Science.gov

Sample records for airway lining fluid

  1. Release of beryllium into artificial airway epithelial lining fluid.

    PubMed

    Stefaniak, Aleksandr B; Virji, M Abbas; Day, Gregory A

    2012-01-01

    Inhaled beryllium particles that deposit in the lung airway lining fluid may dissolve and interact with immune-competent cells resulting in sensitization. As such, solubilization of 17 beryllium-containing materials (ore, hydroxide, metal, oxide, alloys, and process intermediates) was investigated using artificial human airway epithelial lining fluid. The maximum beryllium release in 7 days was 11.78% (from a beryl ore melter dust), although release from most materials was < 1%. Calculated dissolution half-times ranged from 30 days (reduction furnace material) to 74,000 days (hydroxide). Despite rapid mechanical clearance, billions of beryllium ions may be released in the respiratory tract via dissolution in airway lining fluid. Beryllium-containing particles that deposit in the respiratory tract dissolve in artificial lung epithelial lining fluid, thereby providing ions for absorption in the lung and interaction with immune-competent cells in the respiratory tract.

  2. Bicarbonate-dependent chloride transport drives fluid secretion by the human airway epithelial cell line Calu-3

    PubMed Central

    Shan, Jiajie; Liao, Jie; Huang, Junwei; Robert, Renaud; Palmer, Melissa L; Fahrenkrug, Scott C; O'Grady, Scott M; Hanrahan, John W

    2012-01-01

    Anion and fluid secretion are both defective in cystic fibrosis (CF); however, the transport mechanisms are not well understood. In this study, Cl− and HCO3− secretion was measured using genetically matched CF transmembrane conductance regulator (CFTR)-deficient and CFTR-expressing cell lines derived from the human airway epithelial cell line Calu-3. Forskolin stimulated the short-circuit current (Isc) across voltage-clamped monolayers, and also increased the equivalent short-circuit current (Ieq) calculated under open-circuit conditions. Isc was equivalent to the HCO3− net flux measured using the pH-stat technique, whereas Ieq was the sum of the Cl− and HCO3− net fluxes. Ieq and HCO3− fluxes were increased by bafilomycin and ZnCl2, suggesting that some secreted HCO3− is neutralized by parallel electrogenic H+ secretion. Ieq and fluid secretion were dependent on the presence of both Na+ and HCO3−. The carbonic anhydrase inhibitor acetazolamide abolished forskolin stimulation of Ieq and HCO3− secretion, suggesting that HCO3− transport under these conditions requires catalysed synthesis of carbonic acid. Cl− was the predominant anion in secretions under all conditions studied and thus drives most of the fluid transport. Nevertheless, 50–70% of Cl− and fluid transport was bumetanide-insensitive, suggesting basolateral Cl− loading by a sodium–potassium–chloride cotransporter 1 (NKCC1)-independent mechanism. Imposing a transepithelial HCO3− gradient across basolaterally permeabilized Calu-3 cells sustained a forskolin-stimulated current, which was sensitive to CFTR inhibitors and drastically reduced in CFTR-deficient cells. Net HCO3− secretion was increased by bilateral Cl− removal and therefore did not require apical Cl−/HCO3− exchange. The results suggest a model in which most HCO3− is recycled basolaterally by exchange with Cl−, and the resulting HCO3−-dependent Cl− transport provides an osmotic driving force for

  3. Luminal cholinergic signalling in airway lining fluid: a novel mechanism for activating chloride secretion via Ca2+-dependent Cl− and K+ channels

    PubMed Central

    Hollenhorst, Monika I; Lips, Katrin S; Wolff, Miriam; Wess, Jürgen; Gerbig, Stefanie; Takats, Zoltan; Kummer, Wolfgang; Fronius, Martin

    2012-01-01

    BACKGROUND AND PURPOSE Recent studies detected the expression of proteins involved in cholinergic metabolism in airway epithelial cells, although the function of this non-neuronal cholinergic system is not known in detail. Thus, this study focused on the effect of luminal ACh as a regulator of transepithelial ion transport in epithelial cells. EXPERIMENTAL APPROACH RT-PCR experiments were performed using mouse tracheal epithelial cells for ChAT and organic cation transporter (OCT) transcripts. Components of tracheal airway lining fluid were analysed with desorption electrospray ionization (DESI) MS. Effects of nicotine on mouse tracheal epithelial ion transport were examined with Ussing-chamber experiments. KEY RESULTS Transcripts encoding ChAT and OCT1–3 were detected in mouse tracheal epithelial cells. The DESI experiments identified ACh in the airway lining fluid. Luminal ACh induced an immediate, dose-dependent increase in the transepithelial ion current (EC50: 23.3 µM), characterized by a transient peak and sustained plateau current. This response was not affected by the Na+-channel inhibitor amiloride. The Cl−-channel inhibitor niflumic acid or the K+-channel blocker Ba2+ attenuated the ACh effect. The calcium ionophore A23187 mimicked the ACh effect. Luminal nicotine or muscarine increased the ion current. Experiments with receptor gene-deficient animals revealed the participation of muscarinic receptor subtypes M1 and M3. CONCLUSIONS AND IMPLICATIONS The presence of luminal ACh and activation of transepithelial ion currents by luminal ACh receptors identifies a novel non-neuronal cholinergic pathway in the airway lining fluid. This pathway could represent a novel drug target in the airways. PMID:22300281

  4. Basolateral chloride loading by the anion exchanger type 2: role in fluid secretion by the human airway epithelial cell line Calu-3

    PubMed Central

    Huang, Junwei; Shan, Jiajie; Kim, Dusik; Liao, Jie; Evagelidis, Alexandra; Alper, Seth L; Hanrahan, John W

    2012-01-01

    Anion exchanger type 2 (AE2 or SLC4A2) is an electroneutral Cl−/HCO3− exchanger expressed at the basolateral membrane of many epithelia. It is thought to participate in fluid secretion by airway epithelia. However, the role of AE2 in fluid secretion remains uncertain, due to the lack of specific pharmacological inhibitors, and because it is electrically silent and therefore does not contribute directly to short-circuit current (Isc). We have studied the role of AE2 in Cl− and fluid secretion by the airway epithelial cell line Calu-3. After confirming expression of its mRNA and protein, a knock-down cell line called AE2-KD was generated by lentivirus-mediated RNA interference in which AE2 mRNA and protein levels were reduced ≥90%. Suppressing AE2 increased the expression of the cystic fibrosis transmembrane conductance regulator (CFTR) by ∼70% without affecting the levels of NKCC1 (Na+–K+–2Cl− cotransporter) or NBCe1 (Na+–nHCO3− cotransporter). cAMP agonists stimulated fluid secretion by parental Calu-3 and scrambled shRNA cells >6.5-fold. In AE2-KD cells this response was reduced by ∼70%, and the secreted fluid exhibited elevated pH and [HCO3−] as compared with the control lines. Unstimulated equivalent short-circuit current (Ieq) was elevated in AE2-KD cells, but the incremental response to forskolin was unaffected. The modest bumetanide-induced reductions in both Ieq and fluid secretion were more pronounced in AE2-KD cells. Basolateral Cl−/HCO3− exchange measured by basolateral pH-stat in cells with permeabilized apical membranes was abolished in AE2-KD monolayers, and the intracellular alkalinization resulting from basolateral Cl− removal was reduced by ∼80% in AE2-KD cells. These results identify AE2 as a major pathway for basolateral Cl− loading during cAMP-stimulated secretion of Cl− and fluid by Calu-3 cells, and help explain the large bumetanide-insensitive component of fluid secretion reported previously in airway

  5. Inhibition of airway surface fluid absorption by cholinergic stimulation

    PubMed Central

    Joo, Nam Soo; Krouse, Mauri E.; Choi, Jae Young; Cho, Hyung-Ju; Wine, Jeffrey J.

    2016-01-01

    In upper airways airway surface liquid (ASL) depth and clearance rates are both increased by fluid secretion. Secretion is opposed by fluid absorption, mainly via the epithelial sodium channel, ENaC. In static systems, increased fluid depth activates ENaC and decreased depth inhibits it, suggesting that secretion indirectly activates ENaC to reduce ASL depth. We propose an alternate mechanism in which cholinergic input, which causes copious airway gland secretion, also inhibits ENaC-mediated absorption. The conjoint action accelerates clearance, and the increased transport of mucus out of the airways restores ASL depth while cleansing the airways. We were intrigued by early reports of cholinergic inhibition of absorption by airways in some species. To reinvestigate this phenomenon, we studied inward short-circuit currents (Isc) in tracheal mucosa from human, sheep, pig, ferret, and rabbit and in two types of cultured cells. Basal Isc was inhibited 20–70% by the ENaC inhibitor, benzamil. Long-lasting inhibition of ENaC-dependent Isc was also produced by basolateral carbachol in all preparations except rabbit and the H441 cell line. Atropine inhibition produced a slow recovery or prevented inhibition if added before carbachol. The mechanism for inhibition was not determined and is most likely multi-factorial. However, its physiological significance is expected to be increased mucus clearance rates in cholinergically stimulated airways. PMID:26846701

  6. Surface fluid absorption and secretion in small airways

    PubMed Central

    Shamsuddin, A K M; Quinton, P M

    2012-01-01

    Native small airways must remain wet enough to be pliable and support ciliary clearance, but dry enough to remain patent for gas flow. The airway epithelial lining must both absorb and secrete ions to maintain a critical level of fluid on its surface. Despite frequent involvement in lung diseases, the minuscule size has limited studies of peripheral airways. To meet this challenge, we used a capillary to construct an Ussing chamber (area <1 mm2) to measure electrolyte transport across small native airways (∼1 mm ø) from pig lung. Transepithelial potentials (Vt) were recorded in open circuit conditions while applying constant current pulses across the luminal surface of dissected airways to calculate transepithelial electrical conductance (Gt) and equivalent short circuit current () in the presence and absence of selected Na+ and Cl− transport inhibitors (amiloride, GlyH-101, Niflumic acid) and agonists (Forskolin + IBMX, UTP). Considered together the responses suggest an organ composed of both secreting and absorbing epithelia that constitutively and concurrently transport fluids into and out of the airway, i.e. in opposite directions. Since the epithelial lining of small airways is arranged in long, accordion-like rows of pleats and folds that run axially down the lumen, we surmise that cells within the pleats are mainly secretory while the cells of the folds are principally absorptive. This structural arrangement could provide local fluid transport from within the pleats toward the luminal folds that may autonomously regulate the local surface fluid volume for homeostasis while permitting acute responses to maintain clearance. PMID:22547637

  7. Fluid and electrolyte transport by cultured human airway epithelia.

    PubMed Central

    Smith, J J; Welsh, M J

    1993-01-01

    An understanding of the fluid and electrolyte transport properties of any epithelium requires knowledge of the direction, rate, and regulation of fluid transport and the composition of the fluid. Although human airway epithelial likely play a key role in controlling the quantity and composition of the respiratory tract fluid, evidence for such a role is not available. To obtain such knowledge, we measured fluid and electrolyte transport by cultured human nasal epithelia. Under basal conditions we found that epithelia absorbed Na+ and fluid; both processes were inhibited by addition of amiloride to the mucosal surface. These data suggest that active Na+ absorption is responsible for fluid absorption. Interestingly, Na+ absorption was not accompanied by the net absorption of Cl-; some other anion accompanied Na+. The combination of cAMP agonists and mucosal amiloride stimulated the secretion of NaCl-rich fluid. But surprisingly, the response to cAMP agonists in the absence of amiloride showed substantial intersubject variability: cAMP stimulated fluid secretion across some epithelia, for others, cAMP stimulated fluid absorption. The explanation for the differences in response is uncertain, but we speculate that the magnitude of apical membrane Na+ conductance may modulate the direction of fluid transport in response to cAMP. We also found that airway epithelial secrete H+ and absorb K+ under basal conditions; both processes were inhibited by cAMP agonists. Because the H+/K(+)-ATPase inhibitor, SCH 28080, inhibited K+ absorption, an apical membrane H+/K(+)-ATPase may be at least partly responsible for K+ and H+ transport. However, H+/K+ exchange could not entirely account for the luminal acidification. The finding that cAMP agonists inhibited luminal acidification may be explained by the recent finding that cAMP increases apical HCO3- conductance. These results provide new insights into how the intact airway epithelium may modify the composition of the respiratory

  8. Two layer fluid stress analysis during airway closure

    NASA Astrophysics Data System (ADS)

    Tai, Cheng-Feng; Halpern, David; Grotberg, James

    2009-11-01

    The airways are lined with a film consisting of two immiscible liquids, a serous layer and a more viscous mucus layer. Due to a surface tension driven instability, a liquid plug can form that obstructs the passage of air along the airways provided the ratio of the film thickness to the tube radius is greater than a critical value ˜0.12. In this study, we assume that the liquid layers are Newtonian, the surface tension is constant at the interfaces and the air-core phase is passive. We solve the Navier-Stokes and continuity equations subject to interfacial stress conditions and kinematic boundary conditions numerically using a finite volume approach in conjunction with a sharp interface method for the interfaces. Surface tension, viscosity and film thickness ratios can be altered by disease, and their influence on the closure instability is investigated. Results show that the shear and normal stresses along the airway walls can be strong enough to injure airway epithelial cells. We acknowledge support from the National Institutes of Health grant number NIH HL85156.

  9. Airway wall stiffening increases peak wall shear stress: a fluid-structure interaction study in rigid and compliant airways.

    PubMed

    Xia, Guohua; Tawhai, Merryn H; Hoffman, Eric A; Lin, Ching-Long

    2010-05-01

    The airflow characteristics in a computed tomography (CT) based human airway bifurcation model with rigid and compliant walls are investigated numerically. An in-house three-dimensional (3D) fluid-structure interaction (FSI) method is applied to simulate the flow at different Reynolds numbers and airway wall stiffness. As the Reynolds number increases, the airway wall deformation increases and the secondary flow becomes more prominent. It is found that the peak wall shear stress on the rigid airway wall can be five times stronger than that on the compliant airway wall. When adding tethering forces to the model, we find that these forces, which produce larger airway deformation than without tethering, lead to more skewed velocity profiles in the lower branches and further reduced wall shear stresses via a larger airway lumen. This implies that pathologic changes in the lung such as fibrosis or remodeling of the airway wall-both of which can serve to restrain airway wall motion-have the potential to increase wall shear stress and thus can form a positive feed-back loop for the development of altered flow profiles and airway remodeling. These observations are particularly interesting as we try to understand flow and structural changes seen in, for instance, asthma, emphysema, cystic fibrosis, and interstitial lung disease.

  10. 77 FR 59391 - Delta Air Lines, Inc., Continental Airlines, Inc., JetBlue Airways Corporation, United Air Lines...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-27

    ...] Delta Air Lines, Inc., Continental Airlines, Inc., JetBlue Airways Corporation, United Air Lines, Inc...'s Procedural Rules Applicable to Oil Pipeline Proceedings, 18 CFR 343.1(a) and 343.2(c); Delta...

  11. Computational Fluid Dynamics Modeling of Bacillus anthracis Spore Deposition in Rabbit and Human Respiratory Airways

    SciTech Connect

    Kabilan, Senthil; Suffield, Sarah R.; Recknagle, Kurtis P.; Jacob, Rick E.; Einstein, Daniel R.; Kuprat, Andrew P.; Carson, James P.; Colby, Sean M.; Saunders, James H.; Hines, Stephanie; Teeguarden, Justin G.; Straub, Tim M.; Moe, M.; Taft, Sarah; Corley, Richard A.

    2016-09-30

    Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. The highest exposure concentration was modeled in the rabbit based upon prior acute inhalation studies. For comparison, human simulation was also conducted at the same concentration. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways compared to the human at the same air concentration of anthrax spores. As a result, higher particle deposition was predicted in the conducting airways and deep lung of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology.

  12. Validation of computational fluid dynamics methodology used for human upper airway flow simulations.

    PubMed

    Mylavarapu, Goutham; Murugappan, Shanmugam; Mihaescu, Mihai; Kalra, Maninder; Khosla, Sid; Gutmark, Ephraim

    2009-07-22

    An anatomically accurate human upper airway model was constructed from multiple magnetic resonance imaging axial scans. This model was used to conduct detailed Computational Fluid Dynamics (CFD) simulations during expiration, to investigate the fluid flow in the airway regions where obstruction could occur. An identical physical model of the same airway was built using stereo lithography. Pressure and velocity measurements were conducted in the physical model. Both simulations and experiments were performed at a peak expiratory flow rate of 200 L/min. Several different numerical approaches within the FLUENT commercial software framework were used in the simulations; unsteady Large Eddy Simulation (LES), steady Reynolds-Averaged Navier-Stokes (RANS) with two-equation turbulence models (i.e. k-epsilon, standard k-omega, and k-omega Shear Stress Transport (SST)) and with one-equation Spalart-Allmaras model. The CFD predictions of the average wall static pressures at different locations along the airway wall were favorably compared with the experimental data. Among all the approaches, standard k-omega turbulence model resulted in the best agreement with the static pressure measurements, with an average error of approximately 20% over all ports. The highest positive pressures were observed in the retroglossal regions below the epiglottis, while the lowest negative pressures were recorded in the retropalatal region. The latter is a result of the airflow acceleration in the narrow retropalatal region. The largest pressure drop was observed at the tip of the soft palate. This location has the smallest cross section of the airway. The good agreement between the computations and the experimental results suggest that CFD simulations can be used to accurately compute aerodynamic flow characteristics of the upper airway.

  13. Computational fluid dynamics modeling of Bacillus anthracis spore deposition in rabbit and human respiratory airways

    SciTech Connect

    Kabilan, S.; Suffield, S. R.; Recknagle, K. P.; Jacob, R. E.; Einstein, D. R.; Kuprat, A. P.; Carson, J. P.; Colby, S. M.; Saunders, J. H.; Hines, S. A.; Teeguarden, J. G.; Straub, T. M.; Moe, M.; Taft, S. C.; Corley, R. A.

    2016-09-01

    Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived respectively from computed tomography (CT) and µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation–exhalation breathing conditions using average species-specific minute volumes. Two different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the nasal sinus compared to the human at the same air concentration of anthrax spores. In contrast, higher spore deposition was predicted in the lower conducting airways of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology for deposition.

  14. Airway Microbiota in Bronchoalveolar Lavage Fluid from Clinically Well Infants with Cystic Fibrosis

    PubMed Central

    Wagner, Brandie D.; Williams, Cynthia B.; Stevens, Mark J.; Robertson, Charles E.; Welchlin, Cole W.; Moen, Catherine E.; Zemanick, Edith T.; Harris, Jonathan K.

    2016-01-01

    Background Upper airway cultures guide the identification and treatment of lung pathogens in infants with cystic fibrosis (CF); however, this may not fully reflect the spectrum of bacteria present in the lower airway. Our objectives were to characterize the airway microbiota using bronchoalveolar lavage fluid (BALF) from asymptomatic CF infants during the first year of life and to investigate the relationship between BALF microbiota, standard culture and clinical characteristics. Methods BALF, nasopharyngeal (NP) culture and infant pulmonary function testing data were collected at 6 months and one year of age during periods of clinical stability from infants diagnosed with CF by newborn screening. BALF was analyzed for total bacterial load by qPCR and for bacterial community composition by 16S ribosomal RNA sequencing. Clinical characteristics and standard BALF and NP culture results were recorded over five years of longitudinal follow-up. Results 12 BALF samples were collected from 8 infants with CF. Streptococcus, Burkholderia, Prevotella, Haemophilus, Porphyromonas, and Veillonella had the highest median relative abundance in infant CF BALF. Two of the 3 infants with repeat BALF had changes in their microbial communities over six months (Morisita-Horn diversity index 0.36, 0.38). Although there was excellent percent agreement between standard NP and BALF cultures, these techniques did not routinely detect all bacteria identified by sequencing. Conclusions BALF in asymptomatic CF infants contains complex microbiota, often missed by traditional culture of airway secretions. Anaerobic bacteria are commonly found in the lower airways of CF infants. PMID:27930727

  15. Desiccation and hypertonicity of the airway surface fluid and thermally induced asthma.

    PubMed

    Kotaru, Chakradhar; Hejal, Rana B; Finigan, J H; Coreno, Albert J; Skowronski, Mary E; Brianas, Lori; McFadden, E R

    2003-01-01

    To determine whether drying and hypertonicity of the airway surface fluid (ASF) are involved in thermally induced asthma, nine subjects performed isocapnic hyperventilation (HV) (minute ventilation 62.2 +/- 8.3 l/min) of frigid air (-8.9 +/- 3.3 degrees C) while periciliary fluid was collected endoscopically from the trachea. Osmolality was measured by freezing-point depression. The baseline 1-s forced expiratory volume was 73 +/- 4% of predicted and fell 26.4% 10 min postchallenge (P > 0.0001). The volume of ASF collected was 11.0 +/- 2.2 microl at rest and remained constant during and after HV as the airways narrowed (HV 10.6 +/- 1.9, recovery 6.5 +/- 1.7 microl; P = 0.18). The osmolality also remained stable throughout (rest 336 +/- 16, HV 339 +/- 16, and recovery 352 +/- 19 mosmol/kgH(2)O, P = 0.76). These data demonstrate that airway desiccation and hypertonicity of the ASF do not develop during hyperpnea in asthma; therefore, other mechanisms must cause exercise- and hyperventilation-induced airflow limitation.

  16. Airflow behavior changes in upper airway caused by different head and neck positions: Comparison by computational fluid dynamics.

    PubMed

    Wei, Wei; Huang, Shi-Wei; Chen, Lian-Hua; Qi, Yang; Qiu, Yi-Min; Li, Shi-Tong

    2017-02-08

    The feasibility of computational fluid dynamics (CFD) to evaluate airflow characteristics in different head and neck positions has not been established. This study compared the changes in volume and airflow behavior of the upper airway by CFD simulation to predict the influence of anatomical and physiological airway changes due to different head-neck positions on mechanical ventilation. One awake volunteer with no risk of difficult airway underwent computed tomography in neutral position, extension position (both head and neck extended), and sniffing position (head extended and neck flexed). Three-dimensional airway models of the upper airway were reconstructed. The total volume (V) and narrowest area (Amin) of the airway models were measured. CFD simulation with an Spalart-Allmaras model was performed to characterize airflow behavior in neutral, extension, and sniffing positions of closed-mouth and open-mouth ventilation. The comparison result for V was neutral airway patency by increasing airway volume and decreasing airway resistance, suggesting that sniffing position may be the optimal choice for mask ventilation.

  17. Moving contact line of a volatile fluid.

    PubMed

    Janeček, V; Andreotti, B; Pražák, D; Bárta, T; Nikolayev, V S

    2013-12-01

    Interfacial flows close to a moving contact line are inherently multiscale. The shape of the interface and the flow at meso- and macroscopic scales inherit an apparent interface slope and a regularization length, both named after Voinov, from the microscopic inner region. Here, we solve the inner problem associated with the contact line motion for a volatile fluid at equilibrium with its vapor. The evaporation or condensation flux is then controlled by the dependence of the saturation temperature on interface curvature-the so-called Kelvin effect. We derive the dependencies of the Voinov angle and of the Voinov length as functions of the parameters of the problem. We then identify the conditions under which the Kelvin effect is indeed the mechanism regularizing the contact line motion.

  18. AMPK agonists ameliorate sodium and fluid transport and inflammation in cystic fibrosis airway epithelial cells.

    PubMed

    Myerburg, Michael M; King, J Darwin; Oyster, Nicholas M; Fitch, Adam C; Magill, Amy; Baty, Catherine J; Watkins, Simon C; Kolls, Jay K; Pilewski, Joseph M; Hallows, Kenneth R

    2010-06-01

    The metabolic sensor AMP-activated kinase (AMPK) inhibits both the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) Cl(-) channel and epithelial Na(+) channel (ENaC), and may inhibit secretion of proinflammatory cytokines in epithelia. Here we have tested in primary polarized CF and non-CF human bronchial epithelial (HBE) cells the effects of AMPK activators, metformin and 5-aminoimidazole-4-carboxamide-1-beta-D-riboside (AICAR), on various parameters that contribute to CF lung disease: ENaC-dependent short-circuit currents (I(sc)), airway surface liquid (ASL) height, and proinflammatory cytokine secretion. AMPK activation after overnight treatment with either metformin (2-5 mM) or AICAR (1 mM) substantially inhibited ENaC-dependent I(sc) in both CF and non-CF airway cultures. Live-cell confocal images acquired 60 minutes after apical addition of Texas Red-dextran-containing fluid revealed significantly greater ASL heights after AICAR and metformin treatment relative to controls, suggesting that AMPK-dependent ENaC inhibition slows apical fluid reabsorption. Both metformin and AICAR decreased secretion of various proinflammatory cytokines, both with and without prior LPS stimulation. Finally, prolonged exposure to more physiologically relevant concentrations of metformin (0.03-1 mM) inhibited ENaC currents and decreased proinflammatory cytokine levels in CF HBE cells in a dose-dependent manner. These findings suggest that novel therapies to activate AMPK in the CF airway may be beneficial by blunting excessive sodium and ASL absorption and by reducing excessive airway inflammation, which are major contributors to CF lung disease.

  19. AMPK Agonists Ameliorate Sodium and Fluid Transport and Inflammation in Cystic Fibrosis Airway Epithelial Cells

    PubMed Central

    Myerburg, Michael M.; King, J Darwin; Oyster, Nicholas M.; Fitch, Adam C.; Magill, Amy; Baty, Catherine J.; Watkins, Simon C.; Kolls, Jay K.; Pilewski, Joseph M.; Hallows, Kenneth R.

    2010-01-01

    The metabolic sensor AMP-activated kinase (AMPK) inhibits both the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) Cl− channel and epithelial Na+ channel (ENaC), and may inhibit secretion of proinflammatory cytokines in epithelia. Here we have tested in primary polarized CF and non-CF human bronchial epithelial (HBE) cells the effects of AMPK activators, metformin and 5-aminoimidazole-4-carboxamide-1-β-D-riboside (AICAR), on various parameters that contribute to CF lung disease: ENaC-dependent short-circuit currents (Isc), airway surface liquid (ASL) height, and proinflammatory cytokine secretion. AMPK activation after overnight treatment with either metformin (2–5 mM) or AICAR (1 mM) substantially inhibited ENaC-dependent Isc in both CF and non-CF airway cultures. Live-cell confocal images acquired 60 minutes after apical addition of Texas Red–dextran-containing fluid revealed significantly greater ASL heights after AICAR and metformin treatment relative to controls, suggesting that AMPK-dependent ENaC inhibition slows apical fluid reabsorption. Both metformin and AICAR decreased secretion of various proinflammatory cytokines, both with and without prior LPS stimulation. Finally, prolonged exposure to more physiologically relevant concentrations of metformin (0.03–1 mM) inhibited ENaC currents and decreased proinflammatory cytokine levels in CF HBE cells in a dose-dependent manner. These findings suggest that novel therapies to activate AMPK in the CF airway may be beneficial by blunting excessive sodium and ASL absorption and by reducing excessive airway inflammation, which are major contributors to CF lung disease. PMID:19617399

  20. Creation and characterization of an airway epithelial cell line for stable expression of CFTR variants

    PubMed Central

    Gottschalk, Laura B.; Vecchio-Pagan, Briana; Sharma, Neeraj; Han, Sangwoo T.; Franca, Arianna; Wohler, Elizabeth S.; Batista, Denise A.S.; Goff, Loyal A.; Cutting, Garry R.

    2016-01-01

    Background Analysis of the functional consequences and treatment response of rare CFTR variants is challenging due to the limited availability of primary airways cells. Methods A Flp recombination target (FRT) site for stable expression of CFTR was incorporated into an immortalized CF bronchial epithelial cell line (CFBE41o−). CFTR cDNA was integrated into the FRT site. Expression was evaluated by western blotting and confocal microscopy and function measured by short circuit current. RNA sequencing was used to compare the transcriptional profile of the resulting CF8Flp cell line to primary cells and tissues. Results Functional CFTR was expressed from integrated cDNA at the FRT site of the CF8Flp cell line at levels comparable to that seen in native airway cells. CF8Flp cells expressing WT-CFTR have a stable transcriptome comparable to that of primary cultured airway epithelial cells, including genes that play key roles in CFTR pathways. Conclusion CF8Flp cells provide a viable substitute for primary CF airway cells for the analysis of CFTR variants in a native context. PMID:26694805

  1. Inhibiting lung lining fluid glutathione metabolism with GGsTop as a novel treatment for asthma.

    PubMed

    Tuzova, Marina; Jean, Jyh-Chang; Hughey, Rebecca P; Brown, Lou Ann S; Cruikshank, William W; Hiratake, Jun; Joyce-Brady, Martin

    2014-01-01

    Asthma is characterized by airway inflammation. Inflammation is associated with oxidant stress. Airway epithelial cells are shielded from this stress by a thin layer of lung lining fluid (LLF) which contains an abundance of the antioxidant glutathione. LLF glutathione metabolism is regulated by γ-glutamyl transferase (GGT). Loss of LLF GGT activity in the mutant GGT(enu1) mouse causes an increase in baseline LLF glutathione content which is magnified in an IL-13 model of allergic airway inflammation and protective against asthma. Normal mice are susceptible to asthma in this model but can be protected with acivicin, a GGT inhibitor. GGT is a target to treat asthma but acivicin toxicity limits clinical use. GGsTop is a novel GGT inhibitor. GGsTop inhibits LLF GGT activity only when delivered through the airway. In the IL-13 model, mice treated with IL-13 and GGsTop exhibit a lung inflammatory response similar to that of mice treated with IL-13 alone. But mice treated with IL-13 and GGsTop show attenuation of methacholine-stimulated airway hyper-reactivity, inhibition of Muc5ac and Muc5b gene induction, decreased airway epithelial cell mucous accumulation and a fourfold increase in LLF glutathione content compared to mice treated with IL-13 alone. Mice treated with GGsTop alone are no different from that of mice treated with saline alone, and show no signs of toxicity. GGsTop could represent a valuable pharmacological tool to inhibit LLF GGT activity in pulmonary disease models. The associated increase in LLF glutathione can protect lung airway epithelial cells against oxidant injury associated with inflammation in asthma.

  2. Computational Fluid Dynamic Analysis of the Posterior Airway Space After Maxillomandibular Advancement For Obstructive Sleep Apnea Syndrome

    PubMed Central

    Sittitavornwong, Somsak; Waite, Peter D.; Shih, Alan M.; Cheng, Gary C.; Koomullil, Roy; Ito, Yasushi; Cure, Joel K; Harding, Susan M.; Litaker, Mark

    2013-01-01

    Purpose Evaluate the soft tissue change of the upper airway after maxillomandibular advancement (MMA) by computational fluid dynamics (CFD). Materials and Methods Eight OSAS patients who required MMA were recruited into this study. All participants had pre- and post-operative computed tomography (CT) and underwent MMA by a single oral and maxillofacial surgeon. Upper airway CT data sets for these 8 participants were created with high-fidelity 3-D numerical models for computational fluid dynamics (CFD). The 3-D models were simulated and analyzed to study how changes in airway anatomy affects pressure effort required for normal breathing. Airway dimensions, skeletal changes, Apnea-Hypopnea Index (AHI), and pressure efforts of pre- and post-operative 3-D models were compared and correlations interpreted. Results After MMA, laminar and turbulent air flow was significantly decreased at every level of the airway. The cross-sectional areas at the soft palate and tongue base were significantly increased. Conclusions This study shows that MMA increases airway dimensions by the increasing the occipital base (Base) - pogonion (Pg) distance. An increase of the Base-Pg distance showed a significant correlation with an AHI improvement and a decreased pressure effort of the upper airway. Decreasing the pressure effort will decrease the breathing workload. This improves the condition of OSAS. PMID:23642544

  3. Free DNA in Cystic Fibrosis Airway Fluids Correlates with Airflow Obstruction

    PubMed Central

    Marcos, Veronica; Zhou-Suckow, Zhe; Önder Yildirim, Ali; Bohla, Alexander; Hector, Andreas; Vitkov, Ljubomir; Krautgartner, Wolf Dietrich; Stoiber, Walter; Griese, Matthias; Eickelberg, Oliver; Mall, Marcus A.; Hartl, Dominik

    2015-01-01

    Chronic obstructive lung disease determines morbidity and mortality of patients with cystic fibrosis (CF). CF airways are characterized by a nonresolving neutrophilic inflammation. After pathogen contact or prolonged activation, neutrophils release DNA fibres decorated with antimicrobial proteins, forming neutrophil extracellular traps (NETs). NETs have been described to act in a beneficial way for innate host defense by bactericidal, fungicidal, and virucidal actions. On the other hand, excessive NET formation has been linked to the pathogenesis of autoinflammatory and autoimmune disease conditions. We quantified free DNA structures characteristic of NETs in airway fluids of CF patients and a mouse model with CF-like lung disease. Free DNA levels correlated with airflow obstruction, fungal colonization, and CXC chemokine levels in CF patients and CF-like mice. When viewed in combination, our results demonstrate that neutrophilic inflammation in CF airways is associated with abundant free DNA characteristic for NETosis, and suggest that free DNA may be implicated in lung function decline in patients with CF. PMID:25918476

  4. Numerical simulation of soft palate movement and airflow in human upper airway by fluid-structure interaction method

    NASA Astrophysics Data System (ADS)

    Sun, Xiuzhen; Yu, Chi; Wang, Yuefang; Liu, Yingxi

    2007-08-01

    In this paper, the authors present airflow field characteristics of human upper airway and soft palate movement attitude during breathing. On the basis of the data taken from the spiral computerized tomography images of a healthy person and a patient with Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS), three-dimensional models of upper airway cavity and soft palate are reconstructed by the method of surface rendering. Numerical simulation is performed for airflow in the upper airway and displacement of soft palate by fluid-structure interaction analysis. The reconstructed three-dimensional models precisely preserve the original configuration of upper airways and soft palate. The results of the pressure and velocity distributions in the airflow field are quantitatively determined, and the displacement of soft palate is presented. Pressure gradients of airway are lower for the healthy person and the airflow distribution is quite uniform in the case of free breathing. However, the OSAHS patient remarkably escalates both the pressure and velocity in the upper airway, and causes higher displacement of the soft palate. The present study is useful in revealing pathogenesis and quantitative mutual relationship between configuration and function of the upper airway as well as in diagnosing diseases related to anatomical structure and function of the upper airway.

  5. Staphylococcus aureus Infection Reduces Nutrition Uptake and Nucleotide Biosynthesis in a Human Airway Epithelial Cell Line

    PubMed Central

    Gierok, Philipp; Harms, Manuela; Methling, Karen; Hochgräfe, Falko; Lalk, Michael

    2016-01-01

    The Gram positive opportunistic human pathogen Staphylococcus aureus induces a variety of diseases including pneumonia. S. aureus is the second most isolated pathogen in cystic fibrosis patients and accounts for a large proportion of nosocomial pneumonia. Inside the lung, the human airway epithelium is the first line in defence with regard to microbial recognition and clearance as well as regulation of the immune response. The metabolic host response is, however, yet unknown. To address the question of whether the infection alters the metabolome and metabolic activity of airway epithelial cells, we used a metabolomics approach. The nutrition uptake by the human airway epithelial cell line A549 was monitored over time by proton magnetic resonance spectroscopy (1H-NMR) and the intracellular metabolic fingerprints were investigated by gas chromatography and high performance liquid chromatography (GC-MS) and (HPLC-MS). To test the metabolic activity of the host cells, glutamine analogues and labelled precursors were applied after the infection. We found that A549 cells restrict uptake of essential nutrients from the medium after S. aureus infection. Moreover, the infection led to a shutdown of the purine and pyrimidine synthesis in the A549 host cell, whereas other metabolic routes such as the hexosamine biosynthesis pathway remained active. In summary, our data show that the infection with S. aureus negatively affects growth, alters the metabolic composition and specifically impacts the de novo nucleotide biosynthesis in this human airway epithelial cell model. PMID:27834866

  6. Contribution of rostral fluid shift to intrathoracic airway narrowing in asthma.

    PubMed

    Bhatawadekar, Swati A; Inman, Mark D; Fredberg, Jeffrey J; Tarlo, Susan M; Lyons, Owen D; Keller, Gabriel; Yadollahi, Azadeh

    2017-04-01

    In asthma, supine posture and sleep increase intrathoracic airway narrowing. When humans are supine, because of gravity fluid moves out of the legs and accumulates in the thorax. We hypothesized that fluid shifting out of the legs into the thorax contributes to the intrathoracic airway narrowing in asthma. Healthy and asthmatic subjects sat for 30 min and then lay supine for 30 min. To simulate overnight fluid shift, supine subjects were randomized to receive increased fluid shift out of the legs with lower body positive pressure (LBPP, 10-30 min) or none (control) and crossed over. With forced oscillation at 5 Hz, respiratory resistance (R5) and reactance (X5, reflecting respiratory stiffness) and with bioelectrical impedance, leg and thoracic fluid volumes (LFV, TFV) were measured while subjects were seated and supine (0 min, 30 min). In 17 healthy subjects (age: 51.8 ± 10.9 yr, FEV1/FVC z score: -0.4 ± 1.1), changes in R5 and X5 were similar in both study arms (P > 0.05). In 15 asthmatic subjects (58.5 ± 9.8 yr, -2.1 ± 1.3), R5 and X5 increased in both arms (ΔR5: 0.6 ± 0.9 vs. 1.4 ± 0.8 cmH2O·l(-1)·s(-1), ΔX5: 0.3 ± 0.7 vs. 1.1 ± 0.9 cmH2O·l(-1)·s(-1)). The increases in R5 and X5 were 2.3 and 3.7 times larger with LBPP than control, however (P = 0.008, P = 0.006). The main predictor of increases in R5 with LBPP was increases in TFV (r = 0.73, P = 0.002). In asthmatic subjects, the magnitude of increases in X5 with LBPP was comparable to that with posture change from sitting to supine (1.1 ± 0.9 vs. 1.4 ± 0.9 cmH2O·l(-1)·s(-1), P = 0.32). We conclude that in asthmatic subjects fluid shifting from the legs to the thorax while supine contributed to increases in the respiratory resistance and stiffness.NEW & NOTEWORTHY In supine asthmatic subjects, application of positive pressure to the lower body caused appreciable increases in respiratory system resistance and stiffness. Moreover, these changes in respiratory mechanics correlated positively with

  7. Comparison of Active Drug Concentrations in the Pulmonary Epithelial Lining Fluid and Interstitial Fluid of Calves Injected with Enrofloxacin, Florfenicol, Ceftiofur, or Tulathromycin.

    PubMed

    Foster, Derek M; Martin, Luke G; Papich, Mark G

    2016-01-01

    Bacterial pneumonia is the most common reason for parenteral antimicrobial administration to beef cattle in the United States. Yet there is little information describing the antimicrobial concentrations at the site of action. The objective of this study was to compare the active drug concentrations in the pulmonary epithelial lining fluid and interstitial fluid of four antimicrobials commonly used in cattle. After injection, plasma, interstitial fluid, and pulmonary epithelial lining fluid concentrations and protein binding were measured to determine the plasma pharmacokinetics of each drug. A cross-over design with six calves per drug was used. Following sample collection and drug analysis, pharmacokinetic calculations were performed. For enrofloxacin and metabolite ciprofloxacin, the interstitial fluid concentration was 52% and 78% of the plasma concentration, while pulmonary fluid concentrations was 24% and 40% of the plasma concentration, respectively. The pulmonary concentrations (enrofloxacin + ciprofloxacin combined) exceeded the MIC90 of 0.06 μg/mL at 48 hours after administration. For florfenicol, the interstitial fluid concentration was almost 98% of the plasma concentration, and the pulmonary concentrations were over 200% of the plasma concentrations, exceeding the breakpoint (≤ 2 μg/mL), and the MIC90 for Mannheimia haemolytica (1.0 μg/mL) for the duration of the study. For ceftiofur, penetration to the interstitial fluid was only 5% of the plasma concentration. Pulmonary epithelial lining fluid concentration represented 40% of the plasma concentration. Airway concentrations exceeded the MIC breakpoint for susceptible respiratory pathogens (≤ 2 μg/mL) for a short time at 48 hours after administration. The plasma and interstitial fluid concentrations of tulathromcyin were lower than the concentrations in pulmonary fluid throughout the study. The bronchial concentrations were higher than the plasma or interstitial concentrations, with over 900

  8. Comparison of Active Drug Concentrations in the Pulmonary Epithelial Lining Fluid and Interstitial Fluid of Calves Injected with Enrofloxacin, Florfenicol, Ceftiofur, or Tulathromycin

    PubMed Central

    Foster, Derek M.; Martin, Luke G.; Papich, Mark G.

    2016-01-01

    Bacterial pneumonia is the most common reason for parenteral antimicrobial administration to beef cattle in the United States. Yet there is little information describing the antimicrobial concentrations at the site of action. The objective of this study was to compare the active drug concentrations in the pulmonary epithelial lining fluid and interstitial fluid of four antimicrobials commonly used in cattle. After injection, plasma, interstitial fluid, and pulmonary epithelial lining fluid concentrations and protein binding were measured to determine the plasma pharmacokinetics of each drug. A cross-over design with six calves per drug was used. Following sample collection and drug analysis, pharmacokinetic calculations were performed. For enrofloxacin and metabolite ciprofloxacin, the interstitial fluid concentration was 52% and 78% of the plasma concentration, while pulmonary fluid concentrations was 24% and 40% of the plasma concentration, respectively. The pulmonary concentrations (enrofloxacin + ciprofloxacin combined) exceeded the MIC90 of 0.06 μg/mL at 48 hours after administration. For florfenicol, the interstitial fluid concentration was almost 98% of the plasma concentration, and the pulmonary concentrations were over 200% of the plasma concentrations, exceeding the breakpoint (≤ 2 μg/mL), and the MIC90 for Mannheimia haemolytica (1.0 μg/mL) for the duration of the study. For ceftiofur, penetration to the interstitial fluid was only 5% of the plasma concentration. Pulmonary epithelial lining fluid concentration represented 40% of the plasma concentration. Airway concentrations exceeded the MIC breakpoint for susceptible respiratory pathogens (≤ 2 μg/mL) for a short time at 48 hours after administration. The plasma and interstitial fluid concentrations of tulathromcyin were lower than the concentrations in pulmonary fluid throughout the study. The bronchial concentrations were higher than the plasma or interstitial concentrations, with over 900

  9. Computational fluid dynamics for the assessment of upper airway response to oral appliance treatment in obstructive sleep apnea.

    PubMed

    Zhao, Moyin; Barber, Tracie; Cistulli, Peter; Sutherland, Kate; Rosengarten, Gary

    2013-01-04

    Mandibular advancement splints (MAS), which protrude the lower jaw during sleep, are recognized as an effective treatment for obstructive sleep apnea (OSA) through their action of enlarging the airway space and preventing upper airway collapse. However a clinical challenge remains in preselecting patients who will respond to this form of therapy. We aimed to use computational fluid dynamics (CFD) in conjunction with patient upper airway scans to understand the upper airway response to treatment. Seven OSA patients were selected based on their varied treatment response (assessed by the apnea-hypopnoea index (AHI) on overnight polysomnography). Anatomically-accurate upper airway computational models were reconstructed from magnetic resonance images with and without MAS. CFD simulations of airflow were performed at the maximum flow rate during inspiration. A physical airway model of one patient was fabricated and the CFD method was validated against the pressure profile on the physical model. The CFD analysis clearly demonstrated effects of MAS treatment on the patient's UA airflow patterns. The CFD results indicated the lowest pressure often occurs close to the soft palate and the base of the tongue. Percentage change in the square root of airway pressure gradient with MAS (Δsqrt(ΔP(Max))%) was found to have the strongest relationship with treatment response (ΔAHI%) in correlation analysis (r=0.976, p=0.000167). Changes in upper airway geometry alone did not significantly correlate with treatment response. We provide further support of CFD as a potential tool for prediction of treatment outcome with MAS in OSA patients without requiring patient specific flow rates.

  10. High resolution lung airway cast segmentation with proper topology suitable for computational fluid dynamic simulations.

    PubMed

    Carson, James P; Einstein, Daniel R; Minard, Kevin R; Fanucchi, Michelle V; Wallis, Christopher D; Corley, Richard A

    2010-10-01

    Developing detailed lung airway models is an important step towards understanding the respiratory system. While modern imaging and airway casting approaches have dramatically improved the potential detail of such models, challenges have arisen in image processing as the demand for greater detail pushes the image processing approaches to their limits. Airway segmentations with proper topology have neither loops nor invalid voxel-to-voxel connections. Here we describe a new technique for segmenting airways with proper topology and apply the approach to an image volume generated by magnetic resonance imaging of a silicone cast created from an excised monkey lung.

  11. Fluid-Structure Analysis of Opening Phenomena in a Collapsible Airway

    NASA Astrophysics Data System (ADS)

    Ghadiali, Samir N.; Banks, Julie; Swarts, J. Douglas

    2003-11-01

    Several physiological functions require the opening of collapsed respiratory airways. For example, the Eustachian tube (ET), which connects the nasopharynx with the middle ear (ME), must be periodically opened to maintain ambient ME pressures. These openings normally occur during swallowing when muscle contraction deforms the surrounding soft tissue. The inability to open the ET results in the most common and costly ear disease in children, Otitis Media. Although tissue-based treatments have been purposed, the influence of the various tissue mechanical properties on flow phenomena has not been investigated. A computational model of ET opening was developed using in-vivo structural data to investigate these fluid-structure interactions. This model accounts for both tissue deformation and the resulting airflow in a non-circular conduit. Results indicate that ET opening is more sensitive to the applied muscle forces than elastic tissue properties. These models have therefore identified how different tissue elements alter ET opening phenomena, which elements should be targeted for treatment and the optimal mechanical properties of these tissue constructs. Research supported by NIH grant DC005345.

  12. Frenkel line and solubility maximum in supercritical fluids.

    PubMed

    Yang, C; Brazhkin, V V; Dove, M T; Trachenko, K

    2015-01-01

    A new dynamic line, the Frenkel line, has recently been proposed to separate the supercritical state into rigid-liquid and nonrigid gaslike fluid. The location of the Frenkel line on the phase diagram is unknown for real fluids. Here we map the Frenkel line for three important systems: CO(2), H(2)O, and CH(4). This provides an important demarcation on the phase diagram of these systems, the demarcation that separates two distinct physical states with liquidlike and gaslike properties. We find that the Frenkel line can have a similar trend as the melting line above the critical pressure. Moreover, we discuss the relationship between unexplained solubility maxima and Frenkel line, and we propose that the Frenkel line corresponds to the optimal conditions for solubility.

  13. Computer simulation of fluid flow and particle diffusion within human upper airways system

    NASA Astrophysics Data System (ADS)

    Yu, Genqiang

    Computer simulation of air flow and particle transport phenomenon within the human upper respiratory system has important applications in inhalation toxicology, aerosol medicine delivery as well as basic medical science research. A three-dimensional physiologically realistic computer model of the human upper respiratory tract has been developed. The respiratory tract consists of nasal airways, oral airways, laryngeal airways and the first two generations of tracheobronchial airways. A rubber mold of the airway system was first cast from the impression of the human head airway teaching model. The rubber cast was sliced into 2mm-apart parallel pieces. The cross-sectional geometry of the sliced rubber pieces were then scanned into the computer to be stored as the digital information. A body-fitted three-dimensional curvilinear grid system and a multi-block method have been employed to mimic the complex head airway. A total of 280,000 grid node was used for the entire respiratory tract. Air flow patterns within the human upper airways are investigated by numerically solving the corresponding full Navier-Stokes equations using the flow simulation software CFX-F3D. Effects of human breath patterns on respiratory flow distribution and ultrafine particle deposition are investigated. Results of ultrafine particle deposition generated by computer simulation show reasonable agreements with the experimental measurements.

  14. Influence of breathing route on upper airway lining liquid surface tension in humans

    PubMed Central

    Verma, Manisha; Seto-Poon, Margaret; Wheatley, John R; Amis, Terence C; Kirkness, Jason P

    2006-01-01

    We have recently demonstrated that the severity of sleep-disordered breathing in obstructive sleep apnoea hypopnoea syndrome (OSAHS) can be reduced by lowering the surface tension (γ) of the upper airway lining liquid (UAL). Morning xerostomia (related to oral breathing during sleep) is reported by most OSAHS patients. In the present study we examine relationships between breathing route, oral mucosal ‘wetness’ and the γ of UAL. We studied eight healthy subjects (age, 25 ± 5 years [mean ± s.d.]; body-mass index, 23 ± 2 kg m−2) during a 120 min challenge of both nasal-only breathing (mouth taped) and oral-only breathing (nose clip), each on a separate day (randomized). Both oral mucosal ‘wetness’ (5 s contact gravimetric absorbent paper strip method) and the γ (‘pull-off’ force technique) of 0.2 μl samples of UAL obtained from the posterior pharyngeal wall were measured at 15 min intervals (mouth tape removed and replaced as required). Upper airway mucosal ‘wetness’ increased during 120 min of nasal breathing from 4.0 ± 0.4 (mean ± s.e.m.) to 5.3 ± 0.3 μl (5 s)−1 but decreased from 4.5 ± 0.4 to 0.1 ± 0.2 μl (5 s)−1 with oral breathing (both P < 0.001, repeated-measures ANOVA, Tukey's multiple comparison test, post hoc test). Concurrently, the γ of UAL decreased from 59.3 ± 2.2 to 51.8 ± 0.98 mN m−1 with nasal breathing but increased from 64.4 ± 2.7 to 77.4 ± 1.1 mN m−1 with oral breathing (P < 0.001). For the group and all conditions studied, γ of UAL values strongly correlated with upper airway mucosal ‘wetness’ (correlation coefficient, r2=−0.34, P < 0.001; linear regression). We conclude that oral breathing increases and nasal breathing decreases the γ of UAL in healthy subjects during wakefulness. We speculate that nasal breathing in OSAHS patients during sleep may promote a low γ of UAL that may contribute to reducing the severity of sleep-disordered breathing. PMID:16690717

  15. State space representations of distributed fluid line dynamics

    NASA Technical Reports Server (NTRS)

    Yao, H.; Goodson, R. E.; Leonard, R. G.

    1974-01-01

    The purpose of this paper is to demonstrate the convenience of using a systematic straight forward procedure to obtain meaningful dynamic information for a class of complex distributed parameter fluid line networks. System transients in the time domain are determined by means of state space techniques. Digital computer implementation yields a simple but consistent way of obtaining overall system time solutions. A step-by-step analysis procedure flow chart is shown in Appendix I which illustrates the basic approach for modeling, approximating and selecting digital techniques for simulating the dynamic response of fluid line systems.

  16. Static and dynamic response of a fluid-fluid interface to electric point and line charge

    SciTech Connect

    Ellingsen, Simen A Brevik, Iver

    2012-12-15

    We consider the behavior of a dielectric fluid-fluid interface in the presence of a strong electric field from a point charge and line charge, respectively, both statically and, in the latter case, dynamically. The fluid surface is elevated above its undisturbed level until balance is reached between the electromagnetic lifting force, gravity and surface tension. We derive ordinary differential equations for the shape of the fluid-fluid interface which are solved numerically with standard means, demonstrating how the elevation depends on field strength and surface tension coefficient. In the dynamic case of a moving line charge, the surface of an inviscid liquid-liquid interface is left to oscillate behind the moving charge after it has been lifted against the force of gravity. We show how the wavelength of the oscillations depends on the relative strength of the forces of gravity and inertia, whereas the amplitude of the oscillations is a nontrivial function of the velocity at which the line charge moves. - Highlights: Black-Right-Pointing-Pointer Fluid surface elevation analyzed near a static point and line charge. Black-Right-Pointing-Pointer Elevation determined by interaction of gravity, dielectric force and surface tension. Black-Right-Pointing-Pointer Dynamic equation of motion for the moving line charge is derived. Black-Right-Pointing-Pointer Surface waves behind moving charge calculated and analysed for different velocities.

  17. Effect of Nasal Obstruction on Continuous Positive Airway Pressure Treatment: Computational Fluid Dynamics Analyses

    PubMed Central

    Wakayama, Tadashi; Suzuki, Masaaki; Tanuma, Tadashi

    2016-01-01

    Objective Nasal obstruction is a common problem in continuous positive airway pressure (CPAP) therapy for obstructive sleep apnea and limits treatment compliance. The purpose of this study is to model the effects of nasal obstruction on airflow parameters under CPAP using computational fluid dynamics (CFD), and to clarify quantitatively the relation between airflow velocity and pressure loss coefficient in subjects with and without nasal obstruction. Methods We conducted an observational cross-sectional study of 16 Japanese adult subjects, of whom 9 had nasal obstruction and 7 did not (control group). Three-dimensional reconstructed models of the nasal cavity and nasopharynx with a CPAP mask fitted to the nostrils were created from each subject’s CT scans. The digital models were meshed with tetrahedral cells and stereolithography formats were created. CPAP airflow simulations were conducted using CFD software. Airflow streamlines and velocity contours in the nasal cavities and nasopharynx were compared between groups. Simulation models were confirmed to agree with actual measurements of nasal flow rate and with pressure and flow rate in the CPAP machine. Results Under 10 cmH2O CPAP, average maximum airflow velocity during inspiration was 17.6 ± 5.6 m/s in the nasal obstruction group but only 11.8 ± 1.4 m/s in the control group. The average pressure drop in the nasopharynx relative to inlet static pressure was 2.44 ± 1.41 cmH2O in the nasal obstruction group but only 1.17 ± 0.29 cmH2O in the control group. The nasal obstruction and control groups were clearly separated by a velocity threshold of 13.5 m/s, and pressure loss coefficient threshold of approximately 10.0. In contrast, there was no significant difference in expiratory pressure in the nasopharynx between the groups. Conclusion This is the first CFD analysis of the effect of nasal obstruction on CPAP treatment. A strong correlation between the inspiratory pressure loss coefficient and maximum airflow

  18. Traction in elastohydrodynamic line contacts for two synthesized hydrocarbon fluids

    NASA Technical Reports Server (NTRS)

    Trachman, E. G.; Cheng, H. S.

    1973-01-01

    The paper describes the disk machine designed and constructed for the investigation of the traction in elastohydrodynamic line contacts for two synthesized hydrocarbon fluids. The results of this experimental study are presented and compared with the theoretical predictions of traction according to the thermal and non-Newtonian theory recently presented by the authors.

  19. Simulation of upper airway occlusion without and with mandibular advancement in obstructive sleep apnea using fluid-structure interaction.

    PubMed

    Zhao, Moyin; Barber, Tracie; Cistulli, Peter A; Sutherland, Kate; Rosengarten, Gary

    2013-10-18

    Obstructive Sleep Apnea (OSA) is a common sleep disorder characterized by repetitive collapse of the upper airway (UA). One treatment option is a mandibular advancement splint (MAS) which protrudes the lower jaw, stabilizing the airway. However not all patients respond to MAS therapy and individual effects are not well understood. Simulations of airway behavior may represent a non-invasive means to understand OSA and individual treatment responses. Our aims were (1) to analyze UA occlusion and flow dynamics in OSA using the fluid structure interaction (FSI) method, and (2) to observe changes with MAS. Magnetic resonance imaging (MRI) scans were obtained at baseline and with MAS in a known treatment responder. Computational models of the patients' UA geometry were reconstructed for both conditions. The FSI model demonstrated full collapse of the UA (maximum 5.83mm) pre-treatment (without MAS). The UA collapse was located at the oropharynx with low oropharyngeal pressure (-51.18Pa to -39.08Pa) induced by velopharyngeal jet flow (maximum 10.0m/s). By comparison, simulation results from the UA with MAS, showed smaller deformation (maximum 2.03mm), matching the known clinical response. Our FSI modeling method was validated by physical experiment on a 1:1 flexible UA model fabricated using 3D steriolithography. This is the first study of airflow dynamics in a deformable UA structure and inspiratory flow. These results expand on previous UA models using computational fluid dynamics (CFD), and lay a platform for application of computational models to study biomechanical properties of the UA in the pathogenesis and treatment of OSA.

  20. Numerical and experimental study of expiratory flow in the case of major upper airway obstructions with fluid structure interaction

    NASA Astrophysics Data System (ADS)

    Chouly, F.; van Hirtum, A.; Lagrée, P.-Y.; Pelorson, X.; Payan, Y.

    2008-02-01

    This study deals with the numerical prediction and experimental description of the flow-induced deformation in a rapidly convergent divergent geometry which stands for a simplified tongue, in interaction with an expiratory airflow. An original in vitro experimental model is proposed, which allows measurement of the deformation of the artificial tongue, in condition of major initial airway obstruction. The experimental model accounts for asymmetries in geometry and tissue properties which are two major physiological upper airway characteristics. The numerical method for prediction of the fluid structure interaction is described. The theory of linear elasticity in small deformations has been chosen to compute the mechanical behaviour of the tongue. The main features of the flow are taken into account using a boundary layer theory. The overall numerical method entails finite element solving of the solid problem and finite differences solving of the fluid problem. First, the numerical method predicts the deformation of the tongue with an overall error of the order of 20%, which can be seen as a preliminary successful validation of the theory and simulations. Moreover, expiratory flow limitation is predicted in this configuration. As a result, both the physical and numerical models could be useful to understand this phenomenon reported in heavy snorers and apneic patients during sleep.

  1. LES of Laminar-to-Turbulent Particle-Fluid Dynamics in Human and Nonhuman Primate Airways: Applications to Aerosolized Drug Delivery Animal Testing

    NASA Astrophysics Data System (ADS)

    Geisler, Taylor; Padhy, Sourav; Shaqfeh, Eric; Iaccarino, Gianluca

    2016-11-01

    Both the human health benefit and risk from the inhalation of aerosolized medications is often predicted by extrapolating experimental data taken using nonhuman primates to human inhalation. In this study, we employ Large Eddy Simulation to simulate particle-fluid dynamics in realistic upper airway models of both humans and rhesus monkeys. We report laminar-to-turbulent flow transitions triggered by constrictions in the upper trachea and the persistence of unsteadiness into the low Reynolds number bifurcating lower airway. Micro-particle deposition fraction and locations are shown to depend significantly on particle size. In particular, particle filtration in the nasal airways is shown to approach unity for large aerosols (8 microns) or high-rate breathing. We validate the accuracy of LES mean flow predictions using MRV imaging results. Additionally, particle deposition fractions are validated against experiments in 3 model airways.

  2. Computational fluid dynamics simulation of the upper airway response to large incisor retraction in adult class I bimaxillary protrusion patients

    PubMed Central

    Zheng, Zhe; Liu, Hong; Xu, Qi; Wu, Wei; Du, Liling; Chen, Hong; Zhang, Yiwen; Liu, Dongxu

    2017-01-01

    The changes of the upper airway after large retraction of the incisors in adult class I bimaxillary protrusion patients were assessed mainly focused on the anatomic variation and ignored the functional changes. This study aimed to investigate the changes of the upper airway in adult class I bimaxillary protrusion patients after extraction treatment using the functional images based on computational fluid dynamics (CFD). CFD was implemented after 3D reconstruction based on the CBCT of 30 patients who have completed extraction treatment. After treatment, pressure drop in the minimum area, oropharynx, and hypopharynx increased significantly. The minimum pressure and the maximum velocity mainly located in the hypopharynx in pre-treatment while they mostly occured in the oropharynx after treatment. Statistically significant correlation between pressure drop and anatomic parameters, pressure drop and treatment outcomes was found. No statistical significance changes in pressure drop and volume of nasopharynx was found. This study suggested that the risk of pharyngeal collapsing become higher after extraction treatment with maximum anchorage in bimaxillary protrusion adult patients. Those adverse changes should be taken into consideration especially for high-risk patients to avoid undesired weakening of the respiratory function in clinical treatment. PMID:28387372

  3. Meniscal tear film fluid dynamics near Marx's line.

    PubMed

    Zubkov, V S; Breward, C J W; Gaffney, E A

    2013-09-01

    Extensive studies have explored the dynamics of the ocular surface fluid, though theoretical investigations are typically limited to the use of the lubrication approximation, which is not guaranteed to be uniformly valid a-priori throughout the tear meniscus. However, resolving tear film behaviour within the meniscus and especially its apices is required to characterise the flow dynamics where the tear film is especially thin, and thus most susceptible to evaporatively induced hyperosmolarity and subsequent epithelial damage. Hence, we have explored the accuracy of the standard lubrication approximation for the tear film by explicit comparisons with the 2D Navier-Stokes model, considering both stationary and moving eyelids. Our results demonstrate that the lubrication model is qualitatively accurate except in the vicinity of the eyelids. In particular, and in contrast to lubrication theory, the solution of the full Navier-Stokes equations predict a distinct absence of fluid flow, and thus convective mixing in the region adjacent to the tear film contact line. These observations not only support emergent hypotheses concerning the formation of Marx's line, a region of epithelial cell staining adjacent to the contact line on the eyelid, but also enhance our understanding of the pathophysiological consequences of the flow profile near the tear film contact line.

  4. Safety System for Controlling Fluid Flow into a Suction Line

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)

    2015-01-01

    A safety system includes a sleeve fitted within a pool's suction line at the inlet thereof. An open end of the sleeve is approximately aligned with the suction line's inlet. The sleeve terminates with a plate that resides within the suction line. The plate has holes formed therethrough. A housing defining a plurality of distinct channels is fitted in the sleeve so that the distinct channels lie within the sleeve. Each of the distinct channels has a first opening on one end thereof and a second opening on another end thereof. The second openings reside in the sleeve. Each of the distinct channels is at least approximately three feet in length. The first openings are in fluid communication with the water in the pool, and are distributed around a periphery of an area of the housing that prevents coverage of all the first openings when a human interacts therewith.

  5. Structure and function of airway surface layer of the human lungs & mobility of probe particles in complex fluids

    NASA Astrophysics Data System (ADS)

    Cai, Liheng

    Numerous infectious particles such as bacteria and pathogens are deposited on the airway surface of the human lungs during our daily breathing. To avoid infection the lung has evolved to develop a smart and powerful defense system called mucociliary clearance. The airway surface layer is a critical component of this mucus clearance system, which consists of two parts: (1) a mucus layer, that traps inhaled particles and transports them out of the lung by cilia-generated flow; and (2) a periciliary layer, that provides a favorable environment for ciliary beating and cell surface lubrication. For 75 years, it has been dogma that a single gel-like mucus layer, which is composed of secreted mucin glycoproteins, is transported over a "watery" periciliary layer. This one-gel model, however, does not explain fundamental features of the normal system, e.g. formation of a distinct mucus layer, nor accurately predict how the mucus clearance system fails in disease. In the first part of this thesis we propose a novel "Gel-on-Brush" model with a mucus layer (the "gel") and a "brush-like" periciliary layer, composed of mucins tethered to the luminal of airway surface, and supporting data accurately describes both the biophysical and cell biological bases for normal mucus clearance and its failure in disease. Our "Gel-on-Brush" model describes for the first time how and why mucus is efficiently cleared in health and unifies the pathogenesis of major human diseases, including cystic fibrosis and chronic obstructive pulmonary disease. It is expected that this "Gel-on-Brush" model of airway surface layer opens new directions for treatments of airway diseases. A dilemma regarding the function of mucus is that, although mucus traps any inhaled harmful particulates, it also poses a long-time problem for drug delivery: mobility of cargos carrying pharmaceutical agents is slowed down in mucus. The second part of this thesis aims to answer the question: can we theoretically understand the

  6. A Spatial Model of Fluid Recycling in the Airways of the Lung

    PubMed Central

    Sharp, K.; Crampin, E.; Sneyd, J.

    2015-01-01

    The genetic disease cystic fibrosis (CF) is a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, and results in viscous mucus and impaired mucociliary clearance leading to chronic recurring pulmonary infections. Although extensive experimental research has been conducted over the last few decades, CF lung pathophysiology remains controversial. There are two competing explanations for the observed depletion of periciliary liquid (PCL) in CF lungs. The low volume hypothesis assumes fluid hyperabsorption through surface epithelia due to an over-active Epithelial Na+ Channel (ENaC), and the low secretion hypothesis assumes inspissated mucins secreted from glands due to lack of serous fluid secreted from gland acini. We present a spatial mathematical model that reflects in vivo fluid recycling via submucosal gland (SMG) secretion, and absorption through surface epithelia. We then test the model in CF conditions by increasing ENaC open probability and decreasing SMG flux while simultaneously reducing CFTR open probability. Increasing ENaC activity only results in increased fluid absorption across surface epithelia, as seen in in vitro experiments. However, combining potential CF mechanisms results in markedly less fluid absorbed while providing the largest reduction in PCL volume, suggesting that a compromise in gland fluid secretion dominates over increased ENaC activity to decrease the amount of fluid transported transcellularly in CF lungs in vivo. Model results also indicate that a spatial model is necessary for an accurate calculation of total fluid transport, as the effects of spatial gradients can be severe, particularly in close proximity to the SMGs. PMID:26169010

  7. Combination treatment with high-dose vitamin C and alpha-tocopherol does not enhance respiratory-tract lining fluid vitamin C levels in asthmatics.

    PubMed

    Hernandez, Michelle; Zhou, Haibo; Zhou, Bingqing; Robinette, Carole; Crissman, Kay; Hatch, Gary; Alexis, Neil E; Peden, David

    2009-02-01

    Oxidative stress plays a significant role in allergic airway inflammation. Supplementation with alpha-tocopherol (alone or combined with ascorbate/vitamin C) has been assessed as an intervention for allergic airway diseases with conflicting results. Enhancing levels of airway antioxidants with oral supplements has been suggested as an intervention to protect individuals from the effect of inhaled oxidants, although it is unclear whether supplementation changes tocopherol or vitamin C levels in both serum and airway fluids. Our objective was to obtain pilot safety and dosing data from 14 allergic asthmatic volunteers examining the effect of daily combination oral therapy with 500 mg alpha-tocopherol (alpha T) and 2 g vitamin C for 12 wk. We examined serum and airway fluid and cellular levels of alpha- and gamma-tocopherol (gamma T) and vitamin C to plan for future studies of these agents in asthma and allergic rhinitis. Six volunteers completed 12 wk of active treatment with alpha T and vitamin C and 8 completed placebo. Blood and sputum samples were obtained at baseline and at 6 wk and 12 wk of therapy and were analyzed for alpha T, gamma T, and vitamin C levels in the serum, sputum supernatant, and sputum cells. Combination treatment increased serum vitamin C and significantly decreased sputum alpha T and serum gamma T levels. No changes were found in sputum supernatant or sputum cell vitamin C or serum alpha T levels in the active treatment group. In conclusion, supplementation with alpha T and high-dose vitamin C does not augment vitamin C levels in the respiratory-tract lining fluid.

  8. Hypercapnia modulates cAMP signalling and cystic fibrosis transmembrane conductance regulator‐dependent anion and fluid secretion in airway epithelia

    PubMed Central

    Turner, Mark J.; Saint‐Criq, Vinciane; Patel, Waseema; Ibrahim, Salam H.; Verdon, Bernard; Ward, Christopher; Garnett, James P.; Tarran, Robert; Cann, Martin J.

    2015-01-01

    Key points Raised arterial blood CO2 (hypercapnia) is a feature of many lung diseases.CO2 has been shown to act as a cell signalling molecule in human cells, notably by influencing the levels of cell signalling second messengers: cAMP and Ca2+.Hypercapnia reduced cAMP‐stimulated cystic fibrosis transmembrane conductance regulator‐dependent anion and fluid transport in Calu‐3 cells and primary human airway epithelia but did not affect cAMP‐regulated HCO3 − transport via pendrin or Na+/HCO3 − cotransporters.These results further support the role of CO2 as a cell signalling molecule and suggests CO2‐induced reductions in airway anion and fluid transport may impair innate defence mechanisms of the lungs. Abstract Hypercapnia is clinically defined as an arterial blood partial pressure of CO2 of above 40 mmHg and is a feature of chronic lung disease. In previous studies we have demonstrated that hypercapnia modulates agonist‐stimulated cAMP levels through effects on transmembrane adenylyl cyclase activity. In the airways, cAMP is known to regulate cystic fibrosis transmembrane conductance regulator (CFTR)‐mediated anion and fluid secretion, which contributes to airway surface liquid homeostasis. The aim of the current work was to investigate if hypercapnia could modulate cAMP‐regulated ion and fluid transport in human airway epithelial cells. We found that acute exposure to hypercapnia significantly reduced forskolin‐stimulated elevations in intracellular cAMP as well as both adenosine‐ and forskolin‐stimulated increases in CFTR‐dependent transepithelial short‐circuit current, in polarised cultures of Calu‐3 human airway cells. This CO2‐induced reduction in anion secretion was not due to a decrease in HCO3 − transport given that neither a change in CFTR‐dependent HCO3 − efflux nor Na+/HCO3 − cotransporter‐dependent HCO3 − influx were CO2‐sensitive. Hypercapnia also reduced the volume of forskolin‐stimulated fluid

  9. Antimicrobial disposition in pulmonary epithelial lining fluid of horses. Part I. Sulfadiazine and trimethoprim.

    PubMed

    Winther, L; Guardabassi, L; Baptiste, K E; Friis, C

    2011-06-01

    Sulfadiazine (SDZ) and trimethoprim (TMP) concentrations were examined in plasma and pulmonary epithelial lining fluid (PELF), following intravenous and oral administration and compared to minimum inhibitory concentrations (MICs) of common bacterial isolates from equine lower airway infections. SDZ/TMP (25/5 mg/kg) was administered intravenously, intragastric or per os to fed horses, and blood samples were collected before and 11 times, over 24 h, after administration. PELF samples were collected via a tampon device four times after drug administration and analysed for drug concentrations. Additionally, MICs of SDZ and TMP alone and in combination were determined in a selection of clinical respiratory isolates. Bioavailability was 74% for SDZ and 46% for TMP after paste administration in fed horses. The degree of penetration of SDZ and TMP into PELF, as described by AUC(PELF) /AUC(plasma) ratios, was 0.68 and 0.72, respectively, after intravenous administration. After oral administration, the degree of penetration for SDZ and TMP was 0.92 and 0.46, respectively. MIC measurements using SDZ/TMP ratios of 5:1 and 10:1 did not affect the interpretation of the results. The results indicate that clinically relevant drug concentrations of mainly TMP are difficult to maintain in PELF, especially after oral administration of SDZ/TMP.

  10. Role of anion exchangers in Cl- and HCO3- secretion by the human airway epithelial cell line Calu-3.

    PubMed

    Kim, Dusik; Kim, Juyeon; Burghardt, Beáta; Best, Len; Steward, Martin C

    2014-07-15

    Despite the importance of airway surface liquid pH in the lung's defenses against infection, the mechanism of airway HCO3- secretion remains unclear. Our aim was to assess the contribution of apical and basolateral Cl-/HCO3- exchangers to Cl- and HCO3- transport in the Calu-3 cell line, derived from human airway submucosal glands. Changes in intracellular pH (pHi) were measured following substitution of Cl- with gluconate. Apical Cl- substitution led to an alkalinization in forskolin-stimulated cells, indicative of Cl-/HCO3- exchange. This was unaffected by the anion exchange inhibitor DIDS but inhibited by the CFTR blocker CFTRinh-172, suggesting that the HCO3- influx might occur via CFTR, rather than a solute carrier family 26 (SLC26) exchanger, as recently proposed. The anion selectivity of the recovery process more closely resembled that of CFTR than an SLC26 exchanger, and quantitative RT-PCR showed only low levels of SLC26 exchanger transcripts relative to CFTR and anion exchanger 2 (AE2). For pHi to rise to observed values (∼7.8) through HCO3- entry via CFTR, the apical membrane potential must reverse to at least +20 mV following Cl- substitution; this was confirmed by perforated-patch recordings. Substitution of basolateral Cl- evoked a DIDS-sensitive alkalinization, attributed to Cl-/HCO3- exchange via AE2. This appeared to be abolished in forskolin-stimulated cells but was unmasked by blocking apical efflux of HCO3- via CFTR. We conclude that Calu-3 cells secrete HCO3- predominantly via CFTR, and, contrary to previous reports, the basolateral anion exchanger AE2 remains active during stimulation, providing an important pathway for basolateral Cl- uptake.

  11. Simulation of the Velocity and Temperature Distribution of Inhalation Thermal Injury in a Human Upper Airway Model by Application of Computational Fluid Dynamics.

    PubMed

    Chang, Yang; Zhao, Xiao-zhuo; Wang, Cheng; Ning, Fang-gang; Zhang, Guo-an

    2015-01-01

    Inhalation injury is an important cause of death after thermal burns. This study was designed to simulate the velocity and temperature distribution of inhalation thermal injury in the upper airway in humans using computational fluid dynamics. Cervical computed tomography images of three Chinese adults were imported to Mimics software to produce three-dimensional models. After grids were established and boundary conditions were defined, the simulation time was set at 1 minute and the gas temperature was set to 80 to 320°C using ANSYS software (ANSYS, Canonsburg, PA) to simulate the velocity and temperature distribution of inhalation thermal injury. Cross-sections were cut at 2-mm intervals, and maximum airway temperature and velocity were recorded for each cross-section. The maximum velocity peaked in the lower part of the nasal cavity and then decreased with air flow. The velocities in the epiglottis and glottis were higher than those in the surrounding areas. Further, the maximum airway temperature decreased from the nasal cavity to the trachea. Computational fluid dynamics technology can be used to simulate the velocity and temperature distribution of inhaled heated air.

  12. Penetration of Vancomycin into Epithelial Lining Fluid in Healthy Volunteers▿

    PubMed Central

    Lodise, Thomas P.; Drusano, George L.; Butterfield, Jill M.; Scoville, Joshua; Gotfried, Mark; Rodvold, Keith A.

    2011-01-01

    Although vancomycin is often regarded as an agent that concentrates poorly in the lower respiratory tract, as determined from concentrations in epithelial lining fluid (ELF), few data are available. This study sought to determine the profile of vancomycin exposure in the ELF relative to plasma. Population modeling and Monte Carlo simulation were employed to estimate the penetration of vancomycin into ELF. Plasma and ELF pharmacokinetic (PK) data were obtained from 10 healthy volunteers. Concentration-time profiles in plasma and ELF were simultaneously modeled using a three-compartment model with zero-order infusion and first-order elimination and transfer using the big nonparametric adaptive grid (BigNPAG) program. Monte Carlo simulation with 9,999 subjects was performed to calculate the ELF/plasma penetration ratios by estimating the area under the concentration-time curve (AUC) in ELF (AUCELF) and plasma (AUCplasma) after a single simulated 1,000-mg dose. The mean (standard deviation) AUCELF/AUCplasma penetration ratio was 0.675 (0.677), and the 25th, 50th, and 75th percentile penetration ratios were 0.265, 0.474, and 0.842, respectively. Our results indicate that vancomycin penetrates ELF at approximately 50% of plasma levels. To properly judge the adequacy of current doses and schedules employed in practice, future studies are needed to delineate the PK/PD (pharmacodynamics) target for vancomycin in ELF. If the PK/PD target in ELF is found to be consistent with the currently proposed target of an AUC/MIC of ≥400, suboptimal probability of target attainment would be expected when vancomycin is utilized for pneumonias due to MRSA (methicillin-resistant Staphylococcus aureus) with MICs in excess of 1 mg/liter. PMID:21911567

  13. Fluid Line Evacuation and Freezing Experiments for Digital Radiator Concept

    NASA Technical Reports Server (NTRS)

    Berisford, Daniel F.; Birur, Gajanana C.; Miller, Jennifer R.; Sunada, Eric T.; Ganapathi, Gani B.; Stephan, Ryan; Johnson, Mark

    2011-01-01

    The digital radiator technology is one of three variable heat rejection technologies being investigated for future human-rated NASA missions. The digital radiator concept is based on a mechanically pumped fluid loop with parallel tubes carrying coolant to reject heat from the radiator surface. A series of valves actuate to start and stop fluid flow to di erent combinations of tubes, in order to vary the heat rejection capability of the radiator by a factor of 10 or more. When the flow in a particular leg is stopped, the fluid temperature drops and the fluid can freeze, causing damage or preventing flow from restarting. For this reason, the liquid in a stopped leg must be partially or fully evacuated upon shutdown. One of the challenges facing fluid evacuation from closed tubes arises from the vapor generated during pumping to low pressure, which can cause pump cavitation and incomplete evacuation. Here we present a series of laboratory experiments demonstrating fluid evacuation techniques to overcome these challenges by applying heat and pumping to partial vacuum. Also presented are results from qualitative testing of the freezing characteristics of several different candidate fluids, which demonstrate significant di erences in freezing properties, and give insight to the evacuation process.

  14. On-line coupling of supercritical fluid extraction and chromatographic techniques.

    PubMed

    Sánchez-Camargo, Andrea Del Pilar; Parada-Alfonso, Fabián; Ibáñez, Elena; Cifuentes, Alejandro

    2017-01-01

    This review summarizes and discusses recent advances and applications of on-line supercritical fluid extraction coupled to liquid chromatography, gas chromatography, and supercritical fluid chromatographic techniques. Supercritical fluids, due to their exceptional physical properties, provide unique opportunities not only during the extraction step but also in the separation process. Although supercritical fluid extraction is especially suitable for recovery of non-polar organic compounds, this technique can also be successfully applied to the extraction of polar analytes by the aid of modifiers. Supercritical fluid extraction process can be performed following "off-line" or "on-line" approaches and their main features are contrasted herein. Besides, the parameters affecting the supercritical fluid extraction process are explained and a "decision tree" is for the first time presented in this review work as a guide tool for method development. The general principles (instrumental and methodological) of the different on-line couplings of supercritical fluid extraction with chromatographic techniques are described. Advantages and shortcomings of supercritical fluid extraction as hyphenated technique are discussed. Besides, an update of the most recent applications (from 2005 up to now) of the mentioned couplings is also presented in this review.

  15. Line Fluid Actuated Valve Development Program. [for application on the space shuttle

    NASA Technical Reports Server (NTRS)

    Lynch, R. A.

    1975-01-01

    The feasibility of a line-fluid actuated valve design for potential application as a propellant-control valve on the space shuttle was examined. Design and analysis studies of two prototype valve units were conducted and demonstrated performance is reported. It was shown that the line-fluid actuated valve concept offers distinct weight and electrical advantages over alternate valve concepts. Summaries of projected performance and design goals are also included.

  16. Evaluation and comparison of nasal airway flow patterns among three subjects from Caucasian, Chinese and Indian ethnic groups using computational fluid dynamics simulation.

    PubMed

    Zhu, Jian Hua; Lee, Heow Pueh; Lim, Kian Meng; Lee, Shu Jin; Wang, De Yun

    2011-01-31

    Nasal airflow is one of the most important determinants for nasal physiology. During the long evolution of human beings, different races have developed their own attributes of nasal morphologies which result in variations of nasal airflow patterns and nasal functions. This study evaluated and compared the effects of differences of nasal morphology among three healthy male subjects from Caucasian, Chinese and Indian ethnic groups on nasal airflow patterns using computational fluid dynamics simulation. By examining the anterior nasal airway, the nasal indices and the nostril shapes of the three subjects were found to be similar to nasal cavities of respective ethnic groups. Computed tomography images of these three subjects were obtained to reconstruct 3-dimensional models of nasal cavities. To retain the flow characteristics around the nasal vestibules, a 40 mm-radius semi sphere was assembled around the human face for the prescription of zero ambient gauge pressure. The results show that more airflow tends to pass through the middle passage of the nasal airway in the Caucasian model, and through the inferior portion in the Indian model. The Indian model was found with extremely low flow flux flowing through the olfactory region. The sizes of vortexes near the anterior cavity were found to be correlated with the angles between the upper nasal valve wall and the anterior head of the nasal cavity.

  17. Grepafloxacin inhibits tumor necrosis factor-alpha-induced interleukin-8 expression in human airway epithelial cells.

    PubMed

    Hashimoto, S; Matsumoto, K; Gon, Y; Maruoka, S; Hayashi, S; Asai, Y; Machino, T; Horie, T

    2000-01-01

    We examined the effect of grepafloxacin (GPFX), a new fluoroquinolone antimicrobial agent, on interleukin-8 (IL-8) expression in tumor necrosis factor-alpha (TNF-alpha)-stimulated human airway epithelial cells (AEC). GPFX inhibited IL-8 protein production as well as mRNA expression in a concentration-dependent manner (2.5 - 25 micro g/ml), but the inhibition of IL-8 expression by corresponding concentrations of GPFX to serum and airway lining fluids was not complete. We discuss the modulatory effect of GPFX on IL-8 production in the context of its efficacy on controlling chronic airway inflammatory diseases.

  18. Theory of Wetting-Induced Fluid Entrainment by Advancing Contact Lines on Dry Surfaces

    NASA Astrophysics Data System (ADS)

    Ledesma-Aguilar, R.; Hernández-Machado, A.; Pagonabarraga, I.

    2013-06-01

    We report on the onset of fluid entrainment when a contact line is forced to advance over a dry solid of arbitrary wettability. We show that entrainment occurs at a critical advancing speed beyond which the balance between capillary, viscous, and contact-line forces sustaining the shape of the interface is no longer satisfied. Wetting couples to the hydrodynamics by setting both the morphology of the interface at small scales and the viscous friction of the front. We find that the critical deformation that the interface can sustain is controlled by the friction at the contact line and the viscosity contrast between the displacing and displaced fluids, leading to a rich variety of wetting-entrainment regimes. We discuss the potential use of our theory to measure contact-line forces using atomic force microscopy and to study entrainment under microfluidic conditions exploiting colloid-polymer fluids of ultralow surface tension.

  19. Theory of wetting-induced fluid entrainment by advancing contact lines on dry surfaces.

    PubMed

    Ledesma-Aguilar, R; Hernández-Machado, A; Pagonabarraga, I

    2013-06-28

    We report on the onset of fluid entrainment when a contact line is forced to advance over a dry solid of arbitrary wettability. We show that entrainment occurs at a critical advancing speed beyond which the balance between capillary, viscous, and contact-line forces sustaining the shape of the interface is no longer satisfied. Wetting couples to the hydrodynamics by setting both the morphology of the interface at small scales and the viscous friction of the front. We find that the critical deformation that the interface can sustain is controlled by the friction at the contact line and the viscosity contrast between the displacing and displaced fluids, leading to a rich variety of wetting-entrainment regimes. We discuss the potential use of our theory to measure contact-line forces using atomic force microscopy and to study entrainment under microfluidic conditions exploiting colloid-polymer fluids of ultralow surface tension.

  20. Contact Line Instability of Gravity-Driven Flow of Power-Law Fluids.

    PubMed

    Hu, Bin; Kieweg, Sarah L

    2015-11-01

    The moving contact line of a thin fluid film can often corrugate into fingers, which is also known as a fingering instability. Although the fingering instability of Newtonian fluids has been studied extensively, there are few studies published on contact line fingering instability of non-Newtonian fluids. In particular, it is still unknown how shear-thinning rheological properties can affect the formation, growth, and shape of a contact line instability. Our previous study (Hu and Kieweg, 2012) showed a decreased capillary ridge formation for more shear-thinning fluids in a 2D model (i.e. 1D thin film spreading within the scope of lubrication theory). Those results motivated this study's hypothesis: more shear-thinning fluids should have suppressed finger growth and longer finger wavelength, and this should be evident in linear stability analysis (LSA) and 3D (i.e. 2D spreading) numerical simulations. In this study, we developed a LSA model for the gravity-driven flow of shear-thinning films, and carried out a parametric study to investigate the impact of shear-thinning on the growth rate of the emerging fingering pattern. A fully 3D model was also developed to compare and verify the LSA results using single perturbations, and to explore the result of multiple-mode, randomly imposed perturbations. Both the LSA and 3D numerical results confirmed that the contact line fingers grow faster for Newtonian fluids than the shear-thinning fluids on both vertical and inclined planes. In addition, both the LSA and 3D model indicated that the Newtonian fluids form fingers with shorter wavelengths than the shear-thinning fluids when the plane is inclined; no difference in the most unstable (i.e. emerging) wavelength was observed at vertical. This study also showed that the distance between emerging fingers was smaller on a vertical plane than on a less-inclined plane for shear-thinning fluids, as previously shown for Newtonian fluids. For the first time for shear

  1. Fluid bed retorting process with multiple feed lines

    SciTech Connect

    Hoekstra, G.B.

    1983-11-15

    Solid hydrocarbon-containing material, such as oil shale, coal or tar sand, is fed into a retort through a multiplicity of feed lines to enhance retorting efficiency, throughout and product yield. In the preferred form, larger particles of hydrocarbon-containing material gravitate downwardly through the retort in countercurrent relationship to an upward fluidized stream of smaller particles of hydrocarbon-containing material. This arrangement is especially useful to retort larger particles of hydrocarbon-containing material. One or more streams of intermediate size particles of hydrocarbon-containing material can also be fed into the retort.

  2. Fluid-hammer induced pressure oscillations in a cryogenic feed line

    NASA Astrophysics Data System (ADS)

    Joseph, Jeswin; Agrawal, Gagan; Agarwal, Deepak; Pisharady, J. C.; Kumar, S. Sunil

    2017-02-01

    A transient, thermodynamic flow model is developed to simulate pressure oscillations in cryogenic fluid occurring due to sudden closing of valves, a phenomenon commonly known as fluid-hammering. The effects of line dimensions and flow rate changes on amplitude and frequency of these oscillations are investigated using numerical analysis. The model is validated with in-house experimental data and literature based on MOC solution for fluid-hammer. Current study is significant for understanding pressure oscillations during valve operation in launch vehicle cryogenic engine. Very low pressures caused due to fluid-hammer could lead to reduction in pump inlet pressure below saturation level, resulting in pump cavitation. Pressure oscillations also cause fluctuations in propellant flow rate, resulting in undesirable variations in thrust output from the engine. Computational analysis shows that increase in line diameter and reduction in the rate of change of flow rate reduce the peak amplitude of pressure oscillations.

  3. A new laryngeal mask supraglottic airway device with integrated balloon line: a descriptive and comparative bench study

    PubMed Central

    Zhou, YingHai; Jew, Korinne

    2016-01-01

    Laryngeal masks are invasive devices for airway management placed in the supraglottic position. The Shiley™ laryngeal mask (Shiley™ LM) features an integrated inflation tube and airway shaft to facilitate product insertion and reduce the chance of tube occlusion when patients bite down. This study compared the Shiley LM to two other disposable laryngeal mask devices, the Ambu® AuraStraight™ and the LMA Unique™. Overall device design, tensile strength, flexibility of various structures, and sealing performance were measured. The Shiley LM is structurally stronger and its shaft is more resistant to compression than the other devices. The Shiley LM is generally less flexible than the other devices, but this relationship varies with device size. Sealing performance of the devices was similar in a bench assay. The results of this bench study demonstrate that the new Shiley LM resembles other commercially available laryngeal mask devices, though it exhibits greater tensile strength and lower flexibility. PMID:27843359

  4. Fluid transmission line dynamics 1983; Proceedings of the Winter Annual Meeting, Boston, MA, November 13-18, 1983

    NASA Astrophysics Data System (ADS)

    Franke, M. E.; Drzewiecki, T. M.

    1983-11-01

    Various topics on fluid transmission line dynamics are addressed. The subjects discussed include: comparison of theoretical and experimental fluid line responses with source and load impedances; a first-order square root approximation for fluid transmission lines; modal approximations for the fluid dynamics of hydraulic and pneumatic transmission lines; and time domain simulation of fluid transmission lines using minimum order state variable models. Also considered are: the simulation of transmission line dynamics in nonlinear electrohydraulic systems; effect of transmission line dynamics on the response of servovalve-controlled actuators; and acoustic load impedance effects on centrifugal pump pulsations in a water flow loop. For individual items see A84-22297 to A84-22300

  5. Experimental study of the heated contact line region for a pure fluid and binary fluid mixture in microgravity.

    PubMed

    Nguyen, Thao T T; Kundan, Akshay; Wayner, Peter C; Plawsky, Joel L; Chao, David F; Sicker, Ronald J

    2017-02-15

    Understanding the dynamics of phase change heat and mass transfer in the three-phase contact line region is a critical step toward improving the efficiency of phase change processes. Phase change becomes especially complicated when a fluid mixture is used. In this paper, a wickless heat pipe was operated on the International Space Station (ISS) to study the contact line dynamics of a pentane/isohexane mixture. Different interfacial regions were identified, compared, and studied. Using high resolution (50×), interference images, we calculated the curvature gradient of the liquid-vapor interface at the contact line region along the edges of the heat pipe. We found that the curvature gradient in the evaporation region increases with increasing heat flux magnitude and decreasing pentane concentration. The curvature gradient for the mixture case is larger than for the pure pentane case. The difference between the two cases increases as pentane concentration decreases. Our data showed that the curvature gradient profile within the evaporation section is separated into two regions with the boundary between the two corresponding to the location of a thick, liquid, "central drop" region at the point of maximum internal local heat flux. We found that the curvature gradients at the central drop and on the flat surfaces where condensation begins are one order of magnitude smaller than the gradients in the corner meniscus indicating the driving forces for fluid flow are much larger in the corners.

  6. INCORPORATION OF LABELED NITRIC OXIDE INTO RESPIRATORY TRACT LINING FLUIDS AND BLOOD PLASMA DURING LUNG INFLAMMATION

    EPA Science Inventory

    Incorporation of labeled nitric oxide (N18O) into respiratory tract lining fluids and blood plasma during lung inflammation. Slade, R., Norwood, J., Crissman, K., McKee, J., Hatch, G. PTB, ETD, NHEERL, ORD, USEPA, Res. Tri. Pk., NC

    Our earlier studies have demonstrated t...

  7. Contact line dynamics of electroosmotic flows of incompressible binary fluid system with density and viscosity contrasts

    NASA Astrophysics Data System (ADS)

    Mondal, Pranab Kumar; DasGupta, Debabrata; Bandopadhyay, Aditya; Ghosh, Uddipta; Chakraborty, Suman

    2015-03-01

    We consider electrically driven dynamics of an incompressible binary fluid, with contrasting densities and viscosities of the two phases, flowing through narrow fluidic channel with walls with predefined surface wettabilities. Through phase field formalism, we describe the interfacial kinetics in the presence of electro-hydrodynamic coupling and address the contact line dynamics of the two-fluid system. We unveil the interplay of the substrate wettability and the contrast in the fluid properties culminating in the forms of two distinct regimes—interface breakup regime and a stable interface regime. Through a parametric study, we demarcate the effect of the density and viscosity contrasts along with the electrokinetic parameters such as the surface charge and ionic concentration on the underlying contact-line-dynamics over interfacial scales.

  8. On-line monitoring of fluid bed granulation by photometric imaging.

    PubMed

    Soppela, Ira; Antikainen, Osmo; Sandler, Niklas; Yliruusi, Jouko

    2014-11-01

    This paper introduces and discusses a photometric surface imaging approach for on-line monitoring of fluid bed granulation. Five granule batches consisting of paracetamol and varying amounts of lactose and microcrystalline cellulose were manufactured with an instrumented fluid bed granulator. Photometric images and NIR spectra were continuously captured on-line and particle size information was extracted from them. Also key process parameters were recorded. The images provided direct real-time information on the growth, attrition and packing behaviour of the batches. Moreover, decreasing image brightness in the drying phase was found to indicate granule drying. The changes observed in the image data were also linked to the moisture and temperature profiles of the processes. Combined with complementary process analytical tools, photometric imaging opens up possibilities for improved real-time evaluation fluid bed granulation. Furthermore, images can give valuable insight into the behaviour of excipients or formulations during product development.

  9. Development and evaluation of a meter for measuring return line fluid flow rates during drilling

    SciTech Connect

    Loeppke, G.E.; Schafer, D.M.; Glowka, D.A.; Scott, D.D.; Wernig, M.D. ); Wright, E.K. )

    1992-06-01

    The most costly problem routinely encountered in geothermal drilling is lost circulation, which occurs when drilling fluid is lost to the formation rather than circulating back to the surface. The successful and economical treatment of lost circulation requires the accurate measurement of drilling fluid flow rate both into and out of the well. This report documents the development of a meter for measuring drilling fluid outflow rates in the return line of a drilling rig. The meter employs a rolling counterbalanced float that rides on the surface of the fluid in the return line. The angle of the float pivot arm is sensed with a pendulum potentiometer, and the height of the float is calculated from this measurement. The float height is closely related to the fluid height and, therefore, the flow rate in the line. The prototype rolling float meter was extensively tested under laboratory conditions in the Wellbore Hydraulics Flow Facility; results from these tests were used in the design of the field prototype rolling float meter. The field prototype meter was tested under actual drilling conditions in August and September 1991 at the Long Valley Exploratory Well near Mammoth Lakes, Ca. In addition, the performance of several other commercially available inflow and outflow meters was evaluated in the field. The tested inflow meters included conventional pump stroke counters, rotary pump speed counters, magnetic flowmeters, and an ultrasonic Doppler flowmeter. On the return flow line, a standard paddlemeter, an acoustic level meter, and the prototype rolling float meter were evaluated for measuring drilling fluid outflow rates.

  10. Using Nonlinearity and Contact Lines to Control Fluid Flow in Microgravity

    NASA Technical Reports Server (NTRS)

    Perlin, M.; Schultz, W. W.; Bian, X.; Agarwal, M.

    2002-01-01

    Slug flows in a tube are affected by surface tension and contact lines, especially under microgravity. Numerical analyses and experiments are conducted of slug flows in small-diameter tubes with horizontal, inclined and vertical orientations. A PID-controlled, meter-long platform capable of following specified motions is used. An improved understanding of the contact line boundary condition for steady and unsteady contact-line motion is expected. Lastly, a direct fluid-handling method using nonlinear oscillatory motion of a tube is presented.

  11. Flow boundary conditions for fluid mixtures at solid walls and moving contact lines

    NASA Astrophysics Data System (ADS)

    Robbins, Mark

    2005-11-01

    Molecular simulations of slip at solid surfaces have focused on single component systems, but polymers are frequently blended to optimize performance. This talk will examine counterintuitive behavior that can arise when binary fluid mixtures flow past stationary solid walls in simple shear and at moving contact lines. In general the velocities of the two species do not go to zero at the walls. In addition to the slip found for single fluids, there may be velocity discontinuities due to diffusive fluxes and to interfacial forces when there is a concentration gradient.^1 Cases where the fluid velocity is largest near the wall and where the apparent slip length diverges will be shown, and a general boundary condition for multi-phase flow presented. The no-slip boundary condition leads to singular dissipation when the contact line between a fluid interface and solid moves, but it was suggested that a diffusive flux could remove this singularity.^2 The flow and stress near moving contact lines are analyzed for a range of interfacial widths, velocities and interactions. A significant diffusive flux is only observed in the layer closest to the solid and is not sufficient to remove the singularity. Instead, the finite molecular size and non-Newtonian effects cutoff the singularity.1. C. Denniston and M. O. Robbins, Phys. Rev. Lett. 87, 178302 (2001).2. H.-Y. Chen and D. Jasnow and J. Vinals, Phys. Rev. Lett. 85, 1686 (2000).

  12. Relationship between airway reactivity induced by methacholine or ultrasonically nebulized distilled cold water and BAL fluid cellular constituents in patients with sulfur mustard gas-induced asthma.

    PubMed

    Emad, Ali; Emad, Yasaman

    2007-01-01

    The objective of this article was to evaluate the relationship between the bronchial reactivity to methacholine and distilled cold water and inflammatory bronchial alveolar lavage (BAL) cells in mustard gas-induced asthma. This was a randomized, crossover clinical study set in a university hospital. The patients were 17 veterans with mustard gas-induced asthma and 17 normal veterans as a control group. Inhalation challenges with ultrasonically nebulized distilled water and methacholine and BAL via bronchoscopy and were performed in all patients and subjects. All patients did sustain a 20% fall in FEV(1) after methacholine, whereas two of them did not with distilled cold water. The patients were sensitive to distilled cold water with a median PD20 of 8.44 +/- 6.55 mL and sensitive to methacholine with the median PC20 of 4.88 +/- 4.22 mg/mL. Significant correlation was found between PC20 of methacholine and PD20 of distilled cold water (r = -0.74, p = 0.005). The proportion of BAL macrophages was significantly lower in patients with asthma than in the control group (p = 0.001). The proportions of lymphocytes and neutrophils were similar in the two groups. The percentage of eosinophils was higher in BAL fluid from the asthmatics compared with that in BAL fluid from the control group (p < 0.001). The percentage of the BAL eosinophils significantly correlated with both PC20 of methacholine (r = - 0.58, p = 0.01) and PD20 of distilled cold water (r = -0.81, p = 0.002). No relationship between PC20 of methacholine or PD20 of distilled cold water was found for other inflammatory BAL cells. This study showed that in patients with mustard gas-induced asthma, the degree of airway responsiveness to both methacholine and distilled water was associated with the percentage of BAL eosinophils.

  13. Modeling dynamically coupled fluid-duct systems with finite line elements

    NASA Technical Reports Server (NTRS)

    Saxon, J. B.

    1994-01-01

    Structural analysis of piping systems, especially dynamic analysis, typically considers the duct structure and the contained fluid column separately. Coupling of these two systems, however, forms a new dynamic system with characteristics not necessarily described by the superposition of the two component system's characteristics. Methods for modeling the two coupled components simultaneously using finite line elements are presented. Techniques for general duct intersections, area or direction changes, long radius bends, hydraulic losses, and hydraulic impedances are discussed. An example problem and results involving time transients are presented. Additionally, a program to enhance post-processing of line element models is discussed.

  14. No Vent Tank Fill and Transfer Line Chilldown Analysis by Generalized Fluid System Simulation Program (GFSSP)

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok

    2013-01-01

    The purpose of the paper is to present the analytical capability developed to model no vent chill and fill of cryogenic tank to support CPST (Cryogenic Propellant Storage and Transfer) program. Generalized Fluid System Simulation Program (GFSSP) was adapted to simulate charge-holdvent method of Tank Chilldown. GFSSP models were developed to simulate chilldown of LH2 tank in K-site Test Facility and numerical predictions were compared with test data. The report also describes the modeling technique of simulating the chilldown of a cryogenic transfer line and GFSSP models were developed to simulate the chilldown of a long transfer line and compared with test data.

  15. Relationship between trough plasma and epithelial lining fluid concentrations of voriconazole in lung transplant recipients.

    PubMed

    Heng, Siow-Chin; Snell, Gregory I; Levvey, Bronwyn; Keating, Dominic; Westall, Glen P; Williams, Trevor J; Whitford, Helen; Nation, Roger L; Slavin, Monica A; Morrissey, Orla; Kong, David C M

    2013-09-01

    Trough (predose) voriconazole concentrations in plasma and pulmonary epithelial lining fluid (ELF) of lung transplant recipients receiving oral voriconazole preemptive treatment were determined. The mean (± standard deviation [SD]) ELF/plasma ratio was 12.5 ± 6.3. A strong positive linear relationship was noted between trough plasma and ELF voriconazole concentrations (r(2) = 0.87), suggesting the feasibility of using trough plasma voriconazole concentration as a surrogate to estimate the corresponding concentration in ELF of lung transplant recipients.

  16. Clinical applications of image-based airway computational fluid dynamics: assessment of inhalation medication and endobronchial devices

    NASA Astrophysics Data System (ADS)

    De Backer, Jan W.; Vos, Wim G.; Germonpré, Paul; Salgado, Rodrigo; Parizel, Paul M.; De Backer, Wilfried

    2009-02-01

    Computational fluid dynamics (CFD) is a technique that is used increasingly in the biomedical field. Solving the flow equations numerically provides a convenient way to assess the efficiency of therapies and devices, ranging from cardiovascular stents and heart valves to hemodialysis workflows. Also in the respiratory field CFD has gained increasing interest, especially through the combination of three dimensional image reconstruction which results in highend patient-specific models. This paper provides an overview of clinical applications of CFD through image based modeling, resulting from recent studies performed in our center. We focused on two applications: assessment of the efficiency of inhalation medication and analysis of endobronchial valve placement. In the first application we assessed the mode of action of a novel bronchodilator in 10 treated patients and 4 controls. We assessed the local volume increase and resistance change based on the combination of imaging and CFD. We found a good correlation between the changes in volume and resistance coming from the CFD results and the clinical tests. In the second application we assessed the placement and effect of one way endobronchial valves on respiratory function in 6 patients. We found a strong patientspecific result of the therapy where in some patients the therapy resulted in complete atelectasis of the target lobe while in others the lobe remained inflated. We concluded from these applications that CFD can provide a better insight into clinically relevant therapies.

  17. In-line pressure within a HOTLINE® Fluid Warmer, under various flow conditions.

    PubMed

    Higashi, Midoriko; Yamaura, Ken; Matsubara, Yukie; Fukudome, Takuya; Hoka, Sumio

    2015-04-01

    Roller pump infusion devices are widely used for rapid infusion, and may be combined with separate warming devices. There may be instances however, where the pressures generated by the roller pump may not be compatible with the warming device. We assessed a commonly used roller pump in combination with a HOTLINE® Fluid Warmer, and found that it could generate pressures exceeding the HOTLINE® manufacturers specifications. This was of concern because the HOTLINE® manufacturer guideline states that not for use with pressure devices generating over 300 mmHg. Pressure greater than 300 mmHg may compromise the integrity of the HOTLINE® Fluid Warming Set. The aim of this study was to compare in-line pressure within a HOTLINE® Fluid Warmer at different infusion rates of a roller pump using various sizes of intravenous cannulae. The rapid infusion system comprised a 500 mL-normal saline bag, roller pump type infusion device, HOTLINE® Fluid Warmer (blood and fluid warmer system), and six different sizes of intravenous cannulae. In-line pressure was measured proximal to the HOTLINE® (pre-warmer) and proximal to the cannula (post-warmer), at flow rate of 50-160 mL/min. The in-line pressures increased significantly with increasing flow rate. The pre-warmer pressures exceeded 300 mmHg when the flow rate was ≥120 mL/min with 20-gauge, 48 mm length cannula, 130 with 20-gauge, 25 mm cannula, and 160 mL/min with 18-gauge, 48 mm cannula. However, they were <300 mmHg at any flow rates with 18-gauge, 30 mm cannula and 16-gauge cannulae. The post-warmer pressures exceeded 300 mmHg at the flow rate of 140 mL/min with 20-gauge, 48 mm cannula, and 160 mL/min with 20-gauge, 25 mm cannula, while they were <300 mmHg at any flow rates with 18 and 16-gauge cannulae. The in-line pressure within a HOTLINE® could exceed 300 mmHg, depending on the flow rate and size and length of cannula. It is important to pay attention to the size and length of cannulae and flow rate to keep the maximum

  18. Hyaluronan mediates airway hyperresponsiveness in oxidative lung injury

    PubMed Central

    Lazrak, Ahmed; Creighton, Judy; Yu, Zhihong; Komarova, Svetlana; Doran, Stephen F.; Aggarwal, Saurabh; Emala, Charles W.; Stober, Vandy P.; Trempus, Carol S.; Garantziotis, Stavros

    2015-01-01

    Chlorine (Cl2) inhalation induces severe oxidative lung injury and airway hyperresponsiveness (AHR) that lead to asthmalike symptoms. When inhaled, Cl2 reacts with epithelial lining fluid, forming by-products that damage hyaluronan, a constituent of the extracellular matrix, causing the release of low-molecular-weight fragments (L-HA, <300 kDa), which initiate a series of proinflammatory events. Cl2 (400 ppm, 30 min) exposure to mice caused an increase of L-HA and its binding partner, inter-α-trypsin-inhibitor (IαI), in the bronchoalveolar lavage fluid. Airway resistance following methacholine challenge was increased 24 h post-Cl2 exposure. Intratracheal administration of high-molecular-weight hyaluronan (H-HA) or an antibody against IαI post-Cl2 exposure decreased AHR. Exposure of human airway smooth muscle (HASM) cells to Cl2 (100 ppm, 10 min) or incubation with Cl2-exposed H-HA (which fragments it to L-HA) increased membrane potential depolarization, intracellular Ca2+, and RhoA activation. Inhibition of RhoA, chelation of intracellular Ca2+, blockade of cation channels, as well as postexposure addition of H-HA, reversed membrane depolarization in HASM cells. We propose a paradigm in which oxidative lung injury generates reactive species and L-HA that activates RhoA and Ca2+ channels of airway smooth muscle cells, increasing their contractility and thus causing AHR. PMID:25747964

  19. Tear Film Mucins: Front Line Defenders of the Ocular Surface; Comparison with Airway and Gastrointestinal Tract Mucins

    PubMed Central

    Hodges, Robin R.; Dartt, Darlene A.

    2014-01-01

    The ocular surface including the cornea and conjunctiva and its overlying tear film are the first tissues of the eye to interact with the external environment. The tear film is complex containing multiple layers secreted by different glands and tissues. Each layer contains specific molecules and proteins that not only maintain the health of the cells on the ocular surface by providing nourishment and removal of waste products but also protect these cells from environment. A major protective mechanism that the corneal and conjunctival cells have developed is secretion of the innermost layer of the tear film, the mucous layer. Both the cornea and conjunctiva express membrane spanning mucins, whereas the conjunctiva also produces soluble mucins. The mucins present in the tear film serve to maintain the hydration of the ocular surface and to provide lubrication and anti-adhesive properties between the cells of the ocular surface and conjunctiva during the blink. A third function is to contribute to the epithelial barrier to prevent pathogens from binding to the ocular surface. This review will focus on the different types of mucins produced by the corneal and conjunctival epithelia. Also included in this review will be a presentation of the structure of mucins, regulation of mucin production, role of mucins in ocular surface diseases, and the differences in mucin production by the ocular surface, airways and gastrointestinal tract. PMID:23954166

  20. NOX2 (gp91phox) is a predominant O2 sensor in a human airway chemoreceptor cell line: biochemical, molecular, and electrophysiological evidence

    PubMed Central

    Buttigieg, Josef; Pan, Jie; Yeger, Herman

    2012-01-01

    Pulmonary neuroepithelial bodies (NEBs), composed of clusters of amine [serotonin (5-HT)] and peptide-producing cells, are widely distributed within the airway mucosa of human and animal lungs. NEBs are thought to function as airway O2-sensors, since they are extensively innervated and release 5-HT upon hypoxia exposure. The small cell lung carcinoma cell line (H146) provides a useful model for native NEBs, since they contain (and secrete) 5-HT and share the expression of a membrane-delimited O2 sensor [classical NADPH oxidase (NOX2) coupled to an O2-sensitive K+ channel]. In addition, both native NEBs and H146 cells express different NADPH oxidase homologs (NOX1, NOX4) and its subunits together with a variety of O2-sensitive voltage-dependent K+ channel proteins (Kv) and tandem pore acid-sensing K+ channels (TASK). Here we used H146 cells to investigate the role and interactions of various NADPH oxidase components in O2-sensing using a combination of coimmunoprecipitation, Western blot analysis (quantum dot labeling), and electrophysiology (patchclamp, amperometry) methods. Coimmunoprecipitation studies demonstrated formation of molecular complexes between NOX2 and Kv3.3 and Kv4.3 ion channels but not with TASK1 ion channels, while NOX4 associated with TASK1 but not with Kv channel proteins. Downregulation of mRNA for NOX2, but not for NOX4, suppressed hypoxia-sensitive outward current and significantly reduced hypoxia -induced 5-HT release. Collectively, our studies suggest that NOX2/Kv complexes are the predominant O2 sensor in H146 cells and, by inference, in native NEBs. Present findings favor a NEB cell-specific plasma membrane model of O2-sensing and suggest that unique NOX/K+ channel combinations may serve diverse physiological functions. PMID:22865553

  1. Evaluation of the effectiveness of an intravenous line and fluid bottle fixation design.

    PubMed

    Chiou, Piao-Yi; Chien, Chih-Yin; Shiu, Ting-Ru; Lin, Pei-Jiun; Lin, Wan-Yu; Jiang, Yi-Rung

    2015-01-01

    It's important to improve the stability of intravenous (IV) lines and bottles during patient activity and nursing care. We developed an intravenous line and fluid bottle fixation design (ILFBFD) which includes a bottle retaining clip and line fixation kit. We randomly assigned 60 participants each to the experimental and control groups. Participants were asked to push an IV stand without and with ILFBFD 11 meters on uneven pavement and a sloping floor. The distance the IV bottle moved was recorded. Self-administered questionnaires were used to collect the opinions of the participants. Use of ILFBFD, resulted in less movement in the anteroposterior and left/right directions (differences of 46.98 cm2, t= 12.80, p < 0.000 and 39.24 cm2, t= 8.01, p< 0.000, respectively) compared with not using ILFBFD. The average scores for bottle movement when participants walked on a flat floor, uneven pavement and sloping floor, IV line tangling and dropping, and organization of Liv lines were significantly better in those using than not using ILFBFD. The results can be used in clinical practice to reduce knotting of IV lines, and to enhance the safety and quality of patient care.

  2. Widom line and noise-power spectral analysis of a supercritical fluid.

    PubMed

    Han, Sungho; Yu, Clare C

    2012-05-01

    We have performed extensive molecular dynamics simulations to study noise-power spectra of density and potential energy fluctuations of a Lennard-Jones model of a fluid in the supercritical region. Emanating from the liquid-vapor critical point, there is a locus of isobaric specific heat maxima, called the Widom line, which is often regarded as an extension of the liquid-vapor coexistence line. Our simulation results show that the noise-power spectrum of the density fluctuations on the Widom line of the liquid-vapor transition exhibits three distinct 1/f^{γ} behaviors with exponents γ=0, 1.2, and 2, depending on the frequency f. We find that the intermediate frequency region with an exponent γ∼ 1 appears as the temperature approaches the Widom temperature from above or below. On the other hand, we do not find three distinct regions of 1/f^{γ} in the power spectrum of the potential energy fluctuations on the Widom line. Furthermore, we find that the power spectra of both the density and potential energy fluctuations at low frequency have a maximum on the Widom line, suggesting that the noise power can provide an alternative signature of the Widom line.

  3. Aeroacoustical coupling in a ducted shallow cavity and fluid/structure effects on a steam line

    NASA Astrophysics Data System (ADS)

    Lafon, P.; Caillaud, S.; Devos, J. P.; Lambert, C.

    2003-11-01

    A pure tone phenomenon has been observed at 460Hz in a piping steam line. The acoustical energy has been identified to be generated in an open gate valve and to be of cavity noise type. This energy is then transmitted to the main pipe by fluid/structure coupling. The objectives here are to display the mechanism of the flow acoustic coupling in the cavity and in the duct through an aeroacoustical analysis and to understand the way of energy transfer from the fluid to the main pipe through a vibroacoustical analysis. Concerning the first objective, an experimental study by means of 2/7 scale models in air is analysed by means of numerical flow simulation. The flow acoustic phenomena are modelled by computing the Euler equations. Two different computations are carried out: in the first one, a pure Euler modelling is used, in the second one, a boundary layer obtained from experimental data is introduced in the computation in order to have a realistic flow profile upstream the cavity. The boundary layer flow profile appears to be essential to recover the experimentally observed coupling between the shear-layer instability and the acoustical transverse mode of the pipe. The numerical results confirm that the second aerodynamic mode is responsible for the oscillation. While the predicted frequency agrees about 1% with the scale model experiments, the predicted amplitude is approximately 15dB too low. For the second objective, fluid/structure coupling in the main pipe is studied using two fully coupled methods. The first method consists in a modal analysis of the line using a fluid-structure finite element model. The second one is based on the analysis of dispersion diagrams derived from the local equations of cylindrical shells filled with fluid. The way of energy transfer in transverse acoustical waves coupled with flexion-ovalization deformations of the pipe is highlighted using both methods. The dispersion diagrams allow a fast and accurate analysis. The modal analysis

  4. Dual p38/JNK mitogen activated protein kinase inhibitors prevent ozone-induced airway hyperreactivity in guinea pigs.

    PubMed

    Verhein, Kirsten C; Salituro, Francesco G; Ledeboer, Mark W; Fryer, Allison D; Jacoby, David B

    2013-01-01

    Ozone exposure causes airway hyperreactivity and increases hospitalizations resulting from pulmonary complications. Ozone reacts with the epithelial lining fluid and airway epithelium to produce reactive oxygen species and lipid peroxidation products, which then activate cell signaling pathways, including the mitogen activated protein kinase (MAPK) pathway. Both p38 and c-Jun NH2 terminal kinase (JNK) are MAPK family members that are activated by cellular stress and inflammation. To test the contribution of both p38 and JNK MAPK to ozone-induced airway hyperreactivity, guinea pigs were pretreated with dual p38 and JNK MAPK inhibitors (30 mg/kg, i.p.) 60 minutes before exposure to 2 ppm ozone or filtered air for 4 hours. One day later airway reactivity was measured in anesthetized animals. Ozone caused airway hyperreactivity one day post-exposure, and blocking p38 and JNK MAPK completely prevented ozone-induced airway hyperreactivity. Blocking p38 and JNK MAPK also suppressed parasympathetic nerve activity in air exposed animals, suggesting p38 and JNK MAPK contribute to acetylcholine release by airway parasympathetic nerves. Ozone inhibited neuronal M2 muscarinic receptors and blocking both p38 and JNK prevented M2 receptor dysfunction. Neutrophil influx into bronchoalveolar lavage was not affected by MAPK inhibitors. Thus p38 and JNK MAPK mediate ozone-induced airway hyperreactivity through multiple mechanisms including prevention of neuronal M2 receptor dysfunction.

  5. Equivalent Liénard-type models for a fluid transmission line

    NASA Astrophysics Data System (ADS)

    Torres, Lizeth; Aguiñaga, Jorge Alejandro Delgado; Besançon, Gildas; Verde, Cristina; Begovich, Ofelia

    2016-08-01

    The main contribution of this paper is the derivation of spatiotemporal Liénard-type models for expressing the dynamical behavior of a fluid transmission line. The derivation is carried out from a quasilinear hyperbolic system made of a momentum equation and a continuity one. An advantage of these types of models is that they are suitable for formulating estimation algorithms. This claim is confirmed in the present paper for the case of fluid dynamics, since the article presents the conception and evaluation of a Liénard model-based observer that estimates the parameters of a pipeline such as the friction factor, the equivalent length and the wave speed. To show the potentiality of the approach, results based on some simulation and experimental tests are presented. xml:lang="fr"

  6. Comparison of the in-line injector and fluid proportioner used to condition water samples for virus monitoring.

    PubMed

    Dahling, D R; Wright, B A

    1987-10-01

    An in-line injector system is described and compared with the fluid proportioner for the injection of chemicals into water systems during filtration for viruses. Data on flow rates and virus recoveries of this system indicate that it is a suitable alternative to the fluid proportioner and other systems currently in use.

  7. Pulmonary Epithelial Lining Fluid Concentrations after Use of Systemic Amphotericin B Lipid Formulations▿

    PubMed Central

    Weiler, Stefan; Falkensammer, Gerda; Hammerer-Lercher, Angelika; Anliker, Markus; Vogelsinger, Helene; Joannidis, Michael; Dunzendorfer, Stefan; Stein, Markus; Bellmann, Romuald

    2009-01-01

    Amphotericin B (AMB) concentrations were determined in pulmonary epithelial lining fluid (ELF) of 44 critically ill patients, who were receiving treatment with liposomal AMB (LAMB) (n = 11), AMB colloidal dispersion (ABCD) (n = 28), or AMB lipid complex (ABLC) (n = 5). Mean AMB levels (± standard errors of the means) in ELF amounted to 1.60 ± 0.58, 0.38 ± 0.07, and 1.29 ± 0.71 μg/ml in LAMB-, ABCD-, and ABLC-treated patients, respectively (differences are not significant). PMID:19704134

  8. On the mode-coupling theory of vibrational line broadening in near-critical fluids.

    PubMed

    Lawrence, C P; Skinner, J L

    2004-05-08

    Molecular-dynamics simulations of a neat atomic fluid, coupled with a simple model for vibrational frequency perturbations, are used to investigate vibrational line broadening near the liquid-gas critical point. All features of our simulations are in qualitative agreement with recent Raman experiments on nitrogen. We also use our simulation results to assess the validity of the mode-coupling theories that have been used to analyze experiment. We find that the theoretical results are not in good agreement with simulation, both for the temperature dependence of the linewidth, and for the frequency time-correlation functions. However, the mode-coupling prediction that critical line broadening is due to the diverging correlation time of the frequency fluctuations is shown to be correct.

  9. Correlation of Zeno (Z = 1) line for supercritical fluids with vapor-liquid rectilinear diameters

    SciTech Connect

    Ben-Amotz, D.; Herschbach, D.R.

    1996-08-01

    For a wide range of substances, extending well beyond the regime of corresponding states behavior, the contour in the temperature-density plane along which the compressibility factor Z = P/{rho}kT is the same as for an ideal gas is nearly linear. This Z = 1 contour, termed the Zeno line, begins deep in the liquid region and ascends as the density decreases to the Boyle point of the supercritical fluid, specified by the temperature T{sub B} for which (dZ/d{rho}){sub T} = 0 as {rho} {r_arrow} 0; equivalent, at T{sub B} the second virial coefficient vanishes. The slope of the Z = 1 line is {minus}B{sub 3}/(dB{sub 2}/dT), in terms of the third virial coefficient and the derivative of the second, evaluated at T{sub B}. Previous work has examined the Zeno line as a means to extend corresponding states and to enhance other practical approximations. Here the authors call attention to another striking aspect, a strong correlation with the line of rectilinear diameters defined by the average of the subcritical vapor and liquid densities. This correlation is obeyed well by empirical data for many substances and computer simulations for a Lennard-jones potential; the ratios of the intercepts and slopes for the Zeno and rectilinear diameter liens are remarkably close to those predicted by the van der Waals equation, 8/9 and 16/9, respectively. Properties of the slightly imperfect fluid far above the critical point thus implicitly determine the diameter of the vapor-liquid coexistence curve below the critical point.

  10. Cox4i2, Ifit2, and Prdm11 Mutant Mice: Effective Selection of Genes Predisposing to an Altered Airway Inflammatory Response from a Large Compendium of Mutant Mouse Lines.

    PubMed

    Horsch, Marion; Aguilar-Pimentel, Juan Antonio; Bönisch, Clemens; Côme, Christophe; Kolster-Fog, Cathrine; Jensen, Klaus T; Lund, Anders H; Lee, Icksoo; Grossman, Lawrence I; Sinkler, Christopher; Hüttemann, Maik; Bohn, Erwin; Fuchs, Helmut; Ollert, Markus; Gailus-Durner, Valérie; de Angelis, Martin Hrabĕ; Beckers, Johannes

    2015-01-01

    We established a selection strategy to identify new models for an altered airway inflammatory response from a large compendium of mutant mouse lines that were systemically phenotyped in the German Mouse Clinic (GMC). As selection criteria we included published gene functional data, as well as immunological and transcriptome data from GMC phenotyping screens under standard conditions. Applying these criteria we identified a few from several hundred mutant mouse lines and further characterized the Cox4i2tm1Hutt, Ifit2tm1.1Ebsb, and Prdm11tm1.1ahl lines following ovalbumin (OVA) sensitization and repeated OVA airway challenge. Challenged Prdm11tm1.1ahl mice exhibited changes in B cell counts, CD4+ T cell counts, and in the number of neutrophils in bronchoalveolar lavages, whereas challenged Ifit2tm1.1Ebsb mice displayed alterations in plasma IgE, IgG1, IgG3, and IgM levels compared to the challenged wild type littermates. In contrast, challenged Cox4i2tm1Hutt mutant mice did not show alterations in the humoral or cellular immune response compared to challenged wild type mice. Transcriptome analyses from lungs of the challenged mutant mouse lines showed extensive changes in gene expression in Prdm11tm1.1ahl mice. Functional annotations of regulated genes of all three mutant mouse lines were primarily related to inflammation and airway smooth muscle (ASM) remodeling. We were thus able to define an effective selection strategy to identify new candidate genes for the predisposition to an altered airway inflammatory response under OVA challenge conditions. Similar selection strategies may be used for the analysis of additional genotype-envirotype interactions for other diseases.

  11. An approximate analytic solution for the radiation from a line-driven fluid-loaded plate

    NASA Astrophysics Data System (ADS)

    Diperna, Daniel T.; Feit, David

    2001-12-01

    In the analysis of a fluid loaded line-driven plate, the fields in the structure and the fluid are often expressed in terms of a Fourier transform. Once the boundary conditions are matched, the structural displacement can be expressed as an inverse transform, which can be evaluated using contour integration. The result is then a sum of propagating or decaying waves, each arising from poles in the complex plane, plus a branch cut integral. The branch cut is due to a square root in the transform of the acoustic impedance. The complex layer analysis (CLA) used here eliminates the branch cut singularity by approximating the square root with a rational function, causing the characteristic equation to become a polynomial in the transform variable. An approximate analytic solution to the characteristic equation is then found using a perturbation method. The result is four poles corresponding to the roots of the in vacuo plate, modified by the presence of the fluid, plus an infinity of poles located along the branch cut of the acoustic impedance. The solution is then found analytically using contour integration, with the integrand containing only simple poles.

  12. Correlation and discriminant analysis between clinical, endoscopic, thoracic X-ray and bronchoalveolar lavage fluid cytology scores, for staging horses with recurrent airway obstruction (RAO).

    PubMed

    Tilley, P; Sales Luis, J P; Branco Ferreira, M

    2012-10-01

    As recurrent airway obstruction (RAO) is progressive and as medical history is frequently unknown by owners, it's important to suggest a score model to characterize RAO stages for a more accurate diagnosis and treatment. The authors correlated clinical (CS), endoscopic (ES), thoracic X-ray (XRS) and bronchoalveolar lavage fluid (BALFS) scores in horses with RAO, in an attempt to establish relevance of each factor's contribution for the characterization of RAO stages and to suggest a staging method. Thirty horses with RAO and ten healthy controls were studied. Pearson correlation coefficients were determined between CS, ES, XRS and BALFS. Only significant correlation coefficients (>0.60) were considered. One way variance analyses were used to compare the two groups. A discriminant analysis model was adjusted on the RAO staging method suggested. There was a significant correlation coefficient between the CS cough, nostril flare and abdominal lift, all the mucus ES (0.61-0.84), the XRS interstitial pattern, bronchial radiopacity and thickening and tracheal thickening (0.67-0.78) and the BALFS neutrophil percentages (0.63-0.84). These variables (e.g., cough) which presented a significant correlation coefficient were considered relevant and chosen for a score model to characterize RAO stages. The ten healthy controls were attributed stage 0 and the 30 RAO horses were attributed stages 1 (4 horses), 2 (7 horses), 3 (10 horses) and 4 (9 horses). There was also a significant correlation coefficient between all the relevant variables and the RAO stage (0.61-0.89). Furthermore, discriminant analysis of the RAO staging method showed 92.5% of original grouped cases and 85.0% of cross-validated grouped cases correctly classified, having confirmed major contribution of the same variables that had significant correlation coefficients. Even though further confirmation by lung functional testing is desirable, the significant correlation between relevant variables and RAO stage and

  13. Development of a new arterial-line filter design using computational fluid dynamics analysis.

    PubMed

    Herbst, Daniel P; Najm, Hani K

    2012-09-01

    Arterial-line filters used during extracorporeal circulation continue to rely on the physical properties of a wetted micropore and reductions in blood flow velocity to affect air separation from the circulating blood volume. Although problems associated with air embolism during cardiac surgery persist, a number of investigators have concluded that further improvements in filtration are needed to enhance air removal during cardiopulmonary bypass procedures. This article reviews theoretical principles of micropore filter technology and outlines the development of a new arterial-line filter concept using computational fluid dynamics analysis. Manufacturer-supplied data of a micropore screen and experimental results taken from an ex vivo test circuit were used to define the inputs needed for numerical modeling of a new filter design. Flow patterns, pressure distributions, and velocity profiles predicted with computational fluid dynamics software were used to inform decisions on model refinements and how to achieve initial design goals of < or = 225 mL prime volume and < or = 500 cm2 of screen surface area. Predictions for optimal model geometry included a screen angle of 56 degrees from the horizontal plane with a total surface area of 293.9 cm2 and a priming volume of 192.4 mL. This article describes in brief the developmental process used to advance a new filter design and supports the value of numerical modeling in this undertaking.

  14. Effects of carbocisteine on sialyl-Lewis x expression in an airway carcinoma cell line stimulated with tumor necrosis factor-alpha.

    PubMed

    Ishibashi, Yuji; Imai, Shigeru; Inouye, Yoshio; Okano, Teruo; Taniguchi, Akiyoshi

    2006-01-20

    Carbocisteine is a mucoregulatory drug normalizing sialic acid and fucose contents in mucins through the regulation of glycosyltransferase activities. Tumor necrosis factor (TNF)-alpha-induced overexpression of sialyl-Lewis x epitopes, containing sialic acid and fucose, in mucins were previously reported to be regulated by glycosyltransferase mRNAs expression through phosphatidyl inositol-specific phospholipase C (PI-PLC) signaling pathways [Ishibashi, Y., Inouye, Y., Okano, T., Taniguchi, A., 2005. Regulation of sialyl-Lewis x epitope expression by TNF-alpha and EGF in an airway carcinoma cell line. Glycoconj. J. 22, 53-62]. To investigate the mechanism behind the mucoregulatory action of carbocisteine, the present study evaluated the effects of carbocisteine on TNF-alpha-induced overexpression of sialyl-Lewis x epitopes in NCI-H292 cells. 100 mug/ml of carbocisteine was able to inhibit the TNF-alpha-induced expression of hST3GallV mRNA, FUT3 mRNA, C2/4GnT mRNA and sialyl-Lewis x epitopes as well as the TNF-alpha-induced activity of PI-PLC in NCI-H292 cells. These findings suggest that carbocisteine may normalize the sialyl-Lewis x epitopes expression in mucins through the inhibition of cellular PI-PLC activity in vivo.

  15. Newborn pig trachea cell line cultured in air-liquid interface conditions allows a partial in vitro representation of the porcine upper airway tissue

    PubMed Central

    2014-01-01

    Background The domestic pig is an excellent animal model to study human microbial diseases due to its similarity to humans in terms of anatomy, physiology, and genetics. We assessed the suitability of an in vitro air-liquid interface (ALI) culture system for newborn pig trachea (NPTr) cells as a practical tool for analyzing the immune response of respiratory epithelial cells to aggressors. This cell line offers a wide microbial susceptibility spectrum to both viruses and bacteria. The purpose of our study was to evaluate and characterize diverse aspects of cell differentiation using different culture media. After the NPTr cells reached confluence, the apical medium was removed and the cells were fed by medium from the basal side. Results We assessed the cellular layer’s capacity to polarize and differentiate in ALI conditions. Using immunofluorescence and electronic microscopy we evaluated the presence of goblet and ciliated cells, the epithelial junction organization, and the transepithelial electrical resistance. We found that the cellular layer develops a variable density of mucus producing cells and acquires a transepithelial resistance. We also identified increased development of cellular junctions over the culture period. Finally, we observed variable expression of transcripts associated to proteins such as keratin 8, mucins (MUC1, MUC2, and MUC4), occludin, and villin 1. Conclusions The culture of NPTr cells in ALI conditions allows a partial in vitro representation of porcine upper airway tissue that could be used to investigate some aspects of host/respiratory pathogen interactions. PMID:24885012

  16. Apoptosis and the Airway Epithelium

    PubMed Central

    White, Steven R.

    2011-01-01

    The airway epithelium functions as a barrier and front line of host defense in the lung. Apoptosis or programmed cell death can be elicited in the epithelium as a response to viral infection, exposure to allergen or to environmental toxins, or to drugs. While apoptosis can be induced via activation of death receptors on the cell surface or by disruption of mitochondrial polarity, epithelial cells compared to inflammatory cells are more resistant to apoptotic stimuli. This paper focuses on the response of airway epithelium to apoptosis in the normal state, apoptosis as a potential regulator of the number and types of epithelial cells in the airway, and the contribution of epithelial cell apoptosis in important airways diseases. PMID:22203854

  17. A Finite Element Method for Free-Surface Flows of Incompressible Fluids in Three Dimensions, Part II: Dynamic Wetting Lines

    SciTech Connect

    Baer, T.A.; Cairncross, R.A.; Rao, R.R.; Sackinger, P.A.; Schunk, P.R.

    1999-01-29

    To date, few researchers have solved three-dimensional free-surface problems with dynamic wetting lines. This paper extends the free-surface finite element method described in a companion paper [Cairncross, R.A., P.R. Schunk, T.A. Baer, P.A. Sackinger, R.R. Rao, "A finite element method for free surface flows of incompressible fluid in three dimensions, Part I: Boundary-Fitted mesh motion.", to be published (1998)] to handle dynamic wetting. A generalization of the technique used in two dimensional modeling to circumvent double-valued velocities at the wetting line, the so-called kinematic paradox, is presented for a wetting line in three dimensions. This approach requires the fluid velocity normal to the contact line to be zero, the fluid velocity tangent to the contact line to be equal to the tangential component of web velocity, and the fluid velocity into the web to be zero. In addition, slip is allowed in a narrow strip along the substrate surface near the dynamic contact line. For realistic wetting-line motion, a contact angle which varies with wetting speed is required because contact lines in three dimensions typically advance or recede a different rates depending upon location and/or have both advancing and receding portions. The theory is applied to capillary rise of static fluid in a corner, the initial motion of a Newtonian droplet down an inclined plane, and extrusion of a Newtonian fluid from a nozzle onto a moving substrate. The extrusion results are compared to experimental visualization. Subject Categories

  18. Distal airway dysfunction identifies pulmonary inflammation in asymptomatic smokers

    PubMed Central

    Berger, Kenneth I.; Pradhan, Deepak R.; Goldring, Roberta M.; Oppenheimer, Beno W.; Rom, William N.

    2016-01-01

    Smoking induced inflammation leads to distal airway destruction. However, the relationship between distal airway dysfunction and inflammation remains unclear, particularly in smokers prior to the development of airway obstruction. Seven normal controls and 16 smokers without chronic obstructive pulmonary disease (COPD) were studied. Respiratory function was assessed using the forced oscillation technique (FOT). Abnormal FOT was defined as elevated resistance at 5 Hz (R5). Parameters reflecting distal lung function included frequency dependence of resistance (R5–20) and dynamic elastance (X5). Inflammation was quantified in concentrated bronchoalveolar lavage utilising cell count differential and cytokines expressed as concentration per mL epithelial lining fluid. All control subjects and seven smokers had normal R5. Nine smokers had elevated R5 with abnormal R5–20 and X5, indicating distal lung dysfunction. The presence of abnormal FOT was associated with two-fold higher lymphocyte and neutrophil counts (p<0.025) and with higher interleukin (IL)-8, eotaxin and fractalkine levels (p<0.01). Reactivity of R5–20 and X5 correlated with levels of IL-8, eotaxin, fractalkine, IL-12p70 and transforming growth factor-α (r>0.47, p<0.01). Distal airway dysfunction in smokers without COPD identifies the presence of distal lung inflammation that parallel reported observations in established COPD. These findings were not evident on routine pulmonary function testing and may allow the identification of smokers at risk of progression to COPD. PMID:27995132

  19. Distal airway dysfunction identifies pulmonary inflammation in asymptomatic smokers.

    PubMed

    Berger, Kenneth I; Pradhan, Deepak R; Goldring, Roberta M; Oppenheimer, Beno W; Rom, William N; Segal, Leopoldo N

    2016-10-01

    Smoking induced inflammation leads to distal airway destruction. However, the relationship between distal airway dysfunction and inflammation remains unclear, particularly in smokers prior to the development of airway obstruction. Seven normal controls and 16 smokers without chronic obstructive pulmonary disease (COPD) were studied. Respiratory function was assessed using the forced oscillation technique (FOT). Abnormal FOT was defined as elevated resistance at 5 Hz (R5). Parameters reflecting distal lung function included frequency dependence of resistance (R5-20) and dynamic elastance (X5). Inflammation was quantified in concentrated bronchoalveolar lavage utilising cell count differential and cytokines expressed as concentration per mL epithelial lining fluid. All control subjects and seven smokers had normal R5. Nine smokers had elevated R5 with abnormal R5-20 and X5, indicating distal lung dysfunction. The presence of abnormal FOT was associated with two-fold higher lymphocyte and neutrophil counts (p<0.025) and with higher interleukin (IL)-8, eotaxin and fractalkine levels (p<0.01). Reactivity of R5-20 and X5 correlated with levels of IL-8, eotaxin, fractalkine, IL-12p70 and transforming growth factor-α (r>0.47, p<0.01). Distal airway dysfunction in smokers without COPD identifies the presence of distal lung inflammation that parallel reported observations in established COPD. These findings were not evident on routine pulmonary function testing and may allow the identification of smokers at risk of progression to COPD.

  20. Regulation of cyclooxygenase-2 expression by cAMP response element and mRNA stability in a human airway epithelial cell line exposed to zinc

    EPA Science Inventory

    Exposure to zinc-laden particulate matter in ambient and occupational settings has been associated with proinflammatory responses in the lung. Cyclooxygenase 2-derived eicosanoids are important modulators of airway inflammation. In this study, we characterized the transcriptional...

  1. Lung Mucosa Lining Fluid Modification of Mycobacterium tuberculosis to Reprogram Human Neutrophil Killing Mechanisms.

    PubMed

    Arcos, Jesús; Diangelo, Lauren E; Scordo, Julia M; Sasindran, Smitha J; Moliva, Juan I; Turner, Joanne; Torrelles, Jordi B

    2015-09-15

    We have shown that human alveolar lining fluid (ALF) contains homeostatic hydrolases capable of altering the Mycobacterium tuberculosis cell wall and subsequently its interaction with human macrophages. Neutrophils are also an integral part of the host immune response to M. tuberculosis infection. Here we show that the human lung mucosa influences M. tuberculosis interaction with neutrophils, enhancing the intracellular killing of ALF-exposed M. tuberculosis and up-regulating the expression of tumor necrosis factor and interleukin 8. In contrast, ALF-exposed M. tuberculosis does not induce neutrophil apoptosis or necrosis, degranulation, or release of extracellular traps, and it decreases the oxidative response. These results suggest an important role for the human alveolar mucosa: increasing the innate capacity of the neutrophil to recognize and kill M. tuberculosis by favoring the use of intracellular mechanisms, while at the same time limiting neutrophil extracellular inflammatory responses to minimize their associated tissue damage.

  2. Path-integral and Ornstein-Zernike study of quantum fluid structures on the crystallization line.

    PubMed

    Sesé, Luis M

    2016-03-07

    Liquid neon, liquid para-hydrogen, and the quantum hard-sphere fluid are studied with path integral Monte Carlo simulations and the Ornstein-Zernike pair equation on their respective crystallization lines. The results cover the whole sets of structures in the r-space and the k-space and, for completeness, the internal energies, pressures and isothermal compressibilities. Comparison with experiment is made wherever possible, and the possibilities of establishing k-space criteria for quantum crystallization based on the path-integral centroids are discussed. In this regard, the results show that the centroid structure factor contains two significant parameters related to its main peak features (amplitude and shape) that can be useful to characterize freezing.

  3. Lung Mucosa Lining Fluid Modification of Mycobacterium tuberculosis to Reprogram Human Neutrophil Killing Mechanisms

    PubMed Central

    Arcos, Jesús; Diangelo, Lauren E.; Scordo, Julia M.; Sasindran, Smitha J.; Moliva, Juan I.; Turner, Joanne; Torrelles, Jordi B.

    2015-01-01

    We have shown that human alveolar lining fluid (ALF) contains homeostatic hydrolases capable of altering the Mycobacterium tuberculosis cell wall and subsequently its interaction with human macrophages. Neutrophils are also an integral part of the host immune response to M. tuberculosis infection. Here we show that the human lung mucosa influences M. tuberculosis interaction with neutrophils, enhancing the intracellular killing of ALF-exposed M. tuberculosis and up-regulating the expression of tumor necrosis factor and interleukin 8. In contrast, ALF-exposed M. tuberculosis does not induce neutrophil apoptosis or necrosis, degranulation, or release of extracellular traps, and it decreases the oxidative response. These results suggest an important role for the human alveolar mucosa: increasing the innate capacity of the neutrophil to recognize and kill M. tuberculosis by favoring the use of intracellular mechanisms, while at the same time limiting neutrophil extracellular inflammatory responses to minimize their associated tissue damage. PMID:25748325

  4. Penetration of Ciprofloxacin and Amikacin into the Alveolar Epithelial Lining Fluid of Rats with Pulmonary Fibrosis.

    PubMed

    Ni, Wentao; Yang, Deqing; Mei, Hekun; Zhao, Jin; Liang, Beibei; Bai, Nan; Chai, Dong; Cui, Junchang; Wang, Rui; Liu, Youning

    2017-04-01

    We determined the concentration-time profiles of ciprofloxacin and amikacin in serum and alveolar epithelial lining fluid (ELF) of rats with or without pulmonary fibrosis and investigated the effect of pulmonary fibrosis on the capacity for penetration of antimicrobials into the ELF of rats. Pulmonary fibrosis was induced in rats with a single intratracheal instillation of bleomycin. After intravenous injection of ciprofloxacin or amikacin, blood and bronchoalveolar lavage fluid samples were collected. Urea concentrations in serum and lavage fluid were determined using an enzymatic assay. Ciprofloxacin and amikacin concentrations were determined by high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry, respectively. The mean ratio of ELF to plasma concentrations of ciprofloxacin at each time point in the normal group did not significantly differ from that in the pulmonary fibrosis group. However, the ratio of the ciprofloxacin area under the concentration-time curve from 0 to 24 h (AUC0-24) in ELF to the AUC0-24 in plasma was 1.02 in the normal group and 0.76 in the pulmonary fibrosis group. The mean ELF-to-plasma concentration ratios of amikacin at each time point in the normal group were higher than those in the pulmonary fibrosis group, reaching a statistically significant difference at 1, 2, and 4 h. The ratio of the AUC0-24 in ELF to the AUC0-24 in plasma was 0.49 in the normal group and 0.27 in the pulmonary fibrosis group. In conclusion, pulmonary fibrosis can influence the penetration of antimicrobials into the ELF of rats and may have a marked effect on the penetration of amikacin than that of ciprofloxacin.

  5. Interpretation of Epithelial Lining Fluid Concentrations of Antibiotics against Methicillin Resistant Staphylococcus aureus.

    PubMed

    Kiem, Sungmin; Schentag, Jerome J

    2014-12-01

    Although antibiotics whose epithelial lining fluid (ELF) concentrations are reported high tend to be preferred in treatment of pneumonia, measurement of ELF concentrations of antibiotics could be misled by contamination from lysis of ELF cells and technical errors of bronchoalveolar lavage (BAL). In this review, ELF concentrations of anti-methicillin resistant Staphylococcus aureus (MRSA) antibiotics were interpreted considering above confounding factors. An equation used to explain antibiotic diffusion into CSF (cerebrospinal fluid) was adopted: ELF/free serum concentration ratio = 0.96 + 0.091 × ln (partition coefficient / molecular weight(1/2)). Seven anti-MRSA antibiotics with reported ELF concentrations were fitted to this equation to see if their ELF concentrations were explainable by the penetration capacity only. Then, outliers were modeled under the assumption of varying contamination from lysed ELF cells (test range 0-10% of ELF volume). ELF concentrations of oritavancin, telavancin, tigecycline, and vancomycin were well described by the diffusion equation, with or without additional impact from cell lysis. For modestly high ELF/free serum concentration ratio of linezolid, technical errors of BAL should be excluded. Although teicoplanin and iclaprim showed high ELF/free serum ratios also, their protein binding levels need to be cleared for proper interpretation. At the moment, it appears very premature to use ELF concentrations of anti-MRSA antibiotics as a relevant guide for treatment of lung infections by MRSA.

  6. Regulation of cyclooxygenase-2 expression by cAMP response element and mRNA stability in a human airway epithelial cell line exposed to zinc

    SciTech Connect

    Wu Weidong Silbajoris, Robert A.; Cao Dongsun; Bromberg, Philip A.; Zhang Qiao; Peden, David B.; Samet, James M.

    2008-09-01

    Exposure to zinc-laden particulate matter in ambient and occupational settings has been associated with proinflammatory responses in the lung. Cyclooxygenase 2-derived eicosanoids are important modulators of airway inflammation. In this study, we characterized the transcriptional and posttranscriptional events that regulate COX-2 expression in a human bronchial epithelial cell line BEAS-2B exposed to Zn{sup 2+}. Zn{sup 2+} exposure resulted in pronounced increases in COX-2 mRNA and protein expression, which were prevented by pretreatment with the transcription inhibitor actinomycin D, implying the involvement of transcriptional regulation. This was supported by the observation of increased COX-2 promoter activity in Zn{sup 2+}-treated BEAS-2B cells. Mutation of the cAMP response element (CRE), but not the {kappa}B-binding sites in the COX-2 promoter markedly reduced COX-2 promoter activity induced by Zn{sup 2+}. Inhibition of NF{kappa}B activation did not block Zn{sup 2+}-induced COX-2 expression. Measurement of mRNA stability demonstrated that Zn{sup 2+} exposure impaired the degradation of COX-2 mRNA in BEAS-2B cells. This message stabilization effect of Zn{sup 2+} exposure was shown to be dependent on the integrity of the 3'-untranslated region found in the COX-2 transcript. Taken together, these data demonstrate that the CRE and mRNA stability regulates COX-2 expression induced in BEAS-2B cells exposed to extracellular Zn{sup 2+}.

  7. The Phillips airway.

    PubMed

    Haridas, R P; Wilkinson, D J

    2012-07-01

    The Phillips airway was developed by George Ramsay Phillips. There is no known original description of the airway and the earliest known reference to it is from 1919. The airway and its modifications are described.

  8. Colonization of CF patients' upper airways with S. aureus contributes more decisively to upper airway inflammation than P. aeruginosa.

    PubMed

    Janhsen, Wibke Katharina; Arnold, Christin; Hentschel, Julia; Lehmann, Thomas; Pfister, Wolfgang; Baier, Michael; Böer, Klas; Hünniger, Kerstin; Kurzai, Oliver; Hipler, Uta-Christina; Mainz, Jochen Georg

    2016-10-01

    In cystic fibrosis (CF) patients' airways, inflammatory processes decisively contribute to remodeling and pulmonary destruction. The aims of this study were to compare upper airway (UAW) inflammation in the context of Staphylococcus aureus and Pseudomonas aeruginosa colonization in a longitudinal setting, and to examine further factors influencing UAW inflammation. Therefore, we analyzed soluble inflammatory mediators in noninvasively obtained nasal lavage (NL) of CF patients together with microbiology, medication, and relevant clinical parameters. NL, applying 10 mL of isotonic saline per nostril, was serially performed in 74 CF patients (326 samples). Concentrations of the inflammatory mediators' interleukin (IL)-1β, IL-6, IL-8, matrix metalloproteinase (MMP)-9, and its anti-protease TIMP-1 were quantified by bead-based multiplexed assay, neutrophil elastase (NE) via ELISA. Culture-based microbiology of the upper and lower airways (LAW), as well as serological and clinical findings, were compiled. Our results indicate that UAW colonization with S. aureus significantly impacts the concentration of all measured inflammatory mediators in NL fluid except TIMP-1, whereas these effects were not significant for P. aeruginosa. Patients with S. aureus colonization of both the UAW and LAW showed significantly increased concentrations of IL-1β, IL-6, IL-8, MMP-9, and slightly elevated concentrations of NE in NL fluid compared to non-colonized patients. This work elaborates a survey on S. aureus' virulence factors that may contribute to this underestimated pathology. Serial assessment of epithelial lining fluid by NL reveals that colonization of the UAW with S. aureus contributes more to CF airway inflammatory processes than hitherto expected.

  9. Blockage of upper airway

    MedlinePlus

    ... Airway obstruction - acute upper Images Throat anatomy Choking Respiratory system References Cukor J, Manno M. Pediatric respiratory emergencies: upper airway obstruction and infections. In: Marx ...

  10. Effect of P2X4R on airway inflammation and airway remodeling in allergic airway challenge in mice

    PubMed Central

    CHEN, HONGXIA; XIA, QINGQING; FENG, XIAOQIAN; CAO, FANGYUAN; YU, HANG; SONG, YINLI; NI, XIUQIN

    2016-01-01

    P2X4 receptor (P2X4R) is the most widely expressed subtype of the P2XRs in the purinergic receptor family. Adenosine triphosphate (ATP), a ligand for this receptor, has been implicated in the pathogenesis of asthma. ATP-P2X4R signaling is involved in pulmonary vascular remodeling, and in the proliferation and differentiation of airway and alveolar epithelial cell lines. However, the role of P2X4R in asthma remains to be elucidated. This aim of the present study was to investigate the effects of P2X4R in a murine experimental asthma model. The asthmatic model was established by the inhalation of ovalbumin (OVA) in BALB/c mice. The mice were treated with P2X4R-specific agonists and antagonists to investigate the role of this receptor in vivo. Pathological changes in the bronchi and lung tissues were examined using hematoxylin and eosin staining, Masson's trichrome staining and Alcian blue staining. The inflammatory cells in the bronchoalveolar lavage fluid were counted, and the expression levels of P2X4R, α-smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA) were detected using western blotting. In the OVA-challenged mice, inflammation, infiltration, collagen deposition, mucus production, and the expression levels of P2X4R and PCNA were all increased; however, the expression of α-SMA was decreased, compared with the mice in the control group. Whereas treatment with the P2X4R agonist, ATP, enhanced the allergic reaction, treatment with the P2X4R antagonist, 5-BDBD, attenuated the allergic reaction. The results suggested that ATP-P2X4R signaling may not only contribute to airway inflammation, but it may also contribute to airway remodeling in allergic asthma in mice. PMID:26648454

  11. The Airway Microbiome at Birth

    PubMed Central

    Lal, Charitharth Vivek; Travers, Colm; Aghai, Zubair H.; Eipers, Peter; Jilling, Tamas; Halloran, Brian; Carlo, Waldemar A.; Keeley, Jordan; Rezonzew, Gabriel; Kumar, Ranjit; Morrow, Casey; Bhandari, Vineet; Ambalavanan, Namasivayam

    2016-01-01

    Alterations of pulmonary microbiome have been recognized in multiple respiratory disorders. It is critically important to ascertain if an airway microbiome exists at birth and if so, whether it is associated with subsequent lung disease. We found an established diverse and similar airway microbiome at birth in both preterm and term infants, which was more diverse and different from that of older preterm infants with established chronic lung disease (bronchopulmonary dysplasia). Consistent temporal dysbiotic changes in the airway microbiome were seen from birth to the development of bronchopulmonary dysplasia in extremely preterm infants. Genus Lactobacillus was decreased at birth in infants with chorioamnionitis and in preterm infants who subsequently went on to develop lung disease. Our results, taken together with previous literature indicating a placental and amniotic fluid microbiome, suggest fetal acquisition of an airway microbiome. We speculate that the early airway microbiome may prime the developing pulmonary immune system, and dysbiosis in its development may set the stage for subsequent lung disease. PMID:27488092

  12. Possibility of modification of the Rayleigh line in a nonequilibrium fluid with a constant shear velocity gradient

    NASA Astrophysics Data System (ADS)

    Sahoo, Debendranath; Sood, A. K.

    1984-11-01

    We show that the recent prediction of the García-Colín and Velasco

    [Phys. Rev. A 26 2187 (1982)]
    regarding the modification of the Rayleigh line, in the scattering of light from a fluid kept under a constant shear veloity gradient, is incorrect. A correct application of fluctuating hydrodynamics is shown to predict no such change.

  13. Sustained distribution of aerosolized PEGylated liposomes in epithelial lining fluids on alveolar surfaces.

    PubMed

    Kaneko, Keita; Togami, Kohei; Yamamoto, Eri; Wang, Shujun; Morimoto, Kazuhiro; Itagaki, Shirou; Chono, Sumio

    2016-10-01

    The distribution characteristics of aerosolized PEGylated liposomes in alveolar epithelial lining fluid (ELF) were examined in rats, and the ensuing mechanisms were investigated in the in vitro uptake and protein adsorption experiments. Nonmodified or PEGylated liposomes (particle size 100 nm) were aerosolized into rat lungs. PEGylated liposomes were distributed more sustainably in ELFs than nonmodified liposomes. Furthermore, the uptake of PEGylated liposomes by alveolar macrophages (AMs) was less than that of nonmodified liposomes. In further in vitro uptake experiments, nonmodified and PEGylated liposomes were opsonized with rat ELF components and then added to NR8383 cells as cultured rat AMs. The uptake of opsonized PEGylated liposomes by NR8383 cells was lower than that of opsonized nonmodified liposomes. Moreover, the protein absorption levels in opsonized PEGylated liposomes were lower than those in opsonized nonmodified liposomes. These findings suggest that sustained distributions of aerosolized PEGylated liposomes in ELFs reflect evasion of liposomal opsonization with surfactant proteins and consequent reductions in uptake by AMs. These data indicate the potential of PEGylated liposomes as aerosol-based drug delivery system that target ELF for the treatment of respiratory diseases.

  14. Pharmacokinetics in pulmonary epithelial lining fluid and plasma of ampicillin and pivampicillin administered to horses.

    PubMed

    Winther, Lotte; Baptiste, Keith Edward; Friis, Christian

    2012-02-01

    Ampicillin concentrations in pulmonary epithelial lining fluid (PELF) and plasma was studied after single intravenous ampicillin administration (15mg/kg) or single intragastric administration of its prodrug, pivampicillin (19.9mg/kg) to horses and discussed in relation to minimum inhibitory concentrations (MIC) of common equine respiratory pathogens. After intravenous administration, elimination of ampicillin was fast and not detectable in plasma after 12h in three out of six horses. Pivampicillin was absorbed well in non-fasted horses with an oral bioavailability of 36%. The degree of penetration of ampicillin into PELF, as described by the AUC(PELF)/AUC(plasma) ratio from 0 to 12h was 0.40 after intravenous administration and 1.00 after pivampicillin administration. In horses, ampicillin administered either intravenously or orally, in the form of pivampicillin, can provide clinically relevant drug concentrations in PELF for at least 12h, when treating susceptible equine respiratory pathogens (e.g. streptococci). Treatment of other bacterial pathogens requires susceptibility testing and possibly more frequent dosing, depending of minimum inhibitory concentrations (MIC) values.

  15. Penetration of dapsone into pulmonary lining fluid of human immunodeficiency virus type 1-infected patients.

    PubMed Central

    Cruciani, M; Gatti, G; Mengoli, C; Cazzadori, A; Lazzarini, L; Miletich, F; Graziani, M S; Malena, M; Bassetti, D

    1997-01-01

    We studied the penetration of dapsone into the epithelial lining fluid (ELF) of sixteen human immunodeficiency virus type 1-infected patients who had received the drug at a dose of 100 mg twice weekly as primary prophylaxis for Pneumocystis carinii pneumonia. Bronchoscopy, bronchoalveolar lavage (BAL), and venipuncture were performed for each patient at a specific time after administration of the last dose of dapsone. Dapsone concentrations in plasma and BAL were determined by high-performance liquid chromatography. The apparent volume of ELF recovered by BAL was determined by using urea as an endogenous marker. The mean concentrations of dapsone in ELF at 2 h (five patients), 4 h (three patients), 12 h (two patients), 24 h (three patients), and 48 h (three patients) were 0.95, 0.70, 1.55, 0.23, and 0.45 mg/liter, respectively, while concentrations in plasma were 1.23, 0.79, 1.31, 0.83, and 0.18 mg/liter, respectively. Dapsone concentrations in ELF were 76, 79, 115, 65, and 291% of those observed in plasma at the same times, respectively. These data show that dapsone is well distributed into ELF and that a twice-weekly 100-mg prophylactic regimen results in sustained concentrations in this compartment. PMID:9145873

  16. Liquid Therapy Delivery Models Using Microfluidic Airways

    NASA Astrophysics Data System (ADS)

    Mulligan, Molly K.; Grotberg, James B.; Waisman, Dan; Filoche, Marcel; Sznitman, Josué

    2013-11-01

    The propagation and break-up of viscous and surfactant-laden liquid plugs in the lungs is an active area of research in view of liquid plug installation in the lungs to treat a host of different pulmonary conditions. This includes Infant Respiratory Distress Syndrome (IRDS) the primary cause of neonatal death and disability. Until present, experimental studies of liquid plugs have generally been restricted to low-viscosity Newtonian fluids along a single bifurcation. However, these fluids reflect poorly the actual liquid medication therapies used to treat pulmonary conditions. The present work attempts to uncover the propagation, rupture and break-up of liquid plugs in the airway tree using microfluidic models spanning three or more generations of the bronchiole tree. Our approach allows the dynamics of plug propagation and break-up to be studied in real-time, in a one-to-one scale in vitro model, as a function of fluid rheology, trailing film dynamics and bronchial tree geometry. Understanding these dynamics are a first and necessary step to deliver more effectively boluses of liquid medication to the lungs while minimizing the injury caused to epithelial cells lining the lungs from the rupture of such liquid plugs.

  17. Fluid structure in the immediate vicinity of an equilibrium contact line from first principles and assessment of disjoining pressure models

    NASA Astrophysics Data System (ADS)

    Nold, Andreas; Sibley, David N.; Goddard, Benjamin D.; Kalliadasis, Serafim

    2014-11-01

    Predicting the fluid structure at a three-phase contact line of macroscopic drops is of interest from a fundamental fluid dynamics point of view. However, exact computations for very small scales are prohibitive. As a consequence, coarse-grained quantities such as interface height and disjoining pressure profiles are used to model the interface shape. Here, we evaluate such coarse-grained models within a rigorous and self-consistent framework based on statistical mechanics, in particular with a Density Functional Theory (DFT) approach. We examine the nanoscale behavior of an equilibrium three-phase contact line in the presence of long-ranged intermolecular forces by employing DFT together with fundamental measure theory. Our analysis also enables us to evaluate the predictive quality of effective Hamiltonian models in the vicinity of the contact line. We compare the results for mean field effective Hamiltonians with disjoining pressures defined through the adsorption isotherm for a planar liquid film, and the normal force balance at the contact line [Phys. Fluids, 26, 072001, 2014]. Results are given for a variety of contact angles. An accurate description of the small-scale behavior of a three-phase conjunction is a prerequisite to understanding dynamic wetting phenomena.

  18. On-line fast response device and method for measuring dissolved gas in a fluid

    DOEpatents

    Tutu, Narinder Kumar

    2011-01-11

    A method and device for the measurement of dissolved gas within a fluid. The fluid, substantially a liquid, is pumped into a pipe. The flow of the fluid is temporally restricted, creating one or more low pressure regions. A measurement indicative of trapped air is taken before and after the restriction. The amount of dissolved air is calculated from the difference between the first and second measurements. Preferably measurements indicative of trapped air is obtained from one or more pressure transducers, capacitance transducers, or combinations thereof. In the alternative, other methods such as those utilizing x-rays or gamma rays may also be used to detect trapped air. Preferably, the fluid is a hydraulic fluid, whereby dissolved air in the fluid is detected.

  19. Presence of infection influences the epithelial lining fluid penetration of oral levofloxacin in adult patients.

    PubMed

    Kuti, Joseph L; Nicolau, David P

    2015-05-01

    Although epithelial lining fluid (ELF) is the presumed site for pulmonary infections, most antibiotic penetration studies are conducted in uninfected patients or healthy volunteers. Levofloxacin concentrations in plasma and ELF were collected from two previous studies involving 18 infected patients with acute exacerbations of chronic bronchitis and 15 uninfected elderly patients undergoing diagnostic bronchoscopy. Concentration data were population modelled using the BigNPAG algorithm, and a 5000-patient Monte Carlo simulation was conducted to simulate ELF exposure for a dosing regimen 750mg every 24h for five doses in plasma and ELF of infected versus uninfected patients. Mean±S.D. model parameters for plasma in infected patients were similar to uninfected patients (volume of central compartment, 68.4±36.3 vs. 50.2±17.3L; clearance, 6.0±2.5 vs. 6.8±3.3L/h; and absorption rate, 5.4±2.5 vs. 4.7±2.7h(-1)), resulting in similar simulated AUC in plasma (infected, 140.5±54.8 vs. uninfected, 133.7±61.6μgh/mL). The volume of ELF was 57.2±25.0 and 14.8±9.0L in infected and uninfected patients, respectively, resulting in a lower simulated AUCELF exposure for infected patients (189.1±210.5 vs. 461.0±558.7μgh/mL). Penetration ratios for infected and uninfected patients were, respectively, 1.4±1.8 and 3.5±3.7, with median values of 0.9 and 2.4. ELF penetration in infected patients was approximately one-half that of uninfected adults. These data highlight the importance of confirming exposure in infected patients to further support dosage regimen selection.

  20. Penetration of Ceftaroline into the Epithelial Lining Fluid of Healthy Adult Subjects

    PubMed Central

    Pushkin, Richard; Jandourek, Alena; Knebel, William; Khariton, Tatiana

    2016-01-01

    Ceftaroline, the active metabolite of the prodrug ceftaroline fosamil, is a cephalosporin with bactericidal activity against Gram-positive organisms, including methicillin-resistant Staphylococcus aureus (MRSA). This study aimed to (i) evaluate ceftaroline concentrations in human plasma and epithelial lining fluid (ELF) and (ii) develop a population pharmacokinetic (PK) model for plasma and ELF to be used in PK/pharmacodynamic (PD) target attainment simulations. Ceftaroline concentrations in ELF and plasma at steady state (day 4) were measured in healthy adult subjects for two dosages: 600 mg every 12 h (q12h) and 600 mg every 8 h (q8h). Both were well tolerated with no serious adverse events. The penetration of free ceftaroline into ELF, assuming 20% protein binding in plasma and no protein binding in ELF, was ≈23%. The population PK model utilized a two-compartment model for both ceftaroline fosamil and ceftaroline. Goodness-of-fit criteria revealed the model was consistent with observed data and no systematic bias remained. At 600 mg q12h and a MIC of 1 mg/liter, 98.1% of simulated patients would be expected to achieve a target free drug concentration above the MIC (fT>MIC) in plasma of 42%, and in ELF 81.7% would be expected to achieve a target fT>MIC of 17%; at 600 mg q8h, 100% were predicted to achieve an fT>MIC in plasma of 42% and 94.7% to achieve an fT>MIC of 17% in ELF. The literature and data suggest the 600 mg q12h dose is adequate for MICs of ≤1 mg/liter. There is a need for clinical data in patients with MRSA pneumonia and data to correlate PK/PD relationships in ELF with clinical outcomes. PMID:27431215

  1. Penetration of Ceftaroline into the Epithelial Lining Fluid of Healthy Adult Subjects.

    PubMed

    Riccobene, Todd A; Pushkin, Richard; Jandourek, Alena; Knebel, William; Khariton, Tatiana

    2016-10-01

    Ceftaroline, the active metabolite of the prodrug ceftaroline fosamil, is a cephalosporin with bactericidal activity against Gram-positive organisms, including methicillin-resistant Staphylococcus aureus (MRSA). This study aimed to (i) evaluate ceftaroline concentrations in human plasma and epithelial lining fluid (ELF) and (ii) develop a population pharmacokinetic (PK) model for plasma and ELF to be used in PK/pharmacodynamic (PD) target attainment simulations. Ceftaroline concentrations in ELF and plasma at steady state (day 4) were measured in healthy adult subjects for two dosages: 600 mg every 12 h (q12h) and 600 mg every 8 h (q8h). Both were well tolerated with no serious adverse events. The penetration of free ceftaroline into ELF, assuming 20% protein binding in plasma and no protein binding in ELF, was ≈23%. The population PK model utilized a two-compartment model for both ceftaroline fosamil and ceftaroline. Goodness-of-fit criteria revealed the model was consistent with observed data and no systematic bias remained. At 600 mg q12h and a MIC of 1 mg/liter, 98.1% of simulated patients would be expected to achieve a target free drug concentration above the MIC (fT>MIC) in plasma of 42%, and in ELF 81.7% would be expected to achieve a target fT>MIC of 17%; at 600 mg q8h, 100% were predicted to achieve an fT>MIC in plasma of 42% and 94.7% to achieve an fT>MIC of 17% in ELF. The literature and data suggest the 600 mg q12h dose is adequate for MICs of ≤1 mg/liter. There is a need for clinical data in patients with MRSA pneumonia and data to correlate PK/PD relationships in ELF with clinical outcomes.

  2. Distribution characteristics of grepafloxacin, a fluoroquinolone antibiotic, in lung epithelial lining fluid and alveolar macrophage.

    PubMed

    Deguchi, Yoshiharu; Sun, Jin; Tauchi, Yoshihiko; Sakai, Shigeko; Morimoto, Kazuhiro

    2003-01-01

    The purpose of this study was to investigate the distribution of Grepafloxacin (GPFX), a new quinolone antimicrobial agent, in the lung epithelial lining fluid (ELF) and the alveolar macrophage (AM) in rats, which are potential infection sites in respiratory tract infections. We also aimed to clarify the mechanism governing the transferability of GPFX into the alveolus compartment from a kinetic point of view. The AUC ratios of ELF/plasma and AM/plasma after the oral administration of GPFX were 5.69 +/- 1.00 and 352 +/- 57, respectively, which were several-fold greater than those of ciprofloxacin (CPFX). Pharmacokinetic analyses of time profiles of GPFX concentrations in ELF and AM revealed that the influx clearance from plasma to ELF across the alveolar barrier is 5-fold greater than the efflux clearance from ELF. In addition, the permeability of GPFX across the cultured AM cell membrane was 7-fold and 11-fold greater than that of levofloxacin (LVFX) and CPFX, respectively. The extent of intracellular binding to AM cells (expressed as a constant (alpha)) was the greatest for GPFX, followed by CPFX and LVFX. There was a significant correlation between the alpha value and the partitioning to the immobilized artificial membrane (IAM) column, which consists of phospholipid residues covalently bound to silica. These results suggest that GPFX is highly distributed in ELF and AM, and that the high transferability of GPFX into ELF may be attributable to the existence of asymmetrical transport across the alveolar barrier. In addition, it was suggested that both rapid permeability across the AM cell membrane and avid binding to the membrane phospholipids may be responsible for the high accumulation of GPFX in AM.

  3. Computational fluid dynamics analysis of space shuttle main propulsion feed line 17-inch disconnect valves

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Pearce, Daniel

    1989-01-01

    A steady incompressible three-dimensional (3-D) viscous flow analysis was conducted for the Space Shuttle Main Propulsion External Tank (ET)/Orbiter (ORB) propellant feed line quick separable 17-inch disconnect flapper valves for liquid oxygen (LO2) and liquid hydrogen (LH2). The main objectives of the analysis were to predict and correlate the hydrodynamic stability of the flappers and pressure drop with available water test data. Computational Fluid Dynamics (CFD) computer codes were procured at no cost from the public domain, and were modified and extended to carry out the disconnect flow analysis. The grid generator codes SVTGD3D and INGRID were obtained. NASA Ames Research Center supplied the flow solution code INS3D, and the color graphics code PLOT3D. A driver routine was developed to automate the grid generation process. Components such as pipes, elbows, and flappers can be generated with simple commands, and flapper angles can be varied easily. The flow solver INS3D code was modified to treat interior flappers, and other interfacing routines were developed, which include a turbulence model, a force/moment routine, a time-step routine, and initial and boundary conditions. In particular, an under-relaxation scheme was implemented to enhance the solution stability. Major physical assumptions and simplifications made in the analysis include the neglect of linkages, slightly reduced flapper diameter, and smooth solid surfaces. A grid size of 54 x 21 x 25 was employed for both the LO2 and LH2 units. Mixing length theory applied to turbulent shear flow in pipes formed the basis for the simple turbulence model. Results of the analysis are presented for LO2 and LH2 disconnects.

  4. Penetration of anti-infective agents into pulmonary epithelial lining fluid: focus on antibacterial agents.

    PubMed

    Rodvold, Keith A; George, Jomy M; Yoo, Liz

    2011-10-01

    The exposure-response relationship of anti-infective agents at the site of infection is currently being re-examined. Epithelial lining fluid (ELF) has been suggested as the site (compartment) of antimicrobial activity against lung infections caused by extracellular pathogens. There have been an extensive number of studies conducted during the past 20 years to determine drug penetration into ELF and to compare plasma and ELF concentrations of anti-infective agents. The majority of these studies estimated ELF drug concentrations by the method of urea dilution and involved either healthy adult subjects or patients undergoing diagnostic bronchoscopy. Antibacterial agents such as macrolides, ketolides, newer fluoroquinolones and oxazolidinones have ELF to plasma concentration ratios of >1. In comparison, β-lactams, aminoglycosides and glycopeptides have ELF to plasma concentration ratios of ≤1. Potential explanations (e.g. drug transporters, overestimation of the ELF volume, lysis of cells) for why these differences in ELF penetration occur among antibacterial classes need further investigation. The relationship between ELF concentrations and clinical outcomes has been under-studied. In vitro pharmacodynamic models, using simulated ELF and plasma concentrations, have been used to examine the eradication rates of resistant and susceptible pathogens and to explain why selected anti-infective agents (e.g. those with ELF to plasma concentration ratios of >1) are less likely to be associated with clinical treatment failures. Population pharmacokinetic modelling and Monte Carlo simulations have recently been used and permit ELF and plasma concentrations to be evaluated with regard to achievement of target attainment rates. These mathematical modelling techniques have also allowed further examination of drug doses and differences in the time courses of ELF and plasma concentrations as potential explanations for clinical and microbiological effects seen in clinical trials

  5. In Vitro Microfluidic Models of Mucus-Like Obstructions in Small Airways

    NASA Astrophysics Data System (ADS)

    Mulligan, Molly K.; Grotberg, James B.; Sznitman, Josué

    2012-11-01

    Liquid plugs can form in the lungs as a result of a host of different diseases, including cystic fibrosis and chronic obstructive pulmonary disease. The existence of such fluid obstructions have been found as far down in the bronchiole tree as the sixteenth generation, where bronchiole openings have diameters on the order of a hundred to a few hundred microns. Understanding the propagation of liquid plugs within the bifurcating branches of bronchiole airways is important because their presence in the lungs, and their rupture and break-up, can cause injury to the epithelial cells lining the airway walls as a result of high wall shear stresses. In particular, liquid plug rupture and break-up frequently occurs at airway bifurcations. Until present, however, experimental studies of liquid plugs have generally been restricted to Newtonian fluids that do not reflect the actual pseudoplastic properties of lung mucus. The present work attempts to uncover the propagation, rupture and break-up of mucus-like liquid plugs in the lower generations of the airway tree using microfluidic models. Our approach allows the dynamics of mucus-like plug break-up to be studied in real-time, in a one-to-one in vitro model, as a function of mucus rheology and bronchial tree geometry.

  6. Triggers of airway inflammation.

    PubMed

    Kerrebijn, K F

    1986-01-01

    Most asthmatics have hyperresponsive airways. This makes them more sensitive than non-asthmatics to bronchoconstricting environmental exposures which, in their turn, may enhance responsiveness. Airway inflammation is considered to be a key determinant of airway hyperresponsiveness: the fact that chronic airway inflammation in cystic fibrosis does not lead to airway hyperresponsiveness of any importance indicates, however, that the role of airway inflammation is complex and incompletely elucidated. The main inducers of airway inflammation are viral infections, antigens, occupational stimuli and pollutants. Although exercise, airway cooling and hyper- or hypotonic aerosols are potent stimuli of bronchoconstriction, it is questionable if airway inflammation is involved in their mode of action. Each of the above-mentioned stimuli is discussed, with emphasis laid on the relation of symptoms to mechanisms.

  7. New on-line method for water isotope analysis of speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS)

    NASA Astrophysics Data System (ADS)

    Affolter, S.; Fleitmann, D.; Leuenberger, M.

    2014-01-01

    A new online method to analyse water isotopes of speleothem fluid inclusions using a wavelength scanned cavity ring down spectroscopy (WS-CRDS) instrument is presented. This novel technique allows us to simultaneously measure hydrogen and oxygen isotopes for a released aliquot of water. To do so, we designed a new simple line that allows the on-line water extraction and isotope analysis of speleothem samples. The specificity of the method lies in the fact that fluid inclusions release is made on a standard water background, which mainly improves the δD reliability. To saturate the line, a peristaltic pump continuously injects standard water into the line that is permanently heated to 140 °C and flushed with dry nitrogen gas. This permits instantaneous and complete vaporisation of the standard water resulting in an artificial water background with well-known δD and δ18O values. The speleothem sample is placed into a copper tube, attached to the line and after system stabilisation is crushed using a simple hydraulic device to liberate speleothem fluid inclusions water. The released water is carried by the nitrogen/standard water gas stream directly to a Picarro L1102-i for isotope determination. To test the accuracy and reproducibility of the line and to measure standard water during speleothem measurements a syringe injection unit was added to the line. Peak evaluation is done similarly as in gas chromatography to obtain δD and δ18O isotopic composition of measured water aliquots. Precision is better than 1.5‰ for δD and 0.4‰ for δ18O for water measurement for an extended range (-210 to 0‰ for δD and -27 to 0‰ for δ18O) primarily dependent on the amount of water released from speleothem fluid inclusions and secondarily on the isotopic composition of the sample. The results show that WS-CRDS technology is suitable for speleothem fluid inclusion measurements and gives results that are comparable to Isotope Ratio Mass Spectrometry (IRMS) technique.

  8. Optimization of fluid line sizes with pumping power penalty IBM-360 computer program

    NASA Technical Reports Server (NTRS)

    Jelinek, D.

    1972-01-01

    Computer program has been developed to calculate and total weights for tubing, fluid in tubing, and weight of fuel cell power source necessary to power pump based on flow rate and pressure drop. Program can be used for fluid systems used in any type of aircraft, spacecraft, trucks, ships, refineries, and chemical processing plants.

  9. 46,XY/45,X mosaicism in an amniotic fluid cell culture: suppression of abnormal cell line after subcultivation.

    PubMed Central

    Hasholt, L

    1979-01-01

    An abnormal cell population, 45,X, appeared in 3 of 4 cell lines established from an amniotic fluid specimen obtained from a normal mid-trimester pregnancy. Two of the cell lines were subjected to repeated chromosome analyses until VII passage. The abnormal cells were suppressed after repeated trypsinisations; simultaneously, fibroblast-like cells outgrew the cultures, which were previously predominated by epithelial-like cells. Polyploidy was found in 0 to 12% of the cells, the highest level existing in the early passages. The question of whether chromosomally abnormal cells present in primary cultures and the early subcultures reflect the karyotype of the fetus is discussed. PMID:573801

  10. Particle size, moisture, and fluidization variations described by indirect in-line physical measurements of fluid bed granulation.

    PubMed

    Lipsanen, Tanja; Närvänen, Tero; Räikkönen, Heikki; Antikainen, Osmo; Yliruusi, Jouko

    2008-01-01

    The aim of this study was to evaluate an instrumentation system for a bench scale fluid bed granulator to determine the parameters expressing the changing conditions during the spraying phase of a fluid bed process. The study focused mainly on four in-line measurements (dependent variables): fluidization parameter (calculated by inlet air flow rate and rotor speed), pressure difference over the upper filters, pressure difference over the granules (lower filter), and temperature of the fluidizing mass. In-line particle size measured by the spatial filtering technique was an essential predictor variable. Other physical process measurements of the automated granulation system, 25 direct and 12 derived parameters, were also utilized for multivariate modeling. The correlation and partial least squares analyses revealed significant relationships between various process parameters highlighting the particle size, moisture, and fluidization effect. Fluidization parameter and pressure difference over upper filters were found to correlate with in-line particle size and therefore could be used as estimates of particle size during granulation. The pressure difference over the granules and the temperature of the fluidizing mass expressed the moisture conditions of wet granulation. The instrumentation system evaluated here is an invaluable aid to gaining more control for fluid bed processing to obtain repeatable granules for further processing.

  11. In-line monitoring of particle size in a fluid bed granulator: investigations concerning positioning and configuration of the sensor.

    PubMed

    Roßteuscher-Carl, Katrin; Fricke, Sabine; Hacker, Michael C; Schulz-Siegmund, Michaela

    2014-05-15

    According to the ICH Q8 guideline, analytic technologies (PAT) are important tools for characterization and optimization of pharmaceutical manufacturing processes. Particle size as a critical quality attribute for granules is therefore an important parameter that should be monitored during the fluid bed granulation process. This work focusses on optimizing position and configuration of an SFT-sensor for the in-line measurement of particle size distribution in a Glatt GPCG 3 fluid bed granulator. As model-substances, different grades of microcrystalline cellulose were used. The in-line measured particle size and particle rate in the sensor were evaluated. A sensor position in the deceleration zone of the granulator was found to be promising for in-line particle size measurement. Most reliable data were generated in this position when the probe was placed in a distance of 11cm from the chamber wall to avoid bias by the inlet air stream. No major influence of rotation angle of the probe was found in this position. Furthermore, an entire fluid bed granulation process was successfully monitored with the sensor installed in the optimized setting.

  12. Emergency airway puncture

    MedlinePlus

    ... support for only a very short period of time. Alternative Names Needle cricothyrotomy Images Emergency airway puncture Cricoid cartilage Emergency airway puncture - series References Hebert RB, Bose S, Mace SE. Cricothyrotomy and ...

  13. Upper airway biopsy

    MedlinePlus

    ... upper airway Images Upper airway test Bronchoscopy Throat anatomy References Yung RC, Boss EF. Tracheobronchial endoscopy. In: Flint PW, Haughey BH, Lund LJ, et al, eds. Cummings Otolaryngology: Head & Neck Surgery. 5th ed. Philadelphia, PA: Elsevier Mosby; ...

  14. Careers in Airway Science.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    The Federal Aviation Administration (FAA) has initiated the Airway Science curriculum as a method of preparing the next generation of aviation technicians and managers. This document: (1) discusses the FAA's role in the Airway Science program; (2) describes some of the career fields that FAA offers to Airway Science graduates (air traffic control…

  15. Liquid plug propagation in flexible microchannels: A small airway model

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Fujioka, H.; Bian, S.; Torisawa, Y.; Huh, D.; Takayama, S.; Grotberg, J. B.

    2009-07-01

    In the present study, we investigate the effect of wall flexibility on the plug propagation and the resulting wall stresses in small airway models with experimental measurements and numerical simulations. Experimentally, a flexible microchannel was fabricated to mimic the flexible small airways using soft lithography. Liquid plugs were generated and propagated through the microchannels. The local wall deformation is observed instantaneously during plug propagation with the maximum increasing with plug speed. The pressure drop across the plug is measured and observed to increase with plug speed, and is slightly smaller in a flexible channel compared to that in a rigid channel. A computational model is then presented to model the steady plug propagation through a flexible channel corresponding to the middle plane in the experimental device. The results show qualitative agreements with experiments on wall shapes and pressure drops and the discrepancies bring up interesting questions on current field of modeling. The flexible wall deforms inward near the plug core region, the deformation and pressure drop across the plug increase with the plug speed. The wall deformation and resulting stresses vary with different longitudinal tensions, i.e., for large wall longitudinal tension, the wall deforms slightly, which causes decreased fluid stress and stress gradients on the flexible wall comparing to that on rigid walls; however, the wall stress gradients are found to be much larger on highly deformable walls with small longitudinal tensions. Therefore, in diseases such as emphysema, with more deformable airways, there is a high possibility of induced injuries on lining cells along the airways because of larger wall stresses and stress gradients.

  16. Coupling fluid and solute dynamics within the ocular surface tear film: a modelling study of black line osmolarity.

    PubMed

    Zubkov, V S; Breward, C J W; Gaffney, E A

    2012-09-01

    We present a mathematical model describing the spatial distribution of tear film osmolarity across the ocular surface of a human eye during one blink cycle, incorporating detailed fluid and solute dynamics. Based on the lubrication approximation, our model comprises three coupled equations tracking the depth of the aqueous layer of the tear film, the concentration of the polar lipid, and the concentration of physiological salts contained in the aqueous layer. Diffusive boundary layers in the salt concentration occur at the thinnest regions of the tear film, the black lines. Thus, despite large Peclet numbers, diffusion ameliorates osmolarity around the black lines, but nonetheless is insufficient to eliminate the build-up of solute in these regions. More generally, a heterogeneous distribution of solute concentration is predicted across the ocular surface, indicating that measurements of lower meniscus osmolarity are not globally representative, especially in the presence of dry eye. Vertical saccadic eyelid motion can reduce osmolarity at the lower black line, raising the prospect that select eyeball motions more generally can assist in alleviating tear film hyperosmolarity. Finally, our results indicate that measured evaporative rates will induce excessive hyperosmolarity at the black lines, even for the healthy eye. This suggests that further evaporative retardation at the black lines, for instance due to the cellular glycocalyx at the ocular surface or increasing concentrations of mucus, will be important for controlling hyperosmolarity as the black line thins.

  17. Pharmacokinetics and distribution in interstitial and pulmonary epithelial lining fluid of danofloxacin in ruminant and preruminant calves.

    PubMed

    Mzyk, D A; Baynes, R E; Messenger, K M; Martinez, M; Smith, G W

    2017-04-01

    The objective of this study was to compare active drug concentrations in the plasma vs. different effector compartments including interstitial fluid (ISF) and pulmonary epithelial lining fluid (PELF) of healthy preruminating (3-week-old) and ruminating (6-month-old) calves. Eight calves in each age group were given a single subcutaneous (s.c.) dose (8 mg/kg) of danofloxacin. Plasma, ISF, and bronchoalveolar lavage (BAL) fluid were collected over 96 h and analyzed by high-pressure liquid chromatography. PELF concentrations were calculated by a urea dilution assay of the BAL fluids. Plasma protein binding was measured using a microcentrifugation system. For most preruminant and ruminant calves, the concentration-time profile of the central compartment was best described by a two-compartment open body model. For some calves, a third compartment was also observed. The time to maximum concentration in the plasma was longer in preruminating calves (3.1 h) vs. ruminating calves (1.4 h). Clearance (CL/F) was 385.15 and 535.11 mL/h/kg in preruminant and ruminant calves, respectively. Ruminant calves maintained higher ISF/plasma concentration ratios throughout the study period compared to that observed in preruminant calves. Potential reasons for age-related differences in plasma concentration-time profiles and partitioning of the drug to lungs and ISF as a function of age are explored.

  18. Application of in-line near infrared spectroscopy and multivariate batch modeling for process monitoring in fluid bed granulation.

    PubMed

    Kona, Ravikanth; Qu, Haibin; Mattes, Robert; Jancsik, Bela; Fahmy, Raafat M; Hoag, Stephen W

    2013-08-16

    Fluid bed is an important unit operation in pharmaceutical industry for granulation and drying. To improve our understanding of fluid bed granulation, in-line near infrared spectroscopy (NIRS) and novel environmental temperature and RH data logger called a PyroButton(®) were used in conjunction with partial least square (PLS) and principal component analysis (PCA) to develop multivariate statistical process control charts (MSPC). These control charts were constructed using real-time moisture, temperature and humidity data obtained from batch experiments. To demonstrate their application, statistical control charts such as Scores, Distance to model (DModX), and Hotelling's T(2) were used to monitor the batch evolution process during the granulation and subsequent drying phase; moisture levels were predicted using a validated PLS model. Two data loggers were placed one near the bottom of the granulator bowl plenum where air enters the granulator and another inside the granulator in contact with the product in the fluid bed helped to monitor the humidity and temperature levels during the granulation and drying phase. The control charts were used for real time fault analysis, and were tested on normal batches and on three batches which deviated from normal processing conditions. This study demonstrated the use of NIRS and the use of humidity and temperature data loggers in conjunction with multivariate batch modeling as an effective tool in process understanding and fault determining method to effective process control in fluid bed granulation.

  19. The "limiting line" in mixed subsonic and supersonic flow of compressible fluids

    NASA Technical Reports Server (NTRS)

    Tsien, Hsue-Shen

    1944-01-01

    It is well known that the vorticity for any fluid element is constant if the fluid is non-viscous and the change of state of the fluid is isentropic. When a solid body is placed in a uniform stream, the flow far ahead of the body is irrotational. Then if the flow is further assumed to be isentropic, the vorticity will be zero over the whole filed of flow. In other words, the flow is irrotational. For such flow over a solid body, it is shown by Theodorsen that the solid body experiences no resistance. If the fluid has a small viscosity, its effect will be limited in the boundary layer over the solid body and the body will have a drag due to the skin friction. This type of essentially isentropic irrotational flow is generally observed for a streamlined body placed in a uniform stream, if the velocity of the stream is kept below the so-called "critical speed." At the critical speed or rather at a certain value of the ratio of the velocity of the undisturbed flow and the corresponding velocity of sound, shock waves appear. This phenomenon is called the "compressibility bubble." Along a shock wave, the change of state of the fluid is no longer isentropic, although still adiabatic. This results in an increase in entropy of the fluid and generally introduces vorticity in an originally irrotational flow. The increase in entropy of the fluid is, of course, the consequence of changing part of the mechanical energy into heat energy. In other words, the part of fluid affected by the shock wave has a reduced mechanical energy. Therefore, with the appearance of shock waves, the wake of the streamline body is very much widened, and the drag increases drastically. Furthermore, the accompanying change in the pressure distribution over the body changes the aerodynamic moment acting on it and in the case of an airfoil decreases the lift force. All these consequences of the breakdown of isentropic irrotational flow are generally undesirable in applied aerodynamics. Its occurrence

  20. Impact of airway morphological changes on pulmonary flows in scoliosis

    NASA Astrophysics Data System (ADS)

    Farrell, James; Garrido, Enrique; Valluri, Prashant

    2016-11-01

    The relationship between thoracic deformity in scoliosis and lung function is poorly understood. In a pilot study, we reviewed computed tomography (CT) routine scans of patients undergoing scoliosis surgery. The CT scans were processed to segment the anatomy of the airways, lung and spine. A three-dimensional model was created to study the anatomical relationship. Preliminary analysis showed significant airway morphological differences depending on the anterior position of the spine. A computational fluid dynamics (CFD) study was also conducted on the airway geometry using the inspiratory scans. The CFD model assuming non-compliant airway walls was capable of showing pressure drops in areas of high airway resistance, but was unable to predict regional ventilation differences. Our results indicate a dependence between the dynamic deformation of the airway during breathing and lung function. Dynamic structural deformation must therefore be incorporated within any modelling approaches to guide clinicians on the decision to perform surgical correction of the scoliosis.

  1. Investigation of the link between fluid shift and airway collapsibility as a mechanism for obstructive sleep apnea in congestive heart failure.

    PubMed

    Carlisle, Tom; Ward, Neil R; Atalla, Angela; Cowie, Martin R; Simonds, Anita K; Morrell, Mary J

    2017-01-01

    The increased prevalence of obstructive sleep apnea (OSA) in congestive heart failure (CHF) may be associated with rostral fluid shift. We investigated the effect of overnight rostral fluid shift on pharyngeal collapsibility (Pcrit), pharyngeal caliber (APmean), and apnea-hypopnea index (AHI) in CHF patients. Twenty-three optimally treated systolic CHF patients were studied. Neck circumference was measured immediately prior to sleep in the evening and immediately after waking in the morning as a marker of rostral fluid shift. Pcrit was measured during sleep, early and late in the night. APmean was measured using acoustic reflection at the same times as neck circumference measurements. 15/23 CHF patients experienced an overnight increase in neck circumference; overall neck circumference significantly increased overnight (mean±SD, evening: 41.7 ± 3.2 cm; morning: 42.3 ± 3.1 cm; P = 0.03). Pcrit increased significantly overnight (early-night: -3.8 ± 3.3 cmH2O; late-night: -2.6 ± 3.0 cmH2O; P = 0.03) and APmean decreased (evening: 4.2 ± 1.3 cm(2); morning: 3.7 ± 1.3 cm(2); P = 0.006). The total AHI correlated with neck circumference (r = 0.4; P = 0.04) and Pcrit (r = 0.5; P = 0.01). APmean correlated with neck circumference (r = -0.47; P = 0.02). There was no significant change in AHI between the first and second half of the night (first-half: 12.9 ± 12.4/h; second-half: 13.7 ± 13.3/h; P = 0.6). Overnight rostral fluid shift was associated with increased pharyngeal collapsibility and decreased pharyngeal caliber during sleep in CHF patients. Rostral fluid shift may be an important mechanism of OSA in this patient group.

  2. Interfacing supercritical fluid reaction apparatus with on-line liquid chromatography: monitoring the progress of a synthetic organic reaction performed in supercritical fluid solution.

    PubMed

    Ramsey, Edward D; Li, Ben; Guo, Wei; Liu, Jing Y

    2015-04-03

    An interface has been developed that connects a supercritical fluid reaction (SFR) vessel directly on-line to a liquid chromatograph. The combined SFR-LC system has enabled the progress of the esterification reaction between phenol and benzoyl chloride to synthesize phenyl benzoate in supercritical fluid carbon dioxide solution to be dynamically monitored. This was achieved by the periodic SFR-LC analysis of samples directly withdrawn from the esterification reaction mixture. Using the series of SFR-LC analysis results obtained for individual esterification reactions, the reaction progress profile for each esterification reaction was obtained by expressing the measured yield of phenyl benzoate as a function of reaction time. With reaction temperature fixed at 75°C, four sets (n=3) of SFR-LC reaction progress profiles were obtained at four different SFR pressures ranging from 13.79 to 27.58 MPa. The maximum SFR yield obtained for phenyl benzoate using a standard set of reactant concentrations was 85.2% (R.S.D. 4.2%) when the reaction was performed at 13.79 MPa for 90 min. In comparison, a phenyl benzoate yield of less than 0.3% was obtained using the same standard reactant concentrations after 90 min reaction time at 75°C using either: heptane, ethyl acetate or acetonitrile as conventional organic reaction solvents.

  3. Mechanical Properties of the Upper Airway

    PubMed Central

    Strohl, Kingman P.; Butler, James P.; Malhotra, Atul

    2013-01-01

    The importance of the upper airway (nose, pharynx, and larynx) in health and in the pathogenesis of sleep apnea, asthma, and other airway diseases, discussed elsewhere in the Comprehensive Physiology series, prompts this review of the biomechanical properties and functional aspects of the upper airway. There is a literature based on anatomic or structural descriptions in static circumstances, albeit studied in limited numbers of individuals in both health and disease. As for dynamic features, the literature is limited to studies of pressure and flow through all or parts of the upper airway and to the effects of muscle activation on such features; however, the links between structure and function through airway size, shape, and compliance remain a topic that is completely open for investigation, particularly through analyses using concepts of fluid and structural mechanics. Throughout are included both historically seminal references, as well as those serving as signposts or updated reviews. This article should be considered a resource for concepts needed for the application of biomechanical models of upper airway physiology, applicable to understanding the pathophysiology of disease and anticipated results of treatment interventions. PMID:23723026

  4. A mode-coupling theory of vibrational line broadening in near-critical fluids.

    PubMed

    Egorov, S A; Lawrence, C P; Skinner, J L

    2005-04-14

    We present a fully microscopic mode-coupling theory of near-critical line broadening. All the structural and dynamical input required by the theory is calculated directly from intermolecular potentials. We compute vibrational frequency time-correlation functions and line shapes as the critical point is approached along both the critical isochore and the liquid-gas coexistence curve. Theory is shown to be in good agreement with simulation.

  5. Silibinin attenuates allergic airway inflammation in mice

    SciTech Connect

    Choi, Yun Ho; Jin, Guang Yu; Guo, Hui Shu; Piao, Hong Mei; Li, Liang chang; Li, Guang Zhao; Lin, Zhen Hua; Yan, Guang Hai

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. Black-Right-Pointing-Pointer Silibinin reduces the levels of various cytokines into the lung of allergic mice. Black-Right-Pointing-Pointer Silibinin prevents the development of airway hyperresponsiveness in allergic mice. Black-Right-Pointing-Pointer Silibinin suppresses NF-{kappa}B transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-{kappa}B) pathway. Because NF-{kappa}B activation plays a pivotal role in the pathogenesis of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-{kappa}B activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-{kappa}B activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.

  6. Airway reopening: Steadily propagating bubbles in buckled elastic tubes

    NASA Astrophysics Data System (ADS)

    Heil, Matthias; Hazel, Andrew L.

    2001-11-01

    Many pulmonary diseases result in the collapse and occlusion of parts of the lung by viscous fluid. The subsequent airway reopening is generally assumed to occur via the propagation of an air finger into the collapsed, fluid-filled part of the airway. The problem has some similarity to the scenario of the `first breath' when air has to enter the fluid-filled lungs of a newborn baby for the first time. We have developed the first three-dimensional computational model of airway reopening, based on a finite-element solution of the free-surface Stokes equations, fully coupled to the equations of large-displacement shell theory. Following a brief discussion of the numerical method, we will present results that illustrate the 3D flow field by which the steadily propagating air finger reopens the non-axisymmetrically collapsed airway. Finally, we will contrast the system's behaviour to predictions from earlier two-dimensional models.

  7. Repair of damaged supraglottic airway devices: A novel method

    PubMed Central

    2010-01-01

    Damage of laryngeal mask airway and other supraglottic airway devices has always been a matter of concern. Although manufacturer recommends maximum 40 uses of LMA (and its congeners) but damage before 40 uses needs to be evaluated. We hereby, describe a novel method of repair of supraglottic devices when damage occurs at mask inflation line or pilot balloon valve assembly. PMID:20565731

  8. Magnetic fluid hyperthermia enhances cytotoxicity of bortezomib in sensitive and resistant cancer cell lines.

    PubMed

    Alvarez-Berríos, Merlis P; Castillo, Amalchi; Rinaldi, Carlos; Torres-Lugo, Madeline

    2014-01-01

    The proteasome inhibitor bortezomib (BZ) has shown promising results in some types of cancer, but in others it has had minimal activity. Recent studies have reported enhanced efficacy of BZ when combined with hyperthermia. However, the use of magnetic nanoparticles to induce hyperthermia in combination with BZ has not been reported. This novel hyperthermia modality has shown better potentiation of chemotherapeutics over other types of hyperthermia. We hypothesized that inducing hyperthermia via magnetic nanoparticles (MFH) would enhance the cytotoxicity of BZ in BZ-sensitive and BZ-resistant cancer cells more effectively than hyperthermia using a hot water bath (HWH). Studies were conducted using BZ in combination with MFH in two BZ-sensitive cell lines (MDA-MB-468, Caco-2), and one BZ-resistant cell line (A2780) at two different conditions, ie, 43°C for 30 minutes and 45°C for 30 minutes. These experiments were compared with combined application of HWH and BZ. The results indicate enhanced potentiation between hyperthermic treatment and BZ. MFH combined with BZ induced cytotoxicity in sensitive and resistant cell lines to a greater extent than HWH under the same treatment conditions. The observation that MFH sensitizes BZ-resistant cell lines makes this approach a potentially effective anticancer therapy platform.

  9. Numerical analysis of respiratory flow patterns within human upper airway

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Liu, Yingxi; Sun, Xiuzhen; Yu, Shen; Gao, Fei

    2009-12-01

    A computational fluid dynamics (CFD) approach is used to study the respiratory airflow dynamics within a human upper airway. The airway model which consists of the airway from nasal cavity, pharynx, larynx and trachea to triple bifurcation is built based on the CT images of a healthy volunteer and the Weibel model. The flow characteristics of the whole upper airway are quantitatively described at any time level of respiratory cycle. Simulation results of respiratory flow show good agreement with the clinical measures, experimental and computational results in the literature. The air mainly passes through the floor of the nasal cavity in the common, middle and inferior nasal meatus. The higher airway resistance and wall shear stresses are distributed on the posterior nasal valve. Although the airways of pharynx, larynx and bronchi experience low shear stresses, it is notable that relatively high shear stresses are distributed on the wall of epiglottis and bronchial bifurcations. Besides, two-dimensional fluid-structure interaction models of normal and abnormal airways are built to discuss the flow-induced deformation in various anatomy models. The result shows that the wall deformation in normal airway is relatively small.

  10. Micropolyspora faeni causes airway inflammation but not hyperresponsiveness in sensitized ponies.

    PubMed

    Derksen, F J; Scott, J S; Slocombe, R F; Robinson, N E

    1987-04-01

    We assessed the effect of aerosol Micropolyspora faeni challenge in two groups of ponies by measuring lung function, airway reactivity to aerosol histamine, and bronchoalveolar lavage fluid cytology. One group of ponies was sensitized by subcutaneous injection of M. faeni in complete Freund's adjuvant, and the other group served as control. In both groups of ponies, measurements were made at base line and 5 h after aerosol administration of 30 ml of saline or 30 ml of 1% wt/vol particulate M. faeni antigen in saline. Saline challenge had no effect on any of the measured variables. M. faeni challenge had no effect on pulmonary mechanics or gas exchange in the control group but significantly increased respiratory frequency and minute ventilation and decreased arterial CO2 tension in the sensitized ponies. In both groups of ponies, aerosol M. faeni challenge significantly increased total white blood cell count and neutrophil numbers in bronchoalveolar lavage fluid while large mononuclear cell numbers decreased. Airway responsiveness was unaltered by saline or M. faeni challenge in both pony groups. We conclude that aerosol M. faeni challenge induces pulmonary neutrophilia and abnormalities of ventilation but is not accompanied by airway hyperresponsiveness in sensitized ponies.

  11. Airway surface liquid depth measured in ex vivo fragments of pig and human trachea: dependence on Na+ and Cl− channel function

    PubMed Central

    Song, Yuanlin; Namkung, Wan; Nielson, Dennis W.; Lee, Jae-Woo; Finkbeiner, Walter E.

    2009-01-01

    The airway surface liquid (ASL) is the thin fluid layer lining the airways whose depth may be reduced in cystic fibrosis. Prior measurements of ASL depth have been made in airway epithelial cell cultures. Here, we established methodology to measure ASL depth to ∼1-μm accuracy in ex vivo fragments of freshly obtained human and pig tracheas. Airway fragments were mounted in chambers designed for perfusion of the basal surface and observation of the apical, fluorescently stained ASL by scanning confocal microscopy using a high numerical aperture lens immersed in perfluorocarbon. Measurement accuracy was verified using standards of specified fluid thickness. ASL depth in well-differentiated primary cultures of human nasal respiratory epithelium was 8.0 ± 0.5 μm (SE 10 cultures) under basal conditions, 8.4 ± 0.4 μm following ENaC inhibition by amiloride, and 14.5 ± 1.2 μm following CFTR stimulation by cAMP agonists. ASL depth in human trachea was 7.0 ± 0.7 μm under basal conditions, 11.0 ± 1.7 μm following amiloride, 17.0 ± 3.4 μm following cAMP agonists, and 7.1 ± 0.5 μm after CFTR inhibition. Similar results were found in pig trachea. This study provides the first direct measurements of ASL depth in intact human airways and indicates the involvement of ENaC sodium channels and CFTR chloride channels in determining ASL depth. We suggest that CF lung disease may be caused by the inability of CFTR-deficient airways to increase their ASL depth transiently following secretory stimuli that in non-CF airways produce transient increases in ASL depth. PMID:19820035

  12. Development of a hybrid kinetic-fluid model for line radiation transport in magnetic fusion plasmas

    NASA Astrophysics Data System (ADS)

    Rosato, J.; Marandet, Y.; Reiter, D.; Stamm, R.

    2017-03-01

    We report on a transport model for the Lyman line radiation in optically thick divertor plasma conditions encountered in exhaust systems in magnetic fusion devices. The model is designed to switch automatically between a kinetic and a continuum description according to the plasma conditions and to the spectral range. A kinetic treatment is retained for photons with a large mean free path (line wings), whereas a continuum description of the radiation field is invoked in highly absorbing or scattering regions (core photons). Prototypical calculations of this so-called δf Monte Carlo type of the Lyman α photo-excitation rate in slab geometry are performed as an illustration. The hybrid method is suggested as a candidate for speeding up the kinetic transport codes currently involved in magnetic fusion research for ITER and DEMO divertor (power and particle exhaust system) design.

  13. Supercritical fluid extraction of lipids from linseed with on-line evaporative light scattering detection.

    PubMed

    Abrahamsson, Victor; Rodriguez-Meizoso, Irene; Turner, Charlotta

    2015-01-01

    Supercritical fluid extraction (SFE) is a green alternative method of extraction for neutral lipids in seeds compared to conventional methods utilizing organic solvents. In this work, a novel method where SFE is hyphenated with an evaporative light scattering detector is presented. The method was subsequently applied to determine lipid content in crushed linseed. The new method enables rapid quantification of extracted lipids as well as be ability to continuously monitor the extraction rate in real-time, thus being able to determine the time point of completed extraction. Both the detector and the method was validated. The results show that any of several tested oils can be used to calibrate the detection method for the determination of lipids extraction from linseed. The overall method repeatability and intermediate precision was 2.6% relative standard deviations. The extracted amount was significantly less than that obtained using the standard method of Soxhlet with petroleum ether, 26.0±0.4% (95% CI, n=9) compared to 32.3±1.3% (95% CI, n=3) of extracted amounts. It was found that channeling effects were present, and by either performing sequential repeated extractions with decompression in-between or by using a relatively large vessel a more complete extraction could be obtained. Interestingly, a substantially higher extracted amount (approximately 50%) was obtained compared to both a single extraction by SFE and the Soxhlet method. Therefore, it is recommended that an additional extraction including a rapid decompression in-between should be included in the validation of a method using supercritical fluid extraction, in order to either rule out channeling effects or to acquire a full recovery.

  14. A three-dimensional volume-of-fluid method for reconstructing and advecting three-material interfaces forming contact lines

    NASA Astrophysics Data System (ADS)

    Pathak, Ashish; Raessi, Mehdi

    2016-02-01

    We introduce a piecewise-linear, volume-of-fluid method for reconstructing and advecting three-dimensional interfaces and contact lines formed by three materials. The new method employs a set of geometric constructs that can be used in conjunction with any volume-tracking scheme. In this work, we used the mass-conserving scheme of Youngs to handle two-material cells, perform interface reconstruction in three-material cells, and resolve the contact line. The only information required by the method is the available volume fraction field. Although the proposed method is order dependent and requires a priori information on material ordering, it is suitable for typical contact line applications, where the material representing the contact surface is always known. Following the reconstruction of the contact surface, to compute the interface orientation in a three-material cell, the proposed method minimizes an error function that is based on volume fraction distribution around that cell. As an option, the minimization procedure also allows the user to impose a contact angle. Performance of the proposed method is assessed via both static and advection test cases. The tests show that the new method preserves the accuracy and mass-conserving property of the Youngs method in volume-tracking three materials.

  15. a Numerical Study of Unsteady Fluid Flow in In-Line and Staggered Tube Banks

    NASA Astrophysics Data System (ADS)

    Beale, S. B.; Spalding, D. B.

    1999-08-01

    This paper is concerned with the results of numerical calculations for transient flow in in-line-square and rotated-square tube banks with a pitch-to-diameter ratio of 2:1, in the Reynolds number range of 30-3000. Transient-periodic behaviour is induced by the consideration of two or more modules, with a sinusoidal span-wise perturbation being applied in the upstream module. There is a triode-like effect, whereby the downstream response to the stimulus is amplified, and there is a net gain in the crosswise flow component. When an appropriate feedback mechanism is provided, a stable transient behaviour is obtained, with alternate vortices being shed from each cylinder. Flow visualization studies of the results of the calculations are presented together with quantitative details of pressure drop, lift, drag and heat transfer. For the staggered bank, a wake-switching or Coanda effect was observed as the serpentine-shaped wake attached to alternate sides of the downstream cylinder. The induced response is independent of the amplitude and frequency of the applied disturbance, including the case of spontaneous behaviour with no excitation mechanism. For the in-line case where each cylinder is in the shadow of the previous one, the motion is less pronounced; however, a shear-layer instability associated with the alternating spin of shed vortices was observed. In this case, the response was found to be somewhat dependent on the frequency of the applied disturbance, and a transient motion could not be induced spontaneously in the absence of an explicit feedback mechanism. Calculated Strouhal numbers were in fair agreement with experimental data: for the staggered geometry, they had values of between 0.26 and 0.35, or from -21 to +6% higher than measured values, while for the in-line geometry, the Strouhal numbers ranged between 0.09 and 0.12, or about 20-40% lower than experimental values.

  16. Controversies in Pediatric Perioperative Airways

    PubMed Central

    Klučka, Jozef; Štourač, Petr; Štoudek, Roman; Ťoukálková, Michaela; Harazim, Hana; Kosinová, Martina

    2015-01-01

    Pediatric airway management is a challenge in routine anesthesia practice. Any airway-related complication due to improper procedure can have catastrophic consequences in pediatric patients. The authors reviewed the current relevant literature using the following data bases: Google Scholar, PubMed, Medline (OVID SP), and Dynamed, and the following keywords: Airway/s, Children, Pediatric, Difficult Airways, and Controversies. From a summary of the data, we identified several controversies: difficult airway prediction, difficult airway management, cuffed versus uncuffed endotracheal tubes for securing pediatric airways, rapid sequence induction (RSI), laryngeal mask versus endotracheal tube, and extubation timing. The data show that pediatric anesthesia practice in perioperative airway management is currently lacking the strong evidence-based medicine (EBM) data that is available for adult subpopulations. A number of procedural steps in airway management are derived only from adult populations. However, the objective is the same irrespective of patient age: proper securing of the airway and oxygenation of the patient. PMID:26759809

  17. Acoustic simulation of a patient's obstructed airway.

    PubMed

    van der Velden, W C P; van Zuijlen, A H; de Jong, A T; Lynch, C T; Hoeve, L J; Bijl, H

    2016-01-01

    This research focuses on the numerical simulation of stridor; a high pitched, abnormal noise, resulting from turbulent airflow and vibrating tissue through a partially obstructed airway. Characteristics of stridor noise are used by medical doctors as indication for location and size of the obstruction. The relation between type of stridor and the various diseases associated with airway obstruction is unclear; therefore, simply listening to stridor is an unreliable diagnostic tool. The overall aim of the study is to better understand the relationship between characteristics of stridor noise and localization and size of the obstruction. Acoustic analysis of stridor may then in future simplify the diagnostic process, and reduce the need for more invasive procedures such as laryngoscopy under general anesthesia. In this paper, the feasibility of a coupled flow, acoustic and structural model is investigated to predict the noise generated by the obstruction as well as the propagation of the noise through the airways, taking into account a one-way coupled fluid, structure, and acoustic interaction components. The flow and acoustic solver are validated on a diaphragm and a simplified airway model. A realistic airway model of a patient suffering from a subglottic stenosis, derived from a real computed tomography scan, is further analyzed. Near the mouth, the broadband noise levels at higher frequencies increased with approximately 15-20 dB comparing the stridorous model with the healthy model, indicating stridorous sound.

  18. Improving the safety of remote site emergency airway management.

    PubMed

    Wijesuriya, Julian; Brand, Jonathan

    2014-01-01

    . We suggest that this should be the gold standard of airway resource provision and is in line with NAP4 recommendations.

  19. Modeling In Vivo Interactions of Engineered Nanoparticles in the Pulmonary Alveolar Lining Fluid.

    PubMed

    Mukherjee, Dwaipayan; Porter, Alexandra; Ryan, Mary; Schwander, Stephan; Chung, Kian Fan; Tetley, Teresa; Zhang, Junfeng; Georgopoulos, Panos

    2015-09-01

    Increasing use of engineered nanomaterials (ENMs) in consumer products may result in widespread human inhalation exposures. Due to their high surface area per unit mass, inhaled ENMs interact with multiple components of the pulmonary system, and these interactions affect their ultimate fate in the body. Modeling of ENM transport and clearance in vivo has traditionally treated tissues as well-mixed compartments, without consideration of nanoscale interaction and transformation mechanisms. ENM agglomeration, dissolution and transport, along with adsorption of biomolecules, such as surfactant lipids and proteins, cause irreversible changes to ENM morphology and surface properties. The model presented in this article quantifies ENM transformation and transport in the alveolar air to liquid interface and estimates eventual alveolar cell dosimetry. This formulation brings together established concepts from colloidal and surface science, physics, and biochemistry to provide a stochastic framework capable of capturing essential in vivo processes in the pulmonary alveolar lining layer. The model has been implemented for in vitro solutions with parameters estimated from relevant published in vitro measurements and has been extended here to in vivo systems simulating human inhalation exposures. Applications are presented for four different ENMs, and relevant kinetic rates are estimated, demonstrating an approach for improving human in vivo pulmonary dosimetry.

  20. Chemical and isotopic characteristics of fluids along the cameroon volcanic line, cameroon

    USGS Publications Warehouse

    Tanyileke, G.Z.; Kusakabe, M.; Evans, William C.

    1996-01-01

    Results of the chemical and isotopic analysis of the water and gases discharged from volcanic crater lakes and soda springs located along the Cameroon Volcanic Line were used to characterize and infer their genetic relationships. Variations in the solute compositions of the waters indicate the dominant influence of silicate hydrolysis. Na+ (40-95%) constitutes the major cation in the springs while Fe2+ + Mg2+ (70%) dominate in the CO2-rich lakes. The principal anion is HCO3 (>90%), except in the coastal springs where Cl predominates. Lakes Nyos and Monoun have Fe-Mg-Ca-HCO3 type signatures; the soda springs are essentially Na-HCO3 type, while all other lakes show similar ionic compositions to dilute surface waters. Dissolved gases show essentially CO2 (>90%), with small amounts of Ar and N2, while CH4 constitutes the principal component in the non-gassy lakes. Active volcanic gases are generally absent, except in the Lobe spring with detectable H2S. Stable isotope ratio evidence indicates that the bicarbonate waters are essentially of meteoric origin. CO2 (??13C = -2 to -8???) and He (3He/4He = 1 to 5.6Ra) infer a mantle contribution to the total CO2. CH4 has a biogenic source, while Ar and N2 are essentially atmospheric in origin, but mixing is quite common.

  1. Upper airway segmentation and measurement in MRI using fuzzy connectedness

    NASA Astrophysics Data System (ADS)

    Liu, Jianguo; Udupa, Jayaram K.; Odhner, Dewey; McDonough, Joe M.; Arens, Raanan

    2002-04-01

    The purpose of this work is to build a computerized system for the delineation of upper airway structures via MRI and to evaluate its effectiveness for routine clinical use in aiding diagnosis of upper airway disorders in children. We use two MRI protocols, axial T1 and T2, to gather information about different aspects of the airway and its surrounding soft tissue structures including adenoid, tonsils, tongue and soft palate. These images are processed and segmented to compute the architectural parameters of the airway such as its surface description, volume, central (medial) line, and cross-sectional areas at planes orthogonal to the central line. We have built a software package based on 3DVIEWNIX and running on a 450 MHz Pentium PC under Linux system (and on a Sun workstation under Unix) for the various operations of visualization, segmentation, registration, prefiltering, interpolation, standardization, and quantitative analysis of the airway. The system has been tested utilizing 40 patient studies. For every study, the system segmented and displayed a smooth 3D rendition of the airway, its central line and a plot of the cross-sectional area of the airway orthogonal to the central line as a function of the distance from one end of the central line. The tests indicate 97% precision and accuracy for segmentation. The mean time taken per study is about 4 minutes for the airway. This includes operator interaction time and processing time. This method provides a robust and fast means of assessing the airway size, shape, and places of restriction, as well as providing a structural data set suitable for use in modeling studies of airflow and mechanics.

  2. Mechanosensitive ATP Release Maintains Proper Mucus Hydration of Airways

    PubMed Central

    Button, Brian; Okada, Seiko F.; Frederick, Charles Brandon; Thelin, William R.; Boucher, Richard C.

    2013-01-01

    The clearance of mucus from the airways protects the lungs from inhaled noxious and infectious materials. Proper hydration of the mucus layer enables efficient mucus clearance through beating of cilia on airway epithelial cells, and reduced clearance of excessively concentrated mucus occurs in patients with chronic obstructive pulmonary disease and cystic fibrosis. Key steps in the mucus transport process are airway epithelia sensing and responding to changes in mucus hydration. We reported that extracellular adenosine triphosphate (ATP) and adenosine were important luminal auto-crine and paracrine signals that regulated the hydration of the surface of human airway epithelial cultures through their action on apical membrane purinoceptors. Mucus hydration in human airway epithelial cultures was sensed by an interaction between cilia and the overlying mucus layer: Changes in mechanical strain, proportional to mucus hydration, regulated ATP release rates, adjusting fluid secretion to optimize mucus layer hydration. This system provided a feedback mechanism by which airways maintained mucus hydration in an optimum range for cilia propulsion. Understanding how airway epithelia can sense and respond to changes in mucus properties helps us to understand how the mucus clearance system protects the airways in health and how it fails in lung diseases such as cystic fibrosis. PMID:23757023

  3. Mechanosensitive ATP release maintains proper mucus hydration of airways.

    PubMed

    Button, Brian; Okada, Seiko F; Frederick, Charles Brandon; Thelin, William R; Boucher, Richard C

    2013-06-11

    The clearance of mucus from the airways protects the lungs from inhaled noxious and infectious materials. Proper hydration of the mucus layer enables efficient mucus clearance through beating of cilia on airway epithelial cells, and reduced clearance of excessively concentrated mucus occurs in patients with chronic obstructive pulmonary disease and cystic fibrosis. Key steps in the mucus transport process are airway epithelia sensing and responding to changes in mucus hydration. We reported that extracellular adenosine triphosphate (ATP) and adenosine were important luminal autocrine and paracrine signals that regulated the hydration of the surface of human airway epithelial cultures through their action on apical membrane purinoceptors. Mucus hydration in human airway epithelial cultures was sensed by an interaction between cilia and the overlying mucus layer: Changes in mechanical strain, proportional to mucus hydration, regulated ATP release rates, adjusting fluid secretion to optimize mucus layer hydration. This system provided a feedback mechanism by which airways maintained mucus hydration in an optimum range for cilia propulsion. Understanding how airway epithelia can sense and respond to changes in mucus properties helps us to understand how the mucus clearance system protects the airways in health and how it fails in lung diseases such as cystic fibrosis.

  4. Catheter-Based Sensing In The Airways

    NASA Astrophysics Data System (ADS)

    Fouke, J. M.; Saunders, K. G.

    1988-04-01

    Studies attempting to define the role of the respiratory tract in heating and humidifying inspired air point to the need for sensing many variables including airway wall and airstream temperatures, humidity, and surface fluid pH and osmolarity. In order to make such measurements in vivo in human volunteers, catheter based technologies must be exploited both to assure subject safety and subject comfort. Miniturization of the electrodes or sensors becomes a top priority. This paper describes the use of thin-film microelectronic technology to fabricate a miniature, flexible sensor which can be placed directly onto the surface of the airway to measure the electrical conductance of the fluids present. From this information the osmolarity of the surface fluid was calculated. Physiologic evaluation of the device and corroboration of the calculations was performed in mongrel dogs. We also describe the successful application of current thermistor technology for the thermal mapping of the airways in humans in order to characterize the dynamic intrathoracic events that occur during breathing. The thermal probe consisted of a flexible polyvinyl tube that contained fourteen small thermistors fixed into the catheter. Data have been obtained in dozens of people, both normal subjects and asthmatic patients, under a variety of interventions. These data have substantively advanced the study of asthma, a particularly troublesome chronic obstructive pulmonary disorder.

  5. Cold weather exercise and airway cytokine expression.

    PubMed

    Davis, Michael S; Malayer, Jerry R; Vandeventer, Lori; Royer, Christopher M; McKenzie, Erica C; Williamson, Katherine K

    2005-06-01

    Athletes who perform repeated exercise while breathing cold air have a high prevalence of asthmalike chronic airway disease, but the mechanism linking such activity to airway inflammation is unknown. We used a novel animal model (exercising horses) to test the hypothesis that exercise-induced chronic airway disease is caused by exposure of intrapulmonary airways to unconditioned air, resulting in the upregulation of cytokine expression. Bronchoalveolar lavage fluid (BALF) was obtained from eight horses 5 h after submaximal exercise while they breathed room temperature or subfreezing air in a random crossover design. BALF total and differential nucleated cell counts were determined, and relative cytokine mRNA expression in BALF nucleated cells was quantified by real-time RT-PCR using primer and probe sequences specific for equine targets. There were no significant changes in total or differential cell concentrations between BALF recovered after warm and cold air exercise, although there was a strong trend toward increased concentrations of airway epithelial cells after cold air exercise (P = 0.0625). T(H)2 cytokines IL-4, IL-5, and IL-10 were preferentially upregulated after cold air exercise 12-, 9-, and 10-fold, respectively, compared with warm air exercise. Other cytokines (IL-2 and IL-6) were upregulated to a lesser extent (6- and 3-fold, respectively) or not at all (IL-1, IL-8, IFN-gamma, and TNF-alpha). These results suggest that cold weather exercise can lead to asthmalike airway disease through the local induction of cytokines typical of the T(H)2 phenotype.

  6. Acid-Sensing Ion Channel 1a Contributes to Airway Hyperreactivity in Mice

    PubMed Central

    Reznikov, Leah R.; Meyerholz, David K.; Adam, Ryan J.; Abou Alaiwa, Mahmoud; Jaffer, Omar; Michalski, Andrew S.; Powers, Linda S.; Price, Margaret P.; Stoltz, David A.; Welsh, Michael J.

    2016-01-01

    Neurons innervating the airways contribute to airway hyperreactivity (AHR), a hallmark feature of asthma. Several observations suggested that acid-sensing ion channels (ASICs), neuronal cation channels activated by protons, might contribute to AHR. For example, ASICs are found in vagal sensory neurons that innervate airways, and asthmatic airways can become acidic. Moreover, airway acidification activates ASIC currents and depolarizes neurons innervating airways. We found ASIC1a protein in vagal ganglia neurons, but not airway epithelium or smooth muscle. We induced AHR by sensitizing mice to ovalbumin and found that ASIC1a-/- mice failed to exhibit AHR despite a robust inflammatory response. Loss of ASIC1a also decreased bronchoalveolar lavage fluid levels of substance P, a sensory neuropeptide secreted from vagal sensory neurons that contributes to AHR. These findings suggest that ASIC1a is an important mediator of AHR and raise the possibility that inhibiting ASIC channels might be beneficial in asthma. PMID:27820848

  7. Invitro toxicity test and searching the possibility of cancer cell line extermination by magnetic heating with using Fe3O4 magnetic fluid

    NASA Astrophysics Data System (ADS)

    Hoai Linh, Pham; Thuan, Nguyen Chi; Tuan, Nguyen Anh; Van Thach, Pham; Cong Yen, Tran; Thi Quy, Nguyen; Nhung, Hoang Thi My; Thi Xuyen, Phi; Phuc, Nguyen Xuan; Van Hong, Le

    2009-09-01

    A Fe3O4 based magnetic fluid with different concentrations ranged between 0.15 ng/cell to 10 ng/cell (nano gram/cell) was used in the in vitro toxicity test on several cancer cell lines, Sarcoma 180, HeLa and H358. It shows that the fluid with a concentration of Fe3O4 below 1.2 ng/cell is completely non-toxic for these cell lines. Even through in the presence of the highest concentration of 10 ng/cell, the cell viability still reaches more than 60%. The magnetic fluid with Fe3O4 concentration of about 0.1 ng/cell was also used to search ex-vivo the possibility of Sarcoma 180 extermination by magnetic heating with an AC field of 120Oe and 184 KHz. The result shows that after a heat treatment for 30 min., 40% of Sarcoma 180 cells was killed.

  8. Lines

    ERIC Educational Resources Information Center

    Mires, Peter B.

    2006-01-01

    National Geography Standards for the middle school years generally stress the teaching of latitude and longitude. There are many creative ways to explain the great grid that encircles our planet, but the author has found that students in his college-level geography courses especially enjoy human-interest stories associated with lines of latitude…

  9. Increased interleukin-8 in epithelial lining fluid of collapsed lungs during one-lung ventilation for thoracotomy.

    PubMed

    Komatsu, Yoshimichi; Yamamoto, Hiroshi; Tsushima, Kenji; Furuya, Shino; Yoshikawa, Sumiko; Yasuo, Masanori; Kubo, Keishi; Yamazaki, Yoshitaka; Hasegawa, Joh; Eguchi, Takashi; Kondo, Ryuichi; Yoshida, Kazuo; Koizumi, Tomonobu

    2012-12-01

    The present study was designed to evaluate inflammatory changes in collapsed lungs during one-lung ventilation using the assistance of a bronchoscopic microsampling probe. Serial albumin and interleukin (IL)-8 concentrations in epithelial lining fluid (ELF) were measured in seven patients undergoing resection of lung tumors. The samples were taken after induction of anesthesia (baseline), 30 min after one-lung ventilation was started (point 2), just before resuming two-lung ventilation (point 3), and 30 min after two-lung ventilation was restarted (point 4). The albumin and IL-8 concentrations in ELF were significantly increased at point 2 and point 3, respectively, and remained to be high, compared to the baseline. The increase in IL-8 at point 3 was correlated with the interval of one-lung ventilation; however, none developed specific acute lung injury. These findings suggest that inflammatory changes can occur on the epithelium of a collapsed lung even in patients who underwent successful and standard thoracic surgery.

  10. Graphene Oxide Attenuates Th2-Type Immune Responses, but Augments Airway Remodeling and Hyperresponsiveness in a Murine Model of Asthma

    PubMed Central

    2015-01-01

    Several lines of evidence indicate that exposure to nanoparticles (NPs) is able to modify airway immune responses, thus facilitating the development of respiratory diseases. Graphene oxide (GO) is a promising carbonaceous nanomaterial with unique physicochemical properties, envisioned for a multitude of medical and industrial applications. In this paper, we determined how exposure to GO modulates the allergic pulmonary response. Using a murine model of ovalbumin (OVA)-induced asthma, we revealed that GO, given at the sensitization stage, augmented airway hyperresponsiveness and airway remodeling in the form of goblet cell hyperplasia and smooth muscle hypertrophy. At the same time, the levels of the cytokines IL-4, IL-5, and IL-13 were reduced in broncho-alveolar lavage (BAL) fluid in GO-exposed mice. Exposure to GO during sensitization with OVA decreased eosinophil accumulation and increased recruitment of macrophages in BAL fluid. In line with the cytokine profiles, sensitization with OVA in the presence of GO stimulated the production of OVA-specific IgG2a and down-regulated the levels of IgE and IgG1. Moreover, exposure to GO increased the macrophage production of the mammalian chitinases, CHI3L1 and AMCase, whose expression is associated with asthma. Finally, molecular modeling has suggested that GO may directly interact with chitinase, affecting AMCase activity, which has been directly proven in our studies. Thus, these data show that GO exposure attenuates Th2 immune response in a model of OVA-induced asthma, but leads to potentiation of airway remodeling and hyperresponsiveness, with the induction of mammalian chitinases. PMID:24847914

  11. Respiratory fluid mechanics

    NASA Astrophysics Data System (ADS)

    Grotberg, James B.

    2011-02-01

    This article covers several aspects of respiratory fluid mechanics that have been actively investigated by our group over the years. For the most part, the topics involve two-phase flows in the respiratory system with applications to normal and diseased lungs, as well as therapeutic interventions. Specifically, the topics include liquid plug flow in airways and at airway bifurcations as it relates to surfactant, drug, gene, or stem cell delivery into the lung; liquid plug rupture and its damaging effects on underlying airway epithelial cells as well as a source of crackling sounds in the lung; airway closure from "capillary-elastic instabilities," as well as nonlinear stabilization from oscillatory core flow which we call the "oscillating butter knife;" liquid film, and surfactant dynamics in an oscillating alveolus and the steady streaming, and surfactant spreading on thin viscous films including our discovery of the Grotberg-Borgas-Gaver shock.

  12. Respiratory fluid mechanics

    PubMed Central

    Grotberg, James B.

    2011-01-01

    This article covers several aspects of respiratory fluid mechanics that have been actively investigated by our group over the years. For the most part, the topics involve two-phase flows in the respiratory system with applications to normal and diseased lungs, as well as therapeutic interventions. Specifically, the topics include liquid plug flow in airways and at airway bifurcations as it relates to surfactant, drug, gene, or stem cell delivery into the lung; liquid plug rupture and its damaging effects on underlying airway epithelial cells as well as a source of crackling sounds in the lung; airway closure from “capillary-elastic instabilities,” as well as nonlinear stabilization from oscillatory core flow which we call the “oscillating butter knife;” liquid film, and surfactant dynamics in an oscillating alveolus and the steady streaming, and surfactant spreading on thin viscous films including our discovery of the Grotberg–Borgas–Gaver shock. PMID:21403768

  13. Respiratory fluid mechanics.

    PubMed

    Grotberg, James B

    2011-02-01

    This article covers several aspects of respiratory fluid mechanics that have been actively investigated by our group over the years. For the most part, the topics involve two-phase flows in the respiratory system with applications to normal and diseased lungs, as well as therapeutic interventions. Specifically, the topics include liquid plug flow in airways and at airway bifurcations as it relates to surfactant, drug, gene, or stem cell delivery into the lung; liquid plug rupture and its damaging effects on underlying airway epithelial cells as well as a source of crackling sounds in the lung; airway closure from "capillary-elastic instabilities," as well as nonlinear stabilization from oscillatory core flow which we call the "oscillating butter knife;" liquid film, and surfactant dynamics in an oscillating alveolus and the steady streaming, and surfactant spreading on thin viscous films including our discovery of the Grotberg-Borgas-Gaver shock.

  14. Effect of surgical wound fluids after intraoperative electron radiotherapy on the cancer stem cell phenotype in a panel of human breast cancer cell lines

    PubMed Central

    Zaleska, Karolina; Suchorska, Wiktoria Maria; Przybyła, Anna; Murawa, Dawid

    2016-01-01

    The wound healing process after surgery alters the area surrounding the original tumor and around the scar, and the modified microenvironment is more favorable for tumor recurrence. Intraoperative radiotherapy (IORT) is one of the more novel strategies in breast cancer (BC) treatment. Irradiation during surgery has effects on the tumor microenvironment, abrogating the proliferative cascade induced by surgical wound healing. The aim of the present study was to determine the effect of surgical wound fluids from IOERT treatment (RT-WF) compared with wound fluids from conservative-breast surgery only (WF) on the cancer stem cell phenotype in a panel of BC cell lines. Post-operative wound fluids were derived from patients with BC who underwent a tumor resection (quadrantectomy) plus intraoperative electron radiotherapy using a single dose of ≤10 Gy on the tumor bed and surrounding tissues, or from those who underwent a tumor resection without IOERT. Cell lines were incubated with 10% wound fluids, and after 4 days, the cluster of differentiation (CD)44+/CD24−/low phenotype and aldehyde dehydrogenase 1 (ALDH1) activity were determined by flow cytometry. The two types of fluid each affected the CD44+/CD24−/low phenotype. The results varied markedly between each cell line, even for the same histological subtypes. RT-WF decreased the CD44+/CD24−/low populations in the basal-like BT-549 and MDA-MB-468 cell lines, whereas in the luminal type MCF7 cell line, the two fluids inhibited these populations. The HER-OE subtypes harbored a minimal CD44+/CD24−/low population, but the growth of SK-BR-3 was stimulated by the two post-operative fluids. WF exhibited a stronger effect on ALDH1 activity compared with RT-WF. The stimulatory effect was dependent on the histological subtype of the cell line and the strongest dependence was observed in luminal subtypes characterized by low dehydrogenase activity in the control group. The present results enable a better understanding of

  15. Early airway infection, inflammation, and lung function in cystic fibrosis

    PubMed Central

    Nixon, G; Armstrong, D; Carzino, R; Carlin, J; Olinsky, A; Robertson, C; Grimwood, K

    2002-01-01

    Aims: To determine the relation between lower airway infection and inflammation, respiratory symptoms, and lung function in infants and young children with cystic fibrosis (CF). Methods: A prospective study of children with CF aged younger than 3 years, diagnosed by a newborn screening programme. All were clinically stable and had testing as outpatients. Subjects underwent bronchial lavage (BL) and lung function testing by the raised volume rapid thoracoabdominal compression technique under general anaesthesia. BL fluid was cultured and analysed for neutrophil count, interleukin 8, and neutrophil elastase. Lung function was assessed by forced expiratory volume in 0.5, 0.75, and 1 second. Results: Thirty six children with CF were tested on 54 occasions. Lower airway infection shown by BL was associated with a 10% reduction in FEV0.5 compared with subjects without infection. No relation was identified between airway inflammation and lung function. Daily moist cough within the week before testing was reported on 20/54 occasions, but in only seven (35%) was infection detected. Independent of either infection status or airway inflammation, those with daily cough had lower lung function than those without respiratory symptoms at the time of BL (mean adjusted FEV0.5 195 ml and 236 ml respectively). Conclusions: In young children with CF, both respiratory symptoms and airway infection have independent, additive effects on lung function, unrelated to airway inflammation. Further studies are needed to understand the mechanisms of airway obstruction in these young patients. PMID:12244003

  16. Three-dimensional reconstruction of upper airways from MDCT

    NASA Astrophysics Data System (ADS)

    Perchet, Diane; Fetita, Catalin; Preteux, Francoise

    2005-03-01

    Under the framework of clinical respiratory investigation, providing accurate modalities for morpho-functional analysis is essential for diagnosis improvement, surgical planning and follow-up. This paper focuses on the upper airways investigation and develops an automated approach for 3D mesh reconstruction from MDCT acquisitions. In order to overcome the difficulties related to the complex morphology of the upper airways and to the image gray level heterogeneity of the airway lumens and thin bony septa, the proposed 3D reconstruction methodology combines 2D segmentation and 3D surface regularization approaches. The segmentation algorithm relies on mathematical morphology theory and provides airway lumen robust discrimination from the surrounding tissues, while preserving the connectivity relationship between the different anatomical structures. The 3D regularization step uses an energy-based modeling in order to achieve a smooth and well-fitted 3D surface of the upper airways. An accurate 3D mesh representation of the reconstructed airways makes it possible to develop specific clinical applications such as virtual endoscopy, surgical planning and computer assisted intervention. In addition, building up patient-specific 3D models of upper airways is highly valuable for the study and design of inhaled medication delivery via computational fluid dynamics (CFD) simulations.

  17. Induction of IL-6 and inhibition of IL-8 secretion in the human airway cell line Calu-3 by urban particulate matter collected with a modified method of PM sampling

    SciTech Connect

    Alfaro-Moreno, Ernesto; Torres, Victor; Miranda, Javier; Martinez, Leticia; Garcia-Cuellar, Claudia; Nawrot, Tim S.; Vanaudenaerde, Bart; Hoet, Peter; Ramirez-Lopez, Pavel; Rosas, Irma; Nemery, Benoit; Osornio-Vargas, Alvaro Roman

    2009-07-15

    Exposure to particulate matter (PM) induces inflammatory cytokines. In the present study, we evaluated the secretion of IL-6 and IL-8 by an airway cell line exposed to PM with a mean aerodynamic size equal to or less than 10 or 2.5 {mu}m (PM{sub 10} and PM{sub 2.5}, respectively) collected in Mexico City, using a modified high-volume sampling method avoiding the use of solvents or introducing membrane components into the samples. PM was collected on cellulose-nitrate (CN) membranes modified for collection on high-volume samplers. Composition of the particles was evaluated by particle-induced X-ray emission (PIXE) and scanning electron microscopy. The particles (10-160 {mu}g/cm{sup 2}) were tested on Calu-3 cells. Control cultures were exposed to LPS (10 ng/mL to 100 {mu}g/mL) or silica (10-160 {mu}g/cm{sup 2}). IL-6 and IL-8 secretions were evaluated by ELISA. An average of 10 mg of PM was recovered form each cellulose-nitrate filter. No evidence of contamination from the filter was found. Cells exposed to PM{sub 10} presented an increase in the secretion of IL-6 (up to 400%), while IL-8 decreased (from 40% to levels below the detection limit). A similar but weaker effect was observed with PM{sub 2.5}. In conclusion, our modified sampling method provides a large amount of urban PM free of membrane contamination. The urban particles induce a decrease in IL-8 secretion that contrasts with the LPS and silica effects. These results suggest that the regulation of IL-8 expression is different for urban particles (complex mixture containing combustion-related particles, soil and biologic components) than for biogenic compounds or pure mineral particles.

  18. Interaction with epithelial cells modifies airway macrophage response to ozone.

    PubMed

    Bauer, Rebecca N; Müller, Loretta; Brighton, Luisa E; Duncan, Kelly E; Jaspers, Ilona

    2015-03-01

    The initial innate immune response to ozone (O3) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived signals affect Mac response to O3. Macs from the bronchoalveolar lavage (BAL) of healthy volunteers were cocultured with the human bronchial epithelial (16HBE) or alveolar (A549) epithelial cell lines. Cocultures, Mac monocultures, and epithelial cell monocultures were exposed to O3 or air, and Mac immunophenotype, phagocytosis, and cytotoxicity were assessed. Quantities of hyaluronic acid (HA) and IL-8 were compared across cultures and in BAL fluid from healthy volunteers exposed to O3 or air for in vivo confirmation. We show that Macs in coculture had increased markers of alternative activation, enhanced cytotoxicity, and reduced phagocytosis compared with Macs in monoculture that differed based on coculture with A549 or 16HBE. Production of HA by epithelial cell monocultures was not affected by O3, but quantities of HA in the in vitro coculture and BAL fluid from volunteers exposed in vivo were increased with O3 exposure, indicating that O3 exposure impairs Mac regulation of HA. Together, we show epithelial cell-Mac coculture models that have many similarities to the in vivo responses to O3, and demonstrate that epithelial cell-derived signals are important determinants of Mac immunophenotype and response to O3.

  19. In situ measurement of airway surface liquid [K+] using a ratioable K+-sensitive fluorescent dye.

    PubMed

    Namkung, Wan; Song, Yuanlin; Mills, Aaron D; Padmawar, Prashant; Finkbeiner, Walter E; Verkman, A S

    2009-06-05

    The airway surface liquid (ASL) is the thin fluid layer lining airway surface epithelial cells, whose volume and composition are tightly regulated and may be abnormal in cystic fibrosis (CF). We synthesized a two-color fluorescent dextran to measure ASL [K(+)], TAC-Lime-dextran-TMR, consisting of a green-fluorescing triazacryptand K(+) ionophore-Bodipy conjugate, coupled to dextran, together with a red fluorescing tetramethylrhodamine reference chromophore. TAC-Lime-dextran-TMR fluorescence was K(+)-selective, increasing >4-fold with increasing [K(+)] from 0 to 40 mm. In well differentiated human airway epithelial cells, ASL [K(+)] was 20.8 +/- 0.3 mm and decreased by inhibition of the Na(+)/K(+) pump (ouabain), ENaC (amiloride), CF transmembrane conductance regulator (CFTR(inh)-172), or K(+) channels (TEA or XE991). ASL [K(+)] was increased by forskolin but not affected by Na(+)/K(+)/2Cl(-) cotransporter inhibition (bumetanide). Functional and expression studies indicated the involvement of [K(+)] channels KCNQ1, KCNQ3, and KCNQ5 as determinants of ASL [K(+)]. [K(+)] in CF cultures was similar to that in non-CF cultures, suggesting that abnormal ASL [K(+)] is not a factor in CF lung disease. In intact airways, ASL [K(+)] was also well above extracellular [K(+)]: 22 +/- 1 mm in pig trachea ex vivo and 16 +/- 1 mm in mouse trachea in vivo. Our results provide the first noninvasive measurements of [K(+)] in the ASL and indicate the involvement of apical and basolateral membrane ion transporters in maintaining a high ASL [K(+)].

  20. Glutathione redox regulates airway hyperresponsiveness and airway inflammation in mice.

    PubMed

    Koike, Yoko; Hisada, Takeshi; Utsugi, Mitsuyoshi; Ishizuka, Tamotsu; Shimizu, Yasuo; Ono, Akihiro; Murata, Yukie; Hamuro, Junji; Mori, Masatomo; Dobashi, Kunio

    2007-09-01

    Glutathione is the major intracellular redox buffer. We have shown that glutathione redox status, which is the balance between intracellular reduced (GSH) and oxidized (GSSG) glutathione, in antigen-presenting cells (APC) regulates the helper T cell type 1 (Th1)/Th2 balance due to the production of IL-12. Bronchial asthma is a typical Th2 disease. Th2 cells and Th2 cytokines are characteristic of asthma and trigger off an inflammation. Accordingly, we studied the effects of the intracellular glutathione redox status on airway hyperresponsiveness (AHR) and allergen-induced airway inflammation in a mouse model of asthma. We used gamma-Glutamylcysteinylethyl ester (gamma-GCE), which is a membrane-permeating GSH precursor, to elevate the intracellular GSH level and GSH/GSSG ratio of mice. In vitro, gamma-GCE pretreatment of human monocytic THP-1 cells elevated the GSH/GSSG ratio and enhanced IL-12(p70) production induced by LPS. In the mouse asthma model, intraperitoneal injection of gamma-GCE elevated the GSH/GSSG ratio of lung tissue and reduced AHR. gamma-GCE reduced levels of IL-4, IL-5, IL-10, and the chemokines eotaxin and RANTES (regulated on activation, normal T cell expressed and secreted) in bronchoalveolar lavage fluid, whereas it enhanced the production of IL-12 and IFN-gamma. Histologically, gamma-GCE suppressed eosinophils infiltration. Interestingly, we also found that gamma-GCE directly inhibited chemokine-induced eosinophil chemotaxis without affecting eotaxin receptor chemokine receptor 3 (CCR3) expressions. Taken together, these findings suggest that changing glutathione redox balance, increase in GSH level, and the GSH/GSSG ratio by gamma-GCE, ameliorate bronchial asthma by altering the Th1/Th2 imbalance through IL-12 production from APC and suppressing chemokine production and eosinophil migration itself.

  1. Liquid secretion properties of airway submucosal glands

    PubMed Central

    Ballard, Stephen T; Inglis, Sarah K

    2004-01-01

    The tracheobronchial submucosal glands secrete liquid that is important for hydrating airway surfaces, supporting mucociliary transport, and serving as a fluid matrix for numerous secreted macromolecules including the gel-forming mucins. This review details the essential structural elements of airway glands and summarizes what is currently known regarding the ion transport processes responsible for producing the liquid component of gland secretion. Liquid secretion most likely arises from serous cells and is principally under neural control with muscarinic agonists, substance P, and vasoactive intestinal peptide (VIP) functioning as effective secretogogues. Liquid secretion is driven by the active transepithelial secretion of both Cl− and HCO3− and at least a portion of this process is mediated by the cystic fibrosis transmembrane conductance regulator (CFTR), which is highly expressed in glands. The potential role of submucosal glands in cystic fibrosis lung disease is discussed. PMID:14660706

  2. Upper airway radiographs in infants with upper airway insufficiency.

    PubMed Central

    Tonkin, S L; Davis, S L; Gunn, T R

    1994-01-01

    Upper airway measurements in nine infants considered to be at risk of upper airway insufficiency, six of whom presented after an apnoeic episode, were compared with measurements taken in two age groups of healthy infants. Paired, inspiratory and expiratory, lateral upper airway radiographs were obtained while the infants were awake and breathing quietly. The radiographs of all nine infants demonstrated narrowing in the oropharyngeal portion of the airway during inspiration and in six infants there was ballooning of the upper airway during expiration. Seven of the nine infants subsequently experienced recurrent apnoeic episodes which required vigorous stimulation to restore breathing. Experience suggests that respiratory phase timed radiographs are a useful adjunct to the evaluation of infants who are suspected of having upper airway dysfunction. They provide information regarding both the dimensions and compliance of the upper airway as well as the site of any restriction. Images PMID:8048825

  3. Extraction and analysis of pollutant organics from contaminated solids using off-line supercritical fluid extraction (SFE) and on-line SFE-infrared spectroscopy. Task 2. Semiannual report, November 1995--March 1996

    SciTech Connect

    Hawthorne, S.B.

    1996-04-01

    This document describes activities in the following tasks associated with a project on environmental management technology decontamination and commercialization: A commercialized version of a field-portable instrument for performing supercritical fluid extraction (SFE) with on-line Fourier transform infrared (FT-IR) detection;pyrolysis of plastic wastes associated with mixtures of radioactive wastes;management and reporting activities; centrifugal membrane filtration with application to tank waste remediation; technology development integration activities associated with remedial action and waste management.

  4. Supraglottic airway devices in children

    PubMed Central

    Ramesh, S; Jayanthi, R

    2011-01-01

    Modern anaesthesia practice in children was made possible by the invention of the endotracheal tube (ET), which made lengthy and complex surgical procedures feasible without the disastrous complications of airway obstruction, aspiration of gastric contents or asphyxia. For decades, endotracheal intubation or bag-and-mask ventilation were the mainstays of airway management. In 1983, this changed with the invention of the laryngeal mask airway (LMA), the first supraglottic airway device that blended features of the facemask with those of the ET, providing ease of placement and hands-free maintenance along with a relatively secure airway. The invention and development of the LMA by Dr. Archie Brain has had a significant impact on the practice of anaesthesia, management of the difficult airway and cardiopulmonary resuscitation in children and neonates. This review article will be a brief about the clinical applications of supraglottic airways in children. PMID:22174464

  5. Prevention of allergic airway hyperresponsiveness and remodeling in mice by Astragaliradix Antiasthmatic decoction

    PubMed Central

    2013-01-01

    Background Astragali radix Antiasthmatic Decoction (AAD), a traditional Chinese medication, is found effective in treating allergic diseases and chronic cough. The purpose of this study is to determine whether this medication could suppress allergen-induced airway hyperresponsiveness (AHR) and remodeling in mice, and its possible mechanisms. Methods A mouse model of chronic asthma was used to investigate the effects of AAD on the airway lesions. Mice were sensitized and challenged with ovalbumin (OVA), and the extent of AHR and airway remodeling were characterized. Cells and cytokines in the bronchoalveolar lavage fluid (BALF) were examined. Results AAD treatment effectively decreased OVA-induced AHR, eosinophilic airway inflammation, and collagen deposition around the airway. It significantly reduced the levels of IL-13 and TGF-β1, but exerted inconsiderable effect on INF-γ and IL-10. Conclusions AAD greatly improves the symptoms of allergic airway remodeling probably through inhibition of Th2 cytokines and TGF-β1. PMID:24367979

  6. Fractal branching pattern of the monopodial canine airway.

    PubMed

    Wang, Ping M; Kraman, Steve S

    2004-06-01

    Unlike the human lung, monopodial canine airway branching follows an irregular dichotomized pattern with fractal features. We studied three canine airway molds and found a self-similarity feature from macro- to microscopic scales, which formed a fractal set up to seven scales in the airways. At each fractal scale, lateral branches evenly lined up along an approximately straight main trunk to form three to four two-dimensional structures, and each lateral branch was the monopodial main trunk of the next fractal scale. We defined this pattern as the fractal main lateral-branching pattern, which exhibited similar structures from macro- to microscopic scales, including lobes, sublobes, sub-sublobes, etc. We speculate that it, rather than a mother-daughter pattern, could better describe the actual asymmetrical architecture of the monopodial canine airway.

  7. Epstein-Barr virus (EBV). VII. Established lymphoid cell line (IVPat-88) obtained from synovial fluid of a patient with aseptic arthritis.

    PubMed

    Pătraşcu, I V; Ghenoiu, O; Tache, M; Stoicescu, M; Cajal, N

    1989-01-01

    Attempts have been made to culture mononuclear cells from synovial fluid of 8 patients with arthropathy, and have led to the development of the lymphoid cell line IVPat-88. Cell line has been propagated by serial passages for more than 14 weeks in continuous culture. The cells grew as single, free-floating individuals, or in dense clumps without adherence to glass or plastic surface. All these cells were identified as altered lymphoblasts because of their growth pattern and uniform morphology, and the presence of Epstein-Barr Viral Capsid Antigen (VCA) in 5 to 10% of the cells. The cell concentration varied during the period of culture from about 300,000 to 1,700,000 cells per ml, and mean doubling time during phases of active growth was 42 and 60 hours in MEM and RPMI 1640 tissue culture media, respectively. The methods used and the characteristics of the cell line are described.

  8. Airway cooling and mucosal injury during cold weather exercise.

    PubMed

    Davis, M S; Lockard, A J; Marlin, D J; Freed, A N

    2002-09-01

    In human subjects that exercise strenuously in cold weather, there is evidence that hyperventilation with cold air leads to peripheral airway cooling, desiccation and mucosal injury. Our hypothesis was that hyperventilation with cold air can result in penetration of unconditioned air (air that is not completely warmed and humidified) into the peripheral airways of exercising horses, resulting in peripheral airway mucosal injury. To test this hypothesis, a thermister-tipped catheter was inserted through the midcervical trachea and advanced into a sublobar bronchus in three horses that cantered on a treadmill at 6.6 m/s while breathing cold (5 degrees C) air. The mean (+/- s.e.) intra-airway temperature during cantering was 33.3 +/- 0.4 degrees C, a value comparable to the bronchial lumen temperatures measured in man during maximal exercise while breathing subfreezing dry air. In a second experiment, 6 fit Thoroughbred racehorses with satisfactory performance were used to determine whether strenuous exercise in cold conditions can produce airway injury. Horses were assigned to Exercise (E) or Control (C) groups in a random crossover design. Samples of bronchoalveolar lavage fluid (BALF) in the E treatment were recovered within 30 min of galloping exercise in 4 degrees C, 100% relative humidity (E), while in C BALF samples were obtained when the horses had not performed any exercise for at least 48 h prior. Ciliated epithelial cells in BALF were higher in E than in the C treatment. Similar results have been found in human athletes and laboratory animal models of cold weather exercise. These results support the hypothesis that, similar to man, horses that exercise in cold weather experience peripheral airway mucosal injury due to the penetration of unconditioned air. Furthermore, these results suggest that airway cooling and desiccation may be a factor in airway inflammation commonly found in equine athletes.

  9. Modeling the Nonlinear Motion of the Rat Central Airways.

    PubMed

    Ibrahim, G; Rona, A; Hainsworth, S V

    2016-01-01

    Advances in volumetric medical imaging techniques allowed the subject-specific modeling of the bronchial flow through the first few generations of the central airways using computational fluid dynamics (CFD). However, a reliable CFD prediction of the bronchial flow requires modeling of the inhomogeneous deformation of the central airways during breathing. This paper addresses this issue by introducing two models of the central airways motion. The first model utilizes a node-to-node mapping between the discretized geometries of the central airways generated from a number of successive computed tomography (CT) images acquired dynamically (without breath hold) over the breathing cycle of two Sprague-Dawley rats. The second model uses a node-to-node mapping between only two discretized airway geometries generated from the CT images acquired at end-exhale and at end-inhale along with the ventilator measurement of the lung volume change. The advantage of this second model is that it uses just one pair of CT images, which more readily complies with the radiation dosage restrictions for humans. Three-dimensional computer aided design geometries of the central airways generated from the dynamic-CT images were used as benchmarks to validate the output from the two models at sampled time-points over the breathing cycle. The central airway geometries deformed by the first model showed good agreement to the benchmark geometries within a tolerance of 4%. The central airway geometry deformed by the second model better approximated the benchmark geometries than previous approaches that used a linear or harmonic motion model.

  10. Mature cystic fibrosis airway neutrophils suppress T cell function: evidence for a role of arginase 1 but not programmed death-ligand 1.

    PubMed

    Ingersoll, Sarah A; Laval, Julie; Forrest, Osric A; Preininger, Marcela; Brown, Milton R; Arafat, Dalia; Gibson, Greg; Tangpricha, Vin; Tirouvanziam, Rabindra

    2015-06-01

    Bacteria colonize cystic fibrosis (CF) airways, and although T cells with appropriate Ag specificity are present in draining lymph nodes, they are conspicuously absent from the lumen. To account for this absence, we hypothesized that polymorphonuclear neutrophils (PMNs), recruited massively into the CF airway lumen and actively exocytosing primary granules, also suppress T cell function therein. Programmed death-ligand 1 (PD-L1), which exerts T cell suppression at a late step, was expressed bimodally on CF airway PMNs, delineating PD-L1(hi) and PD-L1(lo) subsets, whereas healthy control (HC) airway PMNs were uniformly PD-L1(hi). Blood PMNs incubated in CF airway fluid lost PD-L1 over time; in coculture, Ab blockade of PD-L1 failed to inhibit the suppression of T cell proliferation by CF airway PMNs. In contrast with PD-L1, arginase 1 (Arg1), which exerts T cell suppression at an early step, was uniformly high on CF and HC airway PMNs. However, arginase activity was high in CF airway fluid and minimal in HC airway fluid, consistent with the fact that Arg1 activation requires primary granule exocytosis, which occurs in CF, but not HC, airway PMNs. In addition, Arg1 expression on CF airway PMNs correlated negatively with lung function and positively with arginase activity in CF airway fluid. Finally, combined treatment with arginase inhibitor and arginine rescued the suppression of T cell proliferation by CF airway fluid. Thus, Arg1 and PD-L1 are dynamically modulated upon PMN migration into human airways, and, Arg1, but not PD-L1, contributes to early PMN-driven T cell suppression in CF, likely hampering resolution of infection and inflammation.

  11. MATURE CYSTIC FIBROSIS AIRWAY NEUTROPHILS SUPPRESS T-CELL FUNCTION: EVIDENCE FOR A ROLE OF ARGINASE 1, BUT NOT PROGRAMMED DEATH-LIGAND 1

    PubMed Central

    Ingersoll, Sarah A.; Laval, Julie; Forrest, Osric A.; Preininger, Marcela; Brown, Milton R.; Arafat, Dalia; Gibson, Greg; Tangpricha, Vin; Tirouvanziam, Rabindra

    2015-01-01

    Bacteria colonize cystic fibrosis (CF) airways, and while T cells with appropriate antigen specificity are present in draining lymph nodes, they are conspicuously absent from the lumen. To account for this absence, we hypothesized that polymorphonuclear neutrophils (PMNs), recruited massively into the CF airway lumen and actively exocytosing primary granules, also suppress T-cell function therein. Programmed Death-Ligand 1 (PD-L1), which exerts T-cell suppression at a late step, was expressed bimodally on CF airway PMNs, delineating PD-L1hi and PD-L1lo subsets, while healthy control (HC) airway PMNs were uniformly PD-L1hi. Blood PMNs incubated in CF airway fluid lost PD-L1 over time, and in coculture, antibody blockade of PD-L1 failed to inhibit the suppression of T-cell proliferation by CF airway PMNs. In contrast with PD-L1, arginase 1 (Arg1), which exerts T-cell suppression at an early step, was uniformly high on CF and HC airway PMNs. However, arginase activity was high in CF airway fluid and minimal in HC airway fluid, consistent with the fact that Arg1 activation requires primary granule exocytosis, which occurs in CF, but not HC, airway PMNs. In addition, Arg1 expression on CF airway PMNs correlated negatively with lung function and positively with arginase activity in CF airway fluid. Finally, combined treatment with arginase inhibitor and arginine rescued the suppression of T-cell proliferation by CF airway fluid. Thus, Arg1 and PD-L1 are dynamically modulated upon PMN migration into human airways, and, Arg1, but not PD-L1, contributes to early PMN-driven T-cell suppression in CF, likely hampering resolution of infection and inflammation. PMID:25926674

  12. Immunomodulatory Effects of Ambroxol on Airway Hyperresponsiveness and Inflammation

    PubMed Central

    Miyahara, Nobuaki; Matsubara, Shigeki; Taube, Christian; Kitamura, Kenichi; Hirano, Astushi; Tanimoto, Mitsune; Gelfand, Erwin W.

    2016-01-01

    Ambroxol is used in COPD and asthma to increase mucociliary clearance and regulate surfactant levels, perhaps through anti-oxidant and anti-inflammatory activities. To determine the role and effect of ambroxol in an experimental model of asthma, BALB/c mice were sensitized to ovalbumin (OVA) followed by 3 days of challenge. Airway hyperresponsiveness (AHR), lung cell composition and histology, and cytokine and protein carbonyl levels in bronchoalveolar lavage (BAL) fluid were determined. Ambroxol was administered either before the first OVA challenge or was begun after the last allergen challenge. Cytokine production levels from lung mononuclear cells (Lung MNCs) or alveolar macrophages (AM) were also determined. Administration of ambroxol prior to challenge suppressed AHR, airway eosinophilia, goblet cell metaplasia, and reduced inflammation in subepithelial regions. When given after challenge, AHR was suppressed but without effects on eosinophil numbers. Levels of IL-5 and IL-13 in BAL fluid were decreased when the drug was given prior to challenge; when given after challenge, increased levels of IL-10 and IL-12 were detected. Decreased levels of protein carbonyls were detected in BAL fluid following ambroxol treatment after challenge. In vitro, ambroxol increased levels of IL-10, IFN-γ, and IL-12 from Lung MNCs and AM, whereas IL-4, IL-5, and IL-13 production was not altered. Taken together, ambroxol was effective in preventing AHR and airway inflammation through upregulation of Th1 cytokines and protection from oxidative stress in the airways. PMID:27340385

  13. Allergic airway inflammation induces a pro-secretory epithelial ion transport phenotype in mice.

    PubMed

    Anagnostopoulou, P; Dai, L; Schatterny, J; Hirtz, S; Duerr, J; Mall, M A

    2010-12-01

    The airway epithelium is a central effector tissue in allergic inflammation and T-helper cell (Th) type 2-driven epithelial responses, such as mucus hypersecretion contribute to airflow obstruction in allergic airway disease. Previous in vitro studies demonstrated that Th2 cytokines also act as potent modulators of epithelial ion transport and fluid secretion, but the in vivo effect of allergic inflammation on airway ion transport remains unknown. We, therefore, induced allergic inflammation by intratracheal instillation of Aspergillus fumigatus extract or interleukin-13 in mice and determined effects on ion transport in native tracheal and bronchial tissues. We demonstrate that allergic inflammation enhanced basal Cl(-) secretion in both airway regions and inhibited epithelial Na(+) channel (ENaC)-mediated Na(+) absorption and increased Ca²(+)-dependent Cl(-) secretion in bronchi. Allergen-induced alterations in bronchial ion transport were associated with reduced transcript levels of α-, β- and γENaC, and were largely abrogated in signal transducer and activator of transcription (Stat)6(-/-) mice. Our studies demonstrate that Th2-dependent airway inflammation produced a pro-secretory ion transport phenotype in vivo, which was largely Stat6-dependent. These results suggest that Th2-mediated fluid secretion may improve airway surface hydration and clearance of mucus that is hypersecreted in allergic airway diseases such as asthma, and identify epithelial Stat6 signalling as a potential therapeutic target to promote mucus hydration and airway clearance.

  14. Fluids confined in wedges and by edges: Virial series for the line-thermodynamic properties of hard spheres

    SciTech Connect

    Urrutia, Ignacio

    2014-12-28

    This work is devoted to analyze the relation between the thermodynamic properties of a confined fluid and the shape of its confining vessel. Recently, new insights in this topic were found through the study of cluster integrals for inhomogeneous fluids that revealed the dependence on the vessel shape of the low density behavior of the system. Here, the statistical mechanics and thermodynamics of fluids confined in wedges or by edges is revisited, focusing on their cluster integrals. In particular, the well known hard sphere fluid, which was not studied in this framework so far, is analyzed under confinement and its thermodynamic properties are analytically studied up to order two in the density. Furthermore, the analysis is extended to the confinement produced by a corrugated wall. These results rely on the obtained analytic expression for the second cluster integral of the confined hard sphere system as a function of the opening dihedral angle 0 < β < 2π. It enables a unified approach to both wedges and edges.

  15. A continuous-flow crushing device for on-line delta2H analysis of fluid inclusion water in speleothems.

    PubMed

    Vonhof, Hubert B; van Breukelen, Martin R; Postma, Onno; Rowe, Peter J; Atkinson, Tim C; Kroon, Dick

    2006-01-01

    A method for the isotope analysis of fluid inclusion water in speleothem calcite is presented. The technique is based on a commercially available continuous-flow pyrolysis furnace (ThermoFinnigan TC-EA). The main adaptation made to the standard TC-EA configuration is the addition of a crusher and cold trap unit, which is connected to the carrier gas inlet at the top of the TC-EA reactor tube. A series of tests conducted with this device shows that: (1) standard waters, injected in the crusher, and passed through a cryogenic trapping routine, yield accurate delta(2)H values; (2) crushed cubes of speleothem calcite from two Peruvian caves with rather dissimilar seepage water delta(2)H values yield fluid inclusion delta(2)H values in good accordance with these drip waters. The clear advantage of this continuous-flow technique for fluid inclusion isotope analysis is that it is relatively quick compared with other techniques. Since the conditions of water sample introduction into the TC-EA are identical for delta(2)H and delta(18)O analysis, we expect that only limited adaptations to the extraction procedure are required to provide delta(18)O analysis of fluid inclusion samples with the same device.

  16. Supercritical fluid of particles with a Yukawa potential: A new approximation for the direct correlation function and the Widom line

    NASA Astrophysics Data System (ADS)

    Tareyeva, E. E.; Ryzhov, V. N.

    2016-12-01

    We propose an approximation of a direct correlation function corresponding to the linearization with respect to - βϕ( r) of a generalized mean spherical approximation for a hard-core multi-Yukawa system of particles. We use the results to study the behavior of maximums of thermodynamic response functions in the supercritical region of a fluid with a two-term Yukawa potential imitating the Lennard-Jones potential.

  17. Intra-operative on-line discrimination of kidney cancer from normal tissue by IR ATR spectroscopy of extracellular fluid

    NASA Astrophysics Data System (ADS)

    Urboniene, V.; Velicka, M.; Ceponkus, J.; Pucetaite, M.; Jankevicius, F.; Sablinskas, V.; Steiner, G.

    2016-03-01

    Determination of cancerous and normal kidney tissues during partial, simple or radical nephrectomy surgery was performed by using differences in the IR absorption spectra of extracellular fluid taken from the corresponding tissue areas. The samples were prepared by stamping of the kidney tissue on ATR diamond crystal. The spectral measurements were performed directly in the OR during surgery for 58 patients. It was found that intensities of characteristic spectral bands of glycogen (880-1200 cm-1) in extracellular fluid are sensitive to the type of the tissue and can be used as spectral markers of tumours. Characteristic spectral band of lactic acid (1730 cm-1) - product of the anaerobic glycolysis, taking place in the cancer cells is not suitable for use as a spectral marker of cancerous tissue, since it overlaps with the band of carbonyl stretch in phospholipids and fatty acids. Results of hierarchical cluster analysis of the spectra show that the spectra of healthy and tumour tissue films can be reliably separated into two groups. On the other hand, possibility to differentiate between tumours of different types and grades remains in question. While the fluid from highly malignant G3 tumour tissue contains highly pronounced glycogen spectral bands and can be well separated from benign and G1 tumours by principal component analysis, the variations between spectra from sample to sample prevent from obtaining conclusive results about the grouping between different tumour types and grades. The proposed method is instant and can be used in situ and even in vivo.

  18. Surfactant protein A is a principal and oxidation-sensitive microbial permeabilizing factor in the alveolar lining fluid.

    PubMed

    Kuzmenko, Alexander I; Wu, Huixing; Wan, Sijue; McCormack, Francis X

    2005-07-08

    We have reported that surfactant protein A kills some Gram-negative organisms by increasing membrane permeability. In this study, we investigated the physiologic importance of this activity and the effect of oxidative stress on the antimicrobial functions of SP-A in vitro and in vivo. Concentrated bronchoalveolar lavage fluids from SP-A+/+ mice increased the permeability of the Escherichia coli K12 cell membrane to a greater extent than lavage from SP-A-/- animals. Similarly, calcium-dependent surfactant-binding proteins of SP-A+/+ mice increased membrane permeability more than those from SP-A-/- mice and produced greater zonal killing of agar-embedded bacteria in a radial diffusion assay. Exposure of human SP-A to copper-initiated surfactant phospholipid peroxidation or to free radicals generated by human neutrophils in vitro increased the level of SP-A-associated carbonyl moieties and blocked the permeabilizing function of the protein. We also found that exposure of mice to 90% O2 for 4 days, sufficient to lead to consumption of glutathione, oxidation of protein thiols, and accumulation of airspace protein-associated carbonyl moieties, blocked the permeabilizing activity of lavage fluid from SP-A+/+ mice. We conclude that SP-A is a major microbial permeablizing factor in lavage fluid and that oxidative stress inhibits the antibacterial activity of SP-A by a mechanism that includes oxidative modification and functional inactivation of the protein.

  19. Surgery of the airway: historic notes

    PubMed Central

    2016-01-01

    Prior to the 20th century, the need for surgical procedures on the airway was infrequent and consisted mainly of tracheostomy to relieve airway obstruction or repair of tracheal injuries such as lacerations. Even the ability of tracheal suture lines to heal primarily was viewed with concern due to the rigidity of the tracheal wall, its precarious blood supply and uncertainty as to whether the cartilage components could heal without complications. In the 20th century the evolution of tracheal procedures on major airways evolved to meet the challenges provided by the expanding fields of thoracic surgery and advent of mechanical respiratory support with its associated complications. In the first half of the century lobar and lung resections done for tuberculosis and lung cancer required methods for safe closure of the resulting bronchial stumps and end-to-end bronchial anastomosis in the case of sleeve resections of the lung. Beginning in mid-century the advent of respiratory care units for the treatment of polio and for the expanding fields of thoracic and cardiac surgery resulted in a significant number of post-intubation tracheal stenosis requiring resection and primary repair. In the last 20 years of the century the development of lung transplantation with its requirement for successful bronchial anastomoses between the donor and recipient bronchi, created unique challenges including ischemia of the donor bronchus the adverse effects of immunosuppression, donor lung preservation and diagnosis and management of post-transplant infection and rejection. PMID:26981261

  20. Tissue factor pathway inhibitor prevents airway obstruction, respiratory failure and death due to sulfur mustard analog inhalation

    SciTech Connect

    Rancourt, Raymond C. Veress, Livia A. Ahmad, Aftab Hendry-Hofer, Tara B. Rioux, Jacqueline S. Garlick, Rhonda B. White, Carl W.

    2013-10-01

    Sulfur mustard (SM) inhalation causes airway injury, with enhanced vascular permeability, coagulation, and airway obstruction. The objective of this study was to determine whether recombinant tissue factor pathway inhibitor (TFPI) could inhibit this pathogenic sequence. Methods: Rats were exposed to the SM analog 2-chloroethyl ethyl sulfide (CEES) via nose-only aerosol inhalation. One hour later, TFPI (1.5 mg/kg) in vehicle, or vehicle alone, was instilled into the trachea. Arterial O{sub 2} saturation was monitored using pulse oximetry. Twelve hours after exposure, animals were euthanized and bronchoalveolar lavage fluid (BALF) and plasma were analyzed for prothrombin, thrombin–antithrombin complex (TAT), active plasminogen activator inhibitor-1 (PAI-1) levels, and fluid fibrinolytic capacity. Lung steady-state PAI-1 mRNA was measured by RT-PCR analysis. Airway-capillary leak was estimated by BALF protein and IgM, and by pleural fluid measurement. In additional animals, airway cast formation was assessed by microdissection and immunohistochemical detection of airway fibrin. Results: Airway obstruction in the form of fibrin-containing casts was evident in central conducting airways of rats receiving CEES. TFPI decreased cast formation, and limited severe hypoxemia. Findings of reduced prothrombin consumption, and lower TAT complexes in BALF, demonstrated that TFPI acted to limit thrombin activation in airways. TFPI, however, did not appreciably affect CEES-induced airway protein leak, PAI-1 mRNA induction, or inhibition of the fibrinolytic activity present in airway surface liquid. Conclusions: Intratracheal administration of TFPI limits airway obstruction, improves gas exchange, and prevents mortality in rats with sulfur mustard-analog-induced acute lung injury. - Highlights: • TFPI administration to rats after mustard inhalation reduces airway cast formation. • Inhibition of thrombin activation is the likely mechanism for limiting casts. • Rats given TFPI

  1. Operative endoscopy of the airway

    PubMed Central

    Walters, Dustin M.

    2016-01-01

    Airway endoscopy has long been an important and useful tool in the management of thoracic diseases. As thoracic specialists have gained experience with both flexible and rigid bronchoscopic techniques, the technology has continued to evolve so that bronchoscopy is currently the foundation for diagnosis and treatment of many thoracic ailments. Airway endoscopy plays a significant role in the biopsy of tumors within the airways, mediastinum, and lung parenchyma. Endoscopic methods have been developed to treat benign and malignant airway stenoses and tracheomalacia. And more recently, techniques have been conceived to treat end-stage emphysema and prolonged air leaks in select patients. This review describes the abundant uses of airway endoscopy, as well as technical considerations and limitations of the current technologies. PMID:26981263

  2. Global airway disease beyond allergy.

    PubMed

    Hellings, Peter W; Prokopakis, Emmanuel P

    2010-03-01

    Besides the anatomic continuity of the upper and lower airways, inflammation in one part of the airway influences the homeostasis of the other. The mechanisms underlying this interaction have been studied primarily in allergic disease, showing systemic immune activation, induction of inflammation at a distance, and a negative impact of nasal inflammation on bronchial homeostasis. In addition to allergy, other inflammatory conditions of the upper airways are associated with lower airway disease. Rhinosinusitis is frequently associated with asthma and chronic obstructive pulmonary disease. The impairment of purification, humidification, and warming up of the inspired air by the nose in rhinosinusitis may be responsible in part for bronchial pathology. The resolution of sinonasal inflammation via medical and/or surgical treatment is responsible for the beneficial effect of the treatment on bronchial disease. This article provides a comprehensive overview of the current knowledge of upper and lower airway communication beyond allergic disease.

  3. Recurrent airway obstruction: a review.

    PubMed

    Pirie, R S

    2014-05-01

    Recurrent airway obstruction is a widely recognised airway disorder, characterised by hypersensitivity-mediated neutrophilic airway inflammation and lower airway obstruction in a subpopulation of horses when exposed to suboptimal environments high in airborne organic dust. Over the past decade, numerous studies have further advanced our understanding of different aspects of the disease. These include clarification of the important inhaled airborne agents responsible for disease induction, improving our understanding of the underlying genetic basis of disease susceptibility and unveiling the fundamental immunological mechanisms leading to establishment of the classic disease phenotype. This review, as well as giving a clinical overview of recurrent airway obstruction, summarises much of the work in these areas that have culminated in a more thorough understanding of this debilitating disease.

  4. The airway microbiome and disease.

    PubMed

    Marsland, Benjamin J; Yadava, Koshika; Nicod, Laurent P

    2013-08-01

    Although traditionally thought to be sterile, accumulating evidence now supports the concept that our airways harbor a microbiome. Thus far, studies have focused upon characterizing the bacterial constituents of the airway microbiome in both healthy and diseased lungs, but what perhaps provides the greatest impetus for the exploration of the airway microbiome is that different bacterial phyla appear to dominate diseased as compared with healthy lungs. As yet, there is very limited evidence supporting a functional role for the airway microbiome, but continued research in this direction is likely to provide such evidence, particularly considering the progress that has been made in understanding host-microbe mutualism in the intestinal tract. In this review, we highlight the major advances that have been made discovering and describing the airway microbiome, discuss the experimental evidence that supports a functional role for the microbiome in health and disease, and propose how this emerging field is going to impact clinical practice.

  5. Effect of simulated microgravity on nitric oxide synthase activity of osteocyte-like cell line MLO-Y4 in response to fluid shear stress

    NASA Astrophysics Data System (ADS)

    Sun, Lian-Wen; Yang, Xiao; Fan, Yu-Bo

    It is well known that microgravity could induce bone loss. However, the mechanism remains poorly understood. Osteocytes are extremely sensitive to fluid shear stress, even more than osteobleasts. The effect of simulated microgravity on osteocytes in response to fluid shear was investigated in this study in order to see if the mechanosensibility of osteocytes changed under simulated microgravity. The osteocyte-like cell line, MLO-Y4, was cultured and divided into four groups, including control (CON), control and shear (CONS), rotary (RT), rotary and shear (RTS). In RT and RTS, the cells were cultured in the rotary cell culture system to simulate microgravity condition. After 5 days, the cells in RTS and CONS were subjected to flow shear for 15 min. Then nitric oxide synthase (NOS) activity in the cells was measured using assay kit. The results showed that NOS activity in respond to fluid shear decreased significantly in RTS compared with CONS. In addition, there was significant difference in NOS activity between CONS and CON while no significant difference between RTS and RT. These indicates that the mechanosensibility of osteocytes decreased under simulated microgravity and this maybe the partly causes of the poor effect of exercise to counter microgravity-induced-bone loss. However, further research need to be done to support this finding.

  6. Quantitative trace analysis of L-ascorbic acid in human body fluids by on-line combination of capillary isotachophoresis and zone electrophoresis.

    PubMed

    Procházková, A; Krivánková, L; Bocek, P

    1998-02-01

    On-line combination of capillary isotachophoresis and zone electrophoresis performed in two coupled capillaries (ITP-CZE) is used for the trace analysis of L-ascorbic acid in human serum, urine and stomach fluid. At the ITP stage, anionic sample components are separated into individual zones and macrocomponents are detected and driven out of the migration path. In the CZE stage, only a small segment of the sample zones containing L-ascorbic acid is analyzed. High sensitivity of this hyphenated method (limit of detection, 0.09-0.15 mg/L), low sample volume consumption (2 microL), and acceptable reproducibility of the results (relative standard deviation, 8%) in the concentration range 0.1-15 mg/L demonstrate that the method is applicable for the study of the relation between the content of L-ascorbic acid in body fluids and the state of health of a person, in which lower amounts of L-ascorbic acid than the normal levels (i.e., 5.1-15.1 mg/L in human serum and 12.5-26.8 mg/L in urine) are expected. Possible interferences of other components of the body fluids are excluded by good correlation of the results obtained by the ITP-CZE method and a routine colorimetric method.

  7. Computational Flow Modeling of Human Upper Airway Breathing

    NASA Astrophysics Data System (ADS)

    Mylavarapu, Goutham

    Computational modeling of biological systems have gained a lot of interest in biomedical research, in the recent past. This thesis focuses on the application of computational simulations to study airflow dynamics in human upper respiratory tract. With advancements in medical imaging, patient specific geometries of anatomically accurate respiratory tracts can now be reconstructed from Magnetic Resonance Images (MRI) or Computed Tomography (CT) scans, with better and accurate details than traditional cadaver cast models. Computational studies using these individualized geometrical models have advantages of non-invasiveness, ease, minimum patient interaction, improved accuracy over experimental and clinical studies. Numerical simulations can provide detailed flow fields including velocities, flow rates, airway wall pressure, shear stresses, turbulence in an airway. Interpretation of these physical quantities will enable to develop efficient treatment procedures, medical devices, targeted drug delivery etc. The hypothesis for this research is that computational modeling can predict the outcomes of a surgical intervention or a treatment plan prior to its application and will guide the physician in providing better treatment to the patients. In the current work, three different computational approaches Computational Fluid Dynamics (CFD), Flow-Structure Interaction (FSI) and Particle Flow simulations were used to investigate flow in airway geometries. CFD approach assumes airway wall as rigid, and relatively easy to simulate, compared to the more challenging FSI approach, where interactions of airway wall deformations with flow are also accounted. The CFD methodology using different turbulence models is validated against experimental measurements in an airway phantom. Two case-studies using CFD, to quantify a pre and post-operative airway and another, to perform virtual surgery to determine the best possible surgery in a constricted airway is demonstrated. The unsteady

  8. NIR spectroscopic method for the in-line moisture assessment during drying in a six-segmented fluid bed dryer of a continuous tablet production line: Validation of quantifying abilities and uncertainty assessment.

    PubMed

    Fonteyne, Margot; Arruabarrena, Julen; de Beer, Jacques; Hellings, Mario; Van Den Kerkhof, Tom; Burggraeve, Anneleen; Vervaet, Chris; Remon, Jean Paul; De Beer, Thomas

    2014-11-01

    This study focuses on the thorough validation of an in-line NIR based moisture quantification method in the six-segmented fluid bed dryer of a continuous from-powder-to-tablet manufacturing line (ConsiGma™ 25, GEA Pharma Systems nv, Wommelgem, Belgium). The moisture assessment ability of an FT-NIR spectrometer (Matrix™-F Duplex, Bruker Optics Ltd, UK) equipped with a fiber-optic Lighthouse Probe™ (LHP, GEA Pharma Systems nv, Wommelgem, Belgium) was investigated. Although NIR spectroscopy is a widely used technique for in-process moisture determination, a minority of NIR spectroscopy methods is thoroughly validated. A moisture quantification PLS model was developed. Twenty calibration experiments were conducted, during which spectra were collected at-line and then regressed versus the corresponding residual moisture values obtained via Karl Fischer measurements. The developed NIR moisture quantification model was then validated by calculating the accuracy profiles on the basis of the analysis results of independent in-line validation experiments. Furthermore, as the aim of the NIR method is to replace the destructive, time-consuming Karl Fischer titration, it was statistically demonstrated that the new NIR method performs at least as good as the Karl Fischer reference method.

  9. Lysophosphatidylcholine plays critical role in allergic airway disease manifestation

    PubMed Central

    Bansal, Preeti; Gaur, Shailendera Nath; Arora, Naveen

    2016-01-01

    Phospholipase A2 (sPLA2), pivotal for allergic and inflammatory response, hydrolyses phosphatidylcholine (PC) to lysophosphatidylcholine (LPC). In present study, the role of LPC in allergic airway disease manifestation was studied using mouse model. Balb/c mice were immunized using cockroach extract (CE) and LPC release was blocked by sPLA2 inhibitor. Airway hyperresponse (AHR), lung-histology, total and differential leukocyte count (TLC&DLC), Th2 type cytokines, sPLA2 activity and LPC levels in bronchoalveolar lavage fluid (BALF) were measured. Exogenous LPC was given to the mice with or without CE sensitization, to demonstrate its role in allergic airway disease manifestation. Anti-CD1d antibody was given to study the involvement of natural killer T (NKT) cells in LPC induced response. AHR, lung-inflammation, TLC, DLC, Th2 type cytokines, sPLA2 activity and LPC levels were increased on CE challenge. sPLA2 activity and LPC release was blocked by sPLA2-inhibitor, which decreased AHR, and inflammatory parameters. Exogenous LPC with or without CE sensitization increased above parameters. CE challenge or LPC exposure increased LY49C+TCRβ+ NKT cells in BALF and spleen, which was reduced by anti-CD1d antibody, accompanied with reduction in AHR and allergic airway inflammation parameters. Conclusively, LPC induces allergic airway disease manifestation and it does so probably via CD1d-restricted LY49C+TCRβ+ NKT cells. PMID:27282246

  10. Effects of azithromycin on ozone-induced airway neutrophilia and cytokine release.

    PubMed

    Criqui, G I; Solomon, C; Welch, B S; Ferrando, R E; Boushey, H A; Balmes, J R

    2000-05-01

    Exposure of humans to ozone causes increased neutrophils and inflammatory cytokines in airway lining fluid. Recent research shows that macrolide antibiotics may reduce interleukin (IL)-8 production by bronchial epithelial cells and inhibit neutrophil chemotaxis. A double-blind, cross-over study was performed in which 12 healthy subjects underwent two separate 4-h exposures to 0.2 parts per million ozone while exercising intermittently. In the 73.5 h before exposure, subjects were pretreated with either 1,250 mg azithromycin or placebo. Sputum induction conducted 74 h pre- and 18 h post-exposure was used to measure total cells, per cent neutrophils, IL-6, and IL-8. There were significant (p<0.05) pre- to post-exposure increases in total cells, neutrophils, IL-6 and IL-8 in both the azithromycin and placebo arms. However, no significant differences were found between azithromycin and placebo conditions in the post- minus pre-exposure value for these variables. The results suggest that in healthy subjects, in the design used, azithromycin, in usual clinical doses, does not have anti-inflammatory effects on human airways as indicated in the measured variables.

  11. hMSCs suppress neutrophil-dominant airway inflammation in a murine model of asthma

    PubMed Central

    Hong, Gyong Hwa; Kwon, Hyouk-Soo; Lee, Kyoung Young; Ha, Eun Hee; Moon, Keun-Ai; Kim, Seong Who; Oh, Wonil; Kim, Tae-Bum; Moon, Hee-Bom; Cho, You Sook

    2017-01-01

    Although chronic eosinophilic inflammation is a common feature in patients with asthma, some patients have neutrophil-dominant inflammation, which is known to be associated with severe asthma.Human mesenchymal stem cells (hMSCs) have shown promise in treating various refractory immunological diseases. Thus, hMSCs may represent an alternative therapeutic option for asthma patients with neutrophil-dominant inflammation, in whom current treatments are ineffective. BALB/c mice exposed to ovalbumin and polyinosinic:polycytidylic acid (Poly I:C) to induce neutrophilic airway inflammation were systemically treated with hMSCs to examine whether the hMSCs can modulate neutrophilic airway inflammation. In addition, cytokine production was evaluated in co-cultures of hMSCs with either anti-CD3/CD28-stimulated peripheral blood mononuclear cells (PBMCs) obtained from asthmatic patients or cells of the human bronchial epithelial cell line BEAS-2B to assess the response to hMSC treatment. The total number of immune cells in bronchoalveolar lavage fluid (BALF) showed a dramatic decrease in hMSC-treated asthmatic mice, and, in particular, neutrophilic infiltration was significantly attenuated. This phenomenon was accompanied by reduced CXCL15 production in the BALF. BEAS-2B cells co-cultured with hMSCs showed reduced secretion of IL-8. Moreover, decreased secretion of IL-4, IL-13 and IFN-γ was observed when human PBMCs were cultured with hMSCs, whereas IL-10 production was greatly enhanced. Our data imply that hMSCs may have a role in reducing neutrophilic airway inflammation by downregulating neutrophil chemokine production and modulating T-cell responses. PMID:28127050

  12. Transient motion of mucus plugs in respiratory airways

    NASA Astrophysics Data System (ADS)

    Zamankhan, Parsa; Hu, Yingying; Helenbrook, Brian; Takayama, Shuichi; Grotberg, James B.

    2011-11-01

    Airway closure occurs in lung diseases such as asthma, cystic fibrosis, or emphysema which have an excess of mucus that forms plugs. The reopening process involves displacement of mucus plugs in the airways by the airflow of respiration. Mucus is a non-Newtonian fluid with a yield stress; therefore its behavior can be approximated by a Bingham fluid constitutive equation. In this work the reopening process is approximated by simulation of a transient Bingham fluid plug in a 2D channel. The governing equations are solved by an Arbitrary Lagrangian Eulerian (ALE) finite element method through an in-house code. The constitutive equation for the Bingham fluid is implemented through a regularization method. The effects of the yield stress on the flow features and wall stresses are discussed with applications to potential injuries to the airway epithelial cells which form the wall. The minimum driving pressure for the initiation of the motion is computed and its value is related to the mucus properties and the plug shape. Supported by HL84370 and HL85156.

  13. Pleural fluid analysis

    MedlinePlus

    ... of fluid that has collected in the pleural space. This is the space between the lining of the outside of the ... the chest. When fluid collects in the pleural space, the condition is called pleural effusion .

  14. Pleural fluid smear

    MedlinePlus

    ... the fluid that has collected in the pleural space. This is the space between the lining of the outside of the ... the chest. When fluid collects in the pleural space, the condition is called pleural effusion .

  15. Putting the Squeeze on Airway Epithelia

    PubMed Central

    Park, Jin-Ah; Fredberg, Jeffrey J.

    2015-01-01

    Asthma is characterized by chronic inflammation, airway hyperresponsiveness, and progressive airway remodeling. The airway epithelium is known to play a critical role in the initiation and perpetuation of these processes. Here, we review how excessive epithelial stress generated by bronchoconstriction is sufficient to induce airway remodeling, even in the absence of inflammatory cells. PMID:26136543

  16. Airway complications after lung transplantation.

    PubMed

    Machuzak, Michael; Santacruz, Jose F; Gildea, Thomas; Murthy, Sudish C

    2015-01-01

    Airway complications after lung transplantation present a formidable challenge to the lung transplant team, ranging from mere unusual images to fatal events. The exact incidence of complications is wide-ranging depending on the type of event, and there is still evolution of a universal characterization of the airway findings. Management is also wide-ranging. Simple observation or simple balloon bronchoplasty is sufficient in many cases, but vigilance following more severe necrosis is required for late development of both anastomotic and nonanastomotic airway strictures. Furthermore, the impact of coexisting infection, rejection, and medical disease associated with high-level immunosuppression further complicates care.

  17. Gene Delivery to the Airway

    PubMed Central

    Keiser, Nicholas W.; Engelhardt, John F.

    2013-01-01

    This unit describes generation of and gene transfer to several commonly used airway models. Isolation and transduction of primary airway epithelial cells are first described. Next, the preparation of polarized airway epithelial monolayers is outlined. Transduction of these polarized cells is also described. Methods are presented for generation of tracheal xenografts as well as both ex vivo and in vivo gene transfer to these xenografts. Finally, a method for in vivo gene delivery to the lungs of rodents is included. Methods for evaluating transgene expression are given in the support protocols. PMID:23853081

  18. Fluid structure in the immediate vicinity of an equilibrium three-phase contact line and assessment of disjoining pressure models using density functional theory

    NASA Astrophysics Data System (ADS)

    Nold, Andreas; Sibley, David N.; Goddard, Benjamin D.; Kalliadasis, Serafim

    2014-07-01

    We examine the nanoscale behavior of an equilibrium three-phase contact line in the presence of long-ranged intermolecular forces by employing a statistical mechanics of fluids approach, namely, density functional theory (DFT) together with fundamental measure theory (FMT). This enables us to evaluate the predictive quality of effective Hamiltonian models in the vicinity of the contact line. In particular, we compare the results for mean field effective Hamiltonians with disjoining pressures defined through (i) the adsorption isotherm for a planar liquid film, and (ii) the normal force balance at the contact line. We find that the height profile obtained using (i) shows good agreement with the adsorption film thickness of the DFT-FMT equilibrium density profile in terms of maximal curvature and the behavior at large film heights. In contrast, we observe that while the height profile obtained by using (ii) satisfies basic sum rules, it shows little agreement with the adsorption film thickness of the DFT results. The results are verified for contact angles of 20°, 40°, and 60°.

  19. Real-time non-invasive detection of inhalable particulates delivered into live mouse airways.

    PubMed

    Donnelley, Martin; Morgan, Kaye S; Fouras, Andreas; Skinner, William; Uesugi, Kentaro; Yagi, Naoto; Siu, Karen K W; Parsons, David W

    2009-07-01

    Fine non-biological particles small enough to be suspended in the air are continually inhaled as we breathe. These particles deposit on airway surfaces where they are either cleared by airway defences or can remain and affect lung health. Pollutant particles from vehicles, building processes and mineral and industrial dusts have the potential to cause both immediate and delayed health problems. Because of their small size, it has not been possible to non-invasively examine how individual particles deposit on live airways, or to consider how they behave on the airway surface after deposition. In this study, synchrotron phase-contrast X-ray imaging (PCXI) has been utilized to detect and monitor individual particle deposition. The in vitro detectability of a range of potentially respirable particulates was first determined. Of the particulates tested, only asbestos, quarry dust, fibreglass and galena (lead sulfate) were visible in vitro. These particulates were then examined after delivery into the nasal airway of live anaesthetized mice; all were detectable in vivo but each exhibited different surface appearances and behaviour along the airway surface. The two fibrous particulates appeared as agglomerations enveloped by fluid, while the non-fibrous particulates were present as individual particles. Synchrotron PCXI provides the unique ability to non-invasively detect and track deposition of individual particulates in live mouse airways. With further refinement of particulate sizing and delivery techniques, PCXI should provide a novel approach for live animal monitoring of airway particulates relevant to lung health.

  20. Fluid sampling pump

    SciTech Connect

    Allen, P.V.; Nimberger, M.; Ward, R.L.

    1991-12-24

    This patent describes a fluid sampling pump for withdrawing pressurized sample fluid from a flow line and for pumping a preselected quantity of sample fluid with each pump driving stroke from the pump to a sample vessel, the sampling pump including a pump body defining a pump bore therein having a central axis, a piston slideably moveable within the pump bore and having a fluid inlet end and an opposing operator end, a fluid sample inlet port open to sample fluid in the flow line, a fluid sample outlet port for transmitting fluid from the pump bore to the sample vessel, and a line pressure port in fluid pressure sample fluid in the flow line, an inlet valve for selectively controlling sample fluid flow from the flow line through the fluid sample inlet port, an operator unit for periodically reciprocating the piston within the pump bore, and a controller for regulating the stroke of the piston within the pump bore, and thereby the quantity of fluid pumped with each pump driving stroke. It comprises a balanced check valve seat; a balanced check valve seal; a compression member; and a central plunger.

  1. Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment

    NASA Astrophysics Data System (ADS)

    Mitran, Sorin

    2013-07-01

    The human lung is protected against aspirated infectious and toxic agents by a thin liquid layer lining the interior of the airways. This airway surface liquid is a bilayer composed of a viscoelastic mucus layer supported by a fluid film known as the periciliary liquid. The viscoelastic behavior of the mucus layer is principally due to long-chain polymers known as mucins. The airway surface liquid is cleared from the lung by ciliary transport, surface tension gradients, and airflow shear forces. This work presents a multiscale model of the effect of airflow shear forces, as exerted by tidal breathing and cough, upon clearance. The composition of the mucus layer is complex and variable in time. To avoid the restrictions imposed by adopting a viscoelastic flow model of limited validity, a multiscale computational model is introduced in which the continuum-level properties of the airway surface liquid are determined by microscopic simulation of long-chain polymers. A bridge between microscopic and continuum levels is constructed through a kinetic-level probability density function describing polymer chain configurations. The overall multiscale framework is especially suited to biological problems due to the flexibility afforded in specifying microscopic constituents, and examining the effects of various constituents upon overall mucus transport at the continuum scale.

  2. United airway disease: current perspectives

    PubMed Central

    Giavina-Bianchi, Pedro; Aun, Marcelo Vivolo; Takejima, Priscila; Kalil, Jorge; Agondi, Rosana Câmara

    2016-01-01

    Upper and lower airways are considered a unified morphological and functional unit, and the connection existing between them has been observed for many years, both in health and in disease. There is strong epidemiologic, pathophysiologic, and clinical evidence supporting an integrated view of rhinitis and asthma: united airway disease in the present review. The term “united airway disease” is opportune, because rhinitis and asthma are chronic inflammatory diseases of the upper and lower airways, which can be induced by allergic or nonallergic reproducible mechanisms, and present several phenotypes. Management of rhinitis and asthma must be jointly carried out, leading to better control of both diseases, and the lessons of the Allergic Rhinitis and Its Impact on Asthma initiative cannot be forgotten. PMID:27257389

  3. Extraglottic airway devices: A review

    PubMed Central

    Ramaiah, Ramesh; Das, Debasmita; Bhananker, Sanjay M; Joffe, Aaron M

    2014-01-01

    Extraglottic airway devices (EAD) have become an integral part of anesthetic care since their introduction into clinical practice 25 years ago and have been used safely hundreds of millions of times, worldwide. They are an important first option for difficult ventilation during both in-hospital and out-of-hospital difficult airway management and can be utilized as a conduit for tracheal intubation either blindly or assisted by another technology (fiberoptic endoscopy, lightwand). Thus, the EAD may be the most versatile single airway technique in the airway management toolbox. However, despite their utility, knowledge regarding specific devices and the supporting data for their use is of paramount importance to patient's safety. In this review, number of commercially available EADs are discussed and the reported benefits and potential pitfalls are highlighted. PMID:24741502

  4. Airway epithelial cell wound repair mediated by alpha-dystroglycan.

    PubMed

    White, S R; Wojcik, K R; Gruenert, D; Sun, S; Dorscheid, D R

    2001-02-01

    Dystroglycans (DGs) bind laminin matrix proteins in skeletal and cardiac muscle and are expressed in other nonmuscle tissues. However, their expression in airway epithelial cells has not been demonstrated. We examined expression of DGs in the human airway epithelial cell line 1HAEo(-), and in human primary airway epithelial cells. Expression of the common gene for alpha- and beta-DG was demonstrated by reverse transcriptase/ polymerase chain reaction in 1HAEo(-) cells. Protein expression of beta-DG was demonstrated by both Western blot and flow cytometry in cultured cells. Localization of alpha-DG, using both a monoclonal antibody and the alpha-DG binding lectin wheat-germ agglutinin (WGA), was to the cell membrane and nucleus. We then examined the function of DGs in modulating wound repair over laminin matrix. Blocking alpha-DG binding to laminin in 1HAEo(-) monolayers using either glycosyaminoglycans or WGA attenuated cell migration and spreading after mechanical injury. alpha-DG was not expressed in epithelial cells at the wound edge immediately after wound creation, but localized to the cell membrane in these cells within 12 h of injury. These data demonstrate the presence of DGs in airway epithelium. alpha-DG is dynamically expressed and serves as a lectin to bind laminin during airway epithelial cell repair.

  5. On-line coupling of supercritical fluid extraction with high-performance liquid chromatography for the determination of explosives in vapour phases.

    PubMed

    Batlle, Ramón; Carlsson, Håkan; Holmgren, Erik; Colmsjö, Anders; Crescenzi, Carlo

    2002-07-19

    An analytical method for determining nitroaromatic explosives in vapour phases is presented. Samples were collected by pumping air through glass fibre filters and polyurethane foam adsorbents, and an on-line extraction system combining supercritical fluid extraction (SFE) and high-performance liquid chromatography (HPLC) was developed. This allows analytes to be transferred from the adsorbent to the HPLC system via a porous graphitic carbon trap. When using gradient elution with a suitable mobile phase, most of the nitroaromatic isomers tested were separated. The proposed method is fully automated, allows a complete analysis to be processed in less than 30 min, and it is compatible with most of the organic solvents commonly used as SFE modifiers or additives. The method has been applied to the analysis of real samples obtained from headspace sampling of military-grade 2,4,6-trinitrotoluene and has been shown to constitute a promising alternative for assessing whether areas are mined in landmine-clearing operations.

  6. A Mixture Reflecting Polybrominated Diphenyl Ether (PBDE) Profiles Detected in Human Follicular Fluid Significantly Affects Steroidogenesis and Induces Oxidative Stress in a Female Human Granulosa Cell Line.

    PubMed

    Lefevre, Pavine L C; Wade, Mike; Goodyer, Cindy; Hales, Barbara F; Robaire, Bernard

    2016-07-01

    Brominated flame retardants are incorporated into consumer products to prevent flame propagation. These compounds leach into the domestic environment, resulting in chronic exposure. Pregnancy failure is associated with high levels of polybrominated diphenyl ethers (PBDEs), a major class of brominated flame retardants, in human follicular fluid, raising serious questions regarding their impact on female fertility. Our goal was to elucidate the effects of a mixture of PBDEs, similar to the profile found in human follicular fluid, on an immortalized human granulosa cell line, the KGN cell line. We showed that cell viability was altered and oxidative stress was induced as reflected by increased reactive oxygen species formation at 100 μM of the PBDE mixture. Transcriptomic analysis revealed that PBDE treatments of 1, 5, and 20 μM altered the expression of several genes involved in the reactive oxygen species signaling pathway. Significant dose-dependent reductions in progesterone and estradiol levels in the culture medium were measured after PBDE treatment; in parallel, the expression of genes involved in estradiol metabolism, namely CYP1A1, was up-regulated by 5 and 20 μM of the PBDE mixture. Treatment with 20 μM PBDE also increased the expression and secretion of the proinflammatory factor, IL-6, into the KGN cell culture medium. Our results demonstrate that PBDEs can alter human granulosa cell functions by inducing oxidative stress and disrupting steroidogenesis. These results indicate that PBDEs may be detrimental to ovarian functions and thus may adversely affect female reproductive health after chronic exposure.

  7. A new removable airway stent

    PubMed Central

    Amundsen, Tore; Sørhaug, Sveinung; Leira, Håkon Olav; Tyvold, Stig Sverre; Langø, Thomas; Hammer, Tommy; Manstad-Hulaas, Frode; Mattsson, Erney

    2016-01-01

    Background Malignant airway obstruction is a feared complication and will most probably occur more frequently in the future because of increasing cancer incidence and increased life expectancy in cancer patients. Minimal invasive treatment using airway stents represents a meaningful and life-saving palliation. We present a new removable airway stent for improved individualised treatment. Methods To our knowledge, the new airway stent is the world's first knitted and uncovered self-expanding metal stent, which can unravel and be completely removed. In an in vivo model using two anaesthetised and spontaneously breathing pigs, we deployed and subsequently removed the stents by unravelling the device. The procedures were executed by flexible bronchoscopy in an acute and a chronic setting – a ‘proof-of-principle’ study. Results The new stent was easily and accurately deployed in the central airways, and it remained fixed in its original position. It was easy to unravel and completely remove from the airways without clinically significant complications. During the presence of the stent in the chronic study, granulation tissue was induced. This tissue disappeared spontaneously with the removal. Conclusions The new removable stent functioned according to its purpose and unravelled easily, and it was completely removed without significant technical or medical complications. Induced granulation tissue disappeared spontaneously. Further studies on animals and humans are needed to define its optimal indications and future use. PMID:27608269

  8. Kinetic multi-layer model of the epithelial lining fluid (KM-ELF): Reactions of ozone and OH with antioxidants and surfactant molecules

    NASA Astrophysics Data System (ADS)

    Lakey, Pascale; Pöschl, Ulrich; Shiraiwa, Manabu

    2015-04-01

    Oxidants cause damage to biosurfaces such as the lung epithelium unless they are effectively scavenged. The respiratory tract is covered in a thin layer of fluid which extends from the nasal cavity to the alveoli and contain species that scavenge ozone and other incoming oxidants. The kinetic multi-layer model of the epithelial lining fluid (KM-ELF) has been developed in order to investigate the reactions of ozone and OH with antioxidants (ascorbate, uric acid, glutathione and α-tocopherol) and surfactant lipids and proteins within the epithelial lining fluid (ELF). The model incorporates different processes: gas phase diffusion, adsorption and desorption from the surface, bulk phase diffusion and known reactions at the surface and in the bulk. The ELF is split into many layers: a sorption layer, a surfactant layer, a near surface bulk layer and several bulk layers. Initial results using KM-ELF indicate that at ELF thicknesses of 80 nm and 1 × 10-4cm the ELF would become rapidly saturated with ozone with saturation occurring in less than a second. However, at an ELF thickness of 1 × 10-3cm concentration gradients were observed throughout the ELF and the presence of antioxidants reduced the O3 reaching the lung cells and tissues by 40% after 1 hour of exposure. In contrast, the antioxidants were efficient scavengers of OH radicals, although the large rate constants of OH reacting with the antioxidants resulted in the antioxidants decaying away rapidly. The chemical half-lives of the antioxidants and surface species were also calculated using KM-ELF as a function of O3 and OH concentration and ELF thickness. Finally, the pH dependence of the products of reactions between antioxidants and O3 were investigated. The KM-ELF model predicted that a harmful ascorbate ozonide product would increase from 1.4 × 1011cm-3at pH 7.4 to 1.1 × 1014 cm-3 at pH 4after 1 hour although a uric acid ozonide product would decrease from 2.0 × 1015cm-3to 5.9 × 1012cm-3.

  9. Fluid imbalance

    MedlinePlus

    ... up in the body. This is called fluid overload (volume overload). This can lead to edema (excess fluid in ... Water imbalance; Fluid imbalance - dehydration; Fluid buildup; Fluid overload; Volume overload; Loss of fluids; Edema - fluid imbalance; ...

  10. Inhibition of CD23-mediated IgE transcytosis suppresses the initiation and development of airway allergic inflammation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The epithelium lining the airway tract and allergen-specific IgE are considered essential controllers of inflammatory responses to allergens. The human IgE receptor, CD23 (Fc'RII), is capable of transporting IgE or IgE-allergen complexes across the polarized human airway epithelial cell (AEC) monola...

  11. Human airway ciliary dynamics

    PubMed Central

    Thompson, Kristin; Knowles, Michael R.; Davis, C. William

    2013-01-01

    Airway cilia depend on precise changes in shape to transport the mucus gel overlying mucosal surfaces. The ciliary motion can be recorded in several planes using video microscopy. However, cilia are densely packed, and automated computerized systems are not available to convert these ciliary shape changes into forms that are useful for testing theoretical models of ciliary function. We developed a system for converting planar ciliary motions recorded by video microscopy into an empirical quantitative model, which is easy to use in validating mathematical models, or in examining ciliary function, e.g., in primary ciliary dyskinesia (PCD). The system we developed allows the manipulation of a model cilium superimposed over a video of beating cilia. Data were analyzed to determine shear angles and velocity vectors of points along the cilium. Extracted waveforms were used to construct a composite waveform, which could be used as a standard. Variability was measured as the mean difference in position of points on individual waveforms and the standard. The shapes analyzed were the end-recovery, end-effective, and fastest moving effective and recovery with mean (± SE) differences of 0.31(0.04), 0.25(0.06), 0.50(0.12), 0.50(0.10), μm, respectively. In contrast, the same measures for three different PCD waveforms had values far outside this range. PMID:23144323

  12. Airway Hydration and COPD

    PubMed Central

    Ghosh, Arunava; Boucher, R.C.; Tarran, Robert

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the prevalent causes of worldwide mortality and encompasses two major clinical phenotypes, i.e., chronic bronchitis (CB) and emphysema. The most common cause of COPD is chronic tobacco inhalation. Research focused on the chronic bronchitic phenotype of COPD has identified several pathological processes that drive disease initiation and progression. For example, the lung’s mucociliary clearance (MCC) system performs the critical task of clearing inhaled pathogens and toxic materials from the lung. MCC efficiency is dependent on: (i) the ability of apical plasma membrane ion channels such as the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial Na+ channel (ENaC) to maintain airway hydration; (ii) ciliary beating; and, (iii) appropriate rates of mucin secretion. Each of these components is impaired in CB and likely contributes to the mucus stasis/accumulation seen in CB patients. This review highlights the cellular components responsible for maintaining MCC and how this process is disrupted following tobacco exposure and with CB. We shall also discuss existing therapeutic strategies for the treatment of chronic bronchitis and how components of the MCC can be used as biomarkers for the evaluation of tobacco or tobacco-like-product exposure. PMID:26068443

  13. Efficacy of Surgical Airway Plasty for Benign Airway Stenosis

    PubMed Central

    Takahama, Makoto; Nakajima, Ryu; Kimura, Michitaka; Inoue, Hidetoshi; Yamamoto, Ryoji

    2015-01-01

    Background: Long-term patency is required during treatment for benign airway stenosis. This study investigated the effectiveness of surgical airway plasty for benign airway stenosis. Methods: Clinical courses of 20 patients, who were treated with surgical plasty for their benign airway stenosis, were retrospectively investigated. Results: Causes of stenosis were tracheobronchial tuberculosis in 12 patients, post-intubation stenosis in five patients, malacia in two patients, and others in one patient. 28 interventional pulmonology procedures and 20 surgical plasty were performed. Five patients with post-intubation stenosis and four patients with tuberculous stenosis were treated with tracheoplasty. Eight patients with tuberculous stenosis were treated with bronchoplasty, and two patients with malacia were treated with stabilization of the membranous portion. Anastomotic stenosis was observed in four patients, and one to four additional treatments were required. Performance status, Hugh–Jones classification, and ventilatory functions were improved after surgical plasty. Outcomes were fair in patients with tuberculous stenosis and malacia. However, efficacy of surgical plasty for post-intubation stenosis was not observed. Conclusion: Surgical airway plasty may be an acceptable treatment for tuberculous stenosis. Patients with malacia recover well after surgical plasty. There may be untreated patients with malacia who have the potential to benefit from surgical plasty. PMID:26567879

  14. Computational Fluid Dynamics Modeling of Bacillus anthracis ...

    EPA Pesticide Factsheets

    Journal Article Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. Four different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Despite the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways of the human at the same air concentration of anthrax spores. This greater deposition of spores in the upper airways in the human resulted in lower penetration and deposition in the tracheobronchial airways and the deep lung than that predict

  15. Airway management in emergency situations.

    PubMed

    Dörges, Volker

    2005-12-01

    Securing and monitoring the airway are among the key requirements of appropriate therapy in emergency patients. Failures to secure the airways can drastically increase morbidity and mortality of patients within a very short time. Therefore, the entire range of measures needed to secure the airway in an emergency, without intermediate ventilation and oxygenation, is limited to 30-40 seconds. Endotracheal intubation is often called the 'gold standard' for airway management in an emergency, but multiple failed intubation attempts do not result in maintaining oxygenation; instead, they endanger the patient by prolonging hypoxia and causing additional trauma to the upper airways. Thus, knowledge and availability of alternative procedures are also essential in every emergency setting. Given the great variety of techniques available, it is important to establish a well-planned, methodical protocol within the framework of an algorithm. This not only facilitates the preparation of equipment and the training of personnel, it also ensures efficient decision-making under time pressure. Most anaesthesia-related deaths are due to hypoxaemia when difficulty in securing the airway is encountered, especially in obstetrics during induction of anaesthesia for caesarean delivery. The most commonly occurring adverse respiratory events are failure to intubate, failure to recognize oesophageal intubation, and failure to ventilate. Thus, it is essential that every anaesthesiologist working on the labour and delivery ward is comfortable with the algorithm for the management of failed intubation. The algorithm for emergency airway management describing the sequence of various procedures has to be adapted to internal standards and to techniques that are available.

  16. Biomechanics of liquid-epithelium interactions in pulmonary airways

    PubMed Central

    Ghadiali, Samir N.; Gaver, Donald P.

    2008-01-01

    The delicate structure of the lung epithelium makes it susceptible to surface tension induced injury. For example, the cyclic reopening of collapsed and/or fluid-filled airways during the ventilation of injured lungs generates hydrodynamic forces that further damage the epithelium and exacerbate lung injury. The interactions responsible for epithelial injury during airway reopening are fundamentally multiscale, since air-liquid interfacial dynamics affect global lung mechanics, while surface tension forces operate at the molecular and cellular scales. This article will review the current state-of-knowledge regarding the effect of surface tension forces on a) the mechanics of airway reopening and b) epithelial cell injury. Due to the complex nature of the liquid-epithelium system, a combination of computational and experimental techniques are being used to elucidate the mechanisms of surface-tension induced lung injury. Continued research is leading to an integrated understanding of the biomechanical and biological interactions responsible for cellular injury during airway reopening. This information may lead to novel therapies that minimize ventilation induced lung injury. PMID:18511356

  17. Chloride and potassium channels in cystic fibrosis airway epithelia

    NASA Astrophysics Data System (ADS)

    Welsh, Michael J.; Liedtke, Carole M.

    1986-07-01

    Cystic fibrosis, the most common lethal genetic disease in Caucasians, is characterized by a decreased permeability in sweat gland duct and airway epithelia. In sweat duct epithelium, a decreased Cl- permeability accounts for the abnormally increased salt content of sweat1. In airway epithelia a decreased Cl- permeability, and possibly increased sodium absorption, may account for the abnormal respiratory tract fluid2,3. The Cl- impermeability has been localized to the apical membrane of cystic fibrosis airway epithelial cells4. The finding that hormonally regulated Cl- channels make the apical membrane Cl- permeable in normal airway epithelial cells5 suggested abnormal Cl- channel function in cystic fibrosis. Here we report that excised, cell-free patches of membrane from cystic fibrosis epithelial cells contain Cl- channels that have the same conductive properties as Cl- channels from normal cells. However, Cl- channels from cystic fibrosis cells did not open when they were attached to the cell. These findings suggest defective regulation of Cl- channels in cystic fibrosis epithelia; to begin to address this issue, we performed two studies. First, we found that isoprenaline, which stimulates Cl- secretion, increases cellular levels of cyclic AMP in a similar manner in cystic fibrosis and non-cystic fibrosis epithelial cells. Second, we show that adrenergic agonists open calcium-activated potassium channels, indirectly suggesting that calcium-dependent stimulus-response coupling is intact in cystic fibrosis. These data suggest defective regulation of Cl- channels at a site distal to cAMP accumulation.

  18. On locating the obstruction in the human upper airway

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Elghobashi, S.

    2013-11-01

    The fluid dynamical properties of the air flow in the human upper airway (UA) are not fully understood at present due to the three-dimensional, patient-specific complex geometry of the airway, flow transition from laminar to turbulent and flow-structure interaction during the breathing cycle. One of the major challenges to surgeons is determining the location of the UA obstruction before performing corrective surgeries. It is quite difficult at present to experimentally measure the instantaneous velocity and pressure at specific points in the human airway. On the other hand, direct numerical simulation (DNS) can predict all the flow properties and resolve all its relevant length- and time-scales. We developed a DNS solver with lattice Boltzmann method (LBM), and used it to investigate the flow in two patient-specific UAs reconstructed from CT scan data. Inspiration and expiration flows through these two airways are studied and compared. Pressure gradient-time signals at different locations in the UAs are used to determine the location of the obstruction. This work was supported by the National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health (NIH).

  19. Penetration of anti-infective agents into pulmonary epithelial lining fluid: focus on antifungal, antitubercular and miscellaneous anti-infective agents.

    PubMed

    Rodvold, Keith A; Yoo, Liz; George, Jomy M

    2011-11-01

    Epithelial lining fluid (ELF) is often considered to be the site of extracellular pulmonary infections. During the past 25 years, a limited number of studies have evaluated the intrapulmonary penetration of antifungal, antitubercular, antiparasitic and antiviral agents. For antifungal agents, differences in drug concentrations in ELF or bronchoalveolar lavage (BAL) fluid were observed among various formulations or routes of administration, and between agents within the same class. Aerosolized doses of deoxycholate amphotericin B, liposomal amphotericin B and amphotericin B lipid complex resulted in higher concentrations in ELF or BAL fluid than after intravenous administration. The mean concentrations in ELF following intravenous administration of both anidulafungin and micafungin ranged between 0.04 and 1.38 μg/mL, and the ELF to plasma concentration ratios (based on the area under the concentration-time curve for total drug concentrations) were between 0.18 and 0.22 during the first 3 days of therapy. Among the azole agents, intravenous administration of voriconazole resulted in the highest mean ELF concentrations (range 10.1-48.3 μg/mL) and ratio of penetration (7.1). The range of mean ELF concentrations of itraconazole and posaconazole following oral administration was 0.2-1.9 μg/mL, and the ELF to plasma concentration ratios were <1. A series of studies have evaluated the intrapulmonary penetration of first- and second-line oral antitubercular agents in healthy adult subjects and patients with AIDS. The ELF to plasma concentration ratio was >1 for isoniazid, ethambutol, pyrazinamide and ethionamide. For rifampicin (rifampin) and rifapentine, the ELF to plasma concentration ratio ranged between 0.2 and 0.32, but in alveolar macrophages the concentration of rifampicin was much higher (145-738 μg/mL compared with 3.3-7.5 μg/mL in ELF). No intrapulmonary studies have been conducted for rifabutin. Sex, AIDS status or smoking history had no significant effects

  20. Effects of second hand smoke on airway secretion and mucociliary clearance

    PubMed Central

    Liu, Yanyan; Di, Y. Peter

    2012-01-01

    The airway acts as the first defense against inhaled pathogens and particulate matter from the environment. One major way for the airway to clear inhaled foreign objects is through mucociliary clearance (MCC), an important component of the respiratory innate immune defense against lung disease. MCC is characterized by the upward movement of mucus by ciliary motion that requires a balance between the volume and composition of the mucus, adequate periciliary liquid (PCL) volume, and normal ciliary beat frequency (CBF). Airway surface fluid (ASL) is a thin layer liquid that consists of the highly viscous mucus upper “gel” layer, and the watery lubricating lower “sol” layer. Mucus production, secretion and clearance are considered to play a critical role in maintenance of airway health because it maintains hydration in the airway and traps particulates, bacteria, and viruses. Different types of epithelial cells, including secretory cells, and ciliated cells, contribute to the MCC function. Cigarette smoke (CS) contains chemicals and particulates that significantly affect airway secretion. Active and passive CS-induced chronic obstructive pulmonary disease (COPD) is frequently associated with hyperplasia of goblet cells and submucosal glands (SMGs), thus increasing the secretory capacity of the airways that impairs MCC. PMID:22973232

  1. Defective postsecretory maturation of MUC5B mucin in cystic fibrosis airways

    PubMed Central

    Abdullah, Lubna H.; Evans, Jessica R.; Wang, T. Tiffany; Ford, Amina A.; Makhov, Alexander M.; Nguyen, Kristine; Coakley, Raymond D.; Griffith, Jack D.; Davis, C. William; Ballard, Stephen T.

    2017-01-01

    In cystic fibrosis (CF), airway mucus becomes thick and viscous, and its clearance from the airways is impaired. The gel-forming mucins undergo an ordered “unpacking/maturation” process after granular release that requires an optimum postsecretory environment, including hydration and pH. We hypothesized that this unpacking process is compromised in the CF lung due to abnormal transepithelial fluid transport that reduces airway surface hydration and alters ionic composition. Using human tracheobronchial epithelial cells derived from non-CF and CF donors and mucus samples from human subjects and domestic pigs, we investigated the process of postsecretory mucin unfolding/maturation, how these processes are defective in CF airways, and the probable mechanism underlying defective unfolding. First, we found that mucins released into a normal lung environment transform from a compact granular form to a linear form. Second, we demonstrated that this maturation process is defective in the CF airway environment. Finally, we demonstrated that independent of HCO3− and pH levels, airway surface dehydration was the major determinant of this abnormal unfolding process. This defective unfolding/maturation process after granular release suggests that the CF extracellular environment is ion/water depleted and likely contributes to abnormal mucus properties in CF airways prior to infection and inflammation. PMID:28352653

  2. Use of population pharmacokinetic modeling and Monte Carlo simulation to describe the pharmacodynamic profile of cefditoren in plasma and epithelial lining fluid.

    PubMed

    Lodise, Thomas P; Kinzig-Schippers, Martina; Drusano, George L; Loos, Ulrich; Vogel, Friedrich; Bulitta, Jürgen; Hinder, Markus; Sörgel, Fritz

    2008-06-01

    Cefditoren is a broad-spectrum, oral cephalosporin that is highly active against clinically relevant respiratory tract pathogens, including multidrug-resistant Streptococcus pneumoniae. This study described its pharmacodynamic profile in plasma and epithelial lining fluid (ELF). Plasma and ELF pharmacokinetic data were obtained from 24 patients under fasting conditions. Cefditoren and urea concentrations were determined in plasma and bronchoalveolar lavage fluid by liquid chromatography-tandem mass spectrometry. Concentration-time profiles in plasma and ELF were modeled using a model with three disposition compartments and first-order absorption, elimination, and transfer. Pharmacokinetic parameters were identified in a population pharmacokinetic analysis (big nonparametric adaptive grid with adaptive gamma). Monte Carlo simulation (9,999 subjects) was performed with the ADAPT II program to estimate the probability of target attainment at which the free-cefditoren plasma concentrations (88%) protein binding and total ELF concentrations exceeded the MIC for 33% of the dosing interval for 400 mg cefditoren given orally every 12 h. After the Bayesian step, the overall fits of the model to the data were good, and plots of predicted versus observed concentrations for plasma and ELF showed slopes and intercepts very close to the ideal values of 1.0 and 0.0, respectively. In the plasma probability of target attainment analysis, the probability of achieving a time for which free, or unbound, plasma concentration exceeds the MIC of the organism for 33% of the dosing interval was <80% for a MIC of >0.06 mg/liter. Similar to plasma, the probability of achieving a time above the MIC of 33% was <80% for MIC of >0.06 mg/liter in ELF. Cefditoren was found to have a low probability of achieving a bacteriostatic effect against MICs of >0.06 mg/liter, which includes most S. pneumoniae isolates with intermediate susceptibility to penicillin, when given in the fasting state in both

  3. Cystic Fibrosis Transmembrane Conductance Regulator in Sarcoplasmic Reticulum of Airway Smooth Muscle. Implications for Airway Contractility

    PubMed Central

    Cook, Daniel P.; Rector, Michael V.; Bouzek, Drake C.; Michalski, Andrew S.; Gansemer, Nicholas D.; Reznikov, Leah R.; Li, Xiaopeng; Stroik, Mallory R.; Ostedgaard, Lynda S.; Abou Alaiwa, Mahmoud H.; Thompson, Michael A.; Prakash, Y. S.; Krishnan, Ramaswamy; Meyerholz, David K.; Seow, Chun Y.

    2016-01-01

    Rationale: An asthma-like airway phenotype has been described in people with cystic fibrosis (CF). Whether these findings are directly caused by loss of CF transmembrane conductance regulator (CFTR) function or secondary to chronic airway infection and/or inflammation has been difficult to determine. Objectives: Airway contractility is primarily determined by airway smooth muscle. We tested the hypothesis that CFTR is expressed in airway smooth muscle and directly affects airway smooth muscle contractility. Methods: Newborn pigs, both wild type and with CF (before the onset of airway infection and inflammation), were used in this study. High-resolution immunofluorescence was used to identify the subcellular localization of CFTR in airway smooth muscle. Airway smooth muscle function was determined with tissue myography, intracellular calcium measurements, and regulatory myosin light chain phosphorylation status. Precision-cut lung slices were used to investigate the therapeutic potential of CFTR modulation on airway reactivity. Measurements and Main Results: We found that CFTR localizes to the sarcoplasmic reticulum compartment of airway smooth muscle and regulates airway smooth muscle tone. Loss of CFTR function led to delayed calcium reuptake following cholinergic stimulation and increased myosin light chain phosphorylation. CFTR potentiation with ivacaftor decreased airway reactivity in precision-cut lung slices following cholinergic stimulation. Conclusions: Loss of CFTR alters porcine airway smooth muscle function and may contribute to the airflow obstruction phenotype observed in human CF. Airway smooth muscle CFTR may represent a therapeutic target in CF and other diseases of airway narrowing. PMID:26488271

  4. [Orthodontics and the upper airway].

    PubMed

    Cobo Plana, J; de Carlos Villafranca, F; Macías Escalada, E

    2004-03-01

    One of the general aims of orthodontic treatment and of the combination of orthodontics and orthognathic surgery is to achieve good occlusion and aesthetic improvement, especially in cases of severe dentoskeletal deformities. However, on many occasions, the parameters of the upper airways are not taken into account when the aims of conventional treatment are fulfilled. Patients with obstructive alterations during sleep represent for the orthodontist a type of patient who differs from the normal; for them, treatment should include the objective of improving oxygen saturation. Here, functional considerations should outweigh purely aesthetic ones. It is important, when making an orthodontic, surgical or combined diagnosis for a patient, to bear in mind the impact that treatment may have on the upper airways. Good aesthetics should never be achieved for some of our patients at the expense of diminishing the capacity of their upper airways.

  5. Injury Induces Localized Airway Increases in Pro-Inflammatory Cytokines in Humans and Mice

    PubMed Central

    Jonker, Mark A.; Hermsen, Joshua L.; Gomez, F. Enrique; Sano, Yoshifumi

    2011-01-01

    Abstract Background Secretory immunoglobulin A (sIgA) increases in the airways of humans and mice after injury to protect against infection. The pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 are linked molecularly to sIgA production and secretion and are required for sIgA increases in the airway after injury in a mouse model. We investigated the injury effect on airway and serum concentrations to determine the source of the cytokines involved in the airway IgA response. Methods In the first experiment, TNF-α, IL-1β, and IL-6 concentrations in bronchoalveolar lavage (BAL) fluid and serum obtained from 11 ventilated trauma patients within 30 h of admission were compared with those in eight elective surgical patients. In the second experiment, male ICR mice received no injury (n = 7) or injury with sham celiotomy and neck incisions (n = 8) with sacrifice of all animals at 8 h for BAL fluid and serum cytokine measurements by enzyme-linked immunosorbent assay. Results Injured patients had significantly higher BAL fluid and serum TNF-α, IL-1β, and IL-6 concentrations, with greater increases in the BAL fluid than in the serum. Injured mice had significantly increased BAL fluid concentrations of TNF-α, IL-1β, and IL-6 without significant changes in serum TNF-α or IL-1β. Serum IL-6 increased significantly. Conclusions Injury significantly increases human and mouse airway TNF-α, IL-1β, and IL-6. Increases are greater in the airway than in serum, implying a local rather than a systemic stress response to injury. PMID:21166596

  6. Aircraft Ground Operation, Servicing, Fluid Lines and Fittings, Mechanics Privileges and Limitations, and Maintenance Publications, Forms and Records (Course Outline), Aviation Mechanics 1 (Power and Frame): 9073.02.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course outline consists of five instructional blocks of several units each: (1) Aircraft Ground Operation and Servicing; (2) Fluid Lines and Fittings; (3) Mechanics Requirements, Privileges and Limitations; (4) Maintenance Publications; and, (5) Maintenance forms and Records. It is a basic course of knowledge and skills necessary to any…

  7. Respiratory Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Grotberg, James

    2005-11-01

    This brief overview of our groups activities includes liquid plug propagation in single and bifurcating tubes, a subject which pertains to surfactant delivery, liquid ventilation, pulmonary edema, and drowning. As the plug propagates, a variety of flow patterns may emerge depending on the parameters. It splits unevenly at airway bifurcations and can rupture, which reopens the airway to gas flow. Both propagation and rupture may damage the underlying airway wall cells. Another topic is surfactant dynamics and flow in a model of an oscillating alveolus. The analysis shows a nontrivial cycle-averaged surfactant concentration gradient along the interface that generates steady streaming. The steady streaming patterns particularly depend on the ratio of inspiration to expiration time periods and the sorption parameter. Vortices, single and multiple, may be achieved, as well as a saddle point configuration. Potential applications are pulmonary drug administration, cell-cell signaling pathways, and gene therapy. Finally, capillary instabilities which cause airway closure, and strategies for stabilization, will be presented. This involves the core-annular flow of a liquid-lined tube, where the core (air) is forced to oscillate axially. The stabilization mechanism is similar to that of a reversing butter knife, where the core shear wipes the growing liquid bulge, from the Rayleigh instability, back on to the tube wall during the main tidal volume stroke, but allows it to grow back as the stroke and shear turn around.

  8. Pneumocystis jirovecii Can Be Productively Cultured in Differentiated CuFi-8 Airway Cells

    PubMed Central

    Schildgen, Verena; Mai, Stephanie; Khalfaoui, Soumaya; Lüsebrink, Jessica; Pieper, Monika; Tillmann, Ramona L.; Brockmann, Michael

    2014-01-01

    ABSTRACT Although Pneumocystis jirovecii is a well-known and serious pathogen, all previous attempts to isolate, cultivate, and propagate this fungus have failed. This serious challenge in microbiology was addressed in the present study. We examined whether P. jirovecii could be cultured in a permanent three-dimensional air-liquid interface culture system formed by CuFi-8 cells, a differentiated pseudostratified airway epithelial cell line. Cultured pseudostratified cells were inoculated with bronchoalveolar fluid that had been confirmed to be positive for P. jirovecii using PCR. Five days later, the cells and basal medium were harvested and tested for P. jirovecii using quantitative PCR (qPCR), commercially available immunofluorescence detection assays, and Grocott staining of formalin-fixed, paraffin-embedded thin sections of infected-cell cultures. We successfully productively cultivated and propagated P. jirovecii from these P. jirovecii-positive bronchoalveolar lavage fluid (BALF) samples. Furthermore, we provide evidence that P. jirovecii induced cytopathic effects on lung epithelial cells and was even invasive in cell culture. To the best of our knowledge, the cell culture system developed herein represents the first methodology to enable molecular analyses of this pathogen’s life cycle and further in vitro studies of P. jirovecii, such as assessments of drug sensitivity and resistance as well as investigations of the pathogen’s stability against environmental factors and disinfectants. PMID:24825015

  9. Airway Assessment for Office Sedation/Anesthesia.

    PubMed

    Rosenberg, Morton B; Phero, James C

    2015-01-01

    Whenever a patient is about to receive sedation or general anesthesia, no matter what the technique, the preoperative assessment of the airway is one of the most important steps in ensuring patient safety and positive outcomes. This article, Part III in the series on airway management, is directed at the ambulatory office practice and focuses on predicting the success of advanced airway rescue techniques.

  10. Cyclooxygenase-1 overexpression decreases Basal airway responsiveness but not allergic inflammation.

    PubMed

    Card, Jeffrey W; Carey, Michelle A; Bradbury, J Alyce; Graves, Joan P; Lih, Fred B; Moorman, Michael P; Morgan, Daniel L; DeGraff, Laura M; Zhao, Yun; Foley, Julie F; Zeldin, Darryl C

    2006-10-01

    Pharmacological inhibition or genetic disruption of cyclooxygenase (COX)-1 or COX-2 exacerbates the inflammatory and functional responses of the lung to environmentally relevant stimuli. To further examine the contribution of COX-derived eicosanoids to basal lung function and to allergic lung inflammation, transgenic (Tr) mice were generated in which overexpression of human COX-1 was targeted to airway epithelium. Although no differences in basal respiratory or lung mechanical parameters were observed, COX-1 Tr mice had increased bronchoalveolar lavage fluid PGE(2) content compared with wild-type littermates (23.0 +/- 3.6 vs 8.4 +/- 1.4 pg/ml; p < 0.05) and exhibited decreased airway responsiveness to inhaled methacholine. In an OVA-induced allergic airway inflammation model, comparable up-regulation of COX-2 protein was observed in the lungs of allergic wild-type and COX-1 Tr mice. Furthermore, no genotype differences were observed in allergic mice in total cell number, eosinophil content (70 vs 76% of total cells, respectively), and inflammatory cytokine content of bronchoalveolar lavage fluid, or in airway responsiveness to inhaled methacholine (p > 0.05). To eliminate the presumed confounding effects of COX-2 up-regulation, COX-1 Tr mice were bred into a COX-2 null background. In these mice, the presence of the COX-1 transgene did not alter allergen-induced inflammation but significantly attenuated allergen-induced airway hyperresponsiveness, coincident with reduced airway leukotriene levels. Collectively, these data indicate that COX-1 overexpression attenuates airway responsiveness under basal conditions but does not influence allergic airway inflammation.

  11. Comments to Role of upper airway ultrasound in airway management.

    PubMed

    Lien, Wan-Ching

    2017-01-01

    Tracheal ultrasound can be an alternative diagnostic tool in airway management, besides traditional confirmatory methods such as capnography and auscultation. The standard image is a hyperechoic air-mucosa (A-M) interface with a reverberation artifact posteriorly (comet-tail artifact). If the second A-M interface appears, which we call a "double-tract sign," esophageal intubation is considered.

  12. Inhalation of inactivated‑Mycobacterium phlei prevents asthma‑mediated airway hyperresponsiveness and airway eosinophilia in mice by reducing IL‑5 and IL‑13 levels.

    PubMed

    Ming, Moyu; Luo, Zhixi; Lv, Shengqiu; Li, Chaoqian

    2016-12-01

    The present study aimed to investigate whether inhalation of inactivated‑Mycobacterium phlei could prevent airway hyperresponsiveness and airway eosinophilia. A total of 24 male Balb/c mice were randomly divided into three groups: Normal control group (group A), asthma model group (group B) and the intervention group (group C), (8 mice/group). Group A mice were sensitized and with challenged saline and group B with ovalbumin (OVA). Group C mice were administered with aerosol Mycobacterium phlei once daily prior to the allergen challenge. Airway responsiveness in each group was assessed. All the animals were sacrificed and lung tissues, blood samples and bronchoalveolar lavage fluid (BALF) were harvested. Cell fractionation and differential cells were counted in serum and BALF. HE staining and alcian blue/periodic acid Schiff staining were used to measure airway eosinophilic inflammation and mucus production. The levels of the cytokines IL‑5, IL‑13 and IgE were measured in lung and BALF as determined by ELISA and reverse transcription‑quantitative polymerase chain reaction assays. The results indicated that inactivated‑Mycobacterium phlei suppressed the airway hyperresponsiveness and mitigated airway eosinophilia induced by a methacholine challenge, and significantly reduced the levels of cytokines IL‑5 and IL‑13 in lung tissue and IgE level in BALF when compared with the OVA‑sensitized mice. In conclusion, inhalation of inactivated‑Mycobacterium phlei could reduce OVA‑induced airway hyperresponsiveness and may be a potential alternative therapy for allergic airway diseases.

  13. Coupling the Actuator Line and Finite Element Methods to Model Fluid Structure Interaction of a Commercial Wind Turbine in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Motta, Javier; Jha, Pankaj; Campbell, Robert; Schmitz, Sven; Brasseur, James

    2013-11-01

    Wind turbine blades deform in response to unsteady loadings from atmospheric turbulence, causing changes in local angle-of-attack and blade loadings. This interaction is modeled by a fluid-structure interaction (FSI) solver that combines a finite element (FE) solver with an actuator line method (ALM) model for aerodynamic blade loads and vorticity shedding developed by Jha et al. (2013). The FSI solver is embedded within an OpenFOAM large-eddy simulation (LES) solver for daytime atmospheric boundary layer (ABL). The flow and structure solvers are tightly coupled to ensure convergence of blade deformation and its impact on the flow field. The structural deformations are computed using a modal summation approach, where the required modal matrix and resonant frequencies are extracted using Abaqus. The ALM and FE algorithms are being optimized to provide a reasonable balance between accuracy of prediction and computation time, particularly due to the sub-iterations required for blade deformation convergence. We also aim to present an analysis of the coupling between blade loading and deformation on the NREL 5MW turbine operating in the ABL. Supported by the DOE. Graduate Research Assistant, Mechanical Engineering.

  14. Glial cell-line derived neurotrophic factor (GDNF) concentrations in cerebrospinal fluid and serum of patients with early Alzheimer's disease and normal controls.

    PubMed

    Straten, Guido; Eschweiler, Gerhard W; Maetzler, Walter; Laske, Christoph; Leyhe, Thomas

    2009-01-01

    As neurotrophic factors play an important role in development and maintenance of global central nervous system (CNS) function, we supposed that glial cell-line derived neurotrophic factor (GDNF), which has been extensively studied for its survival promoting effects especially concerning catecholaminergic neurons, also plays a significant role in neurodegenerative disease characterized mainly by damage of cholinergic CNS neurons like AD. Here we compared GDNF concentrations in serum and cerebrospinal fluid (CSF) of patients with probable Alzheimer's disease (AD) and normal controls (NC). While GDNF concentrations in CSF were significantly increased in patients with AD (291.7 +/- 85.8 pg/ml) compared with NC subjects (218.7 +/- 93.3 pg/ml, p = 0.012), GDNF concentration of AD patients (486.5 +/- 72.3 pg/ml) in serum were significantly decreased compared with the NC group (711.5 +/- 186.5 pg/ml, p < 0.001). Increased GDNF in CSF of AD might be due to an upregulated expression in CNS as an adaptive process of the impaired brain to enhance neurotrophic support at least in early stages of disease and/or impairment of CSF turnover. Decreased serum concentration of GDNF might be related to altered function of the blood brain barrier thus disturbing clearance or facilitating passover of potentially harmful metabolites.

  15. Glial cell line-derived neurotrophic factor induced the differentiation of amniotic fluid-derived stem cells into vascular endothelial-like cells in vitro.

    PubMed

    Zhang, Ruyu; Lu, Ying; Li, Ju; Wang, Jia; Liu, Caixia; Gao, Fang; Sun, Dong

    2016-02-01

    Amniotic fluid-derived stem cells (AFSCs) are a novel source of stem cells that are isolated and cultured from second trimester amniocentesis. Glial cell line-derived neurotrophic factor (GDNF) acts as a tissue morphogen and regulates stem cell proliferation and differentiation. This study investigated the effect of an adenovirus-mediated GDNF gene, which was engineered into AFSCs, on the cells' biological properties and whether GDNF in combination with AFSCs can be directionally differentiated into vascular endothelial-like cells in vitro. AFSCs were isolated and cultured using the plastic adherence method in vitro and identified by the transcription factor Oct-4, which is the primary marker of pluripotent stem cells. AFSCs were efficiently transfected by a GFP-labeled plasmid system of an adenovirus vector carrying the GDNF gene (Ad-GDNF-GFP). Transfected AFSCs stably expressed GDNF. Transfected AFSCs were cultured in endothelial growth medium-2 containing vascular endothelial growth factor. After 1 week, AFSCs were positive for von Willebrand factor (vWF) and CD31, which are markers of endothelial cells, and the recombinant GDNF group was significantly higher than undifferentiated controls and the GFP only group. These results demonstrated that AFSCs differentiated into vascular endothelial-like cells in vitro, and recombinant GDNF promoted differentiation. The differentiation-induced AFSCs may be used as seed cells to provide a new manner of cell and gene therapies for transplantation into the vascular injury site to promote angiogenesis.

  16. Allergen-induced airway remodeling is impaired in galectin-3 deficient mice1

    PubMed Central

    Ge, Xiao Na; Bahaie, Nooshin S.; Kang, Bit Na; Hosseinkhani, Reza M.; Ha, Sung Gil; Frenzel, Elizabeth M.; Liu, Fu-Tong; Rao, Savita P.; Sriramarao, P.

    2010-01-01

    The role played by the β-galactoside-binding lectin galectin-3 (Gal-3) in airway remodeling, a characteristic feature of asthma that leads to airway dysfunction and poor clinical outcome in humans, was investigated in a murine model of chronic allergic airway inflammation. Wild-type (WT) and Gal-3 knock-out (KO) mice were subjected to repetitive allergen challenge with ovalbumin (OVA) up to 12 weeks and bronchoalveolar lavage fluid (BALF) and lung tissue collected after the last challenge were evaluated for cellular features associated with airway remodeling. Compared to WT mice, chronic OVA challenge in Gal-3 KO mice resulted in diminished remodeling of the airways with significantly reduced mucus secretion, sub-epithelial fibrosis, smooth muscle thickness, and peribronchial angiogenesis. The higher degree of airway remodeling in WT mice was associated with higher Gal-3 expression in the BALF as well as lung tissue. Cell counts in BALF and lung immunohistology demonstrated that eosinophil infiltration in OVA-challenged Gal-3 KO mice was significantly reduced compared to WT mice. Evaluation of cellular mediators associated with eosinophil recruitment and airway remodeling revealed that levels of eotaxin-1, IL-5, IL-13, FIZZ1 and TGF-β were substantially lower in Gal-3 KO mice. Finally, leukocytes from Gal-3 KO mice demonstrated decreased trafficking (rolling) on vascular endothelial adhesion molecules compared to WT cells. Overall, these studies demonstrate that Gal-3 is an important lectin that promotes airway remodeling via airway recruitment of inflammatory cells, specifically eosinophils, and the development of a Th2 phenotype as well as increased expression of eosinophil-specific chemokines, pro-fibrogenic and angiogenic mediators. PMID:20543100

  17. Molecular mechanisms controlling CFTR gene expression in the airway

    PubMed Central

    Zhang, Zhaolin; Ott, Christopher J; Lewandowska, Marzena A; Leir, Shih-Hsing; Harris, Ann

    2012-01-01

    Abstract The low levels of CFTR gene expression and paucity of CFTR protein in human airway epithelial cells are not easily reconciled with the pivotal role of the lung in cystic fibrosis pathology. Previous data suggested that the regulatory mechanisms controlling CFTR gene expression might be different in airway epithelium in comparison to intestinal epithelium where CFTR mRNA and protein is much more abundant. Here we examine chromatin structure and modification across the CFTR locus in primary human tracheal (HTE) and bronchial (NHBE) epithelial cells and airway cell lines including 16HBE14o- and Calu3. We identify regions of open chromatin that appear selective for primary airway epithelial cells and show that several of these are enriched for a histone modification (H3K4me1) that is characteristic of enhancers. Consistent with these observations, three of these sites encompass elements that have cooperative enhancer function in reporter gene assays in 16HBE14o- cells. Finally, we use chromosome conformation capture (3C) to examine the three-dimensional structure of nearly 800 kb of chromosome 7 encompassing CFTR and observe long-range interactions between the CFTR promoter and regions far outside the locus in cell types that express high levels of CFTR. PMID:21895967

  18. Airway Epithelial Cell Cilia and Obstructive Lung Disease

    PubMed Central

    Yaghi, Asma; Dolovich, Myrna B.

    2016-01-01

    Airway epithelium is the first line of defense against exposure of the airway and lung to various inflammatory stimuli. Ciliary beating of airway epithelial cells constitutes an important part of the mucociliary transport apparatus. To be effective in transporting secretions out of the lung, the mucociliary transport apparatus must exhibit a cohesive beating of all ciliated epithelial cells that line the upper and lower respiratory tract. Cilia function can be modulated by exposures to endogenous and exogenous factors and by the viscosity of the mucus lining the epithelium. Cilia function is impaired in lung diseases such as COPD and asthma, and pharmacologic agents can modulate cilia function and mucus viscosity. Cilia beating is reduced in COPD, however, more research is needed to determine the structural-functional regulation of ciliary beating via all signaling pathways and how this might relate to the initiation or progression of obstructive lung diseases. Additionally, genotypes and how these can influence phenotypes and epithelial cell cilia function and structure should be taken into consideration in future investigations. PMID:27845721

  19. The Lung Microbiome and Airway Disease.

    PubMed

    Lynch, Susan V

    2016-12-01

    A growing body of literature has demonstrated relationships between the composition of the airway microbiota (mixed-species communities of microbes that exist in the respiratory tract) and critical features of immune response and pulmonary function. These studies provide evidence that airway inflammatory status and capacity for repair are coassociated with specific taxonomic features of the airway microbiome. Although directionality has yet to be established, the fact that microbes are known drivers of inflammation and tissue damage suggests that in the context of chronic inflammatory airway disease, the composition and, more importantly, the function, of the pulmonary microbiome represent critical factors in defining airway disease outcomes.

  20. Airway nerves: in vitro electrophysiology.

    PubMed

    Fox, Alyson

    2002-06-01

    Recording the activity of single airway sensory fibres or neuronal cell bodies in vitro has allowed detailed characterisation of fibre types and membrane properties. Fibre types can be identified by their conduction velocities and further studied by the application of drugs to their receptive field. C-fibres are sensitive to mechanical stimuli and a range of irritant chemicals (bradykinin, capsaicin, low pH, platelet-activating factor), whereas Adelta-fibres are relatively insensitive to chemical stimuli and appear to correlate to the rapidly adapting receptors identified in airways in vivo. Their site of origin also differs: upper airway C-fibres arise predominantly from the jugular ganglion and Adelta-fibres from the jugular and nodose ganglia. Intracellular recording from cell bodies in the ganglia has revealed a calcium-dependent potassium current common to many putative C-fibre cell bodies. This slow after hyperpolarisation current may be inhibited by stimuli that excite and sensitise C-fibres - this could be an important mechanism underlying the sensitisation of C-fibres in airway irritability.

  1. Host-Integration of a Tissue-Engineered Airway Patch: Two-Year Follow-Up in a Single Patient

    PubMed Central

    Dally, Iris; Friedel, Godehard; Walles, Heike; Walles, Thorsten

    2015-01-01

    Different bioengineering techniques have been applied repeatedly for the reconstruction of extensive airway defects in the last few years. While short-term surgical success is evident, there is a lack of long-term results in patients. Here, we report the case of a young male who received a 5×2 cm bioartificial airway patch for tracheoesophageal reconstruction focusing on clinical defect healing and histomorphological tissue reorganization 2.5 years after surgery. We generated bioartificial airway tissue using a cell-free biological vascularized scaffold that was re-endothelialized and reseeded with the recipient's autologous primary cells and we implanted it into the recipient's left main bronchus. To investigate host-integration 2.5 years after the implantation, we obtained biopsies of the implant and adjacent tracheal tissue and processed these for histological and immunohistochemical analyses. The early postoperative course was uneventful and the transplanted airway tissue was integrated into the host. 2.5 years after transplantation, a bronchoscopy confirmed the scar-free reconstruction of the former airway defect. Histological work-up documented respiratory airway mucosa lining the bronchial reconstruction, making it indistinguishable from native airway mucosa. After transplantation, our bioartificial airway tissue provided perfect airway healing, with no histological evidence of tissue dedifferentiation. PMID:25316325

  2. Flexible fitting for fluid lines

    NASA Technical Reports Server (NTRS)

    Barajas, S. L.

    1976-01-01

    Tube fitting, consisting of movable tubular section containing two spring pressure Teflon actuated low friction seals, two standard connectors, and two hexagonal retaining nuts, provides flexible joint that allows axial and rotational motion.

  3. Fluid-line math model

    NASA Technical Reports Server (NTRS)

    Kandelman, A.; Nelson, D. J.

    1977-01-01

    Simplified mathematical model simulates large hydraulic systems on either analog or digital computers. Models of pumps, servoactuators, reservoirs, accumulators, and valves are connected generating systems containing six hundred elements.

  4. Airway malacia in children with achondroplasia.

    PubMed

    Dessoffy, Kimberly E; Modaff, Peggy; Pauli, Richard M

    2014-02-01

    This study was undertaken to assess the frequency of airway malacia in infants and young children with achondroplasia, a population well known to be at risk for a variety of respiratory problems. We also wished to evaluate what, if any, contribution airway malacia makes to the complex respiratory issues that may be present in those with achondroplasia. Retrospective chart review of all infants and young children with achondroplasia who were assessed through the Midwest Regional Bone Dysplasia Clinics from 1985 through 2012 (n = 236) was completed. Records of comprehensive clinical examinations, polysomnographic assessments, and airway visualization were reviewed and abstracted using a data collection form. Analyses were completed comparing the group with and those without evidence for airway malacia. Thirteen of 236 patients (5.5%) were found to have airway malacia. Most of those affected had lower airway involvement (9/13). The presence of airway malacia was correlated with an increased occurrence of obstructive sleep apnea as well as need for oxygen supplementation, airway surgeries and tracheostomy placement. Although estimates of the frequency of airway malacia in the general population are limited, its frequency in children with achondroplasia appears to be much higher than any published general population estimate. The presence of airway malacia appears to confound other breathing abnormalities in this population and results in the need for more invasive airway treatments.

  5. Native Small Airways Secrete Bicarbonate

    PubMed Central

    Quinton, Paul M.

    2014-01-01

    Since the discovery of Cl− impermeability in cystic fibrosis (CF) and the cloning of the responsible channel, CF pathology has been widely attributed to a defect in epithelial Cl− transport. However, loss of bicarbonate (HCO3−) transport also plays a major, possibly more critical role in CF pathogenesis. Even though HCO3− transport is severely affected in the native pancreas, liver, and intestines in CF, we know very little about HCO3− secretion in small airways, the principle site of morbidity in CF. We used a novel, mini-Ussing chamber system to investigate the properties of HCO3− transport in native porcine small airways (∼ 1 mm φ). We assayed HCO3− transport across small airway epithelia as reflected by the transepithelial voltage, conductance, and equivalent short-circuit current with bilateral 25-mM HCO3− plus 125-mM NaGlu Ringer’s solution in the presence of luminal amiloride (10 μM). Under these conditions, because no major transportable anions other than HCO3− were present, we took the equivalent short-circuit current to be a direct measure of active HCO3− secretion. Applying selective agonists and inhibitors, we show constitutive HCO3− secretion in small airways, which can be stimulated significantly by β-adrenergic– (cAMP) and purinergic (Ca2+) -mediated agonists, independently. These results indicate that two separate components for HCO3− secretion, likely via CFTR- and calcium-activated chloride channel–dependent processes, are physiologically regulated for likely roles in mucus clearance and antimicrobial innate defenses of small airways. PMID:24224935

  6. Cigarette smoke extract inhibits expression of peroxiredoxin V and increases airway epithelial permeability.

    PubMed

    Serikov, Vladimir B; Leutenegger, Christian; Krutilina, Raisa; Kropotov, Andrei; Pleskach, Nadezhda; Suh, Jung H; Tomilin, Nikolay V

    2006-01-01

    Inhaled cigarette smoke induces oxidative stress in the epithelium of airways. Peroxiredoxin V (PRXV) is a potent antioxidant protein, highly expressed in cells of the airway epithelium. The goal of our study was to determine whether cigarette smoke extract (CSE) influenced expression of this protein in airway epithelia in vivo and in vitro. In Sprague-Dawley rats, we determined effects of CSE on airway epithelial permeability, mRNA levels and expression of PRXV protein. Exposure of isolated tracheal segment in vitro to 20% CSE for 4 h resulted in development of increased permeability to albumin, significantly reduced mRNA levels for PRXV, and reduced amounts of PRXV protein in the epithelium. In cultures of the airway epithelial cell lines (Calu-3, JME), primary airway cell culture (cow), and alveolar epithelial cells A549, CSE also significantly decreased transepithelial electrical resistance and expression of PRXV protein, and induced glutathione and protein oxidation. To demonstrate functional importance of PRXV, we exposed clones of HeLa cells with siRNA-downregulated PRXV to hydrogen peroxide, which resulted in increased rate of cell death and protein oxidation. CSE directly downregulates expression of functionally important antioxidant enzyme PRXV in the epithelial cells of airways, which represents one pathophysiological mechanism of cigarette smoke toxicity.

  7. Sarcoidosis of the upper and lower airways.

    PubMed

    Morgenthau, Adam S; Teirstein, Alvin S

    2011-12-01

    Sarcoidosis is a systemic granulomatous disease of undetermined etiology characterized by a variable clinical presentation and disease course. Although clinical granulomatous inflammation may occur within any organ system, more than 90% of sarcoidosis patients have lung disease. Sarcoidosis is considered an interstitial lung disease that is frequently characterized by restrictive physiologic dysfunction on pulmonary function tests. However, sarcoidosis also involves the airways (large and small), causing obstructive airways disease. It is one of a few interstitial lung diseases that affects the entire length of the respiratory tract - from the nose to the terminal bronchioles - and causes a broad spectrum of airways dysfunction. This article examines airway dysfunction in sarcoidosis. The anatomical structure of the airways is the organizational framework for our discussion. We discuss sarcoidosis involving the nose, sinuses, nasal passages, larynx, trachea, bronchi and small airways. Common complications of airways disease, such as, atelectasis, fibrosis, bullous leions, bronchiectasis, cavitary lesions and mycetomas, are also reviewed.

  8. Pharmacokinetics and pharmacodynamics of gamithromycin in pulmonary epithelial lining fluid in naturally occurring bovine respiratory disease in multisource commingled feedlot cattle.

    PubMed

    DeDonder, K D; Apley, M D; Li, M; Gehring, R; Harhay, D M; Lubbers, B V; White, B J; Capik, S F; KuKanich, B; Riviere, J E; Tessman, R K

    2016-04-01

    The objectives of this study were to determine (i) whether an association exists between individual pharmacokinetic parameters and treatment outcome when feeder cattle were diagnosed with bovine respiratory disease (BRD) and treated with gamithromycin (Zactran(®) ) at the label dose and (ii) whether there was a stronger association between treatment outcome and gamithromycin concentration in plasma or in the pulmonary epithelial lining fluid (PELF) effect compartment. The study design was a prospective, blinded, randomized clinical trial utilizing three groups of 60 (362-592 lb) steers/bulls randomly allocated within origin to sham injection or gamithromycin mass medication. Cattle were evaluated daily for signs of BRD by a veterinarian blinded to treatment. Animals meeting the BRD case definition were enrolled and allocated to a sample collection scheme consisting of samples for bacterial isolation (bronchoalveolar lavage fluid and nasopharyngeal swabs) and gamithromycin concentration determination (PELF and plasma). Gamithromycin susceptibility of M. haemolytica (n = 287) and P. multocida (n = 257) were determined using broth microdilution with frozen panels containing gamithromycin at concentrations from 0.03 to 16 μg/mL. A two-compartment plasma pharmacokinetic model with an additional compartment for gamithromycin in PELF was developed using rich data sets from published and unpublished studies. The sparse data from our study were then fit to this model using nonlinear mixed effects modeling to estimate individual parameter values. The resulting parameter estimates were used to simulate full time-concentration profiles for each animal in this study. These profiles were analyzed using noncompartmental methods so that PK/PD indices (AUC24 /MIC, AUC∞ /MIC, CMAX /MIC) could be calculated for plasma and PELF (also T>MIC) for each individual. The calculated PK/PD indices were indicative that for both M. haemolytica and P. multocida a higher drug

  9. Innate Immune Responses to Engineered Nanomaterials During Allergic Airway Inflammation

    NASA Astrophysics Data System (ADS)

    Shipkowski, Kelly Anne

    disease would modulate the innate immune response to MWCNTs. We hypothesized that Th2 cytokines and the allergic asthmatic microenvironment would alter MWCNT-induced inflammasome activation and IL- 1beta secretion both in vitro and in vivo. In vitro, THP-1 cells, a human monocytic cell line, were differentiated into macrophages and exposed to MWCNTs and or recombinant Th2 cytokines, specifically IL-4 and/or IL-13. Exposure of THP-1 cells to MWCNTs alone caused dose-dependent secretion of IL-1beta, while co-exposure to IL-4 and/or IL-13 suppressed MWCNT-induced IL-1beta. Further analysis determined that IL-4 and IL-13 were phosphorylating the protein signal transducer and activator of transcription 6 (STAT6) and subsequently inhibiting inflammasome activation and function through suppression of caspase-1, a cysteine protease responsible for cleavage of pro-IL-1beta into an active, secretable form. In vivo, wild-type C57BL6 mice were sensitized intranasally with HDM allergen and exposed to MWCNTs via oropharyngeal aspiration. Treatment with MWCNTs alone induced secretion of IL-1beta in the bronchoalveolar lavage fluid (BALF) one day post-exposure, while sensitization with HDM prior to MWCNT exposure suppressed MWCNT-induced IL-1beta. Immunohistochemical (IHC) analysis of lung sections from exposed animals showed that HDM sensitization inhibited MWCNT-induced pro-casapse-1 protein expression, responsible for inflammasome activation, in the airway epithelium and macrophages. MWCNT exposure combined with HDM sensitization increased inflammatory cell infiltration and subsequent acute lung inflammation and chronic fibrosis. Analysis of the systemic effects of MWCNT exposure during allergic airway sensitization showed that MWCNTs and/or HDM allergen upregulated STAT3 mRNA expression in the lungs, liver, and spleen of exposed animals, and at the same induced mixed T helper (Th) responses in the different tissues. Collectively, these data suggest that the allergic microenvironment

  10. Airway remodeling in asthma: what really matters.

    PubMed

    Fehrenbach, Heinz; Wagner, Christina; Wegmann, Michael

    2017-03-01

    Airway remodeling is generally quite broadly defined as any change in composition, distribution, thickness, mass or volume and/or number of structural components observed in the airway wall of patients relative to healthy individuals. However, two types of airway remodeling should be distinguished more clearly: (1) physiological airway remodeling, which encompasses structural changes that occur regularly during normal lung development and growth leading to a normal mature airway wall or as an acute and transient response to injury and/or inflammation, which ultimately results in restoration of a normal airway structures; and (2) pathological airway remodeling, which comprises those structural alterations that occur as a result of either disturbed lung development or as a response to chronic injury and/or inflammation leading to persistently altered airway wall structures and function. This review will address a few major aspects: (1) what are reliable quantitative approaches to assess airway remodeling? (2) Are there any indications supporting the notion that airway remodeling can occur as a primary event, i.e., before any inflammatory process was initiated? (3) What is known about airway remodeling being a secondary event to inflammation? And (4), what can we learn from the different animal models ranging from invertebrate to primate models in the study of airway remodeling? Future studies are required addressing particularly pheno-/endotype-specific aspects of airway remodeling using both endotype-specific animal models and "endotyped" human asthmatics. Hopefully, novel in vivo imaging techniques will be further advanced to allow monitoring development, growth and inflammation of the airways already at a very early stage in life.

  11. Sampling the Airway: Improving the Predictive and Toxicological Value of Bronchoalveolar Lavage

    EPA Science Inventory

    Bronchoalveolar lavage (BAL) is a relatively simple technique to obtain biological material in the form of BAL fluid (BALF) from airways of humans and laboratory animals. Numerous predictive biomarkers of pulmonary injury and diseases can be detected in BALF which aid in diagnosi...

  12. Fluid Mechanics of Capillary-Elastic Instabilities in Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Grotberg, James B.

    2002-01-01

    The aim of this project is to investigate the closure and reopening of lung airways due to surface tension forces, coupled with airway elasticity. Airways are liquid-lined, flexible tubes and closure of airways can occur by a Rayleigh instability of the liquid lining, or an instability of the elastic support for the airway as the surface tension of the air-liquid interface pulls the tube shut, or both. Regardless of the mechanism, the airway is closed because the liquid lining has created a plug that prevents axial gas exchange. In the microgravity environment, surface tension forces dominate lung mechanics and would lead to more prevalent, and more uniformly distributed air-way closure, thereby creating a potential for respiratory problems for astronauts. Once closed the primary option for reopening an airway is by deep inspiration. This maneuver will pull the flexible airways open and force the liquid plug to flow distally by the incoming air stream. Airway reopening depends to a large extent on this plug flow and how it may lead to plug rupture to regain the continuity of gas between the environment and the alveoli. In addition to mathematical modeling of plug flows in liquid-lined, flexible tubes, this work has involved benchtop studies of propagating liquid plugs down tube networks that mimic the human airway tree. We have extended the work to involve animal models of liquid plug propagation in rat lungs. The liquid is radio-opaque and x-ray video imaging is used to ascertain the movement and distribution of the liquid plugs so that comparisons to theory may be made. This research has other uses, such as the delivery of liquids or drugs into the lung that may be used for surfactant replacement therapy or for liquid ventilation.

  13. HSP70/CD80 DNA vaccine inhibits airway remodeling by regulating the transcription factors T-bet and GATA-3 in a murine model of chronic asthma

    PubMed Central

    Yan, Li; Xiao-Ling, Shi; Zheng-Yan, Cheng; Guo-Ping, Li; Sen, Zhong

    2013-01-01

    Introduction Airway remodeling is an important pathologic feature of chronic asthma. T-bet and GATA-3, the key transcription factors for differentiation toward Th1 and Th2 cells, play an important role in the pathogenesis of airway inflammation, airway hyperresponsiveness and airway remodeling. Previous studies showed that HSP70/CD80 DNA vaccine can reduce airway hyperresponsiveness and airway inflammation in acute asthmatic mice. The present study was designed to determine the effect of HSP70/CD80 DNA vaccine on airway remodeling through regulating the development of Th1/Th2. Material and methods Before being sensitized and challenged by ovalbumin, the BALB/c mice were immunized with DNA vaccine. Lung tissues were assessed by histological examinations. Interferon-γ (IFN-γ)/interleukin-4 (IL-4) levels in bronchoalveolar lavage fluid were determined by ELISA and expressions of IFN-γ, IL-4, T-bet and GATA-3 in spleen were evaluated by real-time polymerase chain reaction. Results Chronic asthmatic mice had higher airway hyperresponsiveness, a thicker airway wall, more PAS-positive goblet cells, more subepithelial extracellular matrix deposition and more proliferating airway smooth muscle (ASM)-like cells than control mice (p < 0.05). Compared with the chronic asthmatic mice, the treatment with HSP70/CD80 DNA vaccine could reduce airway hyperreactivity, mucus secretion, subepithelial collagen deposition, and smooth muscle cell proliferation (p < 0.05). DNA vaccination also increased levels of IFN-γ/IL-4 in BAL fluid (p < 0.05), and expression of T-bet/GATA-3 in the spleen (p < 0.05). Conclusions HSP70/CD80 DNA vaccine can inhibit airway remodeling through regulating the development of Th1/Th2 subsets in asthmatic mice. PMID:24273578

  14. Secretion of nerve growth factor, brain-derived neurotrophic factor, and glial cell-line derived neurotrophic factor in co-culture of four cell types in cerebrospinal fluid-containing medium.

    PubMed

    Feng, Sanjiang; Zhuang, Minghua; Wu, Rui

    2012-12-25

    The present study co-cultured human embryonic olfactory ensheathing cells, human Schwann cells, human amniotic epithelial cells and human vascular endothelial cells in complete culture medium-containing cerebrospinal fluid. Enzyme linked immunosorbent assay was used to detect nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor secretion in the supernatant of co-cultured cells. Results showed that the number of all cell types reached a peak at 7-10 days, and the expression of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor peaked at 9 days. Levels of secreted nerve growth factor were four-fold higher than brain-derived neurotrophic factor, which was three-fold higher than glial cell line-derived neurotrophic factor. Increasing concentrations of cerebrospinal fluid (10%, 20% and 30%) in the growth medium caused a decrease of neurotrophic factor secretion. Results indicated co-culture of human embryonic olfactory ensheathing cells, human Schwann cells, human amniotic epithelial cells and human vascular endothelial cells improved the expression of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor. The reduction of cerebrospinal fluid extravasation at the transplant site after spinal cord injury is beneficial for the survival and secretion of neurotrophic factors from transplanted cells.

  15. Pulmonary C Fibers Modulate MMP-12 Production via PAR2 and Are Involved in the Long-Term Airway Inflammation and Airway Hyperresponsiveness Induced by Respiratory Syncytial Virus Infection

    PubMed Central

    Zang, Na; Zhuang, Jianguo; Deng, Yu; Yang, Zhimei; Ye, Zhixu; Xie, Xiaohong; Ren, Luo; Fu, Zhou; Luo, Zhengxiu; Xu, Fadi

    2015-01-01

    ABSTRACT Children with acute respiratory syncytial virus (RSV) infection often develop sequelae of persistent airway inflammation and wheezing. Pulmonary C fibers (PCFs) are involved in the generation of airway inflammation and resistance; however, their role in persistent airway diseases after RSV is unexplored. Here, we elucidated the pathogenesis of PCF activation in RSV-induced persistent airway disorders. PCF-degenerated and intact mice were used in the current study. Airway inflammation and airway resistance were evaluated. MMP408 and FSLLRY-NH2 were the selective antagonists for MMP-12 and PAR2, respectively, to investigate the roles of MMP-12 and PAR2 in PCFs mediating airway diseases. As a result, PCF degeneration significantly reduced the following responses to RSV infection: augmenting of inflammatory cells, especially macrophages, and infiltrating of inflammatory cells in lung tissues; specific airway resistance (sRaw) response to methacholine; and upregulation of MMP-12 and PAR2 expression. Moreover, the inhibition of MMP-12 reduced the total number of cells and macrophages in bronchiolar lavage fluid (BALF), as well infiltrating inflammatory cells, and decreased the sRaw response to methacholine. In addition, PAR2 was upregulated especially at the later stage of RSV infection. Downregulation of PAR2 ameliorated airway inflammation and resistance following RSV infection and suppressed the level of MMP-12. In all, the results suggest that PCF involvement in long-term airway inflammation and airway hyperresponsiveness occurred at least partially via modulating MMP-12, and the activation of PAR2 might be related to PCF-modulated MMP-12 production. Our initial findings indicated that the inhibition of PCF activity would be targeted therapeutically for virus infection-induced long-term airway disorders. IMPORTANCE The current study is critical to understanding that PCFs are involved in long-term airway inflammation and airway resistance after RSV infection

  16. A new technique of bronchial microsampling and proteomic analysis of epithelial lining fluid in a rat model of acute lung injury.

    PubMed

    Kamiyama, Ikuo; Kohno, Mitsutomo; Kamiya, Kazunori; Nakamura, Hidetoshi; Sawafuji, Makoto; Kobayashi, Koichi; Watanabe, Masazumi

    2014-06-01

    The standard technique to evaluate the proteins present in epithelial lining fluid (ELF) is bronchoalveolar lavage (BAL). Bronchoscopic microsampling (BMS) method has been developed for humans as a less invasive alternative. We establish the usefulness of a rat bronchial microsampling (rBMS) to evaluate various proteins in ELF in lipopolysaccharide (LPS)-induced lung injury models in rats. In the first experiment of this study, we validate that whether the rBMS can obtain information from ELF in place of BAL. Tumor necrosis factor (TNF)-α concentrations were increased in the rBMS samples similar to BAL 1 and 3h after LPS instillation. In the second part of this study, a proteomic analysis of the rBMS, using the Protein Chip(R) system, revealed the presence of proteins whose molecular weights corresponded to TNF-related proteins in the LPS-treated rats. In rats treated with a TNF-α converting enzyme inhibitor, the concentrations of these proteins in rBMS decreased or disappeared. In the third experiment, rBMS was performed without tracheostomy at 6 and 24h after instillation of LPS, and a rat multiple cytokines assay system detected heterogeneous variations in the concentrations of interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, TNF-αand interferon (IFN)-γ in ELF. The cytokine profile was significantly modified by pre-treatment with dexamethasone. This new rBMS technique could be used to measure TNF-α in LPS-induced acute lung injury (ALI) as well as for proteomic analysis, without sacrificing the rats. Furthermore, this procedure enables the serial collection of ELF, which would allow the examination of time-dependent cytokine variations in rat ALI model.

  17. Evaluation of fritless solid-phase extraction coupled on-line with capillary electrophoresis-mass spectrometry for the analysis of opioid peptides in cerebrospinal fluid.

    PubMed

    Medina-Casanellas, Silvia; Tak, Yvonne H; Benavente, Fernando; Sanz-Nebot, Victoria; Sastre Toraño, Javier; Somsen, Govert W; de Jong, Gerhardus J

    2014-10-01

    Fritless SPE on-line coupled to CE with UV and MS detection (SPE-CE-UV and SPE-CE-MS) was evaluated for the analysis of opioid peptides. A microcartridge of 150 μm id was packed with a C18 sorbent (particle size > 50 μm), which was retained between a short inlet capillary and a separation capillary (50 μm id). Several experimental parameters were optimized by SPE-CE-UV using solutions of dynorphin A (DynA), endomorphin 1 (End1), and methionine-enkephaline (Met). A microcartridge length of 4 mm was selected, sample was loaded for 10 min at 930 mbar and the retained peptides were eluted with 67 nL of an acidic hydro-organic solution. Using SPE-CE-MS, peak area and migration time repeatabilities for the three opioid peptides were 12-27% and 4-5%, respectively. SPE recovery was lower for the less hydrophobic DynA (22%) than for End1 (66%) and Met (78%) and linearity was satisfactory in all cases between 5 and 60 ng/mL. The LODs varied between 0.5 and 1.0 ng/mL which represent an enhancement of two orders of magnitude when compared with CE-MS. Cerebrospinal fluid (CSF) samples spiked with the opioid peptides were analyzed to demonstrate the applicability to biological samples. Peak area and migration time repeatabilities were similar to the standard solutions and the opioid peptides could be detected down to 1.0 ng/mL.

  18. Integrated care pathways for airway diseases (AIRWAYS-ICPs).

    PubMed

    Bousquet, J; Addis, A; Adcock, I; Agache, I; Agusti, A; Alonso, A; Annesi-Maesano, I; Anto, J M; Bachert, C; Baena-Cagnani, C E; Bai, C; Baigenzhin, A; Barbara, C; Barnes, P J; Bateman, E D; Beck, L; Bedbrook, A; Bel, E H; Benezet, O; Bennoor, K S; Benson, M; Bernabeu-Wittel, M; Bewick, M; Bindslev-Jensen, C; Blain, H; Blasi, F; Bonini, M; Bonini, S; Boulet, L P; Bourdin, A; Bourret, R; Bousquet, P J; Brightling, C E; Briggs, A; Brozek, J; Buhl, R; Bush, A; Caimmi, D; Calderon, M; Calverley, P; Camargos, P A; Camuzat, T; Canonica, G W; Carlsen, K H; Casale, T B; Cazzola, M; Cepeda Sarabia, A M; Cesario, A; Chen, Y Z; Chkhartishvili, E; Chavannes, N H; Chiron, R; Chuchalin, A; Chung, K F; Cox, L; Crooks, G; Crooks, M G; Cruz, A A; Custovic, A; Dahl, R; Dahlen, S E; De Blay, F; Dedeu, T; Deleanu, D; Demoly, P; Devillier, P; Didier, A; Dinh-Xuan, A T; Djukanovic, R; Dokic, D; Douagui, H; Dubakiene, R; Eglin, S; Elliot, F; Emuzyte, R; Fabbri, L; Fink Wagner, A; Fletcher, M; Fokkens, W J; Fonseca, J; Franco, A; Frith, P; Furber, A; Gaga, M; Garcés, J; Garcia-Aymerich, J; Gamkrelidze, A; Gonzales-Diaz, S; Gouzi, F; Guzmán, M A; Haahtela, T; Harrison, D; Hayot, M; Heaney, L G; Heinrich, J; Hellings, P W; Hooper, J; Humbert, M; Hyland, M; Iaccarino, G; Jakovenko, D; Jardim, J R; Jeandel, C; Jenkins, C; Johnston, S L; Jonquet, O; Joos, G; Jung, K S; Kalayci, O; Karunanithi, S; Keil, T; Khaltaev, N; Kolek, V; Kowalski, M L; Kull, I; Kuna, P; Kvedariene, V; Le, L T; Lodrup Carlsen, K C; Louis, R; MacNee, W; Mair, A; Majer, I; Manning, P; de Manuel Keenoy, E; Masjedi, M R; Melen, E; Melo-Gomes, E; Menzies-Gow, A; Mercier, G; Mercier, J; Michel, J P; Miculinic, N; Mihaltan, F; Milenkovic, B; Molimard, M; Momas, I; Montilla-Santana, A; Morais-Almeida, M; Morgan, M; N'Diaye, M; Nafti, S; Nekam, K; Neou, A; Nicod, L; O'Hehir, R; Ohta, K; Paggiaro, P; Palkonen, S; Palmer, S; Papadopoulos, N G; Papi, A; Passalacqua, G; Pavord, I; Pigearias, B; Plavec, D; Postma, D S; Price, D; Rabe, K F; Radier Pontal, F; Redon, J; Rennard, S; Roberts, J; Robine, J M; Roca, J; Roche, N; Rodenas, F; Roggeri, A; Rolland, C; Rosado-Pinto, J; Ryan, D; Samolinski, B; Sanchez-Borges, M; Schünemann, H J; Sheikh, A; Shields, M; Siafakas, N; Sibille, Y; Similowski, T; Small, I; Sola-Morales, O; Sooronbaev, T; Stelmach, R; Sterk, P J; Stiris, T; Sud, P; Tellier, V; To, T; Todo-Bom, A; Triggiani, M; Valenta, R; Valero, A L; Valiulis, A; Valovirta, E; Van Ganse, E; Vandenplas, O; Vasankari, T; Vestbo, J; Vezzani, G; Viegi, G; Visier, L; Vogelmeier, C; Vontetsianos, T; Wagstaff, R; Wahn, U; Wallaert, B; Whalley, B; Wickman, M; Williams, D M; Wilson, N; Yawn, B P; Yiallouros, P K; Yorgancioglu, A; Yusuf, O M; Zar, H J; Zhong, N; Zidarn, M; Zuberbier, T

    2014-08-01

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will add value to existing public health knowledge by: 1) proposing a common framework of care pathways for chronic respiratory diseases, which will facilitate comparability and trans-national initiatives; 2) informing cost-effective policy development, strengthening in particular those on smoking and environmental exposure; 3) aiding risk stratification in chronic disease patients, using a common strategy; 4) having a significant impact on the health of citizens in the short term (reduction of morbidity, improvement of education in children and of work in adults) and in the long-term (healthy ageing); 5) proposing a common simulation tool to assist physicians; and 6) ultimately reducing the healthcare burden (emergency visits, avoidable hospitalisations, disability and costs) while improving quality of life. In the longer term, the incidence of disease may be reduced by innovative prevention strategies. AIRWAYSICPs was initiated by Area 5 of the Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing. All stakeholders are involved (health and social care, patients, and policy makers).

  19. Chrysin alleviates allergic inflammation and airway remodeling in a murine model of chronic asthma.

    PubMed

    Yao, Jing; Jiang, Mingzi; Zhang, Yunshi; Liu, Xing; Du, Qiang; Feng, Ganzhu

    2016-03-01

    Asthma is a chronic airway inflammatory disorder and progresses mainly due to airway remodeling. Chrysin, a natural flavonoid, has been reported to possess multiple biologic activities, including anti-inflammation, anti-oxidation and anti-proliferation. The present study aimed to investigate whether chrysin could relieve allergic airway inflammation and remodeling in a murine model of chronic asthma and the mechanism involved. The female BALB/c mice sensitized and challenged with ovalbumin (OVA) successfully developed airway hyperresponsiveness (AHR), inflammation and remodeling. The experimental data showed that chrysin could alleviate OVA-induced AHR. Chrysin could also reduce OVA-induced increases in the number of inflammatory cells, especially eosinophils, interleukin (IL) -4, and IL-13 in bronchoalveolar lavage fluid (BALF) and total IgE in serum. The decreased interferon-γ (IFN-γ) level in BALF was also upregulated by chrysin. In addition, inflammatory cell infiltration, goblet cell hyperplasia and the expression of α-smooth muscle actin (α-SMA) around bronchioles were suppressed by chrysin. Furthermore, the phosphorylation levels of Akt and extracellular signal-regulated kinase (ERK) could be decreased by chrysin, which are associated with airway smooth muscle cell (ASMC) proliferation. These results indicate the promising therapeutic effect of chrysin on chronic asthma, especially the progression of airway remodeling.

  20. Lung morphometry changes in prevention of airway remodeling by protocatechuic aldehyde in asthmatic mice

    PubMed Central

    Zhang, Jiankai; Ma, Mulan; Qin, Dongyun; Huang, Jianping; Cui, Xiaojun; Wu, Yongfu; Yang, Huiling; Fu, Hui; Liao, Cui

    2015-01-01

    Airway remodeling can lead to irreversible airflow obstruction and persistent airway hyper-responsiveness, which is the pathological basis of refractory asthma. To investigate the preventive effect of protocatechuic aldehyde on airway remodeling in asthmatic mice by lung morphometry methods. BALB/c mice were used to establish model of airway remodeling by ovalbumin (OVA) inhalation. Bronchoalveolar lavage fluid (BALF) were collected for eosinophils (EOS) count and detection of interleukin 4 (IL-4), interleukin-13 (IL-13) and interferon (IFN-γ) content. The left lung pathological sections were performed HE, AB-PAS and Masson staining. The epithelial lamina thickness of the left main bronchus (Re), the smooth muscle layer thickness (Rm), the number of goblet cells and goblet cell area percentage (%Ac) and gas side of the road and vascular collagen deposition (%Aco, %Avc) situation were measured. Protocatechuic aldehyde gavage made the reduction of BALF EOS count. IL-4 and IL-13 levels also decreased, while the IFN-γ level increased. The left main bronchus Re, Rm, goblet cell count, Ac% and Aco% and Avc% reduced. Protocatechuic aldehyde can significantly control airway inflammation and prevent airway remodeling. PMID:26221226

  1. The Effects of Proresolution of Ellagic Acid in an Experimental Model of Allergic Airway Inflammation

    PubMed Central

    de Freitas Alves, Claudiney; Angeli, Giovanna Natalia; Favarin, Daniely Cornélio; Lemos de Andrade, Edinéia; Lazo Chica, Javier Emilio; Faccioli, Lúcia Helena; Roberto da Silva, Paulo; de Paula Rogerio, Alexandre

    2013-01-01

    Asthma is a disease of airway inflammation characterized by airway hyperresponsiveness, eosinophilic inflammation, and hypersecretion of mucus. Ellagic acid, a compound derived from medicinal plants and fruits, has shown anti-inflammatory activity in several experimental disease models. We used the classical experimental model, in BALB/c mice, of sensibilization with ovalbumin to determine the effect of ellagic acid (10 mg/kg; oral route) in the resolution of allergic airways response. Dexamethasone (1 mg/kg; subcutaneous route) was used as a positive control. The control group consisted of nonimmunized mice that received challenge with ovalbumin. Ellagic acid and dexamethasone or vehicle (water) were administered before or after intranasal allergen challenge. Ellagic acid accelerated the resolution of airways inflammation by decreasing total leukocytes and eosinophils numbers in the bronchoalveolar lavage fluid (BALF), the mucus production and lung inflammation in part by reducing IL-5 concentration, eosinophil peroxidase (EPO) activity, and P-selectin expression, but not activator protein 1 (AP-1) and nuclear factor kappa B (NF-κB) pathways. In addition, ellagic acid enhanced alveolar macrophage phagocytosis of IgG-OVA-coated beads ex vivo, a new proresolving mechanism for the clearance of allergen from the airways. Together, these findings identify ellagic acid as a potential therapeutic agent for accelerating the resolution of allergic airways inflammation. PMID:24376308

  2. New Role of Adult Lung c-kit+ Cells in a Mouse Model of Airway Hyperresponsiveness

    PubMed Central

    Cappetta, Donato; Urbanek, Konrad; Esposito, Grazia; Matteis, Maria; Sgambato, Manuela; Tartaglione, Gioia; Rossi, Francesco

    2016-01-01

    Structural changes contribute to airway hyperresponsiveness and airflow obstruction in asthma. Emerging evidence points to the involvement of c-kit+ cells in lung homeostasis, although their potential role in asthma is unknown. Our aim was to isolate c-kit+ cells from normal mouse lungs and to test whether these cells can interfere with hallmarks of asthma in an animal model. Adult mouse GFP-tagged c-kit+ cells, intratracheally delivered in the ovalbumin-induced airway hyperresponsiveness, positively affected airway remodeling and improved airway function. In bronchoalveolar lavage fluid of cell-treated animals, a reduction in the number of inflammatory cells and in IL-4, IL-5, and IL-13 release, along with an increase of IL-10, was observed. In MSC-treated mice, the macrophage polarization to M2-like subset may explain, at least in part, the increment in the level of anti-inflammatory cytokine IL-10. After in vitro stimulation of c-kit+ cells with proinflammatory cytokines, the indoleamine 2,3-dioxygenase and TGFβ were upregulated. These data, together with the increased apoptosis of inflammatory cells in vivo, indicate that c-kit+ cells downregulate immune response in asthma by influencing local environment, possibly by cell-to-cell contact combined to paracrine action. In conclusion, intratracheally administered c-kit+ cells reduce inflammation, positively modulate airway remodeling, and improve function. These data document previously unrecognized properties of c-kit+ cells, able to impede pathophysiological features of experimental airway hyperresponsiveness. PMID:28090152

  3. Computational analysis of microbubble flows in bifurcating airways: role of gravity, inertia, and surface tension.

    PubMed

    Chen, Xiaodong; Zielinski, Rachel; Ghadiali, Samir N

    2014-10-01

    Although mechanical ventilation is a life-saving therapy for patients with severe lung disorders, the microbubble flows generated during ventilation generate hydrodynamic stresses, including pressure and shear stress gradients, which damage the pulmonary epithelium. In this study, we used computational fluid dynamics to investigate how gravity, inertia, and surface tension influence both microbubble flow patterns in bifurcating airways and the magnitude/distribution of hydrodynamic stresses on the airway wall. Direct interface tracking and finite element techniques were used to simulate bubble propagation in a two-dimensional (2D) liquid-filled bifurcating airway. Computational solutions of the full incompressible Navier-Stokes equation were used to investigate how inertia, gravity, and surface tension forces as characterized by the Reynolds (Re), Bond (Bo), and Capillary (Ca) numbers influence pressure and shear stress gradients at the airway wall. Gravity had a significant impact on flow patterns and hydrodynamic stress magnitudes where Bo > 1 led to dramatic changes in bubble shape and increased pressure and shear stress gradients in the upper daughter airway. Interestingly, increased pressure gradients near the bifurcation point (i.e., carina) were only elevated during asymmetric bubble splitting. Although changes in pressure gradient magnitudes were generally more sensitive to Ca, under large Re conditions, both Re and Ca significantly altered the pressure gradient magnitude. We conclude that inertia, gravity, and surface tension can all have a significant impact on microbubble flow patterns and hydrodynamic stresses in bifurcating airways.

  4. Treatment with Pyranopyran-1, 8-Dione Attenuates Airway Responses in Cockroach Allergen Sensitized Asthma in Mice

    PubMed Central

    Jung, Kyung-Hwa; Song, Joohyun; Kim, You Ah; Cho, Hi Jae; Min, Byung-Il; Bae, Hyunsu

    2014-01-01

    Chronic allergic asthma is characterized by Th2-typed inflammation, and contributes to airway remodeling and the deterioration of lung function. Viticis Fructus (VF) has long been used in China and Korea as a traditional herbal remedy for treating various inflammatory diseases. Previously, we have isolated a novel phytochemical, pyranopyran-1, 8-dione (PPY), from VF. This study was conducted to evaluate the ability of PPY to prevent airway inflammation and to attenuate airway responses in a cockroach allergen-induced asthma model in mice. The mice sensitized to and challenged with cockroach allergen were treated with oral administration of PPY. The infiltration of total cells, eosinophils and lymphocytes into the BAL fluid was significantly inhibited in cockroach allergen-induced asthma mice treated with PPY (1, 2, or 10 mg/kg). Th2 cytokines and chemokine, such as IL-4, IL-5, IL-13 and eotaxin in BAL fluid were also reduced to normal levels following treatment with PPY. In addition, the levels of IgE were also markedly suppressed after PPY treatment. Histopathological examination demonstrated that PPY substantially inhibited eosinophil infiltration into the airway, goblet cell hyperplasia and smooth muscle hypertrophy. Taken together, these results demonstrate that PPY possesses a potent efficacy on controlling allergic asthma response such as airway inflammation and remodeling. PMID:24489937

  5. Measurement of the Airway Surface Liquid Volume with Simple Light Refraction Microscopy

    PubMed Central

    Harvey, Peter R.; Tarran, Robert; Garoff, Stephen

    2011-01-01

    In the cystic fibrosis (CF) lung, the airway surface liquid (ASL) volume is depleted, impairing mucus clearance from the lung and leading to chronic airway infection and obstruction. Several therapeutics have been developed that aim to restore normal airway surface hydration to the CF airway, yet preclinical evaluation of these agents is hindered by the paucity of methods available to directly measure the ASL. Therefore, we sought to develop a straightforward approach to measure the ASL volume that would serve as the basis for a standardized method to assess mucosal hydration using readily available resources. Primary human bronchial epithelial (HBE) cells cultured at an air–liquid interface develop a liquid meniscus at the edge of the culture. We hypothesized that the size of the fluid meniscus is determined by the ASL volume, and could be measured as an index of the epithelial surface hydration status. A simple method was developed to measure the volume of fluid present in meniscus by imaging the refraction of light at the ASL interface with the culture wall using low-magnification microscopy. Using this method, we found that primary CF HBE cells had a reduced ASL volume compared with non-CF HBE cells, and that known modulators of ASL volume caused the predicted responses. Thus, we have demonstrated that this method can detect physiologically relevant changes in the ASL volume, and propose that this novel approach may be used to rapidly assess the effects of airway hydration therapies in high-throughput screening assays. PMID:21239602

  6. Generation of Pig Airways using Rules Developed from the Measurements of Physical Airways

    PubMed Central

    Azad, Md Khurshidul; Mansy, Hansen A.

    2017-01-01

    Background A method for generating bronchial tree would be helpful when constructing models of the tree for benchtop experiments as well as for numerical modeling of flow or sound propagation in the airways. Early studies documented the geometric details of the human airways that were used to develop methods for generating human airway tree. However, methods for generating animal airway tree are scarcer. Earlier studies suggested that the morphology of animal airways can be significantly different from that of humans. Hence, using algorithms for the human airways may not be accurate in generating models of animal airway geometry. Objective The objective of this study is to develop an algorithm for generating pig airway tree based on the geometric details extracted from the physical measurements. Methods In the current study, measured values of branch diameters, lengths and bifurcation angles and rotation of bifurcating planes were used to develop an algorithm that is capable of generating a realistic pig airway tree. Results The generation relations between parent and daughter branches were found to follow certain trends. The diameters and the length of different branches were dependent on airway generations while the bifurcation angles were primarily dependent on bifurcation plane rotations. These relations were sufficient to develop rules for generating a model of the pig large airways. Conclusion The results suggested that the airway tree generated from the algorithm can provide an approximate geometric model of pig airways for computational and benchtop studies. PMID:28255517

  7. NOTCH1 is required for regeneration of Clara cells during repair of airway injury.

    PubMed

    Xing, Yiming; Li, Aimin; Borok, Zea; Li, Changgong; Minoo, Parviz

    2012-05-01

    The airways of the mammalian lung are lined with highly specialized epithelial cell types that are the targets of airborne toxicants and injury. Notch signaling plays an important role in the ontogeny of airway epithelial cells, but its contributions to recruitment, expansion or differentiation of resident progenitor/stem cells, and repair and re-establishment of the normal composition of airway epithelium following injury have not been addressed. In this study, the role of a specific Notch receptor, Notch1, was investigated by targeted inactivation in the embryonic lung epithelium using the epithelial-specific Gata5-Cre driver line. Notch1-deficient mice are viable without discernible defects in pulmonary epithelial cell-fate determination and differentiation. However, in an experimental model of airway injury, activity of Notch1 is found to be required for normal repair of the airway epithelium. Absence of Notch1 reduced the ability of a population of cells distinguished by expression of PGP9.5, otherwise a marker of pulmonary neuroendocrine cells, which appears to serve as a reservoir for regeneration of Clara cells. Hairy/enhancer of split-5 (Hes5) and paired-box-containing gene 6 (Pax6) were found to be downstream targets of Notch1. Both Hes5 and Pax6 expressions were significantly increased in association with Clara cell regeneration in wild-type lungs. Ablation of Notch1 reduced Hes5 and Pax6 and inhibited airway epithelial repair. Thus, although dispensable in developmental ontogeny of airway epithelial cells, normal activity of Notch1 is required for repair of the airway epithelium. The signaling pathway by which Notch1 regulates the repair process includes stimulation of Hes5 and Pax6 gene expression.

  8. Recent trends in airway management

    PubMed Central

    Karlik, Joelle; Aziz, Michael

    2017-01-01

    Tracheal intubation remains a life-saving procedure that is typically not difficult for experienced providers in routine conditions. Unfortunately, difficult intubation remains challenging to predict and intubation conditions may make the event life threatening. Recent technological advances aim to further improve the ease, speed, safety, and success of intubation but have not been fully investigated. Video laryngoscopy, though proven effective in the difficult airway, may result in different intubation success rates in various settings and in different providers’ hands. The rescue surgical airway remains a rarely used but critical skill, and research continues to investigate optimal techniques. This review highlights some of the new thoughts and research on these important topics. PMID:28299194

  9. Automatic construction of subject-specific human airway geometry including trifurcations based on a CT-segmented airway skeleton and surface.

    PubMed

    Miyawaki, Shinjiro; Tawhai, Merryn H; Hoffman, Eric A; Wenzel, Sally E; Lin, Ching-Long

    2017-04-01

    We propose a method to construct three-dimensional airway geometric models based on airway skeletons, or centerlines (CLs). Given a CT-segmented airway skeleton and surface, the proposed CL-based method automatically constructs subject-specific models that contain anatomical information regarding branches, include bifurcations and trifurcations, and extend from the trachea to terminal bronchioles. The resulting model can be anatomically realistic with the assistance of an image-based surface; alternatively a model with an idealized skeleton and/or branch diameters is also possible. This method systematically identifies and classifies trifurcations to successfully construct the models, which also provides the number and type of trifurcations for the analysis of the airways from an anatomical point of view. We applied this method to 16 normal and 16 severe asthmatic subjects using their computed tomography images. The average distance between the surface of the model and the image-based surface was 11 % of the average voxel size of the image. The four most frequent locations of trifurcations were the left upper division bronchus, left lower lobar bronchus, right upper lobar bronchus, and right intermediate bronchus. The proposed method automatically constructed accurate subject-specific three-dimensional airway geometric models that contain anatomical information regarding branches using airway skeleton, diameters, and image-based surface geometry. The proposed method can construct (i) geometry automatically for population-based studies, (ii) trifurcations to retain the original airway topology, (iii) geometry that can be used for automatic generation of computational fluid dynamics meshes, and (iv) geometry based only on a skeleton and diameters for idealized branches.

  10. Nrf2 protects against airway disorders

    SciTech Connect

    Cho, Hye-Youn; Kleeberger, Steven R.

    2010-04-01

    Nuclear factor-erythroid 2 related factor 2 (Nrf2) is a ubiquitous master transcription factor that regulates antioxidant response elements (AREs)-mediated expression of antioxidant enzyme and cytoprotective proteins. In the unstressed condition, Kelch-like ECH-associated protein 1 (Keap1) suppresses cellular Nrf2 in cytoplasm and drives its proteasomal degradation. Nrf2 can be activated by diverse stimuli including oxidants, pro-oxidants, antioxidants, and chemopreventive agents. Nrf2 induces cellular rescue pathways against oxidative injury, abnormal inflammatory and immune responses, apoptosis, and carcinogenesis. Application of Nrf2 germ-line mutant mice has identified an extensive range of protective roles for Nrf2 in experimental models of human disorders in the liver, gastrointestinal tract, airway, kidney, brain, circulation, and immune or nerve system. In the lung, lack of Nrf2 exacerbated toxicity caused by multiple oxidative insults including supplemental respiratory therapy (e.g., hyperoxia, mechanical ventilation), cigarette smoke, allergen, virus, bacterial endotoxin and other inflammatory agents (e.g., carrageenin), environmental pollution (e.g., particles), and a fibrotic agent bleomycin. Microarray analyses and bioinformatic studies elucidated functional AREs and Nrf2-directed genes that are critical components of signaling mechanisms in pulmonary protection by Nrf2. Association of loss of function with promoter polymorphisms in NRF2 or somatic and epigenetic mutations in KEAP1 and NRF2 has been found in cohorts of patients with acute lung injury/acute respiratory distress syndrome or lung cancer, which further supports the role for NRF2 in these lung diseases. In the current review, we address the role of Nrf2 in airways based on emerging evidence from experimental oxidative disease models and human studies.

  11. Respiratory syncytial virus infection increases chlorine-induced airway hyperresponsiveness

    PubMed Central

    Song, Weifeng; Yu, Zhihong; Doran, Stephen F.; Ambalavanan, Namasivayam; Steele, Chad; Garantziotis, Stavros

    2015-01-01

    Exposure to chlorine (Cl2) damages airway and alveolar epithelia resulting in acute lung injury and reactive airway hyperresponsiveness (AHR) to methacholine. However, little is known about the effect of preexisting respiratory disease on Cl2-induced lung injury. By using a murine respiratory syncytial virus (RSV) infection model, we found that preexisting RSV infection increases Cl2 (187 ppm for 30 min)-induced lung inflammation and airway AHR at 24 h after exposure (5 days after infection). RSV infection and Cl2 exposure synergistically induced oxygen desaturation and neutrophil infiltration and increased MCP-1, MIP-1β, IL-10, IFN-γ, and RANTES concentrations in the bronchoalveolar lavage fluid (BALF). In contrast, levels of type 2 cytokines (i.e., IL-4, IL-5, IL-9, and IL-13) were not significantly affected by either RSV infection or Cl2 exposure. Cl2 exposure, but not RSV infection, induced AHR to methacholine challenge as measured by flexiVent. Moreover, preexisting RSV infection amplified BALF levels of hyaluronan (HA) and AHR. The Cl2-induced AHR was mitigated by treatment with inter-α-trypsin inhibitor antibody, which inhibits HA signaling, suggesting a mechanism of HA-mediated AHR from exacerbated oxidative injury. Our results show for the first time that preexisting RSV infection predisposes the lung to Cl2-induced injury. These data emphasize the necessity for further research on the effects of Cl2 in vulnerable populations and the development of appropriate treatments. PMID:26071553

  12. Effect of static vs. dynamic imaging on particle transport in CT-based numerical models of human central airways.

    PubMed

    Miyawaki, Shinjiro; Hoffman, Eric A; Lin, Ching-Long

    2016-10-01

    Advances in quantitative computed tomography (CT) has provided methods to assess the detailed structure of the pulmonary airways and parenchyma, providing the means of applying computational fluid dynamics-based modeling to better understand subject-specific differences in structure-to-function relationships. Most of the previous numerical studies, seeking to predict patterns of inhaled particle deposition, have considered airway geometry and regional ventilation derived from static images. Because geometric alterations of the airway and parenchyma associated with regional ventilation may greatly affect particle transport, we have sought to investigate the effect of rigid vs. deforming airways, linear vs. nonlinear airway deformations, and step-wise static vs. dynamic imaging on particle deposition with varying numbers of intermediate lung volume increments. Airway geometry and regional ventilation at different time points were defined by four-dimensional (space and time) dynamic or static CT images. Laminar, transitional, and turbulent air flows were reproduced with a three-dimensional eddy-resolving computational fluid dynamics model. Finally, trajectories of particles were computed with the Lagrangian tracking algorithm. The results demonstrated that static-imaging-based models can contribute 7% uncertainty to overall particle distribution and deposition primarily due to regional flow rate (ventilation) differences as opposed to geometric alterations. The effect of rigid vs. deforming airways on serial distribution of particles over generations was significantly smaller than reported in a previous study that used the symmetric Weibel geometric model with smaller flow rate. Rigid vs. deforming airways were also shown to affect parallel particle distribution over lobes by 8% and the differences associated with use of static vs. dynamic imaging was 18%. These differences demonstrate that estimates derived from static vs. dynamic imaging can significantly affect the

  13. Partial airway obstruction following manufacturing defect in laryngeal mask airway (Laryngeal Mask Silken™).

    PubMed

    Jangra, Kiran; Malhotra, Surender Kumar; Saini, Vikas

    2014-10-01

    Laryngeal mask (LM) airway is commonly used for securing airway in day-care surgeries. Various problems have been described while using LM airway. Out of those, mechanical obstruction causing airway compromise is most common. Here, we describe a case report of 4-year-old child who had partial upper airway obstruction due to LM manufacturer's defect. There was a silicon band in upper one-third of shaft of LM airway. This band was made up of the same material as that of LM airway so it was not identifiable on external inspection of transparent shaft. We suggest that such as non-transparent laryngeal mask, a transparent LM airway should also be inspected looking inside the lumen with naked eyes or by using a probe to rule out any manufacturing defect before its insertion.

  14. Isolation of RNA from cell lines and cervical cytology specimens stored in BD SurePath preservative fluid and downstream detection of housekeeping gene and HPV E6 expression using real time RT-PCR.

    PubMed

    Murphy, Patricia G; Henderson, Dorian T; Adams, Melissa D; Horlick, Elizabeth A; Dixon, Eric P; King, Lorraine M; Avissar, Patricia L; Brown, Charlotte A; Fischer, Timothy J; Malinowski, Douglas P

    2009-03-01

    This study was performed to demonstrate that RNA isolated from cell lines and cervical cytology specimens stored in SurePath preservative fluid would be functional in real-time RT-PCR assays. RNA was isolated from cervical cell lines or cytology samples stored in SurePath preservative at room temperature for 2-5 weeks using five commercially available RNA purification kits, three of which contain proteinases. The quality of the RNA was assessed by real time RT-PCR amplification of GAPDH, GUSB, U1A, HPV 16 and 18 E6 mRNAs. RNA was isolated successfully from cells that were stored in SurePath preservative fluid with only the three protocols that contained proteinases. GAPDH was amplified in 98-100% of the samples, GUSB in 90-98%, and the least abundant transcript, U1A, was amplified in 81-96% of the samples. HPV 16 and 18 E6 transcripts were detected in 56% of high grade, 39% of low grade and 2% of normal samples, with a concordance between DNA genotype and E6 mRNA expression of 97%. We demonstrated that RNA can be extracted from cervical cell lines and cytology specimens stored in BD SurePath preservative fluid with three different procedures that all contain proteinases. This RNA is suitable for real-time RT-PCR applications.

  15. Acid aspiration-induced airways hyperresponsiveness in mice

    PubMed Central

    Leclair, Timothy R.; von Reyn, Jessica; Larrabee, Yuna C.; Cloutier, Mary E.; Irvin, Charles G.; Bates, Jason H. T.

    2009-01-01

    The role of gastroesophageal reflux and micro-aspiration as a trigger of airways hyperresponsiveness (AHR) in patients with asthma is controversial. The role of acid reflux and aspiration as a direct cause of AHR in normal subjects is also unclear. We speculated that aspiration of a weak acid with a pH (1.8) equivalent to the upper range of typical gastric contents would lead to AHR in naive mice. We further speculated that modest reductions in aspirate acidity to a level expected during gastric acid suppression therapy (pH 4.0) would impede aspiration-induced AHR. BALB/c female mice were briefly anesthetized with isoflurane and allowed to aspirate 75 μl of saline with HCl (pH 1.8, 4.0, or 7.4) or underwent sham aspiration. Mice were re-anesthetized 2 or 24 h later, underwent tracheostomy, and were coupled to a mechanical ventilator. Forced oscillations were used to periodically measure respiratory impedance (Zrs) following aerosol delivery of saline and increasing doses of methacholine to measure for AHR. Values for elastance (H), airways resistance (RN), and tissue damping (G) were derived from Zrs. Aspirate pH of 1.8 led to a significant overall increase in peak RN, G, and H compared with pH 4.0 and 7.4 at 2 and 24 h. Differences between pH 7.4 and 4.0 were not significant. In mice aspirating pH 1.8 compared with controls, airway lavage fluid contained more neutrophils, higher protein, and demonstrated higher permeability. We conclude that acid aspiration triggers an acute AHR, driven principally by breakdown of epithelial barrier integrity within the airways. PMID:19797689

  16. Method for 3D Airway Topology Extraction

    PubMed Central

    Grothausmann, Roman; Kellner, Manuela; Heidrich, Marko; Lorbeer, Raoul-Amadeus; Ripken, Tammo; Meyer, Heiko; Kuehnel, Mark P.; Ochs, Matthias; Rosenhahn, Bodo

    2015-01-01

    In lungs the number of conducting airway generations as well as bifurcation patterns varies across species and shows specific characteristics relating to illnesses or gene variations. A method to characterize the topology of the mouse airway tree using scanning laser optical tomography (SLOT) tomograms is presented in this paper. It is used to test discrimination between two types of mice based on detected differences in their conducting airway pattern. Based on segmentations of the airways in these tomograms, the main spanning tree of the volume skeleton is computed. The resulting graph structure is used to distinguish between wild type and surfactant protein (SP-D) deficient knock-out mice. PMID:25767561

  17. Automated Lobe-Based Airway Labeling

    PubMed Central

    Gu, Suicheng; Wang, Zhimin; Siegfried, Jill M.; Wilson, David; Bigbee, William L.; Pu, Jiantao

    2012-01-01

    Regional quantitative analysis of airway morphological abnormalities is of great interest in lung disease investigation. Considering that pulmonary lobes are relatively independent functional unit, we develop and test a novel and efficient computerized scheme in this study to automatically and robustly classify the airways into different categories in terms of pulmonary lobe. Given an airway tree, which could be obtained using any available airway segmentation scheme, the developed approach consists of four basic steps: (1) airway skeletonization or centerline extraction, (2) individual airway branch identification, (3) initial rule-based airway classification/labeling, and (4) self-correction of labeling errors. In order to assess the performance of this approach, we applied it to a dataset consisting of 300 chest CT examinations in a batch manner and asked an image analyst to subjectively examine the labeled results. Our preliminary experiment showed that the labeling accuracy for the right upper lobe, the right middle lobe, the right lower lobe, the left upper lobe, and the left lower lobe is 100%, 99.3%, 99.3%, 100%, and 100%, respectively. Among these, only two cases are incorrectly labeled due to the failures in airway detection. It takes around 2 minutes to label an airway tree using this algorithm. PMID:23093951

  18. Anatomic Optical Coherence Tomography of Upper Airways

    NASA Astrophysics Data System (ADS)

    Chin Loy, Anthony; Jing, Joseph; Zhang, Jun; Wang, Yong; Elghobashi, Said; Chen, Zhongping; Wong, Brian J. F.

    The upper airway is a complex and intricate system responsible for respiration, phonation, and deglutition. Obstruction of the upper airways afflicts an estimated 12-18 million Americans. Pharyngeal size and shape are important factors in the pathogenesis of airway obstructions. In addition, nocturnal loss in pharyngeal muscular tone combined with high pharyngeal resistance can lead to collapse of the airway and periodic partial or complete upper airway obstruction. Anatomical optical coherence tomography (OCT) has the potential to provide high-speed three-dimensional tomographic images of the airway lumen without the use of ionizing radiation. In this chapter we describe the methods behind endoscopic OCT imaging and processing to generate full three dimensional anatomical models of the human airway which can be used in conjunction with numerical simulation methods to assess areas of airway obstruction. Combining this structural information with flow dynamic simulations, we can better estimate the site and causes of airway obstruction and better select and design surgery for patients with obstructive sleep apnea.

  19. Multiscale Analysis of a Collapsible Respiratory Airway

    NASA Astrophysics Data System (ADS)

    Ghadiali, Samir; Bell, E. David; Swarts, J. Douglas

    2006-11-01

    The Eustachian tube (ET) is a collapsible respiratory airway that connects the nasopharynx with the middle ear (ME). The ET normally exists in a collapsed state and must be periodically opened to maintain a healthy and sterile ME. Although the inability to open the ET (i.e. ET dysfunction) is the primary etiology responsible for several common ME diseases (i.e. Otitis Media), the mechanisms responsible for ET dysfunction are not well established. To investigate these mechanisms, we developed a multi-scale model of airflow in the ET and correlated model results with experimental data obtained in healthy and diseased subjects. The computational models utilized finite-element methods to simulate fluid-structure interactions and molecular dynamics techniques to quantify the adhesive properties of mucus glycoproteins. Results indicate that airflow in the ET is highly sensitive to both the dynamics of muscle contraction and molecular adhesion forces within the ET lumen. In addition, correlation of model results with experimental data obtained in diseased subjects was used to identify the biomechanical mechanisms responsible for ET dysfunction.

  20. Development and validation of a liquid chromatography-tandem mass spectrometry method for the quantitative determination of gamithromycin in animal plasma, lung tissue and pulmonary epithelial lining fluid.

    PubMed

    De Baere, Siegrid; Devreese, Mathias; Watteyn, Anneleen; Wyns, Heidi; Plessers, Elke; De Backer, Patrick; Croubels, Siska

    2015-06-12

    A sensitive and specific method for the quantitative determination of gamithromycin in animal plasma, lung tissue and pulmonary epithelial lining fluid (PELF) using liquid chromatography combined with heated electrospray ionization tandem mass spectrometry (LC-MS/MS) was developed. The sample preparation was rapid, straightforward and consisted of a deproteinization and phospholipid removal step using an Oasis(®) Ostro™ 96-well plate (chicken, turkey and calf plasma) or HybridSPE(®)-Phospholipid SPE cartridges (pig plasma and turkey lung tissue), while a liquid-liquid extraction with diethyl ether in alkaline medium was used for PELF of turkey poults. Chromatography was performed on a C18 Hypersil GOLD column using 0.01M ammonium acetate in water with a pH of 9, and acetonitrile as mobile phases. The MS/MS instrument was operated in the positive electrospray ionization mode and the following selected reaction monitoring transitions were monitored for gamithromycin (protonated molecule>product ion): m/z 777.45>619.35 and m/z 777.45>157.80 for quantification and identification, respectively. The method was validated in-house: matrix-matched calibration graphs were prepared and good linearity (r≥0.99) was achieved over the concentration ranges tested (2.5-10,000ngmL(-1) for chicken, pig and calf plasma; 5.0-2500ngmL(-1) for turkey plasma; 50-10,000ngg(-1) for turkey lung tissue and 20-1000ngmL(-1) for turkey PELF). Limits of quantification (LOQ) were 2.5ngmL(-1) for chicken, pig and calf plasma and 5.0ngmL(-1) for turkey plasma, while the limits of detection (LOD) ranged between 0.007 and 0.07ngmL(-1). For lung tissue and PELF, respective LOQ and LOD values of 50ngg(-1) and 0.76ngg(-1) (lung tissue) and 20ngmL(-1) and 0.1ngmL(-1) (PELF) were obtained. The results for the within-day and between-day precision, expressed as relative standard deviation (RSD), fell within the maximal RSD values. The accuracy fell within -30% to +10% (concentrations 1-10ngmL(-1)) or

  1. Uterine fluid proteins and egg quality characteristics for 2 commercial and 2 heritage laying hen lines in response to manipulation of dietary calcium and vitamin D3.

    PubMed

    Kaur, Ravinder; Rathgeber, Bruce M; Thompson, Kristen L; Macisaac, Janice

    2013-09-01

    The aim of this study was to evaluate the quality of eggs from 2 selected commercial strains of laying hens and 2 unselected lines of chickens fed diets with different combinations of Ca and vitamin D and relate it to the profile of uterine proteins and ultrastructure of the shell. A group of 4 chickens was housed in each of 24 cages. The group consisted of one representative from each of the following breeds: Lohmann LSL- Lite, Lohmann Classic-Brown, Fayoumi, and Light Sussex. Six dietary combinations of Ca and vitamin D(3) (3.35%, 2,500 IU; 4.10%, 2,500 IU (control); 4.85%, 2,500 IU; 3.35%, 200 IU; 4.10%, 200 IU; and 4.85%, 200 IU) were randomly assigned to 4 replicate cages for 2 treatment periods (26-29 and 56-59 wk of age). Data were analyzed as a split-plot design with cage as the main plot and hen as the subplot. Egg quality traits were different (P < 0.0001) between commercial and heritage breeds. Lohmann Brown had stronger shells with higher specific gravity compared with other breeds. Both commercial and heritage birds responded to a drop in vitamin D3 level by marked reduction in shell thickness. The SDS-PAGE profiles of uterine fluid samples revealed a decrease (P < 0.05) in 200-, 150-, 116-, and ≤6.5-kDa proteins, whereas proteins with molecular weight (MW) of 80, 55, 52, 45, 42, and 28 kDa increased with bird age. A 36- and 52-kDa protein band was most intense for Fayoumi compared with other breeds. Ultrastructural characteristics showed flattened and deeply etched mammillary caps for Lohmann Brown and the presence of type A and type B bodies between mammillary cones in eggshells from Fayoumi and Lohmann Lite. The negative correlation between ultrastructural characteristics, which decrease with bird age, and the 116-kDa uterine protein band could provide insight into reduced eggshell quality as hens age.

  2. Toll-like Receptors, Triggering Receptor Expressed on Myeloid Cells Family Members and Receptor for Advanced Glycation End-products in Allergic Airway Inflammation

    PubMed Central

    Hall, Sannette C.; Agrawal, Devendra K.

    2016-01-01

    Asthma is a chronic disorder of the airways characterized by cellular infiltration, airway hyper-responsive and airway inflammation. Innate immune cells are the first line of defense against endogenous and exogenous signals in the airways and as such possess a diverse array of pattern recognition receptors. Toll-like receptors are crucial sentinels which when activated, can either promote or ameliorate the inflammatory response in predisposed individuals. The recently discovered triggering receptor expressed on myeloid cells family members are emerging mediators of inflammation. These receptors are believed to modulate inflammatory responses by collaborating with classic PRRs. Endogenous signals like HMGB-1, signaling through the receptor for advanced glycation end products, also promotes inflammation, however, its contribution to inflammation in the airways is not well known. Here, we discuss the role of each receptor in airway inflammation and highlight potential synergistic mechanisms, which contribute to disease pathogenesis in allergic asthma. PMID:26678062

  3. Antibody to very late activation antigen 4 prevents interleukin-5-induced airway hyperresponsiveness and eosinophil infiltration in the airways of guinea pigs.

    PubMed

    Kraneveld, A D; van Ark, I; Van Der Linde, H J; Fattah, D; Nijkamp, F P; Van Oosterhout, A J

    1997-08-01

    This study examines the effect of monoclonal antibody to very late activation antigen-4 (VLA-4) on IL5-induced airway hyperresponsiveness in vivo and eosinophil accumulation into guinea pig airways. IL5 has been shown to be important in the development of airway hyperresponsiveness and eosinophil accumulation in the guinea pig. Eosinophils, unlike neutrophils, express VLA-4 which mediates the adhesion to vascular cell adhesion molecule-1 on endothelial cells. Thus VLA-4 seems to be an important adhesion molecule in the infiltration of eosinophils from the vasculature into the airway tissue. In addition, it has been shown that IL5 activates VLA-4 on eosinophils to facilitate their adhesion. In the present study, IL5 (1 microg, twice on one day) or vehicle were administered intranasally. Monoclonal antibody (mAb) to VLA-4 (HP1/2) or the isotype-matched control mAb (1E6) were injected 1 hour before each IL5 or vehicle treatment at a dose of 2.5 mg/kg body weight. The next day in vivo bronchial reactivity, eosinophil number in bronchoalveolar lavage (BAL) fluid, and eosinophil peroxidase (EPO) activity in cell-free BAL fluid were determined. IL5 induces an increase in bronchial reactivity to histamine, which is associated with an accumulation of eosinophils into BAL fluid (control: 12 (5 to 42) x 10(5) cells and IL5: 69 (11 to 99) x 10(5) cells, p < 0.05) and an increase of 35% +/- 14% in EPO activity in cell-free BAL fluid. Intravenous administration of anti-VLA-4 mAb, but not of the control antibody, completely inhibits the bronchial hyperresponsiveness as well as the airway eosinophilia found after intraairway application of IL5. HP1/2 also suppresses the IL5-induced increase in EPO activity in cell-free BAL fluid. In conclusion, for the development of IL5-induced airway hyperresponsiveness in the guinea pig, the VLA-4-dependent infiltration and activation of eosinophils in the bronchial tissue seems to be essential.

  4. Coronaviruses and the human airway: a universal system for virus-host interaction studies.

    PubMed

    Jonsdottir, Hulda R; Dijkman, Ronald

    2016-02-06

    Human coronaviruses (HCoVs) are large RNA viruses that infect the human respiratory tract. The emergence of both Severe Acute Respiratory Syndrome and Middle East Respiratory syndrome CoVs as well as the yearly circulation of four common CoVs highlights the importance of elucidating the different mechanisms employed by these viruses to evade the host immune response, determine their tropism and identify antiviral compounds. Various animal models have been established to investigate HCoV infection, including mice and non-human primates. To establish a link between the research conducted in animal models and humans, an organotypic human airway culture system, that recapitulates the human airway epithelium, has been developed. Currently, different cell culture systems are available to recapitulate the human airways, including the Air-Liquid Interface (ALI) human airway epithelium (HAE) model. Tracheobronchial HAE cultures recapitulate the primary entry point of human respiratory viruses while the alveolar model allows for elucidation of mechanisms involved in viral infection and pathogenesis in the alveoli. These organotypic human airway cultures represent a universal platform to study respiratory virus-host interaction by offering more detailed insights compared to cell lines. Additionally, the epidemic potential of this virus family highlights the need for both vaccines and antivirals. No commercial vaccine is available but various effective antivirals have been identified, some with potential for human treatment. These morphological airway cultures are also well suited for the identification of antivirals, evaluation of compound toxicity and viral inhibition.

  5. An analysis of pollutant gas transport and absorption in pulmonary airways

    SciTech Connect

    Grotberg, J.B.; Sheth, B.V.; Mockros, L.F. )

    1990-05-01

    A mathematical model of ozone absorption, or for any soluble gas that has similar transport properties, is developed for a branching network of liquid-lined cylinders. In particular, we investigate specific flow regimes for finite length tubes where boundary layer phenomena and entrance effects exist in high Reynolds and Peclet (Pe) number airways. The smaller airways which have lower Reynolds and Peclet number flows are modelled by incorporating the detailed analysis found in (10) and modifying it for airways which have alveolated surfaces. We also consider a reacting gas and treat specific regimes where the reaction front is located at the air-liquid interface, within the liquid or at the liquid-tissue interface. Asymptotic methods are used in regions of the tracheobronchial tree where Pe much less than 1 and Pe much greater than 1. In addition, the fact that the radial transport parameter gamma much less than 1 for this toxin, and others such as nitrous oxides, is employed to simplify the analysis. The ozone concentrations, airway absorption and tissue dose are examined as a function of airway generation for several values of the governing parameters. The general result is a maximal dosing in airway generations 17 to 18 that is much larger (up to an order of magnitude) than the predictions of previous theories.

  6. Integrated Innate Mechanisms Involved in Airway Allergic Inflammation to the Serine Protease Subtilisin

    PubMed Central

    Florsheim, Esther; Yu, Shuang; Bragatto, Ivan; Faustino, Lucas; Gomes, Eliane; Ramos, Rodrigo N.; Barbuto, José Alexandre M.; Medzhitov, Ruslan; Russo, Momtchilo

    2015-01-01

    Proteases are recognized environmental allergens, but little is known about the mechanisms responsible for sensing enzyme activity and initiating the development of allergic inflammation. Because usage of the serine protease subtilisin in the detergent industry resulted in an outbreak of occupational asthma in workers, we sought to develop an experimental model of allergic lung inflammation to subtilisin and to determine the immunological mechanisms involved in type 2 responses. By using a mouse model of allergic airway disease, we have defined here that subcutaneous or intranasal sensitization followed by airway challenge to subtilisin induces prototypic allergic lung inflammation, characterized by airway eosinophilia, type 2 cytokines release, mucus production, high levels of serum IgE, and airway reactivity. These allergic responses were dependent on subtilisin protease activity, protease-activated receptor (PAR)-2, IL-33 receptor ST2, and MyD88 signaling. Also, subtilisin stimulated the expression of the pro-allergic cytokines IL-1α, IL-33, TSLP, and the growth factor amphiregulin in a human bronchial epithelial cell line. Notably, acute administration of subtilisin into the airways increased lung IL-5-producing type 2 innate lymphoid cells, which required PAR-2 expression. Finally, subtilisin activity acted as a Th2 adjuvant to an unrelated airborne antigen promoting allergic inflammation to inhaled OVA. Therefore, we established a murine model of occupational asthma to a serine protease and characterized the main molecular pathways involved in allergic sensitization to subtilisin that potentially contribute to initiate allergic airway disease. PMID:25876764

  7. Secretion of acid and base equivalents by intact distal airways.

    PubMed

    Inglis, S K; Wilson, S M; Olver, R E

    2003-05-01

    Secretion of HCO(3)(-) by airway submucosal glands is essential for normal liquid and mucus secretion. Because the liquid bathing the airway surface (ASL) is acidic, it has been proposed that the surface epithelium may acidify HCO(3)(-)-rich glandular fluid. The aim of this study was to investigate the mechanisms by which intact distal bronchi, which contain both surface and glandular epithelium, modify pH of luminal fluid. Distal bronchi were isolated from pig lungs, cannulated in a bath containing HCO(3)(-)-buffered solution, and perfused continually with an aliquot of similar, lightly buffered solution (LBS) in which NaCl replaced NaHCO(3)(-) (pH 7 with NaOH). The pH of this circulating LBS initially acidified (by 0.053 +/- 0.0053 pH units) and transepithelial potential difference (PD) depolarized. The magnitude of acidification was increased when pH(LBS) was higher. This acidification was unaffected by luminal dimethylamiloride (DMA, 100 microM) but was inhibited by 100 nM bafilomycin A(1) (by 76 +/- 13%), suggesting involvement of vacuolar-H(+) ATPase. Addition of ACh (10 microM) evoked alkalinization of luminal LBS and hyperpolarization of transepithelial PD. The alkalinization was inhibited in HCO(3)(-)-free solutions containing acetazolamide (1 mM) and by DMA and was enhanced by bumetanide (100 microM), an inhibitor of Cl(-) secretion. The hyperpolarization was unaffected by these maneuvers. The anion channel blocker 5-nitro-2-(3-phenylpropylamino)benzoate (300 microM) and combined treatment with DMA and bumetanide blocked both the alkalinization and hyperpolarization responses to ACh. These results are consistent with earlier studies showing that ACh evokes glandular secretion of HCO(3)(-) and Cl(-). Isolated distal airways thus secrete both acid and base equivalents.

  8. Heterogeneity of tight junction morphology in extrapulmonary and intrapulmonary airways of the rat.

    PubMed

    Schneeberger, E E

    1980-10-01

    In the present study morphology of tight junctions was related to the various cell types lining extrapulmonary and intrapulmonary airways of the rat. Freeze fracture replicas were prepared from extrapulmonary airway epithelium derived from the cartilagenous and membranous sides of upper, middle, and lower thirds of the trachea. Intrapulmonary airway epithelium was obtained from airways less than 1 mm in diameter. Tight junction fibrils on the P fracture face were organized into three types of patterns. Type 1: parallel sparsely interconnected lumenal fibrils with large ablumenal fibril loops. Type 2: richly interconnected lumenal fibrils with large ablumenal fibril loops. Type 3: narrow network of interconnected fibrils. On the E fracture face complementary grooves were organized in a similar pattern. Ciliated cells on both sides and all levels of the trachea were associated with type 1 junctions. In intrapulmonary airways, however, the junctional pattern of ciliated cells changed to type 2. Brush cells at all levels of the airways were bounded by type 2 and occasionally by type 1 junctions. Secretory cell junctions displayed the following patterns: Mucous cells were bounded solely by type 3, serous cells by either types 2 or 3, and Clara cells predominantly by type 2. Cells tentatively identified as intermediate cells displayed all three junctional patterns. The number of parallel fibrils comprising tight junctions was higher in extrapulmonary as compared to intrapulmonary airways. No difference was seen in the various locations sampled in the trachea. Gap junctions were observed between secretory cells of extrapulmonary but not intrapulmonary airways. These observations are discussed in relation to current physiologic data.

  9. Airway management: induced tension pneumoperitoneum

    PubMed Central

    Ahmed, Khedher; Amine, El Ghali Mohamed; Abdelbaki, Azouzi; Jihene, Ayachi; Khaoula, Meddeb; Yamina, Hamdaoui; Mohamed, Boussarsar

    2016-01-01

    Pneumoperitoneum is not always associated with hollow viscus perforation. Such condition is called non-surgical or spontaneous pneumoperitoneum. Intrathoracic causes remain the most frequently reported mechanism inducing this potentially life threatening complication. This clinical condition is associated with therapeutic dilemma. We report a case of a massive isolated pneumoperitoneum causing acute abdominal hypertension syndrome, in a 75 year female, which occurred after difficult airway management and mechanical ventilation. Emergent laparotomy yielded to full recovery. The recognition of such cases for whom surgical management can be avoided is primordial to avoid unnecessary laparotomy and its associated morbidity particularly in the critically ill.

  10. Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma.

    PubMed

    An, S S; Bai, T R; Bates, J H T; Black, J L; Brown, R H; Brusasco, V; Chitano, P; Deng, L; Dowell, M; Eidelman, D H; Fabry, B; Fairbank, N J; Ford, L E; Fredberg, J J; Gerthoffer, W T; Gilbert, S H; Gosens, R; Gunst, S J; Halayko, A J; Ingram, R H; Irvin, C G; James, A L; Janssen, L J; King, G G; Knight, D A; Lauzon, A M; Lakser, O J; Ludwig, M S; Lutchen, K R; Maksym, G N; Martin, J G; Mauad, T; McParland, B E; Mijailovich, S M; Mitchell, H W; Mitchell, R W; Mitzner, W; Murphy, T M; Paré, P D; Pellegrino, R; Sanderson, M J; Schellenberg, R R; Seow, C Y; Silveira, P S P; Smith, P G; Solway, J; Stephens, N L; Sterk, P J; Stewart, A G; Tang, D D; Tepper, R S; Tran, T; Wang, L

    2007-05-01

    Excessive airway obstruction is the cause of symptoms and abnormal lung function in asthma. As airway smooth muscle (ASM) is the effecter controlling airway calibre, it is suspected that dysfunction of ASM contributes to the pathophysiology of asthma. However, the precise role of ASM in the series of events leading to asthmatic symptoms is not clear. It is not certain whether, in asthma, there is a change in the intrinsic properties of ASM, a change in the structure and mechanical properties of the noncontractile components of the airway wall, or a change in the interdependence of the airway wall with the surrounding lung parenchyma. All these potential changes could result from acute or chronic airway inflammation and associated tissue repair and remodelling. Anti-inflammatory therapy, however, does not "cure" asthma, and airway hyperresponsiveness can persist in asthmatics, even in the absence of airway inflammation. This is perhaps because the therapy does not directly address a fundamental abnormality of asthma, that of exaggerated airway narrowing due to excessive shortening of ASM. In the present study, a central role for airway smooth muscle in the pathogenesis of airway hyperresponsiveness in asthma is explored.

  11. Effect of stress on eotaxin and expression of adhesion molecules in a murine model of allergic airway inflammation.

    PubMed

    Joachim, Ricarda A; Sagach, Viktoriya; Quarcoo, David; Dinh, Q Thai; Arck, Petra C; Klapp, Burghard F

    2007-01-01

    Recently we have shown that sound stress enhances allergic airway inflammation in a combined murine model. In the current study we investigated mediating factors and early kinetics of stress exacerbated allergic airway inflammation. Stress significantly increased allergen induced airway inflammation as identified by leukocyte numbers in BAL fluids. Eotaxin levels from stressed mice were significantly higher 24 h after stress. No differences were found for vascular or cellular adhesion molecule expression or cytokine levels. Our data indicate that the effect of stress on allergic airway inflammation might be mediated by the chemoattractant eotaxin, while Th2 cytokines and expression of adhesion molecules seem not to be differently regulated in stressed and non-stressed mice.

  12. Mechanisms of inflammation-mediated airway smooth muscle plasticity and airways remodeling in asthma.

    PubMed

    Halayko, Andrew J; Amrani, Yassine

    2003-09-16

    Recent evidence points to progressive structural change in the airway wall, driven by chronic local inflammation, as a fundamental component for development of irreversible airway hyperresponsiveness. Acute and chronic inflammation is orchestrated by cytokines from recruited inflammatory cells, airway myofibroblasts and myocytes. Airway myocytes exhibit functional plasticity in their capacity for contraction, proliferation, and synthesis of matrix protein and cytokines. This confers a principal role in driving different components of the airway remodeling process, and mediating constrictor hyperresponsiveness. Functional plasticity of airway smooth muscle (ASM) is regulated by an array of environmental cues, including cytokines, which mediate their effects through receptors and a number of intracellular signaling pathways. Despite numerous studies of the cellular effects of cytokines on cultured airway myocytes, few have identified how intracellular signaling pathways modulate or induce these cellular responses. This review summarizes current understanding of these concepts and presents a model for the effects of inflammatory mediators on functional plasticity of ASM in asthma.

  13. Airway epithelial-derived factor relaxes pulmonary vascular smooth muscle.

    PubMed

    Farah, Omar R; Li, Dongge; McIntyre, Brendan A S; Pan, Jingyi; Belik, Jaques

    2009-01-01

    The factors controlling the pulmonary vascular resistance under physiological conditions are poorly understood. We have previously reported on an apparent cross talk between the airway and adjacent pulmonary arterial bed where a factor likely derived from the bronchial epithelial cells reduced the magnitude of agonist-stimulated force in the vascular smooth muscle. The main purpose of this investigation was to evaluate whether bronchial epithelial cells release a pulmonary arterial smooth muscle relaxant factor. Conditioned media from SPOC-1 or BEAS-2B, a rat- and a human-derived bronchial epithelial cell line, respectively, were utilized. This media significantly relaxed precontracted adult but not fetal pulmonary arterial muscle in an oxygen tension-dependent manner. This response was mediated via soluble guanylate cyclase, involving AKT/PI3-kinase and neuronal nitric oxide synthase. Airway epithelial cell-conditioned media increased AKT phosphorylation in pulmonary smooth muscle cells (SMC) and reduced intracellular calcium change following ATP stimulation to a significantly greater extent than observed for bronchial SMC. The present data strongly support the evidence for bronchial epithelial cells releasing a stable and soluble factor capable of inducing pulmonary arterial SMC relaxation. We speculate that under physiological conditions, the maintenance of a low pulmonary vascular resistance, postnatally, is in part modulated by the airway epithelium.

  14. 21 CFR 868.5110 - Oropharyngeal airway.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oropharyngeal airway. 868.5110 Section 868.5110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5110 Oropharyngeal airway....

  15. 21 CFR 868.5100 - Nasopharyngeal airway.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nasopharyngeal airway. 868.5100 Section 868.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5100 Nasopharyngeal airway....

  16. SUBCHRONIC ENDOTOXIN INHALATION CAUSES PERSISTENT AIRWAY DISEASE

    EPA Science Inventory

    ABSTRACT

    The endotoxin component of organic dusts causes acute reversible airflow obstruction and airway inflammation. To test the hypothesis that endotoxin alone causes airway remodeling, we have compared the response of two inbred mouse strains to subchronic endotoxin ...

  17. Upper airway resistance: species-related differences.

    PubMed

    Kirschvink, N; Reinhold, P

    2010-07-01

    In veterinary medicine, upper airway resistance deserves a particular attention in equines athletes and brachycephalic dogs. Due to the anatomical peculiarities of the upper airway and/or pathological conditions, significant alterations of performance and/or well being might occur in horses and dogs. Physiological specificities and pathological changes of the lower respiratory tract deserve a major attention in other species.

  18. Airway and Extracellular Matrix Mechanics in COPD

    PubMed Central

    Bidan, Cécile M.; Veldsink, Annemiek C.; Meurs, Herman; Gosens, Reinoud

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the most common lung diseases worldwide, and is characterized by airflow obstruction that is not fully reversible with treatment. Even though airflow obstruction is caused by airway smooth muscle contraction, the extent of airway narrowing depends on a range of other structural and functional determinants that impact on active and passive tissue mechanics. Cells and extracellular matrix in the airway and parenchymal compartments respond both passively and actively to the mechanical stimulation induced by smooth muscle contraction. In this review, we summarize the factors that regulate airway narrowing and provide insight into the relative contributions of different constituents of the extracellular matrix and their biomechanical impact on airway obstruction. We then review the changes in extracellular matrix composition in the airway and parenchymal compartments at different stages of COPD, and finally discuss how these changes impact airway narrowing and the development of airway hyperresponsiveness. Finally, we position these data in the context of therapeutic research focused on defective tissue repair. As a conclusion, we propose that future works should primarily target mild or early COPD, prior to the widespread structural changes in the alveolar compartment that are more characteristic of severe COPD. PMID:26696894

  19. Correction of defective CFTR/ENaC function and tightness of cystic fibrosis airway epithelium by amniotic mesenchymal stromal (stem) cells.

    PubMed

    Carbone, Annalucia; Castellani, Stefano; Favia, Maria; Diana, Anna; Paracchini, Valentina; Di Gioia, Sante; Seia, Manuela; Casavola, Valeria; Colombo, Carla; Conese, Massimo

    2014-08-01

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, with most of the mortality given by the lung disease. Human amniotic mesenchymal stromal (stem) cells (hAMSCs) hold great promise for regenerative medicine in the field of lung disease; however, their potential as therapeutics for CF lung disease has not been fully explored. In the present study, hAMSCs were analysed in co-cultures on Transwell filters with CF immortalized airway epithelial cells (CFBE41o- line) at different ratios to exploit their potency to resume basic defects associated with CF. The results show that F-actin content was increased in co-cultures as compared with CF cells and actin was reorganized to form stress fibres. Confocal microscopy studies revealed that co-cultures had a tendency of increased expression of occludin and ZO-1 at the intercellular borders, paralleled by a decrease in dextran permeability, suggestive of more organized tight junctions (TJs). Spectrofluorometric analysis of CFTR function demonstrated that hAMSC-CFBE co-cultures resumed chloride transport, in line with the appearance of the mature Band C of CFTR protein by Western blotting. Moreover, hAMSC-CFBE co-cultures, at a 1:5 ratio, showed a decrease in fluid absorption, as opposed to CFBE cell monolayers that displayed a great rate of fluid resorption from the apical side. Our data show that human amniotic MSCs can be used in co-culture with CF respiratory epithelial cells to model their engraftment into the airways and have the potential to resume a tight epithelium with partial correction of the CF phenotype.

  20. Correction of defective CFTR/ENaC function and tightness of cystic fibrosis airway epithelium by amniotic mesenchymal stromal (stem) cells

    PubMed Central

    Carbone, Annalucia; Castellani, Stefano; Favia, Maria; Diana, Anna; Paracchini, Valentina; Di Gioia, Sante; Seia, Manuela; Casavola, Valeria; Colombo, Carla; Conese, Massimo

    2014-01-01

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, with most of the mortality given by the lung disease. Human amniotic mesenchymal stromal (stem) cells (hAMSCs) hold great promise for regenerative medicine in the field of lung disease; however, their potential as therapeutics for CF lung disease has not been fully explored. In the present study, hAMSCs were analysed in co-cultures on Transwell filters with CF immortalized airway epithelial cells (CFBE41o- line) at different ratios to exploit their potency to resume basic defects associated with CF. The results show that F-actin content was increased in co-cultures as compared with CF cells and actin was reorganized to form stress fibres. Confocal microscopy studies revealed that co-cultures had a tendency of increased expression of occludin and ZO-1 at the intercellular borders, paralleled by a decrease in dextran permeability, suggestive of more organized tight junctions (TJs). Spectrofluorometric analysis of CFTR function demonstrated that hAMSC-CFBE co-cultures resumed chloride transport, in line with the appearance of the mature Band C of CFTR protein by Western blotting. Moreover, hAMSC-CFBE co-cultures, at a 1:5 ratio, showed a decrease in fluid absorption, as opposed to CFBE cell monolayers that displayed a great rate of fluid resorption from the apical side. Our data show that human amniotic MSCs can be used in co-culture with CF respiratory epithelial cells to model their engraftment into the airways and have the potential to resume a tight epithelium with partial correction of the CF phenotype. PMID:24894806

  1. Difficult Airway Response Team: A Novel Quality Improvement Program for Managing Hospital-Wide Airway Emergencies

    PubMed Central

    Mark, Lynette J.; Herzer, Kurt R.; Cover, Renee; Pandian, Vinciya; Bhatti, Nasir I.; Berkow, Lauren C.; Haut, Elliott R.; Hillel, Alexander T.; Miller, Christina R.; Feller-Kopman, David J.; Schiavi, Adam J.; Xie, Yanjun J.; Lim, Christine; Holzmueller, Christine; Ahmad, Mueen; Thomas, Pradeep; Flint, Paul W.; Mirski, Marek A.

    2015-01-01

    Background Difficult airway cases can quickly become emergencies, increasing the risk of life-threatening complications or death. Emergency airway management outside the operating room is particularly challenging. Methods We developed a quality improvement program—the Difficult Airway Response Team (DART)—to improve emergency airway management outside the operating room. DART was implemented by a team of anesthesiologists, otolaryngologists, trauma surgeons, emergency medicine physicians, and risk managers in 2005 at The Johns Hopkins Hospital in Baltimore, Maryland. The DART program had three core components: operations, safety, and education. The operations component focused on developing a multidisciplinary difficult airway response team, standardizing the emergency response process, and deploying difficult airway equipment carts throughout the hospital. The safety component focused on real-time monitoring of DART activations and learning from past DART events to continuously improve system-level performance. This objective entailed monitoring the paging system, reporting difficult airway events and DART activations to a web-based registry, and using in situ simulations to identify and mitigate defects in the emergency airway management process. The educational component included development of a multispecialty difficult airway curriculum encompassing case-based lectures, simulation, and team building/communication to ensure consistency of care. Educational materials were also developed for non-DART staff and patients to inform them about the needs of patients with difficult airways and ensure continuity of care with other providers after discharge. Results Between July 2008 and June 2013, DART managed 360 adult difficult airway events comprising 8% of all code activations. Predisposing patient factors included body mass index > 40, history of head and neck tumor, prior difficult intubation, cervical spine injury, airway edema, airway bleeding, and previous

  2. Peptidoglycan recognition protein 1 promotes house dust mite-induced airway inflammation in mice.

    PubMed

    Yao, Xianglan; Gao, Meixia; Dai, Cuilian; Meyer, Katharine S; Chen, Jichun; Keeran, Karen J; Nugent, Gayle Z; Qu, Xuan; Yu, Zu-Xi; Dagur, Pradeep K; McCoy, J Philip; Levine, Stewart J

    2013-12-01

    Peptidoglycan recognition protein (Pglyrp) 1 is a pattern-recognition protein that mediates antibacterial host defense. Because we had previously shown that Pglyrp1 expression is increased in the lungs of house dust mite (HDM)-challenged mice, we hypothesized that it might modulate the pathogenesis of asthma. Wild-type and Pglyrp1(-/-) mice on a BALB/c background received intranasal HDM or saline, 5 days/week for 3 weeks. HDM-challenged Pglyrp1(-/-) mice showed decreases in bronchoalveolar lavage fluid eosinophils and lymphocytes, serum IgE, and mucous cell metaplasia, whereas airway hyperresponsiveness was not changed when compared with wild-type mice. T helper type 2 (Th2) cytokines were reduced in the lungs of HDM-challenged Pglyrp1(-/-) mice, which reflected a decreased number of CD4(+) Th2 cells. There was also a reduction in C-C chemokines in bronchoalveolar lavage fluid and lung homogenates from HDM-challenged Pglyrp1(-/-) mice. Furthermore, secretion of CCL17, CCL22, and CCL24 by alveolar macrophages from HDM-challenged Pglyrp1(-/-) mice was markedly reduced. As both inflammatory cells and airway epithelial cells express Pglyrp1, bone marrow transplantation was performed to generate chimeric mice and assess which cell type promotes HDM-induced airway inflammation. Chimeric mice lacking Pglyrp1 on hematopoietic cells, not structural cells, showed a reduction in HDM-induced eosinophilic and lymphocytic airway inflammation. We conclude that Pglyrp1 expressed by hematopoietic cells, such as alveolar macrophages, mediates HDM-induced airway inflammation by up-regulating the production of C-C chemokines that recruit eosinophils and Th2 cells to the lung. This identifies a new family of innate immune response proteins that promotes HDM-induced airway inflammation in asthma.

  3. The critical airway in adults: The facts

    PubMed Central

    Bonanno, Fabrizio Giuseppe

    2012-01-01

    An algorithm on the indications and timing for a surgical airway in emergency as such cannot be drawn due to the multiplicity of variables and the inapplicability in the context of life-threatening critical emergency, where human brain elaborates decisions better in cluster rather than in binary fashion. In particular, in emergency or urgent scenarios, there is no clear or established consensus as to specifically who should receive a tracheostomy as a life-saving procedure; and more importantly, when. The two classical indications for emergency tracheostomy (laryngeal injury and failure to secure airway with endotracheal intubation or cricothyroidotomy) are too generic and encompass a broad spectrum of possibilities. In literature, specific indications for emergency tracheostomy are scattered and are biased, partially comprehensive, not clearly described or not homogeneously gathered. The review highlights the indications and timing for an emergency surgical airway and gives recommendations on which surgical airway method to use in critical airway. PMID:22787346

  4. Nebulized lidocaine blunts airway hyper-responsiveness in experimental feline asthma.

    PubMed

    Nafe, Laura A; Guntur, Vamsi P; Dodam, John R; Lee-Fowler, Tekla M; Cohn, Leah A; Reinero, Carol R

    2013-08-01

    Nebulized lidocaine may be a corticosteroid-sparing drug in human asthmatics, reducing airway resistance and peripheral blood eosinophilia. We hypothesized that inhaled lidocaine would be safe in healthy and experimentally asthmatic cats, diminishing airflow limitation and eosinophilic airway inflammation in the latter population. Healthy (n = 5) and experimentally asthmatic (n = 9) research cats were administered 2 weeks of nebulized lidocaine (2 mg/kg q8h) or placebo (saline) followed by a 2-week washout and crossover to the alternate treatment. Cats were anesthetized to measure the response to inhaled methacholine (MCh) after each treatment. Placebo and doubling doses of methacholine (0.0625-32.0000 mg/ml) were delivered and results were expressed as the concentration of MCh increasing baseline airway resistance by 200% (EC200Raw). Bronchoalveolar lavage was performed after each treatment and eosinophil numbers quantified. Bronchoalveolar lavage fluid (BALF) % eosinophils and EC200Raw within groups after each treatment were compared using a paired t-test (P <0.05 significant). No adverse effects were noted. In healthy cats, lidocaine did not significantly alter BALF eosinophilia or the EC200Raw. There was no difference in %BALF eosinophils in asthmatic cats treated with lidocaine (36±10%) or placebo (33 ± 6%). However, lidocaine increased the EC200Raw compared with placebo 10 ± 2 versus 5 ± 1 mg/ml; P = 0.043). Chronic nebulized lidocaine was well-tolerated in all cats, and lidocaine did not induce airway inflammation or airway hyper-responsiveness in healthy cats. Lidocaine decreased airway response to MCh in asthmatic cats without reducing airway eosinophilia, making it unsuitable for monotherapy. However, lidocaine may serve as a novel adjunctive therapy in feline asthmatics with beneficial effects on airflow obstruction.

  5. Investigating the geometry of pig airways using computed tomography

    NASA Astrophysics Data System (ADS)

    Mansy, Hansen A.; Azad, Md Khurshidul; McMurray, Brandon; Henry, Brian; Royston, Thomas J.; Sandler, Richard H.

    2015-03-01

    Numerical modeling of sound propagation in the airways requires accurate knowledge of the airway geometry. These models are often validated using human and animal experiments. While many studies documented the geometric details of the human airways, information about the geometry of pig airways is scarcer. In addition, the morphology of animal airways can be significantly different from that of humans. The objective of this study is to measure the airway diameter, length and bifurcation angles in domestic pigs using computed tomography. After imaging the lungs of 3 pigs, segmentation software tools were used to extract the geometry of the airway lumen. The airway dimensions were then measured from the resulting 3 D models for the first 10 airway generations. Results showed that the size and morphology of the airways of different animals were similar. The measured airway dimensions were compared with those of the human airways. While the trachea diameter was found to be comparable to the adult human, the diameter, length and branching angles of other airways were noticeably different from that of humans. For example, pigs consistently had an early airway branching from the trachea that feeds the superior (top) right lung lobe proximal to the carina. This branch is absent in the human airways. These results suggested that the human geometry may not be a good approximation of the pig airways and may contribute to increasing the errors when the human airway geometric values are used in computational models of the pig chest.

  6. Intrathoracic airway measurement: ex-vivo validation

    NASA Astrophysics Data System (ADS)

    Reinhardt, Joseph M.; Raab, Stephen A.; D'Souza, Neil D.; Hoffman, Eric A.

    1997-05-01

    High-resolution x-ray CT (HRCT) provides detailed images of the lungs and bronchial tree. HRCT-based imaging and quantitation of peripheral bronchial airway geometry provides a valuable tool for assessing regional airway physiology. Such measurements have been sued to address physiological questions related to the mechanics of airway collapse in sleep apnea, the measurement of airway response to broncho-constriction agents, and to evaluate and track the progression of disease affecting the airways, such as asthma and cystic fibrosis. Significant attention has been paid to the measurements of extra- and intra-thoracic airways in 2D sections from volumetric x-ray CT. A variety of manual and semi-automatic techniques have been proposed for airway geometry measurement, including the use of standardized display window and level settings for caliper measurements, methods based on manual or semi-automatic border tracing, and more objective, quantitative approaches such as the use of the 'half-max' criteria. A recently proposed measurements technique uses a model-based deconvolution to estimate the location of the inner and outer airway walls. Validation using a plexiglass phantom indicates that the model-based method is more accurate than the half-max approach for thin-walled structures. In vivo validation of these airway measurement techniques is difficult because of the problems in identifying a reliable measurement 'gold standard.' In this paper we report on ex vivo validation of the half-max and model-based methods using an excised pig lung. The lung is sliced into thin sections of tissue and scanned using an electron beam CT scanner. Airways of interest are measured from the CT images, and also measured with using a microscope and micrometer to obtain a measurement gold standard. The result show no significant difference between the model-based measurements and the gold standard; while the half-max estimates exhibited a measurement bias and were significantly

  7. Fluid handling equipment: A compilation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Devices and techniques used in fluid-handling and vacuum systems are described. Section 1 presents several articles on fluid lines and tubing. Section 2 describes a number of components such as valves, filters, and regulators. The last section contains descriptions of a number of innovative fluid-handling systems.

  8. Repeated hyperventilation causes peripheral airways inflammation, hyperreactivity, and impaired bronchodilation in dogs.

    PubMed

    Davis, M S; Freed, A N

    2001-09-01

    Winter athletes have an increased incidence of asthma, suggesting that repetitive hyperventilation with cold air may predispose individuals to airways disease. We used a canine model of exercise-induced hyperpnea to examine the effects of repeated hyperventilation with cool, dry air (i.e., dry air challenge [DAC]) on peripheral airway resistance (Rp), reactivity, and inflammation. Specific bronchi were exposed to a single DAC on five consecutive days. Rp and Delta Rp to aerosolized histamine, intravenous histamine, or hypocapnia were measured daily. Bronchoalveolar lavage fluid (BALF) was obtained on the fifth day. Rp increased from 0.70 +/- 0.08 to 1.13 +/- 0.22 cm H(2)O/ml/s (n = 25) 24 h after the first DAC, rose to 1.49 +/- 0.24 cm H(2)O/ml/s by Day 3, and remained elevated throughout the remainder of the protocol. Repeated DAC increased reactivity to hypocapnia and intravenous histamine. Intravenous salbutamol failed to reduce Rp as effectively in challenged airways (111% of Day 1 baseline) as in naive airways (54% of baseline). Repeated DAC caused increased BALF neutrophils, eosinophils, and sulfidopeptide leukotrienes. We conclude that repeated DAC causes peripheral airways inflammation, obstruction, hyperreactivity, and impaired beta-agonist-induced relaxation. This suggests that other mechanisms in addition to increased smooth muscle tone may contribute to the development of repetitive hyperventilation-induced bronchial obstruction and hyperreactivity.

  9. Interferon gamma and interleukin 4 stimulate prolonged expression of inducible nitric oxide synthase in human airway epithelium through synthesis of soluble mediators.

    PubMed Central

    Guo, F H; Uetani, K; Haque, S J; Williams, B R; Dweik, R A; Thunnissen, F B; Calhoun, W; Erzurum, S C

    1997-01-01

    Human respiratory epithelium expresses inducible nitric oxide synthase (iNOS) continuously in vivo, however mechanisms responsible for maintenance of expression are not known. We show that IFNgamma is sufficient for induction of iNOS in primary human airway epithelial cells (HAEC) in vitro, and IL-4 potentiates IFNgamma-induced iNOS expression in HAEC through stabilization of iNOS mRNA. IFNgamma/IL-4- induced iNOS expression in HAEC was delayed in onset and prolonged with expression up to 1 wk. Removal of overlying culture media resulted in loss of expression, while transfer of conditioned media induced iNOS mRNA in other HAEC. IFNgamma and IL-4 stimulation activated STAT1 and STAT6 in HAEC, but conditioned media transfer to HAEC produced even higher levels of STAT1 activation than achieved by direct addition of cytokines. Although cytokine induction of iNOS was dependent on new protein synthesis, conditioned media induction of iNOS in HAEC was not. Further, removal of overlying culture media from cells at different times after cytokine stimulation demonstrated that mediator synthesis and/or secretion important for induction and maintenance of iNOS occurs early after cytokine stimulation. In conclusion, a combination of IFNgamma/ IL-4, which occurs naturally in the lung epithelial lining fluid, leads to maintenance of iNOS expression in human airway epithelium through production of soluble mediators and stabilization of mRNA. PMID:9259582

  10. Noninvasive detection of airway constriction in awake guinea pigs

    SciTech Connect

    Silbaugh, S.A.; Mauderly, J.L.

    1984-01-01

    Tidal volume measured by the barometric method is very sensitive to increases in compression and expansion of alveolar gas, such as would be expected to occur during airway narrowing or closure. By comparing a barometric method tidal volume signal (VT') with a reference tidal volume (VT) obtained with a head-out pressure plethysmograph, a simple index related to gas compressibility effects was calculated (VT/VT'). Changes in this index were compared with decreases in dynamic compliance (Cdyn) during histamine aerosol challenge of 15 Charles River Hartley guinea pigs. Decreases in VT/VT' occurred during all aerosol challenges and were correlated with decreases in Cdyn. Decreases in VT/VT' were most marked at Cdyn values of less than 50% of base line. At Cdyn of less than 15% of base line, VT' was 3.1-4.8 times the VT reference signal. No increase in total pulmonary resistance was noted, and Cdyn and VT/VT' returned to base line after histamine exposure was stopped. The authors conclude that gas compressibility effects become substantial during histamine-induced airway constriction in the guinea pig and that the VT/VT' ratio appears to provide a simple noninvasive method of detecting these changes.

  11. Ambient particulate matter induces an exacerbation of airway inflammation in experimental asthma: role of interleukin-33.

    PubMed

    Shadie, A M; Herbert, C; Kumar, R K

    2014-08-01

    High levels of ambient environmental particulate matter (PM10 i.e. < 10 μm median aerodynamic diameter) have been linked to acute exacerbations of asthma. We examined the effects of delivering a single dose of Sydney PM10 by intranasal instillation to BALB/c mice that had been sensitized to ovalbumin and challenged repeatedly with a low (≈3 mg/m(3)) mass concentration of aerosolized ovalbumin for 4 weeks. Responses were compared to animals administered carbon black as a negative control, or a moderate (≈30 mg/m(3)) concentration of ovalbumin to simulate an allergen-induced acute exacerbation of airway inflammation. Delivery of PM10 to mice, in which experimental mild chronic asthma had previously been established, elicited characteristic features of enhanced allergic inflammation of the airways, including eosinophil and neutrophil recruitment, similar to that in the allergen-induced exacerbation. In parallel, there was increased expression of mRNA for interleukin (IL)-33 in airway tissues and an increased concentration of IL-33 in bronchoalveolar lavage fluid. Administration of a monoclonal neutralizing anti-mouse IL-33 antibody prior to delivery of particulates significantly suppressed the inflammatory response induced by Sydney PM10, as well as the levels of associated proinflammatory cytokines in lavage fluid. We conclude that IL-33 plays a key role in driving airway inflammation in this novel experimental model of an acute exacerbation of chronic allergic asthma induced by exposure to PM10.

  12. Ambient particulate matter induces an exacerbation of airway inflammation in experimental asthma: role of interleukin-33

    PubMed Central

    Shadie, A M; Herbert, C; Kumar, R K

    2014-01-01

    High levels of ambient environmental particulate matter (PM10 i.e. < 10 μm median aerodynamic diameter) have been linked to acute exacerbations of asthma. We examined the effects of delivering a single dose of Sydney PM10 by intranasal instillation to BALB/c mice that had been sensitized to ovalbumin and challenged repeatedly with a low (≈3 mg/m3) mass concentration of aerosolized ovalbumin for 4 weeks. Responses were compared to animals administered carbon black as a negative control, or a moderate (≈30 mg/m3) concentration of ovalbumin to simulate an allergen-induced acute exacerbation of airway inflammation. Delivery of PM10 to mice, in which experimental mild chronic asthma had previously been established, elicited characteristic features of enhanced allergic inflammation of the airways, including eosinophil and neutrophil recruitment, similar to that in the allergen-induced exacerbation. In parallel, there was increased expression of mRNA for interleukin (IL)-33 in airway tissues and an increased concentration of IL-33 in bronchoalveolar lavage fluid. Administration of a monoclonal neutralizing anti-mouse IL-33 antibody prior to delivery of particulates significantly suppressed the inflammatory response induced by Sydney PM10, as well as the levels of associated proinflammatory cytokines in lavage fluid. We conclude that IL-33 plays a key role in driving airway inflammation in this novel experimental model of an acute exacerbation of chronic allergic asthma induced by exposure to PM10. PMID:24730559

  13. Ambroxol suppresses influenza-virus proliferation in the mouse airway by increasing antiviral factor levels.

    PubMed

    Yang, B; Yao, D F; Ohuchi, M; Ide, M; Yano, M; Okumura, Y; Kido, H

    2002-05-01

    The protective effect of ambroxol, a mucolytic agent which has antioxidant properties and stimulates the release of pulmonary surfactant, against influenza-virus proliferation in the airway was investigated in mice. Ambroxol or the vehicle was administered intraperitoneally twice a day for 5-7 days to mice shortly after intranasal infection with a lethal dose of influenza A/Aichi/68 (H3N2) virus, and the survival rate, virus titre and levels of factors regulating virus proliferation in the airway fluid were analysed. Ambroxol significantly suppressed virus multiplication and improved the survival rate of mice. The effect of ambroxol reached a peak at 10 mg x kg(-1) x day(-1), higher doses being less effective. Ambroxol stimulated the release of suppressors of influenza-virus multiplication, such as pulmonary surfactant, mucus protease inhibitor, immunoglobulin (Ig)-A and IgG, although it stimulated the release of a trypsin-type protease that potentiates virus proliferation. In addition, ambroxol transiently suppressed release of the cytokines, tumour necrosis factor-alpha, interferon-gamma and interleukin-12, into airway fluid. Although ambroxol had several negative effects on the host defence system, overall it strikingly increased the concentrations of suppressors of influenza-virus multiplication in the airway.

  14. Educating the Educator: Teaching Airway Adjunct Techniques in Athletic Training

    ERIC Educational Resources Information Center

    Berry, David C.; Seitz, S. Robert

    2011-01-01

    The 5th edition of the "Athletic Training Education Competencies" ("Competencies") now requires athletic training educators (ATEs) to introduce into the curriculum various types of airway adjuncts including: (1) oropharyngeal airways (OPA), (2) nasopharyngeal airways (NPA), (3) supraglottic airways (SGA), and (4) suction. The addition of these…

  15. Airway adequacy, head posture, and craniofacial morphology.

    PubMed

    Solow, B; Siersbaek-Nielsen, S; Greve, E

    1984-09-01

    Previous studies of different samples have demonstrated associations between craniocervical angulation and craniofacial morphology, between airway obstruction by adenoids and craniofacial morphology, and between airway obstruction and craniocervical angulation. A hypothesis to account for the different sets of associations was suggested by Solow and Kreiborg in 1977. In the present study, the three sets of associations were examined in a single group of nonpathologic subjects with no history of airway obstruction. Cephalometric radiographs taken in the natural head position and rhinomanometric recordings were obtained from twenty-four children 7 to 9 years of age. Correlations were calculated between twenty-seven morphologic, eight postural, and two airway variables. A large craniocervical angle was, on the average, seen in connection with small mandibular dimensions, mandibular retrognathism, and a large mandibular inclination. Obstructed nasopharyngeal airways (defined as a small pm-ad 2 radiographic distance and a large nasal respiratory resistance, NRR, determined rhinomanometrically) were, on the average, seen in connection with a large craniocervical angle and with small mandibular dimensions, mandibular retrognathism, a large mandibular inclination, and retroclination of the upper incisors. The observed correlations were in agreement with the predicted pattern of associations between craniofacial morphology, craniocervical angulation, and airway resistance, thus suggesting the simultaneous presence of such associations in the sample of nonpathologic subjects with no history of airway obstruction.

  16. Comparison of analysis methods for airway quantification

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.

    2012-03-01

    Diseased airways have been known for several years as a possible contributing factor to airflow limitation in Chronic Obstructive Pulmonary Diseases (COPD). Quantification of disease severity through the evaluation of airway dimensions - wall thickness and lumen diameter - has gained increased attention, thanks to the availability of multi-slice computed tomography (CT). Novel approaches have focused on automated methods of measurement as a faster and more objective means that the visual assessment routinely employed in the clinic. Since the Full-Width Half-Maximum (FWHM) method of airway measurement was introduced two decades ago [1], several new techniques for quantifying airways have been detailed in the literature, but no approach has truly become a standard for such analysis. Our own research group has presented two alternative approaches for determining airway dimensions, one involving a minimum path and the other active contours [2, 3]. With an increasing number of techniques dedicated to the same goal, we decided to take a step back and analyze the differences of these methods. We consequently put to the test our two methods of analysis and the FWHM approach. We first measured a set of 5 airways from a phantom of known dimensions. Then we compared measurements from the three methods to those of two independent readers, performed on 35 airways in 5 patients. We elaborate on the differences of each approach and suggest conclusions on which could be defined as the best one.

  17. Accurate measurement of respiratory airway wall thickness in CT images using a signal restoration technique

    NASA Astrophysics Data System (ADS)

    Park, Sang Joon; Kim, Tae Jung; Kim, Kwang Gi; Lee, Sang Ho; Goo, Jin Mo; Kim, Jong Hyo

    2008-03-01

    Airway wall thickness (AWT) is an important bio-marker for evaluation of pulmonary diseases such as chronic bronchitis, bronchiectasis. While an image-based analysis of the airway tree can provide precise and valuable airway size information, quantitative measurement of AWT in Multidetector-Row Computed Tomography (MDCT) images involves various sources of error and uncertainty. So we have developed an accurate AWT measurement technique for small airways with three-dimensional (3-D) approach. To evaluate performance of these techniques, we used a set of acryl tube phantom was made to mimic small airways to have three different sizes of wall diameter (4.20, 1.79, 1.24 mm) and wall thickness (1.84, 1.22, 0.67 mm). The phantom was imaged with MDCT using standard reconstruction kernel (Sensation 16, Siemens, Erlangen). The pixel size was 0.488 mm × 0.488 mm × 0.75 mm in x, y, and z direction respectively. The images were magnified in 5 times using cubic B-spline interpolation, and line profiles were obtained for each tube. To recover faithful line profile from the blurred images, the line profiles were deconvolved with a point spread kernel of the MDCT which was estimated using the ideal tube profile and image line profile. The inner diameter, outer diameter, and wall thickness of each tube were obtained with full-width-half-maximum (FWHM) method for the line profiles before and after deconvolution processing. Results show that significant improvement was achieved over the conventional FWHM method in the measurement of AWT.

  18. Airway smooth muscle growth in asthma: proliferation, hypertrophy, and migration.

    PubMed

    Bentley, J Kelley; Hershenson, Marc B

    2008-01-01

    Increased airway smooth muscle mass is present in fatal and non-fatal asthma. However, little information is available regarding the cellular mechanism (i.e., hyperplasia vs. hypertrophy). Even less information exists regarding the functional consequences of airway smooth muscle remodeling. It would appear that increased airway smooth muscle mass would tend to increase airway narrowing and airflow obstruction. However, the precise effects of increased airway smooth muscle mass on airway narrowing are not known. This review will consider the evidence for airway smooth muscle cell proliferation and hypertrophy in asthma, potential functional effects, and biochemical mechanisms.

  19. Myeloid sarcoma causing airway obstruction

    PubMed Central

    Krause, John R.

    2017-01-01

    Myeloid sarcoma is an extramedullary collection of blasts of the myeloid series that partially or totally effaces the architecture of the tissue in which it is found. These tumors have been described in many sites of the body, but the skin, lymph nodes, gastrointestinal tract, bone, soft tissue, and testes are most common. They can arise in a patient following the diagnosis of acute myeloid leukemia, but they may also be precursors of leukemia and should be considered diagnostic for acute myeloid leukemia. The differential diagnosis of this neoplasm includes malignant lymphoma, with which it is often mistaken, leading to diagnostic and therapeutic delays. We present the case of an 84-year-old African American man with a history of renal disease secondary to hypertension and coronary artery disease without any prior history of malignancies who presented with airway obstruction. He was diagnosed with a myeloid sarcoma of the mediastinum compressing his trachea.

  20. Amniotic fluid

    MedlinePlus

    ... carefully. Removing a sample of the fluid through amniocentesis can provide information about the sex, health, and development of the fetus. Images Amniocentesis Amniotic fluid Polyhydramnios Amniotic fluid References Cunningham FG, ...

  1. The Development and Application of Airway Devices in China

    PubMed Central

    Chen, Xiangdong; Ma, Wuhua; Liu, Renyu; Yao, Shanglong

    2017-01-01

    Airway management is one of the most important tasks for anesthesiologists. Anesthesiologists are experts in airway management and have made tremendous contribution to the development of the airway devices. Chinese anesthesiologists have made significant contribution in introducing advanced airway management and developing innovative techniques and devices for airway management in China. This article overviews the development and application of airway devices in China as well as the dedication and contribution of Chinese experts in the development of novel airway devices. With the development of science and technology accompanied by the advanced knowledge in airway management, more effective and safe artificial airways will be developed for clinical practice. The authors believe that Chinese experts will continue their outstanding contribution to the development of innovative airway devices, systems and knowledge. PMID:28191485

  2. Pharmacology of airway afferent nerve activity

    PubMed Central

    Undem, Bradley J; Carr, Michael J

    2001-01-01

    Afferent nerves in the airways serve to regulate breathing pattern, cough, and airway autonomic neural tone. Pharmacologic agents that influence afferent nerve activity can be subclassified into compounds that modulate activity by indirect means (e.g. bronchial smooth muscle spasmogens) and those that act directly on the nerves. Directly acting agents affect afferent nerve activity by interacting with various ion channels and receptors within the membrane of the afferent terminals. Whether by direct or indirect means, most compounds that enter the airspace will modify afferent nerve activity, and through this action alter airway physiology. PMID:11686889

  3. Firefighting acutely increases airway responsiveness.

    PubMed

    Sherman, C B; Barnhart, S; Miller, M F; Segal, M R; Aitken, M; Schoene, R; Daniell, W; Rosenstock, L

    1989-07-01

    The acute effects of the products of combustion and pyrolysis on airway responsiveness among firefighters are poorly documented. To study this relationship, spirometry and methacholine challenge testing (MCT) were performed on 18 active Seattle firefighters before and 5 to 24 h after firefighting. Body plethysmography was used to measure changes in specific airway conductance (SGaw), and results of MCT were analyzed using PD35-SGaw, the cumulative dose causing a 35% decrease in SGaw. Subjects who did not react by the end of the protocol were assigned a value of 640 inhalational units, the largest cumulative dose. Fire exposure was defined as the total time (hours) spent without a self-contained breathing apparatus at the firesite and was categorized as mild (less than 1 h, n = 7), moderate (1 to 2 h, n = 5), or severe (greater than 2 h, n = 6). Mean age of the 18 firefighters was 36.7 +/- 6.7 yr (range, 25 to 51), with a mean of 9.1 +/- 7.9 active years in the trade (range, zero to 22). None was known to be asthmatic. After firefighting, FEV1 % predicted (%pred) and FEF25-75 %pred significantly decreased by means of 3.4 +/- 1.1% and 5.6 +/- 2.6%, respectively. The mean decline in PD35-SGaw after firefighting was 184.5 +/- 53.2 units (p = 0.003). This observed decline in PD35-SGaw could not be explained by decrements in prechallenge SGaw, FEV1, or FVC.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Role of interleukin-8 (IL-8) and an inhibitory effect of erythromycin on IL-8 release in the airways of patients with chronic airway diseases.

    PubMed Central

    Oishi, K; Sonoda, F; Kobayashi, S; Iwagaki, A; Nagatake, T; Matsushima, K; Matsumoto, K

    1994-01-01

    To evaluate of the role of interleukin-8 (IL-8), a chemotactic cytokine, in the continuous neutrophil accumulation in the airways of patients with chronic airway disease (CAD) and persistent Pseudomonas aeruginosa infection, we investigated the cell population, IL-8 levels, IL-1 beta levels, tumor necrosis factor (TNF) activities, and neutrophil elastase (NE) activities of bronchoalveolar lavage (BAL) fluids in 17 CAD patients (with P. aeruginosa infections [CAD+PA], n = 9; without any bacterial infections [CAD-PA], n = 8) and 8 normal volunteers. We found significant elevations of neutrophil numbers, IL-8/albumin ratios, and NE/albumin ratios in BAL fluids from CAD patients, in the following rank order: CAD+PA > CAD-PA > normal volunteers. IL-1 beta/albumin ratios were elevated only in CAD+PA, while no TNF bioactivity was detected in BAL fluids. The neutrophil numbers correlated significantly with the IL-8/albumin ratios and NE/albumin ratios in the BAL fluids of CAD patients. When anti-human IL-8 immunoglobulin G was used for neutralizing neutrophil chemotactic factor (NCF) activities in BAL fluids, the mean reduction rate of NCF activities in CAD+PA patients was significantly higher than that in CAD-PA patients. We also evaluated the effects of low-dose, long-term erythromycin therapy in BAL fluids from three CAD+PA and two CAD-PA patients. Treatment with erythromycin caused significant reductions of neutrophil numbers, IL-8/albumin ratios, and NE/albumin ratios in BAL fluids from these patients. To elucidate the mechanism of erythromycin therapy, we also examined whether erythromycin suppressed IL-8 production by human alveolar macrophages and neutrophils in vitro. We demonstrated a moderate inhibitory effect of erythromycin on IL-8 production in Pseudomonas-stimulated neutrophils but not in alveolar macrophages. Our data support the view that persistent P. aeruginosa infection enhances IL-8 production and IL-8-derived NCF activity, causing neutrophil

  5. Smoking-Associated Disordering of the Airway Basal Stem/Progenitor Cell Metabotype

    PubMed Central

    Deeb, Ruba S.; Walters, Matthew S.; Strulovici-Barel, Yael; Chen, Qiuying; Gross, Steven S.

    2016-01-01

    The airway epithelium is a complex pseudostratified multicellular layer lining the tracheobronchial tree, functioning as the primary defense against inhaled environmental contaminants. The major cell types of the airway epithelium include basal, intermediate columnar, ciliated, and secretory. Basal cells (BCs) are the proliferating stem/progenitor population that differentiate into the other specialized cell types of the airway epithelium during normal turnover and repair. Given that cigarette smoke delivers thousands of xenobiotics and high levels of reactive molecules to the lung epithelial surface, we hypothesized that cigarette smoke broadly perturbs BC metabolism. To test this hypothesis, primary airway BCs were isolated from healthy nonsmokers (n = 11) and healthy smokers (n = 7) and assessed by global metabolic profiling by liquid chromatography–mass spectrometry. The analysis identified 52 significant metabolites in BCs differentially expressed between smokers and nonsmokers (P < 0.05). These changes included metabolites associated with redox pathways, energy production, and inflammatory processes. Notably, BCs from smokers exhibited altered levels of the key enzyme cofactors/substrates nicotinamide adenine dinucleotide, flavin adenine dinucleotide, acetyl coenzyme A, and membrane phospholipid levels. Consistent with the high burden of oxidants in cigarette smoke, glutathione levels were diminished, whereas 3-nitrotyrosine levels were increased, suggesting that protection of airway epithelial cells against oxidative and nitrosative stress is significantly compromised in smoker BCs. It is likely that this altered metabotype is a reflection of, and likely contributes to, the disordered biology of airway BCs consequent to the stress cigarette smoking puts on the airway epithelium. PMID:26161876

  6. An asymptotic model of particle deposition at an airway bifurcation

    PubMed Central

    Zierenberg, Jennifer R.; Halpern, David; Filoche, Marcel; Sapoval, Bernard; Grotberg, James B.

    2013-01-01

    Particle transport and deposition associated with flow over a wedge is investigated as a model for particle transport and flow at the carina of an airway bifurcation during inspiration. Using matched asymptotics, a uniformly valid solution is obtained to represent the high Reynolds number flow over a wedge that considers the viscous boundary layer near the wedge and the outer inviscid region and is then used to solve the particle transport equations. Sometimes particle impaction on the wedge is prevented due to the boundary layer. We call this boundary layer shielding (BLS). This effect can be broken down into different types: rejection, trapping and deflection that are described by what happens to the particle’s initial negative velocity normal to the wall either changing sign, reaching zero, or remaining negative in the boundary layer region. The deposition efficiency depends on the critical Stokes number but exhibits a weak dependence on Reynolds number. Deposition efficiency for Sc in the range 0 < Sc < 0.4 yields the following relationship De ≈ (1.867 Sc1.78− 0.016) sin(βπ/2) at large Reynolds numbers, where βπ is the wedge angle. For a specific deposition efficiency, Sc decreases as βπ increases. The distribution of impacted particles was also computed and revealed that particles primarily impact within one airway diameter of the carina, consistent with computational fluid dynamics approaches. This work provides a new insight that the BLS inherent to the wedge component of the structure is the dominant reason for the particle distribution. This finding is important in linking aerosol deposition to the location of airway disease as well as target sites for therapeutic deposition. PMID:22378463

  7. Upper airway imaging in pediatric obstructive sleep apnea syndrome.

    PubMed

    Slaats, Monique A; Van Hoorenbeeck, Kim; Van Eyck, Annelies; Vos, Wim G; De Backer, Jan W; Boudewyns, An; De Backer, Wilfried; Verhulst, Stijn L

    2015-06-01

    Obstructive sleep apnea syndrome in children is a manifestation of sleep-disordered breathing and associated with a number of complications. Structural narrowing of the upper airway in combination with inadequate compensation for a decrease in neuromuscular tone is an important factor in the pathogenesis. Adenotonsillar hypertrophy is the most important predisposing factor. However, many other causes of craniofacial defects may coexist. Additionally, the pathogenesis of narrowing is more complex in certain subgroups such as children with obesity, craniofacial malformations, Down syndrome or neuromuscular disorders. The diagnosis of obstructive sleep apnea is based on an overnight polysomnography. This investigation is expensive, time consuming and not widely available. In view of the major role of structural narrowing, upper airway imaging could be a useful tool for investigating obstructive sleep apnea and in establishing the site(s) of obstruction. Several radiological techniques (lateral neck radiography, cephalometry, computerized tomography, magnetic resonance imaging and post-processing of these images using computational fluid dynamics) have been used to investigate the role of structural alterations in the pathogenesis. We reviewed the literature to examine if upper airway imaging could replace polysomnography in making the diagnosis and if imaging could predict the effect of treatment with a focus on adenotonsillectomy. There is a limited number of high quality studies of imaging predicting the effect of treatment. To avoid unnecessary risks and ineffective surgeries, it seems crucial to couple the exact individual anatomical risk factor with the most appropriate treatment. We conclude that imaging could be a non-invasive tool that could assist in selection of treatment.

  8. In Vitro Modeling of RSV Infection and Cytopathogenesis in Well-Differentiated Human Primary Airway Epithelial Cells (WD-PAECs).

    PubMed

    Broadbent, Lindsay; Villenave, Remi; Guo-Parke, Hong; Douglas, Isobel; Shields, Michael D; Power, Ultan F

    2016-01-01

    The choice of model used to study human respiratory syncytial virus (RSV) infection is extremely important. RSV is a human pathogen that is exquisitely adapted to infection of human hosts. Rodent models, such as mice and cotton rats, are semi-permissive to RSV infection and do not faithfully reproduce hallmarks of RSV disease in humans. Furthermore, immortalized airway-derived cell lines, such as HEp-2, BEAS-2B, and A549 cells, are poorly representative of the complexity of the respiratory epithelium. The development of a well-differentiated primary pediatric airway epithelial cell models (WD-PAECs) allows us to simulate several hallmarks of RSV infection of infant airways. They therefore represent important additions to RSV pathogenesis modeling in human-relevant tissues. The following protocols describe how to culture and differentiate both bronchial and nasal primary pediatric airway epithelial cells and how to use these cultures to study RSV cytopathogenesis.

  9. Gene Transfer by Guanidinium-Cholesterol Cationic Lipids into Airway Epithelial Cells in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Oudrhiri, Noufissa; Vigneron, Jean-Pierre; Peuchmaur, Michel; Leclerc, Tony; Lehn, Jean-Marie; Lehn, Pierre

    1997-03-01

    Synthetic vectors represent an attractive alternative approach to viral vectors for gene transfer, in particular into airway epithelial cells for lung-directed gene therapy for cystic fibrosis. Having recently found that guanidinium-cholesterol cationic lipids are efficient reagents for gene transfer into mammalian cell lines in vitro, we have investigated their use for gene delivery into primary airway epithelial cells in vitro and in vivo. The results obtained indicate that the lipid bis (guanidinium)-tren-cholesterol (BGTC) can be used to transfer a reporter gene into primary human airway epithelial cells in culture. Furthermore, liposomes composed of BGTC and dioleoyl phosphatidylethanolamine (DOPE) are efficient for gene delivery to the mouse airway epithelium in vivo. Transfected cells were detected both in the surface epithelium and in submucosal glands. In addition, the transfection efficiency of BGTC/DOPE liposomes in vivo was quantitatively assessed by using the luciferase reporter gene system.

  10. In vivo size and shape measurement of the human upper airway using endoscopic longrange optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Armstrong, Julian J.; Leigh, Matthew S.; Walton, Ian D.; Zvyagin, Andrei V.; Alexandrov, Sergey A.; Schwer, Stefan; Sampson, David D.; Hillman, David R.; Eastwood, Peter R.

    2003-07-01

    We describe a long-range optical coherence tomography system for size and shape measurement of large hollow organs in the human body. The system employs a frequency-domain optical delay line of a configuration that enables the combination of high-speed operation with long scan range. We compare the achievable maximum delay of several delay line configurations, and identify the configurations with the greatest delay range. We demonstrate the use of one such long-range delay line in a catheter-based optical coherence tomography system and present profiles of the human upper airway and esophagus in vivo with a radial scan range of 26 millimeters. Such quantitative upper airway profiling should prove valuable in investigating the pathophysiology of airway collapse during sleep (obstructive sleep apnea).

  11. Diesel exhaust particles and airway inflammation

    EPA Science Inventory

    Purpose of review. Epidemiologic investigation has associated traffic-related air pollution with adverse human health outcomes. The capacity ofdiesel exhaust particles (DEP), a major emission source air pollution particle, to initiate an airway inflammation has subsequently been ...

  12. Airway management for cervical spine surgery.

    PubMed

    Farag, Ehab

    2016-03-01

    Cervical spine surgery is one of the most commonly performed spine surgeries in the United States, and 90% of the cases are related to degenerative cervical spine disease (the rest to cervical spine trauma and/or instability). The airway management for cervical spine surgery represents a crucial step in the anesthetic management to avoid injury to the cervical cord. The crux for upper airway management for cervical spine surgery is maintaining the neck in a neutral position with minimal neck movement during endotracheal intubation. Therefore, the conventional direct laryngoscopy (DL) can be unsuitable for securing the upper airway in cervical spine surgery, especially in cases of cervical spine instability and myelopathy. This review discusses the most recent evidence-based facts of the main advantages and limitations of different techniques available for upper airway management for cervical spine surgery.

  13. Therapeutic bronchoscopic interventions for malignant airway obstruction

    PubMed Central

    Dalar, Levent; Özdemir, Cengiz; Abul, Yasin; Karasulu, Levent; Sökücü, Sinem Nedime; Akbaş, Ayşegül; Altın, Sedat

    2016-01-01

    Abstract There is no definitive consensus about the factors affecting the choice of interventional bronchoscopy in the management of malignant airway obstruction. The present study defines the choice of the interventional bronchoscopic modality and analyzes the factors influencing survival in patients with malignant central airway obstruction. Totally, over 7 years, 802 interventional rigid bronchoscopic procedures were applied in 547 patients having malignant airway obstruction. There was a significant association between the type of stent and the site of the lesion in the present study. Patients with tracheal involvement and/or involvement of the main bronchi had the worst prognosis. The sites of the lesion and endobronchial treatment modality were independent predictors of survival in the present study. The selection of different types of airway stents can be considered on the base of site of the lesion. Survival can be estimated based on the site of the lesion and endobronchial brochoscopic modality used. PMID:27281104

  14. Epithelial cell-extracellular matrix interactions and stem cells in airway epithelial regeneration.

    PubMed

    Coraux, Christelle; Roux, Jacqueline; Jolly, Thomas; Birembaut, Philippe

    2008-08-15

    In healthy subjects, the respiratory epithelium forms a continuous lining to the airways and to the environment, and plays a unique role as a barrier against external deleterious agents to protect the airways from the insults. In respiratory diseases such as cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), chronic bronchitis, or asthma, the airway epithelium is frequently remodeled and injured, leading to the impairment of its defense functions. The rapid restoration of the epithelial barrier is crucial for these patients. The complete regeneration of the airway epithelium is a complex phenomenon, including not only the epithelial wound repair but also the epithelial differentiation to reconstitute a fully well differentiated and functional epithelium. The regeneration implies two partners: the epithelial stem/progenitor cells and factors able to regulate this process. Among these factors, epithelial cells-extracellular matrix (ECM) interactions play a crucial role. The secretion of a provisional ECM, the cell-ECM relationships through epithelial receptors, and the remodeling of the ECM by proteases (mainly matrix metalloproteinases) contribute not only to airway epithelial repair by modulating epithelial cell migration and proliferation, but also to the differentiation of repairing cells leading to the complete restoration of the wounded epithelium. A better characterization of resident stem cells and of effectors of the regeneration process is an essential prerequisite to propose new regenerative therapeutics to patients suffering from infectious/inflammatory respiratory diseases.

  15. Prehospital airway management: high tech meets trauma: an air medical perspective.

    PubMed

    Bauer, Kris

    2012-01-01

    Trauma is the leading cause of death in the United States for those younger than 35 years and injuries sustained from trauma are a significant source of moderate to severe disability. The inability to establish, secure, or maintain a definitive airway is a major cause of preventable death and secondary injury due to inadequate oxygenation and ventilation. Prehospital airway management is an essential skill of any prehospital care provider. A critical component to providing excellent airway management is the ability of the provider to quickly establish endotracheal intubation without complications such as hypoxia, hyper/hypocapnea, or hypotension. These complications have been shown to cause increased morbidity and mortality, especially in patients suffering from traumatic brain injury. This article presents some of the challenges faced by flight nurses in the air medical environment and how Airlift Northwest has developed a structured, standardized approach to airway management both in training and it the prehospital setting. We will discuss the process improvements that lead to the implementation of video laryngoscopy as our first-line intubation tool. The ultimate goal of any air medical or prehospital emergency medical services program is to manage 100% of airways without complications, which will decrease morbidity and mortality, ultimately improving patient outcomes.

  16. Accurate airway segmentation based on intensity structure analysis and graph-cut

    NASA Astrophysics Data System (ADS)

    Meng, Qier; Kitsaka, Takayuki; Nimura, Yukitaka; Oda, Masahiro; Mori, Kensaku

    2016-03-01

    This paper presents a novel airway segmentation method based on intensity structure analysis and graph-cut. Airway segmentation is an important step in analyzing chest CT volumes for computerized lung cancer detection, emphysema diagnosis, asthma diagnosis, and pre- and intra-operative bronchoscope navigation. However, obtaining a complete 3-D airway tree structure from a CT volume is quite challenging. Several researchers have proposed automated algorithms basically based on region growing and machine learning techniques. However these methods failed to detect the peripheral bronchi branches. They caused a large amount of leakage. This paper presents a novel approach that permits more accurate extraction of complex bronchial airway region. Our method are composed of three steps. First, the Hessian analysis is utilized for enhancing the line-like structure in CT volumes, then a multiscale cavity-enhancement filter is employed to detect the cavity-like structure from the previous enhanced result. In the second step, we utilize the support vector machine (SVM) to construct a classifier for removing the FP regions generated. Finally, the graph-cut algorithm is utilized to connect all of the candidate voxels to form an integrated airway tree. We applied this method to sixteen cases of 3D chest CT volumes. The results showed that the branch detection rate of this method can reach about 77.7% without leaking into the lung parenchyma areas.

  17. Near-field and far-field sound radiation from a line-driven fluid-loaded infinite flat plate having periodic and non-periodic attached rib stiffeners

    NASA Astrophysics Data System (ADS)

    Cray, Benjamin A.

    1992-03-01

    The far-field and near-field solutions for the radiated acoustic pressure from a line-driven fluid-loaded, rib-stiffened thin elastic plate have been obtained. The plate has been configured to have two sets of rib-stiffeners, though the formulation given may be extended to include additional rib-stiffener sets. The stiffeners composing a given set are identical and are spaced periodically with distance l. However, one set of stiffeners is shifted by an amount from the other set. In this manner, portions of the plate may be configured with repeating sections having non-periodic rib spacing. The stiffeners exert reactive forces upon the plate, but not angular moments. Fluid loading is included on the upper surface of the plate while the lower surface is unloaded, except for a time harmonic line force applied normal to the lower surface. Expressions are derived, for the special case of periodic inter-rib spacing, which give the wavenumbers at which the magnitude of the wavenumber response obtains relative maximum and minimum values. For a stiffened plate, it is seen that excitation frequencies below coincidence generate large magnitude supersonic wavenumber components.

  18. Pulmonary Fluid Flow Challenges for Experimental and Mathematical Modeling

    PubMed Central

    Levy, Rachel; Hill, David B.; Forest, M. Gregory; Grotberg, James B.

    2014-01-01

    Modeling the flow of fluid in the lungs, even under baseline healthy conditions, presents many challenges. The complex rheology of the fluids, interaction between fluids and structures, and complicated multi-scale geometry all add to the complexity of the problem. We provide a brief overview of approaches used to model three aspects of pulmonary fluid and flow: the surfactant layer in the deep branches of the lung, the mucus layer in the upper airway branches, and closure/reopening of the airway. We discuss models of each aspect, the potential to capture biological and therapeutic information, and open questions worthy of further investigation. We hope to promote multi-disciplinary collaboration by providing insights into mathematical descriptions of fluid-mechanics in the lung and the kinds of predictions these models can make. PMID:25096289

  19. Quantitative imaging of airway liquid absorption in cystic fibrosis.

    PubMed

    Locke, Landon W; Myerburg, Michael M; Markovetz, Matthew R; Parker, Robert S; Weber, Lawrence; Czachowski, Michael R; Harding, Thomas J; Brown, Stefanie L; Nero, Joseph A; Pilewski, Joseph M; Corcoran, Timothy E

    2014-09-01

    New measures are needed to rapidly assess emerging treatments for cystic fibrosis (CF) lung disease. Using an imaging approach, we evaluated the absorptive clearance of the radiolabeled small molecule probe diethylene triamine penta-acetic acid (DTPA) as an in vivo indicator of changes in airway liquid absorption. DTPA absorption and mucociliary clearance rates were measured in 21 patients with CF (12 adults and nine children) and nine adult controls using nuclear imaging. The effect of hypertonic saline on DTPA absorption was also studied. In addition, in vitro studies were conducted to identify the determinants of transepithelial DTPA absorption. CF patients had significantly increased rates of DTPA absorption compared with control subjects but had similar mucociliary clearance rates. Treatment with hypertonic saline resulted in a decrease in DTPA absorption and an increase in mucociliary clearance in 11 out of 11 adult CF patients compared with treatment with isotonic saline. In vitro studies revealed that ∼ 50% of DTPA absorption can be attributed to transepithelial fluid transport. Apically applied mucus impedes liquid and DTPA absorption. However, mucus effects become negligible in the presence of an osmotic stimulus. Functional imaging of DTPA absorption provides a quantifiable marker of immediate response to treatments that promote airway surface liquid hydration.

  20. Platelet rich plasma improves the healing process after airway anastomosis.

    PubMed

    Gómez-Caro, Abel; Ausin, Pilar; Boada, Marc

    2011-12-01

    This study investigated whether platelet-rich plasma (PRP) promotes healing and reduces anastomotic complications following airway surgery in a pig model. PRP was obtained by spinning down the animal's own blood (60 ml) and collecting the buffy coat containing platelets and white blood cells. Fifteen adult pigs were randomized into three groups: (1) sham treatment (cervicotomy), (2) non-PRP group (50% tracheal resection and end-to-end anastomosis), and (3) PRP group (50% tracheal resection, end-to-end anastomosis and PRP application). Blood samples were taken at baseline and at one, six and 24. Animals were monitored for anastomotic complications, infection and local reactivity. Laser Doppler flowmetry was performed intraoperatively and at 30 days to assess differences in pre- and post-anastomotic blood flow. The tensile strength of the anastomosis was also tested. The platelet level was higher in PRP fluid than in the baseline blood sample (P<0.002). Vascular endothelial growth factor, transforming growth factor β-1 and epidermal growth factor immunoassay readings peaked at one and six hours in the animals that had received PRP (P<0.03); these also showed significantly increased transanastomotic flow and stress-strain resistance (P<0.04) at 30 days than the animals that had not received PRP. PRP therefore, accelerates the onset of healing in airway surgery by promoting an earlier release of platelet-derived growth factors that stimulate transanastomotic angiogenesis.

  1. Taste Receptors in Upper Airway Immunity.

    PubMed

    Carey, Ryan M; Lee, Robert J; Cohen, Noam A

    2016-01-01

    Taste receptors are well known for their role in communicating information from the tongue to the brain about nutritional value or potential toxicity of ingested substances. More recently, it has been shown that taste receptors are expressed in other locations throughout the body, including the airway, gastrointestinal tract, brain and pancreas. The roles of some 'extraoral' taste receptors are largely unknown, but emerging research suggests that bitter and sweet taste receptors in the airway are capable of sensing bacteria and modulating innate immunity. This chapter focuses on the role of bitter and sweet taste receptors in human airway innate immunity and their clinical relevance to rhinosinusitis. The bitter taste receptor T2R38 expressed in sinonasal cilia detects bitter bacterial quorum-sensing molecules and activates a nitric oxide-dependent innate immune response; moreover, there are polymorphisms in T2R38 that underlie susceptibility to chronic rhinosinusitis (CRS). Bitter and sweet receptors in sinonasal solitary chemosensory cells control secretion of antimicrobial peptides in the upper airway and may have a profound impact on airway infections in patients with CRS and diabetes. Future research on taste receptors in the airway has enormous potential to expand our understanding of host-pathogen immune interactions and provide novel therapeutic targets.

  2. Sensory nerves in lung and airways.

    PubMed

    Lee, Lu-Yuan; Yu, Jerry

    2014-01-01

    Sensory nerves innervating the lung and airways play an important role in regulating various cardiopulmonary functions and maintaining homeostasis under both healthy and disease conditions. Their activities conducted by both vagal and sympathetic afferents are also responsible for eliciting important defense reflexes that protect the lung and body from potential health-hazardous effects of airborne particulates and chemical irritants. This article reviews the morphology, transduction properties, reflex functions, and respiratory sensations of these receptors, focusing primarily on recent findings derived from using new technologies such as neural immunochemistry, isolated airway-nerve preparation, cultured airway neurons, patch-clamp electrophysiology, transgenic mice, and other cellular and molecular approaches. Studies of the signal transduction of mechanosensitive afferents have revealed a new concept of sensory unit and cellular mechanism of activation, and identified additional types of sensory receptors in the lung. Chemosensitive properties of these lung afferents are further characterized by the expression of specific ligand-gated ion channels on nerve terminals, ganglion origin, and responses to the action of various inflammatory cells, mediators, and cytokines during acute and chronic airway inflammation and injuries. Increasing interest and extensive investigations have been focused on uncovering the mechanisms underlying hypersensitivity of these airway afferents, and their role in the manifestation of various symptoms under pathophysiological conditions. Several important and challenging questions regarding these sensory nerves are discussed. Searching for these answers will be a critical step in developing the translational research and effective treatments of airway diseases.

  3. Regulation of Airway Mucin Gene Expression

    PubMed Central

    Thai, Philip; Loukoianov, Artem; Wachi, Shinichiro; Wu, Reen

    2015-01-01

    Mucins are important components that exert a variety of functions in cell-cell interaction, epidermal growth factor receptor signaling, and airways protection. In the conducting airways of the lungs, mucins are the major contributor to the viscoelastic property of mucous secretion, which is the major barrier to trapping inhaled microbial organism, particulates, and oxidative pollutants. The homeostasis of mucin production is an important feature in conducting airways for the maintenance of mucociliary function. Aberrant mucin secretion and accumulation in airway lumen are clinical hallmarks associated with various lung diseases, such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, emphysema, and lung cancer. Among 20 known mucin genes identified, 11 of them have been verified at either the mRNA and/or protein level in airways. The regulation of mucin genes is complicated, as are the mediators and signaling pathways. This review summarizes the current view on the mediators, the signaling pathways, and the transcriptional units that are involved in the regulation of airway mucin gene expression. In addition, we also point out essential features of epigenetic mechanisms for the regulation of these genes. PMID:17961085

  4. Nitrogen Dioxide Exposure and Airway Responsiveness in ...

    EPA Pesticide Factsheets

    Controlled human exposure studies evaluating the effect of inhaled NO2 on the inherent responsiveness of the airways to challenge by bronchoconstricting agents have had mixed results. In general, existing meta-analyses show statistically significant effects of NO2 on the airway responsiveness of individuals with asthma. However, no meta-analysis has provided a comprehensive assessment of clinical relevance of changes in airway responsiveness, the potential for methodological biases in the original papers, and the distribution of responses. This paper provides analyses showing that a statistically significant fraction, 70% of individuals with asthma exposed to NO2 at rest, experience increases in airway responsiveness following 30-minute exposures to NO2 in the range of 200 to 300 ppb and following 60-minute exposures to 100 ppb. The distribution of changes in airway responsiveness is log-normally distributed with a median change of 0.75 (provocative dose following NO2 divided by provocative dose following filtered air exposure) and geometric standard deviation of 1.88. About a quarter of the exposed individuals experience a clinically relevant reduction in their provocative dose due to NO2 relative to air exposure. The fraction experiencing an increase in responsiveness was statistically significant and robust to exclusion of individual studies. Results showed minimal change in airway responsiveness for individuals exposed to NO2 during exercise. A variety of fa

  5. Exposure to welding fumes and lower airway infection with Streptococcus pneumoniae

    PubMed Central

    Suri, Reetika; Periselneris, Jimstan; Lanone, Sophie; Zeidler-Erdely, Patti C.; Melton, Geoffrey; Palmer, Keith T.; Andujar, Pascal; Antonini, James M.; Cohignac, Vanessa; Erdely, Aaron; Jose, Ricardo J.; Mudway, Ian; Brown, Jeremy; Grigg, Jonathan

    2015-01-01

    Background Welders are at increased risk of pneumococcal pneumonia. The mechanism for this association is not known. The capacity of pneumococci to adhere to and infect lower airway cells is mediated by host-expressed platelet-activating factor receptor (PAFR). Objective We sought to assess the effect of mild steel welding fumes (MS-WF) on PAFR-dependent pneumococcal adhesion and infection to human airway cells in vitro and on pneumococcal airway infection in a mouse model. Methods The oxidative potential of MS-WF was assessed by their capacity to reduce antioxidants in vitro. Pneumococcal adhesion and infection of A549, BEAS-2B, and primary human bronchial airway cells were assessed by means of quantitative bacterial culture and expressed as colony-forming units (CFU). After intranasal instillation of MS-WF, mice were infected with Streptococcus pneumoniae, and bronchoalveolar lavage fluid (BALF) and lung CFU values were determined. PAFR protein levels were assessed by using immunofluorescence and immunohistochemistry, and PAFR mRNA expression was assessed by using quantitative PCR. PAFR was blocked by CV-3988, and oxidative stress was attenuated by N-acetylcysteine. Results: MS-WF exhibited high oxidative potential. In A549 and BEAS-2B cells MS-WF increased pneumococcal adhesion and infection and PAFR protein expression. Both CV-3988 and N-acetylcysteine reduced MS-WF–stimulated pneumococcal adhesion and infection of airway cells. MS-WF increased mouse lung PAFR mRNA expression and increased BALF and lung pneumococcal CFU values. In MS-WF–exposed mice CV-3988 reduced BALF CFU values. Conclusions Hypersusceptibility of welders to pneumococcal pneumonia is in part mediated by the capacity of welding fumes to increase PAFR-dependent pneumococcal adhesion and infection of lower airway cells. PMID:26277596

  6. The origin of fluids and gases in the DFDP-2B borehole, New Zealand; insight from on-line mud gas monitoring

    NASA Astrophysics Data System (ADS)

    Mathewson, Loren; Wiersberg, Thomas; Niedermann, Samuel; Erzinger, Joerg; Menzies, Catriona; Toy, Virginia; Zimmer, Martin

    2016-04-01

    The Deep Fault Drilling Project (DFDP) aims to improve our understanding of the Alpine Fault Zone, a tectonically active fault system in New Zealand known to rupture in large events, by deep scientific drilling. The borehole DFDP-2B approached the Alpine Fault at depth, reaching a final depth of 892 m. During drilling, gas was extracted from returning drilling mud and changes in the gas composition were tracked by mass spectrometry (N2, O2, Ar, CO2, CH4, He, and H2), gas chromatography (CH4, C2H6, C3H8, i/n-C4H10), and alpha-spectrometry for 222Rn. The rapid formation of mud wall cake seals the borehole from fluid inflow along the borehole; hence formation-derived gases enter mostly at the drill bit during drilling. Gas was sampled for offline analyses on noble gas and stable isotopes to complement the dataset. Apart from an atmospheric input, the gases in drilling mud derive from the pore space of rock, crushed at the drill bit, and from permeable layers intersected by the borehole. OLGA thus may provide information on fluid origins, flow rates and paths, fluid-rock interactions along these paths, and the permeability structure of the faulted rock mass. The principle formation-derived gases found in drilling mud during drilling of DFDP-2 were CO2 (≤1.7 vol.-%), H2 (<2.5 vol.-%), and CH4 (≤0.18 vol.-%), with minor contributions of He. Zones of enhanced gas concentrations and high radon activity are interpreted to reflect intervals of active fluid flow through highly fractured and faulted rock. Air-corrected 3He/4He values of samples from 236m (0.68 Ra), 610m (1.03 Ra) and 707m (0.63 Ra) show mantle helium contributions similar to those measured in hot springs along the Alpine Fault, e.g. Fox River (0.64 Ra), Copland (0.42 Ra), Lower Wanganui (0.81 Ra). CH4/C2H6 (~20) and δ13C of methane (-31.7 ‰ PDB) underpin a thermogenic origin of hydrocarbons at depths below 600m, while mixing with biogenic gas is indicated at shallower depth (δ13C of methane= -46.7

  7. Slowly Adapting Sensory Units Have More Receptors in Large Airways than in Small Airways in Rabbits

    PubMed Central

    Liu, Jun; Song, Nana; Guardiola, Juan; Roman, Jesse; Yu, Jerry

    2016-01-01

    Sensory units of pulmonary slowly adapting receptors (SARs) are more active in large airways than in small airways. However, there is no explanation for this phenomenon. Although sensory structures in large airways resemble those in small airways, they are bigger and more complex. Possibly, a larger receptor provides greater surface area for depolarization, and thus has a lower activating threshold and/or a higher sensitivity to stretch, leading to more nerve electrical activities. Recently, a single sensory unit has been reported to contain multiple receptors. Therefore, sensory units in large airways may contain more SARs, which may contribute to high activities. To test this hypothesis, we used a double staining technique to identify sensory receptor sizes. We labeled the sensory structure with Na+/K+-ATPase antibodies and the myelin sheath with myelin basic protein (MBP) antibodies. A SAR can be defined as the end formation beyond MBP labeling. Thus, we are able to compare sizes of sensory structures and SARs in large (trachea and bronchi) vs. small (bronchioles <500 μm in diameter) airways in the rabbit. We found that even though the sensory structure was bigger in large airways than in small airways (3340 ± 223 vs. 1168 ± 103 μm2; P < 0.0001), there was no difference in receptor sizes (349 ± 14 vs. 326 ± 16 μm2; > 0.05). However, the sensory structure contains more SARs in large airways than in small airways (9.6 ± 0.6 vs. 3.6 ± 0.3; P < 0.0001). Thus, our data support the hypothesis that greater numbers of SARs in sensory units of large airways may contribute to higher activities. PMID:28018231

  8. Slowly Adapting Sensory Units Have More Receptors in Large Airways than in Small Airways in Rabbits.

    PubMed

    Liu, Jun; Song, Nana; Guardiola, Juan; Roman, Jesse; Yu, Jerry

    2016-01-01

    Sensory units of pulmonary slowly adapting receptors (SARs) are more active in large airways than in small airways. However, there is no explanation for this phenomenon. Although sensory structures in large airways resemble those in small airways, they are bigger and more complex. Possibly, a larger receptor provides greater surface area for depolarization, and thus has a lower activating threshold and/or a higher sensitivity to stretch, leading to more nerve electrical activities. Recently, a single sensory unit has been reported to contain multiple receptors. Therefore, sensory units in large airways may contain more SARs, which may contribute to high activities. To test this hypothesis, we used a double staining technique to identify sensory receptor sizes. We labeled the sensory structure with Na(+)/K(+)-ATPase antibodies and the myelin sheath with myelin basic protein (MBP) antibodies. A SAR can be defined as the end formation beyond MBP labeling. Thus, we are able to compare sizes of sensory structures and SARs in large (trachea and bronchi) vs. small (bronchioles <500 μm in diameter) airways in the rabbit. We found that even though the sensory structure was bigger in large airways than in small airways (3340 ± 223 vs. 1168 ± 103 μm(2); P < 0.0001), there was no difference in receptor sizes (349 ± 14 vs. 326 ± 16 μm(2); > 0.05). However, the sensory structure contains more SARs in large airways than in small airways (9.6 ± 0.6 vs. 3.6 ± 0.3; P < 0.0001). Thus, our data support the hypothesis that greater numbers of SARs in sensory units of large airways may contribute to higher activities.

  9. Upregulation and activation of eosinophil integrins in blood and airway after segmental lung antigen challenge1

    PubMed Central

    Johansson, Mats W.; Kelly, Elizabeth A. B.; Busse, William W.; Jarjour, Nizar N.; Mosher, Deane F.

    2008-01-01

    We hypothesized that there are clinically relevant differences in eosinophil integrin expression and activation in patients with asthma. To evaluate this, surface densities and activation states of integrins on eosinophils in blood and bronchoalveolar lavage (BAL) of 19 asthmatic subjects were studied before and 48 h after segmental Ag challenge. At 48 h, there was increased expression of αD and the N29 epitope of activated β1 integrins on blood eosinophils and of αM, β2, and the mAb24 epitope of activated β2 integrins on airway eosinophils. Changes correlated with the late-phase fall in forced expiratory volume in 1 s (FEV1) after whole-lung inhalation of the Ag that was subsequently used in segmental challenge and were greater in subjects defined as dual responders. Increased surface densities of αM and β2 and activation of β2 on airway eosinophils correlated with the concentration of IL-5 in BAL fluid. Activation of β1 and β2 on airway eosinophils correlated with eosinophil percentage in BAL. Thus, eosinophils respond to an allergic stimulus by activation of integrins in a sequence that likely promotes eosinophilic inflammation of the airway. Before challenge, β1 and β2 integrins of circulating eosinophils are in low-activation conformations, and αDβ2 surface expression is low. After Ag challenge, circulating eosinophils adopt a phenotype with activated β1 integrins and upregulated αDβ2, changes that are predicted to facilitate eosinophil arrest on VCAM-1 in bronchial vessels. Finally, eosinophils present in IL-5-rich airway fluid have a hyperadhesive phenotype associated with increased surface expression of αMβ2 and activation of β2 integrins. PMID:18490765

  10. FLUID SELECTING APPARATUS

    DOEpatents

    Stinson, W.J.

    1958-09-16

    A valve designed to selectively sample fluids from a number of sources is described. The valve comprises a rotatable operating lever connected through a bellows seal to a rotatable assembly containing a needle valve, bearings, and a rotational lock. The needle valve is connected through a flexible tube to the sample fluid outlet. By rotating the lever the needle valve is placed over . one of several fluid sources and locked in position so that the fluid is traasferred through the flexible tubing and outlet to a remote sampling system. The fluids from the nonselected sources are exhausted to a waste line. This valve constitutes a simple, dependable means of selecting a sample from one of several scurces.

  11. Vitamin D deficiency causes airway hyperresponsiveness, increases airway smooth muscle mass, and reduces TGF-β expression in the lungs of female BALB/c mice.

    PubMed

    Foong, Rachel E; Shaw, Nicole C; Berry, Luke J; Hart, Prue H; Gorman, Shelley; Zosky, Graeme R

    2014-01-01

    Abstract Vitamin D deficiency is associated with disease severity in asthma. We tested whether there is a causal association between vitamin D deficiency, airway smooth muscle (ASM) mass, and the development of airway hyperresponsiveness (AHR). A physiologically relevant mouse model of vitamin D deficiency was developed by raising BALB/c mice on vitamin D-deficient or -replete diets. AHR was assessed by measuring lung function responses to increasing doses of inhaled methacholine. Five-micron sections from formalin-fixed lungs were used for ASM measurement and assessment of lung structure using stereological methods. Transforming growth factor (TGF)-β levels were measured in bronchoalveolar lavage fluid (BALF). Lungs were dissected from embryonic day (E) 17.5 vitamin D-deficient and -replete fetal mice for quantification of ASM density and relative gene expression of TGF-β signaling pathway molecules. Eight-week-old adult vitamin D-deficient female mice had significantly increased airway resistance and ASM in the large airways compared with controls. Vitamin D-deficient female mice had a smaller lung volume, volume of parenchyma, and alveolar septa. Both vitamin D-deficient male and female mice had reduced TGF-β levels in BALF. Vitamin D deficiency did not have an effect on ASM density in E17.5 mice, however, expression of TGF-β1 and TGF-β receptor I was downregulated in vitamin D-deficient female fetal mice. Decreased expression of TGF-β1 and TGF-β receptor I during early lung development in vitamin D-deficient mice may contribute to airway remodeling and AHR in vitamin D-deficient adult female mice. This study provides a link between vitamin D deficiency and respiratory symptoms in chronic lung disease.

  12. Promotion of airway anastomotic microvascular regeneration and alleviation of airway ischemia by deferoxamine nanoparticles

    PubMed Central

    Tian, Wen; Sung, Yon K.; Sun, Wenchao; Hsu, Joe L.; Manickam, Sathish; Wagh, Dhananjay; Joubert, Lydia-Marie; Semenza, Gregg L.; Rajadas, Jayakumar; Nicolls, Mark R.

    2014-01-01

    Airway tissue ischemia and hypoxia in human lung transplantation is a consequence of the sacrifice of the bronchial circulation during the surgical procedure and is a major risk factor for the development of airway anastomotic complications. Augmented expression of hypoxia-inducible factor (HIF)-1α promotes microvascular repair and alleviates allograft ischemia and hypoxia. Deferoxamine mesylate (DFO) is an FDA-approved iron chelator which has been shown to upregulate cellular HIF-1α. Here, we developed a nanoparticle formulation of DFO that can be topically applied to airway transplants at the time of surgery. In a mouse orthotopic tracheal transplant (OTT) model, the DFO nanoparticle was highly effective in enhancing airway microvascular perfusion following transplantation through the production of the angiogenic factors, placental growth factor (PLGF) and stromal cell-derived factor (SDF)-1. The endothelial cells in DFO treated airways displayed higher levels of p-eNOS and Ki67, less apoptosis, and decreased production of perivascular reactive oxygen species (ROS) compared to vehicle-treated airways. In summary, a DFO formulation topically-applied at the time of surgery successfully augmented airway anastomotic microvascular regeneration and the repair of alloimmune-injured microvasculature. This approach may be an effective topical transplant-conditioning therapy for preventing airway complications following clinical lung transplantation. PMID:24161166

  13. Airway smooth muscle in airway reactivity and remodeling: what have we learned?

    PubMed Central

    2013-01-01

    It is now established that airway smooth muscle (ASM) has roles in determining airway structure and function, well beyond that as the major contractile element. Indeed, changes in ASM function are central to the manifestation of allergic, inflammatory, and fibrotic airway diseases in both children and adults, as well as to airway responses to local and environmental exposures. Emerging evidence points to novel signaling mechanisms within ASM cells of different species that serve to control diverse features, including 1) [Ca2+]i contractility and relaxation, 2) cell proliferation and apoptosis, 3) production and modulation of extracellular components, and 4) release of pro- vs. anti-inflammatory mediators and factors that regulate immunity as well as the function of other airway cell types, such as epithelium, fibroblasts, and nerves. These diverse effects of ASM “activity” result in modulation of bronchoconstriction vs. bronchodilation relevant to airway hyperresponsiveness, airway thickening, and fibrosis that influence compliance. This perspective highlights recent discoveries that reveal the central role of ASM in this regard and helps set the stage for future research toward understanding the pathways regulating ASM and, in turn, the influence of ASM on airway structure and function. Such exploration is key to development of novel therapeutic strategies that influence the pathophysiology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. PMID:24142517

  14. Two-dimensional airway analysis using probabilistic neural networks

    NASA Astrophysics Data System (ADS)

    Tan, Jun; Zheng, Bin; Park, Sang Cheol; Pu, Jiantao; Sciurba, Frank C.; Leader, Joseph K.

    2010-03-01

    Although 3-D airway tree segmentation permits analysis of airway tree paths of practical lengths and facilitates visual inspection, our group developed and tested an automated computer scheme that was operated on individual 2-D CT images to detect airway sections and measure their morphometry and/or dimensions. The algorithm computes a set of airway features including airway lumen area (Ai), airway cross-sectional area (Aw), the ratio (Ra) of Ai to Aw, and the airway wall thickness (Tw) for each detected airway section depicted on the CT image slice. Thus, this 2-D based algorithm does not depend on the accuracy of 3-D airway tree segmentation and does not require that CT examination encompasses the entire lung or reconstructs contiguous images. However, one disadvantage of the 2-D image based schemes is the lack of the ability to identify the airway generation (Gb) of the detected airway section. In this study, we developed and tested a new approach that uses 2-D airway features to assign a generation number to an airway. We developed and tested two probabilistic neural networks (PNN) based on different sets of airway features computed by our 2-D based scheme. The PNNs were trained and tested on 12 lung CT examinations (8 training and 4 testing). The accuracy for the PNN that utilized Ai and Ra for identifying the generation of airway sections varies from 55.4% - 100%. The overall accuracy of the PNN for all detected airway sections that are spread over all generations is 76.7%. Interestingly, adding wall thickness feature (Tw) to PNN did not improve identification accuracy. This preliminary study demonstrates that a set of 2-D airway features may be used to identify the generation number of an airway with reasonable accuracy.

  15. The relation of airway size to lung function

    NASA Astrophysics Data System (ADS)

    Leader, J. Ken; Zheng, Bin; Sciurba, Frank C.; Fuhrman, Carl R.; Bon, Jessica M.; Park, Sang C.; Pu, Jiantao; Gur, David

    2008-03-01

    Chronic obstructive pulmonary disease may cause airway remodeling, and small airways are the mostly likely site of associated airway flow obstruction. Detecting and quantifying airways depicted on a typical computed tomography (CT) images is limited by spatial resolution. In this study, we examined the association between lung function and airway size. CT examinations and spirometry measurement of forced expiratory volume in one second as a percent predicted (FEV I%) from 240 subjects were used in this study. Airway sections depicted in axial CT section were automatically detected and quantified. Pearson correlation coefficients (PCC) were computed to compare lung function across three size categories: (1) all detected airways, (2) the smallest 50% of detected airways, and (3) the largest 50% of detected airways using the CORANOVA test. The mean number of all airways detected per subject was 117.4 (+/- 40.1) with mean size ranging from 20.2 to 50.0 mm2. The correlation between lung function (i.e., FEV I) and airway morphometry associated with airway remodeling and airflow obstruction (i.e., lumen perimeter and wall area as a percent of total airway area) was significantly stronger for smaller compared to larger airways (p < 0.05). The PCCs between FEV I and all airways, the smallest 50%, and the largest 50% were 0.583, 0.617, 0.523, respectively, for lumen perimeter and -0.560, -0.584, and -0.514, respectively, for wall area percent. In conclusion, analyzing a set of smaller airways compared to larger airways may improve detection of an association between lung function and airway morphology change.

  16. Organelle Redox of CF and CFTR-Corrected Airway Epithelia

    PubMed Central

    Schwarzer, Christian; Illek, Beate; Suh, Jung H.; Remington, S. James; Fischer, Horst; Machen, Terry E.

    2014-01-01

    In cystic fibrosis reduced CFTR function may alter redox properties of airway epithelial cells. Redox-sensitive GFP (roGFP1) and imaging microscopy were used to measure redox potentials of cytosol, ER, mitochondria and cell surface of cystic fibrosis nasal epithelial cells and CFTR-corrected cells. We also measured glutathione and cysteine thiol redox states in cell lysates and apical fluids to provide coverage over a range of redox potentials and environments that might be affected by CFTR. As measured with roGFP1, redox potentials at the cell surface (~ -207 ±8 mV) and in the ER (~ -217 ±1 mV) and rates of regulation of the apical fluid and ER lumen following DTT treatment were similar for CF and CFTR-corrected cells. CF and CFTR-corrected cells had similar redox potentials in mitochondria (-344 ±9 mV) and cytosol (-322 ±7 mV). Oxidation of carboxy-dichlorodihydrofluoresceindiacetate and of apical Amplex Red occurred at equal rates in CF and CFTR-corrected cells. Glutathione and cysteine redox couples in cell lysates and apical fluid were equal in CF and CFTR-corrected cells. These quantitative estimates of organelle redox potentials combined with apical and cell measurements using small molecule couples confirmed there were no differences in redox properties of CF and CFTR-corrected cells. PMID:17603939

  17. Behavioral Inhibition in Rhesus Monkeys (Macaca mulatta) Is Related to the Airways Response, but Not Immune Measures, Commonly Associated with Asthma

    PubMed Central

    Chun, Katie; Miller, Lisa A.; Schelegle, Edward S.; Hyde, Dallas M.; Capitanio, John P.

    2013-01-01

    Behavioral inhibition reflects a disposition to react warily to novel situations, and has been associated with atopic diseases such as asthma. Retrospective work established the relationship between behavioral inhibition in rhesus monkeys (Macaca mulatta) and airway hyperresponsiveness, but not atopy, and the suggestion was made that behavioral inhibition might index components of asthma that are not immune-related. In the present study, we prospectively examined the relationship between behavioral inhibition and airway hyperresponsiveness, and whether hormonal and immune measures often associated with asthma were associated with behavioral inhibition and/or airway hyperresponsiveness. In a sample of 49 yearling rhesus monkeys (mean = 1.25 years, n = 24 behaviorally inhibited animals), we measured in vitro cytokine levels (IL-4, IL-10, IL-12, IFN-γ) in response to stimulation, as well as peripheral blood cell percentages, cortisol levels, and percentage of regulatory T-cells (CD3+CD4+CD25+FOXP3+). Airway reactivity was assessed using an inhaled methacholine challenge. Bronchoalveolar lavage was performed and the proportion of immune cells was determined. Behaviorally inhibited monkeys had airway hyperresponsiveness as indicated by the methacholine challenge (p = 0.031), confirming our earlier retrospective result. Airway hyperresponsiveness was also associated with lower lymphocyte percentages in lavage fluid and marginally lower plasma cortisol concentrations. However, none of the tested measures was significantly related to both behavioral inhibition and airway hyperresponsiveness, and so could not mediate their relationship. Airway hyperresponsiveness is common to atopic and non-atopic asthma and behavioral inhibition has been related to altered autonomic activity in other studies. Our results suggest that behavioral inhibition might index an autonomically mediated reactive airway phenotype, and that a variety of stimuli (including inflammation

  18. Airway pressure with chest compressions versus Heimlich manoeuvre in recently dead adults with complete airway obstruction.

    PubMed

    Langhelle, A; Sunde, K; Wik, L; Steen, P A

    2000-04-01

    In a previous case report a standard chest compression successfully removed a foreign body from the airway after the Heimlich manoeuvre had failed. Based on this case, standard chest compressions and Heimlich manoeuvres were performed by emergency physicians on 12 unselected cadavers with a simulated complete airway obstruction in a randomised crossover design. The mean peak airway pressure was significantly lower with abdominal thrusts compared to chest compressions, 26.4+/-19.8 cmH(2)O versus 40.8+/-16.4 cmH(2)O, respectively (P=0.005, 95% confidence interval for the mean difference 5.3-23.4 cmH(2)O). Standard chest compressions therefore have the potential of being more effective than the Heimlich manoeuvre for the management of complete airway obstruction by a foreign body in an unconscious patient. Removal of the Heimlich manoeuvre from the resuscitation algorithm for unconscious patients with suspected airway obstruction will also simplify training.

  19. Basolateral Cl channels in primary airway epithelial cultures.

    PubMed

    Fischer, Horst; Illek, Beate; Finkbeiner, Walter E; Widdicombe, Jonathan H

    2007-06-01

    Salt and water absorption and secretion across the airway epithelium are important for maintaining the thin film of liquid lining the surface of the airway epithelium. Movement of Cl across the apical membrane involves the CFTR Cl channel; however, conductive pathways for Cl movement across the basolateral membrane have been little studied. Here, we determined the regulation and single-channel properties of the Cl conductance (G(Cl)) in airway surface epithelia using epithelial cultures from human or bovine trachea and freshly isolated ciliated cells from the human nasal epithelium. In Ussing chamber studies, a swelling-activated basolateral G(Cl) was found, which was further stimulated by forskolin and blocked by N-phenylanthranilic acid (DPC) = sucrose > flufenamic acid = niflumic acid = glibenclamide > CdCl(2) = 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) = DIDS = ZnCl(2) > tamoxifen > 4,4'-dinitro-2,2'-stilbene-disulfonate disodium salt (DNDS). In whole cell patch-clamp experiments, three types of G(Cl) were identified: 1) a voltage-activated, DIDS- (but not Cd-) blockable and osmosensitive G(Cl); 2) an inwardly rectifying, hyperpolarization-activated and Cd-sensitive G(Cl); and 3) a forskolin-activated, linear G(Cl), which was insensitive to Cd and DIDS. In cell-attached patch-clamp recordings, the basolateral pole of isolated ciliated cells expressed three types of Cl channels: 1) an outwardly rectifying, swelling-activated Cl channel; 2) a strongly inwardly rectifying Cl channel; and 3) a forskolin-activated, low-conductance channel. We propose that, depending on the driving force for Cl across the apical membrane, basolateral Cl channels confine Cl(-) secretion or support transcellular Cl(-) absorption.

  20. Deletion of airway cilia results in noninflammatory bronchiectasis and hyperreactive airways

    PubMed Central

    Gilley, Sandra K.; Stenbit, Antine E.; Pasek, Raymond C.; Sas, Kelli M.; Steele, Stacy L.; Amria, May; Bunni, Marlene A.; Estell, Kimberly P.; Schwiebert, Lisa M.; Flume, Patrick; Gooz, Monika; Haycraft, Courtney J.; Yoder, Bradley K.; Miller, Caroline; Pavlik, Jacqueline A.; Turner, Grant A.; Sisson, Joseph H.

    2013-01-01

    The mechanisms for the development of bronchiectasis and airway hyperreactivity have not been fully elucidated. Although genetic, acquired diseases and environmental influences may play a role, it is also possible that motile cilia can influence this disease process. We hypothesized that deletion of a key intraflagellar transport molecule, IFT88, in mature mice causes loss of cilia, resulting in airway remodeling. Airway cilia were deleted by knockout of IFT88, and airway remodeling and pulmonary function were evaluated. In IFT88− mice there was a substantial loss of airway cilia on respiratory epithelium. Three months after the deletion of cilia, there was clear evidence for bronchial remodeling that was not associated with inflammation or apparent defects in mucus clearance. There was evidence for airway epithelial cell hypertrophy and hyperplasia. IFT88− mice exhibited increased airway reactivity to a methacholine challenge and decreased ciliary beat frequency in the few remaining cells that possessed cilia. With deletion of respiratory cilia there was a marked increase in the number of club cells as seen by scanning electron microscopy. We suggest that airway remodeling may be exacerbated by the presence of club cells, since these cells are involved in airway repair. Club cells may be prevented from differentiating into respiratory epithelial cells because of a lack of IFT88 protein that is necessary to form a single nonmotile cilium. This monocilium is a prerequisite for these progenitor cells to transition into respiratory epithelial cells. In conclusion, motile cilia may play an important role in controlling airway structure and function. PMID:24213915

  1. Air/light-free hyphenated extraction/analysis system: supercritical fluid extraction on-line coupled with liquid chromatography-UV absorbance/electrospray mass spectrometry for the determination of hyperforin and its degradation products in Hypericum pertoratum.

    PubMed

    Wang, Zhenyu; Ashraf-Khorassani, Mehdi; Taylor, Larry T

    2004-11-15

    Hyperforin, which is a major active constituent of the antidepression herbal medicine-Hypericum pertoratum (St. John's wort), is very sensitive to oxygen and light. Our paper reports for the first time an air/light-free extraction-separation-detection hyphenated system and its application to St. John's wort. It involves on-line coupling of supercritical fluid extraction with liquid chromatography-UV absorbance/electrospray ionization mass spectrometry (SFE-LC-UV/ESI-MS). Mass spectral data on the extract that was produced on-line suggested the presence of the major degradation compound of hyperforin-furohyperforin and two of its analogues. Thus, some degradation process must have already occurred in our sample during plant drying or storage. The feasibility of quantitative extraction and analysis of hyperforin by on-line SFE-LC was made possible by optimizing the extraction pressure, temperature, and CO(2) modifier content. High recovery ( approximately 90%) relative to liquid-solid extraction was achieved under optimized conditions.

  2. Sesamin attenuates allergic airway inflammation through the suppression of nuclear factor-kappa B activation.

    PubMed

    Li, Liangchang; Piao, Hongmei; Zheng, Mingyu; Jin, Zhewu; Zhao, Liguang; Yan, Guanghai

    2016-12-01

    The aim of the present study is to determine the role of sesamin, the most abundant lignan in sesame seed oil, on the regulation of allergic airway inflammation in a murine asthma model. A BALB/c mouse model with allergic asthma was used to evaluate the effects of sesamin on nuclear factor-kappa B (NF-κB) activation. An enzyme-linked immunosorbent assay was used to determine protein expression in bronchoalveolar lavage (BAL) fluids. Hematoxylin and eosin staining was performed to examine histological changes. Moreover, western blot analysis was used to detect the expression of proteins in tissues. Prior to administering sesamin, the mice developed the following pathophysiological features of asthma: An increase in the number of inflammatory cells, increased levels of interleukin (IL)-4, IL-5 and IL-13, decreased levels of interferon-γ in BAL fluids and lung tissues, increased immunoglobulin E (IgE) levels in the serum and an increased activation of NF-κB in lung tissues. Following treatment with sesamin, the mice had evidently reduced peribronchiolar inflammation and airway inflammatory cell recruitment, inhibited production of several cytokines in BAL fluids and lung tissues, and decreased IgE levels. Following inhalation of ovalbumin, the administration of sesamin also inhibited the activation of NF-κB. In addition, sesamin administration reduced the phosphorylation of p38 mitogen-activated protein kinases (MAPKs). The present study demonstrates that sesamin decreases the activation of NF-κB in order to attenuate allergic airway inflammation in a murine model of asthma, possibly via the regulation of phosphorylation of p38 MAPK. These observations provide an important molecular mechanism for the potential use of sesamin in preventing and/or treating asthma, as well as other airway inflammatory disorders.

  3. Sesamin attenuates allergic airway inflammation through the suppression of nuclear factor-kappa B activation

    PubMed Central

    Li, Liangchang; Piao, Hongmei; Zheng, Mingyu; Jin, Zhewu; Zhao, Liguang; Yan, Guanghai

    2016-01-01

    The aim of the present study is to determine the role of sesamin, the most abundant lignan in sesame seed oil, on the regulation of allergic airway inflammation in a murine asthma model. A BALB/c mouse model with allergic asthma was used to evaluate the effects of sesamin on nuclear factor-kappa B (NF-κB) activation. An enzyme-linked immunosorbent assay was used to determine protein expression in bronchoalveolar lavage (BAL) fluids. Hematoxylin and eosin staining was performed to examine histological changes. Moreover, western blot analysis was used to detect the expression of proteins in tissues. Prior to administering sesamin, the mice developed the following pathophysiological features of asthma: An increase in the number of inflammatory cells, increased levels of interleukin (IL)-4, IL-5 and IL-13, decreased levels of interferon-γ in BAL fluids and lung tissues, increased immunoglobulin E (IgE) levels in the serum and an increased activation of NF-κB in lung tissues. Following treatment with sesamin, the mice had evidently reduced peribronchiolar inflammation and airway inflammatory cell recruitment, inhibited production of several cytokines in BAL fluids and lung tissues, and decreased IgE levels. Following inhalation of ovalbumin, the administration of sesamin also inhibited the activation of NF-κB. In addition, sesamin administration reduced the phosphorylation of p38 mitogen-activated protein kinases (MAPKs). The present study demonstrates that sesamin decreases the activation of NF-κB in order to attenuate allergic airway inflammation in a murine model of asthma, possibly via the regulation of phosphorylation of p38 MAPK. These observations provide an important molecular mechanism for the potential use of sesamin in preventing and/or treating asthma, as well as other airway inflammatory disorders. PMID:28105144

  4. A Novel Nonhuman Primate Model of Cigarette Smoke–Induced Airway Disease

    PubMed Central

    Polverino, Francesca; Doyle-Eisele, Melanie; McDonald, Jacob; Wilder, Julie A.; Royer, Christopher; Laucho-Contreras, Maria; Kelly, Emer M.; Divo, Miguel; Pinto-Plata, Victor; Mauderly, Joe; Celli, Bartolome R.; Tesfaigzi, Yohannes; Owen, Caroline A.

    2016-01-01

    Small animal models of chronic obstructive pulmonary disease (COPD) have several limitations for identifying new therapeutic targets and biomarkers for human COPD. These include a pulmonary anatomy that differs from humans, the limited airway pathologies and lymphoid aggregates that develop in smoke-exposed mice, and the challenges associated with serial biological sampling. Thus, we assessed the utility of cigarette smoke (CS)–exposed cynomolgus macaque as a nonhuman primate (NHP) large animal model of COPD. Twenty-eight NHPs were exposed to air or CS 5 days per week for up to 12 weeks. Bronchoalveolar lavage and pulmonary function tests were performed at intervals. After 12 weeks, we measured airway pathologies, pulmonary inflammation, and airspace enlargement. CS-exposed NHPs developed robust mucus metaplasia, submucosal gland hypertrophy and hyperplasia, airway inflammation, peribronchial fibrosis, and increases in bronchial lymphoid aggregates. Although CS-exposed NHPs did not develop emphysema over the study time, they exhibited pathologies that precede emphysema development, including increases in the following: i) matrix metalloproteinase-9 and proinflammatory mediator levels in bronchoalveolar lavage fluid, ii) lung parenchymal leukocyte counts and lymphoid aggregates, iii) lung oxidative stress levels, and iv) alveolar septal cell apoptosis. CS-exposed NHPs can be used as a model of airway disease occurring in COPD patients. Unlike rodents, NHPs can safely undergo longitudinal sampling, which could be useful for assessing novel biomarkers or therapeutics for COPD. PMID:25542772

  5. [Effects of carbocisteine on airway inflammation and related events in SO2-exposed rats].

    PubMed

    Ishibashi, Y; Okamura, T; Masumoto, Y; Tachiiri, T; Momo, K

    2001-01-01

    Airway inflammation leads to secretion of abnormal mucous glycoprotein and ciliary injury. To investigate the possible usefulness of carbocisteine against airway inflammation and events related to it, we conducted a study in SO2-exposed rats of the effects of carbocisteine and ambroxol, as an active control drug, on components of mucous glycoprotein (fucose, sialic acid and protein) in bronchoalveolar lavage fluid (BALF); on infiltration and activation of inflammatory cells in BALF; on tracheal and bronchial-ciliary lesions; and on cAMP levels in tracheal and alveolar tissues. Carbocisteine inhibited or improved all SO2-induced changes tested, and dosages of 125 and 250 mg/kg b.i.d. reduced fucose, sialic acid and protein contents, inflammatory cells (as markers of inflammation), free radicals, and elastase activity in BALF, and suppressed the development of ciliary lesions of the tracheal and bronchial mucosa, while ambroxol (10 mg/kg b.i.d.) showed no such effects. In addition, carbocisteine improved cAMP levels in the tracheal and alveolar tissues. These results indicate that carbocisteine is able to prevent the development of inflammation-related respiratory disease in this rat model, and that this remission of airway inflammation may be associated with carbocisteine-induced normalization of cAMP levels in tracheal and alveolar tissues as well as with its mucoregulant and anti-inflammatory effects. In conclusion, carbocisteine has a unique mucoregulant action and inhibits SO2-induced airway inflammation in a manner different from that of ambroxol.

  6. Effect of choline chloride in allergen-induced mouse model of airway inflammation.

    PubMed

    Mehta, A K; Gaur, S N; Arora, N; Singh, B P

    2007-10-01

    The incidence of asthma has increased the world over, and current therapies for the disease suffer from potential side-effects. This has created an opportunity to develop novel therapeutic approaches. Here, the anti-inflammatory activity of choline was investigated in a mouse model of allergic airway inflammation. Choline (1 mg.kg(-1)) was administered via oral gavage or intranasally before and after ovalbumin (OVA) challenge in sensitised mice. Airway hyperresponsiveness (AHR) to methacholine was measured in the mice by whole-body plethysmography. Type-2 T-helper cell cytokine and leukotriene levels were estimated in bronchoalveolar lavage fluid (BALF) and spleen culture supernatant by ELISA. Eosinophil peroxidase activity was also determined in the BALF supernatant. Choline treatment in sensitised mice before OVA challenge via oral/intranasal routes significantly inhibited eosinophilic airway inflammation and eosinophil peroxidase activity. It also reduced immunoglobulin E and G1 production and inhibited the release of type-2 T-helper cell cytokines and leukotrienes. However, the development of AHR was prevented effectively by intranasal choline treatment. Most importantly, choline treatment after OVA challenge by both routes could reverse established asthmatic conditions in mice by inhibiting AHR, eosinophilic airway inflammation and other inflammatory parameters. This study provides a new therapeutic approach for controlling as well as preventing asthma exacerbations.

  7. Protease inhibitor reduces airway response and underlying inflammation in cockroach allergen-induced murine model.

    PubMed

    Saw, Sanjay; Arora, Naveen

    2015-04-01

    Protease(s) enhances airway inflammation and allergic cascade. In the present study, effect of a serine protease inhibitor was evaluated in mouse model of airway disease. Mice were sensitized with cockroach extract (CE) or Per a 10 and treated with 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF) 1 h before or after challenge to measure airway response. Mice were euthanized to collect bronchoalveolar lavage fluid (BALF), blood, and lung to evaluate inflammation. AEBSF treatment significantly reduced the AHR in allergen-challenged mice in dose-dependent manner (p≤ 0.01). IgE (p≤0.05) and Th2 cytokines (p≤0.05) were significantly reduced in treated mice. AEBSF treatment lowered total cell (p≤0.05), eosinophil (p≤0.05), and neutrophil (p≤0.05) in BALF and lung tissue. Oxidative stress parameters were impaired on treatment in allergen-challenged mice (p≤0.05). AEBSF had therapeutic effect in allergen-induced airway resistance and underling inflammation and had potential for combination or as add-on therapy for respiratory diseases.

  8. Sputum Leucine-Rich Alpha-2 Glycoprotein as a Marker of Airway Inflammation in Asthma

    PubMed Central

    Honda, Hiromi; Fujimoto, Minoru; Miyamoto, Shintaro; Ishikawa, Nobuhisa; Serada, Satoshi; Hattori, Noboru; Nomura, Shintaro; Kohno, Nobuoki; Yokoyama, Akihito; Naka, Tetsuji

    2016-01-01

    Background Asthma is a chronic inflammatory disease of airways, but an ideal biomarker that accurately reflects ongoing airway inflammation has not yet been established. The aim of this study was to examine the potential of sputum leucine-rich alpha-2 glycoprotein (LRG) as a new biomarker for airway inflammation in asthma. Methods We obtained induced sputum samples from patients with asthma (N = 64) and healthy volunteers (N = 22) and measured LRG concentration by sandwich enzyme-linked immunosorbent assay (ELISA). Ovalbumin (OVA)-induced asthma model mice were used to investigate the mechanism of LRG production during airway inflammation. The LRG concentrations in the bronchoalveolar lavage fluid (BALF) obtained from mice were determined by ELISA and mouse lung sections were stained with anti-LRG antibody and periodic acid-Schiff (PAS) reagent. Results Sputum LRG concentrations were significantly higher in patients with asthma than in healthy volunteers (p = 0.00686). Consistent with patients’ data, BALF LRG levels in asthma model mice were significantly higher than in control mice (p = 0.00013). Immunohistochemistry of lung sections from asthma model mice revealed that LRG was intensely expressed in a subpopulation of bronchial epithelial cells, which corresponded with PAS-positive mucus producing cells. Conclusion These findings suggest that sputum LRG is a promising biomarker of local inflammation in asthma. PMID:27611322

  9. Airway and circulatory collapse due to retropharyngeal hematoma after blunt vertebral artery injury.

    PubMed

    Kudo, Shunsuke; Fukushima, Kazuyuki; Hashimoto, Motonori; Furutake, Masayuki; Tanaka, Keiji; Okada, Kunihiko

    2016-12-09

    Retropharyngeal hematoma following blunt cervical spine injury is a known cause of airway obstruction, but it is not known to cause hemorrhagic shock. We report the case of a massive retropharyngeal hematoma caused by a blunt vertebral artery transection leading simultaneously to airway obstruction and hemorrhagic shock. An 83-year-old woman was injured in a motorcycle accident. In the field, the patient exhibited paradoxical breathing with no breath sounds, and her blood pressure could not be measured. Therefore, emergency intubation and fluid resuscitation were initiated and the patient was transferred to the emergency department. Computed tomography angiography revealed a massive retropharyngeal hematoma with contrast extravasation from the right vertebral artery, which caused airway obstruction and hemorrhagic shock. The right vertebral artery was transected at the C5 level, which was associated with C4/C5 dislocation. Vertebral artery transection was successfully treated by endovascular embolization, which was followed by complication of asymptomatic posterior circulation stroke. Blunt vertebral artery transection can cause massive retropharyngeal hematoma, which can rapidly expand and lead to hemorrhagic shock in addition to airway obstruction. In cases of massive retropharyngeal hematoma with hemorrhagic shock following blunt cervical spine injury, blunt vertebral artery transection should be suspected. If blunt vertebral artery transection is detected and hemorrhagic shock is persistent, endovascular embolization should be performed immediately in addition to emergency intubation.

  10. TLR4 signalling in pulmonary stromal cells is critical for inflammation and immunity in the airways.

    PubMed

    Perros, Frederic; Lambrecht, Bart N; Hammad, Hamida

    2011-09-24

    Inflammation of the airways, which is often associated with life-threatening infection by Gram-negative bacteria or presence of endotoxin in the bioaerosol, is still a major cause of severe airway diseases. Moreover, inhaled endotoxin may play an important role in the development and progression of airway inflammation in asthma. Pathologic changes induced by endotoxin inhalation include bronchospasm, airflow obstruction, recruitment of inflammatory cells, injury of the alveolar epithelium, and disruption of pulmonary capillary integrity leading to protein rich fluid leak in the alveolar space. Mammalian Toll-like receptors (TLRs) are important signalling receptors in innate host defense. Among these receptors, TLR4 plays a critical role in the response to endotoxin. Lungs are a complex compartmentalized organ with separate barriers, namely the alveolar-capillary barrier, the microvascular endothelium, and the alveolar epithelium. An emerging theme in the field of lung immunology is that structural cells (SCs) of the airways such as epithelial cells (ECs), endothelial cells, fibroblasts and other stromal cells produce activating cytokines that determine the quantity and quality of the lung immune response. This review focuses on the role of TLR4 in the innate and adaptive immune functions of the pulmonary SCs.

  11. On locating the obstruction in the upper airway via numerical simulation

    PubMed Central

    Wang, Yong; Elghobashi, S.

    2014-01-01

    The fluid dynamical properties of the air flow in the upper airway (UA) are not fully understood at present due to the three-dimensional (3D) patient-specific complex geometry of the airway, flow transition from laminar to turbulent and flow-structure interaction during the breathing cycle. It is quite difficult at present to experimentally measure the instantaneous velocity and pressure at specific points in the human airway. On the other hand, direct numerical simulation (DNS) can predict all the flow properties and resolve all its relevant length- and time-scales. We developed a DNS solver with the state-of-the-art lattice Boltzmann method (LBM), and used it to investigate the flow in two patient-specific UAs reconstructed from CT scan data. Inspiration and expiration flows through these two airways are studied. The time-averaged first spatial derivative of pressure (pressure gradient), ∂p/∂z, is used to locate the region of the UA obstruction. But the time-averaged second spatial derivative, ∂2p/∂z2, is used to pinpoint the exact location of the obstruction. The present results show that the DNS-LBM solver can be used to obtain accurate flow details in the UA and is a powerful tool to locate its obstruction. PMID:24389271

  12. Attenuation of allergic airway inflammation and hyperresponsiveness in a murine model of asthma by silver nanoparticles

    PubMed Central

    Park, Hee Sun; Kim, Keun Hwa; Jang, Sunhyae; Park, Ji Won; Cha, Hye Rim; Lee, Jeong Eun; Kim, Ju Ock; Kim, Sun Young; Lee, Choong Sik; Kim, Joo Pyung; Jung, Sung Soo

    2010-01-01

    The use of silver in the past demonstrated the certain antimicrobial activity, though this has been replaced by other treatments. However, nanotechnology has provided a way of producing pure silver nanoparticles, and it shows cytoprotective activities and possible pro-healing properties. But, the mechanism of silver nanoparticles remains unknown. This study was aimed to investigate the effects of silver nanoparticles on bronchial inflammation and hyperresponsiveness. We used ovalbumin (OVA)-inhaled female C57BL/6 mice to evaluate the roles of silver nanoparticles and the related molecular mechanisms in allergic airway disease. In this study with an OVA-induced murine model of allergic airway disease, we found that the increased inflammatory cells, airway hyperresponsiveness, increased levels of IL-4, IL-5, and IL-13, and the increased NF-κB levels in lungs after OVA inhalation were significantly reduced by the administration of silver nanoparticles. In addition, we have also found that the increased intracellular reactive oxygen species (ROS) levels in bronchoalveolar lavage fluid after OVA inhalation were decreased by the administration of silver nanoparticles. These results indicate that silver nanoparticles may attenuate antigen-induced airway inflammation and hyperresponsiveness. And antioxidant effect of silver nanoparticles could be one of the molecular bases in the murine model of asthma. These findings may provide a potential molecular mechanism of silver nanoparticles in preventing or treating asthma. PMID:20957173

  13. Galangin Abrogates Ovalbumin-Induced Airway Inflammation via Negative Regulation of NF-κB.

    PubMed

    Zha, Wang-Jian; Qian, Yan; Shen, Yi; Du, Qiang; Chen, Fei-Fei; Wu, Zhen-Zhen; Li, Xiao; Huang, Mao

    2013-01-01

    Persistent activation of nuclear factor κB (NF-κB) has been associated with the development of asthma. Galangin, the active pharmacological ingredient from Alpinia galanga, is reported to have a variety of anti-inflammatory properties in vitro via negative regulation of NF-κB. This study aimed to investigate whether galangin can abrogate ovalbumin- (OVA-) induced airway inflammation by negative regulation of NF-κB. BALB/c mice sensitized and challenged with OVA developed airway hyperresponsiveness (AHR) and inflammation. Galangin dose dependently inhibited OVA-induced increases in total cell counts, eosinophil counts, and interleukin-(IL-) 4, IL-5, and IL-13 levels in bronchoalveolar lavage fluid, and reduced serum level of OVA-specific IgE. Galangin also attenuated AHR, reduced eosinophil infiltration and goblet cell hyperplasia, and reduced expression of inducible nitric oxide synthase and vascular cell adhesion protein-1 (VCAM-1) levels in lung tissue. Additionally, galangin blocked inhibitor of κB degradation, phosphorylation of the p65 subunit of NF-κB, and p65 nuclear translocation from lung tissues of OVA-sensitized mice. Similarly, in normal human airway smooth muscle cells, galangin blocked tumor necrosis factor-α induced p65 nuclear translocation and expression of monocyte chemoattractant protein-1, eotaxin, CXCL10, and VCAM-1. These results suggest that galangin can attenuate ovalbumin-induced airway inflammation by inhibiting the NF-κB pathway.

  14. Mapping the anatomy of respiratory syncytial virus infection of the upper airways in chinchillas (Chinchilla lanigera).

    PubMed

    Grieves, Jessica L; Jurcisek, Joseph A; Quist, Brian; Durbin, Russell K; Peeples, Mark E; Durbin, Joan E; Bakaletz, Lauren O

    2010-06-01

    Although most viral infections of the upper respiratory tract can predispose to bacterial otitis media, human respiratory syncytial virus (HRSV) is the predominant viral copathogen of this highly prevalent pediatric polymicrobial disease. Rigorous study of the specific mechanisms by which HRSV predisposes to otitis media has been hindered by lack of a relevant animal model. We recently reported that the chinchilla, the preferred rodent host for studying otitis media, is semipermissive for upper-airway HRSV infection. In the current study, we defined the anatomy and kinetics of HRSV infection and spread in the upper airway of chinchilla hosts. Chinchillas were challenged intranasally with a fluorescent-protein-expressing HRSV. Upper-airway tissues were recovered at multiple time points after viral challenge and examined by confocal microscopy and immunohistochemistry. HRSV replication was observed from the rostral- to caudalmost regions of the nasal cavity as well as throughout the Eustachian tube in a time-dependent manner. Although fluorescence was not observed and virus was not detected in nasopharyngeal lavage fluids 14 d after infection, the latest time point examined in this study, occasional clusters of immunopositive cells were present, suggesting that the nasal cavity may serve as a reservoir for HRSV. These data provide important new information concerning the time course of HRSV infection of the uppermost airway and suggest that chinchillas may be useful for modeling the HRSV-induced changes that predispose to secondary bacterial infection.

  15. Preparation of the patient and the airway for awake intubation

    PubMed Central

    Ramkumar, Venkateswaran

    2011-01-01

    Awake intubation is usually performed electively in the presence of a difficult airway. A detailed airway examination is time-consuming and often not feasible in an emergency. A simple 1-2-3 rule for airway examination allows one to identify potential airway difficulty within a minute. A more detailed airway examination can give a better idea about the exact nature of difficulty and the course of action to be taken to overcome it. When faced with an anticipated difficult airway, the anaesthesiologist needs to consider securing the airway in an awake state without the use of anaesthetic agents or muscle relaxants. As this can be highly discomforting to the patient, time and effort must be spent to prepare such patients both psychologically and pharmacologically for awake intubation. Psychological preparation is best initiated by an anaesthesiologist who explains the procedure in simple language. Sedative medications can be titrated to achieve patient comfort without compromising airway patency. Additional pharmacological preparation includes anaesthetising the airway through topical application of local anaesthetics and appropriate nerve blocks. When faced with a difficult airway, one should call for the difficult airway cart as well as for help from colleagues who have interest and expertise in airway management. Preoxygenation and monitoring during awake intubation is important. Anxious patients with a difficult airway may need to be intubated under general anaesthesia without muscle relaxants. Proper psychological and pharmacological preparation of the patient by an empathetic anaesthesiologist can go a long way in making awake intubation acceptable for all concerned. PMID:22174458

  16. Macrophage adaptation in airway inflammatory resolution.

    PubMed

    Kaur, Manminder; Bell, Thomas; Salek-Ardakani, Samira; Hussell, Tracy

    2015-09-01

    Bacterial and viral infections (exacerbations) are particularly problematic in those with underlying respiratory disease, including post-viral infection, asthma, chronic obstructive pulmonary disease and pulmonary fibrosis. Patients experiencing exacerbations tend to be at the more severe end of the disease spectrum and are often difficult to treat. Most of the unmet medical need remains in this patient group. Airway macrophages are one of the first cell populations to encounter airborne pathogens and, in health, exist in a state of reduced responsiveness due to interactions with the respiratory epithelium and specific factors found in the airway lumen. Granulocyte-macrophage colony-stimulating factor, interleukin-10, transforming growth factor-β, surfactant proteins and signalling via the CD200 receptor, for example, all raise the threshold above which airway macrophages can be activated. We highlight that following severe respiratory inflammation, the airspace microenvironment does not automatically re-set to baseline and may leave airway macrophages more restrained than they were at the outset. This excessive restraint is mediated in part by the clearance of apoptotic cells and components of extracellular matrix. This implies that one strategy to combat respiratory exacerbations would be to retune airway macrophage responsiveness to allow earlier bacterial recognition.

  17. Role of epithelial sodium channels in the regulation of lung fluid homeostasis

    PubMed Central

    Matalon, Sadis; Bartoszewski, Rafal

    2015-01-01

    In utero, fetal lung epithelial cells actively secrete Cl− ions into the lung air spaces while Na+ ions follow passively to maintain electroneutrality. This process, driven by an electrochemical gradient generated by the Na+-K+-ATPase, is responsible for the secretion of fetal fluid that is essential for normal lung development. Shortly before birth, a significant upregulation of amiloride-sensitive epithelial channels (ENaCs) on the apical side of the lung epithelial cells results in upregulation of active Na+ transport. This process is critical for the reabsorption of fetal lung fluid and the establishment of optimum gas exchange. In the adult lung, active Na+ reabsorption across distal lung epithelial cells limits the degree of alveolar edema in patients with acute lung injury and cardiogenic edema. Cl− ions are transported either paracellularly or transcellularly to preserve electroneutrality. An increase in Cl− secretion across the distal lung epithelium has been reported following an acute increase in left atrial pressure and may result in pulmonary edema. In contrast, airway epithelial cells secrete Cl− through apical cystic fibrosis transmembrane conductance regulator and Ca2+-activated Cl− channels and absorb Na+. Thus the coordinated action of Cl− secretion and Na+ absorption is essential for maintenance of the volume of epithelial lining fluid that, in turn, maximizes mucociliary clearance and facilitates clearance of bacteria and debris from the lungs. Any factor that interferes with Na+ or Cl− transport or dramatically upregulates ENaC activity in airway epithelial cells has been associated with lung diseases such as cystic fibrosis or chronic obstructive lung disease. In this review we focus on the role of the ENaC, the mechanisms involved in ENaC regulation, and how ENaC dysregulation can lead to lung pathology. PMID:26432872

  18. Airway epithelial cell response to human metapneumovirus infection

    SciTech Connect

    Bao, X.; Liu, T.; Spetch, L.; Kolli, D.; Garofalo, R.P.; Casola, A.

    2007-11-10

    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections (LRTIs) in infants, elderly and immunocompromised patients. In this study, we show that hMPV can infect in a similar manner epithelial cells representative of different tracts of the airways. hMPV-induced expression of chemokines IL-8 and RANTES in primary small alveolar epithelial cells (SAE) and in a human alveolar type II-like epithelial cell line (A549) was similar, suggesting that A549 cells can be used as a model to study lower airway epithelial cell responses to hMPV infection. A549 secreted a variety of CXC and CC chemokines, cytokines and type I interferons, following hMPV infection. hMPV was also a strong inducer of transcription factors belonging to nuclear factor (NF)-{kappa}B, interferon regulatory factors (IRFs) and signal transducers and activators of transcription (STATs) families, which are known to orchestrate the expression of inflammatory and immunomodulatory mediators.

  19. SPONTANEOUS AIRWAY HYPERRESPONSIVENESS IN ESTROGEN RECEPTOR-A DEFICIENT MICE

    EPA Science Inventory

    Rationale: Airway hyperresponsiveness is a critical feature of asthma. Substantial epidemiologic evidence supports a role for female sex hormones in modulating lung function and airway hyperresponsiveness in humans. Objectives: To examine the role of estrogen receptors in modulat...

  20. The Three A’s in Asthma – Airway Smooth Muscle, Airway Remodeling & Angiogenesis

    PubMed Central

    Keglowich, L.F; Borger, P

    2015-01-01

    Asthma affects more than 300 million people worldwide and its prevalence is still rising. Acute asthma attacks are characterized by severe symptoms such as breathlessness, wheezing, tightness of the chest, and coughing, which may lead to hospitalization or death. Besides the acute symptoms, asthma is characterized by persistent airway inflammation and airway wall remodeling. The term airway wall remodeling summarizes the structural changes in the airway wall: epithelial cell shedding, goblet cell hyperplasia, hyperplasia and hypertrophy of the airway smooth muscle (ASM) bundles, basement membrane thickening and increased vascular density. Airway wall remodeling starts early in the pathogenesis of asthma and today it is suggested that remodeling is a prerequisite for other asthma pathologies. The beneficial effect of bronchial thermoplasty in reducing asthma symptoms, together with the increased potential of ASM cells of asthmatics to produce inflammatory and angiogenic factors, indicate that the ASM cell is a major effector cell in the pathology of asthma. In the present review we discuss the ASM cell and its role in airway wall remodeling and angiogenesis. PMID:26106455

  1. Host-microbe interactions in distal airways: relevance to chronic airway diseases.

    PubMed

    Martin, Clémence; Burgel, Pierre-Régis; Lepage, Patricia; Andréjak, Claire; de Blic, Jacques; Bourdin, Arnaud; Brouard, Jacques; Chanez, Pascal; Dalphin, Jean-Charles; Deslée, Gaetan; Deschildre, Antoine; Gosset, Philippe; Touqui, Lhousseine; Dusser, Daniel

    2015-03-01

    This article is the summary of a workshop, which took place in November 2013, on the roles of microorganisms in chronic respiratory diseases. Until recently, it was assumed that lower airways were sterile in healthy individuals. However, it has long been acknowledged that microorganisms could be identified in distal airway secretions from patients with various respiratory diseases, including cystic fibrosis (CF) and non-CF bronchiectasis, chronic obstructive pulmonary disease, asthma and other chronic airway diseases (e.g. post-transplantation bronchiolitis obliterans). These microorganisms were sometimes considered as infectious agents that triggered host immune responses and contributed to disease onset and/or progression; alternatively, microorganisms were often considered as colonisers, which were considered unlikely to play roles in disease pathophysiology. These concepts were developed at a time when the identification of microorganisms relied on culture-based methods. Importantly, the majority of microorganisms cannot be cultured using conventional methods, and the use of novel culture-independent methods that rely on the identification of microorganism genomes has revealed that healthy distal airways display a complex flora called the airway microbiota. The present article reviews some aspects of current literature on host-microbe (mostly bacteria and viruses) interactions in healthy and diseased airways, with a special focus on distal airways.

  2. Dynamics of Liquid Plugs of Buffer and Surfactant Solutions in a Micro-Engineered Pulmonary Airway Model

    PubMed Central

    Tavana, Hossein; Kuo, Chuan-Hsien; Lee, Qian Yi; Mosadegh, Bobak; Huh, Dongeun; Christensen, Paul J.; Grotberg, James B.; Takayama, Shuichi

    2009-01-01

    We describe a bio-inspired microfluidic system that resembles pulmonary airways and enables on-chip generation of airway occluding liquid plugs from a stratified air-liquid two-phase flow. User-defined changes in the air stream pressure facilitated by mechanical components and tuning the wettability of the microchannels enable generation of well-defined liquid plugs. Significant differences are observed in liquid plug generation and propagation when surfactant is added to the buffer. The plug flow patterns suggest a protective role of surfactant for airway epithelial cells against pathological flow-induced mechanical stresses. We discuss the implications of the findings for clinical settings. This approach and the described platform will enable systematic investigation of the effect of different degrees of fluid mechanical stresses on lung injury at the cellular level and administration of exogenous therapeutic surfactants. PMID:20017471

  3. Decreased levels of nitrosothiols in the lower airways of patients with cystic fibrosis and normal pulmonary function.

    PubMed

    Grasemann, H; Gaston, B; Fang, K; Paul, K; Ratjen, F

    1999-12-01

    Airway S-nitrosothiols (SNOs) are naturally occurring bronchodilators. SNOs, nitrate, and nitrite were measured in bronchoalveolar lavage fluid of 23 patients with cystic fibrosis (CF) and mild pulmonary disease (aged 6-16 years) and 13 healthy children (aged 8-15 years). Concentrations of SNOs were decreased in the lower airways of patients with CF and mild pulmonary disease (median, range: 0, 0-320 nmol/L vs 80, 0-970 nmol/L) despite normal levels of the inert nitric oxide metabolites nitrate and nitrite (mean +/- SEM: 3.7 +/- 0.5 micromol/L vs 4.8 +/- 0.9 micromol/L). S-nitrosolation- mediated bioreactivities may be impaired by depletion of the CF airway SNO reservoir.

  4. Fluid Mechanics.

    ERIC Educational Resources Information Center

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  5. MicroRNA in United Airway Diseases

    PubMed Central

    Liu, Zheng; Zhang, Xin-Hao; Callejas-Díaz, Borja; Mullol, Joaquim

    2016-01-01

    The concept of united airway diseases (UAD) has received increasing attention in recent years. Sustained and increased inflammation is a common feature of UAD, which is inevitably accompanied with marked gene modification and tight gene regulation. However, gene regulation in the common inflammatory processes in UAD remains unclear. MicroRNA (miRNA), a novel regulator of gene expression, has been considered to be involved in many inflammatory diseases. Although there are an increasing number of studies of miRNAs in inflammatory upper and lower airway diseases, few miRNAs have been identified that directly link the upper and lower airways. In this article, therefore, we reviewed the relevant studies available in order to improve the understanding of the roles of miRNAs in the interaction and pathogenesis of UAD. PMID:27187364

  6. Electrical stimulation of upper airway musculature.

    PubMed

    Smith, P L; Eisele, D W; Podszus, T; Penzel, T; Grote, L; Peter, J H; Schwartz, A R

    1996-12-01

    Investigators have postulated that pharyngeal collapse during sleep in patients with obstructive sleep apnea (OSA) may be alleviated by stimulating the genioglossus. The effect of electrical stimulation (ES) of the genioglossus on pharyngeal patency was examined in an isolated feline upper airway preparation and in apneic humans during sleep. We found that stimulation of the genioglossus (n = 8) and of the hypoglossal nerve (n = 1) increased maximum airflow through the isolated feline upper airway in humans during sleep. Additional findings in the isolated feline upper airway suggest that such increases in airflow were due to decreases in pharyngeal collapsibility. The evidence suggests that improvements in airflow dynamics with electrical stimulation are due to selective recruitment of the genioglossus, rather than due to nonspecific activation of the pharyngeal musculature or arousal from sleep. The implications of these results for future therapy with ES are discussed.

  7. Laser applications in pediatric airway surgery

    NASA Astrophysics Data System (ADS)

    Karamzadeh, Amir M.; Ahuja, Gurpreet S.; Nguyen, John D.; Crumley, Roger

    2003-06-01

    The smaller anatomy and limited access to instrumentation pose a challenge to the pediatric airway surgeon. The enhanced precision and ability to photocoagulate tissue while operating with the laser enhances the surgeon"s ability to successfully treat unique pediatric conditions such subglottic hemangiomas, congenital cysts, respiratory papillomatosis, and laryngeal or tracheal stenosis. Due to its shallow tissue penetration and thermal effect, the carbon dioxide (CO2) laser is generally considered the laser of choice for pediatric airway applications. The potential for increased scarring and damage to underlying tissue caused by the greater penetration depth and thermal effect of the Nd:YAG and KTP lasers preclude their use in this population. In this review, we will describe the specific advantages of using lasers in airway surgery, the current technology and where the current technology is deficient.

  8. Role of Mechanical Stress in Regulating Airway Surface Hydration and Mucus Clearance Rates

    PubMed Central

    Button, Brian; Boucher, Richard C.

    2008-01-01

    Effective clearance of mucus is a critical innate airway defense mechanism, and under appropriate conditions, can be stimulated to enhance clearance of inhaled pathogens. It has become increasingly clear that extracellular nucleotides (ATP and UTP) and nucleosides (adenosine) are important regulators of mucus clearance in the airways as a result of their ability to stimulate fluid secretion, mucus hydration, and cilia beat frequency (CBF). One ubiquitous mechanism to stimulate ATP release is through external mechanical stress. This article addresses the role of physiologically-relevant mechanical forces in the lung and their effects on regulating mucociliary clearance (MCC). The effects of mechanical forces on the stimulating ATP release, fluid secretion, CBF, and MCC are discussed. Also discussed is evidence suggesting that airway hydration and stimulation of MCC by stress-mediated ATP release may play a role in several therapeutic strategies directed at improving mucus clearance in patients with obstructive lung diseases, including cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). PMID:18585484

  9. Airway epithelium stimulates smooth muscle proliferation.

    PubMed

    Malavia, Nikita K; Raub, Christopher B; Mahon, Sari B; Brenner, Matthew; Panettieri, Reynold A; George, Steven C

    2009-09-01

    Communication between the airway epithelium and stroma is evident during embryogenesis, and both epithelial shedding and increased smooth muscle proliferation are features of airway remodeling. Hence, we hypothesized that after injury the airway epithelium could modulate airway smooth muscle proliferation. Fully differentiated primary normal human bronchial epithelial (NHBE) cells at an air-liquid interface were co-cultured with serum-deprived normal primary human airway smooth muscle cells (HASM) using commercially available Transwells. In some co-cultures, the NHBE were repeatedly (x4) scrape-injured. An in vivo model of tracheal injury consisted of gently denuding the tracheal epithelium (x3) of a rabbit over 5 days and then examining the trachea by histology 3 days after the last injury. Our results show that HASM cell number increases 2.5-fold in the presence of NHBE, and 4.3-fold in the presence of injured NHBE compared with HASM alone after 8 days of in vitro co-culture. In addition, IL-6, IL-8, monocyte chemotactic protein (MCP)-1 and, more markedly, matrix metalloproteinase (MMP)-9 concentration increased in co-culture correlating with enhanced HASM growth. Inhibiting MMP-9 release significantly attenuated the NHBE-dependent HASM proliferation in co-culture. In vivo, the injured rabbit trachea demonstrated proliferation in the smooth muscle (trachealis) region and significant MMP-9 staining, which was absent in the uninjured control. The airway epithelium modulates smooth muscle cell proliferation via a mechanism that involves secretion of soluble mediators including potential smooth muscle mitogens such as IL-6, IL-8, and MCP-1, but also through a novel MMP-9-dependent mechanism.

  10. Benign Nodular Goiter Causing Upper Airway Obstruction

    PubMed Central

    Başoğlu, Mahmut; Öztürk, Gürkan; Aydınlı, Bülent; Yıldırgan, M. İlhan; Atamanalp, S. Selçuk; Celebi, Fehmi

    2009-01-01

    Objective Benign nodular goiter (BNG) can cause narrowing of the upper airway. In some rare cases, obstruction of the upper airway also occurs. The following paper reports our experiences with regard to BNG patients who experienced obstruction of the upper airway. Materials and Methods. We retrospectively investigated the records of 13 patients with acute airway obstruction due to BNG who were admitted to the General Surgery Department of Ataturk University Medical School between January 2000 and December 2007. Results Thirteen patients with airway obstruction secondary to BNG were hospitalized during this period. There were two males and 11 females, and the mean age was 58.5 years (range 37–74 years). For all patients, the primary symptom upon admission was defined as respiratory distress; all patients had varying degrees of respiratory distress upon admission. Three of the patients underwent emergent endotracheal intubation in the emergency room. A preoperative radiological evaluation was performed with thyroid ultrasonography (US) and computed tomography (CT). There were retrosternal or substernal components of the BNG in nine patients. Twelve patients underwent operations, while one patient with mild respiratory distress elected not to be operated on. Ten patients underwent total thyroidectomies, while two patients underwent near-total thyroidectomies. One patient with retrosternal goiter also underwent a median sternotomy. Three patients received a tracheostomy after the operation. Suction drains were utilized in all operations. During the post-operative period, two patients suffered from voice impairment, and seven patients experienced hypocalcemia. Two patients died. Pathological examination of the thyroidectomy tissue revealed BNG in all cases. In addition, two patients had micropapillary carcinomas. Conclusion Although BNG causing upper airway obstruction is rare, it is an important clinical entity because of the need for emergent operation, the

  11. Differential effects of cyclic and constant stress on ATP release and mucociliary transport by human airway epithelia

    PubMed Central

    Button, Brian; Picher, Maryse; Boucher, Richard C

    2007-01-01

    In the lungs, the first line of defence against bacterial infection is the thin layer of airway surface liquid (ASL) lining the airway surface. The superficial airway epithelium exhibits complex regulatory pathways that blend ion transport to adjust ASL volume to maintain proper mucociliary clearance (MCC). We hypothesized that stresses generated by airflow and transmural pressures during breathing govern ASL volume by regulating the rate of epithelial ATP release. Luminal ATP, via interactions with apical membrane P2-purinoceptors, regulates the balance of active ion secretion versus absorption to maintain ASL volume at optimal levels for MCC. In this study we tested the hypothesis that cyclic compressive stress (CCS), mimicking normal tidal breathing, regulates ASL volume in airway epithelia. Polarized tracheobronchial epithelial cultures from normal and cystic fibrosis (CF) subjects responded to a range of CCS by increasing the rate of ATP release. In normal airway epithelia, the CCS-induced increase in ASL ATP concentration was sufficient to induce purinoceptor-mediated increases in ASL height and MCC, via inhibition of epithelial Na+-channel-mediated Na+ absorption and stimulation of Cl− secretion through CFTR and the Ca2+-activated chloride channels. In contrast, static, non-oscillatory stress did not stimulate ATP release, ion transport or MCC, emphasizing the importance of rhythmic mechanical stress for airway defence. In CF airway cultures, which exhibit basal ASL depletion, CCS was partially effective, producing less ASL volume secretion than in normal cultures, but a level sufficient to restore MCC. The present data suggest that CCS may (1) regulate ASL volume in the normal lung and (2) improve clearance in the lungs of CF patients, potentially explaining the beneficial role of exercise in lung defence. PMID:17317749

  12. Using on-line solid phase extraction for in vivo speciation of diffusible ferrous and ferric iron in living rat brain extracellular fluid.

    PubMed

    Su, Cheng-Kuan; Chen, Yi-Ting; Sun, Yuh-Chang

    2017-02-08

    Exploration of brain extracellular non-protein-bound/diffusible iron species remains a critically important issue in investigations of free radical biology and neurodegenerative diseases. In this study, a facile sample pretreatment scheme, involving poly(vinyl chloride)-metal ion interactions as a selective extraction procedure, was optimized in conjunction with microdialysis (MD) sampling and inductively coupled plasma mass spectrometry (ICP-MS) in cool-plasma mode for in vivo online monitoring of rat brain extracellular Fe(II) and Fe(III) species. Optimization of the system provided detection limits in the range 0.9-6.9 μg Fe L(-1), based on a 12-μL microdialysate, for the tested iron species; relative standard deviations of the signal intensities during 7.8 h of continuous measurement were less than 9.4%-sufficient to determine the basal concentrations of rat brain extracellular Fe(II) and Fe(III) species and to describe their dynamic actions. The method's applicability was verified through (i) spike analyses of offline-collected rat brain microdialysates, (ii) determination of the basal Fe(II) and Fe(III) concentrations of living rat brain extracellular fluids, and (iii) monitoring of the dynamic changes in the Fe(II) and Fe(III) concentrations in response to perfusion of a high-K(+) medium. This proposed sample pretreatment scheme, based on polymer-metal ion interactions and hyphenation to an MD sampling device and an ICP-MS system, appears to have great practicality for the online monitoring of rat brain extracellular diffusible iron species.

  13. Physiology of Epithelial Chloride and Fluid Secretion

    PubMed Central

    Frizzell, Raymond A.; Hanrahan, John W.

    2012-01-01

    Epithelial salt and water secretion serves a variety of functions in different organ systems, such as the airways, intestines, pancreas, and salivary glands. In cystic fibrosis (CF), the volume and/or composition of secreted luminal fluids are compromised owing to mutations in the gene encoding CFTR, the apical membrane anion channel that is responsible for salt secretion in response to cAMP/PKA stimulation. This article examines CFTR and related cellular transport processes that underlie epithelial anion and fluid secretion, their regulation, and how these processes are altered in CF disease to account for organ-specific secretory phenotypes. PMID:22675668

  14. Cine CT technique for dynamic airway studies

    SciTech Connect

    Ell, S.R.; Jolles, H.; Keyes, W.D.; Galvin, J.R.

    1985-07-01

    The advent of cine CT scanning with its 50-msec data acquisition time promises a much wider range of dynamic CT studies. The authors describe a method for dynamic evaluation of the extrathoracic airway, which they believe has considerable potential application in nonfixed upper-airway disease, such as sleep apnea and stridor of unknown cause. Conventional CT is limited in such studies by long data acquisition time and can be used to study only prolonged maneuvers such as phonation. Fluoroscopy and digital subtraction studies are limited by relatively high radiation dose and inability to image all wall motions simultaneously.

  15. Effect of a mucoactive compound (CO 1408) on airway hyperreactivity and inflammation induced by passive cigarette smoke exposure in guinea-pigs.

    PubMed

    Hernandez, A; Daffonchio, L; Brandolini, L; Zuccari, G

    1994-04-01

    Environmental exposure to tobacco smoke contributes to the onset of several lung diseases, e.g. chronic bronchitis and asthma, including an increase in airway reactivity. We have investigated the effect of a new mucoactive compound, CO 1408, on airway hyperreactivity and lung inflammation induced in guinea-pigs by passive cigarette smoke exposure. Animals were exposed to cigarette smoke in a Plexi-glass box, three times a day for four days. Airway reactivity to histamine was assessed ex-vivo in lung parenchymal strips. As a measure of lung inflammation, the number of leucocytes was evaluated in bronchoalveolar lavage (BAL) fluids and histological sections. Passive smoke exposure potentiated histamine-induced contraction in lung parenchymal strips, a phenomenon associated with an increase in proinflammatory cells in the BAL fluids and enhanced eosinophil infiltration into parenchymal tissues. Pretreatment with oral CO 1408 at 400 mg.kg-1 but not 100 mg.kg-1, completely prevented the cigarette smoke-induced airway hyperreactivity. 400 mg.kg-1 CO 1408 also inhibited the increase in cell numbers in the BAL fluids, but not eosinophil recruitment in parenchymal tissues. The present data indicate the ability of CO 1408 to modulate smoke-induced airway hyperreactivity and, to some extent, lung inflammation, an effect which might be of value in the therapy of obstructive pulmonary diseases.

  16. 21 CFR 868.5090 - Emergency airway needle.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Emergency airway needle. 868.5090 Section 868.5090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... provide an emergency airway during upper airway obstruction. (b) Classification. Class II...

  17. 21 CFR 868.2600 - Airway pressure monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Airway pressure monitor. 868.2600 Section 868.2600...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2600 Airway pressure monitor. (a) Identification. An airway pressure monitor is a device used to measure the pressure in a patient's upper...

  18. 21 CFR 868.1780 - Inspiratory airway pressure meter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Inspiratory airway pressure meter. 868.1780... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1780 Inspiratory airway pressure meter. (a) Identification. An inspiratory airway pressure meter is a device used to measure the...

  19. 21 CFR 868.2600 - Airway pressure monitor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Airway pressure monitor. 868.2600 Section 868.2600...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2600 Airway pressure monitor. (a) Identification. An airway pressure monitor is a device used to measure the pressure in a patient's upper...

  20. 21 CFR 868.2600 - Airway pressure monitor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Airway pressure monitor. 868.2600 Section 868.2600...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2600 Airway pressure monitor. (a) Identification. An airway pressure monitor is a device used to measure the pressure in a patient's upper...

  1. 21 CFR 868.1780 - Inspiratory airway pressure meter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Inspiratory airway pressure meter. 868.1780... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1780 Inspiratory airway pressure meter. (a) Identification. An inspiratory airway pressure meter is a device used to measure the...

  2. 21 CFR 868.2600 - Airway pressure monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Airway pressure monitor. 868.2600 Section 868.2600...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2600 Airway pressure monitor. (a) Identification. An airway pressure monitor is a device used to measure the pressure in a patient's upper...

  3. 21 CFR 868.2600 - Airway pressure monitor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Airway pressure monitor. 868.2600 Section 868.2600...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2600 Airway pressure monitor. (a) Identification. An airway pressure monitor is a device used to measure the pressure in a patient's upper...

  4. 21 CFR 868.1780 - Inspiratory airway pressure meter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Inspiratory airway pressure meter. 868.1780... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1780 Inspiratory airway pressure meter. (a) Identification. An inspiratory airway pressure meter is a device used to measure the...

  5. 21 CFR 868.1780 - Inspiratory airway pressure meter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Inspiratory airway pressure meter. 868.1780... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1780 Inspiratory airway pressure meter. (a) Identification. An inspiratory airway pressure meter is a device used to measure the...

  6. 21 CFR 868.1780 - Inspiratory airway pressure meter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Inspiratory airway pressure meter. 868.1780... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1780 Inspiratory airway pressure meter. (a) Identification. An inspiratory airway pressure meter is a device used to measure the...

  7. Identification of genes differentially regulated by vitamin D deficiency that alter lung pathophysiology and inflammation in allergic airways disease.

    PubMed

    Foong, Rachel E; Bosco, Anthony; Troy, Niamh M; Gorman, Shelley; Hart, Prue H; Kicic, Anthony; Zosky, Graeme R

    2016-09-01

    Vitamin D deficiency is associated with asthma risk. Vitamin D deficiency may enhance the inflammatory response, and we have previously shown that airway remodeling and airway hyperresponsiveness is increased in vitamin D-deficient mice. In this study, we hypothesize that vitamin D deficiency would exacerbate house dust mite (HDM)-induced inflammation and alterations in lung structure and function. A BALB/c mouse model of vitamin D deficiency was established by dietary manipulation. Responsiveness to methacholine, airway smooth muscle (ASM) mass, mucus cell metaplasia, lung and airway inflammation, and cytokines in bronchoalveolar lavage (BAL) fluid were assessed. Gene expression patterns in mouse lung samples were profiled by RNA-Seq. HDM exposure increased inflammation and inflammatory cytokines in BAL, baseline airway resistance, tissue elastance, and ASM mass. Vitamin D deficiency enhanced the HDM-induced influx of lymphocytes into BAL, ameliorated the HDM-induced increase in ASM mass, and protected against the HDM-induced increase in baseline airway resistance. RNA-Seq identified nine genes that were differentially regulated by vitamin D deficiency in the lungs of HDM-treated mice. Immunohistochemical staining confirmed that protein expression of midline 1 (MID1) and adrenomedullin was differentially regulated such that they promoted inflammation, while hypoxia-inducible lipid droplet-associated, which is associated with ASM remodeling, was downregulated. Protein expression studies in human bronchial epithelial cells also showed that addition of vitamin D decreased MID1 expression. Differential regulation of these genes by vitamin D deficiency could determine lung inflammation and pathophysiology and suggest that the effect of vitamin D deficiency on HDM-induced allergic airways disease is complex.

  8. Composition and Predicted Metabolic Capacity of Upper and Lower Airway Microbiota of Healthy Dogs in Relation to the Fecal Microbiota

    PubMed Central

    Personett, Alexa R.; Grobman, Megan E.; Rindt, Hansjorg; Reinero, Carol R.

    2016-01-01

    The upper and lower airways of healthy humans are reported to harbor stable and consistent bacterial populations, and the composition of these communities is altered in individuals affected with several respiratory diseases. Data regarding the presence of airway microbiota in other animals are scant and a better understanding of the composition and metabolic function of such bacterial populations is essential for the development of novel therapeutic and diagnostic modalities for use in both veterinary and human medicine. Based on targeted next-generation sequencing of feces and samples collected at multiple levels of the airways from 16 healthy female dogs, we demonstrate that canine airways harbor a topographically continuous microbiota with increasing relative abundance of proteobacterial species from the upper to lower airways. The lung-associated microbiota, as assessed via bronchoalveolar lavage fluid (BALF), was the most consistent between dogs and was dominated by three distinct taxa, two of which were resolved to the species level and one to the level of family. The gene content of the nasal, oropharyngeal, and lung-associated microbiota, predicted using the Phylogenetic Investigations into Communities by Reconstruction of Unobserved States (PICRUSt) software, provided information regarding the glyoxylate and citrate cycle metabolic pathways utilized by these bacterial populations to colonize such nutrient-poor, low-throughput environments. These data generated in healthy subjects provide context for future analysis of diseased canine airways. Moreover, as dogs have similar respiratory anatomy, physiology, and immune systems as humans, are exposed to many of the same environmental stimuli, and spontaneously develop similar respiratory diseases, these data support the use of dogs as a model species for prospective studies of the airway microbiota, with findings translatable to the human condition. PMID:27136381

  9. Composition and Predicted Metabolic Capacity of Upper and Lower Airway Microbiota of Healthy Dogs in Relation to the Fecal Microbiota.

    PubMed

    Ericsson, Aaron C; Personett, Alexa R; Grobman, Megan E; Rindt, Hansjorg; Reinero, Carol R

    2016-01-01

    The upper and lower airways of healthy humans are reported to harbor stable and consistent bacterial populations, and the composition of these communities is altered in individuals affected with several respiratory diseases. Data regarding the presence of airway microbiota in other animals are scant and a better understanding of the composition and metabolic function of such bacterial populations is essential for the development of novel therapeutic and diagnostic modalities for use in both veterinary and human medicine. Based on targeted next-generation sequencing of feces and samples collected at multiple levels of the airways from 16 healthy female dogs, we demonstrate that canine airways harbor a topographically continuous microbiota with increasing relative abundance of proteobacterial species from the upper to lower airways. The lung-associated microbiota, as assessed via bronchoalveolar lavage fluid (BALF), was the most consistent between dogs and was dominated by three distinct taxa, two of which were resolved to the species level and one to the level of family. The gene content of the nasal, oropharyngeal, and lung-associated microbiota, predicted using the Phylogenetic Investigations into Communities by Reconstruction of Unobserved States (PICRUSt) software, provided information regarding the glyoxylate and citrate cycle metabolic pathways utilized by these bacterial populations to colonize such nutrient-poor, low-throughput environments. These data generated in healthy subjects provide context for future analysis of diseased canine airways. Moreover, as dogs have similar respiratory anatomy, physiology, and immune systems as humans, are exposed to many of the same environmental stimuli, and spontaneously develop similar respiratory diseases, these data support the use of dogs as a model species for prospective studies of the airway microbiota, with findings translatable to the human condition.

  10. Effects of concentrated ambient particles on normal and hypersecretory airways in rats.

    PubMed

    Harkema, Jack R; Keeler, Gerald; Wagner, James; Morishita, Masako; Timm, Edward; Hotchkiss, Jon; Marsik, Frank; Dvonch, Timothy; Kaminski, Norbert; Barr, Edward

    2004-08-01

    in southwestern Detroit during the summer months when particulate air pollution is usually high (July and September 2000). We monitored the outdoor air pollution in this community daily, and exposed normal and compromised rats to concentrated PM2.5 from this local urban atmosphere. Rats in the inhalation studies were exposed for 1 day or for 4 or 5 consecutive days (10 hours/day) to either filtered air (controls) or concentrated ambient particles (CAPs) delivered by a Harvard ambient fine particle concentrator. Rats were killed 24 hours after the end of the exposure. Biochemical, morphometric, and molecular techniques were used to identify airway epithelial and inflammatory responses to CAPs. Lung lobes were also either intratracheally lavaged with saline to determine cellular composition and protein in bronchoalveolar lavage fluid (BALF) or removed for analysis by inductively coupled plasma-mass spectrometry (ICPMS) to detect retention of ambient PM2.5--derived trace elements. The Harvard concentrator effectively concentrated the fine ambient particles from this urban atmosphere (10-30 times) without significantly changing the major physicochemical features of the atmospheric particles. Daily CAPs mass concentrations during the 10-hour exposure period (0800-1800) in July ranged from 16 to 895 microg/m3 and in September ranged from 81 to 755 microg/m3. In general, chemical characteristics of ambient particles were conserved through the concentrator into the exposure chamber. Single or repeated exposures to CAPs did not cause adverse effects in the nasal or pulmonary airways of healthy F344 or BN rats. In addition, CAPs-related toxicity was not observed in F344 rats pretreated with bacterial endotoxin. Variable airway responses to CAPs exposure were observed in BN rats with preexisting allergic airway disease induced by OVA sensitization and challenge. Only OVA-challenged BN rats exposed to CAPs for 5 consecutive days in September 2000 had significant increases in

  11. Electrorheological fluids

    SciTech Connect

    Adolf, D.; Anderson, R.; Garino, T.; Halsey, T.C.; Hance, B.; Martin, J.E.; Odinek, J.

    1996-10-01

    An Electrorheological fluid is normally a low-viscosity colloidal suspension, but when an electric field is applied, the fluid undergoes a reversible transition to a solid, being able to support considerable stress without yield. Commercial possibilities for such fluids are enormous, including clutches, brakes, valves,shock absorbers, and stepper motors. However, performance of current fluids is inadequate for many proposed applications. Our goal was to engineer improved fluids by investigating the key technical issues underlying the solid-phase yield stress and the liquid to solid switching time. Our studies focused on field-induced interactions between colloidal particles that lead to solidification, the relation between fluid structure and performance (viscosity, yield stress), and the time evolution of structure in the fluid as the field is switched on or off.

  12. NK cells contribute to persistent airway inflammation and AHR during the later stage of RSV infection in mice.

    PubMed

    Long, Xiaoru; Xie, Jun; Zhao, Keting; Li, Wei; Tang, Wei; Chen, Sisi; Zang, Na; Ren, Luo; Deng, Yu; Xie, Xiaohong; Wang, Lijia; Fu, Zhou; Liu, Enmei

    2016-10-01

    RSV can lead to persistent airway inflammation and AHR and is intimately associated with childhood recurrent wheezing and asthma, but the underlying mechanisms remain unclear. There are high numbers of NK cells in the lung, which not only play important roles in the acute stage of RSV infection, but also are pivotal in regulating the pathogenesis of asthma. Therefore, in this study, we assumed that NK cells might contribute to persistent airway disease during the later stage of RSV infection. Mice were killed at serial time points after RSV infection to collect samples. Leukocytes in bronchoalveolar lavage fluid (BALF) were counted, lung histopathology was examined, and airway hyperresponsiveness (AHR) was measured by whole-body plethysmography. Cytokines were detected by ELISA, and NK cells were determined by flow cytometry. Rabbit anti-mouse asialo-GM-1 antibodies and resveratrol were used to deplete or suppress NK cells. Inflammatory cells in BALF, lung tissue damage and AHR were persistent for 60 days post-RSV infection. Type 2 cytokines and NK cells were significantly increased during the later stage of infection. When NK cells were decreased by the antibodies or resveratrol, type 2 cytokines, the persistent airway inflammation and AHR were all markedly reduced. NK cells can contribute to the RSV-associated persistent airway inflammation and AHR at least partially by promoting type 2 cytokines. Therefore, therapeutic targeting of NK cells may provide a novel approach to alleviating the recurrent wheezing subsequent to RSV infection.

  13. Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways.

    PubMed

    Lin, Ching-Long; Tawhai, Merryn H; McLennan, Geoffrey; Hoffman, Eric A

    2007-08-01

    A computational fluid dynamics technique is applied to understand the relative importance of the upper and intra-thoracic airways and their role in determining central airflow patterns with particular attention paid to the importance of turbulence. The geometry of the human upper respiratory tract is derived from volumetric scans of a volunteer imaged via multidetector-row computed tomography. Geometry 1 consists of a mouthpiece, the mouth, the oropharynx, the larynx, and the intra-thoracic airways of up to six generations. Geometry 2 comprises only the intra-thoracic airways. The results show that a curved sheet-like turbulent laryngeal jet is observed only in geometry 1 with turbulence intensity in the trachea varying from 10% to 20%, whereas the turbulence in geometry 2 is negligible. The presence of turbulence is found to increase the maximum localised wall shear stress by three-folds. The proper orthogonal decomposition analysis reveals that the regions of high turbulence intensity are associated with Taylor-Görtler-like vortices. We conclude that turbulence induced by the laryngeal jet could significantly affect airway flow patterns as well as tracheal wall shear stress. Thus, airflow modeling, particularly subject specific evaluations, should consider upper as well as intra-thoracic airway geometry.

  14. Temporal Changes in Glutaredoxin 1 and Protein S-Glutathionylation in Allergic Airway Inflammation

    PubMed Central

    Maki, Kanako; Nagai, Katsura; Suzuki, Masaru; Inomata, Takashi; Yoshida, Takayuki; Nishimura, Masaharu

    2015-01-01

    Introduction Asthma is a chronic inflammatory disorder of the airways, involving oxidative stress. Upon oxidative stress, glutathione covalently binds to protein thiols to protect them against irreversible oxidation. This posttranslational modification, known as protein S-glutathionylation, can be reversed by glutaredoxin 1 (Glrx1) under physiological condition. Glrx1 is known to increase in the lung tissues of a murine model of allergic airway inflammation. However, the temporal relationship between levels of Glrx1, protein S-glutathionylation, and glutathione in the lungs with allergic airway inflammation is not clearly understood. Methods BALB/c mice received 3 aerosol challenges with ovalbumin (OVA) following sensitization to OVA. They were sacrificed at 6, 24, 48, or 72 h, or 8 days (5 mice per group), and the levels of Glrx1, protein S-glutathionylation, glutathione, and 25 cytokines/chemokines were evaluated in bronchoalveolar lavage fluid (BALF) and/or lung tissue. Results Levels of Glrx1 in BALF were significantly elevated in the OVA 6 h (final challenge) group compared to those in the control, with concurrent increases in protein S-glutathionylation levels in the lungs, as well as total glutathione (reduced and oxidized) and oxidized glutathione in BALF. Protein S-glutathionylation levels were attenuated at 24 h, with significant increases in Glrx1 levels in lung tissues at 48 and 72 h. Glrx1 in alveolar macrophages was induced after 6 h. Glrx1 levels concomitantly increased with Th2/NF-κB-related cytokines and chemokines in BALF. Conclusions The temporal relationships of Glrx1 with protein S-glutathionylation, glutathione, and cytokines/chemokines were observed as dynamic changes in lungs with allergic airway inflammation, suggesting that Glrx1 and protein–SSG redox status may play important roles in the development of allergic airway inflammation. PMID:25874776

  15. Sialic acid-to-urea ratio as a measure of airway surface hydration.

    PubMed

    Esther, Charles R; Hill, David B; Button, Brian; Shi, Shuai; Jania, Corey; Duncan, Elizabeth A; Doerschuk, Claire M; Chen, Gang; Ranganathan, Sarath; Stick, Stephen M; Boucher, Richard C

    2017-03-01

    Although airway mucus dehydration is key to pathophysiology of cystic fibrosis (CF) and other airways diseases, measuring mucus hydration is challenging. We explored a robust method to estimate mucus hydration using sialic acid as a marker for mucin content. Terminal sialic acid residues from mucins were cleaved by acid hydrolysis from airway samples, and concentrations of sialic acid, urea, and other biomarkers were analyzed by mass spectrometry. In mucins purified from human airway epithelial (HAE), sialic acid concentrations after acid hydrolysis correlated with mucin concentrations (r(2) = 0.92). Sialic acid-to-urea ratios measured from filters applied to the apical surface of cultured HAE correlated to percent solids and were elevated in samples from CF HAEs relative to controls (2.2 ± 1.1 vs. 0.93 ± 1.8, P < 0.01). Sialic acid-to-urea ratios were elevated in bronchoalveolar lavage fluid (BALF) from β-epithelial sodium channel (ENaC) transgenic mice, known to have reduced mucus hydration, and mice sensitized to house dust mite allergen. In a translational application, elevated sialic acid-to-urea ratios were measured in BALF from young children with CF who had airway infection relative to those who did not (5.5 ± 3.7 vs. 1.9 ± 1.4, P < 0.02) and could be assessed simultaneously with established biomarkers of inflammation. The sialic acid-to-urea ratio performed similarly to percent solids, the gold standard measure of mucus hydration. The method proved robust and has potential to serve as flexible techniques to assess mucin hydration, particularly in samples like BALF in which established methods such as percent solids cannot be utilized.

  16. Pycnogenol Ameliorates Asthmatic Airway Inflammation and Inhibits the Function of Goblet Cells.

    PubMed

    Liu, Zhaoe; Han, Bo; Chen, Xing; Wu, Qiaoling; Wang, Lijun; Li, Gang

    2016-11-01

    Pycnogenol(®) (PYC) is utilized in the treatment of various diseases ranging from chronic inflammation to circulatory diseases, but its efficacy and functional mechanism in pediatric asthma continue to remain obscure. Therefore, the purpose of this study was to investigate the effectiveness and molecular mechanism of PYC on regulation of asthmatic airway inflammation. We found that PYC with tail intravenous injection of 50 mg/kg or intragastric administration of 100 mg/kg all reduced ovalbumin (OVA)-induced airway injury. Pharmacokinetics of PYC was evaluated by high-performance liquid chromatography assay, indicating that PYC was quickly absorbed into the blood after intragastric administration, and PYC metabolism was later improved gradually with increase of time after PYC administration. PYC has a higher bioavailability of 71.96%, and it was more easily absorbed by the body. PYC inhibited the number of total inflammatory cells and levels of interleukin (IL)-4, IL-5, IL-9, and IL-13 in bronchoalveolar lavage fluid of OVA-induced mice. PYC inhibited IL-13 secretion from the Th2 cells, thereby causing a reduction in expression of the signaling molecules in JAK/STAT6 pathway in airway epithelial cells. STAT6 silence suppressed IL-13-increased acetylcholine level. STAT6 overexpression promoted expression of goblet cell metaplasia-associated molecules (FOXA3, SPDEF, and Muc5ac). PYC suppressed OVA-induced expression of FOXA3, SPDEF, and Muc5ac in lung. Our findings indicate that PYC has a higher bioavailability and it prevents emergence of OVA-induced airway injury and airway inflammation in mice by inhibiting IL-13/JAK/STAT6 pathway and blocking release of acetylcholine to reduce goblet cell metaplasia.

  17. Inhalation of diesel exhaust enhances allergen-related eosinophil recruitment and airway hyperresponsiveness in mice.

    PubMed

    Takano, H; Ichinose, T; Miyabara, Y; Shibuya, T; Lim, H B; Yoshikawa, T; Sagai, M

    1998-06-01

    We have previously shown that intratracheal instillation of suspension of diesel exhaust particles enhances allergen-related eosinophilic airway inflammation, airway hyperresponsiveness, and local expression of interleukin (IL)-5 and granulocyte macrophage-colony stimulating factor (GM-CSF) in mice. The present study was designed to elucidate the effects of daily inhalation of diesel exhaust (DE) on the allergen-related respiratory disease. ICR mice were exposed for 40 weeks to clean air or DE at a soot concentration of 0.3, 1.0, or 3.0 mg/m3 with aerosol allergen challenges (1% ovalbumin in isotonic saline for 6 min) at 3-week intervals during the last 24 weeks of exposures. Exposure to DE enhanced allergen-related eosinophil recruitment to the submucosal layers of the airways and to the bronchoalveolar space, and increased protein levels of GM-CSF and IL-5 in the lung in a dose-dependent manner compared to exposure to clean air. There were strong correlations between the number of eosinophils in bronchoalveolar lavage (BAL) fluid and IL-5 concentrations in BAL supernatants and lung tissue supernatants. In addition, the increases in eosinophil recruitment and local cytokine expression were accompanied by goblet cell proliferation in the bronchial epithelium and airway hyperresponsiveness to inhaled acetylcholine. In contrast, the control mice exposed for 40 weeks to clean air or DE at a soot concentration of 0.3, 1.0, or 3.0 mg/m3 without allergen provocation showed no eosinophil recruitment to the submucosal layers of the airways nor to the bronchoalveolar space and few goblet cells in the bronchial epithelium. The present study provides experimental evidence that daily inhalation of DE can enhance allergen-related respiratory diseases such as allergic asthma. This effect may be mediated by the enhanced local expression of IL-5 and GM-CSF. Increased ambient levels of DE may be implicated in the increasing prevalence of bronchial asthma in recent years.

  18. Automated airway evaluation system for multi-slice computed tomography using airway lumen diameter, airway wall thickness and broncho-arterial ratio

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.; Lerallut, Jean-Francois

    2006-03-01

    Pulmonary diseases such as bronchiectasis, asthma, and emphysema are characterized by abnormalities in airway dimensions. Multi-slice computed tomography (MSCT) has become one of the primary means to depict these abnormalities, as the availability of high-resolution near-isotropic data makes it possible to evaluate airways at oblique angles to the scanner plane. However, currently, clinical evaluation of airways is typically limited to subjective visual inspection only: systematic evaluation of the airways to take advantage of high-resolution data has not proved practical without automation. We present an automated method to quantitatively evaluate airway lumen diameter, wall thickness and broncho-arterial ratios. In addition, our method provides 3D visualization of these values, graphically illustrating the location and extent of disease. Our algorithm begins by automatic airway segmentation to extract paths to the distal airways, and to create a map of airway diameters. Normally, airway diameters decrease as paths progress distally; failure to taper indicates abnormal dilatation. Our approach monitors airway lumen diameters along each airway path in order to detect abnormal profiles, allowing even subtle degrees of pathologic dilatation to be identified. Our method also systematically computes the broncho-arterial ratio at every terminal branch of the tree model, as a ratio above 1 indicates potentially abnormal bronchial dilatation. Finally, the airway wall thickness is computed at corresponding locations. These measurements are used to highlight abnormal branches for closer inspection, and can be summed to compute a quantitative global score for the entire airway tree, allowing reproducible longitudinal assessment of disease severity. Preliminary tests on patients diagnosed with bronchiectasis demonstrated rapid identification of lack of tapering, which also was confirmed by corresponding demonstration of elevated broncho-arterial ratios.

  19. Functional imaging using computer methods to compare the effect of salbutamol and ipratropium bromide in patient-specific airway models of COPD

    PubMed Central

    De Backer, LA; Vos, WG; Salgado, R; De Backer, JW; Devolder, A; Verhulst, SL; Claes, R; Germonpré, PR; De Backer, WA

    2011-01-01

    Background Salbutamol and ipratropium bromide improve lung function in patients with chronic obstructive pulmonary disease (COPD). However, their bronchodilating effect has not yet been compared in the central and distal airways. Functional imaging using computational fluid dynamics offers the possibility of making such a comparison. The objective of this study was to assess the effects of salbutamol and ipratropium bromide on the geometry and computational fluid dynamics-based resistance of the central and distal airways. Methods Five patients with Global Initiative for Chronic Obstructive Lung Disease Stage III COPD were randomized to a single dose of salbutamol or ipratropium bromide in a crossover manner with a 1-week interval between treatments. Patients underwent lung function testing and a multislice computed tomography scan of the thorax that was used for functional imaging. Two hours after dosing, the patients again underwent lung function tests and repeat computed tomography. Results Lung function parameters, including forced expiratory volume in 1 second, vital capacity, overall airway resistance, and specific airway resistance, changed significantly after administration of each product. On functional imaging, the bronchodilating effect was greater in the distal airways, with a corresponding drop in airway resistance, compared with the central airways. Salbutamol and ipratropium bromide were equally effective at first glance when looking at lung function tests, but when viewed in more detail with functional imaging, hyporesponsiveness could be shown for salbutamol in one patient. Salbutamol was more effective in the other patients. Conclusion This pilot study gives an innovative insight into the modes of action of salbutamol and ipratropium bromide in patients with COPD, using the new techniques of functional imaging and computational fluid dynamics. PMID:22162649

  20. Erdosteine enhances mucociliary clearance in rats with and without airway inflammation.

    PubMed

    Hosoe, H; Kaise, T; Ohmori, K

    1998-10-01

    Erdosteine is a new homocysteine-derived expectorant and has been reported to have many mucolytic effects. In this report, we studied the activities of erdosteine on mucociliary clearance in normal and airway-inflammation-induced rats. In normal rats, erdosteine at doses of 100-600 mg/kg significantly promoted mucociliary clearance. However, erdosteine did not change the concentrations of mucopolysaccharides in bronchoalveolar lavage fluid (BALF). In the LPS-instillated rats, the mucociliary clearance was inhibited and the number of inflammatory cells, albumin concentration, and mucopolysaccharides concentration in BALF were increased. Erdosteine at doses of 100-600 mg/kg significantly attenuated the inhibition of mucociliary clearance and the increase of inflammatory cells, however, it did not prevent the increase of albumin and mucopolysaccharides. Other mucolytic drugs which are ambroxol and S-carboxymethylcysteine, had no effect. These results indicate that erdosteine promotes the mucociliary clearance in normal and airway-inflammation-induced rats.

  1. Maturation of cough and other reflexes that protect the fetal and neonatal airway

    PubMed Central

    Thach, Bradley T.

    2007-01-01

    Although aspiration of contaminated amniotic fluid and gastric contents is common at birth, anecdotal evidence indicates that coughing occurs rarely if at all. Studies in which cough and other airway protective responses have been stimulated by introducing a small bolus of water or saline into the pharynx of sleeping infants have found that the predominant responses are swallowing, apnoea and laryngeal closure. Coughing is rare. Collectively these responses are known as the laryngeal chemoreflexes (LCR). These are mediated by receptors in the inter-arytenoid space. The LCR has been studied extensively in animal models. Upper airway infection increases the responses and in this case coughing becomes a common component. Studies in animal models indicate that with maturation, apnoea and swallowing components of the LCR decrease while cough becomes increasing prominent. PMID:17374497

  2. [Anticholinergic drugs in the therapy of obstructive airway diseases].

    PubMed

    Windt, Roland

    2011-04-01

    The anticholinergic effects from botanical preparations of the deadly nightshade family have been used for hundreds of years for the treatment of obstructive airway diseases. Nowadays, derivatives of the plant alkaloids with quaternary ammonium structure, ipratropium bromide and tiotropium bromide, are used, which retain the bronchodilator properties of the parent compounds but are much safer since they are poorly absorbed across biologic membranes. They are the bronchodilators of choice in the management of chronic obstructive pulmonary disease (COPD). However, ipratropium is considered a second-line agent in the treatment of asthma as the bronchodilatory effects seen with ipratropium are less than those seen with beta-adrenergic drugs. Tiotropium is only approved for use in COPD. Though, a recent study provides some evidence that this agent may be an alternative to long-acting beta agonists as an add-on therapy to inhaled glucocorticoids for asthma.

  3. Prehospital endotracheal tube airway or esophageal gastric tube airway: a critical comparison.

    PubMed

    Shea, S R; MacDonald, J R; Gruzinski, G

    1985-02-01

    This study compares two similar groups of patients in cardiopulmonary arrest with ventricular fibrillation (VF). In the survival study group of 296 patients, 148 patients received an endotracheal tube airway (ETA) and 148 patients received an esophageal gastric tube airway (EGTA), the improved version of the esophageal obturator airway (EOA). Survival rates, both short term (ETA = 35.8%, EGTA = 39.1%) and long term (ETA = 11.5%, EGTA = 16.2%), and neurological sequelae of survivors showed no statistically significant difference between the two groups (P greater than .05). In addition, we found that success and complication rates of intubation were similar. Training time was longer for the ETA. We conclude that both airways have a place in the prehospital setting.

  4. A human colon carcinoma cell line exhibits adhesive interactions with P-selectin under fluid flow via a PSGL-1-independent mechanism.

    PubMed Central

    Goetz, D. J.; Ding, H.; Atkinson, W. J.; Vachino, G.; Camphausen, R. T.; Cumming, D. A.; Luscinskas, F. W.

    1996-01-01

    It has been postulated that endothelial cell adhesion molecules involved in leukocyte recruitment play a role in metastasis. Using an in vitro flow model, we studied the adhesion of the human colon carcinoma cell line KM12-L4 to P-selectin, an inducible endothelial-expressed adhesion molecule involved in leukocyte recruitment. Recombinant forms of P-selectin and Chinese hamster ovary cells stably expressing P-selectin supported attachment and rolling of KM12-L4 cells at 1 to 2 dynes/cm2. The adhesive interactions to P-selectin were abolished by pretreatment of the KM12-L4 cells with neuraminidase but were unaltered by pretreatment of the KM12-L4 cells with O-sialoglycoprotein endopeptidase, an enzyme that cleaves mucin type glycoproteins such as P-selectin glycoprotein ligand-1 (PSGL-1). PSGL-1 is the only counter-receptor for P-selectin known to mediate myeloid cell adhesion to P-selectin under flow. Flow cytometric and Northern blot analyses revealed that KM12-L4 cells did not express PSGL-1 and monoclonal antibody PL1, a function-blocking monoclonal antibody to PSGL-1, had no inhibitory effect on KM12-L4 adhesion to P-selectin under flow. Compared with HL-60 cells, which express PSGL-1, the KM12-L4 cells exhibited a slightly lower rate of attachment to P-selectin and rolled at a significantly higher velocity. In summary, KM12-L4 human colon carcinoma cells interact with P-selectin, under flow, through a PSGL-1-independent adhesion pathway. Images Figure 3 Figure 6 PMID:8909255

  5. Uptake and transport of B12-conjugated nanoparticles in airway epithelium☆

    PubMed Central

    Fowler, Robyn; Vllasaliu, Driton; Falcone, Franco H.; Garnett, Martin; Smith, Bryan; Horsley, Helen; Alexander, Cameron; Stolnik, Snow

    2013-01-01

    Non-invasive delivery of biotherapeutics, as an attractive alternative to injections, could potentially be achieved through the mucosal surfaces, utilizing nanoscale therapeutic carriers. However, nanoparticles do not readily cross the mucosal barriers, with the epithelium presenting a major barrier to their translocation. The transcytotic pathway of vitamin B12 has previously been shown to ‘ferry’ B12-decorated nanoparticles across intestinal epithelial (Caco-2) cells. However, such studies have not been reported for the airway epithelium. Furthermore, the presence in the airways of the cell machinery responsible for transepithelial trafficking of B12 is not widely reported. Using a combination of molecular biology and immunostaining techniques, our work demonstrates that the bronchial cell line, Calu-3, expresses the B12-intrinsic factor receptor, the transcobalamin II receptor and the transcobalamin II carrier protein. Importantly, the work showed that sub-200 nm model nanoparticles chemically conjugated to B12 were internalised and transported across the Calu-3 cell layers, with B12 conjugation not only enhancing cell uptake and transepithelial transport, but also influencing intracellular trafficking. Our work therefore demonstrates that the B12 endocytotic apparatus is not only present in this airway model, but also transports ligand-conjugated nanoparticles across polarised epithelial cells, indicating potential for B12-mediated delivery of nanoscale carriers of biotherapeutics across the airways. PMID:24008152

  6. Effect of aging on airway remodeling and muscarinic receptors in a murine acute asthma model

    PubMed Central

    Kang, Ji Young; Lee, Sook Young; Rhee, Chin Kook; Kim, Seung Joon; Kwon, Soon Seog; Kim, Young Kyoon

    2013-01-01

    Background and objectives The influence of aging on the development of asthma has not been studied thoroughly. The aim of this study was to investigate age-related airway responses involving lung histology and expression of muscarinic receptors in a murine model of acute asthma. Methods Female BALB/c mice at the ages of 6 weeks and 6, 9, and 12 months were sensitized and challenged with ovalbumin (OVA) for 1 month (n = 8–12 per group). We analyzed inflammatory cells and T-helper (Th)2 cytokines in bronchoalveolar lavage (BAL) fluid and parameters of airway remodeling and expression of muscarinic receptors in lung tissue. Results Among the OVA groups, total cell and eosinophil numbers in BAL fluid were significantly higher in the older (6-, 9-, and 12-month-old) mice than in the young (6-week-old) mice. Interleukin (IL) 4 (IL-4) concentration increased, but IL-5 and IL-13 concentrations showed a decreased tendency, with age. IL-17 concentration tended to increase with age, which did not reach statistical significance. Periodic acid-Schiff (PAS) staining area, peribronchial collagen deposition, and area of α-smooth muscle staining were significantly higher in the 6-month older OVA group than in the young OVA group. The expression of the M3 and M2 muscarinic receptors tended to increase and decrease, respectively, with age. Conclusion The aged mice showed an active and unique pattern not only on airway inflammation, but also on airway remodeling and expression of the muscarinic receptors during the development of acute asthma compared with the young mice. These findings suggest that the aging process affects the pathogenesis of acute asthma and age-specific approach might be more appropriate for better asthma control in a clinical practice. PMID:24204129

  7. Expression of ligands for Siglec-8 and Siglec-9 in human airways and airway cells

    PubMed Central

    Jia, Yi; Yu, Huifeng; Fernandes, Steve M.; Wei, Yadong; Gonzalez-Gil, Anabel; Motari, Mary G.; Vajn, Katarina; Stevens, Whitney W.; Peters, Anju T.; Bochner, Bruce S.; Kern, Robert C.; Schleimer, Robert P.; Schnaar, Ronald L.

    2015-01-01

    Background Balanced activation and inhibition of the immune system ensures pathogen clearance while avoiding hyperinflammation. Siglecs, sialic acid binding proteins found on subsets of immune cells, often inhibit inflammation: Siglec-8 on eosinophils and Siglec-9 on neutrophils engage sialoglycan ligands on airways to diminish ongoing inflammation. The identities of human siglec ligands and their expression during inflammation are largely unknown. Objective The histological distribution, expression and molecular characteristics of siglec ligands were explored in healthy and inflamed human upper airways and in a cellular model of airway inflammation. Methods Normal and chronically inflamed upper airway tissues were stained for siglec ligands. The ligands were extracted from normal and inflamed tissues and from human Calu-3 cells for quantitative analysis by siglec blotting and isolation by siglec capture. Results Siglec-8 ligands were expressed on a subpopulation of submucosal gland cells of human inferior turbinate, whereas Siglec-9 ligands were expressed more broadly (submucosal glands, epithelium, connective tissue); both were significantly upregulated in chronic rhinosinusitis patients. Human airway (Calu-3) cells expressed Siglec-9 ligands on mucin 5B under inflammatory control via the NF-κB pathway, and mucin 5B carried sialoglycan ligands of Siglec-9 on human upper airway tissue. Conclusion Inflammation results in upregulation of immune inhibitory Siglec-8 and Siglec-9 sialoglycan ligands on human airways. Siglec-9 ligands were upregulated via the NF-κB pathway resulting in their enhanced expression on mucin 5B. Siglec sialoglycan ligand expression in inflamed cells and tissues may contribute to the control of airway inflammation. PMID:25747723

  8. Current Inhalers Deliver Very Small Doses to the Lower Tracheobronchial Airways: Assessment of Healthy and Constricted Lungs.

    PubMed

    Walenga, Ross L; Longest, P Worth

    2016-01-01

    To evaluate the regional delivery of conventional aerosol medications, a new whole-lung computational fluid dynamics modeling approach was applied for metered dose inhaler (MDI) and dry powder inhaler (DPI) aerosols delivered to healthy and constricted airways. The computational fluid dynamics approach included complete airways through the third respiratory bifurcation (B3) and applied the new stochastic individual pathway modeling technique beyond B3 through the remainder of the conducting airways together with a new model of deposition in the alveolar region. Bronchiolar (B8-B15) deposition fraction values were low (∼1%) for both MDI and DPI aerosols with the healthy geometry, whereas delivery to the constricted model was even lower, with deposition fraction values of 0.89% and 0.81% for the MDI and DPI, respectively. Calculating dose per unit surface area for the commercial MDI and DPI products resulted in approximately 10(-3) μg/cm(2) in the lower tracheobronchial region of B8-B15 and 10(-4) μg/cm(2) in the alveolar region. Across the lung, dose per unit surface area varied by 2 orders of magnitude, which increased to 4 orders of magnitude when the mouth-throat region was included. The MDI and DPI both provided very low drug dose per unit surface area to the small tracheobronchial and alveolar airways.

  9. Complications of upper airway surgery in companion animals.

    PubMed

    Mercurio, Andrew

    2011-09-01

    Surgery of the upper airway is performed in dogs for the correction of brachycephalic airway syndrome and laryngeal paralysis and for temporary or permanent tracheostomy. Although technically simple to perform, upper airway surgeries can lead to the development of significant postoperative complications. This article reviews complications associated with common surgical conditions of the upper airway. It involves a discussion of brachycephalic airway syndrome and associated respiratory and gastrointestinal complications. It also covers laryngeal paralysis with a focus on unilateral arytenoid lateralization and the complication of aspiration pneumonia. The condition of acquired laryngeal webbing/stenosis and potential treatment options is also discussed. Finally, tracheostomies and associated complications in dogs and cats are reviewed.

  10. Towards numerical simulations of fluid-structure interactions for investigation of obstructive sleep apnea

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Jung; White, Susan M.; Huang, Shao-Ching; Mallya, Sanjay; Eldredge, Jeff D.

    2014-11-01

    Obstructive sleep apnea(OSA) is a medical condition characterized by repetitive partial or complete occlusion of the airway during sleep. The soft tissues in the airway of OSA patients are prone to collapse under the low pressure loads incurred during breathing. The numerical simulation with patient-specific upper airway model can provide assistance for diagnosis and treatment assessment. The eventual goal of this research is the development of numerical tool for air-tissue interactions in the upper airway of patients with OSA. This tool is expected to capture collapse of the airway in respiratory flow conditions, as well as the effects of various treatment protocols. Here, we present our ongoing progress toward this goal. A sharp-interface embedded boundary method is used on Cartesian grids for resolving the air-tissue interface in the complex patient-specific airway geometries. For the structure simulation, a cut-cell FEM is used. Non-linear Green strains are used for properly resolving the large tissue displacements in the soft palate structures. The fluid and structure solvers are strongly coupled. Preliminary results will be shown, including flow simulation inside the 3D rigid upper airway of patients with OSA, and several validation problem for the fluid-structure coupling.

  11. Techniques of assessing small airways dysfunction

    PubMed Central

    McNulty, William; Usmani, Omar S.

    2014-01-01

    The small airways are defined as those less than 2 mm in diameter. They are a major site of pathology in many lung diseases, not least chronic obstructive pulmonary disease (COPD) and asthma. The small airways are frequently involved early in the course of these diseases, with significant pathology demonstrable often before the onset of symptoms or changes in spirometry and imaging. Despite their importance, they have proven relatively difficult to study. This is in part due to their relative inaccessibility to biopsy and their small size which makes their imaging difficult. Traditional lung function tests may only become abnormal once there is a significant burden of disease within them. This has led to the term ‘the quiet zone’ of the lung. In recent years, more specialised tests have been developed which may detect these changes earlier, perhaps offering the possibility of earlier diagnosis and intervention. These tests are now moving from the realms of clinical research laboratories into routine clinical practice and are increasingly useful in the diagnosis and monitoring of respiratory diseases. This article gives an overview of small airways physiology and some of the routine and more advanced tests of airway function. PMID:26557240

  12. Reproducibility of airway wall thickness measurements

    NASA Astrophysics Data System (ADS)

    Schmidt, Michael; Kuhnigk, Jan-Martin; Krass, Stefan; Owsijewitsch, Michael; de Hoop, Bartjan; Peitgen, Heinz-Otto

    2010-03-01

    Airway remodeling and accompanying changes in wall thickness are known to be a major symptom of chronic obstructive pulmonary disease (COPD), associated with reduced lung function in diseased individuals. Further investigation of this disease as well as monitoring of disease progression and treatment effect demand for accurate and reproducible assessment of airway wall thickness in CT datasets. With wall thicknesses in the sub-millimeter range, this task remains challenging even with today's high resolution CT datasets. To provide accurate measurements, taking partial volume effects into account is mandatory. The Full-Width-at-Half-Maximum (FWHM) method has been shown to be inappropriate for small airways1,2 and several improved algorithms for objective quantification of airway wall thickness have been proposed.1-8 In this paper, we describe an algorithm based on a closed form solution proposed by Weinheimer et al.7 We locally estimate the lung density parameter required for the closed form solution to account for possible variations of parenchyma density between different lung regions, inspiration states and contrast agent concentrations. The general accuracy of the algorithm is evaluated using basic tubular software and hardware phantoms. Furthermore, we present results on the reproducibility of the algorithm with respect to clinical CT scans, varying reconstruction kernels, and repeated acquisitions, which is crucial for longitudinal observations.

  13. Airway-parenchyma uncoupling in nocturnal asthma.

    PubMed

    Irvin, C G; Pak, J; Martin, R J

    2000-01-01

    Airway flow resistance is well known to be dependent upon lung volume. The rise in lung volume that occurs in asthma is therefore thought to be an important mechanism that defends airway patency. The purpose of the current study was to investigate the interdependence or mechanical coupling between airways and lung parenchyma during the inflammatory processes that occur in the patient with nocturnal asthma. Five patients with documented nocturnal asthma were studied in both a vertical and a horizontal body plethysmograph. Lung volume was altered with continuous negative pressure as applied to the chest wall with a poncho cuirass in different postures and during sleep. We found during the awake phase that an increase in lung volume decreased lower pulmonary resistance (Rlp); however, within 30 min of sleep onset, functional residual capacity (FRC) fell and Rlp rose more than would be expected for the fall in FRC. Restoring FRC to presleep values either at an early (half-hour) or a late (3-h) time point did not cause Rlp to significantly fall. A second phase of the study showed that the loss of Rlp dependence on lung volume was not due to the assumption of the supine posture. Indirect measurements of lung compliance were consistent with a stiffening of the lung. We conclude that with sleep there is an immediate uncoupling of the parenchyma to the airway, resulting in a loss of interdependence that persists throughout sleep and may contribute to the morbidity and mortality associated with nocturnal asthma.

  14. Quercetin Blocks Airway Epithelial Cell Chemokine Expression

    PubMed Central

    Nanua, Suparna; Zick, Suzanna M.; Andrade, Juan E.; Sajjan, Umadevi S.; Burgess, John R.; Lukacs, Nicholas W.; Hershenson, Marc B.

    2006-01-01

    Quercetin (3,3′,4′,5,7-pentahydroxyflavone), a dietary flavonoid, is an inhibitor of phosphatidylinositol (PI) 3-kinase and potent antioxidant. We hypothesized that quercetin blocks airway epithelial cell chemokine expression via PI 3-kinase–dependent mechanisms. Pretreatment with quercetin and the PI 3–kinase inhibitor LY294002 each reduced TNF-α–induced IL-8 and monocyte chemoattractant protein (MCP)-1 (also called CCL2) expression in cultured human airway epithelial cells. Quercetin also inhibited TNF-α–induced PI 3-kinase activity, Akt phosphorylation, intracellular H2O2 production, NF-κB transactivation, IL-8 promoter activity, and steady-state mRNA levels, consistent with the notion that quercetin inhibits chemokine expression by attenuating NF-κB transactivation via a PI 3-kinase/Akt-dependent pathway. Quercetin also reduced TNF-α–induced chemokine secretion in the presence of the transcriptional inhibitor actinomycin D, while inducing phosphorylation of eukaryotic translation initiation factor (eIF)-2α, suggesting that quercetin attenuates chemokine expression by post-transcriptional as well as transcriptional mechanisms. Finally, we tested the effects of quercetin in cockroach antigen–sensitized and –challenged mice. These mice show MCP-1–dependent airways hyperresponsiveness and inflammation. Quercetin significantly reduced lung MCP-1 and methacholine responsiveness. We conclude that quercetin blocks airway cell chemokine expression via transcriptional and post-transcriptional pathways. PMID:16794257

  15. COLCHICINE DECREASES AIRWAY HYPERACTIVITY AFTER PHOSGENE EXPOSURE

    EPA Science Inventory

    Phosgene (COCl(2)) exposure affects an influx of inflammatory cells into the lung, which can be reduced in an animal model by pretreatment with colchicine. Inflammation in the respiratory tract can be associated with an increase in airway hyperreactivity. We tested the hypotheses...

  16. Osmotic regulation of airway reactivity by epithelium.

    PubMed

    Fedan, J S; Yuan, L X; Chang, V C; Viola, J O; Cutler, D; Pettit, L L

    1999-05-01

    Inhalation of nonisotonic solutions can elicit pulmonary obstruction in asthmatic airways. We evaluated the hypothesis that the respiratory epithelium is involved in responses of the airways to nonisotonic solutions using the guinea pig isolated, perfused trachea preparation to restrict applied agents to the mucosal (intraluminal) or serosal (extraluminal) surface of the airway. In methacholine-contracted tracheae, intraluminally applied NaCl or KCl equipotently caused relaxation that was unaffected by the cyclo-oxygenase inhibitor, indomethacin, but was attenuated by removal of the epithelium and Na+ and Cl- channel blockers. Na+-K+-2Cl- cotransporter and nitric oxide synthase blockers caused a slight inhibition of relaxation, whereas Na+,K+-pump inhibition produced a small potentiation. Intraluminal hyperosmolar KCl and NaCl inhibited contractions in response to intra- or extraluminally applied methacholine, as well as neurogenic cholinergic contractions elicited with electric field stimulation (+/- indomethacin). Extraluminally applied NaCl and KCl elicited epithelium-dependent relaxation (which for KCl was followed by contraction). In contrast to the effects of hyperosmolarity, intraluminal hypo-osmolarity caused papaverine-inhibitable contractions (+/- epithelium). These findings suggest that the epithelium is an osmotic sensor which, through the release of epithelium-derived relaxing factor, can regulate airway diameter by modulating smooth muscle responsiveness and excitatory neurotransmission.

  17. Quantitative analysis of airway abnormalities in CT

    NASA Astrophysics Data System (ADS)

    Petersen, Jens; Lo, Pechin; Nielsen, Mads; Edula, Goutham; Ashraf, Haseem; Dirksen, Asger; de Bruijne, Marleen

    2010-03-01

    A coupled surface graph cut algorithm for airway wall segmentation from Computed Tomography (CT) images is presented. Using cost functions that highlight both inner and outer wall borders, the method combines the search for both borders into one graph cut. The proposed method is evaluated on 173 manually segmented images extracted from 15 different subjects and shown to give accurate results, with 37% less errors than the Full Width at Half Maximum (FWHM) algorithm and 62% less than a similar graph cut method without coupled surfaces. Common measures of airway wall thickness such as the Interior Area (IA) and Wall Area percentage (WA%) was measured by the proposed method on a total of 723 CT scans from a lung cancer screening study. These measures were significantly different for participants with Chronic Obstructive Pulmonary Disease (COPD) compared to asymptomatic participants. Furthermore, reproducibility was good as confirmed by repeat scans and the measures correlated well with the outcomes of pulmonary function tests, demonstrating the use of the algorithm as a COPD diagnostic tool. Additionally, a new measure of airway wall thickness is proposed, Normalized Wall Intensity Sum (NWIS). NWIS is shown to correlate better with lung function test values and to be more reproducible than previous measures IA, WA% and airway wall thickness at a lumen perimeter of 10 mm (PI10).

  18. Access to the Airways: Rationale and Applications.

    ERIC Educational Resources Information Center

    Hanks, William; Longini, Peter

    Current movements toward greater public access to the airways are discussed. Traditional practices have limited access to journalists employed by stations and to those who purchase time and have allowed only limited responses to station-initiated editorials. Legal arguments that support citizen demands for more access arise from the First…

  19. Upper Airway Variation and Frequent Alcohol Consumption Can Affect Compliance With Continuous Positive Airway Pressure

    PubMed Central

    Jeong, Jong In; Kim, Hyo Yeol; Hong, Sang Duk; Ryu, Gwanghui; Kim, Su Jin; Lee, Kyung Eun; Dhong, Hun-Jong; Chung, Seung-Kyu

    2016-01-01

    Objectives Compliance with continuous positive airway pressure (CPAP) treatment remains a primary concern for improving treatment outcomes of obstructive sleep apnea. There are few studies that have considered the role of upper airway anatomy on the compliance with CPAP. We hypothesized that upper airway anatomy would influence the compliance with CPAP. Methods One hundred out of 161 consecutive patients were enrolled in this study. The following possible determinants were tested against CPAP use: demographic and anthropometric data, minimal cross-sectional area on acoustic rhinometry, cephalometric and polysomnographic data, questionnaires of Epworth sleepiness scale and Beck depression index, and histories of previous upper airway surgery, degree of nasal obstruction, daily cigarette consumption, and weekly frequency of alcohol intake. Results Univariate analysis showed that histories of previous upper airway surgery and less frequent alcohol consumption, and longer mandibular plane-hyoid length (MP-H) on cephalometry were associated with longer average daily CPAP use. After adjustment for the confounding factors with multiple linear regression analysis, alcohol consumption and MP-H were still associated with the compliance with CPAP significantly. Conclusion To improve compliance with CPAP, careful evaluations of upper airway problems and life style are important before initiating CPAP. PMID:27334512

  20. Silymarin attenuates airway inflammation induced by cigarette smoke in mice.

    PubMed

    Li, Diandian; Xu, Dan; Wang, Tao; Shen, Yongchun; Guo, Shujin; Zhang, Xue; Guo, Lingli; Li, Xiaoou; Liu, Lian; Wen, Fuqiang

    2015-04-01

    Cigarette smoke (CS), which increases inflammation and oxidative stress, is a major risk factor for the development of COPD. In this study, we investigated the effects of silymarin, a polyphenolic flavonoid isolated from the seeds and fruits of milk thistle, on CS-induced airway inflammation and oxidative stress in mice and the possible mechanisms. BALB/c mice were exposed to CS for 2 h twice daily, 6 days per week for 4 weeks. Silymarin (25, 50 mg/kg·day) was administered intraperitoneally 1 h before CS exposure. Bronchoalveolar lavage fluid (BALF) was acquired for cell counting and the detection of pro-inflammatory cytokine levels. Lung tissue was collected for histological examination, myeloperoxidase (MPO) activity assay, superoxide dismutase (SOD) activities, and malondialdehyde (MDA) levels. The phosphorylation of ERK and p38 was evaluated by Western blotting. Pretreatment with silymarin significantly attenuated CS-induced thickening of the airway epithelium, peribronchial inflammatory cell infiltration, and lumen obstruction. The numbers of total cells, macrophages, and neutrophils, along with the MPO activity (a marker of neutrophil accumulation) in BALF, were remarkably decreased by silymarin in CS-exposed mice (all p<0.05). In addition, silymarin pretreatment dampened the secretion of TNF-α, IL-1β, and IL-8 in BALF. High-dose silymarin (50 mg/kg·day) administration also prevented CS-induced elevation in MDA levels and decrease in SOD activities (p<0.05). Furthermore, the CS-induced phosphorylation of ERK and p38 was also attenuated by silymarin (p<0.05). These results suggest that silymarin attenuated inflammation and oxidative stress induced by cigarette smoke. The anti-inflammatory effect might partly act through the mitogen-activated protein kinases (MAPK) pathway.

  1. Use of short chain alkyl imidazolium ionic liquids for on-line stacking and sweeping of methotrexate, flinic acid and folic acid: their application to biological fluids.

    PubMed

    Abd El-Hady, Deia; Albishri, Hassan M; Rengarajan, Rajesh; Wätzig, Hermann

    2014-07-01

    Methotrexate (MTX) is widely used for the treatment of many types of cancer. Folinic acid (FNA) and folic acid (FA) were usually simultaneously supplemented with MTX to reduce the side effects of a folate deficiency. This study, for the first time, included on-line sample preconcentration by stacking and sweeping techniques under reduced or enhanced electric conductivity in the sample region using short chain alkyl imidazolium ionic liquids (ILs) as micelle forming agents for analyte focusing. Both analyte focusing by micelle collapse (AFMC) and sweeping-MEKC had been investigated for the comparison of their effectiveness to examine simultaneously MTX, FNA and FA in plasma and urine under physiological conditions. In sweeping-MEKC, the sample solution without micelles was hydrodynamically injected as a long plug into a fused-silica capillary pre-filled with phosphate buffer containing 3.0 mol/L of 1-butyl-3-methylimidazolium bromide (BMIMBr). Using AFMC, the analytes were prepared in BMIMBr micellar matrix and hydrodynamically injected into the phosphate buffer without IL micelles. The conductivity ratio between BGE and sample (γ, BGE/sample) was optimized to be 3.0 in sweeping-MEKC and 0.33 in AFMC resulting the adequate separation of analytes within 4.0 min. To reduce the possibility of BMIMBr adsorption, an appropriate rinsing protocol was used. The limits of detection were calculated as 0.1 ng/mL MTX, 0.05 ng/mL FNA and 0.05 ng/mL FA by sweeping-MEKC and 0.5 ng/mL MTX, 0.3 ng/mL FNA and 0.3 ng/mL FA by AFMC. The accuracy was tested by recovery in plasma and urine matrices giving values ranging between 90 and 110%. Both stacking and sweeping by BMIMBr could be successfully used for the rapid, selective and sensitive determination of pharmaceuticals in complex matrices due to its fascinating properties, including high conductivity, good thermal stability and ability to form different types of interactions by electrostatic, hydrophobic, hydrogen bonding and

  2. Estimation of airway obstruction using oximeter plethysmograph waveform data

    PubMed Central

    Arnold, Donald H; Spiro, David M; Desmond, Renee' A; Hagood, James S

    2005-01-01

    Background Validated measures to assess the severity of airway obstruction in patients with obstructive airway disease are limited. Changes in the pulse oximeter plethysmograph waveform represent fluctuations in arterial flow. Analysis of these fluctuations might be useful clinically if they represent physiologic perturbations resulting from airway obstruction. We tested the hypothesis that the severity of airway obstruction could be estimated using plethysmograph waveform data. Methods Using a closed airway circuit with adjustable inspiratory and expiratory pressure relief valves, airway obstruction was induced in a prospective convenience sample of 31 healthy adult subjects. Maximal change in airway pressure at the mouthpiece was used as a surrogate measure of the degree of obstruction applied. Plethysmograph waveform data and mouthpiece airway pressure were acquired for 60 seconds at increasing levels of inspiratory and expiratory o