first line of defence against airborne assault. Humans differ in their susceptibility to inhaled pollutants and pathogens in part due to the magnitude of trans-epithelial resistance that determines the degree of epithelial penetration to the submucosal space. This initial ‘set-point’ may drive a sentinel event in airway disease pathogenesis. Epithelia differentiated in vitro from airway biopsies are commonly used to model trans-epithelial resistance but the ‘reference range of normality’ remains problematic. We investigated the range of electrophysiological characteristics of human airway epithelia grown at air-liquid interface in vitro from healthy volunteers focusing on the inter- and intra-subject variability both at baseline and after sequential exposure to drugs modulating ion transport. Methodology/Principal Findings Brushed nasal airway epithelial cells were differentiated at air-liquid interface generating 137 pseudostratified ciliated epithelia from 18 donors. A positively-skewed baseline range exists for trans-epithelial resistance (Min/Max: 309/2963 Ω·cm2), trans-epithelial voltage (-62.3/-1.8 mV) and calculated equivalent current (-125.0/-3.2 μA/cm2; all non-normal, P<0.001). A minority of healthy humans manifest a dramatic amiloride sensitivity to voltage and trans-epithelial resistance that is further discriminated by prior modulation of cAMP-stimulated chloride transport. Conclusions/Significance Healthy epithelia show log-order differences in their ion transport characteristics, likely reflective of their initial set-points of basal trans-epithelial resistance and sodium

  14. Ion channels and transporters [corrected] in cancer. 2. Ion channels and the control of cancer cell migration.

    PubMed

    Cuddapah, Vishnu Anand; Sontheimer, Harald

    2011-09-01

    A hallmark of high-grade cancers is the ability of malignant cells to invade unaffected tissue and spread disease. This is particularly apparent in gliomas, the most common and lethal type of primary brain cancer affecting adults. Migrating cells encounter restricted spaces and appear able to adjust their shape to accommodate to narrow extracellular spaces. A growing body of work suggests that cell migration/invasion is facilitated by ion channels and transporters. The emerging concept is that K(+) and Cl(-) function as osmotically active ions, which cross the plasma membrane in concert with obligated water thereby adjusting a cell's shape and volume. In glioma cells Na(+)-K(+)-Cl(-) cotransporters (NKCC1) actively accumulate K(+) and Cl(-), establishing a gradient for KCl efflux. Ca(2+)-activated K(+) channels and voltage-gated Cl(-) channels are largely responsible for effluxing KCl promoting hydrodynamic volume changes. In other cancers, different K(+) or even Na(+) channels may function in concert with a variety of Cl(-) channels to support similar volume changes. Channels involved in migration are frequently regulated by Ca(2+) signaling, most likely coupling extracellular stimuli to cell migration. Importantly, the inhibition of ion channels and transporters appears to be clinically relevant for the treatment of cancer. Recent preclinical data indicates that inhibition of NKCC1 with an FDA-approved drug decreases neoplastic migration. Additionally, ongoing clinical trials demonstrate that an inhibitor of chloride channels may be a therapy for the treatment of gliomas. Data reviewed here strongly indicate that ion channels are a promising target for the development of novel therapeutics to combat cancer.

  15. Light ion components of the galactic cosmic rays: Nuclear interactions and transport theory

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Shinn, J. L.; Badhwar, G. D.; Dubey, R. R.

    1996-01-01

    Light nuclei are present in the primary galactic cosmic rays (GCR) and are produced in thick targets due to projectile or target fragmentation from both nucleon and heavy induced reactions. In the primary GCR, He-4 is the most abundant nucleus after H-1. However, there are also a substantial fluxes of H-2 and He-3. In this paper we describe theoretical models based on quantum multiple scattering theory for the description of light ion nuclear interactions. The energy dependence of the light ion fragmentation cross section is considered with comparisons of inclusive yields and secondary momentum distributions to experiments described. We also analyze the importance of a fast component of lights ions from proton and neutron induced target fragementation. These theoretical models have been incorporated into the cosmic ray transport code HZETRN and will be used to analyze the role of shielding materials in modulating the production and the energy spectrum of light ions.

  16. Selectively accelerated lithium ion transport to silicon anodes via an organogel binder

    NASA Astrophysics Data System (ADS)

    Hwang, Chihyun; Cho, Yoon-Gyo; Kang, Na-Ri; Ko, Younghoon; Lee, Ungju; Ahn, Dongjoon; Kim, Ju-Young; Kim, Young-Jin; Song, Hyun-Kon

    2015-12-01

    Silicon, a promising high-capacity anode material of lithium ion batteries, suffers from its volume expansion leading to pulverization and low conductivities, showing capacity decay during cycling and low capacities at fast charging and discharging. In addition to popular active-material-modifying strategies, building lithium-ion-rich environments around silicon surface is helpful in enhancing unsatisfactory performances of silicon anodes. In this work, we accelerated lithium ion transport to silicon surface by using an organogel binder to utilize the electroactivity of silicon in a more efficient way. The cyanoethyl polymer (PVA-CN), characterized by high lithium ion transference number as well as appropriate elastic modulus with strong adhesion, enhanced cycle stability of silicon anodes with high coulombic efficiency even at high temperature (60 °C) as well as at fast charging/discharging rates.

  17. Visualization of ion transportation in an electrolyte using an HTS-SQUID gradiometer

    NASA Astrophysics Data System (ADS)

    Kiwa, Toshihiko; Miyazaki, Shinogo; Saari, Mohd M.; Sakai, Kenji; Tsukamoto, Akira; Adachi, Seiji; Hato, Tsunehiro; Tanabe, Keiichi; Tsukada, Keiji

    2014-09-01

    Direct detection of magnetic fields generated by the ion currents in electrolytic cells was performed and the ion currents were mapped during a cyclic voltammetry experiment. A high-Tc superconducting quantum interference device (SQUID) gradiometer with ramp-edge Josephson junctions was used as the detector and thus the first derivative of the magnetic field along the electrolytic cell surface was obtained. The electric potential vs. the reference electrode was measured between -0.3 V and 0.8 V and the hysteresis signals caused by the redox reactions of the electrolyte were observed. The vector component of the ion current during cyclic voltammetry was mapped along the electrolytic cell. As a demonstration of visualization of ion transportation, the magnetic signal was also measured at various positions above the electrolytic cell surface.

  18. Energization and transport of ions of ionospheric origin in the terrestrial magnetosphere

    NASA Technical Reports Server (NTRS)

    Waite, J. H., Jr.

    1995-01-01

    This serves as a final report entitled Energization and Transport of Ions of Ionospheric Origin in the Terrestrial Magnetosphere. The work has been predominantly focused on ion outflows identified in two data sets: (1) Prognoz 7; and (2) Dynamics Explorer. The study analyzed ion densities, temperatures, and flow velocities in the magnetotail. The work performed under this contract consisted of developing a program to load the raw data, compute the background subtraction of a strong sun pulse, and use the net counts to calculate the low order moments of the distribution function. The study confirms the results of ISEE that the the cusp is a major source of plasmasheet plasma and goes beyond this to discuss the use of ion velocities as a way to examine the motions of the magnetotail.

  19. Electrokinetic ion transport through unsaturated soil: 1. Theory, model development, and testing.

    PubMed

    Mattson, Earl D; Bowman, Robert S; Lindgren, Eric R

    2002-01-01

    An electromigration transport model for non-reactive ion transport in unsaturated soil was developed and tested against laboratory experiments. This model assumed the electric potential field was constant with respect to time, an assumption valid for highly buffered soil, or when the electrode electrolysis reactions are neutralized. The model also assumed constant moisture contents and temperature with respect to time, and that electroosmotic and hydraulic transport of water through the soil was negligible. A functional relationship between ionic mobility and the electrolyte concentration was estimated using the chemical activity coefficient. Tortuosity was calculated from a mathematical relationship fitted to the electrical conductivity of the bulk pore water and soil moisture data. The functional relationship between ionic mobility, pore-water concentration, and tortuosity as a function of moisture content allowed the model to predict ion transport in heterogeneous unsaturated soils. The model was tested against laboratory measurements assessing anionic electromigration as a function of moisture content. In the test cell, a strip of soil was spiked with red dye No 40 and monitored for a 24-h period while a 10-mA current was maintained between the electrodes. Electromigration velocities predicted by the electromigration transport model were in agreement with laboratory experimental results. Both laboratory-measured and model-predicted dye migration results indicated a maximum transport velocity at moisture contents less than saturation due to competing effects between current density and tortuosity as moisture content decreases.

  20. Electrokinetic ion transport through unsaturated soil: 1. Theory, model development, and testing

    NASA Astrophysics Data System (ADS)

    Mattson, Earl D.; Bowman, Robert S.; Lindgren, Eric R.

    2002-01-01

    An electromigration transport model for non-reactive ion transport in unsaturated soil was developed and tested against laboratory experiments. This model assumed the electric potential field was constant with respect to time, an assumption valid for highly buffered soil, or when the electrode electrolysis reactions are neutralized. The model also assumed constant moisture contents and temperature with respect to time, and that electroosmotic and hydraulic transport of water through the soil was negligible. A functional relationship between ionic mobility and the electrolyte concentration was estimated using the chemical activity coefficient. Tortuosity was calculated from a mathematical relationship fitted to the electrical conductivity of the bulk pore water and soil moisture data. The functional relationship between ionic mobility, pore-water concentration, and tortuosity as a function of moisture content allowed the model to predict ion transport in heterogeneous unsaturated soils. The model was tested against laboratory measurements assessing anionic electromigration as a function of moisture content. In the test cell, a strip of soil was spiked with red dye No 40 and monitored for a 24-h period while a 10-mA current was maintained between the electrodes. Electromigration velocities predicted by the electromigration transport model were in agreement with laboratory experimental results. Both laboratory-measured and model-predicted dye migration results indicated a maximum transport velocity at moisture contents less than saturation due to competing effects between current density and tortuosity as moisture content decreases.

  1. Fast-ion transport and NBI current drive in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Geiger, Benedikt; Weiland, Markus; Mlynek, Alexander; Dunne, Mike; Dux, Ralph; Fischer, Rainer; Hobirk, Joerg; Hopf, Christian; Reich, Matthias; Rittich, David; Ryter, Francois; Schneider, Philip; Tardini, Giovanni; Garcia-Munoz, Manuel; ASDEX Upgrade Team

    2014-10-01

    Good confinement of fast ions is essential in fusion devices because these suprathermal particles are responsible for plasma heating, current drive and can, if poorly confined, damage surrounding walls. The degradation of the fast-ion confinement caused by large and small scale instabilities must consequently be investigated. In the ASDEX Upgrade tokamak, fast ions are generated by neutral beam injection (NBI) and their slowing down distribution can be studied using FIDA spectroscopy, neutral particle analyzers and neutron detectors. Neo-classical fast-ion transport is observed by these measurements in MHD-quiescent discharges with relatively weak heating power (less than 5 MW). The presence of sawtooth instabilities, in contrast, yields a strong internal fast-ion redistribution that can be modelled very well when assuming full reconnection of the helical magnetic field. The fast-ion current drive efficiency has been studied in discharges with up to 10 MW of heating power in which on-axis and off-axis NBI were exchanged. The radial shape of the fast-ion population, generated by the different NBIs, changes as predicted and a corresponding modification of the current profile is measured.

  2. Can the Transport Properties of Molten Salts and Ionic Liquids Be Used To Determine Ion Association?

    PubMed

    Harris, Kenneth R

    2016-12-01

    There have long been arguments supporting the concept of ion association in molten salts and ionic liquids, largely based on differences between the conductivity and that predicted from self-diffusion coefficients by the Nernst-Einstein equation for noninteracting ions. It is known from molecular dynamics simulations that even simple models based on charged hard spheres show such a difference due to the (anti)-correlation of ion motions. Formally this is expressed as a difference between the velocity cross-correlation coefficient of the oppositely charged ions and the mean of those for the two like-charged ions. This article examines molten salt and ionic liquid transport property data, comparing simple and model associated salts (ZnCl2, PbCl2, and TlCl) including weakly dissociated molecular liquids (H2O, HCOOH, H2SO4). Analysis employing Laity resistance coefficients (rij) shows that the common ion-association rationalization is flawed, consistent with recent direct measurements of the degree of ionicity in ionic liquid chlorides and with theoretical studies. However, the protic ionic liquids [PyrOMe][BF4] and [DBUH][CH3SO3] have larger than usual NE deviation parameters (>0.5), and large negative like-ion rii, analogous to those of ZnCl2. Structural, spectroscopic, and theoretical studies are suggested to determine whether these are indeed genuine examples of association.

  3. Structure and mechanisms underlying ion transport in ternary polymer electrolytes containing ionic liquids

    NASA Astrophysics Data System (ADS)

    Mogurampelly, Santosh; Ganesan, Venkat

    2017-02-01

    We use all atom molecular dynamics simulations to investigate the influence of 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) ionic liquid on the structure and transport properties of poly(ethylene oxide) (PEO) polymer electrolytes doped with LiPF6 salt. We observe enhanced diffusivities of the Li+, PF6-, and BMIM+ ions with increasing loading of the ionic liquid. Interplay between the different ion-ion and ion-polymer interactions is seen to lead to a destabilization of the Li-PF6 coordination and increase in the strength of association between the Li+ cations and the polymer backbone. As a consequence, the polymer segmental relaxation times are shown to be only moderately affected by the addition of ionic liquids. The ionic-liquid induced changes in the mobilities of Li+ ions are seen to be correlated to polymer segmental relaxation times. However, the mobilities of BMIM+ ions are seen to be more strongly correlated to the BMIM-PF6 ion-pair relaxation times.

  4. Understanding transport simulations of heavy-ion collisions at 100 A and 400 A MeV: Comparison of heavy-ion transport codes under controlled conditions

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Chen, Lie-Wen; Tsang, ManYee Betty; Wolter, Hermann; Zhang, Ying-Xun; Aichelin, Joerg; Colonna, Maria; Cozma, Dan; Danielewicz, Pawel; Feng, Zhao-Qing; Le Fèvre, Arnaud; Gaitanos, Theodoros; Hartnack, Christoph; Kim, Kyungil; Kim, Youngman; Ko, Che-Ming; Li, Bao-An; Li, Qing-Feng; Li, Zhu-Xia; Napolitani, Paolo; Ono, Akira; Papa, Massimo; Song, Taesoo; Su, Jun; Tian, Jun-Long; Wang, Ning; Wang, Yong-Jia; Weil, Janus; Xie, Wen-Jie; Zhang, Feng-Shou; Zhang, Guo-Qiang

    2016-04-01

    Transport simulations are very valuable for extracting physics information from heavy-ion-collision experiments. With the emergence of many different transport codes in recent years, it becomes important to estimate their robustness in extracting physics information from experiments. We report on the results of a transport-code-comparison project. Eighteen commonly used transport codes were included in this comparison: nine Boltzmann-Uehling-Uhlenbeck-type codes and nine quantum-molecular-dynamics-type codes. These codes have been asked to simulate Au +Au collisions using the same physics input for mean fields and for in-medium nucleon-nucleon cross sections, as well as the same impact parameter, the similar initialization setup, and other calculational parameters at 100 A and 400 A MeV incident energy. Among the codes we compare one-body observables such as rapidity and transverse flow distributions. We also monitor nonobservables such as the initialization of the internal states of colliding nuclei and their stability, the collision rates, and the Pauli blocking. We find that not completely identical initializations may have contributed partly to different evolutions. Different strategies to determine the collision probabilities and to enforce the Pauli blocking also produce considerably different results. There is a substantial spread in the predictions for the observables, which is much smaller at the higher incident energy. We quantify the uncertainties in the collective flow resulting from the simulation alone as about 30% at 100 A MeV and 13% at 400 A MeV, respectively. We propose further steps within the code comparison project to test the different aspects of transport simulations in a box calculation of infinite nuclear matter. This should, in particular, improve the robustness of transport model predictions at lower incident energies, where abundant amounts of data are available.

  5. Ion confinement and transport in a toroidal plasma with externally imposed radial electric fields

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Kim, Y. C.; Hong, H. Y.

    1979-01-01

    Strong electric fields were imposed along the minor radius of the toroidal plasma by biasing it with electrodes maintained at kilovolt potentials. Coherent, low-frequency disturbances characteristic of various magnetohydrodynamic instabilities were absent in the high-density, well-confined regime. High, direct-current radial electric fields with magnitudes up to 135 volts per centimeter penetrated inward to at least one-half the plasma radius. When the electric field pointed radially toward, the ion transport was inward against a strong local density gradient; and the plasma density and confinement time were significantly enhanced. The radial transport along the electric field appeared to be consistent with fluctuation-induced transport. With negative electrode polarity the particle confinement was consistent with a balance of two processes: a radial infusion of ions, in those sectors of the plasma not containing electrodes, that resulted from the radially inward fields; and ion losses to the electrodes, each of the which acted as a sink and drew ions out of the plasma. A simple model of particle confinement was proposed in which the particle confinement time is proportional to the plasma volume. The scaling predicted by this model was consistent with experimental measurements.

  6. Simulation and modeling of the Gamble II self-pinched ion beam transport experiment

    SciTech Connect

    Rose, D.V.; Ottinger, P.F.; Hinshelwood, D.D.

    1999-07-01

    Progress in numerical simulations and modeling of the self-pinched ion beam transport experiment at the Naval Research Laboratory (NRL) is reviewed. In the experiment, a 1.2-MeV, 100-kA proton beam enters a 1-m long, transport region filled with a low pressure gas (30--250 mTorr helium, or 1 Torr air). The time-dependent velocity distribution function of the injected ion beam is determined from an orbit code that uses a pinch-reflex ion diode model and the measured voltage and current from this diode on the Gamble II generator at NRL. This distribution function is used as the beam input condition for numerical simulations carried out using the hybrid particle-in-cell code IPROP. Results of the simulations will be described, and detailed comparisons will be made with various measurements, including line-integrated electron-density, proton-fluence, and beam radial-profile measurements. As observed in the experiment, the simulations show evidence of self-pinching for helium pressures between 35 and 80 mTorr. Simulations and measurements in 1 Torr air show ballistic transport. The relevance of these results to ion-driven inertial confinement fusion will be discussed.

  7. Emergency airway puncture

    MedlinePlus

    ... support for only a very short period of time. Alternative Names Needle cricothyrotomy Images Emergency airway puncture Cricoid cartilage Emergency airway puncture - series References Hebert RB, Bose S, Mace SE. Cricothyrotomy and ...

  8. Upper airway biopsy

    MedlinePlus

    ... upper airway Images Upper airway test Bronchoscopy Throat anatomy References Yung RC, Boss EF. Tracheobronchial endoscopy. In: Flint PW, Haughey BH, Lund LJ, et al, eds. Cummings Otolaryngology: Head & Neck Surgery. 5th ed. Philadelphia, PA: Elsevier Mosby; ...

  9. Transport, charge exchange and loss of energetic heavy ions in the earth's radiation belts - Applicability and limitations of theory

    NASA Technical Reports Server (NTRS)

    Spjeldvik, W. N.

    1981-01-01

    Computer simulations of processes which control the relative abundances of ions in the trapping regions of geospace are compared with observations from discriminating ion detectors. Energy losses due to Coulomb collisions between ions and exospheric neutrals are considered, along with charge exchange losses and internal charge exchanges. The time evolution of energetic ion fluxes of equatorially mirroring ions under radial diffusion is modelled to include geomagnetic and geoelectric fluctutations. Limits to the validity of diffusion transport theory are discussed, and the simulation is noted to contain provisions for six ionic charge states and the source effect on the radiation belt oxygen ion distributions. Comparisons are made with ion flux data gathered on Explorer 45 and ISEE-1 spacecraft and results indicate that internal charge exchanges cause the radiation belt ion charge state to be independent of source charge rate characteristics, and relative charge state distribution is independent of the radially diffusive transport rate below the charge state redistribution zone.

  10. Doping of Graphene by Low-Energy Ion Beam Implantation: Structural, Electronic, and Transport Properties.

    PubMed

    Willke, Philip; Amani, Julian A; Sinterhauf, Anna; Thakur, Sangeeta; Kotzott, Thomas; Druga, Thomas; Weikert, Steffen; Maiti, Kalobaran; Hofsäss, Hans; Wenderoth, Martin

    2015-08-12

    We investigate the structural, electronic, and transport properties of substitutional defects in SiC-graphene by means of scanning tunneling microscopy and magnetotransport experiments. Using ion incorporation via ultralow energy ion implantation, the influence of different ion species (boron, nitrogen, and carbon) can directly be compared. While boron and nitrogen atoms lead to an effective doping of the graphene sheet and can reduce or raise the position of the Fermi level, respectively, (12)C(+) carbon ions are used to study possible defect creation by the bombardment. For low-temperature transport, the implantation leads to an increase in resistance and a decrease in mobility in contrast to undoped samples. For undoped samples, we observe in high magnetic fields a positive magnetoresistance that changes to negative for the doped samples, especially for (11)B(+)- and (12)C(+)-ions. We conclude that the conductivity of the graphene sheet is lowered by impurity atoms and especially by lattice defects, because they result in weak localization effects at low temperatures.

  11. Ion transport into cells exposed to monopolar and bipolar nanosecond pulses.

    PubMed

    Schoenbach, Karl H; Pakhomov, Andrei G; Semenov, Iurii; Xiao, Shu; Pakhomova, Olga N; Ibey, Bennett L

    2015-06-01

    Experiments with CHO cells exposed to 60 and 300 ns pulsed electric fields with amplitudes in the range from several kV/cm to tens of kV/cm showed a decrease of the uptake of calcium ions by more than an order of magnitude when, immediately after a first pulse, a second one of opposite polarity was applied. This effect is assumed to be due to the reversal of the electrophoretic transport of ions through the electroporated membrane during the second phase of the bipolar pulse. This assumption, however, is only valid if electrophoresis is the dominant transport mechanism, rather than diffusion. Comparison of calculated calcium ion currents with experimental results showed that for nanosecond pulses, electrophoresis is at least as important as diffusion. By delaying the second pulse with respect to the first one, the effect of reverse electrophoresis is reduced. Consequently, separating nanosecond pulses of opposite polarity by up to approximately hundred microseconds allows us to vary the uptake of ions from very small values to those obtained with two pulses of the same polarity. The measured calcium ion uptake obtained with bipolar pulses also allowed us to determine the membrane pore recovery time. The calculated recovery time constants are on the order of 10 μs.

  12. Ion Binding Energies Determining Functional Transport of ClC Proteins

    NASA Astrophysics Data System (ADS)

    Yu, Tao; Guo, Xu; Zou, Xian-Wu; Sang, Jian-Ping

    2014-06-01

    The ClC-type proteins, a large family of chloride transport proteins ubiquitously expressed in biological organisms, have been extensively studied for decades. Biological function of ClC proteins can be reflected by analyzing the binding situation of Cl- ions. We investigate ion binding properties of ClC-ec1 protein with the atomic molecular dynamics simulation approach. The calculated electrostatic binding energy results indicate that Cl- at the central binding site Scen has more binding stability than the internal binding site Sint. Quantitative comparison between the latest experimental heat release data isothermal titration calorimetry (ITC) and our calculated results demonstrates that chloride ions prefer to bind at Scen than Sint in the wild-type ClC-ec1 structure and prefer to bind at Sext and Scen than Sint in mutant E148A/E148Q structures. Even though the chloride ions make less contribution to heat release when binding to Sint and are relatively unstable in the Cl- pathway, they are still part contributors for the Cl- functional transport. This work provides a guide rule to estimate the importance of Cl- at the binding sites and how chloride ions have influences on the function of ClC proteins.

  13. Ion transport into cells exposed to monopolar and bipolar nanosecond pulses

    PubMed Central

    Schoenbach, Karl H.; Pakhomov, Andrei G.; Semenov, Iurii; Xiao, Shu; Pakhomova, Olga N.; Ibey, Bennet L.

    2014-01-01

    Experiments with CHO cells exposed to 60 and 300 ns pulsed electric fields with amplitudes in the range from several kV/cm to tens of kV/cm, showed a decrease of the uptake of calcium ions by more than an order of magnitude when, immediately after a first pulse, a second one of opposite polarity was applied. This effect is assumed to be due to the reversal of the electrophoretic transport of ions through the electroporated membrane during the second phase of the bipolar pulse. This assumption, however, is only valid if electrophoresis is the dominant transport mechanism, rather than diffusion. Comparison of calculated calcium ion currents with experimental results showed that for nanosecond pulses, electrophoresis is at least as important as diffusion. By delaying the second pulse with respect to the first one, the effect of reverse electrophoresis is reduced. Consequently, separating nanosecond pulses of opposite polarity by up to approximately hundred microseconds allows us to vary the uptake of ions from very small values to that obtained with two pulses of the same polarity. The measured calcium ion uptake obtained with bipolar pulses also allowed us to determine the membrane pore recovery time. The calculated recovery time constants are on the order of ten microseconds. PMID:25212701

  14. Near-ground-state transport of trapped-ion qubits through a multidimensional array

    SciTech Connect

    Blakestad, R. B; Ospelkaus, C.; VanDevender, A. P; Wesenberg, J. H; Biercuk, M. J; Leibfried, D.; Wineland, D. J

    2011-09-15

    We have demonstrated transport of {sup 9}Be{sup +}ions through a two-dimensional Paul-trap array that incorporates an X junction, while maintaining the ions near the motional ground state of the confining potential well. We expand on the first report of the experiment in Blakestad et al.[Phys. Rev. Lett. 102, 153002 (2009)], including a detailed discussion of how the transport potentials were calculated. Two main mechanisms that caused motional excitation during transport are explained, along with the methods used to mitigate such excitation. We reduced the motional excitation below the results in the above reference by a factor of approximately 50. The effect of a mu-metal shield on qubit coherence is also reported. Finally, we examined a method for exchanging energy between multiple motional modes on the few-quanta level, which could be useful for cooling motional modes without directly accessing the modes with lasers. These results establish how trapped ions can be transported in a large-scale quantum processor with high fidelity.

  15. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease

    PubMed Central

    Zhang, Rui; Duhl, Tiffany; Salam, Muhammad T.; House, James M.; Flagan, Richard C.; Avol, Edward L.; Gilliland, Frank D.; Guenther, Alex; Chung, Serena H.; Lamb, Brian K.; VanReken, Timothy M.

    2014-01-01

    Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD) in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the WRF/CMAQ air-quality modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation) threshold conditions and is designed to be flexible with respect to its representation of vegetation species and plant functional types (PFTs). The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS), which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 km and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to underestimate walnut and peak oak pollen concentrations, and tends

  16. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Duhl, T.; Salam, M. T.; House, J. M.; Flagan, R. C.; Avol, E. L.; Gilliland, F. D.; Guenther, A.; Chung, S. H.; Lamb, B. K.; VanReken, T. M.

    2014-03-01

    Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD) in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the coupled Weather Research and Forecasting Community Multiscale Air Quality (WRF/CMAQ) modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation) threshold conditions and is designed to be flexible with respect to its representation of vegetation species and plant functional types (PFTs). The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California (USA) for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS), which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to

  17. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Duhl, T.; Salam, M. T.; House, J. M.; Flagan, R. C.; Avol, E. L.; Gilliland, F. D.; Guenther, A.; Chung, S. H.; Lamb, B. K.; VanReken, T. M.

    2013-03-01

    Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD) in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the WRF/CMAQ air-quality modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation) threshold conditions and is designed to be flexible with respect to its representation vegetation species and plant functional types (PFTs). The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS), which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 km and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to underestimate walnut and peak oak pollen concentrations, and tends to

  18. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease.

    PubMed

    Zhang, Rui; Duhl, Tiffany; Salam, Muhammad T; House, James M; Flagan, Richard C; Avol, Edward L; Gilliland, Frank D; Guenther, Alex; Chung, Serena H; Lamb, Brian K; VanReken, Timothy M

    2013-03-01

    Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD) in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the WRF/CMAQ air-quality modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation) threshold conditions and is designed to be flexible with respect to its representation of vegetation species and plant functional types (PFTs). The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS), which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 km and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to underestimate walnut and peak oak pollen concentrations, and tends

  19. Sugar-activated ion transport in canine lingual epithelium. Implications for sugar taste transduction

    PubMed Central

    1988-01-01

    There is good evidence indicating that ion-transport pathways in the apical regions of lingual epithelial cells, including taste bud cells, may play a role in salt taste reception. In this article, we present evidence that, in the case of the dog, there also exists a sugar- activated ion-transport pathway that is linked to sugar taste transduction. Evidence was drawn from two parallel lines of experiments: (a) ion-transport studies on the isolated canine lingual epithelium, and (b) recordings from the canine chorda tympani. The results in vitro showed that both mono- and disaccharides in the mucosal bath stimulate a dose-dependent increase in the short-circuit current over the concentration range coincident with mammalian sugar taste responses. Transepithelial current evoked by glucose, fructose, or sucrose in either 30 mM NaCl or in Krebs-Henseleit buffer (K-H) was partially blocked by amiloride. Among current carriers activated by saccharides, the current response was greater with Na than with K. Ion flux measurements in K-H during stimulation with 3-O-methylglucose showed that the sugar-evoked current was due to an increase in the Na influx. Ouabain or amiloride reduced the sugar-evoked Na influx without effect on sugar transport as measured with tritiated 3-O-methylglucose. Amiloride inhibited the canine chorda tympani response to 0.5 M NaCl by 70-80% and the response to 0.5 M KCl by approximately 40%. This agreed with the percent inhibition by amiloride of the short-circuit current supported in vitro by NaCl and KCl. Amiloride also partially inhibited the chorda tympani responses to sucrose and to fructose. The results indicate that in the dog: (a) the ion transporter subserving Na taste also subserves part of the response to K, and (b) a sugar-activated, Na- preferring ion-transport system is one mechanism mediating sugar taste transduction. Results in the literature indicate a similar sweet taste mechanism for humans. PMID:3171536

  20. Ion transport through lipid bilayers by synthetic ionophores: modulation of activity and selectivity.

    PubMed

    De Riccardis, Francesco; Izzo, Irene; Montesarchio, Daniela; Tecilla, Paolo

    2013-12-17

    The ion-coupled processes that occur in the plasma membrane regulate the cell machineries in all the living organisms. The details of the chemical events that allow ion transport in biological systems remain elusive. However, investigations of the structure and function of natural and artificial transporters has led to increasing insights about the conductance mechanisms. Since the publication of the first successful artificial system by Tabushi and co-workers in 1982, synthetic chemists have designed and constructed a variety of chemically diverse and effective low molecular weight ionophores. Despite their relative structural simplicity, ionophores must satisfy several requirements. They must partition in the membrane, interact specifically with ions, shield them from the hydrocarbon core of the phospholipid bilayer, and transport ions from one side of the membrane to the other. All these attributes require amphipathic molecules in which the polar donor set used for ion recognition (usually oxygens for cations and hydrogen bond donors for anions) is arranged on a lipophilic organic scaffold. Playing with these two structural motifs, donor atoms and scaffolds, researchers have constructed a variety of different ionophores, and we describe a subset of interesting examples in this Account. Despite the ample structural diversity, structure/activity relationships studies reveal common features. Even when they include different hydrophilic moieties (oxyethylene chains, free hydroxyl, etc.) and scaffolds (steroid derivatives, neutral or polar macrocycles, etc.), amphipathic molecules, that cannot span the entire phospholipid bilayer, generate defects in the contact zone between the ionophore and the lipids and increase the permeability in the bulk membrane. Therefore, topologically complex structures that span the entire membrane are needed to elicit channel-like and ion selective behaviors. In particular the alternate-calix[4]arene macrocycle proved to be a versatile

  1. Formulated plastic separators for soluble electrode cells. [rubber-ion transport membranes

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1979-01-01

    The fabrication and milling of membranes comprising a hydrochloric acid-insoluble sheet of a mixture of a rubber and a powdered ion transport material are described. The sheet can be present as a coating upon a flexible and porous substrate. These membranes can be used in oxidation-reduction electrical accumulator cells wherein the reduction of one member of a couple is accompanied by the by the oxidation of the other member of the couple on the other side of the cell and this must be accompanied by a change in chloride ion concentration in both sides.

  2. Structural and mechanistic basis of proton-coupled metal ion transport in the SLC11/NRAMP family

    PubMed Central

    Ehrnstorfer, Ines A.; Manatschal, Cristina; Arnold, Fabian M.; Laederach, Juerg; Dutzler, Raimund

    2017-01-01

    Secondary active transporters of the SLC11/NRAMP family catalyse the uptake of iron and manganese into cells. These proteins are highly conserved across all kingdoms of life and thus likely share a common transport mechanism. Here we describe the structural and functional properties of the prokaryotic SLC11 transporter EcoDMT. Its crystal structure reveals a previously unknown outward-facing state of the protein family. In proteoliposomes EcoDMT mediates proton-coupled uptake of manganese at low micromolar concentrations. Mutants of residues in the transition-metal ion-binding site severely affect transport, whereas a mutation of a conserved histidine located near this site results in metal ion transport that appears uncoupled to proton transport. Combined with previous results, our study defines the conformational changes underlying transition-metal ion transport in the SLC11 family and it provides molecular insight to its coupling to protons. PMID:28059071

  3. Structural and mechanistic basis of proton-coupled metal ion transport in the SLC11/NRAMP family.

    PubMed

    Ehrnstorfer, Ines A; Manatschal, Cristina; Arnold, Fabian M; Laederach, Juerg; Dutzler, Raimund

    2017-01-06

    Secondary active transporters of the SLC11/NRAMP family catalyse the uptake of iron and manganese into cells. These proteins are highly conserved across all kingdoms of life and thus likely share a common transport mechanism. Here we describe the structural and functional properties of the prokaryotic SLC11 transporter EcoDMT. Its crystal structure reveals a previously unknown outward-facing state of the protein family. In proteoliposomes EcoDMT mediates proton-coupled uptake of manganese at low micromolar concentrations. Mutants of residues in the transition-metal ion-binding site severely affect transport, whereas a mutation of a conserved histidine located near this site results in metal ion transport that appears uncoupled to proton transport. Combined with previous results, our study defines the conformational changes underlying transition-metal ion transport in the SLC11 family and it provides molecular insight to its coupling to protons.

  4. Careers in Airway Science.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    The Federal Aviation Administration (FAA) has initiated the Airway Science curriculum as a method of preparing the next generation of aviation technicians and managers. This document: (1) discusses the FAA's role in the Airway Science program; (2) describes some of the career fields that FAA offers to Airway Science graduates (air traffic control…

  5. Closure and transport theory for high-collisionality electron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Ji, Jeong-Young; Held, Eric D.

    2013-04-01

    Systems of algebraic equations for a high-collisionality electron-ion plasma are constructed from the general moment equations with linearized collision operators [J.-Y. Ji and E. D. Held, Phys. Plasmas 13, 102103 (2006) and J.-Y. Ji and E. D. Held, Phys. Plasmas 15, 102101 (2008)]. A systematic geometric method is invented and applied to solve the system of equations to find closure and transport relations. It is known that some closure coefficients of Braginskii [S. I. Braginskii, Reviews of Plasma Physics (Consultants Bureau, New York, 1965), Vol. 1] are in error up to 65% for some finite values of x (cyclotron frequency × electron-ion collision time) and have significant error in the large-x limit [E. M. Epperlein and M. G. Haines, Phys. Fluids 29, 1029 (1986)]. In this work, fitting formulas for electron coefficients are obtained from the 160 moment (Laguerre polynomial) solution, which converges with increasing moments for x ≤100 and from the asymptotic solution for large x-values. The new fitting formulas are practically exact (less than 1% error) for arbitrary x and Z (the ion charge number, checked up to Z = 100). The ion coefficients for equal electron and ion temperatures are moderately modified by including the ion-electron collision operator. When the ion temperature is higher than the electron temperature, the ion-electron collision and the temperature change terms in the moment equations must be kept. The ion coefficient formulas from 3 moment (Laguerre polynomial) calculations, precise to less than 0.4% error from the convergent values, are explicitly written.

  6. Luminal cholinergic signalling in airway lining fluid: a novel mechanism for activating chloride secretion via Ca2+-dependent Cl− and K+ channels

    PubMed Central

    Hollenhorst, Monika I; Lips, Katrin S; Wolff, Miriam; Wess, Jürgen; Gerbig, Stefanie; Takats, Zoltan; Kummer, Wolfgang; Fronius, Martin

    2012-01-01

    BACKGROUND AND PURPOSE Recent studies detected the expression of proteins involved in cholinergic metabolism in airway epithelial cells, although the function of this non-neuronal cholinergic system is not known in detail. Thus, this study focused on the effect of luminal ACh as a regulator of transepithelial ion transport in epithelial cells. EXPERIMENTAL APPROACH RT-PCR experiments were performed using mouse tracheal epithelial cells for ChAT and organic cation transporter (OCT) transcripts. Components of tracheal airway lining fluid were analysed with desorption electrospray ionization (DESI) MS. Effects of nicotine on mouse tracheal epithelial ion transport were examined with Ussing-chamber experiments. KEY RESULTS Transcripts encoding ChAT and OCT1–3 were detected in mouse tracheal epithelial cells. The DESI experiments identified ACh in the airway lining fluid. Luminal ACh induced an immediate, dose-dependent increase in the transepithelial ion current (EC50: 23.3 µM), characterized by a transient peak and sustained plateau current. This response was not affected by the Na+-channel inhibitor amiloride. The Cl−-channel inhibitor niflumic acid or the K+-channel blocker Ba2+ attenuated the ACh effect. The calcium ionophore A23187 mimicked the ACh effect. Luminal nicotine or muscarine increased the ion current. Experiments with receptor gene-deficient animals revealed the participation of muscarinic receptor subtypes M1 and M3. CONCLUSIONS AND IMPLICATIONS The presence of luminal ACh and activation of transepithelial ion currents by luminal ACh receptors identifies a novel non-neuronal cholinergic pathway in the airway lining fluid. This pathway could represent a novel drug target in the airways. PMID:22300281

  7. Observation of Critical-Gradient Behavior in Alfvén-Eigenmode-Induced Fast-Ion Transport.

    PubMed

    Collins, C S; Heidbrink, W W; Austin, M E; Kramer, G J; Pace, D C; Petty, C C; Stagner, L; Van Zeeland, M A; White, R B; Zhu, Y B

    2016-03-04

    Experiments in the DIII-D tokamak show that fast-ion transport suddenly becomes stiff above a critical threshold in the presence of many overlapping small-amplitude Alfvén eigenmodes (AEs). The threshold is phase-space dependent and occurs when particle orbits become stochastic due to resonances with AEs. Above threshold, equilibrium fast-ion density profiles are unchanged despite increased drive, and intermittent fast-ion losses are observed. Fast-ion Dα spectroscopy indicates radially localized transport of the copassing population at radii that correspond to the location of midcore AEs. The observation of stiff fast-ion transport suggests that reduced models can be used to effectively predict alpha profiles, beam ion profiles, and losses to aid in the design of optimized scenarios for future burning plasma devices.

  8. Simulated kinetic effects of the corona and solar cycle on high altitude ion transport at Mars

    NASA Astrophysics Data System (ADS)

    Curry, S. M.; Liemohn, M.; Fang, X.; Brain, D.; Ma, Y.

    2013-06-01

    We present results from the Mars Test Particle (MTP) simulation as part of a community‒wide model comparison in order to quantify the role of different neutral atmospheric conditions in planetary ion transport and escape. This study examines the effects of individual ion motion by simulating particle trajectories for three cases: solar minimum without the neutral corona, solar minimum with the inclusion of the neutral corona, and solar maximum with the inclusion of the neutral corona. The MTP simulates 1.5 billion test particles through background electric and magnetic fields computed by a global magnetohydrodynamic model. By implementing virtual detectors in the simulation, the MTP has generated velocity space distributions of pickup ions and quantifies the ion acceleration at different spatial locations. The study found that the inclusion of a hot neutral corona greatly affects the total O+ production and subsequent loss, roughly doubling the total escape for solar minimum conditions and directly contributing to high energy sources above 10 keV. The solar cycle influences the amount of O+ flux observed by the virtual detectors, increasing the O+ flux and total escape by an order of magnitude from solar minimum to maximum. Additionally, solar maximum case induces greater mass loading of the magnetic fields, which decreases the gyroradius of the ions and redirects a significant ion population downtail to subsequently escape.

  9. Airway Surface Dehydration by Transforming Growth Factor β (TGF-β) in Cystic Fibrosis Is Due to Decreased Function of a Voltage-dependent Potassium Channel and Can Be Rescued by the Drug Pirfenidone*

    PubMed Central

    Manzanares, Dahis; Krick, Stefanie; Baumlin, Nathalie; Dennis, John S.; Tyrrell, Jean; Tarran, Robert; Salathe, Matthias

    2015-01-01

    Transforming growth factor β1 (TGF-β1) is not only elevated in airways of cystic fibrosis (CF) patients, whose airways are characterized by abnormal ion transport and mucociliary clearance, but TGF-β1 is also associated with worse clinical outcomes. Effective mucociliary clearance depends on adequate airway hydration, governed by ion transport. Apically expressed, large-conductance, Ca2+- and voltage-dependent K+ (BK) channels play an important role in this process. In this study, TGF-β1 decreased airway surface liquid volume, ciliary beat frequency, and BK activity in fully differentiated CF bronchial epithelial cells by reducing mRNA expression of the BK γ subunit leucine-rich repeat-containing protein 26 (LRRC26) and its function. Although LRRC26 knockdown itself reduced BK activity, LRRC26 overexpression partially reversed TGF-β1-induced BK dysfunction. TGF-β1-induced airway surface liquid volume hyper-absorption was reversed by the BK opener mallotoxin and the clinically useful TGF-β signaling inhibitor pirfenidone. The latter increased BK activity via rescue of LRRC26. Therefore, we propose that TGF-β1-induced mucociliary dysfunction in CF airways is associated with BK inactivation related to a LRRC26 decrease and is amenable to treatment with clinically useful TGF-β1 inhibitors. PMID:26338706

  10. Benchmark solutions for the galactic ion transport equations: Energy and spatially dependent problems

    NASA Technical Reports Server (NTRS)

    Ganapol, Barry D.; Townsend, Lawrence W.; Wilson, John W.

    1989-01-01

    Nontrivial benchmark solutions are developed for the galactic ion transport (GIT) equations in the straight-ahead approximation. These equations are used to predict potential radiation hazards in the upper atmosphere and in space. Two levels of difficulty are considered: (1) energy independent, and (2) spatially independent. The analysis emphasizes analytical methods never before applied to the GIT equations. Most of the representations derived have been numerically implemented and compared to more approximate calculations. Accurate ion fluxes are obtained (3 to 5 digits) for nontrivial sources. For monoenergetic beams, both accurate doses and fluxes are found. The benchmarks presented are useful in assessing the accuracy of transport algorithms designed to accommodate more complex radiation protection problems. In addition, these solutions can provide fast and accurate assessments of relatively simple shield configurations.

  11. HZETRN: A heavy ion/nucleon transport code for space radiations

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Chun, Sang Y.; Badavi, Forooz F.; Townsend, Lawrence W.; Lamkin, Stanley L.

    1991-01-01

    The galactic heavy ion transport code (GCRTRN) and the nucleon transport code (BRYNTRN) are integrated into a code package (HZETRN). The code package is computer efficient and capable of operating in an engineering design environment for manned deep space mission studies. The nuclear data set used by the code is discussed including current limitations. Although the heavy ion nuclear cross sections are assumed constant, the nucleon-nuclear cross sections of BRYNTRN with full energy dependence are used. The relation of the final code to the Boltzmann equation is discussed in the context of simplifying assumptions. Error generation and propagation is discussed, and comparison is made with simplified analytic solutions to test numerical accuracy of the final results. A brief discussion of biological issues and their impact on fundamental developments in shielding technology is given.

  12. A 3D Model for Ion Beam Formation and Transport Simulation

    SciTech Connect

    Qiang, J.; Todd, D.; Leitner, D.

    2006-02-07

    In this paper, we present a three-dimensional model forself-consistently modeling ion beam formation from plasma ion sources andtransporting in low energy beam transport systems. A multi-sectionoverlapped computational domain has been used to break the originaltransport system into a number of weakly coupled subsystems. Within eachsubsystem, macro-particle tracking is used to obtain the charge densitydistribution in this subdomain. The three-dimensional Poisson equation issolved within the subdomain after each particle tracking to obtain theself-consistent space-charge forces and the particle tracking is repeateduntil the solution converges. Two new Poisson solvers based on acombination of the spectral method and the finite difference multigridmethod have been developed to solve the Poisson equation in cylindricalcoordinates for the straight beam transport section and in Frenet-Serretcoordinates for the bending magnet section. This model can have importantapplication in design and optimization of the low energy beam line opticsof the proposed Rare Isotope Accelerator (RIA) front end.

  13. Fast Na/+/-ion transport in skeleton structures. [solid electrolyte applications

    NASA Technical Reports Server (NTRS)

    Goodenough, J. B.; Hong, H. Y.-P.; Kafalas, J. A.

    1976-01-01

    The skeleton structures considered in the investigations consist of a rigid subarray with an interconnected interstitial space in which ions move in three dimensions. The classes of skeleton structures investigated include the Im3 phase of high-pressure KSbO3, the defect-pyrochlore structure illustrated by RbMgAlF6, and the carnegieite structure of high-temperature NaAlSiO4. A description is given of the results obtained in transport measurements involving dense polycrystalline ceramic disks. Results obtained in the case of the Na(+)-ion transport in Na3Zr2PSi2O12 appear particularly promising concerning the possible use of such substances in solid-electrolyte applications.

  14. Solvents Polarity Governs Ion Interactions and Transport in a Solvated Room Temperature Ionic Liquid

    SciTech Connect

    Osti, Naresh C; Van Aken, Katherine; Thompson, Matthew W; Tiet, Felix; Jiang, Dr. De-en; Cummings, Peter; Gogotsi, Yury G.; Mamontov, Eugene

    2017-01-01

    We explore the influence of the solvent dipole moment on cation anion interactions and transport in 1-butyl-3-methyl-imidazolium bis-(trifluoromethylsulfonyl), [BMIM+][Tf2N ]. Free energy profiles derived from atomistic molecular dynamics (MD) simulations show a correlation of the cation anion separation and the equilibrium depth of the potential of mean force with the dipole momen