Sample records for airway lumen diameter

  1. Automated airway evaluation system for multi-slice computed tomography using airway lumen diameter, airway wall thickness and broncho-arterial ratio

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.; Lerallut, Jean-Francois

    2006-03-01

    Pulmonary diseases such as bronchiectasis, asthma, and emphysema are characterized by abnormalities in airway dimensions. Multi-slice computed tomography (MSCT) has become one of the primary means to depict these abnormalities, as the availability of high-resolution near-isotropic data makes it possible to evaluate airways at oblique angles to the scanner plane. However, currently, clinical evaluation of airways is typically limited to subjective visual inspection only: systematic evaluation of the airways to take advantage of high-resolution data has not proved practical without automation. We present an automated method to quantitatively evaluate airway lumen diameter, wall thickness and broncho-arterial ratios. In addition, our method provides 3D visualization of these values, graphically illustrating the location and extent of disease. Our algorithm begins by automatic airway segmentation to extract paths to the distal airways, and to create a map of airway diameters. Normally, airway diameters decrease as paths progress distally; failure to taper indicates abnormal dilatation. Our approach monitors airway lumen diameters along each airway path in order to detect abnormal profiles, allowing even subtle degrees of pathologic dilatation to be identified. Our method also systematically computes the broncho-arterial ratio at every terminal branch of the tree model, as a ratio above 1 indicates potentially abnormal bronchial dilatation. Finally, the airway wall thickness is computed at corresponding locations. These measurements are used to highlight abnormal branches for closer inspection, and can be summed to compute a quantitative global score for the entire airway tree, allowing reproducible longitudinal assessment of disease severity. Preliminary tests on patients diagnosed with bronchiectasis demonstrated rapid identification of lack of tapering, which also was confirmed by corresponding demonstration of elevated broncho-arterial ratios.

  2. Bronchial lumen is the safer route for an airway exchange catheter in double-lumen tube replacement: preventable complication in airway management for thoracic surgery.

    PubMed

    Wu, Hsiang-Ling; Tai, Ying-Hsuan; Wei, Ling-Fang; Cheng, Hung-Wei; Ho, Chiu-Ming

    2017-10-01

    There is no current consensus on which lumen an airway exchange catheter (AEC) should be passed through in double-lumen endotracheal tube (DLT) to exchange for a single-lumen endotracheal tube (SLT) after thoracic surgery. We report an unusual case to provide possible solution on this issue. A 71-year-old man with lung adenocarcinoma had an event of a broken exchange catheter used during a DLT replacement with a SLT, after a video-assisted thoracic surgery. The exchange catheter was impinged at the distal tracheal lumen and snapped during manipulation. All three segments of the catheter were retrieved without further airway compromises. Placement of airway tube exchanger into the tracheal lumen of double-lumen tube is a potential contributing factor of the unusual complication. We suggest an exchange catheter be inserted into the bronchial lumen in optimal depth with the adjunct of video laryngoscope, as the safe method for double-lumen tube exchange.

  3. Computed tomography airway lumen volumetry in patients with acromegaly: Association with growth hormone levels and lung function.

    PubMed

    Camilo, Gustavo Bittencourt; Carvalho, Alysson Roncally Silva; Guimarães, Alan Ranieri Medeiros; Kasuki, Leandro; Gadelha, Mônica Roberto; Mogami, Roberto; de Melo, Pedro Lopes; Lopes, Agnaldo José

    2017-10-01

    The segmentation and skeletonisation of images via computed tomography (CT) airway lumen volumetry provide a new perspective regarding the incorporation of this technique in medical practice. Our aim was to quantify morphological changes in the large airways of patients with acromegaly through CT and, secondarily, to correlate these findings with hormone levels and pulmonary function testing (PFT) parameters. This was a cross-sectional study in which 28 non-smoker patients with acromegaly and 15 control subjects underwent CT analysis of airway lumen volumetry with subsequent image segmentation and skeletonisation. Moreover, all participants were subjected to PFT. Compared with the controls, patients with acromegaly presented higher diameters in the trachea, right main bronchus and left main bronchus. The patients with acromegaly also showed a higher tracheal sinuosity index (the deviation of a line from the shortest path, calculated by dividing total length by shortest possible path) than the controls [1.06 (1.02-1.09) vs. 1.03 (1.02-1.04), P = 0.04], and tracheal stenosis was observed in 25% of these individuals. The tracheal area was correlated with the levels of growth hormone (r s  = 0.45, P = 0.02) and insulin-like growth factor type I (r s  = 0.38, P = 0.04). The ratio between the forced expiratory flow and forced inspiratory flow at 50% of the forced vital capacity was correlated with the tracheal area (r s  = 0.36, P = 0.02) and Δ tracheal diameters (r s  = 0.58, P < 0.0001). Patients with acromegaly exhibit tracheobronchomegaly and tracheal sinuosity/stenosis. Moreover, there are associations between the results of CT airway lumen volumetry, hormone levels and functional parameters of large airway obstruction. © 2017 The Royal Australian and New Zealand College of Radiologists.

  4. Comparison of Fluoroscopy and Computed Tomography for Tracheal Lumen Diameter Measurement and Determination of Intraluminal Stent Size in Healthy Dogs

    PubMed Central

    Williams, Jackie M.; Krebs, Ingar A.; Riedesel, Elizabeth A.; Zhao, Qianqian

    2015-01-01

    Tracheal collapse is a progressive airway disease that can ultimately result in complete airway obstruction. Intraluminal tracheal stents are a minimally invasive and viable treatment for tracheal collapse once the disease becomes refractory to medical management. Intraluminal stent size is chosen based on the maximum measured tracheal diameter during maximum inflation. The purpose of this prospective, cross-sectional study was to compare tracheal lumen diameter measurements and subsequent selected stent size using both fluoroscopy and CT and to evaluate inter- and intraobserver variability of the measurements. Seventeen healthy Beagles were anesthetized and imaged with fluoroscopy and CT with positive pressure ventilation to 20 cm H2O. Fluoroscopic and CT maximum tracheal diameters were measured by 3 readers. Three individual measurements were made at 8 pre-determined tracheal sites for dorsoventral (height) and laterolateral (width) dimensions. Tracheal diameters and stent sizes (based on the maximum tracheal diameter + 10%) were analyzed using a linear mixed model. CT tracheal lumen diameters were larger compared to fluoroscopy at all locations. When comparing modalities, fluoroscopic and CT stent sizes were statistically different. Greater overall variation in tracheal diameter measurement (height or width) existed for fluoroscopy compared to CT, both within and among observers. The greater tracheal diameter and lower measurement variability supported the use of CT for appropriate stent selection to minimize complications in veterinary patients. PMID:26784924

  5. Assessment of bronchial wall thickness and lumen diameter in human adults using multi-detector computed tomography: comparison with theoretical models

    PubMed Central

    Montaudon, M; Desbarats, P; Berger, P; de Dietrich, G; Marthan, R; Laurent, F

    2007-01-01

    A thickened bronchial wall is the morphological substratum of most diseases of the airway. Theoretical and clinical models of bronchial morphometry have so far focused on bronchial lumen diameter, and bronchial length and angles, mainly assessed from bronchial casts. However, these models do not provide information on bronchial wall thickness. This paper reports in vivo values of cross-sectional wall area, lumen area, wall thickness and lumen diameter in ten healthy subjects as assessed by multi-detector computed tomography. A validated dedicated software package was used to measure these morphometric parameters up to the 14th bronchial generation, with respect to Weibel's model of bronchial morphometry, and up to the 12th according to Boyden's classification. Measured lumen diameters and homothety ratios were compared with theoretical values obtained from previously published studies, and no difference was found when considering dichotomic division of the bronchial tree. Mean wall area, lumen area, wall thickness and lumen diameter were then provided according to bronchial generation order, and mean homothety ratios were computed for wall area, lumen area and wall thickness as well as equations giving the mean value of each parameter for a given bronchial generation with respect to its value in generation 0 (trachea). Multi-detector computed tomography measurements of bronchial morphometric parameters may help to improve our knowledge of bronchial anatomy in vivo, our understanding of the pathophysiology of bronchial diseases and the evaluation of pharmacological effects on the bronchial wall. PMID:17919291

  6. Poor symptom control is associated with reduced CT scan segmental airway lumen area in smokers with asthma.

    PubMed

    Thomson, Neil C; Chaudhuri, Rekha; Spears, Mark; Messow, Claudia-Martina; MacNee, William; Connell, Martin; Murchison, John T; Sproule, Michael; McSharry, Charles

    2015-03-01

    Cigarette smoking is associated with worse symptoms in asthma and abnormal segmental airways in healthy subjects. We tested the hypothesis that current symptom control in smokers with asthma is associated with altered segmental airway dimensions measured by CT scan. In 93 subjects with mild, moderate, and severe asthma (smokers and never smokers), we recorded Asthma Control Questionnaire-6 (ACQ-6) score, spirometry (FEV1; forced expiratory flow rate, midexpiratory phase [FEF(25%-75%)]), residual volume (RV), total lung capacity (TLC), and CT scan measures of the right bronchial (RB) and left bronchial (LB) segmental airway dimensions (wall thickness, mm; lumen area, mm²) in the RB3/LB3, RB6/LB6, and RB10/LB10 (smaller) airways. The CT scan segmental airway (RB10 and LB10) lumen area was reduced in smokers with asthma compared with never smokers with asthma; RB10, 16.6 mm² (interquartile range, 12.4-19.2 mm²) vs 19.6 mm² (14.7-24.2 mm²) (P = .01); LB10, 14.8 mm² (12.1-19.0 mm²) vs 19.9 mm² (14.5-25.0 mm²) (P = .003), particularly in severe disease, with no differences in wall thickness or in larger airway (RB3 and LB3) dimensions. In smokers with asthma, a reduced lumen area in fifth-generation airways (RB10 or LB10) was associated with poor symptom control (higher ACQ-6 score) (-0.463 [-0.666 to -0.196], P = .001, and -0.401 [-0.619 to -0.126], P = .007, respectively) and reduced postbronchodilator FEF(25%-75%) (0.521 [0.292-0.694], P < .001, and [0.471 [0.236-0.654], P = .001, respectively) and higher RV/TLC %. The CT scan segmental airway lumen area is reduced in smokers with asthma compared with never smokers with asthma, particularly in severe disease, and is associated with worse current symptom control and small airway dysfunction.

  7. Gender differences of airway dimensions in anatomically matched sites on CT in smokers.

    PubMed

    Kim, Yu-Il; Schroeder, Joyce; Lynch, David; Newell, John; Make, Barry; Friedlander, Adam; Estépar, Raúl San José; Hanania, Nicola A; Washko, George; Murphy, James R; Wilson, Carla; Hokanson, John E; Zach, Jordan; Butterfield, Kiel; Bowler, Russell P; Copdgene Investigators

    2011-08-01

    There are limited data on, and controversies regarding gender differences in the airway dimensions of smokers. Multi-detector CT (MDCT) images were analyzed to examine whether gender could explain differences in airway dimensions of anatomically matched airways in smokers. We used VIDA imaging software to analyze MDCT scans from 2047 smokers (M:F, 1021:1026) from the COPDGene® cohort. The airway dimensions were analyzed from segmental to subsubsegmental bronchi. We compared the differences of luminal area, inner diameter, wall thickness, wall area percentage (WA%) for each airway between men and women, and multiple linear regression including covariates (age, gender, body sizes, and other relevant confounding factors) was used to determine the predictors of each airway dimensions. Lumen area, internal diameter and wall thickness were smaller for women than men in all measured airway (18.4 vs 22.5 mm(2) for segmental bronchial lumen area, 10.4 vs 12.5 mm(2) for subsegmental bronchi, 6.5 vs 7.7 mm(2) for subsubsegmental bronchi, respectively p < 0.001). However, women had greater WA% in subsegmental and subsubsegmental bronchi. In multivariate regression, gender remained one of the most significant predictors of WA%, lumen area, inner diameter and wall thickness. Women smokers have higher WA%, but lower luminal area, internal diameter and airway thickness in anatomically matched airways as measured by CT scan than do male smokers. This difference may explain, in part, gender differences in the prevalence of COPD and airflow limitation.

  8. Gender Differences of Airway Dimensions in Anatomically Matched Sites on CT in Smokers

    PubMed Central

    Kim, Yu-Il; Schroeder, Joyce; Lynch, David; Newell, John; Make, Barry; Friedlander, Adam; Estépar, Raúl San José; Hanania, Nicola A.; Washko, George; Murphy, James R.; Wilson, Carla; Hokanson, John E.; Zach, Jordan; Butterfield, Kiel; Bowler, Russell P.

    2013-01-01

    Rationale and Objectives There are limited data on, and controversies regarding gender differences in the airway dimensions of smokers. Multi-detector CT (MDCT) images were analyzed to examine whether gender could explain differences in airway dimensions of anatomically matched airways in smokers. Materials and Methods We used VIDA imaging software to analyze MDCT scans from 2047 smokers (M:F, 1021:1026) from the COPDGene® cohort. The airway dimensions were analyzed from segmental to subsubsegmental bronchi. We compared the differences of luminal area, inner diameter, wall thickness, wall area percentage (WA%) for each airway between men and women, and multiple linear regression including covariates (age, gender, body sizes, and other relevant confounding factors) was used to determine the predictors of each airway dimensions. Results Lumen area, internal diameter and wall thickness were smaller for women than men in all measured airway (18.4 vs 22.5 mm2 for segmental bronchial lumen area, 10.4 vs 12.5 mm2 for subsegmental bronchi, 6.5 vs 7.7 mm2 for subsubsegmental bronchi, respectively p < 0.001). However, women had greater WA% in subsegmental and subsubsegmental bronchi. In multivariate regression, gender remained one of the most significant predictors of WA%, lumen area, inner diameter and wall thickness. Conclusion Women smokers have higher WA%, but lower luminal area, internal diameter and airway thickness in anatomically matched airways as measured by CT scan than do male smokers. This difference may explain, in part, gender differences in the prevalence of COPD and airflow limitation. PMID:21756032

  9. Distinct patterns of inflammation in the airway lumen and bronchial mucosa of children with cystic fibrosis.

    PubMed

    Regamey, Nicolas; Tsartsali, Lemonia; Hilliard, Tom N; Fuchs, Oliver; Tan, Hui-Leng; Zhu, Jie; Qiu, Yu-Sheng; Alton, Eric W F W; Jeffery, Peter K; Bush, Andrew; Davies, Jane C

    2012-02-01

    Studies in cystic fibrosis (CF) generally focus on inflammation present in the airway lumen. Little is known about inflammation occurring in the airway wall, the site ultimately destroyed in end-stage disease. To test the hypothesis that inflammatory patterns in the lumen do not reflect those in the airway wall of children with CF. Bronchoalveolar lavage (BAL) fluid and endobronchial biopsies were obtained from 46 children with CF and 16 disease-free controls. BAL cell differential was assessed using May-Gruenwald-stained cytospins. Area profile counts of bronchial tissue immunopositive inflammatory cells were determined. BAL fluid from children with CF had a predominance of neutrophils compared with controls (median 810×10(3)/ml vs 1×10(3)/ml, p<0.0001). In contrast, subepithelial bronchial tissue from children with CF was characterised by a predominance of lymphocytes (median 961 vs 717 cells/mm(2), p=0.014), of which 82% were (CD3) T lymphocytes. In chest exacerbations, BAL fluid from children with CF had more inflammatory cells of all types compared with those with stable disease whereas, in biopsies, only the numbers of lymphocytes and macrophages, but not of neutrophils, were higher. A positive culture of Pseudomonas aeruginosa was associated with higher numbers of T lymphocytes in subepithelial bronchial tissue (median 1174 vs 714 cells/mm(2), p=0.029), but no changes were seen in BAL fluid. Cell counts in BAL fluid and biopsies were positively correlated with age but were unrelated to each other. The inflammatory response in the CF airway is compartmentalised. In contrast to the neutrophil-dominated inflammation present in the airway lumen, the bronchial mucosa is characterised by the recruitment and accumulation of lymphocytes.

  10. True-lumen and false-lumen diameter changes in the downstream aorta after frozen elephant trunk implantation.

    PubMed

    Berger, Tim; Kreibich, Maximilian; Morlock, Julia; Kondov, Stoyan; Scheumann, Johannes; Kari, Fabian A; Rylski, Bartosz; Siepe, Matthias; Beyersdorf, Friedhelm; Czerny, Martin

    2018-02-19

    To evaluate early and mid-term clinical outcomes and to assess the potential of the frozen elephant trunk technique to induce remodelling of downstream aortic segments in acute and chronic thoracic aortic dissections. Over a 4-year period, 65 patients (48 men, aged 61 ± 12 years) underwent total aortic arch replacement using the frozen elephant trunk technique for acute (n = 31) and chronic (n = 34) thoracic aortic dissections at our institution. We assessed diameter changes at 3 levels: the L1 segment at the stent graft level; the L2 segment at the thoraco-abdominal transition level and the L3 segment at the coeliac trunk level. True-lumen (TL) and false-lumen (FL) diameter changes were assessed at each level. Fifty-six percent of patients had already undergone previous aortic or cardiac surgery. In-hospital mortality was 6%. Symptomatic spinal cord injury was not observed in this series. During a mean follow-up of 12 ± 12 months, late death was observed in 6% of patients. Aortic reinterventions in downstream aortic segments were performed in 28% at a mean of 394 ± 385 days. TL expansion and FL shrinkage were measured in all segments and were observed at each level. This effect was the most pronounced at the level of the stent graft in patients with chronic aortic dissection, TL diameter increased from 15 ± 17 mm before surgery to 28 ± 2 mm (P = 0.001) after 2 years, and the FL diameter decreased from 40 ± 11 mm before surgery to 32 ± 17 mm (P = 0.026). The frozen elephant trunk technique is associated with an excellent clinical outcome in a complex cohort of patients, and also effectively induces remodelling in downstream aortic segments in acute and chronic thoracic aortic dissections. The need for secondary interventions in downstream segments, which mainly depends on the extent of the underlying disease process, remains substantial. Further studies are required to assess the long-term outcome of

  11. The Combination of Diameters of Cricoid Ring and Left Main Bronchus for Selecting the "Best Fit" Double-Lumen Tube.

    PubMed

    Shiqing, Liu; Wenxu, Qi; Jin, Zhang; Youjing, Dong

    2018-04-01

    The aims of this study were to measure diameters of the cricoid ring and left main bronchus in Asian adult patients and to assess the accuracy of double lumen tube size selected according to cricoid and left main bronchus diameter, respectively. Retrospective observational study. Academic, tertiary care hospital. Preoperative CT scans from 87 men and 94 women who had undergone general anesthesia for lung operations. No intervention. The diameters of the cricoid ring and left main bronchus were measured from thoracic computed tomography images after correction of slant. The "best-fit" size of double lumen tube was determined by comparing diameter of the left main bronchus and cricoid ring with the diameter of the double lumen tube. Diameters of the cricoid ring and left main bronchus were both significantly greater in men compared with women (p < 0.0001). Shapes of cricoid rings were different between genders (p < 0.0001), while shapes of the left main bronchus were not significant different (p = 0.343). With reference to the "best fit" size, the rate of agreement of cricoid ring size, left main bronchus size, and height size for men were 100%, 100%, and 94.3%. For women, the rate of agreement of cricoid ring size, left main bronchus size, and height size were 94.7%, 63.8%, and 51.1%. The "best fit" size of a double lumen tube should be decided by a combination of diameters of the cricoid ring and the left main bronchus. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Absorbed doses of lungs from radon retained in airway lumens of mice and rats.

    PubMed

    Sakoda, Akihiro; Ishimori, Yuu; Yamaoka, Kiyonori; Kataoka, Takahiro; Mitsunobu, Fumihiro

    2013-08-01

    This paper provides absorbed doses arising from radon gas in air retained in lung airway lumens. Because radon gas exposure experiments often use small animals, the calculation was performed for mice and rats. For reference, the corresponding computations were also done for humans. Assuming that radon concentration in airway lumens is the same as that in the environment, its progeny's production in and clearance from airways were simulated. Absorbed dose rates were obtained for three lung regions and the whole lung, considering that secretory and basal cells are sensitive to radiation. The results showed that absorbed dose rates for all lung regions and whole lung generally increase from mice to rats to humans. For example, the dose rates for the whole lung were 25.4 in mice, 41.7 in rats, and 59.9 pGy (Bq m⁻³)⁻¹ h⁻¹ in humans. Furthermore, these values were also compared with lung dose rates from two other types of exposures, that is, due to inhalation of radon or its progeny, which were already reported. It was confirmed that the direct inhalation of radon progeny in the natural environment, which is known as a cause of lung cancer, results in the highest dose rates for all species. Based on the present calculations, absorbed dose rates of the whole lung from radon gas were lower by a factor of about 550 (mice), 200 (rats), or 70 (humans) than those from radon progeny inhalation. The calculated dose rate values are comparatively small. Nevertheless, the present study is considered to contribute to our understanding of doses from inhalation of radon and its progeny.

  13. Normal appendiceal diameter in children: does choice of CT oral contrast (VoLumen versus Gastrografin) make a difference?

    PubMed

    Victoria, Teresa; Mahboubi, Soroosh

    2010-09-01

    Appendicitis is a common pediatric emergency and one of the most common causes for surgical exploration in the pediatric patient. Imaging has become an essential tool in the evaluation of the child with suspected appendicitis, aiming to avoid misdiagnosis and to facilitate early surgery, thus decreasing potential morbidity from ruptured appendicitis. The objective of this paper is to compare the luminal diameter of the normal appendix by computed tomography (CT) when utilizing the traditionally used high-attenuation oral contrast material (OCM), Gastrografin, and the relatively new neutral agent VoLumen, with the goal of establishing normal appendiceal size parameters for this neutral OCM. Twenty-six cases of VoLumen-enhanced CT studies of the abdomen and pelvis were identified, of which 13 met the inclusion criteria. These were randomly matched to age control Gastrografin CT examinations. Appendiceal diameters (from wall to wall) were measured in three orthogonal planes and the average of these was recorded. We show that there is no statistical difference between normal appendiceal diameters in patients with a VoLumen-opacified CT versus a Gastrografin-enhanced CT (p = 0.8) being 5.0 +/- 1.3 and 5.1 +/- 1.5 mm, respectively. Chart review revealed no clinical suspicion of appendicitis prior to imaging or on discharge diagnosis in the patients included in this study. The rate of nonvisualization of the appendix with VoLumen in our study was 31%, which equals previously published estimates in children. In summary, as VoLumen use increases in the evaluation of abdominal pathology in the ailing child, we provide guidelines to identify the normal appendix when utilizing this oral contrast agent.

  14. Investigating the geometry of pig airways using computed tomography

    NASA Astrophysics Data System (ADS)

    Mansy, Hansen A.; Azad, Md Khurshidul; McMurray, Brandon; Henry, Brian; Royston, Thomas J.; Sandler, Richard H.

    2015-03-01

    Numerical modeling of sound propagation in the airways requires accurate knowledge of the airway geometry. These models are often validated using human and animal experiments. While many studies documented the geometric details of the human airways, information about the geometry of pig airways is scarcer. In addition, the morphology of animal airways can be significantly different from that of humans. The objective of this study is to measure the airway diameter, length and bifurcation angles in domestic pigs using computed tomography. After imaging the lungs of 3 pigs, segmentation software tools were used to extract the geometry of the airway lumen. The airway dimensions were then measured from the resulting 3 D models for the first 10 airway generations. Results showed that the size and morphology of the airways of different animals were similar. The measured airway dimensions were compared with those of the human airways. While the trachea diameter was found to be comparable to the adult human, the diameter, length and branching angles of other airways were noticeably different from that of humans. For example, pigs consistently had an early airway branching from the trachea that feeds the superior (top) right lung lobe proximal to the carina. This branch is absent in the human airways. These results suggested that the human geometry may not be a good approximation of the pig airways and may contribute to increasing the errors when the human airway geometric values are used in computational models of the pig chest.

  15. High-resolution computed tomography evaluation of the bronchial lumen to vertebral body diameter and pulmonary artery to vertebral body diameter ratios in anesthetized ventilated normal cats.

    PubMed

    Lee-Fowler, Tekla M; Cole, Robert C; Dillon, A Ray; Tillson, D Michael; Garbarino, Rachel; Barney, Sharron

    2017-10-01

    Objectives Bronchial lumen to pulmonary artery diameter (BA) ratio has been utilized to investigate pulmonary pathology on high-resolution CT images. Diseases affecting both the bronchi and pulmonary arteries render the BA ratio less useful. The purpose of the study was to establish bronchial lumen diameter to vertebral body diameter (BV) and pulmonary artery diameter to vertebral body diameter (AV) ratios in normal cats. Methods Using high-resolution CT images, 16 sets of measurements (sixth thoracic vertebral body [mid-body], each lobar bronchi and companion pulmonary artery diameter) were acquired from young adult female cats and 41 sets from pubertal female cats. Results Young adult and pubertal cat BV ratios were not statistically different from each other in any lung lobe. Significant differences between individual lung lobe BV ratios were noted on combined age group analysis. Caudal lung lobe AV ratios were significantly different between young adult and pubertal cats. All other lung lobe AV ratios were not significantly different. Caudal lung lobe AV ratios were significantly different from all other lung lobes but not from each other in both the young adult and pubertal cats. Conclusions and relevance BV ratio reference intervals determined for individual lung lobes could be applied to both young adult and pubertal cats. Separate AV ratios for individual lung lobes would be required for young adult and pubertal cats. These ratios should allow more accurate evaluation of cats with concurrent bronchial and pulmonary arterial disease.

  16. Scribble is required for normal epithelial cell–cell contacts and lumen morphogenesis in the mammalian lung

    PubMed Central

    Yates, Laura L.; Schnatwinkel, Carsten; Hazelwood, Lee; Chessum, Lauren; Paudyal, Anju; Hilton, Helen; Romero, M. Rosario; Wilde, Jonathan; Bogani, Debora; Sanderson, Jeremy; Formstone, Caroline; Murdoch, Jennifer N.; Niswander, Lee A.; Greenfield, Andy; Dean, Charlotte H.

    2013-01-01

    During lung development, proper epithelial cell arrangements are critical for the formation of an arborized network of tubes. Each tube requires a lumen, the diameter of which must be tightly regulated to enable optimal lung function. Lung branching and lumen morphogenesis require close epithelial cell–cell contacts that are maintained as a result of adherens junctions, tight junctions and by intact apical–basal (A/B) polarity. However, the molecular mechanisms that maintain epithelial cohesion and lumen diameter in the mammalian lung are unknown. Here we show that Scribble, a protein implicated in planar cell polarity (PCP) signalling, is necessary for normal lung morphogenesis. Lungs of the Scrib mouse mutant Circletail (Crc) are abnormally shaped with fewer airways, and these airways often lack a visible, ‘open’ lumen. Mechanistically we show that Scrib genetically interacts with the core PCP gene Vangl2 in the developing lung and that the distribution of PCP pathway proteins and Rho mediated cytoskeletal modification is perturbed in ScribCrc/Crc lungs. However A/B polarity, which is disrupted in Drosophila Scrib mutants, is largely unaffected. Notably, we find that Scrib mediates functions not attributed to other PCP proteins in the lung. Specifically, Scrib localises to both adherens and tight junctions of lung epithelia and knockdown of Scrib in lung explants and organotypic cultures leads to reduced cohesion of lung epithelial cells. Live imaging of Scrib knockdown lungs shows that Scrib does not affect bud bifurcation, as previously shown for the PCP protein Celsr1, but is required to maintain epithelial cohesion. To understand the mechanism leading to reduced cell–cell association, we show that Scrib associates with β-catenin in embryonic lung and the sub-cellular distribution of adherens and tight junction proteins is perturbed in mutant lung epithelia. Our data reveal that Scrib is required for normal lung epithelial organisation and lumen

  17. Two Automated Techniques for Carotid Lumen Diameter Measurement: Regional versus Boundary Approaches.

    PubMed

    Araki, Tadashi; Kumar, P Krishna; Suri, Harman S; Ikeda, Nobutaka; Gupta, Ajay; Saba, Luca; Rajan, Jeny; Lavra, Francesco; Sharma, Aditya M; Shafique, Shoaib; Nicolaides, Andrew; Laird, John R; Suri, Jasjit S

    2016-07-01

    The degree of stenosis in the carotid artery can be predicted using automated carotid lumen diameter (LD) measured from B-mode ultrasound images. Systolic velocity-based methods for measurement of LD are subjective. With the advancement of high resolution imaging, image-based methods have started to emerge. However, they require robust image analysis for accurate LD measurement. This paper presents two different algorithms for automated segmentation of the lumen borders in carotid ultrasound images. Both algorithms are modeled as a two stage process. Stage one consists of a global-based model using scale-space framework for the extraction of the region of interest. This stage is common to both algorithms. Stage two is modeled using a local-based strategy that extracts the lumen interfaces. At this stage, the algorithm-1 is modeled as a region-based strategy using a classification framework, whereas the algorithm-2 is modeled as a boundary-based approach that uses the level set framework. Two sets of databases (DB), Japan DB (JDB) (202 patients, 404 images) and Hong Kong DB (HKDB) (50 patients, 300 images) were used in this study. Two trained neuroradiologists performed manual LD tracings. The mean automated LD measured was 6.35 ± 0.95 mm for JDB and 6.20 ± 1.35 mm for HKDB. The precision-of-merit was: 97.4 % and 98.0 % w.r.t to two manual tracings for JDB and 99.7 % and 97.9 % w.r.t to two manual tracings for HKDB. Statistical tests such as ANOVA, Chi-Squared, T-test, and Mann-Whitney test were conducted to show the stability and reliability of the automated techniques.

  18. Accurate lumen diameter measurement in curved vessels in carotid ultrasound: an iterative scale-space and spatial transformation approach.

    PubMed

    Krishna Kumar, P; Araki, Tadashi; Rajan, Jeny; Saba, Luca; Lavra, Francesco; Ikeda, Nobutaka; Sharma, Aditya M; Shafique, Shoaib; Nicolaides, Andrew; Laird, John R; Gupta, Ajay; Suri, Jasjit S

    2017-08-01

    Monitoring of cerebrovascular diseases via carotid ultrasound has started to become a routine. The measurement of image-based lumen diameter (LD) or inter-adventitial diameter (IAD) is a promising approach for quantification of the degree of stenosis. The manual measurements of LD/IAD are not reliable, subjective and slow. The curvature associated with the vessels along with non-uniformity in the plaque growth poses further challenges. This study uses a novel and generalized approach for automated LD and IAD measurement based on a combination of spatial transformation and scale-space. In this iterative procedure, the scale-space is first used to get the lumen axis which is then used with spatial image transformation paradigm to get a transformed image. The scale-space is then reapplied to retrieve the lumen region and boundary in the transformed framework. Then, inverse transformation is applied to display the results in original image framework. Two hundred and two patients' left and right common carotid artery (404 carotid images) B-mode ultrasound images were retrospectively analyzed. The validation of our algorithm has done against the two manual expert tracings. The coefficient of correlation between the two manual tracings for LD was 0.98 (p < 0.0001) and 0.99 (p < 0.0001), respectively. The precision of merit between the manual expert tracings and the automated system was 97.7 and 98.7%, respectively. The experimental analysis demonstrated superior performance of the proposed method over conventional approaches. Several statistical tests demonstrated the stability and reliability of the automated system.

  19. Airway Tree Segmentation in Serial Block-Face Cryomicrotome Images of Rat Lungs

    PubMed Central

    Bauer, Christian; Krueger, Melissa A.; Lamm, Wayne J.; Smith, Brian J.; Glenny, Robb W.; Beichel, Reinhard R.

    2014-01-01

    A highly-automated method for the segmentation of airways in serial block-face cryomicrotome images of rat lungs is presented. First, a point inside of the trachea is manually specified. Then, a set of candidate airway centerline points is automatically identified. By utilizing a novel path extraction method, a centerline path between the root of the airway tree and each point in the set of candidate centerline points is obtained. Local disturbances are robustly handled by a novel path extraction approach, which avoids the shortcut problem of standard minimum cost path algorithms. The union of all centerline paths is utilized to generate an initial airway tree structure, and a pruning algorithm is applied to automatically remove erroneous subtrees or branches. Finally, a surface segmentation method is used to obtain the airway lumen. The method was validated on five image volumes of Sprague-Dawley rats. Based on an expert-generated independent standard, an assessment of airway identification and lumen segmentation performance was conducted. The average of airway detection sensitivity was 87.4% with a 95% confidence interval (CI) of (84.9, 88.6)%. A plot of sensitivity as a function of airway radius is provided. The combined estimate of airway detection specificity was 100% with a 95% CI of (99.4, 100)%. The average number and diameter of terminal airway branches was 1179 and 159 μm, respectively. Segmentation results include airways up to 31 generations. The regression intercept and slope of airway radius measurements derived from final segmentations were estimated to be 7.22 μm and 1.005, respectively. The developed approach enables quantitative studies of physiology and lung diseases in rats, requiring detailed geometric airway models. PMID:23955692

  20. Small Airway Obstruction in COPD

    PubMed Central

    McDonough, John E.; Suzuki, Masaru

    2013-01-01

    The increase in total cross-sectional area in the distal airways of the human lung enhances the mixing of each tidal breath with end-expiratory gas volume by slowing bulk flow and increasing gas diffusion. However, this transition also favors the deposition of airborne particulates in this region because they diffuse 600 times slower than gases. Furthermore, the persistent deposition of toxic airborne particulates stimulates a chronic inflammatory immune cell infiltration and tissue repair and remodeling process that increases the resistance in airways <2 mm in diameter four to 40-fold in COPD. This increase was originally attributed to lumen narrowing because it increases resistance in proportion to the change in lumen radius raised to the fourth power. In contrast, removal of one-half the number of tubes arranged in parallel is required to double their resistance, and approximately 90% need to be removed to explain the increase in resistance measured in COPD. However, recent reexamination of this problem based on micro-CT imaging indicates that terminal bronchioles are both narrowed and reduced to 10% of the control values in the centrilobular and 25% in the panlobular emphysematous phenotype of very severe (GOLD [Global Initiative for Chronic Obstructive Lung Disease] grade IV) COPD. These new data indicate that both narrowing and reduction in numbers of terminal bronchioles contribute to the rapid decline in FEV1 that leads to severe airway obstruction in COPD. Moreover, the observation that terminal bronchiolar loss precedes the onset of emphysematous destruction suggests this destruction begins in the very early stages of COPD. PMID:23648907

  1. Airway morphometry in the lungs as depicted in chest CT examinations variability of measurements

    NASA Astrophysics Data System (ADS)

    Leader, J. K.; Zheng, Bin; Scuirba, Frank C.; Coxson, Harvey O.; Weissfeld, Joel L.; Fuhrman, Carl R.; Maitz, Glenn S.; Gur, David

    2006-03-01

    The purpose of the study was to decrease the variability of computed tomographic airway measurements. We to developed and evaluated a novel computer scheme to automatically segment airways depicted on chest CT examinations at the level of the lobar and segmental bronchi and to decrease. The computer scheme begins with manual selection of a seed point within the airway from which the airway wall and lumen are automatically segmented and airway pixels were assigned full or partial membership to the lumen or wall. Airway pixels not assigned full membership to the lumen (< -900 HU) or wall (> 0 HU) were assigned partial membership to the lumen and wall. In fifteen subjects with no visible signs of emphysema and a range of pulmonary obstruction from none to severe, airway measures were compared to pulmonary function parameters in a rank order analysis to evaluate measuring a single airway versus multiple airways. The quality of the automated airway segmentation was visually acceptable. The Pearson Correlation coefficients for the ranking of FEV I versus wall area percent (percent of total airway size) and FVC versus wall area percent were 0.164 and 0.175 for a single measurement, respectively, and were 0.243 and 0.239 for multiple measurements, respectively. Our preliminary results suggest that averaging the measurements from multiple airways may improve the relation between airway measures and lung function compared to measurement from a single airway, which improve quantification of airway remodeling in COPD patients.

  2. Comparison of analysis methods for airway quantification

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.

    2012-03-01

    Diseased airways have been known for several years as a possible contributing factor to airflow limitation in Chronic Obstructive Pulmonary Diseases (COPD). Quantification of disease severity through the evaluation of airway dimensions - wall thickness and lumen diameter - has gained increased attention, thanks to the availability of multi-slice computed tomography (CT). Novel approaches have focused on automated methods of measurement as a faster and more objective means that the visual assessment routinely employed in the clinic. Since the Full-Width Half-Maximum (FWHM) method of airway measurement was introduced two decades ago [1], several new techniques for quantifying airways have been detailed in the literature, but no approach has truly become a standard for such analysis. Our own research group has presented two alternative approaches for determining airway dimensions, one involving a minimum path and the other active contours [2, 3]. With an increasing number of techniques dedicated to the same goal, we decided to take a step back and analyze the differences of these methods. We consequently put to the test our two methods of analysis and the FWHM approach. We first measured a set of 5 airways from a phantom of known dimensions. Then we compared measurements from the three methods to those of two independent readers, performed on 35 airways in 5 patients. We elaborate on the differences of each approach and suggest conclusions on which could be defined as the best one.

  3. LINKING LUNG AIRWAY STRUCTURE TO PULMONARY FUNCTION VIA COMPOSITE BRIDGE REGRESSION

    PubMed Central

    Chen, Kun; Hoffman, Eric A.; Seetharaman, Indu; Jiao, Feiran; Lin, Ching-Long; Chan, Kung-Sik

    2017-01-01

    The human lung airway is a complex inverted tree-like structure. Detailed airway measurements can be extracted from MDCT-scanned lung images, such as segmental wall thickness, airway diameter, parent-child branch angles, etc. The wealth of lung airway data provides a unique opportunity for advancing our understanding of the fundamental structure-function relationships within the lung. An important problem is to construct and identify important lung airway features in normal subjects and connect these to standardized pulmonary function test results such as FEV1%. Among other things, the problem is complicated by the fact that a particular airway feature may be an important (relevant) predictor only when it pertains to segments of certain generations. Thus, the key is an efficient, consistent method for simultaneously conducting group selection (lung airway feature types) and within-group variable selection (airway generations), i.e., bi-level selection. Here we streamline a comprehensive procedure to process the lung airway data via imputation, normalization, transformation and groupwise principal component analysis, and then adopt a new composite penalized regression approach for conducting bi-level feature selection. As a prototype of composite penalization, the proposed composite bridge regression method is shown to admit an efficient algorithm, enjoy bi-level oracle properties, and outperform several existing methods. We analyze the MDCT lung image data from a cohort of 132 subjects with normal lung function. Our results show that, lung function in terms of FEV1% is promoted by having a less dense and more homogeneous lung comprising an airway whose segments enjoy more heterogeneity in wall thicknesses, larger mean diameters, lumen areas and branch angles. These data hold the potential of defining more accurately the “normal” subject population with borderline atypical lung functions that are clearly influenced by many genetic and environmental factors. PMID

  4. Spectral Imaging for Intracranial Stents and Stent Lumen.

    PubMed

    Weng, Chi-Lun; Tseng, Ying-Chi; Chen, David Yen-Ting; Chen, Chi-Jen; Hsu, Hui-Ling

    2016-01-01

    Application of computed tomography for monitoring intracranial stents is limited because of stent-related artifacts. Our purpose was to evaluate the effect of gemstone spectral imaging on the intracranial stent and stent lumen. In vitro, we scanned Enterprise stent phantom and a stent-cheese complex using the gemstone spectral imaging protocol. Follow-up gemstone spectral images of 15 consecutive patients with placement of Enterprise from January 2013 to September 2014 were also retrospectively reviewed. We used 70-keV, 140-keV, iodine (water), iodine (calcium), and iodine (hydroxyapatite) images to evaluate their effect on the intracranial stent and stent lumen. Two regions of interest were individually placed in stent lumen and adjacent brain tissue. Contrast-to-noise ratio was measured to determine image quality. The maximal diameter of stent markers was also measured to evaluate stent-related artifact. Two radiologists independently graded the visibility of the lumen at the maker location by using a 4-point scale. The mean of grading score, contrast/noise ratio and maximal diameter of stent markers were compared among all modes. All results were analyzed by SPSS version 20. In vitro, iodine (water) images decreased metallic artifact of stent makers to the greatest degree. The most areas of cheese were observed on iodine (water) images. In vivo, iodine (water) images had the smallest average diameter of stent markers (0.33 ± 0.17mm; P < .05) and showed the highest mean grading score (2.94 ± 0.94; P < .05) and contrast/noise ratio of in-stent lumen (160.03 ±37.79; P < .05) among all the modes. Iodine (water) images can help reduce stent-related artifacts of Enterprise and enhance contrast of in-stent lumen. Spectral imaging may be considered a noninvasive modality for following-up patients with in-stent stenosis.

  5. RSV-encoded NS2 promotes epithelial cell shedding and distal airway obstruction

    PubMed Central

    Liesman, Rachael M.; Buchholz, Ursula J.; Luongo, Cindy L.; Yang, Lijuan; Proia, Alan D.; DeVincenzo, John P.; Collins, Peter L.; Pickles, Raymond J.

    2014-01-01

    Respiratory syncytial virus (RSV) infection is the major cause of bronchiolitis in young children. The factors that contribute to the increased propensity of RSV-induced distal airway disease compared with other commonly encountered respiratory viruses remain unclear. Here, we identified the RSV-encoded nonstructural 2 (NS2) protein as a viral genetic determinant for initiating RSV-induced distal airway obstruction. Infection of human cartilaginous airway epithelium (HAE) and a hamster model of disease with recombinant respiratory viruses revealed that NS2 promotes shedding of infected epithelial cells, resulting in two consequences of virus infection. First, epithelial cell shedding accelerated the reduction of virus titers, presumably by clearing virus-infected cells from airway mucosa. Second, epithelial cells shedding into the narrow-diameter bronchiolar airway lumens resulted in rapid accumulation of detached, pleomorphic epithelial cells, leading to acute distal airway obstruction. Together, these data indicate that RSV infection of the airway epithelium, via the action of NS2, promotes epithelial cell shedding, which not only accelerates viral clearance but also contributes to acute obstruction of the distal airways. Our results identify RSV NS2 as a contributing factor for the enhanced propensity of RSV to cause severe airway disease in young children and suggest NS2 as a potential therapeutic target for reducing the severity of distal airway disease. PMID:24713657

  6. Airway and Parenchymal Strains during Bronchoconstriction in the Precision Cut Lung Slice

    PubMed Central

    Hiorns, Jonathan E.; Bidan, Cécile M.; Jensen, Oliver E.; Gosens, Reinoud; Kistemaker, Loes E. M.; Fredberg, Jeffrey J.; Butler, Jim P.; Krishnan, Ramaswamy; Brook, Bindi S.

    2016-01-01

    The precision-cut lung slice (PCLS) is a powerful tool for studying airway reactivity, but biomechanical measurements to date have largely focused on changes in airway caliber. Here we describe an image processing tool that reveals the associated spatio-temporal changes in airway and parenchymal strains. Displacements of sub-regions within the PCLS are tracked in phase-contrast movies acquired after addition of contractile and relaxing drugs. From displacement maps, strains are determined across the entire PCLS or along user-specified directions. In a representative mouse PCLS challenged with 10−4M methacholine, as lumen area decreased, compressive circumferential strains were highest in the 50 μm closest to the airway lumen while expansive radial strains were highest in the region 50–100 μm from the lumen. However, at any given distance from the airway the strain distribution varied substantially in the vicinity of neighboring small airways and blood vessels. Upon challenge with the relaxant agonist chloroquine, although most strains disappeared, residual positive strains remained a long time after addition of chloroquine, predominantly in the radial direction. Taken together, these findings establish strain mapping as a new tool to elucidate local dynamic mechanical events within the constricting airway and its supporting parenchyma. PMID:27559314

  7. Postnatal airway growth in cystic fibrosis piglets.

    PubMed

    Adam, Ryan J; Abou Alaiwa, Mahmoud H; Bouzek, Drake C; Cook, Daniel P; Gansemer, Nicholas D; Taft, Peter J; Powers, Linda S; Stroik, Mallory R; Hoegger, Mark J; McMenimen, James D; Hoffman, Eric A; Zabner, Joseph; Welsh, Michael J; Meyerholz, David K; Stoltz, David A

    2017-09-01

    Mutations in the gene encoding the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) anion channel cause CF. The leading cause of death in the CF population is lung disease. Increasing evidence suggests that in utero airway development is CFTR-dependent and that developmental abnormalities may contribute to CF lung disease. However, relatively little is known about postnatal CF airway growth, largely because such studies are limited in humans. Therefore, we examined airway growth and lung volume in a porcine model of CF. We hypothesized that CF pigs would have abnormal postnatal airway growth. To test this hypothesis, we performed CT-based airway and lung volume measurements in 3-wk-old non-CF and CF pigs. We found that 3-wk-old CF pigs had tracheas of reduced caliber and irregular shape. Their bronchial lumens were reduced in size proximally but not distally, were irregularly shaped, and had reduced distensibility. Our data suggest that lack of CFTR results in aberrant postnatal airway growth and development, which could contribute to CF lung disease pathogenesis. NEW & NOTEWORTHY This CT scan-based study of airway morphometry in the cystic fibrosis (CF) postnatal period is unique, as analogous studies in humans are greatly limited for ethical and technical reasons. Findings such as reduced airway lumen area and irregular caliber suggest that airway growth and development are CF transmembrane conductance regulator-dependent and that airway growth defects may contribute to CF lung disease pathogenesis. Copyright © 2017 the American Physiological Society.

  8. Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide.

    PubMed

    Abdullayev, Elshad; Joshi, Anupam; Wei, Wenbo; Zhao, Yafei; Lvov, Yuri

    2012-08-28

    Halloysite clay tubes have 50 nm diameter and chemically different inner and outer walls (inner surface of aluminum oxide and outer surface of silica). Due to this different chemistry, the selective etching of alumina from inside the tube was realized, while preserving their external diameter (lumen diameter changed from 15 to 25 nm). This increases 2-3 times the tube lumen capacity for loading and further sustained release of active chemical agents such as metals, corrosion inhibitors, and drugs. In particular, halloysite loading efficiency for the benzotriazole increased 4 times by selective etching of 60% alumina within the tubes' lumens. Specific surface area of the tubes increased over 6 times, from 40 to 250 m(2)/g, upon acid treatment.

  9. Prognostic Significance of Large Airway Dimensions on Computed Tomography in the General Population. The Multi-Ethnic Study of Atherosclerosis (MESA) Lung Study.

    PubMed

    Oelsner, Elizabeth C; Smith, Benjamin M; Hoffman, Eric A; Kalhan, Ravi; Donohue, Kathleen M; Kaufman, Joel D; Nguyen, Jennifer N; Manichaikul, Ani W; Rotter, Jerome I; Michos, Erin D; Jacobs, David R; Burke, Gregory L; Folsom, Aaron R; Schwartz, Joseph E; Watson, Karol; Barr, R Graham

    2018-06-01

    Large airway dimensions on computed tomography (CT) have been associated with lung function, symptoms, and exacerbations in chronic obstructive pulmonary disease (COPD), as well as with symptoms in smokers with preserved spirometry. Their prognostic significance in persons without lung disease remains undefined. To examine associations between large airway dimensions on CT and respiratory outcomes in a population-based cohort of adults without prevalent lung disease. The Multi-Ethnic Study of Atherosclerosis recruited participants ages 45-84 years without cardiovascular disease in 2000-2002; we excluded participants with prevalent chronic lower respiratory disease (CLRD). Spirometry was measured in 2004-2006 and 2010-2012. CLRD hospitalizations and deaths were classified by validated criteria through 2014. The average wall thickness for a hypothetical airway of 10-mm lumen perimeter on CT (Pi10) was calculated using measures of airway wall thickness and lumen diameter. Models were adjusted for age, sex, principal components of ancestry, body mass index, smoking, pack-years, scanner, percent emphysema, genetic risk score, and initial forced expiratory volume in 1 second (FEV 1 ) percent predicted. Greater Pi10 was associated with 9% faster FEV 1 decline (95% confidence interval [CI], 2 to 15%; P = 0.012) and increased incident COPD (odds ratio, 2.22; 95% CI, 1.43-3.45; P = 0.0004) per standard deviation among 1,830 participants. Over 78,147 person-years, higher Pi10 was associated with a 57% higher risk of first CLRD hospitalization or mortality (P = 0.0496) per standard deviation. Of Pi10's component measures, both greater airway wall thickness and narrower lumen predicted incident COPD and CLRD clinical events. In adults without CLRD, large airway dimensions on CT were prospectively associated with accelerated lung function decline and increased risks of COPD and CLRD hospitalization and mortality.

  10. Airway Management during Thyroidectomy for a Giant Goitre due to McCune-Albright Syndrome

    PubMed Central

    2018-01-01

    There have been no case reports to date describing the technical aspects of tracheal intubation in a patient with a goitre associated with McCune-Albright syndrome (MAS), even though goitre is frequently observed in this condition. I describe a case of resection of a giant goitre in a patient with MAS, with difficult airway management. Preoperative investigation showed that the trachea was shifted to the right by the goitre, with the narrowest part of the tracheal lumen 4 mm in diameter. There was dome-shaped protuberance of the posterior pharyngeal wall into the airway. The patient had an S-shaped total spine, a short neck, and a relatively large jaw, which interfered with airway visualisation during intubation. Anaesthesia was induced with light sedation and supplemental oxygen. Endotracheal intubation was successfully performed using a fiberoptic laryngoscope and a flexible, spiral-wound, obtuse-tipped tracheal tube. PMID:29854469

  11. Detecting airway remodeling in COPD and emphysema using low-dose CT imaging

    NASA Astrophysics Data System (ADS)

    Rudyanto, R.; Ceresa, M.; Muñoz-Barrutia, A.; Ortiz-de-Solorzano, C.

    2012-03-01

    In this study, we quantitatively characterize lung airway remodeling caused by smoking-related emphysema and Chronic Obstructive Pulmonary Disease (COPD), in low-dose CT scans. To that end, we established three groups of individuals: subjects with COPD (n=35), subjects with emphysema (n=38) and healthy smokers (n=28). All individuals underwent a low-dose CT scan, and the images were analyzed as described next. First the lung airways were segmented using a fast marching method and labeled according to its generation. Along each airway segment, cross-section images were resampled orthogonal to the airway axis. Next 128 rays were cast from the center of the airway lumen in each crosssection slice. Finally, we used an integral-based method, to measure lumen radius, wall thickness, mean wall percentage and mean peak wall attenuation on every cast ray. Our analysis shows that both the mean global wall thickness and the lumen radius of the airways of both COPD and emphysema groups were significantly different from those of the healthy group. In addition, the wall thickness change starts at the 3rd airway generation in the COPD patients compared with emphysema patients, who display the first significant changes starting in the 2nd generation. In conclusion, it is shown that airway remodeling happens in individuals suffering from either COPD or emphysema, with some local difference between both groups, and that we are able to detect and accurately quantify this process using images of low-dose CT scans.

  12. Childhood-Onset Asthma in Smokers. Association between CT Measures of Airway Size, Lung Function, and Chronic Airflow Obstruction

    PubMed Central

    Hardin, Megan E.; Come, Carolyn E.; San José Estépar, Raúl; Ross, James C.; Kurugol, Sila; Okajima, Yuka; Han, MeiLan K.; Kim, Victor; Ramsdell, Joe; Silverman, Edwin K.; Crapo, James D.; Lynch, David A.; Make, Barry; Barr, R. Graham; Hersh, Craig P.; Washko, George R.

    2014-01-01

    Rationale and Objectives: Asthma is associated with chronic airflow obstruction. Our goal was to assess the association of computed tomographic measures of airway wall volume and lumen volume with the FEV1 and chronic airflow obstruction in smokers with childhood-onset asthma. Methods: We analyzed clinical, lung function, and volumetric computed tomographic airway volume data from 7,266 smokers, including 590 with childhood-onset asthma. Small wall volume and small lumen volume of segmental airways were defined as measures 1 SD below the mean. We assessed the association between small wall volume, small lumen volume, FEV1, and chronic airflow obstruction (post-bronchodilator FEV1/FVC ratio < 0.7) using linear and logistic models. Measurements and Main Results: Compared with subjects without childhood-onset asthma, those with childhood-onset asthma had smaller wall volume and lumen volume (P < 0.0001) of segmental airways. Among subjects with childhood-onset asthma, those with the smallest wall volume and lumen volume had the lowest FEV1 and greatest odds of chronic airflow obstruction. A similar tendency was seen in those without childhood-onset asthma. When comparing these two groups, both small wall volume and small lumen volume were more strongly associated with FEV1 and chronic airflow obstruction among subjects with childhood-asthma in multivariate models. Conclusion: In smokers with childhood-onset asthma, smaller airways are associated with reduced lung function and chronic airflow obstruction. Clinical trial registered with www.clinicaltrials.gov (NCT00608764). PMID:25296268

  13. Childhood-onset asthma in smokers. association between CT measures of airway size, lung function, and chronic airflow obstruction.

    PubMed

    Diaz, Alejandro A; Hardin, Megan E; Come, Carolyn E; San José Estépar, Raúl; Ross, James C; Kurugol, Sila; Okajima, Yuka; Han, MeiLan K; Kim, Victor; Ramsdell, Joe; Silverman, Edwin K; Crapo, James D; Lynch, David A; Make, Barry; Barr, R Graham; Hersh, Craig P; Washko, George R

    2014-11-01

    Asthma is associated with chronic airflow obstruction. Our goal was to assess the association of computed tomographic measures of airway wall volume and lumen volume with the FEV1 and chronic airflow obstruction in smokers with childhood-onset asthma. We analyzed clinical, lung function, and volumetric computed tomographic airway volume data from 7,266 smokers, including 590 with childhood-onset asthma. Small wall volume and small lumen volume of segmental airways were defined as measures 1 SD below the mean. We assessed the association between small wall volume, small lumen volume, FEV1, and chronic airflow obstruction (post-bronchodilator FEV1/FVC ratio < 0.7) using linear and logistic models. Compared with subjects without childhood-onset asthma, those with childhood-onset asthma had smaller wall volume and lumen volume (P < 0.0001) of segmental airways. Among subjects with childhood-onset asthma, those with the smallest wall volume and lumen volume had the lowest FEV1 and greatest odds of chronic airflow obstruction. A similar tendency was seen in those without childhood-onset asthma. When comparing these two groups, both small wall volume and small lumen volume were more strongly associated with FEV1 and chronic airflow obstruction among subjects with childhood-asthma in multivariate models. In smokers with childhood-onset asthma, smaller airways are associated with reduced lung function and chronic airflow obstruction. Clinical trial registered with www.clinicaltrials.gov (NCT00608764).

  14. Lumen and calcium characteristics within calcified coronary lesions. Comparison of computed tomography coronary angiography versus intravascular ultrasound.

    PubMed

    Noll, Dariusz; Kruk, Mariusz; Pręgowski, Jerzy; Kaczmarska, Edyta; Kryczka, Karolina; Pracoń, Radosław; Skwarek, Mirosław; Dzielińska, Zofia; Petryka, Joanna; Spiewak, Mateusz; Lubiszewska, Barbara; Norwa-Otto, Bożena; Opolski, Maksymilian; Witkowski, Adam; Demkow, Marcin; Rużyłło, Witold; Kępka, Cezary

    2013-01-01

    Computed tomography coronary angiography (CTCA) is a diagnostic method used for exclusion of coronary artery disease. However, lower accuracy of CTCA in assessment of calcified lesions is a significant factor impeding applicability of CTCA for assessment of coronary atherosclerosis. To provide insight into lumen and calcium characteristics assessed with CTCA, we compared these parameters to the reference of intravascular ultrasound (IVUS). Two hundred and fifty-two calcified lesions within 97 arteries of 60 patients (19 women, age 63 ±10 years) underwent assessment with both 2 × 64 slice CT (Somatom Definition, Siemens) and IVUS (s5, Volcano Corp.). Coronary lumen and calcium dimensions within calcified lesions were assessed with CTCA and compared to the reference measurements made with IVUS. On average CTCA underestimated mean lumen diameter (2.8 ±0.7 mm vs. 2.9 ±0.8 mm for IVUS), lumen area (6.4 ±3.4 mm(2) vs. 7.0 ±3.7 mm(2) for IVUS, p < 0.001) and total calcium arc (52 ±35° vs. 83 ±54°). However, analysis of tertiles of the examined parameters revealed that the mean lumen diameter, lumen area and calcium arc did not significantly differ between CTCA and IVUS within the smallest lumens (1(st) tertile of mean lumen diameter at 2.1 mm, and 1(st) tertile of lumen area at 3.7 mm(2)) and lowest calcium arc (mean of 40°). Although, on average, CTCA underestimates lumen diameter and area as well as calcium arc within calcified lesions, the differences are not significant within the smallest vessels and calcium arcs. The low diagnostic accuracy of CTCA within calcified lesions may be attributed to high variance and not to systematic error of measurements.

  15. 3D mapping of airway wall thickening in asthma with MSCT: a level set approach

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Brillet, Pierre-Yves; Hartley, Ruth; Grenier, Philippe A.; Brightling, Christopher

    2014-03-01

    Assessing the airway wall thickness in multi slice computed tomography (MSCT) as image marker for airway disease phenotyping such asthma and COPD is a current trend and challenge for the scientific community working in lung imaging. This paper addresses the same problem from a different point of view: considering the expected wall thickness-to-lumen-radius ratio for a normal subject as known and constant throughout the whole airway tree, the aim is to build up a 3D map of airway wall regions of larger thickness and to define an overall score able to highlight a pathological status. In this respect, the local dimension (caliber) of the previously segmented airway lumen is obtained on each point by exploiting the granulometry morphological operator. A level set function is defined based on this caliber information and on the expected wall thickness ratio, which allows obtaining a good estimate of the airway wall throughout all segmented lumen generations. Next, the vascular (or mediastinal dense tissue) contact regions are automatically detected and excluded from analysis. For the remaining airway wall border points, the real wall thickness is estimated based on the tissue density analysis in the airway radial direction; thick wall points are highlighted on a 3D representation of the airways and several quantification scores are defined. The proposed approach is fully automatic and was evaluated (proof of concept) on a patient selection coming from different databases including mild, severe asthmatics and normal cases. This preliminary evaluation confirms the discriminative power of the proposed approach regarding different phenotypes and is currently extending to larger cohorts.

  16. Anatomic optical coherence tomography for dynamic imaging of the upper airway

    NASA Astrophysics Data System (ADS)

    Bu, Ruofei; Balakrishnan, Santosh; Iftimia, Nicusor; Price, Hillel; Zdanski, Carlton; Oldenburg, Amy L.

    2017-03-01

    To aid in diagnosis and treatment of upper airway obstructive disorders (UAOD), we propose anatomic Optical Coherence Tomography (aOCT) for endoscopic imaging of the upper airway lumen with high speed and resolution. aOCT and CT scans are performed sequentially on in vivo swine to compare dynamic airway imaging data. The aOCT system is capable of capturing the dynamic deformation of the airway during respiration. This may lead to methods for airway elastography and aid in our understanding of dynamic collapse in UAOD.

  17. A hybrid method for airway segmentation and automated measurement of bronchial wall thickness on CT.

    PubMed

    Xu, Ziyue; Bagci, Ulas; Foster, Brent; Mansoor, Awais; Udupa, Jayaram K; Mollura, Daniel J

    2015-08-01

    Inflammatory and infectious lung diseases commonly involve bronchial airway structures and morphology, and these abnormalities are often analyzed non-invasively through high resolution computed tomography (CT) scans. Assessing airway wall surfaces and the lumen are of great importance for diagnosing pulmonary diseases. However, obtaining high accuracy from a complete 3-D airway tree structure can be quite challenging. The airway tree structure has spiculated shapes with multiple branches and bifurcation points as opposed to solid single organ or tumor segmentation tasks in other applications, hence, it is complex for manual segmentation as compared with other tasks. For computerized methods, a fundamental challenge in airway tree segmentation is the highly variable intensity levels in the lumen area, which often causes a segmentation method to leak into adjacent lung parenchyma through blurred airway walls or soft boundaries. Moreover, outer wall definition can be difficult due to similar intensities of the airway walls and nearby structures such as vessels. In this paper, we propose a computational framework to accurately quantify airways through (i) a novel hybrid approach for precise segmentation of the lumen, and (ii) two novel methods (a spatially constrained Markov random walk method (pseudo 3-D) and a relative fuzzy connectedness method (3-D)) to estimate the airway wall thickness. We evaluate the performance of our proposed methods in comparison with mostly used algorithms using human chest CT images. Our results demonstrate that, on publicly available data sets and using standard evaluation criteria, the proposed airway segmentation method is accurate and efficient as compared with the state-of-the-art methods, and the airway wall estimation algorithms identified the inner and outer airway surfaces more accurately than the most widely applied methods, namely full width at half maximum and phase congruency. Copyright © 2015. Published by Elsevier B.V.

  18. Anatomic Optical Coherence Tomography of Upper Airways

    NASA Astrophysics Data System (ADS)

    Chin Loy, Anthony; Jing, Joseph; Zhang, Jun; Wang, Yong; Elghobashi, Said; Chen, Zhongping; Wong, Brian J. F.

    The upper airway is a complex and intricate system responsible for respiration, phonation, and deglutition. Obstruction of the upper airways afflicts an estimated 12-18 million Americans. Pharyngeal size and shape are important factors in the pathogenesis of airway obstructions. In addition, nocturnal loss in pharyngeal muscular tone combined with high pharyngeal resistance can lead to collapse of the airway and periodic partial or complete upper airway obstruction. Anatomical optical coherence tomography (OCT) has the potential to provide high-speed three-dimensional tomographic images of the airway lumen without the use of ionizing radiation. In this chapter we describe the methods behind endoscopic OCT imaging and processing to generate full three dimensional anatomical models of the human airway which can be used in conjunction with numerical simulation methods to assess areas of airway obstruction. Combining this structural information with flow dynamic simulations, we can better estimate the site and causes of airway obstruction and better select and design surgery for patients with obstructive sleep apnea.

  19. Small airway obstruction in COPD: new insights based on micro-CT imaging and MRI imaging.

    PubMed

    Hogg, James C; McDonough, John E; Suzuki, Masaru

    2013-05-01

    The increase in total cross-sectional area in the distal airways of the human lung enhances the mixing of each tidal breath with end-expiratory gas volume by slowing bulk flow and increasing gas diffusion. However, this transition also favors the deposition of airborne particulates in this region because they diffuse 600 times slower than gases. Furthermore, the persistent deposition of toxic airborne particulates stimulates a chronic inflammatory immune cell infiltration and tissue repair and remodeling process that increases the resistance in airways <2 mm in diameter four to 40-fold in COPD. This increase was originally attributed to lumen narrowing because it increases resistance in proportion to the change in lumen radius raised to the fourth power. In contrast, removal of one-half the number of tubes arranged in parallel is required to double their resistance, and approximately 90% need to be removed to explain the increase in resistance measured in COPD. However, recent reexamination of this problem based on micro-CT imaging indicates that terminal bronchioles are both narrowed and reduced to 10% of the control values in the centrilobular and 25% in the panlobular emphysematous phenotype of very severe (GOLD [Global Initiative for Chronic Obstructive Lung Disease] grade IV) COPD. These new data indicate that both narrowing and reduction in numbers of terminal bronchioles contribute to the rapid decline in FEV₁ that leads to severe airway obstruction in COPD. Moreover, the observation that terminal bronchiolar loss precedes the onset of emphysematous destruction suggests this destruction begins in the very early stages of COPD.

  20. Physical principle of airway design in human lungs

    NASA Astrophysics Data System (ADS)

    Park, Keunhwan; Son, Taeho; Kim, Wonjung; Kim, Ho-Young

    2014-11-01

    From an engineering perspective, lungs are natural microfluidic devices that extract oxygen from air. In the bronchial tree, airways branch by dichotomy with a systematic reduction of their diameters. It is generally accepted that in conducting airways, which air passes on the way to the acinar airways from the atmosphere, the reduction ratio of diameter is closely related to the minimization of viscous dissipation. Such a principle is formulated as the Hess-Murray law. However, in acinar airways, where oxygen transfer to alveolae occurs, the diameter reduction with progressive generations is more moderate than in conducting airways. Noting that the dominant transfer mechanism in acinar airways is diffusion rather than advection, unlike conducting airways, we construct a mathematical model for oxygen transfer through a series of acinar airways. Our model allows us to predict the optimal airway reduction ratio that maximizes the oxygen transfer in a finite airway volume, thereby rationalizing the observed airway reduction ratio in acinar airways.

  1. Dual lumen transducer probes for real-time 3-D interventional cardiac ultrasound.

    PubMed

    Lee, Warren; Idriss, Salim F; Wolf, Patrick D; Smith, Stephen W

    2003-09-01

    We have developed dual lumen probes incorporating a forward-viewing matrix array transducer with an integrated working lumen for delivery of tools in real-time 3-D (RT3-D) interventional echocardiography. The probes are of 14 Fr and 22 Fr sizes, with 112 channel 2-D arrays operating at 5 MHz. We obtained images of cardiac anatomy and simultaneous interventional device delivery with an in vivo sheep model, including: manipulation of a 0.36-mm diameter guidewire into the coronary sinus, guidance of a transseptal puncture using a 1.2-mm diameter Brockenbrough needle, and guidance of a right ventricular biopsy using 3 Fr biopsy forceps. We have also incorporated the 22 Fr probe within a 6-mm surgical trocar to obtain apical four-chamber ultrasound (US) scans from a subcostal position. Combining the imaging catheter with a working lumen in a single device may simplify cardiac interventional procedures by allowing clinicians to easily visualize cardiac structures and simultaneously direct interventional tools in a RT3-D image.

  2. Tracheomalacia treatment using a large-diameter, custom-made airway stent in a case with mounier-kuhn syndrome.

    PubMed

    Ozdemir, Cengiz; Sökücü, Sinem Nedime; Karasulu, Levent; Altın, Sedat; Dalar, Levent

    2014-01-01

    Mounier-Kuhn Syndrome (MKS) is a rare congenital disease that presents with abnormal enlargement in the central airways. In MKS, tracheomegaly is accompanied by difficulty in expelling recurrent lung infections and bronchiectasia. We presented a patient with MKS where commercially made stents were inadequate for stabilization and a custom-made, self-expandable metallic stent with a diameter of 28 mm and length of 100 mm was used. Chest pain that was thought to develop due to the stent and that disappeared after stent removal may be considered the main complication leading to stent removal. Continuous positive airway pressure therapy (CPAP) therapy was planned for the control of symptoms, which re-emerged after stent removal. This case is presented as an example that complications developing due to the stent as well as patient noncompliance may lead to stent removal, even when useful results are obtained from treatment of MKS.

  3. Tracheomalacia Treatment Using a Large-Diameter, Custom-Made Airway Stent in a Case with Mounier-Kuhn Syndrome

    PubMed Central

    Özdemir, Cengiz; Sökücü, Sinem Nedime; Karasulu, Levent; Altın, Sedat; Dalar, Levent

    2014-01-01

    Mounier-Kuhn Syndrome (MKS) is a rare congenital disease that presents with abnormal enlargement in the central airways. In MKS, tracheomegaly is accompanied by difficulty in expelling recurrent lung infections and bronchiectasia. We presented a patient with MKS where commercially made stents were inadequate for stabilization and a custom-made, self-expandable metallic stent with a diameter of 28 mm and length of 100 mm was used. Chest pain that was thought to develop due to the stent and that disappeared after stent removal may be considered the main complication leading to stent removal. Continuous positive airway pressure therapy (CPAP) therapy was planned for the control of symptoms, which re-emerged after stent removal. This case is presented as an example that complications developing due to the stent as well as patient noncompliance may lead to stent removal, even when useful results are obtained from treatment of MKS. PMID:25276462

  4. Mass loading of the upper airway extraluminal tissue space in rabbits: effects on tissue pressure and pharyngeal airway lumen geometry.

    PubMed

    Kairaitis, Kristina; Howitt, Lauren; Wheatley, John R; Amis, Terence C

    2009-03-01

    Lateral pharyngeal fat pad compression of the upper airway (UA) wall is thought to influence UA size in patients with obstructive sleep apnea. We examined interactions between acute mass/volume loading of the UA extra-luminal tissue space and UA patency. We studied 12 supine, anesthetized, spontaneously breathing, head position-controlled (50 degrees ), New Zealand White rabbits. Submucosal extraluminal tissue pressures (ETP) in the anterolateral (ETPlat) and anterior (ETPant) pharyngeal wall were monitored with surgically inserted pressure transducer-tipped catheters (Millar). Tracheal pressure (Ptr) and airflow (V) were measured via a pneumotachograph and pressure transducer inserted in series into the intact trachea, with hypopharyngeal cross-sectional area (CSA) measured via computed tomography, while graded saline inflation (0-1.5ml) of a compliant tissue expander balloon in the anterolateral subcutaneous tissue was performed. Inspiratory UA resistance (Rua) at 20 ml/s was calculated from a power function fitted to Ptr vs. V data. Graded expansion of the anterolateral balloon increased ETPlat from 2.3 +/- 0.5 cmH(2)O (n = 11, mean +/- SEM) to 5.0 +/- 1.1 cmH(2)O at 1.5-ml inflation (P < 0.05; ANOVA). However, ETPant was unchanged from 0.5 +/- 0.5 cmH(2)O (n = 9; P = 0.17). Concurrently, Rua increased to 119 +/- 4.2% of baseline value (n = 12; P < 0.001) associated with a significant reduction in CSA between 10 and 70% of airway length to a minimum of 82.2 +/- 4.4% of baseline CSA at 40% of airway length (P < 0.05). We conclude that anterolateral loading of the upper airway extraluminal tissue space decreases upper airway patency via an increase in ETPlat, but not ETPant. Lateral pharyngeal fat pad size may influence UA patency via increased tissue volume and pressure causing UA wall compression.

  5. Measurement of retinal wall-to-lumen ratio by adaptive optics retinal camera: a clinical research.

    PubMed

    Meixner, Eva; Michelson, Georg

    2015-11-01

    To measure the wall-to-lumen ratio (WLR) and the cross-sectional area of the vascular wall (WCSA) of retinal arterioles by an Adaptive Optics (AO) retinal camera. Forty-seven human subjects were examined and their medical history was explored. WLR and WCSA were measured on the basis of retinal arteriolar wall thickness (VW), lumen diameter (LD) and vessel diameter (VD) assessed by rtx1 Adaptive Optics retinal camera. WLR was calculated by the formula [Formula: see text]. Arterio-venous ratio (AVR) and microvascular abnormalities were attained by quantitative and qualitative assessment of fundus photographs. Influence of age, arterial hypertension, body mass index (BMI) and retinal microvascular abnormalities on the WLR was examined. An age-adjusted WLR was created to test influences on WLR independently of age. Considering WLR and WCSA, a distinction between eutrophic and hypertrophic retinal remodeling processes was possible. The intra-observer variability (IOV) was 6 % ± 0.9 for arteriolar wall thickness and 2 % ± 0.2 for arteriolar wall thickness plus vessel lumen. WLR depended significantly on the wall thickness (r = 0.715; p < 0.01) of retinal arterioles, but was independent of the total vessel diameter (r = 0.052; p = 0.728). WLR correlated significantly with age (r = 0.769; p < 0.01). Arterial hypertension and a higher BMI were significantly associated with an increased age-adjusted WLR. WLR correlated significantly with the stage of microvascular abnormalities. 55 % of the hypertensive subjects and 11 % of the normotensive subjects showed eutrophic remodeling, while hypertrophic remodeling was not detectable. WLR correlated inversely with AVR. AVR was independent of the arteriolar wall thickness, age and arterial hypertension. The technique of AO retinal imaging allows a direct measurement of the retinal vessel wall and lumen diameter with good intra-observer variability. Age, arterial hypertension and an elevated BMI level

  6. HOCl causes airway substance P hyperresponsiveness and neutral endopeptidase hypoactivity.

    PubMed

    Murlas, C G; Murphy, T P; Lang, Z

    1990-06-01

    We investigated whether exposure of guinea pig tracheal tissue to hypochlorous acid (HOCl) or hydrogen peroxide (H2O2) by perfusion through the airway lumen affected the responsiveness of airway muscle to ACh, KCl, or substance P in the presence or absence of 1 microM phosphoramidon, an inhibitor of neutral endopeptidase (NEP). Pairs of tracheal segments were immersed in a Krebs solution (pH 7.40 at 37 degrees C) and connected to perfusion circuits so that the lumen of one segment of each pair could be perfused with Krebs solution while the other was perfused for the same time (10 min) with either 0.1 microM HOCl or 10 mM H2O2. Segments after perfusion were cut into rings of similar size and placed in muscle chambers so that airway muscle force generation in vitro could be measured on stimulation by cumulative agonist doses. In addition, cell homogenates were made from other, similarly perfused tracheal segments to assess NEP activity using reverse-phase, high-pressure liquid chromatography (HPLC). We found that smooth muscle of mucosa-intact guinea pig airways perfused with HOCl, but not H2O2, was hyperresponsive to substance P but not to ACh or KCl. HOCl-perfused rings were not different from Krebs solution-exposed rings pretreated with phosphoramidon. There was no increase in substance P responsiveness of HOCl-exposed airways in which the mucosa had been removed before testing in vitro. The substance P hyperresponsiveness of HOCl-exposed, mucosa-intact airways was associated with decreased NEP activity.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Management of difficult airway in intratracheal tumor surgery.

    PubMed

    Goyal, Amit; Tyagi, Isha; Tewari, Prabhat; Agarwal, Surendra K; Syal, Rajan

    2005-06-07

    Tracheal malignancies are usual victim of delay in diagnosis by virtue of their symptoms resembling asthma. Sometimes delayed diagnosis may lead to almost total airway obstruction. For difficult airways, not leaving any possibility of manipulation into neck region or endoscopic intervention, femorofemoral cardiopulmonary bypass can be a promising approach. We are presenting a case of tracheal adenoid cystic carcinoma (cylindroma) occupying about 90% of the tracheal lumen. It was successfully managed by surgical excision of mass by sternotomy and tracheotomy under femorofemoral cardiopulmonary bypass (CPB). Any patient with recurrent respiratory symptoms should be evaluated by radiological and endoscopic means earlier to avoid delay in diagnosis of such conditions. Femorofemoral cardiopulmonary bypass is a relatively safe way of managing certain airway obstructions.

  8. Management of difficult airway in intratracheal tumor surgery

    PubMed Central

    Goyal, Amit; Tyagi, Isha; Tewari, Prabhat; Agarwal, Surendra K; Syal, Rajan

    2005-01-01

    Background Tracheal malignancies are usual victim of delay in diagnosis by virtue of their symptoms resembling asthma. Sometimes delayed diagnosis may lead to almost total airway obstruction. For difficult airways, not leaving any possibility of manipulation into neck region or endoscopic intervention, femorofemoral cardiopulmonary bypass can be a promising approach. Case Presentation We are presenting a case of tracheal adenoid cystic carcinoma (cylindroma) occupying about 90% of the tracheal lumen. It was successfully managed by surgical excision of mass by sternotomy and tracheotomy under femorofemoral cardiopulmonary bypass (CPB). Conclusion Any patient with recurrent respiratory symptoms should be evaluated by radiological and endoscopic means earlier to avoid delay in diagnosis of such conditions. Femorofemoral cardiopulmonary bypass is a relatively safe way of managing certain airway obstructions. PMID:15941480

  9. Multi-stage surgery for airway patency after metallic stent removal in benign laryngotracheal airway disease in two adolescents.

    PubMed

    Coordes, Annekatrin; Todt, Ingo; Ernst, Arne; Seidl, Rainer O

    2013-05-01

    Laryngotracheal stents may damage the highly complex laryngeal structures, impair voice and swallowing functions and cause tissue ingrowths, thereby necessitating airway patency interventions. In benign airway disease, the number of adolescents with laryngotracheal stents is therefore limited. We present two cases of laryngeal metallic stent placement following benign airway disease. Two adolescents presented with severe dyspnea and self-expandable metallic stent placement after benign laryngotracheal stenoses. Granulation tissue ingrowths required additional surgical interventions every 6-8 weeks to recanalize the stent lumen. We performed multi-stage surgery including removal of the embedded stent, segmental resection of the stenotic area, end-to-end-anastomosis and laryngotracheal reconstruction respectively, to achieve patent airway without tracheal cannulation. Montgomery T-tubes were temporarily inserted to bridge the complex reconstructions. In both adolescents, we achieved successful removal of the embedded stent and patent airway. Bilateral vocal fold paralysis required additional surgery to improve the final airway patency and vocal rehabilitation. Stent removal, segmental resection and laryngotracheal reconstruction provide the achievement of patent airway and allow decannulation. Temporary Montgomery T-tubes bridge complex laryngotracheal reconstructions. In benign laryngeal airway disease, stent placement should be avoided, especially in adolescents. Transfer to a specialist center should be considered prior to metallic stent implantation. In general, self-expanding tracheobronchial stents can be placed in selected patients where surgical interventions are limited. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. The influential factors on the morphological changes of upper airway associated with mouth opening.

    PubMed

    Hu, Bin; Ye, Jingying; Yin, Guoping; Zhang, Yuhuan

    2018-04-15

    This study aimed to evaluate the influential factors on the morphological changes of upper airway caused by mouth opening (MO). One hundred and thirty-eight obstructive sleep apnea-hypopnea syndrome (OSAHS) patients were enrolled. Anthropometric and demographic data, Friedman tongue position (FTP), and tonsil scores were recorded. Overnight polysomnography and upper airway computed tomography scans under two conditions (mouth closed [MC] and MO) were acquired. Morphological parameters of upper airway were compared between MC and MO. Stepwise multiple linear regression analyses were performed with the variation ratio of upper airway parameters (Para-VRs) from MC to MO as the dependent variable, with age, gender, body mass index, neck circumference, waist circumference, four mandibular indexes, net angle or amount of MO, FTP, and tonsil scores as the independent variables. Overall analysis and subgroup analyses based on OSAHS severity revealed that the minimal cross-sectional area of oropharyngeal lumen (OXmin) significantly decreased (P < 0.05) with MO, whereas the minimal cross-sectional area of velopharyngeal lumen (VXmin) did not significantly change with MO (P > 0.05). The net angle of MO or amount of MO combined with tonsil scores were identified to have significant positive correlation with EXP (OXmin-VR), [OXmin-VR was logarithmically transformed with an exponential function, EXP(n) = e n ]; FTP appeared to be more related to EXP (VXmin-VR). Mouth opening induced a significant increase VXmin for patient subgroup with FTP grading I and a significant decrease VXmin for patient subgroup with FTP grading IV (P < 0.05). Wider MO combined with larger tonsils lead to narrower oropharyngeal airway. The relative position of tongue to soft palate is the main factor influencing the changes of velopharyngeal lumen with MO. IV. Laryngoscope, 2018. © 2018 The American Laryngological, Rhinological and Otological Society, Inc.

  11. Energy 101: Lumens

    ScienceCinema

    None

    2017-12-27

    Description: In this edition of Energy 101, we talk about Lumens. When you're shopping for light bulbs, compare lumens to be sure you';re getting the amount of light, or level of brightness, you want.

  12. Objective characterization of airway dimensions using image processing.

    PubMed

    Pepper, Victoria K; Francom, Christian; Best, Cameron A; Onwuka, Ekene; King, Nakesha; Heuer, Eric; Mahler, Nathan; Grischkan, Jonathan; Breuer, Christopher K; Chiang, Tendy

    2016-12-01

    With the evolution of medical and surgical management for pediatric airway disorders, the development of easily translated techniques of measuring airway dimensions can improve the quantification of outcomes of these interventions. We have developed a technique that improves the ability to characterize endoscopic airway dimensions using common bronchoscopic equipment and an open-source image-processing platform. We validated our technique of Endoscopic Airway Measurement (EAM) using optical instruments in simulation tracheas. We then evaluated EAM in a large animal model (Ovis aries, n = 5), comparing tracheal dimensions obtained with EAM to measurements obtained via 3-D fluoroscopic reconstruction. The animal then underwent resection of the measured segment, and direct measurement of this segment was performed and compared to radiographic measurements and those obtained using EAM. The simulation tracheas had a direct measurement of 13.6, 18.5, and 24.2 mm in diameter. The mean difference of diameter in simulation tracheas between direct measurements and measurements obtained using EAM was 0.70 ± 0.57 mm. The excised ovine tracheas had an average diameter of 18.54 ± 0.68 mm. The percent difference in diameter obtained from EAM and from 3-D fluoroscopic reconstruction when compared to measurement of the excised tracheal segment was 4.98 ± 2.43% and 10.74 ± 4.07% respectively. Comparison of these three measurements (EAM, measurement of resected trachea, 3-D fluoroscopic reconstruction) with repeated measures ANOVA demonstrated no statistical significance. Endoscopic airway measurement (EAM) provides equivalent measurements of the airway with the improved versatility of measuring non-circular and multi-level dimensions. Using optical bronchoscopic instruments and open-source image-processing software, our data supports preclinical and clinical translation of an accessible technique to provide objective quantification of airway diameter. Copyright

  13. Localized compliance of small airways in excised rat lungs using microfocal X-ray computed tomography.

    PubMed

    Sera, Toshihiro; Fujioka, Hideki; Yokota, Hideo; Makinouchi, Akitake; Himeno, Ryutaro; Schroter, Robert C; Tanishita, Kazuo

    2004-05-01

    Airway compliance is a key factor in understanding lung mechanics and is used as a clinical diagnostic index. Understanding such mechanics in small airways physiologically and clinically is critical. We have determined the "morphometric change" and "localized compliance" of small airways under "near"-physiological conditions; namely, the airways were embedded in parenchyma without dehydration and fixation. Previously, we developed a two-step method to visualize small airways in detail by staining the lung tissue with a radiopaque solution and then visualizing the tissue with a cone-beam microfocal X-ray computed tomography system (Sera et al. J Biomech 36: 1587-1594, 2003). In this study, we used this technique to analyze changes in diameter and length of the same small airways ( approximately 150 microm ID) and then evaluated the localized compliance as a function of airway generation (Z). For smaller (<300-microm-diameter) airways, diameter was 36% larger at end-tidal inspiration and 89% larger at total lung capacity; length was 18% larger at end-tidal inspiration and 43% larger at total lung capacity than at functional residual capacity. Diameter, especially at smaller airways, did not behave linearly with V(1/3) (where V is volume). With increasing lung pressure, diameter changed dramatically at a particular pressure and length changed approximately linearly during inflation and deflation. Percentage of airway volume for smaller airways did not behave linearly with that of lung volume. Smaller airways were generally more compliant than larger airways with increasing Z and exhibited hysteresis in their diameter behavior. Airways at higher Z deformed at a lower pressure than those at lower Z. These results indicated that smaller airways did not behave homogeneously.

  14. Validation of an Open-Source Tool for Measuring Carotid Lumen Diameter and Intima-Media Thickness.

    PubMed

    Manterola, Hugo Luis; Lo Vercio, Lucas; Díaz, Alejandro; Del Fresno, Mariana; Larrabide, Ignacio

    2018-05-14

    In low- and middle-income regions, a relatively large number of deaths occur from cardiovascular disease or stroke. Carotid intima-media thickness (cIMT) and carotid lumen diameter (cLD) are strong indicators of cardiovascular event risk and stenosis severity, respectively. The interactive open-source software described here, Cimtool, is based on active contours for measuring these indicators in clinical practice and thus helping in preventive diagnosis and treatment. Cimtool was validated using carotid phantoms and real images obtained using ultrasound. Expert users measured cIMT and cLD in regular practice and also with Cimtool. The results obtained with Cimtool were then compared with the results for the manual approach in terms of measurement agreement, time spent on the measurements and usability. Intra-observer variability when using Cimtool was also analyzed. Statistical analysis revealed strong agreement between the manual method and Cimtool (p > 0.01 for cIMT and cLD). The correlation coefficient for both cIMT and cLD measurements was r > 0.9. Moreover, this software allowed the users to spend considerably less time on each measurement (3.5 min per study versus 50 s with Cimtool on average). An open-source, interactive, validated tool for measuring cIMT and cLD clinically was thus developed. Compared with the manual approach, Cimtool's straightforward measurement flow allows the user to spend less time per measurement and has less standard deviation. The coefficients of variation for measurements and intra-observer variability were lower than those reported for recent automated approaches, even with low-quality images. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  15. Treatment of a Persistent False Lumen with Aneurysm Formation Following Surgical Repair of Type A Dissection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeganathan, Reubendra, E-mail: reubenj@hotmail.com; Kennedy, Peter; MacGowan, Simon

    2007-06-15

    We describe the case of a 68-year-old man who developed aneurysmal dilatation of the proximal descending thoracic aorta 8 years after repair of a type A dissection. The aneurysm was due to an anastomotic leak at the distal end of the previous repair in the ascending aorta with antegrade perfusion of the false lumen. Surgical repair of the anastomotic leak partially obliterated the false lumen and computed tomography scan demonstrated thrombosis in a large proportion of the false lumen aneurysm. Follow-up with surveillance scans showed persistent filling of this aneurysm due to retrograde flow of blood within the false lumen.more » Coil embolization of the false lumen within the thoracic aorta was performed which successfully thrombosed the aneurysm with a reduction in diameter. Late aneurysm formation may complicate type A dissection repairs during follow-up due to a persistent false lumen, especially if there is an anastomotic leak. This case report describes a strategy to deal with this difficult clinical problem.« less

  16. Substance P stimulates human airway submucosal gland secretion mainly via a CFTR-dependent process

    PubMed Central

    Choi, Jae Young; Khansaheb, Monal; Joo, Nam Soo; Krouse, Mauri E.; Robbins, Robert C.; Weill, David; Wine, Jeffrey J.

    2009-01-01

    Chronic bacterial airway infections are the major cause of mortality in cystic fibrosis (CF). Normal airway defenses include reflex stimulation of submucosal gland mucus secretion by sensory neurons that release substance P (SubP). CFTR is an anion channel involved in fluid secretion and mutated in CF; the role of CFTR in secretions stimulated by SubP is unknown. We used optical methods to measure SubP-mediated secretion from human submucosal glands in lung transplant tissue. Glands from control but not CF subjects responded to mucosal chili oil. Similarly, serosal SubP stimulated secretion in more than 60% of control glands but only 4% of CF glands. Secretion triggered by SubP was synergistic with vasoactive intestinal peptide and/or forskolin but not with carbachol; synergy was absent in CF glands. Pig glands demonstrated a nearly 10-fold greater response to SubP. In 10 of 11 control glands isolated by fine dissection, SubP caused cell volume loss, lumen expansion, and mucus flow, but in 3 of 4 CF glands, it induced lumen narrowing. Thus, in CF, the reduced ability of mucosal irritants to stimulate airway gland secretion via SubP may be another factor that predisposes the airways to infections. PMID:19381016

  17. Treatment of severe porcine tracheomalacia with a 3-dimensionally printed, bioresorbable, external airway splint

    PubMed Central

    Zopf, David A.; Flanagan, Colleen L.; Wheeler, Matthew; Hollister, Scott J.; Green, Glenn E.

    2015-01-01

    Importance The study demonstrates an application for 3-dimensional (3D) printing that may serve as an effective intervention for severe tracheobronchomalacia. Objective A novel 3D printed, bioresorbable airway splint is tested for efficacy in extending survival in an animal model of severe, life-threatening tracheobronchomalacia. Participants Evaluation of an external airway splint for severe, life-threatening tracheobronchomalacia in a porcine animal model. Setting Multi-institutional and multidisciplinary collaboration between biomedical engineering laboratories and an academic animal surgery center. Interventions Experimental analysis of a 3D printed, bioresorbable airway splint is assessed in a porcine animal model of life-threatening tracheobronchomalacia. The open-cylindrical, bellow shaped porous polycaprolactone splint is placed externally and designed to suspend the underlying collapsed airway. Control animals (n=3) undergoing tracheal cartilage division and inner tracheal lumen dissociation and experimental animals (n=3) receiving the same model with overlying placement of the newly developed airway splint were evaluated. Main Outcomes and Measures An animal model for severe, life-threatening tracheobronchomalacia is proposed. Complete or near complete tracheal lumen collapse was observed in each animal with resolution of symptoms in all of the experimental animals after splint placement. Using our severe tracheobronchomalacia animal model, survival was significantly longer in duration in the experimental group receiving the airway splint after model creation when compared to model creation alone (p = 0.0495). Mortality in the experimental group was related to infection. Conclusions A multidisciplinary effort producing a CAD/CAM, bioresorbable tracheobronchial splint was tested in a porcine model of severe tracheomalacia and was found to extend survival. PMID:24232078

  18. 20-HETE mediates ozone-induced, neutrophil-independent airway hyper-responsiveness in mice.

    PubMed

    Cooper, Philip R; Mesaros, A Clementina; Zhang, Jie; Christmas, Peter; Stark, Christopher M; Douaidy, Karim; Mittelman, Michael A; Soberman, Roy J; Blair, Ian A; Panettieri, Reynold A

    2010-04-20

    Ozone, a pollutant known to induce airway hyper-responsiveness (AHR), increases morbidity and mortality in patients with obstructive airway diseases and asthma. We postulate oxidized lipids mediate in vivo ozone-induced AHR in murine airways. Male BALB/c mice were exposed to ozone (3 or 6 ppm) or filtered air (controls) for 2 h. Precision cut lung slices (PCLS; 250 microm thickness) containing an intrapulmonary airway ( approximately 0.01 mm(2) lumen area) were prepared immediately after exposure or 16 h later. After 24 h, airways were contracted to carbachol (CCh). Log EC(50) and E(max) values were then calculated by measuring the airway lumen area with respect to baseline. In parallel studies, dexamethasone (2.5 mg/kg), or 1-aminobenzotriazol (ABT) (50 mg/kg) were given intraperitoneal injection to naïve mice 18 h prior to ozone exposure. Indomethacin (10 mg/kg) was administered 2 h prior. Cell counts, cytokine levels and liquid chromatography-mass spectrometry (LC-MS) for lipid analysis were assessed in bronchoalveolar lavage (BAL) fluid from ozone exposed and control mice. Ozone acutely induced AHR to CCh. Dexamethasone or indomethacin had little effect on the ozone-induced AHR; while, ABT, a cytochrome P450 inhibitor, markedly attenuated airway sensitivity. BAL fluid from ozone exposed animals, which did not contain an increase in neutrophils or interleukin (IL)-6 levels, increased airway sensitivity following in vitro incubation with a naïve PCLS. In parallel, significant increases in oxidized lipids were also identified using LC-MS with increases of 20-HETE that were decreased following ABT treatment. These data show that ozone acutely induces AHR to CCh independent of inflammation and is insensitive to steroid treatment or cyclooxygenase (COX) inhibition. BAL fluid from ozone exposed mice mimicked the effects of in vivo ozone exposure that were associated with marked increases in oxidized lipids. 20-HETE plays a pivotal role in mediating acute ozone

  19. Automatic construction of subject-specific human airway geometry including trifurcations based on a CT-segmented airway skeleton and surface

    PubMed Central

    Miyawaki, Shinjiro; Tawhai, Merryn H.; Hoffman, Eric A.; Wenzel, Sally E.; Lin, Ching-Long

    2016-01-01

    We propose a method to construct three-dimensional airway geometric models based on airway skeletons, or centerlines (CLs). Given a CT-segmented airway skeleton and surface, the proposed CL-based method automatically constructs subject-specific models that contain anatomical information regarding branches, include bifurcations and trifurcations, and extend from the trachea to terminal bronchioles. The resulting model can be anatomically realistic with the assistance of an image-based surface; alternatively a model with an idealized skeleton and/or branch diameters is also possible. This method systematically identifies and classifies trifurcations to successfully construct the models, which also provides the number and type of trifurcations for the analysis of the airways from an anatomical point of view. We applied this method to 16 normal and 16 severe asthmatic subjects using their computed tomography images. The average distance between the surface of the model and the image-based surface was 11% of the average voxel size of the image. The four most frequent locations of trifurcations were the left upper division bronchus, left lower lobar bronchus, right upper lobar bronchus, and right intermediate bronchus. The proposed method automatically constructed accurate subject-specific three-dimensional airway geometric models that contain anatomical information regarding branches using airway skeleton, diameters, and image-based surface geometry. The proposed method can construct (i) geometry automatically for population-based studies, (ii) trifurcations to retain the original airway topology, (iii) geometry that can be used for automatic generation of computational fluid dynamics meshes, and (iv) geometry based only on a skeleton and diameters for idealized branches. PMID:27704229

  20. An automatic generation of non-uniform mesh for CFD analyses of image-based multiscale human airway models

    NASA Astrophysics Data System (ADS)

    Miyawaki, Shinjiro; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2014-11-01

    The authors have developed a method to automatically generate non-uniform CFD mesh for image-based human airway models. The sizes of generated tetrahedral elements vary in both radial and longitudinal directions to account for boundary layer and multiscale nature of pulmonary airflow. The proposed method takes advantage of our previously developed centerline-based geometry reconstruction method. In order to generate the mesh branch by branch in parallel, we used the open-source programs Gmsh and TetGen for surface and volume meshes, respectively. Both programs can specify element sizes by means of background mesh. The size of an arbitrary element in the domain is a function of wall distance, element size on the wall, and element size at the center of airway lumen. The element sizes on the wall are computed based on local flow rate and airway diameter. The total number of elements in the non-uniform mesh (10 M) was about half of that in the uniform mesh, although the computational time for the non-uniform mesh was about twice longer (170 min). The proposed method generates CFD meshes with fine elements near the wall and smooth variation of element size in longitudinal direction, which are required, e.g., for simulations with high flow rate. NIH Grants R01-HL094315, U01-HL114494, and S10-RR022421. Computer time provided by XSEDE.

  1. Physics of lumen growth.

    PubMed

    Dasgupta, Sabyasachi; Gupta, Kapish; Zhang, Yue; Viasnoff, Virgile; Prost, Jacques

    2018-05-22

    We model the dynamics of formation of intercellular secretory lumens. Using conservation laws, we quantitatively study the balance between paracellular leaks and the build-up of osmotic pressure in the lumen. Our model predicts a critical pumping threshold to expand stable lumens. Consistently with experimental observations in bile canaliculi, the model also describes a transition between a monotonous and oscillatory regime during luminogenesis as a function of ion and water transport parameters. We finally discuss the possible importance of regulation of paracellular leaks in intercellular tubulogenesis.

  2. Local small airway epithelial injury induces global smooth muscle contraction and airway constriction.

    PubMed

    Zhou, Jian; Alvarez-Elizondo, Martha B; Botvinick, Elliot; George, Steven C

    2012-02-01

    Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca(2+) wave in the epithelium, and multiple Ca(2+) waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca(2+) or decreasing intracellular Ca(2+) both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca(2+)-dependent smooth muscle shortening.

  3. [Upper airway morphology in Down Syndrome patients under dexmedetomidine sedation].

    PubMed

    Subramanyam, Rajeev; Fleck, Robert; McAuliffe, John; Radhakrishnan, Rupa; Jung, Dorothy; Patino, Mario; Mahmoud, Mohamed

    2016-01-01

    Children with Down Syndrome are vulnerable to significant upper airway obstruction due to relative macroglossia and dynamic airway collapse. The objective of this study was to compare the upper airway dimensions of children with Down Syndrome and obstructive sleep apnea with normal airway under dexmedetomidine sedation. IRB approval was obtained. In this retrospective study, clinically indicated dynamic sagittal midline magnetic resonance images of the upper airway were obtained under low (1mcg/kg/h) and high (3mcg/kg/h) dose dexmedetomidine. Airway anteroposterior diameters and sectional areas were measured as minimum and maximum dimensions by two independent observers at soft palate (nasopharyngeal airway) and at base of the tongue (retroglossal airway). Minimum anteroposterior diameter and minimum sectional area at nasopharynx and retroglossal airway were significantly reduced in Down Syndrome compared to normal airway at both low and high dose dexmedetomidine. However, there were no significant differences between low and high dose dexmedetomidine in both Down Syndrome and normal airway. The mean apnea hypopnea index in Down Syndrome was 16±11. Under dexmedetomidine sedation, children with Down Syndrome and obstructive sleep apnea when compared to normal airway children show significant reductions in airway dimensions most pronounced at the narrowest points in the nasopharyngeal and retroglossal airways. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  4. Upper airway morphology in Down Syndrome patients under dexmedetomidine sedation.

    PubMed

    Subramanyam, Rajeev; Fleck, Robert; McAuliffe, John; Radhakrishnan, Rupa; Jung, Dorothy; Patino, Mario; Mahmoud, Mohamed

    2016-01-01

    Children with Down Syndrome are vulnerable to significant upper airway obstruction due to relative macroglossia and dynamic airway collapse. The objective of this study was to compare the upper airway dimensions of children with Down Syndrome and obstructive sleep apnea with normal airway under dexmedetomidine sedation. IRB approval was obtained. In this retrospective study, clinically indicated dynamic sagittal midline magnetic resonance images of the upper airway were obtained under low (1mcg/kg/h) and high (3mcg/kg/h) dose dexmedetomidine. Airway anteroposterior diameters and sectional areas were measured as minimum and maximum dimensions by two independent observers at soft palate (nasopharyngeal airway) and at base of the tongue (retroglossal airway). Minimum anteroposterior diameter and minimum sectional area at nasopharynx and retroglossal airway were significantly reduced in Down Syndrome compared to normal airway at both low and high dose dexmedetomidine. However, there were no significant differences between low and high dose dexmedetomidine in both Down Syndrome and normal airway. The mean apnea hypopnea index in Down Syndrome was 16±11. Under dexmedetomidine sedation, children with Down Syndrome and obstructive sleep apnea when compared to normal airway children show significant reductions in airway dimensions most pronounced at the narrowest points in the nasopharyngeal and retroglossal airways. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  5. Influence of bronchial diameter change on the airflow dynamics based on a pressure-controlled ventilation system.

    PubMed

    Ren, Shuai; Cai, Maolin; Shi, Yan; Xu, Weiqing; Zhang, Xiaohua Douglas

    2018-03-01

    Bronchial diameter is a key parameter that affects the respiratory treatment of mechanically ventilated patients. In this paper, to reveal the influence of bronchial diameter on the airflow dynamics of pressure-controlled mechanically ventilated patients, a new respiratory system model is presented that combines multigeneration airways with lungs. Furthermore, experiments and simulation studies to verify the model are performed. Finally, through the simulation study, it can be determined that in airway generations 2 to 7, when the diameter is reduced to half of the original value, the maximum air pressure (maximum air pressure in lungs) decreases by nearly 16%, the maximum flow decreases by nearly 30%, and the total airway pressure loss (sum of each generation pressure drop) is more than 5 times the original value. Moreover, in airway generations 8 to 16, with increasing diameter, the maximum air pressure, maximum flow, and total airway pressure loss remain almost constant. When the diameter is reduced to half of the original value, the maximum air pressure decreases by 3%, the maximum flow decreases by nearly 5%, and the total airway pressure loss increases by 200%. The study creates a foundation for improvement in respiratory disease diagnosis and treatment. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Morphology and Three-Dimensional Inhalation Flow in Human Airways in Healthy and Diseased Subjects

    NASA Astrophysics Data System (ADS)

    Van de Moortele, Tristan

    We investigate experimentally the relation between anatomical structure and respiratory function in healthy and diseased airways. Computed Tomography (CT) scans of human lungs are analyzed from the data base of a large multi-institution clinical study on Chronic Obstructive Pulmonary Disease (COPD). Through segmentation, the 3D volumes of the airways are determined at total lung capacity. A geometric analysis provides data on the morphometry of the airways, including the length and diameter of branches, the child-to-parent diameter ratio, and branching angles. While several geometric parameters are confirmed to match past studies for healthy subjects, previously unreported trends are reported on the length of branches. Specifically, in most dichotomous airway bifurcation, the branch of smaller diameter tends to be significantly longer than the one of larger diameter. Additionally, the branch diameter tends to be smaller in diseased airways than in healthy airways up to the 7th generation of bronchial branching. 3D fractal analysis is also performed on the airway volume. Fractal dimensions of 1.89 and 1.83 are found for healthy non-smokers and declining COPD subjects, respectively, furthering the belief that COPD (and lung disease in general) significantly affects the morphometry of the airways already in early stages of the disease. To investigate the inspiratory flow, 3D flow models of the airways are generated using Computer Aided Design (CAD) software and 3D printed. Using Magnetic Resonance Velocimetry (MRV), 3-component 3D flow fields are acquired for steady inhalation at Reynolds number Re 2000 defined at the trachea. Analysis of the flow data reveals that diseased subjects may experience greater secondary flow strength in their conducting airways, especially in deeper generations.

  7. Assessment of central airway obstruction using impulse oscillometry before and after interventional bronchoscopy.

    PubMed

    Handa, Hiroshi; Huang, Jyongsu; Murgu, Septimiu D; Mineshita, Masamichi; Kurimoto, Noriaki; Colt, Henri G; Miyazawa, Teruomi

    2014-02-01

    Spirometry is used to physiologically assess patients with central airway obstruction (CAO) before and after interventional bronchoscopy, but is not always feasible in these patients, does not localize the anatomic site of obstruction, and may not correlate with the patient's functional impairment. Impulse oscillometry may overcome these limitations. We assessed the correlations between impulse oscillometry measurements, symptoms, and type of airway narrowing, before and after interventional bronchoscopy, and whether impulse oscillometry parameters can discriminate between fixed and dynamic CAO. Twenty consecutive patients with CAO underwent spirometry, impulse oscillometry, computed tomography, dyspnea assessment, and bronchoscopy, before and after interventional bronchoscopy. The collapsibility index (the percent difference in airway lumen diameter during expiration versus during inspiration) was calculated using morphometric bronchoscopic images during quiet breathing. Variable CAO was defined as a collapsibility index of > 50%. Fixed CAO was defined as a collapsibility index of < 50%. The degree of obstruction was analyzed with computed tomography measurements. After interventional bronchoscopy, all impulse oscillometry measurements significantly improved, especially resistance at 5 Hz, which decreased from 0.67 ± 0.29kPa/L/s to 0.38 ± 0.17kPa/L/s (P < .001), and reactance at 20 Hz, which increased from -0.09 ± 0.11 to 0.03 ± 0.08 (P < .001). Changes in dyspnea score correlated with resistance at 5 Hz, the difference between the resistance at 5 Hz and the resistance at 20 Hz, and the reactance at 5 Hz, but not with spirometry measurements. The type of obstruction also correlated with dyspnea score, and showed distinct impulse oscillometry measurements. Impulse oscillometry measurements correlate with symptom improvements after interventional bronchoscopy. Impulse oscillometry might be useful to discriminate variable from fixed central airway obstruction

  8. Branch-Based Model for the Diameters of the Pulmonary Airways: Accounting for Departures From Self-Consistency and Registration Errors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neradilek, Moni B.; Polissar, Nayak L.; Einstein, Daniel R.

    2012-04-24

    We examine a previously published branch-based approach to modeling airway diameters that is predicated on the assumption of self-consistency across all levels of the tree. We mathematically formulate this assumption, propose a method to test it and develop a more general model to be used when the assumption is violated. We discuss the effect of measurement error on the estimated models and propose methods that account for it. The methods are illustrated on data from MRI and CT images of silicone casts of two rats, two normal monkeys and one ozone-exposed monkey. Our results showed substantial departures from self-consistency inmore » all five subjects. When departures from selfconsistency exist we do not recommend using the self-consistency model, even as an approximation, as we have shown that it may likely lead to an incorrect representation of the diameter geometry. Measurement error has an important impact on the estimated morphometry models and needs to be accounted for in the analysis.« less

  9. Local small airway epithelial injury induces global smooth muscle contraction and airway constriction

    PubMed Central

    Zhou, Jian; Alvarez-Elizondo, Martha B.; Botvinick, Elliot

    2012-01-01

    Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca2+ wave in the epithelium, and multiple Ca2+ waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca2+ or decreasing intracellular Ca2+ both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca2+-dependent smooth muscle shortening. PMID:22114176

  10. Airway inflammation in chronic obstructive pulmonary disease (COPD): a true paradox.

    PubMed

    Eapen, Mathew Suji; Myers, Stephen; Walters, Eugene Haydn; Sohal, Sukhwinder Singh

    2017-10-01

    Chronic obstructive pulmonary disease (COPD) is primarily an airway condition, which mainly affects cigarette smokers and presents with shortness of breath that is progressive and poorly reversible. In COPD research, there has been a long held belief that airway disease progression is due to inflammation. Although this may be true in the airway lumen with innate immunity activated by the effect of smoke or secondary to infection, the accurate picture of inflammatory cells in the airway wall, where the pathophysiological COPD remodeling occurs, is uncertain and debatable. Areas covered: The current review provides a comprehensive literature survey of the changes in the main inflammatory cells in human COPD patients and focuses on contrarian views that affect the prevailing dogma on inflammation. The review also delves into the role of oxidative stress and inflammasomes in modulating the immune response in COPD. Further, the effects of inflammation in affecting the epithelium, fibroblasts, and airway remodeling are discussed. Expert commentary: Inflammation as a driving force for airway wall damage and remodelling in early COPD is at the very least 'oversimplified' and is likely to be misleading. This has serious implications for rational thinking about the illness, including pathogenesis and designing therapy.

  11. A meta-analysis of prehospital airway control techniques part II: alternative airway devices and cricothyrotomy success rates.

    PubMed

    Hubble, Michael W; Wilfong, Denise A; Brown, Lawrence H; Hertelendy, Attila; Benner, Randall W

    2010-01-01

    Airway management is a key component of prehospital care for seriously ill and injured patients. Oral endotracheal intubation (OETI) is the definitive airway of choice in most emergency medical services (EMS) systems. However, OETI may not be an approved skill for some clinicians or may prove problematic in certain patients because of anatomic abnormalities, trauma, or inadequate relaxation. In these situations alternative airways are frequently employed. However, the reported success rates for these devices vary widely, and established benchmarks are lacking. We sought to determine pooled estimates of the success rates of alternative airway devices (AADs) and needle cricothyrotomy (NCRIC) and surgical cricothyrotomy (SCRIC) placement through a meta-analysis of the literature. We performed a systematic literature search for all English-language articles reporting success rates for AADs, SCRIC, and NCRIC. Studies of field procedures performed by prehospital personnel from any nation were included. All titles were reviewed independently by two authors using prespecified inclusion criteria. Pooled estimates of success rates for each airway technique were calculated using a random-effects meta-analysis model. Of 2,005 prehospital airway titles identified, 35 unique studies were retained for analysis of AAD success rates, encompassing a total of 10,172 prehospital patients. The success rates for SCRIC and NCRIC were analyzed across an additional 21 studies totaling 512 patients. The pooled estimates (and 95% confidence intervals [CIs]) for intervention success across all clinicians and patients were as follows: esophageal obturator airway-esophageal gastric tube airway (EOA-EGTA) 92.6% (90.1%-94.5%); pharyngeotracheal lumen airway (PTLA) 82.1% (74.0%-88.0%); esophageal-tracheal Combitube (ETC) 85.4% (77.3%-91.0%); laryngeal mask airway (LMA) 87.4% (79.0%-92.8%); King Laryngeal Tube airway (King LT) 96.5% (71.2%-99.7%); NCRIC 65.8% (42.3%-83.59%); and SCRIC 90.5% (84

  12. Upper Airway Elasticity Estimation in Pediatric Down Syndrome Sleep Apnea Patients Using Collapsible Tube Theory.

    PubMed

    Subramaniam, Dhananjay Radhakrishnan; Mylavarapu, Goutham; McConnell, Keith; Fleck, Robert J; Shott, Sally R; Amin, Raouf S; Gutmark, Ephraim J

    2016-05-01

    Elasticity of the soft tissues surrounding the upper airway lumen is one of the important factors contributing to upper airway disorders such as snoring and obstructive sleep apnea. The objective of this study is to calculate patient specific elasticity of the pharynx from magnetic resonance (MR) images using a 'tube law', i.e., the relationship between airway cross-sectional area and transmural pressure difference. MR imaging was performed under anesthesia in children with Down syndrome (DS) and obstructive sleep apnea (OSA). An airway segmentation algorithm was employed to evaluate changes in airway cross-sectional area dilated by continuous positive airway pressure (CPAP). A pressure-area relation was used to make localized estimates of airway wall stiffness for each patient. Optimized values of patient specific Young's modulus for tissue in the velopharynx and oropharynx, were estimated from finite element simulations of airway collapse. Patient specific deformation of the airway wall under CPAP was found to exhibit either a non-linear 'hardening' or 'softening' behavior. The localized airway and tissue elasticity were found to increase with increasing severity of OSA. Elasticity based patient phenotyping can potentially assist clinicians in decision making on CPAP and airway or tissue elasticity can supplement well-known clinical measures of OSA severity.

  13. Can breathing-like pressure oscillations reverse or prevent narrowing of small intact airways?

    PubMed

    Harvey, Brian C; Parameswaran, Harikrishnan; Lutchen, Kenneth R

    2015-07-01

    Periodic length fluctuations of airway smooth muscle during breathing are thought to modulate airway responsiveness in vivo. Recent animal and human intact airway studies have shown that pressure fluctuations simulating breathing can only marginally reverse airway narrowing and are ineffective at protecting against future narrowing. However, these previous studies were performed on relatively large (>5 mm diameter) airways, which are inherently stiffer than smaller airways for which a preponderance of airway constriction in asthma likely occurs. The goal of this study was to determine the effectiveness of breathing-like transmural pressure oscillations to reverse induced narrowing and/or protect against future narrowing of smaller, more compliant intact airways. We constricted smaller (luminal diameter = 2.92 ± 0.29 mm) intact airway segments twice with ACh (10(-6) M), once while applying tidal-like pressure oscillations (5-15 cmH2O) before, during, and after inducing constriction (Pre + Post) and again while only imposing the tidal-like pressure oscillation after induced constriction (Post Only). Smaller airways were 128% more compliant than previously studied larger airways. This increased compliance translated into 196% more strain and 76% greater recovery (41 vs. 23%) because of tidal-like pressure oscillations. Larger pressure oscillations (5-25 cmH2O) caused more recovery (77.5 ± 16.5%). However, pressure oscillations applied before and during constriction resulted in the same steady-state diameter as when pressure oscillations were only applied after constriction. These data show that reduced straining of the airways before a challenge likely does not contribute to the emergence of airway hyperreactivity observed in asthma but may serve to sustain a given level of constriction. Copyright © 2015 the American Physiological Society.

  14. Does smooth muscle in an intact airway undergo length adaptation during a sustained change in transmural pressure?

    PubMed

    Ansell, Thomas K; McFawn, Peter K; McLaughlin, Robert A; Sampson, David D; Eastwood, Peter R; Hillman, David R; Mitchell, Howard W; Noble, Peter B

    2015-03-01

    In isolated airway smooth muscle (ASM) strips, an increase or decrease in ASM length away from its current optimum length causes an immediate reduction in force production followed by a gradual time-dependent recovery in force, a phenomenon termed length adaptation. In situ, length adaptation may be initiated by a change in transmural pressure (Ptm), which is a primary physiological determinant of ASM length. The present study sought to determine the effect of sustained changes in Ptm and therefore, ASM perimeter, on airway function. We measured contractile responses in whole porcine bronchial segments in vitro before and after a sustained inflation from a baseline Ptm of 5 cmH2O to 25 cmH2O, or deflation to -5 cmH2O, for ∼50 min in each case. In one group of airways, lumen narrowing and stiffening in response to electrical field stimulation (EFS) were assessed from volume and pressure signals using a servo-controlled syringe pump with pressure feedback. In a second group of airways, lumen narrowing and the perimeter of the ASM in situ were determined by anatomical optical coherence tomography. In a third group of airways, active tension was determined under isovolumic conditions. Both inflation and deflation reduced the contractile response to EFS. Sustained Ptm change resulted in a further decrease in contractile response, which returned to baseline levels upon return to the baseline Ptm. These findings reaffirm the importance of Ptm in regulating airway narrowing. However, they do not support a role for ASM length adaptation in situ under physiological levels of ASM lengthening and shortening. Copyright © 2015 the American Physiological Society.

  15. Lower airway dimensions in pediatric patients-A computed tomography study.

    PubMed

    Szelloe, Patricia; Weiss, Markus; Schraner, Thomas; Dave, Mital H

    2017-10-01

    The aim of this study was to obtain lower airway dimensions in children by means of computed tomography (CT). Chest CT scans from 195 pediatric patients (118 boys/77 girls) aged 0.04-15.99 years were analyzed. Tracheal and bronchial lengths, anterior-posterior and lateral diameters, as well as cross-sectional area were assessed at the following levels: mid trachea, right proximal and distal bronchus, proximal bronchus intermedius, and left proximal and distal bronchus. Mediastinal angles of tracheal bifurcation were measured. Data were analyzed by means of linear and polynomial regression plots. The strongest correlations were found between tracheal and bronchial diameters and age as well as between tracheal and bronchial lengths and body length. All measured airway parameters correlated poorly to body weight. Bronchial angles revealed no association with patient's age, body length, or weight. This comprehensive anatomical database of lower airway dimensions demonstrates that tracheal and bronchial diameters correlate better to age, and that tracheal and bronchial length correlate better to body length. All measured airway parameters correlated poorly to body weight. © 2017 John Wiley & Sons Ltd.

  16. Branch-Based Model for the Diameters of the Pulmonary Airways: Accounting for Departures From Self-Consistency and Registration Errors

    PubMed Central

    Neradilek, Moni B.; Polissar, Nayak L.; Einstein, Daniel R.; Glenny, Robb W.; Minard, Kevin R.; Carson, James P.; Jiao, Xiangmin; Jacob, Richard E.; Cox, Timothy C.; Postlethwait, Edward M.; Corley, Richard A.

    2017-01-01

    We examine a previously published branch-based approach for modeling airway diameters that is predicated on the assumption of self-consistency across all levels of the tree. We mathematically formulate this assumption, propose a method to test it and develop a more general model to be used when the assumption is violated. We discuss the effect of measurement error on the estimated models and propose methods that take account of error. The methods are illustrated on data from MRI and CT images of silicone casts of two rats, two normal monkeys, and one ozone-exposed monkey. Our results showed substantial departures from self-consistency in all five subjects. When departures from self-consistency exist, we do not recommend using the self-consistency model, even as an approximation, as we have shown that it may likely lead to an incorrect representation of the diameter geometry. The new variance model can be used instead. Measurement error has an important impact on the estimated morphometry models and needs to be addressed in the analysis. PMID:22528468

  17. Change in lumen eccentricity and asymmetry after treatment with Absorb bioresorbable vascular scaffolds in the ABSORB cohort B trial: a five-year serial optical coherence tomography imaging study.

    PubMed

    Suwannasom, Pannipa; Sotomi, Yohei; Asano, Taku; Koon, Jaryl Ng Chen; Tateishi, Hiroki; Zeng, Yaping; Tenekecioglu, Erhan; Wykrzykowska, Joanna J; Foin, Nicolas; de Winter, Robbert J; Ormiston, John A; Serruys, Patrick W; Onuma, Yoshinobu

    2017-04-07

    The aim of the study was to investigate long-term changes in lumen eccentricity and asymmetry at five years after implantation of the Absorb bioresorbable vascular scaffold (BVS). Out of 101 patients from the ABSORB cohort B trial, 28 patients (29 lesions) with serial optical coherence tomography (OCT) examination at four different time points (cohort B1: post-procedure, six months, two, and five years [n=13]; cohort B2: post-procedure, one, three, and five years [n=16]) were evaluated. The longitudinal variance in lumen diameter was assessed by asymmetry index (AI). An asymmetric lesion was defined as AI >0.3. The circularity of the lumen or scaffold was evaluated by the eccentricity index calculated as minimal divided by maximal luminal or scaffold diameter per cross-section. The lowest lumen eccentricity index within a scaffold segment (EIL) <0.7 was defined as an eccentric lesion. Post procedure, an eccentric lesion was observed in 72.4% and became concentric in 93.1% at five years (post EIL 0.67±0.05 vs. five-year EIL 0.80±0.10, p=0.03) with a modest reduction of the lumen area from baseline to five years by 0.75±0.32 mm2. Asymmetric lumen morphology was observed in 93.1% (n=27) post implantation and persisted until five-year follow-up. On serial OCT analyses, there was a substantial increase in the scaffold EI during the first two years (post 0.70±0.06, six months 0.76±0.08, two years 0.85±0.07); then, it remained stable whereas the lumen circularity improved further. There were no significant differences in major adverse cardiac events regarding the lumen morphology over the five-year follow-up. In patients treated with the Absorb BVS, the cross-sectional circularity improved over five years while the variance in longitudinal diameters remained. Regaining of lumen circularity is mainly caused by reshaping of the scaffold during the first two years.

  18. Relaxant effect of superimposed length oscillation on sensitized airway smooth muscle.

    PubMed

    Jo-Avila, Miguel; Al-Jumaily, Ahmed M; Lu, Jun

    2015-03-01

    Asthma is associated with reductions in the airway lumen and breathing difficulties that are attributed to airway smooth muscles (ASM) hyperconstriction. Pharmaceutical bronchodilators such as salbutamol and isoproterenol are normally used to alleviate this constriction. Deep inspirations and tidal oscillations (TO) have also been reported to relax ASM in healthy airways with less response in asthmatics. Little information is available on the effect of other forms of oscillation on asthmatic airways. This study investigates the effect of length oscillations (LO), with amplitude 1 and 1.5% in the frequency range 5-20 Hz superimposed on breathing equivalent LO, on contracted ASM dissected from sensitized mice. These mice are believed to show some symptoms such as airway hyperreactivity similar to those associated with asthma in humans. In the frequency range used in this work, this study shows an increase in ASM relaxation of an average of 10% for 1.5% amplitude when compared with TO, ISO, or the combination of both. No similar finding is observed with 1% amplitude. This suggests that superimposed length oscillation acting over the interaction of myosin and actin during contraction may lead to temporal rearrangement and disturbance of the cross-bridge process in asthmatic airways. Copyright © 2015 the American Physiological Society.

  19. Lumen claims of the STERRAD 100NX sterilizer: testing performance limits when processing equipment containing long, narrow lumens.

    PubMed

    Diab-Elschahawi, Magda; Blacky, Alexander; Bachhofner, Nicole; Koller, Walter

    2011-11-01

    According to manufacturers information, the STERRAD 100NX sterilizer-a low temperature H(2)O(2) gas plasma sterilizer-can adequately process single channel stainless steel lumens with an inside diameter of 0.7 mm or larger and a maximum length of 500 mm using standard cycle sterilizing conditions. The aim of this study was to qualify the performance of this H(2)O(2) gas plasma sterilizer under different experimental settings representing worst case conditions. Inoculated carriers were placed at the midpoint position of specified lumens and then submitted to flex scope sterilizing conditions. To simulate insufficient cleaning or crystalline residues, we added organic and inorganic challenges to our inoculated carriers. For experiments done with unchallenged carriers, quantitative analysis reached a log(10) reduction rate of ≥5.71, whereas qualitative results showed no growth in 24 out of 30 biologic indicators tested using flex scope half cycle conditions. Any additional kind of challenge significantly impaired the sterilization outcome. The findings of our current study emphasize the importance of a thorough validated cleaning of medical devices as well as timing for cleaning and decontamination before being exposed to the H(2)O(2) sterilization process and, furthermore, the need for strict adherence to manufacturer's recommendations. Copyright © 2011 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  20. Computed Tomographic Airway Morphology in Chronic Obstructive Pulmonary Disease. Remodeling or Innate Anatomy?

    PubMed

    Diaz, Alejandro A; Estépar, Raul San José; Washko, George R

    2016-01-01

    Computed tomographic measures of central airway morphology have been used in clinical, epidemiologic, and genetic investigation as an inference of the presence and severity of small-airway disease in smokers. Although several association studies have brought us to believe that these computed tomographic measures reflect airway remodeling, a careful review of such data and more recent evidence may reveal underappreciated complexity to these measures and limitations that prompt us to question that belief. This Perspective offers a review of seminal papers and alternative explanations of their data in the light of more recent evidence. The relationships between airway morphology and lung function are observed in subjects who never smoked, implying that native airway structure indeed contributes to lung function; computed tomographic measures of central airways such as wall area, lumen area, and total bronchial area are smaller in smokers with chronic obstructive pulmonary disease versus those without chronic obstructive pulmonary disease; and the airways are smaller as disease severity increases. The observations suggest that (1) native airway morphology likely contributes to the relationships between computed tomographic measures of airways and lung function; and (2) the presence of smaller airways in those with chronic obstructive pulmonary disease versus those without chronic obstructive pulmonary disease as well as their decrease with disease severity suggests that smokers with chronic obstructive pulmonary disease may simply have smaller airways to begin with, which put them at greater risk for the development of smoking-related disease.

  1. Quantitative analysis of airway abnormalities in CT

    NASA Astrophysics Data System (ADS)

    Petersen, Jens; Lo, Pechin; Nielsen, Mads; Edula, Goutham; Ashraf, Haseem; Dirksen, Asger; de Bruijne, Marleen

    2010-03-01

    A coupled surface graph cut algorithm for airway wall segmentation from Computed Tomography (CT) images is presented. Using cost functions that highlight both inner and outer wall borders, the method combines the search for both borders into one graph cut. The proposed method is evaluated on 173 manually segmented images extracted from 15 different subjects and shown to give accurate results, with 37% less errors than the Full Width at Half Maximum (FWHM) algorithm and 62% less than a similar graph cut method without coupled surfaces. Common measures of airway wall thickness such as the Interior Area (IA) and Wall Area percentage (WA%) was measured by the proposed method on a total of 723 CT scans from a lung cancer screening study. These measures were significantly different for participants with Chronic Obstructive Pulmonary Disease (COPD) compared to asymptomatic participants. Furthermore, reproducibility was good as confirmed by repeat scans and the measures correlated well with the outcomes of pulmonary function tests, demonstrating the use of the algorithm as a COPD diagnostic tool. Additionally, a new measure of airway wall thickness is proposed, Normalized Wall Intensity Sum (NWIS). NWIS is shown to correlate better with lung function test values and to be more reproducible than previous measures IA, WA% and airway wall thickness at a lumen perimeter of 10 mm (PI10).

  2. Physiologic control. Anatomy and physiology of the airway circulation.

    PubMed

    Widdicombe, J

    1992-11-01

    Both for the nose and the lower airways there is an extensive subepithelial capillary network. That for the nose is fenestrated, and this is true for the tracheobronchial tree of rats, guinea pigs, and hamsters, and for that of human asthmatics. However, healthy humans, dogs, and sheep have capillaries without fenestrations except for those close to neuroepithelial bodies and submucosal glands. Deeper in the mucosa there is a capacitance system of vessels, conspicuous in the nose but present also in the lower airways of rabbits and sheep and, to a lesser extent, in those of dogs and humans. Both for the nose and the lower airways, parasympathetic nerves are vasodilator, sympathetic nerves are vasoconstrictor, and sensory nerves are able to release dilator neuropeptides. Most inflammatory and immunologic mediators are vasodilator. A conspicuous difference between the nasal and lower airway vasculatures is the presence of arteriovenous anastomoses only in the former. Countercurrent mechanisms also exist in the nose to increase its efficiency in air conditioning, but they have not been established for the trachea. The pulmonary vasculature could be part of such a system for the bronchi. Distension of the airway vasculature thickens the mucosa, probably both by vascular distension and by edema formation. The latter can lead to exudation into the airway lumen. These processes have not been well quantitated, and the balance sheet of capillary and capacitance vessel volumes, interstitial liquid volume, and exudate volume needs to be worked out in physiologic and pathologic conditions.

  3. Static and dynamic stress heterogeneity in a multiscale model of the asthmatic airway wall

    PubMed Central

    Hiorns, J. E.

    2016-01-01

    Airway hyperresponsiveness (AHR) is a key characteristic of asthma that remains poorly understood. Tidal breathing and deep inspiration ordinarily cause rapid relaxation of airway smooth muscle (ASM) (as demonstrated via application of length fluctuations to tissue strips) and are therefore implicated in modulation of AHR, but in some cases (such as application of transmural pressure oscillations to isolated intact airways) this mechanism fails. Here we use a multiscale biomechanical model for intact airways that incorporates strain stiffening due to collagen recruitment and dynamic force generation by ASM cells to show that the geometry of the airway, together with interplay between dynamic active and passive forces, gives rise to large stress and compliance heterogeneities across the airway wall that are absent in tissue strips. We show further that these stress heterogeneities result in auxotonic loading conditions that are currently not replicated in tissue-strip experiments; stresses in the strip are similar to hoop stress only at the outer airway wall and are under- or overestimates of stresses at the lumen. Taken together these results suggest that a previously underappreciated factor, stress heterogeneities within the airway wall and consequent ASM cellular response to this micromechanical environment, could contribute to AHR and should be explored further both theoretically and experimentally. PMID:27197860

  4. Double-lumen tubes and auto-PEEP during one-lung ventilation.

    PubMed

    Spaeth, J; Ott, M; Karzai, W; Grimm, A; Wirth, S; Schumann, S; Loop, T

    2016-01-01

    Double-lumen tubes (DLT) are routinely used to enable one-lung-ventilation (OLV) during thoracic anaesthesia. The flow-dependent resistance of the DLT's bronchial limb may be high as a result of its narrow inner diameter and length, and thus potentially contribute to an unintended increase in positive end-expiratory pressure (auto-PEEP). We therefore studied the impact of adult sized DLTs on the dynamic auto-PEEP during OLV. In this prospective clinical study, dynamic auto-PEEP was determined in 72 patients undergoing thoracic surgery, with right- and left-sided DLTs of various sizes. During OLV, air trapping was provoked by increasing inspiration to expiration ratio from 1:2 to 2:1 (five steps). Based on measured flow rate, airway pressure (Paw) and bronchial pressure (Pbronch), the pressure gradient across the DLT (ΔPDLT) and the total auto-PEEP in the respiratory system (i.e. the lungs, the DLT and the ventilator circuit) were determined. Subsequently the DLT's share in total auto-PEEP was calculated. ΔPDLT was 2.3 (0.7) cm H2O over the entire breathing cycle. At the shortest expiratory time the mean total auto-PEEP was 2.9 (1.5) cm H2O (range 0-5.9 cm H2O). The DLT caused 27 to 31% of the total auto-PEEP. Size and side of the DLT's bronchial limb did not impact auto-PEEP significantly. Although the DLT contributes to the overall auto-PEEP, its contribution is small and independent of size and side of the DLT's bronchial limb. The choice of DLT does not influence the risk of auto-PEEP during OLV to a clinically relevant extent. DRKS00005648. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. [Prehospital airway management of laryngeal tubes. Should the laryngeal tube S with gastric drain tube be preferred in emergency medicine?].

    PubMed

    Dengler, V; Wilde, P; Byhahn, C; Mack, M G; Schalk, R

    2011-02-01

    Laryngeal tubes (LT) are increasingly being used for emergency airway management. This article reports on two patients in whom out-of-hospital intubation with a single-lumen LT was associated with massive pulmonary aspiration in one patient and gastric overinflation in the other. In both cases peak inspiratory pressures exceeded the LT leak pressure of approximately 35 mbar. This resulted in gastric inflation and decreased pulmonary compliance and increased inspiratory pressure further, thereby creating a vicious circle. It is therefore recommended that laryngeal tube suction (LTS) should be used in all cases of emergency airway management and a gastric drain tube be inserted through the dedicated second lumen. Apart from gastric overinflation, incorrect LT/LTS placement must be detected and immediately corrected, e.g. in cases of difficult or impossible gastric tube placement, permanent drainage of air from the gastric tube, decreasing minute ventilation or an ascending capnography curve.

  6. Allergen challenge-induced extravasation of plasma in mouse airways.

    PubMed

    Erjefält, J S; Andersson, P; Gustafsson, B; Korsgren, M; Sonmark, B; Persson, C G

    1998-08-01

    Mouse models are extensively used to study genetic and immunological mechanisms of potential importance to inflammatory airway diseases, e.g. asthma. However, the airway pathophysiology in allergic mice has received less attention. For example, plasma extravasation and the ensuing tissue-deposition of plasma proteins, which is a hallmark of inflammation, has not been examined in allergic mice. This study aims to examine the vascular permeability and the distribution of plasma proteins in mouse airways following exposure to allergen and serotonin. Extravasated plasma was quantified by a dual isotop technique using intravascular (131I-albumin) and extrasvascular (125I-albumin) plasma tracers. Histological visualization of fibrinogen and colloidal gold revealed the tissue distribution of extravasated plasma. Allergen aerosol exposure (3% OVA, 15min) of sensitized animals resulted in a marked plasma extravasation response in the trachea (P < 0.01) and the bronchi but not in the lung parenchyma. A similar extravasation response was induced by serotonin (P<0.001). Extravasating vessels (assessed by Monastral blue dye) were identified as intercartilaginous venules. Extravasated plasma abounded in the subepithelial tissue but was absent in the epithelium and airway lumen. The allergen-induced response was dose-dependently inhibited by iv administration of formoterol (P < 0.001), a vascular antipermeability agent. The present study demonstrates that serotonin and allergen challenge of sensitized mice increase airway venular permeability to cause transient extravasation and lamina propria distribution of plasma in the large airways. We suggest that the extravasation response is a useful measure of the intensity and the distribution of active inflammation

  7. Comparison of liquid chemical sterilization with peracetic acid and ethylene oxide sterilization for long narrow lumens.

    PubMed

    Alfa, M J; DeGagne, P; Olson, N; Hizon, R

    1998-10-01

    The aim of this study was to determine how well peracetic acid liquid chemical sterilization (LCPAS) killed test organisms in the presence of 10% fetal bovine serum and 0.65% salt challenge (RPMI-S) compared with a 100% ethylene oxide (ETO) sterilizer and an ETO hydrochlorofluorocarbon (ETO-HCFC) sterilization method with long (125 cm), narrow (3-mm internal diameter) flexible lumens as the test carrier. The inoculated lumens were dried overnight before processing. The test organisms included Mycobacterium chelonei, Enterococcus faecalis, and Bacillus subtilis. For all 3 organisms tested, the LCPAS process resulted in a 6 log10 reduction in bacterial load compared with a 2.5 log10 to 6 log10 reduction for the 100% ETO and ETO-HCFC sterilizers. Sterilization was achieved for 100%, 61%, and 67% of the lumen test carriers for the LCPAS, 100% ETO, and ETO-HCFC sterilizers, respectively. The data indicate that of the sterilization methods evaluated, LCPAS was the most effective for sterilizing narrow flexible lumens in the presence of residual inorganic and organic soil. This effectiveness was achieved through a combination of organism wash-off and peracetic acid sterilant killing of organisms. Salt was the major compounding factor for effective ETO gas sterilization, because carriers inoculated with organisms in 10% fetal bovine serum alone all were sterilized by both 100% ETO and ETO-HCFC sterilization methods. Our data support the critical need to ensure adequate precleaning of narrow flexible lumen endoscopes before any sterilization method.

  8. Alteration of Airway Reactivity and Reduction of Ryanodine Receptor Expression by Cigarette Smoke in Mice.

    PubMed

    Donovan, Chantal; Seow, Huei Jiunn; Royce, Simon G; Bourke, Jane E; Vlahos, Ross

    2015-10-01

    Small airways are a major site of airflow limitation in chronic obstructive pulmonary disease (COPD). Despite the detrimental effects of long-term smoking in COPD, the effects of acute cigarette smoke (CS) exposure on small airway reactivity have not been fully elucidated. Balb/C mice were exposed to room air (sham) or CS for 4 days to cause airway inflammation. Changes in small airway lumen area in response to contractile agents were measured in lung slices in situ using phase-contrast microscopy. Separate slices were pharmacologically maintained at constant intracellular Ca(2+) using caffeine/ryanodine before contractile measurements. Gene and protein analysis of contractile signaling pathways were performed on separate lungs. Monophasic contraction to serotonin became biphasic after CS exposure, whereas contraction to methacholine was unaltered. This altered pattern of contraction was normalized by caffeine/ryanodine. Expression of contractile agonist-specific receptors was unaltered; however, all isoforms of the ryanodine receptor were down-regulated. This is the first study to show that acute CS exposure selectively alters small airway contraction to serotonin and down-regulates ryanodine receptors involved in maintaining Ca(2+) oscillations in airway smooth muscle. Understanding the contribution of ryanodine receptors to altered airway reactivity may inform the development of novel treatment strategies for COPD.

  9. High-fidelity simulation of lung isolation with double-lumen endotracheal tubes and bronchial blockers in anesthesiology resident training.

    PubMed

    Failor, Erin; Bowdle, Andrew; Jelacic, Srdjan; Togashi, Kei

    2014-08-01

    Demonstrate the feasibility of using the AirSim Bronchi airway simulator to teach residents how to manage lung isolation with double-lumen endotracheal tubes and bronchial blockers and evaluate their performance with a detailed checklist. Prospective observational study. University anesthesiology residency training program. Anesthesiology residents taking a cardiothoracic anesthesiology rotation. Residents were instructed in 7 tasks using the AirSim Bronchi: The use of the fiberoptic bronchoscope, methods for placing left and right double-lumen endotracheal tubes and 3 bronchial blockers (Univent, Arndt, and Cohen), and application of continuous positive airway pressure (CPAP) to the unventilated lung. Two to 3 weeks later, checklists and a detailed scoring system were used to assess performance. Residents rated the curriculum and their own confidence in performing the tasks using a 5-point Likert scale. Thirteen residents completed the curriculum. Their median Likert scale ratings of the curriculum based on a questionnaire with 6 items ranged from 4 to 5 of 5. Resident confidence scores for each lung isolation technique improved after the simulation training, with the median gain ranging from 0.5 to 1.5 Likert levels depending on the task. The largest improvement occurred with the bronchial blockers (p<0.05). The median performance score for the 7 tasks combined was 88% of the maximum possible points. The authors used the AirSim Bronchi simulator in a novel simulation curriculum to teach lung-isolation techniques to anesthesiology residents and evaluated performance using a detailed checklist scoring system. This curriculum is a promising educational tool. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Cluster-specific small airway modeling for imaging-based CFD analysis of pulmonary air flow and particle deposition in COPD smokers

    NASA Astrophysics Data System (ADS)

    Haghighi, Babak; Choi, Jiwoong; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long

    2017-11-01

    Accurate modeling of small airway diameters in patients with chronic obstructive pulmonary disease (COPD) is a crucial step toward patient-specific CFD simulations of regional airflow and particle transport. We proposed to use computed tomography (CT) imaging-based cluster membership to identify structural characteristics of airways in each cluster and use them to develop cluster-specific airway diameter models. We analyzed 284 COPD smokers with airflow limitation, and 69 healthy controls. We used multiscale imaging-based cluster analysis (MICA) to classify smokers into 4 clusters. With representative cluster patients and healthy controls, we performed multiple regressions to quantify variation of airway diameters by generation as well as by cluster. The cluster 2 and 4 showed more diameter decrease as generation increases than other clusters. The cluster 4 had more rapid decreases of airway diameters in the upper lobes, while cluster 2 in the lower lobes. We then used these regression models to estimate airway diameters in CT unresolved regions to obtain pressure-volume hysteresis curves using a 1D resistance model. These 1D flow solutions can be used to provide the patient-specific boundary conditions for 3D CFD simulations in COPD patients. Support for this study was provided, in part, by NIH Grants U01-HL114494, R01-HL112986 and S10-RR022421.

  11. Foetal airway motor tone in prenatal lung development of the pig.

    PubMed

    Sparrow, M P; Warwick, S P; Mitchell, H W

    1994-08-01

    The terminal airways from embryonic lung in situ or as explants exhibit rhythmic spontaneous contractions. Our objective was to see whether narrowing responses of the airways occurred throughout the bronchial tree in the first trimester foetus and, if so, to characterize them. The bronchial tree was freed of vasculature and parenchyma from the lungs of 20-35 g pig foetuses (44-48 days gestation). The airway lumen was visualized directly with transmitted light, and narrowing was recorded in real time by video-imaging microscopy. From the main stem bronchi to the terminal regions of late generation branches (20-35 microns i.d.) strong bronchoconstrictor responses to micromolar concentrations of acetylcholine (ACh), histamine, substance P and K+ depolarizing solution were seen, whilst inhibition of narrowing with beta-adrenoceptor agonists was evidence of beta-receptors on the smooth muscle. Moreover, strong narrowing responses to electrical field stimulation, which were blocked by atropine, indicated that functional cholinergic nerves were present. A remarkable display of spontaneous narrowing in the airways of many of the bronchial tree preparations caused the movement of lung liquid to and fro. We speculate that the bronchomotor tone and associated spontaneous activity, which move the lung fluid along the airways, serve to maintain an even positive pressure in localized areas of the bronchial tree which is essential to provide the stimulus for continued growth of the lung.

  12. [Successful One-lung Ventilation with a Right-sided Double-lumen Tube in a Patient with a Right Upper Tracheal Bronchus, who Underwent Left Pneumonectomy for Left Hilar Lung Cancer].

    PubMed

    Kawagoe, Izumi; Kohchiyama, Tsukasa; Hayashida, Masakazu; Satoh, Daizoh; Suzuki, Kenji; Inada, Eiichi

    2016-06-01

    A 60-year-old male patient with left hilar lung cancer was scheduled to undergo left pneumonectomy or left sleeve lower lobectomy. Preoperative computer tomographic and bronchoscopic examinations revealed that the bronchus (B1) to the right apical segment (S1) was a tracheal bronchus (TB) originating from the trachea approximately 10 mm above the carina. Because the left main bronchus was to be dissected, a right-sided double-lumen tube (DLT) was selected to completely protect the right lung from spillage of secretions or cancer cells from the left lung. The right-sided DLT was placed so as to fit its lateral opening of the bronchial lumen to normal upper branches (B2, B3), while sacrificing ventilation of S1 with an abnormal branch (B1). However, one-lung ventilation (OLV) of the right lung could not be achieved, since a gas leakage from the opened tracheal lumen occurred, most probably due to intra-lobar micro-airway communications between S1 and S2/S3. The DLT was withdrawn until the blue bronchial cuff occluded the orifice of the TB (B1). Although the upper half of the blue bronchial cuff appeared above the tracheal carina, OLV through the two bronchial lumen openings could be achieved due to a specific, slanted doughnut shape of the blue bronchial cuff and the location of the abnormal branch (B1) approximate to the carina. Left pneumonectomy using successful OLV was completed safely without hypoxemia or hypercapnea. Our experience indicates that management of OLV for patients with a thoracheal bronchus needs special considerations of the exact location of the TB and intra-lobar micro-airway communications, in addition to types of scheduled surgical procedures.

  13. Unimodality and Multimodality Cryodebridement for Airway Obstruction. A Single-Center Experience with Safety and Efficacy.

    PubMed

    Inaty, Hanine; Folch, Erik; Berger, Robert; Fernandez-Bussy, Sebastian; Chatterji, Sumit; Alape, Daniel; Majid, Adnan

    2016-06-01

    Cryodebridement (CD) refers to the removal of obstructive material from the lumen of the tracheobronchial tree by freezing with a cryoprobe, which is usually inserted through a flexible bronchoscope. This method of achieving instant recanalization of airways has been established for over 20 years, but published experience comprises limited case series. This study describes a single large-volume referral center experience, including clinical outcomes and safety profile. Electronic medical records of 156 patients who underwent bronchoscopic CD between December 2007 and March 2012 as the primary method to relieve airway obstruction were reviewed retrospectively. The most frequent cause of airway obstruction was malignancy (n = 88), with non-small-cell lung cancer and metastatic renal cell carcinoma being the most common etiologies. The site of obstruction was localized to the central airways in 63 patients (40%) and the distal airways in 44 patients (28%), and it was diffuse in 49 patients (32%). Bronchoscopic airway patency was achieved in 95% of patients, with the highest success rates found in those with obstruction localized in the central airways. Improvement in symptoms occurred in 118 (82%) of 144 symptomatic patients. Serious complications were reported in 17 patients (11%) and included respiratory distress, severe bleeding, airway injury, and hemodynamic instability. All patients responded to treatment, and no intra- or postoperative deaths were reported. CD, when used alone or in combination with other endoscopic treatment modalities, appears to be safe and effective in treating endoluminal airway obstruction.

  14. Comparison between MDCT and Grayscale IVUS in a Quantitative Analysis of Coronary Lumen in Segments with or without Atherosclerotic Plaques

    PubMed Central

    Falcão, João L. A. A.; Falcão, Breno A. A.; Gurudevan, Swaminatha V.; Campos, Carlos M.; Silva, Expedito R.; Kalil-Filho, Roberto; Rochitte, Carlos E.; Shiozaki, Afonso A.; Coelho-Filho, Otavio R.; Lemos, Pedro A.

    2015-01-01

    Background The diagnostic accuracy of 64-slice MDCT in comparison with IVUS has been poorly described and is mainly restricted to reports analyzing segments with documented atherosclerotic plaques. Objectives We compared 64-slice multidetector computed tomography (MDCT) with gray scale intravascular ultrasound (IVUS) for the evaluation of coronary lumen dimensions in the context of a comprehensive analysis, including segments with absent or mild disease. Methods The 64-slice MDCT was performed within 72 h before the IVUS imaging, which was obtained for at least one coronary, regardless of the presence of luminal stenosis at angiography. A total of 21 patients were included, with 70 imaged vessels (total length 114.6 ± 38.3 mm per patient). A coronary plaque was diagnosed in segments with plaque burden > 40%. Results At patient, vessel, and segment levels, average lumen area, minimal lumen area, and minimal lumen diameter were highly correlated between IVUS and 64-slice MDCT (p < 0.01). However, 64-slice MDCT tended to underestimate the lumen size with a relatively wide dispersion of the differences. The comparison between 64-slice MDCT and IVUS lumen measurements was not substantially affected by the presence or absence of an underlying plaque. In addition, 64-slice MDCT showed good global accuracy for the detection of IVUS parameters associated with flow-limiting lesions. Conclusions In a comprehensive, multi-territory, and whole-artery analysis, the assessment of coronary lumen by 64-slice MDCT compared with coronary IVUS showed a good overall diagnostic ability, regardless of the presence or absence of underlying atherosclerotic plaques. PMID:25993595

  15. Experimental evidence of age-related adaptive changes in human acinar airways

    PubMed Central

    Quirk, James D.; Sukstanskii, Alexander L.; Woods, Jason C.; Lutey, Barbara A.; Conradi, Mark S.; Gierada, David S.; Yusen, Roger D.; Castro, Mario

    2015-01-01

    The progressive decline of lung function with aging is associated with changes in lung structure at all levels, from conducting airways to acinar airways (alveolar ducts and sacs). While information on conducting airways is becoming available from computed tomography, in vivo information on the acinar airways is not conventionally available, even though acini occupy 95% of lung volume and serve as major gas exchange units of the lung. The objectives of this study are to measure morphometric parameters of lung acinar airways in living adult humans over a broad range of ages by using an innovative MRI-based technique, in vivo lung morphometry with hyperpolarized 3He gas, and to determine the influence of age-related differences in acinar airway morphometry on lung function. Pulmonary function tests and MRI with hyperpolarized 3He gas were performed on 24 healthy nonsmokers aged 19-71 years. The most significant age-related difference across this population was a 27% loss of alveolar depth, h, leading to a 46% increased acinar airway lumen radius, hence, decreased resistance to acinar air transport. Importantly, the data show a negative correlation between h and the pulmonary function measures forced expiratory volume in 1 s and forced vital capacity. In vivo lung morphometry provides unique information on age-related changes in lung microstructure and their influence on lung function. We hypothesize that the observed reduction of alveolar depth in subjects with advanced aging represents a remodeling process that might be a compensatory mechanism, without which the pulmonary functional decline due to other biological factors with advancing age would be significantly larger. PMID:26542518

  16. Evaluation of an improved technique for lumen path definition and lumen segmentation of atherosclerotic vessels in CT angiography.

    PubMed

    van Velsen, Evert F S; Niessen, Wiro J; de Weert, Thomas T; de Monyé, Cécile; van der Lugt, Aad; Meijering, Erik; Stokking, Rik

    2007-07-01

    Vessel image analysis is crucial when considering therapeutical options for (cardio-) vascular diseases. Our method, VAMPIRE (Vascular Analysis using Multiscale Paths Inferred from Ridges and Edges), involves two parts: a user defines a start- and endpoint upon which a lumen path is automatically defined, and which is used for initialization; the automatic segmentation of the vessel lumen on computed tomographic angiography (CTA) images. Both parts are based on the detection of vessel-like structures by analyzing intensity, edge, and ridge information. A multi-observer evaluation study was performed to compare VAMPIRE with a conventional method on the CTA data of 15 patients with carotid artery stenosis. In addition to the start- and endpoint, the two radiologists required on average 2.5 (SD: 1.9) additional points to define a lumen path when using the conventional method, and 0.1 (SD: 0.3) when using VAMPIRE. The segmentation results were quantitatively evaluated using Similarity Indices, which were slightly lower between VAMPIRE and the two radiologists (respectively 0.90 and 0.88) compared with the Similarity Index between the radiologists (0.92). The evaluation shows that the improved definition of a lumen path requires minimal user interaction, and that using this path as initialization leads to good automatic lumen segmentation results.

  17. Accurate Measurement of Small Airways on Low-Dose Thoracic CT Scans in Smokers

    PubMed Central

    Conradi, Susan H.; Atkinson, Jeffrey J.; Zheng, Jie; Schechtman, Kenneth B.; Senior, Robert M.; Gierada, David S.

    2013-01-01

    Background: Partial volume averaging and tilt relative to the scan plane on transverse images limit the accuracy of airway wall thickness measurements on CT scan, confounding assessment of the relationship between airway remodeling and clinical status in COPD. The purpose of this study was to assess the effect of partial volume averaging and tilt corrections on airway wall thickness measurement accuracy and on relationships between airway wall thickening and clinical status in COPD. Methods: Airway wall thickness measurements in 80 heavy smokers were obtained on transverse images from low-dose CT scan using the open-source program Airway Inspector. Measurements were corrected for partial volume averaging and tilt effects using an attenuation- and geometry-based algorithm and compared with functional status. Results: The algorithm reduced wall thickness measurements of smaller airways to a greater degree than larger airways, increasing the overall range. When restricted to analyses of airways with an inner diameter < 3.0 mm, for a theoretical airway of 2.0 mm inner diameter, the wall thickness decreased from 1.07 ± 0.07 to 0.29 ± 0.10 mm, and the square root of the wall area decreased from 3.34 ± 0.15 to 1.58 ± 0.29 mm, comparable to histologic measurement studies. Corrected measurements had higher correlation with FEV1, differed more between BMI, airflow obstruction, dyspnea, and exercise capacity (BODE) index scores, and explained a greater proportion of FEV1 variability in multivariate models. Conclusions: Correcting for partial volume averaging improves accuracy of airway wall thickness estimation, allowing direct measurement of the small airways to better define their role in COPD. PMID:23172175

  18. A novel, inexpensive, double lumen suprapubic catheter for urodynamics.

    PubMed

    Wagner, Andrew A; Godley, Margaret L; Duffy, Patrick G; Ransley, Philip G

    2004-03-01

    We describe a novel, double lumen, intravesical, suprapubic catheter designed to meet the requirements of pediatric urodynamics that is easy to use and has minimal complications. A commercially available 10Fr pediatric suprapubic pigtail catheter forms the outer lumen for instilling filling media. A 16 gauge epidural catheter is inserted through the outer catheter providing an inner lumen for measuring intravesical pressures. The resultant double-lumen catheter is inserted suprapubically using a peel away needle supplied with the 10Fr catheter, with the patient under general anesthetic. The catheter has been used for 15 years in more than 700 patients with good reliability and few complications. The concentric construction of the double lumens and the rigidity of the inner intravesical pressure channel ensure there is no transmission of pressure from the filling channel to the inner lumen. The catheter has a circular cross section and a pigtail distal end which help to retain it within the bladder. There is low resistance to filling that allows adequate filling rates to be achieved by gravity rather than necessitating a pump. The catheter is easily made from readily available components and is less expensive than other double-lumen catheters suitable for suprapubic use. A reliable, double lumen catheter that fulfills criteria not found in commercially available alternatives can be inexpensively made for urodynamics.

  19. ARCOCT: Automatic detection of lumen border in intravascular OCT images.

    PubMed

    Cheimariotis, Grigorios-Aris; Chatzizisis, Yiannis S; Koutkias, Vassilis G; Toutouzas, Konstantinos; Giannopoulos, Andreas; Riga, Maria; Chouvarda, Ioanna; Antoniadis, Antonios P; Doulaverakis, Charalambos; Tsamboulatidis, Ioannis; Kompatsiaris, Ioannis; Giannoglou, George D; Maglaveras, Nicos

    2017-11-01

    Intravascular optical coherence tomography (OCT) is an invaluable tool for the detection of pathological features on the arterial wall and the investigation of post-stenting complications. Computational lumen border detection in OCT images is highly advantageous, since it may support rapid morphometric analysis. However, automatic detection is very challenging, since OCT images typically include various artifacts that impact image clarity, including features such as side branches and intraluminal blood presence. This paper presents ARCOCT, a segmentation method for fully-automatic detection of lumen border in OCT images. ARCOCT relies on multiple, consecutive processing steps, accounting for image preparation, contour extraction and refinement. In particular, for contour extraction ARCOCT employs the transformation of OCT images based on physical characteristics such as reflectivity and absorption of the tissue and, for contour refinement, local regression using weighted linear least squares and a 2nd degree polynomial model is employed to achieve artifact and small-branch correction as well as smoothness of the artery mesh. Our major focus was to achieve accurate contour delineation in the various types of OCT images, i.e., even in challenging cases with branches and artifacts. ARCOCT has been assessed in a dataset of 1812 images (308 from stented and 1504 from native segments) obtained from 20 patients. ARCOCT was compared against ground-truth manual segmentation performed by experts on the basis of various geometric features (e.g. area, perimeter, radius, diameter, centroid, etc.) and closed contour matching indicators (the Dice index, the Hausdorff distance and the undirected average distance), using standard statistical analysis methods. The proposed method was proven very efficient and close to the ground-truth, exhibiting non statistically-significant differences for most of the examined metrics. ARCOCT allows accurate and fully-automated lumen border

  20. Comparison of low- and ultralow-dose computed tomography protocols for quantitative lung and airway assessment.

    PubMed

    Hammond, Emily; Sloan, Chelsea; Newell, John D; Sieren, Jered P; Saylor, Melissa; Vidal, Craig; Hogue, Shayna; De Stefano, Frank; Sieren, Alexa; Hoffman, Eric A; Sieren, Jessica C

    2017-09-01

    Quantitative computed tomography (CT) measures are increasingly being developed and used to characterize lung disease. With recent advances in CT technologies, we sought to evaluate the quantitative accuracy of lung imaging at low- and ultralow-radiation doses with the use of iterative reconstruction (IR), tube current modulation (TCM), and spectral shaping. We investigated the effect of five independent CT protocols reconstructed with IR on quantitative airway measures and global lung measures using an in vivo large animal model as a human subject surrogate. A control protocol was chosen (NIH-SPIROMICS + TCM) and five independent protocols investigating TCM, low- and ultralow-radiation dose, and spectral shaping. For all scans, quantitative global parenchymal measurements (mean, median and standard deviation of the parenchymal HU, along with measures of emphysema) and global airway measurements (number of segmented airways and pi10) were generated. In addition, selected individual airway measurements (minor and major inner diameter, wall thickness, inner and outer area, inner and outer perimeter, wall area fraction, and inner equivalent circle diameter) were evaluated. Comparisons were made between control and target protocols using difference and repeatability measures. Estimated CT volume dose index (CTDIvol) across all protocols ranged from 7.32 mGy to 0.32 mGy. Low- and ultralow-dose protocols required more manual editing and resolved fewer airway branches; yet, comparable pi10 whole lung measures were observed across all protocols. Similar trends in acquired parenchymal and airway measurements were observed across all protocols, with increased measurement differences using the ultralow-dose protocols. However, for small airways (1.9 ± 0.2 mm) and medium airways (5.7 ± 0.4 mm), the measurement differences across all protocols were comparable to the control protocol repeatability across breath holds. Diameters, wall thickness, wall area fraction

  1. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease.

    PubMed

    McDonough, John E; Yuan, Ren; Suzuki, Masaru; Seyednejad, Nazgol; Elliott, W Mark; Sanchez, Pablo G; Wright, Alexander C; Gefter, Warren B; Litzky, Leslie; Coxson, Harvey O; Paré, Peter D; Sin, Don D; Pierce, Richard A; Woods, Jason C; McWilliams, Annette M; Mayo, John R; Lam, Stephen C; Cooper, Joel D; Hogg, James C

    2011-10-27

    The major sites of obstruction in chronic obstructive pulmonary disease (COPD) are small airways (<2 mm in diameter). We wanted to determine whether there was a relationship between small-airway obstruction and emphysematous destruction in COPD. We used multidetector computed tomography (CT) to compare the number of airways measuring 2.0 to 2.5 mm in 78 patients who had various stages of COPD, as judged by scoring on the Global Initiative for Chronic Obstructive Lung Disease (GOLD) scale, in isolated lungs removed from patients with COPD who underwent lung transplantation, and in donor (control) lungs. MicroCT was used to measure the extent of emphysema (mean linear intercept), the number of terminal bronchioles per milliliter of lung volume, and the minimum diameters and cross-sectional areas of terminal bronchioles. On multidetector CT, in samples from patients with COPD, as compared with control samples, the number of airways measuring 2.0 to 2.5 mm in diameter was reduced in patients with GOLD stage 1 disease (P=0.001), GOLD stage 2 disease (P=0.02), and GOLD stage 3 or 4 disease (P<0.001). MicroCT of isolated samples of lungs removed from patients with GOLD stage 4 disease showed a reduction of 81 to 99.7% in the total cross-sectional area of terminal bronchioles and a reduction of 72 to 89% in the number of terminal bronchioles (P<0.001). A comparison of the number of terminal bronchioles and dimensions at different levels of emphysematous destruction (i.e., an increasing value for the mean linear intercept) showed that the narrowing and loss of terminal bronchioles preceded emphysematous destruction in COPD (P<0.001). These results show that narrowing and disappearance of small conducting airways before the onset of emphysematous destruction can explain the increased peripheral airway resistance reported in COPD. (Funded by the National Heart, Lung, and Blood Institute and others.).

  2. A Numerical Study of Heat and Water Vapor Transfer in MDCT-Based Human Airway Models

    PubMed Central

    Wu, Dan; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2014-01-01

    A three-dimensional (3D) thermo-fluid model is developed to study regional distributions of temperature and water vapor in three multi-detector row computed-tomography (MDCT)-basedhuman airwayswith minute ventilations of 6, 15 and 30 L/min. A one-dimensional (1D) model is also solved to provide necessary initial and boundary conditionsforthe 3D model. Both 3D and 1D predicted temperature distributions agree well with available in vivo measurement data. On inspiration, the 3D cold high-speed air stream is split at the bifurcation to form secondary flows, with its cold regions biased toward the inner wall. The cold air flowing along the wall is warmed up more rapidly than the air in the lumen center. The repeated splitting pattern of air streams caused by bifurcations acts as an effective mechanism for rapid heat and mass transfer in 3D. This provides a key difference from the 1D model, where heating relies largely on diffusion in the radial direction, thus significantly affecting gradient-dependent variables, such as energy flux and water loss rate. We then propose the correlations for respective heat and mass transfer in the airways of up to 6 generations: Nu=3.504(ReDaDt)0.277, R = 0.841 and Sh=3.652(ReDaDt)0.268, R = 0.825, where Nu is the Nusselt number, Sh is the Sherwood number, Re is the branch Reynolds number, Da is the airway equivalent diameter, and Dt is the tracheal equivalentdiameter. PMID:25081386

  3. Debris buster is a Drosophila scavenger receptor essential for airway physiology.

    PubMed

    Wingen, Almut; Carrera, Pilar; Ekaterini Psathaki, Olympia; Voelzmann, André; Paululat, Achim; Hoch, Michael

    2017-10-01

    Scavenger receptors class B (SR-B) are multifunctional transmembrane proteins, which in vertebrates participate in lipid transport, pathogen clearance, lysosomal delivery and intracellular sorting. Drosophila has 14 SR-B members whose functions are still largely unknown. Here, we reveal a novel role for the SR-B family member Debris buster (Dsb) in Drosophila airway physiology. Larvae lacking dsb show yeast avoidance behavior, hypoxia, and severe growth defects associated with impaired elongation and integrity along the airways. Furthermore, in dsb mutant embryos, the barrier function of the posterior spiracles, which are critical for gas exchange, is not properly established and liquid clearance is locally impaired at the spiracular lumen. We found that Dsb is specifically expressed in a group of distal epithelial cells of the posterior spiracle organ and not throughout the entire airways. Furthermore, tissue-specific knockdown and rescue experiments demonstrate that Dsb function in the airways is only required in the posterior spiracles. Dsb localizes in intracellular vesicles, and a subset of these associate with lysosomes. However, we found that depletion of proteins involved in vesicular transport to the apical membrane, but not in lysosomal function, causes dsb-like airway elongation defects. We propose a model in which Dsb sorts components of the apical extracellular matrix which are essential for airway physiology. Since SR-B LIMP2-deficient mice show reduced expression of several apical plasma membrane proteins, sorting of proteins to the apical membrane is likely an evolutionary conserved function of Dsb and LIMP2. Our data provide insights into a spatially confined function of the SR-B Dsb in intracellular trafficking critical for the physiology of the whole tubular airway network. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Blood sinuses in the submucosa of the large airways of the sheep.

    PubMed Central

    Hill, P; Goulding, D; Webber, S E; Widdicombe, J G

    1989-01-01

    We have studied the airway vasculature in sheep using light and transmission electron microscopy, as well as arterial and venous (retrograde) injections of anatomical corrosion compound and latex. Vascular casts were viewed by scanning electron microscopy. There is a complex network of blood sinuses of large diameter (up to 500 microns) in the submucosa of the large airways. The vessels have thin walls formed by a single layer of flattened endothelium with tight junctions and without pericytes or smooth muscle cells. Characteristically the sinuses lie between the cartilage and lamina propria of the trachea or between cartilage and smooth muscle in the bronchi. Sinuses of greater than 50 microns transverse diameter are not found in airways less than 1.0 mm across. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 7 PMID:2808119

  5. Attenuation of Cigarette Smoke-Induced Airway Mucus Production by Hydrogen-Rich Saline in Rats

    PubMed Central

    Zhang, Jingxi; Dong, Yuchao; Xu, Wujian; Li, Qiang

    2013-01-01

    Background Over-production of mucus is an important pathophysiological feature in chronic airway disease such as chronic obstructive pulmonary disease (COPD) and asthma. Cigarette smoking (CS) is the leading cause of COPD. Oxidative stress plays a key role in CS-induced airway abnormal mucus production. Hydrogen protected cells and tissues against oxidative damage by scavenging hydroxyl radicals. In the present study we investigated the effect of hydrogen on CS-induced mucus production in rats. Methods Male Sprague-Dawley rats were divided into four groups: sham control, CS group, hydrogen-rich saline pretreatment group and hydrogen-rich saline control group. Lung morphology and tissue biochemical changes were determined by immunohistochemistry, Alcian Blue/periodic acid-Schiff staining, TUNEL, western blot and realtime RT-PCR. Results Hydrogen-rich saline pretreatment attenuated CS-induced mucus accumulation in the bronchiolar lumen, goblet cell hyperplasia, muc5ac over-expression and abnormal cell apoptosis in the airway epithelium as well as malondialdehyde increase in the BALF. The phosphorylation of EGFR at Tyr1068 and Nrf2 up-regulation expression in the rat lungs challenged by CS exposure were also abrogated by hydrogen-rich saline. Conclusion Hydrogen-rich saline pretreatment ameliorated CS-induced airway mucus production and airway epithelium damage in rats. The protective role of hydrogen on CS-exposed rat lungs was achieved at least partly by its free radical scavenging ability. This is the first report to demonstrate that intraperitoneal administration of hydrogen-rich saline protected rat airways against CS damage and it could be promising in treating abnormal airway mucus production in COPD. PMID:24376700

  6. FIBERTOM Nd:YAG laser in treatment of post-inflammatory structures of lower airways

    NASA Astrophysics Data System (ADS)

    Pirozynski, Michal; Polubiec-Kownacka, Malgorzata; Strojecki, Krzysztof; Blachnio, Antoni; Pawlak, Wieslaw; Krusiewicz, Jan

    1996-03-01

    Introduction of the first laser by Maiman in 1960 led to a rapid increase in the biological application of this device. The first application of laser energy in the treatment of airway pathology was by Strong et al. In 1981 Toty et al described the first use of a neodymium:yttrium-aluminum garnet (Nd:YAG) laser for resection of a bronchial tumor. Subglottic and tracheal stenosis have been treated endoscopically for many years with electrocautery, cryosurgery, by mechanical dilatation, and more recently since the mid 1970s with the carbon-dioxide laser. Early series demonstrated a moderate success rate in about 60% of the cases. Recently a new modification of the Nd:YAG laser was made available by Dornier (formerly MBB - Germany). The FIBERTOMTM is a unique method of controlling the temperature at the tip of the light guide allowing precise, direct contact cutting. Eleven patients (age 35.1 plus or minus 20.7 years) with post inflammatory airway stenoses were treated. Thirty-six procedures were carried out. An immediate dilatation of the narrowed airway was produced in 86%. Endoscopic control carried out 52 weeks after the initial procedure confirmed restoration of the airway lumen in 82%. Clinical improvement was seen in all.

  7. CT enterography: Mannitol versus VoLumen.

    PubMed

    Wong, Jessica; Moore, Helen; Roger, Mark; McKee, Chris

    2016-10-01

    Several different neutral oral contrast agents have been trialled in magnetic resonance and CT enterography (CTE). In the Auckland region, Mannitol 2.5% and VoLumen are both used in CTE. This study compares the performance of these two neutral oral contrast agents in CTE. Computed tomography enterography data were collected from 25 consecutive studies that used either Mannitol or VoLumen in 2014. All images were reviewed by three radiologists blinded to the type of oral contrast. Each quadrant was assessed for maximum distension, proportion of bowel loops distended, presence of inhomogeneous content and bowel wall visibility. Assessment also included whether the contrast agent reached the caecum and an overall subjective quality assessment. Patients were invited to answer a questionnaire regarding tolerability of the preparations. Mannitol achieves better wall visibility in the right upper quadrant, left upper quadrant and left lower quadrant (P < 0.01). Overall differences in study quality favours Mannitol (P < 0.01) with 48% of the Mannitol studies being considered excellent compared with 4% of the VoLumen studies. There was no difference in maximal distension or proportion of loops distended. Mannitol in CTE achieves studies of a better quality than and is a viable alternative to VoLumen. © 2016 The Royal Australian and New Zealand College of Radiologists.

  8. Patterns of recruitment and injury in a heterogeneous airway network model

    PubMed Central

    Stewart, Peter S.; Jensen, Oliver E.

    2015-01-01

    In respiratory distress, lung airways become flooded with liquid and may collapse due to surface-tension forces acting on air–liquid interfaces, inhibiting gas exchange. This paper proposes a mathematical multiscale model for the mechanical ventilation of a network of occluded airways, where air is forced into the network at a fixed tidal volume, allowing investigation of optimal recruitment strategies. The temporal response is derived from mechanistic models of individual airway reopening, incorporating feedback on the airway pressure due to recruitment. The model accounts for stochastic variability in airway diameter and stiffness across and between generations. For weak heterogeneity, the network is completely ventilated via one or more avalanches of recruitment (with airways recruited in quick succession), each characterized by a transient decrease in the airway pressure; avalanches become more erratic for airways that are initially more flooded. However, the time taken for complete ventilation of the network increases significantly as the network becomes more heterogeneous, leading to increased stresses on airway walls. The model predicts that the most peripheral airways are most at risk of ventilation-induced damage. A positive-end-expiratory pressure reduces the total recruitment time but at the cost of larger stresses exerted on airway walls. PMID:26423440

  9. Spatial distribution of airway wall displacements during breathing and bronchoconstriction measured by ultrasound elastography using finite element image registration.

    PubMed

    Harvey, Brian C; Lutchen, Kenneth R; Barbone, Paul E

    2017-03-01

    With every breath, the airways within the lungs are strained. This periodic stretching is thought to play an important role in determining airway caliber in health and disease. Particularly, deep breaths can mitigate excessive airway narrowing in healthy subjects, but this beneficial effect is absent in asthmatics, perhaps due to an inability to stretch the airway smooth muscle (ASM) embedded within an airway wall. The heterogeneous composition throughout an airway wall likely modulates the strain felt by the ASM but the magnitude of ASM strain is difficult to measure directly. In this study, we optimized a finite element image registration method to measure the spatial distribution of displacements and strains throughout an airway wall during pressure inflation within the physiological breathing range before and after induced narrowing with acetylcholine (ACh). The method was shown to be repeatable, and displacements estimated from different image sequences of the same deformation agreed to within 5.3μm (0.77%). We found the magnitude and spatial distribution of displacements were radially and longitudinally heterogeneous. The region in the middle layer of the airway experienced the largest radial strain due to a transmural pressure (Ptm) increase simulating tidal breathing and a deep inspiration (DI), while the region containing the ASM (i.e., closest to the lumen) strained least. During induced narrowing with ACh, we observed temporal longitudinal heterogeneity of the airway wall. After constriction, the displacements and strain are much smaller than the relaxed airway and the pattern of strains changed, suggesting the airway stiffened heterogeneously. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Polarized protein transport and lumen formation during epithelial tissue morphogenesis.

    PubMed

    Blasky, Alex J; Mangan, Anthony; Prekeris, Rytis

    2015-01-01

    One of the major challenges in biology is to explain how complex tissues and organs arise from the collective action of individual polarized cells. The best-studied model of this process is the cross talk between individual epithelial cells during their polarization to form the multicellular epithelial lumen during tissue morphogenesis. Multiple mechanisms of apical lumen formation have been proposed. Some epithelial lumens form from preexisting polarized epithelial structures. However, de novo lumen formation from nonpolarized cells has recently emerged as an important driver of epithelial tissue morphogenesis, especially during the formation of small epithelial tubule networks. In this review, we discuss the latest findings regarding the mechanisms and regulation of de novo lumen formation in vitro and in vivo.

  11. [Localization of upper airway stricture by CT scan in patients with obstructive sleep apnea syndrome during drug-induced sleeping].

    PubMed

    Hu, Ji-bo; Hu, Hong-jie; Hou, Tie-ning; Gao, Hang-xiang; He, Jian

    2010-03-01

    To evaluate the feasibility of multi-slice spiral CT scan to localize upper airway stricture in patients with obstructive sleep apnea syndrome (OSAS) during drug-induced sleeping. One hundred and fourteen patients diagnosed as OSAS by polysomnography were included in the study. Multi-slice spiral CT scan covering upper airway was performed at the end of inspiration and clear upper airway images were obtained in waking. After injecting 5 mg of midazolam intravenously slowly in 109 patients, CT scan was performed at apnea and clear upper airway images were obtained in sleeping. Cross-section area and minimal diameter of airway were measured and the parameters were compared under those two states. Upper airway was displayed intuitionisticly by using post-processing techniques. One hundred and nine patients with OSAS finished the examination with a success rate of 100 %. Airway obstruction at retropalatal level was observed in 62 patients, among whom 26 were associated with airway obstruction at retroglossal level, 27 with narrower airway at retroglossal level in sleeping compared with that in waking, and 9 with no significant change of the airway at retroglossal level after sleeping. Narrower airway at retropalatal level in sleeping compared with that in waking was observed in 40 patients, among whom 20 were associated with narrower airway at retroglossal level in sleeping compared with that in waking, 10 with complete airway obstruction at retroglossal level in sleeping, and 7 with no significant change of the airway at both retropalatal and retroglossal levels before and after sleeping. Minimal mean cross-section area of airway at retropalatal level was (72.60 +/-45.15)mm(2) in waking and (8.26 +/-18.16)mm(2) in sleeping; and minimal mean cross-section area of airway at retroglossal level was (133.21 +/-120.36)mm(2)in waking and (16.73 +/-30.21)mm(2) in sleeping (P <0.01). Minimal mean diameter of airway at retropalatal level was (6.91 +/-2.23) mm in waking and (1

  12. Secretory response induced by essential oils on airway surface fluid: a pharmacological MRI study.

    PubMed

    Nicolato, Elena; Boschi, Federico; Marzola, Pasquina; Sbarbati, Andrea

    2009-07-30

    Using pharmacological magnetic resonance imaging, we have performed an in vivo evaluation of the secretory response induced by essential oils in the rat airway. Aim of the work was to establish a computerized method to assess the efficacy of volatile compounds in spatially localized areas without the bias derived by subjective evaluation. Magnetic resonance experiments were carried out using a 4.7 T horizontal magnet. In the trachea, airway surface fluid was easily identified for its high intensity signal. The tracheal glands were also easily visible. The oesophageal lumen was usually collapsed and was identifiable only in the presence of intraluminal liquid. Scotch pine essential oil inhalation significantly increased the surface fluid in the middle portion of the trachea and the increase was visible at both 5 and 10 min. A lesser secretory response was detected after rosemary essential oil inhalation even though the response was significant with respect to the control in particular at 10 min. No secretory response was detected after peppermint essential oil inhalation both at 5 and 10 min. The data obtained in the present work demonstrate a chemically induced airway secretion. The availability of a pharmacological magnetic resonance imaging approach opens new perspectives to test the action of volatile compounds on the airway.

  13. Spermine oxidase promotes bile canalicular lumen formation through acrolein production.

    PubMed

    Uemura, Takeshi; Takasaka, Tomokazu; Igarashi, Kazuei; Ikegaya, Hiroshi

    2017-11-01

    Spermine oxidase (SMOX) catalyzes oxidation of spermine to generate spermidine, hydrogen peroxide (H 2 O 2 ) and 3-aminopropanal, which is spontaneously converted to acrolein. SMOX is induced by a variety of stimuli including bacterial infection, polyamine analogues and acetaldehyde exposure. However, the physiological functions of SMOX are not yet fully understood. We investigated the physiological role of SMOX in liver cells using human hepatocellular carcinoma cell line HepG2. SMOX localized to the bile canalicular lumen, as determined by F-actin staining. Knockdown of SMOX reduced the formation of bile canalicular lumen. We also found that phospho-Akt (phosphorylated protein kinase B) was localized to canalicular lumen. Treatment with Akt inhibitor significantly reduced the formation of bile canalicular lumen. Acrolein scavenger also inhibited the formation of bile canalicular lumen. PTEN, phosphatase and tensin homolog and an inhibitor of Akt, was alkylated in a SMOX-dependent manner. Our results suggest that SMOX plays a central role in the formation of bile canalicular lumen in liver cells by activating Akt pathway through acrolein production.

  14. Durability of Silicone Airway Stents in the Management of Benign Central Airway Obstruction.

    PubMed

    Karush, Justin M; Seder, Christopher W; Raman, Anish; Chmielewski, Gary W; Liptay, Michael J; Warren, William H; Arndt, Andrew T

    2017-10-01

    The literature is devoid of a comprehensive analysis of silicone airway stenting for benign central airway obstruction (BCAO). With the largest series in the literature to date, we aim to demonstrate the safety profile, pattern of re-intervention, and duration of silicone airway stents. An institutional database was used to identify patients with BCAO who underwent rigid bronchoscopy with dilation and silicone stent placement between 2002 and 2015 at Rush University Medical Center. During the study period, 243 stents were utilized in 63 patients with BCAO. Pure tracheal stenosis was encountered in 71% (45/63), pure tracheomalacia in 11% (7/63), and a hybrid of both in 17% (11/63). Median freedom from re-intervention was 104 (IQR 167) days. Most common indications for re-intervention include mucus accumulation (60%; 131/220), migration (28%; 62/220), and intubation (8%; 18/220). The most common diameters of stent placed were 12 mm (94/220) and 14 mm (96/220). The most common lengths utilized were 30 mm (60/220) and 40 mm (77/220). Duration was not effected by stent size when placed for discrete stenosis. However, 14 mm stents outperformed 12 mm when tracheomalacia was present (157 vs. 37 days; p = 0.005). Patients with a hybrid stenosis fared better when longer stents were used (60 mm stents outlasted 40 mm stents 173 vs. 56 days; p = 0.05). Rigid bronchoscopy with silicone airway stenting is a safe and effective option for the management of benign central airway obstruction. Our results highlight several strategies to improve stent duration.

  15. Bronchoarterial ratio in never-smokers adults: Implications for bronchial dilation definition.

    PubMed

    Diaz, Alejandro A; Young, Thomas P; Maselli, Diego J; Martinez, Carlos H; Maclean, Erick S; Yen, Andrew; Dass, Chandra; Simpson, Scott A; Lynch, David A; Kinney, Gregory L; Hokanson, John E; Washko, George R; San José Estépar, Raul

    2017-01-01

    Bronchiectasis manifests as recurrent respiratory infections and reduced lung function. Airway dilation, which is measured as the ratio of the diameters of the bronchial lumen (B) and adjacent pulmonary artery (A), is a defining radiological feature of bronchiectasis. A challenge to equating the bronchoarterial (BA) ratio to disease severity is that the diameters of airway and vessel in health are not established. We sought to explore the variability of BA ratio in never-smokers without pulmonary disease and its associations with lung function. Objective measurements of the BA ratio on volumetric computed tomography (CT) scans and pulmonary function data were collected in 106 never-smokers. The BA ratio was measured in the right upper lobe apical bronchus (RB1) and the right lower lobe basal posterior bronchus. The association between the BA ratio and forced expiratory volume in 1 s (FEV 1 ) was assessed using regression analysis. The BA ratio was 0.79 ± 0.16 and was smaller in more peripheral RB1 bronchi (P < 0.0001). The BA ratio was >1, a typical threshold for bronchiectasis, in 10 (8.5%) subjects. Subjects with a BA ratio >1 versus ≤1 had smaller artery diameters (P < 0.0001) but not significantly larger bronchial lumens. After adjusting for age, gender, race and height, the BA ratio was directly related to FEV 1 (P = 0.0007). In never-smokers, the BA ratio varies by airway generation and is associated with lung function. A BA ratio >1 is driven by small arteries. Using artery diameter as reference to define bronchial dilation seems inappropriate. © 2016 Asian Pacific Society of Respirology.

  16. Vascular lumen formation.

    PubMed

    Lammert, Eckhard; Axnick, Jennifer

    2012-04-01

    The vascular system developed early in evolution. It is required in large multicellular organisms for the transport of nutrients, oxygen, and waste products to and from tissues. The vascular system is composed of hollow tubes, which have a high level of complexity in vertebrates. Vasculogenesis describes the de novo formation of blood vessels, e.g., aorta formation in vertebrate embryogenesis. In contrast, angiogenesis is the formation of blood vessels from preexisting ones, e.g., sprouting of intersomitic blood vessels from the aorta. Importantly, the lumen of all blood vessels in vertebrates is lined and formed by endothelial cells. In both vasculogenesis and angiogenesis, lumen formation takes place in a cord of endothelial cells. It involves a complex molecular mechanism composed of endothelial cell repulsion at the cell-cell contacts within the endothelial cell cords, junctional rearrangement, and endothelial cell shape change. As the vascular system also participates in the course of many diseases, such as cancer, stroke, and myocardial infarction, it is important to understand and make use of the molecular mechanisms of blood vessel formation to better understand and manipulate the pathomechanisms involved.

  17. Reference Values for Central Airway Dimensions on CT Images of Children and Adolescents.

    PubMed

    Kuo, Wieying; Ciet, Pierluigi; Andrinopoulou, Eleni-Rosalina; Chen, Yong; Pullens, Bas; Garcia-Peña, Pilar; Fleck, Robert J; Paoletti, Matteo; McCartin, Michael; Vermeulen, Francois; Morana, Giovanni; Lee, Edward Y; Tiddens, Harm A W M

    2018-02-01

    The purpose of this study was to acquire normative data on central airway dimensions on chest CT scans in the pediatric population. Chest CT findings reported as normal by a radiologist were collected retrospectively at 10 international centers. An experienced and independent thoracic radiologist reevaluated all CT scans for image quality and for normal findings. Semiautomated image analysis was performed to measure dimensions of the trachea and right and left main bronchi at inspiration. Intrathoracic tracheal length was measured from carina to thorax inlet. Cross-sectional area and short and long axes were measured perpendicular to the longitudinal airway axis starting from the carina every centimeter upward for the trachea and every 0.5 cm downward for the main bronchi. The effects on airway diameters of age, sex, intrathoracic tracheal length, and distance from the carina were investigated by use of mixed-effects models analysis. Among 1160 CT scans collected, 388 were evaluated as normal by the independent radiologist with sufficient image quality and adequate inspiratory volume level. Central airways were successfully semiautomatically analyzed in 294 of 388 CT studies. Age, sex, intrathoracic tracheal length, and distance from carina were all significant predictors in the models for tracheal and right and left main bronchial diameters (p < 0.001). The central airway dimensions increased with age up to 20 years, and dimensions were larger in male than in female adolescents. Normative data were determined for the central airways of children and adolescents. Central airway dimensions depended on distance from the carina and on intrathoracic tracheal length.

  18. Airway Strain during Mechanical Ventilation in an Intact Animal Model

    PubMed Central

    Sinclair, Scott E.; Molthen, Robert C.; Haworth, Steve T.; Dawson, Christopher A.; Waters, Christopher M.

    2007-01-01

    Rationale: Mechanical ventilation with large tidal volumes causes ventilator-induced lung injury in animal models. Little direct evidence exists regarding the deformation of airways in vivo during mechanical ventilation, or in the presence of positive end-expiratory pressure (PEEP). Objectives: To measure airway strain and to estimate airway wall tension during mechanical ventilation in an intact animal model. Methods: Sprague-Dawley rats were anesthetized and mechanically ventilated with tidal volumes of 6, 12, and 25 cm3/kg with and without 10–cm H2O PEEP. Real-time tantalum bronchograms were obtained for each condition, using microfocal X-ray imaging. Images were used to calculate circumferential and longitudinal airway strains, and on the basis of a simplified mathematical model we estimated airway wall tensions. Measurements and Main Results: Circumferential and longitudinal airway strains increased with increasing tidal volume. Levels of mechanical strain were heterogeneous throughout the bronchial tree. Circumferential strains were higher in smaller airways (less than 800 μm). Airway size did not influence longitudinal strain. When PEEP was applied, wall tensions increased more rapidly than did strain levels, suggesting that a “strain limit” had been reached. Airway collapse was not observed under any experimental condition. Conclusions: Mechanical ventilation results in significant airway mechanical strain that is heterogeneously distributed in the uninjured lung. The magnitude of circumferential but not axial strain varies with airway diameter. Airways exhibit a “strain limit” above which an abrupt dramatic rise in wall tension is observed. PMID:17626911

  19. An efficiency-decay model for Lumen maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobashev, Georgiy; Baldasaro, Nicholas G.; Mills, Karmann C.

    Proposed is a multicomponent model for the estimation of light-emitting diode (LED) lumen maintenance using test data that were acquired in accordance with the test standards of the Illumination Engineering Society of North America, i.e., LM-80-08. Lumen maintenance data acquired with this test do not always follow exponential decay, particularly data collected in the first 1000 h or under low-stress (e.g., low temperature) conditions. This deviation from true exponential behavior makes it difficult to use the full data set in models for the estimation of lumen maintenance decay coefficient. As a result, critical information that is relevant to the earlymore » life or low-stress operation of LED light sources may be missed. We present an efficiency-decay model approach, where all lumen maintenance data can be used to provide an alternative estimate of the decay rate constant. The approach considers a combined model wherein one part describes an initial “break-in” period and another part describes the decay in lumen maintenance. During the break-in period, several mechanisms within the LED can act to produce a small (typically <; 10%) increase in luminous flux. The effect of the break-in period and its longevity is more likely to be present at low-ambient temperatures and currents, where the discrepancy between a standard TM-21 approach and our proposed model is the largest. For high temperatures and currents, the difference between the estimates becomes nonsubstantial. Finally, our approach makes use of all the collected data and avoids producing unrealistic estimates of the decay coefficient.« less

  20. An efficiency-decay model for Lumen maintenance

    DOE PAGES

    Bobashev, Georgiy; Baldasaro, Nicholas G.; Mills, Karmann C.; ...

    2016-08-25

    Proposed is a multicomponent model for the estimation of light-emitting diode (LED) lumen maintenance using test data that were acquired in accordance with the test standards of the Illumination Engineering Society of North America, i.e., LM-80-08. Lumen maintenance data acquired with this test do not always follow exponential decay, particularly data collected in the first 1000 h or under low-stress (e.g., low temperature) conditions. This deviation from true exponential behavior makes it difficult to use the full data set in models for the estimation of lumen maintenance decay coefficient. As a result, critical information that is relevant to the earlymore » life or low-stress operation of LED light sources may be missed. We present an efficiency-decay model approach, where all lumen maintenance data can be used to provide an alternative estimate of the decay rate constant. The approach considers a combined model wherein one part describes an initial “break-in” period and another part describes the decay in lumen maintenance. During the break-in period, several mechanisms within the LED can act to produce a small (typically <; 10%) increase in luminous flux. The effect of the break-in period and its longevity is more likely to be present at low-ambient temperatures and currents, where the discrepancy between a standard TM-21 approach and our proposed model is the largest. For high temperatures and currents, the difference between the estimates becomes nonsubstantial. Finally, our approach makes use of all the collected data and avoids producing unrealistic estimates of the decay coefficient.« less

  1. Influence of cardiac motion on stent lumen visualization in third generation dual-source CT employing a pulsatile heart model.

    PubMed

    Petri, Nils; Gassenmaier, Tobias; Allmendinger, Thomas; Flohr, Thomas; Voelker, Wolfram; Bley, Thorsten A

    2017-02-01

    To detect an in-stent restenosis, an invasive coronary angiography is commonly performed. Owing to the risk associated with this procedure, a non-invasive method to detect or exclude an in-stent restenosis is desirable. The purpose of this study was to evaluate the influence of cardiac motion on stent lumen visibility in a third-generation dual-source CT scanner (SOMATOM Force; Siemens Healthcare, Forchheim, Germany), employing a pulsatile heart model (CoroSim ® ; Mecora, Aachen, Germany). 13 coronary stents with a diameter of 3.0 mm were implanted in plastic tubes filled with a contrast medium and then fixed onto the pulsatile phantom heart model. The scans were performed while the heart model mimicked the heartbeat. Coronary stents were scanned in an orientation parallel to the scanner z-axis. The evaluation of the stents was performed by employing a medium sharp convolution kernel optimized for vascular imaging. The mean visible stent lumen was reduced from 65.6 ± 5.7% for the stents at rest to 60.8 ± 4.4% for the stents in motion (p-value: <0.001). While the difference in lumen visibility between stents in motion and at rest was significant, the use of this third-generation dual-source CT scanner enabled a high stent lumen visibility under the influence of cardiac motion. Whether this translates into a clinical setting has to be evaluated in further patient studies. Advances in knowledge: The employed modern CT scanner enables a high stent lumen visibility even under the influence of cardiac motion, which is important to detect or exclude an in-stent restenosis.

  2. Anatomically correct visualization of the human upper airway using a high-speed long range optical coherence tomography system with an integrated positioning sensor

    NASA Astrophysics Data System (ADS)

    Jing, Joseph C.; Chou, Lidek; Su, Erica; Wong, Brian J. F.; Chen, Zhongping

    2016-12-01

    The upper airway is a complex tissue structure that is prone to collapse. Current methods for studying airway obstruction are inadequate in safety, cost, or availability, such as CT or MRI, or only provide localized qualitative information such as flexible endoscopy. Long range optical coherence tomography (OCT) has been used to visualize the human airway in vivo, however the limited imaging range has prevented full delineation of the various shapes and sizes of the lumen. We present a new long range OCT system that integrates high speed imaging with a real-time position tracker to allow for the acquisition of an accurate 3D anatomical structure in vivo. The new system can achieve an imaging range of 30 mm at a frame rate of 200 Hz. The system is capable of generating a rapid and complete visualization and quantification of the airway, which can then be used in computational simulations to determine obstruction sites.

  3. EFA6 proteins regulate lumen formation through α-actinin 1.

    PubMed

    Milanini, Julie; Fayad, Racha; Partisani, Mariagrazia; Lecine, Patrick; Borg, Jean-Paul; Franco, Michel; Luton, Frédéric

    2018-02-08

    A key step of epithelial morphogenesis is the creation of the lumen. Luminogenesis by hollowing proceeds through the fusion of apical vesicles at cell-cell contacts. The small nascent lumens grow through extension, coalescence and enlargement, coordinated with cell division, to give rise to a single central lumen. Here, by using MDCK cells grown in 3D-culture, we show that EFA6A (also known as PSD) participates in luminogenesis. EFA6A recruits α-actinin 1 (ACTN1) through direct binding. In polarized cells, ACTN1 was found to be enriched at the tight junction where it acts as a primary effector of EFA6A for normal luminogenesis. Both proteins are essential for the lumen extension and enlargement, where they mediate their effect by regulating the cortical acto-myosin contractility. Finally, ACTN1 was also found to act as an effector for the isoform EFA6B (also known as PSD4) in the human mammary tumoral MCF7 cell line. EFA6B restored the glandular morphology of this tumoral cell line in an ACTN1-dependent manner. Thus, we identified new regulators of cyst luminogenesis essential for the proper maturation of a newly-formed lumen into a single central lumen. © 2018. Published by The Company of Biologists Ltd.

  4. Single continuous lumen formation in the zebrafish gut is mediated by smoothened-dependent tissue remodeling

    PubMed Central

    Alvers, Ashley L.; Ryan, Sean; Scherz, Paul J.; Huisken, Jan; Bagnat, Michel

    2014-01-01

    The formation of a single lumen during tubulogenesis is crucial for the development and function of many organs. Although 3D cell culture models have identified molecular mechanisms controlling lumen formation in vitro, their function during vertebrate organogenesis is poorly understood. Using light sheet microscopy and genetic approaches we have investigated single lumen formation in the zebrafish gut. Here we show that during gut development multiple lumens open and enlarge to generate a distinct intermediate, which consists of two adjacent unfused lumens separated by basolateral contacts. We observed that these lumens arise independently from each other along the length of the gut and do not share a continuous apical surface. Resolution of this intermediate into a single, continuous lumen requires the remodeling of contacts between adjacent lumens and subsequent lumen fusion. We show that lumen resolution, but not lumen opening, is impaired in smoothened (smo) mutants, indicating that fluid-driven lumen enlargement and resolution are two distinct processes. Furthermore, we show that smo mutants exhibit perturbations in the Rab11 trafficking pathway and demonstrate that Rab11-mediated trafficking is necessary for single lumen formation. Thus, lumen resolution is a distinct genetically controlled process crucial for single, continuous lumen formation in the zebrafish gut. PMID:24504339

  5. The contribution of Ca2+ signaling and Ca2+ sensitivity to the regulation of airway smooth muscle contraction is different in rats and mice.

    PubMed

    Bai, Yan; Sanderson, Michael J

    2009-06-01

    To determine the relative contributions of Ca(2+) signaling and Ca(2+) sensitivity to the contractility of airway smooth muscle cells (SMCs), we compared the contractile responses of mouse and rat airways with the lung slice technique. Airway contraction was measured by monitoring changes in airway lumen area with phase-contrast microscopy, whereas changes in intracellular calcium concentration ([Ca(2+)](i)) of the SMCs were recorded with laser scanning microscopy. In mice and rats, methacholine (MCh) or serotonin induced concentration-dependent airway contraction and Ca(2+) oscillations in the SMCs. However, rat airways demonstrated greater contraction compared with mice, in response to agonist-induced Ca(2+) oscillations of a similar frequency. Because this indicates that rat airway SMCs have a higher Ca(2+) sensitivity compared with mice, we examined Ca(2+) sensitivity with Ca(2+)-permeabilized airway SMCs in which the [Ca(2+)](i) was experimentally controlled. In the absence of agonists, high [Ca(2+)](i) induced a sustained contraction in rat airways but only a transient contraction in mouse airways. This sustained contraction of rat airways was relaxed by Y-23672, a Rho kinase inhibitor, but not affected by GF-109203X, a PKC inhibitor. The subsequent exposure of Ca(2+)-permeabilized airway SMCs, with high [Ca(2+)](i), to MCh elicited a further contraction of rat airways and initiated a sustained contraction of mouse airways, without changing the [Ca(2+)](i) of the SMCs. Collectively, these results indicate that airway SMCs of rats have a substantially higher innate Ca(2+) sensitivity than mice and that this strongly influences the transduction of the frequency of Ca(2+) oscillations into the contractility of airway SMCs.

  6. Rescue ventilation: resolving a "cannot mask ventilate, cannot intubate" situation during exchange of a Combitube for a definitive airway.

    PubMed

    Rich, James M; Mason, Andrew M; Tillmann, H A; Foreman, Michael

    2009-10-01

    Our anesthesia care team was called to care for a patient who was admitted to the emergency department with the esophageal-tracheal double-lumen airway device (Combitube, Tyco Healthcare, Nellcor, Pleasanton, California) in place, which needed to be exchanged for a definitive airway because the patient required an extended period of mechanical ventilation. Several techniques were attempted to exchange the esophageal-tracheal Combitube (ETC) without success. First, we attempted direct laryngoscopy with the ETC in place after deflation of the No. 1 proximal cuff and sweeping the ETC to the left. We were prepared to use bougie-assisted intubation but could not identify any airway anatomy. After removal of the ETC, we unsuccessfully attempted ventilation/intubation with a laryngeal mask airway (LMA Fastrach, LMA North America, San Diego, California). Our third attempt was insertion of another laryngeal mask airway (LMA Unique, LMA North America) with marginal ventilation, but we again experienced unsuccessful intubation using a fiberscope. The ETC was reinserted after each intubation attempt because mask ventilation was impossible. Before proceeding with cricothyrotomy, we repeated direct laryngoscopy but without the ETC in place. We identified the tip of the epiglottis, which allowed for bougie-assisted intubation. This obviated the need for emergency cricothyrotomy.

  7. Fully automated lobe-based airway taper index calculation in a low dose MDCT CF study over 4 time-points

    NASA Astrophysics Data System (ADS)

    Weinheimer, Oliver; Wielpütz, Mark O.; Konietzke, Philip; Heussel, Claus P.; Kauczor, Hans-Ulrich; Brochhausen, Christoph; Hollemann, David; Savage, Dasha; Galbán, Craig J.; Robinson, Terry E.

    2017-02-01

    Cystic Fibrosis (CF) results in severe bronchiectasis in nearly all cases. Bronchiectasis is a disease where parts of the airways are permanently dilated. The development and the progression of bronchiectasis is not evenly distributed over the entire lungs - rather, individual functional units are affected differently. We developed a fully automated method for the precise calculation of lobe-based airway taper indices. To calculate taper indices, some preparatory algorithms are needed. The airway tree is segmented, skeletonized and transformed to a rooted acyclic graph. This graph is used to label the airways. Then a modified version of the previously validated integral based method (IBM) for airway geometry determination is utilized. The rooted graph, the airway lumen and wall information are then used to calculate the airway taper indices. Using a computer-generated phantom simulating 10 cross sections of airways we present results showing a high accuracy of the modified IBM. The new taper index calculation method was applied to 144 volumetric inspiratory low-dose MDCT scans. The scans were acquired from 36 children with mild CF at 4 time-points (baseline, 3 month, 1 year, 2 years). We found a moderate correlation with the visual lobar Brody bronchiectasis scores by three raters (r2 = 0.36, p < .0001). The taper index has the potential to be a precise imaging biomarker but further improvements are needed. In combination with other imaging biomarkers, taper index calculation can be an important tool for monitoring the progression and the individual treatment of patients with bronchiectasis.

  8. Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting

    PubMed Central

    Davis, George E.; Stratman, Amber N.; Sacharidou, Anastasia; Koh, Wonshill

    2013-01-01

    Many studies reveal a fundamental role for extracellular matrix-mediated signaling through integrins and Rho GTPases as well as matrix metalloproteinases (MMPs) in the molecular control of vascular tube morphogenesis in three-dimensional (3D) tissue environments. Recent work has defined an EC lumen signaling complex of proteins that controls these vascular morphogenic events. These findings reveal a signaling interdependence between Cdc42 and MT1-MMP to control the 3D matrix-specific process of EC tubulogenesis. The EC tube formation process results in the creation of a network of proteolytically-generated vascular guidance tunnels in 3D matrices that are utilized to remodel EC-lined tubes through EC motility and could facilitate processes such as flow-induced remodeling and arteriovenous EC sorting and differentiation. Within vascular guidance tunnels, key dynamic interactions occur between endothelial cells (ECs) and pericytes to affect vessel remodeling, diameter, and vascular basement membrane matrix assembly, a fundamental process necessary for endothelial tube maturation and stabilization. Thus, the EC lumen and tube formation mechanism coordinates the concomitant establishment of a network of vascular tubes within tunnel spaces to allow for flow responsiveness, EC-mural cell interactions, and vascular extracellular matrix assembly to control the development of the functional microcirculation. PMID:21482411

  9. Anatomical reconstructions of pediatric airways from endoscopic images: a pilot study of the accuracy of quantitative endoscopy.

    PubMed

    Meisner, Eric M; Hager, Gregory D; Ishman, Stacey L; Brown, David; Tunkel, David E; Ishii, Masaru

    2013-11-01

    To evaluate the accuracy of three-dimensional (3D) airway reconstructions obtained using quantitative endoscopy (QE). We developed this novel technique to reconstruct precise 3D representations of airway geometries from endoscopic video streams. This method, based on machine vision methodologies, uses a post-processing step of the standard videos obtained during routine laryngoscopy and bronchoscopy. We hypothesize that this method is precise and will generate assessment of airway size and shape similar to those obtained using computed tomography (CT). This study was approved by the institutional review board (IRB). We analyzed video sequences from pediatric patients receiving rigid bronchoscopy. We generated 3D scaled airway models of the subglottis, trachea, and carina using QE. These models were compared to 3D airway models generated from CT. We used the CT data as the gold standard measure of airway size, and used a mixed linear model to estimate the average error in cross-sectional area and effective diameter for QE. The average error in cross sectional area (area sliced perpendicular to the long axis of the airway) was 7.7 mm(2) (variance 33.447 mm(4)). The average error in effective diameter was 0.38775 mm (variance 2.45 mm(2)), approximately 9% error. Our pilot study suggests that QE can be used to generate precise 3D reconstructions of airways. This technique is atraumatic, does not require ionizing radiation, and integrates easily into standard airway assessment protocols. We conjecture that this technology will be useful for staging airway disease and assessing surgical outcomes. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  10. Chapter 16 Lumen Modification

    Treesearch

    Rebecca E. Ibach; Roger M. Rowell

    2012-01-01

    When wood is vacuum impregnated with liquid vinyl monomers that do not swell wood, and then in situ polymerized either by chemical catalyst-heat, or gamma radiation, the polymer is located almost solely in the lumens of the wood. Figure 16.1 is a scanning electron microscopy (SEM) micrograph of unmodified wood showing open cells that are...

  11. Airway uric acid is a sensor of inhaled protease allergens and initiates type 2 immune responses in respiratory mucosa1

    PubMed Central

    Hara, Kenichiro; Iijima, Koji; Elias, Martha K.; Seno, Satoshi; Tojima, Ichiro; Kobayashi, Takao; Kephart, Gail M.; Kurabayashi, Masahiko; Kita, Hirohito

    2014-01-01

    While type 2 immune responses to environmental antigens are thought to play pivotal roles in asthma and allergic airway diseases, the immunological mechanisms that initiate the responses are largely unknown. Many allergens have biologic activities, including enzymatic activities and abilities to engage innate pattern-recognition receptors such as TLR4. Here we report that IL-33 and thymic stromal lymphopoietin (TSLP) were produced quickly in the lungs of naïve mice exposed to cysteine proteases, such as bromelain and papain, as a model for allergens. IL-33 and TSLP sensitized naïve animals to an innocuous airway antigen OVA, which resulted in production of type 2 cytokines and IgE antibody and eosinophilic airway inflammation when mice were challenged with the same antigen. Importantly, upon exposure to proteases, uric acid (UA) was rapidly released into the airway lumen, and removal of this endogenous UA by uricase prevented type 2 immune responses. UA promoted secretion of IL-33 by airway epithelial cells in vitro, and administration of UA into the airways of naïve animals induced extracellular release of IL-33, followed by both innate and adaptive type 2 immune responses in vivo. Finally, a potent UA synthesis inhibitor, febuxostat, mitigated asthma phenotypes that were caused by repeated exposure to natural airborne allergens. These findings provide mechanistic insights into the development of type 2 immunity to airborne allergens and recognize airway UA as a key player that regulates the process in respiratory mucosa. PMID:24663677

  12. Obesity and overweight associated with increased carotid diameter and decreased arterial function in young otherwise healthy men.

    PubMed

    Kappus, Rebecca M; Fahs, Christopher A; Smith, Denise; Horn, Gavin P; Agiovlasitis, Stomatis; Rossow, Lindy; Jae, Sae Y; Heffernan, Kevin S; Fernhall, Bo

    2014-04-01

    Obesity is linked to cardiovascular disease, stroke, increased mortality and vascular remodeling. Although increased arterial diameter is associated with multiple cardiovascular risk factors and obesity, it is unknown whether lumen enlargement is accompanied by unfavorable vascular changes in young and otherwise healthy obese individuals. The purpose of this study was to compare carotid and brachial artery diameter, blood pressure, arterial stiffness, and endothelial function in young, apparently healthy, normal-weight, overweight, and obese male subjects. One hundred sixty-five male subjects (27.39±0.59 years) were divided into 3 groups (normal weight, overweight, and obese) according to body mass index. Subjects underwent cardiovascular measurements to determine arterial diameter, function, and stiffness. After adjusting for age, the obese group had significantly greater brachial, carotid, and aortic pressures, brachial pulse wave velocity, carotid intima media thickness, and carotid arterial diameter compared with both the overweight and normal-weight groups. Obesity is associated with a much worse arterial profile, as an increased carotid lumen size was accompanied by higher blood pressure, greater arterial stiffness, and greater carotid intima media thickness in obese compared with overweight or normal-weight individuals. These data suggest that although obesity may be a factor in arterial remodeling, such remodeling is also accompanied by other hemodynamic and arterial changes consistent with reduced arterial function and increased cardiovascular risk.

  13. Obesity and Overweight Associated With Increased Carotid Diameter and Decreased Arterial Function in Young Otherwise Healthy Men

    PubMed Central

    2014-01-01

    BACKGROUND Obesity is linked to cardiovascular disease, stroke, increased mortality and vascular remodeling. Although increased arterial diameter is associated with multiple cardiovascular risk factors and obesity, it is unknown whether lumen enlargement is accompanied by unfavorable vascular changes in young and otherwise healthy obese individuals. The purpose of this study was to compare carotid and brachial artery diameter, blood pressure, arterial stiffness, and endothelial function in young, apparently healthy, normal-weight, overweight, and obese male subjects. METHODS One hundred sixty-five male subjects (27.39±0.59 years) were divided into 3 groups (normal weight, overweight, and obese) according to body mass index. Subjects underwent cardiovascular measurements to determine arterial diameter, function, and stiffness. RESULTS After adjusting for age, the obese group had significantly greater brachial, carotid, and aortic pressures, brachial pulse wave velocity, carotid intima media thickness, and carotid arterial diameter compared with both the overweight and normal-weight groups. CONCLUSIONS Obesity is associated with a much worse arterial profile, as an increased carotid lumen size was accompanied by higher blood pressure, greater arterial stiffness, and greater carotid intima media thickness in obese compared with overweight or normal-weight individuals. These data suggest that although obesity may be a factor in arterial remodeling, such remodeling is also accompanied by other hemodynamic and arterial changes consistent with reduced arterial function and increased cardiovascular risk. PMID:24048148

  14. Analysis of Preoperative Airway Examination with the CMOS Video Rhino-laryngoscope.

    PubMed

    Tsukamoto, Masanori; Hitosugi, Takashi; Yokoyama, Takeshi

    2017-05-01

    Endoscopy is one of the most useful clinical techniques in difficult airway management Comparing with the fibroptic endoscope, this compact device is easy to operate and can provide the clear image. In this study, we investigated its usefulness in the preoperative examination of endoscopy. Patients undergoing oral maxillofacial surgery were enrolled in this study. We performed preoperative airway examination by electronic endoscope (The CMOS video rhino-laryngoscope, KARL STORZ Endoscopy Japan, Tokyo). The system is composed of a videoendoscope, a compact video processor and a video recorder. In addition, the endoscope has a small color charge coupled device (CMOS) chip built into the tip of the endoscope. The outer diameter of the tip of this scope is 3.7 mm. In this study, electronic endoscope was used for preoperative airway examination in 7 patients. The preoperative airway examination with electronic endoscope was performed successfully in all the patients except one patient The patient had the symptoms such as nausea and vomiting at the examination. We could perform preoperative airway examination with excellent visualization and convenient recording of video sequence images with the CMOS video rhino-laryngoscope. It might be a especially useful device for the patients of difficult airways.

  15. Apoptosis in Early Salivary Gland Duct Morphogenesis and Lumen Formation.

    PubMed

    Teshima, T H N; Wells, K L; Lourenço, S V; Tucker, A S

    2016-03-01

    Salivary glands are essential for the maintenance of oral health by providing lubrication and antimicrobial protection to the mucosal and tooth surfaces. Saliva is modified and delivered to the oral cavity by a complex multifunctional ductal system. During development, these ducts form as solid tubes, which undergo cavitation to create lumens. Apoptosis has been suggested to play a role in this cavitation process along with changes in cell polarity. Here, we show that apoptosis occurs from the very earliest stages of mouse salivary gland development, much earlier than previously reported. Apoptotic cells were observed in the center of the first epithelial stalk at early-stage embryonic day 12.5 (E12.5) according to both TUNEL staining and cleaved caspase 3 immunofluorescence. The presumptive lumen space was highlighted by the colocalization of a predictive lumen marker, cytokeratin 7. At E14.5, as lumens start to form throughout the glands, apoptotic expression decreased while cytokeratin 7 remained positive. In vitro inhibition of all caspases in E12.5 and E13.5 salivary glands resulted in wider ducts, as compared with the controls, and a defect in lumen formation. In contrast, no such defect in lumen formation was observed at E14.5. Our data indicate that apoptosis is involved during early stages of gland formation (E12.5 onward) and appears important for shaping the forming ducts. © International & American Associations for Dental Research 2015.

  16. Wall-to-lumen ratio of intracranial arteries measured by indocyanine green angiography

    PubMed Central

    Nakagawa, Daichi; Shojima, Masaaki; Yoshino, Masanori; Kin, Taichi; Imai, Hideaki; Nomura, Seiji; Saito, Toki; Nakatomi, Hirofumi; Oyama, Hiroshi; Saito, Nobuhito

    2016-01-01

    Background: The wall-to-lumen ratio (WLR) is an important parameter in vascular medicine because it indicates the character of vascular wall as well as the degree of stenosis. Despite the advances in medical imaging technologies, it is still difficult to measure the thin-walled normal intracranial arteries, and the reports on the WLR of normal intracranial artery are limited. It might be possible to calculate the WLR using the indocyanine green (ICG) angiography, which is used to observe intracranial vessels during microsurgery. Purpose: To evaluate the WLR of normal intracranial arteries using ICG angiography. Materials and Methods: From the three cases in which ICG angiography was recorded with a ruler during microsurgery, 20 measurement points were chosen for the analysis. The ICG was injected intravenously with a dose of 0.2 mg/kg, and the vessels were inspected at high magnification using an operating microscope equipped with near-infrared illumination system. The vessel outer diameter and the luminal diameter were measured using the images before and after the ICG arrival based on the pixel ratio method using a ruler as reference, respectively. The WLR was calculated as 0.5 × (vessel outer diameter − vessel luminal diameter). Results: The WLR (mean ± standard deviation) of normal intracranial arteries was 0.086 ± 0.022. The WLR tended to be high in small arteries. Conclusion: The WLR of normal intracranial arteries calculated using ICG angiography was consistent with the WLR reported in the previous reports based on human autopsy. PMID:27695538

  17. Relation between small airways disease and parenchymal destruction in surgical lung specimens.

    PubMed Central

    Willems, L N; Kramps, J A; Stijnen, T; Sterk, P J; Weening, J J; Dijkman, J H

    1990-01-01

    The relation between small airways disease and parenchymal destruction was investigated in lungs and lobes removed at surgery from 27 patients aged 15-70 years. Eight of the 27 patients were life-long non-smokers. The degree of small airways disease was assessed by semi-quantitative grading (SAD score) and by measuring diameter and wall thickness of membranous bronchioles. Parenchymal destruction was measured in three ways. Firstly, the number of alveolar attachments on membranous bronchioles per millimetre of circumference (AA/mm) was counted; the number of broken attachments was subtracted from the total AA/mm to give the numbers of intact attachments (normal AA/mm). Secondly, a point counting technique was used to give a destructive index (DI). Thirdly, the mean linear intercept (Lm) was determined. Total and normal AA/mm correlated negatively with the SAD score of membranous bronchioles (rs = -0.48 and -0.51) and with wall thickness (rs = -0.37 and -0.45) and DI correlated with wall thickness (rs = 0.5) and with the SAD score of respiratory bronchioles (rs = 0.53). Lm did not correlate with indices of small airway disease and total and normal AA/mm did not correlate with diameter. Multiple regression analyses showed that the correlation of total AA/mm with the SAD score of membranous and respiratory bronchioles and with wall thickness were not confounded by age or smoking. It is concluded that small airways disease is related to destruction of peribronchiolar alveoli, and it is postulated that small airways disease has a direct role in the causation of centrilobular emphysema. PMID:2315880

  18. Rationale and design of the East-West late lumen loss study: Comparison of late lumen loss between Eastern and Western drug-eluting stent study cohorts.

    PubMed

    Harrison, Robert W; Radhakrishnan, Vaishnavi; Lam, Peter S; Allocco, Dominic J; Brar, Sandeep; Fahy, Martin; Fisher, Rebecca; Ikeno, Fumiaki; Généreux, Philippe; Kimura, Takeshi; Liu, Minglei; Lye, Weng Kit; Mintz, Gary S; Nagai, Hirofumi; Suzuki, Yuka; White, Roseann; Allen, John C; Krucoff, Mitchell W

    2016-12-01

    The contemporary evaluation of novel drug-eluting stents (DES) includes mechanistic observations that characterize postdeployment stent behavior. Quantification of late lumen loss due to neointimal hyperplasia 8-13 months after stent implantation, via quantitative coronary angiography (QCA), constitutes such an observation and is required by most regulatory authorities. Late lumen loss, as determined by QCA, has been validated as a surrogate for clinical endpoints such as target vessel revascularization. The mechanistic response to DES has not been directly compared across predominantly Asian or Western populations, whereas understanding their comparability across geographic populations could enhance global DES evaluation. The East-West late lumen loss study is designed to demonstrate whether the residual differences in late lumen loss, as assessed by QCA, is different between Eastern and Western DES recipients from studies with protocol angiography at 8-13 months of follow-up. Data from independent core laboratories that have characterized angiographic late lumen loss in DES clinical trials with protocol follow-up angiography will be compiled and dichotomized into Eastern and Western populations. A prospectively developed propensity score model incorporating clinical and anatomic variables affecting late lumen loss will be used to adjust comparisons of QCA measurements. Documentation of whether there are clinically meaningful differences in mechanistic response to DES implantation across genetically unique geographies could facilitate both the quality and efficiency of global device evaluation requiring invasive follow-up for novel stent designs. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Quantitative 3D reconstruction of airway and pulmonary vascular trees using HRCT

    NASA Astrophysics Data System (ADS)

    Wood, Susan A.; Hoford, John D.; Hoffman, Eric A.; Zerhouni, Elias A.; Mitzner, Wayne A.

    1993-07-01

    Accurate quantitative measurements of airway and vascular dimensions are essential to evaluate function in the normal and diseased lung. In this report, a novel method is described for three-dimensional extraction and analysis of pulmonary tree structures using data from High Resolution Computed Tomography (HRCT). Serially scanned two-dimensional slices of the lower left lobe of isolated dog lungs were stacked to create a volume of data. Airway and vascular trees were three-dimensionally extracted using a three dimensional seeded region growing algorithm based on difference in CT number between wall and lumen. To obtain quantitative data, we reduced each tree to its central axis. From the central axis, branch length is measured as the distance between two successive branch points, branch angle is measured as the angle produced by two daughter branches, and cross sectional area is measured from a plane perpendicular to the central axis point. Data derived from these methods can be used to localize and quantify structural differences both during changing physiologic conditions and in pathologic lungs.

  20. A nonimaging catheter for measurement of coronary artery lumen area: a first in man pilot study.

    PubMed

    Hermiller, James; Choy, Jenny S; Svendsen, Mark; Bigelow, Brian; Fouts, Andrew M; Hall, Jack; Parr, Kirk; Ball, Michael; Sinha, Anjan; Bhatt, Deepak L; Kassab, Ghassan S

    2011-08-01

    The objective of this human pilot study was to determine the safety and the level of agreement between a novel nonimaging 2.7 Fr. catheter-based system (LumenRECON, LR) that uses electrical conductance for measurement of lumen cross-sectional area (CSA) with intravascular ultrasound (IVUS) and quantitative coronary angiography (QCA). Based on previous animal studies, we hypothesized the level of agreement between LR and IVUS to be 13%. Accurate and reproducible vessel sizing is essential for optimal percutaneous coronary intervention (PCI). A total of 12 patients were studied to evaluate the safety, accuracy, and reproducibility of the system in comparison with IVUS and QCA. The CSA of coronary arteries was determined by IVUS, QCA, and LR in the distal, proximal, and center of a lesion during standard PCI. A Bland-Altman plot of the LR versus IVUS and QCA show a nonsignificant mean difference between the two measurements of 0.04 and 0.07 mm in diameter, respectively. The root mean square error of LR versus IVUS and QCA was 14.3 and 25.8% of the mean IVUS or QCA diameter, respectively. The mean of the difference between two LR duplicate measurements was nearly zero (0.03 mm) and the repeatability coefficient was within 8.7% of the mean of the two measurements. There were no procedural complications nor were any device-related MACE reported within 30 days of the procedure. This proof of concept pilot study establishes the safety and accuracy of the conductance technology for a pivotal trial of coronary sizing. Copyright © 2011 Wiley-Liss, Inc.

  1. Effect of Perinatal secondhand tobacco smoke exposure on in vivo and intrinsic airway structure/function in non-human primates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joad, Jesse P.; Kott, Kayleen S.; Bric, John M.

    Infants exposed to second hand smoke (SHS) experience more problems with wheezing. This study was designed to determine if perinatal SHS exposure increases intrinsic and/or in vivo airway responsiveness to methacholine and whether potential structural/cellular alterations in the airway might explain the change in responsiveness. Pregnant rhesus monkeys were exposed to filtered air (FA) or SHS (1 mg/m{sup 3} total suspended particulates) for 6 h/day, 5 days/week starting at 50 days gestational age. The mother/infant pairs continued the SHS exposures postnatally. At 3 months of age each infant: 1) had in vivo lung function measurements in response to inhaled methacholine,more » or 2) the right accessory lobe filled with agarose, precision-cut to 600 {mu}m slices, and bathed in increasing concentrations of methacholine. The lumenal area of the central airway was determined using videomicrometry followed by fixation and histology with morphometry. In vivo tests showed that perinatal SHS increases baseline respiratory rate and decreases responsiveness to methacholine. Perinatal SHS did not alter intrinsic airway responsiveness in the bronchi. However in respiratory bronchioles, SHS exposure increased airway responsiveness at lower methacholine concentrations but decreased it at higher concentrations. Perinatal SHS did not change eosinophil profiles, epithelial volume, smooth muscle volume, or mucin volume. However it did increase the number of alveolar attachments in bronchi and respiratory bronchioles. In general, as mucin increased, airway responsiveness decreased. We conclude that perinatal SHS exposure alters in vivo and intrinsic airway responsiveness, and alveolar attachments.« less

  2. Profiling cellular and inflammatory changes in the airway wall of mild to moderate COPD.

    PubMed

    Eapen, Mathew S; McAlinden, Kielan; Tan, Daniel; Weston, Steven; Ward, Chris; Muller, Hans K; Walters, Eugene H; Sohal, Sukhwinder S

    2017-08-01

    The objective of this study was to enumerate total cells and the number of inflammatory cell differentials in large airways (LAs) versus small airways (SAs) of mild-moderate COPD, and against appropriate controls. For LA, we used endobronchial biopsies and for SA resected lung tissues. Immunostaining was enumerated (cells per mm 2 ) for macrophages, neutrophils, CD4 and CD8 T cells in the lamina propria (LP) up to 150 µM deep for LA and full wall thickness for SA. We confirmed hypocellularity in the LA and in the SA wall in smokers and COPD (P < 0.001). LA cellularity was least in current smokers with COPD (COPD-CS) (P < 0.01), while SA cellularity was similar across smoker/COPD groups. LA neutrophils were decreased in COPD-CS (P < 0.01), while SA neutrophil counts were unchanged. Compared with controls, LA macrophage numbers in COPD were significantly lower (P < 0.05), with SA macrophage numbers unchanged. A significant increase was observed in SA CD8+ cells in both normal smokers (P < 0.01) and COPD-CS (P < 0.001) but not in LA. These unique data indicate that the current model for airway wall inflammation in COPD is oversimplified, and contrast with innate inflammatory activation in the lumen, at least in mild-moderate disease. Any abnormalities in airway wall cell differentials are small, although exaggerated in percentage terms. © 2017 Asian Pacific Society of Respirology.

  3. Cell confinement controls centrosome positioning and lumen initiation during epithelial morphogenesis

    PubMed Central

    Rodríguez-Fraticelli, Alejo E.; Auzan, Muriel; Alonso, Miguel A.; Bornens, Michel

    2012-01-01

    Epithelial organ morphogenesis involves sequential acquisition of apicobasal polarity by epithelial cells and development of a functional lumen. In vivo, cells perceive signals from components of the extracellular matrix (ECM), such as laminin and collagens, as well as sense physical conditions, such as matrix stiffness and cell confinement. Alteration of the mechanical properties of the ECM has been shown to promote cell migration and invasion in cancer cells, but the effects on epithelial morphogenesis have not been characterized. We analyzed the effects of cell confinement on lumen morphogenesis using a novel, micropatterned, three-dimensional (3D) Madin-Darby canine kidney cell culture method. We show that cell confinement, by controlling cell spreading, limits peripheral actin contractility and promotes centrosome positioning and lumen initiation after the first cell division. In addition, peripheral actin contractility is mediated by master kinase Par-4/LKB1 via the RhoA–Rho kinase–myosin II pathway, and inhibition of this pathway restores lumen initiation in minimally confined cells. We conclude that cell confinement controls nuclear–centrosomal orientation and lumen initiation during 3D epithelial morphogenesis. PMID:22965908

  4. Molecular Regulation of Lumen Morphogenesis Review

    PubMed Central

    Datta, Anirban; Bryant, David M.; Mostov, Keith E.

    2013-01-01

    The asymmetric polarization of cells allows specialized functions to be performed at discrete subcellular locales. Spatiotemporal coordination of polarization between groups of cells allowed the evolution of metazoa. For instance, coordinated apical-basal polarization of epithelial and endothelial cells allows transport of nutrients and metabolites across cell barriers and tissue microenvironments. The defining feature of such tissues is the presence of a central, interconnected luminal network. Although tubular networks are present in seemingly different organ systems, such as the kidney, lung, and blood vessels, common underlying principles govern their formation. Recent studies using in vivo and in vitro models of lumen formation have shed new light on the molecular networks regulating this fundamental process. We here discuss progress in understanding common design principles underpinning de novo lumen formation and expansion. PMID:21300279

  5. Exhaled particles as markers of small airway inflammation in subjects with asthma.

    PubMed

    Larsson, Per; Lärstad, Mona; Bake, Björn; Hammar, Oscar; Bredberg, Anna; Almstrand, Ann-Charlotte; Mirgorodskaya, Ekaterina; Olin, Anna-Carin

    2017-09-01

    Exhaled breath contains suspended particles of respiratory tract lining fluid from the small airways. The particles are formed when closed airways open during inhalation. We have developed a method called Particles in Exhaled air (PExA ® ) to measure and sample these particles in the exhaled aerosol. Here, we use the PExA ® method to study the effects of birch pollen exposure on the small airways of individuals with asthma and birch pollen allergy. We hypothesized that birch pollen-induced inflammation could change the concentrations of surfactant protein A and albumin in the respiratory tract lining fluid of the small airways and influence the amount of exhaled particles. The amount of exhaled particles was reduced after birch pollen exposure in subjects with asthma and birch pollen allergy, but no significant effect on the concentrations of surfactant protein A and albumin in exhaled particles was found. The reduction in the number of exhaled particles may be due to inflammation in the small airways, which would reduce their diameter and potentially reduce the number of small airways that open and close during inhalation and exhalation. © 2015 The Authors. Clinical Physiology and Functional Imaging published by John Wiley & Sons Ltd.

  6. Onyx Embolization for Isolated Type Dural Arteriovenous Fistula Using a Dual-Lumen Balloon Catheter.

    PubMed

    Kim, Jin Woo; Kim, Byung Moon; Park, Keun Young; Kim, Dong Joon; Kim, Dong Ik

    2016-05-01

    Utilization of a dual-lumen balloon may improve Onyx penetration into isolated dural arteriovenous fistulas (i-DAVFs). To compare the results of Onyx embolization using a dual-lumen balloon with those using a non-balloon catheter for i-DAVFs. Twenty-nine patients underwent Onyx embolization for i-DAVFs using a non-balloon (n = 14) or a dual-lumen balloon catheter (n = 15). Since its introduction, a dual-lumen balloon catheter has been preferred. We compared the dual-lumen balloon group with the non-balloon catheter group regarding angiographic outcome, treatment-related complications, total procedural time, Onyx injection time, and the number of feeders requiring embolization. The dual-lumen balloon group showed complete occlusion of i-DAVFs in 13 and near-complete in 2 patients, while the non-balloon group showed complete occlusion in 5, near-complete in 5, and incomplete in 4 patients (P < .05). Treatment-related complications occurred in 2 patients: 1 in the non-balloon group and 1 in the dual-lumen balloon group. The mean total procedural time was 62 ± 32 minutes in the dual-lumen balloon and 171 ± 88 minutes in the non-balloon group (P < .05). The mean Onyx injection time was 10 ± 6 minutes in the dual-lumen balloon and 49 ± 32 minutes in the non-balloon group (P < .05). The median number of feeders requiring embolization was 1 (range, 1-3) in the dual-lumen balloon and 2 (range, 1-4) in the non-balloon group (P < .05). Utilization of a dual-lumen balloon catheter for Onyx embolization of i-DAVF seemed to significantly increase the immediate complete occlusion rate and decrease total procedural time, Onyx injection time, and number of feeders requiring embolization.

  7. On the method of lumens

    PubMed Central

    Shera, Christopher A.

    2014-01-01

    Parent and Allen [(2007). J. Acoust. Soc. Am. 122, 918–931] introduced the “method of lumens” to compute the plane-wave reflectance in a duct terminated with a nonuniform impedance. The method involves splitting the duct into multiple, fictitious subducts (lumens), solving for the reflectance in each subduct, and then combining the results. The method of lumens has considerable intuitive appeal and is easily implemented in the time domain. Previously applied only in a complex acoustical setting where proper evaluation is difficult (i.e., in a model of the ear canal and tympanic membrane), the method is tested here by using it to compute the reflectance from an area constriction in an infinite lossless duct considered in the long-wavelength limit. Neither the original formulation of the method—shown here to violate energy conservation except when the termination impedance is uniform—nor a reformulation consistent with basic physical constraints yields the correct solution to this textbook problem in acoustics. The results are generalized and the nature of the errors illuminated. PMID:25480060

  8. Airway responsiveness and airway remodeling after chronic exposure to procaterol and fenoterol in guinea pigs in vivo.

    PubMed

    Nishimura, Hideko; Tokuyama, Kenichi; Arakawa, Hirokazu; Ohki, Yasushi; Sato, Akira; Kato, Masahiko; Mochizuki, Hiroyuki; Morikawa, Akihiro

    2002-12-01

    Chronic exposure to fenoterol (FEN), a beta(2)-adrenergic receptor (beta(2)-AR) agonist, was shown to induce both airway hyperresponsiveness and airway remodeling in experimental animals. We wanted to know the effects of chronic exposure to procaterol (PRO), a beta(2)-AR agonist, on airway function and structure, because this agent is widely used as a bronchodilator in Japan. For comparison, the effects of FEN were also examined. Aerosolized PRO (0.1 or 1 mg/ml), FEN (1 mg/ml) or vehicle (0.9% NaCl) was given to guinea pigs 3 times a day for 6 weeks. Sublaryngeal deposition of these agents was calculated using radioisotopes. At 72 h after the last inhalation of PRO, FEN or vehicle, the dose-response relationship between lung resistance (R(L)) and intravenously administered acetylcholine (ACh) was measured. After measuring R(L), histological changes in noncartilaginous airway dimensions were evaluated. The amount of sublaryngeal deposition of 0.1 mg/ml PRO in the present study was speculated to be 100 times larger than that of therapeutic dose. ACh concentrations causing 2-fold, 10-fold and maximal increases in R(L) were not different in 4 groups tested. In the smaller membranous airways (<0.4 mm in diameter), but not the larger ones, thickening of adventitial areas was significantly greater in animals treated with beta(2)-AR agonists than in control animals (23 and 25, and 96% higher in animals treated with 0.1 and 1 mg/ml PRO or 1 mg/ml FEN, respectively). The degree of the increase was significantly less in PRO-treated animals than in FEN-treated animals (p < 0.01). Our results did not provide any evidence that regular inhalation of PRO at the therapeutic dose might induce bronchial hyperresponsiveness. In addition, huge amounts of PRO only caused a mild thickening of the adventitial areas, suggesting that PRO may be a weak inducer of airway remodeling compared with FEN. Copyright 2002 S. Karger AG, Basel

  9. Results of upper airway radiography and ultrasonography predict dynamic laryngeal collapse in affected horses.

    PubMed

    Fjordbakk, C T; Chalmers, H J; Holcombe, S J; Strand, E

    2013-11-01

    The pathogenesis of dynamic bilateral laryngeal collapse (DLC) associated with poll flexion is unknown. Diagnosis is dependent upon exercise endoscopy while replicating the flexed head position harness racehorses experience during racing. To describe the effects of poll flexion on rostrocaudal laryngeal positioning and laryngeal lumen width in resting horses diagnosed with DLC compared to controls, and to establish diagnostic criteria for DLC by use of diagnostic imaging. Case-control study. Fifty harness racehorses were prospectively included in the study: 25 cases diagnosed with DLC by treadmill endoscopy and 25 controls in which treadmill endoscopy revealed no abnormal findings. Laryngeal radiography and ultrasonography were obtained in neutral and flexed head positions. Laryngeal positioning and laryngohyoid conformation were compared between the groups and head positions. Poll flexion induced a greater rostral advancement of the larynx in relation to the hyoid apparatus in resting harness racehorses affected with DLC compared to controls (P = 0.007). At the level of the vocal folds, poll flexion resulted in a smaller laryngeal lumen width in horses affected with DLC compared to controls (P = 0.04). Horses were significantly more likely to be affected with DLC when the thyrohyoid bone to thyroid cartilage distance was ≥12 mm in poll flexion (odds ratio 21.3, 95% confidence interval 3.65-124.8, P = 0.004) and when laryngeal lumen width at the level of the vocal folds was less in poll flexion than in the neutral head position (odds ratio 8.4; 95% confidence interval 1.6-44.1, P = 0.012). In DLC horses, poll flexion advanced the larynx more rostrally and resulted in a decreased airway lumen width compared to control horses. Laryngeal ultrasound and radiography may facilitate the diagnosis of DLC at rest. © 2013 EVJ Ltd.

  10. Deviation of tracheal pressure from airway opening pressure during high-frequency oscillatory ventilation in a porcine lung model.

    PubMed

    Johannes, Amélie; Zollhoefer, Bernd; Eujen, Ulrike; Kredel, Markus; Rauch, Stefan; Roewer, Norbert; Muellenbach, Ralf M

    2013-04-01

    Oxygenation during high-frequency oscillatory ventilation is secured by a high level of mean airway pressure. Our objective was to identify a pressure difference between the airway opening of the respiratory circuit and the trachea during application of different oscillatory frequencies. Six female Pietrain pigs (57.1 ± 3.6 kg) were first ventilated in a conventional mechanical ventilation mode. Subsequently, the animals were switched to high-frequency oscillatory ventilation by setting mean airway opening pressure 5 cmH(2)O above the one measured during controlled mechanical ventilation. Measurements at the airway opening and at tracheal levels were performed in healthy lungs and after induction of acute lung injury by surfactant depletion. During high-frequency oscillatory ventilation, the airway opening pressure was set at a constant level. The pressure amplitude was fixed at 90 cmH(2)O. Starting from an oscillatory frequency of 3 Hz, the frequency was increased in steps of 3 Hz to 15 Hz and then decreased accordingly. At each frequency, measurements were performed in the trachea through a side-lumen of the endotracheal tube and the airway opening pressure was recorded. The pressure difference was calculated. At every oscillatory frequency, a pressure loss towards the trachea could be shown. This pressure difference increased with higher oscillatory frequencies (3 Hz 2.2 ± 2.1 cmH(2)O vs. 15 Hz 7.5 ± 1.8 cmH(2)O). The results for healthy and injured lungs were similar. Tracheal pressures decreased with higher oscillatory frequencies. This may lead to pulmonary derecruitment. This has to be taken into consideration when increasing oscillatory frequencies and differentiated pressure settings are mandatory.

  11. Pharyngeal diameter in various head and neck positions during exercise in sport horses

    PubMed Central

    2014-01-01

    Background In equine athletes, dynamic stenotic disorders of the upper airways are often the cause for abnormal respiratory noises and/or poor performance. There are hypotheses, that head and neck flexion may influence the morphology and function of the upper airway and thus could even induce or deteriorate disorders of the upper respiratory tract. Especially the pharynx, without osseous or cartilaginous support is prone to changes in pressure and airflow during exercise. The objective of this study was to develop a method for measuring the pharyngeal diameter in horses during exercise, in order to analyse whether a change of head-neck position may have an impact on the pharyngeal diameter. Results Under the assumption that the width of the epiglottis remains constant in healthy horses, the newly developed method for calculating the pharyngeal diameter in horses during exercise is unsusceptible against changes of the viewing-angle and distance between the endoscope and the structures, which are to be assessed. The quotient of the width of the epiglottis and the perpendicular from a fixed point on the dorsal pharynx to the epiglottis could be used to determine the pharyngeal diameter. The percentage change of this quotient (pharynx-epiglottis-ratio; PE-ratio) in the unrestrained head-neck position against the reference position was significantly larger than that of any other combination of the head-neck positions investigated. A relation between the percentage change in PE-ratio and the degree of head and neck flexion could not be confirmed. Conclusions It could be shown, that the pharyngeal diameter is reduced through the contact position implemented by the rider in comparison to the unrestrained head and neck position. An alteration of the pharyngeal diameter depending on the degree of head and neck flexion (represented by ground and withers angle) could not be confirmed. PMID:24886465

  12. Lumen-based detection of prostate cancer via convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Kwak, Jin Tae; Hewitt, Stephen M.

    2017-03-01

    We present a deep learning approach for detecting prostate cancers. The approach consists of two steps. In the first step, we perform tissue segmentation that identifies lumens within digitized prostate tissue specimen images. Intensity- and texture-based image features are computed at five different scales, and a multiview boosting method is adopted to cooperatively combine the image features from differing scales and to identify lumens. In the second step, we utilize convolutional neural networks (CNN) to automatically extract high-level image features of lumens and to predict cancers. The segmented lumens are rescaled to reduce computational complexity and data augmentation by scaling, rotating, and flipping the rescaled image is applied to avoid overfitting. We evaluate the proposed method using two tissue microarrays (TMA) - TMA1 includes 162 tissue specimens (73 Benign and 89 Cancer) and TMA2 comprises 185 tissue specimens (70 Benign and 115 Cancer). In cross-validation on TMA1, the proposed method achieved an AUC of 0.95 (CI: 0.93-0.98). Trained on TMA1 and tested on TMA2, CNN obtained an AUC of 0.95 (CI: 0.92-0.98). This demonstrates that the proposed method can potentially improve prostate cancer pathology.

  13. A shape memory airway stent for tracheobronchomalacia in children: an experimental and clinical study.

    PubMed

    Tsugawa, C; Nishijima, E; Muraji, T; Yoshimura, M; Tsubota, N; Asano, H

    1997-01-01

    The authors have designed a coil airway stent using a thermal shape-memory titanium-nickel alloy (SMA) to relieve airway collapse in children. A characteristic of alloy allowed the stent to be enclosed in the thin introducer tube and to position it bronchoscopically in the collapsed airway. When the stent is warmed to 37 to 40 degrees C, it expands to the memorized diameter and stents the airway. In eight rabbits, an experimental model of potentially fatal tracheomalacia was created by fracturing the tracheal cartilages. The stents of 6 mm in diameter and 15 mm in length were placed, and then the stents were recovered to their original shape within 1 minute. All rabbits except one showed no respiratory symptoms during the follow-up period. Results of bronchoscopy performed 6 and 10 months after implantation showed satisfactory patency of the trachea. The rabbits were killed for histological evaluation 6 to 28 months after implantation. The specimens showed little proliferation of granulation and no dislodgement of the stents. This procedure was attempted in two children who had severe bronchomalacia. One 5-year-old patient underwent implantation with a stent of 5 mm in diameter and 25 mm in length into the left main bronchus. The patient was relieved from apneic attacks. The stent was removed 2 years after implantation after a remarkable improvement of ventilation. The other patient with left bronchomalacia, age 1 year 2 months, underwent implantation with a 5-mm x 20-mm stent. The animal experiment and clinical experience indicated that (1) this stent can be easily inserted and removed bronchoscopically, (2) the stent has good tissue compatibility and little interference of mucociliary function, and (3) the SMA stent is a promising therapeutic adjunct in the management of children with severe tracheobronchomalacia.

  14. Development and validation of automated 2D-3D bronchial airway matching to track changes in regional bronchial morphology using serial low-dose chest CT scans in children with chronic lung disease.

    PubMed

    Raman, Pavithra; Raman, Raghav; Newman, Beverley; Venkatraman, Raman; Raman, Bhargav; Robinson, Terry E

    2010-12-01

    To address potential concern for cumulative radiation exposure with serial spiral chest computed tomography (CT) scans in children with chronic lung disease, we developed an approach to match bronchial airways on low-dose spiral and low-dose high-resolution CT (HRCT) chest images to allow serial comparisons. An automated algorithm matches the position and orientation of bronchial airways obtained from HRCT slices with those in the spiral CT scan. To validate this algorithm, we compared manual matching vs automatic matching of bronchial airways in three pediatric patients. The mean absolute percentage difference between the manually matched spiral CT airway and the index HRCT airways were 9.4 ± 8.5% for the internal diameter measurements, 6.0 ± 4.1% for the outer diameter measurements, and 10.1 ± 9.3% for the wall thickness measurements. The mean absolute percentage difference between the automatically matched spiral CT airway measurements and index HRCT airway measurements were 9.2 ± 8.6% for the inner diameter, 5.8 ± 4.5% for the outer diameter, and 9.9 ± 9.5% for the wall thickness. The overall difference between manual and automated methods was 2.1 ± 1.2%, which was significantly less than the interuser variability of 5.1 ± 4.6% (p<0.05). Tests of equivalence had p<0.05, demonstrating no significant difference between the two methods. The time required for matching was significantly reduced in the automated method (p<0.01) and was as accurate as manual matching, allowing efficient comparison of airways obtained on low-dose spiral CT imaging with low-dose HRCT scans.

  15. [Effect of dental arch length decrease during orthodontic treatment in the upper airway development. A review].

    PubMed

    Haddad, Stéphanie; Kerbrat, Jean-Baptiste; Schouman, Thomas; Goudot, Patrick

    2017-03-01

    A possible relation between an upper airway space decrease and the development of obstructive sleep apnea syndrom explains the importance to know the effect of the modification of dental arch length on the upper airway during orthodontic treatment. The aim of this article is to expose recent knowledge about upper airway development and dental arch length decrease factors, to determine the influence of this decrease on upper airway development. A review was done to determine the upper airway normal development, to define dental arch to specify if an ideal position of dental arch on apical base exists. All of the length dental arch decrease factors during orthodontic treatment (dental extraction, dental agenesis and dental malpositions) and their upper airway resounding were searched. Some authors found a diminution of upper airway space after premolars extractions while others didn't found this diminution after extractions premolars when incisor retraction is finished. A decrease of transversal maxillary diameter and nasal cavity may be due to absence of permanent teeth. The effect of dental arch length decrease during orthodontic treatment in the upper airway development was not scientifically proved. However we had to be vigilant and adapt our orthodontic treatment case by case to avoid an upper airway modification. © EDP Sciences, SFODF, 2017.

  16. The contribution of airway smooth muscle to airway narrowing and airway hyperresponsiveness in disease.

    PubMed

    Martin, J G; Duguet, A; Eidelman, D H

    2000-08-01

    Airway hyperresponsiveness (AHR), the exaggerated response to constrictor agonists in asthmatic subjects, is incompletely understood. Changes in either the quantity or properties of airway smooth muscle (ASM) are possible explanations for AHR. Morphometric analyses demonstrate structural changes in asthmatic airways, including subepithelial fibrosis, gland hyperplasia/hypertrophy, neovascularization and an increase in ASM mass. Mathematical modelling of airway narrowing suggests that, of all the changes in structure, the increase in ASM mass is the most probable cause of AHR. An increase in ASM mass in the large airways is more closely associated with a greater likelihood of dying from asthma than increases in ASM mass in other locations within the airway tree. ASM contraction is opposed by the elastic recoil of the lungs and airways, which appears to limit the degree of bronchoconstriction in vivo. The cyclical nature of tidal breathing applies stresses to the airway wall that enhance the bronchodilating influence of the lung tissues on the contracting ASM, in all probability by disrupting cross-bridges. However, the increase in ASM mass in asthma may overcome the limitation resulting from the impedances to ASM shortening imposed by the lung parenchyma and airway wall tissues. Additionally, ASM with the capacity to shorten rapidly may achieve shorter lengths and cause a greater degree of bronchoconstriction when stimulated to contract than slower ASM. Changes in ASM properties are induced by the process of sensitization and allergen-exposure such as enhancement of phospholipase C activity and inositol phosphate turnover, and increases in myosin light chain kinase activity. Whether changes in ASM mass or biochemical/biomechanical properties form the basis for asthma remains to be determined.

  17. The Contribution of Small Airway Obstruction to the Pathogenesis of Chronic Obstructive Pulmonary Disease.

    PubMed

    Hogg, James C; Paré, Peter D; Hackett, Tillie-Louise

    2017-04-01

    The hypothesis that the small conducting airways were the major site of obstruction to airflow in normal lungs was introduced by Rohrer in 1915 and prevailed until Weibel introduced a quantitative method of studying lung anatomy in 1963. Green repeated Rohrer's calculations using Weibels new data in 1965 and found that the smaller conducting airways offered very little resistance to airflow. This conflict was resolved by seminal experiments conducted by Macklem and Mead in 1967, which confirmed that a small proportion of the total lower airways resistance is attributable to small airways <2 mm in diameter. Shortly thereafter, Hogg, Macklem, and Thurlbeck used this technique to show that small airways become the major site of obstruction in lungs affected by emphysema. These and other observations led Mead to write a seminal editorial in 1970 that postulated the small airways are a silent zone within normal lungs where disease can accumulate over many years without being noticed. This review provides a progress report since the 1970s on methods for detecting chronic obstructive pulmonary disease, the structural nature of small airways' disease, and the cellular and molecular mechanisms that are thought to underlie its pathogenesis. Copyright © 2017 the American Physiological Society.

  18. Airway-parenchymal interdependence

    PubMed Central

    Paré, Peter D; Mitzner, Wayne

    2015-01-01

    In this manuscript we discuss the interaction of the lung parenchyma and the airways as well as the physiological and pathophysiological significance of this interaction. These two components of the respiratory organ can be thought of as two independent elastic structures but in fact the mechanical properties of one influence the behavior of the other. Traditionally the interaction has focused on the effects of the lung on the airways but there is good evidence that the opposite is also true, i.e., that the mechanical properties of the airways influence the elastic properties of the parenchyma. The interplay between components of the respiratory system including the airways, parenchyma and vasculature is often referred to as “interdependence.” This interdependence transmits the elastic recoil of the lung to create an effective pressure that dilates the airways as transpulmonary pressure and lung volume increase. By using a continuum mechanics analysis of the lung parenchyma, it is possible to predict the effective pressure between the airways and parenchyma, and these predictions can be empirically evaluated. Normal airway caliber is maintained by this pressure in the adventitial interstitium of the airway, and it counteracts airway compression during forced expiration as well as the ability of airway smooth muscle to narrow airways. Interdependence has physiological and pathophysiological significance. Weakening of the forces of interdependence contributes to airway dysfunction and gas exchange impairment in acute and chronic airway diseases including asthma and emphysema. PMID:23723029

  19. Contribution of CT quantified emphysema, air trapping and airway wall thickness on pulmonary function in male smokers with and without COPD.

    PubMed

    Mohamed Hoesein, Firdaus A A; de Jong, Pim A; Lammers, Jan-Willem J; Mali, Willem P Th M; Mets, Onno M; Schmidt, Michael; de Koning, Harry J; Aalst, Carlijn van der; Oudkerk, Matthijs; Vliegenthart, Rozemarijn; Ginneken, Bram van; van Rikxoort, Eva M; Zanen, Pieter

    2014-09-01

    Emphysema, airway wall thickening and air trapping are associated with chronic obstructive pulmonary disease (COPD). All three can be quantified by computed tomography (CT) of the chest. The goal of the current study is to determine the relative contribution of CT derived parameters on spirometry, lung volume and lung diffusion testing. Emphysema, airway wall thickening and air trapping were quantified automatically on CT in 1,138 male smokers with and without COPD. Emphysema was quantified by the percentage of voxels below -950 Hounsfield Units (HU), airway wall thickness by the square root of wall area for a theoretical airway with 10 mm lumen perimeter (Pi10) and air trapping by the ratio of mean lung density at expiration and inspiration (E/I-ratio). Spirometry, residual volume to total lung capacity (RV/TLC) and diffusion capacity (Kco) were obtained. Standardized regression coefficients (β) were used to analyze the relative contribution of CT changes to pulmonary function measures. The independent contribution of the three CT measures differed per lung function parameter. For the FEV1 airway wall thickness was the most contributing structural lung change (β = -0.46), while for the FEV1/FVC this was emphysema (β = -0.55). For the residual volume (RV) air trapping was most contributing (β = -0.35). Lung diffusion capacity was most influenced by emphysema (β = -0.42). In a cohort of smokers with and without COPD the effect of different CT changes varies per lung function measure and therefore emphysema, airway wall thickness and air trapping need to be taken in account.

  20. Air-Q laryngeal airway for rescue and tracheal intubation.

    PubMed

    Ads, Ayman; Auerbach, Frederic; Ryan, Kelly; El-Ganzouri, Abdel R

    2016-08-01

    We report the successful use of the Air-Q laryngeal airway (Air-Q LA) as a ventilatory device and a conduit for tracheal intubation to rescue the airway in a patient with difficult airway and tracheal stenosis. This is the first case report of the device to secure the airway after two episodes of hypoxemia in the operating room and intensive care unit. Consent for submission of this case report was obtained from our institution's human studies institutional review board given that the patient died a few months after his discharge from the hospital before his personal consent could be obtained and before preparation of this report. All personal identifiers that could lead to his identification have been removed from this report. A 59-year-old man was scheduled for a flexible and rigid bronchoscopy with possible laser excision of tracheal stenosis. He had a history of hypertension, atrial fibrillation, and diabetes. Assessment of airway revealed a thyromental distance of 6.5 cm, Mallampati class II, and body weight of 110 kg. He had hoarseness and audible inspiratory/expiratory stridor with Spo2 90% breathing room air. After induction and muscle relaxation, tracheal intubation and flexible bronchoscopy were achieved without incident. The patient was then extubated and a rigid bronchoscopy was attempted but failed with Spo2 dropping to 92%; rocuronium 60 mg was given, and reintubation was accomplished with a 7.5-mm endotracheal tube. A second rigid bronchoscopy attempt failed, with Spo2 dropping to 63%. Subsequent direct laryngoscopy revealed a bloody hypopharynx. A size 4.5 Air-Q LA was placed successfully and confirmed with capnography, and Spo2 returned to 100%. The airway was suctioned through the Air-Q LA device, and the airway was secured using a fiberoptic bronchoscope to place an endotracheal tube of 7.5-mm internal diameter. The case was canceled because of edema of the upper airway from multiple attempts with rigid bronchoscopy. The patient was transported

  1. Drug induced sleep endoscopy: its role in evaluation of the upper airway obstruction and patient selection for surgical and non-surgical treatment

    PubMed Central

    De Vito, Andrea

    2018-01-01

    Sleep related breathing disorders cause obstruction of the upper airway which can be alleviated by continuous positive airway pressure (CPAP) therapy, oral devices or surgical intervention. Non-surgical treatment modalities are not always accepted by patients and in order to attain successful surgical outcomes, evaluation of the upper airway is necessary to carefully select the patients who would benefit from surgery. There are numerous techniques available to assess the upper airway obstruction and these include imaging, acoustic analysis, pressure transducer recording and endoscopic evaluation. It is essential to note that the nocturnal obstructive upper airway has limited muscle control compared to the tone of the upper airway lumen during wakefulness. Thus, if one were to attempt to identify the anatomical segments contributing to upper airway obstruction in sleep related breathing disorders; it must be borne in mind that evaluation of the airway must be performed if possible when the patient is awake and asleep albeit during drug induced sleep. This fact as such limits the use of imaging techniques for the purpose. Drug induced sleep endoscopy (DISE) was pioneered at Royal National Throat, Nose and Ear Hospital, London in 1990 and initially introduced as sleep nasendoscopy. The nomenclature and the technique has been modified by various Institutions but the core value of this evaluation technique remains similar and extremely useful for identifying the anatomical segment responsible for obstructing the upper airway during sleep in patients with sleep related breathing disorders. There have been numerous controversies that have surrounded this technique but over the last two decades most of these have been addressed and it now remains in the forefront of methods of evaluating the upper airway obstruction. A variety of sedative agents and different grading systems have been described and efforts to unify various aspects of the technique have been made. This

  2. Trefoil factor-2 reverses airway remodeling changes in allergic airways disease.

    PubMed

    Royce, Simon G; Lim, Clarice; Muljadi, Ruth C; Samuel, Chrishan S; Ververis, Katherine; Karagiannis, Tom C; Giraud, Andrew S; Tang, Mimi L K

    2013-01-01

    Trefoil factor 2 (TFF2) is a small peptide with an important role in mucosal repair. TFF2 is up-regulated in asthma, suggesting a role in asthma pathogenesis. Given its known biological role in promoting epithelial repair, TFF2 might be expected to exert a protective function in limiting the progression of airway remodeling in asthma. The contribution of TFF2 to airway remodeling in asthma was investigated by examining the expression of TFF2 in the airway and lung, and evaluating the effects of recombinant TFF2 treatment on established airway remodeling in a murine model of chronic allergic airways disease (AAD). BALB/c mice were sensitized and challenged with ovalbumin (OVA) or saline for 9 weeks, whereas mice with established OVA-induced AAD were treated with TFF2 or vehicle control (intranasally for 14 d). Effects on airway remodeling, airway inflammation, and airway hyperresponsiveness were then assessed, whereas TFF2 expression was determined by immunohistochemistry. TFF2 expression was significantly increased in the airways of mice with AAD, compared with expression levels in control mice. TFF2 treatment resulted in reduced epithelial thickening, subepithelial collagen deposition, goblet-cell metaplasia, bronchial epithelium apoptosis, and airway hyperresponsiveness (all P < 0.05, versus vehicle control), but TFF2 treatment did not influence airway inflammation. The increased expression of endogenous TFF2 in response to chronic allergic inflammation is insufficient to prevent the progression of airway inflammation and remodeling in a murine model of chronic AAD. However, exogenous TFF2 treatment is effective in reversing aspects of established airway remodeling. TFF2 has potential as a novel treatment for airway remodeling in asthma.

  3. Crosstalk between beta-2-adrenoceptor and muscarinic acetylcholine receptors in the airway.

    PubMed

    Pera, Tonio; Penn, Raymond B

    2014-06-01

    The M3 and M2 muscarinic acetylcholine receptors (mAChRs) and beta-2-adrenoceptors (β2ARs) are important regulators of airway cell function, and drugs targeting these receptors are among the first line drugs in the treatment of the obstructive lung diseases asthma and chronic obstructive lung disease (COPD). Cross-regulation or crosstalk between mAChRs and β2ARs in airway smooth muscle (ASM) helps determine the contractile state of the muscle, thus airway diameter and resistance to airflow. In this review we will detail mAChR and β2AR-signaling and crosstalk, focusing on events in the ASM cell but also addressing the function of these receptors in other cell types that impact airway physiology. We conclude by discussing how recent advances in GPCR pharmacology offer a unique opportunity to fine tune mAChR and β2AR signaling and their crosstalk, and thereby produce superior therapeutics for obstructive lung and other diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Age-Related Changes in Pharyngeal Lumen Size: A Retrospective MRI Analysis.

    PubMed

    Molfenter, Sonja M; Amin, M R; Branski, R C; Brumm, J D; Hagiwara, M; Roof, S A; Lazarus, C L

    2015-06-01

    Age-related loss of muscle bulk and strength (sarcopenia) is often cited as a potential mechanism underlying age-related changes in swallowing. Our goal was to explore this phenomenon in the pharynx, specifically, by measuring pharyngeal wall thickness and pharyngeal lumen area in a sample of young versus older women. MRI scans of the neck were retrospectively reviewed from 60 women equally stratified into three age groups (20s, 60s, 70+). Four de-identified slices were extracted per scan for randomized, blinded analysis: one mid-sagittal and three axial slices were selected at the anterior inferior border of C2 and C3, and at the pit of the vallecula. Pixel-based measures of pharyngeal wall thickness and pharyngeal lumen area were completed using ImageJ and then converted to metric units. Measures of pharyngeal wall thickness and pharyngeal lumen area were compared between age groups with one-way ANOVAs using Sidak adjustments for post-hoc pairwise comparisons. A significant main effect for age was observed across all variables whereby pharyngeal wall thickness decreased and pharyngeal lumen area increased with advancing age. Pairwise comparisons revealed significant differences between 20s versus 70+ for all variables and 20s versus 60s for all variables except those measured at C2. Effect sizes ranged from 0.54 to 1.34. Consistent with existing sacropenia literature, the pharyngeal muscles appear to atrophy with age and consequently, the size of the pharyngeal lumen increases.

  5. Computed Tomographic Window Setting for Bronchial Measurement to Guide Double-Lumen Tube Size.

    PubMed

    Seo, Jeong-Hwa; Bae, Jinyoung; Paik, Hyesun; Koo, Chang-Hoon; Bahk, Jae-Hyon

    2018-04-01

    The bronchial diameter measured on computed tomography (CT) can be used to guide double-lumen tube (DLT) sizes objectively. The bronchus is known to be measured most accurately in the so-called bronchial CT window. The authors investigated whether using the bronchial window results in the selection of more appropriately sized DLTs than using the other windows. CT image analysis and prospective randomized study. Tertiary hospital. Adults receiving left-sided DLTs. The authors simulated selection of DLT sizes based on the left bronchial diameters measured in the lung (width 1,500 Hounsfield unit [HU] and level -700 HU), bronchial (1,000 HU and -450 HU), and mediastinal (400 HU and 25 HU) CT windows. Furthermore, patients were randomly assigned to undergo imaging with either the bronchial or mediastinal window to guide DLT sizes. Using the underwater seal technique, the authors assessed whether the DLT was appropriately sized, undersized, or oversized for the patient. On 130 CT images, the bronchial diameter (9.9 ± 1.2 mm v 10.5 ± 1.3 mm v 11.7 ± 1.3 mm) and the selected DLT size were different in the lung, bronchial, and mediastinal windows, respectively (p < 0.001). In 13 patients (17%), the bronchial diameter measured in the lung window suggested too small DLTs (28 Fr) for adults. In the prospective study, oversized tubes were chosen less frequently in the bronchial window than in the mediastinal window (6/110 v 23/111; risk ratio 0.38; 95% CI 0.19-0.79; p = 0.003). No tubes were undersized after measurements in these two windows. The bronchial measurement in the bronchial window guided more appropriately sized DLTs compared with the lung or mediastinal windows. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Multiscale Analysis of a Collapsible Respiratory Airway

    NASA Astrophysics Data System (ADS)

    Ghadiali, Samir; Bell, E. David; Swarts, J. Douglas

    2006-11-01

    The Eustachian tube (ET) is a collapsible respiratory airway that connects the nasopharynx with the middle ear (ME). The ET normally exists in a collapsed state and must be periodically opened to maintain a healthy and sterile ME. Although the inability to open the ET (i.e. ET dysfunction) is the primary etiology responsible for several common ME diseases (i.e. Otitis Media), the mechanisms responsible for ET dysfunction are not well established. To investigate these mechanisms, we developed a multi-scale model of airflow in the ET and correlated model results with experimental data obtained in healthy and diseased subjects. The computational models utilized finite-element methods to simulate fluid-structure interactions and molecular dynamics techniques to quantify the adhesive properties of mucus glycoproteins. Results indicate that airflow in the ET is highly sensitive to both the dynamics of muscle contraction and molecular adhesion forces within the ET lumen. In addition, correlation of model results with experimental data obtained in diseased subjects was used to identify the biomechanical mechanisms responsible for ET dysfunction.

  7. Claudin5a is required for proper inflation of Kupffer's vesicle lumen and organ laterality.

    PubMed

    Kim, Jeong-Gyun; Bae, Sung-Jin; Lee, Hye Shin; Park, Ji-Hyeon; Kim, Kyu-Won

    2017-01-01

    Left-right asymmetric organ development is critical to establish a proper body plan of vertebrates. In zebrafish, the Kupffer's vesicle (KV) is a fluid-filled sac which controls asymmetric organ development, and a properly inflated KV lumen by means of fluid influx is a prerequisite for the asymmetric signal transmission. However, little is known about the components that support the paracellular tightness between the KV luminal epithelial cells to sustain hydrostatic pressure during KV lumen expansion. Here, we identified that the claudin5a (cldn5a) is highly expressed at the apical surface of KV epithelial cells and tightly seals the KV lumen. Downregulation of cldn5a in zebrafish showed a failure in organ laterality that resulted from malformed KV. In addition, accelerated fluid influx into KV by combined treatment of forskolin and 3-isobutyl-1-methylxanthine failed to expand the partially-formed KV lumen in cldn5a morphants. However, malformed KV lumen and defective heart laterality in cldn5a morphants were significantly rescued by exogenous cldn5a mRNA, suggesting that the tightness between the luminal epithelial cells is important for KV lumen formation. Taken together, these findings suggest that cldn5a is required for KV lumen inflation and left-right asymmetric organ development.

  8. Claudin5a is required for proper inflation of Kupffer's vesicle lumen and organ laterality

    PubMed Central

    Kim, Jeong-gyun; Bae, Sung-Jin; Lee, Hye Shin; Park, Ji-Hyeon

    2017-01-01

    Left-right asymmetric organ development is critical to establish a proper body plan of vertebrates. In zebrafish, the Kupffer’s vesicle (KV) is a fluid-filled sac which controls asymmetric organ development, and a properly inflated KV lumen by means of fluid influx is a prerequisite for the asymmetric signal transmission. However, little is known about the components that support the paracellular tightness between the KV luminal epithelial cells to sustain hydrostatic pressure during KV lumen expansion. Here, we identified that the claudin5a (cldn5a) is highly expressed at the apical surface of KV epithelial cells and tightly seals the KV lumen. Downregulation of cldn5a in zebrafish showed a failure in organ laterality that resulted from malformed KV. In addition, accelerated fluid influx into KV by combined treatment of forskolin and 3-isobutyl-1-methylxanthine failed to expand the partially-formed KV lumen in cldn5a morphants. However, malformed KV lumen and defective heart laterality in cldn5a morphants were significantly rescued by exogenous cldn5a mRNA, suggesting that the tightness between the luminal epithelial cells is important for KV lumen formation. Taken together, these findings suggest that cldn5a is required for KV lumen inflation and left-right asymmetric organ development. PMID:28771527

  9. Long-term lumen depreciation behavior and failure modes of multi-die array LEDs

    NASA Astrophysics Data System (ADS)

    Jayawardena, Asiri; Marcus, Daniel; Prugue, Ximena; Narendran, Nadarajah

    2013-09-01

    One of the main advantages of multi-die array light-emitting diodes (LEDs) is their high flux density. However, a challenge for using such a product in lighting fixture applications is the heat density and the need for thermal management to keep the junction temperatures of all the dies low for long-term reliable performance. Ten multi-die LED array samples for each product from four different manufacturers were subjected to lumen maintenance testing (as described in IES-LM-80-08), and their resulting lumen depreciation and failure modes were studied. The products were tested at the maximum case (or pin) temperature reported by the respective manufacturer by appropriately powering the LEDs. In addition, three samples for each product from two different manufacturers were subjected to rapid thermal cycling, and the resulting lumen depreciation and failure modes were studied. The results showed that the exponential lumen decay model using long-term lumen maintenance data as recommended in IES TM-21 does not fit for all package types. The failure of a string of dies and single die failure in a string were observed in some of the packages.

  10. Improved automated lumen contour detection by novel multifrequency processing algorithm with current intravascular ultrasound system.

    PubMed

    Kume, Teruyoshi; Kim, Byeong-Keuk; Waseda, Katsuhisa; Sathyanarayana, Shashidhar; Li, Wenguang; Teo, Tat-Jin; Yock, Paul G; Fitzgerald, Peter J; Honda, Yasuhiro

    2013-02-01

    The aim of this study was to evaluate a new fully automated lumen border tracing system based on a novel multifrequency processing algorithm. We developed the multifrequency processing method to enhance arterial lumen detection by exploiting the differential scattering characteristics of blood and arterial tissue. The implementation of the method can be integrated into current intravascular ultrasound (IVUS) hardware. This study was performed in vivo with conventional 40-MHz IVUS catheters (Atlantis SR Pro™, Boston Scientific Corp, Natick, MA) in 43 clinical patients with coronary artery disease. A total of 522 frames were randomly selected, and lumen areas were measured after automatically tracing lumen borders with the new tracing system and a commercially available tracing system (TraceAssist™) referred to as the "conventional tracing system." The data assessed by the two automated systems were compared with the results of manual tracings by experienced IVUS analysts. New automated lumen measurements showed better agreement with manual lumen area tracings compared with those of the conventional tracing system (correlation coefficient: 0.819 vs. 0.509). When compared against manual tracings, the new algorithm also demonstrated improved systematic error (mean difference: 0.13 vs. -1.02 mm(2) ) and random variability (standard deviation of difference: 2.21 vs. 4.02 mm(2) ) compared with the conventional tracing system. This preliminary study showed that the novel fully automated tracing system based on the multifrequency processing algorithm can provide more accurate lumen border detection than current automated tracing systems and thus, offer a more reliable quantitative evaluation of lumen geometry. Copyright © 2011 Wiley Periodicals, Inc.

  11. Azithromycin ameliorates airway remodeling via inhibiting airway epithelium apoptosis.

    PubMed

    Liu, Yuanqi; Pu, Yue; Li, Diandian; Zhou, Liming; Wan, Lihong

    2017-02-01

    Azithromycin can benefit treating allergic airway inflammation and remodeling. In the present study, we hypothesized that azithromycin alleviated airway epithelium injury through inhibiting airway epithelium apoptosis via down regulation of caspase-3 and Bax/Bcl2 ratio in vivo and in vitro. Ovalbumin induced rat asthma model and TGF-β1-induced BEAS-2B cell apoptosis model were established, respectively. In vivo experiments, airway epithelium was stained with hematoxylin and eosin (HE) and periodic acid-Schiff (PAS) to histologically evaluate the airway inflammation and remodeling. Airway epithelium apoptotic index (AI) was further analyzed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), while expression of apoptosis related gene (Bax, Bcl2, Caspase-3) in lungs were measured by qRT-PCR and western blotting, respectively. In vitro experiments, apoptosis were evaluated by Flow cytometry (FCM) and TUNEL. Above apoptosis related gene were also measured by qRT-PCR and western blotting. Compared with the OVA group, azithromycin significantly reduced the inflammation score, peribronchial smooth muscle layer thickness, epithelial thickening and goblet cell metaplasia (P<0.05), and effectively suppressed AI of airway epithelium (P<0.05). Moreover, the increasing mRNA and protein expressions of Caspase-3 and Bax/Bcl-2 ratio in lung tissue were all significantly decreased in azithromycin-treated rats (P<0.05). In vitro, azithromycin significantly suppressed TGF-β1-induced BEAS-2B cells apoptosis (P<0.05) and reversed TGF-β1 elevated Caspase-3 mRNA level and Bax/Bcl-2 ratio (P<0.05). Azithromycin is an attractive treatment option for reducing airway epithelial cell apoptosis by improving the imbalance of Bax/Bcl-2 ratio and inhibiting Caspase-3 level in airway epithelium. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Analysis of proteome dynamics inside the silk gland lumen of Bombyx mori.

    PubMed

    Dong, Zhaoming; Zhao, Ping; Zhang, Yan; Song, Qianru; Zhang, Xiaolu; Guo, Pengchao; Wang, Dandan; Xia, Qingyou

    2016-04-22

    The silk gland is the only organ where silk proteins are synthesized and secreted in the silkworm, Bombyx mori. Silk proteins are stored in the lumen of the silk gland for around eight days during the fifth instar. Determining their dynamic changes is helpful for clarifying the secretion mechanism of silk proteins. Here, we identified the proteome in the silk gland lumen using liquid chromatography-tandem mass spectrometry, and demonstrated its changes during two key stages. From day 5 of the fifth instar to day 1 of wandering, the abundances of fibroins, sericins, seroins, and proteins of unknown functions increased significantly in different compartments of the silk gland lumen. As a result, these accumulated proteins constituted the major cocoon components. In contrast, the abundances of enzymes and extracellular matrix proteins decreased in the silk gland lumen, suggesting that they were not the structural constituents of silk. Twenty-five enzymes may be involved in the regulation of hormone metabolism for proper silk gland function. In addition, the metabolism of other non-proteinous components such as chitin and pigment were also discussed in this study.

  13. SHIP2 Regulates Lumen Generation, Cell Division, and Ciliogenesis through the Control of Basolateral to Apical Lumen Localization of Aurora A and HEF 1.

    PubMed

    Hamze-Komaiha, Ola; Sarr, Sokavuth; Arlot-Bonnemains, Yannick; Samuel, Didier; Gassama-Diagne, Ama

    2016-12-06

    Lumen formation during epithelial morphogenesis requires the creation of a luminal space at cell interfaces named apical membrane-initiation sites (AMISs). This is dependent upon integrated signaling from mechanical and biochemical cues, vesicle trafficking, cell division, and processes tightly coupled to ciliogenesis. Deciphering relationships between polarity determinants and lumen or cilia generation remains a fundamental issue. Here, we report that Src homology 2 domain-containing inositol 5-phosphatase 2 (SHIP2), a basolateral determinant of polarity, regulates RhoA-dependent actin contractility and cell division to form AMISs. SHIP2 regulates mitotic spindle alignment. SHIP2 is expressed in G1 phase, whereas Aurora A kinase is enriched in mitosis. SHIP2 binds Aurora A kinase and the scaffolding protein HEF1 and promotes their basolateral localization at the expense of their luminal expression connected with cilia resorption. Furthermore, SHIP2 expression increases cilia length. Thus, our findings offer new insight into the relationships among basolateral proteins, lumen generation, and ciliogenesis. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Protective effects of valproic acid against airway hyperresponsiveness and airway remodeling in a mouse model of allergic airways disease.

    PubMed

    Royce, Simon G; Dang, William; Ververis, Katherine; De Sampayo, Nishika; El-Osta, Assam; Tang, Mimi L K; Karagiannis, Tom C

    2011-12-01

    Airway remodeling and airway hyperresponsiveness are major aspects of asthma pathology that are not targeted optimally by existing anti-inflammatory drugs. Histone deacetylase inhibitors have a wide range of effects that may potentially abrogate aspects of remodeling. One such histone deacetylase inhibitor is valproic acid (2-propylvaleric acid). Valproic acid is used clinically as an anti-epileptic drug and is a potent inhibitor of class I histone deacetylases but also inhibits class II histone deacetylases. We used valproic acid as a molecular model of histone deacetylase inhibition in vivo in chronic allergic airways disease mice with airway remodeling and airway hyperresponsiveness. Wild-type Balb/c mice with allergic airways disease were treated with valproic acid or vehicle control. Airway inflammation was assessed by bronchoalveolar lavage fluid cell counts and examination of lung tissue sections. Remodeling was assessed by morphometric analysis of histochemically stained slides and lung function was assessed by invasive plethysmography measurement of airway resistance. Valproic acid treatment did not affect inflammation parameters; however, valproic acid treatment resulted in reduced epithelial thickness as compared to vehicle treated mice (p < 0.01), reduced subepithelial collagen deposition (p < 0.05) and attenuated airway hyperresponsiveness (p < 0.05 and p < 0.01 for the two highest doses of methacholine, respectively). These findings show that treatment with valproic acid can reduce structural airway remodeling changes and hyperresponsiveness, providing further evidence for the potential use of histone deacetylase inhibitors for the treatment of asthma.

  15. Airway stents

    PubMed Central

    Keyes, Colleen

    2018-01-01

    Stents and tubes to maintain the patency of the airways are commonly used for malignant obstruction and are occasionally employed in benign disease. Malignant airway obstruction usually results from direct involvement of bronchogenic carcinoma, or by extension of carcinomas occurring in the esophagus or the thyroid. External compression from lymph nodes or metastatic disease from other organs can also cause central airway obstruction. Most malignant airway lesions are surgically inoperable due to advanced disease stage and require multimodality palliation, including stent placement. As with any other medical device, stents have significantly evolved over the last 50 years and deserve an in-depth understanding of their true capabilities and complications. Not every silicone stent is created equal and the same holds for metallic stents. Herein, we present an overview of the topic as well as some of the more practical and controversial issues surrounding airway stents. We also try to dispel the myths surrounding stent removal and their supposed use only in central airways. At the end, we come to the long-held conclusion that stents should not be used as first line treatment of choice, but after ruling out the possibility of curative surgical resection or repair. PMID:29707506

  16. In Vitro Microfluidic Models of Mucus-Like Obstructions in Small Airways

    NASA Astrophysics Data System (ADS)

    Mulligan, Molly K.; Grotberg, James B.; Sznitman, Josué

    2012-11-01

    Liquid plugs can form in the lungs as a result of a host of different diseases, including cystic fibrosis and chronic obstructive pulmonary disease. The existence of such fluid obstructions have been found as far down in the bronchiole tree as the sixteenth generation, where bronchiole openings have diameters on the order of a hundred to a few hundred microns. Understanding the propagation of liquid plugs within the bifurcating branches of bronchiole airways is important because their presence in the lungs, and their rupture and break-up, can cause injury to the epithelial cells lining the airway walls as a result of high wall shear stresses. In particular, liquid plug rupture and break-up frequently occurs at airway bifurcations. Until present, however, experimental studies of liquid plugs have generally been restricted to Newtonian fluids that do not reflect the actual pseudoplastic properties of lung mucus. The present work attempts to uncover the propagation, rupture and break-up of mucus-like liquid plugs in the lower generations of the airway tree using microfluidic models. Our approach allows the dynamics of mucus-like plug break-up to be studied in real-time, in a one-to-one in vitro model, as a function of mucus rheology and bronchial tree geometry.

  17. Atopic asthmatic immune phenotypes associated with airway microbiota and airway obstruction.

    PubMed

    Turturice, Benjamin A; McGee, Halvor S; Oliver, Brian; Baraket, Melissa; Nguyen, Brian T; Ascoli, Christian; Ranjan, Ravi; Rani, Asha; Perkins, David L; Finn, Patricia W

    2017-01-01

    Differences in asthma severity may be related to inflammation in the airways. The lower airway microbiota has been associated with clinical features such as airway obstruction, symptom control, and response to corticosteroids. To assess the relationship between local airway inflammation, severity of disease, and the lower airway microbiota in atopic asthmatics. A cohort of young adult, atopic asthmatics with intermittent or mild/moderate persistent symptoms (n = 13) were assessed via bronchoscopy, lavage, and spirometry. These individuals were compared to age matched non-asthmatic controls (n = 6) and to themselves after six weeks of treatment with fluticasone propionate (FP). Inflammation of the airways was assessed via a cytokine and chemokine panel. Lower airway microbiota composition was determined by metagenomic shotgun sequencing. Unsupervised clustering of cytokines and chemokines prior to treatment with FP identified two asthmatic phenotypes (AP), termed AP1 and AP2, with distinct bronchoalveolar lavage inflammatory profiles. AP2 was associated with more obstruction, compared to AP1. After treatment with FP reduced MIP-1β and TNF-α and increased IL-2 was observed. A module of highly correlated cytokines that include MIP-1β and TNF-α was identified that negatively correlated with pulmonary function. Independently, IL-2 was positively correlated with pulmonary function. The airway microbiome composition correlated with asthmatic phenotypes. AP2, prior to FP treatment, was enriched with Streptococcus pneumoniae. Unique associations between IL-2 or the cytokine module and the microbiota composition of the airways were observed in asthmatics subjects prior to treatment but not after or in controls. The underlying inflammation in atopic asthma is related to the composition of microbiota and is associated with severity of airway obstruction. Treatment with inhaled corticosteroids was associated with changes in the airway inflammatory response to microbiota.

  18. Degrees of reality: airway anatomy of high-fidelity human patient simulators and airway trainers.

    PubMed

    Schebesta, Karl; Hüpfl, Michael; Rössler, Bernhard; Ringl, Helmut; Müller, Michael P; Kimberger, Oliver

    2012-06-01

    Human patient simulators and airway training manikins are widely used to train airway management skills to medical professionals. Furthermore, these patient simulators are employed as standardized "patients" to evaluate airway devices. However, little is known about how realistic these patient simulators and airway-training manikins really are. This trial aimed to evaluate the upper airway anatomy of four high-fidelity patient simulators and two airway trainers in comparison with actual patients by means of radiographic measurements. The volume of the pharyngeal airspace was the primary outcome parameter. Computed tomography scans of 20 adult trauma patients without head or neck injuries were compared with computed tomography scans of four high-fidelity patient simulators and two airway trainers. By using 14 predefined distances, two cross-sectional areas and three volume parameters of the upper airway, the manikins' similarity to a human patient was assessed. The pharyngeal airspace of all manikins differed significantly from the patients' pharyngeal airspace. The HPS Human Patient Simulator (METI®, Sarasota, FL) was the most realistic high-fidelity patient simulator (6/19 [32%] of all parameters were within the 95% CI of human airway measurements). The airway anatomy of four high-fidelity patient simulators and two airway trainers does not reflect the upper airway anatomy of actual patients. This finding may impact airway training and confound comparative airway device studies.

  19. Investigation of mucus transport in an idealized lung airway model using multiphase CFD analysis

    NASA Astrophysics Data System (ADS)

    Rajendran, Rahul; Banerjee, Arindam

    2015-11-01

    Mucus, a Bingham fluid is transported in the pulmonary airways by consistent beating of the cilia and exhibits a wide range of physical properties in response to the core air flow and various pathological conditions. A better understanding of the interfacial instability is required as it plays a crucial role in gas transport, mixing, mucus clearance and drug delivery. In the current study, mucus is modelled as a Newtonian fluid and the two phase gas-liquid flow in the airways is investigated using an inhomogeneous Eulerian-Eulerian approach. The complex interface between the phases is tracked using the conventional VOF (Volume of Fluid) method. Results from our CFD simulations which are performed in idealized single and double bifurcation geometries will be presented and the influence of airflow rate, mucus layer thickness, mucus viscosity, airway geometry (branching & diameter) and surface tension on mucus flow behavior will be discussed. Mean mucus layer thickness, pressure drop due to momentum transfer & increased airway resistance, mucus transport speed and the flow morphology will be compared to existing experimental and theoretical data.

  20. Analysis of proteome dynamics inside the silk gland lumen of Bombyx mori

    PubMed Central

    Dong, Zhaoming; Zhao, Ping; Zhang, Yan; Song, Qianru; Zhang, Xiaolu; Guo, Pengchao; Wang, Dandan; Xia, Qingyou

    2016-01-01

    The silk gland is the only organ where silk proteins are synthesized and secreted in the silkworm, Bombyx mori. Silk proteins are stored in the lumen of the silk gland for around eight days during the fifth instar. Determining their dynamic changes is helpful for clarifying the secretion mechanism of silk proteins. Here, we identified the proteome in the silk gland lumen using liquid chromatography–tandem mass spectrometry, and demonstrated its changes during two key stages. From day 5 of the fifth instar to day 1 of wandering, the abundances of fibroins, sericins, seroins, and proteins of unknown functions increased significantly in different compartments of the silk gland lumen. As a result, these accumulated proteins constituted the major cocoon components. In contrast, the abundances of enzymes and extracellular matrix proteins decreased in the silk gland lumen, suggesting that they were not the structural constituents of silk. Twenty-five enzymes may be involved in the regulation of hormone metabolism for proper silk gland function. In addition, the metabolism of other non-proteinous components such as chitin and pigment were also discussed in this study. PMID:27102218

  1. Lumen degradation analysis of LED lamps based on the subsystem isolation method.

    PubMed

    Ke, Hong-Liang; Hao, Jian; Tu, Jian-Hui; Miao, Pei-Xian; Wang, Chao-Quan; Cui, Jing-Zhong; Sun, Qiang; Sun, Ren-Tao

    2018-02-01

    The lumen degradation of LED lamps undergoing an accelerated aging test is investigated. The entire LED lamp is divided into three subsystems, namely, driver, lampshade, and LED light source. The parameters of output power [Watts (W)], transmittance (%), and lumen flux (lm) are adopted in the analysis of the degradation of the driver, lampshade, and LED light source, respectively. Two groups of LED lamps are aged under the ambient temperatures of 25°C and 85°C, respectively, with the aging time of 2000 h. The lumen degradation of the lamps is from 3.8% to 4.9% for the group under a temperature of 25°C and from 10.6% to 12.7% for the group under a temperature of 85°C. The LED light source is the most aggressive part of the three subsystems, which accounts for 70.5% of the lumen degradation of the LED lamp on average. The lampshade is the second degradation source, which causes 21.5% of the total amount on average. The driver is the third degradation source, which causes 6.5% under 25°C and 2.8% under 85°C of the total amount on average.

  2. Quantitative CT Measures of Bronchiectasis in Smokers.

    PubMed

    Diaz, Alejandro A; Young, Thomas P; Maselli, Diego J; Martinez, Carlos H; Gill, Ritu; Nardelli, Pietro; Wang, Wei; Kinney, Gregory L; Hokanson, John E; Washko, George R; San Jose Estepar, Raul

    2017-06-01

    Bronchiectasis is frequent in smokers with COPD; however, there are only limited data on objective assessments of this process. The objective was to assess bronchovascular morphology, calculate the ratio of the diameters of bronchial lumen and adjacent artery (BA ratio), and identify those measurements able to discriminate bronchiectasis. We collected quantitative CT (QCT) measures of BA ratios, peak wall attenuation, wall thickness (WT), wall area, and wall area percent (WA%) at matched fourth through sixth airway generations in 21 ever smokers with bronchiectasis (cases) and 21 never-smoking control patients (control airways). In cases, measurements were collected at both bronchiectatic and nonbronchiectatic airways. Logistic analysis and the area under receiver operating characteristic curve (AUC) were used to assess the predictive ability of QCT measurements for bronchiectasis. The whole-lung and fourth through sixth airway generation BA ratio, WT, and WA% were significantly greater in bronchiectasis cases than control patients. The AUCs for the BA ratio to predict bronchiectasis ranged from 0.90 (whole lung) to 0.79 (fourth-generation). AUCs for WT and WA% ranged from 0.72 to 0.75 and from 0.71 to 0.75. The artery diameters but not bronchial diameters were smaller in bronchiectatic than both nonbronchiectatic and control airways (P < .01 for both). Smoking-related increases in the BA ratio appear to be driven by reductions in vascular caliber. QCT measures of BA ratio, WT, and WA% may be useful to objectively identify and quantify bronchiectasis in smokers. ClinicalTrials.gov; No.: NCT00608764; URL: www.clinicaltrials.gov. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  3. Parasympathetic Control of Airway Submucosal Glands: Central Reflexes and the Airway Intrinsic Nervous System

    PubMed Central

    Wine, Jeffrey J.

    2007-01-01

    Airway submucosal glands produce the mucus that lines the upper airways to protect them against insults. This review summarizes evidence for two forms of gland secretion, and hypothesizes that each is mediated by different but partially overlapping neural pathways. Airway innate defense comprises low level gland secretion, mucociliary clearance and surveillance by airway-resident phagocytes to keep the airways sterile in spite of nearly continuous inhalation of low levels of pathogens. Gland secretion serving innate defense is hypothesized to be under the control of intrinsic (peripheral) airway neurons and local reflexes, and these may depend disproportionately on non-cholinergic mechanisms, with most secretion being produced by VIP and tachykinins. In the genetic disease cystic fibrosis, airway glands no longer secrete in response to VIP alone and fail to show the synergy between VIP, tachykinins and ACh that is observed in normal glands. The consequent crippling of the submucosal gland contribution to innate defense may be one reason that cystic fibrosis airways are infected by mucus-resident bacteria and fungi that are routinely cleared from normal airways. By contrast, the acute (emergency) airway defense reflex is centrally mediated by vagal pathways, is primarily cholinergic, and stimulates copious volumes of gland mucus in response to acute, intense challenges to the airways, such as those produced by very vigorous exercise or aspiration of foreign material. In cystic fibrosis, the acute airway defense reflex can still stimulate the glands to secrete large amounts of mucus, although its properties are altered. Importantly, treatments that recruit components of the acute reflex, such as inhalation of hypertonic saline, are beneficial in treating cystic fibrosis airway disease. The situation for recipients of lung transplants is the reverse; transplanted airways retain the airway intrinsic nervous system but lose centrally mediated reflexes. The consequences

  4. Vertebral Artery Origin Stent Placement Using the Dual Lumen Qureshi-Jiao Guidecatheter

    PubMed Central

    Qureshi, Adnan I.; Wang, Yabing; Afzal, Mohammad Rauf; Jiao, Liqun

    2017-01-01

    Objective We report the first experience with a new dual lumen guide catheter with lumen A with curved tip designed for delivery of stent and angioplasty catheters and lumen B with side exit for coaxial placement of stiff 0.014 inch wire. Methods We prospectively determined technical success, intended procedure (stent delivery at target lesion and a final residual stenosis <30%) completed without a need for a different catheter, and technical ease, intended procedure completed without ≥3 unsuccessful attempts in patients with symptomatic vertebral artery origin stenosis. Vertebral artery origin was classified as type A if originated from ascending segment and type B if originated from an arch or horizontal segment of subclavian artery. Results The mean age of the four treated patients was 66.2 years (range 64–68 years). The mean percentage of vertebral artery origin stenosis was 82.7% (range 60–92%). The origin of vertebral artery from subclavian artery was classified as type A and type B origins in two patients each. The dual lumen catheter was advanced over an exchange length of 0.035 inch glide wire in one patient and directly through transfemoral insertion in three patients. Technical success and technical ease was achieved in all four procedures. Post procedure residual stenosis was 6% (range 5–7%). The primary operator rated the performance of guide catheter as superior compared with another catheter used in such procedures. Conclusion The present study demonstrates the feasibility of performing stent placement for vertebral artery origin stenosis by using a dual lumen catheter with superior performance. PMID:29445438

  5. Cftr controls lumen expansion and function of Kupffer’s vesicle in zebrafish

    PubMed Central

    Navis, Adam; Marjoram, Lindsay; Bagnat, Michel

    2013-01-01

    Regulated fluid secretion is crucial for the function of most organs. In vertebrates, the chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) is a master regulator of fluid secretion. Although the biophysical properties of CFTR have been well characterized in vitro, little is known about its in vivo role during development. Here, we investigated the function of Cftr during zebrafish development by generating several cftr mutant alleles using TAL effector nucleases. We found that loss of cftr function leads to organ laterality defects. In zebrafish, left-right (LR) asymmetry requires cilia-driven fluid flow within the lumen of Kupffer’s vesicle (KV). Using live imaging we found that KV morphogenesis is disrupted in cftr mutants. Loss of Cftr-mediated fluid secretion impairs KV lumen expansion leading to defects in organ laterality. Using bacterial artificial chromosome recombineering, we generated transgenic fish expressing functional Cftr fusion proteins with fluorescent tags under the control of the cftr promoter. The transgenes completely rescued the cftr mutant phenotype. Live imaging of these transgenic lines showed that Cftr is localized to the apical membrane of the epithelial cells in KV during lumen formation. Pharmacological stimulation of Cftr-dependent fluid secretion led to an expansion of the KV lumen. Conversely, inhibition of ion gradient formation impaired KV lumen inflation. Interestingly, cilia formation and motility in KV were not affected, suggesting that fluid secretion and flow are independently controlled in KV. These findings uncover a new role for cftr in KV morphogenesis and function during zebrafish development. PMID:23487313

  6. Effect of a 5-lipoxygenase inhibitor and leukotriene antagonist (PF 5901) on antigen-induced airway responses in neonatally immunized rabbits.

    PubMed Central

    Herd, C. M.; Donigi-Gale, D.; Shoupe, T. S.; Burroughs, D. A.; Yeadon, M.; Page, C. P.

    1994-01-01

    1. The effect of a single intratracheal dose (10 mg) of PF 5901 (2-[3(1-hydroxyhexyl) phenoxymethyl] quinoline hydrochloride, a specific inhibitor of the 5-lipoxygenase pathway of arachidonic acid metabolism and a leukotriene D4 antagonist) on airway changes induced in response to Alternaria tenuis aerosol challenge was assessed in adult rabbits neonatally immunized. Leukotriene generation was determined in vivo by measuring leukotriene B4 (LTB4) levels in bronchoalveolar lavage (BAL) fluid and ex vivo by measuring calcium ionophore-stimulated production of LTB4 in whole blood. 2. While PF 5901 (10 mg) had no significant effect on the acute bronchoconstriction induced by antigen, this dose was sufficient to inhibit significantly the increase in airway responsiveness to inhaled histamine 24 h following antigen challenge (P < 0.05). 3. Total leucocyte infiltration into the airways induced by antigen, as assessed by bronchoalveolar lavage, was significantly inhibited by pretreatment with PF 5901 (10 mg). However, the pulmonary infiltration of neutrophils and eosinophils induced by antigen was unaltered by prior treatment with PF 5901 (10 mg). 4. PF 5901 (10 mg) had no effect on ex vivo LTB4 synthesis in whole blood. However, the antigen-induced increase in LTB4 levels in BAL 24 h following challenge was significantly inhibited (P < 0.05). 5. We suggest from the results of the present study that the antigen-induced airway hyperresponsiveness to inhaled histamine in immunized rabbits is mediated, at least in part, by products of the 5-lipoxygenase metabolic pathway, and is not dependent on the extent of eosinophil or neutrophil influx into the airway lumen. PMID:8032653

  7. Ventilation heterogeneity is a major determinant of airway hyperresponsiveness in asthma, independent of airway inflammation

    PubMed Central

    Downie, Sue R; Salome, Cheryl M; Verbanck, Sylvia; Thompson, Bruce; Berend, Norbert; King, Gregory G

    2007-01-01

    Background Airway hyperresponsiveness is the ability of airways to narrow excessively in response to inhaled stimuli and is a key feature of asthma. Airway inflammation and ventilation heterogeneity have been separately shown to be associated with airway hyperresponsiveness. A study was undertaken to establish whether ventilation heterogeneity is associated with airway hyperresponsiveness independently of airway inflammation in subjects with asthma and to determine the effect of inhaled corticosteroids on this relationship. Methods Airway inflammation was measured in 40 subjects with asthma by exhaled nitric oxide, ventilation heterogeneity by multiple breath nitrogen washout and airway hyperresponsiveness by methacholine challenge. In 18 of these subjects with uncontrolled symptoms, measurements were repeated after 3 months of treatment with inhaled beclomethasone dipropionate. Results At baseline, airway hyperresponsiveness was independently predicted by airway inflammation (partial r2 = 0.20, p<0.001) and ventilation heterogeneity (partial r2 = 0.39, p<0.001). Inhaled corticosteroid treatment decreased airway inflammation (p = 0.002), ventilation heterogeneity (p = 0.009) and airway hyperresponsiveness (p<0.001). After treatment, ventilation heterogeneity was the sole predictor of airway hyperresponsiveness (r2 = 0.64, p<0.001). Conclusions Baseline ventilation heterogeneity is a strong predictor of airway hyperresponsiveness, independent of airway inflammation in subjects with asthma. Its persistent relationship with airway hyperresponsiveness following anti‐inflammatory treatment suggests that it is an important independent determinant of airway hyperresponsiveness. Normalisation of ventilation heterogeneity is therefore a potential goal of treatment that may lead to improved long‐term outcomes. PMID:17311839

  8. The effect of closed system suction on airway pressures when using the Servo 300 ventilator.

    PubMed

    Frengley, R W; Closey, D N; Sleigh, J W; Torrance, J M

    2001-12-01

    To measure airway pressures during closed system suctioning with the ventilator set to three differing modes of ventilation. Closed system suctioning was conducted in 16 patients following cardiac surgery. Suctioning was performed using a 14 French catheter with a vacuum level of -500 cmH2O through an 8.0 mm internal diameter endotracheal tube. The lungs were mechanically ventilated with a Servo 300 ventilator set to one of three ventilation modes: volume-control, pressure-control or CPAP/pressure support. Airway pressures were measured via a 4 French electronic pressure transducer in both proximal and distal airways. Following insertion of the suction catheter, end-expiratory pressure increased significantly (p < 0.001) in both pressure-control and volume-control ventilation. This increase was greatest (p = 0.018) in volume-control mode (2.7 +/- 1.7 cmH2O). On performing a five second suction, airway pressure decreased in all modes, however the lowest airway pressure in volume-control mode (-4.9 +/- 4.0 cmH2O) was significantly (p = 0.001) less than the lowest airway pressure recorded in either pressure-control (0.8 +/- 1.9 cmH2O) or CPAP/pressure support (0.4 +/- 2.8 cmH2O) modes. In CPAP/pressure support mode, 13 of the 16 patients experienced a positive pressure 'breath' at the end of suctioning with airway pressures rising to 21 +/- 1.6 cmH2O. Closed system suctioning in volume control ventilation may result in elevations of end-expiratory pressure following catheter insertion and subatmospheric airway pressures during suctioning. Pressure control ventilation produces less elevation of end-expiratory pressure following catheter insertion and is less likely to be associated with subatmospheric airway pressures during suctioning. CPAP/pressure support has no effect on end-expiratory pressure following catheter insertion and subatmospheric airway pressures are largely avoided during suctioning.

  9. EFFECTS OF TITANIUM DIOXIDE NANOPARTICLE EXPOSURE ON NEUROIMMUNE RESPONSES IN RAT AIRWAYS

    PubMed Central

    Scuri, Mario; Chen, Bean T.; Castranova, Vincent; Reynolds, Jeffrey S.; Johnson, Victor J.; Samsell, Lennie; Walton, Cheryl; Piedimonte, Giovanni

    2013-01-01

    Exposure to ambient nanoparticles (defined as particulate matter [PM] having one dimension < 100 nm) is associated with increased risk of childhood and adult asthma. Nanomaterials feature a smaller aerodynamic diameter and a higher surface area per unit mass ratio compared to fine or coarse-sized particles, resulting in greater lung deposition efficiency and an increased potential for biological interaction. The neurotrophins nerve growth factor and brain-derived neurotrophic factor are key regulatory elements of neuronal development and responsiveness of airway sensory neurons. Changes in their expression are associated with bronchoconstriction, airway hyperresponsiveness, and airway inflammation. The neurogenic-mediated control of airway responses is a key pathophysiological mechanism of childhood asthma. However, the effects of nanoparticle exposure on neurotrophin-driven airway responses and their potential role as a predisposing factor for developing asthma have not been clearly elucidated. In this study, in vivo inhalation exposure to titanium dioxide nanoparticles (12 mg/m13; 5.6 h/d for 3 d) produced upregulation of lung neurotrophins in weanling (2-wk-old) and newborn (2-d-old) rats but not in adult (12-wk-old) animals compared to controls. This effect was associated with increased airway responsiveness and upregulation of growth-related oncogene/keratine-derived chemokine (GRO/KC; CXCL1, rat equivalent of human interleukin [IL]-8) in bronchoalveolar lavage fluid. These data show for the first time that exposure to nanoparticulate upregulates the expression of lung neurotrophins in an age-dependent fashion and that this effect is associated with airway hyperresponsiveness and inflammation. These results suggest the presence of a critical window of vulnerability in earlier stages of lung development, which may lead to a higher risk of developing asthma. PMID:20818535

  10. Airways, vasculature, and interstitial tissue: anatomically informed computational modeling of human lungs for virtual clinical trials

    NASA Astrophysics Data System (ADS)

    Abadi, Ehsan; Sturgeon, Gregory M.; Agasthya, Greeshma; Harrawood, Brian; Hoeschen, Christoph; Kapadia, Anuj; Segars, W. P.; Samei, Ehsan

    2017-03-01

    This study aimed to model virtual human lung phantoms including both non-parenchymal and parenchymal structures. Initial branches of the non-parenchymal structures (airways, arteries, and veins) were segmented from anatomical data in each lobe separately. A volume-filling branching algorithm was utilized to grow the higher generations of the airways and vessels to the level of terminal branches. The diameters of the airways and vessels were estimated using established relationships between flow rates and diameters. The parenchyma was modeled based on secondary pulmonary lobule units. Polyhedral shapes with variable sizes were modeled, and the borders were assigned to interlobular septa. A heterogeneous background was added inside these units using a non-parametric texture synthesis algorithm which was informed by a high-resolution CT lung specimen dataset. A voxelized based CT simulator was developed to create synthetic helical CT images of the phantom with different pitch values. Results showed the progressive degradation in depiction of lung details with increased pitch. Overall, the enhanced lung models combined with the XCAT phantoms prove to provide a powerful toolset to perform virtual clinical trials in the context of thoracic imaging. Such trials, not practical using clinical datasets or simplistic phantoms, can quantitatively evaluate and optimize advanced imaging techniques towards patient-based care.

  11. Biodegradable airway stents in infants - Potential life-threatening pitfalls.

    PubMed

    Sztanó, B; Kiss, G; Márai, K; Rácz, G; Szegesdi, I; Rácz, K; Katona, G; Rovó, L

    2016-12-01

    The solution of severe tracheobronchial obstructions in early childhood means a great challenge. Biodegradable stents were intended to be a minimally invasive temporary solution which may decrease the number of interventions and limit the possible complications of stenting procedures. However, our first experiences have brought out a new, - especially in childhood - potentially life-threatening complication of this concept. Five SX-ELLA biodegradable polydioxanone stents was applied in three patients because of severe tracheobronchial obstruction: congenital tracheomalacia (7 day-old), acquired tracheomalacia (10 month-old), and congenital trachea-bronchomalacia (10 month-old). The breathing of all children improved right after the procedure. We observed degradation of the stent from the 5th postoperative week which resulted in large intraluminar fragments causing significant airway obstruction: one patient died of severe pneumonia, the other baby required urgent bronchoscopy to remove the obstructing 'foreign body' from the trachea. In the third case repeated stent placements successfully maintained the tracheal lumen. Polydioxanone stents may offer an alternative to metallic or silastic stents for collapse or external compression of the trachea in children; however, large decaying fragments mean a potential risk especially in the small size pediatric airway. The fragmentation of the stent, which generally starts in the 4-6 postoperative weeks, may create large sharp pieces. These may be anchored to the mucosa and covered by crust leading to obstruction. As repeated interventions are required, we do not consider the application of biodegradable stents unambiguously advantageous. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Linkage of sleep-disordered breathing and acute aortic dissection with patent false lumen.

    PubMed

    Inami, Toru; Seino, Yoshihiko; Shimura, Tetsuro; Kurihara, Osamu; Kimata, Nakahisa; Murakami, Daisuke; Munakata, Ryo; Takano, Masamichi; Ohba, Takayoshi; Shimizu, Wataru

    2016-07-01

    Sleep-disordered breathing (SDB) is known as a cardiovascular risk factor and has high prevalence in hypertension, which is a major risk factor of aortic dissection (AD). However, the impact of SDB on AD has not been fully clarified. The aim of this study is to elucidate the impact of SDB on AD, especially on the type of false lumen in AD. We enrolled twenty-three consecutive patients with acute AD (mean age: 66 ± 13 years). All subjects were evaluated by an ambulatory polygraphic sleep monitoring within 1 month from the onset. AD was evaluated by axial images of computed tomography. We comparatively analyzed SDB and AD. 35 % of the subjects presented severe OSA (apnea-hypopnea index: AHI ≥30). The patent false lumen group showed significantly higher systolic and diastolic blood pressure (BP) on arrival and AHI, and lower percutaneous oxygen saturation (SaO2) compared with those in the thrombosed false lumen group. The prevalence of severe SDB was higher in the patent false lumen group (60 vs 15 %, p = 0.039). Systolic BP on arrival was significantly correlated with AHI (r = 0.457, p = 0.033) and the minimum SaO2 (r = -0.537, p = 0.010). The present study revealed close linkage between SDB and AD, and a high prevalence of SDB among AD patients. Severe SDB was related to the development of AD, especially for the patent false lumen type through highly elevated BP which might be easily evoked in the presence of severe SDB. Repetitive occurrence of intrathoracic negative pressure also might influence the repair or closure of false lumen of AD, although the present analysis did not reach statistical significance.

  13. Aerosol bolus dispersion in acinar airways--influence of gravity and airway asymmetry.

    PubMed

    Ma, Baoshun; Darquenne, Chantal

    2012-08-01

    The aerosol bolus technique can be used to estimate the degree of convective mixing in the lung; however, contributions of different lung compartments to measured dispersion cannot be differentiated unambiguously. To estimate dispersion in the distal lung, we studied the effect of gravity and airway asymmetry on the dispersion of 1 μm-diameter particle boluses in three-dimensional computational models of the lung periphery, ranging from a single alveolar sac to four-generation (g4) structures of bifurcating airways that deformed homogeneously during breathing. Boluses were introduced at the beginning of a 2-s inhalation, immediately followed by a 3-s exhalation. Dispersion was estimated by the half-width of the exhaled bolus. Dispersion was significantly affected by the spatial orientation of the models in normal gravity and was less in zero gravity than in normal gravity. Dispersion was strongly correlated with model volume in both normal and zero gravity. Predicted pulmonary dispersion based on a symmetric g4 acinar model was 391 ml and 238 ml under normal and zero gravity, respectively. These results accounted for a significant amount of dispersion measured experimentally. In zero gravity, predicted dispersion in a highly asymmetric model accounted for ∼20% of that obtained in a symmetric model with comparable volume and number of alveolated branches, whereas normal gravity dispersions were comparable in both models. These results suggest that gravitational sedimentation and not geometrical asymmetry is the dominant factor in aerosol dispersion in the lung periphery.

  14. Retrieval of bronchial foreign body with central lumen using a flexible bronchoscope.

    PubMed

    Wong, Kin-Sun; Lai, Shen-Hao; Lien, Reyin; Hsia, Shao-Hsuan

    2002-02-25

    A 5 year-old boy aspirated a metal spring accidentally. The right bronchial foreign body was removed by threading the alligator of a biopsy forceps through the lumen of the spring while opening its jaws distally. This case illustrates that a foreign body with a central lumen in a child can be successfully removed using a flexible bronchoscope, thus obviating the need for general anesthesia and rigid bronchoscopy.

  15. The Relationship Between Crackle Characteristics and Airway Morphology in COPD.

    PubMed

    Bennett, Surussawadi; Bruton, Anne; Barney, Anna; Havelock, Tom; Bennett, Michael

    2015-03-01

    Crackles in COPD are believed to be generated by the re-opening of collapsed airways, which result from chronic inflammation, secretions, and loss of cartilaginous support through inflammation. However, it is unclear whether crackle characteristics can be used to identify COPD. This is the first study to examine the relationship between specific added lung sounds (crackles) and measurements of conductive airways and emphysema score obtained from high-resolution computed tomography (HRCT) in vivo in humans. A predictive relationship might permit the use of lung sounds as a biomarker for COPD. A convenience sample of 26 subjects was recruited into the study and consisted of 9 healthy non-smokers, 9 healthy smokers, and 8 subjects with mild or moderate COPD. Lung sound data were recorded using a digital stethoscope connected to a laptop computer. Airway diameter, emphysema score, and percentage of wall area were measured from HRCT scans. The analysis showed that there were no statistically significant differences in crackle characteristics (the number of crackles per breathing cycle and crackle 2-cycle duration) between the 3 subject groups. Both crackle 2-cycle duration and crackle number showed some significant correlation with airway parameters at some branch generations, but due to the large number of correlations performed, these were consistent with chance findings. Although there were some significant correlations between crackle characteristics and measurements of the conductive airways and emphysema score, the possibility that these correlations have occurred by chance cannot be ruled out. Therefore, this study provides no conclusive evidence that crackle characteristics are related to HRCT variables in COPD. Copyright © 2015 by Daedalus Enterprises.

  16. Parasympathetic control of airway submucosal glands: central reflexes and the airway intrinsic nervous system.

    PubMed

    Wine, Jeffrey J

    2007-04-30

    Airway submucosal glands produce the mucus that lines the upper airways to protect them against insults. This review summarizes evidence for two forms of gland secretion, and hypothesizes that each is mediated by different but partially overlapping neural pathways. Airway innate defense comprises low level gland secretion, mucociliary clearance and surveillance by airway-resident phagocytes to keep the airways sterile in spite of nearly continuous inhalation of low levels of pathogens. Gland secretion serving innate defense is hypothesized to be under the control of intrinsic (peripheral) airway neurons and local reflexes, and these may depend disproportionately on non-cholinergic mechanisms, with most secretion being produced by VIP and tachykinins. In the genetic disease cystic fibrosis, airway glands no longer secrete in response to VIP alone and fail to show the synergy between VIP, tachykinins and ACh that is observed in normal glands. The consequent crippling of the submucosal gland contribution to innate defense may be one reason that cystic fibrosis airways are infected by mucus-resident bacteria and fungi that are routinely cleared from normal airways. By contrast, the acute (emergency) airway defense reflex is centrally mediated by vagal pathways, is primarily cholinergic, and stimulates copious volumes of gland mucus in response to acute, intense challenges to the airways, such as those produced by very vigorous exercise or aspiration of foreign material. In cystic fibrosis, the acute airway defense reflex can still stimulate the glands to secrete large amounts of mucus, although its properties are altered. Importantly, treatments that recruit components of the acute reflex, such as inhalation of hypertonic saline, are beneficial in treating cystic fibrosis airway disease. The situation for recipients of lung transplants is the reverse; transplanted airways retain the airway intrinsic nervous system but lose centrally mediated reflexes. The consequences

  17. [Small-diameter portosystemic shunts: indications and limitations].

    PubMed

    Angel Mercado, M; Granados-García, J; Barradas, F; Chan, C; Contreras, J L; Orozco, H; Angel-Mercado, M

    1998-01-01

    Low diameter porto-systemic shunts for the treatment of portal hypertension bleeding have emerged as a consequence of the technical development of vascular grafts (PTFE) that allow the use of a narrow lumen. The experience with this kind of operation at the Instituto Nacional de la Nutrición Salvador Zubirán, Mexico City during a 6-year period is reported. There were twenty-seven patients with good liver function (Child-Pugh A-B) were operated or electively, average Age 47.5 years (range 17-71), twenty three patients with liver cirrhosis, one with portal fibrosis and three with idiopathic portal hypertension. Operative mortality: 4%. Rebleeding: 14%. Postoperative encephalopathy was observed in 14 of 27, three of them being grade III-IV (11%). In the remaining 11 cases, it was mild and easily controlled. Postoperative angiography showed shunt patency in 81% of the cases; in 33% of the cases, portal vein diameter reduction was shown, as well as two cases with portal vein thrombosis. In 77% of the cases, adequate postoperative quality of life was observed. Survival (Kaplan-Meier): 86% at 12 months and 56% at 60 months. These kinds of shunts are a good alternate choice for patients considered for surgery, in which other portal blood flow preserving procedures (selective shunts, devascularization with transection) are not feasible.

  18. In Vivo Airway Surface Liquid Cl− Analysis with Solid-State Electrodes

    PubMed Central

    Caldwell, Ray A.; Grubb, Barbara R.; Tarran, Robert; Boucher, Richard C.; Knowles, Michael R.; Barker, Pierre M.

    2002-01-01

    The pathogenesis of cystic fibrosis (CF) airways disease remains controversial. Hypotheses that link mutations in CFTR and defects in ion transport to CF lung disease predict that alterations in airway surface liquid (ASL) isotonic volume, or ion composition, are critically important. ASL [Cl−] is pivotal in discriminating between these hypotheses, but there is no consensus on this value given the difficulty in measuring [Cl−] in the “thin” ASL (∼30 μm) in vivo. Consequently, a miniaturized solid-state electrode with a shallow depth of immersion was constructed to measure ASL [Cl−] in vivo. In initial experiments, the electrode measured [Cl−] in physiologic salt solutions, small volume (7.6 μl) test solutions, and in in vitro cell culture models, with ≥93% accuracy. Based on discrepancies in reported values and/or absence of data, ASL Cl− measurements were made in the following airway regions and species. First, ASL [Cl−] was measured in normal human nasal cavity and averaged 117.3 ± 11.2 mM (n = 6). Second, ASL [Cl−] measured in large airway (tracheobronchial) regions were as follows: rabbit trachea and bronchus = 114.3 ± 1.8 mM; (n = 6) and 126.9 ± 1.7 mM; (n = 3), respectively; mouse trachea = 112.8 ± 4.2 mM (n = 13); and monkey bronchus = 112.3 ± 10.9 mM (n = 3). Third, Cl− measurements were made in small (1–2 mm) diameter airways of the rabbit (108.3 ± 7.1 mM, n = 5) and monkey (128.5 ± 6.8 mM, n = 3). The measured [Cl−], in excess of 100 mM throughout all airway regions tested in multiple species, is consistent with the isotonic volume hypothesis to describe ASL physiology. PMID:11773234

  19. Host-microbe interactions in distal airways: relevance to chronic airway diseases.

    PubMed

    Martin, Clémence; Burgel, Pierre-Régis; Lepage, Patricia; Andréjak, Claire; de Blic, Jacques; Bourdin, Arnaud; Brouard, Jacques; Chanez, Pascal; Dalphin, Jean-Charles; Deslée, Gaetan; Deschildre, Antoine; Gosset, Philippe; Touqui, Lhousseine; Dusser, Daniel

    2015-03-01

    This article is the summary of a workshop, which took place in November 2013, on the roles of microorganisms in chronic respiratory diseases. Until recently, it was assumed that lower airways were sterile in healthy individuals. However, it has long been acknowledged that microorganisms could be identified in distal airway secretions from patients with various respiratory diseases, including cystic fibrosis (CF) and non-CF bronchiectasis, chronic obstructive pulmonary disease, asthma and other chronic airway diseases (e.g. post-transplantation bronchiolitis obliterans). These microorganisms were sometimes considered as infectious agents that triggered host immune responses and contributed to disease onset and/or progression; alternatively, microorganisms were often considered as colonisers, which were considered unlikely to play roles in disease pathophysiology. These concepts were developed at a time when the identification of microorganisms relied on culture-based methods. Importantly, the majority of microorganisms cannot be cultured using conventional methods, and the use of novel culture-independent methods that rely on the identification of microorganism genomes has revealed that healthy distal airways display a complex flora called the airway microbiota. The present article reviews some aspects of current literature on host-microbe (mostly bacteria and viruses) interactions in healthy and diseased airways, with a special focus on distal airways. Copyright ©ERS 2015.

  20. The New Perilaryngeal Airway (CobraPLA™)1 Is as Efficient as the Laryngeal Mask Airway (LMA™)2, But Provides Better Airway Sealing Pressures

    PubMed Central

    Akça, Ozan; Wadhwa, Anupama; Sengupta, Papiya; Durrani, Jaleel; Hanni, Keith; Wenke, Mary; Yücel, Yüksel; Lenhardt, Rainer; Doufas, Anthony G.; Sessler, Daniel I.

    2006-01-01

    The Laryngeal Mask Airway (LMA) is a frequently-used efficient airway device, yet it sometimes seals poorly, thus reducing the efficacy of positive-pressure ventilation. The Perilaryngeal Airway (CobraPLA) is a novel airway device with a larger pharyngeal cuff (when inflated). We tested the hypothesis that the CobraPLA was superior to LMA with regard to insertion time and airway sealing pressure and comparable to LMA in airway adequacy and recovery characteristics. After midazolam and fentanyl, 81 ASA I-II outpatients having elective surgery were randomized to receive an LMA or CobraPLA. Anesthesia was induced with propofol (2.5 mg/kg, IV), and the airway inserted. We measured 1) insertion time; 2) adequacy of the airway (no leak at 15-cm-H2O peak pressure or tidal volume of 5 ml/kg); 3) airway sealing pressure; 4) number of repositioning attempts; and 5) sealing quality (no leak at tidal volume of 8 ml/kg). At the end of surgery, gastric insufflation, postoperative sore throat, dysphonia, and dysphagia were evaluated. Data were compared with unpaired t-tests, chi-square tests, or Fisher’s Exact tests; P<0.05 was significant. Patient characteristics, insertion times, airway adequacy, number of repositioning attempts, and recovery were similar in each group. Airway sealing pressure was significantly greater with CobraPLA (23±6 cm H2O) than LMA (18±5 cm H2O, P<0.001). The CobraPLA has insertion characteristics similar to LMA, but better airway sealing capabilities. PMID:15281543

  1. Airway surface mycosis in chronic TH2-associated airway disease.

    PubMed

    Porter, Paul C; Lim, Dae Jun; Maskatia, Zahida Khan; Mak, Garbo; Tsai, Chu-Lin; Citardi, Martin J; Fakhri, Samer; Shaw, Joanne L; Fothergil, Annette; Kheradmand, Farrah; Corry, David B; Luong, Amber

    2014-08-01

    Environmental fungi have been linked to TH2 cell-related airway inflammation and the TH2-associated chronic airway diseases asthma, chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP), and allergic fungal rhinosinusitis (AFRS), but whether these organisms participate directly or indirectly in disease pathology remains unknown. To determine the frequency of fungus isolation and fungus-specific immunity in patients with TH2-associated and non-TH2-associated airway disease. Sinus lavage fluid and blood were collected from sinus surgery patients (n = 118) including patients with CRSwNP, patients with CRS without nasal polyps, patients with AFRS, and non-CRS/nonasthmatic control patients. Asthma status was determined from medical history. Sinus lavage fluids were cultured and directly examined for evidence of viable fungi. PBMCs were restimulated with fungal antigens in an enzyme-linked immunocell spot assay to determine total memory fungus-specific IL-4-secreting cells. These data were compared with fungus-specific IgE levels measured from plasma by ELISA. Filamentous fungi were significantly more commonly cultured in patients with TH2-associated airway disease (asthma, CRSwNP, or AFRS: n = 68) than in control patients with non-TH2-associated disease (n = 31): 74% vs 16%, respectively (P < .001). Both fungus-specific IL-4 enzyme-linked immunocell spot (n = 48) and specific IgE (n = 70) data correlated with TH2-associated diseases (sensitivity 73% and specificity 100% vs 50% and 77%, respectively). The frequent isolation of fungi growing directly within the airways accompanied by specific immunity to these organisms only in patients with TH2-associated chronic airway diseases suggests that fungi participate directly in the pathogenesis of these conditions. Efforts to eradicate airway fungi from the airways should be considered in selected patients. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  2. Cystic Fibrosis Transmembrane Conductance Regulator in Sarcoplasmic Reticulum of Airway Smooth Muscle. Implications for Airway Contractility

    PubMed Central

    Cook, Daniel P.; Rector, Michael V.; Bouzek, Drake C.; Michalski, Andrew S.; Gansemer, Nicholas D.; Reznikov, Leah R.; Li, Xiaopeng; Stroik, Mallory R.; Ostedgaard, Lynda S.; Abou Alaiwa, Mahmoud H.; Thompson, Michael A.; Prakash, Y. S.; Krishnan, Ramaswamy; Meyerholz, David K.; Seow, Chun Y.

    2016-01-01

    Rationale: An asthma-like airway phenotype has been described in people with cystic fibrosis (CF). Whether these findings are directly caused by loss of CF transmembrane conductance regulator (CFTR) function or secondary to chronic airway infection and/or inflammation has been difficult to determine. Objectives: Airway contractility is primarily determined by airway smooth muscle. We tested the hypothesis that CFTR is expressed in airway smooth muscle and directly affects airway smooth muscle contractility. Methods: Newborn pigs, both wild type and with CF (before the onset of airway infection and inflammation), were used in this study. High-resolution immunofluorescence was used to identify the subcellular localization of CFTR in airway smooth muscle. Airway smooth muscle function was determined with tissue myography, intracellular calcium measurements, and regulatory myosin light chain phosphorylation status. Precision-cut lung slices were used to investigate the therapeutic potential of CFTR modulation on airway reactivity. Measurements and Main Results: We found that CFTR localizes to the sarcoplasmic reticulum compartment of airway smooth muscle and regulates airway smooth muscle tone. Loss of CFTR function led to delayed calcium reuptake following cholinergic stimulation and increased myosin light chain phosphorylation. CFTR potentiation with ivacaftor decreased airway reactivity in precision-cut lung slices following cholinergic stimulation. Conclusions: Loss of CFTR alters porcine airway smooth muscle function and may contribute to the airflow obstruction phenotype observed in human CF. Airway smooth muscle CFTR may represent a therapeutic target in CF and other diseases of airway narrowing. PMID:26488271

  3. Total Airway Count on Computed Tomography and the Risk of Chronic Obstructive Pulmonary Disease Progression. Findings from a Population-based Study.

    PubMed

    Kirby, Miranda; Tanabe, Naoya; Tan, Wan C; Zhou, Guohai; Obeidat, Ma'en; Hague, Cameron J; Leipsic, Jonathon; Bourbeau, Jean; Sin, Don D; Hogg, James C; Coxson, Harvey O

    2018-01-01

    Studies of excised lungs show that significant airway attrition in the "quiet" zone occurs early in chronic obstructive pulmonary disease (COPD). To determine if the total number of airways quantified in vivo using computed tomography (CT) reflects early airway-related disease changes and is associated with lung function decline independent of emphysema in COPD. Participants in the multicenter, population-based, longitudinal CanCOLD (Canadian Chronic Obstructive Lung Disease) study underwent inspiratory/expiratory CT at visit 1; spirometry was performed at four visits over 6 years. Emphysema was quantified as the CT inspiratory low-attenuation areas below -950 Hounsfield units. CT total airway count (TAC) was measured as well as airway inner diameter and wall area using anatomically equivalent airways. Participants included never-smokers (n = 286), smokers with normal spirometry at risk for COPD (n = 298), Global Initiative for Chronic Obstructive Lung Disease (GOLD) I COPD (n = 361), and GOLD II COPD (n = 239). TAC was significantly reduced by 19% in both GOLD I and GOLD II compared with never-smokers (P < 0.0001) and by 17% in both GOLD I and GOLD II compared with at-risk participants (P < 0.0001) after adjusting for low-attenuation areas below -950 Hounsfield units. Further analysis revealed parent airways with missing daughter branches had reduced inner diameters (P < 0.0001) and thinner walls (P < 0.0001) compared with those without missing daughter branches. Among all CT measures, TAC had the greatest influence on FEV 1 (P < 0.0001), FEV 1 /FVC (P < 0.0001), and bronchodilator responsiveness (P < 0.0001). TAC was independently associated with lung function decline (FEV 1 , P = 0.02; FEV 1 /FVC, P = 0.01). TAC may reflect the airway-related disease changes that accumulate in the "quiet" zone in early/mild COPD, indicating that TAC acquired with commercially available software across various CT platforms may

  4. A novel combination of the Arndt endobronchial blocker and the laryngeal mask airway ProSeal™ provides one-lung ventilation for thoracic surgery

    PubMed Central

    LI, QIONG; LI, PEIYING; XU, JIANGHUI; GU, HUAHUA; MA, QINYUN; PANG, LIEWEN; LIANG, WEIMIN

    2014-01-01

    In this study, the feasibility and performance of the combination of the Arndt endobronchial blocker and the laryngeal mask airway (LMA) ProSeal™ in airway establishment, ventilation, oxygenation and lung isolation was evaluated. Fifty-five patients undergoing general anesthesia for elective thoracic surgeries were randomly allocated to group Arndt (n=26) or group double-lumen tube (DLT; n=29). Data concerning post-operative airway morbidity, ease of insertion, hemodynamics, lung collapse, ventilators, oxygenation and ventilation were collected for analysis. Compared with group DLT, group Arndt showed a significantly attenuated hemodynamic response to intubation (blood pressure, 149±31 vs. 115±16 mmHg; heart rate, 86±15 vs. 68±15 bpm), less severe injuries to the bronchus (injury score, 1.4±0.2 vs. 0.4±0.1) and vocal cords (injury score, 1.3±0.2 vs. 0.6±0.1), and lower incidences of post-operative sore throat and hoarseness. Furthermore, the novel combination of the Arndt and the LMA ProSeal showed similar ease of airway establishment, comparable ventilation and oxygenation performance, and an analogous lung isolation effect to DLT. The novel combined use of the Arndt endobronchial blocker and the LMA ProSeal can serve as a promising alternative for thoracic procedures requiring one-lung ventilation. The less traumatic properties and equally ideal lung isolation are likely to promote its use in rapidly spreading minimally invasive thoracic surgeries. PMID:25289071

  5. Intermedin Enlarges the Vascular Lumen by Inducing the Quiescent Endothelial Cell Proliferation.

    PubMed

    Wang, Li-Jun; Xiao, Fei; Kong, Ling-Miao; Wang, De-Nian; Li, Hong-Yu; Wei, Yong-Gang; Tan, Chun; Zhao, Huan; Zhang, Ting; Cao, Gui-Qun; Zhang, Kang; Wei, Yu-Quan; Yang, Han-Shuo; Zhang, Wei

    2018-02-01

    Intermedin plays an important role in vascular remodeling and significantly improves blood perfusion, but the precise mechanism remains unclear. Herein, we aimed to define whether vascular lumen enlargement is responsible for the intermedin-increased blood perfusion and explore the underlying cellular and molecular mechanisms. To study the role of intermedin, we generated the IMD-KO ( Adm2 -/- ) mice using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) system. Intermedin significantly promoted vascular lumen enlargement in vitro (fibrin beads assay) and in vivo (murine retinas), which contributed to the improved blood perfusion in both physiological (retinal) and pathological (tumor) angiogenic models. We designed experiments to calculate the endothelial cell (EC) size and found that the lumen enlargement is because of EC proliferation but not because of a change in cell shape. ECs that construct vessel walls are considered quiescent cells because they are in a state of contact inhibition and show reduced responsiveness to VEGF (vascular endothelial growth factor). Using immunoprecipitation, Western blot assay, and fluorescent microscopy, we found that intermedin induced the formation of a signaling complex containing CRLR (calcitonin receptor-like receptor)/β-arr1 (β-arrestin1)/Src in ECs and promoted it internalizing into cytoplasm in a clathrin-dependent manner to activate downstream ERK1/2 (extracellular signal-regulated kinase 1/2). Importantly, this effect was not abrogated by cell-cell contacts of ECs. Through this mechanism, intermedin could reactivate the quiescent ECs to proliferate, resulting in continuous lumen expanding and a more effective blood perfusion. Our findings suggest a novel mechanism that may explain how quiescent ECs overcome the contact inhibition and regain the ability to proliferate for continuous vascular lumen enlargement. © 2017 American

  6. Airway smooth muscle in airway reactivity and remodeling: what have we learned?

    PubMed Central

    2013-01-01

    It is now established that airway smooth muscle (ASM) has roles in determining airway structure and function, well beyond that as the major contractile element. Indeed, changes in ASM function are central to the manifestation of allergic, inflammatory, and fibrotic airway diseases in both children and adults, as well as to airway responses to local and environmental exposures. Emerging evidence points to novel signaling mechanisms within ASM cells of different species that serve to control diverse features, including 1) [Ca2+]i contractility and relaxation, 2) cell proliferation and apoptosis, 3) production and modulation of extracellular components, and 4) release of pro- vs. anti-inflammatory mediators and factors that regulate immunity as well as the function of other airway cell types, such as epithelium, fibroblasts, and nerves. These diverse effects of ASM “activity” result in modulation of bronchoconstriction vs. bronchodilation relevant to airway hyperresponsiveness, airway thickening, and fibrosis that influence compliance. This perspective highlights recent discoveries that reveal the central role of ASM in this regard and helps set the stage for future research toward understanding the pathways regulating ASM and, in turn, the influence of ASM on airway structure and function. Such exploration is key to development of novel therapeutic strategies that influence the pathophysiology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. PMID:24142517

  7. Difficult airway response team: a novel quality improvement program for managing hospital-wide airway emergencies.

    PubMed

    Mark, Lynette J; Herzer, Kurt R; Cover, Renee; Pandian, Vinciya; Bhatti, Nasir I; Berkow, Lauren C; Haut, Elliott R; Hillel, Alexander T; Miller, Christina R; Feller-Kopman, David J; Schiavi, Adam J; Xie, Yanjun J; Lim, Christine; Holzmueller, Christine; Ahmad, Mueen; Thomas, Pradeep; Flint, Paul W; Mirski, Marek A

    2015-07-01

    Difficult airway cases can quickly become emergencies, increasing the risk of life-threatening complications or death. Emergency airway management outside the operating room is particularly challenging. We developed a quality improvement program-the Difficult Airway Response Team (DART)-to improve emergency airway management outside the operating room. DART was implemented by a team of anesthesiologists, otolaryngologists, trauma surgeons, emergency medicine physicians, and risk managers in 2005 at The Johns Hopkins Hospital in Baltimore, Maryland. The DART program had 3 core components: operations, safety, and education. The operations component focused on developing a multidisciplinary difficult airway response team, standardizing the emergency response process, and deploying difficult airway equipment carts throughout the hospital. The safety component focused on real-time monitoring of DART activations and learning from past DART events to continuously improve system-level performance. This objective entailed monitoring the paging system, reporting difficult airway events and DART activations to a Web-based registry, and using in situ simulations to identify and mitigate defects in the emergency airway management process. The educational component included development of a multispecialty difficult airway curriculum encompassing case-based lectures, simulation, and team building/communication to ensure consistency of care. Educational materials were also developed for non-DART staff and patients to inform them about the needs of patients with difficult airways and ensure continuity of care with other providers after discharge. Between July 2008 and June 2013, DART managed 360 adult difficult airway events comprising 8% of all code activations. Predisposing patient factors included body mass index >40, history of head and neck tumor, prior difficult intubation, cervical spine injury, airway edema, airway bleeding, and previous or current tracheostomy. Twenty

  8. Difficult Airway Response Team: A Novel Quality Improvement Program for Managing Hospital-Wide Airway Emergencies

    PubMed Central

    Mark, Lynette J.; Herzer, Kurt R.; Cover, Renee; Pandian, Vinciya; Bhatti, Nasir I.; Berkow, Lauren C.; Haut, Elliott R.; Hillel, Alexander T.; Miller, Christina R.; Feller-Kopman, David J.; Schiavi, Adam J.; Xie, Yanjun J.; Lim, Christine; Holzmueller, Christine; Ahmad, Mueen; Thomas, Pradeep; Flint, Paul W.; Mirski, Marek A.

    2015-01-01

    Background Difficult airway cases can quickly become emergencies, increasing the risk of life-threatening complications or death. Emergency airway management outside the operating room is particularly challenging. Methods We developed a quality improvement program—the Difficult Airway Response Team (DART)—to improve emergency airway management outside the operating room. DART was implemented by a team of anesthesiologists, otolaryngologists, trauma surgeons, emergency medicine physicians, and risk managers in 2005 at The Johns Hopkins Hospital in Baltimore, Maryland. The DART program had three core components: operations, safety, and education. The operations component focused on developing a multidisciplinary difficult airway response team, standardizing the emergency response process, and deploying difficult airway equipment carts throughout the hospital. The safety component focused on real-time monitoring of DART activations and learning from past DART events to continuously improve system-level performance. This objective entailed monitoring the paging system, reporting difficult airway events and DART activations to a web-based registry, and using in situ simulations to identify and mitigate defects in the emergency airway management process. The educational component included development of a multispecialty difficult airway curriculum encompassing case-based lectures, simulation, and team building/communication to ensure consistency of care. Educational materials were also developed for non-DART staff and patients to inform them about the needs of patients with difficult airways and ensure continuity of care with other providers after discharge. Results Between July 2008 and June 2013, DART managed 360 adult difficult airway events comprising 8% of all code activations. Predisposing patient factors included body mass index > 40, history of head and neck tumor, prior difficult intubation, cervical spine injury, airway edema, airway bleeding, and previous

  9. Laryngeal mask airway for airway control during percutaneous dilatational tracheostomy.

    PubMed

    Pratt, T; Bromilow, J

    2011-11-01

    Percutaneous dilatational tracheostomy is a common bedside procedure in critical care for patients requiring prolonged mechanical ventilation. The traditional technique requires withdrawal of the endotracheal tube to a proximal position to facilitate tracheostomy insertion, but this carries the risk of inadvertent extubation and does not prevent cuff rupture. Use of a supraglottic airway such as the laryngeal mask airway may avoid these risks and could provide a safe alternative to the endotracheal tube. We present an appraisal of the literature to date. We found reasonable evidence to show improved ventilation and bronchoscopic visualisation with the laryngeal mask airway, but this has not been translated into improved outcome. There is currently insufficient evidence to draw conclusions about the safety of the laryngeal mask airway during percutaneous dilatational tracheostomy.

  10. Endoscopic high-resolution auto fluorescence imaging and optical coherence tomography of airways in vivo (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pahlevaninezhad, Hamid; Lee, Anthony; Hohert, Geoffrey; Schwartz, Carley; Shaipanich, Tawimas; Ritchie, Alexander J.; Zhang, Wei; MacAulay, Calum E.; Lam, Stephen; Lane, Pierre M.

    2016-03-01

    In this work, we present multimodal imaging of peripheral airways in vivo using an endoscopic imaging system capable of co-registered optical coherence tomography and autofluorescence imaging (OCT-AFI). This system employs a 0.9 mm diameter double-clad fiber optic-based catheter for endoscopic imaging of small peripheral airways. Optical coherence tomography (OCT) can visualize detailed airway morphology in the lung periphery and autofluorescence imaging (AFI) can visualize fluorescent tissue components such as collagen and elastin, improving the detection of airway lesions. Results from in vivo imaging of 40 patients indicate that OCT and AFI offer complementary information that may increase the ability to identify pulmonary nodules in the lung periphery and improve the safety of biopsy collection by identifying large blood vessels. AFI can rapidly visualize in vivo vascular networks using fast scanning parameters resulting in vascular-sensitive imaging with less breathing/cardiac motion artifacts compared to Doppler OCT imaging. By providing complementary information about structure and function of tissue, OCT-AFI may improve site selection during biopsy collection in the lung periphery.

  11. Regulation by a TGFβ-ROCK-actomyosin axis secures a non-linear lumen expansion that is essential for tubulogenesis.

    PubMed

    Denker, Elsa; Sehring, Ivonne M; Dong, Bo; Audisso, Julien; Mathiesen, Birthe; Jiang, Di

    2015-05-01

    Regulation of lumen growth is crucial to ensure the correct morphology, dimensions and function of a tubular structure. How this is controlled is still poorly understood. During Ciona intestinalis notochord tubulogenesis, single extracellular lumen pockets grow between pairs of cells and eventually fuse into a continuous tube. Here, we show that lumen growth exhibits a lag phase, during which the luminal membranes continue to grow but the expansion of the apical/lateral junction pauses for ∼30 min. Inhibition of non-muscle myosin II activity abolishes this lag phase and accelerates expansion of the junction, resulting in the formation of narrower lumen pockets partially fusing into a tube of reduced size. Disruption of actin dynamics, conversely, causes a reversal of apical/lateral junction expansion, leading to a dramatic conversion of extracellular lumen pockets to intracellular vacuoles and a tubulogenesis arrest. The onset of the lag phase is correlated with a de novo accumulation of actin that forms a contractile ring at the apical/lateral junctions. This actin ring actively restricts the opening of the lumen in the transverse plane, allowing sufficient time for lumen growth via an osmotic process along the longitudinal dimension. The dynamics of lumen formation is controlled by the TGFβ pathway and ROCK activity. Our findings reveal a TGFβ-ROCK-actomyosin contractility axis that coordinates lumen growth, which is powered by the dynamics of luminal osmolarity. The regulatory system may function like a sensor/checkpoint that responds to the change of luminal pressure and fine-tunes actomyosin contractility to effect proper tubulogenesis. © 2015. Published by The Company of Biologists Ltd.

  12. Purinergic P2Y receptors in airway epithelia: from ion transport to immune functions.

    PubMed

    Hao, Yuan; Ko, Wing-hung

    2014-02-25

    The regulated transport of salt and water is essential to the integrated function of many organ systems, including the respiratory, reproductive, and digestive tracts. Airway epithelial fluid secretion is a passive process that is driven by osmotic forces, which are generated by ion transport. The main determinant of a luminally-directed osmotic gradient is the mucosal transport of chloride ions (Cl(-)) into the lumen. As with many epithelial cells, a number of classic signal transduction cascades are involved in the regulation of ion transport. There are two well-known intracellular signaling systems: an increase in intracellular Ca(2+) concentration ([Ca(2+)]i) and an increase in the rate of synthesis of cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP). Therefore, Cl(-) secretion is primarily activated via the opening of apical Ca(2+)- or cAMP-dependent Cl(-) channels at the apical membrane. The opening of basolateral Ca(2+)- or cAMP-activated K(+) channels, which hyperpolarizes the cell to maintain the driving force for Cl(-) exit through apical Cl(-) channels that are constitutively open, is also important in regulating transepithelial ion transport. P2Y receptors are expressed in the apical and/or basolateral membranes of virtually all polarized epithelia to control the transport of fluid and electrolytes. Human airway epithelial cells express multiple nucleotide receptors. Extracellular nucleotides, such as UTP and ATP, are calcium-mobilizing secretagogues. They are released into the extracellular space from airway epithelial cells and act on the same cell in an autocrine fashion to stimulate transepithelial ion transport. In addition, recent data support the role of P2Y receptors in releasing inflammatory cytokines in the bronchial epithelium and other immune cells.

  13. Mechanical properties of different airway stents.

    PubMed

    Ratnovsky, Anat; Regev, Noa; Wald, Shaily; Kramer, Mordechai; Naftali, Sara

    2015-04-01

    Airway stents improve pulmonary function and quality of life in patients suffering from airway obstruction. The aim of this study was to compare main types of stents (silicone, balloon-dilated metal, self-expanding metal, and covered self-expanding metal) in terms of their mechanical properties and the radial forces they exert on the trachea. Mechanical measurements were carried out using a force gauge and specially designed adaptors fabricated in our lab. Numerical simulations were performed for eight different stent geometries, inserted into trachea models. The results show a clear correlation between stent diameter (oversizing) and the levels of stress it exerts on the trachea. Compared with uncovered metal stents, metal stents that are covered with less stiff material exert significantly less stress on the trachea while still maintaining strong contact with it. The use of such stents may reduce formation of mucosa necrosis and fistulas while still preventing stent migration. Silicone stents produce the lowest levels of stress, which may be due to weak contact between the stent and the trachea and can explain their propensity for migration. Unexpectedly, stents made of the same materials exerted different stresses due to differences in their structure. Stenosis significantly increases stress levels in all stents. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. Use of a Novel Airway Kit and Simulation in Resident Training on Emergent Pediatric Airways.

    PubMed

    Melzer, Jonathan M; Hamersley, Erin R S; Gallagher, Thomas Q

    2017-06-01

    Objective Development of a novel pediatric airway kit and implementation with simulation to improve resident response to emergencies with the goal of improving patient safety. Methods Prospective study with 9 otolaryngology residents (postgraduate years 1-5) from our tertiary care institution. Nine simulated pediatric emergency airway drills were carried out with the existing system and a novel portable airway kit. Response times and time to successful airway control were noted with both the extant airway system and the new handheld kit. Results were analyzed to ensure parametric data and compared with t tests. A Bonferroni adjustment indicated that an alpha of 0.025 was needed for significance. Results Use of the airway kit significantly reduced the mean time of resident arrival by 47% ( P = .013) and mean time of successful intubation by 50% ( P = .007). Survey data indicated 100% improved resident comfort with emergent airway scenarios with use of the kit. Discussion Times to response and meaningful intervention were significantly reduced with implementation of the handheld airway kit. Use of simulation training to implement the new kit improved residents' comfort and airway skills. This study describes an affordable novel mobile airway kit and demonstrates its ability to improve response times. Implications for Practice The low cost of this airway kit makes it a tenable option even for smaller hospitals. Simulation provides a safe and effective way to familiarize oneself with novel equipment, and, when possible, realistic emergent airway simulations should be used to improve provider performance.

  15. Long-term clearance from small airways in subjects with ciliary dysfunction.

    PubMed

    Lindström, Maria; Falk, Rolf; Hjelte, Lena; Philipson, Klas; Svartengren, Magnus

    2006-05-20

    The objective of this study was to investigate if long-term clearance from small airways is dependent on normal ciliary function. Six young adults with primary ciliary dyskinesia (PCD) inhaled 111 Indium labelled Teflon particles of 4.2 microm geometric and 6.2 microm aerodynamic diameter with an extremely slow inhalation flow, 0.05 L/s. The inhalation method deposits particles mainly in the small conducting airways. Lung retention was measured immediately after inhalation and at four occasions up to 21 days after inhalation. Results were compared with data from ten healthy controls. For additional comparison three of the PCD subjects also inhaled the test particles with normal inhalation flow, 0.5 L/s, providing a more central deposition. The lung retention at 24 h in % of lung deposition (Ret24) was higher (p < 0.001) in the PCD subjects, 79 % (95% Confidence Interval, 67.6;90.6), compared to 49% (42.3;55.5) in the healthy controls. There was a significant clearance after 24 h both in the PCD subjects and in the healthy controls with equivalent clearance. The mean Ret24 with slow inhalation flow was 73.9 +/- 1.9% compared to 68.9 +/- 7.5% with normal inhalation flow in the three PCD subjects exposed twice. During day 7-21 the three PCD subjects exposed twice cleared 9% with normal flow, probably representing predominantly alveolar clearance, compared to 19% with slow inhalation flow, probably representing mainly small airway clearance. This study shows that despite ciliary dysfunction, clearance continues in the small airways beyond 24 h. There are apparently additional clearance mechanisms present in the small airways.

  16. Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle.

    PubMed

    Yah, Weng On; Takahara, Atsushi; Lvov, Yuri M

    2012-01-25

    Selective fatty acid hydrophobization of the inner surface of tubule halloysite clay is demonstrated. Aqueous phosphonic acid was found to bind to alumina sites at the tube lumen and did not bind the tube's outer siloxane surface. The bonding was characterized with solid-state nuclear magnetic resonance ((29)Si, (13)C, (31)P NMR), Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy. NMR and FTIR spectroscopy of selectively modified tubes proved binding of octadecylphosphonic acid within the halloysite lumen through bidentate and tridentate P-O-Al linkage. Selective modification of the halloysite clay lumen creates an inorganic micelle-like architecture with a hydrophobic aliphatic chain core and a hydrophilic silicate shell. An enhanced capacity for adsorption of the modified halloysite toward hydrophobic derivatives of ferrocene was shown. This demonstrates that the different inner and outer surface chemistry of clay nanotubes can be used for selective modification, enabling different applications from water purification to drug immobilization and controlled release. © 2011 American Chemical Society

  17. Efficacy of Surgical Airway Plasty for Benign Airway Stenosis.

    PubMed

    Tsukioka, Takuma; Takahama, Makoto; Nakajima, Ryu; Kimura, Michitaka; Inoue, Hidetoshi; Yamamoto, Ryoji

    2016-01-01

    Long-term patency is required during treatment for benign airway stenosis. This study investigated the effectiveness of surgical airway plasty for benign airway stenosis. Clinical courses of 20 patients, who were treated with surgical plasty for their benign airway stenosis, were retrospectively investigated. Causes of stenosis were tracheobronchial tuberculosis in 12 patients, post-intubation stenosis in five patients, malacia in two patients, and others in one patient. 28 interventional pulmonology procedures and 20 surgical plasty were performed. Five patients with post-intubation stenosis and four patients with tuberculous stenosis were treated with tracheoplasty. Eight patients with tuberculous stenosis were treated with bronchoplasty, and two patients with malacia were treated with stabilization of the membranous portion. Anastomotic stenosis was observed in four patients, and one to four additional treatments were required. Performance status, Hugh-Jones classification, and ventilatory functions were improved after surgical plasty. Outcomes were fair in patients with tuberculous stenosis and malacia. However, efficacy of surgical plasty for post-intubation stenosis was not observed. Surgical airway plasty may be an acceptable treatment for tuberculous stenosis. Patients with malacia recover well after surgical plasty. There may be untreated patients with malacia who have the potential to benefit from surgical plasty.

  18. Efficacy of Surgical Airway Plasty for Benign Airway Stenosis

    PubMed Central

    Takahama, Makoto; Nakajima, Ryu; Kimura, Michitaka; Inoue, Hidetoshi; Yamamoto, Ryoji

    2015-01-01

    Background: Long-term patency is required during treatment for benign airway stenosis. This study investigated the effectiveness of surgical airway plasty for benign airway stenosis. Methods: Clinical courses of 20 patients, who were treated with surgical plasty for their benign airway stenosis, were retrospectively investigated. Results: Causes of stenosis were tracheobronchial tuberculosis in 12 patients, post-intubation stenosis in five patients, malacia in two patients, and others in one patient. 28 interventional pulmonology procedures and 20 surgical plasty were performed. Five patients with post-intubation stenosis and four patients with tuberculous stenosis were treated with tracheoplasty. Eight patients with tuberculous stenosis were treated with bronchoplasty, and two patients with malacia were treated with stabilization of the membranous portion. Anastomotic stenosis was observed in four patients, and one to four additional treatments were required. Performance status, Hugh–Jones classification, and ventilatory functions were improved after surgical plasty. Outcomes were fair in patients with tuberculous stenosis and malacia. However, efficacy of surgical plasty for post-intubation stenosis was not observed. Conclusion: Surgical airway plasty may be an acceptable treatment for tuberculous stenosis. Patients with malacia recover well after surgical plasty. There may be untreated patients with malacia who have the potential to benefit from surgical plasty. PMID:26567879

  19. Effects of storage temperature on airway exosome integrity for diagnostic and functional analyses

    PubMed Central

    Maroto, Rosario; Zhao, Yingxin; Jamaluddin, Mohammad; Popov, Vsevolod L.; Wang, Hongwang; Kalubowilage, Madumali; Zhang, Yueqing; Luisi, Jonathan; Sun, Hong; Culbertson, Christopher T.; Bossmann, Stefan H.; Motamedi, Massoud; Brasier, Allan R.

    2017-01-01

    ABSTRACT Background: Extracellular vesicles contain biological molecules specified by cell-type of origin and modified by microenvironmental changes. To conduct reproducible studies on exosome content and function, storage conditions need to have minimal impact on airway exosome integrity. Aim: We compared surface properties and protein content of airway exosomes that had been freshly isolated vs. those that had been treated with cold storage or freezing. Methods: Mouse bronchoalveolar lavage fluid (BALF) exosomes purified by differential ultracentrifugation were analysed immediately or stored at +4°C or −80°C. Exosomal structure was assessed by dynamic light scattering (DLS), transmission electron microscopy (TEM) and charge density (zeta potential, ζ). Exosomal protein content, including leaking/dissociating proteins, were identified by label-free LC-MS/MS. Results: Freshly isolated BALF exosomes exhibited a mean diameter of 95 nm and characteristic morphology. Storage had significant impact on BALF exosome size and content. Compared to fresh, exosomes stored at +4°C had a 10% increase in diameter, redistribution to polydisperse aggregates and reduced ζ. Storage at −80°C produced an even greater effect, resulting in a 25% increase in diameter, significantly reducing the ζ, resulting in multilamellar structure formation. In fresh exosomes, we identified 1140 high-confidence proteins enriched in 19 genome ontology biological processes. After storage at room temperature, 848 proteins were identified. In preparations stored at +4°C, 224 proteins appeared in the supernatant fraction compared to the wash fractions from freshly prepared exosomes; these proteins represent exosome leakage or dissociation of loosely bound “peri-exosomal” proteins. In preparations stored at −80°C, 194 proteins appeared in the supernatant fraction, suggesting that distinct protein groups leak from exosomes at different storage temperatures. Conclusions: Storage

  20. Effects of storage temperature on airway exosome integrity for diagnostic and functional analyses.

    PubMed

    Maroto, Rosario; Zhao, Yingxin; Jamaluddin, Mohammad; Popov, Vsevolod L; Wang, Hongwang; Kalubowilage, Madumali; Zhang, Yueqing; Luisi, Jonathan; Sun, Hong; Culbertson, Christopher T; Bossmann, Stefan H; Motamedi, Massoud; Brasier, Allan R

    2017-01-01

    Background : Extracellular vesicles contain biological molecules specified by cell-type of origin and modified by microenvironmental changes. To conduct reproducible studies on exosome content and function, storage conditions need to have minimal impact on airway exosome integrity. Aim : We compared surface properties and protein content of airway exosomes that had been freshly isolated vs. those that had been treated with cold storage or freezing. Methods : Mouse bronchoalveolar lavage fluid (BALF) exosomes purified by differential ultracentrifugation were analysed immediately or stored at +4°C or -80°C. Exosomal structure was assessed by dynamic light scattering (DLS), transmission electron microscopy (TEM) and charge density (zeta potential, ζ). Exosomal protein content, including leaking/dissociating proteins, were identified by label-free LC-MS/MS. Results : Freshly isolated BALF exosomes exhibited a mean diameter of 95 nm and characteristic morphology. Storage had significant impact on BALF exosome size and content. Compared to fresh, exosomes stored at +4°C had a 10% increase in diameter, redistribution to polydisperse aggregates and reduced ζ. Storage at -80°C produced an even greater effect, resulting in a 25% increase in diameter, significantly reducing the ζ, resulting in multilamellar structure formation. In fresh exosomes, we identified 1140 high-confidence proteins enriched in 19 genome ontology biological processes. After storage at room temperature, 848 proteins were identified. In preparations stored at +4°C, 224 proteins appeared in the supernatant fraction compared to the wash fractions from freshly prepared exosomes; these proteins represent exosome leakage or dissociation of loosely bound "peri-exosomal" proteins. In preparations stored at -80°C, 194 proteins appeared in the supernatant fraction, suggesting that distinct protein groups leak from exosomes at different storage temperatures. Conclusions : Storage destabilizes the surface

  1. Numerical investigation of diesel exhaust particle transport and deposition in the CT-scan based lung airway

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad S.; Saha, Suvash C.; Sauret, Emilie; Gu, Y. T.; Molla, Md Mamun

    2017-06-01

    Diesel exhaust particulates matter (DEPM) is a compound mixture of gasses and fine particles that contain more than 40 toxic air pollutants including benzene, formaldehyde, and nitrogen oxides. Exposure of DEPM to human lung airway during respiratory inhalation causes severe health hazards like diverse pulmonary diseases. This paper studies the DEPM transport and deposition in upper three generations of the realistic lung airways. A 3-D digital airway bifurcation model is constructed from the computerized tomography (CT) scan data of a healthy adult man. The Euler-Lagrange approach is used to solve the continuum and disperse phases of the calculation. Local averaged Navier-Stokes equations are solved to calculate the transport of the continuum phase. Lagrangian based Discrete Phase Model (DPM) is used to investigate the particle transport and deposition in the current anatomical model. The effects of size specific monodispersed particles on deposition are extensively investigated during different breathing pattern. The numerical results illustrate that particle diameter and breathing pattern have a substantial impact on particles transport and deposition in the tracheobronchial airways. The present realistic bifurcation model also depicts a new deposition hot spot which could advance the understanding of the therapeutic drug delivery system to the specific position of the respiratory airways.

  2. The effect of serum on the secretion of radiolabeled mucous macromolecules into the lumen of the cat trachea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peatfield, A.C.; Hall, R.L.; Richardson, P.S.

    1982-02-01

    We studied the effect of placing serum within a segment of trachea on secretion into its lumen in the cat. A segment of cervical trachea was isolated from the rest of the airway in situ. Secretions were radiolabeled biosynthetically by the administration of two radiolabeled precursors: (35S)sodium sulphate and (3H)glucose. Autologous serum placed in the segment at a dilution of 1 in 8 increased the output of radiolabeled macromolecules: (35S) by 80% and (3H) by 159% (p less than 0.001). At a dilution of 1 in 24, serum still increased the output of both isotopes. At dilutions of 1 inmore » 48 and 1 in 80 the increases were significant for (35S) but not for (3H). Heating the serum to 90 degrees C diminished its effects. Fractionating the serum by dialysis and gel filtration showed that the components of molecular weight less than about 13,000 daltons had no effect on secretion, whereas three higher molecular weight fractions all increased secretion. Two alien proteins (horseradish peroxidase and bovine serum albumin) stimulated secretion but a large molecular weight carbohydrate (carboxymethyl cellulose) did not. Atropine and propranolol, at doses that greatly reduced the effect of parasympathetic and sympathetic nerve activity, did not diminish the effects of serum, which therefore appeared to be independent of nerve activity. Gel filtration of the secretions elicited by serum showed that the predominant component was excluded even by Sepharose CL-2B and thus had a high molecular weight. We conclude that there are several components of serum that promote the secretion of mucus glycoproteins into the cat trachea. The relevance of these findings to diseases of human airways is considered.« less

  3. Airway management in neuroanesthesiology.

    PubMed

    Aziz, Michael

    2012-06-01

    Airway management for neuroanesthesiology brings together some key principles that are shared throughout neuroanesthesiology. This article appropriately targets the cervical spine with associated injury and the challenges surrounding airway management. The primary focus of this article is on the unique airway management obstacles encountered with cervical spine injury or cervical spine surgery, and unique considerations regarding functional neurosurgery are addressed. Furthermore, topics related to difficult airway management for those with rheumatoid arthritis or pituitary surgery are reviewed. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. [The research on the airway hyperresponsiveness and IOS airway resistance index of industrial area resident].

    PubMed

    Xu, Jin; Wang, Zhen; Sun, Hongcun

    2015-09-01

    To study airway reactivity and impulse oscillation (IOS)-measured airway resistance indicators of residents of Zhenhai industrial area in Ningbo city. In the form of follow-up, both. airway reactivity and respiratory functions of populations in Zhenhai industrial zone (n = 215) and urban (n = 203) were measured, comparing difference degree between different regions. Ninty-five of 215 cases in industrial area were identified as suspected airway hyperresponsiveness, but only 43 of 203 cases were in urban areas. Forty-seven of 95 cases (49.5%) in industrial zone were positive, while only 14 cases (32.6%) in urban. The proportions of people in the two regions on different types of airway hyperresponsiveness were significantly different (P < 0.01). All airway resistance indexes of urban populations were significantly lower than that of industrial zone (P < 0.05). The prevalence of airway hyperresponsiveness and IOS airway resistance aspects of industrial area residents was higher than that of urban residents. Monitoring and evaluating the airway diseases, inflammatory lesions and respiratory function in the region were good for understanding the severe pollution in the local area in certain significance.

  5. 21 CFR 880.5570 - Hypodermic single lumen needle.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hypodermic single lumen needle. 880.5570 Section 880.5570 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... surface of the skin. The device consists of a metal tube that is sharpened at one end and at the other end...

  6. 21 CFR 880.5570 - Hypodermic single lumen needle.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hypodermic single lumen needle. 880.5570 Section 880.5570 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... surface of the skin. The device consists of a metal tube that is sharpened at one end and at the other end...

  7. Emergency airway puncture

    MedlinePlus

    ... support for only a very short period of time. Alternative Names Needle cricothyrotomy Images Emergency airway puncture Cricoid cartilage Emergency airway puncture - series References Hebert RB, Bose S, Mace SE. Cricothyrotomy and ...

  8. Three-dimensional computed tomographic airway analysis of patients with obstructive sleep apnea treated by maxillomandibular advancement.

    PubMed

    Abramson, Zachary; Susarla, Srinivas M; Lawler, Matthew; Bouchard, Carl; Troulis, Maria; Kaban, Leonard B

    2011-03-01

    To evaluate changes in airway size and shape in patients with obstructive sleep apnea (OSA) after maxillomandibular advancement (MMA) and genial tubercle advancement (GTA). This was a retrospective cohort study, enrolling a sample of adults with polysomnography-confirmed OSA who underwent MMA + GTA. All subjects who had preoperative and postoperative 3-dimensional computed tomography (CT) scans to evaluate changes in airway size and shape after MMA + GTA were included. Preoperative and postoperative sleep- and breathing-related symptoms were recorded. Descriptive and bivariate statistics were computed. For all analyses, P < .05 was considered statistically significant. During the study period, 13 patients underwent MMA + GTA, of whom 11 (84.6%) met the inclusion criteria. There were 9 men and 2 women with a mean age of 39 years. The mean body mass index was 26.3; mean respiratory disturbance index (RDI), 48.8; and mean lowest oxygen saturation, 80.5%. After MMA + GTA, there were significant increases in lateral and anteroposterior airway diameters (P < .01), volume (P = .02), surface area (P < .01), and cross-sectional areas at multiple sites (P < .04). Airway length decreased (P < .01) and airway shape (P = .04) became more uniform. The mean change in RDI was -60%. Results of this preliminary study indicate that MMA + GTA appears to produce significant changes in airway size and shape that correlate with a decrease in RDI. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Objective classification of different head and neck positions and their influence on the radiographic pharyngeal diameter in sport horses

    PubMed Central

    2014-01-01

    Background Various head and neck positions in sport horses are significant as they can interfere with upper airway flow mechanics during exercise. Until now, research has focused on subjectively described head and neck positions. The objective of this study was to develop an objective, reproducible method for quantifying head and neck positions accurately. Results Determining the angle between the ridge of the nose and the horizontal plane (ground angle) together with the angle between the ridge of nose and the line connecting the neck and the withers (withers angle) has provided values that allow precise identification of three preselected head and neck positions for performing sport horses. The pharyngeal diameter, determined on lateral radiographs of 35 horses, differed significantly between the established flexed position and the remaining two head and neck positions (extended and neutral). There was a significant correlation between the pharyngeal diameter and the ground angle (Spearman’s rank correlation coefficient −0.769, p < 0.01) as well as between the pharyngeal diameter and the withers angle (Spearman’s rank correlation coefficient 0.774, p < 0.01). Conclusion The combination of the ground angle and the withers angle is a suitable tool for evaluating and distinguishing frequently used head and neck positions in sport horses. The ground angle and the withers angle show significant correlation with the measured pharyngeal diameter in resting horses. Hence, these angles provide an appropriate method for assessing the degree of head and neck flexion. Further research is required to examine the influence of increasing head and neck flexion and the related pharyngeal diameter on upper airway function in exercising horses. PMID:24886564

  10. Allergic Sensitization through the Airway Primes Th17-dependent Neutrophilia and Airway Hyperresponsiveness

    PubMed Central

    Wilson, Rhonda H.; Whitehead, Gregory S.; Nakano, Hideki; Free, Meghan E.; Kolls, Jay K.; Cook, Donald N.

    2009-01-01

    Rationale: In humans, immune responses to inhaled aeroallergens develop in the lung and draining lymph nodes. Many animal models of asthma bypass this route and instead use intraperitoneal injections of allergen using aluminum hydroxide as an adjuvant. Objectives: We investigated whether allergic sensitization through the airway elicits immune responses qualitatively different than those arising in the peritoneum. Methods: Mice were sensitized to allergen through the airway using low-dose LPS as an adjuvant, or through the peritoneum using aluminum hydroxide as an adjuvant. After a single allergen challenge, ELISA and flow cytometry were used to measure cytokines and leukocyte subsets. Invasive measurements of airway resistance were used to measure allergen-induced airway hyperreactivity (AHR). Measurements and Main Results: Sensitization through the peritoneum primed strong Th2 responses and eosinophilia, but not AHR, after a single allergen challenge. By contrast, allergic sensitization through the airway primed only modest Th2 responses, but strong Th17 responses. Th17 cells homed to the lung and released IL-17 into the airway on subsequent encounter with inhaled allergen. As a result, these mice developed IL-17–dependent airway neutrophilia and AHR. This AHR was neutrophil-dependent because it was abrogated in CXCR2-deficient mice and also in wild-type mice receiving a neutrophil-depleting antibody. Individually, neither IL-17 nor ongoing Th2 responses were sufficient to confer AHR, but together they acted synergistically to promote neutrophil recruitment, eosinophil recruitment and AHR. Conclusions: Allergic sensitization through the airway primes modest Th2 responses but strong Th17 responses that promote airway neutrophilia and acute AHR. These findings support a causal role for neutrophils in severe asthma. PMID:19661246

  11. Careers in Airway Science.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    The Federal Aviation Administration (FAA) has initiated the Airway Science curriculum as a method of preparing the next generation of aviation technicians and managers. This document: (1) discusses the FAA's role in the Airway Science program; (2) describes some of the career fields that FAA offers to Airway Science graduates (air traffic control…

  12. Molecular analysis of the microbial diversity present in the colonic wall, colonic lumen, and cecal lumen of a pig.

    PubMed

    Pryde, S E; Richardson, A J; Stewart, C S; Flint, H J

    1999-12-01

    Random clones of 16S ribosomal DNA gene sequences were isolated after PCR amplification with eubacterial primers from total genomic DNA recovered from samples of the colonic lumen, colonic wall, and cecal lumen from a pig. Sequences were also obtained for cultures isolated anaerobically from the same colonic-wall sample. Phylogenetic analysis showed that many sequences were related to those of Lactobacillus or Streptococcus spp. or fell into clusters IX, XIVa, and XI of gram-positive bacteria. In addition, 59% of randomly cloned sequences showed less than 95% similarity to database entries or sequences from cultivated organisms. Cultivation bias is also suggested by the fact that the majority of isolates (54%) recovered from the colon wall by culturing were related to Lactobacillus and Streptococcus, whereas this group accounted for only one-third of the sequence variation for the same sample from random cloning. The remaining cultured isolates were mainly Selenomonas related. A higher proportion of Lactobacillus reuteri-related sequences than of Lactobacillus acidophilus- and Lactobacillus amylovorus-related sequences were present in the colonic-wall sample. Since the majority of bacterial ribosomal sequences recovered from the colon wall are less than 95% related to known organisms, the roles of many of the predominant wall-associated bacteria remain to be defined.

  13. Molecular Analysis of the Microbial Diversity Present in the Colonic Wall, Colonic Lumen, and Cecal Lumen of a Pig

    PubMed Central

    Pryde, Susan E.; Richardson, Anthony J.; Stewart, Colin S.; Flint, Harry J.

    1999-01-01

    Random clones of 16S ribosomal DNA gene sequences were isolated after PCR amplification with eubacterial primers from total genomic DNA recovered from samples of the colonic lumen, colonic wall, and cecal lumen from a pig. Sequences were also obtained for cultures isolated anaerobically from the same colonic-wall sample. Phylogenetic analysis showed that many sequences were related to those of Lactobacillus or Streptococcus spp. or fell into clusters IX, XIVa, and XI of gram-positive bacteria. In addition, 59% of randomly cloned sequences showed less than 95% similarity to database entries or sequences from cultivated organisms. Cultivation bias is also suggested by the fact that the majority of isolates (54%) recovered from the colon wall by culturing were related to Lactobacillus and Streptococcus, whereas this group accounted for only one-third of the sequence variation for the same sample from random cloning. The remaining cultured isolates were mainly Selenomonas related. A higher proportion of Lactobacillus reuteri-related sequences than of Lactobacillus acidophilus- and Lactobacillus amylovorus-related sequences were present in the colonic-wall sample. Since the majority of bacterial ribosomal sequences recovered from the colon wall are less than 95% related to known organisms, the roles of many of the predominant wall-associated bacteria remain to be defined. PMID:10583991

  14. Ezetimibe Promotes Brush Border Membrane-to-Lumen Cholesterol Efflux in the Small Intestine

    PubMed Central

    Nakano, Takanari; Inoue, Ikuo; Takenaka, Yasuhiro; Ono, Hiraku; Katayama, Shigehiro; Awata, Takuya; Murakoshi, Takayuki

    2016-01-01

    Ezetimibe inhibits Niemann-Pick C1-like 1 (NPC1L1), an apical membrane cholesterol transporter of enterocytes, thereby reduces intestinal cholesterol absorption. This treatment also increases extrahepatic reverse cholesterol transport via an undefined mechanism. To explore this, we employed a trans-intestinal cholesterol efflux (TICE) assay, which directly detects circulation-to-intestinal lumen 3H-cholesterol transit in a cannulated jejunal segment, and found an increase of TICE by 45%. To examine whether such increase in efflux occurs at the intestinal brush border membrane(BBM)-level, we performed luminal perfusion assays, similar to TICE but the jejunal wall was labelled with orally-given 3H-cholesterol, and determined elevated BBM-to-lumen cholesterol efflux by 3.5-fold with ezetimibe. Such increased efflux probably promotes circulation-to-lumen cholesterol transit eventually; thus increases TICE. Next, we wondered how inhibition of NPC1L1, an influx transporter, resulted in increased efflux. When we traced orally-given 3H-cholesterol in mice, we found that lumen-to-BBM 3H-cholesterol transit was rapid and less sensitive to ezetimibe treatment. Comparison of the efflux and fractional cholesterol absorption revealed an inverse correlation, indicating the efflux as an opposite-regulatory factor for cholesterol absorption efficiency and counteracting to the naturally-occurring rapid cholesterol influx to the BBM. These suggest that the ezetimibe-stimulated increased efflux is crucial in reducing cholesterol absorption. Ezetimibe-induced increase in cholesterol efflux was approximately 2.5-fold greater in mice having endogenous ATP-binding cassette G5/G8 heterodimer, the major sterol efflux transporter of enterocytes, than the knockout counterparts, suggesting that the heterodimer confers additional rapid BBM-to-lumen cholesterol efflux in response to NPC1L1 inhibition. The observed framework for intestinal cholesterol fluxes may provide ways to modulate the flux

  15. Ezetimibe Promotes Brush Border Membrane-to-Lumen Cholesterol Efflux in the Small Intestine.

    PubMed

    Nakano, Takanari; Inoue, Ikuo; Takenaka, Yasuhiro; Ono, Hiraku; Katayama, Shigehiro; Awata, Takuya; Murakoshi, Takayuki

    2016-01-01

    Ezetimibe inhibits Niemann-Pick C1-like 1 (NPC1L1), an apical membrane cholesterol transporter of enterocytes, thereby reduces intestinal cholesterol absorption. This treatment also increases extrahepatic reverse cholesterol transport via an undefined mechanism. To explore this, we employed a trans-intestinal cholesterol efflux (TICE) assay, which directly detects circulation-to-intestinal lumen 3H-cholesterol transit in a cannulated jejunal segment, and found an increase of TICE by 45%. To examine whether such increase in efflux occurs at the intestinal brush border membrane(BBM)-level, we performed luminal perfusion assays, similar to TICE but the jejunal wall was labelled with orally-given 3H-cholesterol, and determined elevated BBM-to-lumen cholesterol efflux by 3.5-fold with ezetimibe. Such increased efflux probably promotes circulation-to-lumen cholesterol transit eventually; thus increases TICE. Next, we wondered how inhibition of NPC1L1, an influx transporter, resulted in increased efflux. When we traced orally-given 3H-cholesterol in mice, we found that lumen-to-BBM 3H-cholesterol transit was rapid and less sensitive to ezetimibe treatment. Comparison of the efflux and fractional cholesterol absorption revealed an inverse correlation, indicating the efflux as an opposite-regulatory factor for cholesterol absorption efficiency and counteracting to the naturally-occurring rapid cholesterol influx to the BBM. These suggest that the ezetimibe-stimulated increased efflux is crucial in reducing cholesterol absorption. Ezetimibe-induced increase in cholesterol efflux was approximately 2.5-fold greater in mice having endogenous ATP-binding cassette G5/G8 heterodimer, the major sterol efflux transporter of enterocytes, than the knockout counterparts, suggesting that the heterodimer confers additional rapid BBM-to-lumen cholesterol efflux in response to NPC1L1 inhibition. The observed framework for intestinal cholesterol fluxes may provide ways to modulate the flux

  16. Relapsing polychondritis and airway involvement.

    PubMed

    Ernst, Armin; Rafeq, Samaan; Boiselle, Phillip; Sung, Arthur; Reddy, Chakravarthy; Michaud, Gaetane; Majid, Adnan; Herth, Felix J F; Trentham, David

    2009-04-01

    To assess the prevalence and characteristics of airway involvement in relapsing polychondritis (RP). Retrospective chart review and data analysis of RP patients seen in the Rheumatology Clinic and the Complex Airway Center at Beth Israel Deaconess Medical Center from January 2004 through February 2008. RP was diagnosed in 145 patients. Thirty-one patients had airway involvement, a prevalence of 21%. Twenty-two patients were women (70%), and they were between 11 and 61 years of age (median age, 42 years) at the time of first symptoms. Airway symptoms were the first manifestation of disease in 17 patients (54%). Dyspnea was the most common symptom in 20 patients (64%), followed by cough, stridor, and hoarseness. Airway problems included the following: subglottic stenosis (n = 8; 26%); focal and diffuse malacia (n = 15; 48%); and focal stenosis in different areas of the bronchial tree in the rest of the patients. Twelve patients (40%) required and underwent intervention including balloon dilatation, stent placement, tracheotomy, or a combination of the above with good success. The majority of patients experienced improvement in airway symptoms after intervention. One patient died during the follow-up period from the progression of airway disease. The rest of the patients continue to undergo periodic evaluation and intervention. In this largest cohort described in the English language literature, we found symptomatic airway involvement in RP to be common and at times severe. The nature of airway problems is diverse, with tracheomalacia being the most common. Airway intervention is frequently required and in experienced hands results in symptom improvement.

  17. Airway recovery after face transplantation.

    PubMed

    Fischer, Sebastian; Wallins, Joe S; Bueno, Ericka M; Kueckelhaus, Maximilian; Chandawarkar, Akash; Diaz-Siso, J Rodrigo; Larson, Allison; Murphy, George F; Annino, Donald J; Caterson, Edward J; Pomahac, Bohdan

    2014-12-01

    Severe facial injuries can compromise the upper airway by reducing airway volume, obstructing or obliterating the nasal passage, and interfering with oral airflow. Besides the significant impact on quality of life, upper airway impairments can have life-threatening or life-altering consequences. The authors evaluated improvements in functional airway after face transplantation. Between 2009 and 2011, four patients underwent face transplantation at the authors' institution, the Brigham and Women's Hospital. Patients were examined preoperatively and postoperatively and their records reviewed for upper airway infections and sleeping disorders. The nasal mucosa was biopsied after face transplantation and analyzed using scanning electron microscopy. Volumetric imaging software was used to evaluate computed tomographic scans of the upper airway and assess airway volume changes before and after transplantation. Before transplantation, two patients presented an exposed naked nasal cavity and two suffered from occlusion of the nasal passage. Two patients required tracheostomy tubes and one had a prosthetic nose. Sleeping disorders were seen in three patients, and chronic cough was diagnosed in one. After transplantation, there was no significant improvement in sleeping disorders. The incidence of sinusitis increased because of mechanical interference of the donor septum and disappeared after surgical correction. All patients were decannulated after transplantation and were capable of nose breathing. Scanning electron micrographs of the respiratory mucosa revealed viable tissue capable of mucin production. Airway volume significantly increased in all patients. Face transplantation successfully restored the upper airway in four patients. Unhindered nasal breathing, viable respiratory mucosa, and a significant increase in airway volume contributed to tracheostomy decannulation.

  18. Sphincterotomy by triple lumen needle knife using guide wire in patients with Billroth II gastrectomy

    PubMed Central

    Park, Su Bum; Kim, Hyung Wook; Kang, Dae Hwan; Choi, Cheol Woong; Yoon, Ki Tae; Cho, Mong; Song, Byeong Jun

    2013-01-01

    AIM: To investigate the usefulness of a guide wire and triple lumen needle knife for removing stones in Billroth II (B-II) gastrectomy patients. METHODS: Endoscopic sphincterotomy in patients with B-II gastrectomy is challenging. We used a new guide wire technique involving sphincterotomy by triple lumen needle knife through a forward-viewing endoscopy. This technique was performed in nine patients between August 2010 and June 2012. Sphincterotomy as described above was performed. Adequate sphincterotomy, successful stone removal, and complications were investigated prospectively. RESULTS: Sphincterotomy by triple lumen needle knife using guide wire was successful in all nine patients. Sphincterotomy started towards the 4-5 o’clock direction and continued to the upper margin of the papillary roof. Complete stone removal in one session was achieved in all patients. There were no procedure related complications, such as bleeding, pancreatitis, or perforation. CONCLUSION: In patients with B-II gastrectomy, guide wire using sphincterotomy by triple lumen needle knife through a forward-viewing endoscopy seems to be an effective and safe procedure for the removal of common bile duct stones. PMID:24409069

  19. Minimization of lumen depreciation in LED lamps using thermal transient behavior analysis and design optimizations.

    PubMed

    Khan, M Nisa

    2016-02-10

    We expansively investigate thermal behaviors of various general-purpose light-emitting diode (LED) lamps and apply our measured results, validated by simulation, to establish lamp design rules for optimizing their optical and thermal properties. These design rules provide the means to minimize lumen depreciation over time by minimizing the periods for lamps to reach thermal steady-state while maintaining their high luminous efficacy and omnidirectional light distribution capability. While it is well known that minimizing the junction temperature of an LED leads to a longer lifetime and an increased lumen output, our study demonstrates, for the first time, to the best of our knowledge, that it is also important to minimize the time it takes to reach thermal equilibrium because doing so minimizes lumen depreciation and enhances light output and color stability during operation. Specifically, we have found that, in addition to inadequate heat-sink fin areas for a lamp configuration, LEDs mounted on multiple boards, as opposed to a single board, lead to longer periods for reaching thermal equilibrium contributing to larger lumen depreciation.

  20. Relationship between Pulmonary Airflow and Resistance in Patients with Airway Narrowing Using An 1-D Network Resistance and Compliance Model

    NASA Astrophysics Data System (ADS)

    Choi, Sanghun; Choi, Jiwoong; Hoffman, Eric; Lin, Ching-Long

    2016-11-01

    To predict the proper relationship between airway resistance and regional airflow, we proposed a novel 1-D network model for airway resistance and acinar compliance. First, we extracted 1-D skeletons at inspiration images, and generated 1-D trees of CT unresolved airways with a volume filling method. We used Horsfield order with random heterogeneity to create diameters of the generated 1-D trees. We employed a resistance model that accounts for kinetic energy and viscous dissipation (Model A). The resistance model is further coupled with a regional compliance model estimated from two static images (Model B). For validation, we applied both models to a healthy subject. The results showed that Model A failed to provide airflows consistent with air volume change, whereas Model B provided airflows consistent with air volume change. Since airflows shall be regionally consistent with air volume change in patients with normal airways, Model B was validated. Then, we applied Model B to severe asthmatic subjects. The results showed that regional airflows were significantly deviated from air volume change due to airway narrowing. This implies that airway resistance plays a major role in determining regional airflows of patients with airway narrowing. Support for this study was provided, in part, by NIH Grants U01 HL114494, R01 HL094315, R01 HL112986, and S10 RR022421.

  1. [Quality assurance in airway management: education and training for difficult airway management].

    PubMed

    Kaminoh, Yoshiroh

    2006-01-01

    Respiratory problem is one of the main causes of death or severe brain damage in perioperative period. Three major factors of respiratory problem are esophageal intubation, inadequate ventilation, and difficult airway. The wide spread of pulse oximeter and capnograph reduced the incidences of esophageal intubation and inadequate ventilation, but the difficult airway still occupies the large portion in the causes of adverse events during anesthesia. "Practice guideline for management of the difficult airway" was proposed by American Society of Anesthesiologists (ASA) in 1992 and 2002. Improvement of knowledge, technical skills, and cognitive skills are necessary for the education and training of the difficult airway management. "The practical seminar of difficult airway management (DAM practical seminar)" has been cosponsored by the Japanese Association of Medical Simulation (JAMS) in the 51 st and 52 nd annual meetings of Japanese Society of Anesthesiologists and the 24th annual meeting of Japanese Society for Clinical Anesthesia. The DAM practical seminar is composed of the lecture session for ASA difficult airway algorithm, the hands-on training session for technical skills, and the scenario-based training session for cognitive skills. Ninty six Japanese anesthesiologists have completed the DAM practical seminar in one year. "The DAM instructor course" should be immediately prepared to organize the seminar more frequently.

  2. Airway malacia in children with achondroplasia.

    PubMed

    Dessoffy, Kimberly E; Modaff, Peggy; Pauli, Richard M

    2014-02-01

    This study was undertaken to assess the frequency of airway malacia in infants and young children with achondroplasia, a population well known to be at risk for a variety of respiratory problems. We also wished to evaluate what, if any, contribution airway malacia makes to the complex respiratory issues that may be present in those with achondroplasia. Retrospective chart review of all infants and young children with achondroplasia who were assessed through the Midwest Regional Bone Dysplasia Clinics from 1985 through 2012 (n = 236) was completed. Records of comprehensive clinical examinations, polysomnographic assessments, and airway visualization were reviewed and abstracted using a data collection form. Analyses were completed comparing the group with and those without evidence for airway malacia. Thirteen of 236 patients (5.5%) were found to have airway malacia. Most of those affected had lower airway involvement (9/13). The presence of airway malacia was correlated with an increased occurrence of obstructive sleep apnea as well as need for oxygen supplementation, airway surgeries and tracheostomy placement. Although estimates of the frequency of airway malacia in the general population are limited, its frequency in children with achondroplasia appears to be much higher than any published general population estimate. The presence of airway malacia appears to confound other breathing abnormalities in this population and results in the need for more invasive airway treatments. © 2013 Wiley Periodicals, Inc.

  3. Extraglottic airway devices: technology update.

    PubMed

    Sharma, Bimla; Sahai, Chand; Sood, Jayashree

    2017-01-01

    Extraglottic airway devices (EADs) have revolutionized the field of airway management. The invention of the laryngeal mask airway was a game changer, and since then, there have been several innovations to improve the EADs in design, functionality, safety and construction material. These have ranged from changes in the shape of the mask, number of cuffs and material used, like rubber, polyvinylchloride and latex. Phthalates, which were added to the construction material in order to increase device flexibility, were later omitted when this chemical was found to have serious adverse reproductive outcomes. The various designs brought out by numerous companies manufacturing EADs resulted in the addition of several devices to the airway market. These airway devices were put to use, many of them with inadequate or no evidence base regarding their efficacy and safety. To reduce the possibility of compromising the safety of the patient, the Difficult Airway Society (DAS) formed the Airway Device Evaluation Project Team (ADEPT) to strengthen the evidence base for airway equipment and vet the new extraglottic devices. A preuse careful analysis of the design and structure may help in better understanding of the functionality of a particular device. In the meantime, the search for the ideal EAD continues.

  4. Airway Protective Mechanisms

    PubMed Central

    Pitts, Teresa

    2014-01-01

    Cough and swallow are highly coordinated reflex behaviors whose common purpose is to protect the airway. The pharynx is the common tube for air and food/liquid movement from the mouth into the thorax, has been largely overlooked, and is potentially seen as just a passive space. The thyropharyngeus muscle responds to cough inducing stimuli to prepare a transient holding area for material that has been removed from the subglottic airway. The cricopharyngeus muscle participates with the larynx to ensure regulation of pressure when a bolus/air is moving from the upper airway through to the thorax (i.e inspiration or swallow) or the reverse (i.e expiration reflex or vomiting).These vital mechanisms have not been evaluated in clinical conditions, but could be impaired in many neurodegenerative diseases leading to aspiration pneumonia. These newly described airway protective mechanisms need further study, especially in healthy and pathologic human populations. PMID:24297325

  5. Summarized institutional experience of paediatric airway surgery†.

    PubMed

    Hoetzenecker, Konrad; Schweiger, Thomas; Schwarz, Stefan; Roesner, Imme; Leonhard, Matthias; Denk-Linnert, Doris-Maria; Schneider-Stickler, Berit; Bigenzahn, Wolfgang; Klepetko, Walter

    2016-04-01

    The management of paediatric airway stenosis is complex, and requires a dedicated team, consisting of thoracic surgeons, phoniatricians, logopaedics, paediatricians and anaesthetists. The majority of paediatric laryngotracheal stenosis is a sequela of prematurity and prolonged post-partal intubation/tracheostomy. Surgical correction is often difficult due to a frequent combination of glottic and subglottic defects. In 2012, the Laryngotracheal Program Vienna was launched. Since then, 18 paediatric patients were surgically treated for (laryngo-)tracheal problems. The median age of our patients was 26 months (range 2-180 months). Laryngotracheal stenosis extending up to the level of the vocal cords was evident in 9 patients. Three children were diagnosed with an isolated subglottic, and four with a short-segment tracheal stenosis or malacia. Two patients had a long-segment congenital malformation together with vascular ring anomalies. Five children were pretreated by rigid endoscopy before surgical correction, 12 of our 18 patients had a tracheostomy, 3 children were intubated at the time of operation. Different techniques of corrections were applied: laryngotracheal reconstruction (n = 4), extended partial cricotracheal resection (n = 4), cricotracheal resection with or without anterior split or dorsal mucosal flap (n = 4), slide tracheoplasty (n = 2), tracheal resection (n = 4). In 8 patients, a rib cartilage interposition was necessary in order to obtain a sufficient lumen enlargement and in 7 of these patients, an LT-Mold was placed to stabilize the reconstruction. We lost 2 patients, who were referred to our institution after failure of multiple preceding interventions, 2 and 3 months after the operation. Twelve patients are currently in an excellent condition, one is in an acceptable condition without a need for an intervention. Two patients required an endoscopic reintervention 18 and 33 months after the operation, 1 child is currently still cannulated

  6. Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation

    PubMed Central

    Schneider, Craig S.; Xu, Qingguo; Boylan, Nicholas J.; Chisholm, Jane; Tang, Benjamin C.; Schuster, Benjamin S.; Henning, Andreas; Ensign, Laura M.; Lee, Ethan; Adstamongkonkul, Pichet; Simons, Brian W.; Wang, Sho-Yu S.; Gong, Xiaoqun; Yu, Tao; Boyle, Michael P.; Suk, Jung Soo; Hanes, Justin

    2017-01-01

    Mucoadhesive particles (MAP) have been widely explored for pulmonary drug delivery because of their perceived benefits in improving particle residence in the lungs. However, retention of particles adhesively trapped in airway mucus may be limited by physiologic mucus clearance mechanisms. In contrast, particles that avoid mucoadhesion and have diameters smaller than mucus mesh spacings rapidly penetrate mucus layers [mucus-penetrating particles (MPP)], which we hypothesized would provide prolonged lung retention compared to MAP. We compared in vivo behaviors of variously sized, polystyrene-based MAP and MPP in the lungs following inhalation. MAP, regardless of particle size, were aggregated and poorly distributed throughout the airways, leading to rapid clearance from the lungs. Conversely, MPP as large as 300 nm exhibited uniform distribution and markedly enhanced retention compared to size-matched MAP. On the basis of these findings, we formulated biodegradable MPP (b-MPP) with an average diameter of <300 nm and examined their behavior following inhalation relative to similarly sized biodegradable MAP (b-MAP). Although b-MPP diffused rapidly through human airway mucus ex vivo, b-MAP did not. Rapid b-MPP movements in mucus ex vivo correlated to a more uniform distribution within the airways and enhanced lung retention time as compared to b-MAP. Furthermore, inhalation of b-MPP loaded with dexamethasone sodium phosphate (DP) significantly reduced inflammation in a mouse model of acute lung inflammation compared to both carrier-free DP and DP-loaded MAP. These studies provide a careful head-to-head comparison of MAP versus MPP following inhalation and challenge a long-standing dogma that favored the use of MAP for pulmonary drug delivery. PMID:28435870

  7. Characterization of swallow modulation in response to bolus volume in healthy subjects accounting for catheter diameter.

    PubMed

    Ferris, Lara; Schar, Mistyka; McCall, Lisa; Doeltgen, Sebastian; Scholten, Ingrid; Rommel, Nathalie; Cock, Charles; Omari, Taher

    2018-06-01

    Characterization of the pharyngeal swallow response to volume challenges is important for swallowing function assessment. The diameter of the pressure-impedance recording catheter may influence these results. In this study, we captured key physiological swallow measures in response to bolus volume utilizing recordings acquired by two catheters of different diameter. Ten healthy adults underwent repeat investigations with 8- and 10-Fr catheters. Liquid bolus swallows of volumes 2.5, 5, 10, 20, and 30 mL were recorded. Measures indicative of distension, contractility, and flow timing were assessed. Pressure-impedance recordings with pressure-flow analysis were used to capture key distension, contractility, and pressure-flow timing parameters. Larger bolus volumes increased upper esophageal sphincter distension diameter (P < .001) and distension pressures within the hypopharynx and upper esophageal sphincter (P < .05). Bolus flow timing measures were longer, particularly latency of bolus propulsion ahead of the pharyngeal stripping wave (P < .001). Use of a larger-diameter catheter produced higher occlusive pressures, namely upper esophageal sphincter basal pressure (P < .005) and upper esophageal sphincter postdeglutitive pressure peak (P < .001). The bolus volume swallowed changed measurements indicative of distension pressure, luminal diameter, and pressure-flow timing; this is physiologically consistent with swallow modulation to accommodate larger, faster-flowing boluses. Additionally, catheter diameter predominantly affects lumen occlusive pressures. Appropriate physiological interpretation of the pressure-impedance recordings of pharyngeal swallowing requires consideration of the effects of volume and catheter diameter. NA. Laryngoscope, 128:1328-1334, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  8. A new fluorescence-based method to monitor the pH in the thylakoid lumen using GFP variants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Hong; Pu, Xiaojun; Wang, Lu

    The ΔpH-dependent/Tat pathway is unique for using only the proton motive force for driving proteins transport across the thylakoid membrane in chloroplasts. 9-aminoacridine fluorescence quenching is widely used to monitor the ΔpH developed across the thylakoid membrane in the light. However, this method suffers from limited sensitivity to low ΔpH values and to spurious fluorescence signals due to membrane binding. In order to develop a more sensitive method for monitoring the real pH of the thylakoid lumen without these problems we transformed Arabidopsis thaliana with a ratiometric pH-sensitive GFP variant (termed pHluorin) targeted to the lumen by the prOE17 transitmore » peptide. Positive transgenic plants displayed localization of pHluorin in the chloroplast by confocal microscopy, and fractionation experiments revealed that it is in the lumen. The pHluorin signal was the strongest in very young plants and diminished as the plants matured. The pHluorin released from the lumen displayed the expected fluorescence intensity changes in response to pH titration. The fluorescence signal in isolated chloroplasts responded to illumination in a manner consistent with light-dependent lumen acidification. Future experiments will exploit the use of this new pH-indicating probe of the thylakoid lumen to examine the influence of the thylakoid ΔpH on ATP synthesis and protein transport.« less

  9. The effect of body weight on distal airway function and airway inflammation.

    PubMed

    van de Kant, Kim D G; Paredi, Paolo; Meah, Sally; Kalsi, Harpal S; Barnes, Peter J; Usmani, Omar S

    Obesity is a global health problem that adversely influences the respiratory system. We assessed the effects of body mass index (BMI) on distal airway function and airway inflammation. Impulse oscillometry (IOS) as a measure of distal airway function, together with spirometry, were assessed in adults with a range of different BMIs. Airway inflammation was assessed with the fraction of exhaled nitric oxide (FeNO) and participants exhaled at various exhalation flows to determine alveolar and bronchial NO. In total 34 subjects were enrolled in the study; 19 subjects had a normal BMI (18.50-24.99), whilst 15 subjects were overweight (BMI 25.00-29.99), or obese (BMI ≥30). All subjects had normal spirometry. However, IOS measures of airway resistance (R) at 5Hz, 20Hz and frequency dependence (R 5-20 ) were elevated in overweight/obese individuals, compared to subjects with a normal BMI (median (interquartile range)); 5Hz: 0.41 (0.37, 0.45) vs. 0.32 (0.30, 0.37)kPa/l/s; 20Hz: 0.34 (0.30, 0.37) vs. 0.30 (0.26, 0.33)kPa/l/s; R 5-20 : 0.06 (0.04, 0.11) vs. 0.03 (0.01, 0.05)kPa/l/s; p<0.05), whereas airway reactance at 20Hz was decreased in overweight/obese individuals (20Hz: 0.07 (0.03, 0.09) vs. 0.10 (0.07, 0.13)kPa/l/s, p=0.009; 5Hz: -0.12 (-0.15, -0.10) vs. -0.10 (-0.13, -0.09)kPa/l/s, p=0.07). In contrast, within-breath IOS measures (a sign of expiratory flow limitation) and FeNO inflammatory measures, did not differ between groups (p>0.05). Being overweight has significant effects on distal and central airway function as determined by IOS, which is not detected by spirometry. Obesity does not influence airway inflammation as measured by FeNO. IOS is a reliable technique to identify airway abnormalities in the presence of normal spirometry in overweight people. Copyright © 2015 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  10. Elephant trunk in a small-calibre true lumen for chronic aortic dissection: cause of haemolytic anaemia?

    PubMed

    Araki, Haruna; Kitamura, Tadashi; Horai, Tetsuya; Shibata, Ko; Miyaji, Kagami

    2014-12-01

    The elephant trunk technique for aortic dissection is useful for reducing false lumen pressure; however, a folded vascular prosthesis inside the aorta can cause haemolysis. The purpose of this study was to investigate whether an elephant trunk in a small-calibre lumen can cause haemolysis. Inpatient and outpatient records were retrospectively reviewed. Two cases of haemolytic anaemia after aortic surgery using the elephant trunk technique were identified from 2011 to 2013. A 64-year-old man, who underwent graft replacement of the ascending aorta for acute Stanford type A aortic dissection, presented with enlargement of the chronic dissection of the descending aorta and moderate aortic regurgitation. A two-stage surgery was scheduled. Total arch replacement with an elephant trunk in the true lumen and concomitant aortic valve replacement were performed. Postoperatively, he developed severe haemolytic anaemia because of the folded elephant trunk. The anaemia improved after the second surgery, including graft replacement of the descending aorta. Similarly, a 61-year-old man, who underwent total arch replacement for acute Stanford type A aortic dissection, presented with enlargement of the chronic dissection of the descending aorta. Graft replacement of the descending aorta with an elephant trunk inserted into the true lumen was performed. The patient postoperatively developed haemolytic anaemia because of the folded elephant trunk, which improved after additional stent grafting into the elephant trunk. A folded elephant trunk in a small-calibre lumen can cause haemolysis. Therefore, inserting an elephant trunk in a small-calibre true lumen during surgery for chronic aortic dissection should be avoided. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  11. Coaxial Tubing Systems Increase Artificial Airway Resistance and Work of Breathing.

    PubMed

    Wenzel, Christin; Schumann, Stefan; Spaeth, Johannes

    2017-09-01

    Tubing systems are an essential component of the ventilation circuit, connecting the ventilator to the patient's airways. Coaxial tubing systems incorporate the inspiratory tube within the lumen of the expiratory one. We hypothesized that by design, these tubing systems increase resistance to air flow compared with conventional ones. We investigated the flow-dependent pressure gradient across coaxial, conventional disposable, and conventional reusable tubing systems from 3 different manufacturers. Additionally, the additional work of breathing and perception of resistance during breathing through the different devices were determined in 18 healthy volunteers. The pressure gradient across coaxial tubing systems was up to 6 times higher compared with conventional ones (1.90 ± 0.03 cm H 2 O vs 0.34 ± 0.01 cm H 2 O, P < .001) and was higher during expiration compared with inspiration ( P < .001). Additional work of breathing and perceived breathing resistance were highest in coaxial tubing systems, accordingly. Our findings suggest that the use of coaxial tubing systems should be carefully considered with respect to their increased resistance. Copyright © 2017 by Daedalus Enterprises.

  12. Definitive airway management after pre-hospital supraglottic airway insertion: Outcomes and a management algorithm for trauma patients.

    PubMed

    Hernandez, Matthew C; Aho, Johnathon M; Zielinski, Martin D; Zietlow, Scott P; Kim, Brian D; Morris, David S

    2018-01-01

    Prehospital airway management increasingly involves supraglottic airway insertion and a paucity of data evaluates outcomes in trauma populations. We aim to describe definitive airway management in traumatically injured patients who necessitated prehospital supraglottic airway insertion. We performed a single institution retrospective review of multisystem injured patients (≥15years) that received prehospital supraglottic airway insertion during 2009 to 2016. Baseline demographics, number and type of: supraglottic airway insertion attempts, definitive airway and complications were recorded. Primary outcome was need for tracheostomy. Univariate and multivariable statistics were performed. 56 patients met inclusion criteria and were reviewed, 78% were male. Median age [IQR] was 36 [24-56] years. Injuries comprised blunt (94%), penetrating (4%) and burns (2%). Median ISS was 26 [22-41]. Median number of prehospital endotracheal intubation (PETI) attempts was 2 [1-3]. Definitive airway management included: (n=20, 36%, tracheostomy), (n=10, 18%, direct laryngoscopy), (n=6, 11%, bougie), (n=9, 15%, Glidescope), (n=11, 20%, bronchoscopic assistance). 24-hour mortality was 41%. Increasing number of PETI was associated with increasing facial injury. On regression, increasing cervical and facial injury patterns as well as number of PETI were associated with definitive airway control via surgical tracheostomy. After supraglottic airway insertion, operative or non-operative approaches can be utilized to obtain a definitive airway. Patients with increased craniofacial injuries have an increased risk for airway complications and need for tracheostomy. We used these factors to generate an evidence based algorithm that requires prospective validation. Level IV - Retrospective study. Retrospective single institution study. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Airway compliance and dynamics explain the apparent discrepancy in length adaptation between intact airways and smooth muscle strips.

    PubMed

    Dowie, Jackson; Ansell, Thomas K; Noble, Peter B; Donovan, Graham M

    2016-01-01

    Length adaptation is a phenomenon observed in airway smooth muscle (ASM) wherein over time there is a shift in the length-tension curve. There is potential for length adaptation to play an important role in airway constriction and airway hyper-responsiveness in asthma. Recent results by Ansell et al., 2015 (JAP 2014 10.1152/japplphysiol.00724.2014) have cast doubt on this role by testing for length adaptation using an intact airway preparation, rather than strips of ASM. Using this technique they found no evidence for length adaptation in intact airways. Here we attempt to resolve this apparent discrepancy by constructing a minimal mathematical model of the intact airway, including ASM which follows the classic length-tension curve and undergoes length adaptation. This allows us to show that (1) no evidence of length adaptation should be expected in large, cartilaginous, intact airways; (2) even in highly compliant peripheral airways, or at more compliant regions of the pressure-volume curve of large airways, the effect of length adaptation would be modest and at best marginally detectable in intact airways; (3) the key parameters which control the appearance of length adaptation in intact airways are airway compliance and the relaxation timescale. The results of this mathematical simulation suggest that length adaptation observed at the level of the isolated ASM may not clearly manifest in the normal intact airway. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Management of colon stents based on Bernoulli's principle.

    PubMed

    Uno, Yoshiharu

    2017-03-01

    The colonic self-expanding metal stent (SEMS) has been widely used for "bridge to surgery" and palliative therapy. However, if the spread of SEMS is insufficient, not only can a decompression effect not be obtained but also perforation and obstructive colitis can occur. The mechanism of occurrence of obstructive colitis and perforation was investigated by flow dynamics. Bernoulli's principle was applied, assuming that the cause of inflammation and perforation represented the pressure difference in the proximal lumen and stent. The variables considered were proximal lumen diameter, stent lumen diameter, flow rate into the proximal lumen, and fluid density. To model the right colon, the proximal lumen diameter was set at 50 mm. To model the left-side colon, the proximal lumen diameter was set at 30 mm. For both the right colon model and the left-side colon model, the difference in pressure between the proximal lumen and the stent was less than 20 mmHg, when the diameter of the stent lumen was 14 mm or more. Both the right colon model and the left-side colon model were 30 mmHg or more at 200 mL s -1 when the stent lumen was 10 mm or less. Even with an inflow rate of 90-110 mL s -1 , the pressure was 140 mmHg when the stent lumen diameter was 5 mm. In theory, in order to maintain the effectiveness of SEMS, it is necessary to keep the diameter of the stent lumen at 14 mm or more.

  15. Src- and Fyn-dependent apical membrane trafficking events control endothelial lumen formation during vascular tube morphogenesis.

    PubMed

    Kim, Dae Joong; Norden, Pieter R; Salvador, Jocelynda; Barry, David M; Bowers, Stephanie L K; Cleaver, Ondine; Davis, George E

    2017-01-01

    Here we examine the question of how endothelial cells (ECs) develop their apical membrane surface domain during lumen and tube formation. We demonstrate marked apical membrane targeting of activated Src kinases to this apical domain during early and late stages of this process. Immunostaining for phosphotyrosine or phospho-Src reveals apical membrane staining in intracellular vacuoles initially. This is then followed by vacuole to vacuole fusion events to generate an apical luminal membrane, which is similarly decorated with activated phospho-Src kinases. Functional blockade of Src kinases completely blocks EC lumen and tube formation, whether this occurs during vasculogenic tube assembly or angiogenic sprouting events. Multiple Src kinases participate in this apical membrane formation process and siRNA suppression of Src, Fyn and Yes, but not Lyn, blocks EC lumen formation. We also demonstrate strong apical targeting of Src-GFP and Fyn-GFP fusion proteins and increasing their expression enhances lumen formation. Finally, we show that Src- and Fyn-associated vacuoles track and fuse along a subapically polarized microtubule cytoskeleton, which is highly acetylated. These vacuoles generate the apical luminal membrane in a stereotypically polarized, perinuclear position. Overall, our study identifies a critical role for Src kinases in creating and decorating the EC apical membrane surface during early and late stages of lumen and tube formation, a central event in the molecular control of vascular morphogenesis.

  16. Critical Airway Team: A Retrospective Study of an Airway Response System in a Pediatric Hospital.

    PubMed

    Sterrett, Emily C; Myer, Charles M; Oehler, Jennifer; Das, Bobby; Kerrey, Benjamin T

    2017-12-01

    Objective Study the performance of a pediatric critical airway response team. Study Design Case series with chart review. Setting Freestanding academic children's hospital. Subjects and Methods A structured review of the electronic medical record was conducted for all activations of the critical airway team. Characteristics of the activations and patients are reported using descriptive statistics. Activation of the critical airway team occurred 196 times in 46 months (March 2012 to December 2015); complete data were available for 162 activations (83%). For 49 activations (30%), patients had diagnoses associated with difficult intubation; 45 (28%) had a history of difficult laryngoscopy. Results Activation occurred at least 4 times per month on average (vs 3 per month for hospital-wide codes). The most common reasons for team activation were anticipated difficult intubation (45%) or failed intubation attempt (20%). For 79% of activations, the team performed an airway procedure, most commonly direct laryngoscopy and tracheal intubation. Bronchoscopy was performed in 47% of activations. Surgical airway rescue was attempted 4 times. Cardiopulmonary resuscitation occurred in 41 activations (25%). Twenty-nine patients died during or following team activation (18%), including 10 deaths associated with the critical airway event. Conclusion Critical airway team activation occurred at least once per week on average. Direct laryngoscopy, tracheal intubation, and bronchoscopic procedures were performed frequently; surgical airway rescue was rare. Most patients had existing risk factors for difficult intubation. Given our rate of serious morbidity and mortality, primary prevention of critical airway events will be a focus of future efforts.

  17. Microbes vs. chemistry in the origin of the anaerobic gut lumen.

    PubMed

    Friedman, Elliot S; Bittinger, Kyle; Esipova, Tatiana V; Hou, Likai; Chau, Lillian; Jiang, Jack; Mesaros, Clementina; Lund, Peder J; Liang, Xue; FitzGerald, Garret A; Goulian, Mark; Lee, Daeyeon; Garcia, Benjamin A; Blair, Ian A; Vinogradov, Sergei A; Wu, Gary D

    2018-04-17

    The succession from aerobic and facultative anaerobic bacteria to obligate anaerobes in the infant gut along with the differences between the compositions of the mucosally adherent vs. luminal microbiota suggests that the gut microbes consume oxygen, which diffuses into the lumen from the intestinal tissue, maintaining the lumen in a deeply anaerobic state. Remarkably, measurements of luminal oxygen levels show nearly identical pO 2 (partial pressure of oxygen) profiles in conventional and germ-free mice, pointing to the existence of oxygen consumption mechanisms other than microbial respiration. In vitro experiments confirmed that the luminal contents of germ-free mice are able to chemically consume oxygen (e.g., via lipid oxidation reactions), although at rates significantly lower than those observed in the case of conventionally housed mice. For conventional mice, we also show that the taxonomic composition of the gut microbiota adherent to the gut mucosa and in the lumen throughout the length of the gut correlates with oxygen levels. At the same time, an increase in the biomass of the gut microbiota provides an explanation for the reduction of luminal oxygen in the distal vs. proximal gut. These results demonstrate how oxygen from the mammalian host is used by the gut microbiota, while both the microbes and the oxidative chemical reactions regulate luminal oxygen levels, shaping the composition of the microbial community throughout different regions of the gut.

  18. A 4-Week Model of House Dust Mite (HDM) Induced Allergic Airways Inflammation with Airway Remodeling.

    PubMed

    Woo, L N; Guo, W Y; Wang, X; Young, A; Salehi, S; Hin, A; Zhang, Y; Scott, J A; Chow, C W

    2018-05-02

    Animal models of allergic airways inflammation are useful tools in studying the pathogenesis of asthma and potential therapeutic interventions. The different allergic airways inflammation models available to date employ varying doses, frequency, duration and types of allergen, which lead to the development of different features of asthma; showing varying degrees of airways inflammation and hyper-responsiveness (AHR) and airways remodeling. Models that also exhibit airway remodeling, a key feature of asthma, in addition to AHR and airway inflammation typically require 5-12 weeks to develop. In this report, we describe a 4-week mouse model of house dust mite (HDM)-induced allergic airways inflammation, and compare the phenotypic features of two different doses of HDM exposures (10 µg and 25 µg) for 5 days/week with a well-characterized 8-week chronic HDM model. We found that 4 weeks of intranasal HDM (25 µg in 35 µl saline; 5 days/week) resulted in AHR, airway inflammation and airway remodeling that were comparable to the 8-week model. We conclude that this new 4-week HDM model is another useful tool in studies of human asthma that offers advantages of shorter duration for development and decreased costs when compared to other models that require longer durations of exposure (5-12 weeks) to develop.

  19. Effect of Medialization Thyroplasty on Glottic Airway Anatomy: Cadaver Model.

    PubMed

    Shinghal, Tulika; Anderson, Jennifer; Chung, Janet; Hong, Aaron; Bharatha, Aditya

    2016-11-01

    The purpose of this study was to investigate the change in airway dimensions after medialization thyroplasty (MT) using a cadaveric model. Helical computerized tomography (CT) was performed before and after placement of a silastic block in human larynges to investigate the effect on airway anatomy at the level of the glottis. Tissue density (TD) of the medialized vocal fold (VF) was documented to understand the effect on tissue displacement. This is a cadaveric study. Thirteen human cadaveric larynges underwent fine-cut CT scan before and after MT was performed using carved blocks in two sizes (small block and large block [LB]). Clientstream software was used to measure laryngeal dimensions: intraglottic volume (IGV), cross-sectional area (CSA), posterior-glottic diameter (PGD), VF density (in Hounsfield units [HUs]), and anterior-posterior diameter (APD). Eight sequential axial sections 0.625 mm cuts) at the level of the true VFs were analyzed. There was a significant decrease between the three conditions for IGV (P < 0.0001) and CSA (P < 0.0001). TD of the VF was increased after MT as indicated by HU increase (P = 0.0003). APD was not significantly changed. PGD was significantly different between the no block to LB placement (P = 0.0012). MT significantly changes the IGV and CSA at the level of the glottis. Density in the true VF was significantly increased. These findings have important implications for understanding volumetric effects of MT. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  20. Operative endoscopy of the airway

    PubMed Central

    Walters, Dustin M.

    2016-01-01

    Airway endoscopy has long been an important and useful tool in the management of thoracic diseases. As thoracic specialists have gained experience with both flexible and rigid bronchoscopic techniques, the technology has continued to evolve so that bronchoscopy is currently the foundation for diagnosis and treatment of many thoracic ailments. Airway endoscopy plays a significant role in the biopsy of tumors within the airways, mediastinum, and lung parenchyma. Endoscopic methods have been developed to treat benign and malignant airway stenoses and tracheomalacia. And more recently, techniques have been conceived to treat end-stage emphysema and prolonged air leaks in select patients. This review describes the abundant uses of airway endoscopy, as well as technical considerations and limitations of the current technologies. PMID:26981263

  1. Fluoroscopic guidance for placing a double lumen endotracheal tube in adults.

    PubMed

    Calenda, Emile; Baste, Jean Marc; Hajjej, Ridha; Rezig, Najiba; Moriceau, Jerome; Diallo, Yaya; Sghaeir, Slim; Danielou, Eric; Peillon, Christophe

    2014-09-01

    The aim of this study was to assess the right placement of the double lumen endotracheal tube with fluoroscopic guidance, which is used in first intention prior to the fiberscope in our institution. This was a prospective observational study. The study was conducted in vascular and thoracic operating rooms. We enrolled 205 patients scheduled for thoracic surgery, with ASA physical statuses of I (n = 37), II (n = 84), III (n = 80), and IV (n = 4). Thoracic procedures were biopsy (n = 20), wedge (n = 34), culminectomy (n = 6), lobectomy (n = 82), pneumonectomy (n = 4), sympathectomy (n = 9), symphysis (n = 47), and thymectomy (n = 3). The intubation with a double lumen tube was performed with the help of a laryngoscope. Tracheal and bronchial balloons were inflated and auscultation was performed after right and left exclusions. One shot was performed to locate the position of the bronchial tube and the hook. Fluoroscopic guidance was used to relocate the tube in case of a wrong position. When the fluoroscopic guidance failed to position the tube, a fiberscope was used. Perioperative collapse of the lung was assessed by the surgeon during the surgery. Correct fluoroscopic image was obtained after the first attempt in 58.5% of patients therefore a misplaced position was encountered in 41.5%. The fluoroscopic guidance allowed an exact repositioning in 99.5% of cases, and the mean duration of the procedure was 8 minutes. A fiberscope was required to move the hook for one patient. We did not notice a moving of the double lumen endotracheal tube during the surgery. The surgeon satisfaction was 100%. The fluoroscopy evidenced the right position of the double lumen tube and allowed a right repositioning in 99.5% of patients with a very simple implementation. Copyright © 2014. Published by Elsevier B.V.

  2. Endogenous gamma-aminobutyric acid modulates tonic guinea pig airway tone and propofol-induced airway smooth muscle relaxation.

    PubMed

    Gallos, George; Gleason, Neil R; Virag, Laszlo; Zhang, Yi; Mizuta, Kentaro; Whittington, Robert A; Emala, Charles W

    2009-04-01

    Emerging evidence indicates that an endogenous autocrine/paracrine system involving gamma-aminobutyric acid (GABA) is present in airways. GABAA channels, GABAB receptors, and the enzyme that synthesizes GABA have been identified in airway epithelium and smooth muscle. However, the endogenous ligand itself, GABA, has not been measured in airway tissues. The authors sought to demonstrate that GABA is released in response to contractile agonists and tonically contributes a prorelaxant component to contracted airway smooth muscle. The amount and cellular localization of GABA in upper guinea pig airways under resting and contracted tone was determined by high pressure liquid chromatography and immunohistochemistry, respectively. The contribution that endogenous GABA imparts on the maintenance of airway smooth muscle acetylcholine-induced contraction was assessed in intact guinea pig airway tracheal rings using selective GABAA antagonism (gabazine) under resting or acetylcholine-contracted conditions. The ability of an allosteric agent (propofol) to relax a substance P-induced relaxation in an endogenous GABA-dependent manner was assessed. GABA levels increased and localized to airway smooth muscle after contractile stimuli in guinea pig upper airways. Acetylcholine-contracted guinea pig tracheal rings exhibited an increase in contracted force upon addition of the GABAA antagonist gabazine that was subsequently reversed by the addition of the GABAA agonist muscimol. Propofol dose-dependently relaxed a substance P contraction that was blocked by gabazine. These studies demonstrate that GABA is endogenously present and increases after contractile stimuli in guinea pig upper airways and that endogenous GABA contributes a tonic prorelaxant component in the maintenance of airway smooth muscle tone.

  3. Endogenous γ-aminobutyric Acid Modulates Tonic Guinea Pig Airway Tone and Propofol-induced Airway Smooth Muscle Relaxation

    PubMed Central

    Gallos, George; Gleason, Neil R.; Virag, Laszlo; Zhang, Yi; Mizuta, Kentauro; Whittington, Robert A.; Emala, Charles W.

    2009-01-01

    Background Emerging evidence indicates that an endogenous autocrine/paracrine system involving γ-aminobutyric acid (GABA) is present in airways. GABAA channels, GABAB receptors and the enzyme that synthesizes GABA have been identified in airway epithelium and smooth muscle. However, the endogenous ligand itself, GABA, has not been measured in airway tissues. We sought to demonstrate that GABA is released in response to contractile agonists and tonically contributes a pro-relaxant component to contracted airway smooth muscle. Methods The amount and cellular localization of GABA in upper guinea pig airways under resting and contracted tone was determined by high pressure liquid chromatography and immunohistochemistry, respectively. The contribution that endogenous GABA imparts on the maintenance of airway smooth muscle acetylcholine-induced contraction was assessed in intact guinea pig airway tracheal rings using selective GABAA antagonism (gabazine) under resting or acetylcholine-contracted conditions. The ability of an allosteric agent (propofol) to relax a substance P-induced relaxation in an endogenous GABA-dependent manner was assessed. Results GABA levels increased and localized to airway smooth muscle following contractile stimuli in guinea pig upper airways. Acetylcholine-contracted guinea pig tracheal rings exhibited an increase in contracted force upon addition of the GABAA antagonist gabazine which was subsequently reversed by the addition of the GABAA agonist muscimol. Propofol dose-dependently relaxed a substance P contraction that was blocked by gabazine. Conclusion These studies demonstrate that GABA is endogenously present and increases following contractile stimuli in guinea pig upper airways and that endogenous GABA contributes a tonic pro-relaxant component in the maintenance of airway smooth muscle tone. PMID:19322939

  4. Neurokinin-1 receptor mediates stress-exacerbated allergic airway inflammation and airway hyperresponsiveness in mice.

    PubMed

    Joachim, Ricarda A; Sagach, Viktoriya; Quarcoo, David; Dinh, Q Thai; Arck, Petra C; Klapp, Burghard F

    2004-01-01

    A wealth of clinical observation has suggested that stress and asthma morbidity are associated. We have previously established a mouse model of stress-exacerbated allergic airway inflammation, which reflects major clinical findings. The aim of the current study was to investigate the role of the neurokinin- (NK-)1 receptor in the mediation of stress effects in allergic airway inflammation. BALB/c mice were systemically sensitized with ovalbumin (OVA) on assay days 1, 14, and 21 and repeatedly challenged with OVA aerosol on days 26 and 27. Sound stress was applied to the animals for 24 hours, starting with the first airway challenge. Additionally, one group of stressed and one group of nonstressed mice received the highly specific NK-1 receptor antagonist RP 67580. Bronchoalveolar lavage fluid was obtained, and cell numbers and differentiation were determined. Airway hyperreactivity was measured in vitro by electrical field stimulation of tracheal smooth-muscle elements. Application of stress in sensitized and challenged animals resulted in a significant increase in leukocyte number in the bronchoalveolar lavage fluid. Furthermore, stressed animals showed enhanced airway reactivity. The increase of inflammatory cells and airway reactivity was blocked by treatment of animals with the NK-1 receptor antagonist. These data indicate that the NK-1 receptor plays an important role in mediating stress effects in allergen-induced airway inflammation.

  5. The Human Airway Epithelial Basal Cell Transcriptome

    PubMed Central

    Wang, Rui; Zwick, Rachel K.; Ferris, Barbara; Witover, Bradley; Salit, Jacqueline; Crystal, Ronald G.

    2011-01-01

    Background The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. Methodology/Principal Findings Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the “human airway basal cell signature” as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. Conclusion/Significance The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem

  6. Trapping characteristic of halloysite lumen for methyl orange

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Yan, Hua; Pei, Zhenzhao; Wu, Junyong; Li, Rongrong; Jin, Yanxian; Zhao, Jie

    2015-08-01

    The interaction of clay minerals and dyes is an area of great interest especially in the development of novel adsorbents. In this report, we demonstrated interaction of halloysite nanotubes (HNTs) and an anionic dye, methyl orange (MO), through a electrostatic attraction. Halloysite lumen has a trapping characteristic for methyl orange, which is mainly determined by the positively charged nature of the inner surface of HNTs. XRD results confirmed that intercalation of methyl orange into HNTs did not occur. SEM-EDS and photostability results showed that MO molecules were primarily in HNTs lumen. Adsorption isotherm studies revealed an interesting phenomenon, i.e., a sudden increase of adsorption capacity occurred in the initial dye concentration of about 75 mg/L, which was just the dye concentration corresponding to the onset of dye oligomer formation. This suggested dye aggregation state had a decisive influence to the adsorption behavior of MO on the halloysite. BET results demonstrated at low and high dye concentrations, single MO molecule and aggregation of several dimers through hydrophobic interaction, interacted with Al-OH2+ sites on the inner wall, respectively. Desorption experiments showed that MO in HNTs can be completely removed with deionized water, indicating halloysite is a low-cost and efficient adsorbent for anionic dye.

  7. Airway management in cervical spine injury

    PubMed Central

    Austin, Naola; Krishnamoorthy, Vijay; Dagal, Arman

    2014-01-01

    To minimize risk of spinal cord injury, airway management providers must understand the anatomic and functional relationship between the airway, cervical column, and spinal cord. Patients with known or suspected cervical spine injury may require emergent intubation for airway protection and ventilatory support or elective intubation for surgery with or without rigid neck stabilization (i.e., halo). To provide safe and efficient care in these patients, practitioners must identify high-risk patients, be comfortable with available methods of airway adjuncts, and know how airway maneuvers, neck stabilization, and positioning affect the cervical spine. This review discusses the risks and benefits of various airway management strategies as well as specific concerns that affect patients with known or suspected cervical spine injury. PMID:24741498

  8. Acid-base interactions during exocrine pancreatic secretion. Primary role for ductal bicarbonate in acinar lumen function.

    PubMed

    Freedman, S D; Scheele, G A

    1994-03-23

    The role of acid-base interactions during coordinated acinar and duct cell secretion in the exocrine pancreas is described. The sequence of acid-base events may be summarized as follows: (1) Sorting of secretory proteins and membrane components into the regulated secretory pathway of pancreatic acinar cells is triggered by acid- and calcium-induced aggregation and association mechanisms located in the trans-Golgi network. (2) Cholecystokinin-stimulated exocytosis in acinar cells releases the acidic contents of secretory granules into the acinar lumen. (3) Secretin-stimulated bicarbonate secretion from duct and duct-like cells neutralizes the acidic pH of exocytic contents, which leads to dissociation of protein aggregates and solubilization of (pro)enzymes within the acinar lumen. (4) Stimulated fluid secretion transports solubilized enzymes through the ductal system. (5) Further alkalinization of acinar lumen pH accelerates the enzymatic cleavage of the glycosyl phosphatidyl-inositol anchor associated with GP2 and thus releases the GP2/proteoglycan matrix from lumenal membranes, a process that appears to be required for vesicular retrieval of granule membranes from the apical plasma membrane and their reuse in the secretory process. We conclude that the central function of bicarbonate secretion by centroacinar and duct cells in the pancreas is to neutralize and then alkalinize the pH of the acinar lumen, sequential process that are required for (a) solubilization of secreted proteins and (b) cellular retrieval of granule membranes, respectively.

  9. Relationships between equine airway reactivity measured by flowmetric plethysmography and specific indicators of airway inflammation in horses with suspected inflammatory airway disease.

    PubMed

    Wichtel, M; Gomez, D; Burton, S; Wichtel, J; Hoffman, A

    2016-07-01

    Agreement between airway reactivity measured by flowmetric plethysmography and histamine bronchoprovocation, and lower airway inflammation measured by bronchoalveolar lavage (BAL) cytology, has not been studied in horses with suspected inflammatory airway disease (IAD). We tested the hypothesis that airway reactivity is associated with BAL cytology in horses presenting for unexplained poor performance and/or chronic cough. Prospective clinical study. Forty-five horses, predominantly young Standardbred racehorses, presenting for unexplained poor performance or chronic cough, underwent endoscopic evaluation, tracheal wash, flowmetric plethysmography with histamine bronchoprovocation and BAL. Histamine response was measured by calculating PC35, the concentration of nebulised histamine eliciting an increase in Δflow of 35%. In this population, there was no significant correlation between histamine response and cell populations in BAL cytology. When airway hyperreactivity (AHR) was defined as ≥35% increase in Δflow at a histamine concentration of <6 mg/ml, 24 of the 45 horses (53%) were determined to have AHR. Thirty-three (73%) had either abnormal BAL cytology or AHR, and were diagnosed with IAD on this basis. Of horses diagnosed with IAD, 9 (27%) had an abnormal BAL, 11 (33%) had AHR and 13 (39%) had both. Airway reactivity and BAL cytology did not show concordance in this population of horses presenting for unexplained poor performance and/or chronic cough. Failure to include tests of airway reactivity may lead to underdiagnosis of IAD in young Standardbred racehorses that present with clinical signs suggestive of IAD. © 2015 EVJ Ltd.

  10. Radiology-guided forceps biopsy and airway stenting in severe airway stenosis.

    PubMed

    Li, Zong Ming; Wu, Gang; Han, Xin Wei; Ren, Ke Wei; Zhu, Ming

    2014-01-01

    We aimed to determine the feasibility, safety, and effectiveness of radiology-guided forceps biopsy and airway stenting in patients with severe airway stenosis. This study involved 28 patients with severe airway stenosis who underwent forceps biopsy between October 2006 and September 2011. Chest multislice computed tomography was used to determine the location and extent of stenosis. Sixteen patients had tracheal stenosis, two patients had stenosis of the tracheal carina, six patients had stenosis of the left main bronchus, and four patients had stenosis of the right main bronchus. Forceps biopsy and stenting of the stenosed area were performed under fluoroscopic guidance in digital subtraction angiography and the biopsy specimens were analyzed histopathologically. We contacted the patients via phone call and utilized a standardized questionnaire to determine their medical condition during a postoperative three-month follow-up. The technical success rate of radiology-guided forceps biopsy was 100%. Biopsy specimens were obtained in all patients. Dyspnea was relieved immediately after stent placement. No serious complications, such as tracheal hemorrhage or perforation, mediastinal emphysema, or asphyxia, occurred. Radiology-guided forceps biopsy and airway stenting can be used for the emergency treatment of severe airway stenosis. This method appears to be safe and effective, and it may be an alternative therapeutic option in patients who cannot tolerate fiberoptic bronchoscopy.

  11. Radiology-guided forceps biopsy and airway stenting in severe airway stenosis

    PubMed Central

    Li, Zong-Ming; Wu, Gang; Han, Xin-Wei; Ren, Ke-Wei; Zhu, Ming

    2014-01-01

    PURPOSE We aimed to determine the feasibility, safety, and effectiveness of radiology-guided forceps biopsy and airway stenting in patients with severe airway stenosis. MATERIALS AND METHODS This study involved 28 patients with severe airway stenosis who underwent forceps biopsy between October 2006 and September 2011. Chest multislice computed tomography was used to determine the location and extent of stenosis. Sixteen patients had tracheal stenosis, two patients had stenosis of the tracheal carina, six patients had stenosis of the left main bronchus, and four patients had stenosis of the right main bronchus. Forceps biopsy and stenting of the stenosed area were performed under fluoroscopic guidance in digital subtraction angiography and the biopsy specimens were analyzed histopathologically. We contacted the patients via phone call and utilized a standardized questionnaire to determine their medical condition during a postoperative three-month follow-up. RESULTS The technical success rate of radiology-guided forceps biopsy was 100%. Biopsy specimens were obtained in all patients. Dyspnea was relieved immediately after stent placement. No serious complications, such as tracheal hemorrhage or perforation, mediastinal emphysema, or asphyxia, occurred. CONCLUSION Radiology-guided forceps biopsy and airway stenting can be used for the emergency treatment of severe airway stenosis. This method appears to be safe and effective, and it may be an alternative therapeutic option in patients who cannot tolerate fiberoptic bronchoscopy. PMID:24808434

  12. Details of regional particle deposition and airflow structures in a realistic model of human tracheobronchial airways: two-phase flow simulation.

    PubMed

    Rahimi-Gorji, Mohammad; Gorji, Tahereh B; Gorji-Bandpy, Mofid

    2016-07-01

    In the present investigation, detailed two-phase flow modeling of airflow, transport and deposition of micro-particles (1-10µm) in a realistic tracheobronchial airway geometry based on CT scan images under various breathing conditions (i.e. 10-60l/min) was considered. Lagrangian particle tracking has been used to investigate the particle deposition patterns in a model comprising mouth up to generation G6 of tracheobronchial airways. The results demonstrated that during all breathing patterns, the maximum velocity change occurred in the narrow throat region (Larynx). Due to implementing a realistic geometry for simulations, many irregularities and bending deflections exist in the airways model. Thereby, at higher inhalation rates, these areas are prone to vortical effects which tend to entrap the inhaled particles. According to the results, deposition fraction has a direct relationship with particle aerodynamic diameter (for dp=1-10µm). Enhancing inhalation flow rate and particle size will largely increase the inertial force and consequently, more particle deposition is evident suggesting that inertial impaction is the dominant deposition mechanism in tracheobronchial airways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Age- and Sex-Specific Reference Values for Media/Lumen Ratio in Small Arteries and Relationship With Risk Factors.

    PubMed

    Bruno, Rosa Maria; Grassi, Guido; Seravalle, Gino; Savoia, Carmine; Rizzoni, Damiano; Virdis, Agostino

    2018-04-23

    Small-artery remodeling is an early feature of target organ damage in hypertension and retains a negative prognostic value. The aim of the study is to establish age- and sex-specific reference values for media/lumen in small arteries obtained in humans by biopsy. Data from 91 healthy individuals and 200 individuals with cardiovascular risk factors in primary prevention from 4 Italian centers were pooled. Sex-specific equations for media/lumen in the healthy subpopulation, with age as dependent variable, were calculated. These equations were used to calculate predicted media/lumen values in individuals with risk factors and Z scores. The association between classical risk factors and Z scores was then explored by multiple regression analysis. A second-degree polynomial equation model was chosen to obtain sex-specific equations for media/lumen, with age as dependent variable. In the population with risk factors (111 men, age 50.5±14.0 years, hypertension 80.5%), media/lumen Z scores were independently associated with body mass index (standardized β=0.293, P =0.0001), total cholesterol (β=0.191, P =0.031), current smoking (β=0.238, P =0.0005), fasting blood glucose (β=0.204, P =0.003), systolic blood pressure (β=0.233, P =0.023), and female sex (β=0.799, P =0.038). A significant interaction between female sex and total cholesterol was found (β=-0.979, P =0.014). Results were substantially similar in the hypertensive subgroup. A method to calculate individual values of remodeling and growth index based on reference values was also presented. Age- and sex-specific percentiles of media/lumen in a healthy population were estimated. In a predominantly hypertensive population, media/lumen Z scores were associated with major cardiovascular risk factors, including body mass index, cholesterol, smoking, glucose, and systolic blood pressure. Significant sex differences were observed. © 2018 American Heart Association, Inc.

  14. A novel bronchial ring bioassay for the evaluation of small airway smooth muscle function in mice.

    PubMed

    Liu, John Q; Yang, Dennis; Folz, Rodney J

    2006-08-01

    Advances in our understanding of murine airway physiology have been hindered by the lack of suitable, ex vivo, small airway bioassay systems. In this study, we introduce a novel small murine airway bioassay system that permits the physiological and pharmacological study of intrapulmonary bronchial smooth muscle via a bronchial ring (BR) preparation utilizing BR segments as small as 200 microm in diameter. Using this ex vivo BR bioassay, we characterized small airway smooth muscle contraction and relaxation in the presence and absence of bronchial epithelium. In control BRs, the application of mechanical stretch is followed by spontaneous bronchial smooth muscle relaxation. BRs pretreated with methacholine (MCh) partially attenuate this stretch-induced relaxation by as much as 42% compared with control. MCh elicited a dose-dependent bronchial constriction with a maximal tension (E(max)) of 8.7 +/- 0.2 mN at an EC(50) of 0.33 +/- 0.02 microM. In the presence of nifedipine, ryanodine, 2-aminoethoxydiphenyl borate, and SKF-96365, E(max) to MCh was significantly reduced. In epithelium-denuded BRs, MCh-induced contraction was significantly enhanced to 11.4 +/- 1.0 mN with an EC(50) of 0.16 +/- 0.04 microM (P < 0.01). Substance P relaxed MCh-precontracted BR by 62.1%; however, this bronchial relaxation effect was completely lost in epithelium-denuded BRs. Papaverine virtually abolished MCh-induced constriction in both epithelium-intact and epithelium-denuded bronchial smooth muscle. In conclusion, this study introduces a novel murine small airway BR bioassay that allows for the physiological study of smooth muscle airway contractile responses that may aid in our understanding of the pathophysiology of asthma.

  15. Chloride channel function is linked to epithelium-dependent airway relaxation.

    PubMed

    Fortner, C N; Lorenz, J N; Paul, R J

    2001-02-01

    We previously reported that substance P (SP) and ATP evoke transient, epithelium-dependent relaxation of mouse tracheal smooth muscle. Since both SP and ATP are known to evoke transepithelial Cl- secretion across epithelial monolayers, we tested the hypothesis that epithelium-dependent relaxation of mouse trachea depends on Cl- channel function. In perfused mouse tracheas, the responses to SP and ATP were both inhibited by the Cl- channel inhibitors diphenylamine-2-carboxylate and 5-nitro-2-(3-phenylpropylamino)benzoate. Relaxation to ATP or SP was unaffected by 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS), and relaxation to SP was unaffected by either DIDS or DNDS. Replacing Cl- in the buffer solutions with the impermeable anion gluconate on both sides of the trachea inhibited relaxation to SP or ATP. In contrast, increasing the gradient for Cl- secretion using Cl- free medium only in the tracheal lumen enhanced the relaxation to SP or ATP. We conclude that Cl- channel function is linked to receptor-mediated, epithelium-dependent relaxation. The finding that relaxation to SP was not blocked by DIDS suggested the involvement of a DIDS-insensitive Cl- channel, potentially the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. To test this hypothesis, we evaluated tracheas from CFTR-deficient mice and found that the peak relaxation to SP or ATP was not significantly different from those responses in wild-type littermates. This suggests that a DIDS-insensitive Cl- channel other than CFTR is active in the SP response. This work introduces a possible role for Cl- pathways in the modulation of airway smooth muscle function and may have implications for fundamental studies of airway function as well as therapeutic approaches to pulmonary disease.

  16. Inflammatory bowel disease and airway diseases.

    PubMed

    Vutcovici, Maria; Brassard, Paul; Bitton, Alain

    2016-09-14

    Airway diseases are the most commonly described lung manifestations of inflammatory bowel disease (IBD). However, the similarities in disease pathogenesis and the sharing of important environmental risk factors and genetic susceptibility suggest that there is a complex interplay between IBD and airway diseases. Recent evidence of IBD occurrence among patients with airway diseases and the higher than estimated prevalence of subclinical airway injuries among IBD patients support the hypothesis of a two-way association. Future research efforts should be directed toward further exploration of this association, as airway diseases are highly prevalent conditions with a substantial public health impact.

  17. Administration of SIN-1 induces guinea pig airway hyperresponsiveness through inactivation of airway neutral endopeptidase.

    PubMed

    Kanazawa, H; Hirata, K; Yoshikawa, J

    1999-12-01

    Peroxynitrite plays an important role in the pathogenesis of airway inflammation. We have already found that peroxynitrite may contribute to decreased beta(2)-adrenoceptor responses in airway smooth muscle. However, it is not known whether peroxynitrite can alter neutral endopeptidase (EC 3.4.24.11; NEP) activity in the airways. This study was designed to determine whether peroxynitrite induces airway hyperresponsiveness to substance P (SP) and endothelin-1 (ET-1) through the inactivation of airway NEP. We examined whether the administration of S-morpholinosydnonimine (SIN-1), a compound that releases peroxynitrite, increased bronchoconstrictor responses to SP and ET-1 in anesthetized guinea pigs. In addition, we assayed NEP activity in the airways of SIN-1-exposed guinea pigs. Though SIN-1 (10(-7) M) alone had no effect on pulmonary resistance, pretreatment with SIN-1 significantly enhanced SP- and ET-1-induced bronchoconstriction. Pretreatment with phosphoramidon, an NEP inhibitor, also enhanced SP- and ET-1-induced bronchoconstriction. However, simultaneous administration of phosphoramidon and SIN-1 had no additive effect on SP- and ET-1-induced bronchoconstriction. Peroxynitrite formation by SIN-1 was completely inhibited by N-acetylcysteine (NAC) and glutathione (GSH) in vitro, and pretreatment with NAC and GSH significantly reversed the potentiation by SIN-1 of SP-induced bronchoconstriction. In addition, the NEP activity of the trachea after SIN-1 exposure was significantly reduced compared to the level in control guinea pigs (solvent for SIN-1: 30.0+/-4.2 fmol.min(-1).mg tissue(-1); 10(-7) M SIN-1; 15.5+/-4.5 fmol.min(-1).mg tissue(-1), p<0.05). These findings suggest that peroxynitrite induces airway hyperresponsiveness to SP and ET-1 through the inactivation of airway NEP, and that peroxynitrite is an important mediator of the alterations in airway functions.

  18. Synchronized imaging and acoustic analysis of the upper airway in patients with sleep-disordered breathing.

    PubMed

    Chang, Yi-Chung; Huon, Leh-Kiong; Pham, Van-Truong; Chen, Yunn-Jy; Jiang, Sun-Fen; Shih, Tiffany Ting-Fang; Tran, Thi-Thao; Wang, Yung-Hung; Lin, Chen; Tsao, Jenho; Lo, Men-Tzung; Wang, Pa-Chun

    2014-12-01

    Progressive narrowing of the upper airway increases airflow resistance and can produce snoring sounds and apnea/hypopnea events associated with sleep-disordered breathing due to airway collapse. Recent studies have shown that acoustic properties during snoring can be altered with anatomic changes at the site of obstruction. To evaluate the instantaneous association between acoustic features of snoring and the anatomic sites of obstruction, a novel method was developed and applied in nine patients to extract the snoring sounds during sleep while performing dynamic magnetic resonance imaging (MRI). The degree of airway narrowing during the snoring events was then quantified by the collapse index (ratio of airway diameter preceding and during the events) and correlated with the synchronized acoustic features. A total of 201 snoring events (102 pure retropalatal and 99 combined retropalatal and retroglossal events) were recorded, and the collapse index as well as the soft tissue vibration time were significantly different between pure retropalatal (collapse index, 2 ± 11%; vibration time, 0.2 ± 0.3 s) and combined (retropalatal and retroglossal) snores (collapse index, 13 ± 7% [P ≤ 0.0001]; vibration time, 1.2 ± 0.7 s [P ≤ 0.0001]). The synchronized dynamic MRI and acoustic recordings successfully characterized the sites of obstruction and established the dynamic relationship between the anatomic site of obstruction and snoring acoustics.

  19. Airway extravasation induced by increasing airway temperature in ovalbumin-sensitized rats

    PubMed Central

    Hsu, Chun-Chun; Tapia, Reyno J.; Lee, Lu-Yuan

    2015-01-01

    This study was carried out to determine whether hyperventilation of humidified warm air (HWA) induced airway extravasation in ovalbumin (Ova)-sensitized rats. Our results showed: 1) After isocapnic hyperventilation with HWA for 2 min, tracheal temperature (Ttr) was increased to 40.3°C, and the Evans blue contents in major airways and lung tissue were elevated to 651% and 707%, respectively, of that after hyperventilation with humidified room air in Ova-sensitized rats; this striking effect of HWA was absent in control rats. 2) The HWA-induced increase in Evans blue content in sensitized rats was completely prevented by a pretreatment with either L-732138, a selective antagonist of neurokinin type 1 (NK-1) receptor, or formoterol, a selective agonist of β2 adrenoceptor. This study demonstrated that an increase in airway temperature induced protein extravasation in the major airways and lung tissue of sensitized rats, and an activation of the NK-1 receptor by tachykinins released from bronchopulmonary C-fiber nerve endings was primarily responsible. PMID:25864799

  20. Randomized, open trial comparing a modified double-lumen needle follicular flushing system with a single-lumen aspiration needle in IVF patients with poor ovarian response.

    PubMed

    von Horn, Kyra; Depenbusch, Marion; Schultze-Mosgau, Askan; Griesinger, Georg

    2017-04-01

    Is a modified double-lumen aspiration needle system with follicular flushing able to increase the mean oocyte yield by at least one in poor response IVF patients as compared to single-lumen needle aspiration without flushing? Follicular flushing with the modified flushing system did not increase the number of oocytes, but increased the procedure duration. Most studies on follicular flushing were performed with conventional double-lumen needles in patients who were normal responders. Overall, these studies indicated no benefit of follicular flushing. Prospective, single-centre, randomized, controlled, open, superiority trial comparing the 17 G Steiner-Tan Needle® flushing system with a standard 17 G single-lumen aspiration needle (Gynetics®); time frame February 2015-March 2016. Eighty IVF patients, 18-45 years, BMI >18 kg/m2 to <35 kg/m2, presenting with ≤ five follicles >10 mm in both ovaries at the end of the follicular phase were randomized to either aspirating and flushing each follicle 3× with the Steiner-Tan-Needle® automated flushing system (n = 40) or a conventional single-lumen needle aspiration (n = 40). Primary outcome was the number of cumulus-oocyte-complexes (COCs). Procedure duration, burden (Depression Anxiety and Stress Scale; DASS-21) and post-procedure pain were also assessed. Flushing was not superior with a mean (SD) number of COCs of 2.4 (2.0) and 3.1 (2.3) in the Steiner-Tan Needle® and in the Gynectics® group, respectively (mean difference -0.7, 95% CI: 0.3 to -1.6; P = 0.27). Likewise no differences were observed in metaphase II  oocytes, two pronuclear oocytes, number of patients having an embryo transfer and DASS 21 scores. The procedure duration was significantly 2-fold increased. Testing for differences in the number of patients achieving an embryo transfer or differences in pregnancy rate would require a much larger sample size. The use of follicular flushing is unlikely to benefit the prognosis of patients with poor ovarian

  1. Interleukin-1beta-induced airway hyperresponsiveness enhances substance P in intrinsic neurons of ferret airway.

    PubMed

    Wu, Z-X; Satterfield, B E; Fedan, J S; Dey, R D

    2002-11-01

    Interleukin (IL)-1beta causes airway inflammation, enhances airway smooth muscle responsiveness, and alters neurotransmitter expression in sensory, sympathetic, and myenteric neurons. This study examines the role of intrinsic airway neurons in airway hyperresponsiveness (AHR) induced by IL-1beta. Ferrets were instilled intratracheally with IL-1beta (0.3 microg/0.3 ml) or saline (0.3 ml) once daily for 5 days. Tracheal smooth muscle contractility in vitro and substance P (SP) expression in tracheal neurons were assessed. Tracheal smooth muscle reactivity to acetylcholine (ACh) and methacholine (MCh) and smooth muscle contractions to electric field stimulation (EFS) both increased after IL-1beta. The IL-1beta-induced AHR was maintained in tracheal segments cultured for 24 h, a procedure that depletes SP from sensory nerves while maintaining viability of intrinsic airway neurons. Pretreatment with CP-99994, an antagonist of neurokinin 1 receptor, attenuated the IL-1beta-induced hyperreactivity to ACh and MCh and to EFS in cultured tracheal segments. SP-containing neurons in longitudinal trunk, SP innervation of superficial muscular plexus neurons, and SP nerve fiber density in tracheal smooth muscle all increased after treatment with IL-1beta. These results show that IL-1beta-enhanced cholinergic airway smooth muscle contractile responses are mediated by the actions of SP released from intrinsic airway neurons.

  2. Regulating Ion Transport in Peptide Nanotubes by Tailoring the Nanotube Lumen Chemistry.

    PubMed

    Ruiz, Luis; Benjamin, Ari; Sullivan, Matthew; Keten, Sinan

    2015-05-07

    We use atomistic nonequilibrium molecular dynamics simulations to demonstrate how specific ionic flux in peptide nanotubes can be regulated by tailoring the lumen chemistry through single amino acid substitutions. By varying the size and polarity of the functional group inserted into the nanotube interior, we are able to adjust the Na(+) flux by over an order of magnitude. Cl(-) is consistently denied passage. Bulky, nonpolar groups encourage interactions between the Na(+) and the peptide backbone carbonyl groups, disrupting the Na(+) solvation shell and slowing the transport of Na(+). Small groups have the opposite effect and accelerate flow. These results suggest that relative ion flux and selectivity can be precisely regulated in subnanometer pores by molecularly defining the lumen according to biological principles.

  3. Critical role of actin-associated proteins in smooth muscle contraction, cell proliferation, airway hyperresponsiveness and airway remodeling.

    PubMed

    Tang, Dale D

    2015-10-30

    Asthma is characterized by airway hyperresponsiveness and airway remodeling, which are largely attributed to increased airway smooth muscle contractility and cell proliferation. It is known that both chemical and mechanical stimulation regulates smooth muscle contraction. Recent studies suggest that contractile activation and mechanical stretch induce actin cytoskeletal remodeling in smooth muscle. However, the mechanisms that control actin cytoskeletal reorganization are not completely elucidated. This review summarizes our current understanding regarding how actin-associated proteins may regulate remodeling of the actin cytoskeleton in airway smooth muscle. In particular, there is accumulating evidence to suggest that Abelson tyrosine kinase (Abl) plays a critical role in regulating airway smooth muscle contraction and cell proliferation in vitro, and airway hyperresponsiveness and remodeling in vivo. These studies indicate that Abl may be a novel target for the development of new therapy to treat asthma.

  4. A 'Good' muscle in a 'Bad' environment: the importance of airway smooth muscle force adaptation to airway hyperresponsiveness.

    PubMed

    Bossé, Ynuk; Chapman, David G; Paré, Peter D; King, Gregory G; Salome, Cheryl M

    2011-12-15

    Asthma is characterized by airway inflammation, with a consequent increase in spasmogens, and exaggerated airway narrowing in response to stimuli, termed airway hyperresponsiveness (AHR). The nature of any relationship between inflammation and AHR is less clear. Recent ex vivo data has suggested a novel mechanism by which inflammation may lead to AHR, in which increased basal ASM-tone, due to the presence of spasmogens in the airways, may "strengthen" the ASM and ultimately lead to exaggerated airway narrowing. This phenomenon was termed "force adaptation" [Bossé, Y., Chin, L.Y., Paré, P.D., Seow, C.Y., 2009. Adaptation of airway smooth muscle to basal tone: relevance to airway hyperresponsiveness. Am. J. Respir. Cell Mol. Biol. 40, 13-18]. However, it is unknown whether the magnitude of the effect of force adaptation ex vivo could contribute to exaggerated airway narrowing in vivo. Our aim was to utilize a computational model of ASM shortening in order to quantify the potential effect of force adaptation on airway narrowing when all other mechanical factors were kept constant. The shortening in the model is dictated by a balance between physiological loads and ASM force-generating capacity at different lengths. The results suggest that the magnitude of the effect of force adaptation on ASM shortening would lead to substantially more airway narrowing during bronchial challenge at any given airway generation. We speculate that the increased basal ASM-tone in asthma, due to the presence of inflammation-derived spasmogens, produces an increase in the force-generating capacity of ASM, predisposing to AHR during subsequent challenge. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Mechanotransduction, asthma, and airway smooth muscle

    PubMed Central

    Fabry, Ben; Fredberg, Jeffrey J.

    2008-01-01

    Excessive force generation by airway smooth muscle is the main culprit in excessive airway narrowing during an asthma attack. The maximum force the airway smooth muscle can generate is exquisitely sensitive to muscle length fluctuations during breathing, and is governed by complex mechanotransduction events that can best be studied by a hybrid approach in which the airway wall is modeled in silico so as to set a dynamic muscle load comparable to that experienced in vivo. PMID:18836522

  6. Cardiovascular causes of airway compression.

    PubMed

    Kussman, Barry D; Geva, Tal; McGowan, Francis X

    2004-01-01

    Compression of the paediatric airway is a relatively common and often unrecognized complication of congenital cardiac and aortic arch anomalies. Airway obstruction may be the result of an anomalous relationship between the tracheobronchial tree and vascular structures (producing a vascular ring) or the result of extrinsic compression caused by dilated pulmonary arteries, left atrial enlargement, massive cardiomegaly, or intraluminal bronchial obstruction. A high index of suspicion of mechanical airway compression should be maintained in infants and children with recurrent respiratory difficulties, stridor, wheezing, dysphagia, or apnoea unexplained by other causes. Prompt diagnosis is required to avoid death and minimize airway damage. In addition to plain chest radiography and echocardiography, diagnostic investigations may consist of barium oesophagography, magnetic resonance imaging (MRI), computed tomography, cardiac catheterization and bronchoscopy. The most important recent advance is MRI, which can produce high quality three-dimensional reconstruction of all anatomic elements allowing for precise anatomic delineation and improved surgical planning. Anaesthetic technique will depend on the type of vascular ring and the presence of any congenital heart disease or intrinsic lesions of the tracheobronchial tree. Vascular rings may be repaired through a conventional posterolateral thoracotomy, or utilizing video-assisted thoracoscopic surgery (VATS) or robotic endoscopic surgery. Persistent airway obstruction following surgical repair may be due to residual compression, secondary airway wall instability (malacia), or intrinsic lesions of the airway. Simultaneous repair of cardiac defects and vascular tracheobronchial compression carries a higher risk of morbidity and mortality.

  7. 21 CFR 868.2600 - Airway pressure monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Airway pressure monitor. 868.2600 Section 868.2600...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2600 Airway pressure monitor. (a) Identification. An airway pressure monitor is a device used to measure the pressure in a patient's upper airway...

  8. In Vitro Surfactant and Perfluorocarbon Aerosol Deposition in a Neonatal Physical Model of the Upper Conducting Airways

    PubMed Central

    Goikoetxea, Estibalitz; Murgia, Xabier; Serna-Grande, Pablo; Valls-i-Soler, Adolf; Rey-Santano, Carmen; Rivas, Alejandro; Antón, Raúl; Basterretxea, Francisco J.; Miñambres, Lorena; Méndez, Estíbaliz; Lopez-Arraiza, Alberto; Larrabe-Barrena, Juan Luis; Gomez-Solaetxe, Miguel Angel

    2014-01-01

    Objective Aerosol delivery holds potential to release surfactant or perfluorocarbon (PFC) to the lungs of neonates with respiratory distress syndrome with minimal airway manipulation. Nevertheless, lung deposition in neonates tends to be very low due to extremely low lung volumes, narrow airways and high respiratory rates. In the present study, the feasibility of enhancing lung deposition by intracorporeal delivery of aerosols was investigated using a physical model of neonatal conducting airways. Methods The main characteristics of the surfactant and PFC aerosols produced by a nebulization system, including the distal air pressure and air flow rate, liquid flow rate and mass median aerodynamic diameter (MMAD), were measured at different driving pressures (4–7 bar). Then, a three-dimensional model of the upper conducting airways of a neonate was manufactured by rapid prototyping and a deposition study was conducted. Results The nebulization system produced relatively large amounts of aerosol ranging between 0.3±0.0 ml/min for surfactant at a driving pressure of 4 bar, and 2.0±0.1 ml/min for distilled water (H2Od) at 6 bar, with MMADs between 2.61±0.1 µm for PFD at 7 bar and 10.18±0.4 µm for FC-75 at 6 bar. The deposition study showed that for surfactant and H2Od aerosols, the highest percentage of the aerosolized mass (∼65%) was collected beyond the third generation of branching in the airway model. The use of this delivery system in combination with continuous positive airway pressure set at 5 cmH2O only increased total airway pressure by 1.59 cmH2O at the highest driving pressure (7 bar). Conclusion This aerosol generating system has the potential to deliver relatively large amounts of surfactant and PFC beyond the third generation of branching in a neonatal airway model with minimal alteration of pre-set respiratory support. PMID:25211475

  9. Airflow structures and nano-particle deposition in a human upper airway model

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Kleinstreuer, C.

    2004-07-01

    Considering a human upper airway model, or equivalently complex internal flow conduits, the transport and deposition of nano-particles in the 1-150 nm diameter range are simulated and analyzed for cyclic and steady flow conditions. Specifically, using a commercial finite-volume software with user-supplied programs as a solver, the Euler-Euler approach for the fluid-particle dynamics is employed with a low-Reynolds-number k- ω model for laminar-to-turbulent airflow and the mass transfer equation for dispersion of nano-particles or vapors. Presently, the upper respiratory system consists of two connected segments of a simplified human cast replica, i.e., the oral airways from the mouth to the trachea (Generation G0) and an upper tracheobronchial tree model of G0-G3. Experimentally validated computational fluid-particle dynamics results show the following: (i) transient effects in the oral airways appear most prominently during the decelerating phase of the inspiratory cycle; (ii) selecting matching flow rates, total deposition fractions of nano-size particles for cyclic inspiratory flow are not significantly different from those for steady flow; (iii) turbulent fluctuations which occur after the throat can persist downstream to at least Generation G3 at medium and high inspiratory flow rates (i.e., Qin⩾30 l/min) due to the enhancement of flow instabilities just upstream of the flow dividers; however, the effects of turbulent fluctuations on nano-particle deposition are quite minor in the human upper airways; (iv) deposition of nano-particles occurs to a relatively greater extent around the carinal ridges when compared to the straight tubular segments in the bronchial airways; (v) deposition distributions of nano-particles vary with airway segment, particle size, and inhalation flow rate, where the local deposition is more uniformly distributed for large-size particles (say, dp=100 nm) than for small-size particles (say, dp=1 nm); (vi) dilute 1 nm particle

  10. Awake Craniotomy: A New Airway Approach.

    PubMed

    Sivasankar, Chitra; Schlichter, Rolf A; Baranov, Dimitry; Kofke, W Andrew

    2016-02-01

    Awake craniotomies have been performed regularly at the University of Pennsylvania since 2004. Varying approaches to airway management are described for this procedure, including intubation with an endotracheal tube and use of a laryngeal mask airway, simple facemask, or nasal cannula. In this case series, we describe the successful use (i.e., no need for endotracheal intubation related to inadequate gas exchange) of bilateral nasopharyngeal airways in 90 patients undergoing awake craniotomies. The use of nasopharyngeal airways can ease the transition between the asleep and awake phases of the craniotomy without the need to stimulate the airway. Our purpose was to describe our experience and report adverse events related to this technique.

  11. Airway structure and function in Eisenmenger's syndrome.

    PubMed

    McKay, K O; Johnson, P R; Black, J L; Glanville, A R; Armour, C L

    1998-10-01

    The responsiveness of airways from patients with Eisenmenger's syndrome (n = 5) was compared with that in airways from organ donors (n = 10). Enhanced contractile responses to cholinergic stimulation were found in airways from patients with Eisenmenger's syndrome. The maximal responses to acetylcholine, carbachol, and parasympathetic nerve stimulation in airway tissue from these patients were 221%, 139%, and 152%, respectively, of the maximal responses obtained in donor tissue. Further, relaxation responses to isoproterenol and levocromakalim were absent (n = 2) or markedly impaired (n = 3) in airways from patients with Eisenmenger's syndrome. This attenuated relaxation response was nonspecific in that it was also absent after vasoactive intestinal peptide, sodium nitroprusside, papaverine, and electrical field application. These observations can most likely be explained by a decrease in intrinsic smooth muscle tone, as precontraction of airways revealed relaxation responses that were equivalent to those obtained in donor tissues. Morphometric analysis of tissues used for the functional studies revealed no differences in the airway dimensions (internal perimeter) or airway wall components (e.g., smooth muscle, cartilage) or total area to explain these observations. Although the mechanism for this observed decrease in intrinsic airway smooth muscle tone is not certain, it may be due to alteration in the substructure of the airway wall or, alternatively, may result from the continued release of depressant factors in the vicinity of the smooth muscle which permanently alters smooth muscle responsiveness.

  12. CT reconstruction techniques for improved accuracy of lung CT airway measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, A.; Ranallo, F. N.; Judy, P. F.

    Purpose: To determine the impact of constrained reconstruction techniques on quantitative CT (qCT) of the lung parenchyma and airways for low x-ray radiation dose. Methods: Measurement of small airways with qCT remains a challenge, especially for low x-ray dose protocols. Images of the COPDGene quality assurance phantom (CTP698, The Phantom Laboratory, Salem, NY) were obtained using a GE discovery CT750 HD scanner for helical scans at x-ray radiation dose-equivalents ranging from 1 to 4.12 mSv (12–100 mA s current–time product). Other parameters were 40 mm collimation, 0.984 pitch, 0.5 s rotation, and 0.625 mm thickness. The phantom was sandwiched betweenmore » 7.5 cm thick water attenuating phantoms for a total length of 20 cm to better simulate the scatter conditions of patient scans. Image data sets were reconstructed using STANDARD (STD), DETAIL, BONE, and EDGE algorithms for filtered back projection (FBP), 100% adaptive statistical iterative reconstruction (ASIR), and Veo reconstructions. Reduced (half) display field of view (DFOV) was used to increase sampling across airway phantom structures. Inner diameter (ID), wall area percent (WA%), and wall thickness (WT) measurements of eight airway mimicking tubes in the phantom, including a 2.5 mm ID (42.6 WA%, 0.4 mm WT), 3 mm ID (49.0 WA%, 0.6 mm WT), and 6 mm ID (49.0 WA%, 1.2 mm WT) were performed with Airway Inspector (Surgical Planning Laboratory, Brigham and Women’s Hospital, Boston, MA) using the phase congruency edge detection method. The average of individual measures at five central slices of the phantom was taken to reduce measurement error. Results: WA% measures were greatly overestimated while IDs were underestimated for the smaller airways, especially for reconstructions at full DFOV (36 cm) using the STD kernel, due to poor sampling and spatial resolution (0.7 mm pixel size). Despite low radiation dose, the ID of the 6 mm ID airway was consistently measured accurately for all methods other

  13. Parametric Study of Wall Shear Stress in Idealized Avian Airways

    NASA Astrophysics Data System (ADS)

    Farnsworth, Michael S.; Riede, Tobias; Thomson, Scott L.

    2017-11-01

    Because wall shear stress (WSS) affects cell response, WSS patterns in avian respiratory airways may be related to the origin of the syrinx and corresponding voice-producing tissue structures (e.g., membranes or vocal folds) in birds. To explore possible linkages between WSS patterns and the locations of avian voice-producing structures, a computational model of flow through an idealized portion of the avian respiratory airway, including trachea and primary bronchi sections, has been developed. The flow is governed by the Navier-Stokes equations, with velocity boundary conditions derived from pressure-flow data in an adult zebra finch during quiet respiration. Geometric parameters such as tracheal/bronchial diameter and length, as well as bronchial branching angle, are parametrically varied based on data for different avian species. Simulation results predict elevated WSS in the vicinity of the tracheobronchial juncture, the location at which voice-producing tissues are found in avian species. In this presentation, the model will be described and spatial distributions of WSS during inspiration and expiration will be presented and compared for different geometric configurations and respiration rates and waveforms. Funding for this project from the Gordon and Betty Moore Foundation (Grant 4498) is gratefully acknowledged.

  14. An artificial neural network method for lumen and media-adventitia border detection in IVUS.

    PubMed

    Su, Shengran; Hu, Zhenghui; Lin, Qiang; Hau, William Kongto; Gao, Zhifan; Zhang, Heye

    2017-04-01

    Intravascular ultrasound (IVUS) has been well recognized as one powerful imaging technique to evaluate the stenosis inside the coronary arteries. The detection of lumen border and media-adventitia (MA) border in IVUS images is the key procedure to determine the plaque burden inside the coronary arteries, but this detection could be burdensome to the doctor because of large volume of the IVUS images. In this paper, we use the artificial neural network (ANN) method as the feature learning algorithm for the detection of the lumen and MA borders in IVUS images. Two types of imaging information including spatial, neighboring features were used as the input data to the ANN method, and then the different vascular layers were distinguished accordingly through two sparse auto-encoders and one softmax classifier. Another ANN was used to optimize the result of the first network. In the end, the active contour model was applied to smooth the lumen and MA borders detected by the ANN method. The performance of our approach was compared with the manual drawing method performed by two IVUS experts on 461 IVUS images from four subjects. Results showed that our approach had a high correlation and good agreement with the manual drawing results. The detection error of the ANN method close to the error between two groups of manual drawing result. All these results indicated that our proposed approach could efficiently and accurately handle the detection of lumen and MA borders in the IVUS images. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Effect of airway acidosis and alkalosis on airway vascular smooth muscle responsiveness to albuterol.

    PubMed

    Cancado, Jose E; Mendes, Eliana S; Arana, Johana; Horvath, Gabor; Monzon, Maria E; Salathe, Matthias; Wanner, Adam

    2015-04-02

    In vitro and animal experiments have shown that the transport and signaling of β2-adrenergic agonists are pH-sensitive. Inhaled albuterol, a hydrophilic β2-adrenergic agonist, is widely used for the treatment of obstructive airway diseases. Acute exacerbations of obstructive airway diseases can be associated with changes in ventilation leading to either respiratory acidosis or alkalosis thereby affecting albuterol responsiveness in the airway. The purpose of this study was to determine if airway pH has an effect on albuterol-induced vasodilation in the airway. Ten healthy volunteers performed the following respiratory maneuvers: quiet breathing, hypocapnic hyperventilation, hypercapnic hyperventilation, and eucapnic hyperventilation (to dissociate the effect of pH from the effect of ventilation). During these breathing maneuvers, exhaled breath condensate (EBC) pH and airway blood flow response to inhaled albuterol (ΔQ̇aw) were assessed. Mean ± SE EBC pH (units) and ΔQ̇aw (μl.min(-1).mL(-1)) were 6.4 ± 0.1 and 16.8 ± 1.9 during quiet breathing, 6.3 ± 0.1 and 14.5 ± 2.4 during eucapnic hyperventilation, 6.6 ± 0.2 and -0.2 ± 1.8 during hypocapnic hyperventilation (p = 0.02 and <0.01 vs. quiet breathing), and 5.9 ± 0.1 and 2.0 ± 1.5 during hypercapnic hyperventilation (p = 0.02 and <0.02 vs quiet breathing). Albuterol responsiveness in the airway as assessed by ΔQ̇aw is pH sensitive. The breathing maneuver associated with decreased and increased EBC pH both resulted in a decreased responsiveness independent of the level of ventilation. These findings suggest an attenuated response to hydrophilic β2-adrenergic agonists during airway disease exacerbations associated with changes in pH. Registered at clinicaltrials.gov: NCT01216748 .

  16. Motorcycle exhaust particles induce airway inflammation and airway hyperresponsiveness in BALB/C mice.

    PubMed

    Lee, Chen-Chen; Liao, Jiunn-Wang; Kang, Jaw-Jou

    2004-06-01

    A number of large studies have reported that environmental pollutants from fossil fuel combustion can cause deleterious effects to the immune system, resulting in an allergic reaction leading to respiratory tract damage. In this study, we investigated the effect of motorcycle exhaust particles (MEP), a major pollutant in the Taiwan urban area, on airway inflammation and airway hyperresponsiveness in laboratory animals. BALB/c mice were instilled intratracheally (i.t.) with 1.2 mg/kg and 12 mg/kg of MEP, which was collected from two-stroke motorcycle engines. The mice were exposed 3 times i.t. with MEP, and various parameters for airway inflammation and hyperresponsiveness were sequentially analyzed. We found that MEP would induce airway and pulmonary inflammation characterized by infiltration of eosinophils, neutrophils, lymphocytes, and macrophages in bronchoalveolar lavage fluid (BALF) and inflammatory cell infiltration in lung. In addition, MEP treatment enhanced BALF interleukin-4 (IL-4), IL-5, and interferon-gamma (IFN-gamma) cytokine levels and serum IgE production. Bronchial response measured by unrestrained plethysmography with methacholine challenge showed that MEP treatment induced airway hyperresponsiveness (AHR) in BALB/c mice. The chemical components in MEP were further fractionated with organic solvents, and we found that the benzene-extracted fraction exerts a similar biological effect as seen with MEP, including airway inflammation, increased BALF IL-4, serum IgE production, and induction of AHR. In conclusion, we present evidence showing that the filter-trapped particles emitted from the unleaded-gasoline-fueled two-stroke motorcycle engine may induce proinflammatory and proallergic response profiles in the absence of exposure to allergen.

  17. Brain-Derived Neurotrophic Factor in the Airways

    PubMed Central

    Prakash, Y.S.; Martin, Richard J.

    2014-01-01

    In addition to their well-known roles in the nervous system, there is increasing recognition that neurotrophins such as brain derived neurotrophic factor (BDNF) as well as their receptors are expressed in peripheral tissues including the lung, and can thus potentially contribute to both normal physiology and pathophysiology of several diseases. The relevance of this family of growth factors lies in emerging clinical data indicating altered neurotrophin levels and function in a range of diseases including neonatal and adult asthma, sinusitis, influenza, and lung cancer. The current review focuses on 1) the importance of BDNF expression and signaling mechanisms in early airway and lung development, critical to both normal neonatal lung function and also its disruption in prematurity and insults such as inflammation and infection; 2) how BDNF, potentially derived from airway nerves modulate neurogenic control of airway tone, a key aspect of airway reflexes as well as dysfunctional responses to allergic inflammation; 3) the emerging idea that local BDNF production by resident airway cells such as epithelium and airway smooth muscle can contribute to normal airway structure and function, and to airway hyperreactivity and remodeling in diseases such as asthma. Furthermore, given its pleiotropic effects in the airway, BDNF may be a novel and appealing therapeutic target. PMID:24560686

  18. Sequential Stenting for Extensive Malignant Airway Stenosis

    PubMed Central

    Takahama, Makoto; Nakajima, Ryu; Kimura, Michitaka; Tei, Keiko; Yamamoto, Ryoji

    2014-01-01

    Purpose: Malignant airway stenosis extending from the bronchial bifurcation to the lower lobar orifice was treated with airway stenting. We herein examine the effectiveness of airway stenting for extensive malignant airway stenosis. Methods: Twelve patients with extensive malignant airway stenosis underwent placement of a silicone Dumon Y stent (Novatech, La Ciotat, France) at the tracheal bifurcation and a metallic Spiral Z-stent (Medico’s Hirata, Osaka, Japan) at either distal side of the Y stent. We retrospectively analyzed the therapeutic efficacy of the sequential placement of these silicone and metallic stents in these 12 patients. Results: The primary disease was lung cancer in eight patients, breast cancer in two patients, tracheal cancer in one patient, and thyroid cancer in one patient. The median survival period after airway stent placement was 46 days. The Hugh–Jones classification and performance status improved in nine patients after airway stenting. One patient had prolonged hemoptysis and died of respiratory tract hemorrhage 15 days after the treatment. Conclusion: Because the initial disease was advanced and aggressive, the prognosis after sequential airway stent placement was significantly poor. However, because respiratory distress decreased after the treatment in most patients, this treatment may be acceptable for selected patients with extensive malignant airway stenosis. PMID:25273272

  19. Simultaneous bright‐ and black‐blood whole‐heart MRI for noncontrast enhanced coronary lumen and thrombus visualization

    PubMed Central

    Neji, Radhouene; Phinikaridou, Alkystis; Whitaker, John; Botnar, René M.; Prieto, Claudia

    2017-01-01

    Purpose To develop a 3D whole‐heart Bright‐blood and black‐blOOd phase SensiTive (BOOST) inversion recovery sequence for simultaneous noncontrast enhanced coronary lumen and thrombus/hemorrhage visualization. Methods The proposed sequence alternates the acquisition of two bright‐blood datasets preceded by different preparatory pulses to obtain variations in blood/myocardium contrast, which then are combined in a phase‐sensitive inversion recovery (PSIR)‐like reconstruction to obtain a third, coregistered, black‐blood dataset. The bright‐blood datasets are used for both visualization of the coronary lumen and motion estimation, whereas the complementary black‐blood dataset potentially allows for thrombus/hemorrhage visualization. Furthermore, integration with 2D image‐based navigation enables 100% scan efficiency and predictable scan times. The proposed sequence was compared to conventional coronary MR angiography (CMRA) and PSIR sequences in a standardized phantom and in healthy subjects. Feasibility for thrombus depiction was tested ex vivo. Results With BOOST, the coronary lumen is visualized with significantly higher (P < 0.05) contrast‐to‐noise ratio and vessel sharpness when compared to conventional CMRA. Furthermore, BOOST showed effective blood signal suppression as well as feasibility for thrombus visualization ex vivo. Conclusion A new PSIR sequence for noncontrast enhanced simultaneous coronary lumen and thrombus/hemorrhage detection was developed. The sequence provided improved coronary lumen depiction and showed potential for thrombus visualization. Magn Reson Med 79:1460–1472, 2018. © 2017 International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:28722267

  20. Malignant central airway obstruction

    PubMed Central

    Mudambi, Lakshmi; Miller, Russell

    2017-01-01

    This review comprehensively describes recent advances in the management of malignant central airway obstruction (CAO). Malignant CAO can be a dramatic and devastating manifestation of primary lung cancer or metastatic disease. A variety of diagnostic modalities are available to provide valuable information to plan a therapeutic intervention. Clinical heterogeneity in the presentation of malignant CAO provides opportunities to adapt and utilize endoscopic technology and tools in many ways. Mechanical debulking, thermal tools, cryotherapy and airway stents are methods and instruments used to rapidly restore airway patency. Delayed bronchoscopic methods, such as photodynamic therapy (PDT) and brachytherapy can also be utilized in specific non-emergent situations to establish airway patency. Although data regarding the success and complications of therapeutic interventions are retrospective and characterized by clinical and outcome measure variability, the symptoms of malignant CAO can often be successfully palliated. Assessment of risks and benefits of interventions in each individual patient during the decision-making process forms the critical foundation of the management of malignant CAO. PMID:29214067

  1. Regulation of human airway surface liquid.

    PubMed

    Widdicombe, J H; Widdicombe, J G

    1995-01-01

    Human airways are lined with a film of liquid from 5-100 microns in depth, consisting of a periciliary sol around and a mucous gel above the cilia. Microscopical studies have shown the sol to be invariably the same depth as the length of the cilia, and we discuss possible reasons for this. The composition and sources of the airway surface liquid are also described. In addition the forces regulating its volume are analyzed. Several airway diseases are characterised by dramatic changes in the volume and composition of airway liquid. We review recent research suggesting that the accumulation of airway mucous secretions in cystic fibrosis is caused by alterations in active transport of ions and water across both the surface and gland epithelia.

  2. Heated, humidified high-flow nasal cannula therapy: yet another way to deliver continuous positive airway pressure?

    PubMed

    Kubicka, Zuzanna J; Limauro, Joseph; Darnall, Robert A

    2008-01-01

    The goal was to estimate the level of delivered continuous positive airway pressure by measuring oral cavity pressure with the mouth closed in infants of various weights and ages treated with heated, humidified high-flow nasal cannula at flow rates of 1-5 L/minute. We hypothesized that clinically relevant levels of continuous positive airway pressure would not be achieved if a nasal leak is maintained. After performing bench measurements and demonstrating that oral cavity pressure closely approximated levels of traditionally applied nasal continuous positive airway pressure, we successfully measured oral cavity pressure during heated, humidified, high-flow nasal cannula treatment in 27 infants. Small (outer diameter: 0.2 cm) cannulae were used for all infants, and flow rates were left as ordered by providers. Bench measurements showed that, for any given leak size, there was a nearly linear relationship between flow rate and pressure. The highest pressure achieved was 4.5 cmH2O (flow rate: 8 L/minute; leak: 3 mm). In our study infants (postmenstrual age: 29.1-44.7 weeks; weight: 835-3735 g; flow rate: 1-5 L/minute), no pressure was generated with the mouth open at any flow rate. With the mouth closed, the oral cavity pressure was related to both flow rate and weight. For infants of < or = 1500 g, there was a linear relationship between flow rate and oral cavity pressure. Oral cavity pressure can estimate the level of continuous positive airway pressure. Continuous positive airway pressure generated with heated, humidified, high-flow nasal cannula treatment depends on the flow rate and weight. Only in the smallest infants with the highest flow rates, with the mouth fully closed, can clinically significant but unpredictable levels of continuous positive airway pressure be achieved. We conclude that heated, humidified high-flow nasal cannula should not be used as a replacement for delivering continuous positive airway pressure.

  3. Intrathoracic airway measurement: ex-vivo validation

    NASA Astrophysics Data System (ADS)

    Reinhardt, Joseph M.; Raab, Stephen A.; D'Souza, Neil D.; Hoffman, Eric A.

    1997-05-01

    High-resolution x-ray CT (HRCT) provides detailed images of the lungs and bronchial tree. HRCT-based imaging and quantitation of peripheral bronchial airway geometry provides a valuable tool for assessing regional airway physiology. Such measurements have been sued to address physiological questions related to the mechanics of airway collapse in sleep apnea, the measurement of airway response to broncho-constriction agents, and to evaluate and track the progression of disease affecting the airways, such as asthma and cystic fibrosis. Significant attention has been paid to the measurements of extra- and intra-thoracic airways in 2D sections from volumetric x-ray CT. A variety of manual and semi-automatic techniques have been proposed for airway geometry measurement, including the use of standardized display window and level settings for caliper measurements, methods based on manual or semi-automatic border tracing, and more objective, quantitative approaches such as the use of the 'half-max' criteria. A recently proposed measurements technique uses a model-based deconvolution to estimate the location of the inner and outer airway walls. Validation using a plexiglass phantom indicates that the model-based method is more accurate than the half-max approach for thin-walled structures. In vivo validation of these airway measurement techniques is difficult because of the problems in identifying a reliable measurement 'gold standard.' In this paper we report on ex vivo validation of the half-max and model-based methods using an excised pig lung. The lung is sliced into thin sections of tissue and scanned using an electron beam CT scanner. Airways of interest are measured from the CT images, and also measured with using a microscope and micrometer to obtain a measurement gold standard. The result show no significant difference between the model-based measurements and the gold standard; while the half-max estimates exhibited a measurement bias and were significantly

  4. The Development and Application of Airway Devices in China

    PubMed Central

    Chen, Xiangdong; Ma, Wuhua; Liu, Renyu; Yao, Shanglong

    2017-01-01

    Airway management is one of the most important tasks for anesthesiologists. Anesthesiologists are experts in airway management and have made tremendous contribution to the development of the airway devices. Chinese anesthesiologists have made significant contribution in introducing advanced airway management and developing innovative techniques and devices for airway management in China. This article overviews the development and application of airway devices in China as well as the dedication and contribution of Chinese experts in the development of novel airway devices. With the development of science and technology accompanied by the advanced knowledge in airway management, more effective and safe artificial airways will be developed for clinical practice. The authors believe that Chinese experts will continue their outstanding contribution to the development of innovative airway devices, systems and knowledge. PMID:28191485

  5. Airway smooth muscle responsiveness from dogs with airway hyperresponsiveness after O/sub 3/ inhalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, G.L.; O'Byrne, P.M.; Pashley, M.

    1988-07-01

    Airway hyperresponsiveness occurs after inhalation of O3 in dogs. The purpose of this study was to examine the responsiveness of trachealis smooth muscle in vitro to electrical field stimulation, exogenous acetylcholine, and potassium chloride from dogs with airway hyperresponsiveness after inhaled O3 in vivo and to compare this with the responsiveness of trachealis muscle from control dogs. In addition, excitatory junction potentials were measured with the use of single and double sucrose gap techniques in both groups of dogs to determine whether inhaled O3 affects the release of acetylcholine from parasympathetic nerves in trachealis muscle. Airway hyperresponsiveness developed in allmore » dogs after inhaled O3 (3 ppm for 30 min). The acetylcholine provocative concentration decreased from 4.11 mg/ml before O3 inhalation to 0.66 mg/ml after O3 (P less than 0.0001). The acetylcholine provocative concentration increased slightly after control inhalation of dry room air. Airway smooth muscle showed increased responses to both electrical field stimulation and exogenous acetylcholine but not to potassium chloride in preparations from dogs with airway hyperresponsiveness in vivo. The increased response to electrical field stimulation was not associated with a change in excitatory junctional potentials. These results suggest that a postjunctional alteration in trachealis muscle function occurs after inhaled O3 in dogs, which may account for airway hyperresponsiveness after O3 in vivo.« less

  6. Alcohol and Airways Function in Health and Disease

    PubMed Central

    Sisson, Joseph H.

    2007-01-01

    The volatility of alcohol promotes the movement of alcohol from the bronchial circulation across the airway epithelium and into the conducting airways of the lung. The exposure of the airways through this route likely accounts for many of the biologic effects of alcohol on lung airway functions. The impact of alcohol on lung airway functions is dependent on the concentration, duration and route of exposure. Brief exposure to mild concentrations of alcohol may enhance mucociliary clearance, stimulates bronchodilation and probably attenuates the airway inflammation and injury observed in asthma and COPD. Prolonged and heavy exposure to alcohol impairs mucociliary clearance, may complicate asthma management and likely worsens outcomes including lung function and mortality in COPD patients. Non-alcohol congeners and alcohol metabolites act as triggers for airway disease exacerbations especially in atopic asthmatics and in Asian populations who have a reduced capacity to metabolize alcohol. Research focused on the mechanisms of alcohol-mediated changes in airway functions has identified specific mechanisms that mediate alcohol effects within the lung airways. These include prominent roles for the second messengers calcium and nitric oxide, regulatory kinases including PKG and PKA, alcohol and acetaldehyde-metabolizing enzymes such as aldehyde dehydrogenase type 2 (ALDH2). The role alcohol may play in the pathobiology of airway mucus, bronchial blood flow, airway smooth muscle regulation and the interaction with other airway exposure agents, such as cigarette smoke, represent opportunities for future investigation. PMID:17764883

  7. Alcohol and airways function in health and disease.

    PubMed

    Sisson, Joseph H

    2007-08-01

    The volatility of alcohol promotes the movement of alcohol from the bronchial circulation across the airway epithelium and into the conducting airways of the lung. The exposure of the airways through this route likely accounts for many of the biologic effects of alcohol on lung airway functions. The effect of alcohol on lung airway functions is dependent on the concentration, duration, and route of exposure. Brief exposure to mild concentrations of alcohol may enhance mucociliary clearance, stimulates bronchodilation, and probably attenuates the airway inflammation and injury observed in asthma and chronic obstructive pulmonary disease (COPD). Prolonged and heavy exposure to alcohol impairs mucociliary clearance, may complicate asthma management, and likely worsens outcomes including lung function and mortality in COPD patients. Nonalcohol congeners and alcohol metabolites act as triggers for airway disease exacerbations especially in atopic asthmatics and in Asian populations who have a reduced capacity to metabolize alcohol. Research focused on the mechanisms of alcohol-mediated changes in airway functions has identified specific mechanisms that mediate alcohol effects within the lung airways. These include prominent roles for the second messengers calcium and nitric oxide, regulatory kinases including PKG and PKA, alcohol- and acetaldehyde-metabolizing enzymes such as aldehyde dehydrogenase 2. The role alcohol may play in the pathobiology of airway mucus, bronchial blood flow, airway smooth muscle regulation, and the interaction with other airway exposure agents, such as cigarette smoke, represents opportunities for future investigation.

  8. Can insertion length for a double-lumen endobronchial tube be predicted?

    PubMed

    Dyer, R A; Heijke, S A; Russell, W J; Bloch, M B; James, M F

    2000-12-01

    It has been suggested that the appropriate length of insertion for double-lumen tubes can be estimated by external measurement. This study examined the accuracy of external measurement in estimating the actual length of insertion required in 130 patients. It also examined the relationship between the length inserted and the patient's height in 126 patients and their weight in 125 patients. Although there was a fair correlation between the measured external length and the final inserted length (r = 0.61), the 95% confidence intervals of slope and intercept allowed a large variation and the prediction was too wide to be clinically useful. Height was reasonably well correlated with the final length (r = 0.51) but an equally wide 95% confidence interval rendered it of little clinical value. There was no correlation between weight and final tube length. It is concluded that external measurement alone is not adequate to predict a clinically acceptable position of the double-lumen tube.

  9. Sjögren's syndrome with multiple cystic lesions and pulmonary arteriovenous fistulae.

    PubMed

    Taniguchi, Hirokazu; Miwa, Atsuo; Abo, Hitoshi; Demachi, Hiroshi; Izumi, Saburo

    2008-01-01

    A patient presented with Sjögren's syndrome associated with pulmonary multiple cystic lesions and a pulmonary arteriovenous fistulae. A histological examination of the lungs during the autopsy revealed the stenosis of the bronchiole lumens with hyperplasia of goblet cells, proliferation of smooth muscles in the inner wall of the bronchioli and retention of mucus in the airway lumens. These small airway changes were accompanied with chronic inflammatory changes of the airways in Sjögren's syndrome and led to the formation of cystic lesions via a ball-valve mechanism. Arteriovenous fistulae were situated around the cystic lesions. There may have been a correlation between the formation of the fistulae and cysts, but no mechanism was indicated in the histological findings. This report reveals that chronic inflammatory changes of the airways in Sjögren's syndrome are sufficient to cause the formation of cystic lesions.

  10. Lumen Thiol Oxidoreductase1, a Disulfide Bond-Forming Catalyst, Is Required for the Assembly of Photosystem II in Arabidopsis[C][W

    PubMed Central

    Karamoko, Mohamed; Cline, Sara; Redding, Kevin; Ruiz, Natividad; Hamel, Patrice P.

    2011-01-01

    Here, we identify Arabidopsis thaliana Lumen Thiol Oxidoreductase1 (LTO1) as a disulfide bond–forming enzyme in the thylakoid lumen. Using topological reporters in bacteria, we deduced a lumenal location for the redox active domains of the protein. LTO1 can partially substitute for the proteins catalyzing disulfide bond formation in the bacterial periplasm, which is topologically equivalent to the plastid lumen. An insertional mutation within the LTO1 promoter is associated with a severe photoautotrophic growth defect. Measurements of the photosynthetic activity indicate that the lto1 mutant displays a limitation in the electron flow from photosystem II (PSII). In accordance with these measurements, we noted a severe depletion of the structural subunits of PSII but no change in the accumulation of the cytochrome b6f complex or photosystem I. In a yeast two-hybrid assay, the thioredoxin-like domain of LTO1 interacts with PsbO, a lumenal PSII subunit known to be disulfide bonded, and a recombinant form of the molecule can introduce a disulfide bond in PsbO in vitro. The documentation of a sulfhydryl-oxidizing activity in the thylakoid lumen further underscores the importance of catalyzed thiol-disulfide chemistry for the biogenesis of the thylakoid compartment. PMID:22209765

  11. Elevated Airway Purines in COPD

    PubMed Central

    Lazaar, Aili L.; Bordonali, Elena; Qaqish, Bahjat; Boucher, Richard C.

    2011-01-01

    Background: Adenosine and related purines have established roles in inflammation, and elevated airway concentrations are predicted in patients with COPD. However, accurate airway surface purine measurements can be confounded by stimulation of purine release during collection of typical respiratory samples. Methods: Airway samples were collected noninvasively as exhaled breath condensate (EBC) from 36 healthy nonsmokers (NS group), 28 healthy smokers (S group), and 89 subjects with COPD (29 with GOLD [Global Initiative for Chronic Obstructive Lung Disease] stage II, 29 with GOLD stage III, and 31 with GOLD stage IV) and analyzed with mass spectrometry for adenosine, adenosine monophosphate (AMP), and phenylalanine, plus urea as a dilution marker. Variable dilution of airway secretions in EBC was controlled using ratios to urea, and airway surface concentrations were calculated using EBC to serum urea-based dilution factors. Results: EBC adenosine to urea ratios were similar in NS (0.20 ± 0.21) and S (0.22 ± 0.20) groups but elevated in those with COPD (0.32 ± 0.30, P < .01 vs NS). Adenosine to urea ratios were highest in the most severely affected cohort (GOLD IV, 0.35 ± 0.34, P < .01 vs NS) and negatively correlated with FEV1 (r = −0.27, P < .01). Elevated AMP to urea ratios were also observed in the COPD group (0.58 ± 0.97 COPD, 0.29 ± 0.35 NS, P < .02), but phenylalanine to urea ratios were similar in all groups. Airway surface adenosine concentrations calculated in a subset of subjects were 3.2 ± 2.7 μM in those with COPD (n = 28) relative to 1.7 ± 1.5 μM in the NS group (n = 16, P < .05). Conclusions: Airway purines are present on airway surfaces at physiologically significant concentrations, are elevated in COPD, and correlate with markers of COPD severity. Purinergic signaling pathways are potential therapeutic targets in COPD, and EBC purines are potential noninvasive biomarkers. PMID:21454402

  12. Sex Differential in 15-Hydroxyprostaglandin Dehydrogenase Levels in the Lumen of Human Intracranial Aneurysms.

    PubMed

    Chalouhi, Nohra; Jabbour, Pascal; Zanaty, Mario; Starke, Robert M; Torner, James; Nakagawa, Daichi; Hasan, David M

    2017-10-17

    Aspirin is a promising medical therapy for the prevention of intracranial aneurysm (IA) rupture. Recently, we found that men have a better response to aspirin than women. The purpose of this study was to determine whether a sex differential exists in the level of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) in the lumen of human IAs. Consecutive patients undergoing coiling or stent-assisted coiling for a saccular IA at our institution were enrolled. Two samples (A and B) were collected from IA lumens, and the plasma level of 15-PGDH was measured using an ELISA-based method. The study included 38 patients, with 20 women and 18 men. Women and men were comparable on baseline characteristics. The mean plasma concentration of 15-PGDH did not differ statistically between sample A (62.8±16.2 ng/mL) and sample B (61.8±17.9 ng/mL; 95% confidence interval -6.6 to 9.4). The mean plasma concentration of 15-PGDH in IA lumens of samples A and B was significantly higher in men (73.8±13.5 ng/mL) than women (49.6±7.8 ng/mL; P <0.0001). Higher enzyme levels of 15-PGDH exist in the lumen of IAs of men compared with women. This observation could explain why aspirin confers better protection against IA rupture in men than in women. The susceptibility of an individual to aspirin may differ according to the level of 15-PGDH. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  13. Influence of a Double-Lumen Extension Tube on Drug Delivery: Examples of Isosorbide Dinitrate and Diazepam

    PubMed Central

    Maiguy-Foinard, Aurélie; Blanchemain, Nicolas; Barthélémy, Christine; Odou, Pascal

    2016-01-01

    Purpose Plastic materials such as polyurethane (PUR), polyethylene (PE), polypropylene (PP) and polyvinyl chloride (PVC) are widely used in double-lumen extension tubing. The purposes of our study were to 1) compare in vitro drug delivery through the double extension tubes available on the market 2) assess the plastic properties of PUR in infusion devices and their impact on drug delivery. Methods The study compared eight double-lumen extension tubes in PUR, co-extruded (PE/PVC) plastic and plasticised PVC from different manufacturers. Isosorbide dinitrate and diazepam were used as model compounds to evaluate their sorption on the internal surface of the infusion device. Control experiments were performed using norepinephrine known not to absorb to plastics. Drug concentrations delivered at the egress of extension tubes were determined over time by an analytical spectrophotometric UV-Vis method. The main characteristics of plastics were also determined. Results Significant differences in the sorption phenomenon were observed among the eight double-lumen extension tubes and between pairs of extension tubes. Mean concentrations of isosorbide dinitrate delivered at the egress of double-lumen extension tubes after a 150-minute infusion (mean values ± standard deviation in percentage of the initial concentrations in the prepared syringes) ranged between 80.53 ± 1.66 (one of the PUR tubes) and 92.84 ± 2.73 (PE/PVC tube). The same parameters measured during diazepam infusion ranged between 48.58 ± 2.88 (one of the PUR tubes) and 85.06 ± 3.94 (PE/PVC tube). The double-lumen extension tubes in PUR were either thermosetting (resin) or thermoplastic according to reference. Conclusions Clinicians must be aware of potential drug interactions with extension tube materials and so must consider their nature as well as the sterilisation method used before selecting an infusion device. PMID:27153224

  14. Anatomic and physiopathologic changes affecting the airway of the elderly patient: implications for geriatric-focused airway management

    PubMed Central

    Johnson, Kathleen N; Botros, Daniel B; Groban, Leanne; Bryan, Yvon F

    2015-01-01

    There are many anatomical, physiopathological, and cognitive changes that occur in the elderly that affect different components of airway management: intubation, ventilation, oxygenation, and risk of aspiration. Anatomical changes occur in different areas of the airway from the oral cavity to the larynx. Common changes to the airway include tooth decay, oropharyngeal tumors, and significant decreases in neck range of motion. These changes may make intubation challenging by making it difficult to visualize the vocal cords and/or place the endotracheal tube. Also, some of these changes, including but not limited to, atrophy of the muscles around the lips and an edentulous mouth, affect bag mask ventilation due to a difficult face-mask seal. Physiopathologic changes may impact airway management as well. Common pulmonary issues in the elderly (eg, obstructive sleep apnea and COPD) increase the risk of an oxygen desaturation event, while gastrointestinal issues (eg, achalasia and gastroesophageal reflux disease) increase the risk of aspiration. Finally, cognitive changes (eg, dementia) not often seen as related to airway management may affect patient cooperation, especially if an awake intubation is required. Overall, degradation of the airway along with other physiopathologic and cognitive changes makes the elderly population more prone to complications related to airway management. When deciding which airway devices and techniques to use for intubation, the clinician should also consider the difficulty associated with ventilating the patient, the patient’s risk of oxygen desaturation, and/or aspiration. For patients who may be difficult to bag mask ventilate or who have a risk of aspiration, a specialized supralaryngeal device may be preferable over bag mask for ventilation. Patients with tumors or decreased neck range of motion may require a device with more finesse and maneuverability, such as a flexible fiberoptic broncho-scope. Overall, geriatric-focused airway

  15. The Difficult Airway Society 'ADEPT' guidance on selecting airway devices: the basis of a strategy for equipment evaluation.

    PubMed

    Pandit, J J; Popat, M T; Cook, T M; Wilkes, A R; Groom, P; Cooke, H; Kapila, A; O'Sullivan, E

    2011-08-01

    Faced with the concern that an increasing number of airway management devices were being introduced into clinical practice with little or no prior evidence of their clinical efficacy or safety, the Difficult Airway Society formed a working party (Airway Device Evaluation Project Team) to establish a process by which the airway management community within the profession could itself lead a process of formal device/equipment evaluation. Although there are several national and international regulations governing which products can come on to the market and be legitimately sold, there has hitherto been no formal professional guidance relating to how products should be selected (i.e. purchased). The Airway Device Evaluation Project Team's first task was to formulate such advice, emphasising evidence-based principles. Team discussions led to a definition of the minimum level of evidence needed to make a pragmatic decision about the purchase or selection of an airway device. The Team concluded that this definition should form the basis of a professional standard, guiding those with responsibility for selecting airway devices. We describe how widespread adoption of this professional standard can act as a driver to create an infrastructure in which the required evidence can be obtained. Essential elements are that: (i) the Difficult Airway Society facilitates a coherent national network of research-active units; and (ii) individual anaesthetists in hospital trusts play a more active role in local purchasing decisions, applying the relevant evidence and communicating their purchasing decisions to the Difficult Airway Society. © 2011 The Authors. Anaesthesia © 2011 The Association of Anaesthetists of Great Britain and Ireland.

  16. In vitro stent lumen visualisation of various common and newly developed femoral artery stents using MR angiography at 1.5 and 3 tesla.

    PubMed

    Syha, R; Ketelsen, D; Kaempf, M; Mangold, S; Sixt, S; Zeller, T; Springer, F; Schick, F; Claussen, C D; Brechtel, K

    2013-02-01

    To evaluate stent lumen assessment of various commonly used and newly developed stents for the superficial femoral artery (SFA) using MR angiography (MRA) at 1.5 and 3 T. Eleven nitinol stents and one cobalt-chromium stent were compared regarding stent lumen visualisation using a common three-dimensional MRA sequence. Maximum visible stent lumen width and contrast ratio were analysed in three representative slices for each stent type. A scoring system for lumen visualisation was applied. Nitinol stents showed significantly better performance than the cobalt chromium stent (P < 0.05) at 1.5 and 3 T. Maximum visible stent lumen ranged between 43.4 and 95.5 %, contrast ratio between 7.2 and 110.6 %. Regarding both field strengths, seven of the nitinol stents were classified as "suitable". Three nitinol stents were "limited", and one nitinol stent and the cobalt chromium stent were "not suitable". Intraluminal loss of signal and artefacts of most of the SFA stents do not markedly limit assessment of stent lumen by MRA at 1.5 and 3 T. MRA can thus be considered a valid technique for detection of relevant in-stent restenosis. Applied field strength does not strongly influence stent lumen assessment in general, but proper choice of field strength might be helpful.

  17. Oesophageal lumen pH in yearling horses and effects of management and administration of omeprazole.

    PubMed

    Wilson, C S; Brookes, V J; Hughes, K J; Trope, G D; Ip, H; Gunn, A J

    2017-05-01

    In human subjects, arytenoid chondritis can be caused by chemical trauma of mucosa attributable to gastro-oesophageal reflux. Although a similar process may be involved in the aetiopathogenesis of arytenoid chondritis in horses, the oesophageal lumen pH in this species is poorly understood. To determine if gastro-oesophageal reflux occurs in horses by characterising oesophageal lumen pH. Blinded, randomised, placebo-controlled, crossover, experimental study. Luminal oesophageal pH in six yearling horses was recorded over four 24 h periods using an ambulatory pH recorder attached to a catheter with two electrodes (proximal and distal) inserted into the oesophagus. Recordings of pH were made during three management protocols. Initially, horses grazed in a paddock (Protocol A). Horses were then moved to stables to simulate sale preparation of Thoroughbred yearlings, and were given either omeprazole (Protocol B) or placebo paste (Protocol C) orally once per day. Protocol A was repeated for each horse (after a 13 day washout period) between Protocols B and C. Summary statistics described pH range and frequency of pH changes. Associations with predictor variables were investigated using linear mixed-effects models. Data are presented as the mean ± s.d. Oesophageal lumen pH ranged from 4.90 to 9.70 (7.36 ± 0.27 and 7.18 ± 0.24 for the proximal and distal electrodes, respectively) and varied frequently (1.2 ± 0.9 changes/min and 0.8 ± 0.8 changes/min for the proximal and distal electrodes, respectively). Oesophageal lumen pH was associated with time since concentrate feeding, activity and time of day, but not with treatment of omeprazole. A small number of horses were used and measurement periods were limited. Gastro-oesophageal reflux occurs in clinically normal yearling horses. Although omeprazole had no detectable effect, oesophageal lumen pH recorded during this study did not fall within the therapeutic range of omeprazole. © 2016 EVJ Ltd.

  18. Integrated care pathways for airway diseases (AIRWAYS-ICPs).

    PubMed

    Bousquet, J; Addis, A; Adcock, I; Agache, I; Agusti, A; Alonso, A; Annesi-Maesano, I; Anto, J M; Bachert, C; Baena-Cagnani, C E; Bai, C; Baigenzhin, A; Barbara, C; Barnes, P J; Bateman, E D; Beck, L; Bedbrook, A; Bel, E H; Benezet, O; Bennoor, K S; Benson, M; Bernabeu-Wittel, M; Bewick, M; Bindslev-Jensen, C; Blain, H; Blasi, F; Bonini, M; Bonini, S; Boulet, L P; Bourdin, A; Bourret, R; Bousquet, P J; Brightling, C E; Briggs, A; Brozek, J; Buhl, R; Bush, A; Caimmi, D; Calderon, M; Calverley, P; Camargos, P A; Camuzat, T; Canonica, G W; Carlsen, K H; Casale, T B; Cazzola, M; Cepeda Sarabia, A M; Cesario, A; Chen, Y Z; Chkhartishvili, E; Chavannes, N H; Chiron, R; Chuchalin, A; Chung, K F; Cox, L; Crooks, G; Crooks, M G; Cruz, A A; Custovic, A; Dahl, R; Dahlen, S E; De Blay, F; Dedeu, T; Deleanu, D; Demoly, P; Devillier, P; Didier, A; Dinh-Xuan, A T; Djukanovic, R; Dokic, D; Douagui, H; Dubakiene, R; Eglin, S; Elliot, F; Emuzyte, R; Fabbri, L; Fink Wagner, A; Fletcher, M; Fokkens, W J; Fonseca, J; Franco, A; Frith, P; Furber, A; Gaga, M; Garcés, J; Garcia-Aymerich, J; Gamkrelidze, A; Gonzales-Diaz, S; Gouzi, F; Guzmán, M A; Haahtela, T; Harrison, D; Hayot, M; Heaney, L G; Heinrich, J; Hellings, P W; Hooper, J; Humbert, M; Hyland, M; Iaccarino, G; Jakovenko, D; Jardim, J R; Jeandel, C; Jenkins, C; Johnston, S L; Jonquet, O; Joos, G; Jung, K S; Kalayci, O; Karunanithi, S; Keil, T; Khaltaev, N; Kolek, V; Kowalski, M L; Kull, I; Kuna, P; Kvedariene, V; Le, L T; Lodrup Carlsen, K C; Louis, R; MacNee, W; Mair, A; Majer, I; Manning, P; de Manuel Keenoy, E; Masjedi, M R; Melen, E; Melo-Gomes, E; Menzies-Gow, A; Mercier, G; Mercier, J; Michel, J P; Miculinic, N; Mihaltan, F; Milenkovic, B; Molimard, M; Momas, I; Montilla-Santana, A; Morais-Almeida, M; Morgan, M; N'Diaye, M; Nafti, S; Nekam, K; Neou, A; Nicod, L; O'Hehir, R; Ohta, K; Paggiaro, P; Palkonen, S; Palmer, S; Papadopoulos, N G; Papi, A; Passalacqua, G; Pavord, I; Pigearias, B; Plavec, D; Postma, D S; Price, D; Rabe, K F; Radier Pontal, F; Redon, J; Rennard, S; Roberts, J; Robine, J M; Roca, J; Roche, N; Rodenas, F; Roggeri, A; Rolland, C; Rosado-Pinto, J; Ryan, D; Samolinski, B; Sanchez-Borges, M; Schünemann, H J; Sheikh, A; Shields, M; Siafakas, N; Sibille, Y; Similowski, T; Small, I; Sola-Morales, O; Sooronbaev, T; Stelmach, R; Sterk, P J; Stiris, T; Sud, P; Tellier, V; To, T; Todo-Bom, A; Triggiani, M; Valenta, R; Valero, A L; Valiulis, A; Valovirta, E; Van Ganse, E; Vandenplas, O; Vasankari, T; Vestbo, J; Vezzani, G; Viegi, G; Visier, L; Vogelmeier, C; Vontetsianos, T; Wagstaff, R; Wahn, U; Wallaert, B; Whalley, B; Wickman, M; Williams, D M; Wilson, N; Yawn, B P; Yiallouros, P K; Yorgancioglu, A; Yusuf, O M; Zar, H J; Zhong, N; Zidarn, M; Zuberbier, T

    2014-08-01

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will add value to existing public health knowledge by: 1) proposing a common framework of care pathways for chronic respiratory diseases, which will facilitate comparability and trans-national initiatives; 2) informing cost-effective policy development, strengthening in particular those on smoking and environmental exposure; 3) aiding risk stratification in chronic disease patients, using a common strategy; 4) having a significant impact on the health of citizens in the short term (reduction of morbidity, improvement of education in children and of work in adults) and in the long-term (healthy ageing); 5) proposing a common simulation tool to assist physicians; and 6) ultimately reducing the healthcare burden (emergency visits, avoidable hospitalisations, disability and costs) while improving quality of life. In the longer term, the incidence of disease may be reduced by innovative prevention strategies. AIRWAYSICPs was initiated by Area 5 of the Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing. All stakeholders are involved (health and social care, patients, and policy makers).

  19. External stenting: A reliable technique to relieve airway obstruction in small children.

    PubMed

    Ando, Makoto; Nagase, Yuzo; Hasegawa, Hisaya; Takahashi, Yukihiro

    2017-05-01

    Airway obstruction in children may be caused by conditions such as vascular compression and congenital tracheobronchomalacia. Obstructive pulmonary vascular disease may be a detrimental sequel for patients with congenital heart disease. We evaluate our own original external stenting technique as a treatment option for these patients. Ninety-eight patients underwent external stenting (1997-2015). Cardiovascular anomalies were noted in 82 (83.7%). Nine patients had hypoplastic left heart syndrome and 6 had other types of single-ventricular hearts. The median age at the first operation was 7.2 months (range, 1.0-77.1 months). The mechanisms were tracheobronchomalacia with (n = 46) or without (n = 52) vascular compression. Patients underwent 127 external stentings for 139 obstruction sites (62 trachea, 55 left bronchus, and 22 right bronchus). The stent sizes varied from 12 to 16 mm. There were 14 (8 in the hospital and 6 after discharge) mortality cases. Nine required reoperation for restenosis and 3 required stent removal for infection. The actuarial freedom from mortality and any kind of reoperation was 74.7% ± 4.6% after 2.8 years. The negative pressure threshold to induce airway collapse for congenital malacia (n = 58) improved from -15.9 to -116.0 cmH 2 O. A follow-up computed tomography scan (>2.0 years interval from the operation; n = 23) showed the mean diameter of the stented segment at 88.5% ± 13.7% (bronchus) and 94.5% ± 8.2% (trachea) of the reference. External stenting is a reliable method to relieve airway compression for small children, allowing an age-proportional growth of the airway. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  20. Assessment of upper airway mechanics during sleep.

    PubMed

    Farré, Ramon; Montserrat, Josep M; Navajas, Daniel

    2008-11-30

    Obstructive sleep apnea, which is the most prevalent sleep breathing disorder, is characterized by recurrent episodes of upper airway collapse and reopening. However, the mechanical properties of the upper airway are not directly measured in routine polysomnography because only qualitative sensors (thermistors for flow and thoraco-abdominal bands for pressure) are used. This review focuses on two techniques that quantify upper airway obstruction during sleep. A Starling model of collapsible conduit allows us to interpret the mechanics of the upper airway by means of two parameters: the critical pressure (Pcrit) and the upstream resistance (Rup). A simple technique to measure Pcrit and Rup involves the application of different levels of continuous positive airway pressure (CPAP) during sleep. The forced oscillation technique is another non-invasive procedure for quantifying upper airway impedance during the breathing cycle in sleep studies. The latest developments in these two methods allow them to be easily applied on a routine basis in order to more fully characterize upper airway mechanics in patients with sleep breathing disorders.

  1. Mechanical Properties of the Upper Airway

    PubMed Central

    Strohl, Kingman P.; Butler, James P.; Malhotra, Atul

    2013-01-01

    The importance of the upper airway (nose, pharynx, and larynx) in health and in the pathogenesis of sleep apnea, asthma, and other airway diseases, discussed elsewhere in the Comprehensive Physiology series, prompts this review of the biomechanical properties and functional aspects of the upper airway. There is a literature based on anatomic or structural descriptions in static circumstances, albeit studied in limited numbers of individuals in both health and disease. As for dynamic features, the literature is limited to studies of pressure and flow through all or parts of the upper airway and to the effects of muscle activation on such features; however, the links between structure and function through airway size, shape, and compliance remain a topic that is completely open for investigation, particularly through analyses using concepts of fluid and structural mechanics. Throughout are included both historically seminal references, as well as those serving as signposts or updated reviews. This article should be considered a resource for concepts needed for the application of biomechanical models of upper airway physiology, applicable to understanding the pathophysiology of disease and anticipated results of treatment interventions. PMID:23723026

  2. [Small airway diseases and immune deficiency].

    PubMed

    Burgel, P-R; Bergeron, A; Knoop, C; Dusser, D

    2016-02-01

    Innate or acquired immune deficiency may show respiratory manifestations, often characterized by small airway involvement. The purpose of this article is to provide an overview of small airway disease across the major causes of immune deficiency. In patients with common variable immune deficiency, recurrent lower airway infections may lead to bronchiolitis and bronchiectasis. Follicular and/or granulomatous bronchiolitis of unknown origin may also occur. Bronchiolitis obliterans is the leading cause of death after the first year in patients with lung transplantation. Bronchiolitis obliterans also occurs in patients with allogeneic haematopoietic stem cell transplantation, especially in the context of systemic graft-versus-host disease. Small airway diseases have different clinical expression and pathophysiology across various causes of immune deficiency. A better understanding of small airways disease pathogenesis in these settings may lead to the development of novel targeted therapies. Copyright © 2015 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  3. Effects of the tripeptide substance P antagonist, FR113680, on airway constriction and airway edema induced by neurokinins in guinea-pigs.

    PubMed

    Murai, M; Morimoto, H; Maeda, Y; Fujii, T

    1992-06-24

    FR113680 is a newly developed tripeptide substance P (SP) receptor antagonist. The effects of FR113680 on airway constriction and airway edema induced by neurokinins were investigated in guinea-pigs. In in vitro experiments, FR113680 inhibited the contraction of isolated guinea-pig trachea induced by SP and neurokinin A (NKA) in a dose-dependent manner with IC50 values of 2.3 x 10(-6) and 1.5 x 10(-5) M, respectively. The tracheal contraction induced by histamine and acetylcholine was not affected by FR113680. FR113680 (5 x 10(-5) M) also significantly inhibited the atropine-resistant contraction of isolated guinea-pig bronchi induced by electrical field stimulation. In in vivo experiments, FR113680 given i.v. inhibited SP-induced airway constriction in guinea-pigs at doses of 1 and 10 mg kg-1. However, FR113680 only inhibited NKA- and capsaicin-induced airway constriction by 40-50% even at a dose of 10 mg kg-1. FR113680 also inhibited SP-induced airway edema in guinea-pigs with the same potency as it inhibited SP-induced airway constriction. Histamine-induced airway constriction and airway edema were not affected at a dose of 10 mg kg-1. These results suggest that FR113680 preferentially inhibits responses induced by NK1 receptor activation (SP-induced airway constriction and airway edema), but is less effective on a NK2 receptor-induced response (airway constriction by NKA and neurogenic stimulation).

  4. How anaesthesiologists understand difficult airway guidelines-an interview study.

    PubMed

    Knudsen, Kati; Pöder, Ulrika; Nilsson, Ulrica; Högman, Marieann; Larsson, Anders; Larsson, Jan

    2017-11-01

    In the practice of anaesthesia, clinical guidelines that aim to improve the safety of airway procedures have been developed. The aim of this study was to explore how anaesthesiologists understand or conceive of difficult airway management algorithms. A qualitative phenomenographic design was chosen to explore anaesthesiologists' views on airway algorithms. Anaesthesiologists working in three hospitals were included. Individual face-to-face interviews were conducted. Four different ways of understanding were identified, describing airway algorithms as: (A) a law-like rule for how to act in difficult airway situations; (B) a cognitive aid, an action plan for difficult airway situations; (C) a basis for developing flexible, personal action plans for the difficult airway; and (D) the experts' consensus, a set of scientifically based guidelines for handling the difficult airway. The interviewed anaesthesiologists understood difficult airway management guidelines/algorithms very differently.

  5. Gene Delivery to the Airway

    PubMed Central

    Keiser, Nicholas W.; Engelhardt, John F.

    2013-01-01

    This unit describes generation of and gene transfer to several commonly used airway models. Isolation and transduction of primary airway epithelial cells are first described. Next, the preparation of polarized airway epithelial monolayers is outlined. Transduction of these polarized cells is also described. Methods are presented for generation of tracheal xenografts as well as both ex vivo and in vivo gene transfer to these xenografts. Finally, a method for in vivo gene delivery to the lungs of rodents is included. Methods for evaluating transgene expression are given in the support protocols. PMID:23853081

  6. "Deep-media culture condition" promoted lumen formation of endothelial cells within engineered three-dimensional tissues in vitro.

    PubMed

    Sekiya, Sachiko; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo

    2011-03-01

    In the field of tissue engineering, the induction of microvessels into tissues is an important task because of the need to overcome diffusion limitations of oxygen and nutrients within tissues. Powerful methods to create vessels in engineered tissues are needed for creating real living tissues. In this study, we utilized three-dimensional (3D) highly cell dense tissues fabricated by cell sheet technology. The 3D tissue constructs are close to living-cell dense tissue in vivo. Additionally, creating an endothelial cell (EC) network within tissues promoted neovascularization promptly within the tissue after transplantation in vivo. Compared to the conditions in vivo, however, common in vitro cell culture conditions provide a poor environment for creating lumens within 3D tissue constructs. Therefore, for determining adequate conditions for vascularizing engineered tissue in vitro, our 3D tissue constructs were cultured under a "deep-media culture conditions." Compared to the control conditions, the morphology of ECs showed a visibly strained cytoskeleton, and the density of lumen formation within tissues increased under hydrostatic pressure conditions. Moreover, the increasing expression of vascular endothelial cadherin in the lumens suggested that the vessels were stabilized in the stimulated tissues compared with the control. These findings suggested that deep-media culture conditions improved lumen formation in engineered tissues in vitro.

  7. Are new supraglottic airway devices, tracheal tubes and airway viewing devices cost-effective?

    PubMed

    Slinn, Simon J; Froom, Stephen R; Stacey, Mark R W; Gildersleve, Christopher D

    2015-01-01

    Over the past two decades, a plethora of new airway devices has become available to the pediatric anesthetist. While all have the laudable intention of improving patient care and some have proven clinical benefits, these devices are often costly and at times claims of an advantage over current equipment and techniques are marginal. Supraglottic airway devices are used in the majority of pediatric anesthetics delivered in the U.K., and airway-viewing devices provide an alternative for routine intubation as well as an option in the management of the difficult airway. Yet hidden beneath the convenience of the former and the technology of the latter, the impact on basic airway skills with a facemask and the lack of opportunities to fine-tune the core skill of intubation represent an unrecognised and unquantifiable cost. A judgement on this value must be factored into the absolute purchase cost and any potential benefits to the quality of patient care, thus blurring any judgement on cost-effectiveness that we might have. An overall value on cost-effectiveness though not in strict monetary terms can then be ascribed. In this review, we evaluate the role of these devices in the care of the pediatric patient and attempt to balance the advantages they offer against the cost they incur, both financial and environmental, and in any quality improvement they might offer in clinical care. © 2014 John Wiley & Sons Ltd.

  8. How anaesthesiologists understand difficult airway guidelines—an interview study

    PubMed Central

    Knudsen, Kati; Nilsson, Ulrica; Larsson, Anders; Larsson, Jan

    2017-01-01

    Background In the practice of anaesthesia, clinical guidelines that aim to improve the safety of airway procedures have been developed. The aim of this study was to explore how anaesthesiologists understand or conceive of difficult airway management algorithms. Methods A qualitative phenomenographic design was chosen to explore anaesthesiologists’ views on airway algorithms. Anaesthesiologists working in three hospitals were included. Individual face-to-face interviews were conducted. Results Four different ways of understanding were identified, describing airway algorithms as: (A) a law-like rule for how to act in difficult airway situations; (B) a cognitive aid, an action plan for difficult airway situations; (C) a basis for developing flexible, personal action plans for the difficult airway; and (D) the experts’ consensus, a set of scientifically based guidelines for handling the difficult airway. Conclusions The interviewed anaesthesiologists understood difficult airway management guidelines/algorithms very differently. PMID:29299973

  9. Percutaneous dilational tracheotomy for airway management in a newborn with Pierre-Robin syndrome and a glossopharyngeal web.

    PubMed

    Pirat, Arash; Candan, Selim; Unlükaplan, Aytekin; Kömürcü, Ozgür; Kuşlu, Selim; Arslan, Gülnaz

    2012-04-01

    Pierre-Robin syndrome (PRS) is often associated with difficulty in endotracheal intubation. We present the use of percutaneous dilational tracheotomy (PDT) for airway management of a newborn with PRS and a glossopharyngeal web. A 2-day-old term newborn with PRS and severe obstructive dyspnea was evaluated by the anesthesiology team for airway management. A direct laryngoscopy revealed a glossopharyngeal web extending from the base of the tongue to the posterior pharyngeal wall. The infant was spontaneously breathing through a 2 mm diameter fistula in the center of this web. It was decided that endotracheal intubation was impossible, and a PDT was planned. The trachea of the newborn was cannulated, using a 20 gauge peripheral venous catheter and a 0.71 mm guide wire was introduced through this catheter. Using 5 French, 7 French, 9 French, and 11 French central venous catheter kit dilators, staged tracheotomy stoma dilation was performed. By inserting a size 3.0 tracheotomy cannula, PDT was successfully completed in this newborn. This case describes the successful use of PDT for emergency airway management of a newborn with PRS and glossopharyngeal web.

  10. Nerve growth factor-enhanced airway responsiveness involves substance P in ferret intrinsic airway neurons.

    PubMed

    Wu, Z-X; Dey, R D

    2006-07-01

    Nerve growth factor (NGF), a member of the neurotrophin family, enhances synthesis of neuropeptides in sensory and sympathetic neurons. The aim of this study was to examine the effect of NGF on airway responsiveness and determine whether these effects are mediated through synthesis and release of substance P (SP) from the intrinsic airway neurons. Ferrets were instilled intratracheally with NGF or saline. Tracheal smooth muscle contractility to methacholine and electrical field stimulation (EFS) was assessed in vitro. Contractions of isolated tracheal smooth muscle to EFS at 10 and 30 Hz were significantly increased in the NGF treatment group (10 Hz: 33.57 +/- 2.44%; 30 Hz: 40.12 +/- 2.78%) compared with the control group (10 Hz: 27.24 +/- 2.14%; 30 Hz: 33.33 +/- 2.31%). However, constrictive response to cholinergic agonist was not significantly altered between the NGF treatment group and the control group. The NGF-induced modulation of airway smooth muscle to EFS was maintained in tracheal segments cultured for 24 h, a procedure that causes a significant anatomic and functional loss of SP-containing sensory fibers while maintaining viability of intrinsic airway neurons. The number of SP-containing neurons in longitudinal trunk and superficial muscular plexus and SP nerve fiber density in tracheal smooth muscle all increased significantly in cultured trachea treated with NGF. Pretreatment with CP-99994, an antagonist of neurokinin 1 receptor, attenuated the NGF-induced increased contraction to EFS in cultured segments but had no effect in saline controls. These results show that the NGF-enhanced airway smooth muscle contractile responses to EFS are mediated by the actions of SP released from intrinsic airway neurons.

  11. Air-Q intubating laryngeal airway: A study of the second generation supraglottic airway device.

    PubMed

    Attarde, Viren Bhaskar; Kotekar, Nalini; Shetty, Sarika M

    2016-05-01

    Air-Q intubating laryngeal mask airway (ILA) is used as a supraglottic airway device and as a conduit for endotracheal intubation. This study aims to assess the efficacy of the Air-Q ILA regarding ease of insertion, adequacy of ventilation, rate of successful intubation, haemodynamic response and airway morbidity. Sixty patients presenting for elective surgery at our Medical College Hospital were selected. Following adequate premedication, baseline vital parameters, pulse rate and blood pressure were recorded. Air-Q size 3.5 for patients 50-70 kg and size 4.5 for 70-100 kg was selected. After achieving adequate intubating conditions, Air-Q ILA was introduced. Confirming adequate ventilation, appropriate sized endotracheal tube was advanced through the Air-Q blindly to intubate the trachea. Placement of the endotracheal tube in trachea was confirmed. Air-Q ILA was successfully inserted in 88.3% of patients in first attempt and 11.7% patients in second attempt. Ventilation was adequate in 100% of patients. Intubation was successful in 76.7% of patients with Air-Q ILA. 23.3% of patients were intubated by direct laryngoscopy following failure with two attempts using Air-Q ILA. Post-intubation the change in heart rate was statistically significant (P < 0.0001). 10% of patients were noted to have a sore throat and 5% of patients had mild airway trauma. Air-Q ILA is a reliable device as a supraglottic airway ensuring adequate ventilation as well as a conduit for endotracheal intubation. It benefits the patient by avoiding the stress of direct laryngoscopy and is also superior alternative device for use in a difficult airway.

  12. Digital subtraction dark-lumen MR colonography: initial experience.

    PubMed

    Ajaj, Waleed; Veit, Patrick; Kuehle, Christiane; Joekel, Michaela; Lauenstein, Thomas C; Herborn, Christoph U

    2005-06-01

    To evaluate image subtraction for the detection of colonic pathologies in a dark-lumen MR colonography exam. A total of 20 patients (12 males; 8 females; mean 51.4 years of age) underwent MR colonography after standard cleansing and a rectal water enema on a 1.5-T whole-body MR system. After suppression of peristaltic motion, native and Gd-contrast-enhanced three-dimensional T1-w gradient echo images were acquired in the coronal plane. Two radiologists analyzed the MR data sets in consensus on two separate occasions, with and without the subtracted images for lesion detection, and assessed the value of the subtracted data set on a five-point Likert scale (1=very helpful to 5=very unhelpful). All imaging results were compared with endoscopy. Without subtracted images, MR-colonography detected a total of five polyps, two inflammatory lesions, and one carcinoma in eight patients, which were all verified by endoscopy. Using subtraction, an additional polyp was found, and readout time was significantly shorter (6:41 vs. 7:39 minutes; P<0.05). In two patients, endoscopy detected a flat adenoma and a polyp (0.4 cm) that were missed in the MR exam. Sensitivity and specificity without subtraction were 0.67/1.0, and 0.76/1.0 with the subtracted images, respectively. Subtraction was assessed as helpful in all exams (mean value 1.8+/-0.5; Likert scale). We consider subtraction of native from contrast-enhanced dark-lumen MR colonography data sets as a beneficial supplement to the exam. Copyright (c) 2005 Wiley-Liss, Inc.

  13. Use of a Supraglottic Airway to Relieve Ventilation-Impeding Gastric Insufflation During Emergency Airway Management in an Infant.

    PubMed

    Dodd, Kenneth W; Strobel, Ashley M; Driver, Brian E; Reardon, Robert F

    2016-10-01

    Positive-pressure bag-valve-mask ventilation during emergency airway management often results in significant gastric insufflation, which may impede adequate ventilation and oxygenation. Current-generation supraglottic airways have beneficial features, such as channels for gastric decompression while ventilation is ongoing. A 5-week-old female infant required resuscitation for hypoxemic respiratory failure caused by rhinovirus with pneumonia. Bag-valve-mask ventilation led to gastric insufflation that compromised ventilation, thereby interfering with intubation because of precipitous oxygen desaturation during laryngoscopy. A current-generation supraglottic airway (LMA Supreme; Teleflex Inc, Morrisville, NC) was used to facilitate gastric decompression while ventilation and oxygenation was ongoing. After gastric decompression, ventilation was markedly improved and the pulse oxygen saturation improved to 100%. Intubation was successful on the next attempt, without oxygen desaturation. Current-generation supraglottic airways have 3 distinct advantages compared with first-generation supraglottic airways, which make them better devices for emergency airway management: gastric decompression ports, conduits for intubation, and higher oropharyngeal leak pressures. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  14. Baicalein Reduces Airway Injury in Allergen and IL-13 Induced Airway Inflammation

    PubMed Central

    Mabalirajan, Ulaganathan; Ahmad, Tanveer; Rehman, Rakhshinda; Leishangthem, Geeta Devi; Dinda, Amit Kumar; Agrawal, Anurag; Ghosh, Balaram; Sharma, Surendra Kumar

    2013-01-01

    Background Baicalein, a bioflavone present in the dry roots of Scutellaria baicalensis Georgi, is known to reduce eotaxin production in human fibroblasts. However, there are no reports of its anti-asthma activity or its effect on airway injury. Methodology/Principal Findings In a standard experimental asthma model, male Balb/c mice that were sensitized with ovalbumin (OVA), treated with baicalein (10 mg/kg, ip) or a vehicle control, either during (preventive use) or after OVA challenge (therapeutic use). In an alternate model, baicalein was administered to male Balb/c mice which were given either IL-4 or IL-13 intranasally. Features of asthma were determined by estimating airway hyperresponsiveness (AHR), histopathological changes and biochemical assays of key inflammatory molecules. Airway injury was determined with apoptotic assays, transmission electron microscopy and assessing key mitochondrial functions. Baicalein treatment reduced AHR and inflammation in both experimental models. TGF-β1, sub-epithelial fibrosis and goblet cell metaplasia, were also reduced. Furthermore, baicalein treatment significantly reduced 12/15-LOX activity, features of mitochondrial dysfunctions, and apoptosis of bronchial epithelia. Conclusion/Significance Our findings demonstrate that baicalein can attenuate important features of asthma, possibly through the reduction of airway injury and restoration of mitochondrial function. PMID:23646158

  15. Organelle Redox of CF and CFTR-Corrected Airway Epithelia

    PubMed Central

    Schwarzer, Christian; Illek, Beate; Suh, Jung H.; Remington, S. James; Fischer, Horst; Machen, Terry E.

    2014-01-01

    In cystic fibrosis reduced CFTR function may alter redox properties of airway epithelial cells. Redox-sensitive GFP (roGFP1) and imaging microscopy were used to measure redox potentials of cytosol, ER, mitochondria and cell surface of cystic fibrosis nasal epithelial cells and CFTR-corrected cells. We also measured glutathione and cysteine thiol redox states in cell lysates and apical fluids to provide coverage over a range of redox potentials and environments that might be affected by CFTR. As measured with roGFP1, redox potentials at the cell surface (~ -207 ±8 mV) and in the ER (~ -217 ±1 mV) and rates of regulation of the apical fluid and ER lumen following DTT treatment were similar for CF and CFTR-corrected cells. CF and CFTR-corrected cells had similar redox potentials in mitochondria (-344 ±9 mV) and cytosol (-322 ±7 mV). Oxidation of carboxy-dichlorodihydrofluoresceindiacetate and of apical Amplex Red occurred at equal rates in CF and CFTR-corrected cells. Glutathione and cysteine redox couples in cell lysates and apical fluid were equal in CF and CFTR-corrected cells. These quantitative estimates of organelle redox potentials combined with apical and cell measurements using small molecule couples confirmed there were no differences in redox properties of CF and CFTR-corrected cells. PMID:17603939

  16. Definitive airway management of patients presenting with a pre-hospital inserted King LT(S)-D laryngeal tube airway: a historical cohort study.

    PubMed

    Subramanian, Arun; Garcia-Marcinkiewicz, Annery G; Brown, Daniel R; Brown, Michael J; Diedrich, Daniel A

    2016-03-01

    The King LT(S)-D laryngeal tube (King LT) has gained popularity as a bridge airway for pre-hospital airway management. In this study, we retrospectively reviewed the use of the King LT and its associated airway outcomes at a single Level 1 trauma centre. The data on all adult patients presenting to the Mayo Clinic in Rochester, Minnesota with a King LT in situ from July 1, 2007 to October 10, 2012 were retrospectively evaluated. Data collected and descriptively analyzed included patient demographics, comorbidities, etiology of respiratory failure, airway complications, subsequent definitive airway management technique, duration of mechanical ventilation, and status at discharge. Forty-eight adult patients met inclusion criteria. The most common etiology for respiratory failure requiring an artificial airway was cardiac arrest [28 (58%) patients] or trauma [9 (19%) patients]. Four of the nine trauma patients had facial trauma. Surgical tracheostomy was the definitive airway management technique in 14 (29%) patients. An airway exchange catheter, direct laryngoscopy, and video laryngoscopy were used in 11 (23%), ten (21%), and ten (21%) cases, respectively. Seven (78%) of the trauma patients underwent surgical tracheostomy compared with seven (18%) of the medical patients. Adverse events associated with King LT use occurred in 13 (27%) patients, with upper airway edema (i.e., tongue engorgement and glottic edema) being most common (19%). In this study of patients presenting to a hospital with a King LT, the majority of airway exchanges required an advanced airway management technique beyond direct laryngoscopy. Upper airway edema was the most common adverse observation associated with King LT use.

  17. Remodeling is a more important determinant of lumen size than atheroma burden in left main coronary artery disease.

    PubMed

    Berry, Colin; Noble, Stéphane; Ibrahim, Reda; Grégoire, Jean; Levesque, Sylvie; L'allier, Philippe L; Tardif, Jean-Claude

    2010-07-01

    Left main coronary artery (LMCA) disease influences survival; however, the predictors of LMCA changes over time are incompletely understood. Paired intravascular ultrasound (IVUS) and core laboratory analyses were performed in a standardized fashion in 207 subjects (mean +/- SD age 58 +/- 10 years, 80% men). The average follow-up duration was 18 months (range 12-24 months). The IVUS measurements were first obtained at the smallest lumen area and the largest plaque area at follow-up and the corresponding positions in the LMCA were then measured at baseline. The LMCA percentage of atheroma area at baseline was 38.2% +/- 11.8%, and 133 patients (64%) experienced an increase in percentage of atheroma area. Change in lumen area correlated positively with change in total vessel area (R = 0.85, P < .0001) and negatively with change in percentage of atheroma area (R = -0.58, P < .0001). Change in plaque area correlated well with change in total vessel area (R = 0.64, P < .0001) but only weakly with change in lumen area (r = 0.14, P = .039). Although LMCA length correlated negatively with baseline lumen area and total vessel area, it did not correlate with their changes over time. On multivariable analyses, current smoking predicted an increase in percentage of atheroma area (P = .0013) and plaque area (P = .0041). Height negatively predicted change in percentage of atheroma area (P = .001). The LMCA lumen dimensions are more tightly linked with remodeling than with atheroma progression/regression. Copyright (c) 2010 Mosby, Inc. All rights reserved.

  18. [Surfactants of the airways. Critical review and personal research].

    PubMed

    Mira, E; Benazzo, M; De Paoli, F; Casasco, A; Calligaro, A

    1997-02-01

    The literature proving the presence of a surface tension lowering substance (STLS) on the lining layer of mammalian Eustachian tube (ET) is critically reviewed. A further review of the chemical studies on tubal washings based on chromatographic analysis methods (TLC and HPLC) is performed, and is concluded that ET epithelium is coated by a mixture of phospholipids, similar but not identical to the pulmonary surfactant and with similar but less powerful surface activity. In both cases, and with minor differences between the different mammalian species, phosphatidylcholine (PC), and in particular its disaturated fraction, dipalmitoilphosphatidylcholine (DPPC), is the predominating and the most active compound. ET surfactant is synthesized by ET epithelium and secreted in form of osmiophilic multilamellar bodies into the tubal lumen. The exact function of the ET surfactant is not fully understood: it may play an important role in ET physiology by facilitating the tubal opening to allow for aeration of the middle ear and adequate drainage or could act as a release agent, preventing solid-to-solid adhesion of the tubal walls and contrasting the adhesive action of the glycoproteins of the mucous blanket. On the other hand a phospholipidic surfactant seems to be produced by the mucosa of the other parts of the upper airways, i.e. nose and trachea. In this case a surface active agent could act in preventing the transudation of serum into the lumen, in enhancing the phagocytosis or in facilitating the mucociliary transport. Recent data on humans, suggesting that a relative deficiency or an alterated production of tubal surfactant could play a role in the pathogenesis of secretory otitis media (SOM) or middle ear effusion (MEE), are reviewed. Administration of exogenous surfactant or pharmacological stimulation of the production of tubal surfactant could improve ET function and be of value in some cases of SOM. Personal data, suggesting than ambroxol (a drug stimulating the

  19. Antigen challenge induces pulmonary airway eosinophil accumulation and airway hyperreactivity in sensitized guinea-pigs: the effect of anti-asthma drugs.

    PubMed Central

    Sanjar, S.; Aoki, S.; Kristersson, A.; Smith, D.; Morley, J.

    1990-01-01

    1. Guinea-pigs were sensitized with 3 injections of ovalbumin (OA) (1 or 10 micrograms per animal) using Al(OH)3 and pertussis vaccine as adjuvants at two week intervals. 2. Sensitized guinea-pigs were challenged with an aerosol of OA (0.1%) over a one hour period and both airway reactivity and cellular content of bronchoalveolar lavage (BAL) fluid were assessed at intervals for up to 7 days. 3. Guinea-pigs sensitized with 1 microgram of ovalbumin responded to an aerosol of OA with increased pulmonary airway eosinophilia, which was evident 1 day after challenge and was present for up to 7 days. Airway hyperreactivity was not detectable in these animals. 4. Guinea-pigs sensitized with 10 micrograms of ovalbumin responded to an aerosol of OA with increased pulmonary airway neutrophilia and eosinophilia and with increased airway reactivity which was maximal between 8 and 24 h after exposure to OA. 5. Depletion of circulating platelets or neutrophils, by use of selective antisera, did not alter either the magnitude of eosinophilia or the intensity of airway reactivity in sensitized guinea-pigs (10 micrograms) exposed to an aerosol of OA. 6. Pretreatment of sensitized guinea-pigs (10 micrograms) for 6 days with AH 21-132, aminophylline, dexamethasone or ketotifen inhibited pulmonary airway eosinophilia, but did not diminish airway hyperreactivity. Neither eosinophil accumulation nor development of airway hyperreactivity was influenced by treatment with mepyramine or salbutamol over a 6 day period before OA inhalation. 7. Although eosinophilia may occur in association with increased airway reactivity in this animal model, there is no evidence of a causal relationship. PMID:2361168

  20. Impact of tobacco smoke on interleukin-16 protein in human airways, lymphoid tissue and T lymphocytes

    PubMed Central

    ANDERSSON, A; QVARFORDT, I; LAAN, M; SJÖSTRAND, M; MALMHÄLL, C; RIISE, G C; CARDELL, L-O; LINDÉN, A

    2004-01-01

    CD4+ and CD8+ lymphocytes are mobilized in severe chronic obstructive pulmonary disease (COPD) and the CD8+ cytokine interleukin (IL)-16 is believed to be important in regulating the recruitment and activity of CD4+ lymphocytes. In the current study, we examined whether tobacco smoke exerts an impact not only on IL-16 in the lower airways but also in CD4+ or CD8+ lymphocytes or in lymphoid tissue. The concentration of IL-16 protein was measured by enzyme-linked immunosorbent assay (ELISA) in concentrated bronchoalveolar lavage fluid (BALF) collected from 33 smokers with chronic bronchitis (CB), eight asymptomatic smokers (AS) and seven healthy never-smokers (NS). The concentrations of IL-16 and soluble IL-2 receptor alpha (sIL-2Rα) protein were also measured in conditioned medium from human blood CD4+ and CD8+ lymphocytes stimulated with tobacco smoke extract (TSE) in vitro. IL-16 mRNA was assessed in vitro as well, using reverse transcription–polymerase chain reaction (RT-PCR). Finally, the intracellular immunoreactivity for IL-16 protein (IL-16IR) was assessed in six matched pairs of palatine tonsils from smokers and non-smokers. BALF IL-16 was higher in CB and AS than in NS. TSE substantially increased the concentration of IL-16 but not sIL-2Rα in conditioned medium from CD4+ and CD8+ lymphocytes. There was no corresponding effect on IL-16 mRNA. IL-16IR in tonsils was lower in smokers than in non-smokers. The current findings demonstrate that tobacco smoke exerts a wide impact on the CD8+ cytokine IL-16, in the airway lumen, in blood CD4+ and CD8+ lymphocytes and in lymphoid tissue. The effect on IL-16 release may be selective for preformed IL-16 in CD4+ lymphocytes. New clinical studies are required to evaluate whether tobacco smoke mobilizes T lymphocytes via IL-16 in the lower airways and whether this mechanism can be targeted in COPD. PMID:15373908

  1. Swept-source anatomic optical coherence elastography of porcine trachea

    NASA Astrophysics Data System (ADS)

    Bu, Ruofei; Price, Hillel; Mitran, Sorin; Zdanski, Carlton; Oldenburg, Amy L.

    2016-02-01

    Quantitative endoscopic imaging is at the vanguard of novel techniques in the assessment upper airway obstruction. Anatomic optical coherence tomography (aOCT) has the potential to provide the geometry of the airway lumen with high-resolution and in 4 dimensions. By coupling aOCT with measurements of pressure, optical coherence elastography (OCE) can be performed to characterize airway wall stiffness. This can aid in identifying regions of dynamic collapse as well as informing computational fluid dynamics modeling to aid in surgical decision-making. Toward this end, here we report on an anatomic optical coherence tomography (aOCT) system powered by a wavelength-swept laser source. The system employs a fiber-optic catheter with outer diameter of 0.82 mm deployed via the bore of a commercial, flexible bronchoscope. Helical scans are performed to measure the airway geometry and to quantify the cross-sectional-area (CSA) of the airway. We report on a preliminary validation of aOCT for elastography, in which aOCT-derived CSA was obtained as a function of pressure to estimate airway wall compliance. Experiments performed on a Latex rubber tube resulted in a compliance measurement of 0.68+/-0.02 mm2/cmH2O, with R2=0.98 over the pressure range from 10 to 40 cmH2O. Next, ex vivo porcine trachea was studied, resulting in a measured compliance from 1.06+/-0.12 to 3.34+/-0.44 mm2/cmH2O, (R2>0.81). The linearity of the data confirms the elastic nature of the airway. The compliance values are within the same order-of-magnitude as previous measurements of human upper airways, suggesting that this system is capable of assessing airway wall compliance in future human studies.

  2. The Tulip GT® airway versus the facemask and Guedel airway: a randomised, controlled, cross-over study by Basic Life Support-trained airway providers in anaesthetised patients.

    PubMed

    Shaikh, A; Robinson, P N; Hasan, M

    2016-03-01

    We performed a randomised, controlled, cross-over study of lung ventilation by Basic Life Support-trained providers using either the Tulip GT® airway or a facemask with a Guedel airway in 60 anaesthetised patients. Successful ventilation was achieved if the provider produced an end-tidal CO2 > 3.5 kPa and a tidal volume > 250 ml in two of the first three breaths, within 60 sec and within two attempts. Fifty-seven (95%) providers achieved successful ventilation using the Tulip GT compared with 35 (58%) using the facemask (p < 0.0001). Comparing the Tulip GT and facemask, the mean (SD) end-tidal CO2 was 5.0 (0.7) kPa vs 2.5 (1.5) kPa, tidal volume was 494 (175) ml vs 286 (186) ml and peak inspiratory pressure was 18.3 (3.4) cmH2 O vs 13.6 (7) cmH2 O respectively (all p < 0.0001). Forty-seven (78%) users favoured the Tulip GT airway. These results are similar to a previous manikin study using the same protocol, suggesting a close correlation between human and manikin studies for this airway device. We conclude that the Tulip GT should be considered as an adjunct to airway management both within and outside hospitals when ventilation is being undertaken by Basic Life Support-trained airway providers. © 2015 The Association of Anaesthetists of Great Britain and Ireland.

  3. Airway obstruction in children with infectious mononucleosis.

    PubMed

    Wohl, D L; Isaacson, J E

    1995-09-01

    Epstein-Barr Virus (EBV) infection generally has a benign clinical course. Upper airway obstruction is a known complication requiring the otolaryngologist's attention. EBV is usually associated with adolescence but has been increasingly documented in younger children. We review 36 pediatric admissions for infectious mononucleosis over a 12-year period at our institution, 11 of which required consultation for airway obstruction. Airway management was based on clinical severity and ranged from monitored observation, with or without nasopharyngeal stenting, to prolonged intubation or emergent tonsilloadenoidectomy. A rare case of a four-year-old with near total upper airway obstruction secondary to panpharyngeal and transglottic inflammatory edema prompted this review and is reported. The otolaryngologist must recognize the potential severity of EBV-related airway compromise and be prepared to manage it.

  4. Airway responsiveness to mannitol in asthma is associated with chymase-positive mast cells and eosinophilic airway inflammation.

    PubMed

    Sverrild, A; Bergqvist, A; Baines, K J; Porsbjerg, C; Andersson, C K; Thomsen, S F; Hoffmann, H J; Gibson, P; Erjefält, J S; Backer, V

    2016-02-01

    Airway hyperresponsiveness (AHR) to inhaled mannitol is associated with indirect markers of mast cell activation and eosinophilic airway inflammation. It is unknown how AHR to mannitol relates to mast cell phenotype, mast cell function and measures of eosinophilic inflammation in airway tissue. We compared the number and phenotype of mast cells, mRNA expression of mast cell-associated genes and number of eosinophils in airway tissue of subjects with asthma and healthy controls in relation to AHR to mannitol. Airway hyperresponsiveness to inhaled mannitol was measured in 23 non-smoking, corticosteroid-free asthmatic individuals and 10 healthy controls. Mast cells and eosinophils were identified in mucosal biopsies from all participants. Mast cells were divided into phenotypes based on the presence of chymase. mRNA expression of mast cell-associated genes was measured by real-time PCR. The proportion of submucosal MCTC was higher in asthmatic individuals with AHR to mannitol compared with asthmatic individuals without AHR (median: 40.3% vs. 18.7%, P = 0.03). Increased submucosal MCTC numbers were associated with increased levels of mRNA for thymic stromal lymphopoietin (TSLP) and CPA3 in asthmatics. Reactivity to mannitol correlated significantly with eosinophils in submucosa (r(s): 0.56, P = 0.01). Airway hyperresponsiveness to inhaled mannitol is associated with an altered submucosal mast cell profile in asthmatic individuals. This mast cell profile is associated with increased levels of TSLP and CPA3. The degree of AHR to mannitol is correlated with the degree of eosinophilic inflammation in the airway submucosa. © 2015 John Wiley & Sons Ltd.

  5. 21 CFR 868.2600 - Airway pressure monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Airway pressure monitor. 868.2600 Section 868.2600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2600 Airway pressure monitor. (a) Identification. An airway pressure monitor is a devic...

  6. Recurrent airway obstructions in a patient with benign tracheal stenosis and a silicone airway stent: a case report

    PubMed Central

    Sriram, KB; Robinson, PC

    2008-01-01

    Airway stents (silicone and metal stents) are used to treat patients with benign tracheal stenosis, who are symptomatic and in whom tracheal surgical reconstruction has failed or is not appropriate. However airway stents are often associated with complications such as migration, granuloma formation and mucous hypersecretion, which cause significant morbidity, especially in patients with benign tracheal stenosis and relatively normal life expectancy. We report a patient who had frequent critical airway obstructions over 8 years due to granuloma and mucus hypersecretion in a silicone airway stent. The problem was resolved when the silicone stent was removed and replaced with a covered self expanding metal stent. PMID:18840299

  7. Pressure-volume behavior of the upper airway.

    PubMed

    Fouke, J M; Teeter, J P; Strohl, K P

    1986-09-01

    The study was performed to investigate the relationship between force generation and upper airway expansion during respiratory efforts by upper airway muscles. In 11 anesthetized dogs we isolated the upper airway (nasal, oral, pharyngeal, and laryngeal regions) by transecting the cervical trachea and sealing the nasal and oral openings. During spontaneous respiratory efforts the pressure within the sealed upper airway, used as an index of dilating force, decreased during inspiration. On alternate breaths the upper airway was opened to a pneumotachograph, and an increase in volume occurred, also during inspiration. Progressive hyperoxic hypercapnia produced by rebreathing increased the magnitude of change in pressure and volume. At any level of drive, peak pressure or volume occurred at the same point during inspiration. At any level of drive, volume and pressure changes increased with end-expiratory occlusion of the trachea. The force-volume relationship determined from measurements during rebreathing was compared with pressure-volume curves performed by passive inflation of the airway while the animal was apneic. The relationship during apnea was 1.06 +/- 0.55 (SD) ml/cmH2O, while the force-volume relationship from rebreathing trials was -1.09 +/- 0.45 ml/cmH2O. We conclude that there is a correspondence between force production and volume expansion in the upper airway during active respiratory efforts.

  8. Topical airway anesthesia for awake fiberoptic intubation: Comparison between airway nerve blocks and nebulized lignocaine by ultrasonic nebulizer

    PubMed Central

    Gupta, Babita; Kohli, Santvana; Farooque, Kamran; Jalwal, Gopal; Gupta, Deepak; Sinha, Sumit; Chandralekha

    2014-01-01

    Overview: Awake fiberoptic bronchoscope (FOB) guided intubation is the gold standard of airway management in patients with cervical spine injury. It is essential to sufficiently anesthetize the upper airway before the performance of awake FOB guided intubation in order to ensure patient comfort and cooperation. This randomized controlled study was performed to compare two methods of airway anesthesia, namely ultrasonic nebulization of local anesthetic and performance of airway blocks. Materials and Methods: A total of 50 adult patients with cervical spine injury were randomly allocated into two groups. Group L received airway anesthesia through ultrasonic nebulization of 10 ml of 4% lignocaine and Group NB received airway blocks (bilateral superior laryngeal and transtracheal recurrent laryngeal) each with 2 ml of 2% lignocaine and viscous lignocaine gargles. FOB guided orotracheal intubation was then performed. Hemodynamic variables at baseline and during the procedure, patient recall, vocal cord visibility, ease of intubation, coughing/gagging episodes, and signs of lignocaine toxicity were noted. Results: The observations did not reveal any significant differences in demographics or hemodynamic parameters at any time during the study. However, the time taken for intubation was significantly lower in Group NB as compared with the Group L. Group L had an increased number of coughing/gagging episodes as compared with Group NB. Vocal cord visibility and ease of intubation were better in patients who received airway blocks and hence the amount of supplemental lignocaine used was less in this group. Overall patient comfort was better in Group NB with fewer incidences of unpleasant recalls as compared with Group L. Conclusion: Upper airway blocks provide better quality of anesthesia than lignocaine nebulization as assessed by patient recall of procedure, coughing/gagging episodes, ease of intubation, vocal cord visibility, and time taken to intubate. PMID:25538514

  9. PdNP Decoration of Halloysite Lumen via Selective Grafting of Ionic Liquid onto the Aluminol Surfaces and Catalytic Application.

    PubMed

    Dedzo, Gustave K; Ngnie, Gaëlle; Detellier, Christian

    2016-02-01

    The synthesis of selectively deposited palladium nanoparticles (PdNPs) inside tubular halloysite lumens is reported. This specific localization was directed by the selective modification of the aluminol surfaces of the clay mineral through stable Al-O-C bonds. An ionic liquid (1-(2-hydroxyethyl)-3-methylimidazolium) was grafted onto halloysite following the guest displacement method (generally used for kaolinite) using halloysite-DMSO preintercalate. The characterization of this clay nanohybrid material (XRD, NMR, TGA) showed characteristics reminiscent of similar materials synthesized from kaolinite. The grafting on halloysite lumens was also effective without using the DMSO preintercalate. The presence of these new functionalities in halloysite directs the synthesis of uniform PdNPs with size ranging between 3 and 6 nm located exclusively in the lumens. This results from the selective adsorption of PdNPs precursors in functionalized lumens through an anion exchange mechanism followed by in situ reduction. In contrast, the unmodified clay mineral displayed nanoparticles both inside and outside the tubes. These catalysts showed significant catalytic activity for the reduction of 4-nitrophenol (4-NP). The most efficient catalysts were recycled up to three times without reducing significantly the catalytic activities.

  10. Airway basement membrane perimeter in human airways is not a constant; potential implications for airway remodeling in asthma.

    PubMed

    McParland, Brent E; Paré, Peter D; Johnson, Peter R A; Armour, Carol L; Black, Judith L

    2004-08-01

    Many studies that demonstrate an increase in airway smooth muscle in asthmatic patients rely on the assumption that bronchial internal perimeter (P(i)) or basement membrane perimeter (P(bm)) is a constant, i.e., not affected by fixation pressure or the degree of smooth muscle shortening. Because it is the basement membrane that has been purported to be the indistensible structure, this study examines the assumption that P(bm) is not affected by fixation pressure. P(bm) was determined for the same human airway segment (n = 12) fixed at distending pressures of 0 cmH(2)O and 21 cmH(2)O in the absence of smooth muscle tone. P(bm) for the segment fixed at 0 cmH(2)O was determined morphometrically, and the P(bm) for the same segment, had the segment been fixed at 21 cmH(2)O, was predicted from knowing the luminal volume and length of the airway when distended to 21 cmH(2)O (organ bath-derived P(i)). To ensure an accurate transformation of the organ bath-derived P(i) value to a morphometry-derived P(bm) value, had the segment been fixed at 21 cmH(2)O, the relationship between organ bath-derived P(i) and morphometry-derived P(bm) was determined for five different bronchial segments distended to 21 cmH(2)O and fixed at 21 cmH(2)O (r(2) = 0.99, P < 0.0001). Mean P(bm) for bronchial segments fixed at 0 cmH(2)O was 9.4 +/- 0.4 mm, whereas mean predicted P(bm), had the segments been fixed at 21 cmH(2)O, was 14.1 +/- 0.5 mm (P < 0.0001). This indicates that P(bm) is not a constant when isolated airway segments without smooth muscle tone are fixed distended to 21 cmH(2)O. The implication of these results is that the increase in smooth muscle mass in asthma may have been overestimated in some previous studies. Therefore, further studies are required to examine the potential artifact using whole lungs with and without abolition of airway smooth muscle tone and/or inflation.

  11. Substance P released from intrinsic airway neurons contributes to ozone-enhanced airway hyperresponsiveness in ferret trachea.

    PubMed

    Wu, Zhong-Xin; Satterfield, Brian E; Dey, Richard D

    2003-08-01

    Exposure to ozone (O3) induces airway hyperresponsiveness mediated partly through the release of substance P (SP) from nerve terminals in the airway wall. Although substantial evidence suggests that SP is released by sensory nerves, SP is also present in neurons of airway ganglia. The purpose of this study was to investigate the role of intrinsic airway neurons in O3-enhanced airway responsiveness in ferret trachea. To remove the effects of sensory innervation, segments of ferret trachea were maintained in culture conditions for 24 h before in vitro exposure to 2 parts/million of O3 or air for 1 h. Sensory nerve depletion was confirmed by showing that capsaicin did not affect tracheal smooth muscle responsiveness to cholinergic agonist or contractility responses to electrical field stimulation (EFS). Contractions of isolated tracheal smooth muscle to EFS were significantly increased after in vitro O3 exposure, but the constrictor response to cholinergic agonist was not altered. Pretreatment with CP-99994, an antagonist of the neurokinin 1 receptor, attenuated the increased contraction to EFS after O3 exposure but had no effect in the air exposure group. The number of SP-positive neurons in longitudinal trunk ganglia, the extent of SP innervation to superficial muscular plexus nerve cell bodies, and SP nerve fiber density in tracheal smooth muscle all increased significantly after O3 exposure. The results show that release of SP from intrinsic airway neurons contributes to O3-enhanced tracheal smooth muscle responsiveness by facilitating acetylcholine release from cholinergic nerve terminals.

  12. Airway fires during surgery: Management and prevention

    PubMed Central

    Akhtar, Navaid; Ansar, Farrukh; Baig, Mirza Shahzad; Abbas, Akbar

    2016-01-01

    Airway fires pose a serious risk to surgical patients. Fires during surgery have been reported for many years with flammable anesthetic agents being the main culprits in the past. Association of airway fires with laser surgery is well-recognized, but there are reports of endotracheal tube fires ignited by electrocautery during pharyngeal surgery or tracheostomy or both. This uncommon complication has potentially grave consequences. While airway fires are relatively uncommon occurrences, they are very serious and can often be fatal. Success in preventing such events requires a thorough understanding of the components leading to a fire (fuel, oxidizer, and ignition source), as well as good communication between all members present to appropriately manage the fire and ensure patient safety. We present a case of fire in the airway during routine adenotonsillectomy. We will review the causes, preventive measures, and brief management for airway fires. PMID:27006554

  13. Airway fires during surgery: Management and prevention.

    PubMed

    Akhtar, Navaid; Ansar, Farrukh; Baig, Mirza Shahzad; Abbas, Akbar

    2016-01-01

    Airway fires pose a serious risk to surgical patients. Fires during surgery have been reported for many years with flammable anesthetic agents being the main culprits in the past. Association of airway fires with laser surgery is well-recognized, but there are reports of endotracheal tube fires ignited by electrocautery during pharyngeal surgery or tracheostomy or both. This uncommon complication has potentially grave consequences. While airway fires are relatively uncommon occurrences, they are very serious and can often be fatal. Success in preventing such events requires a thorough understanding of the components leading to a fire (fuel, oxidizer, and ignition source), as well as good communication between all members present to appropriately manage the fire and ensure patient safety. We present a case of fire in the airway during routine adenotonsillectomy. We will review the causes, preventive measures, and brief management for airway fires.

  14. Meal-stimulated release of methionine-enkephalin into the canine jejunal lumen.

    PubMed Central

    Money, S R; Petroianu, A; Gintzler, A R; Jaffe, B M

    1988-01-01

    Application of enkephalins to the luminal surface of the bowel augments intestinal absorption. However, to date, endogenous enkephalins have not been demonstrated within intestinal luminal fluid. To determine whether enkephalins are present in the intestinal lumen, five adult dogs had 25-cm chronic jejunal Thiry-Vella loops constructed. Dogs were studied in the awake, fasted state. Jejunal loops were perfused with isoosmotic, neutral Krebs buffer containing protease inhibitors. After basal sampling, the dogs received a high fat meat meal. Collections were made during the meal and for 60 min postprandially. Luminal met-enkephalin levels were determined by radioimmunoassay and confirmed by HPLC. HPLC separation of luminal samples demonstrated two immunoreactive peaks which co-eluted with pure met-enkephalin and met-enkephalin-sulfoxide. Basal met-enkephalin outputs averaged 52 +/- 13 ng/min. The meal significantly increased mean luminal met-enkephalin output to 137 +/- 71 ng/min. During the initial 20-min postprandial period, output remained elevated (180 +/- 73 ng/min), after which it returned to basal levels. We conclude that met-enkephalin is present in the jejunal lumen, and that luminal release of this opioid is augmented by a meal. Images PMID:3343342

  15. Airway somatosensory deficits and dysphagia in Parkinson's disease.

    PubMed

    Hammer, Michael J; Murphy, Caitlin A; Abrams, Trisha M

    2013-01-01

    Individuals with Parkinson's disease (PD) often experience substantial impairment of swallow control, and are typically unaware of the presence or severity of their impairments suggesting that these individuals may also experience airway sensory deficits. However, the degree to which impaired swallow function in PD may relate to airway sensory deficits has yet to be formally tested. The purpose of this study was to examine whether airway sensory function is associated with swallow impairment in PD. Eighteen PD participants and 18 healthy controls participated in this study and underwent endoscopic assessment of airway somatosensory function, endoscopic assessment of swallow function, and clinical ratings of swallow and disease severity. PD participants exhibited abnormal airway somatosensory function and greater swallow impairment compared with healthy controls. Swallow and sensory deficits in PD were correlated with disease severity. Moreover, PD participants reported similar self-rated swallow function as healthy controls, and swallow deficits were correlated with sensory function suggesting an association between impaired sensory function and poor self-awareness of swallow deficits in PD. These results suggest that control of swallow is influenced by airway somatosensory function, that swallow-related deficits in PD are related to abnormal somatosensation, and that swallow and airway sensory function may degrade as a function of disease severity. Therefore, the basal ganglia and related neural networks may play an important role to integrate airway sensory input for swallow-related motor control. Furthermore, the airway deficits observed in PD suggest a disintegration of swallow-related sensory and motor control.

  16. Improving the safety of remote site emergency airway management.

    PubMed

    Wijesuriya, Julian; Brand, Jonathan

    2014-01-01

    Airway management, particularly in non-theatre settings, is an area of anaesthesia and critical care associated with significant risk of morbidity & mortality, as highlighted during the 4th National Audit Project of the Royal College of Anaesthetists (NAP4). A survey of junior anaesthetists at our hospital highlighted a lack of confidence and perceived lack of safety in emergency airway management, especially in non-theatre settings. We developed and implemented a multifaceted airway package designed to improve the safety of remote site airway management. A Rapid Sequence Induction (RSI) checklist was developed; this was combined with new advanced airway equipment and drugs bags. Additionally, new carbon dioxide detector filters were procured in order to comply with NAP4 monitoring recommendations. The RSI checklists were placed in key locations throughout the hospital and the drugs and advanced airway equipment bags were centralised in the Intensive Care Unit (ICU). It was agreed with the senior nursing staff that an appropriately trained ICU nurse would attend all emergency situations with new airway resources upon request. Departmental guidelines were updated to include details of the new resources and the on-call anaesthetist's responsibilities regarding checks and maintenance. Following our intervention trainees reported higher confidence levels regarding remote site emergency airway management. Nine trusts within the Northern Region were surveyed and we found large variations in the provision of remote site airway management resources. Complications in remote site airway management due lack of available appropriate drugs, equipment or trained staff are potentially life threatening and completely avoidable. Utilising the intervention package an anaesthetist would be able to safely plan and prepare for airway management in any setting. They would subsequently have the drugs, equipment, and trained assistance required to manage any difficulties or complications

  17. Some properties of the walls of metaxylem vessels of maize roots, including tests of the wettability of their lumenal wall surfaces

    PubMed Central

    McCully, Margaret; Canny, Martin; Baker, Adam; Miller, Celia

    2014-01-01

    Background and Aims Since the proposal of the cohesion theory there has been a paradox that the lumenal surface of vessels is rich in hydrophobic lignin, while tension in the rising sap requires adhesion to a hydrophilic surface. This study sought to characterize the strength of that adhesion in maize (Zea mays), the wettability of the vessel surface, and to reconcile this with its histochemical and physical nature. Methods Wettability was assessed by emptying the maize root vessels of sap, perfusing them with either water or oil, and examining the adhesion (as revealed by contact angles) of the two liquids to vessel walls by cryo-scanning electron microscopy. The phobicity of the lumenal surface was also assessed histochemically with hydrophilic and hydrophobic probes. Key Results Pit borders in the lumen-facing vessel wall surface were wetted by both sap/water and oil. The attraction for oil was weaker: water could replace oil but not vice versa. Pit apertures repelled oil and were strongly stained by hydrophilic probes. Pit chambers were probably hydrophilic. Oil never entered the pits. When vessels were emptied and cryo-fixed immediately, pit chambers facing away from the vessels were always sap-filled. Pit chambers facing vessel lumens were either sap- or gas-filled. Sap from adjoining tracheary elements entering empty vessels accumulated on the lumenal surface in hemispherical drops, which spread out with decreasing contact angles to fill the lumen. Conclusions The vessel lumenal surface has a dual nature, namely a mosaic of hydrophilic and hydrophobic patches at the micrometre scale, with hydrophilic predominating. A key role is shown, for the first time, of overarching borders of pits in determining the dual nature of the surface. In gas-filled (embolized) vessels they are hydrophobic. When wetted by sap (vessels refilling or full) they are hydrophilic. A hypothesis is proposed to explain the switch between the two states. PMID:24709790

  18. Achieving an adequate minute volume through a 2 mm transtracheal catheter in simulated upper airway obstruction using a modified industrial ejector.

    PubMed

    Hamaekers, A E W; Götz, T; Borg, P A J; Enk, D

    2010-03-01

    Needle cricothyrotomy and subsequent transtracheal jet ventilation (TTJV) is one of the last options to restore oxygenation while managing an airway emergency. However, in cases of complete upper airway obstruction, conventional TTJV is ineffective and dangerous. We transformed a small, industrial ejector into a simple, manual ventilator providing expiratory ventilation assistance (EVA). An ejector pump was modified to allow both insufflation of oxygen and jet-assisted expiration through an attached 75 mm long transtracheal catheter (TTC) with an inner diameter (ID) of 2 mm by alternately occluding and releasing the gas outlet of the ejector pump. In a lung simulator, the modified ejector pump was tested at different compliances and resistances. Inspiration and expiration times were measured and achievable minute volumes (MVs) were calculated to determine the effect of EVA. The modified ejector pump shortened the expiration time and an MV up to 6.6 litre min(-1) could be achieved through a 2 mm ID TTC in a simulated obstructed airway. The principle of ejector-based EVA seems promising and deserves further evaluation.

  19. Airway management after maxillectomy with free flap reconstruction.

    PubMed

    Brickman, Daniel S; Reh, Douglas D; Schneider, Daniel S; Bush, Ben; Rosenthal, Eben L; Wax, Mark K

    2013-08-01

    Maxillectomy defects require complex 3-dimensional reconstructions often best suited to microvascular free tissue transfer. Postoperative airway management during this procedure has little discussion in the literature and is often dictated by surgical dogma. The purpose of this article was to review our experience in order to evaluate the effect of airway management on perioperative outcomes in patients undergoing maxillectomy with free flap reconstruction. A retrospective chart review was performed on patients receiving maxillectomy with microvascular reconstruction at 2 institutions between 1999 and 2011. Patient's airways were managed with or without elective tracheotomy at the surgical team's discretion and different perioperative outcomes were measured. The primary outcome was incidence of airway complication including pneumonia and need for further airway intervention. Secondary outcome was measured as factors leading to perioperative performance of the tracheotomy. Seventy-nine of 143 patients received elective tracheotomy perioperatively. The incidence of airway complication was equivalent between groups (10.1% vs 9.4%; p = .89). Patients with cardiopulmonary comorbidities were more likely to receive perioperative tracheotomy (74.1% vs 50.9%; p = .03) without a difference in airway complications. Other patient cofactors did not have an impact on perioperative tracheotomy or airway complication rate. Elective tracheotomy may safely be avoided in a subset of patients undergoing maxillectomy with microvascular reconstruction. Elective tracheotomy should be considered in patients with cardiopulmonary risk factors. Copyright © 2012 Wiley Periodicals, Inc.

  20. Randomised comparison of the effectiveness of the laryngeal mask airway supreme, i-gel and current practice in the initial airway management of prehospital cardiac arrest (REVIVE-Airways): a feasibility study research protocol.

    PubMed

    Benger, Jonathan Richard; Voss, Sarah; Coates, David; Greenwood, Rosemary; Nolan, Jerry; Rawstorne, Steven; Rhys, Megan; Thomas, Matthew

    2013-01-01

    Effective cardiopulmonary resuscitation with appropriate airway management improves outcomes following out-of-hospital cardiac arrest (OHCA). Historically, tracheal intubation has been accepted as the optimal form of OHCA airway management in the UK. The Joint Royal Colleges Ambulance Liaison Committee recently concluded that newer supraglottic airway devices (SADs) are safe and effective devices for hospital procedures and that their use in OHCA should be investigated. This study will address an identified gap in current knowledge by assessing whether it is feasible to use a cluster randomised design to compare SADs with current practice, and also to each other, during OHCA. The primary objective of this study is to assess the feasibility of a cluster randomised trial to compare the ventilation success of two newer SADs: the i-gel and the laryngeal mask airway supreme to usual practice during the initial airway management of OHCA. The secondary objectives are to collect data on ventilation success, further airway interventions required, loss of a previously established airway during transport, airway management on arrival at hospital (or termination of the resuscitation attempt), initial resuscitation success, survival to intensive care admission, survival to hospital discharge and patient outcome at 3 months. Ambulance paramedics will be randomly allocated to one of the three methods of airway management. Adults in medical OHCA attended by a trial paramedic will be eligible for the study. Approval for the study has been obtained from a National Health Service Research Ethics Committee with authority to review proposals for trials of a medical device in incapacitated adults. The results will be made publicly available on an open access website, and we will publish the findings in appropriate journals and present them at national and international conferences relevant to the subject field. ISRCTN: 18528625.

  1. Randomised comparison of the effectiveness of the laryngeal mask airway supreme, i-gel and current practice in the initial airway management of prehospital cardiac arrest (REVIVE-Airways): a feasibility study research protocol

    PubMed Central

    Benger, Jonathan Richard; Voss, Sarah; Coates, David; Greenwood, Rosemary; Nolan, Jerry; Rawstorne, Steven; Rhys, Megan; Thomas, Matthew

    2013-01-01

    Introduction Effective cardiopulmonary resuscitation with appropriate airway management improves outcomes following out-of-hospital cardiac arrest (OHCA). Historically, tracheal intubation has been accepted as the optimal form of OHCA airway management in the UK. The Joint Royal Colleges Ambulance Liaison Committee recently concluded that newer supraglottic airway devices (SADs) are safe and effective devices for hospital procedures and that their use in OHCA should be investigated. This study will address an identified gap in current knowledge by assessing whether it is feasible to use a cluster randomised design to compare SADs with current practice, and also to each other, during OHCA. Methods and analysis The primary objective of this study is to assess the feasibility of a cluster randomised trial to compare the ventilation success of two newer SADs: the i-gel and the laryngeal mask airway supreme to usual practice during the initial airway management of OHCA. The secondary objectives are to collect data on ventilation success, further airway interventions required, loss of a previously established airway during transport, airway management on arrival at hospital (or termination of the resuscitation attempt), initial resuscitation success, survival to intensive care admission, survival to hospital discharge and patient outcome at 3 months. Ambulance paramedics will be randomly allocated to one of the three methods of airway management. Adults in medical OHCA attended by a trial paramedic will be eligible for the study. Ethics and dissemination Approval for the study has been obtained from a National Health Service Research Ethics Committee with authority to review proposals for trials of a medical device in incapacitated adults. The results will be made publicly available on an open access website, and we will publish the findings in appropriate journals and present them at national and international conferences relevant to the subject field. Trial

  2. Safety and Efficacy of Thoracic External Beam Radiotherapy After Airway Stenting in Malignant Airway Obstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rochet, Nathalie, E-mail: nrochet@partners.org; Hauswald, Henrik; Schmaus, Martina

    Purpose: We retrospectively evaluated the outcome and toxicity of external beam radiotherapy (EBRT) after airway stents were placed in patients treated for malignant airway obstruction. Methods and Materials: Between 2004 and 2009, we performed airway stenting followed by EBRT in 43 patients for symptomatic primary lung cancer (n = 31) or other thoracic malignancies (n = 12). The median time interval between stent placement and first irradiation was 14 days. A median total dose of 50 Gy was delivered. Sixty-seven percent of the patients had reduced performance status (Karnofsky performance score, {<=}70). Results: EBRT had to be stopped prematurely inmore » 16 patients (37%), at a median total dose of 17 Gy, for various reasons. In this group of patients, the survival was poor, with a median overall survival (OS) of only 21 days. Twenty-seven patients (63%) completed radiotherapy as planned, with a median OS of 8.4 months. Fourteen of 43 patients (33%) developed at least one Common Terminology Criteria for Adverse Event of grade 3 to 5. The most common event was a malignant restenosis of the stent leading to asphyxia (n = 7), followed by fistula formation (n = 4), necrosis (n = 3), mediastinitis with abscess (n = 1), secondary nonmalignant airway stenosis (n = 1), and hemoptysis (n = 1). With the exception of one event, all events were associated with a local progression of the tumor. Conclusions: Although the long-term prognosis for patients with malignant airway obstruction is poor, airway stenting combined with EBRT offers a possible therapeutic option, achieving fast relief of acute respiratory distress with an associated antitumor effect, resulting in a potential survival benefit. However, due to local advanced tumor growth, increased rates of adverse events are to be expected, necessitating careful monitoring.« less

  3. Bitter tasting compounds dilate airways by inhibiting airway smooth muscle calcium oscillations and calcium sensitivity

    PubMed Central

    Tan, Xiahui; Sanderson, Michael J

    2014-01-01

    Background and Purpose While selective, bitter tasting, TAS2R agonists can relax agonist-contracted airway smooth muscle (ASM), their mechanism of action is unclear. However, ASM contraction is regulated by Ca2+ signalling and Ca2+ sensitivity. We have therefore investigated how the TAS2R10 agonists chloroquine, quinine and denotonium regulate contractile agonist-induced Ca2+ signalling and sensitivity. Experimental Approach Airways in mouse lung slices were contracted with either methacholine (MCh) or 5HT and bronchodilation assessed using phase-contrast microscopy. Ca2+ signalling was measured with 2-photon fluorescence microscopy of ASM cells loaded with Oregon Green, a Ca2+-sensitive indicator (with or without caged-IP3). Effects on Ca2+ sensitivity were assessed on lung slices treated with caffeine and ryanodine to permeabilize ASM cells to Ca2+. Key Results The TAS2R10 agonists dilated airways constricted by either MCh or 5HT, accompanied by inhibition of agonist-induced Ca2+ oscillations. However, in non-contracted airways, TAS2R10 agonists, at concentrations that maximally dilated constricted airways, did not evoke Ca2+ signals in ASM cells. Ca2+ increases mediated by the photolysis of caged-IP3 were also attenuated by chloroquine, quinine and denotonium. In Ca2+-permeabilized ASM cells, the TAS2R10 agonists dilated MCh- and 5HT-constricted airways. Conclusions and Implications TAS2R10 agonists reversed bronchoconstriction by inhibiting agonist-induced Ca2+ oscillations while simultaneously reducing the Ca2+ sensitivity of ASM cells. Reduction of Ca2+ oscillations may be due to inhibition of Ca2+ release through IP3 receptors. Further characterization of bronchodilatory TAS2R agonists may lead to the development of novel therapies for the treatment of bronchoconstrictive conditions. PMID:24117140

  4. Long-Acting Beta Agonists Enhance Allergic Airway Disease.

    PubMed

    Knight, John M; Mak, Garbo; Shaw, Joanne; Porter, Paul; McDermott, Catherine; Roberts, Luz; You, Ran; Yuan, Xiaoyi; Millien, Valentine O; Qian, Yuping; Song, Li-Zhen; Frazier, Vincent; Kim, Choel; Kim, Jeong Joo; Bond, Richard A; Milner, Joshua D; Zhang, Yuan; Mandal, Pijus K; Luong, Amber; Kheradmand, Farrah; McMurray, John S; Corry, David B

    2015-01-01

    Asthma is one of the most common of medical illnesses and is treated in part by drugs that activate the beta-2-adrenoceptor (β2-AR) to dilate obstructed airways. Such drugs include long acting beta agonists (LABAs) that are paradoxically linked to excess asthma-related mortality. Here we show that LABAs such as salmeterol and structurally related β2-AR drugs such as formoterol and carvedilol, but not short-acting agonists (SABAs) such as albuterol, promote exaggerated asthma-like allergic airway disease and enhanced airway constriction in mice. We demonstrate that salmeterol aberrantly promotes activation of the allergic disease-related transcription factor signal transducer and activator of transcription 6 (STAT6) in multiple mouse and human cells. A novel inhibitor of STAT6, PM-242H, inhibited initiation of allergic disease induced by airway fungal challenge, reversed established allergic airway disease in mice, and blocked salmeterol-dependent enhanced allergic airway disease. Thus, structurally related β2-AR ligands aberrantly activate STAT6 and promote allergic airway disease. This untoward pharmacological property likely explains adverse outcomes observed with LABAs, which may be overcome by agents that antagonize STAT6.

  5. Maximizing Lumen Gain With Directional Atherectomy.

    PubMed

    Stanley, Gregory A; Winscott, John G

    2016-08-01

    To describe the use of a low-pressure balloon inflation (LPBI) technique to delineate intraluminal plaque and guide directional atherectomy in order to maximize lumen gain and achieve procedure success. The technique is illustrated in a 77-year-old man with claudication who underwent superficial femoral artery revascularization using a HawkOne directional atherectomy catheter. A standard angioplasty balloon was inflated to 1 to 2 atm during live fluoroscopy to create a 3-dimensional "lumenogram" of the target lesion. Directional atherectomy was performed only where plaque impinged on the balloon at a specific fluoroscopic orientation. The results of the LPBI technique were corroborated with multimodality diagnostic imaging, including digital subtraction angiography, intravascular ultrasound, and intra-arterial pressure measurements. With the LPBI technique, directional atherectomy can routinely achieve <10% residual stenosis, as illustrated in this case, thereby broadly supporting a no-stent approach to lower extremity endovascular revascularization. © The Author(s) 2016.

  6. Myb permits multilineage airway epithelial cell differentiation

    PubMed Central

    Pan, Jie-hong; Adair-Kirk, Tracy L.; Patel, Anand C.; Huang, Tao; Yozamp, Nicholas S.; Xu, Jian; Reddy, E. Premkumar; Byers, Derek E.; Pierce, Richard A.; Holtzman, Michael J.; Brody, Steven L.

    2014-01-01

    The epithelium of the pulmonary airway is specially differentiated to provide defense against environmental insults, but also subject to dysregulated differentiation that results in lung disease. The current paradigm for airway epithelial differentiation is a one-step program whereby a p63+ basal epithelial progenitor cell generates a ciliated or secretory cell lineage, but the cue for this transition and whether there are intermediate steps is poorly defined. Here we identify transcription factor Myb as a key regulator that permits early multilineage differentiation of airway epithelial cells. Myb+ cells were identified as p63− and therefore distinct from basal progenitor cells, but were still negative for markers of differentiation. Myb RNAi treatment of primary-culture airway epithelial cells and Myb gene deletion in mice resulted in a p63− population with failed maturation of Foxj1+ ciliated cells, as well as Scbg1a1+ and Muc5ac+ secretory cells. Consistent with these findings, analysis of whole genome expression of Myb-deficient cells identified Myb-dependent programs for ciliated and secretory cell differentiation. Myb+ cells were rare in human airways but were increased in regions of ciliated cells and mucous cell hyperplasia in samples from subjects with chronic obstructive pulmonary disease. Together, the results show that a p63− Myb+ population of airway epithelial cells represents a distinct intermediate stage of differentiation that is required under normal conditions and may be heightened in airway disease. PMID:25103188

  7. Color analysis of the human airway wall

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Deepa; McLennan, Geoffrey; Donnelley, Martin; Delsing, Angela; Suter, Melissa; Flaherty, Dawn; Zabner, Joseph; Hoffman, Eric A.; Reinhardt, Joseph M.

    2002-04-01

    A bronchoscope can be used to examine the mucosal surface of the airways for abnormalities associated with a variety of lung diseases. The diagnosis of these abnormalities through the process of bronchoscopy is based, in part, on changes in airway wall color. Therefore it is important to characterize the normal color inside the airways. We propose a standardized method to calibrate the bronchoscopic imaging system and to tabulate the normal colors of the airway. Our imaging system consists of a Pentium PC and video frame grabber, coupled with a true color bronchoscope. The calibration procedure uses 24 standard color patches. Images of these color patches at three different distances (1, 1.5, and 2 cm) were acquired using the bronchoscope in a darkened room, to assess repeatability and sensitivity to illumination. The images from the bronchoscope are in a device-dependent Red-Green-Blue (RGB) color space, which was converted to a tri-stimulus image and then into a device-independent color space sRGB image by a fixed polynomial transformation. Images were acquired from five normal human volunteer subjects, two cystic fibrosis (CF) patients and one normal heavy smoker subject. The hue and saturation values of regions within the normal airway were tabulated and these values were compared with the values obtained from regions within the airways of the CF patients and the normal heavy smoker. Repeated measurements of the same region in the airways showed no measurable change in hue or saturation.

  8. Intrathoracic airway wall detection using graph search and scanner PSF information

    NASA Astrophysics Data System (ADS)

    Reinhardt, Joseph M.; Park, Wonkyu; Hoffman, Eric A.; Sonka, Milan

    1997-05-01

    Measurements of the in vivo bronchial tree can be used to assess regional airway physiology. High-resolution CT (HRCT) provides detailed images of the lungs and has been used to evaluate bronchial airway geometry. Such measurements have been sued to assess diseases affecting the airways, such as asthma and cystic fibrosis, to measure airway response to external stimuli, and to evaluate the mechanics of airway collapse in sleep apnea. To routinely use CT imaging in a clinical setting to evaluate the in vivo airway tree, there is a need for an objective, automatic technique for identifying the airway tree in the CT images and measuring airway geometry parameters. Manual or semi-automatic segmentation and measurement of the airway tree from a 3D data set may require several man-hours of work, and the manual approaches suffer from inter-observer and intra- observer variabilities. This paper describes a method for automatic airway tree analysis that combines accurate airway wall location estimation with a technique for optimal airway border smoothing. A fuzzy logic, rule-based system is used to identify the branches of the 3D airway tree in thin-slice HRCT images. Raycasting is combined with a model-based parameter estimation technique to identify the approximate inner and outer airway wall borders in 2D cross-sections through the image data set. Finally, a 2D graph search is used to optimize the estimated airway wall locations and obtain accurate airway borders. We demonstrate this technique using CT images of a plexiglass tube phantom.

  9. Onyx embolization using dual-lumen balloon catheter: initial experience and technical note.

    PubMed

    Paramasivam, Srinivasan; Niimi, Yasunari; Fifi, Johanna; Berenstein, Alejandro

    2013-10-01

    Onyx as an embolization agent for the management of vascular malformation is well established. We report our initial experience with dimethyl-sulphoxide (DMSO) compatible double lumen balloon catheters used for Onyx embolization. Between December 2011 and March 2013, we treated 22 patients aged between 1.5 to 70years with two types of DMSO compatible dual-lumen balloon catheters (Scepter C and Ascent) to treat dural arteriovenous fistulas, brain arteriovenous malformation (AVM) with dural feeders, mandibular, facial, lingual, vertebral and paravertebral AVMs. The catheter has good navigability, compliant balloon on inflation formed a "plug" that has more resistance than Onyx plug enhancing better penetration. During injection, the balloon remained stable without spontaneous deflation or rupture and withstood the pressure build-up well. The retrieval of the catheter in most cases took less than a minute (19/28) while in five, it was less than five minutes and in the remaining four, it was longer that includes a trapped catheter on prolonged attempted retrieval resulted in an epidural hematoma, requiring emergent surgical evacuation. The fluoroscopy time is reduced, as we do not form a proximal onyx plug, the injection time is shorter along with easy and instantaneous removal of the catheter after balloon deflation in most cases. Dual-lumen balloon catheter Onyx embolization is a safe and effective technique. Currently, an important tool to circumvent some of the shortcomings associated with Onyx embolization. The catheter has good navigability, the balloon has stability, tolerance, enhances penetrability. It is easy to retrieve the microcatheter. With the experience gained, and with more compliant balloon catheters available, this technique can be applied to cerebral vessels in near future. Copyright © 2013. Published by Elsevier Masson SAS.

  10. 76 FR 23687 - Amendment of Federal Airways; Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ... Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends all Anchorage, AK, Federal airways... airways that currently use the Anchorage (ANC) VOR located on Fire Island, AK. The ANC VOR was upgraded to... Federal airways. * * * * * V-319 [Amended] From Yakutat, AK, via Johnstone Point, AK, INT Johnstone Point...

  11. Super-Resolution Imaging Reveals TCTN2 Depletion-Induced IFT88 Lumen Leakage and Ciliary Weakening.

    PubMed

    Weng, Rueyhung Roc; Yang, T Tony; Huang, Chia-En; Chang, Chih-Wei; Wang, Won-Jing; Liao, Jung-Chi

    2018-06-01

    The primary cilium is an essential organelle mediating key signaling activities, such as sonic hedgehog signaling. The molecular composition of the ciliary compartment is distinct from that of the cytosol, with the transition zone (TZ) gated the ciliary base. The TZ is a packed and organized protein complex containing multiple ciliopathy-associated protein species. Tectonic 2 (TCTN2) is one of the TZ proteins in the vicinity of the ciliary membrane, and its mutation is associated with Meckel syndrome. Despite its importance in ciliopathies, the role of TCTN2 in ciliary structure and molecules remains unclear. Here, we created a CRISPR/Cas9 TCTN2 knockout human retinal pigment epithelial cell line and conducted quantitative analysis of geometric localization using both wide-field and super-resolution microscopy techniques. We found that TCTN2 depletion resulted in partial TZ damage, loss of ciliary membrane proteins, leakage of intraflagellar transport protein IFT88 toward the basal body lumen, and cilium shortening and curving. The basal body lumen occupancy of IFT88 was also observed in si-RPGRIP1L cells and cytochalasin-D-treated wild-type cells, suggesting varying lumen accessibility for intraflagellar transport proteins under different perturbed conditions. Our findings support two possible models for the lumen leakage of IFT88, i.e., a tip leakage model and a misregulation model. Together, our quantitative image analysis augmented by super-resolution microscopy facilitates the observation of structural destruction and molecular redistribution in TCTN2 -/- cilia, shedding light on mechanistic understanding of TZ-protein-associated ciliopathies. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. A framework for understanding shared substrates of airway protection

    PubMed Central

    TROCHE, Michelle Shevon; BRANDIMORE, Alexandra Essman; GODOY, Juliana; HEGLAND, Karen Wheeler

    2014-01-01

    Deficits of airway protection can have deleterious effects to health and quality of life. Effective airway protection requires a continuum of behaviors including swallowing and cough. Swallowing prevents material from entering the airway and coughing ejects endogenous material from the airway. There is significant overlap between the control mechanisms for swallowing and cough. In this review we will present the existing literature to support a novel framework for understanding shared substrates of airway protection. This framework was originally adapted from Eccles' model of cough28 (2009) by Hegland, et al.42 (2012). It will serve to provide a basis from which to develop future studies and test specific hypotheses that advance our field and ultimately improve outcomes for people with airway protective deficits. PMID:25141195

  13. Clinical review: Airway hygiene in the intensive care unit

    PubMed Central

    Jelic, Sanja; Cunningham, Jennifer A; Factor, Phillip

    2008-01-01

    Maintenance of airway secretion clearance, or airway hygiene, is important for the preservation of airway patency and the prevention of respiratory tract infection. Impaired airway clearance often prompts admission to the intensive care unit (ICU) and can be a cause and/or contributor to acute respiratory failure. Physical methods to augment airway clearance are often used in the ICU but few are substantiated by clinical data. This review focuses on the impact of oral hygiene, tracheal suctioning, bronchoscopy, mucus-controlling agents, and kinetic therapy on the incidence of hospital-acquired respiratory infections, length of stay in the hospital and the ICU, and mortality in critically ill patients. Available data are distilled into recommendations for the maintenance of airway hygiene in ICU patients. PMID:18423061

  14. Airway complications in the head injured.

    PubMed

    Woo, P; Kelly, G; Kirshner, P

    1989-07-01

    Fifty head-injured patients who had tracheostomy were followed during rehabilitation by video fiberoptic laryngoscopy examination. Complications of aspiration (23/50), airway stenosis (13/50), and phonation dysfunction (16/24) were followed. Spontaneous resolution of aspiration may require a prolonged course. A majority of patients (37/50) had improvement and could be decannulated. Prognostic factors correlated to eventual decannulation included age, level on the Glasgow Coma Outcome Scale, and type of head injury. Those with poor neurologic improvement and glottic incompetence (13/50) are poor candidates for decannulation. Significant airway stenosis can involve both laryngeal and tracheal sites. Neurologic dysfunction may complicate the decannulation process after airway anatomy has been restored by surgery. Dysphonia resulting from intubation, peripheral laryngeal and nerve injury, or central laryngeal movement dysfunction are common. Preventive maintenance with ongoing evaluation can avoid airway crises such as aspiration pneumonia, hemoptysis, and innominate artery.

  15. Videolaryngoscopy versus Fiber-optic Intubation through a Supraglottic Airway in Children with a Difficult Airway: An Analysis from the Multicenter Pediatric Difficult Intubation Registry.

    PubMed

    Burjek, Nicholas E; Nishisaki, Akira; Fiadjoe, John E; Adams, H Daniel; Peeples, Kenneth N; Raman, Vidya T; Olomu, Patrick N; Kovatsis, Pete G; Jagannathan, Narasimhan; Hunyady, Agnes; Bosenberg, Adrian; Tham, See; Low, Daniel; Hopkins, Paul; Glover, Chris; Olutoye, Olutoyin; Szmuk, Peter; McCloskey, John; Dalesio, Nicholas; Koka, Rahul; Greenberg, Robert; Watkins, Scott; Patel, Vikram; Reynolds, Paul; Matuszczak, Maria; Jain, Ranu; Khalil, Samia; Polaner, David; Zieg, Jennifer; Szolnoki, Judit; Sathyamoorthy, Kumar; Taicher, Brad; Riveros Perez, N Ricardo; Bhattacharya, Solmaletha; Bhalla, Tarun; Stricker, Paul; Lockman, Justin; Galvez, Jorge; Rehman, Mohamed; Von Ungern-Sternberg, Britta; Sommerfield, David; Soneru, Codruta; Chiao, Franklin; Richtsfeld, Martina; Belani, Kumar; Sarmiento, Lina; Mireles, Sam; Bilen Rosas, Guelay; Park, Raymond; Peyton, James

    2017-09-01

    The success rates and related complications of various techniques for intubation in children with difficult airways remain unknown. The primary aim of this study is to compare the success rates of fiber-optic intubation via supraglottic airway to videolaryngoscopy in children with difficult airways. Our secondary aim is to compare the complication rates of these techniques. Observational data were collected from 14 sites after management of difficult pediatric airways. Patient age, intubation technique, success per attempt, use of continuous ventilation, and complications were recorded for each case. First-attempt success and complications were compared in subjects managed with fiber-optic intubation via supraglottic airway and videolaryngoscopy. Fiber-optic intubation via supraglottic airway and videolaryngoscopy had similar first-attempt success rates (67 of 114, 59% vs. 404 of 786, 51%; odds ratio 1.35; 95% CI, 0.91 to 2.00; P = 0.16). In subjects less than 1 yr old, fiber-optic intubation via supraglottic airway was more successful on the first attempt than videolaryngoscopy (19 of 35, 54% vs. 79 of 220, 36%; odds ratio, 2.12; 95% CI, 1.04 to 4.31; P = 0.042). Complication rates were similar in the two groups (20 vs. 13%; P = 0.096). The incidence of hypoxemia was lower when continuous ventilation through the supraglottic airway was used throughout the fiber-optic intubation attempt. In this nonrandomized study, first-attempt success rates were similar for fiber-optic intubation via supraglottic airway and videolaryngoscopy. Fiber-optic intubation via supraglottic airway is associated with higher first-attempt success than videolaryngoscopy in infants with difficult airways. Continuous ventilation through the supraglottic airway during fiber-optic intubation attempts may lower the incidence of hypoxemia.

  16. Small Airway Dysfunction and Abnormal Exercise Responses

    PubMed Central

    Petsonk, Edward L.; Stansbury, Robert C.; Beeckman-Wagner, Lu-Ann; Long, Joshua L.; Wang, Mei Lin

    2016-01-01

    Rationale Coal mine dust exposure can cause symptoms and loss of lung function from multiple mechanisms, but the roles of each disease process are not fully understood. Objectives We investigated the implications of small airway dysfunction for exercise physiology among a group of workers exposed to coal mine dust. Methods Twenty coal miners performed spirometry, first breathing air and then helium-oxygen, single-breath diffusing capacity, and computerized chest tomography, and then completed cardiopulmonary exercise testing. Measurements and Main Results Six participants meeting criteria for small airway dysfunction were compared with 14 coal miners who did not. At submaximal workload, miners with small airway dysfunction used a higher proportion of their maximum voluntary ventilation and had higher ventilatory equivalents for both O2 and CO2. Regression modeling indicated that inefficient ventilation was significantly related to small airway dysfunction but not to FEV1 or diffusing capacity. At the end of exercise, miners with small airway dysfunction had 27% lower O2 consumption. Conclusions Small airway abnormalities may be associated with important inefficiency of exercise ventilation. In dust-exposed individuals with only mild abnormalities on resting lung function tests or chest radiographs, cardiopulmonary exercise testing may be important in defining causes of exercise intolerance. PMID:27073987

  17. Patency of paediatric endotracheal tubes for airway instrumentation.

    PubMed

    Elfgen, J; Buehler, P K; Thomas, J; Kemper, M; Imach, S; Weiss, M

    2017-01-01

    Airway exchange catheters (AEC) and fiberoptic bronchoscopes (FOB) for tracheal intubation are selected so that there is only a minimal gap between their outer and inner diameter of endotracheal tube (ETT) to minimize the risk of impingement during airway instrumentation. This study aimed to test the ease of passage of FOBs and AECs through paediatric ETT of different sizes and from different manufacturers when using current recommendations for dimensional equipment compatibility taken from text books and manufacturers information. Twelve different brands of cuffed and uncuffed ETT sized ID 2.5 to 5.0 mm were evaluated in an in vitro set-up. Ease of device passage as well as the locations of an impaired passage within the ETT were assessed. Redundant samples were used for same sized ETT and all measurements were triple-checked in randomized order. In total, 51 paired samples of uncuffed as well as cuffed paediatric ETT were tested. There were substantial differences in the ease of ETT passage concordantly for FOBs and AECs among different manufacturers, but also among the product lines from the same manufacturer for a given ID size. Restriction to passage most frequently was found near the endotracheal tube tip or as a gradually increasing resistance along the ETT shaft. Current recommendations for dimensional equipment compatibility AECs and FOBs with ETTs do not appear to be completely accurate for all ETT brands available. We recommend that specific equipment combinations always must be tested carefully together before attempting to use them in a patient. © 2016 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  18. Airway growth and development: a computerized 3-dimensional analysis.

    PubMed

    Schendel, Stephen A; Jacobson, Richard; Khalessi, Sadri

    2012-09-01

    The present study was undertaken to investigate the changes in the normal upper airway during growth and development using 3-dimensional computer analysis from cone-beam computed tomography (CBCT) data to provide a normative reference. The airway size and respiratory mode are known to have a relationship to facial morphology and the development of a malocclusion. The use of CBCT, 3-dimensional imaging, and automated computer analysis in treatment planning allows the upper airway to be precisely evaluated. In the present study, we evaluated the growth of the airway using 3-dimensional analysis and CBCT data from age 6 through old age, in 1300 normal individuals. The airway size and length increase until age 20 at which time a variable period of stability occurs. Next, the airway at first decreases slowly in size and then, after age 40, more rapidly. Normative data are provided in the present study for age groups from 6 to 60 years in relation to the airway total volume, smallest cross-sectional area and vertical length of the airway. This 3-dimensional data of the upper airway will provide a normative reference as an aid in the early understanding of respiration and dentofacial anatomy, which will help in early treatment planning. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Airway hyperreactivity in asymptomatic military personnel.

    PubMed

    Morris, Michael J; Schwartz, Darin S; Nohrenberg, Jana L; Dooley, Sean N

    2007-11-01

    Asthma is frequently diagnosed in military personnel despite strict guidelines that disqualify persons with active disease or a recent history of asthma. It is generally considered incompatible with military service, because of the regular physical training, outdoor training exercises, and deployments to remote locations. The objective of this study was to determine the prevalence of airway hyperreactivity in asymptomatic military personnel, as an estimate of subclinical reactive airway disease. A prospective study of healthy, asymptomatic, military personnel with no previous history of asthma and <1 year on active duty status was conducted. After completion of a screening questionnaire, personnel underwent baseline spirometry with a portable spirometer. Personnel with obstructive indices (based on published guidelines) and matched control subjects participated in an exercise test (1.5-mile run), with pre- and postexercise spirometry. A total of 222 asymptomatic military personnel completed baseline spirometry, and 31 (14%) were found have airway obstruction. A normal matched control group of 31 military personnel and 26 personnel with obstruction performed exercise spirometry. Twenty-three percent of the participants with obstruction demonstrated increased airway hyper-reactivity after exercise, based on a reduction in forced expiratory volume at 1 second, compared with 19% of control subjects. Asymptomatic airway obstruction has a prevalence of 14% in young military personnel. A significant percentage of individuals also have evidence of worsening obstruction during exercise. These data suggest that screening spirometry may identify early reactive airway disease in asymptomatic individuals and should be considered as a method to identify persons predisposed to developing symptomatic asthma.

  20. Bronchoscopic management of critical central airway obstruction by thyroid cancer: Combination airway stenting using tracheal and inverted-Y carinal self-expanding metallic stents

    PubMed Central

    Madan, Karan; Shrestha, Prajowl; Garg, Rakesh; Hadda, Vijay; Mohan, Anant; Guleria, Randeep

    2017-01-01

    Central airway obstruction (CAO) can result from various benign and malignant etiologies. Anaplastic thyroid cancer (ATC) is the most aggressive form of thyroid cancer. Rapid airway compromise is the main cause of death in ATC. We report a patient with ATC who presented with a large neck mass leading to CAO with long segment tracheal and right main bronchial compression and respiratory failure. Urgent Rigid Bronchoscopy was performed for airway stabilization and patient was managed with a combination airway stenting approach. A combination of self expanding, metallic, covered inverted Y and straight tracheal stents was used to stabilize the near complete airway structure. We herein highlight the role of therapeutic rigid bronchoscopy with airway stenting as an efficacious treatment modality for management of malignant CAO. PMID:28360477

  1. 21 CFR 868.5100 - Nasopharyngeal airway.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nasopharyngeal airway. 868.5100 Section 868.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5100 Nasopharyngeal airway. (a...

  2. 21 CFR 868.5110 - Oropharyngeal airway.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Oropharyngeal airway. 868.5110 Section 868.5110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5110 Oropharyngeal airway. (a...

  3. 21 CFR 868.5100 - Nasopharyngeal airway.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nasopharyngeal airway. 868.5100 Section 868.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5100 Nasopharyngeal airway. (a...

  4. 21 CFR 868.5100 - Nasopharyngeal airway.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nasopharyngeal airway. 868.5100 Section 868.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5100 Nasopharyngeal airway. (a...

  5. 21 CFR 868.5110 - Oropharyngeal airway.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Oropharyngeal airway. 868.5110 Section 868.5110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5110 Oropharyngeal airway. (a...

  6. 21 CFR 868.5100 - Nasopharyngeal airway.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nasopharyngeal airway. 868.5100 Section 868.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5100 Nasopharyngeal airway. (a...

  7. 21 CFR 868.5110 - Oropharyngeal airway.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Oropharyngeal airway. 868.5110 Section 868.5110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5110 Oropharyngeal airway. (a...

  8. 21 CFR 868.5110 - Oropharyngeal airway.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oropharyngeal airway. 868.5110 Section 868.5110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5110 Oropharyngeal airway. (a...

  9. FAMM Flap in Reconstructing Postsurgical Nasopharyngeal Airway Stenosis

    PubMed Central

    Nangole, Ferdinand Wanjala; Khainga, Stanley Ominde

    2014-01-01

    Introduction. Postsurgical nasopharyngeal airway stenosis can be a challenge to manage. The stenosis could be as a result of any surgical procedure in the nasopharyngeal region that heals extensive scarring and fibrosis. Objective. To evaluate patients with nasopharyngeal stenosis managed with FAMM flap. Study Design. Prospective study of patients with nasopharyngeal stenosis at the Kenyatta National Hospital between 2010 and 2013 managed with FAMM flap. Materials and Methods. Patients with severe nasopharyngeal airway stenosis were reviewed and managed with FAMM flaps at the Kenyatta National Hospital. Postoperatively they were assessed for symptomatic improvement in respiratory distress, patency of the nasopharyngeal airway, and donor site morbidity. Results. A total of 8 patients were managed by the authors in a duration of 4 years with nasopharyngeal stenosis. Five patients were managed with unilateral FAMM flaps in a two-staged surgical procedure. Four patients had complete relieve of the airway obstruction with a patent airway created. One patient had a patent airway created though with only mild improvement in airway obstruction. Conclusion. FAMM flap provides an alternative in the management of postsurgical severe nasopharyngeal stenosis. It is a reliable flap that is easy to raise and could provide adequate epithelium for the stenosed pharynx. PMID:25328699

  10. Innovative Application of a Microlaryngeal Surgery Tube for difficult Airway Management in a Case of Down's Syndrome.

    PubMed

    Gulabani, Michell; Gupta, Akhilesh; Bannerjee, Neerja Gaur; Sood, Rajesh; Dass, Prashant

    2016-04-01

    An 11-year-old male child, known case of down's syndrome with congenital oesophageal stricture was posted for oesophageal dilatation. Preoperative airway assessment revealed a high arched palate, receding mandible and Mallampati Score of 2. During surgery, after loss of consciousness which was described as loss of eyelash reflex and adequate jaw relaxation, direct laryngoscopy and endotracheal intubation was attempted with a cuffed endotracheal tube number 5.0mm ID (internal diameter). The endotracheal tube could not be negotiated smoothly, so 5.0mm ID uncuffed endotracheal tube was used which passed through easily, but on auscultation revealed a significant leak. Later, intubation via a Micro Laryngeal Surgery (MLS) cuffed tube 4.0mm ID was attempted. The MLS tube advanced smoothly and there was no associated leak on positive pressure ventilation. Thus by innovative thinking and avant-garde reasoning, a definitive airway device could be positioned with no other suitable alternative at hand.

  11. A Randomized Controlled Study of the Use of Video Double-Lumen Endobronchial Tubes Versus Double-Lumen Endobronchial Tubes in Thoracic Surgery.

    PubMed

    Heir, Jagtar Singh; Guo, Shu-Lin; Purugganan, Ronaldo; Jackson, Tim A; Sekhon, Anupamjeet Kaur; Mirza, Kazim; Lasala, Javier; Feng, Lei; Cata, Juan P

    2018-02-01

    To compare the incidence of fiberoptic bronchoscope (FOB) use (1) during verification of initial placement and (2) for reconfirmation of correct placement following repositioning, when either a double-lumen tube (DLT) or video double-lumen tube (VDLT) was used for lung isolation during thoracic surgery. A randomized controlled study. Single-center university teaching hospital. The study comprised 80 patients who were 18 years or older requiring lung isolation for surgery. After institutional review board approval, patients were randomized prior to surgery to either DLT or VDLT usage. Attending anesthesiologists placed the Mallinckrodt DLT or Vivasight (ET View Ltd, Misgav, Israel) VDLT with conventional laryngoscopy or video laryngoscopy then verified correct tube position through the view provided with either VDLT external monitor or FOB. Data collected included: sex, body mass index, successful intubation and endobronchial placement, intubation time, confirmation time of tube position, FOB use, quality of view, dislodgement of tube, and ability to forewarn dislodgement of endobronchial cuff and complications. FOB use for verification of final position of the tube (VDLT 13.2% [5/38] v DLT 100% [42/42], p < 0.0001), need for FOB to correct the dislodgement (VDLT 7.7% [1/13] v DLT 100% [14/14], p < 0.0001), dislodgement during positioning (VDLT 61.5% [8/13] v DLT 64.3% [9/14], p = ns), dislodgement during surgery (VDLT 38.5% [5/13] v DLT 21.4% [3/14], p = ns), and ability to forewarn dislodgement of endobronchial cuff (VDLT 18.4% [7/38] v DLT 4.8% [2/42], p = 0.078). This study demonstrated a reduction of 86.8% in FOB use, which was a similar reduction found in other published studies. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. A child with a difficult airway: what do I do next?

    PubMed

    Engelhardt, Thomas; Weiss, Markus

    2012-06-01

    Difficulties in pediatric airway management are common and continue to result in significant morbidity and mortality. This review reports on current concepts in approaching a child with a difficult airway. Routine airway management in healthy children with normal airways is simple in experienced hands. Mask ventilation (oxygenation) is always possible and tracheal intubation normally simple. However, transient hypoxia is common in these children usually due to unexpected anatomical and functional airway problems or failure to ventilate during rapid sequence induction. Anatomical airway problems (upper airway collapse and adenoid hypertrophy) and functional airway problems (laryngospasm, bronchospasm, insufficient depth of anesthesia and muscle rigidity, gastric hyperinflation, and alveolar collapse) require urgent recognition and treatment algorithms due to insufficient oxygen reserves. Early muscle paralysis and epinephrine administration aids resolution of these functional airway obstructions. Children with an 'impaired' normal (foreign body, allergy, and inflammation) or an expected difficult (scars, tumors, and congenital) airway require careful planning and expertise. Training in the recognition and management of these different situations as well as a suitably equipped anesthesia workstation and trained personnel are essential. The healthy child with an unexpected airway problem requires clear strategies. The 'impaired' normal pediatric airway may be handled by anesthetists experienced with children, whereas the expected difficult pediatric airway requires dedicated pediatric anesthesia specialist care and should only be managed in specialized centers.

  13. Lumen degradation and chromaticity shift in glass and silicone based high-power phosphor-converted white-emitting diodes under thermal tests

    NASA Astrophysics Data System (ADS)

    Cheng, Wood-Hi; Tsai, Chun-Chin; Wang, Jimmy

    2011-10-01

    The lumen degradation and chromaticity shift in glass and silicone based high-power phosphor-converted white-emitting diodes (PC-WLEDs) under accelerated thermal tests at 150°C, 200°C, and 250°C are presented and compared. The glass based PC-WLEDs exhibited better thermal stability than the silicone by 4.8 time reductions in lumen loss 6.8 time reductions in chromaticity shift at 250°C, respectively. The mean-time-to-failure (MTTF) evaluation of glass and silicone based high-power PC-WLEDs in accelerated thermal tests is also presented and compared. The results showed that the glass based PC-WLEDs exhibited higher MTTF than the silicone by 7.53 times in lumen loss and 14.4 times in chromaticity shift at 250°C, respectively. The thermal performance of lumen, chromaticity, and MTTF investigations demonstrated that the thermal stability of the glass based PC-WLEDs were better than the silicone. A better thermal stability phosphor layer of glass as encapsulation material may be beneficial to the many applications where the LED modules with high power and high reliability are demanded.

  14. Forced oscillometry track sites of airway obstruction in bronchial asthma.

    PubMed

    Hafez, Manal Refaat; Abu-Bakr, Samiha Mohamed; Mohamed, Alyaa Abdelnaser

    2015-07-01

    Spirometry is the most commonly used method for assessment of airway function in bronchial asthma but has several limitations. Forced oscillometry was developed as a patient-friendly test that requires passive cooperation of the patient breathing normally through the mouth. To compare spirometry with forced oscillometry to assess the role of forced oscillometry in the detection of the site of airway obstruction. This case-and-control study included 50 patients with known stable asthma and 50 age- and sex-matched healthy subjects. All participants underwent spirometry (ratio of force expiration volume in 1 second to forced vital capacity, percentage predicted for forced expiration volume in 1 second, percentage predicted for forced vital capacity, percentage predicted for vital capacity, and forced expiratory flow at 25-75%) and forced oscillometry (resistance at 5, 20, and 5-20 Hz). By spirometry, all patients with asthma had airway obstruction, 8% had isolated small airway obstruction, 10% had isolated large airway obstruction, and 82% had large and small airway obstruction. By forced oscillometry, 12% had normal airway resistance, 50% had isolated small airway obstruction with frequency-dependent resistance, and 38% had large and small airway obstruction with frequency-independent resistance. There was significant difference between techniques for the detection of the site of airway obstruction (P = .012). Forced oscillometry indices were negatively correlated with spirometric indices (P < .01). Forced oscillometry as an effortless test, conducted during quiet tidal breathing, and does not alter airway caliber; thus, it can detect normal airway function better than spirometry in patients with asthma. Forced oscillometry detects isolated small airway obstruction better than spirometry in bronchial asthma. Copyright © 2015 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  15. Corticosteroid treatment inhibits airway hyperresponsiveness and lung injury in a murine model of chemical-induced airway inflammation.

    PubMed

    Wigenstam, Elisabeth; Jonasson, Sofia; Koch, Bo; Bucht, Anders

    2012-11-15

    Exposure to toxic alkylating mustard agents causes both acute and long-term effects to the lungs as indicated by increased number of inflammatory cells in airways, lung edema and lung tissue fibrosis. We have previously demonstrated that treatment with the corticosteroid dexamethasone 1 h after lung exposure to the nitrogen mustard analog melphalan protects mice from acute and sub-acute inflammatory responses, as well as from lung tissue fibrosis. In order to address the importance of early anti-inflammatory treatment, we investigated the therapeutic effect of dexamethasone administered 1, 2 or 6 h following exposure to melphalan. C57BL/6 mice were exposed to melphalan and treated with dexamethasone 1, 2 or 6 h after exposure. Twenty hours or 14 days post exposure mice were subjected to analysis of respiratory mechanics where the effects of incremental doses of methacholine on central and peripheral lung components were measured. We also determined the amount of inflammatory cells in the bronchoalveolar lavage fluid and measured the amount of collagen content in the lungs. Melphalan exposure increased airway hyperresponsiveness in both central and peripheral airways and induced an airway inflammation dominated by infiltration of macrophages and neutrophils. Dexamethasone given 1 h after exposure to melphalan provided better protection against airway inflammation than administration 2 or 6 h after exposure. Collagen deposition 14 days after exposure was decreased due to dexamethasone treatment. Early treatment with dexamethasone is important in order to reduce the airway hyperresponsiveness and inflammation caused by toxic alkylating mustards such as melphalan. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Management of the difficult airway.

    PubMed

    Schwartz, D E; Wiener-Kronish, J P

    1991-09-01

    For clinicians involved in airway management, a plan of action for dealing with the difficult airway or a failed intubation should be developed well in advance of encountering a patient in whom intubation is not routine. When difficulty is anticipated, the equipment necessary for performing a difficult intubation should be immediately available. It also is prudent to have a surgeon skilled in performing a tracheotomy and a criothyroidotomy stand by. The intubation should be attempted in the awake state, preferably using the fiberoptic bronchoscope. The more challenging situation is when the difficult airway is confronted unexpectedly. After the first failed attempt at laryngoscopy, head position should be checked and the patient ventilated with oxygen by mask. A smaller styletted tube and possibly a different laryngoscope blade should be selected for a second attempt at intubation. The fiberoptic bronchoscope and other equipment for difficult intubation should be obtained. A second attempt should then be made. If this is unsuccessful, the patient should be reoxygenated, and assistance including a skilled anesthesiologist and surgeon should be summoned. On a third attempt, traction to the tongue can be applied by an assistant, a tube changer could be used to enter the larynx, or one of the other special techniques previously described can be used. If this third attempt fails, it may be helpful to have a physician more experienced in airway management attempt intubation after oxygen has been administered to the patient. If all attempts are unsuccessful, then invasive techniques to secure the airway will have to be performed.

  17. Embolization of a spinal dural arteriovenous fistula with ethylene-vinyl alcohol copolymer (Onyx) using a dual-lumen microballoon catheter and buddy wire technique.

    PubMed

    Nakae, Ryuta; Nagaishi, Masaya; Hyodo, Akio; Suzuki, Kensuke

    2017-01-01

    N -butyl 2-cyanoacrylate (NBCA) remains the standard embolic agent for spinal dural arteriovenous fistula (SDAVF) treatment. Treatment of SDAVF with ethylene-vinyl alcohol copolymer (Onyx, ev3-Covidien, Irvine CA, USA) is currently not well established. Although several cases have reported the use of Onyx to embolize an intracranial dural arteriovenous fistula using a dual-lumen microballoon catheter, Onyx embolization of an SDAVF using a dual-lumen microballoon catheter has not been reported. We treated a 57-year-old man with an SDAVF using a dual-lumen microballoon catheter and buddy wire technique to perform transarterial Onyx embolization via the left sixth intercostal artery. Onyx embolization using a dual-lumen microballoon catheter was effective. Furthermore, the buddy wire technique was useful for providing rigid support of the microcatheter in a narrow and tortuous intercostal artery.

  18. Embolization of a spinal dural arteriovenous fistula with ethylene-vinyl alcohol copolymer (Onyx) using a dual-lumen microballoon catheter and buddy wire technique

    PubMed Central

    Nakae, Ryuta; Nagaishi, Masaya; Hyodo, Akio; Suzuki, Kensuke

    2017-01-01

    Background: N-butyl 2-cyanoacrylate (NBCA) remains the standard embolic agent for spinal dural arteriovenous fistula (SDAVF) treatment. Treatment of SDAVF with ethylene-vinyl alcohol copolymer (Onyx, ev3-Covidien, Irvine CA, USA) is currently not well established. Although several cases have reported the use of Onyx to embolize an intracranial dural arteriovenous fistula using a dual-lumen microballoon catheter, Onyx embolization of an SDAVF using a dual-lumen microballoon catheter has not been reported. Case Description: We treated a 57-year-old man with an SDAVF using a dual-lumen microballoon catheter and buddy wire technique to perform transarterial Onyx embolization via the left sixth intercostal artery. Conclusions: Onyx embolization using a dual-lumen microballoon catheter was effective. Furthermore, the buddy wire technique was useful for providing rigid support of the microcatheter in a narrow and tortuous intercostal artery. PMID:28840070

  19. Rupture rate and patterns of shell failure with the McGhan Style 153 double-lumen breast implant.

    PubMed

    Neaman, Keith C; Albert, Mark; Hammond, Dennis C

    2011-01-01

    In 2005, the McGhan Style 153 double-lumen breast implant was removed from the market secondary to a higher rupture rate when contrasted with other implants in the Core Study group. The high rupture rate was attributed to the development of a posterior tear in the shell where the inner implant is bonded to the posterior wall of the device. The purpose of this study was to report the existing rupture rate and describe the apparent mechanism of failure in the Style 153 double-lumen breast implant. Ninety-seven patients (157 implants) who received the McGhan Style 153 double-lumen breast implant by the senior author were reviewed. Intraoperative observations and photographic images of ruptured implants were reviewed and characterized based on severity and location of implant rupture. With a mean length of follow-up of greater than 6 years (82 months), the rupture rate was 19.1 percent per implant. Physical examination (60 percent) was the most common method of rupture detection. Ruptures tended to occur in the marginal aspect (63 percent) of the implant. Only three ruptures occurred secondary to a disruption of the inner bladder from the posterior portion of the implant. The rupture rate of the Style 153 double-lumen breast implant is higher than previously thought, with a rate of 19.1 percent. A majority of ruptures occurred in the peripheral aspects of the implant. It is postulated that these ruptures were likely secondary to fold flaws that led to failure of the implant shell.

  20. Educating the Educator: Teaching Airway Adjunct Techniques in Athletic Training

    ERIC Educational Resources Information Center

    Berry, David C.; Seitz, S. Robert

    2011-01-01

    The 5th edition of the "Athletic Training Education Competencies" ("Competencies") now requires athletic training educators (ATEs) to introduce into the curriculum various types of airway adjuncts including: (1) oropharyngeal airways (OPA), (2) nasopharyngeal airways (NPA), (3) supraglottic airways (SGA), and (4) suction. The addition of these…

  1. Athletic Trainers' Knowledge Regarding Airway Adjuncts

    ERIC Educational Resources Information Center

    Edler, Jessica R.; Eberman, Lindsey E.; Kahanov, Leamor; Roman, Christopher; Mata, Heather Lynne

    2015-01-01

    Context: Research suggests that knowledge gaps regarding the appropriate use of airway adjuncts exist among various health care practitioners, and that knowledge is especially limited within athletic training. Objective: To determine the relationship between perceived knowledge (PK) and actual knowledge (AK) of airway adjunct use and the…

  2. Airway hyperresponsiveness; smooth muscle as the principal actor

    PubMed Central

    Lauzon, Anne-Marie; Martin, James G.

    2016-01-01

    Airway hyperresponsiveness (AHR) is a defining characteristic of asthma that refers to the capacity of the airways to undergo exaggerated narrowing in response to stimuli that do not result in comparable degrees of airway narrowing in healthy subjects. Airway smooth muscle (ASM) contraction mediates airway narrowing, but it remains uncertain as to whether the smooth muscle is intrinsically altered in asthmatic subjects or is responding abnormally as a result of the milieu in which it sits. ASM in the trachea or major bronchi does not differ in its contractile characteristics in asthmatics, but the more pertinent peripheral airways await complete exploration. The mass of ASM is increased in many but not all asthmatics and therefore cannot be a unifying hypothesis for AHR, although when increased in mass it may contribute to AHR. The inability of a deep breath to reverse or prevent bronchial narrowing in asthma may reflect an intrinsic difference in the mechanisms that lead to softening of contracted ASM when subjected to stretch. Cytokines such as interleukin-13 and tumor necrosis factor-α promote a more contractile ASM phenotype. The composition and increased stiffness of the matrix in which ASM is embedded promotes a more proliferative and pro-inflammatory ASM phenotype, but the expected dedifferentiation and loss of contractility have not been shown. Airway epithelium may drive ASM proliferation and/or molecular remodeling in ways that may lead to AHR. In conclusion, AHR is likely multifactorial in origin, reflecting the plasticity of ASM properties in the inflammatory environment of the asthmatic airway. PMID:26998246

  3. Dietary sodium intake and the risk of airway hyperreactivity in a random adult population.

    PubMed Central

    Britton, J.; Pavord, I.; Richards, K.; Knox, A.; Wisniewski, A.; Weiss, S.; Tattersfield, A.

    1994-01-01

    BACKGROUND--High dietary sodium intake has been identified as a potential cause of asthma and airway hyperreactivity. This study was designed to test the hypothesis that dietary sodium intake is an independent determinant of the risk of hyperreactivity in the general population, and to assess the role of atopy in the association between these factors. METHODS--Airway reactivity to methacholine, atopy, 24 hour urinary sodium excretion, and self-reported smoking and symptom history were measured in a random sample of 1702 adults aged 18-70 from an administrative district of Nottingham. Hyperreactivity was defined as a PD20FEV1 of 12.25 mumol or less, and atopy was defined quantitatively as the mean allergen skin weal response to Dermatophagoides pteronyssinus, cat fur, and grass pollen, and categorically as the occurrence of any allergen response 1 mm or greater than the saline control. Multiple logistic regression analysis was used to estimate the independent relative odds of hyperreactivity, atopy, or symptoms in relation to sodium excretion in all 1702 subjects, and multiple linear regression to assess the independent relation between sodium excretion and mean allergen skin weal diameter, and the PD20 value amongst hyperreactive subjects. RESULTS--There was no relation between the relative odds of hyperreactivity to methacholine and 24 hour urinary sodium excretion, either before or after adjustment for age, smoking, allergen skin weal diameter, and sex, and similarly no relation if the analysis was restricted to men or women only. The relative odds of having at least one allergen skin test response 1 mm greater than the saline control were increased in relation to sodium excretion after adjustment for age, sex, and smoking by a ratio of 2.08 (95% CI 1.04 to 4.15) per log10 unit increase in sodium excretion, but there was no evidence of an association between sodium excretion and the occurrence of self-reported wheeze, hay fever, eczema, or asthma. There was no

  4. Mechanosensitive ATP Release Maintains Proper Mucus Hydration of Airways

    PubMed Central

    Button, Brian; Okada, Seiko F.; Frederick, Charles Brandon; Thelin, William R.; Boucher, Richard C.

    2013-01-01

    The clearance of mucus from the airways protects the lungs from inhaled noxious and infectious materials. Proper hydration of the mucus layer enables efficient mucus clearance through beating of cilia on airway epithelial cells, and reduced clearance of excessively concentrated mucus occurs in patients with chronic obstructive pulmonary disease and cystic fibrosis. Key steps in the mucus transport process are airway epithelia sensing and responding to changes in mucus hydration. We reported that extracellular adenosine triphosphate (ATP) and adenosine were important luminal auto-crine and paracrine signals that regulated the hydration of the surface of human airway epithelial cultures through their action on apical membrane purinoceptors. Mucus hydration in human airway epithelial cultures was sensed by an interaction between cilia and the overlying mucus layer: Changes in mechanical strain, proportional to mucus hydration, regulated ATP release rates, adjusting fluid secretion to optimize mucus layer hydration. This system provided a feedback mechanism by which airways maintained mucus hydration in an optimum range for cilia propulsion. Understanding how airway epithelia can sense and respond to changes in mucus properties helps us to understand how the mucus clearance system protects the airways in health and how it fails in lung diseases such as cystic fibrosis. PMID:23757023

  5. 75 FR 13079 - Action Affecting Export Privileges; MAHAN AIRWAYS; Mahan Airways, Mahan Tower, No. 21, Azadegan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... AIRWAYS; Mahan Airways, Mahan Tower, No. 21, Azadegan St., M.A. Jenah Exp. Way, Tehran, Iran, Respondent... prohibited by the EAR by knowingly re-exporting to Iran three U.S.-origin aircraft, specifically Boeing 747s... (``Aircraft 4-6'') to Iran. As more fully discussed in the September 17, 2008 TDO Renewal Order, evidence...

  6. [A comparison of various supraglottic airway devices for fiberoptical guided tracheal intubation].

    PubMed

    Metterlein, Thomas; Dintenfelder, Anna; Plank, Christoph; Graf, Bernhard; Roth, Gabriel

    Fiberoptical assisted intubation via placed supraglottic airway devices has been described as safe and easy procedure to manage difficult airways. However visualization of the glottis aperture is essential for fiberoptical assisted intubation. Various different supraglottic airway devices are commercially available and might offer different conditions for fiberoptical assisted intubation. The aim of this study was to compare the best obtainable view of the glottic aperture using different supraglottic airway devices. With approval of the local ethics committee 52 adult patients undergoing elective anesthesia were randomly assigned to a supraglottic airway device (Laryngeal Tube, Laryngeal Mask Airway I-Gel, Laryngeal Mask Airway Unique, Laryngeal Mask Airway Supreme, Laryngeal Mask Airway Aura-once). After standardized induction of anaesthesia the supraglottic airway device was placed according to the manufacturers recommendations. After successful ventilation the position of the supraglottic airway device in regard to the glottic opening was examined with a flexible fiberscope. A fully or partially visible glottic aperture was considered as suitable for fiberoptical assisted intubation. Suitability for fiberoptical assisted intubation was compared between the groups (H-test, U-test; p<0.05). Demographic data was not different between the groups. Placement of the supraglottic airway device and adequate ventilation was successful in all attempts. Glottic view suitable for fiberoptical assisted intubation differed between the devices ranging from 40% for the laringeal tube (LT), 66% for the laryngeal mask airway Supreme, 70% for the Laryngeal Mask Airway I-Gel and 90% for both the Laryngeal Mask Airway Unique and the Laryngeal Mask Airway Aura-once. None of the used supraglottic airway devices offered a full or partial glottic view in all cases. However the Laryngeal Mask Airway Unique and the Laryngeal Mask Airway Aura-once seem to be more suitable for fiberoptical

  7. A comparison of various supraglottic airway devices for fiberoptical guided tracheal intubation.

    PubMed

    Metterlein, Thomas; Dintenfelder, Anna; Plank, Christoph; Graf, Bernhard; Roth, Gabriel

    Fiberoptical assisted intubation via placed supraglottic airway devices has been described as safe and easy procedure to manage difficult airways. However visualization of the glottis aperture is essential for fiberoptical assisted intubation. Various different supraglottic airway devices are commercially available and might offer different conditions for fiberoptical assisted intubation. The aim of this study was to compare the best obtainable view of the glottic aperture using different supraglottic airway devices. With approval of the local ethics committee 52 adult patients undergoing elective anesthesia were randomly assigned to a supraglottic airway device (Laryngeal Tube, Laryngeal Mask Airway I-Gel, Laryngeal Mask Airway Unique, Laryngeal Mask Airway Supreme, Laryngeal Mask Airway Aura-once). After standardized induction of anesthesia the supraglottic airway device was placed according to the manufacturers recommendations. After successful ventilation the position of the supraglottic airway device in regard to the glottic opening was examined with a flexible fiberscope. A fully or partially visible glottic aperture was considered as suitable for fiberoptical assisted intubation. Suitability for fiberoptical assisted intubation was compared between the groups (H-test, U-test; p<0.05). Demographic data was not different between the groups. Placement of the supraglottic airway device and adequate ventilation was successful in all attempts. Glottic view suitable for fiberoptical assisted intubation differed between the devices ranging from 40% for the laringeal tube (LT), 66% for the laryngeal mask airway Supreme, 70% for the Laryngeal Mask Airway I-Gel and 90% for both the Laryngeal Mask Airway Unique and the Laryngeal Mask Airway Aura-once. None of the used supraglottic airway devices offered a full or partial glottic view in all cases. However the Laryngeal Mask Airway Unique and the Laryngeal Mask Airway Aura-once seem to be more suitable for fiberoptical

  8. Nitrogen Dioxide Exposure and Airway Responsiveness in ...

    EPA Pesticide Factsheets

    Controlled human exposure studies evaluating the effect of inhaled NO2 on the inherent responsiveness of the airways to challenge by bronchoconstricting agents have had mixed results. In general, existing meta-analyses show statistically significant effects of NO2 on the airway responsiveness of individuals with asthma. However, no meta-analysis has provided a comprehensive assessment of clinical relevance of changes in airway responsiveness, the potential for methodological biases in the original papers, and the distribution of responses. This paper provides analyses showing that a statistically significant fraction, 70% of individuals with asthma exposed to NO2 at rest, experience increases in airway responsiveness following 30-minute exposures to NO2 in the range of 200 to 300 ppb and following 60-minute exposures to 100 ppb. The distribution of changes in airway responsiveness is log-normally distributed with a median change of 0.75 (provocative dose following NO2 divided by provocative dose following filtered air exposure) and geometric standard deviation of 1.88. About a quarter of the exposed individuals experience a clinically relevant reduction in their provocative dose due to NO2 relative to air exposure. The fraction experiencing an increase in responsiveness was statistically significant and robust to exclusion of individual studies. Results showed minimal change in airway responsiveness for individuals exposed to NO2 during exercise. A variety of fa

  9. Interventions designed using quality improvement methods reduce the incidence of serious airway events and airway cardiac arrests during pediatric anesthesia.

    PubMed

    Spaeth, James P; Kreeger, Renee; Varughese, Anna M; Wittkugel, Eric

    2016-02-01

    Although serious complications during pediatric anesthesia are less common than they were 20 years ago, serious airway events continue to occur. Based on Quality Improvement (QI) data from our institution, a QI project was designed to reduce the incidence of serious airway events and airway cardiac arrests. A quality improvement team consisting of members of the Department of Anesthesia was formed and QI data from previous years were analyzed. The QI team developed a Smart Aim, Key Driver Diagram, and specific Interventions that focused on the accessibility of emergency drugs, the use of nondepolarizing muscle relaxants for endotracheal intubation in children 2 years and younger, and the presence of anesthesia providers until emergence from anesthesia in high-risk patients. The percentage of cases where muscle relaxants were utilized in children 2 years and younger for endotracheal intubation and where atropine and succinylcholine were readily available increased at both our base and outpatient facilities. Over the 2.5-year study period, the incidence of serious airway events and airway cardiac arrests was reduced by 44% and 59%, respectively compared to the previous 2-year period. We utilized QI methodology to design and implement a project which led to greater standardization of clinical practice within a large pediatric anesthesia group. Based on an understanding of system issues impacting our clinical practice, we designed and tested interventions that led to a significant reduction in the incidence of serious airway events and airway cardiac arrests. © 2015 John Wiley & Sons Ltd.

  10. Effect of Continuous Positive Airway Pressure on Airway Reactivity in Asthma. A Randomized, Sham-controlled Clinical Trial

    PubMed Central

    Sugar, Elizabeth A.; Brown, Robert H.; Drye, Lea T.; Irvin, Charles G.; Schwartz, Alan R.; Tepper, Robert S.; Wise, Robert A.; Yasin, Razan Z.; Busk, Michael F.

    2016-01-01

    Rationale: Studies have demonstrated that application of stress suppresses airway smooth muscle contractility. In animal models of asthma, continuous positive airway pressure (CPAP) reduced airway reactivity. Short-term studies of CPAP in patients with asthma showed reductions in airway reactivity. Objectives: To evaluate whether nocturnal CPAP decreased the provocative concentration of methacholine to reduce FEV1 by 20% (PC20). Methods: One hundred ninety-four individuals with asthma were randomized (1:1:1) to use CPAP with warmed, filtered, humidified air at night at pressures either less than 1 cm H2O (sham) or at 5 cm H2O or 10 cm H2O. The primary outcome was change in PC20 after 12 weeks. Measurements and Main Results: Adherence to CPAP was low in all groups. Regardless, all groups had a significant improvement in PC20, with 12 weeks/baseline PC20 ratios of 2.12, 1.73, and 1.78 for the sham, 5 cm H2O, and 10 cm H2O groups, respectively, and no significant differences between the active and sham groups. Changes in FEV1 and exhaled nitric oxide were minimal in all groups. The sham group had larger improvements in most patient-reported outcomes measuring asthma symptoms and quality of life, as well as sinus symptoms, than the 5 cm H2O group. The 10 cm H2O group showed similar but less consistent improvements in scores, which were not different from improvements in the sham group. Conclusions: Adherence to nocturnal CPAP was low. There was no evidence to support positive pressure as being effective for reducing airway reactivity in people with well-controlled asthma. Regardless, airway reactivity was improved in all groups, which may represent an effect of participating in a study and/or an effect of warm, humid, filtered air on airway reactivity. Clinical trial registered with www.clinicaltrials.gov (NCT01629823). PMID:27398992

  11. Infection-induced airway fibrosis in two rat strains with differential susceptibility.

    PubMed Central

    McIntosh, J C; Simecka, J W; Ross, S E; Davis, J K; Miller, E J; Cassell, G H

    1992-01-01

    Chronic infections play a significant role in the morbidity and mortality of patients with chronic airflow limitation. By stimulating airway inflammation, persistent infection has the potential to cause airway fibrosis. However, in patient this condition is most typically found in lungs damaged by other factors, such as smoking, abnormal secretions, or barotrauma. We report the characterization of Mycoplasma pulmonis infection-induced lung fibrosis in two immunocompetent rat strains with no preexisting lung disease. The fibrosis was predominantly in the airways, as demonstrated by the findings for infected animals of increased airway inflammation, airway fibrosis, and airway wall thickness, which correlated with the collagen content of the lungs. Also, the physiological alterations were the opposite of those found in interstitial fibrosis, with a positive correlation between lung compliance and collagen content. The airway fibrosis was noted earlier and to a greater extent in Lewis rats than in Fisher rats, and this result apparently was related to regulation of the inflammatory response. Airway wall thickness, airway inflammation, and airway fibrosis are commonly reported in tissue specimens from patients with chronic airway diseases and have been shown to correlate with airflow limitation in patients with chronic obstructive pulmonary disease. Thus, this model may be useful in furthering our understanding of the role of chronic infection and airway inflammation in airflow obstruction. Images PMID:1612760

  12. Infectious mononucleosis and bilateral peritonsillar abscesses resulting in airway obstruction.

    PubMed

    Burstin, P P; Marshall, C L

    1998-12-01

    Upper airway obstruction is an uncommon but recognized complication of infectious mononucleosis. The management depends upon the degree of airway compromise. In the case described, severe airway obstruction was treated by securing the airway with awake fibre-optic endoscopic intubation and then proceeding to tonsillectomy. Bilateral inferiorly loculated quinsies were encountered unexpectedly and drained. This is the first report of 'bilateral' quinsies, associated with infectious mononucleosis and severe airway obstruction. The association, pathogenesis and significance of this finding are also discussed.

  13. Removal of obstructing T-tube and stabilization of the airway.

    PubMed

    Athavale, Sanjay M; Dang, Jennifer; Rangarajan, Sanjeet; Garrett, Gaelyn

    2011-05-01

    Although they are extremely effective in maintaining tracheal and subglottic patency, T-tubes themselves can result in airway obstruction from plugging. Many practitioners educate patients on placing a small (5.0) endotracheal tube (ETT) through the tracheal limb of the T-tube if they develop airway obstruction. Unfortunately, this can be a difficult task to complete during acute airway obstruction. In this article, we describe a simple set of steps for rapid relief of airway obstruction and stabilization of the airway in the event of T-tube obstruction. This method requires removal of the T-tube with a Kelly clamp and stabilization of the airway with a tracheostomy tube. Although it is simple, we hope that this technique will prevent morbidity and mortality from acute airway obstructions related to T-tubes. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  14. Computational Flow Modeling of Human Upper Airway Breathing

    NASA Astrophysics Data System (ADS)

    Mylavarapu, Goutham

    Computational modeling of biological systems have gained a lot of interest in biomedical research, in the recent past. This thesis focuses on the application of computational simulations to study airflow dynamics in human upper respiratory tract. With advancements in medical imaging, patient specific geometries of anatomically accurate respiratory tracts can now be reconstructed from Magnetic Resonance Images (MRI) or Computed Tomography (CT) scans, with better and accurate details than traditional cadaver cast models. Computational studies using these individualized geometrical models have advantages of non-invasiveness, ease, minimum patient interaction, improved accuracy over experimental and clinical studies. Numerical simulations can provide detailed flow fields including velocities, flow rates, airway wall pressure, shear stresses, turbulence in an airway. Interpretation of these physical quantities will enable to develop efficient treatment procedures, medical devices, targeted drug delivery etc. The hypothesis for this research is that computational modeling can predict the outcomes of a surgical intervention or a treatment plan prior to its application and will guide the physician in providing better treatment to the patients. In the current work, three different computational approaches Computational Fluid Dynamics (CFD), Flow-Structure Interaction (FSI) and Particle Flow simulations were used to investigate flow in airway geometries. CFD approach assumes airway wall as rigid, and relatively easy to simulate, compared to the more challenging FSI approach, where interactions of airway wall deformations with flow are also accounted. The CFD methodology using different turbulence models is validated against experimental measurements in an airway phantom. Two case-studies using CFD, to quantify a pre and post-operative airway and another, to perform virtual surgery to determine the best possible surgery in a constricted airway is demonstrated. The unsteady

  15. Estimation of Scatterer Diameter by Normalized Power Spectrum of High-Frequency Ultrasonic RF Echo for Assessment of Red Blood Cell Aggregation

    NASA Astrophysics Data System (ADS)

    Fukushima, Taku; Hasegawa, Hideyuki; Kanai, Hiroshi

    2011-07-01

    Red blood cell (RBC) aggregation, as one of the determinants of blood viscosity, plays an important role in blood rheology, including the condition of blood. RBC aggregation is induced by the adhesion of RBCs when the electrostatic repulsion between RBCs weakens owing to increases in protein and saturated fatty acid levels in blood, excessive RBC aggregation leads to various circulatory diseases. This study was conducted to establish a noninvasive quantitative method for assessment of RBC aggregation. The power spectrum of ultrasonic RF echoes from nonaggregating RBCs, which shows the frequency property of scattering, exhibits Rayleigh behavior. On the other hand, ultrasonic RF echoes from aggregating RBCs contain the components of reflection, which have no frequency dependence. By dividing the measured power spectrum of echoes from RBCs in the lumen by that of echoes from a posterior wall of the vein in the dorsum manus, the attenuation property of the propagating medium and the frequency responses of transmitting and receiving transducers are removed from the former spectrum. RBC aggregation was assessed by the diameter of a scatterer, which was estimated by minimizing the square difference between the measured normalized power spectrum and the theoretical power spectrum. In this study, spherical scatterers with diameters of 5, 11, 15, and 30 µm were measured in basic experiments. The estimated scatterer diameters were close to the actual diameters. Furthermore, the transient change of the scatterer diameters were measured in an in vivo experiment with respect to a 24-year-old healthy male during the avascularization using a cuff. The estimated diameters (12-22 µm) of RBCs during avascularization were larger than the diameters (4-8 µm) at rest and after recirculation. These results show the possibility of the use of the proposed method for noninvasive assessment of RBC aggregation.

  16. DEVELOPMENT OF THE SMALL AIRWAYS AND ALVEOLI FROM CHILDHOOD TO ADULT LUNG MEASURED BY AEROSOL-DERIVED AIRWAY MORPHOMETRY

    EPA Science Inventory

    Understanding the human development of pulmonary airspaces is important for calculating the dose from exposure to inhaled materials as a function of age. We have measured, in vivo, the airspace caliber of the small airways and alveoli by aerosol-derived airway morphometry (ADAM) ...

  17. Central Airway Obstruction: Benign Strictures, Tracheobronchomalacia, and Malignancy-related Obstruction.

    PubMed

    Murgu, Septimiu Dan; Egressy, Katarine; Laxmanan, Balaji; Doblare, Guillermo; Ortiz-Comino, Rosamaria; Hogarth, D Kyle

    2016-08-01

    The purpose of this article is to provide an update on methods for palliating symptoms in patients with histologically benign and malignant central airway obstruction. We review the published literature within the past decade on postintubation, posttracheostomy, and TB- and transplant-related airway strictures; tracheobronchomalacia; and malignant airway obstruction. We review terminology, classification systems, and parameters that impact treatment decisions. The focus is on how airway stent insertion fits into the best algorithm of care. Several case series and cohort studies demonstrate that airway stents improve dyspnea, lung function, and quality of life in patients with airway obstruction. Airway stenting, however, is associated with high rates of adverse events and should be used only when curative open surgical interventions are not feasible or are contraindicated. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  18. Prehospital airway management on rescue helicopters in the United Kingdom.

    PubMed

    Schmid, M; Mang, H; Ey, K; Schüttler, J

    2009-06-01

    Adequate equipment is one prerequisite for advanced, out of hospital, airway management. There are no data on current availability of airway equipment on UK rescue helicopters. An internet search revealed all UK rescue helicopters, and a questionnaire was sent to the bases asking for available airway management items. We identified 27 helicopter bases and 26 (96%) sent the questionnaire back. Twenty-four bases (92%) had at least one supraglottic airway device; 16 (62%) helicopters had material for establishing a surgical airway (e.g. a cricothyroidotomy set); 88% of the helicopters had CO(2) detection; 25 (96%) helicopters carried automatic ventilators; among these, four (15%) had sophisticated ventilators and seven (27%) helicopters carried special face masks suitable for non-invasive ventilation. We found a wide variation in the advanced airway management equipment that was carried routinely on air ambulances. Current guidelines for airway management are not met by all UK air ambulances.

  19. CT-assessed large airway involvement and lung function decline in eosinophilic asthma: The association between induced sputum eosinophil differential counts and airway remodeling.

    PubMed

    Inoue, Hideki; Ito, Isao; Niimi, Akio; Matsumoto, Hisako; Matsuoka, Hirofumi; Jinnai, Makiko; Takeda, Tomoshi; Oguma, Tsuyoshi; Otsuka, Kojiro; Nakaji, Hitoshi; Tajiri, Tomoko; Iwata, Toshiyuki; Nagasaki, Tadao; Kanemitsu, Yoshihiro; Mishima, Michiaki

    2016-11-01

    Eosinophilic asthma (EA) is a distinct clinical phenotype characterized by eosinophilic airway inflammation and airway remodeling. Few studies have used computed tomography (CT) scanning to assess the association between sputum eosinophil differential counts and airway involvement. We aimed to investigate the clinical characteristics and airway involvement of EA, and to examine the correlation between induced sputum eosinophil differential counts and CT-assessed airway remodeling. We retrospectively divided 63 patients with stable asthma receiving inhaled corticosteroids into 2 groups: 26 patients with EA (sputum eosinophil >3%) and 37 patients with non-eosinophilic asthma (NEA). Clinical measurements such as spirometry, fractional exhaled nitric oxide levels (FeNO), and CT-assessed indices of airway involvement were compared between the groups. Multivariate analysis was performed to identify determinants of the percentage of wall area (WA%). The EA group had significantly longer asthma duration, lower pulmonary function, and higher FeNO than the NEA group. Also, the EA group had higher WA% and smaller airway luminal area than the NEA group. Sputum eosinophil differential counts and WA% were positively correlated. The multivariate linear regression analysis showed that the factors associated with WA% included sputum eosinophil differential counts, age, and body mass index. However, asthma duration was not associated with WA%. Our CT-assessed findings demonstrated large airway involvement in EA, and we observed a positive association between induced sputum eosinophil differential counts and WA%. The findings indicate that induced sputum eosinophil differential counts may be associated with airway remodeling in patients with stable asthma.

  20. Airway exchange of highly soluble gases.

    PubMed

    Hlastala, Michael P; Powell, Frank L; Anderson, Joseph C

    2013-03-01

    Highly blood soluble gases exchange with the bronchial circulation in the airways. On inhalation, air absorbs highly soluble gases from the airway mucosa and equilibrates with the blood before reaching the alveoli. Highly soluble gas partial pressure is identical throughout all alveoli. At the end of exhalation the partial pressure of a highly soluble gas decreases from the alveolar level in the terminal bronchioles to the end-exhaled partial pressure at the mouth. A mathematical model simulated the airway exchange of four gases (methyl isobutyl ketone, acetone, ethanol, and propylene glycol monomethyl ether) that have high water and blood solubility. The impact of solubility on the relative distribution of airway exchange was studied. We conclude that an increase in water solubility shifts the distribution of gas exchange toward the mouth. Of the four gases studied, ethanol had the greatest decrease in partial pressure from the alveolus to the mouth at end exhalation. Single exhalation breath tests are inappropriate for estimating alveolar levels of highly soluble gases, particularly for ethanol.

  1. Airway exchange of highly soluble gases

    PubMed Central

    Powell, Frank L.; Anderson, Joseph C.

    2013-01-01

    Highly blood soluble gases exchange with the bronchial circulation in the airways. On inhalation, air absorbs highly soluble gases from the airway mucosa and equilibrates with the blood before reaching the alveoli. Highly soluble gas partial pressure is identical throughout all alveoli. At the end of exhalation the partial pressure of a highly soluble gas decreases from the alveolar level in the terminal bronchioles to the end-exhaled partial pressure at the mouth. A mathematical model simulated the airway exchange of four gases (methyl isobutyl ketone, acetone, ethanol, and propylene glycol monomethyl ether) that have high water and blood solubility. The impact of solubility on the relative distribution of airway exchange was studied. We conclude that an increase in water solubility shifts the distribution of gas exchange toward the mouth. Of the four gases studied, ethanol had the greatest decrease in partial pressure from the alveolus to the mouth at end exhalation. Single exhalation breath tests are inappropriate for estimating alveolar levels of highly soluble gases, particularly for ethanol. PMID:23305981

  2. Use of a retrievable metallic stent internally coated with silicone to treat airway obstruction.

    PubMed

    Kim, Jin Hyoung; Shin, Ji Hoon; Song, Ho-Young; Lee, Se Chul; Kim, Kyung Rae; Park, Jung-Hoon

    2008-08-01

    The authors hypothesized that internally covered stents can reduce the rates of stent migration or mucous retention. The authors performed this study to report their experience with use of a retrievable metallic stent internally coated with silicone in patients with benign or malignant central airway obstructions. From 2004 to 2007, the authors performed fluoroscopically guided placement of a retrievable metallic stent internally coated with silicone in 26 consecutive patients with benign (n = 5) and malignant (n = 21) central airway obstructions. Stents were woven from a single thread of a 0.2-mm-diameter nitinol wire in a tubular configuration and internally covered with silicone membrane. Stent placement was technically and clinically successful in 93% (25/26) and 85% (22/26) of the patients, respectively. There were eight complications (31%) after stent placement, including tumor overgrowth (n = 2), stent migration (n = 1), symptomatic granulation tissue formation (n = 1), severe pain (n = 1), improper stent location (n = 1), symptomatic sputum retention (n = 1) and esophagobronchial fistula (n = 1). Because of complications, five stents were removed with a retrieval hook under fluoroscopic guidance without difficulty. The median survival period and stent patency were 150.0 days +/- 91.4 and 143.0 days +/- 26.7, respectively. The use of a retrievable metallic stent internally coated with silicone is a safe and effective method for relieving dyspnea, with adequate stent patency in patients with benign or malignant central airway obstructions. This stent design seems to be less prone to migration or mucous retention.

  3. [Helium-Oxigen (Heliox) mixture in airway obstruction

    PubMed

    Ulhôa, C A; Larner, L

    2000-01-01

    OBJECTIVE: Demonstrate the effectiveness and the good outcome of the patients treated with helium-oxygen (Heliox) mixture. This mixture (Heliox) has been used in patients with airway obstruction, from different ethiologies, who did not respond to a conventional treatment with oxygen. METHODS: Case report of five patients that received Heliox as treatment for airway obstruction. All of them had good results without side effects during the treatment. CONCLUSION: Heliox is a promising treatment for severe airway obstruction with good results in a short period of time, until the final treatment is established.

  4. Decreased airway narrowing and smooth muscle contraction in hyperresponsive pigs.

    PubMed

    Turner, Debra J; Noble, Peter B; Lucas, Matthew P; Mitchell, Howard W

    2002-10-01

    Increased smooth muscle contractility or reduced smooth muscle mechanical loads could account for the excessive airway narrowing and hyperresponsiveness seen in asthma. These mechanisms were investigated by using an allergen-induced porcine model of airway hyperresponsiveness. Airway narrowing to electric field stimulation was measured in isolated bronchial segments, over a range of transmural pressures (0-20 cmH(2)O). Contractile responses to ACh were measured in bronchial segments and in isolated tracheal smooth muscle strips isolated from control and test (ovalbumin sensitized and challenged) pigs. Test airways narrowed less than controls (P < 0.0001). Test pigs showed reduced contractility to ACh, both in isolated bronchi (P < 0.01) and smooth muscle strips (P < 0.01). Thus isolated airways from pigs exhibiting airway hyperresponsiveness in vivo are hyporesponsive in vitro. The decreased narrowing in bronchi from hyperresponsive pigs may be related to decreased smooth muscle contractility. These data suggest that mechanisms external to the airway wall may be important to the hyperresponsive nature of sensitized lungs.

  5. Role of IRE1α/XBP-1 in Cystic Fibrosis Airway Inflammation

    PubMed Central

    Ribeiro, Carla M. P.; Lubamba, Bob A.

    2017-01-01

    Cystic fibrosis (CF) pulmonary disease is characterized by chronic airway infection and inflammation. The infectious and inflamed CF airway environment impacts on the innate defense of airway epithelia and airway macrophages. The CF airway milieu induces an adaptation in these cells characterized by increased basal inflammation and a robust inflammatory response to inflammatory mediators. Recent studies have indicated that these responses depend on activation of the unfolded protein response (UPR). This review discusses the contribution of airway epithelia and airway macrophages to CF airway inflammatory responses and specifically highlights the functional importance of the UPR pathway mediated by IRE1/XBP-1 in these processes. These findings suggest that targeting the IRE1/XBP-1 UPR pathway may be a therapeutic strategy for CF airway disease. PMID:28075361

  6. Computational modeling and prototyping of a pediatric airway management instrument.

    PubMed

    Gonzalez-Cota, Alan; Kruger, Grant H; Raghavan, Padmaja; Reynolds, Paul I

    2010-09-01

    Anterior retraction of the tongue is used to enhance upper airway patency during pediatric fiberoptic intubation. This can be achieved by the use of Magill forceps as a tongue retractor, but lingual grip can become unsteady and traumatic. Our objective was to modify this instrument using computer-aided engineering for the purpose of stable tongue retraction. We analyzed the geometry and mechanical properties of standard Magill forceps with a combination of analytical and empirical methods. This design was captured using computer-aided design techniques to obtain a 3-dimensional model allowing further geometric refinements and mathematical testing for rapid prototyping. On the basis of our experimental findings we adjusted the design constraints to optimize the device for tongue retraction. Stereolithography prototyping was used to create a partially functional plastic model to further assess the functional and ergonomic effectiveness of the design changes. To reduce pressure on the tongue by regular Magill forceps, we incorporated (1) a larger diameter tip for better lingual tissue pressure profile, (2) a ratchet to stabilize such pressure, and (3) a soft molded tip with roughened surface to improve grip. Computer-aided engineering can be used to redesign and prototype a popular instrument used in airway management. On a computational model, our modified Magill forceps demonstrated stable retraction forces, while maintaining the original geometry and versatility. Its application in humans and utility during pediatric fiberoptic intubation are yet to be studied.

  7. SUBCHRONIC ENDOTOXIN INHALATION CAUSES PERSISTENT AIRWAY DISEASE

    EPA Science Inventory

    ABSTRACT

    The endotoxin component of organic dusts causes acute reversible airflow obstruction and airway inflammation. To test the hypothesis that endotoxin alone causes airway remodeling, we have compared the response of two inbred mouse strains to subchronic endotoxin ...

  8. Are prehospital airway management resources compatible with difficult airway algorithms? A nationwide cross-sectional study of helicopter emergency medical services in Japan.

    PubMed

    Ono, Yuko; Shinohara, Kazuaki; Goto, Aya; Yano, Tetsuhiro; Sato, Lubna; Miyazaki, Hiroyuki; Shimada, Jiro; Tase, Choichiro

    2016-04-01

    Immediate access to the equipment required for difficult airway management (DAM) is vital. However, in Japan, data are scarce regarding the availability of DAM resources in prehospital settings. The purpose of this study was to determine whether Japanese helicopter emergency medical services (HEMS) are adequately equipped to comply with the DAM algorithms of Japanese and American professional anesthesiology societies. This nationwide cross-sectional study was conducted in May 2015. Base hospitals of HEMS were mailed a questionnaire about their airway management equipment and back-up personnel. Outcome measures were (1) call for help, (2) supraglottic airway device (SGA) insertion, (3) verification of tube placement using capnometry, and (4) the establishment of surgical airways, all of which have been endorsed in various airway management guidelines. The criteria defining feasibility were the availability of (1) more than one physician, (2) SGA, (3) capnometry, and (4) a surgical airway device in the prehospital setting. Of the 45 HEMS base hospitals questioned, 42 (93.3 %) returned completed questionnaires. A surgical airway was practicable by all HEMS. However, in the prehospital setting, back-up assistance was available in 14.3 %, SGA in 16.7 %, and capnometry in 66.7 %. No HEMS was capable of all four steps. In Japan, compliance with standard airway management algorithms in prehospital settings remains difficult because of the limited availability of alternative ventilation equipment and back-up personnel. Prehospital health care providers need to consider the risks and benefits of performing endotracheal intubation in environments not conducive to the success of this procedure.

  9. Mechanisms of mechanical strain memory in airway smooth muscle.

    PubMed

    Kim, Hak Rim; Hai, Chi-Ming

    2005-10-01

    We evaluated the hypothesis that mechanical deformation of airway smooth muscle induces structural remodeling of airway smooth muscle cells, thereby modulating mechanical performance in subsequent contractions. This hypothesis implied that past experience of mechanical deformation was retained (or "memorized") as structural changes in airway smooth muscle cells, which modulated the cell's subsequent contractile responses. We termed this phenomenon mechanical strain memory. Preshortening has been found to induce attenuation of both force and isotonic shortening velocity in cholinergic receptor-activated airway smooth muscle. Rapid stretching of cholinergic receptor-activated airway smooth muscle from an initial length to a final length resulted in post-stretch force and myosin light chain phosphorylation that correlated significantly with initial length. Thus post-stretch muscle strips appeared to retain memory of the initial length prior to rapid stretch (mechanical strain memory). Cytoskeletal recruitment of actin- and integrin-binding proteins and Erk 1/2 MAPK appeared to be important mechanisms of mechanical strain memory. Sinusoidal length oscillation led to force attenuation during oscillation and in subsequent contractions in intact airway smooth muscle, and p38 MAPK appeared to be an important mechanism. In contrast, application of local mechanical strain to cultured airway smooth muscle cells induced local actin polymerization and cytoskeletal stiffening. It is conceivable that deep inspiration-induced bronchoprotection may be a manifestation of mechanical strain memory such that mechanical deformation from past breathing cycles modulated the mechanical performance of airway smooth muscle in subsequent cycles in a continuous and dynamic manner.

  10. Airway driving pressure and lung stress in ARDS patients.

    PubMed

    Chiumello, Davide; Carlesso, Eleonora; Brioni, Matteo; Cressoni, Massimo

    2016-08-22

    Lung-protective ventilation strategy suggests the use of low tidal volume, depending on ideal body weight, and adequate levels of PEEP. However, reducing tidal volume according to ideal body weight does not always prevent overstress and overstrain. On the contrary, titrating mechanical ventilation on airway driving pressure, computed as airway pressure changes from PEEP to end-inspiratory plateau pressure, equivalent to the ratio between the tidal volume and compliance of respiratory system, should better reflect lung injury. However, possible changes in chest wall elastance could affect the reliability of airway driving pressure. The aim of this study was to evaluate if airway driving pressure could accurately predict lung stress (the pressure generated into the lung due to PEEP and tidal volume). One hundred and fifty ARDS patients were enrolled. At 5 and 15 cmH2O of PEEP, lung stress, driving pressure, lung and chest wall elastance were measured. The applied tidal volume (mL/kg of ideal body weight) was not related to lung gas volume (r (2) = 0.0005 p = 0.772). Patients were divided according to an airway driving pressure lower and equal/higher than 15 cmH2O (the lower and higher airway driving pressure groups). At both PEEP levels, the higher airway driving pressure group had a significantly higher lung stress, respiratory system and lung elastance compared to the lower airway driving pressure group. Airway driving pressure was significantly related to lung stress (r (2) = 0.581 p < 0.0001 and r (2) = 0.353 p < 0.0001 at 5 and 15 cmH2O of PEEP). For a lung stress of 24 and 26 cmH2O, the optimal cutoff value for the airway driving pressure were 15.0 cmH2O (ROC AUC 0.85, 95 % CI = 0.782-0.922); and 16.7 (ROC AUC 0.84, 95 % CI = 0.742-0.936). Airway driving pressure can detect lung overstress with an acceptable accuracy. However, further studies are needed to establish if these limits could be used for ventilator settings.

  11. Airway disease phenotypes in animal models of cystic fibrosis.

    PubMed

    McCarron, Alexandra; Donnelley, Martin; Parsons, David

    2018-04-02

    In humans, cystic fibrosis (CF) lung disease is characterised by chronic infection, inflammation, airway remodelling, and mucus obstruction. A lack of pulmonary manifestations in CF mouse models has hindered investigations of airway disease pathogenesis, as well as the development and testing of potential therapeutics. However, recently generated CF animal models including rat, ferret and pig models demonstrate a range of well characterised lung disease phenotypes with varying degrees of severity. This review discusses the airway phenotypes of currently available CF animal models and presents potential applications of each model in airway-related CF research.

  12. Infectious mononucleosis presenting as upper airway obstruction.

    PubMed

    Jain, Vivek; Singhi, Sunit; Desai, Ravi V

    2003-01-01

    Upper airway obstruction though a common complication of infectious mononucleosis is rarely considered in differential diagnosis of stridor. We report a three-year-old child who had upper airway obstruction due to infectious mononucleosis, managed conservatively with oxygen, intravenous fluids and steroids.

  13. How the airway smooth muscle in cystic fibrosis reacts in proinflammatory conditions: implications for airway hyper-responsiveness and asthma in cystic fibrosis.

    PubMed

    McCuaig, Sarah; Martin, James G

    2013-04-01

    Among patients with cystic fibrosis there is a high prevalence (40-70%) of asthma signs and symptoms such as cough and wheezing and airway hyper-responsiveness to inhaled histamine or methacholine. Whether these abnormal airway responses are due to a primary deficiency in the cystic fibrosis transmembrane conductance regulator (CFTR) or are secondary to the inflammatory environment in the cystic fibrosis lungs is not clear. A role for the CFTR in smooth muscle function is emerging, and alterations in contractile signalling have been reported in CFTR-deficient airway smooth muscle. Persistent bacterial infection, especially with Pseudomonas aeruginosa, stimulates interleukin-8 release from the airway epithelium, resulting in neutrophilic inflammation. Increased neutrophilia and skewing of CFTR-deficient T-helper cells to type 2 helper T cells creates an inflammatory environment characterised by high concentrations of tumour necrosis factor α, interleukin-8, and interleukin-13, which might all contribute to increased contractility of airway smooth muscle in cystic fibrosis. An emerging role of interleukin-17, which is raised in patients with cystic fibrosis, in airway smooth muscle proliferation and hyper-responsiveness is apparent. Increased understanding of the molecular mechanisms responsible for the altered smooth muscle physiology in patients with cystic fibrosis might provide insight into airway dysfunction in this disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Double stenting with silicone and metallic stents for malignant airway stenosis.

    PubMed

    Matsumoto, Keitaro; Yamasaki, Naoya; Tsuchiya, Tomoshi; Miyazaki, Takuro; Kamohara, Ryotaro; Hatachi, Go; Nagayasu, Takeshi

    2017-08-01

    For severe malignant airway stenosis, there are several types of commercially available airway stents, and each has its own advantages and disadvantages. We herein describe the safety and efficacy of combination stenting with silicone and metallic stents for patients with extended malignant airway stenosis. Seven patients with malignant airway stenosis were treated via combination stenting with a silicone stent and a metallic stent for extended airway stenosis from the central to peripheral airways. Five patients were diagnosed with advanced esophageal cancer, two of whom had tracheoesophageal fistulas. One patient had adenoid cystic carcinoma, and another had mediastinal tumor. There were no specific complications related to the double stenting. Combination stenting with silicone and metallic stents proved to be a safe option for patients with severe, extended, and complicated malignant airway stenosis.

  15. Covered Balloon-Expanding Stents in Airway Stenosis.

    PubMed

    Majid, Adnan; Kheir, Fayez; Chung, Jey; Alape, Daniel; Husta, Bryan; Oh, Scott; Folch, Erik

    2017-04-01

    The balloon-expanding stents are widely available but rarely described for use within the tracheobronchial tree. This report describes our experience with these stents in airway stenosis particularly as a lobar salvage therapy. This was a retrospective review of all records in which the balloon-expanding stents were used at a tertiary medical center. Ages, sex, location of stenosis, etiology of stenosis, stent size, duration of stent placement and associated interventions for airway stenosis were recorded. Patient's self-reported respiratory symptoms, dyspnea scale, and radiographic imaging at baseline and after stent placement were also reported. Twenty-one Atrium iCAST stents were inserted in 18 patients with malignant and benign airway disease. The median age was 69.5 years (interquartile range, 53.5 to 74). Most stents (n=20, 95%) were deployed in the lobar airways. There was a significant improvement in the modified Medical Research Council dyspnea scale from median of 3 to 2 (P<0.05). Self-reported respiratory symptoms improved in 14 patients (78%, P<0.05). Radiographic improvement post Atrium iCAST stent placement was achieved in 15 patients (83%). No deaths were related to airway stenting complications. Adverse events related to stents included migration (n=2, 9.5%), granulation tissue formation (n=2, 9.5%) and mucus plugging (n=1, 4.8%). Lobar stenting with balloon-expanding metallic stents appears feasible, safe and improves symptoms as well as radiographic atelectasis in patients with lobar airway stenosis in this small case series. Larger studies are needed to confirm this observation and to address long-term safety.

  16. Low Iodine in the Follicular Lumen Caused by Cytoplasm Mis-localization of Sodium Iodide Symporter may Induce Nodular Goiter.

    PubMed

    Huang, Huibin; Shi, Yaxiong; Liang, Bo; Cai, Huiyao; Cai, Qingyan

    2017-10-01

    Iodine is a key ingredient in the synthesis of thyroid hormones and also a major factor in the regulation of thyroid function. A local reduction of iodine content in follicular lumen leads to overexpression of local thyroid-stimulating hormone receptor (TSHr), which in turn excessively stimulates the regional thyroid tissue, and result in the formation of nodular goiter. In this study, we investigated the relationship between iodine content and sodium iodide symporter (NIS) expression by using the clinical specimens from patients with nodular goiter and explored the pathogenesis triggered by iodine deficiency in nodular goiter. In total, 28 patients were clinically histopathologically confirmed to have nodular goiter and the corresponding adjacent normal thyroid specimens were harvested simultaneously. Western blot and immunohistochemistry were performed to assay NIS expression and localization in thyrocytes of both nodular goiter and adjacent normal thyroid tissues. NIS expression mediated by iodine in follicular lumen was confirmed by follicular model in vitro. Meanwhile, radioscan with iodine-131were conducted on both nodular goiter and adjacent normal thyroid. Our data showed that NIS expression in nodular goiter was significantly higher than that in adjacent normal tissues, which was associated with low iodine in the follicular lumen. Abnormal localization of NIS and lower amount of radioactive iodine-131 were also found in nodular goiter. Our data implied that low iodine in the follicular lumen caused by cytoplasm mis-localization of NIS may induce nodular goiter.

  17. Exercise-associated Excessive Dynamic Airway Collapse in Military Personnel.

    PubMed

    Weinstein, Daniel J; Hull, James E; Ritchie, Brittany L; Hayes, Jackie A; Morris, Michael J

    2016-09-01

    Evaluation of military personnel for exertional dyspnea can present a diagnostic challenge, given multiple unique factors that include wide variation in military deployment. Initial consideration is given to common disorders such as asthma, exercise-induced bronchospasm, and inducible laryngeal obstruction. Excessive dynamic airway collapse has not been reported previously as a cause of dyspnea in these individuals. To describe the clinical and imaging characteristics of military personnel with exertional dyspnea who were found to have excessive dynamic collapse of large airways during exercise. After deployment to Afghanistan or Iraq, 240 active U.S. military personnel underwent a standardized evaluation to determine the etiology of persistent dyspnea on exertion. Study procedures included full pulmonary function testing, impulse oscillometry, exhaled nitric oxide measurement, methacholine challenge testing, exercise laryngoscopy, cardiopulmonary exercise testing, and fiberoptic bronchoscopy. Imaging included high-resolution computed tomography with inspiratory and expiratory views. Selected individuals underwent further imaging with dynamic computed tomography. A total of five men and one woman were identified as having exercise-associated excessive dynamic airway collapse on the basis of the following criteria: (1) exertional dyspnea without resting symptoms, (2) focal expiratory wheezing during exercise, (3) functional collapse of the large airways during bronchoscopy, (4) expiratory computed tomographic imaging showing narrowing of a large airway, and (5) absence of underlying apparent pathology in small airways or pulmonary parenchyma. Identification of focal expiratory wheezing correlated with bronchoscopic and imaging findings. Among 240 military personnel evaluated after presenting with postdeployment exertional dyspnea, a combination of symptoms, auscultatory findings, imaging, and visualization of the airways by bronchoscopy identified six individuals

  18. Study of the flow unsteadiness in the human airway using large eddy simulation

    NASA Astrophysics Data System (ADS)

    Bernate, Jorge A.; Geisler, Taylor S.; Padhy, Sourav; Shaqfeh, Eric S. G.; Iaccarino, Gianluca

    2017-08-01

    The unsteady flow in a patient-specific geometry of the airways is studied. The geometry comprises the oral cavity, orophrarynx, larynx, trachea, and the bronchial tree extending to generations 5-8. Simulations are carried out for a constant inspiratory flow rate of 60 liters/min, corresponding to a Reynolds number of 4213 for a nominal tracheal diameter of 2 cm. The computed mean flow field is compared extensively with magnetic resonance velocimetry measurements by Banko et al. [Exp. Fluids 56, 117 (2015), 10.1007/s00348-015-1966-y] carried out in the same computed-tomography-based geometry, showing good agreement. In particular, we focus on the dynamics of the flow in the bronchial tree. After becoming unsteady at a constriction in the oropharynx, the flow is found to be chaotic, exhibiting fluctuations with broad-band spectra even at the most distal airways in which the Reynolds numbers are as low as 300. An inertial range signature is present in the trachea but not in the bronchial tree where a narrower range of scales is observed. The unsteadiness is attributed to the convection of turbulent structures produced at the larynx as well as to local kinetic energy production throughout the bronchial tree. Production occurs predominantly at shear layers bounding geometry-induced separation regions.

  19. A mathematical model of airway and pulmonary arteriole smooth muscle.

    PubMed

    Wang, Inga; Politi, Antonio Z; Tania, Nessy; Bai, Yan; Sanderson, Michael J; Sneyd, James

    2008-03-15

    Airway hyperresponsiveness is a major characteristic of asthma and is believed to result from the excessive contraction of airway smooth muscle cells (SMCs). However, the identification of the mechanisms responsible for airway hyperresponsiveness is hindered by our limited understanding of how calcium (Ca2+), myosin light chain kinase (MLCK), and myosin light chain phosphatase (MLCP) interact to regulate airway SMC contraction. In this work, we present a modified Hai-Murphy cross-bridge model of SMC contraction that incorporates Ca2+ regulation of MLCK and MLCP. A comparative fit of the model simulations to experimental data predicts 1), that airway and arteriole SMC contraction is initiated by fast activation by Ca2+ of MLCK; 2), that airway SMC, but not arteriole SMC, is inhibited by a slower activation by Ca2+ of MLCP; and 3), that the presence of a contractile agonist inhibits MLCP to enhance the Ca2+ sensitivity of airway and arteriole SMCs. The implication of these findings is that murine airway SMCs exploit a Ca2+-dependent mechanism to favor a default state of relaxation. The rate of SMC relaxation is determined principally by the rate of release of the latch-bridge state, which is predicted to be faster in airway than in arteriole. In addition, the model also predicts that oscillations in calcium concentration, commonly observed during agonist-induced smooth muscle contraction, cause a significantly greater contraction than an elevated steady calcium concentration.

  20. A Mathematical Model of Airway and Pulmonary Arteriole Smooth Muscle

    PubMed Central

    Wang, Inga; Politi, Antonio Z.; Tania, Nessy; Bai, Yan; Sanderson, Michael J.; Sneyd, James

    2008-01-01

    Airway hyperresponsiveness is a major characteristic of asthma and is believed to result from the excessive contraction of airway smooth muscle cells (SMCs). However, the identification of the mechanisms responsible for airway hyperresponsiveness is hindered by our limited understanding of how calcium (Ca2+), myosin light chain kinase (MLCK), and myosin light chain phosphatase (MLCP) interact to regulate airway SMC contraction. In this work, we present a modified Hai-Murphy cross-bridge model of SMC contraction that incorporates Ca2+ regulation of MLCK and MLCP. A comparative fit of the model simulations to experimental data predicts 1), that airway and arteriole SMC contraction is initiated by fast activation by Ca2+ of MLCK; 2), that airway SMC, but not arteriole SMC, is inhibited by a slower activation by Ca2+ of MLCP; and 3), that the presence of a contractile agonist inhibits MLCP to enhance the Ca2+ sensitivity of airway and arteriole SMCs. The implication of these findings is that murine airway SMCs exploit a Ca2+-dependent mechanism to favor a default state of relaxation. The rate of SMC relaxation is determined principally by the rate of release of the latch-bridge state, which is predicted to be faster in airway than in arteriole. In addition, the model also predicts that oscillations in calcium concentration, commonly observed during agonist-induced smooth muscle contraction, cause a significantly greater contraction than an elevated steady calcium concentration. PMID:18065464

  1. 21 CFR 868.1780 - Inspiratory airway pressure meter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... meter. (a) Identification. An inspiratory airway pressure meter is a device used to measure the amount of pressure produced in a patient's airway during maximal inspiration. (b) Classification. Class II...

  2. Modulating airway defenses against microbes.

    PubMed

    Reynolds, Herbert Y

    2002-05-01

    Prevention and treatment of respiratory infections remain an important health care challenge as the US population ages, contains more susceptible or high-risk people, and encounters new pathogens or antibiotic resistant bacteria. Reasonably protective vaccines against very common microbes are available for childhood and adult immunization, but, generally, these are underutilized. A broader definition of higher risk individuals is evolving, which will include more for immunization. Different approaches to vaccine development through design of new component vaccines are necessary. This review has updated host defense mechanisms at three levels in the human respiratory tract: naso-oropharynx (upper airways), conducting airways, and alveolar space. Examples of representative pathogenic microbes have been inserted at the respective airway segment where they may colonize or create infection (influenza, measles virus, Porphyromonas gingivalis causing periodontitis, Bordetella pertussis, Chlamydia pneumoniae, Streptococcus pneumoniae, and Bacillus anthracis ). Hopefully, microbe-host interactions will suggest new approaches for preventing these kinds of infections.

  3. Volumetric changes in the upper airway after bimaxillary surgery for skeletal class III malocclusions: a case series study using 3-dimensional cone-beam computed tomography.

    PubMed

    Lee, Yoonjung; Chun, Youn-Sic; Kang, Nara; Kim, Minji

    2012-12-01

    Postsurgical changes of the airway have become a great point of interest and often have been reported to be a predisposing factor for obstructive sleep apnea after mandibular setback surgery. The purpose of this study was to evaluate the 3-dimensional volumetric changes in the upper airway space of patients who underwent bimaxillary surgery to correct Class III malocclusions. This study was performed retrospectively in a group of patients who underwent bimaxillary surgery for Class III malocclusion and had full cone-beam computed tomographic (CBCT) images taken before surgery and 1 day, 3 months, and 6 months after surgery. The upper and lower parts of the airway volume and the diameters of the airway were measured from 2 different levels. Presurgical measurements and the amount of surgical correction were evaluated for their effect on airway volume. Data analyses were performed by analysis of variance and multiple stepwise regression analysis. The subjects included 21 patients (6 men and 15 women; mean age, 22.7 yrs). The surgeries were Le Fort I impaction (5.27 ± 2.58 mm impaction from the posterior nasal spine) and mandibular setback surgery (9.20 ± 4.60 mm set back from the pogonion). No statistically significant differences were found in the total airway volume for all time points. In contrast, the volume of the upper part showed an increase (12.35%) and the lower part showed a decrease (14.07%), with a statistically significant difference 6 months after surgery (P < .05). Predictor variables affecting the upper and lower parts of the airway volume were presurgical A point to Nasion-perpendicular (A to N-perp) and vertical surgical correction of the pogonion and the posterior nasal spine (P < .05). Bimaxillary surgery for the correction of Class III malocclusion affected the morphology by increasing the upper part and decreasing the lower part of the airway, but not the total volume. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons

  4. 21 CFR 868.5090 - Emergency airway needle.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Emergency airway needle. 868.5090 Section 868.5090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5090 Emergency airway needle. (a...

  5. 21 CFR 868.5090 - Emergency airway needle.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Emergency airway needle. 868.5090 Section 868.5090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5090 Emergency airway needle. (a...

  6. 21 CFR 868.5090 - Emergency airway needle.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Emergency airway needle. 868.5090 Section 868.5090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5090 Emergency airway needle. (a...

  7. 21 CFR 868.5090 - Emergency airway needle.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Emergency airway needle. 868.5090 Section 868.5090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5090 Emergency airway needle. (a...

  8. IV Administered Gadodiamide Enters the Lumen of the Prostatic Glands: X-Ray Fluorescence Microscopy Examination of a Mouse Model

    DOE PAGES

    Mustafi, Devkumar; Gleber, Sophie-Charlotte; Ward, Jesse; ...

    2015-09-01

    In our objective, we descibe how dynamic contrast-enhanced MRI (DCE-MRI) has become a standard component of multiparametric protocols for MRI examination of the prostate, and its use is incorporated into current guidelines for prostate MRI examination. Analysis of DCE-MRI data for the prostate is usually based on the distribution of gadolinium-based agents, such as gadodiamide, into two well-mixed compartments, and it assumes that gadodiamide does not enter into the glandular lumen. However, this assumption has not been directly tested. The purpose of this study was to use x-ray fluorescence microscopy (XFM) imaging in situ to measure the concentration of gadodiamidemore » in the epithelia and lumens of the prostate of healthy mice after IV injection of the contrast agent. For our materials and methods, six C57Bl6 male mice (age, 28 weeks) were sacrificed 10 minutes after IV injection of gadodiamide (0.13 mmol/kg), and three mice were sacrificed after saline injection. Prostate tissue samples obtained from each mouse were harvested and frozen; 7-μm-thick slices were sectioned for XFM imaging, and adjacent 5-μm-thick slices were sectioned for H and E staining. Elemental concentrations were determined from XFM images. Our results show mean (± SD) baseline concentration of gadolinium of 0.01 ± 0.01 mM was determined from XFM measurements of prostatic tissue samples when no gadodiamide was administered, and it was used to determine the measurement error. When gadodiamide was added, the mean concentrations of gadolinium in the epithelia and lumens in 32 prostatic glands from six mice were 1.00 ± 0.13 and 0.36 ± 0.09 mM, respectively. In conclusion, our data suggest that IV administration of gadodiamide results in uptake of contrast agent by the glandular lumens of the mouse prostate. We were able to quantitatively determine gadodiamide distributions in mouse prostatic epithelia and lumens.« less

  9. Prevalidation of an Acute Inhalation Toxicity Test Using the EpiAirway In Vitro Human Airway Model.

    PubMed

    Jackson, George R; Maione, Anna G; Klausner, Mitchell; Hayden, Patrick J

    2018-06-01

    Introduction: Knowledge of acute inhalation toxicity potential is important for establishing safe use of chemicals and consumer products. Inhalation toxicity testing and classification procedures currently accepted within worldwide government regulatory systems rely primarily on tests conducted in animals. The goal of the current work was to develop and prevalidate a nonanimal ( in vitro ) test for determining acute inhalation toxicity using the EpiAirway™ in vitro human airway model as a potential alternative for currently accepted animal tests. Materials and Methods: The in vitro test method exposes EpiAirway tissues to test chemicals for 3 hours, followed by measurement of tissue viability as the test endpoint. Fifty-nine chemicals covering a broad range of toxicity classes, chemical structures, and physical properties were evaluated. The in vitro toxicity data were utilized to establish a prediction model to classify the chemicals into categories corresponding to the currently accepted Globally Harmonized System (GHS) and the Environmental Protection Agency (EPA) system. Results: The EpiAirway prediction model identified in vivo rat-based GHS Acute Inhalation Toxicity Category 1-2 and EPA Acute Inhalation Toxicity Category I-II chemicals with 100% sensitivity and specificity of 43.1% and 50.0%, for GHS and EPA acute inhalation toxicity systems, respectively. The sensitivity and specificity of the EpiAirway prediction model for identifying GHS specific target organ toxicity-single exposure (STOT-SE) Category 1 human toxicants were 75.0% and 56.5%, respectively. Corrosivity and electrophilic and oxidative reactivity appear to be the predominant mechanisms of toxicity for the most highly toxic chemicals. Conclusions: These results indicate that the EpiAirway test is a promising alternative to the currently accepted animal tests for acute inhalation toxicity.

  10. The Effects of High Frequency Oscillatory Flow on Particles' Deposition in Upper Human Lung Airways

    NASA Astrophysics Data System (ADS)

    Bonifacio, Jeremy; Rahai, Hamid; Taherian, Shahab

    2016-11-01

    The effects of oscillatory inspiration on particles' deposition in upper airways of a human lung during inhalation/exhalation have been numerically investigated and results of flow characteristics, and particles' deposition pattern have been compared with the corresponding results without oscillation. The objective of the investigation was to develop an improved method for drug delivery for Asthma and COPD patients. Previous clinical investigations of using oral airway oscillations have shown enhanced expectoration in cystic fibrosis (CF) patients, when the frequency of oscillation was at 8 Hz with 9:1 inspiratory/expiratory (I:E) ratio. Other investigations on oscillatory ventilation had frequency range of 0.5 Hz to 2.5 Hz. In the present investigations, the frequency of oscillation was changed between 2 Hz to 10 Hz. The particles were injected at the inlet and particle velocity was equal to the inlet air velocity. One-way coupling of air and particles was assumed. Lagrangian phase model was used for transport and depositions of solid 2.5 micron diameter round particles with 1200 kg/m3 density. Preliminary results have shown enhanced PM deposition with oscillatory flow with lower frequency having a higher deposition rate Graduate Assistant.

  11. Inhibition of airway surface fluid absorption by cholinergic stimulation

    PubMed Central

    Joo, Nam Soo; Krouse, Mauri E.; Choi, Jae Young; Cho, Hyung-Ju; Wine, Jeffrey J.

    2016-01-01

    In upper airways airway surface liquid (ASL) depth and clearance rates are both increased by fluid secretion. Secretion is opposed by fluid absorption, mainly via the epithelial sodium channel, ENaC. In static systems, increased fluid depth activates ENaC and decreased depth inhibits it, suggesting that secretion indirectly activates ENaC to reduce ASL depth. We propose an alternate mechanism in which cholinergic input, which causes copious airway gland secretion, also inhibits ENaC-mediated absorption. The conjoint action accelerates clearance, and the increased transport of mucus out of the airways restores ASL depth while cleansing the airways. We were intrigued by early reports of cholinergic inhibition of absorption by airways in some species. To reinvestigate this phenomenon, we studied inward short-circuit currents (Isc) in tracheal mucosa from human, sheep, pig, ferret, and rabbit and in two types of cultured cells. Basal Isc was inhibited 20–70% by the ENaC inhibitor, benzamil. Long-lasting inhibition of ENaC-dependent Isc was also produced by basolateral carbachol in all preparations except rabbit and the H441 cell line. Atropine inhibition produced a slow recovery or prevented inhibition if added before carbachol. The mechanism for inhibition was not determined and is most likely multi-factorial. However, its physiological significance is expected to be increased mucus clearance rates in cholinergically stimulated airways. PMID:26846701

  12. Prediction of L70 lumen maintenance and chromaticity for LEDs using extended Kalman filter models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lall, Pradeep; Wei, Junchao; Davis, Lynn

    2013-09-30

    Solid-state lighting (SSL) luminaires containing light emitting diodes (LEDs) have the potential of seeing excessive temperatures when being transported across country or being stored in non-climate controlled warehouses. They are also being used in outdoor applications in desert environments that see little or no humidity but will experience extremely high temperatures during the day. This makes it important to increase our understanding of what effects high temperature exposure for a prolonged period of time will have on the usability and survivability of these devices. Traditional light sources “burn out” at end-of-life. For an incandescent bulb, the lamp life is definedmore » by B50 life. However, the LEDs have no filament to “burn”. The LEDs continually degrade and the light output decreases eventually below useful levels causing failure. Presently, the TM-21 test standard is used to predict the L70 life of LEDs from LM-80 test data. Several failure mechanisms may be active in a LED at a single time causing lumen depreciation. The underlying TM-21 Model may not capture the failure physics in presence of multiple failure mechanisms. Correlation of lumen maintenance with underlying physics of degradation at system-level is needed. In this paper, Kalman Filter (KF) and Extended Kalman Filters (EKF) have been used to develop a 70-percent Lumen Maintenance Life Prediction Model for LEDs used in SSL luminaires. Ten-thousand hour LM-80 test data for various LEDs have been used for model development. System state at each future time has been computed based on the state space at preceding time step, system dynamics matrix, control vector, control matrix, measurement matrix, measured vector, process noise and measurement noise. The future state of the lumen depreciation has been estimated based on a second order Kalman Filter model and a Bayesian Framework. The measured state variable has been related to the underlying damage using physics-based models. Life

  13. A prospective study to evaluate and compare laryngeal mask airway ProSeal and i-gel airway in the prone position.

    PubMed

    Taxak, Susheela; Gopinath, Ajith; Saini, Savita; Bansal, Teena; Ahlawat, Mangal Singh; Bala, Manju

    2015-01-01

    Prone position is commonly used to provide surgical access to a variety of surgeries. In view of the advantages of induction of anesthesia in the prone position, we conducted a randomized study to evaluate and compare ProSeal laryngeal mask airway (LMA) and i-gel in the prone position. Totally, 40 patients of either sex as per American Society of Anesthesiologists physical status I or II, between 16 and 60 years of age, scheduled to undergo surgery in prone position were included in the study. After the patients positioned themselves prone on the operating table, anesthesia was induced by the standard technique. LMA ProSeal was used as an airway conduit in group 1 while i-gel was used in group 2. At the end of surgery, the airway device was removed in the same position. Insertion of airway device was successful in first attempt in 16, and 17 cases in ProSeal laryngeal mask airway (PLMA) and i-gel groups, respectively. A second attempt was required to secure the airway in 4 and 3 patients in PLMA and i-gel groups, respectively. The mean insertion time was 21.8 ± 2.70 s for group 1 and 13.1 ± 2.24 s for group 2, the difference being statistically significant (P < 0.05). The mean seal pressure in group 1 was 36 ± 6.22 cm H2 O and in group 2 was 25.4 ± 3.21 cm H2 O. The difference was statistically significant (P < 0.05). 13 patients in group 1 had fiberoptic bronchoscopy (FOB) grade 1 while it was 6 for group 2. The remaining patients in both groups had FOB grade 2. Insertion of supraglottic airways and conduct of anesthesia with them is feasible in the prone position. The PLMA has a better seal while insertion is easier with i-gel.

  14. Influence of Gender and Age on Upper-Airway Length During Development

    PubMed Central

    Ronen, Ohad; Malhotra, Atul; Pillar, Giora

    2008-01-01

    OBJECTIVE Obstructive sleep apnea has a strong male predominance in adults but not in children. The collapsible portion of the upper airway is longer in adult men than in women (a property that may increase vulnerability to collapse during sleep). We sought to test the hypothesis that in prepubertal children, pharyngeal airway length is equal between genders, but after puberty boys have a longer upper airway than girls, thus potentially contributing to this change in apnea propensity. METHODS Sixty-nine healthy boys and girls who had undergone computed tomography scans of their neck for other reasons were selected from the computed tomography archives of Rambam and Carmel hospitals. The airway length was measured in the midsagittal plane and defined as the length between the lower part of the posterior hard palate and the upper limit of the hyoid bone. Airway length and normalized airway length/body height were compared between the genders in prepubertal (4- to 10-year-old) and postpubertal (14- to 19-year-old) children. RESULTS In prepubertal children, airway length was similar between boys and girls (43.2 ± 5.9 vs 46.8 ± 7.7 mm, respectively). When normalized to body height, airway length/body height was significantly shorter in prepubertal boys than in girls (0.35 ± 0.03 vs 0.38 ± 0.04 mm/cm). In contrast, postpubertal boys had longer upper airways (66.5 ± 9.2 vs 52.2 ± 7.0 mm) and normalized airway length/body height (0.38 ± 0.05 vs 0.33 ± 0.05 mm/cm) than girls. CONCLUSIONS Although boys have equal or shorter airway length compared with girls among prepubertal children, after puberty, airway length and airway length normalized for body height are significantly greater in boys than in girls. These data suggest that important anatomic changes at puberty occur in a gender-specific manner, which may be important in explaining the male predisposition to pharyngeal collapse in adults. PMID:17908723

  15. Percutaneous Selective Embolectomy using a Fogarty Thru-Lumen Catheter for Pancreas Graft Thrombosis: A Case Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izaki, Kenta, E-mail: izaki@med.kobe-u.ac.jp; Yamaguchi, Masato; Matsumoto, Ippei

    2011-06-15

    A 57-year-old woman with a history of diabetes mellitus underwent simultaneous pancreas-kidney transplantation. The pancreaticoduodenal graft was implanted in the right iliac fossa. The donor's portal vein was anastomosed to the recipient's inferior vena cava (IVC). Seven days after the surgery, a thrombus was detected in the graft veins. Percutaneous thrombolysis was immediately performed; however, venous congestion was still present. We therefore attempted selective embolectomy using a Fogarty Thru-Lumen Catheter. Thrombi were directed from the graft veins toward the IVC and captured in the IVC filter with complete elimination of the thrombus without any major complications. We present our techniquemore » for the successful treatment of pancreas graft thrombosis within a short time period by percutaneous selective embolectomy using a Fogarty Thru-Lumen Catheter.« less

  16. Airway physical examination tests for detection of difficult airway management in apparently normal adult patients.

    PubMed

    Roth, Dominik; Pace, Nathan L; Lee, Anna; Hovhannisyan, Karen; Warenits, Alexandra-Maria; Arrich, Jasmin; Herkner, Harald

    2018-05-15

    The unanticipated difficult airway is a potentially life-threatening event during anaesthesia or acute conditions. An unsuccessfully managed upper airway is associated with serious morbidity and mortality. Several bedside screening tests are used in clinical practice to identify those at high risk of difficult airway. Their accuracy and benefit however, remains unclear. The objective of this review was to characterize and compare the diagnostic accuracy of the Mallampati classification and other commonly used airway examination tests for assessing the physical status of the airway in adult patients with no apparent anatomical airway abnormalities. We performed this individually for each of the four descriptors of the difficult airway: difficult face mask ventilation, difficult laryngoscopy, difficult tracheal intubation, and failed intubation. We searched major electronic databases including CENTRAL, MEDLINE, Embase, ISI Web of Science, CINAHL, as well as regional, subject specific, and dissertation and theses databases from inception to 16 December 2016, without language restrictions. In addition, we searched the Science Citation Index and checked the references of all the relevant studies. We also handsearched selected journals, conference proceedings, and relevant guidelines. We updated this search in March 2018, but we have not yet incorporated these results. We considered full-text diagnostic test accuracy studies of any individual index test, or a combination of tests, against a reference standard. Participants were adults without obvious airway abnormalities, who were having laryngoscopy performed with a standard laryngoscope and the trachea intubated with a standard tracheal tube. Index tests included the Mallampati test, modified Mallampati test, Wilson risk score, thyromental distance, sternomental distance, mouth opening test, upper lip bite test, or any combination of these. The target condition was difficult airway, with one of the following reference

  17. Scarring Airway Stenosis in Chinese Adults: Characteristics and Interventional Bronchoscopy Treatment

    PubMed Central

    Wang, Ting; Zhang, Jie; Qiu, Xiao-Jian; Wang, Juan; Pei, Ying-Hua; Wang, Yu-Ling

    2018-01-01

    Background: Scarring airway stenosis is commonly seen in China as compared to other developed countries, due to the high prevalence of tuberculosis. Nowadays, interventional bronchoscopy treatment has been widely used to treat this disease in China. This study demonstrated the characteristics of scarring airway stenosis in Chinese adults and retrospectively evaluated the efficacy of interventional bronchoscopy treatment of this disease. Methods: Patients with scarring airway stenosis from 18 tertiary hospitals were enrolled between January 2013 and June 2016. The causes, site, and length of scarring airway stenosis were analyzed, and the efficacy of the interventional bronchoscopy treatment was evaluated. Results: The final study cohort consisted of 392 patients. Endotracheobronchial tuberculosis (EBTB) was the most common cause of scarring airway stenosis (305/392, 77.8%) in Chinese adults with a high rate of incidence in young women. The left main bronchus was most susceptible to EBTB, and most posttuberculosis airway scarring stenosis length was 1.1–2.0 cm. The average clinical success rate of interventional bronchoscopy treatment for scarring airway stenosis in Chinese patients is 60.5%. The stent was inserted in 8.7% scarring airway stenosis in China. Conclusions: Scarring airway stenosis exhibits specific characteristics in Chinese patients. Interventional bronchoscopy is a useful and safe treatment method for the disease. PMID:29363641

  18. Secreted mucins and airway bacterial colonization in non-CF bronchiectasis.

    PubMed

    Sibila, Oriol; Suarez-Cuartin, Guillermo; Rodrigo-Troyano, Ana; Fardon, Thomas C; Finch, Simon; Mateus, Eder Freddy; Garcia-Bellmunt, Laia; Castillo, Diego; Vidal, Silvia; Sanchez-Reus, Ferran; Restrepo, Marcos I; Chalmers, James D

    2015-10-01

    Secreted mucins play a key role in antibacterial defence in the airway, but have not previously been characterized in non-cystic fibrosis (CF) bronchiectasis patients. We aim to investigate the relationship between secreted mucins levels and the presence of bacterial colonization due to potentially pathogenic microorganisms (PPM) in the airways of stable bronchiectasis patients. Clinically stable bronchiectasis patients were studied prospectively at two centres. Patients with other pulmonary conditions were excluded. Spontaneous sputum was subject to bacterial culture, and secreted mucins (MUC2, MUC5AC and MUC5B) were measured in sputum supernatants by ELISA. A total of 50 patients were included. PPM were identified from sputum samples in 30 (60%), with Pseudomonas aeruginosa (n = 10) and Haemophilus influenzae (n = 10) as the most common PPM. There were no baseline differences among airway colonized and non-colonized patients. Patients with airways colonized by PPM presented higher levels of airway MUC2. No differences in MUC5AC levels were found among groups, whereas MUC5B levels were undetectable. Patients with P. aeruginosa colonization expressed the highest levels of MUC2. High levels of MUC2 and MUC5AC are also correlated with disease severity using the Bronchiectasis Severity Index. Airway MUC2 levels were higher in bronchiectasis patients colonized with PPM compared with those without airway colonization, especially in patients with P. aeruginosa. These findings suggest that airway-secreted mucins levels may play a role in the pathogenesis of airway infection in non-CF bronchiectasis. © 2015 Asian Pacific Society of Respirology.

  19. Classification of pulmonary airway disease based on mucosal color analysis

    NASA Astrophysics Data System (ADS)

    Suter, Melissa; Reinhardt, Joseph M.; Riker, David; Ferguson, John Scott; McLennan, Geoffrey

    2005-04-01

    Airway mucosal color changes occur in response to the development of bronchial diseases including lung cancer, cystic fibrosis, chronic bronchitis, emphysema and asthma. These associated changes are often visualized using standard macro-optical bronchoscopy techniques. A limitation to this form of assessment is that the subtle changes that indicate early stages in disease development may often be missed as a result of this highly subjective assessment, especially in inexperienced bronchoscopists. Tri-chromatic CCD chip bronchoscopes allow for digital color analysis of the pulmonary airway mucosa. This form of analysis may facilitate a greater understanding of airway disease response. A 2-step image classification approach is employed: the first step is to distinguish between healthy and diseased bronchoscope images and the second is to classify the detected abnormal images into 1 of 4 possible disease categories. A database of airway mucosal color constructed from healthy human volunteers is used as a standard against which statistical comparisons are made from mucosa with known apparent airway abnormalities. This approach demonstrates great promise as an effective detection and diagnosis tool to highlight potentially abnormal airway mucosa identifying a region possibly suited to further analysis via airway forceps biopsy, or newly developed micro-optical biopsy strategies. Following the identification of abnormal airway images a neural network is used to distinguish between the different disease classes. We have shown that classification of potentially diseased airway mucosa is possible through comparative color analysis of digital bronchoscope images. The combination of the two strategies appears to increase the classification accuracy in addition to greatly decreasing the computational time.

  20. Use of an Airway Exchange Catheter-Assisted Extubation With Continuous End-Tidal Carbon Dioxide Monitoring in a Pediatric Patient With a Known Difficult Airway: A Case Report.

    PubMed

    Yegian, Courtney C; Volz, Lana M; Galgon, Richard E

    2018-05-11

    Tracheal extubation in children with known difficult airways is associated with an increased risk of adverse events. Currently, there is no reliable measure to predict the need for emergent reintubation due to airway inadequacy. Airway exchange catheter-assisted extubation has been shown to be a useful adjunct in decreasing the risk of adverse events due to failed extubation. We report a case of using an airway exchange catheter-assisted extubation with continuous end-tidal carbon dioxide monitoring for a pediatric patient with a known difficult airway.

  1. Tachykinin receptors and the airways.

    PubMed

    Frossard, N; Advenier, C

    1991-01-01

    The tachykinins, substance P, neurokinin A and neurokinin B, belong to a structural family of peptides. In mammalian airways, substance P and neurokinin A are colocalized to afferent C-fibres. Substance P-containing fibres are close to bronchial epithelium, smooth muscle, mucus glands and blood vessels. Sensory neuropeptides may be released locally, possibly as a result of a local reflex, and produce bronchial obstruction through activation of specific receptors on these various tissues. Three types of tachykinin receptors, namely NK-1, NK-2 and NK-3 receptors, have been characterized by preferential activation by substance P, neurokinin A and neurokinin B respectively. NK-1 and NK-2 receptors were recently cloned. The determination of receptor types involved in the effects of tachykinins in the airways has been done with synthetic agonists and antagonists binding specifically to NK-1, NK-2 and NK-3 receptors. Although the existence of species differences, the conclusion that bronchial smooth muscle contraction is mainly related to activation of NK-2 receptors on bronchial smooth muscle cell has been drawn. The hypothesis of a NK-2 receptor subclassification has been proposed with NK-2A receptor subtype in the guinea-pig airways. Other effects in the airways are related to stimulation of NK-1 receptors on mucus cells, vessels, epithelium and inflammatory cells. A non-receptor-mediated mechanism is also involved in the effect of substance P on inflammatory cells and mast cells.

  2. Simultaneous LFA-1 and CD40 ligand antagonism prevents airway remodeling in orthotopic airway transplantation: implications for the role of respiratory epithelium as a modulator of fibrosis.

    PubMed

    Murakawa, Tomohiro; Kerklo, Michelle M; Zamora, Martin R; Wei, Yi; Gill, Ronald G; Henson, Peter M; Grover, Frederick L; Nicolls, Mark R

    2005-04-01

    Airway remodeling is a prominent feature of certain immune-mediated lung diseases such as asthma and chronic lung transplant rejection. Under conditions of airway inflammation, the respiratory epithelium may serve an important role in this remodeling process. Given the proposed role of respiratory epithelium in nonspecific injury models, we investigated the respiratory epithelium in an immune-specific orthotopic airway transplant model. MHC-mismatched tracheal transplants in mice were used to generate alloimmune-mediated airway lesions. Attenuation of this immune injury and alteration of antidonor reactivity were achieved by the administration of combined anti-LFA-1/anti-CD40L mAbs. By contrast, without immunotherapy, transplanted airways remodeled with a flattening of respiratory epithelium and significant subepithelial fibrosis. Unopposed alloimmune injury for 10 days was associated with subsequent epithelial transformation and subepithelial fibrosis that could not be reversed with immunotherapy. The relining of donor airways with recipient-derived epithelium was delayed with immunotherapy resulting in partially chimeric airways by 28 days. Partial chimerism was sufficient to prevent luminal fibrosis. However, epithelial chimerism was also associated with airway remodeling. Therefore, there appears to be an intimate relationship between the morphology and level of chimerism of the respiratory epithelium and the degree of airway remodeling following alloimmune injury.

  3. Retrotracheal Extraskeletal Ewing's Sarcoma: Case Report and Discussion on Airway Management.

    PubMed

    Van Der Meer, Graeme; Linkhorn, Hannah; Gruber, Maayan; Mahadevan, Murali; Barber, Colin

    2017-03-01

    Extraskeletal Ewing's sarcoma is a rare tumor, and the management of airway compromise in case of cervical Ewing's sarcoma has not been established. This report describes the case of a patient with retrotracheal Ewing's sarcoma and discusses a successful approach to airway management. A 12-year-old male presented with a 2-week history of sore throat and sleep-disordered breathing and 48 hours of stridor. Imaging confirmed a retrotracheal soft tissue mass with airway compromise. A planned and controlled approach to his airway management resulted in a secure airway prior to definitive treatment.

  4. The role of anaerobic bacteria in the cystic fibrosis airway.

    PubMed

    Sherrard, Laura J; Bell, Scott C; Tunney, Michael M

    2016-11-01

    Anaerobic bacteria are not only normal commensals, but are also considered opportunistic pathogens and have been identified as persistent members of the lower airway community in people with cystic fibrosis of all ages and stages of disease. Currently, the role of anaerobic bacteria in cystic fibrosis lower airway disease is not well understood. Therefore, this review describes the recent studies relating to the potential pathophysiological role(s) of anaerobes within the cystic fibrosis lungs. The most frequently identified anaerobic bacteria in the lower airways are common to both cystic fibrosis and healthy lungs. Studies have shown that in cystic fibrosis, the relative abundance of anaerobes fluctuates in the lower airways with reduced lung function and increased inflammation associated with a decreased anaerobic load. However, anaerobes found within the lower airways also produce virulence factors, may cause a host inflammatory response and interact synergistically with recognized pathogens. Anaerobic bacteria are potentially members of the airway microbiota in health but could also contribute to the pathogenesis of lower airway disease in cystic fibrosis via both direct and indirect mechanisms. A personalized treatment strategy that maintains a normal microbial community may be possible in the future.

  5. Inhibition of neutrophil elastase attenuates airway hyperresponsiveness and inflammation in a mouse model of secondary allergen challenge: neutrophil elastase inhibition attenuates allergic airway responses

    PubMed Central

    2013-01-01

    Background Chronic asthma is often associated with neutrophilic infiltration in the airways. Neutrophils contain elastase, a potent secretagogue in the airways, nonetheless the role for neutrophil elastase as well as neutrophilic inflammation in allergen-induced airway responses is not well defined. In this study, we have investigated the impact of neutrophil elastase inhibition on the development of allergic airway inflammation and airway hyperresponsiveness (AHR) in previously sensitized and challenged mice. Methods BALB/c mice were sensitized and challenged (primary) with ovalbumin (OVA). Six weeks later, a single OVA aerosol (secondary challenge) was delivered and airway inflammation and airway responses were monitored 6 and 48 hrs later. An inhibitor of neutrophil elastase was administered prior to secondary challenge. Results Mice developed a two-phase airway inflammatory response after secondary allergen challenge, one neutrophilic at 6 hr and the other eosinophilic, at 48 hr. PAR-2 expression in the lung tissues was enhanced following secondary challenge, and that PAR-2 intracellular expression on peribronchial lymph node (PBLN) T cells was also increased following allergen challenge of sensitized mice. Inhibition of neutrophil elastase significantly attenuated AHR, goblet cell metaplasia, and inflammatory cell accumulation in the airways following secondary OVA challenge. Levels of IL-4, IL-5 and IL-13, and eotaxin in BAL fluid 6 hr after secondary allergen challenge were significantly suppressed by the treatment. At 48 hr, treatment with the neutrophil elastase inhibitor significantly reduced the levels of IL-13 and TGF-β1 in the BAL fluid. In parallel, in vitro IL-13 production was significantly inhibited in spleen cells from sensitized mice. Conclusion These data indicate that neutrophil elastase plays an important role in the development of allergic airway inflammation and hyperresponsiveness, and would suggest that the neutrophil elastase inhibitor

  6. Impact of airway morphological changes on pulmonary flows in scoliosis

    NASA Astrophysics Data System (ADS)

    Farrell, James; Garrido, Enrique; Valluri, Prashant

    2016-11-01

    The relationship between thoracic deformity in scoliosis and lung function is poorly understood. In a pilot study, we reviewed computed tomography (CT) routine scans of patients undergoing scoliosis surgery. The CT scans were processed to segment the anatomy of the airways, lung and spine. A three-dimensional model was created to study the anatomical relationship. Preliminary analysis showed significant airway morphological differences depending on the anterior position of the spine. A computational fluid dynamics (CFD) study was also conducted on the airway geometry using the inspiratory scans. The CFD model assuming non-compliant airway walls was capable of showing pressure drops in areas of high airway resistance, but was unable to predict regional ventilation differences. Our results indicate a dependence between the dynamic deformation of the airway during breathing and lung function. Dynamic structural deformation must therefore be incorporated within any modelling approaches to guide clinicians on the decision to perform surgical correction of the scoliosis.

  7. Mechanism of lumen gain with a novel rotational aspiration atherectomy system for peripheral arterial disease: examination by intravascular ultrasound.

    PubMed

    Hassan, Ali H M; Ako, Junya; Waseda, Katsuhisa; Honda, Yasuhiro; Zeller, Thomas; Leon, Martin B; Fitzgerald, Peter J

    2010-01-01

    The purpose of this study was to evaluate the mechanism of luminal gain with a novel atheroablation system (Pathway PV) for the treatment of peripheral artery disease using intravascular ultrasound (IVUS). The atherectomy system is a rotational atherectomy device, which employs expandable rotating blades with ports that allow flushing and aspiration of the plaque material or thrombus. In this first-in-man clinical study, IVUS analysis was available in 6 patients with lower limb ischemia treated with this device. The treatment results were assessed using IVUS at pre and post atherectomy. Lumen beyond burr size (LBB) was defined as lumen gain divided by the estimated burr area determined by the burr-size. IVUS analysis was available in six patients (superficial femoral artery n=3, popliteal artery n=2, posterior tibial artery n=1). Atheroablation achieved a significant increase in lumen area (LA) (preintervention 3.9+/-0.4, postatheroablation 8.0+/-1.7 mm(2), P<.05), and significant reduction in plaque area (27.5+/-4.0, 23.7+/-3.1 mm(2), P=.001), while there was no change in the vessel area (31.3+/-4.2, 32.1+/-2.8 mm(2), P=.4). LBB was 57.4+/-51.3%. This novel rotational aspiration atherectomy device achieved significant luminal gain by debulking in the absence of vessel stretching. The LA was greater than burr-sized lumen expectancy at cross-sections along the treated segments, suggesting a complimentary role of aspiration in luminal gain in atherosclerotic peripheral artery lesions.

  8. Polymeric endovascular strut and lumen detection algorithm for intracoronary optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Amrute, Junedh M.; Athanasiou, Lambros S.; Rikhtegar, Farhad; de la Torre Hernández, José M.; Camarero, Tamara García; Edelman, Elazer R.

    2018-03-01

    Polymeric endovascular implants are the next step in minimally invasive vascular interventions. As an alternative to traditional metallic drug-eluting stents, these often-erodible scaffolds present opportunities and challenges for patients and clinicians. Theoretically, as they resorb and are absorbed over time, they obviate the long-term complications of permanent implants, but in the short-term visualization and therefore positioning is problematic. Polymeric scaffolds can only be fully imaged using optical coherence tomography (OCT) imaging-they are relatively invisible via angiography-and segmentation of polymeric struts in OCT images is performed manually, a laborious and intractable procedure for large datasets. Traditional lumen detection methods using implant struts as boundary limits fail in images with polymeric implants. Therefore, it is necessary to develop an automated method to detect polymeric struts and luminal borders in OCT images; we present such a fully automated algorithm. Accuracy was validated using expert annotations on 1140 OCT images with a positive predictive value of 0.93 for strut detection and an R2 correlation coefficient of 0.94 between detected and expert-annotated lumen areas. The proposed algorithm allows for rapid, accurate, and automated detection of polymeric struts and the luminal border in OCT images.

  9. Pharyngeal airway changes following maxillary expansion or protraction: A meta-analysis.

    PubMed

    Lee, W-C; Tu, Y-K; Huang, C-S; Chen, R; Fu, M-W; Fu, E

    2018-02-01

    The aim of this meta-analysis was to investigate the changes in airway dimensions after rapid maxillary expansion (RME) and facemask (FM) protraction. Using PubMed, Medline, ScienceDirect and Web of Science, only controlled clinical trials, published up to November 2016, with RME and/or FM as keywords that had ≥6 months follow-up period were included in this meta-analysis. The changes in pharyngeal airway dimension in both two-dimensional and three-dimensional images were included in the analysis. Nine studies met the criteria. There are statically significant changes in upper airway and nasal passage airway in the intervention groups as compared to the control groups, assessed in two-dimensional and three-dimensional images. However , in the lower airway and the airway below the palatal plane, no statistically significant changes are seen in 2D and 3D images. RME/FM treatments might increase the upper airway space in children and young adolescents. However, more RCTs and long-term cohort studies are needed to further clarify the effects on pharyngeal airway changes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Kinematic MRI study of upper-airway biomechanics using electrical muscle stimulation

    NASA Astrophysics Data System (ADS)

    Brennick, Michael J.; Margulies, Susan S.; Ford, John C.; Gefter, Warren B.; Pack, Allan I.

    1997-05-01

    We have developed a new and powerful method to study the movement and function of upper airway muscles. Our method is to use direct electrical stimulation of individual upper airway muscles, while performing state of the art high resolution magnetic resonance imaging (MRI). We have adapted a paralyzed isolated UA cat model so that positive or negative static pressure in the UA can be controlled at specific levels while electrical muscle stimulation is applied during MRI. With these techniques we can assess the effect of muscle stimulation on airway cross-sectional area compliance and soft tissue motion. We are reporting the preliminary results and MRI techniques which have enabled us to examine changes in airway dimensions which result form electrical stimulation of specific upper airway dilator muscles. The results of this study will be relevant to the development of new clinical treatments for obstructive sleep apnea by providing new information as to exactly how upper airway muscles function to dilate the upper airway and the strength of stimulation required to prevent the airway obstruction when overall muscle tone may not be sufficient to maintain regular breathing.

  11. Prevalidation of an Acute Inhalation Toxicity Test Using the EpiAirway In Vitro Human Airway Model

    PubMed Central

    Jackson, George R.; Maione, Anna G.; Klausner, Mitchell

    2018-01-01

    Abstract Introduction: Knowledge of acute inhalation toxicity potential is important for establishing safe use of chemicals and consumer products. Inhalation toxicity testing and classification procedures currently accepted within worldwide government regulatory systems rely primarily on tests conducted in animals. The goal of the current work was to develop and prevalidate a nonanimal (in vitro) test for determining acute inhalation toxicity using the EpiAirway™ in vitro human airway model as a potential alternative for currently accepted animal tests. Materials and Methods: The in vitro test method exposes EpiAirway tissues to test chemicals for 3 hours, followed by measurement of tissue viability as the test endpoint. Fifty-nine chemicals covering a broad range of toxicity classes, chemical structures, and physical properties were evaluated. The in vitro toxicity data were utilized to establish a prediction model to classify the chemicals into categories corresponding to the currently accepted Globally Harmonized System (GHS) and the Environmental Protection Agency (EPA) system. Results: The EpiAirway prediction model identified in vivo rat-based GHS Acute Inhalation Toxicity Category 1–2 and EPA Acute Inhalation Toxicity Category I–II chemicals with 100% sensitivity and specificity of 43.1% and 50.0%, for GHS and EPA acute inhalation toxicity systems, respectively. The sensitivity and specificity of the EpiAirway prediction model for identifying GHS specific target organ toxicity-single exposure (STOT-SE) Category 1 human toxicants were 75.0% and 56.5%, respectively. Corrosivity and electrophilic and oxidative reactivity appear to be the predominant mechanisms of toxicity for the most highly toxic chemicals. Conclusions: These results indicate that the EpiAirway test is a promising alternative to the currently accepted animal tests for acute inhalation toxicity. PMID:29904643

  12. Multidisciplinary Difficult Airway Course: An Essential Educational Component of a Hospital-Wide Difficult Airway Response Program.

    PubMed

    Leeper, W Robert; Haut, Elliott R; Pandian, Vinciya; Nakka, Sajan; Dodd-O, Jeffrey; Bhatti, Nasir; Hunt, Elizabeth A; Saheed, Mustapha; Dalesio, Nicholas; Schiavi, Adam; Miller, Christina; Kirsch, Thomas D; Berkow, Lauren

    2018-04-05

    A hospital-wide difficult airway response team was developed in 2008 at The Johns Hopkins Hospital with three central pillars: operations, safety monitoring, and education. The objective of this study was to assess the outcomes of the educational pillar of the difficult airway response team program, known as the multidisciplinary difficult airway course (MDAC). The comprehensive, full-day MDAC involves trainees and staff from all provider groups who participate in airway management. The MDAC occurs within the Johns Hopkins Medicine Simulation Center approximately four times per year and uses a combination of didactic lectures, hands-on sessions, and high-fidelity simulation training. Participation in MDAC is the main intervention being investigated in this study. Data were collected prospectively using course evaluation survey with quantitative and qualitative components, and prepost course knowledge assessment multiple choice questions (MCQ). Outcomes include course evaluation scores and themes derived from qualitative assessments, and prepost course knowledge assessment MCQ scores. Tertiary care academic hospital center PARTICIPANTS: Students, residents, fellows, and practicing physicians from the departments of Surgery, Otolaryngology Head and Neck Surgery, Anesthesiology/Critical Care Medicine, and Emergency Medicine; advanced practice providers (nurse practitioners and physician assistants), nurse anesthetists, nurses, and respiratory therapists. Totally, 23 MDACs have been conducted, including 499 participants. Course evaluations were uniformly positive with mean score of 86.9 of 95 points. Qualitative responses suggest major value from high-fidelity simulation, the hands-on skill stations, and teamwork practice. MCQ scores demonstrated significant improvement: median (interquartile range) pre: 69% (60%-81%) vs post: 81% (72%-89%), p < 0.001. Implementation of a MDAC successfully disseminated principles and protocols to all airway providers. Demonstrable

  13. Comparison of Macintosh and Intubrite laryngoscopes for intubation performed by novice physicians in a difficult airway scenario.

    PubMed

    Szarpak, Lukasz; Smereka, Jacek; Ladny, Jerzy R

    2017-05-01

    In the difficult airway, the intubation skills are critically important. In selected cases, particularly in airway edema, laryngeal or tongue edema, endotracheal intubation can turn out very difficult, and repeated attempts may even worsen the airway edema, causing trauma and bleeding, and finally leading to complete airway obstruction and inability to ventilate the patient. The aim of the study was to compare the efficacy of endotracheal intubation performed by novice physicians using a standard Macintosh laryngoscope and an Intubrite videolaryngoscope. The study was designed as a prospective, randomized, crossover, simulation study and continues our research assessing the effectiveness of selected endotracheal intubation techniques in prehospital settings. All participants were experienced with the Macintosh direct laryngoscope but remained novice to videolaryngoscopy. Instructions on the correct use of the Macintosh and Intubrite laryngoscopes were given before the procedure, and all the 30 novice physicians were allowed to practice at least 10 times before the study on manikin with normal airways. We employed an airway manikin (Trucorp Airsim Bronchi; Trucorp Ltd., Belfast, Northern Ireland) to simulate difficult airway, with was obtained by inflating the tongue with 50mL of air. The participants were asked to perform tracheal intubation using an endotracheal tube with 7.5mm of internal diameter (Portex; Smiths Medical, Hythe, UK) through the vocal cords, applying either a conventional Macintosh laryngoscope with a size 3 blade (MAC; Mercury Medical, Clearwater, FL, USA) or the Intubrite videolaryngoscope, also with a Macintosh No. 3 blade (INT; Intubrite Llc, Vista, CA, USA). In both intubation techniques, a guide stylet (Rusch Inc., Duluth, GA, USA) was introduced into the endotracheal tube in order to obtain a C-shape curve to facilitate tracheal intubation. Each participating physician was randomly assigned to three attempts of tracheal intubation with each

  14. A Multidisciplinary Approach to a Pediatric Difficult Airway Simulation Course.

    PubMed

    Lind, Meredith Merz; Corridore, Marco; Sheehan, Cameron; Moore-Clingenpeel, Melissa; Maa, Tensing

    2018-02-01

    Objective To design and assess an advanced pediatric airway management course, through simulation-based team training and with multiple disciplines, to emphasize communication and cooperation across subspecialties and to provide a common skill set and knowledge base. Methods Trainees from anesthesiology, emergency medicine, critical care, pediatric surgery, and otolaryngology at a tertiary children's hospital participated in a 1-day workshop emphasizing airway skills and complex airway simulations. Small groups were multidisciplinary to promote teamwork. Participants completed pre- and postworkshop questionnaires. Results Thirty-nine trainees participated over the 3-year study period. Compared with their precourse responses, participants' postcourse responses indicated either agreement or strong agreement that the multidisciplinary format (1) helped in the development of team communication skills and (2) was preferred over single-discipline training. Improvement in confidence in managing critical airway situations and in advanced airway management skills was significant ( P < .05). Eighty-one percent of participants had improved confidence in following the hospital's critical airway protocol, and 64% were better able to locate advanced airway management equipment. Discussion Multiple subspecialists manage pediatric respiratory failure, where successful care requires complex handoffs and teamwork. Multidisciplinary education to teach advanced airway management, teamwork, and communication skills is practical and preferred by learners and is possible to achieve despite differences in experience. Future study is required to better understand the impact of this course on patient care outcomes. Implications for Practice Implementation of a pediatric difficult airway course through simulation-based team training is feasible and preferred by learners among multiple disciplines. A multidisciplinary approach exposes previously unrecognized knowledge gaps and allows for

  15. Differential susceptibility of inbred mouse strains to chlorine-induced airway fibrosis

    PubMed Central

    Mo, Yiqun; Chen, Jing; Schlueter, Connie F.

    2013-01-01

    Chlorine is a reactive gas that is considered a chemical threat agent. Humans who develop acute lung injury from chlorine inhalation typically recover normal lung function; however, a subset can experience chronic airway disease. To examine pathological changes following chlorine-induced lung injury, mice were exposed to a single high dose of chlorine, and repair of the lung was analyzed at multiple times after exposure. In FVB/NJ mice, chlorine inhalation caused pronounced fibrosis of larger airways that developed by day 7 after exposure and was associated with airway hyperreactivity. In contrast, A/J mice had little or no airway fibrosis and had normal lung function at day 7. Unexposed FVB/NJ mice had less keratin 5 staining (basal cell marker) than A/J mice in large intrapulmonary airways where epithelial repair was poor and fibrosis developed after chlorine exposure. FVB/NJ mice had large areas devoid of epithelium on day 1 after exposure leading to fibroproliferative lesions on days 4 and 7. A/J mice had airways covered by squamous keratin 5-stained cells on day 1 that transitioned to a highly proliferative reparative epithelium by day 4 followed by the reappearance of ciliated and Clara cells by day 7. The data suggest that lack of basal cells in the large intrapulmonary airways and failure to effect epithelial repair at these sites are factors contributing to the development of airway fibrosis in FVB/NJ mice. The observed differences in susceptibility to chlorine-induced airway disease provide a model in which mechanisms and treatment of airway fibrosis can be investigated. PMID:23171502

  16. Differential susceptibility of inbred mouse strains to chlorine-induced airway fibrosis.

    PubMed

    Mo, Yiqun; Chen, Jing; Schlueter, Connie F; Hoyle, Gary W

    2013-01-15

    Chlorine is a reactive gas that is considered a chemical threat agent. Humans who develop acute lung injury from chlorine inhalation typically recover normal lung function; however, a subset can experience chronic airway disease. To examine pathological changes following chlorine-induced lung injury, mice were exposed to a single high dose of chlorine, and repair of the lung was analyzed at multiple times after exposure. In FVB/NJ mice, chlorine inhalation caused pronounced fibrosis of larger airways that developed by day 7 after exposure and was associated with airway hyperreactivity. In contrast, A/J mice had little or no airway fibrosis and had normal lung function at day 7. Unexposed FVB/NJ mice had less keratin 5 staining (basal cell marker) than A/J mice in large intrapulmonary airways where epithelial repair was poor and fibrosis developed after chlorine exposure. FVB/NJ mice had large areas devoid of epithelium on day 1 after exposure leading to fibroproliferative lesions on days 4 and 7. A/J mice had airways covered by squamous keratin 5-stained cells on day 1 that transitioned to a highly proliferative reparative epithelium by day 4 followed by the reappearance of ciliated and Clara cells by day 7. The data suggest that lack of basal cells in the large intrapulmonary airways and failure to effect epithelial repair at these sites are factors contributing to the development of airway fibrosis in FVB/NJ mice. The observed differences in susceptibility to chlorine-induced airway disease provide a model in which mechanisms and treatment of airway fibrosis can be investigated.

  17. Tidal stretches do not modulate responsiveness of intact airways in vitro

    PubMed Central

    Szabo, Thomas L.; Suki, Béla; Lutchen, Kenneth R.

    2010-01-01

    Studies on isolated tracheal airway smooth muscle (ASM) strips have shown that length/force fluctuations, similar to those likely occurring during breathing, will mitigate ASM contractility. These studies conjecture that, solely by reducing length oscillations on a healthy, intact airway, one can create airway hyperresponsiveness, but this has never been explicitly tested. The intact airway has additional complexities of geometry and structure that may impact its relevance to isolated ASM strips. We examined the role of transmural pressure (Ptm) fluctuations of physiological amplitudes on the responsiveness of an intact airway. We developed an integrated system utilizing ultrasound imaging to provide real-time measurements of luminal radius and wall thickness over the full length of an intact airway (generation 10 and below) during Ptm oscillations. First, airway constriction dynamics to cumulative acetylcholine (ACh) doses (10−7 to 10−3 M) were measured during static and dynamic Ptm protocols. Regardless of the breathing pattern, the Ptm oscillation protocols were ineffective in reducing the net level of constriction for any ACh dose, compared with the static control (P = 0.225–0.793). Next, Ptm oscillations of increasing peak-to-peak amplitude were applied subsequent to constricting intact airways under static conditions (5.0-cmH2O Ptm) with a moderate ACh dose (10−5 M). Peak-to-peak Ptm oscillations ≤5.0 cmH2O resulted in no statistically significant bronchodilatory response (P = 0.429 and 0.490). Larger oscillations (10 cmH2O, peak to peak) produced modest dilation of 4.3% (P = 0.009). The lack of modulation of airway responsiveness by Ptm oscillations in intact, healthy airways suggests that ASM level mechanisms alone may not be the sole determinant of airway responsiveness. PMID:20431023

  18. Monitoring the state of the human airways by analysis of respiratory sound

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Patterson, J. L., Jr.

    1978-01-01

    A mechanism whereby sound is generated by the motion of vortices in the human lung is described. This mechanism is believed to be responsible for most of the sound which is generated both on inspiration and expiration in normal lungs. Mathematical expressions for the frequencies of sound generated, which depend only upon the axial flow velocity and diameters of the bronchi, are derived. This theory allows the location within the bronchial tree from which particular sounds emanate to be determined. Redistribution of pulmonary blood volume following transition from earth gravity to the weightless state probably alters the caliber of certain airways and doubtless alters sound transmission properties of the lung. We believe that these changes can be monitored effectively and non-invasively by spectral analysis of pulmonary sound.

  19. Monitoring the state of the human airways by analysis of respiratory sound

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Patterson, J. L. Jr

    1979-01-01

    A mechanism whereby sound is generated by the motion of vortices in the human lung is described. This mechanism is believed to be responsible for most of the sound which is generated both on inspiration and expiration in normal lungs. Mathematical expressions for the frequencies of sound generated, which depend only upon the axial flow velocity and diameters of the bronchi, are derived. This theory allows the location within the bronchial tree from which particular sounds emanate to be determined. Redistribution of pulmonary blood volume following transition from Earth gravity to the weightless state probably alters the caliber of certain airways and doubtless alters sound transmission properties of the lung. We believe that these changes can be monitored effectively and non-invasively by spectral analysis of pulmonary sound.

  20. SAS-6 assembly templated by the lumen of cartwheel-less centrioles precedes centriole duplication.

    PubMed

    Fong, Chii Shyang; Kim, Minhee; Yang, T Tony; Liao, Jung-Chi; Tsou, Meng-Fu Bryan

    2014-07-28

    Centrioles are 9-fold symmetric structures duplicating once per cell cycle. Duplication involves self-oligomerization of the centriolar protein SAS-6, but how the 9-fold symmetry is invariantly established remains unclear. Here, we found that SAS-6 assembly can be shaped by preexisting (or mother) centrioles. During S phase, SAS-6 molecules are first recruited to the proximal lumen of the mother centriole, adopting a cartwheel-like organization through interactions with the luminal wall, rather than via their self-oligomerization activity. The removal or release of luminal SAS-6 requires Plk4 and the cartwheel protein STIL. Abolishing either the recruitment or the removal of luminal SAS-6 hinders SAS-6 (or centriole) assembly at the outside wall of mother centrioles. After duplication, the lumen of engaged mother centrioles becomes inaccessible to SAS-6, correlating with a block for reduplication. These results lead to a proposed model that centrioles may duplicate via a template-based process to preserve their geometry and copy number. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. SAS-6 assembly templated by the lumen of cartwheel-less centrioles precedes centriole duplication

    PubMed Central

    Fong, Chii Shyang; Kim, Minhee; Yang, T. Tony; Liao, Jung-Chi; Tsou, Meng-Fu Bryan

    2014-01-01

    SUMMARY Centrioles are 9-fold symmetric structures duplicating once per cell cycle. Duplication involves self-oligomerization of the centriolar protein SAS-6, but how the 9-fold symmetry is invariantly established remains unclear. Here, we found that SAS-6 assembly can be shaped by preexisting (or mother) centrioles. During S phase, SAS-6 molecules are first recruited to the proximal lumen of the mother centriole, adopting a cartwheel-like organization through interactions with the luminal wall, rather than via their self-oligomerization activity. The removal or release of luminal SAS-6 requires Plk4 and the cartwheel protein STIL. Abolishing either the recruitment or the removal of luminal SAS-6 hinders SAS-6 (or centriole) assembly at the outside wall of mother centrioles. After duplication, the lumen of engaged mother centrioles becomes inaccessible to SAS-6, correlating with a block for re-duplication. These results lead to a proposed model that centrioles may duplicate via a template-based process to preserve their geometry and copy number. PMID:25017693

  2. Computed tomography-guided tissue engineering of upper airway cartilage.

    PubMed

    Brown, Bryan N; Siebenlist, Nicholas J; Cheetham, Jonathan; Ducharme, Norm G; Rawlinson, Jeremy J; Bonassar, Lawrence J

    2014-06-01

    Normal laryngeal function has a large impact on quality of life, and dysfunction can be life threatening. In general, airway obstructions arise from a reduction in neuromuscular function or a decrease in mechanical stiffness of the structures of the upper airway. These reductions decrease the ability of the airway to resist inspiratory or expiratory pressures, causing laryngeal collapse. We propose to restore airway patency through methods that replace damaged tissue and improve the stiffness of airway structures. A number of recent studies have utilized image-guided approaches to create cell-seeded constructs that reproduce the shape and size of the tissue of interest with high geometric fidelity. The objective of the present study was to establish a tissue engineering approach to the creation of viable constructs that approximate the shape and size of equine airway structures, in particular the epiglottis. Computed tomography images were used to create three-dimensional computer models of the cartilaginous structures of the larynx. Anatomically shaped injection molds were created from the three-dimensional models and were seeded with bovine auricular chondrocytes that were suspended within alginate before static culture. Constructs were then cultured for approximately 4 weeks post-seeding and evaluated for biochemical content, biomechanical properties, and histologic architecture. Results showed that the three-dimensional molded constructs had the approximate size and shape of the equine epiglottis and that it is possible to seed such constructs while maintaining 75%+ cell viability. Extracellular matrix content was observed to increase with time in culture and was accompanied by an increase in the mechanical stiffness of the construct. If successful, such an approach may represent a significant improvement on the currently available treatments for damaged airway cartilage and may provide clinical options for replacement of damaged tissue during treatment of

  3. Reflex regulation of airway sympathetic nerves in guinea-pigs

    PubMed Central

    Oh, Eun Joo; Mazzone, Stuart B; Canning, Brendan J; Weinreich, Daniel

    2006-01-01

    Sympathetic nerves innervate the airways of most species but their reflex regulation has been essentially unstudied. Here we demonstrate sympathetic nerve-mediated reflex relaxation of airway smooth muscle measured in situ in the guinea-pig trachea. Retrograde tracing, immunohistochemistry and electrophysiological analysis identified a population of substance P-containing capsaicin-sensitive spinal afferent neurones in the upper thoracic (T1–T4) dorsal root ganglia (DRG) that innervate the airways and lung. After bilateral vagotomy, atropine pretreatment and precontraction of the trachealis with histamine, nebulized capsaicin (10–60 μm) evoked a 63 ± 7% reversal of the histamine-induced contraction of the trachealis. Either the β-adrenoceptor antagonist propranolol (2 μm, administered directly to the trachea) or bilateral sympathetic nerve denervation of the trachea essentially abolished these reflexes (10 ± 9% and 6 ± 4% relaxations, respectively), suggesting that they were mediated primarily, if not exclusively, by sympathetic adrenergic nerve activation. Cutting the upper thoracic dorsal roots carrying the central processes of airway spinal afferents also markedly blocked the relaxations (9 ± 5% relaxation). Comparable inhibitory effects were observed following intravenous pretreatment with neurokinin receptor antagonists (3 ± 7% relaxations). These reflexes were not accompanied by consistent changes in heart rate or blood pressure. By contrast, stimulating the rostral cut ends of the cervical vagus nerves also evoked a sympathetic adrenergic nerve-mediated relaxation that were accompanied by marked alterations in blood pressure. The results indicate that the capsaicin-induced reflex-mediated relaxation of airway smooth muscle following vagotomy is mediated by sequential activation of tachykinin-containing spinal afferent and sympathetic efferent nerves innervating airways. This sympathetic nerve-mediated response may serve to oppose airway

  4. Airway obstruction due to aspiration of muddy water.

    PubMed

    Schober, Patrick; Christiaans, Herman M T; Loer, Stephan A; Schwarte, Lothar A

    2013-10-01

    We report a case of complete airway obstruction due to aspiration of muddy water. An innovative approach to clear the airway is described, which may be a potentially life saving manoeuver in similar cases of suspected muddy water aspiration.

  5. Video-assisted thoracoscopic surgery using single-lumen endotracheal tube anesthesia.

    PubMed

    Cerfolio, Robert James; Bryant, Ayesha S; Sheils, Todd M; Bass, Cynthia S; Bartolucci, Alfred A

    2004-07-01

    Most general thoracic surgeons use double-lumen endotracheal tube (DLET) anesthesia for all video-assisted thoracoscopic surgery (VATS). We evaluated a single-lumen endotracheal tube (SLET) for VATS for drainage of pleural effusions and pleural biopsies. A consecutive series of patients with recurrent pleural effusions underwent VATS using an SLET and only one incision. Operations were accomplished via one 2-cm incision using a 5-mm rigid thoracoscope and mediastinoscopic biopsy forceps for directed pleural biopsies. A working area was accomplished with low tidal volumes. There were 376 patients (191 women). The indications for VATS were a nondiagnosed or benign pleural effusion in 294 patients, and a malignant effusion in 82 patients. Two hundred eight patients underwent biopsy of the parietal pleura, and mean operative time was 17 min. Adequate visibility was obtained in all. When compared to preoperative cytology, VATS was more sensitive (45% compared to 99%, p < 0.001), had a higher negative predictive value (56% compared to 99%, p < 0.001), and was more accurate (67% compared to 99%, p < 0.001). Forty-seven percent of patients with a history of cancer had false-negative preoperative cytology results. Complications occurred in seven patients (2%), and there were three operative deaths (none related to the operative procedure). VATS using SLET and only one incision is possible, and it affords excellent visualization of the pleural space, allowing pleural biopsies and talc insufflation. It avoids the risk, time, and cost of a DLET. It is significantly more sensitive and accurate than preoperative cytology, and it should be considered as the diagnostic and therapeutic procedure of choice in patients with recurrent pleural effusions.

  6. Neuronal NOS localises to human airway cilia.

    PubMed

    Jackson, Claire L; Lucas, Jane S; Walker, Woolf T; Owen, Holly; Premadeva, Irnthu; Lackie, Peter M

    2015-01-30

    Airway NO synthase (NOS) isoenzymes are responsible for rapid and localised nitric oxide (NO) production and are expressed in airway epithelium. We sought to determine the localisation of neuronal NOS (nNOS) in airway epithelium due to the paucity of evidence. Sections of healthy human bronchial tissue in glycol methacrylate resin and human nasal polyps in paraffin wax were immunohistochemically labelled and reproducibly demonstrated nNOS immunoreactivity, particularly at the proximal portion of cilia; this immunoreactivity was blocked by a specific nNOS peptide fragment. Healthy human epithelial cells differentiated at an air-liquid interface (ALI) confirmed the presence of all three NOS isoenzymes by immunofluorescence labelling. Only nNOS immunoreactivity was specific to the ciliary axonemeand co-localised with the cilia marker β-tubulin in the proximal part of the ciliary axoneme. We report a novel localisation of nNOS at the proximal portion of cilia in airway epithelium and conclude that its independent and local regulation of NO levels is crucial for normal cilia function. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Dual-Lumen Chest Port Infection Rates in Patients with Head and Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bos, Aaron, E-mail: abos1210@gmail.com; Ahmed, Osman; Jilani, Danial

    PurposeThe aim of this study was to investigate dual-lumen chest port infection rates in patients with head and neck cancer (HNC) compared to those with other malignancies (non-HNC).Materials and MethodsAn IRB-approved retrospective study was performed on 1,094 consecutive chest ports placed over a 2-year period. Patients with poor follow-up (n = 53), no oncologic history (n = 13), or single-lumen ports (n = 183) were excluded yielding a study population of 845 patients. The electronic medical records were queried for demographic information, data regarding ports and infections, and imaging review.ResultsHNC patients experienced more infections (42 vs. 30), an increased infection rate per 1,000 catheter days (0.68more » vs. 0.21), and more early infections within 30 days compared to non-HNC patients (10 vs. 6) (p < 0.001, p < 0.001, p = 0.02, respectively). An existing tracheostomy at the time of port placement was associated with infection in the HNC group (p = 0.02) but was not an independent risk factor for infection in the study population overall (p = 0.06). There was a significant difference in age, male gender, and right-sided ports between the HNC and non-HNC groups (p < 0.01, p < 0.001, and p = 0.01), although these were not found to be independent risk factors for infection (p = 0.32, p = 0.76, p = 0.16).ConclusionHNC patients are at increased risk for infection of dual-lumen chest ports placed via a jugular approach compared to patients with other malignancies. Tracheostomy is associated with infection in HNC patients but is not an independent risk factor for infection in the oncologic population as a whole.« less

  8. Linear-regression convolutional neural network for fully automated coronary lumen segmentation in intravascular optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yong, Yan Ling; Tan, Li Kuo; McLaughlin, Robert A.; Chee, Kok Han; Liew, Yih Miin

    2017-12-01

    Intravascular optical coherence tomography (OCT) is an optical imaging modality commonly used in the assessment of coronary artery diseases during percutaneous coronary intervention. Manual segmentation to assess luminal stenosis from OCT pullback scans is challenging and time consuming. We propose a linear-regression convolutional neural network to automatically perform vessel lumen segmentation, parameterized in terms of radial distances from the catheter centroid in polar space. Benchmarked against gold-standard manual segmentation, our proposed algorithm achieves average locational accuracy of the vessel wall of 22 microns, and 0.985 and 0.970 in Dice coefficient and Jaccard similarity index, respectively. The average absolute error of luminal area estimation is 1.38%. The processing rate is 40.6 ms per image, suggesting the potential to be incorporated into a clinical workflow and to provide quantitative assessment of vessel lumen in an intraoperative time frame.

  9. Nociceptin effects in the airways.

    PubMed

    Peiser, C; Undem, B J; Fischer, A

    2000-07-01

    The opioid-like heptadecapeptide nociceptin (NC) has the following effects in the airways (investigated in isolated tracheae and bronchi from guinea pig or rat): the electric field stimulation (EFS)-induces release of acetylcholine (ACh), the tachykinin substance P (SP) and calcitonin gene-related peptide (CGRP) is reduced after pretreatment with NC, and EFS-induced tachykinergic nonadrenergic-noncholinergic (NANC) bronchoconstriction is inhibited by NC. Both the NC-mediated inhibition of neurotransmission and of smooth muscle contraction occurred in a concentration-dependent manner. Because these effects were naloxone-insensitive, were blocked by the NC receptor antagonist [F/G]NC(1-13)NH(2), and could be mimicked by the NC analogs, NCNH(2) and NC(1-13)NH(2), it is thought that they are distinct from the classic opioid receptors. That these pharmacological actions of NC are of relevance for airway physiology is highly probable given the presence of NC-immunoreactivity in the nerve fibers of the airways and of opioid-like receptor (ORL-1) transcripts in the jugular ganglia, from where the tachykinin-containing afferents arise.

  10. The cervical spine in maxillofacial trauma. Assessment and airway management.

    PubMed

    Kellman, R

    1991-02-01

    Although the presence of a real or potential cervical spine injury limits the options for emergency airway management, many choices still remain. The otolaryngologist-head and neck surgeon frequently is called on to treat patients with airway emergencies; therefore, familiarity with the risk of spinal cord damage and methods to avoid it when establishing a safe airway constitute important knowledge. Experience with the variety of airway techniques available increases the number of options and decreases the risks of morbidity and mortality for the patient with cervical spine injury.

  11. Comparison of the upper airway dynamics of oronasal and nasal masks with positive airway pressure treatment using cine magnetic resonance imaging.

    PubMed

    Ebben, Matthew R; Milrad, Sara; Dyke, Jonathan P; Phillips, C Douglas; Krieger, Ana C

    2016-03-01

    It is known that oronasal masks are not as effective at opening the upper airway compared to nasal only continuous positive airway pressure (CPAP) masks in patients with sleep-disordered breathing. However, the physiological mechanism for this difference in efficacy is not known; although, it has been hypothesized to involve the retroglossal and/or retropalatal region of the upper airway. The objective of this study was to investigate differences in retroglossal and retropalatal anterior-posterior space with the use of oronasal vs. nasal CPAP masks using real-time cine magnetic resonance imaging (cMRI). Ten subjects (eight men, two women) with obstructive sleep apnea (OSA) were given cMRI with both nasal and oronasal CPAP masks. Each subject was imaged with each interface at pressures of 5, 10, and 15 cm of H2O, while in the supine position along the sagittal plane. The oronasal mask produced significantly less airway opening in the retropalatal region of the upper airway compared to the nasal mask interface. During exhalation, mask style had a significant effect on anterior-posterior distance p = 0.016. No differences were found in the retroglossal region between mask styles. Our study confirmed previous findings showing differences in treatment efficacy between oronasal and nasal mask styles. We have shown anatomic evidence that the nasal mask is more effective in opening the upper airway compared to the oronasal mask in the retropalatal region.

  12. Comparison of the Upper Airway Dynamics of Oronasal and Nasal Masks with Positive Airway Pressure Treatment using cine Magnetic Resonance Imaging

    PubMed Central

    Ebben, Matthew R.; Milrad, Sara; Dyke, Jonathan P.; Phillips, C. Douglas; Krieger, Ana C.

    2016-01-01

    Purpose It is known that oronasal masks are not as effective at opening the upper airway compared to nasal only continuous positive airway pressure (CPAP) masks in patients with sleep disordered breathing. However, the physiological mechanism for this difference in efficacy is not known; although, it has been hypothesized to involve the retroglossal and/or retropalatal region of the upper airway. The objective of this study was to investigate differences in retroglossal and retropalatal anterior-posterior space with the use of oronasal vs. nasal CPAP masks using real-time cine Magnetic Resonance Imaging (cMRI). Methods 10-Subjects (8-men, 2-women) with obstructive sleep apnea (OSA) were given cMRI with both nasal and oronasal CPAP masks. Each subject was imaged with each interface at pressures of 5, 10 and 15 cm of H2O, while in the supine position along the sagittal plane. Results The oronasal mask produced significantly less airway opening in the retropalatal region of the upper airway compared to the nasal mask interface. During exhalation, mask style had a significant effect on anterior-posterior distance p=0.016. No differences were found in the retroglossal region between mask styles. Conclusions Our study confirmed previous findings showing differences in treatment efficacy between oronasal and nasal mask styles. We have shown anatomic evidence that the nasal mask is more effective in opening the upper airway compared to the oronasal mask in the retropalatal region. PMID:25924934

  13. Crisis management during anaesthesia: obstruction of the natural airway.

    PubMed

    Visvanathan, T; Kluger, M T; Webb, R K; Westhorpe, R N

    2005-06-01

    Obstruction of the natural airway, while usually easily recognised and managed, may present simply as desaturation, have an unexpected cause, be very difficult to manage, and have serious consequences for the patient. To examine the role of a previously described core algorithm "COVER ABCD-A SWIFT CHECK", supplemented by a specific sub-algorithm for obstruction of the natural airway, in the management of acute airway obstruction occurring in association with anaesthesia. The potential performance for this structured approach for each of the relevant incidents among the first 4000 reported to the Australian Incident Monitoring Study (AIMS) was compared with the actual management as reported by the anaesthetists involved. There were 62 relevant incidents among the first 4000 reports to the AIMS. It was considered that the correct use of the structured approach would have led to earlier recognition of the problem and/or better management in 11% of cases. Airway management is a fundamental anaesthetic responsibility and skill. Airway obstruction demands a rapid and organised approach to its diagnosis and management and undue delay usually results in desaturation and a potential threat to life. An uncomplicated pre-learned sequence of airway rescue instructions is an essential part of every anaesthetist's clinical practice requirements.

  14. A Novel Imaging Method for the Cartilaginous Eustachian Tube Lumen: Computerized Tomography During the Forced Response Test.

    PubMed

    Alper, Cuneyt M; Rath, Tanya J; Teixeira, Miriam S; Swarts, J Douglas

    2018-01-01

    In vivo imaging of the open cartilaginous Eustachian tube (ET) lumen by computed tomography (CT) scan during ET function (ETF) testing to establish new methodology. Five adults underwent unilateral ETF testing of an ear with a nonintact tympanic membrane using the forced response test (FRT) to measure the opening pressure (PO), steady state pressure (PS), and flow conductance (CS). Then at baseline and during the PS phase of the FRT, a temporal-bone CT scan with continuous 0.625 mm thickness was obtained. Multiplanar oblique reformats along the axis of the ET were created, and point value and region of interest (ROI) Hounsfield unit measurements were recorded from the location of the ET lumen. At the FRT flow rate of 11 ml/min, the average PO, PS, and CS were 370.5 daPa, 119.6 daPa, and 0.16 ml/min/daPa, respectively. For flow rates of 23 and 46 ml/min, these values were 236.2, 204.2, 0.12 and 385.5, 321.1, 0.18, respectively. Although areas with lower attenuation were suggestive of air density, a distinct air-filled cartilaginous ET lumen could not be confirmed. While the current imaging parameters failed to resolve the air-soft tissue interface throughout the open cartilaginous ET, further advances in imaging may obviate this limitation.

  15. Adam8 Limits the Development of Allergic Airway Inflammation in Mice

    PubMed Central

    Knolle, Martin D.; Nakajima, Takahiro; Hergrueter, Anja; Gupta, Kushagra; Polverino, Francesca; Craig, Vanessa J.; Fyfe, Susanne E.; Zahid, Muhammad; Permaul, Perdita; Cernadas, Manuela; Montano, Gilbert; Tesfaigzi, Yohannes; Sholl, Lynette; Kobzik, Lester; Israel, Elliot; Owen, Caroline A.

    2013-01-01

    To determine whether a disintegrin and a metalloproteinase-8 (Adam8) regulates allergic airway inflammation (AAI) and airway hyper-responsiveness (AHR), we compared AAI and AHR in wild type (WT) versus Adam8−/− mice in different genetic backgrounds sensitized and challenged with ovalbumin (OVA) or house dust mite protein extract (HDM). OVA- and HDM-treated Adam8−/− mice had higher lung leukocyte counts, more airway mucus metaplasia, greater lung levels of some TH2 cytokines, and higher methacholine-induced increases in central airway resistance than allergen-treated WT mice. Studies of OVA-treated Adam8 bone marrow chimeric mice confirmed that leukocyte-derived Adam8 predominantly mediated Adam8’s anti-inflammatory activities in murine airways. Airway eosinophils and macrophages both expressed Adam8 in WT mice with AAI. Adam8 limited AAI and AHR in mice by reducing leukocyte survival because: 1) Adam8−/− mice with AAI had fewer apoptotic eosinophils and macrophages in their airways than WT mice with AAI; and 2) Adam8−/− macrophages and eosinophils had reduced rates of apoptosis compared with WT leukocytes when the intrinsic (but not the extrinsic) apoptosis pathway was triggered in the cells in vitro. ADAM8 was robustly expressed by airway granulocytes in lung sections from human asthma patients but, surprisingly, airway macrophages had less ADAM8 staining than airway eosinophils. Thus, ADAM8 has anti-inflammatory activities during AAI in mice by activating the intrinsic apoptosis pathway in myeloid leukocytes. Strategies that increase ADAM8 levels in myeloid leukocytes may have therapeutic efficacy in asthma. PMID:23670189

  16. Inflammation Promotes Airway Epithelial ATP Release via Calcium-Dependent Vesicular Pathways

    PubMed Central

    Okada, Seiko F.; Ribeiro, Carla M. P.; Sesma, Juliana I.; Seminario-Vidal, Lucia; Abdullah, Lubna H.; van Heusden, Catharina; Lazarowski, Eduardo R.

    2013-01-01

    ATP in airway surface liquid (ASL) controls mucociliary clearance functions via the activation of airway epithelial purinergic receptors. However, abnormally elevated ATP levels have been reported in inflamed airways, suggesting that excessive ATP in ASL contributes to airway inflammation. Despite these observations, little is known about the mechanisms of ATP accumulation in the ASL covering inflamed airways. In this study, links between cystic fibrosis (CF)–associated airway inflammation and airway epithelial ATP release were investigated. Primary human bronchial epithelial (HBE) cells isolated from CF lungs exhibited enhanced IL-8 secretion after 6 to 11 days, but not 28 to 35 days, in culture, compared with normal HBE cells. Hypotonic cell swelling–promoted ATP release was increased in 6- to 11-day-old CF HBE cells compared with non-CF HBE cells, but returned to normal values after 28 to 35 days in culture. The exposure of non-CF HBE cells to airway secretions isolated from CF lungs, namely, sterile supernatants of mucopurulent material (SMM), also caused enhanced IL-8 secretion and increased ATP release. The SMM-induced increase in ATP release was sensitive to Ca2+ chelation and vesicle trafficking/exocytosis inhibitors, but not to pannexin inhibition. Transcript levels of the vesicular nucleotide transporter, but not pannexin 1, were up-regulated after SMM exposure. SMM-treated cultures displayed increased basal mucin secretion, but mucin secretion was not enhanced in response to hypotonic challenge after the exposure of cells to either vehicle or SMM. We propose that CF airway inflammation up-regulates the capacity of airway epithelia to release ATP via Ca2+-dependent vesicular mechanisms not associated with mucin granule secretion. PMID:23763446

  17. CT Metrics of Airway Disease and Emphysema in Severe COPD

    PubMed Central

    Kim, Woo Jin; Silverman, Edwin K.; Hoffman, Eric; Criner, Gerard J.; Mosenifar, Zab; Sciurba, Frank C.; Make, Barry J.; Carey, Vincent; Estépar, Raúl San José; Diaz, Alejandro; Reilly, John J.; Martinez, Fernando J.; Washko, George R.

    2009-01-01

    Background: CT scan measures of emphysema and airway disease have been correlated with lung function in cohorts of subjects with a range of COPD severity. The contribution of CT scan-assessed airway disease to objective measures of lung function and respiratory symptoms such as dyspnea in severe emphysema is less clear. Methods: Using data from 338 subjects in the National Emphysema Treatment Trial (NETT) Genetics Ancillary Study, densitometric measures of emphysema using a threshold of −950 Hounsfield units (%LAA-950) and airway wall phenotypes of the wall thickness (WT) and the square root of wall area (SRWA) of a 10-mm luminal perimeter airway were calculated for each subject. Linear regression analysis was performed for outcome variables FEV1 and percent predicted value of FEV1 with CT scan measures of emphysema and airway disease. Results: In univariate analysis, there were significant negative correlations between %LAA-950 and both the WT (r = −0.28, p = 0.0001) and SRWA (r = −0.19, p = 0.0008). Airway wall thickness was weakly but significantly correlated with postbronchodilator FEV1% predicted (R = −0.12, p = 0.02). Multivariate analysis showed significant associations between either WT or SRWA (β = −5.2, p = 0.009; β = −2.6, p = 0.008, respectively) and %LAA-950 (β = −10.6, p = 0.03) with the postbronchodilator FEV1% predicted. Male subjects exhibited significantly thicker airway wall phenotypes (p = 0.007 for WT and p = 0.0006 for SRWA). Conclusions: Airway disease and emphysema detected by CT scanning are inversely related in patients with severe COPD. Airway wall phenotypes were influenced by gender and associated with lung function in subjects with severe emphysema. PMID:19411295

  18. Silibinin attenuates allergic airway inflammation in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yun Ho; Jin, Guang Yu; Guo, Hui Shu

    Highlights: Black-Right-Pointing-Pointer Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. Black-Right-Pointing-Pointer Silibinin reduces the levels of various cytokines into the lung of allergic mice. Black-Right-Pointing-Pointer Silibinin prevents the development of airway hyperresponsiveness in allergic mice. Black-Right-Pointing-Pointer Silibinin suppresses NF-{kappa}B transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-{kappa}B) pathway. Because NF-{kappa}B activation plays a pivotal role in the pathogenesismore » of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-{kappa}B activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-{kappa}B activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.« less

  19. Endocrine regulation of airway contractility is overlooked.

    PubMed

    Bossé, Ynuk

    2014-08-01

    Asthma is a prevalent respiratory disorder triggered by a variety of inhaled environmental factors, such as allergens, viruses, and pollutants. Asthma is characterized by an elevated activation of the smooth muscle surrounding the airways, as well as a propensity of the airways to narrow excessively in response to a spasmogen (i.e. contractile agonist), a feature called airway hyperresponsiveness. The level of airway smooth muscle (ASM) activation is putatively controlled by mediators released in its vicinity. In asthma, many mediators that affect ASM contractility originate from inflammatory cells that are mobilized into the airways, such as eosinophils. However, mounting evidence indicates that mediators released by remote organs can also influence the level of activation of ASM, as well as its level of responsiveness to spasmogens and relaxant agonists. These remote mediators are transported through circulating blood to act either directly on ASM or indirectly via the nervous system by tuning the level of cholinergic activation of ASM. Indeed, mediators generated from diverse organs, including the adrenals, pancreas, adipose tissue, gonads, heart, intestines, and stomach, affect the contractility of ASM. Together, these results suggest that, apart from a paracrine mode of regulation, ASM is subjected to an endocrine mode of regulation. The results also imply that defects in organs other than the lungs can contribute to asthma symptoms and severity. In this review, I suggest that the endocrine mode of regulation of ASM contractility is overlooked. © 2014 Society for Endocrinology.

  20. Effect of tachykinins in small human airways.

    PubMed

    Frossard, N; Barnes, J

    1991-07-01

    We have compared the contractile responses of substance P (SP) and neurokinin A (NKA) to that of the non degradable muscarinic agonist, carbachol, in small and large human airways in vitro. We have also investigated the effects of the neutral endopeptidase (NEP) inhibitor, thiorphan (100 microM) on these responses. NKA contracted large and small airways to a different extent (56% vs 92% of carbachol maximal contraction, respectively). NKA was significantly less potent in large vs small bronchi (EC50 = 150 +/- 15 vs 12 +/- 5 nM respectively, p less than 0.05). SP had a lower contractile effect in large (26% carbachol maximum) and small airways (59%) with EC50 values higher than 0.5 microM. The enkephalinase inhibitor thiorphan shifted the concentration-response curve to NKA to the left in large (EC50 = 35.2 +/- 8.2 nM) and small bronchi (EC50 = 2.8 +/- 1.3 nM, p less than 0.02). This shift was associated with an increase in the maximal contraction to NKA (75% in large vs 123% in small bronchi). The amplitude of contraction to SP was also potentiated in large (45%) and in smaller bronchi (101%). In conclusion, we have demonstrated that NKA has a significantly greater constrictor effect than a cholinergic agent in more peripheral human airways in vitro. This suggests that non cholinergic constrictor pathways are more likely to be important in more peripheral airways.