Science.gov

Sample records for airway mucin secretion

  1. Baseline Goblet Cell Mucin Secretion in the Airways Exceeds Stimulated Secretion over Extended Time Periods, and Is Sensitive to Shear Stress and Intracellular Mucin Stores

    PubMed Central

    Doyle, Sean P.; Nguyen, Kristine; Ribeiro, Carla M. P.; Vasquez, Paula A.; Forest, M. Gregory; Lethem, Michael I.; Dickey, Burton F.; Davis, C. William

    2015-01-01

    Airway mucin secretion studies have focused on goblet cell responses to exogenous agonists almost to the exclusion of baseline mucin secretion (BLMS). In human bronchial epithelial cell cultures (HBECCs), maximal agonist-stimulated secretion exceeds baseline by ~3-fold as measured over hour-long periods, but mucin stores are discharged completely and require 24 h for full restoration. Hence, over 24 h, total baseline exceeds agonist-induced secretion by several-fold. Studies with HBECCs and mouse tracheas showed that BLMS is highly sensitive to mechanical stresses. Harvesting three consecutive 1 h baseline luminal incubations with HBECCs yielded equal rates of BLMS; however, lengthening the middle period to 72 h decreased the respective rate significantly, suggesting a stimulation of BLMS by the gentle washes of HBECC luminal surfaces. BLMS declined exponentially after washing HBECCs (t1/2 = 2.75 h), to rates approaching zero. HBECCs exposed to low perfusion rates exhibited spike-like increases in BLMS when flow was jumped 5-fold: BLMS increased >4 fold, then decreased within 5 min to a stable plateau at 1.5–2-fold over control. Higher flow jumps induced proportionally higher BLMS increases. Inducing mucous hyperplasia in HBECCs increased mucin production, BLMS and agonist-induced secretion. Mouse tracheal BLMS was ~6-fold higher during perfusion, than when flow was stopped. Munc13-2 null mouse tracheas, with their defect of accumulated cellular mucins, exhibited similar BLMS as WT, contrary to predictions of lower values. Graded mucous metaplasia induced in WT and Munc13-2 null tracheas with IL-13, caused proportional increases in BLMS, suggesting that naïve Munc13-2 mouse BLMS is elevated by increased mucin stores. We conclude that BLMS is, [i] a major component of mucin secretion in the lung, [ii] sustained by the mechanical activity of a dynamic lung, [iii] proportional to levels of mucin stores, and [iv] regulated differentially from agonist-induced mucin

  2. MARCKS and HSP70 interactions regulate mucin secretion by human airway epithelial cells in vitro.

    PubMed

    Fang, Shijing; Crews, Anne L; Chen, Wei; Park, Joungjoa; Yin, Qi; Ren, Xiu-Rong; Adler, Kenneth B

    2013-04-15

    Myristoylated alanine-rich C kinase substrate (MARCKS) protein has been recognized as a key regulatory molecule controlling mucin secretion by airway epithelial cells in vitro and in vivo. We recently showed that two intracellular chaperones, heat shock protein 70 (HSP70) and cysteine string protein (CSP), associate with MARCKS in the secretory mechanism. To elucidate more fully MARCKS-HSP70 interactions in this process, studies were performed in well-differentiated normal human bronchial epithelial (NHBE) cells maintained in air-liquid interface culture utilizing specific pharmacological inhibition of HSP70 with pyrimidinone MAL3-101 and siRNA approaches. The results indicate that HSP70 interaction with MARCKS is enhanced after exposure of the cells to the protein kinase C activator/mucin secretagogue, phorbol 12-myristate 13-acetate (PMA). Pretreatment of NHBEs with MAL3-101 attenuated in a concentration-dependent manner PMA-stimulated mucin secretion and interactions among HSP70, MARCKS, and CSP. In additional studies, trafficking of MARCKS in living NHBE cells was investigated after transfecting cells with fluorescently tagged DNA constructs: MARCKS-yellow fluorescent protein, and/or HSP70-cyan fluorescent protein. Cells were treated with PMA 48 h posttransfection, and trafficking of the constructs was examined by confocal microscopy. MARCKS translocated rapidly from plasma membrane to cytoplasm, whereas HSP70 was observed in the cytoplasm and appeared to associate with MARCKS after PMA exposure. Pretreatment of cells with either MAL3-101 or HSP70 siRNA inhibited translocation of MARCKS. These results provide evidence of a role for HSP70 in mediating mucin secretion via interactions with MARCKS and that these interactions are critical for the cytoplasmic translocation of MARCKS upon its phosphorylation.

  3. MARCKS and HSP70 interactions regulate mucin secretion by human airway epithelial cells in vitro

    PubMed Central

    Fang, Shijing; Crews, Anne L.; Chen, Wei; Park, Joungjoa; Yin, Qi; Ren, Xiu-Rong

    2013-01-01

    Myristoylated alanine-rich C kinase substrate (MARCKS) protein has been recognized as a key regulatory molecule controlling mucin secretion by airway epithelial cells in vitro and in vivo. We recently showed that two intracellular chaperones, heat shock protein 70 (HSP70) and cysteine string protein (CSP), associate with MARCKS in the secretory mechanism. To elucidate more fully MARCKS-HSP70 interactions in this process, studies were performed in well-differentiated normal human bronchial epithelial (NHBE) cells maintained in air-liquid interface culture utilizing specific pharmacological inhibition of HSP70 with pyrimidinone MAL3-101 and siRNA approaches. The results indicate that HSP70 interaction with MARCKS is enhanced after exposure of the cells to the protein kinase C activator/mucin secretagogue, phorbol 12-myristate 13-acetate (PMA). Pretreatment of NHBEs with MAL3-101 attenuated in a concentration-dependent manner PMA-stimulated mucin secretion and interactions among HSP70, MARCKS, and CSP. In additional studies, trafficking of MARCKS in living NHBE cells was investigated after transfecting cells with fluorescently tagged DNA constructs: MARCKS-yellow fluorescent protein, and/or HSP70-cyan fluorescent protein. Cells were treated with PMA 48 h posttransfection, and trafficking of the constructs was examined by confocal microscopy. MARCKS translocated rapidly from plasma membrane to cytoplasm, whereas HSP70 was observed in the cytoplasm and appeared to associate with MARCKS after PMA exposure. Pretreatment of cells with either MAL3-101 or HSP70 siRNA inhibited translocation of MARCKS. These results provide evidence of a role for HSP70 in mediating mucin secretion via interactions with MARCKS and that these interactions are critical for the cytoplasmic translocation of MARCKS upon its phosphorylation. PMID:23377348

  4. Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction

    PubMed Central

    Huang, Fen; Zhang, Hongkang; Wu, Meng; Yang, Huanghe; Kudo, Makoto; Peters, Christian J.; Woodruff, Prescott G.; Solberg, Owen D.; Donne, Matthew L.; Huang, Xiaozhu; Sheppard, Dean; Fahy, John V.; Wolters, Paul J.; Hogan, Brigid L. M.; Finkbeiner, Walter E.; Li, Min; Jan, Yuh-Nung; Jan, Lily Yeh; Rock, Jason R.

    2012-01-01

    Mucous cell hyperplasia and airway smooth muscle (ASM) hyperresponsiveness are hallmark features of inflammatory airway diseases, including asthma. Here, we show that the recently identified calcium-activated chloride channel (CaCC) TMEM16A is expressed in the adult airway surface epithelium and ASM. The epithelial expression is increased in asthmatics, particularly in secretory cells. Based on this and the proposed functions of CaCC, we hypothesized that TMEM16A inhibitors would negatively regulate both epithelial mucin secretion and ASM contraction. We used a high-throughput screen to identify small-molecule blockers of TMEM16A-CaCC channels. We show that inhibition of TMEM16A-CaCC significantly impairs mucus secretion in primary human airway surface epithelial cells. Furthermore, inhibition of TMEM16A-CaCC significantly reduces mouse and human ASM contraction in response to cholinergic agonists. TMEM16A-CaCC blockers, including those identified here, may positively impact multiple causes of asthma symptoms. PMID:22988107

  5. Cystic fibrosis airway secretions exhibit mucin hyperconcentration and increased osmotic pressure.

    PubMed

    Henderson, Ashley G; Ehre, Camille; Button, Brian; Abdullah, Lubna H; Cai, Li-Heng; Leigh, Margaret W; DeMaria, Genevieve C; Matsui, Hiro; Donaldson, Scott H; Davis, C William; Sheehan, John K; Boucher, Richard C; Kesimer, Mehmet

    2014-07-01

    The pathogenesis of mucoinfective lung disease in cystic fibrosis (CF) patients likely involves poor mucus clearance. A recent model of mucus clearance predicts that mucus flow depends on the relative mucin concentration of the mucus layer compared with that of the periciliary layer; however, mucin concentrations have been difficult to measure in CF secretions. Here, we have shown that the concentration of mucin in CF sputum is low when measured by immunologically based techniques, and mass spectrometric analyses of CF mucins revealed mucin cleavage at antibody recognition sites. Using physical size exclusion chromatography/differential refractometry (SEC/dRI) techniques, we determined that mucin concentrations in CF secretions were higher than those in normal secretions. Measurements of partial osmotic pressures revealed that the partial osmotic pressure of CF sputum and the retained mucus in excised CF lungs were substantially greater than the partial osmotic pressure of normal secretions. Our data reveal that mucin concentration cannot be accurately measured immunologically in proteolytically active CF secretions; mucins are hyperconcentrated in CF secretions; and CF secretion osmotic pressures predict mucus layer-dependent osmotic compression of the periciliary liquid layer in CF lungs. Consequently, mucin hypersecretion likely produces mucus stasis, which contributes to key infectious and inflammatory components of CF lung disease.

  6. Regulation of Airway Mucin Gene Expression

    PubMed Central

    Thai, Philip; Loukoianov, Artem; Wachi, Shinichiro; Wu, Reen

    2015-01-01

    Mucins are important components that exert a variety of functions in cell-cell interaction, epidermal growth factor receptor signaling, and airways protection. In the conducting airways of the lungs, mucins are the major contributor to the viscoelastic property of mucous secretion, which is the major barrier to trapping inhaled microbial organism, particulates, and oxidative pollutants. The homeostasis of mucin production is an important feature in conducting airways for the maintenance of mucociliary function. Aberrant mucin secretion and accumulation in airway lumen are clinical hallmarks associated with various lung diseases, such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, emphysema, and lung cancer. Among 20 known mucin genes identified, 11 of them have been verified at either the mRNA and/or protein level in airways. The regulation of mucin genes is complicated, as are the mediators and signaling pathways. This review summarizes the current view on the mediators, the signaling pathways, and the transcriptional units that are involved in the regulation of airway mucin gene expression. In addition, we also point out essential features of epigenetic mechanisms for the regulation of these genes. PMID:17961085

  7. Vesicular nucleotide transporter regulates the nucleotide content in airway epithelial mucin granules

    PubMed Central

    Sesma, Juliana I.; Kreda, Silvia M.; Okada, Seiko F.; van Heusden, Catharina; Moussa, Lama; Jones, Lisa C.; O'Neal, Wanda K.; Togawa, Natsuko; Hiasa, Miki; Moriyama, Yoshinori

    2013-01-01

    Nucleotides within the airway surface liquid promote fluid secretion via activation of airway epithelial purinergic receptors. ATP is stored within and released from mucin granules as co-cargo with mucins, but the mechanism by which ATP, and potentially other nucleotides, enter the lumen of mucin granules is not known. We assessed the contribution of the recently identified SLC17A9 vesicle nucleotide transporter (VNUT) to the nucleotide availability within isolated mucin granules and further examined the involvement of VNUT in mucin granule secretion-associated nucleotide release. RT-PCR and Western blot analyses indicated that VNUT is abundantly expressed in airway epithelial goblet-like Calu-3 cells, migrating as a duplex with apparent mobility of 55 and 60 kDa. Subcellular fractionation studies indicated that VNUT55 was associated with high-density mucin granules, whereas VNUT60 was associated with low-density organelles. Immunofluorescence studies showed that recombinant VNUT localized to mucin granules and other organelles. Mucin granules isolated from VNUT short hairpin RNA-expressing cells exhibited a marked reduction of ATP, ADP, AMP, and UTP levels within granules. Ca2+-regulated vesicular ATP release was markedly reduced in these cells, but mucin secretion was not affected. These results suggest that VNUT is the relevant nucleotide transporter responsible for the uptake of cytosolic nucleotides into mucin granules. By controlling the entry of nucleotides into mucin granules, VNUT contributes to the release of purinergic signaling molecules necessary for the proper hydration of co-released mucins. PMID:23467297

  8. Vesicular nucleotide transporter regulates the nucleotide content in airway epithelial mucin granules.

    PubMed

    Sesma, Juliana I; Kreda, Silvia M; Okada, Seiko F; van Heusden, Catharina; Moussa, Lama; Jones, Lisa C; O'Neal, Wanda K; Togawa, Natsuko; Hiasa, Miki; Moriyama, Yoshinori; Lazarowski, Eduardo R

    2013-05-15

    Nucleotides within the airway surface liquid promote fluid secretion via activation of airway epithelial purinergic receptors. ATP is stored within and released from mucin granules as co-cargo with mucins, but the mechanism by which ATP, and potentially other nucleotides, enter the lumen of mucin granules is not known. We assessed the contribution of the recently identified SLC17A9 vesicle nucleotide transporter (VNUT) to the nucleotide availability within isolated mucin granules and further examined the involvement of VNUT in mucin granule secretion-associated nucleotide release. RT-PCR and Western blot analyses indicated that VNUT is abundantly expressed in airway epithelial goblet-like Calu-3 cells, migrating as a duplex with apparent mobility of 55 and 60 kDa. Subcellular fractionation studies indicated that VNUT55 was associated with high-density mucin granules, whereas VNUT60 was associated with low-density organelles. Immunofluorescence studies showed that recombinant VNUT localized to mucin granules and other organelles. Mucin granules isolated from VNUT short hairpin RNA-expressing cells exhibited a marked reduction of ATP, ADP, AMP, and UTP levels within granules. Ca(2+)-regulated vesicular ATP release was markedly reduced in these cells, but mucin secretion was not affected. These results suggest that VNUT is the relevant nucleotide transporter responsible for the uptake of cytosolic nucleotides into mucin granules. By controlling the entry of nucleotides into mucin granules, VNUT contributes to the release of purinergic signaling molecules necessary for the proper hydration of co-released mucins.

  9. Analysis of assembly of secreted mucins.

    PubMed

    Johansson, Malin E V; Hansson, Gunnar C

    2012-01-01

    Studies of assembly and secretion of gel-forming mucins are complex. The pulse-chase methods for mucins described here include metabolic radiolabeling and labeling in animals with azido-GalNAc. The labeled mucins are analyzed by composite agarose-polyacrylamide gel electrophoresis and autoradiography or by mucus-preserving tissue fixation and Click-iT(®) chemistry.

  10. Coordinated release of nucleotides and mucin from human airway epithelial Calu-3 cells

    PubMed Central

    Kreda, Silvia M; Okada, Seiko F; van Heusden, Catharina A; O'Neal, Wanda; Gabriel, Sherif; Abdullah, Lubna; Davis, C William; Boucher, Richard C; Lazarowski, Eduardo R

    2007-01-01

    The efficiency of the mucociliary clearance (MCC) process that removes noxious materials from airway surfaces depends on the balance between mucin secretion, airway surface liquid (ASL) volume, and ciliary beating. Effective mucin dispersion into ASL requires salt and water secretion onto the mucosal surface, but how mucin secretion rate is coordinated with ion and, ultimately, water transport rates is poorly understood. Several components of MCC, including electrolyte and water transport, are regulated by nucleotides in the ASL interacting with purinergic receptors. Using polarized monolayers of airway epithelial Calu-3 cells, we investigated whether mucin secretion was accompanied by nucleotide release. Electron microscopic analyses of Calu-3 cells identified subapical granules that resembled goblet cell mucin granules. Real-time confocal microscopic analyses revealed that subapical granules, labelled with FM 1-43 or quinacrine, were competent for Ca2+-regulated exocytosis. Granules containing MUC5AC were apically secreted via Ca2+-regulated exocytosis as demonstrated by combined immunolocalization and slot blot analyses. In addition, Calu-3 cells exhibited Ca2+-regulated apical release of ATP and UDP-glucose, a substrate of glycosylation reactions within the secretory pathway. Neither mucin secretion nor ATP release from Calu-3 cells were affected by activation or inhibition of the cystic fibrosis transmembrane conductance regulator. In SPOC1 cells, an airway goblet cell model, purinergic P2Y2 receptor-stimulated increase of cytosolic Ca2+ concentration resulted in secretion of both mucins and nucleotides. Our data suggest that nucleotide release is a mechanism by which mucin-secreting goblet cells produce paracrine signals for mucin hydration within the ASL. PMID:17656429

  11. Coordinated release of nucleotides and mucin from human airway epithelial Calu-3 cells.

    PubMed

    Kreda, Silvia M; Okada, Seiko F; van Heusden, Catharina A; O'Neal, Wanda; Gabriel, Sherif; Abdullah, Lubna; Davis, C William; Boucher, Richard C; Lazarowski, Eduardo R

    2007-10-01

    The efficiency of the mucociliary clearance (MCC) process that removes noxious materials from airway surfaces depends on the balance between mucin secretion, airway surface liquid (ASL) volume, and ciliary beating. Effective mucin dispersion into ASL requires salt and water secretion onto the mucosal surface, but how mucin secretion rate is coordinated with ion and, ultimately, water transport rates is poorly understood. Several components of MCC, including electrolyte and water transport, are regulated by nucleotides in the ASL interacting with purinergic receptors. Using polarized monolayers of airway epithelial Calu-3 cells, we investigated whether mucin secretion was accompanied by nucleotide release. Electron microscopic analyses of Calu-3 cells identified subapical granules that resembled goblet cell mucin granules. Real-time confocal microscopic analyses revealed that subapical granules, labelled with FM 1-43 or quinacrine, were competent for Ca(2+)-regulated exocytosis. Granules containing MUC5AC were apically secreted via Ca(2+)-regulated exocytosis as demonstrated by combined immunolocalization and slot blot analyses. In addition, Calu-3 cells exhibited Ca(2+)-regulated apical release of ATP and UDP-glucose, a substrate of glycosylation reactions within the secretory pathway. Neither mucin secretion nor ATP release from Calu-3 cells were affected by activation or inhibition of the cystic fibrosis transmembrane conductance regulator. In SPOC1 cells, an airway goblet cell model, purinergic P2Y(2) receptor-stimulated increase of cytosolic Ca(2+) concentration resulted in secretion of both mucins and nucleotides. Our data suggest that nucleotide release is a mechanism by which mucin-secreting goblet cells produce paracrine signals for mucin hydration within the ASL.

  12. Liquid secretion properties of airway submucosal glands

    PubMed Central

    Ballard, Stephen T; Inglis, Sarah K

    2004-01-01

    The tracheobronchial submucosal glands secrete liquid that is important for hydrating airway surfaces, supporting mucociliary transport, and serving as a fluid matrix for numerous secreted macromolecules including the gel-forming mucins. This review details the essential structural elements of airway glands and summarizes what is currently known regarding the ion transport processes responsible for producing the liquid component of gland secretion. Liquid secretion most likely arises from serous cells and is principally under neural control with muscarinic agonists, substance P, and vasoactive intestinal peptide (VIP) functioning as effective secretogogues. Liquid secretion is driven by the active transepithelial secretion of both Cl− and HCO3− and at least a portion of this process is mediated by the cystic fibrosis transmembrane conductance regulator (CFTR), which is highly expressed in glands. The potential role of submucosal glands in cystic fibrosis lung disease is discussed. PMID:14660706

  13. Receptor-promoted exocytosis of airway epithelial mucin granules containing a spectrum of adenine nucleotides.

    PubMed

    Kreda, Silvia M; Seminario-Vidal, Lucia; van Heusden, Catharina A; O'Neal, Wanda; Jones, Lisa; Boucher, Richard C; Lazarowski, Eduardo R

    2010-06-15

    Purinergic regulation of airway innate defence activities is in part achieved by the release of nucleotides from epithelial cells. However, the mechanisms of airway epithelial nucleotide release are poorly understood. We have previously demonstrated that ATP is released from ionomycin-stimulated airway epithelial goblet cells coordinately with mucin exocytosis, suggesting that ATP is released as a co-cargo molecule from mucin-containing granules. We now demonstrate that protease-activated-receptor (PAR) agonists also stimulate the simultaneous release of mucins and ATP from airway epithelial cells. PAR-mediated mucin and ATP release were dependent on intracellular Ca(2+) and actin cytoskeleton reorganization since BAPTA AM, cytochalasin D, and inhibitors of Rho and myosin light chain kinases blocked both responses. To test the hypothesis that ATP is co-released with mucin from mucin granules, we measured the nucleotide composition of isolated mucin granules purified based on their MUC5AC and VAMP-8 content by density gradients. Mucin granules contained ATP, but the levels of ADP and AMP within granules exceeded by nearly 10-fold that of ATP. Consistent with this finding, apical secretions from PAR-stimulated cells contained relatively high levels of ADP/AMP, which could not be accounted for solely based on ATP release and hydrolysis. Thus, mucin granules contribute to ATP release and also are a source of extracellular ADP and AMP. Direct release of ADP/AMP from mucin granules is likely to provide a major source of airway surface adenosine to signal in a paracrine faction ciliated cell A(2b) receptors to activate ion/water secretion and appropriately hydrate goblet cell-released mucins.

  14. Receptor-promoted exocytosis of airway epithelial mucin granules containing a spectrum of adenine nucleotides

    PubMed Central

    Kreda, Silvia M; Seminario-Vidal, Lucia; van Heusden, Catharina A; O’Neal, Wanda; Jones, Lisa; Boucher, Richard C; Lazarowski, Eduardo R

    2010-01-01

    Purinergic regulation of airway innate defence activities is in part achieved by the release of nucleotides from epithelial cells. However, the mechanisms of airway epithelial nucleotide release are poorly understood. We have previously demonstrated that ATP is released from ionomycin-stimulated airway epithelial goblet cells coordinately with mucin exocytosis, suggesting that ATP is released as a co-cargo molecule from mucin-containing granules. We now demonstrate that protease-activated-receptor (PAR) agonists also stimulate the simultaneous release of mucins and ATP from airway epithelial cells. PAR-mediated mucin and ATP release were dependent on intracellular Ca2+ and actin cytoskeleton reorganization since BAPTA AM, cytochalasin D, and inhibitors of Rho and myosin light chain kinases blocked both responses. To test the hypothesis that ATP is co-released with mucin from mucin granules, we measured the nucleotide composition of isolated mucin granules purified based on their MUC5AC and VAMP-8 content by density gradients. Mucin granules contained ATP, but the levels of ADP and AMP within granules exceeded by nearly 10-fold that of ATP. Consistent with this finding, apical secretions from PAR-stimulated cells contained relatively high levels of ADP/AMP, which could not be accounted for solely based on ATP release and hydrolysis. Thus, mucin granules contribute to ATP release and also are a source of extracellular ADP and AMP. Direct release of ADP/AMP from mucin granules is likely to provide a major source of airway surface adenosine to signal in a paracrine faction ciliated cell A2b receptors to activate ion/water secretion and appropriately hydrate goblet cell-released mucins. PMID:20421285

  15. Tear Film Mucins: Front Line Defenders of the Ocular Surface; Comparison with Airway and Gastrointestinal Tract Mucins

    PubMed Central

    Hodges, Robin R.; Dartt, Darlene A.

    2014-01-01

    The ocular surface including the cornea and conjunctiva and its overlying tear film are the first tissues of the eye to interact with the external environment. The tear film is complex containing multiple layers secreted by different glands and tissues. Each layer contains specific molecules and proteins that not only maintain the health of the cells on the ocular surface by providing nourishment and removal of waste products but also protect these cells from environment. A major protective mechanism that the corneal and conjunctival cells have developed is secretion of the innermost layer of the tear film, the mucous layer. Both the cornea and conjunctiva express membrane spanning mucins, whereas the conjunctiva also produces soluble mucins. The mucins present in the tear film serve to maintain the hydration of the ocular surface and to provide lubrication and anti-adhesive properties between the cells of the ocular surface and conjunctiva during the blink. A third function is to contribute to the epithelial barrier to prevent pathogens from binding to the ocular surface. This review will focus on the different types of mucins produced by the corneal and conjunctival epithelia. Also included in this review will be a presentation of the structure of mucins, regulation of mucin production, role of mucins in ocular surface diseases, and the differences in mucin production by the ocular surface, airways and gastrointestinal tract. PMID:23954166

  16. Native Small Airways Secrete Bicarbonate

    PubMed Central

    Quinton, Paul M.

    2014-01-01

    Since the discovery of Cl− impermeability in cystic fibrosis (CF) and the cloning of the responsible channel, CF pathology has been widely attributed to a defect in epithelial Cl− transport. However, loss of bicarbonate (HCO3−) transport also plays a major, possibly more critical role in CF pathogenesis. Even though HCO3− transport is severely affected in the native pancreas, liver, and intestines in CF, we know very little about HCO3− secretion in small airways, the principle site of morbidity in CF. We used a novel, mini-Ussing chamber system to investigate the properties of HCO3− transport in native porcine small airways (∼ 1 mm φ). We assayed HCO3− transport across small airway epithelia as reflected by the transepithelial voltage, conductance, and equivalent short-circuit current with bilateral 25-mM HCO3− plus 125-mM NaGlu Ringer’s solution in the presence of luminal amiloride (10 μM). Under these conditions, because no major transportable anions other than HCO3− were present, we took the equivalent short-circuit current to be a direct measure of active HCO3− secretion. Applying selective agonists and inhibitors, we show constitutive HCO3− secretion in small airways, which can be stimulated significantly by β-adrenergic– (cAMP) and purinergic (Ca2+) -mediated agonists, independently. These results indicate that two separate components for HCO3− secretion, likely via CFTR- and calcium-activated chloride channel–dependent processes, are physiologically regulated for likely roles in mucus clearance and antimicrobial innate defenses of small airways. PMID:24224935

  17. Effect of dexamethasone and ACC on bacteria-induced mucin expression in human airway mucosa.

    PubMed

    Hauber, Hans-Peter; Goldmann, Torsten; Vollmer, Ekkehard; Wollenberg, Barbara; Zabel, Peter

    2007-11-01

    Gram-negative bacteria can stimulate mucin production, but excessive mucus supports bacterial infection and consequently leads to airway obstruction. Therefore, the effect of dexamethasone (DEX) and the antioxidant acetyl-cysteine (ACC) on bacteria-induced mucus expression was investigated. Explanted human airway mucosa and mucoepidermoid cells (Calu-3) were stimulated with lipopolysaccharide (LPS) or PAM3 (a synthetic lipoprotein). DEX or ACC were added to either LPS- or PAM3-stimulated airway mucosa or Calu-3 cells. Mucin mRNA expression (MUC5AC) and total mucus glycoconjugates (mucin protein) were quantified using real-time PCR and periodic acid Schiff staining. LPS and PAM3 significantly increased mucin expression in airway mucosa and Calu-3 cells (P < 0.05). DEX alone had no significant effect on mucin expression in airway mucosa or Calu-3 cells (P > 0.05). In contrast, DEX significantly reduced LPS- and PAM3-induced mucin expression in explanted mucosal tissue and mucin expression in Calu-3 cells (P < 0.05). In explanted human airway mucosa ACC alone significantly increased mucin expression (P < 0.05). In contrast, ACC significantly decreased LPS- and PAM3-induced mucin expression (P < 0.05). In Calu-3 cells ACC alone had no significant effect on mucin expression (P > 0.05). ACC decreased LPS- and PAM3-induced mucin expression, but this effect was not significant (P > 0.05). These data suggest that DEX can effectively reduce bacteria-induced mucin expression in the airways. ACC alone may increase mucin expression in noninfected mucosa, but it decreased bacteria-induced mucin expression. Further studies are warranted to evaluate whether the effect of DEX or ACC is clinically relevant.

  18. Airway mucus: From production to secretion.

    PubMed

    Williams, Olatunji W; Sharafkhaneh, Amir; Kim, Victor; Dickey, Burton F; Evans, Christopher M

    2006-05-01

    Mucus hypersecretion is a phenotype associated with multiple obstructive lung diseases. However, in spite of its nefarious reputation under pathologic conditions, there are significant benefits to having low levels of mucus present in the airways at baseline, such as the ability to trap and eliminate inhaled particles and to prevent desiccation of airway surfaces. Mucins are high-molecular-weight glycoproteins that are the chief components that render viscoelastic and gel-forming properties to mucus. Recent advances in animal models and in vitro systems have provided a wealth of information regarding the identification of the mucin genes that are expressed in the lungs, the signal transduction pathways that regulate the expression of these mucins, and the secretory pathways that mediate their release into the airways. In addition, the clinical and pathologic literature has corroborated many of the basic laboratory findings. As a result, mucin overproduction and hypersecretion are moving away from being markers of disease and toward being testable as functional components of lung disease processes.

  19. Thick airway surface liquid volume and weak mucin expression in pendrin-deficient human airway epithelia

    PubMed Central

    Lee, Hyun Jae; Yoo, Jee Eun; Namkung, Wan; Cho, Hyung-Ju; Kim, Kyubo; Kang, Joo Wan; Yoon, Joo-Heon; Choi, Jae Young

    2015-01-01

    Pendrin is an anion exchanger whose mutations are known to cause hearing loss. However, recent data support the linkage between pendrin expression and airway diseases, such as asthma. To evaluate the role of pendrin in the regulation of the airway surface liquid (ASL) volume and mucin expression, we investigated the function and expression of pendrin and ion channels and anion exchangers. Human nasal epithelial cells were cultured from 16 deaf patients carrying pendrin mutations (DFNB4) and 17 controls. The cells were treated with IL-13 to induce mucus hypersecretion. Airway surface liquid thickness was measured and real-time polymerase chain reaction was performed targeting various transporters and MUC5AC. Anion exchanger activity was measured using a pH-sensitive fluorescent probe. Periodic acid-Schiff staining was performed on the cultured cells and inferior turbinate tissues. The ASL layer of the nasal epithelia from DFNB4 subjects was thicker than the controls, and the difference became more prominent following IL-13 stimulation. There was no difference in anion exchange activity after IL-13 treatment in the cells from DFNB4 patients, while it increased in the controls. Goblet cell metaplasia induced by IL-13 treatment seen in the controls was not observed in the DFNB4 cells. Furthermore, the periodic acid-Schiff staining-positive area was lesser in the inferior turbinate tissues from DFNB4 patients that those from controls. Pendrin plays a critical role in ASL volume regulation and mucin expression as pendrin-deficient airway epithelial cells are refractory to stimulation with IL-13. Specific blockers targeting pendrin in the airways may therefore have therapeutic potential in the treatment of allergic airway diseases. PMID:26243215

  20. Evidence and Role for Bacterial Mucin Degradation in Cystic Fibrosis Airway Disease

    PubMed Central

    Flynn, Jeffrey M.; Niccum, David; Dunitz, Jordan M.

    2016-01-01

    Chronic lung infections in cystic fibrosis (CF) patients are composed of complex microbial communities that incite persistent inflammation and airway damage. Despite the high density of bacteria that colonize the lower airways, nutrient sources that sustain bacterial growth in vivo, and how those nutrients are derived, are not well characterized. In this study, we examined the possibility that mucins serve as an important carbon reservoir for the CF lung microbiota. While Pseudomonas aeruginosa was unable to efficiently utilize mucins in isolation, we found that anaerobic, mucin-fermenting bacteria could stimulate the robust growth of CF pathogens when provided intact mucins as a sole carbon source. 16S rRNA sequencing and enrichment culturing of sputum also identified that mucin-degrading anaerobes are ubiquitous in the airways of CF patients. The collective fermentative metabolism of these mucin-degrading communities in vitro generated amino acids and short chain fatty acids (propionate and acetate) during growth on mucin, and the same metabolites were also found in abundance within expectorated sputum. The significance of these findings was supported by in vivo P. aeruginosa gene expression, which revealed a heightened expression of genes required for the catabolism of propionate. Given that propionate is exclusively derived from bacterial fermentation, these data provide evidence for an important role of mucin fermenting bacteria in the carbon flux of the lower airways. More specifically, microorganisms typically defined as commensals may contribute to airway disease by degrading mucins, in turn providing nutrients for pathogens otherwise unable to efficiently obtain carbon in the lung. PMID:27548479

  1. Defective postsecretory maturation of MUC5B mucin in cystic fibrosis airways

    PubMed Central

    Abdullah, Lubna H.; Evans, Jessica R.; Wang, T. Tiffany; Ford, Amina A.; Makhov, Alexander M.; Nguyen, Kristine; Coakley, Raymond D.; Griffith, Jack D.; Davis, C. William; Ballard, Stephen T.

    2017-01-01

    In cystic fibrosis (CF), airway mucus becomes thick and viscous, and its clearance from the airways is impaired. The gel-forming mucins undergo an ordered “unpacking/maturation” process after granular release that requires an optimum postsecretory environment, including hydration and pH. We hypothesized that this unpacking process is compromised in the CF lung due to abnormal transepithelial fluid transport that reduces airway surface hydration and alters ionic composition. Using human tracheobronchial epithelial cells derived from non-CF and CF donors and mucus samples from human subjects and domestic pigs, we investigated the process of postsecretory mucin unfolding/maturation, how these processes are defective in CF airways, and the probable mechanism underlying defective unfolding. First, we found that mucins released into a normal lung environment transform from a compact granular form to a linear form. Second, we demonstrated that this maturation process is defective in the CF airway environment. Finally, we demonstrated that independent of HCO3− and pH levels, airway surface dehydration was the major determinant of this abnormal unfolding process. This defective unfolding/maturation process after granular release suggests that the CF extracellular environment is ion/water depleted and likely contributes to abnormal mucus properties in CF airways prior to infection and inflammation. PMID:28352653

  2. Vanadium pentoxide (V2O5) induced mucin production by airway epithelium

    PubMed Central

    Yu, Dongfang; Walters, Dianne M.; Zhu, Lingxiang; Lee, Pak-Kei

    2011-01-01

    Exposure to environmental pollutants has been linked to various airway diseases and disease exacerbations. Almost all chronic airway diseases such as chronic obstructive pulmonary disease and asthma are caused by complicated interactions between gene and environment. One of the major hallmarks of those diseases is airway mucus overproduction (MO). Excessive mucus causes airway obstruction and significantly increases morbidity and mortality. Metals are major components of environmental particulate matters (PM). Among them, vanadium has been suggested to play an important role in PM-induced mucin production. Vanadium pentoxide (V2O5) is the most common commercial source of vanadium, and it has been associated with occupational chronic bronchitis and asthma, both of which are MO diseases. However, the underlying mechanism is not entirely clear. In this study, we used both in vitro and in vivo models to demonstrate the robust inductions of mucin production by V2O5. Furthermore, the follow-up mechanistic study revealed a novel v-raf-1 murine leukemia viral oncogene homolog 1-IKK-NF-κB pathway that mediated V2O5-induced mucin production. Most interestingly, the reactive oxygen species and the classical mucin-inducing epidermal growth factor receptor (EGFR)-MAPK pathway appeared not to be involved in this process. Thus the V2O5-induced mucin production may represent a novel EGFR-MAPK-independent and environmental toxicant-associated MO model. Complete elucidation of the signaling pathway in this model will not only facilitate the development of the treatment for V2O5-associated occupational diseases but also advance our understanding on the EGFR-independent mucin production in other chronic airway diseases. PMID:21531775

  3. IL13 activates autophagy to regulate secretion in airway epithelial cells.

    PubMed

    Dickinson, John D; Alevy, Yael; Malvin, Nicole P; Patel, Khushbu K; Gunsten, Sean P; Holtzman, Michael J; Stappenbeck, Thaddeus S; Brody, Steven L

    2016-01-01

    Cytokine modulation of autophagy is increasingly recognized in disease pathogenesis, and current concepts suggest that type 1 cytokines activate autophagy, whereas type 2 cytokines are inhibitory. However, this paradigm derives primarily from studies of immune cells and is poorly characterized in tissue cells, including sentinel epithelial cells that regulate the immune response. In particular, the type 2 cytokine IL13 (interleukin 13) drives the formation of airway goblet cells that secrete excess mucus as a characteristic feature of airway disease, but whether this process is influenced by autophagy was undefined. Here we use a mouse model of airway disease in which IL33 (interleukin 33) stimulation leads to IL13-dependent formation of airway goblet cells as tracked by levels of mucin MUC5AC (mucin 5AC, oligomeric mucus/gel forming), and we show that these cells manifest a block in mucus secretion in autophagy gene Atg16l1-deficient mice compared to wild-type control mice. Similarly, primary-culture human tracheal epithelial cells treated with IL13 to stimulate mucus formation also exhibit a block in MUC5AC secretion in cells depleted of autophagy gene ATG5 (autophagy-related 5) or ATG14 (autophagy-related 14) compared to nondepleted control cells. Our findings indicate that autophagy is essential for airway mucus secretion in a type 2, IL13-dependent immune disease process and thereby provide a novel therapeutic strategy for attenuating airway obstruction in hypersecretory inflammatory diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis lung disease. Taken together, these observations suggest that the regulation of autophagy by Th2 cytokines is cell-context dependent.

  4. Physical and chemical characteristics of mucin secreted by pseudomyxoma peritonei (PMP)

    PubMed Central

    Pillai, Krishna; Akhter, Javed; Mekkawy, Ahmed; Chua, Terence C; Morris, David L

    2017-01-01

    Background: Pseudomyxoma peritonei (PMP) is a rare disease with excess intraperitoneal mucin secretion. Treatment involves laparotomy, cytoreduction and chemotherapy that is very invasive with patients often acquiring numerous compromises. Hence a mucolytic comprising of bromelain and N-acetyl cystein has been developed to solubilise mucin in situ for removal by catherization. Owing to differences in mucin appearance and hardness, dissolution varies. Therefore the current study investigates the inter-mucin physical and chemical characteristics, in order to reformulate an effective mucolytic for all mucin. Method: PMP mucin, from the three categories (soft, semi hard and hard mucin) was solubilised and then various physical characteristics such as turbidity, density, kinematic viscosity were measured. The water content and the density of solid mucin were also determined. This was followed by the determination of sialic acid, glucose, lipid, Thiol (S-S and S-H) content of the samples. Lastly, the distribution of MUC2, MUC5B and MUC5AC was determined using western blot technique. Results: Both turbidity and kinematic viscosity and sialic acid content increased linearly as the hardness of mucin increased. However, density, hydration, protein, glucose, lipid and sulfhydryl and disulphide content decreased linearly as hardness of mucin increased. The distribution ratio of mucins (MUC2:MUC5B:MUC5AC) in soft mucin is 2.25:1.5:1.0, semi hard mucin is 1:1:1 and hard mucin is 3:2:1. Conclusion: The difference in texture and hardness of mucin may be due to cellular content, hydration, glucose, protein, lipids, thiol and MUC distribution. Soft mucin is solely made of glycoprotein whilst the others contained cellular materials. PMID:28138305

  5. Cortactin mediates elevated shear stress-induced mucin hypersecretion via actin polymerization in human airway epithelial cells.

    PubMed

    Liu, Chunyi; Li, Qi; Zhou, Xiangdong; Kolosov, Victor P; Perelman, Juliy M

    2013-12-01

    Mucus hypersecretion is a remarkable pathophysiological manifestation in airway obstructive diseases. These diseases are usually accompanied with elevated shear stress due to bronchoconstriction. Previous studies have reported that shear stress induces mucin5AC (MUC5AC) secretion via actin polymerization in cultured nasal epithelial cells. Furthermore, it is well known that cortactin, an actin binding protein, is a central mediator of actin polymerization. Therefore, we hypothesized that cortactin participates in MUC5AC hypersecretion induced by elevated shear stress via actin polymerization in cultured human airway epithelial cells. Compared with the relevant control groups, Src phosphorylation, cortactin phosphorylation, actin polymerization and MUC5AC secretion were significantly increased after exposure to elevated shear stress. Similar effects were found when pretreating the cells with jasplakinolide, and transfecting with wild-type cortactin. However, these effects were significantly attenuated by pretreating with Src inhibitor, cytochalasin D or transfecting cells with the specific small interfering RNA of cortactin. Collectively, these results suggest that elevated shear stress induces MUC5AC hypersecretion via tyrosine-phosphorylated cortactin-associated actin polymerization in cultured human airway epithelial cells.

  6. Oxidation increases mucin polymer cross-links to stiffen airway mucus gels.

    PubMed

    Yuan, Shaopeng; Hollinger, Martin; Lachowicz-Scroggins, Marrah E; Kerr, Sheena C; Dunican, Eleanor M; Daniel, Brian M; Ghosh, Sudakshina; Erzurum, Serpel C; Willard, Belinda; Hazen, Stanley L; Huang, Xiaozhu; Carrington, Stephen D; Oscarson, Stefan; Fahy, John V

    2015-02-25

    Airway mucus in cystic fibrosis (CF) is highly elastic, but the mechanism behind this pathology is unclear. We hypothesized that the biophysical properties of CF mucus are altered because of neutrophilic oxidative stress. Using confocal imaging, rheology, and biochemical measures of inflammation and oxidation, we found that CF airway mucus gels have a molecular architecture characterized by a core of mucin covered by a web of DNA and a rheological profile characterized by high elasticity that can be normalized by chemical reduction. We also found that high levels of reactive oxygen species in CF mucus correlated positively and significantly with high concentrations of the oxidized products of cysteine (disulfide cross-links). To directly determine whether oxidation can cross-link mucins to increase mucus elasticity, we exposed induced sputum from healthy subjects to oxidizing stimuli and found a marked and thiol-dependent increase in sputum elasticity. Targeting mucin disulfide cross-links using current thiol-amino structures such as N-acetylcysteine (NAC) requires high drug concentrations to have mucolytic effects. We therefore synthesized a thiol-carbohydrate structure (methyl 6-thio-6-deoxy-α-D-galactopyranoside) and found that it had stronger reducing activity than NAC and more potent and fast-acting mucolytic activity in CF sputum. Thus, oxidation arising from airway inflammation or environmental exposure contributes to pathologic mucus gel formation in the lung, which suggests that it can be targeted by thiol-modified carbohydrates.

  7. Biochemical characterization of rat colonic mucins secreted in response to Entamoeba histolytica.

    PubMed

    Tse, S K; Chadee, K

    1992-04-01

    Invasion of the colonic mucosa by Entamoeba histolytica trophozoites is preceded by colonic mucus depletion. The aim of our studies was to determine whether E. histolytica caused a differential secretion of mucin species in a rat colonic loop model. Mucus secretion in response to amoebae was followed by release of acid-precipitable 3H-glucosamine metabolically labelled glycoproteins and in vitro labelling of glycoprotein secretion with NaB3H4. The secretory response consisted of high-Mr goblet cell mucins and an increase in the secretion of low-Mr nonmucin glycoproteins as determined by Sepharose 4B column chromatography. High-Mr mucins subfractionated by Cellex-E (ECTEOLA) ion-exchange chromatography demonstrated a minor neutral and a major acidic mucin (greater than 98%) species. Marked differences between the neutral and acidic mucin species were indicated by immunogenicity and amino acid compositions. Thin-section histochemistry of rat colons confirmed secretion of neutral and acidic mucins in response to E. histolytica and demonstrated secretory activity from goblet cells from both the crypts and interglandular epithelium. E. histolytica mucus secretagogue activity was generalized and may function to deplete the host's protective mucus layer, facilitating invasion by the parasites.

  8. The innate immune properties of airway mucosal surfaces are regulated by dynamic interactions between mucins and interacting proteins: the mucin interactome

    PubMed Central

    Ford, Amina A.; Wang, Tiffany; Li, Lily; Kesimer, Mehmet

    2016-01-01

    Summary Chronic lung diseases such as cystic fibrosis, chronic bronchitis and asthma, are characterized by hypersecretion and poor clearance of mucus, which are associated with poor prognosis and mortality. Little is known about the relationship between the biophysical properties of mucus and its molecular composition. The mucins MUC5B and MUC5AC are traditionally believed to generate the characteristic biophysical properties of airway mucus. However, the contribution of hundreds of globular proteins to the biophysical properties of mucus is not clear. Approximately one-third of the total mucus proteome comprises distinct, multi-protein complexes centered around airway mucins. These complexes constitute a discrete entity we call the “mucin interactome”. The data suggest that while the majority of these proteins interact with mucins via electrostatic and weak interactions, some interact through very strong hydrophobic and/or covalent interactions. Using reagents that interfere with protein-protein interactions, the complexes can be disassembled, and mucus rheology can be dramatically altered. Using MUC5B-glutathione S-transferase (GST) and MUC5B-galectin-3 as a representative of these interactions, we provide evidence that individual mucin protein interactions can alter the biophysical properties of mucus and modulate the biological function of the protein. We propose that the key mechano- and bio-active functions of mucus depend on the dynamic interactions between mucins and globular proteins. These observations challenge the paradigm that mucins are the only molecules that confer biophysical properties of mucus. These observations may ultimately lead to a greater understanding of the system and guide the development of strategies for more effective interventions using better therapeutic agents. PMID:27072609

  9. Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon

    PubMed Central

    Barcelo, A; Claustre, J; Moro, F; Chayvialle, J; Cuber, J; Plaisancie, P

    2000-01-01

    BACKGROUND—Mucins play an important protective role in the colonic mucosa. Luminal factors modulating colonic mucus release have been not fully identified.
AIM—To determine the effect of some dietary compounds on mucus discharge in rat colon.
METHODS—An isolated vascularly perfused rat colon model was used. Mucus secretion was induced by a variety of luminal factors administered as a bolus of 1 ml for 30 minutes in the colonic loop. Mucin release was evaluated using a sandwich enzyme linked immunosorbent assay supported by histological analysis.
RESULTS—The three dietary fibres tested in this study (pectin, gum arabic, and cellulose) did not provoke mucus secretion. Luminal administration of sodium alginate (an algal polysaccharide used as a food additive) or ulvan (a sulphated algal polymer) induced a dose dependent increase in mucin discharge over the concentration range 1-25 mg/l (p<0.05 for 25 mg/l alginate and p<0.05 for 10 and 25 mg/l ulvan). Glucuronic acid and galacturonic acid, which are major constituents of a variety of fibres, produced significant mucin secretion (p<0.05). Hydrogen sulphide and mercaptoacetate, two sulphides produced in the colonic lumen by microbial fermentation of sulphated polysaccharides, did not modify mucin secretion. Among the short chain fatty acids, acetate (5-100 mM) induced a dose dependent release of mucus (p<0.05 for 100 mM acetate). Interestingly, butyrate at a concentration of 5 mM produced colonic mucin secretion (p<0.05), but increasing its concentration to 100 mM provoked a gradual decrease in mucus discharge. Propionate (5-100 mM) did not induce mucin release. Several dietary phenolic compounds (quercetin, epicatechin, resveratrol) did not provoke mucus discharge.
CONCLUSIONS—Two algal polysaccharides (alginate and ulvan), two uronic acids (glucuronic acid and galacturonic acid), and the short chain fatty acids acetate and butyrate induce mucin secretion in rat colon. Taken together, these

  10. Mechanisms of bicarbonate secretion: lessons from the airways.

    PubMed

    Bridges, Robert J

    2012-08-01

    Early studies showed that airway cells secrete HCO(3)(-) in response to cAMP-mediated agonists and HCO(3)(-) secretion was impaired in cystic fibrosis (CF). Studies with Calu-3 cells, an airway serous model with high expression of CFTR, also show the secretion of HCO(3)(-) when cells are stimulated with cAMP-mediated agonists. Activation of basolateral membrane hIK-1 K(+) channels inhibits HCO(3)(-) secretion and stimulates Cl(-) secretion. CFTR mediates the exit of both HCO(3)(-) and Cl(-) across the apical membrane. Entry of HCO(3)(-) on a basolateral membrane NBC or Cl(-) on the NKCC determines which anion is secreted. Switching between these two secreted anions is determined by the activity of hIK-1 K(+) channels.

  11. Secreted and membrane-bound mucins and idiopathic peptic ulcer disease.

    PubMed

    Niv, Yaron; Boltin, Doron

    2012-01-01

    The incidence of Helicobacter pylori and non-steroidal anti-inflammatory drug (NSAID)-negative peptic ulcer disease has increased over the last two decades, especially in the Western world and in countries with low H. pylori infection rates. Idiopathic peptic ulcer disease is a recently described entity which relates to peptic ulcers not caused by H. pylori, NSAID/aspirin therapy, other ulcerogenic organisms and drugs, or other rare malignant and benign diseases. Structural and secreted mucins create the unstirred gastric mucus layer and maintain a stable pH above the gastric mucosa. This mucous layer prevents enzymatic attack by acid and pepsin. Inhibition of cyclooxygenase by NSAID and aspirin inhibits prostaglandin production, inhibits mucin and bicarbonate secretion, and exposes the mucosa to the toxic effects of acid and intragastric enzymes. There is also a complex relationship between H. pylori and different mucin subtypes which on one hand facilitates mucin invasion but on the other hand protects the gastric mucosa. Genetic and epigenetic changes in the mucin molecule may be responsible for idiopathic peptic ulcer disease, but this hypothesis must be further investigated. Herein, the mucin hypothesis of idiopathic peptic ulcer disease is explored.

  12. Contribution of mucus concentration and secreted mucins Muc5ac and Muc5b to the pathogenesis of muco-obstructive lung disease

    PubMed Central

    Livraghi-Butrico, Alessandra; Grubb, Barbara R.; Wilkinson, Kristen J.; Volmer, Allison S.; Burns, Kimberly A.; Evans, Christopher M.

    2016-01-01

    Airway diseases, including cigarette smoke-induced chronic bronchitis, cystic fibrosis, and primary ciliary dyskinesia are associated with decreased mucociliary clearance (MCC). However, it is not known whether a simple reduction in MCC or concentration-dependent mucus adhesion to airway surfaces dominates disease pathogenesis or whether decreasing the concentration of secreted mucins may be therapeutic. To address these questions, Scnn1b-Tg mice, which exhibit airway mucus dehydration/adhesion, were compared to and crossed with Muc5b- and Muc5ac-deficient mice. Absence of Muc5b caused a 90% reduction in MCC, whereas Scnn1b-Tg mice exhibited an ~50% reduction. However, the degree of MCC reduction did not correlate with bronchitic airways pathology, which was observed only in Scnn1b-Tg mice. Ablation of Muc5b significantly reduced the extent of mucus plugging in Scnn1b-Tg mice. However, complete absence of Muc5b in Scnn1b-Tg mice was associated with increased airway inflammation, suggesting that Muc5b is required to maintain immune homeostasis. Loss of Muc5ac had few phenotypic consequences in Scnn1b-Tg mice. These data suggest that: (1) mucus hyperconcentration dominates over MCC reduction alone to produce bronchitic airways pathology; (2) Muc5b is the dominant contributor to the Scnn1b-Tg phenotype; and (3) therapies that limit mucin secretion may reduce plugging, but complete Muc5b removal from airway surfaces may be detrimental. PMID:27435107

  13. Secreted mucins in pseudomyxoma peritonei: pathophysiological significance and potential therapeutic prospects

    PubMed Central

    2014-01-01

    Pseudomyxoma peritonei (PMP, ORPHA26790) is a clinical syndrome characterized by progressive dissemination of mucinous tumors and mucinous ascites in the abdomen and pelvis. PMP is a rare disease with an estimated incidence of 1–2 out of a million. Clinically, PMP usually presents with a variety of unspecific signs and symptoms, including abdominal pain and distention, ascites or even bowel obstruction. It is also diagnosed incidentally at surgical or non-surgical investigations of the abdominopelvic viscera. PMP is a neoplastic disease originating from a primary mucinous tumor of the appendix with a distinctive pattern of the peritoneal spread. Computed tomography and histopathology are the most reliable diagnostic modalities. The differential diagnosis of the disease includes secondary peritoneal carcinomatoses and some rare peritoneal conditions. Optimal elimination of mucin and the mucin-secreting tumor comprises the current standard of care for PMP offered in specialized centers as visceral resections and peritonectomy combined with intraperitoneal chemotherapy. This multidisciplinary approach has reportedly provided a median survival rate of 16.3 years, a median progression-free survival rate of 8.2 years and 10- and 15-year survival rates of 63% and 59%, respectively. Despite its indolent, bland nature as a neoplasm, PMP is a debilitating condition that severely impacts quality of life. It tends to be diagnosed at advanced stages and frequently recurs after treatment. Being ignored in research, however, PMP remains a challenging, enigmatic entity. Clinicopathological features of the PMP syndrome and its morbid complications closely correspond with the multifocal distribution of the secreted mucin collections and mucin-secreting implants. Novel strategies are thus required to facilitate macroscopic, as well as microscopic, elimination of mucin and its source as the key components of the disease. In this regard, MUC2, MUC5AC and MUC5B have been found as

  14. Endogenous airway mucins carry glycans that bind Siglec-F and induce eosinophil apoptosis

    PubMed Central

    Evans, Christopher M.; Janssen, William J.; Brummet, Mary E.; Hudson, Sherry A.; Zhu, Zhou

    2014-01-01

    Background Siglec-F is a glycan binding protein selectively expressed on mouse eosinophils. Its engagement induces apoptosis, suggesting a pathway for ameliorating eosinophilia in asthma and other eosinophil-associated diseases. Siglec-F recognizes sialylated, sulfated glycans in glycan binding assays, but the identities of endogenous sialoside ligands and their glycoprotein carriers in vivo are unknown. Methods Lungs from normal and mucin-deficient mice, as well as mouse tracheal epithelial cells from mice, were interrogated in vitro and in vivo for the expression of Siglec-F ligands. Western blotting and immunocytochemistry used Siglec-F-Fc as a probe for directed purification, followed by liquid chromatography-tandem mass spectrometric analysis of recognized glycoproteins. Purified components were tested in mouse eosinophil binding assays and flow cytometry-based cell death assays. Results We detected mouse lung glycoproteins that bound to Siglec-F; binding was sialic-acid dependent. Proteomic analysis of Siglec-F binding material identified Muc5b and Muc4. Cross-affinity enrichment and histochemical analysis of lungs from mucin-deficient mice assigned and validated the identity of Muc5b as one glycoprotein ligand for Siglec-F. Purified mucin preparations carried sialylated and sulfated glycans, bound to eosinophils and induced their death in vitro. Mice conditionally deficient in Muc5b displayed exaggerated eosinophilic inflammation in response to intratracheal installation of IL-13. Conclusions These data identify a previously unrecognized endogenous anti-inflammatory property of airway mucins by which their glycans can control lung eosinophilia through engagement of Siglec-F. PMID:25497369

  15. Chemotherapy-induced mucositis: the role of mucin secretion and regulation, and the enteric nervous system.

    PubMed

    Thorpe, Daniel; Stringer, Andrea; Butler, Ross

    2013-09-01

    Alimentary mucositis is a severe, dose-limiting, toxic side effect of cytotoxic chemotherapy and radiotherapy. Patients with mucositis often have reductions or breaks imposed on cytotoxic therapy, which may lead to reduced survival. Furthermore, there is an increased risk of infection and hospitalization, compounding the cost of treatment. There are currently limited therapeutic options for mucositis, and no effective prevention available. Mucin expression and secretion have been shown to be associated with mucositis. Furthermore, mucins exhibit protective effects on the alimentary tract through reducing mechanical and chemical stress, preventing bacterial overgrowth and penetration, and digestion of the mucosa. Additionally, a number of studies have implicated some key neurotransmitters in both mucositis and mucin secretion, suggesting that the enteric nervous system may also play a key role in the development of mucositis.

  16. Virulent Shigella flexneri Affects Secretion, Expression, and Glycosylation of Gel-Forming Mucins in Mucus-Producing Cells

    PubMed Central

    Sperandio, Brice; Fischer, Natalie; Chevalier-Curt, Marie Joncquel; Rossez, Yannick; Roux, Pascal; Robbe Masselot, Catherine

    2013-01-01

    Mucin glycoproteins are secreted in large amounts by the intestinal epithelium and constitute an efficient component of innate immune defenses to promote homeostasis and protect against enteric pathogens. In this study, our objective was to investigate how the bacterial enteropathogen Shigella flexneri, which causes bacillary dysentery, copes with the mucin defense barrier. We report that upon in vitro infection of mucin-producing polarized human intestinal epithelial cells, virulent S. flexneri manipulates the secretion of gel-forming mucins. This phenomenon, which is triggered only by virulent strains, results in accumulation of mucins at the cell apical surface, leading to the appearance of a gel-like structure that favors access of bacteria to the cell surface and the subsequent invasion process. We identify MUC5AC, a gel-forming mucin, as a component of this structure. Formation of this gel does not depend on modifications of electrolyte concentrations, induction of trefoil factor expression, endoplasmic reticulum stress, or response to unfolded proteins. In addition, transcriptional and biochemical analyses of infected cells reveal modulations of mucin gene expression and modifications of mucin glycosylation patterns, both of which are induced by virulent bacteria in a type III secretion system-dependent manner. Thus, S. flexneri has developed a dedicated strategy to alter the mucus barrier by targeting key elements of the gel-forming capacity of mucins: gene transcription, protein glycosylation, and secretion. PMID:23876800

  17. Carbocisteine normalizes the viscous property of mucus through regulation of fucosylated and sialylated sugar chain on airway mucins.

    PubMed

    Ishibashi, Yuji; Takayama, Goh; Inouye, Yoshio; Taniguchi, Akiyoshi

    2010-09-01

    Almost all of fucose and sialic acid in mucus are found on the mucus glycoproteins (mucins), and these sugar components on mucins are known to be associated with the viscous property of mucus. We have reported some aspects of carbocisteine, a mucoregulatory drug, correcting fucose and sialic acid contents in mucus. At present, carbocisteine's expectorant action of airway mucus is postulated to involve - the regulation of fucose and sialic acid contents on mucins. However little information is available about the relationship between the viscosity and sugar contents on mucins when treated with carbocisteine. To investigate further the mechanism behind the action of carbocisteine, the present study prepared MUC5AC fusion protein which has tandem repeat regions associated with MUC5AC, and evaluated the effects of carbocisteine on tumor necrosis factor (TNF)-alpha-induced increases of mucus viscosity and sialyl-Lewis x-epitopes antigen, an antigen which consists of fucosylated and sialylated sugar chains on the MUC5AC fusion proteins. Carbocisteine inhibited the TNF-alpha-induced increases of the viscosity and sialyl-Lewis x-epitopes on MUC5AC fusion protein. These findings suggest that carbocisteine may normalize the viscosity of mucus through "balancing" of fucose and sialic acid contents on airway mucins.

  18. Mucin biosynthesis and secretion in tracheal epithelial cells in primary culture.

    PubMed Central

    Svitacheva, N; Davies, J R

    2001-01-01

    Density-gradient centrifugation of bovine tracheal epithelial cell extracts revealed a 'high-density' (1.48 g/ml) sialic-acid-rich population as well as a 'low-density' (1.42 g/ml) one that reacted more strongly with a periodate-Schiff (PAS) assay. The sialic-acid-rich mucins were oligomeric molecules containing disulphide- bond-linked subunits and large glycosylated domains, whereas the PAS-reactive component seemed to be smaller and 'monomeric'. Only the 'high-density' population was secreted from cells cultured for 5 days on plastic or a collagen type 1, Matrigel or Vitrogen substrate. Release was less from cells grown on plastic than from those on a substrate and the amount was unaffected by increasing the thickness of the collagen layer. For cells grown on collagen, the amount of the sialic-acid-rich mucin increased over 10 days, whereas the PAS-reactive component was largely absent after 24 h, which was consistent with an initial release of stored PAS-reactive molecules and synthesis of the sialic-acid-rich mucins de novo. Both [(3)H]proline and [(35)S]sulphate were poorly incorporated into mucins detected with the chemical assays but molecules with a higher buoyant density than that of either of the previously identified species were labelled with [(35)S]sulphate. The [(35)S]sulphate-labelled material yielded large trypsin-resistant fragments and contained O-linked glycans but was not affected by digestion with chondroitin ABC lyase or heparan sulphate lyase, suggesting that it is a mucin rather than a proteoglycan. [(35)S]Sulphate is thus a poor marker for the major oligomeric mucins produced by bovine tracheal epithelial cells but the radiolabel is incorporated into a heavily labelled mucin-like component. PMID:11115395

  19. A formulation for in situ lysis of mucin secreted in pseudomyxoma peritonei.

    PubMed

    Pillai, Krishna; Akhter, Javed; Chua, Terence C; Morris, David L

    2014-01-15

    Although numerous clinical attempts have been made to disintegrate mucin secreted by pseudomyxoma peritonei (PMP), none are clinically recommended. Through examination of the pharmacologic characteristics of two novel agents, we titrated an optimized combination of bromelain and N-acetyl cysteine (NAC) that demonstrates in vitro and in vivo efficacy in the dissolution of mucinous ascites from PMP. In the in vitro experiments, 1 g of mucin was incubated in varying concentrations of bromelain (0-400 µg/ml) and NAC (0-5%) individually followed by a combination before arriving at a therapeutic combination dose of 300 µg/ml bromelain+4% NAC. This established an effective dose of bromelain 300 µg/ml+4% NAC at pH 7.0, when tested in a rat model implanted with 3 g of mucin intraperitoneally (IP). IP administration of the drug in a rat model of PMP was shown to result in mucin disintegration within 72 hr with no toxicity observed.

  20. Surface fluid absorption and secretion in small airways

    PubMed Central

    Shamsuddin, A K M; Quinton, P M

    2012-01-01

    Native small airways must remain wet enough to be pliable and support ciliary clearance, but dry enough to remain patent for gas flow. The airway epithelial lining must both absorb and secrete ions to maintain a critical level of fluid on its surface. Despite frequent involvement in lung diseases, the minuscule size has limited studies of peripheral airways. To meet this challenge, we used a capillary to construct an Ussing chamber (area <1 mm2) to measure electrolyte transport across small native airways (∼1 mm ø) from pig lung. Transepithelial potentials (Vt) were recorded in open circuit conditions while applying constant current pulses across the luminal surface of dissected airways to calculate transepithelial electrical conductance (Gt) and equivalent short circuit current () in the presence and absence of selected Na+ and Cl− transport inhibitors (amiloride, GlyH-101, Niflumic acid) and agonists (Forskolin + IBMX, UTP). Considered together the responses suggest an organ composed of both secreting and absorbing epithelia that constitutively and concurrently transport fluids into and out of the airway, i.e. in opposite directions. Since the epithelial lining of small airways is arranged in long, accordion-like rows of pleats and folds that run axially down the lumen, we surmise that cells within the pleats are mainly secretory while the cells of the folds are principally absorptive. This structural arrangement could provide local fluid transport from within the pleats toward the luminal folds that may autonomously regulate the local surface fluid volume for homeostasis while permitting acute responses to maintain clearance. PMID:22547637

  1. Niflumic acid inhibits ATP-stimulated exocytosis in a mucin-secreting epithelial cell line.

    PubMed

    Bertrand, C A; Danahay, H; Poll, C T; Laboisse, C; Hopfer, U; Bridges, R J

    2004-02-01

    ATP is an efficacious secretagogue for mucin and chloride in the epithelial cell line HT29-Cl.16E. Mucin release has been measured as [3H]glucosamine-labeled product in extracellular medium and as single-cell membrane capacitance increases indicative of exocytosis-related increases in membrane area. The calcium-activated chloride channel blocker niflumic acid, also reported to modulate secretion, was used to probe for divergence in the purinergic signaling of mucin exocytosis and channel activation. With the use of whole cell patch clamping, ATP stimulated a transient capacitance increase of 15 +/- 4%. Inclusion of niflumic acid significantly reduced the ATP-stimulated capacitance change to 3 +/- 1%, although normalized peak currents were not significantly different. Ratiometric imaging was used to assess intracellular calcium (Cai2+) dynamics during stimulation. In the presence of niflumic acid, the ATP-stimulated peak change in Cai2+ was unaffected, but the initial response and overall time to Cai2+ peak were significantly affected. Excluding external calcium before ATP stimulation or including the capacitative calcium entry blocker LaCl3 during stimulation muted the initial calcium transient similar to that observed with niflumic acid and significantly reduced peak capacitance change, suggesting that a substantial portion of the ATP-stimulated mucin exocytosis in HT29-Cl.16E depends on a rapid, brief calcium influx through the plasma membrane. Niflumic acid interferes with this influx independent of a chloride channel blockade effect.

  2. Effects of Lupenone, Lupeol, and Taraxerol Derived from Adenophora triphylla on the Gene Expression and Production of Airway MUC5AC Mucin

    PubMed Central

    Yoon, Yong Pill; Lee, Hyun Jae; Lee, Dong-Ung; Lee, Sang Kook; Hong, Jang-Hee

    2015-01-01

    Background Adenophora triphylla var. japonica is empirically used for controlling airway inflammatory diseases in folk medicine. We evaluated the gene expression and production of mucin from airway epithelial cells in response to lupenone, lupeol and taraxerol derived from Adenophora triphylla var. japonica. Methods Confluent NCI-H292 cells were pretreated with lupenone, lupeol or taraxerol for 30 minutes and then stimulated with tumor necrosis factor α (TNF-α) for 24 hours. The MUC5AC mucin gene expression and production were measured by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Additionally, we examined whether lupenone, lupeol or taraxerol affects MUC5AC mucin production induced by epidermal growth factor (EGF) and phorbol 12-myristate 13-acetate (PMA), the other 2 stimulators of airway mucin production. Results Lupenone, lupeol, and taraxerol inhibited the gene expression and production of MUC5AC mucin induced by TNF-α from NCI-H292 cells, respectively. The 3 compounds inhibited the EGF or PMA-induced production of MUC5AC mucin in NCI-H292 cells. Conclusion These results indicated that lupenone, lupeol and taraxerol derived from Adenophora triphylla var. japonica regulates the production and gene expression of mucin, by directly acting on airway epithelial cells. In addition, the results partly explain the mechanism of of Adenophora triphylla var. japonica as a traditional remedy for diverse inflammatory pulmonary diseases. PMID:26175774

  3. Secretion of acid and base equivalents by intact distal airways.

    PubMed

    Inglis, S K; Wilson, S M; Olver, R E

    2003-05-01

    Secretion of HCO(3)(-) by airway submucosal glands is essential for normal liquid and mucus secretion. Because the liquid bathing the airway surface (ASL) is acidic, it has been proposed that the surface epithelium may acidify HCO(3)(-)-rich glandular fluid. The aim of this study was to investigate the mechanisms by which intact distal bronchi, which contain both surface and glandular epithelium, modify pH of luminal fluid. Distal bronchi were isolated from pig lungs, cannulated in a bath containing HCO(3)(-)-buffered solution, and perfused continually with an aliquot of similar, lightly buffered solution (LBS) in which NaCl replaced NaHCO(3)(-) (pH 7 with NaOH). The pH of this circulating LBS initially acidified (by 0.053 +/- 0.0053 pH units) and transepithelial potential difference (PD) depolarized. The magnitude of acidification was increased when pH(LBS) was higher. This acidification was unaffected by luminal dimethylamiloride (DMA, 100 microM) but was inhibited by 100 nM bafilomycin A(1) (by 76 +/- 13%), suggesting involvement of vacuolar-H(+) ATPase. Addition of ACh (10 microM) evoked alkalinization of luminal LBS and hyperpolarization of transepithelial PD. The alkalinization was inhibited in HCO(3)(-)-free solutions containing acetazolamide (1 mM) and by DMA and was enhanced by bumetanide (100 microM), an inhibitor of Cl(-) secretion. The hyperpolarization was unaffected by these maneuvers. The anion channel blocker 5-nitro-2-(3-phenylpropylamino)benzoate (300 microM) and combined treatment with DMA and bumetanide blocked both the alkalinization and hyperpolarization responses to ACh. These results are consistent with earlier studies showing that ACh evokes glandular secretion of HCO(3)(-) and Cl(-). Isolated distal airways thus secrete both acid and base equivalents.

  4. TRPM5-mediated calcium uptake regulates mucin secretion from human colon goblet cells

    PubMed Central

    Mitrovic, Sandra; Nogueira, Cristina; Cantero-Recasens, Gerard; Kiefer, Kerstin; Fernández-Fernández, José M; Popoff, Jean-François; Casano, Laetitia; Bard, Frederic A; Gomez, Raul; Valverde, Miguel A; Malhotra, Vivek

    2013-01-01

    Mucin 5AC (MUC5AC) is secreted by goblet cells of the respiratory tract and, surprisingly, also expressed de novo in mucus secreting cancer lines. siRNA-mediated knockdown of 7343 human gene products in a human colonic cancer goblet cell line (HT29-18N2) revealed new proteins, including a Ca2+-activated channel TRPM5, for MUC5AC secretion. TRPM5 was required for PMA and ATP-induced secretion of MUC5AC from the post-Golgi secretory granules. Stable knockdown of TRPM5 reduced a TRPM5-like current and ATP-mediated Ca2+ signal. ATP-induced MUC5AC secretion depended strongly on Ca2+ influx, which was markedly reduced in TRPM5 knockdown cells. The difference in ATP-induced Ca2+ entry between control and TRPM5 knockdown cells was abrogated in the absence of extracellular Ca2+ and by inhibition of the Na+/Ca2+ exchanger (NCX). Accordingly, MUC5AC secretion was reduced by inhibition of NCX. Thus TRPM5 activation by ATP couples TRPM5-mediated Na+ entry to promote Ca2+ uptake via an NCX to trigger MUC5AC secretion. DOI: http://dx.doi.org/10.7554/eLife.00658.001 PMID:23741618

  5. Mucin-like glycoprotein secretion is mediated by cyclic-AMP and protein kinase C signal transduction pathways in rat corneal epithelium.

    PubMed

    Nakamura, M; Endo, K; Nakata, K

    1998-05-01

    Ocular surface mucin is secreted from both goblet cells in the conjunctival epithelium and corneal epithelial cells. To clarify its mechanism of secretion in corneal epithelial cells, a rat cornea organ culture system was used to evaluate the second messenger roles of cyclic-AMP (cAMP), cyclic-GMP (cGMP) and protein kinase C (PKC) in modulating mucin-like glycoprotein secretion. Rat cornea sections (3 mm diameter) were cultured in TC-199 medium, and radiolabeled with sodium sulfate for 18 hr. After washing, the corneas were treated with various second messenger modulating agents for 30 min. The culture media were reacted with Dolichos biflorus (DBA)-lectin, and mucin-like glycoprotein was isolated. Then the radioactivity of DBA-binding mucin-like glycoprotein was isolated. Then the radioactivity of DBA-binding mucin-like glycoprotein was measured. There was a time-dependent increase in mucin-like glycoprotein was measured. There was a time-dependent increase in mucin-like glycoprotein secretion, whereas after corneal epithelial debridement the secretion was markedly inhibited by 81%. Mucin-like glycoprotein secretion was stimulated in a dose-dependent manner following elevation of cAMP levels by exposure to either forskolin, dibutyryl cAMP or 3-isobutyl-1-methylxanthine. Concomitant exposure to the cAMP dependent protein kinase inhibitor, KT5720 completely inhibited their stimulatory effects. Neither exposure to dibutyryl cGMP nor nitroprusside affected mucin-like glycoprotein secretion. Stimulation by PKC, phorbol 12, 13-dibutyrate (PDBu) also increased mucin-like glycoprotein secretion in a dose-dependent fashion. The PKC inhibitor, calphostin C completely inhibited the stimulation by PDBu of mucine-like glycoprotein secretion. These results demonstrate that corneal epithelial cells secrete mucin-like glycoprotein, which is mediated by cAMP and PKC signal transduction pathways.

  6. Actions of adenosine A1 and A2 receptor antagonists on CFTR antibody-inhibited β-adrenergic mucin secretion response

    PubMed Central

    Pereira, M M C; Lloyd Mills, C; Dormer, R L; McPherson, M A

    1998-01-01

    The cystic fibrosis gene protein, the cystic fibrosis transmembrane conductance regulator (CFTR) acts as a chloride channel and is a key regulator of mucin secretion. The mechanism by which 3-isobutyl-1-methylxanthine (IBMX) corrects the defect in CFTR mediated β-adrenergic stimulation of mucin secretion has not been determined. The present study has investigated the actions of adenosine A1 and A2 receptor antagonists to determine whether ability to stimulate mucin secretion correlates with correction of CFTR antibody inhibited β-adrenergic response and whether excessive cyclic AMP rise is required.CFTR antibodies were introduced into living rat submandibular acini by hypotonic swelling. Following recovery, mucin secretion in response to isoproterenol was measured.The adenosine A1 receptor antagonist, 8 cyclopentyltheophylline (CPT) was a less potent stimulator of mucin secretion than was the A2 receptor antagonist dimethylpropargylxanthine (DMPX). A concentration of CPT close to the Ki for A1 receptor antagonism (10 nM) did not stimulate mucin secretion.DMPX, although a potent stimulator of mucin secretion, did not correct CFTR antibody inhibited mucin secretion.CPT corrected defective CFTR antibody inhibited mucin secretion at a high (1 mM) concentration, suggesting a mechanism other than adenosine receptor antagonism.DMPX potentiated the isoproterenol induced cyclic AMP rise, whereas CPT did not.Correction of the defective CFTR mucin secretion response did not correlate with ability to stimulate mucin secretion and did not require potentiation of β-adrenergic induced increases in cyclic AMP. This affords real promise for the development of a selective drug treatment for cystic fibrosis. PMID:9831904

  7. Identification of novel proteins secreted by Lactobacillus plantarum that bind to mucin and fibronectin.

    PubMed

    Sánchez, Borja; Schmitter, Jean-Marie; Urdaci, María C

    2009-01-01

    Lactobacillus plantarum is a lactic acid bacterium that can be isolated from a high variety of fermented foods, including dairy products. In the present work, eight novel proteins secreted by three L. plantarum strains have been identified by tandem mass spectrometry. Seven of them were predicted as extracellular proteins containing putative signal peptides. The sixth, identified as glyceraldehyde 3-phosphate dehydrogenase (GAPDH), is a cytoplasmic protein that has been detected on the surface of several microorganisms. Muramidase and GAPDH were secreted only by the L. plantarum BMCM12 strain. Two other bands present in this strain were not identified, in spite of their yielding good tryptic profiles, suggesting an absence of homolog sequences in the molecular databases. Four of these proteins, including GAPDH, bound to mucin and fibronectin. These proteins might play important roles in the physiology and ecology of this bacterium, notably in the interaction with the human host.

  8. Bile Salts Modulate the Mucin-Activated Type VI Secretion System of Pandemic Vibrio cholerae

    PubMed Central

    Unterweger, Daniel; Diaz-Satizabal, Laura; Ogg, Stephen; Pukatzki, Stefan

    2015-01-01

    The causative agent of cholera, Vibrio cholerae, regulates its diverse virulence factors to thrive in the human small intestine and environmental reservoirs. Among this pathogen’s arsenal of virulence factors is the tightly regulated type VI secretion system (T6SS). This system acts as an inverted bacteriophage to inject toxins into competing bacteria and eukaryotic phagocytes. V. cholerae strains responsible for the current 7th pandemic activate their T6SS within the host. We established that T6SS-mediated competition occurs upon T6SS activation in the infant mouse, and that this system is functional under anaerobic conditions. When investigating the intestinal host factors mucins (a glycoprotein component of mucus) and bile for potential regulatory roles in controlling the T6SS, we discovered that once mucins activate the T6SS, bile acids can further modulate T6SS activity. Microbiota modify bile acids to inhibit T6SS-mediated killing of commensal bacteria. This interplay is a novel interaction between commensal bacteria, host factors, and the V. cholerae T6SS, showing an active host role in infection. PMID:26317760

  9. Purification and structural characterization of a filamentous, mucin-like proteophosphoglycan secreted by Leishmania parasites.

    PubMed

    Ilg, T; Stierhof, Y D; Craik, D; Simpson, R; Handman, E; Bacic, A

    1996-08-30

    Parasitic protozoa of the genus Leishmania secrete a filamentous macromolecule that forms networks and appears to be associated with cell aggregation. We report here the purification of this parasite antigen from Leishmania major culture supernatant and its compositional (75.6% carbohydrate, 20% phosphate, 4.4% amino acids, w/w), structural, and ultrastructural characterization as a highly unusual proteophosphoglycan (PPG). Mild acid hydrolysis, which cleaves preferentially hexose 1-phosphate bonds, releases the PPG glycans. Their structures are Galbeta1-4Man, Manalpha1-2Man, Galbeta1-3Galbeta1-4Man, PO4-6(Galbeta1-3)0-2Galbeta1-4Man, and PO4-6(Arabeta1-2Galbeta1-3)Galbeta1-4Man. These glycans are also components of the parasite glycolipid lipophosphoglycan, but their relative abundance and structural organization in PPG are different. Some of them represent novel forms of protein glycosylation. 31P NMR on native PPG demonstrates that phosphate is exclusively in phosphodiester bonds and that the basic structure R-Manalpha1-PO4-6-Gal-R connects the glycans. A phosphodiester linkage to phosphoserine (most likely R-Manalpha1-PO4-Ser) anchors the PPG oligosaccharides to the polypeptide. PPG has a unique amino acid composition; glycosylated phosphoserine (>43 mol %), serine, alanine, and proline account for more than 87 mol % and appear to be clustered in large proteinase-resistant domains. Electron microscopy of purified PPG reveals cable-like, flexible, long (to 6 microm), and unbranched filaments. The overall structure of PPG shows many similarities to mammalian mucins. Potential functions of this novel mucin-like molecule for the parasites are discussed.

  10. Mucin secreting cells in the stomach and colon are altered by combination antiretroviral treatment in an obese rat model.

    PubMed

    Truter, Danélle; Strijdom, Hans; Everson, Frans; Kotzé, Sanet H

    2017-03-01

    Mucins, secreted by intestinal goblet cells, form an integral part of the intestinal biofilm, which is important for the functioning of a healthy gastrointestinal tract (GIT). This mucous layer is sensitive to factors such as diet, drugs and inflammation. Histochemically, mucins can be classified as neutral or acidic, where acidic mucins can contain sulphate groups (sulphomucins) or sialic acid (sialomucins). The aim of the present study was to determine the composition of various mucin secreting cells using histochemical stains in rats fed on a high calorie diet (HCD) treated with antiretroviral therapy (ART). Wistar rats (N=24) were divided into a lean control group (C/ART-), high calorie diet group (C/HCD+), ART group (C/ART+) and HCD and ART group (HCD+/ART+). The body of the stomach as well as the colon were stained with Alcian Blue Periodic Schiff (ABPAS) to distinguish between neutral and acidic mucins and Alcian Blue Aldehyde Fuschin (ABAF) to distinguish between sialo-and sulphomucins. An increase of the total gastric mucous cells was observed in the HCD+/ART+ group compared to the C/ART- group using both ABPAS and ABAF. A decrease of neutral cells in the distal part of the colonic crypts in the C/HCD+ and C/ART+ groups compared to the C/ART- group were observed. Mixed goblet cells in the colonic crypts of the C/ART- and HCD+/ART+ groups were decreased in comparison to the C/ART+ group. The study showed that the total mean percentage of mucous cells in the stomach as well as the total amount of neutral goblet cells in the colon were most affected by ART and a HCD. These changes in a rat model suggest that the quality of the biofilm may be altered and should be considered when ART is prescribed to obese patients.

  11. Protease-Activated Receptor 2 Mediates Mucus Secretion in the Airway Submucosal Gland

    PubMed Central

    Lee, Hyun Jae; Yang, Yu-Mi; Kim, Kyubo; Shin, Dong Min; Yoon, Joo-Heon; Cho, Hyung-Ju; Choi, Jae Young

    2012-01-01

    Protease-activated receptor 2 (PAR2), a G protein-coupled receptor expressed in airway epithelia and smooth muscle, plays an important role in airway inflammation. In this study, we demonstrated that activation of PAR2 induces mucus secretion from the human airway gland and examined the underlying mechanism using the porcine and murine airway glands. The mucosa with underlying submucosal glands were dissected from the cartilage of tissues, pinned with the mucosal side up at the gas/bath solution interface of a physiological chamber, and covered with oil so that secretions from individual glands could be visualized as spherical bubbles in the oil. Secretion rates were determined by optical monitoring of the bubble diameter. The Ca2+-sensitive dye Fura2-AM was used to determine intracellular Ca2+ concentration ([Ca2+]i) by means of spectrofluorometry. Stimulation of human tracheal mucosa with PAR2-activating peptide (PAR2-AP) elevated intracellular Ca2+ and induced glandular secretion equal to approximately 30% of the carbachol response in the human airway. Porcine gland tissue was more sensitive to PAR2-AP, and this response was dependent on Ca2+ and anion secretion. When the mouse trachea were exposed to PAR2-AP, large amounts of secretion were observed in both wild type and ΔF508 cystic fibrosis transmembrane conductance regulator mutant mice but there is no secretion from PAR-2 knock out mice. In conclusion, PAR2-AP is an agonist for mucus secretion from the airway gland that is Ca2+-dependent and cystic fibrosis transmembrane conductance regulator-independent. PMID:22916223

  12. Apigenin Inhibits Tumor Necrosis Factor-α-Induced Production and Gene Expression of Mucin through Regulating Nuclear Factor-Kappa B Signaling Pathway in Airway Epithelial Cells

    PubMed Central

    Seo, Hyo-Seok; Sikder, Mohamed Asaduzzaman; Lee, Hyun Jae; Ryu, Jiho; Lee, Choong Jae

    2014-01-01

    In the present study, we investigated whether apigenin significantly affects tumor necrosis factor-α (TNF-α)-induced production and gene expression of MUC5AC mucin in airway epithelial cells. Confluent NCI-H292 cells were pretreated with apigenin for 30 min and then stimulated with TNF-α for 24 h or the indicated periods. The MUC5AC mucin gene expression and mucin protein production were measured by reverse transcription - polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Apigenin significantly inhibited MUC5AC mucin production and down-regulated MUC5AC gene expression induced by TNF-α in NCI-H292 cells. To elucidate the action mechanism of apigenin, effect of apigenin on TNF-α-induced nuclear factor kappa B (NF-κB) signaling pathway was also investigated by western blot analysis. Apigenin inhibited NF-κB activation induced by TNF-α. Inhibition of inhibitory kappa B kinase (IKK) by apigenin led to the suppression of inhibitory kappa B alpha (IκBα) phosphorylation and degradation, p65 nuclear translocation. This, in turn, led to the down-regulation of MUC5AC protein production in NCI-H292 cells. Apigenin also has an influence on upstream signaling of IKK because it inhibited the expression of adaptor protein, receptor interacting protein 1 (RIP1). These results suggest that apigenin can regulate the production and gene expression of mucin through regulating NF-κB signaling pathway in airway epithelial cells. PMID:25489420

  13. Toxocara canis mucins among other excretory-secretory antigens induce in vitro secretion of cytokines by mouse splenocytes.

    PubMed

    Długosz, Ewa; Wasyl, Katarzyna; Klockiewicz, Maciej; Wiśniewski, Marcin

    2015-09-01

    The effect of Toxocara larval antigens on cytokine secretion by mouse splenocytes was studied in vitro. Recombinant mucins were produced in Pichia pastoris yeast, and Toxocara excretory-secretory (TES) antigens were collected from in vitro culture of L2 larvae. Tc-MUC-2, Tc-MUC-3, Tc-MUC-4, and Tc-MUC-5 were expressed as glycoproteins and were specifically recognized by Toxocara canis-infected dog serum antibodies. Mouse splenocytes stimulated with recombinant mucins produced IL-5, IL-6, and TGF-β. Cell stimulation with whole TES products was more effective and resulted in secretion of IL-4, IL-5, IL-6, IL-10, and TGF-β and downregulation of TNF-α production. IFN-γ and IL-17 secretion was noted only after ConA treatment. Cells originating from infected animals produced significantly smaller amounts of these two cytokines compared to control cells, which suggests that Th1 and Th17 response in infected mice is strongly inhibited. However, splenocyte stimulation with both TES and ConA upregulated the production of IFN-γ and IL-17. This shows that TES antigens have strong immunomodulatory properties and are able to induce a broad range of effects on murine immune cells.

  14. Action of N-acylated ambroxol derivatives on secretion of chloride ions in human airway epithelia.

    PubMed

    Yamada, Takahiro; Takemura, Yoshizumi; Niisato, Naomi; Mitsuyama, Etsuko; Iwasaki, Yoshinobu; Marunaka, Yoshinori

    2009-03-13

    We report the effects of new N-acylated ambroxol derivatives (TEI-588a, TEI-588b, TEI-589a, TEI-589b, TEI-602a and TEI-602b: a, aromatic amine-acylated derivative; b, aliphatic amine-acylated derivative) induced from ambroxol (a mucolytic agent to treat human lung diseases) on Cl(-) secretion in human submucosal serous Calu-3 cells under a Na(+)/K(+)/2Cl(-) cotransporter-1 (NKCC1)-mediated hyper-secreting condition. TEI-589a, TEI-589b and TEI-602a diminished hyper-secretion of Cl(-) by diminishing the activity of NKCC1 without blockade of apical Cl(-) channel (TEI-589a>TEI-602a>TEI-589b), while any other tested compounds including ambroxol had no effects on Cl(-) secretion. These indicate that the inhibitory action of an aromatic amine-acylated derivative on Cl(-) secretion is stronger that that of an aliphatic amine-acylated derivative, and that 3-(2,5-dimethyl)furoyl group has a strong action in inhibition of Cl(-) secretion than cyclopropanoyl group. We here indicate that TEI-589a, TEI-589b and TEI-602a reduce hyper-secretion to an appropriate level in the airway, providing a possibility that the compound can be an effective drug in airway obstructive diseases including COPD by reducing the airway resistance under a hyper-secreting condition.

  15. Effects of second hand smoke on airway secretion and mucociliary clearance

    PubMed Central

    Liu, Yanyan; Di, Y. Peter

    2012-01-01

    The airway acts as the first defense against inhaled pathogens and particulate matter from the environment. One major way for the airway to clear inhaled foreign objects is through mucociliary clearance (MCC), an important component of the respiratory innate immune defense against lung disease. MCC is characterized by the upward movement of mucus by ciliary motion that requires a balance between the volume and composition of the mucus, adequate periciliary liquid (PCL) volume, and normal ciliary beat frequency (CBF). Airway surface fluid (ASL) is a thin layer liquid that consists of the highly viscous mucus upper “gel” layer, and the watery lubricating lower “sol” layer. Mucus production, secretion and clearance are considered to play a critical role in maintenance of airway health because it maintains hydration in the airway and traps particulates, bacteria, and viruses. Different types of epithelial cells, including secretory cells, and ciliated cells, contribute to the MCC function. Cigarette smoke (CS) contains chemicals and particulates that significantly affect airway secretion. Active and passive CS-induced chronic obstructive pulmonary disease (COPD) is frequently associated with hyperplasia of goblet cells and submucosal glands (SMGs), thus increasing the secretory capacity of the airways that impairs MCC. PMID:22973232

  16. "Mucin"-secreting papillary renal cell carcinoma: clinicopathological, immunohistochemical, and molecular genetic analysis of seven cases.

    PubMed

    Pivovarcikova, Kristyna; Peckova, Kvetoslava; Martinek, Petr; Montiel, Delia Perez; Kalusova, Kristyna; Pitra, Tomas; Hora, Milan; Skenderi, Faruk; Ulamec, Monika; Daum, Ondrej; Rotterova, Pavla; Ondic, Ondrej; Dubova, Magdalena; Curik, Romuald; Dunatov, Ana; Svoboda, Tomas; Michal, Michal; Hes, Ondrej

    2016-07-01

    Mucin and mucin-like material are features of mucinous tubular and spindle renal cell carcinoma (MTS RCC) but are rarely seen in papillary renal cell carcinoma (PRCC). We reviewed 1311 PRCC and identified 7 tumors containing extracellular and/or intracellular mucinous/mucin-like material (labeled as PRCCM). We analyzed these using morphological, histochemical, immunohistochemical, and molecular genetic methods (arrayCGH, FISH). Clinical data were available for six of the seven patients (five males and one female, age range 61-78 years). Follow-up was available for four patients (2-4 years); one patient died of widespread metastases. Tumor size ranged from 3 to 5 cm (mean 3.8). Of all cases, histological architecture showed a predominantly papillary pattern. Mucin or mucin-like was extracellular in one, intracellular in three, and both intra/extracellular in three cases. All tumors were positive for AMACR, vimentin, and OSCAR, while CK7 was positive in four. Mucicarmine stain was positive in all cases, PAS in six and Alcian blue in three cases. Five tumors were positive for MUC 1, but none were positive for MUC 2, MUC 4, or MUC 6. In only four cases, genetic analysis could be performed. Gain of chromosomes 7 and 17 was found in two cases; gain of 17 only was found in one case. Loss of heterozygosity of 3p was found in one case together with polysomy of chromosomes 7 and 17. No abnormalities of VHL, fumarate dehydrogenase, and TFE3 genes were detected. We conclude that PRCCM is a rare but challenging subtype of RCC that deserves to be further studied. In all the tumors, the mucin-like material was found in those stained with mucicarmin, but other conventional and immunohistochemical stains did not reveal consistent features of a single mucin. The molecular-genetic profile of these tumors was most consistent with that of typical papillary RCC, although one case had mixed genetic features of papillary and clear RCC. PRCCM has metastatic potential, as evidenced by

  17. Effects of thoracic squeezing on airway secretion removal in mechanically ventilated patients

    PubMed Central

    Yousefnia-Darzi, Farkhondeh; Hasavari, Farideh; Khaleghdoost, Tahereh; Kazemnezhad-Leyli, Ehsan; Khalili, Malahat

    2016-01-01

    Background: Accumulation of secretions in the airways of patients with an endotracheal tube and mechanical ventilation will have serious consequences. One of the most common methods of airway clearance is endotracheal suctioning. In order to facilitate discharge of airway secretion resulting in promotion of gas exchange, chest physiotherapy techniques can be used at the time of expiration before suction. Materials and Methods: In this clinical trial with a cross-over design, 50 mechanically ventilated patients admitted to intensive care units (ICUs) were randomly divided into two groups of thoracic squeezing. In each patient, two interventions of endotracheal suctioning were conducted, one with and the other without thoracic squeezing during exhalation, with a 3 h gap between the two interventions and an elapse of three respiratory cycles between the number of compressions. Sputum secreted was collected in a container connected to a suction catheter and weighed. Data were recorded in data gathering forms and analyzed using descriptive and inferential statistics (Wilcoxon and independent t-test, Chi-square) in SPSS version 16. Results: Findings showed that the mean weight of the suction secretions removed from airway without thoracic squeezing was 1.35 g and that of suction secretions removed by thoracic squeezing was 1.94 g. Wilcoxon test showed a significant difference regarding the rate of secretion between the two techniques (P = 0.003). Conclusions: According to the study findings, endotracheal suction with thoracic squeezing on expiration helps airway secretion discharge more than suction alone in patients on mechanical ventilators and can be used as an effective method. PMID:27186214

  18. cAMP stimulates bicarbonate secretion across normal, but not cystic fibrosis airway epithelia.

    PubMed Central

    Smith, J J; Welsh, M J

    1992-01-01

    Adenosine 3',5'-cyclic monophosphate stimulates chloride (Cl-) secretion across airway epithelia. To determine whether cAMP also stimulates HCO3- secretion, we studied cultured canine and human airway epithelial cells bathed in a HCO3-/CO2-buffered, Cl(-)-free solution. Addition of forskolin stimulated an increase in short-circuit current that was likely a result of bicarbonate secretion because it was inhibited by a HCO3(-)-free solution, by addition of the carbonic anhydrase inhibitor, acetazolamide, or by mucosal addition of the anion channel blocker, diphenylamine 2-carboxylate. The current was dependent on Na+ because it was inhibited by removal of Na+ from the submucosal bathing solution, by addition of the Na+ pump inhibitor, ouabain, or by addition of amiloride (1 mM) to the submucosal solution. An increase in cytosolic Ca2+ produced by addition of a Ca2+ ionophore also stimulated short-circuit current. These data suggest that cAMP and Ca2+ stimulate HCO3- secretion across airway epithelium, and suggest that HCO3- leaves the cell across the apical membrane via conductive pathways. These results may explain previous observations that the short-circuit current across airway epithelia was not entirely accounted for by the sum of Na+ absorption and Cl- secretion. The cAMP-induced secretory response was absent in cystic fibrosis (CF) airway epithelial cells, although Ca(2+)-stimulated secretion was intact. This result suggests that HCO3- exist at the apical membrane is through the Cl- channel that is defectively regulated in CF epithelia. These results suggest the possibility that a defect in HCO3- secretion may contribute to the pathophysiology of CF pulmonary disease. PMID:1313448

  19. Concentration of the antibacterial precursor thiocyanate in cystic fibrosis airway secretions

    PubMed Central

    Lorentzen, Daniel; Durairaj, Lakshmi; Pezzulo, Alejandro A.; Nakano, Yoko; Launspach, Janice; Stoltz, David A.; Zamba, Gideon; McCray, Paul B.; Zabner, Joseph; Welsh, Michael J.; Nauseef, William M.; Bánfi, Botond

    2011-01-01

    A recently discovered enzyme system produces antibacterial hypothiocyanite (OSCN−) in the airway lumen by oxidizing the secreted precursor thiocyanate (SCN−). Airway epithelial cultures have been shown to secrete SCN− in a CFTR-dependent manner. Thus, reduced SCN− availability in the airway might contribute to the pathogenesis of cystic fibrosis (CF), a disease caused by mutations in the CFTR gene and characterized by an airway host defense defect. We tested this hypothesis by analyzing the SCN− concentration in the nasal airway surface liquid (ASL) of CF patients and non-CF subjects, and in the tracheobronchial ASL of CFTR-ΔF508 homozygous pigs and control littermates. In the nasal ASL, the SCN− concentration was ~30-fold higher than in serum independently of the CFTR mutation status of the human subject. In the tracheobronchial ASL of CF pigs, the SCN− concentration was somewhat reduced. Among human subjects, SCN− concentrations in the ASL varied from person to person independent of CFTR expression, and CF patients with high SCN− levels had better lung function than those with low SCN− levels. Thus, although CFTR can contribute to SCN− transport, it is not indispensable for the high SCN− concentration in ASL. The correlation between lung function and SCN− concentration in CF patients may reflect a beneficial role for SCN−. PMID:21334431

  20. Pseudomonas aeruginosa triggers CFTR-mediated airway surface liquid secretion in swine trachea.

    PubMed

    Luan, Xiaojie; Campanucci, Verónica A; Nair, Manoj; Yilmaz, Orhan; Belev, George; Machen, Terry E; Chapman, Dean; Ianowski, Juan P

    2014-09-02

    Cystic fibrosis (CF) is an autosomal recessive genetic disorder caused by mutations in the gene encoding for the anion channel cystic fibrosis transmembrane conductance regulator (CFTR). Several organs are affected in CF, but most of the morbidity and mortality comes from lung disease. Recent data show that the initial consequence of CFTR mutation is the failure to eradicate bacteria before the development of inflammation and airway remodeling. Bacterial clearance depends on a layer of airway surface liquid (ASL) consisting of both a mucus layer that traps, kills, and inactivates bacteria and a periciliary liquid layer that keeps the mucus at an optimum distance from the underlying epithelia, to maximize ciliary motility and clearance of bacteria. The airways in CF patients and animal models of CF demonstrate abnormal ASL secretion and reduced antimicrobial properties. Thus, it has been proposed that abnormal ASL secretion in response to bacteria may facilitate the development of the infection and inflammation that characterize CF airway disease. Whether the inhalation of bacteria triggers ASL secretion, and the role of CFTR, have never been tested, however. We developed a synchrotron-based imaging technique to visualize the ASL layer and measure the effect of bacteria on ASL secretion. We show that the introduction of Pseudomonas aeruginosa and other bacteria into the lumen of intact isolated swine tracheas triggers CFTR-dependent ASL secretion by the submucosal glands. This response requires expression of the bacterial protein flagellin. In patients with CF, the inhalation of bacteria would fail to trigger ASL secretion, leading to infection and inflammation.

  1. Enhanced expression and secretion of an epithelial membrane antigen (MA5) in a human mucinous breast tumor line (BT549).

    PubMed

    Williams, C J; Major, P P; Dion, A S

    1990-01-01

    The mouse monoclonal antibody MA5, generated versus a membrane-enriched extract of breast cancer metastatic to liver, detects one or two high molecular weight species (greater than 200 kD) in breast tumor membranes, human milk fat globule membranes, and various breast tumor cell lines. From comparative studies of five breast carcinoma lines (BT20, BT549, MCF-7, T47D, and ZR75-1), as well as an epithelial line established from milk (HBL-100), we report the stimulation of expression of MA5-reactive antigen in a mucinous breast tumor cell line (BT549) through the use of a culture medium supplemented with charcoal-absorbed fetal calf serum, insulin, and hydrocortisone. Large amounts of aggregated MA5-reactive antigen are secreted into the culture medium and can be recovered from the media for further purification by centrifugation. These findings suggest that BT549 cells, grown in the special nutritive medium, may be useful in providing an ample source of epithelial membrane antigen (also termed polymorphic epithelial mucin) for standardization of clinical assay protocols, as well as provide a model system for studies of the regulation of expression for this class of antigens in breast carcinoma.

  2. Spiperone, identified through compound screening, activates calcium-dependent chloride secretion in the airway

    PubMed Central

    Liang, Lihua; MacDonald, Kelvin; Schwiebert, Erik M.; Zeitlin, Pamela L.; Guggino, William B.

    2009-01-01

    Cystic fibrosis (CF) is caused by mutations in the gene producing the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR functions as a Cl− channel. Its dysfunction limits Cl− secretion and enhances Na+ absorption, leading to viscous mucus in the airway. Ca2+-activated Cl− channels (CaCCs) are coexpressed with CFTR in the airway surface epithelia. Increases in cytosolic Ca2+ activate the epithelial CaCCs, which provides an alternative Cl− secretory pathway in CF. We developed a screening assay and screened a library for compounds that could enhance cytoplasmic Ca2+, activate the CaCC, and increase Cl− secretion. We found that spiperone, a known antipsychotic drug, is a potent intracellular Ca2+ enhancer and demonstrated that it stimulates intracellular Ca2+, not by acting in its well-known role as an antagonist of serotonin 5-HT2 or dopamine D2 receptors, but through a protein tyrosine kinase-coupled phospholipase C-dependent pathway. Spiperone activates CaCCs, which stimulates Cl− secretion in polarized human non-CF and CF airway epithelial cell monolayers in vitro and in CFTR-knockout mice in vivo. In conclusion, we have identified spiperone as a new therapeutic platform for correction of defective Cl− secretion in CF via a pathway independent of CFTR. PMID:18987251

  3. cAMP-mediated secretion of brain-derived neurotrophic factor in developing airway smooth muscle.

    PubMed

    Thompson, Michael A; Britt, Rodney D; Kuipers, Ine; Stewart, Alecia; Thu, James; Pandya, Hitesh C; MacFarlane, Peter; Pabelick, Christina M; Martin, Richard J; Prakash, Y S

    2015-10-01

    Moderate hyperoxic exposure in preterm infants contributes to subsequent airway dysfunction and to risk of developing recurrent wheeze and asthma. The regulatory mechanisms that can contribute to hyperoxia-induced airway dysfunction are still under investigation. Recent studies in mice show that hyperoxia increases brain-derived neurotrophic factor (BDNF), a growth factor that increases airway smooth muscle (ASM) proliferation and contractility. We assessed the mechanisms underlying effects of moderate hyperoxia (50% O2) on BDNF expression and secretion in developing human ASM. Hyperoxia increased BDNF secretion, but did not alter endogenous BDNF mRNA or intracellular protein levels. Exposure to hyperoxia significantly increased [Ca2+]i responses to histamine, an effect blunted by the BDNF chelator TrkB-Fc. Hyperoxia also increased ASM cAMP levels, associated with reduced PDE4 activity, but did not alter protein kinase A (PKA) activity or adenylyl cyclase mRNA levels. However, 50% O2 increased expression of Epac2, which is activated by cAMP and can regulate protein secretion. Silencing RNA studies indicated that Epac2, but not Epac1, is important for hyperoxia-induced BDNF secretion, while PKA inhibition did not influence BDNF secretion. In turn, BDNF had autocrine effects of enhancing ASM cAMP levels, an effect inhibited by TrkB and BDNF siRNAs. Together, these novel studies suggest that hyperoxia can modulate BDNF secretion, via cAMP-mediated Epac2 activation in ASM, resulting in a positive feedback effect of BDNF-mediated elevation in cAMP levels. The potential functional role of this pathway is to sustain BDNF secretion following hyperoxic stimulus, leading to enhanced ASM contractility and proliferation.

  4. Regulation of mucous differentiation and mucin gene expression in the tracheobronchial epithelium.

    PubMed

    Gray, T; Koo, J S; Nettesheim, P

    2001-03-07

    The goal of our studies is to elucidate mechanisms that control and modulate mucous differentiation and mucin gene expression in the conducting airways. We used cultures of normal human tracheobronchial epithelial (NHTBE) cells that were shown to secrete two major airway mucins, namely MUC5AC and MUC5B as well as several other secretory products. Mucous differentiation and expression of MUC2, MUC5AC, MUC5B and MUC7, but not MUCi, MUC4, and MUC8 mucin genes, were shown to be retinoic acid- (RA) or retinol-dependent. We found that RA control of mucin genes was mediated by the retinoid acid receptors RAR alpha and, to a lesser extent, by RAR gamma. Our studies also showed that other important bioregulators such as thyroid hormone (T3) and epidermal growth factor (EGF) modulate basal expression of mucin genes, interacting with RA in a concentration-dependent manner. T3, which binds to thyroid receptors (TRs) belonging to the same superfamily of steroid hormone nuclear receptors as the RARs, inhibits mucin gene expression, particularly MUC5AC. One possible mechanism of this T3 effect is downregulation of RAR proteins, which are critical for mucin gene expression. However, we also found that T3 inhibits MUC5AC transcription.EGF, which had previously been shown to stimulate mucin expression and mucin secretion in cultured rat tracheal epithelial (RTE) cells, inhibited mucin secretion in human bronchial epithelial cell cultures. This effect was EGF concentration- and time-dependent and was progressively abolished by increasing the RA concentration. Subsequent studies suggested that the inhibitory effects of high concentrations of EGF may result from selective reduction of MUC5AC expression. These studies thus point to potentially important species differences in the mechanisms regulating mucous production, and they also confirm previous findings indicating differential regulation of MUC5AC and MUC5B gene expression.

  5. Mapping the Protein Domain Structures of the Respiratory Mucins: a mucin proteome coverage study

    PubMed Central

    Cao, Rui; Wang, T. Tiffany; DeMaria, Genevieve; Sheehan, John K.; Kesimer, Mehmet

    2012-01-01

    Mucin genes encode a family of the largest expressed proteins in the human genome. The proteins are highly substituted with O-linked oligosaccharides which greatly restrict access to the peptide backbones. The genomic organization of the N-terminal, O-glycosylated, and C-terminal regions of most of the mucins has been established and is available in the sequence databases. However, much less is known about the fate of their exposed protein regions after translation and secretion, and, to date, detailed proteomic studies complementary to the genomic studies are rather limited. Using mucins isolated from cultured human airway epithelial cell secretions, trypsin digestion and mass spectrometry, we investigated the proteome coverage of the mucins responsible for the maintenance and protection of the airway epithelia. Excluding the heavily glycosylated mucin domains, up to 85% coverage of the N-terminal region of the gel forming mucins MUC5B and MUC5AC was achieved, and up to 60% of the C-terminal regions were covered, suggesting that more N- and sparsely O-glycosylated regions as well as possible other modifications are available at the C-terminus. All possible peptides from the cysteine-rich regions that interrupt the heavily glycosylated mucin domains were identified. Interestingly, 43 cleavage sites from ten different domains of MUC5B and MUC5AC were identified, which possessed a non-tryptic cleavage site on the N-terminal end of the peptide, indicating potential exposure to proteolytic and/or “spontaneous cleavages”. Some of these non-tryptic cleavages may be important for proper maturation of the molecule, before and/or after secretion. Most of the peptides identified from MUC16 were from the SEA region. Surprisingly, three peptides were clearly identified from its heavily glycosylated regions. Up to 25% coverage of MUC4 was achieved covering seven different domains of the molecule. All peptides from the MUC1 cytoplasmic domain were detected along with the

  6. A new paradigm in respiratory hygiene: increasing the cohesivity of airway secretions to improve cough interaction and reduce aerosol dispersion

    PubMed Central

    Zayas, Gustavo; Dimitry, John; Zayas, Ana; O'Brien, Darryl; King, Malcolm

    2005-01-01

    Background Infectious respiratory diseases are transmitted to non-infected subjects when an infected person expels pathogenic microorganisms to the surrounding environment when coughing or sneezing. When the airway mucus layer interacts with high-speed airflow, droplets are expelled as aerosol; their concentration and size distribution may each play an important role in disease transmission. Our goal is to reduce the aerosolizability of respiratory secretions while interfering only minimally with normal mucus clearance using agents capable of increasing crosslinking in the mucin glycoprotein network. Methods We exposed mucus simulants (MS) to airflow in a simulated cough machine (SCM). The MS ranged from non-viscous, non-elastic substances (water) to MS of varying degrees of viscosity and elasticity. Mucociliary clearance of the MS was assessed on the frog palate, elasticity in the Filancemeter and the aerosol pattern in a "bulls-eye" target. The sample loaded was weighed before and after each cough maneuver. We tested two mucomodulators: sodium tetraborate (XL"B") and calcium chloride (XL "C"). Results Mucociliary transport was close to normal speed in viscoelastic samples compared to non-elastic, non-viscous or viscous-only samples. Spinnability ranged from 2.5 ± 0.6 to 50.9 ± 6.9 cm, and the amount of MS expelled from the SCM increased from 47 % to 96 % adding 1.5 μL to 150 μL of XL "B". Concurrently, particles were inversely reduced to almost disappear from the aerosolization pattern. Conclusion The aerosolizability of MS was modified by increasing its cohesivity, thereby reducing the number of particles expelled from the SCM while interfering minimally with its clearance on the frog palate. An unexpected finding is that MS crosslinking increased "expectoration". PMID:16138926

  7. The tyrosine phosphatase, SHP-1, is involved in bronchial mucin production during oxidative stress.

    PubMed

    Jang, Min Kyoung; Kim, Sae-Hoon; Lee, Ki-Young; Kim, Tae-Bum; Moon, Keun Ae; Park, Chan Sun; Bae, Yun Jeong; Zhu, Zhou; Moon, Hee-Bom; Cho, You Sook

    2010-02-26

    Mucus hypersecretion is a clinically important manifestation of chronic inflammatory airway diseases, such as asthma and Chronic obstructive pulmonary disease (COPD). Mucin production in airway epithelia is increased under conditions of oxidative stress. Src homology 2 domain-containing protein tyrosine phosphatase (SHP)-1 suppression is related to the development of airway inflammation and increased ROS levels. In this study, we investigated the role of SHP-1 in mucin secretion triggered by oxidative stress. Human lung mucoepidermoid H292 carcinoma cells were transfected with specific siRNA to eliminate SHP-1 gene expression. Cultured cells were treated with hydrogen peroxide (H(2)O(2)), and Mucin 5AC(MUC5AC) gene expression and mucin production were determined. Activation of p38 mitogen activated protein kinase (MAPK) in association with MUC5AC production was evaluated. N-acetylcysteine (NAC) was employed to determine whether antioxidants could block MUC5AC production. To establish the precise role of p38, mucin expression was observed after pre-treatment of SHP-1-depleted H292 cells with the p38 chemical blocker. We investigated the in vivo effects of oxidative stress on airway mucus production in SHP-1-deficient heterozygous (mev/+) mice. MUC5AC expression was enhanced in SHP-1 knockdown H292 cells exposed to H(2)O(2), compared to that in control cells. The ratio between phosphorylated and total p38 was significantly increased in SHP-1-deficient cells under oxidative stress. Pre-treatment with NAC suppressed both MUC5AC production and p38 activation. Blockage of p38 MAPK led to suppression of MUC5AC mRNA expression. Notably, mucin production was enhanced in the airway epithelia of mev/+ mice exposed to oxidative stress. Our results clearly indicate that SHP-1 plays an important role in airway mucin production through regulating oxidative stress.

  8. Human airway smooth muscle cells secrete amphiregulin via bradykinin/COX-2/PGE2, inducing COX-2, CXCL8, and VEGF expression in airway epithelial cells

    PubMed Central

    Knox, Alan J.

    2015-01-01

    Human airway smooth muscle cells (HASMC) contribute to asthma pathophysiology through an increased smooth muscle mass and elevated cytokine/chemokine output. Little is known about how HASMC and the airway epithelium interact to regulate chronic airway inflammation and remodeling. Amphiregulin is a member of the family of epidermal growth factor receptor (EGFR) agonists with cell growth and proinflammatory roles and increased expression in the lungs of asthma patients. Here we show that bradykinin (BK) stimulation of HASMC increases amphiregulin secretion in a mechanism dependent on BK-induced COX-2 expression, increased PGE2 output, and the stimulation of HASMC EP2 and EP4 receptors. Conditioned medium from BK treated HASMC induced CXCL8, VEGF, and COX-2 mRNA and protein accumulation in airway epithelial cells, which were blocked by anti-amphiregulin antibodies and amphiregulin siRNA, suggesting a paracrine effect of HASMC-derived amphiregulin on airway epithelial cells. Consistent with this, recombinant amphiregulin induced CXCL8, VEGF, and COX-2 in airway epithelial cells. Finally, we found that conditioned media from amphiregulin-stimulated airway epithelial cells induced amphiregulin expression in HASMC and that this was dependent on airway epithelial cell COX-2 activity. Our study provides evidence of a dynamic axis of interaction between HASMC and epithelial cells that amplifies CXCL8, VEGF, COX-2, and amphiregulin production. PMID:26047642

  9. Secretion of IL-13 by airway epithelial cells enhances epithelial repair via HB-EGF.

    PubMed

    Allahverdian, Sima; Harada, Norihiro; Singhera, Gurpreet K; Knight, Darryl A; Dorscheid, Delbert R

    2008-02-01

    Inappropriate repair after injury to the epithelium generates persistent activation, which may contribute to airway remodeling. In the present study we hypothesized that IL-13 is a normal mediator of airway epithelial repair. Mechanical injury of confluent airway epithelial cell (AEC) monolayers induced expression and release of IL-13 in a time-dependent manner coordinate with repair. Neutralizing of IL-13 secreted from injured epithelial cells by shIL-13Ralpha2.FC significantly reduced epithelial repair. Moreover, exogenous IL-13 enhanced epithelial repair and induced epidermal growth factor receptor (EGFR) phosphorylation. We examined secretion of two EGFR ligands, epidermal growth factor (EGF) and heparin-binding EGF (HB-EGF), after mechanical injury. Our data showed a sequential release of the EGF and HB-EGF by AEC after injury. Interestingly, we found that IL-13 induces HB-EGF, but not EGF, synthesis and release from AEC. IL-13-induced EGFR phosphorylation and the IL-13-reparative effect on AEC are mediated via HB-EGF. Finally, we demonstrated that inhibition of EGFR tyrosine kinase activity by tyrphostin AG1478 increases IL-13 release after injury, suggesting negative feedback between EGFR and IL-13 during repair. Our data, for the first time, showed that IL-13 plays an important role in epithelial repair, and that its effect is mediated through the autocrine release of HB-EGF and activation of EGFR. Dysregulation of EGFR phosphorylation may contribute to a persistent repair phenotype and chronically increased IL-13 release, and in turn result in airway remodeling.

  10. Single-Cell Analysis of Mast Cell Degranulation Induced by Airway Smooth Muscle-Secreted Chemokines

    PubMed Central

    Manning, Benjamin M.; Meyer, Audrey F.; Gruba, Sarah M.; Haynes, Christy L.

    2015-01-01

    Background Asthma is a chronic inflammatory disease characterized by narrowed airways, bronchial hyper-responsiveness, mucus hyper-secretion, and airway remodeling. Mast cell (MC) infiltration into airway smooth muscle (ASM) is a defining feature of asthma, and ASM regulates the inflammatory response by secreting chemokines, including CXCL10 and CCL5. Single cell analysis offers a unique approach to study specific cellular signaling interactions within large and complex signaling networks such as the inflammatory microenvironment in asthma. Methods Carbon fiber microelectrode amperometry was used to study the effects of ASM–secreted chemokines on mouse peritoneal MC degranulation. Results MC degranulation in response to CXCL10 and CCL5 was monitored at the single cell level. Relative to IgE-mediated degranulation, CXCL10- and CCL5-stimulated MCs released a decreased amount of serotonin per granule with fewer release events per cell. Decreased serotonin released per granule was correlated with increased spike half-width and rise-time values. Conclusions MCs are directly activated with ASM-associated chemokines. CXCL10 and CCL5 induce less robust MC degranulation compared to IgE- and A23187-stimulation. The kinetics of MC degranulation are signaling pathway-dependent, suggesting a biophysical mechanism of regulated degranulation that incorporates control over granule trafficking, transport, and docking machinery. General Significance The biophysical mechanisms, including variations in number of exocytotic release events, serotonin released per granule, and the membrane kinetics of exocytosis that underlie MC degranulation in response to CXCL10 and CCL5 were characterized at the single cell level. These findings clarify the function of ASM-derived chemokines as instigators of MC degranulation relative to classical mechanisms of MC stimulation. PMID:25986989

  11. Inflammation Promotes Airway Epithelial ATP Release via Calcium-Dependent Vesicular Pathways

    PubMed Central

    Okada, Seiko F.; Ribeiro, Carla M. P.; Sesma, Juliana I.; Seminario-Vidal, Lucia; Abdullah, Lubna H.; van Heusden, Catharina; Lazarowski, Eduardo R.

    2013-01-01

    ATP in airway surface liquid (ASL) controls mucociliary clearance functions via the activation of airway epithelial purinergic receptors. However, abnormally elevated ATP levels have been reported in inflamed airways, suggesting that excessive ATP in ASL contributes to airway inflammation. Despite these observations, little is known about the mechanisms of ATP accumulation in the ASL covering inflamed airways. In this study, links between cystic fibrosis (CF)–associated airway inflammation and airway epithelial ATP release were investigated. Primary human bronchial epithelial (HBE) cells isolated from CF lungs exhibited enhanced IL-8 secretion after 6 to 11 days, but not 28 to 35 days, in culture, compared with normal HBE cells. Hypotonic cell swelling–promoted ATP release was increased in 6- to 11-day-old CF HBE cells compared with non-CF HBE cells, but returned to normal values after 28 to 35 days in culture. The exposure of non-CF HBE cells to airway secretions isolated from CF lungs, namely, sterile supernatants of mucopurulent material (SMM), also caused enhanced IL-8 secretion and increased ATP release. The SMM-induced increase in ATP release was sensitive to Ca2+ chelation and vesicle trafficking/exocytosis inhibitors, but not to pannexin inhibition. Transcript levels of the vesicular nucleotide transporter, but not pannexin 1, were up-regulated after SMM exposure. SMM-treated cultures displayed increased basal mucin secretion, but mucin secretion was not enhanced in response to hypotonic challenge after the exposure of cells to either vehicle or SMM. We propose that CF airway inflammation up-regulates the capacity of airway epithelia to release ATP via Ca2+-dependent vesicular mechanisms not associated with mucin granule secretion. PMID:23763446

  12. Inflammation promotes airway epithelial ATP release via calcium-dependent vesicular pathways.

    PubMed

    Okada, Seiko F; Ribeiro, Carla M P; Sesma, Juliana I; Seminario-Vidal, Lucia; Abdullah, Lubna H; van Heusden, Catharina; Lazarowski, Eduardo R; Boucher, Richard C

    2013-11-01

    ATP in airway surface liquid (ASL) controls mucociliary clearance functions via the activation of airway epithelial purinergic receptors. However, abnormally elevated ATP levels have been reported in inflamed airways, suggesting that excessive ATP in ASL contributes to airway inflammation. Despite these observations, little is known about the mechanisms of ATP accumulation in the ASL covering inflamed airways. In this study, links between cystic fibrosis (CF)-associated airway inflammation and airway epithelial ATP release were investigated. Primary human bronchial epithelial (HBE) cells isolated from CF lungs exhibited enhanced IL-8 secretion after 6 to 11 days, but not 28 to 35 days, in culture, compared with normal HBE cells. Hypotonic cell swelling-promoted ATP release was increased in 6- to 11-day-old CF HBE cells compared with non-CF HBE cells, but returned to normal values after 28 to 35 days in culture. The exposure of non-CF HBE cells to airway secretions isolated from CF lungs, namely, sterile supernatants of mucopurulent material (SMM), also caused enhanced IL-8 secretion and increased ATP release. The SMM-induced increase in ATP release was sensitive to Ca(2+) chelation and vesicle trafficking/exocytosis inhibitors, but not to pannexin inhibition. Transcript levels of the vesicular nucleotide transporter, but not pannexin 1, were up-regulated after SMM exposure. SMM-treated cultures displayed increased basal mucin secretion, but mucin secretion was not enhanced in response to hypotonic challenge after the exposure of cells to either vehicle or SMM. We propose that CF airway inflammation up-regulates the capacity of airway epithelia to release ATP via Ca(2+)-dependent vesicular mechanisms not associated with mucin granule secretion.

  13. Lyn regulates mucus secretion and MUC5AC via the STAT6 signaling pathway during allergic airway inflammation

    PubMed Central

    Wang, Xiaoyun; Li, Yin; Luo, Deyu; Wang, Xing; Zhang, Yun; Liu, Zhigang; Zhong, Nanshan; Wu, Min; Li, Guoping

    2017-01-01

    Hypersecretion of mucus is an important component of airway remodeling and contributes to the mucus plugs and airflow obstruction associated with severe asthma phenotypes. Lyn has been shown to down-regulate allergen-induced airway inflammation. However, the role of Lyn in mucin gene expression remains unresolved. In this study, we first demonstrate that Lyn overexpression decreased the mucus hypersecretion and levels of the muc5ac transcript in mice exposed to ovalbumin (OVA). Lyn overexpression also decreased the infiltration of inflammatory cells and the levels of IL-13 and IL-4 in OVA-challenged airways. Whereas Lyn knockdown increased the IL-4 or IL-13-induced MUC5AC transcript and protein levels in the human bronchial epithelial cell line, 16HBE, Lyn overexpression decreased IL-4- or IL-13-induced MUC5AC transcript and protein levels. Overexpression of Lyn also decreased the expression and phosphorylation of STAT6 in OVA-exposed mice, whereas Lyn knockdown increased STAT6 and MUC5AC levels in 16HBE cells. Finally, chromatin immunoprecipitation analysis confirmed that Lyn overexpression decreased the binding of STAT6 to the promoter region of Muc5ac in mice exposed to OVA. Collectively, these findings demonstrated that Lyn overexpression ameliorated airway mucus hypersecretion by down-regulating STAT6 and its binding to the MUC5AC promoter. PMID:28205598

  14. Pharmacological analysis of epithelial chloride secretion mechanisms in adult murine airways.

    PubMed

    Gianotti, Ambra; Ferrera, Loretta; Philp, Amber R; Caci, Emanuela; Zegarra-Moran, Olga; Galietta, Luis J V; Flores, Carlos A

    2016-06-15

    Defective epithelial chloride secretion occurs in humans with cystic fibrosis (CF), a genetic defect due to loss of function of CFTR, a cAMP-activated chloride channel. In the airways, absence of an active CFTR causes a severe lung disease. In mice, genetic ablation of CFTR function does not result in similar lung pathology. This may be due to the expression of an alternative chloride channel which is activated by calcium. The most probable protein performing this function is TMEM16A, a calcium-activated chloride channel (CaCC). Our aim was to assess the relative contribution of CFTR and TMEM16A to chloride secretion in adult mouse trachea. For this purpose we tested pharmacological inhibitors of chloride channels in normal and CF mice. The amplitude of the cAMP-activated current was similar in both types of animals and was not affected by a selective CFTR inhibitor. In contrast, a CaCC inhibitor (CaCCinh-A01) strongly blocked the cAMP-activated current as well as the calcium-activated chloride secretion triggered by apical UTP. Although control experiments revealed that CaCCinh-A01 also shows inhibitory activity on CFTR, our results indicate that transepithelial chloride secretion in adult mouse trachea is independent of CFTR and that another channel, possibly TMEM16A, performs both cAMP- and calcium-activated chloride transport. The prevalent function of a non-CFTR channel may explain the absence of a defect in chloride transport in CF mice.

  15. Influence of cetirizine and levocetirizine on two cytokines secretion in human airway epithelial cells.

    PubMed

    Shih, Mei-Yin; Hsu, Jeng-Yuan; Weng, Yueh-Shan; Fu, Lin-Shien

    2008-01-01

    Recent studies suggest that several second-generation antihistamines can modulate various inflammatory reactions besides their H(1)-receptor antagonism. The antihistamine cetirizine is a racemic mixture of levocetirizine and dextrocetirizine. The aim of this study was to investigate the effects of these two antihistamines (cetirizine and levocetirizine) on granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-8 secretion in A549 human airway epithelial cells. A549 cells were preincubated with cetirizine (0.1, 1, 2.5, 5, and 10 microM) or levocetirizine (0.1, 1, 2.5, 5, and 10 microM) individually for 16 hours and were then stimulated with IL-1beta for 8 hours. The levels of GM-CSF and IL-8 in cultured supernatants were measured by enzyme-linked immunosorbent assay (ELISA). Our data showed that cetirizine (5 and 10 microM) and levocetirizine (2.5, 5, and 10 microM) significantly suppressed GM-CSF secretion from A549 cells stimulated with IL-1beta (p<0.05). Cetirizine (10 microM) and levocetirizine (5 and 10 microM) significantly suppressed IL-8 secretion after A549 was stimulated. The suppressive effect was comparable between levocetirizine, 2.5 microM, and cetirizine, 5 microM, as well as levocetirizine, 5 microM, and cetirizine, 10 microM. Moreover, levocetirizine, 5 microM, was better than cetirizine, 5 microM, on suppressing IL-8 secretion, but such a difference did not appear in other conditions. Our results suggest that cetirizine and levocetirizine at higher concentrations can reduce the release of GM-CSF and IL-8 from A549 cells stimulated with IL-1beta. These observations indicate that the two second-generation antihistamines may exert anti-inflammatory effects beyond histamine H(1)-receptor antagonist, and levocetirizine plays a major role in terms of this activity.

  16. Stimulation by menthol of Cl secretion via a Ca(2+)-dependent mechanism in canine airway epithelium.

    PubMed Central

    Chiyotani, A.; Tamaoki, J.; Takeuchi, S.; Kondo, M.; Isono, K.; Konno, K.

    1994-01-01

    1. To investigate the effect of menthol on airway epithelial ion transport function, we studied the bioelectrical properties of canine cultured tracheal epithelium by Ussing's short-circuit technique in vitro. 2. Addition of menthol (10(-3) M) to the mucosal but not the submucosal solution increased the short-circuit current (Isc) from 6.2 +/- 0.9 to 14.0 +/- 2.2 microA cm-2 (P < 0.001), and this effect was accompanied by increases in transepithelial potential difference and conductance. The response was dose-dependent, with the maximal increase from the baseline value and the concentration required to produce a half-maximal effect (EC50) being 6.4 +/- 0.9 microA cm-2 (P < 0.001) and 40 microM, respectively. 3. Other cyclic alcohols, including menthone and cyclohexanol, had no effect on the electrical properties. 4. The menthol-induced increase in Isc was not altered by pretreatment of the cells with amiloride, indomethacin, or propranolol but was abolished by diphenylamine-2-carboxylate, furosemide or substitution of Cl with iodide in the medium. 5. Menthol (10(-3) M) increased cytosolic levels of free calcium ([Ca2+]i) from 98 +/- 12 to 340 +/- 49 nM (P < 0.01) in fura-2-loaded tracheal epithelium but did not affect the intracellular adenosine 3',5'-cyclic monophosphate content. 6. These results suggest that menthol stimulates Cl secretion across airway epithelium, probably through a Ca(2+)-dependent mechanism, and might thus influence mucociliary transport in the respiratory tract. PMID:8075875

  17. Airway Hyperresponsiveness in Asthma Model Occurs Independently of Secretion of β1 Integrins in Airway Wall and Focal Adhesions Proteins Down Regulation.

    PubMed

    Álvarez-Santos, Mayra; Carbajal, Verónica; Tellez-Jiménez, Olivia; Martínez-Cordero, Erasmo; Ruiz, Victor; Hernández-Pando, Rogelio; Lascurain, Ricardo; Santibañez-Salgado, Alfredo; Bazan-Perkins, Blanca

    2016-10-01

    The extracellular domains of some membrane proteins can be shed from the cell. A similar phenomenon occurs with β1 integrins (α1β1 and α2β1) in guinea pig. The putative role of β1 integrin subunit alterations due to shedding in airway smooth muscle (ASM) in an allergic asthma model was evaluated. Guinea pigs were sensitized and challenged with antigen. Antigenic challenges induced bronchoobstruction and hyperresponsiveness at the third antigenic challenge. Immunohistochemistry and immunoelectronmicroscopy studies showed that the cytosolic and extracellular domains of the β1 integrin subunit shared the same distribution in airway structures in both groups. Various polypeptides with similar molecular weights were detected with both the cytosolic and extracellular β1 integrin subunit antibodies in isolated airway myocytes and the connective tissue that surrounds the ASM bundle. Flow cytometry and Western blot studies showed that the expression of cytosolic and extracellular β1 integrin subunit domains in ASM was similar between groups. An increment of ITGB1 mRNA in ASM was observed in the asthma model group. RACE-PCR of ITGB1 in ASM did not show splicing variants. The expression levels of integrin-linked kinase (ILK) and paxillin diminished in the asthma model, but not talin. The levels of phosphorylation of myosin phosphatase target subunit 1 (MYPT1) at Thr(696) increased in asthma model. Our work suggests that β1 integrin is secreted in guinea pig airway wall. This secretion is not altered in asthma model; nevertheless, β1 integrin cytodomain assembly proteins in focal cell adhesions in which ILK and paxillin are involved are altered in asthma model. J. Cell. Biochem. 117: 2385-2396, 2016. © 2016 Wiley Periodicals, Inc.

  18. The Role of Bacterial Secretion Systems in the Virulence of Gram-Negative Airway Pathogens Associated with Cystic Fibrosis

    PubMed Central

    Depluverez, Sofie; Devos, Simon; Devreese, Bart

    2016-01-01

    Cystic fibrosis (CF) is the most common lethal inherited disorder in Caucasians. It is caused by mutation of the CF transmembrane conductance regulator (CFTR) gene. A defect in the CFTR ion channel causes a dramatic change in the composition of the airway surface fluid, leading to a highly viscous mucus layer. In healthy individuals, the majority of bacteria trapped in the mucus layer are removed and destroyed by mucociliary clearance. However, in the lungs of patients with CF, the mucociliary clearance is impaired due to dehydration of the airway surface fluid. As a consequence, patients with CF are highly susceptible to chronic or intermittent pulmonary infections, often causing extensive lung inflammation and damage, accompanied by a decreased life expectancy. This mini review will focus on the different secretion mechanisms used by the major bacterial CF pathogens to release virulence factors, their role in resistance and discusses the potential for therapeutically targeting secretion systems. PMID:27625638

  19. Bile acids stimulate chloride secretion through CFTR and calcium-activated Cl- channels in Calu-3 airway epithelial cells.

    PubMed

    Hendrick, Siobhán M; Mroz, Magdalena S; Greene, Catherine M; Keely, Stephen J; Harvey, Brian J

    2014-09-01

    Bile acids resulting from the aspiration of gastroesophageal refluxate are often present in the lower airways of people with cystic fibrosis and other respiratory distress diseases. Surprisingly, there is little or no information on the modulation of airway epithelial ion transport by bile acids. The secretory effect of a variety of conjugated and unconjugated secondary bile acids was investigated in Calu-3 airway epithelial cells grown under an air-liquid interface and mounted in Ussing chambers. Electrogenic transepithelial ion transport was measured as short-circuit current (Isc). The taurine-conjugated secondary bile acid, taurodeoxycholic acid (TDCA), was found to be the most potent modulator of basal ion transport. Acute treatment (5 min) of Calu-3 cells with TDCA (25 μM) on the basolateral side caused a stimulation of Isc, and removal of extracellular Cl(-) abolished this response. TDCA produced an increase in the cystic fibrosis transmembrane conductance regulator (CFTR)-dependent current that was abolished by pretreatment with the CFTR inhibitor CFTRinh172. TDCA treatment also increased Cl(-) secretion through calcium-activated chloride (CaCC) channels and increased the Na(+)/K(+) pump current. Acute treatment with TDCA resulted in a rapid cellular influx of Ca(2+) and increased cAMP levels in Calu-3 cells. Bile acid receptor-selective activation with INT-777 revealed TGR5 localized at the basolateral membrane as the receptor involved in TDCA-induced Cl(-) secretion. In summary, we demonstrate for the first time that low concentrations of bile acids can modulate Cl(-) secretion in airway epithelial cells, and this effect is dependent on both the duration and sidedness of exposure to the bile acid.

  20. Lessons learned from a randomized trial of airway secretion clearance techniques in cystic fibrosis

    PubMed Central

    Sontag, Marci K.; Quittner, Alexandra L.; Modi, Avani C.; Koenig, Joni M.; Giles, Don; Oermann, Christopher M.; Konstan, Michael W.; Castile, Robert; Accurso, Frank J.

    2014-01-01

    Rationale Airway secretion clearance therapies are a cornerstone of cystic fibrosis care, however longitudinal comparative studies are rare. Our objectives were to compare three therapies [postural drainage and percussion: (postural drainage), flutter device, and high frequency chest wall oscillation: (vest)], by studying 1) change in pulmonary function; 2) time to need for IV antibiotics, 3) use of pulmonary therapies, 4) adherence to treatment, 5) treatment satisfaction, and 6) quality of life. Methods Participants were randomly assigned to one of three therapies twice daily. Clinical outcomes were assessed quarterly over 3 years. Results Enrollment goals were not met, and withdrawal rates were high, especially in postural drainage (51%) and flutter device (26%), compared to vest (9%), resulting in early termination. FEV1 decline, time to need IV antibiotics, and other pulmonary therapies were not different. The annual FEF25–75% predicted rate of decline was greater in those using vest (p=0.02). Adherence was not significantly different (p=0.09). Overall treatment satisfaction was higher in vest and flutter device than in postural drainage (p<0.05). Health-related quality of life was not different. The rate of FEV1 decline was 1.23% predicted/year. Conclusions The study was ended early due to dropout and smaller than expected decline in FEV1. Patients were more satisfied with vest and flutter device. The longitudinal decline in FEF25–75% was faster in vest; we found no other difference in lung function decline, taken together this warrants further study. The slow decline in FEV1 illustrates the difficulty with FEV1 decline as a clinical trial outcome. PMID:20146387

  1. Bicarbonate-dependent chloride transport drives fluid secretion by the human airway epithelial cell line Calu-3

    PubMed Central

    Shan, Jiajie; Liao, Jie; Huang, Junwei; Robert, Renaud; Palmer, Melissa L; Fahrenkrug, Scott C; O'Grady, Scott M; Hanrahan, John W

    2012-01-01

    Anion and fluid secretion are both defective in cystic fibrosis (CF); however, the transport mechanisms are not well understood. In this study, Cl− and HCO3− secretion was measured using genetically matched CF transmembrane conductance regulator (CFTR)-deficient and CFTR-expressing cell lines derived from the human airway epithelial cell line Calu-3. Forskolin stimulated the short-circuit current (Isc) across voltage-clamped monolayers, and also increased the equivalent short-circuit current (Ieq) calculated under open-circuit conditions. Isc was equivalent to the HCO3− net flux measured using the pH-stat technique, whereas Ieq was the sum of the Cl− and HCO3− net fluxes. Ieq and HCO3− fluxes were increased by bafilomycin and ZnCl2, suggesting that some secreted HCO3− is neutralized by parallel electrogenic H+ secretion. Ieq and fluid secretion were dependent on the presence of both Na+ and HCO3−. The carbonic anhydrase inhibitor acetazolamide abolished forskolin stimulation of Ieq and HCO3− secretion, suggesting that HCO3− transport under these conditions requires catalysed synthesis of carbonic acid. Cl− was the predominant anion in secretions under all conditions studied and thus drives most of the fluid transport. Nevertheless, 50–70% of Cl− and fluid transport was bumetanide-insensitive, suggesting basolateral Cl− loading by a sodium–potassium–chloride cotransporter 1 (NKCC1)-independent mechanism. Imposing a transepithelial HCO3− gradient across basolaterally permeabilized Calu-3 cells sustained a forskolin-stimulated current, which was sensitive to CFTR inhibitors and drastically reduced in CFTR-deficient cells. Net HCO3− secretion was increased by bilateral Cl− removal and therefore did not require apical Cl−/HCO3− exchange. The results suggest a model in which most HCO3− is recycled basolaterally by exchange with Cl−, and the resulting HCO3−-dependent Cl− transport provides an osmotic driving force for

  2. Mucin Binding Reduces Colistin Antimicrobial Activity

    PubMed Central

    Huang, Johnny X.; Blaskovich, Mark A. T.; Pelingon, Ruby; Ramu, Soumya; Kavanagh, Angela; Elliott, Alysha G.; Butler, Mark S.

    2015-01-01

    Colistin has found increasing use in treating drug-resistant bacterial lung infections, but potential interactions with pulmonary biomolecules have not been investigated. We postulated that colistin, like aminoglycoside antibiotics, may bind to secretory mucin in sputum or epithelial mucin that lines airways, reducing free drug levels. To test this hypothesis, we measured binding of colistin and other antibiotics to porcine mucin, a family of densely glycosylated proteins used as a surrogate for human sputum and airway mucin. Antibiotics were incubated in dialysis tubing with or without mucin, and concentrations of unbound antibiotics able to penetrate the dialysis tubing were measured over time using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The percentage of antibiotic measured in the dialysate after 4 h in the presence of mucin, relative to the amount without mucin, was 15% for colistin, 16% for polymyxin B, 19% for tobramycin, 52% for ciprofloxacin, and 78% for daptomycin. Antibiotics with the strongest mucin binding had an overall polybasic positive charge, whereas those with comparatively little binding were less basic. When comparing MICs measured with or without added mucin, colistin and polymyxin B showed >100-fold increases in MICs for multiple Gram-negative bacteria. Preclinical evaluation of mucin binding should become a standard procedure when considering the potential pulmonary use of new or existing antibiotics, particularly those with a polybasic overall charge. In the airways, mucin binding may reduce the antibacterial efficacy of inhaled or intravenously administered colistin, and the presence of sub-MIC effective antibiotic concentrations could result in the development of antibiotic resistance. PMID:26169405

  3. Mucin Binding Reduces Colistin Antimicrobial Activity.

    PubMed

    Huang, Johnny X; Blaskovich, Mark A T; Pelingon, Ruby; Ramu, Soumya; Kavanagh, Angela; Elliott, Alysha G; Butler, Mark S; Montgomery, A Bruce; Cooper, Matthew A

    2015-10-01

    Colistin has found increasing use in treating drug-resistant bacterial lung infections, but potential interactions with pulmonary biomolecules have not been investigated. We postulated that colistin, like aminoglycoside antibiotics, may bind to secretory mucin in sputum or epithelial mucin that lines airways, reducing free drug levels. To test this hypothesis, we measured binding of colistin and other antibiotics to porcine mucin, a family of densely glycosylated proteins used as a surrogate for human sputum and airway mucin. Antibiotics were incubated in dialysis tubing with or without mucin, and concentrations of unbound antibiotics able to penetrate the dialysis tubing were measured over time using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The percentage of antibiotic measured in the dialysate after 4 h in the presence of mucin, relative to the amount without mucin, was 15% for colistin, 16% for polymyxin B, 19% for tobramycin, 52% for ciprofloxacin, and 78% for daptomycin. Antibiotics with the strongest mucin binding had an overall polybasic positive charge, whereas those with comparatively little binding were less basic. When comparing MICs measured with or without added mucin, colistin and polymyxin B showed >100-fold increases in MICs for multiple Gram-negative bacteria. Preclinical evaluation of mucin binding should become a standard procedure when considering the potential pulmonary use of new or existing antibiotics, particularly those with a polybasic overall charge. In the airways, mucin binding may reduce the antibacterial efficacy of inhaled or intravenously administered colistin, and the presence of sub-MIC effective antibiotic concentrations could result in the development of antibiotic resistance.

  4. The role of airway mucus in pulmonary toxicology.

    PubMed Central

    Samet, J M; Cheng, P W

    1994-01-01

    Airway mucus is a complex airway secretion whose primary function as part of the mucociliary transport mechanism is to to serve as renewable and transportable barrier against inhaled particulates and toxic agents. The rheologic properties necessary for this function are imparted by glycoproteins, or mucins. Some respiratory disease states, e.g., asthma, cystic fibrosis, and bronchitis, are characterized by quantitative and qualitative changes in mucus biosynthesis that contribute to pulmonary pathology. Similar alterations in various aspects of mucin biochemistry and biophysics, leading to mucus hypersecretion and altered mucus rheology, result from inhalation of certain air pollutants, such as ozone, sulfur dioxide, nitrogen dioxide, and cigarette smoke. The consequences of these pollutant-induced alterations in mucus biology are discussed in the context of pulmonary pathophysiology and toxicology. PMID:7925190

  5. Role of anion exchangers in Cl- and HCO3- secretion by the human airway epithelial cell line Calu-3.

    PubMed

    Kim, Dusik; Kim, Juyeon; Burghardt, Beáta; Best, Len; Steward, Martin C

    2014-07-15

    Despite the importance of airway surface liquid pH in the lung's defenses against infection, the mechanism of airway HCO3- secretion remains unclear. Our aim was to assess the contribution of apical and basolateral Cl-/HCO3- exchangers to Cl- and HCO3- transport in the Calu-3 cell line, derived from human airway submucosal glands. Changes in intracellular pH (pHi) were measured following substitution of Cl- with gluconate. Apical Cl- substitution led to an alkalinization in forskolin-stimulated cells, indicative of Cl-/HCO3- exchange. This was unaffected by the anion exchange inhibitor DIDS but inhibited by the CFTR blocker CFTRinh-172, suggesting that the HCO3- influx might occur via CFTR, rather than a solute carrier family 26 (SLC26) exchanger, as recently proposed. The anion selectivity of the recovery process more closely resembled that of CFTR than an SLC26 exchanger, and quantitative RT-PCR showed only low levels of SLC26 exchanger transcripts relative to CFTR and anion exchanger 2 (AE2). For pHi to rise to observed values (∼7.8) through HCO3- entry via CFTR, the apical membrane potential must reverse to at least +20 mV following Cl- substitution; this was confirmed by perforated-patch recordings. Substitution of basolateral Cl- evoked a DIDS-sensitive alkalinization, attributed to Cl-/HCO3- exchange via AE2. This appeared to be abolished in forskolin-stimulated cells but was unmasked by blocking apical efflux of HCO3- via CFTR. We conclude that Calu-3 cells secrete HCO3- predominantly via CFTR, and, contrary to previous reports, the basolateral anion exchanger AE2 remains active during stimulation, providing an important pathway for basolateral Cl- uptake.

  6. Temporal and spatial expression of Muc2 and Muc5ac mucins during rat respiratory and digestive tracts development.

    PubMed

    Ferretti, V A; Segal-Eiras, A; Barbeito, C G; Croce, M V

    2016-02-01

    Secreted mucins constitute a crucial part of the gel that protects respiratory and digestive epithelia, being MUC2/Muc2 the predominant gel-forming mucin of the intestine while MUC5AC/Muc5ac is one of the gel-forming mucins most expressed at the airways. In this study, we have analyzed Muc2 and Muc5ac during rat development by using immunohistochemistry, Western blotting and RT-PCR. We demonstrated that rat Muc2 was expressed in fetal intestinal goblet cells of surface epithelium of villi and developing Lieberkühn crypts. In neonates and adults, Muc2 was expressed at luminal goblet cells of small and large intestine and at gastric mucous and glandular cells. Muc5ac protein was observed in embryonic gastric and lung samples; expression increased during development and postnatal and adult life. After birth, a low reaction was detected at the tracheal surface epithelium and glands, which increased in adults.

  7. IL-1ra Secreted by ATP-Induced P2Y2 Negatively Regulates MUC5AC Overproduction via PLCβ3 during Airway Inflammation.

    PubMed

    Jeong, Jee-Yeong; Kim, Jiwook; Kim, Bokyoum; Kim, Joowon; Shin, Yusom; Kim, Judeok; Ryu, Siejeong; Yang, Yu-Mi; Song, Kyoung Seob

    2016-01-01

    Mucus secretion is often uncontrolled in many airway inflammatory diseases of humans. Identifying the regulatory pathway(s) of mucus gene expression, mucus overproduction, and hypersecretion is important to alleviate airway inflammation in these diseases. However, the regulatory signaling pathway controlling mucus overproduction has not been fully identified yet. In this study, we report that the ATP/P2Y2 complex secretes many cytokines and chemokines to regulate airway inflammation, among which IL-1 receptor antagonist (IL-1ra) downregulates MUC5AC gene expression via the inhibition of Gαq-induced Ca(2+) signaling. IL-1ra inhibited IL-1α protein expression and secretion, and vice versa. Interestingly, ATP/P2Y2-induced IL-1ra and IL-1α secretion were both mediated by PLCβ3. A dominant-negative mutation in the PDZ-binding domain of PLCβ3 inhibited ATP/P2Y2-induced IL-1ra and IL-1α secretion. IL-1α in the presence of the ATP/P2Y2 complex activated the ERK1/2 pathway in a greater degree and for a longer duration than the ATP/P2Y2 complex itself, which was dramatically inhibited by IL-1ra. These findings suggest that secreted IL-1ra exhibits a regulatory effect on ATP/P2Y2-induced MUC5AC gene expression, through inhibition of IL-1α secretion, to maintain the mucus homeostasis in the airway. Therefore, IL-1ra could be an excellent modality for regulating inflamed airway microenvironments in respiratory diseases.

  8. Airway Epithelium Interactions with Aeroallergens: Role of Secreted Cytokines and Chemokines in Innate Immunity

    PubMed Central

    Gandhi, Vivek D.; Vliagoftis, Harissios

    2015-01-01

    Airway epithelial cells are the first line of defense against the constituents of the inhaled air, which include allergens, pathogens, pollutants, and toxic compounds. The epithelium not only prevents the penetration of these foreign substances into the interstitium, but also senses their presence and informs the organism’s immune system of the impending assault. The epithelium accomplishes the latter through the release of inflammatory cytokines and chemokines that recruit and activate innate immune cells at the site of assault. These epithelial responses aim to eliminate the inhaled foreign substances and minimize their detrimental effects to the organism. Quite frequently, however, the innate immune responses of the epithelium to inhaled substances lead to chronic and high level release of pro-inflammatory mediators that may mediate the lung pathology seen in asthma. The interactions of airway epithelial cells with allergens will be discussed with particular focus on interactions-mediated epithelial release of cytokines and chemokines and their role in the immune response. As pollutants are other major constituents of inhaled air, we will also discuss how pollutants may alter the responses of airway epithelial cells to allergens. PMID:25883597

  9. Eosinophil cationic protein stimulates and major basic protein inhibits airway mucus secretion.

    PubMed

    Lundgren, J D; Davey, R T; Lundgren, B; Mullol, J; Marom, Z; Logun, C; Baraniuk, J; Kaliner, M A; Shelhamer, J H

    1991-03-01

    Possible roles of eosinophil (EO) products in modulating the release of mucus from airway explants were investigated. Cell- and membrane-free lysates from purified human EOs (1 to 20 x 10(5)) caused a dose-dependent release of respiratory glycoconjugates (RGC) from cultured feline tracheal explants. Crude extracts from isolated EO granules also stimulated RGC release, suggesting that a granular protein might be responsible. Three proteins derived from EO granules, EO-derived neurotoxin, EO cationic protein (ECP), and major basic protein (MBP) were separated by sequential sizing and affinity chromatography. ECP (0.025 to 25 micrograms/ml) caused a dose-dependent increase in RGC release from both feline and human airway explants and also stimulated the release of the serous cell-marker, lactoferrin, from human bronchial explants. EO-derived neurotoxin (0.025 to 50 micrograms/ml) failed to affect RGC release, whereas MBP (50 micrograms/ml) significantly inhibited RGC release from feline explants. Thus, ECP stimulates RGC and lactoferrin release from airway explants, whereas MBP inhibits RGC release.

  10. Hyperglycaemia and Pseudomonas aeruginosa acidify cystic fibrosis airway surface liquid by elevating epithelial monocarboxylate transporter 2 dependent lactate-H+ secretion

    PubMed Central

    Garnett, James Peter; Kalsi, Kameljit K.; Sobotta, Mirko; Bearham, Jade; Carr, Georgina; Powell, Jason; Brodlie, Malcolm; Ward, Christopher; Tarran, Robert; Baines, Deborah L.

    2016-01-01

    The cystic fibrosis (CF) airway surface liquid (ASL) provides a nutrient rich environment for bacterial growth including elevated glucose, which together with defective bacterial killing due to aberrant HCO3− transport and acidic ASL, make the CF airways susceptible to colonisation by respiratory pathogens such as Pseudomonas aeruginosa. Approximately half of adults with CF have CF related diabetes (CFRD) and this is associated with increased respiratory decline. CF ASL contains elevated lactate concentrations and hyperglycaemia can also increase ASL lactate. We show that primary human bronchial epithelial (HBE) cells secrete lactate into ASL, which is elevated in hyperglycaemia. This leads to ASL acidification in CFHBE, which could only be mimicked in non-CF HBE following HCO3− removal. Hyperglycaemia-induced changes in ASL lactate and pH were exacerbated by the presence of P. aeruginosa and were attenuated by inhibition of monocarboxylate lactate-H+ co-transporters (MCTs) with AR-C155858. We conclude that hyperglycaemia and P. aeruginosa induce a metabolic shift which increases lactate generation and efflux into ASL via epithelial MCT2 transporters. Normal airways compensate for MCT-driven H+ secretion by secreting HCO3−, a process which is dysfunctional in CF airway epithelium leading to ASL acidification and that these processes may contribute to worsening respiratory disease in CFRD. PMID:27897253

  11. Hyperglycaemia and Pseudomonas aeruginosa acidify cystic fibrosis airway surface liquid by elevating epithelial monocarboxylate transporter 2 dependent lactate-H(+) secretion.

    PubMed

    Garnett, James Peter; Kalsi, Kameljit K; Sobotta, Mirko; Bearham, Jade; Carr, Georgina; Powell, Jason; Brodlie, Malcolm; Ward, Christopher; Tarran, Robert; Baines, Deborah L

    2016-11-29

    The cystic fibrosis (CF) airway surface liquid (ASL) provides a nutrient rich environment for bacterial growth including elevated glucose, which together with defective bacterial killing due to aberrant HCO3(-) transport and acidic ASL, make the CF airways susceptible to colonisation by respiratory pathogens such as Pseudomonas aeruginosa. Approximately half of adults with CF have CF related diabetes (CFRD) and this is associated with increased respiratory decline. CF ASL contains elevated lactate concentrations and hyperglycaemia can also increase ASL lactate. We show that primary human bronchial epithelial (HBE) cells secrete lactate into ASL, which is elevated in hyperglycaemia. This leads to ASL acidification in CFHBE, which could only be mimicked in non-CF HBE following HCO3(-) removal. Hyperglycaemia-induced changes in ASL lactate and pH were exacerbated by the presence of P. aeruginosa and were attenuated by inhibition of monocarboxylate lactate-H(+) co-transporters (MCTs) with AR-C155858. We conclude that hyperglycaemia and P. aeruginosa induce a metabolic shift which increases lactate generation and efflux into ASL via epithelial MCT2 transporters. Normal airways compensate for MCT-driven H(+) secretion by secreting HCO3(-), a process which is dysfunctional in CF airway epithelium leading to ASL acidification and that these processes may contribute to worsening respiratory disease in CFRD.

  12. Hypercapnia modulates cAMP signalling and cystic fibrosis transmembrane conductance regulator‐dependent anion and fluid secretion in airway epithelia

    PubMed Central

    Turner, Mark J.; Saint‐Criq, Vinciane; Patel, Waseema; Ibrahim, Salam H.; Verdon, Bernard; Ward, Christopher; Garnett, James P.; Tarran, Robert; Cann, Martin J.

    2015-01-01

    Key points Raised arterial blood CO2 (hypercapnia) is a feature of many lung diseases.CO2 has been shown to act as a cell signalling molecule in human cells, notably by influencing the levels of cell signalling second messengers: cAMP and Ca2+.Hypercapnia reduced cAMP‐stimulated cystic fibrosis transmembrane conductance regulator‐dependent anion and fluid transport in Calu‐3 cells and primary human airway epithelia but did not affect cAMP‐regulated HCO3 − transport via pendrin or Na+/HCO3 − cotransporters.These results further support the role of CO2 as a cell signalling molecule and suggests CO2‐induced reductions in airway anion and fluid transport may impair innate defence mechanisms of the lungs. Abstract Hypercapnia is clinically defined as an arterial blood partial pressure of CO2 of above 40 mmHg and is a feature of chronic lung disease. In previous studies we have demonstrated that hypercapnia modulates agonist‐stimulated cAMP levels through effects on transmembrane adenylyl cyclase activity. In the airways, cAMP is known to regulate cystic fibrosis transmembrane conductance regulator (CFTR)‐mediated anion and fluid secretion, which contributes to airway surface liquid homeostasis. The aim of the current work was to investigate if hypercapnia could modulate cAMP‐regulated ion and fluid transport in human airway epithelial cells. We found that acute exposure to hypercapnia significantly reduced forskolin‐stimulated elevations in intracellular cAMP as well as both adenosine‐ and forskolin‐stimulated increases in CFTR‐dependent transepithelial short‐circuit current, in polarised cultures of Calu‐3 human airway cells. This CO2‐induced reduction in anion secretion was not due to a decrease in HCO3 − transport given that neither a change in CFTR‐dependent HCO3 − efflux nor Na+/HCO3 − cotransporter‐dependent HCO3 − influx were CO2‐sensitive. Hypercapnia also reduced the volume of forskolin‐stimulated fluid

  13. Mucins and inflammatory bowel disease

    PubMed Central

    Shirazi, T.; Longman, R.; Corfield, A.; Probert, C.

    2000-01-01

    There is a layer of mucus lining the gastrointestinal tract, which acts as both a lubricant and as a physical barrier between luminal contents and the mucosal surface. The mucins that make up this layer consist of a protein backbone with oligosaccharides attached to specific areas of the protein core. These areas are called the variable number tandem repeat regions. The degree of glycosylation of the mucins is central to their role in the mucus barrier. The oligosaccharides are variable and complex. It has been demonstrated that the degree of sulphation and sialylation and the length of the oligosaccharide chains all vary in inflammatory bowel disease. These changes can alter the function of the mucins. Mucins are broadly divided into two groups, those that are secreted and those that are membrane bound. The major mucins present in the colorectum are MUC1, MUC2, MUC3, and MUC4.
Trefoils are a group of small peptides that have an important role in the mucus layer. Three trefoils have been demonstrated so far. They seem to play a part in mucosal protection and in mucosal repair. They may help to stabilise the mucus layer by cross linking with mucins to aid formation of stable gels. Trefoils can be expressed in the ulcer associated cell lineage, a glandular structure that can occur in the inflamed mucosa. There seem to be differences in the expression of trefoils in the colon and the small bowel, which may imply different method of mucosal repair.


Keywords: mucins; trefoil; Crohn's disease; colitis PMID:10908374

  14. The chitinase-like protein YKL-40 increases mucin5AC production in human bronchial epithelial cells

    SciTech Connect

    Liu, Chunyi; Li, Qi; Zhou, Xiangdong; Kolosov, Victor P.; Perelman, Juliy M.

    2013-11-01

    Mucus overproduction is an important feature in patients with chronic inflammatory airway diseases. However, the regulatory mechanisms that mediate excessive mucin production remain elusive. Recently, the level of YKL-40, a chitinase-like protein, has been found to be significantly increased in chronic inflammatory airway diseases and has been shown to be associated with the severity of these diseases. In this study, we sought to explore the effect of YKL-40 on mucin5AC (MUC5AC) production in chronic inflammatory airway diseases and the potential signaling pathways involved in this process. We found that elevated YKL-40 levels increased the mRNA and protein expression of MUC5AC in a dose- and time-dependent manner, in association with the phosphorylation of extracellular signal-regulated kinase (ERK) and nuclear factor κB (NF-κB), reflecting their activation. These responses were significantly suppressed by the knockdown of protease-activating receptor 2 (PAR2) with specific small interfering RNA or the inhibitors of ERK and NF-κB. YKL-40-induced MUC5AC overproduction was also effectively attenuated by the inhibitor of focal adhesion kinase (FAK). Taken together, these results imply that YKL-40 can stimulate excessive MUC5AC production through PAR2- and FAK-mediated mechanisms. - Highlights: • MUC5AC is the major secreted mucin in chronic inflammatory airway diseases. • YKL-40 is a prototype of the chitinase-like protein in mammals. • YKL-40 is an active player in chronic inflammatory airway diseases. • YKL-40 can increase MUC5AC production via PAR2-mediated pathway. • FAK is another candidate to mediate YKL-40-induced MUC5AC overexpression.

  15. Pseudomonas aeruginosa Homoserine Lactone Activates Store-operated cAMP and Cystic Fibrosis Transmembrane Regulator-dependent Cl− Secretion by Human Airway Epithelia*

    PubMed Central

    Schwarzer, Christian; Wong, Steven; Shi, James; Matthes, Elizabeth; Illek, Beate; Ianowski, Juan P.; Arant, Ryan J.; Isacoff, Ehud; Vais, Horia; Foskett, J. Kevin; Maiellaro, Isabella; Hofer, Aldebaran M.; Machen, Terry E.

    2010-01-01

    The ubiquitous bacterium Pseudomonas aeruginosa frequently causes hospital-acquired infections. P. aeruginosa also infects the lungs of cystic fibrosis (CF) patients and secretes N-(3-oxo-dodecanoyl)-S-homoserine lactone (3O-C12) to regulate bacterial gene expression critical for P. aeruginosa persistence. In addition to its effects as a quorum-sensing gene regulator in P. aeruginosa, 3O-C12 elicits cross-kingdom effects on host cell signaling leading to both pro- or anti-inflammatory effects. We find that in addition to these slow effects mediated through changes in gene expression, 3O-C12 also rapidly increases Cl− and fluid secretion in the cystic fibrosis transmembrane regulator (CFTR)-expressing airway epithelia. 3O-C12 does not stimulate Cl− secretion in CF cells, suggesting that lactone activates the CFTR. 3O-C12 also appears to directly activate the inositol trisphosphate receptor and release Ca2+ from the endoplasmic reticulum (ER), lowering [Ca2+] in the ER and thereby activating the Ca2+-sensitive ER signaling protein STIM1. 3O-C12 increases cytosolic [Ca2+] and, strikingly, also cytosolic [cAMP], the known activator of CFTR. Activation of Cl− current by 3O-C12 was inhibited by a cAMP antagonist and increased by a phosphodiesterase inhibitor. Finally, a Ca2+ buffer that lowers [Ca2+] in the ER similar to the effect of 3O-C12 also increased cAMP and ICl. The results suggest that 3O-C12 stimulates CFTR-dependent Cl− and fluid secretion in airway epithelial cells by activating the inositol trisphosphate receptor, thus lowering [Ca2+] in the ER and activating STIM1 and store-operated cAMP production. In CF airways, where CFTR is absent, the adaptive ability to rapidly flush the bacteria away is compromised because the lactone cannot affect Cl− and fluid secretion. PMID:20739289

  16. Basolateral chloride loading by the anion exchanger type 2: role in fluid secretion by the human airway epithelial cell line Calu-3

    PubMed Central

    Huang, Junwei; Shan, Jiajie; Kim, Dusik; Liao, Jie; Evagelidis, Alexandra; Alper, Seth L; Hanrahan, John W

    2012-01-01

    Anion exchanger type 2 (AE2 or SLC4A2) is an electroneutral Cl−/HCO3− exchanger expressed at the basolateral membrane of many epithelia. It is thought to participate in fluid secretion by airway epithelia. However, the role of AE2 in fluid secretion remains uncertain, due to the lack of specific pharmacological inhibitors, and because it is electrically silent and therefore does not contribute directly to short-circuit current (Isc). We have studied the role of AE2 in Cl− and fluid secretion by the airway epithelial cell line Calu-3. After confirming expression of its mRNA and protein, a knock-down cell line called AE2-KD was generated by lentivirus-mediated RNA interference in which AE2 mRNA and protein levels were reduced ≥90%. Suppressing AE2 increased the expression of the cystic fibrosis transmembrane conductance regulator (CFTR) by ∼70% without affecting the levels of NKCC1 (Na+–K+–2Cl− cotransporter) or NBCe1 (Na+–nHCO3− cotransporter). cAMP agonists stimulated fluid secretion by parental Calu-3 and scrambled shRNA cells >6.5-fold. In AE2-KD cells this response was reduced by ∼70%, and the secreted fluid exhibited elevated pH and [HCO3−] as compared with the control lines. Unstimulated equivalent short-circuit current (Ieq) was elevated in AE2-KD cells, but the incremental response to forskolin was unaffected. The modest bumetanide-induced reductions in both Ieq and fluid secretion were more pronounced in AE2-KD cells. Basolateral Cl−/HCO3− exchange measured by basolateral pH-stat in cells with permeabilized apical membranes was abolished in AE2-KD monolayers, and the intracellular alkalinization resulting from basolateral Cl− removal was reduced by ∼80% in AE2-KD cells. These results identify AE2 as a major pathway for basolateral Cl− loading during cAMP-stimulated secretion of Cl− and fluid by Calu-3 cells, and help explain the large bumetanide-insensitive component of fluid secretion reported previously in airway

  17. Mucins in contact lens wear and dry eye conditions.

    PubMed

    Ramamoorthy, Padmapriya; Nichols, Jason J

    2008-08-01

    Ocular mucins are thought to play integral roles in ocular surface lubrication, anchoring of the aqueous, stabilizing the lipid components of the tear film, eliminating foreign bodies and pathogens, and with potential involvement in cell cycle mediation and apoptotic activity of ocular surface epithelia. Ocular mucins are of secreted and membrane-associated types. Secreted mucins may be of large gel-forming type or small soluble mucins (e.g., MUC5AC and MUC7). Membrane-associated mucins such as MUCs 1 and 4 are a major component of the glycocalyx. They are thought to render structural support to the microplicae and mediate epithelial cell cycle and apoptotic activity. The alterations in ocular mucins with contact lens wear are unclear. Recent work shows mucin expression may be up-regulated during the early years of contact lens wear, and with long-term lens wear, mucin expression may return to normal levels or sub-normal levels, although this is not well understood. Further, the polar nature of mucins may be associated with their affinity for contact lens surfaces making them a component of contact lens deposition. This has potential implications in the wettability and tolerability of contact lenses, and may be impacted by surface coatings, polymer characteristics, or care solutions. Conjunctival mucin gene expression and secretion may be deficient in several ocular surface disorders associated with dry eye. Deficiency and alterations in glycosylation characteristics of MUC5AC and MUC2 have been reported in both Sjögren and non-Sjögren dry eye types. Decreased binding of the membrane-associated mucin MUC16 to the conjunctival epithelium has been reported in Sjögren dry eye while MUC1 alterations have been reported in Sjögren and non-Sjögren dry eye states. In view of the mucin involvement in dry eye conditions, stimulation of mucus secretion pathways may hold promise in the pharmaceutical treatment of dry eye.

  18. Airway Hydration and COPD

    PubMed Central

    Ghosh, Arunava; Boucher, R.C.; Tarran, Robert

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the prevalent causes of worldwide mortality and encompasses two major clinical phenotypes, i.e., chronic bronchitis (CB) and emphysema. The most common cause of COPD is chronic tobacco inhalation. Research focused on the chronic bronchitic phenotype of COPD has identified several pathological processes that drive disease initiation and progression. For example, the lung’s mucociliary clearance (MCC) system performs the critical task of clearing inhaled pathogens and toxic materials from the lung. MCC efficiency is dependent on: (i) the ability of apical plasma membrane ion channels such as the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial Na+ channel (ENaC) to maintain airway hydration; (ii) ciliary beating; and, (iii) appropriate rates of mucin secretion. Each of these components is impaired in CB and likely contributes to the mucus stasis/accumulation seen in CB patients. This review highlights the cellular components responsible for maintaining MCC and how this process is disrupted following tobacco exposure and with CB. We shall also discuss existing therapeutic strategies for the treatment of chronic bronchitis and how components of the MCC can be used as biomarkers for the evaluation of tobacco or tobacco-like-product exposure. PMID:26068443

  19. Characterization of the human mucin gene MUC5AC: a consensus cysteine-rich domain for 11p15 mucin genes?

    PubMed Central

    Guyonnet Duperat, V; Audie, J P; Debailleul, V; Laine, A; Buisine, M P; Galiegue-Zouitina, S; Pigny, P; Degand, P; Aubert, J P; Porchet, N

    1995-01-01

    To date five human mucin cDNAs (MUC2, 5A, 5B, 5C and 6) mapped to 11p15.3-15.5, so it appears that this chromosome region might contain several distinct gene loci for mucins. Three of these cDNAs, MUC5A, B and C, were cloned in our laboratory and previously published. A common number, 5, was recommended by the Human Gene Mapping Nomenclature Committee to designate them because of their common provenance from human tracheobronchial mucosa. In order to define whether they are products of the same gene locus or distinct loci, we describe in this paper physical mapping of these cDNAs using the strategy of analysis of CpG islands by pulse-field gel electrophoresis. The data suggest that MUC5A and MUC5C are part of the same gene (called MUC5AC) which is distinct from MUC5B. In the second part of this work, complete sequences of the inserts corresponding to previously described (JER47, JER58) and novel (JER62, JUL32, MAR2, MAR10 and MAR11) cDNAs of the so-called MUC5AC gene are presented and analysed. The data show that in this mucin gene, the tandem repeat domain is interrupted several times with a subdomain encoding a 130 amino acid cysteine-rich peptide in which the TR3A and TR3B peptides previously isolated by Rose et al. [Rose, Kaufman and Martin (1989) J. Biol. Chem., 264, 8193-8199] from airway mucins are found. A consensus peptide sequence for these subdomains involving invariant positions of most of the cysteines is proposed. The consensus nucleotide sequence of this subdomain is also found in the MUC2 gene and in the MUC5B gene, two other mucin genes mapped to 11p15. The functional significance for secreted mucins of these cysteine-rich subdomains and the modular organization of mucin peptides are discussed. Images Figure 3 Figure 4 Figure 5 Figure 8 PMID:7826332

  20. L-carbocisteine reduces neutrophil elastase-induced mucin production.

    PubMed

    Yasuo, Masanori; Fujimoto, Keisaku; Imamura, Hitomi; Ushiki, Atsuhito; Kanda, Shintaro; Tsushima, Kenji; Kubo, Hiroshi; Yamaya, Mutsuo; Kubo, Keishi

    2009-06-30

    Human neutrophil elastase (HNE) exists in high concentrations in airway secretions and produces mucus hypersecretion in patients with chronic obstructive pulmonary disease (COPD). L-carbocisteine improves the quality of life and reduces exacerbation in COPD patients. However the precise mechanism is uncertain. We examined the effects of L-carbocisteine on HNE-induced mucus hypersecretion and on the production of reactive oxygen species (ROS) which is associated with mucin production induced by HNE. NCI-H292, a human lung mucoepidermoid carcinoma cell line, was treated with or without HNE and L-carbocisteine. MUC5AC mRNA expression and ROS production in the cells, and MUC5AC protein concentration in supernatants were measured. HNE increased MUC5AC mRNA expression and MUC5AC protein concentration in supernatants in the cells. L-carbocisteine reduces HNE-induced mRNA expression and protein secretion of MUC5AC. L-carbocisteine also reduced ROS production in the cells induced by HNE. Reduction of HNE-induced mucus secretion by L-carbocisteine in the pulmonary epithelial cells may partly relate to the reduction of ROS.

  1. AGR2 is induced in asthma and promotes allergen-induced mucin overproduction.

    PubMed

    Schroeder, Bradley W; Verhaeghe, Catherine; Park, Sung-Woo; Nguyenvu, Louis T; Huang, Xiaozhu; Zhen, Guohua; Erle, David J

    2012-08-01

    Mucins are gel-forming proteins that are responsible for the characteristic viscoelastic properties of mucus. Mucin overproduction is a hallmark of asthma, but the cellular requirements for airway mucin production are poorly understood. The endoplasmic reticulum (ER) protein anterior gradient homolog 2 (AGR2) is required for production of the intestinal mucin MUC2, but its role in the production of the airway mucins MUC5AC and MUC5B is not established. Microarray data were analyzed to examine the relationship between AGR2 and MUC5AC expression in asthma. Immunofluorescence was used to localize AGR2 in airway cells. Coimmunoprecipitation was used to identify AGR2-immature MUC5AC complexes. Agr2(-/-) mice were used to determine the role of AGR2 in allergic airway disease. AGR2 localized to the ER of MUC5AC- and MUC5B-producing airway cells and formed a complex with immature MUC5AC. AGR2 expression increased together with MUC5AC expression in airway epithelium from "Th2-high" asthmatics. Allergen-challenged Agr2(-/-) mice had greater than 50% reductions in MUC5AC and MUC5B proteins compared with allergen-challenged wild-type mice. Impaired mucin production in Agr2(-/-) mice was accompanied by an increase in the proportion of mucins contained within the ER and by evidence of ER stress in airway epithelium. This study shows that AGR2 increases with mucin overproduction in individuals with asthma and in mouse models of allergic airway disease. AGR2 interacts with immature mucin in the ER and loss of AGR2 impairs allergen-induced MUC5AC and MUC5B overproduction.

  2. Interaction of Eimeria tenella with intestinal mucin in vitro.

    PubMed

    Tierney, J B; Matthews, E; Carrington, S D; Mulcahy, G

    2007-06-01

    The mucus gel layer overlying the gastrointestinal epithelium plays an important role in host-pathogen interactions. The initial interaction between the coccidian parasite Eimeria tenella and host cells of the intestinal epithelium must occur across this mucus interface. In this study, we examined the relationship between E. tenella and avian mucin, in particular the effect of purified intestinal regional mucin on parasite adherence and invasion in vitro. Secreted mucin from the chicken duodenum and cecum was purified by density gradient centrifugation and gel chromatography. Parasite invasion studies were performed in the Madin-Darby bovine kidney cell model. Eimeria tenella adherence to chicken duodenal mucin was detected, whereas adherence to cecal or bovine mucin was not shown. Parasite invasion into epithelial cells was not influenced by bovine mucin, whereas chicken mucin purified from the duodenum and cecum significantly inhibited invasion. Inhibition of E. tenella invasion into cells by mucin from the duodenum was marginally greater than that of the cecum, but this was not significant. This study demonstrated E. tenella interaction with native chicken intestinal mucin, which in turn inhibited parasite invasion into epithelial cells in vitro.

  3. Muc5b is required for airway defence.

    PubMed

    Roy, Michelle G; Livraghi-Butrico, Alessandra; Fletcher, Ashley A; McElwee, Melissa M; Evans, Scott E; Boerner, Ryan M; Alexander, Samantha N; Bellinghausen, Lindsey K; Song, Alfred S; Petrova, Youlia M; Tuvim, Michael J; Adachi, Roberto; Romo, Irlanda; Bordt, Andrea S; Bowden, M Gabriela; Sisson, Joseph H; Woodruff, Prescott G; Thornton, David J; Rousseau, Karine; De la Garza, Maria M; Moghaddam, Seyed J; Karmouty-Quintana, Harry; Blackburn, Michael R; Drouin, Scott M; Davis, C William; Terrell, Kristy A; Grubb, Barbara R; O'Neal, Wanda K; Flores, Sonia C; Cota-Gomez, Adela; Lozupone, Catherine A; Donnelly, Jody M; Watson, Alan M; Hennessy, Corinne E; Keith, Rebecca C; Yang, Ivana V; Barthel, Lea; Henson, Peter M; Janssen, William J; Schwartz, David A; Boucher, Richard C; Dickey, Burton F; Evans, Christopher M

    2014-01-16

    Respiratory surfaces are exposed to billions of particulates and pathogens daily. A protective mucus barrier traps and eliminates them through mucociliary clearance (MCC). However, excessive mucus contributes to transient respiratory infections and to the pathogenesis of numerous respiratory diseases. MUC5AC and MUC5B are evolutionarily conserved genes that encode structurally related mucin glycoproteins, the principal macromolecules in airway mucus. Genetic variants are linked to diverse lung diseases, but specific roles for MUC5AC and MUC5B in MCC, and the lasting effects of their inhibition, are unknown. Here we show that mouse Muc5b (but not Muc5ac) is required for MCC, for controlling infections in the airways and middle ear, and for maintaining immune homeostasis in mouse lungs, whereas Muc5ac is dispensable. Muc5b deficiency caused materials to accumulate in upper and lower airways. This defect led to chronic infection by multiple bacterial species, including Staphylococcus aureus, and to inflammation that failed to resolve normally. Apoptotic macrophages accumulated, phagocytosis was impaired, and interleukin-23 (IL-23) production was reduced in Muc5b(-/-) mice. By contrast, in mice that transgenically overexpress Muc5b, macrophage functions improved. Existing dogma defines mucous phenotypes in asthma and chronic obstructive pulmonary disease (COPD) as driven by increased MUC5AC, with MUC5B levels either unaffected or increased in expectorated sputum. However, in many patients, MUC5B production at airway surfaces decreases by as much as 90%. By distinguishing a specific role for Muc5b in MCC, and by determining its impact on bacterial infections and inflammation in mice, our results provide a refined framework for designing targeted therapies to control mucin secretion and restore MCC.

  4. Muc5b Is Required for Airway Defense

    PubMed Central

    Roy, Michelle G.; Livraghi-Butrico, Alessandra; Fletcher, Ashley A.; McElwee, Melissa M.; Evans, Scott E.; Boerner, Ryan M.; Alexander, Samantha N.; Bellinghausen, Lindsey K.; Song, Alfred S.; Petrova, Youlia M.; Tuvim, Michael J.; Adachi, Roberto; Romo, Irlanda; Bordt, Andrea S.; Gabriela Bowden, M.; Sisson, Joseph H.; Woodruff, Prescott G.; Thornton, David J.; Rousseau, Karine; De la Garza, Maria M.; Moghaddam, Seyed J.; Karmouty-Quintana, Harry; Blackburn, Michael R.; Drouin, Scott M.; William Davis, C.; Terrell, Kristy A.; Grubb, Barbara R.; O’Neal, Wanda K.; Flores, Sonia C.; Cota-Gomez, Adela; Lozupone, Catherine A.; Donnelly, Jody M.; Watson, Alan M.; Hennessy, Corinne E.; Keith, Rebecca C.; Yang, Ivana V.; Barthel, Lea; Henson, Peter M.; Janssen, William J.; Schwartz, David A.; Boucher, Richard C.; Dickey, Burton F.; Evans, Christopher M.

    2014-01-01

    Respiratory surfaces are exposed to billions of particulates and pathogens daily. A protective mucus barrier traps and eliminates them via mucociliary clearance (MCC)1,2. However, excessive mucus contributes to transient respiratory infections and to the pathogenesis of numerous respiratory diseases1. MUC5AC and MUC5B are evolutionarily conserved genes that encode structurally related mucin glycoproteins, the principal macromolecules in airway mucus1,3. Genetic variants are linked to diverse lung diseases4-6, but specific roles for MUC5AC and MUC5B in MCC, and the lasting effects of their inhibition, are unknown. Here we show that Muc5b (but not Muc5ac) is required for MCC, for controlling infections in the airways and middle ear, and for maintaining immune homeostasis in the lungs. Muc5b deficiency caused materials to accumulate in upper and lower airways. This defect led to chronic infection by multiple bacterial species, including Staphylococcus aureus, and to inflammation that failed to resolve normally7. Apoptotic macrophages accumulated, phagocytosis was impaired, and IL-23 production was reduced inMuc5b−/− mice. By contrast, in Muc5b transgenic (Tg) mice, macrophage functions improved. Existing dogma defines mucous phenotypes in asthma and chronic obstructive pulmonary disease (COPD) as driven by increased MUC5AC, with MUC5B levels either unaffected or increased in expectorated sputum1,8. However, in many patients, MUC5B production at airway surfaces decreases by as much as 90%9-11. By distinguishing a specific role for Muc5b in MCC, and by determining its impact on bacterial infections and inflammation in mice, our results provide a refined framework for designing targeted therapies to control mucin secretion and restore MCC. PMID:24317696

  5. Muc5b is required for airway defence

    NASA Astrophysics Data System (ADS)

    Roy, Michelle G.; Livraghi-Butrico, Alessandra; Fletcher, Ashley A.; McElwee, Melissa M.; Evans, Scott E.; Boerner, Ryan M.; Alexander, Samantha N.; Bellinghausen, Lindsey K.; Song, Alfred S.; Petrova, Youlia M.; Tuvim, Michael J.; Adachi, Roberto; Romo, Irlanda; Bordt, Andrea S.; Bowden, M. Gabriela; Sisson, Joseph H.; Woodruff, Prescott G.; Thornton, David J.; Rousseau, Karine; de La Garza, Maria M.; Moghaddam, Seyed J.; Karmouty-Quintana, Harry; Blackburn, Michael R.; Drouin, Scott M.; Davis, C. William; Terrell, Kristy A.; Grubb, Barbara R.; O'Neal, Wanda K.; Flores, Sonia C.; Cota-Gomez, Adela; Lozupone, Catherine A.; Donnelly, Jody M.; Watson, Alan M.; Hennessy, Corinne E.; Keith, Rebecca C.; Yang, Ivana V.; Barthel, Lea; Henson, Peter M.; Janssen, William J.; Schwartz, David A.; Boucher, Richard C.; Dickey, Burton F.; Evans, Christopher M.

    2014-01-01

    Respiratory surfaces are exposed to billions of particulates and pathogens daily. A protective mucus barrier traps and eliminates them through mucociliary clearance (MCC). However, excessive mucus contributes to transient respiratory infections and to the pathogenesis of numerous respiratory diseases. MUC5AC and MUC5B are evolutionarily conserved genes that encode structurally related mucin glycoproteins, the principal macromolecules in airway mucus. Genetic variants are linked to diverse lung diseases, but specific roles for MUC5AC and MUC5B in MCC, and the lasting effects of their inhibition, are unknown. Here we show that mouse Muc5b (but not Muc5ac) is required for MCC, for controlling infections in the airways and middle ear, and for maintaining immune homeostasis in mouse lungs, whereas Muc5ac is dispensable. Muc5b deficiency caused materials to accumulate in upper and lower airways. This defect led to chronic infection by multiple bacterial species, including Staphylococcus aureus, and to inflammation that failed to resolve normally. Apoptotic macrophages accumulated, phagocytosis was impaired, and interleukin-23 (IL-23) production was reduced in Muc5b-/- mice. By contrast, in mice that transgenically overexpress Muc5b, macrophage functions improved. Existing dogma defines mucous phenotypes in asthma and chronic obstructive pulmonary disease (COPD) as driven by increased MUC5AC, with MUC5B levels either unaffected or increased in expectorated sputum. However, in many patients, MUC5B production at airway surfaces decreases by as much as 90%. By distinguishing a specific role for Muc5b in MCC, and by determining its impact on bacterial infections and inflammation in mice, our results provide a refined framework for designing targeted therapies to control mucin secretion and restore MCC.

  6. Physical Properties of the Glycoprotein Mucin

    NASA Astrophysics Data System (ADS)

    Matthews, Garrett; Davis, William; Superfine, Richard; Boucher, Richard

    2003-03-01

    Epithelial cell surfaces are covered by a protective gel known as mucus. The physiological function of this gel depends on its rheological properties, and these properties are largely derived from the secreted glycoprotein mucin. The genetic disease Cystic Fibrosis (CF) is characterized by the adhesion of thick, viscous mucus on these tissues. In the lungs, this results in the interruption of mucus transport thus compromising the first line of defense against pathogens in these tissues. In order to restore the flow of tracheobronchial mucus out of the body, knowledge of the molecular and physical properties of mucin and mucin solutions would be greatly beneficial. The present model for these molecules is that of a long linear strand consisting of highly glycosylated regions linked by cystein-rich globular regions. It is thought that the globular regions may interact either through intermolecular disulfide bonds or through hydrophobic interactions. It has also been speculated that the glycosylated regions may have lectin-like interactions. In the present work, single mucin molecules were imaged at high resolution using atomic force microscopy (AFM). Phase mode imaging was used to map the interactions between functionalized AFM tips and the molecular topography. Additionally, using force-distance curves with the AFM, the adhesion between mucin bound tips and cell surface glycocalyx and glycocalyx-like model surfaces, was measured. And, finally, the viscoelastic properties of mucin solutions were measured using the recently developed technique, single particle tracking microrheology. A model is being developed that will incorporate the properties of mucins beginning at the single molecule and ending with the bulk viscoelastic properties.

  7. Molecular cloning of a new secreted sulfated mucin-like protein with a C-type lectin domain that is expressed in lymphoblastic cells.

    PubMed

    Bannwarth, S; Giordanengo, V; Lesimple, J; Lefebvre, J C

    1998-01-23

    We have previously demonstrated hyposialylation of the two major CD45 and leukosialin (CD43) molecules at the surface of latently human immunodeficiency virus type 1-infected CEM T cells (CEMLAI/NP), (Lefebvre, J. C., Giordanengo, V., Doglio, A., Cagnon, L., Breittmayer, J. P., Peyron, J. F., and Lesimple, J. (1994) Virology 199, 265-274; Lefebvre, J. C., Giordanengo, V., Limouse, M., Doglio, A., Cucchiarini, M., Monpoux, F., Mariani, R., and Peyron, J. F. (1994) J. Exp. Med. 180, 1609-1617). Searching to clarify mechanism(s) of hyposialylation, we observed two sulfated secreted glycoproteins (molecular mass approximately 47 and approximately 40 kDa) (P47 and P40), which were differentially sulfated and/or differentially secreted in the culture supernatants of CEMLAI/NP cells when compared with parental CEM cells. A hybridoma clone (7H1) resulting from the fusion between CEMLAI/NP and human embryonic fibroblasts MRC5 cells produced very large amounts of P47 that was purified using Jacalin lectin (specific for O-glycans) and microsequenced. Cloning of P47 was achieved using a CEMLAI/NP cDNA library screened with a degenerate oligonucleotide probe based on its NH2-terminal amino acid sequence. A single open reading frame encoding a protein of 323 amino acids was deduced from the longest isolated recombinant (1.4 kilobase). P47 is a secreted sulfated protein. It carries an NH2-terminal RGD (Arg-Gly-Asp) triplet, a striking alpha-helical leucine zipper composed of six heptads, and a C-terminal C-type lectin domain. The NH2-terminal portion is rich in glutamic acids with a predicted pI of 3.9. In addition, a hinge region with numerous condensed potential sites for O-glycan side chains, which are also the most likely sulfation sites, is located between the RGD and leucine zipper domains. Transcripts were detected in lymphoid tissues (notably bone marrow) and abundantly in T and B lymphoblastoid but very faintly in monocytoid cell lines.

  8. Physical characterization and profiling of airway epithelial derived exosomes using light scattering.

    PubMed

    Kesimer, Mehmet; Gupta, Richa

    2015-10-01

    Exosomes and other extracellular vesicles have been gaining interest during the last decade due to their emerging role in biology and, disease pathogenesis and their biomarker potential. Almost all published research related to exosomes and other extracellular vesicles include some form of physical characterization. Therefore, these vesicles should be precisely profiled and characterized physically before studying their biological role as intercellular messengers, biomarkers or therapeutic tools. Using a combination of light scattering techniques, including dynamic light scattering (DLS) and multi-angle laser light scattering combined with size exclusion separation (SEC-MALLS), we physically characterized and compared distinct extracellular vesicles derived from the apical secretions of two different cultured airway epithelial cells. The results indicated that epithelial cells release vesicles with distinct physical properties and sizes. Human primary tracheobronchial cell culture (HTBE) derived vesicles have a hydrodynamic radius (Rh) of approximately 340 nm while their radius of gyration (Rg) is approximately 200 nm. Electron microscopy analysis, however, revealed that their spherical component is 40-100 nm in size, and they carry filamentous, entangled membrane mucins on their surface that increases their overall radius. The mucin decoration on the surface defines their size and charge as measured using light scattering techniques. Their surface properties mirror the properties of the cells from which they are derived. This may provide a unique tool for researchers to elucidate the unanswered questions in normal airway biology and innate and adaptive defense, including the remodeling of airways during inflammation, tumorigenesis and metastasis.

  9. Selectin-mucin interactions as a probable molecular explanation for the association of Trousseau syndrome with mucinous adenocarcinomas

    PubMed Central

    Wahrenbrock, Mark; Borsig, Lubor; Le, Dzung; Varki, Nissi; Varki, Ajit

    2003-01-01

    Trousseau described spontaneous, recurrent superficial migratory thrombophlebitis associated with occult cancers, and this was later correlated with disseminated microangiopathy (platelet-rich clots in small blood vessels). Trousseau syndrome often occurs with mucinous adenocarcinomas, which secrete abnormally glycosylated mucins and mucin fragments into the bloodstream. Since carcinoma mucins can have binding sites for selectins, we hypothesized that selectin-mucin interactions might trigger this syndrome. When highly purified, tissue-factor free carcinoma mucin preparations were intravenously injected into mice, platelet-rich microthrombi were rapidly generated. This pathology was markedly diminished in P- or L-selectin–deficient mice. Heparin (an antithrombin-potentiating agent that can also block P- and L-selectin recognition of ligands) ameliorated this platelet aggregation, but had no additional effect in P- or L-selectin–deficient mice. Inhibition of endogenous thrombin by recombinant hirudin also did not block platelet aggregation. Mucins generated platelet aggregation in vitro in hirudinized whole blood, but not in platelet-rich leukocyte-free plasma nor in whole blood from L-selectin–deficient mice. Thus, Trousseau syndrome is likely triggered by interactions of circulating carcinoma mucins with leukocyte L-selectin and platelet P-selectin without requiring accompanying thrombin generation. These data may also explain why heparin ameliorates Trousseau syndrome, while vitamin K antagonists that merely depress thrombin production do not. PMID:12975470

  10. Aspergillosis and the role of mucins in cystic fibrosis.

    PubMed

    Cowley, Abigail C; Thornton, David J; Denning, David W; Horsley, Alexander

    2017-04-01

    The prevalence of aspergillosis in CF patients has until recently been underestimated, but increasing evidence suggests that it may play an important role in the progression of CF lung disease. In healthy airways, Aspergillus fumigatus can be efficiently removed from the lung by mechanisms such as mucociliary clearance and cough. However, these mechanisms are defective in CF, allowing pathogens such as A. fumigatus to germinate and establish chronic infections within the airways. The precise means by which A. fumigatus contributes to CF lung disease remain largely unclear. As the first point of contact within the lung, and an important component of the innate immune system, it is likely that the mucus barrier plays an important role in this process. Study of the functional interplay between this vital protective barrier, and in particular its principal structural components, the polymeric gel-forming mucins, and CF pathogens such as A. fumigatus, is at an early stage. A. fumigatus protease activity has been shown to upregulate mucus production by inducing mucin mRNA and protein expression, and A. fumigatus proteases and glycosidases are able to degrade mucins. This may allow A. fumigatus to alter mucus barrier properties to promote fungal colonization of the airways and/or utilize mucins as a nutrient source. Moreover, conidial surface lectin binding to mucin glycans is a key aspect of clearance of Aspergillus from the lung in health but may be an important aspect of colonization, where mucociliary clearance is compromised, as in the CF lung. Here we discuss the nature of the mucus barrier and its mucin components in CF, and how they may be implicated in A. fumigatus infection. Pediatr Pulmonol 2017;52:548-555. © 2016 The Authors. Pediatric Pulmonology. Published by Wiley Periodicals, Inc.

  11. House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection.

    PubMed

    Fujimura, Kei E; Demoor, Tine; Rauch, Marcus; Faruqi, Ali A; Jang, Sihyug; Johnson, Christine C; Boushey, Homer A; Zoratti, Edward; Ownby, Dennis; Lukacs, Nicholas W; Lynch, Susan V

    2014-01-14

    Exposure to dogs in early infancy has been shown to reduce the risk of childhood allergic disease development, and dog ownership is associated with a distinct house dust microbial exposure. Here, we demonstrate, using murine models, that exposure of mice to dog-associated house dust protects against ovalbumin or cockroach allergen-mediated airway pathology. Protected animals exhibited significant reduction in the total number of airway T cells, down-regulation of Th2-related airway responses, as well as mucin secretion. Following dog-associated dust exposure, the cecal microbiome of protected animals was extensively restructured with significant enrichment of, amongst others, Lactobacillus johnsonii. Supplementation of wild-type animals with L. johnsonii protected them against both airway allergen challenge or infection with respiratory syncytial virus. L. johnsonii-mediated protection was associated with significant reductions in the total number and proportion of activated CD11c(+)/CD11b(+) and CD11c(+)/CD8(+) cells, as well as significantly reduced airway Th2 cytokine expression. Our results reveal that exposure to dog-associated household dust results in protection against airway allergen challenge and a distinct gastrointestinal microbiome composition. Moreover, the study identifies L. johnsonii as a pivotal species within the gastrointestinal tract capable of influencing adaptive immunity at remote mucosal surfaces in a manner that is protective against a variety of respiratory insults.

  12. [Mucinous cystadenocarcinoma of pancreas].

    PubMed

    Davies, Nestor R; Kasparian, Andres C; Viotto, Lucas E; Moreno, Walter A; Gramática, Luis

    2009-01-01

    Mucinous cystadenocarcinoma of the pancreas represents around 6-36% of mucinous cystic neoplasm. The lesions are usually found in the body and tail of the pancreas and are generally solitary with a size range of 6-36 cm. We present a clinical case of a 63 years old patient with abdominal pain and weight loss. We used radiographic imaging studies. It was treated with surgery by distal pancreatectomy with splenectomy and transverse colectomy. Patient was not post operative complications.

  13. Viscous fingering of HCI through gastric mucin

    NASA Astrophysics Data System (ADS)

    Bhaskar, K. Ramakrishnan; Garik, Peter; Turner, Bradley S.; Bradley, James Douglas; Bansil, Rama; Stanley, H. Eugene; Lamont, J. Thomas

    1992-12-01

    THE HCI in the mammalian stomach is concentrated enough to digest the stomach itself, yet the gastric epithelium remains undamaged. One protective factor is gastric mucus, which forms a protective layer over the surface epithelium1-4 and acts as a diffusion barrier5,6 Bicarbonate ions secreted by the gastric epithelium7 are trapped in the mucus gel, establishing a gradient from pH 1-2 at the lumen to pH 6-7 at the cell surface8-10. How does HCI, secreted at the base of gastric glands by parietal cells, traverse the mucus layer without acidifying it? Here we demonstrate that injection of HCI through solutions of pig gastric mucin produces viscous fingering patterns11-18 dependent on pH, mucin concentration and acid flow rate. Above pH 4, discrete fingers are observed, whereas below pH 4, HCI neither penetrates the mucin solution nor forms fingers. Our in vitro results suggest that HCI secreted by the gastric gland can penetrate the mucus gel layer (pH 5-7) through narrow fingers, whereas HC1 in the lumen (pH 2) is prevented from diffusing back to the epithelium by the high viscosity of gastric mucus gel on the luminal side.

  14. Vitamin A Deficiency Impairs Mucin Expression and Suppresses the Mucosal Immune Function of the Respiratory Tract in Chicks

    PubMed Central

    Liu, Guanhua; Zhao, Jingpeng; Jiao, Hongchao; Wang, Xiaojuan; Song, Zhigang; Lin, Hai

    2015-01-01

    The chicken immune system is immature at the time of hatching. The development of the respiratory immune system after hatching is vital to young chicks. The aim of this study was to investigate the effect of dietary vitamin A supplement levels on respiratory mucin and IgA production in chicks. In this study, 120 one-day-old broiler chicks were randomly divided into 4 groups consisting of three replicates of 10 broilers and subjected to dietary vitamin A supplement levels of 0, 1,500, 6,000, or 12,000 IU/kg for seven days. Compared with control birds, vitamin A supplementation significantly increased the mucin and IgA levels in the bronchoalveolar lavage fluid (BALF) as well as the IgA level in serum. In the lungs, vitamin A supplementation downregulated TNF-α and EGFR mRNA expression. The TGF-β and MUC5AC mRNA expression levels were upregulated by vitamin A supplementation at a dose of 6,000 IU/kg, and the IL-13 mRNA expression level was increased at the 12,000 IU/kg supplement level. Vitamin A deficiency (control) significantly decreased the mRNA expression levels of MUC2, IgA, EGFR, IL-13 and TGF-β in trachea tissue. Histological section analysis revealed that the number of goblet cells in the tracheal epithelium was less in the 0 and 12,000 IU/kg vitamin A supplement groups than in the other groups. In conclusion, vitamin A deficiency suppressed the immunity of the airway by decreasing the IgA and mucin concentrations in neonatal chicks. This study suggested that a suitable level of vitamin A is essential for the secretion of IgA and mucin in the respiratory tract by regulating the gene expression of cytokines and epithelial growth factors. PMID:26422233

  15. Cysteamine and prostaglandin F2 beta stimulate rat gastric mucin release

    SciTech Connect

    Lamont, J.T.; Ventola, A.S.; Maull, E.A.; Szabo, S.

    1983-02-01

    Gastric mucin glycoproteins form an adherent gel over the surface epithelium that is thought to protect the stomach against chemical and physical damage. The purpose of this study was to measure the release of mucin glycoproteins from rat stomach after treatment with cysteamine and prostaglandin F2 beta, two structurally unrelated drugs that have been shown to protect the stomach against the noxious effects of alcohol and other damaging agents. Gastric mucin was separated into soluble (washout) and insoluble (adherent) phases before colorimetric quantitation of total mucin, protein-bound hexose, and sialic acid. Cysteamine produced a dose-dependent increase in release of soluble and gel mucin. Prostaglandin F2 beta caused a dose-dependent release of hexose-containing mucin but had no effect on sialic acid-containing glycoproteins. Sepharose 4B chromatography of both the soluble and adherent mucus revealed that greater than 90% was a high molecular weight glycoprotein fraction. N-Ethylmaleimide, a known inhibitor of cytoprotection by cysteamine, had no effect on mucin secretion. Similarly, indomethacin inhibited mucin secretion by cysteamine but did not significantly influence cytoprotection. Thus the secretion of mucin by cytoprotective agents is unlikely by itself to explain the ability of the stomach to resist chemical or physical damage.

  16. Ocular surface mucins and local inflammation--studies in genetically modified mouse lines.

    PubMed

    Shirai, Kumi; Saika, Shizuya

    2015-12-17

    Mucins locate to the apical surfaces of all wet-surfaced epithelia including ocular surface. The functions of the mucins include anti-adhesive, lubrication, water retention, allergens and pathogen barrier function. Ocular surface pathologies, i.e. dry eye syndrome or allergic conjunctivitis, are reportedly associated with alteration of expression pattern of mucin components. Recent investigations indicated anti-bacterial adhesion or anti-inflammatory effects of members of mucins in non-ocular tissues, i.e., gastrointestinal tracts or airway tissues, by using genetically modified mouse lines that lacks an expression of a mucin member. However, examination of ocular phenotypes of each of mucin gene-ablated mouse lines has not yet fully performed. Muc16-deficient mouse is associated with spontaneous subclinical inflammation in conjunctiva. The article reviews the roles of mucin members in modulation of local inflammation in mucous membrane tissues and phenotype of mouse lines with the loss of a mucin gene. Analysis of ocular surface of mucin-gene related mutant mouse lines are to be further performed.

  17. Methods to Assess the Direct Interaction of C. jejuni with Mucins.

    PubMed

    Clyne, Marguerite; Duggan, Gina; Naughton, Julie; Bourke, Billy

    2017-01-01

    Studies of the interaction of bacteria with mucus-secreting cells can be complemented at a more mechanistic level by exploring the interaction of bacteria with purified mucins. Here we describe a far Western blotting approach to show how C. jejuni proteins separated by SDS PAGE and transferred to a membrane or slot blotted directly onto a membrane can be probed using biotinylated mucin. In addition we describe the use of novel mucin microarrays to assess bacterial interactions with mucins in a high-throughput manner.

  18. Aeromonas salmonicida Binds Differentially to Mucins Isolated from Skin and Intestinal Regions of Atlantic Salmon in an N-Acetylneuraminic Acid-Dependent Manner

    PubMed Central

    Padra, János T.; Sundh, Henrik; Jin, Chunsheng; Karlsson, Niclas G.; Sundell, Kristina

    2014-01-01

    Aeromonas salmonicida subsp. salmonicida infection, also known as furunculosis disease, is associated with high morbidity and mortality in salmonid aquaculture. The first line of defense the pathogen encounters is the mucus layer, which is predominantly comprised of secreted mucins. Here we isolated and characterized mucins from the skin and intestinal tract of healthy Atlantic salmon and studied how A. salmonicida bound to them. The mucins from the skin, pyloric ceca, and proximal and distal intestine mainly consisted of mucins soluble in chaotropic agents. The mucin density and mucin glycan chain length from the skin were lower than were seen with mucin from the intestinal tract. A. salmonicida bound to the mucins isolated from the intestinal tract to a greater extent than to the skin mucins. The mucins from the intestinal regions had higher levels of sialylation than the skin mucins. Desialylating intestinal mucins decreased A. salmonicida binding, whereas desialylation of skin mucins resulted in complete loss of binding. In line with this, A. salmonicida also bound better to mammalian mucins with high levels of sialylation, and N-acetylneuraminic acid appeared to be the sialic acid whose presence was imperative for binding. Thus, sialylated structures are important for A. salmonicida binding, suggesting a pivotal role for sialylation in mucosal defense. The marked differences in sialylation as well as A. salmonicida binding between the skin and intestinal tract suggest interorgan differences in the host-pathogen interaction and in the mucin defense against A. salmonicida. PMID:25287918

  19. Primary appendiceal mucinous adenocarcinoma.

    PubMed

    Behera, Prativa Kumari; Rath, Pramod Kumar; Panda, Rabiratna; Satpathi, Sanghamitra; Behera, Rajan

    2011-04-01

    Primary Adenocarcinomas of the appendix are extremely rare tumor. We report a case of primary mucinous adenocarcinoma in a 40 year old lady misdiagnosed as having acute appendicitis. All the routine investigations were within normal limit. USG of abdomen showed dilated appendix with little fluid collection adjacent to it and no other abnormality was seen which suggested acute appendicitis. Appendicectomy was done and excised appendix was sent for histopathological examination. Mucinous Adenocarcinoma of the appendix was confirmed after histopathological examination. Right hemicolectomy was done as a second stage procedure. As some cases are incidentally discovered, this case emphasizes that histological examination of all appendicectomy specimens is mandatory.

  20. Histochemical profiles of mucins in the tracheal epithelium during the posthatching period of Japanese quail.

    PubMed

    Alan, Emel; Liman, Narin

    2010-01-01

    Mucus normally protects the airway epithelium from dehydration and inhaled infectious agents and possibly toxic substances. Two components of mucus, mucin and water play major roles in the elimination of inhaled foreign material. Mucins are large carbohydrates rich glycoprotein. The objective of the present study was to determine the histochemical changes in mucin pattern of the goblet cells and intraepithelial glands of the trachea in quails during the post-hatching period using specific various staining procedures for complex carbohydrates (Periodic acid Schiff, Alcian blue-Periodic acid Schiff (pH 2.5), Aldehyde fuchsin-Alcian blue (pH 2.5), High-iron diamine-Alcian blue (pH 2.5), Periodic acid-Phenylhydrazine-Schiff). The intraepithelial alveolar glands were present at hatching and their numbers increased with the advance of age. In quail of all ages, the histochemical reactions revealed that the goblet cells and mucous cells of intraepithelial glands contained the mucins with vicinal diol groups, neutral mucin, sialomucin and sulphomucin. In all ages studied, the tracheal epithelium contained three distinct types of goblet or mucous cells producing neutral-, acid- and mixture of neutral- and acid mucins. In 1 day old, the majority of the goblet cells and gland cells contained neutral mucin or a mixture of neutral- and acid mucins, while the proportion of only acid mucin-producing cells was few. The majority of acidic mucins consisted of sulphomucin. The sialomucin-containing cells were only a few. After day 14, it was seen that the content of sialomucin in the epithelium became more diffuse toward adulthood. In conclusion, the content of mucin of tracheal epithelium was variable depending on the ages during the post-hatching period. These changes in mucin dynamics could affect the protective functions against pathogens and toxins of the tracheal epithelium.

  1. The O-Linked Glycome and Blood Group Antigens ABO on Mucin-Type Glycoproteins in Mucinous and Serous Epithelial Ovarian Tumors

    PubMed Central

    Vitiazeva, Varvara; Kattla, Jayesh J.; Flowers, Sarah A.; Lindén, Sara K.; Premaratne, Pushpa; Weijdegård, Birgitta; Sundfeldt, Karin; Karlsson, Niclas G.

    2015-01-01

    Background Mucins are heavily O-glycosylated proteins where the glycosylation has been shown to play an important role in cancer. Normal epithelial ovarian cells do not express secreted mucins, but their abnormal expression has previously been described in epithelial ovarian cancer and may relate to tumor formation and progression. The cyst fluids were shown to be a rich source for acidic glycoproteins. The study of these proteins can potentially lead to the identification of more effective biomarkers for ovarian cancer. Methods In this study, we analyzed the expression of the MUC5AC and the O-glycosylation of acidic glycoproteins secreted into ovarian cyst fluids. The samples were obtained from patients with serous and mucinous ovarian tumors of different stages (benign, borderline, malignant) and grades. The O-linked oligosaccharides were released and analyzed by negative-ion graphitized carbon Liquid Chromatography (LC) coupled to Electrospray Ionization tandem Mass Spectrometry (ESI-MSn). The LC-ESI-MSn of the oligosaccharides from ovarian cyst fluids displayed differences in expression of fucose containing structures such as blood group ABO antigens and Lewis-type epitopes. Results The obtained data showed that serous and mucinous benign adenomas, mucinous low malignant potential carcinomas (LMPs, borderline) and mucinous low-grade carcinomas have a high level of blood groups and Lewis type epitopes. In contrast, this type of fucosylated structures were low abundant in the high-grade mucinous carcinomas or in serous carcinomas. In addition, the ovarian tumors that showed a high level of expression of blood group antigens also revealed a strong reactivity towards the MUC5AC antibody. To visualize the differences between serous and mucinous ovarian tumors based on the O-glycosylation, a hierarchical cluster analysis was performed using mass spectrometry average compositions (MSAC). Conclusion Mucinous benign and LMPs along with mucinous low-grade carcinomas

  2. Macromolecular properties and polymeric structure of canine tracheal mucins.

    PubMed Central

    Shankar, V; Virmani, A K; Naziruddin, B; Sachdev, G P

    1991-01-01

    Two high-Mr mucus glycoproteins (mucins), CTM-A and CTM-B, were highly purified from canine tracheal pouch secretions, and their macromolecular properties as well as polymeric structure were investigated. On SDS/composite-gel electrophoresis, a diffuse band was observed for each mucin. Polyacrylamide-gel electrophoresis using 6% gels also showed the absence of low-Mr contaminants in the mucins. Comparison of chemical and amino acid compositions revealed significant differences between the two mucins. Using a static-laser-light-scattering technique, CTM-A and CTM-B were found to have weight-average Mr values of about 11.0 x 10(6) and 1.4 x 10(6) respectively. Both mucins showed concentration-dependent aggregation in buffer containing 6 M-guanidine hydrochloride. Under similar experimental conditions, reduced-alkylated CTM-A had an Mr of 5.48 x 10(6) and showed no concentration-dependent aggregation. Hydrophobic properties of the mucins, investigated by the fluorescent probe technique using mansylphenylalanine as the probe, showed the presence of a large number of low-affinity (KD approx. 10(5) M) binding sites. These sites appeared to be located on the non-glycosylated regions of the protein core, since Pronase digestion of the mucins almost completely eliminated probe binding. Reduction of disulphide bonds of CTM-A and CTM-B did not significantly alter the probe-binding properties. Also, addition of increasing NaCl concentrations (0.03-1.0 M) to the buffer caused only a small change in the hydrophobic properties of native and reduced-alkylated mucins. CTM-A was deglycosylated, without notable in the hydrophobic properties of native and reduced-alkylated mucins. CTM-A was deglycosylated, without notable degradation, using a combination of chemical and enzymic methods. On SDS/PAGE the protein core was estimated to have an Mr of approx. 60,000. On the basis of the protein and carbohydrate contents of the major mucin CTM-A, the mucin monomer was calculated to have an

  3. Chemically tunable mucin chimeras assembled on living cells

    DOE PAGES

    Kramer, Jessica R.; Onoa, Bibiana; Bustamante, Carlos; ...

    2015-09-29

    Mucins are a family of secreted and transmembrane glycoproteins characterized by a massive domain of dense O-glycosylation on serine and threonine residues. Mucins are intimately involved in immunity and cancer, yet elucidation of the biological roles of their glycodomains has been complicated by their massive size, domain polymorphisms, and variable glycosylation patterns. Here we developed a synthetic route to a library of compositionally defined, high-molecular weight, dual end-functionalized mucin glycodomain constructs via N-carboxyanhydride polymerization. These glycopolypeptides are the first synthetic analogs to our knowledge to feature the native α-GalNAc linkage to serine with molecular weights similar to native mucins, solvingmore » a nearly 50-year synthetic challenge. Physical characterization of the mimics revealed insights into the structure and properties of mucins. The synthetic glycodomains were end-functionalized with an optical probe and a tetrazine moiety, which allowed site-specific bioorthogonal conjugation to an engineered membrane protein on live mammalian cells. Lastly, this strategy in protein engineering will open avenues to explore the biological roles of cell surface mucins.« less

  4. Chemically tunable mucin chimeras assembled on living cells

    SciTech Connect

    Kramer, Jessica R.; Onoa, Bibiana; Bustamante, Carlos; Bertozzi, Carolyn R.

    2015-09-29

    Mucins are a family of secreted and transmembrane glycoproteins characterized by a massive domain of dense O-glycosylation on serine and threonine residues. Mucins are intimately involved in immunity and cancer, yet elucidation of the biological roles of their glycodomains has been complicated by their massive size, domain polymorphisms, and variable glycosylation patterns. Here we developed a synthetic route to a library of compositionally defined, high-molecular weight, dual end-functionalized mucin glycodomain constructs via N-carboxyanhydride polymerization. These glycopolypeptides are the first synthetic analogs to our knowledge to feature the native α-GalNAc linkage to serine with molecular weights similar to native mucins, solving a nearly 50-year synthetic challenge. Physical characterization of the mimics revealed insights into the structure and properties of mucins. The synthetic glycodomains were end-functionalized with an optical probe and a tetrazine moiety, which allowed site-specific bioorthogonal conjugation to an engineered membrane protein on live mammalian cells. Lastly, this strategy in protein engineering will open avenues to explore the biological roles of cell surface mucins.

  5. Depletion of mucin in mucin-producing human gastrointestinal carcinoma: Results from in vitro and in vivo studies with bromelain and N-acetylcysteine.

    PubMed

    Amini, Afshin; Masoumi-Moghaddam, Samar; Ehteda, Anahid; Liauw, Winston; Morris, David L

    2015-10-20

    Aberrant expression of membrane-associated and secreted mucins, as evident in epithelial tumors, is known to facilitate tumor growth, progression and metastasis, and to provide protection against adverse growth conditions, chemotherapy and immune surveillance. Emerging evidence provides support for the oncogenic role of MUC1 in gastrointestinal carcinomas and relates its expression to an invasive phenotype. Similarly, mucinous differentiation of gastrointestinal tumors, in particular increased or de novo expression of MUC2 and/or MUC5AC, is widely believed to imply an adverse clinicopathological feature. Through formation of viscous gels, too, MUC2 and MUC5AC significantly contribute to the biology and pathogenesis of mucin-secreting gastrointestinal tumors. Here, we investigated the mucin-depleting effects of bromelain (BR) and N-acetylcysteine (NAC), in nine different regimens as single or combination therapy, in in vitro (MKN45, KATOIII and LS174T cell lines) and in vivo (female nude mice bearing intraperitoneal MKN45 and LS174T) settings. The inhibitory effects of the treatment on cancer cell growth and proliferation were also evaluated in vivo. Our results suggest that a combination of BR and NAC with dual effects on growth and mucin products of mucin-expressing tumor cells is a promising candidate towards the development of novel approaches to gastrointestinal malignancies with the involvement of mucin pathology. This capability supports the use of this combination formulation in locoregional approaches for reducing the adverse effects of the aberrantly secreted gel-forming mucins, as in pseudomyxoma peritonei and similar pathologies with ectopic production of mucin.

  6. Depletion of mucin in mucin-producing human gastrointestinal carcinoma: Results from in vitro and in vivo studies with bromelain and N-acetylcysteine

    PubMed Central

    Amini, Afshin; Masoumi-Moghaddam, Samar; Ehteda, Anahid; Liauw, Winston; Morris, David L.

    2015-01-01

    Aberrant expression of membrane-associated and secreted mucins, as evident in epithelial tumors, is known to facilitate tumor growth, progression and metastasis, and to provide protection against adverse growth conditions, chemotherapy and immune surveillance. Emerging evidence provides support for the oncogenic role of MUC1 in gastrointestinal carcinomas and relates its expression to an invasive phenotype. Similarly, mucinous differentiation of gastrointestinal tumors, in particular increased or de novo expression of MUC2 and/or MUC5AC, is widely believed to imply an adverse clinicopathological feature. Through formation of viscous gels, too, MUC2 and MUC5AC significantly contribute to the biology and pathogenesis of mucin-secreting gastrointestinal tumors. Here, we investigated the mucin-depleting effects of bromelain (BR) and N-acetylcysteine (NAC), in nine different regimens as single or combination therapy, in in vitro (MKN45, KATOIII and LS174T cell lines) and in vivo (female nude mice bearing intraperitoneal MKN45 and LS174T) settings. The inhibitory effects of the treatment on cancer cell growth and proliferation were also evaluated in vivo. Our results suggest that a combination of BR and NAC with dual effects on growth and mucin products of mucin-expressing tumor cells is a promising candidate towards the development of novel approaches to gastrointestinal malignancies with the involvement of mucin pathology. This capability supports the use of this combination formulation in locoregional approaches for reducing the adverse effects of the aberrantly secreted gel-forming mucins, as in pseudomyxoma peritonei and similar pathologies with ectopic production of mucin. PMID:26436698

  7. Salivary Mucin 19 Glycoproteins

    PubMed Central

    Culp, David J.; Robinson, Bently; Cash, Melanie N.; Bhattacharyya, Indraneel; Stewart, Carol; Cuadra-Saenz, Giancarlo

    2015-01-01

    Saliva functions in innate immunity of the oral cavity, protecting against demineralization of teeth (i.e. dental caries), a highly prevalent infectious disease associated with Streptococcus mutans, a pathogen also linked to endocarditis and atheromatous plaques. Gel-forming mucins are a major constituent of saliva. Because Muc19 is the dominant salivary gel-forming mucin in mice, we studied Muc19−/− mice for changes in innate immune functions of saliva in interactions with S. mutans. When challenged with S. mutans and a cariogenic diet, total smooth and sulcal surface lesions are more than 2- and 1.6-fold higher in Muc19−/− mice compared with wild type, whereas the severity of lesions are up to 6- and 10-fold higher, respectively. Furthermore, the oral microbiota of Muc19−/− mice display higher levels of indigenous streptococci. Results emphasize the importance of a single salivary constituent in the innate immune functions of saliva. In vitro studies of S. mutans and Muc19 interactions (i.e. adherence, aggregation, and biofilm formation) demonstrate Muc19 poorly aggregates S. mutans. Nonetheless, aggregation is enhanced upon adding Muc19 to saliva from Muc19−/− mice, indicating Muc19 assists in bacterial clearance through formation of heterotypic complexes with salivary constituents that bind S. mutans, thus representing a novel innate immune function for salivary gel-forming mucins. In humans, expression of salivary MUC19 is unclear. We find MUC19 transcripts in salivary glands of seven subjects and demonstrate MUC19 glycoproteins in glandular mucous cells and saliva. Similarities and differences between mice and humans in the expression and functions of salivary gel-forming mucins are discussed. PMID:25512380

  8. Candida albicans Shed Msb2 and Host Mucins Affect the Candidacidal Activity of Salivary Hst 5

    PubMed Central

    Puri, Sumant; Friedman, Justin; Saraswat, Darpan; Kumar, Rohitashw; Li, Rui; Ruszaj, Donna; Edgerton, Mira

    2015-01-01

    Salivary Histatin 5 (Hst 5) is an antimicrobial peptide that exhibits potent antifungal activity towards Candida albicans, the causative agent of oral candidiasis. However, it exhibits limited activity in vivo, largely due to inactivation by salivary components of both host and pathogen origin. Proteins secreted by C. albicans during infection such as secreted aspartyl proteases (Saps) and shed mucin Msb2 can reduce Hst 5 activity; and human salivary mucins, while suggested to protect Hst 5 from proteolytic degradation, can entrap peptides into mucin gels, thereby reducing bioavailability. We show here that Sap6 that is secreted during hyphal growth reduces Hst 5 activity, most likely a result of proteolytic degradation of Hst 5 since this effect is abrogated with heat inactivated Sap 6. We further show that just like C. albicans shedding Msb2, mammalian mucins, fetuin and porcine gut mucin (that is related to salivary mucins), also reduce Hst 5 activity. However, we identify mucin-like protein-induced changes in C. albicans cell morphology and aggregation patterns, suggesting that the effect of such proteins on Hst 5 cannot be interpreted independently of their effect on yeast cells. PMID:26529023

  9. Kaempferol Inhibits Endoplasmic Reticulum Stress-Associated Mucus Hypersecretion in Airway Epithelial Cells And Ovalbumin-Sensitized Mice.

    PubMed

    Park, Sin-Hye; Gong, Ju-Hyun; Choi, Yean-Jung; Kang, Min-Kyung; Kim, Yun-Ho; Kang, Young-Hee

    2015-01-01

    Mucus hypersecretion is an important pathological feature of chronic airway diseases, such as asthma and pulmonary diseases. MUC5AC is a major component of the mucus matrix forming family of mucins in the airways. The initiation of endoplasmic reticulum (ER)-mediated stress responses contributes to the pathogenesis of airway diseases. The present study investigated that ER stress was responsible for airway mucus production and this effect was blocked by the flavonoid kaempferol. Oral administration of ≥10 mg/kg kaempferol suppressed mucus secretion and goblet cell hyperplasia observed in the bronchial airway and lung of BALB/c mice sensitized with ovalbumin (OVA). TGF-β and tunicamycin promoted MUC5AC induction after 72 h in human bronchial airway epithelial BEAS-2B cells, which was dampened by 20 μM kaempferol. Kaempferol inhibited tunicamycin-induced ER stress of airway epithelial cells through disturbing the activation of the ER transmembrane sensor ATF6 and IRE1α. Additionally, this compound demoted the induction of ER chaperones such as GRP78 and HSP70 and the splicing of XBP-1 mRNA by tunicamycin. The in vivo study further revealed that kaempferol attenuated the induction of XBP-1 and IRE1α in epithelial tissues of OVA-challenged mice. TGF-β and tunicamycin induced TRAF2 with JNK activation and such induction was deterred by kaempferol. The inhibition of JNK activation encumbered the XBP-1 mRNA splicing and MUC5AC induction by tunicamycin and TGF-β. These results demonstrate that kaempferol alleviated asthmatic mucus hypersecretion through blocking bronchial epithelial ER stress via the inhibition of IRE1α-TRAF2-JNK activation. Therefore, kaempferol may be a potential therapeutic agent targeting mucus hypersecretion-associated pulmonary diseases.

  10. Gelation of mucin: Protecting the stomach from autodigestion

    NASA Astrophysics Data System (ADS)

    Bansil, Rama

    2011-03-01

    In this talk I will describe the molecular mechanisms involved in the remarkable ability of the mucus lining of the stomach for protecting the stomach from being digested by the acidic gastric juices that it secretes. These physical properties can be attributed to the presence of a high molecular weight glycoprotein found in mucus, called mucin. Rheology and other measurements show that gastric mucin forms a gel under acidic pH. A model of gelation based on the interplay of hydrophobic and electrostatic interactions will be discussed. Molecular Dynamics simulation studies of folding and aggregation of mucin domains provide further support for this model. The relevance of gelation to the motion of the ulcer causing bacterium H. pylori will be discussed.

  11. Analysis of the Distribution of Mucins in Adult Human Gastric Mucosa and Its Functional Significance

    PubMed Central

    2016-01-01

    Introduction Mucins are complex composition of carbohydrates seen in the epithelial cells lining the gastrointestinal tract (GIT). Normal distribution of such mucins in different part of the GIT and its alteration in various inflammatory, benign and malignant lesions of GIT has aroused interest in the field of histochemistry. Aim By applying variety of histochemical techniques an attempt has been made to draw a map of mucin secretion by the different epithelial cell types in different parts of the stomach. Materials and Methods Fifty samples were taken each from different parts of the stomach like fundus, body and pylorus, from dissected fresh specimens (total of 150 specimens). Tissue samples were subjected for routine process and studied for histological and different histochemical staining. Results Mucin pattern in adult predominantly secretes neutral mucosubstances. Surface epithelium shows predominant neutral mucin while cardiac and gastric glands with foveolar cells show moderate amount. Sialomucin is present in a few cells of the surface epithelium, foveolar cells and in most of the mucous neck cells. Small amount of sialomucin and sulphomucin are found in surface epithelial foveolar cells while traces of sulphomucin are found in deep foveolar cells. Mucous neck cells secrete both sulphomucin and sialomucin. Conclusion Normal gastric mucosa adjacent to gastric ulcers and malignant tumours of stomach secretes mucins which differ histochemically and biochemically from that of normal. Early recognition of such changes could be useful in recognizing the different type of carcinomas and their prognosis. PMID:27042436

  12. Expression of ligands for Siglec-8 and Siglec-9 in human airways and airway cells

    PubMed Central

    Jia, Yi; Yu, Huifeng; Fernandes, Steve M.; Wei, Yadong; Gonzalez-Gil, Anabel; Motari, Mary G.; Vajn, Katarina; Stevens, Whitney W.; Peters, Anju T.; Bochner, Bruce S.; Kern, Robert C.; Schleimer, Robert P.; Schnaar, Ronald L.

    2015-01-01

    Background Balanced activation and inhibition of the immune system ensures pathogen clearance while avoiding hyperinflammation. Siglecs, sialic acid binding proteins found on subsets of immune cells, often inhibit inflammation: Siglec-8 on eosinophils and Siglec-9 on neutrophils engage sialoglycan ligands on airways to diminish ongoing inflammation. The identities of human siglec ligands and their expression during inflammation are largely unknown. Objective The histological distribution, expression and molecular characteristics of siglec ligands were explored in healthy and inflamed human upper airways and in a cellular model of airway inflammation. Methods Normal and chronically inflamed upper airway tissues were stained for siglec ligands. The ligands were extracted from normal and inflamed tissues and from human Calu-3 cells for quantitative analysis by siglec blotting and isolation by siglec capture. Results Siglec-8 ligands were expressed on a subpopulation of submucosal gland cells of human inferior turbinate, whereas Siglec-9 ligands were expressed more broadly (submucosal glands, epithelium, connective tissue); both were significantly upregulated in chronic rhinosinusitis patients. Human airway (Calu-3) cells expressed Siglec-9 ligands on mucin 5B under inflammatory control via the NF-κB pathway, and mucin 5B carried sialoglycan ligands of Siglec-9 on human upper airway tissue. Conclusion Inflammation results in upregulation of immune inhibitory Siglec-8 and Siglec-9 sialoglycan ligands on human airways. Siglec-9 ligands were upregulated via the NF-κB pathway resulting in their enhanced expression on mucin 5B. Siglec sialoglycan ligand expression in inflamed cells and tissues may contribute to the control of airway inflammation. PMID:25747723

  13. Luminal cholinergic signalling in airway lining fluid: a novel mechanism for activating chloride secretion via Ca2+-dependent Cl− and K+ channels

    PubMed Central

    Hollenhorst, Monika I; Lips, Katrin S; Wolff, Miriam; Wess, Jürgen; Gerbig, Stefanie; Takats, Zoltan; Kummer, Wolfgang; Fronius, Martin

    2012-01-01

    BACKGROUND AND PURPOSE Recent studies detected the expression of proteins involved in cholinergic metabolism in airway epithelial cells, although the function of this non-neuronal cholinergic system is not known in detail. Thus, this study focused on the effect of luminal ACh as a regulator of transepithelial ion transport in epithelial cells. EXPERIMENTAL APPROACH RT-PCR experiments were performed using mouse tracheal epithelial cells for ChAT and organic cation transporter (OCT) transcripts. Components of tracheal airway lining fluid were analysed with desorption electrospray ionization (DESI) MS. Effects of nicotine on mouse tracheal epithelial ion transport were examined with Ussing-chamber experiments. KEY RESULTS Transcripts encoding ChAT and OCT1–3 were detected in mouse tracheal epithelial cells. The DESI experiments identified ACh in the airway lining fluid. Luminal ACh induced an immediate, dose-dependent increase in the transepithelial ion current (EC50: 23.3 µM), characterized by a transient peak and sustained plateau current. This response was not affected by the Na+-channel inhibitor amiloride. The Cl−-channel inhibitor niflumic acid or the K+-channel blocker Ba2+ attenuated the ACh effect. The calcium ionophore A23187 mimicked the ACh effect. Luminal nicotine or muscarine increased the ion current. Experiments with receptor gene-deficient animals revealed the participation of muscarinic receptor subtypes M1 and M3. CONCLUSIONS AND IMPLICATIONS The presence of luminal ACh and activation of transepithelial ion currents by luminal ACh receptors identifies a novel non-neuronal cholinergic pathway in the airway lining fluid. This pathway could represent a novel drug target in the airways. PMID:22300281

  14. Metformin reduces airway inflammation and remodeling via activation of AMP-activated protein kinase.

    PubMed

    Park, Chan Sun; Bang, Bo-Ram; Kwon, Hyouk-Soo; Moon, Keun-Ai; Kim, Tae-Bum; Lee, Ki-Young; Moon, Hee-Bom; Cho, You Sook

    2012-12-15

    Recent reports have suggested that metformin has anti-inflammatory and anti-tissue remodeling properties. We investigated the potential effect of metformin on airway inflammation and remodeling in asthma. The effect of metformin treatment on airway inflammation and pivotal characteristics of airway remodeling were examined in a murine model of chronic asthma generated by repetitive challenges with ovalbumin and fungal-associated allergenic protease. To investigate the underlying mechanism of metformin, oxidative stress levels and AMP-activated protein kinase (AMPK) activation were assessed. To further elucidate the role of AMPK, we examined the effect of 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR) as a specific activator of AMPK and employed AMPKα1-deficient mice as an asthma model. The role of metformin and AMPK in tissue fibrosis was evaluated using a bleomycin-induced acute lung injury model and in vitro experiments with cultured fibroblasts. Metformin suppressed eosinophilic inflammation and significantly reduced peribronchial fibrosis, smooth muscle layer thickness, and mucin secretion. Enhanced AMPK activation and decreased oxidative stress in lungs was found in metformin-treated asthmatic mice. Similar results were observed in the AICAR-treated group. In addition, the enhanced airway inflammation and fibrosis in heterozygous AMPKα1-deficient mice were induced by both allergen and bleomycin challenges. Fibronectin and collagen expression was diminished by metformin through AMPKα1 activation in cultured fibroblasts. Therefore metformin reduced both airway inflammation and remodeling at least partially through the induction of AMPK activation and decreased oxidative stress. These data provide insight into the beneficial role of metformin as a novel therapeutic drug for chronic asthma.

  15. Roflumilast N-oxide prevents cytokine secretion induced by cigarette smoke combined with LPS through JAK/STAT and ERK1/2 inhibition in airway epithelial cells.

    PubMed

    Victoni, Tatiana; Gleonnec, Florence; Lanzetti, Manuella; Tenor, Hermann; Valença, Samuel; Porto, Luis Cristovão; Lagente, Vincent; Boichot, Elisabeth

    2014-01-01

    Cigarette smoke is a major cause of chronic obstructive pulmonary disease (COPD). Airway epithelial cells and macrophages are the first defense cells against cigarette smoke and these cells are an important source of pro-inflammatory cytokines. These cytokines play a role in progressive airflow limitation and chronic airways inflammation. Furthermore, the chronic colonization of airways by Gram-negative bacteria, contributes to the persistent airways inflammation and progression of COPD. The current study addressed the effects of cigarette smoke along with lipolysaccharide (LPS) in airway epithelial cells as a representative in vitro model of COPD exacerbations. Furthermore, we evaluated the effects of PDE4 inhibitor, the roflumilast N-oxide (RNO), in this experimental model. A549 cells were stimulated with cigarette smoke extract (CSE) alone (0.4% to 10%) or in combination with a low concentration of LPS (0.1 µg/ml) for 2 h or 24 h for measurement of chemokine protein and mRNAs and 5-120 min for protein phosphorylation. Cells were also pre-incubated with MAP kinases inhibitors and Prostaglandin E2 alone or combined with RNO, before the addition of CSE+LPS. Production of cytokines was determined by ELISA and protein phosphorylation by western blotting and phospho-kinase array. CSE did not induce production of IL-8/CXCL8 and Gro-α/CXCL1 from A549 cells, but increase production of CCL2/MCP-1. However the combination of LPS 0.1 µg/ml with CSE 2% or 4% induced an important production of these chemokines, that appears to be dependent of ERK1/2 and JAK/STAT pathways but did not require JNK and p38 pathways. Moreover, RNO associated with PGE2 reduced CSE+LPS-induced cytokine release, which can happen by occur through of ERK1/2 and JAK/STAT pathways. We report here an in vitro model that can reflect what happen in airway epithelial cells in COPD exacerbation. We also showed a new pathway where CSE+LPS can induce cytokine release from A549 cells, which is reduced by RNO.

  16. CFTR, Mucins, and Mucus Obstruction in Cystic Fibrosis

    PubMed Central

    Kreda, Silvia M.; Davis, C. William; Rose, Mary Callaghan

    2012-01-01

    Mucus pathology in cystic fibrosis (CF) has been known for as long as the disease has been recognized and is sometimes called mucoviscidosis. The disease is marked by mucus hyperproduction and plugging in many organs, which are usually most fatal in the airways of CF patients, once the problem of meconium ileus at birth is resolved. After the CF gene, CFTR, was cloned and its protein product identified as a cAMP-regulated Cl− channel, causal mechanisms underlying the strong mucus phenotype of the disease became obscure. Here we focus on mucin genes and polymeric mucin glycoproteins, examining their regulation and potential relationships to a dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR). Detailed examination of CFTR expression in organs and different cell types indicates that changes in CFTR expression do not always correlate with the severity of CF disease or mucus accumulation. Thus, the mucus hyperproduction that typifies CF does not appear to be a direct cause of a defective CFTR but, rather, to be a downstream consequence. In organs like the lung, up-regulation of mucin gene expression by inflammation results from chronic infection; however, in other instances and organs, the inflammation may have a non-infectious origin. The mucus plugging phenotype of the β-subunit of the epithelial Na+ channel (βENaC)-overexpressing mouse is proving to be an archetypal example of this kind of inflammation, with a dehydrated airway surface/concentrated mucus gel apparently providing the inflammatory stimulus. Data indicate that the luminal HCO3 − deficiency recently described for CF epithelia may also provide such a stimulus, perhaps by causing a mal-maturation of mucins as they are released onto luminal surfaces. In any event, the path between CFTR dysfunction and mucus hyperproduction has proven tortuous, and its unraveling continues to offer its own twists and turns, along with fascinating glimpses into biology. PMID:22951447

  17. Induction of IL-6 and inhibition of IL-8 secretion in the human airway cell line Calu-3 by urban particulate matter collected with a modified method of PM sampling

    SciTech Connect

    Alfaro-Moreno, Ernesto; Torres, Victor; Miranda, Javier; Martinez, Leticia; Garcia-Cuellar, Claudia; Nawrot, Tim S.; Vanaudenaerde, Bart; Hoet, Peter; Ramirez-Lopez, Pavel; Rosas, Irma; Nemery, Benoit; Osornio-Vargas, Alvaro Roman

    2009-07-15

    Exposure to particulate matter (PM) induces inflammatory cytokines. In the present study, we evaluated the secretion of IL-6 and IL-8 by an airway cell line exposed to PM with a mean aerodynamic size equal to or less than 10 or 2.5 {mu}m (PM{sub 10} and PM{sub 2.5}, respectively) collected in Mexico City, using a modified high-volume sampling method avoiding the use of solvents or introducing membrane components into the samples. PM was collected on cellulose-nitrate (CN) membranes modified for collection on high-volume samplers. Composition of the particles was evaluated by particle-induced X-ray emission (PIXE) and scanning electron microscopy. The particles (10-160 {mu}g/cm{sup 2}) were tested on Calu-3 cells. Control cultures were exposed to LPS (10 ng/mL to 100 {mu}g/mL) or silica (10-160 {mu}g/cm{sup 2}). IL-6 and IL-8 secretions were evaluated by ELISA. An average of 10 mg of PM was recovered form each cellulose-nitrate filter. No evidence of contamination from the filter was found. Cells exposed to PM{sub 10} presented an increase in the secretion of IL-6 (up to 400%), while IL-8 decreased (from 40% to levels below the detection limit). A similar but weaker effect was observed with PM{sub 2.5}. In conclusion, our modified sampling method provides a large amount of urban PM free of membrane contamination. The urban particles induce a decrease in IL-8 secretion that contrasts with the LPS and silica effects. These results suggest that the regulation of IL-8 expression is different for urban particles (complex mixture containing combustion-related particles, soil and biologic components) than for biogenic compounds or pure mineral particles.

  18. A Gastric Glycoform of MUC5AC Is a Biomarker of Mucinous Cysts of the Pancreas

    PubMed Central

    Sinha, Jessica; Cao, Zheng; Dai, Jianliang; Tang, Huiyuan; Partyka, Katie; Hostetter, Galen; Simeone, Diane M.; Feng, Ziding; Allen, Peter J.; Brand, Randall E.; Haab, Brian B.

    2016-01-01

    Molecular indicators to specify the risk posed by a pancreatic cyst would benefit patients. Previously we showed that most cancer-precursor cysts, termed mucinous cysts, produce abnormal glycoforms of the proteins MUC5AC and endorepellin. Here we sought to validate the glycoforms as a biomarker of mucinous cysts and to specify the oligosaccharide linkages that characterize MUC5AC. We hypothesized that mucinous cysts secrete MUC5AC displaying terminal N-acetylglucosamine (GlcNAc) in either alpha or beta linkage. We used antibody-lectin sandwich assays to detect glycoforms of MUC5AC and endorepellin in cyst fluid samples from three independent cohorts of 49, 32, and 66 patients, and we used monoclonal antibodies to test for terminal, alpha-linked GlcNAc and the enzyme that produces it. A biomarker panel comprising the previously-identified glycoforms of MUC5AC and endorepellin gave 96%, 96%, and 87% accuracy for identifying mucinous cysts in the three cohorts with an average sensitivity of 92% and an average specificity of 94%. Glycan analysis showed that MUC5AC produced by a subset of mucinous cysts displays terminal alpha-GlcNAc, a motif expressed in stomach glands. The alpha-linked glycoform of MUC5AC was unique to intraductal papillary mucinous neoplasms (IPMN), whereas terminal beta-linked GlcNAc was increased in both IPMNs and mucinous cystic neoplasms (MCN). The enzyme that synthesizes alpha-GlcNAc, A4GNT, was expressed in the epithelia of mucinous cysts that expressed alpha-GlcNAc, especially in regions with high-grade dysplasia. Thus IPMNs secrete a gastric glycoform of MUC5AC that displays terminal alpha-GlcNAc, and the combined alpha-GlcNAc and beta-GlcNAc glycoforms form an accurate biomarker of mucinous cysts. PMID:27992432

  19. Ambroxol inhalation ameliorates LPS-induced airway inflammation and mucus secretion through the extracellular signal-regulated kinase 1/2 signaling pathway.

    PubMed

    Zhang, Shui-juan; Jiang, Juan-xia; Ren, Qian-qian; Jia, Yong-liang; Shen, Jian; Shen, Hui-juan; Lin, Xi-xi; Lu, Hong; Xie, Qiang-min

    2016-03-15

    Ambroxol, a metabolite of bromhexine, is shown to exert several pharmacological activities, including secretolytic, anti-inflammatory and antioxidant actions. Oral and intravenous administration of ambroxol is useful for the airway inflammatory diseases. However, little is known about its potential in inhalation therapy for lipopolysaccharide (LPS)-induced mucous hypersecretion and inflammatory response. In the present study, we compared the pharmacological effects of ambroxol by inhalation with intravenous administration and preliminarily explored its mechanism of action. Our results demonstrated that ambroxol administered by inhalation inhibited MUC5AC expression, reduced glycosaminoglycan levels, enhanced the function of mucociliary clearance and promoted sputum excretion, suggesting that ambroxol increases expectoration of sputum by reducing its viscosity. Moreover, ambroxol significantly alleviated LPS-induced the influx of inflammatory cells and the extracellular signal-regulated kinase 1/2 (Erk 1/2) expression in lung tissues, and inhibited increases in the mRNA expression of the pro-inflammatory cytokines tumor necrosis factor (TNF)-α, CCL-2 (monocyte chemotactic protein-1), KC (keratinocyte cell protein) and interleukin (IL)-1β in lung tissues. The secretolytic and anti-inflammatory effects of inhaled ambroxol at a dose of 7.5 mg/ml was comparable to that of ambroxol at 20 mg/ml i.v. and dexamethasone at 0.5 mg/kg i.p. In addition, we found that ambroxol dose-dependently inhibited LPS-induced increases in the mRNA expression of MUC5AC, TNF-α, and IL-1β in human bronchial epithelial cell (NCI-H292) by inhibiting the Erk signaling pathway. These results demonstrate the beneficial effects of ambroxol in inhalation therapy for the airway inflammatory diseases.

  20. Cell patterning with mucin biopolymers

    PubMed Central

    Crouzier, T.; Jang, H.; Ahn, J.; Stocker, R.; Ribbeck, K.

    2014-01-01

    The precise spatial control of cell adhesion to surfaces is an endeavor that has enabled discoveries in cell biology and new possibilities in tissue engineering. The generation of cell-repellent surfaces currently requires advanced chemistry techniques and could be simplified. Here we show that mucins, glycoproteins of high structural and chemical complexity, spontaneously adsorb on hydrophobic substrates to form coatings that prevent the surface adhesion of mammalian epithelial cells, fibroblasts, and myoblasts. These mucin coatings can be patterned with micrometer precision using a microfluidic device, and are stable enough to support myoblast differentiation over seven days. Moreover, our data indicate that the cell-repellent effect is dependent on mucin-associated glycans because their removal results in a loss of effective cell-repulsion. Last, we show that a critical surface density of mucins, which is required to achieve cell-repulsion, is efficiently obtained on hydrophobic surfaces, but not on hydrophilic glass surfaces. However, this limitation can be overcome by coating glass with hydrophobic fluorosilane. We conclude that mucin biopolymers are attractive candidates to control cell adhesion on surfaces. PMID:23980712

  1. Changes in Saliva Rheological Properties and Mucin Glycosylation in Dry Mouth.

    PubMed

    Chaudhury, N M A; Shirlaw, P; Pramanik, R; Carpenter, G H; Proctor, G B

    2015-12-01

    Saliva is vital for the maintenance of normal oral physiology and mucosal health. The loss of salivary function can have far-reaching consequences, as observed with dry mouth, which is associated with increased orodental disease, speech impairment, dysphagia, and a significant negative effect on quality of life. The timely diagnosis of oral dryness is vital for the management of orodental disease and any associated often-undiagnosed systemic disease (e.g., Sjögren syndrome). Our aim was to investigate differences in mucin glycoproteins and saliva rheological properties between sufferers and nonsufferers of dry mouth in order to understand the relationship between saliva composition, rheological properties, and dryness perception and provide additional potential diagnostic markers. All patients exhibited objective and subjective oral dryness, irrespective of etiology. Over half of the patients (n = 20, 58.8%) had a saliva secretion rate above the gland dysfunction cutoff of 0.1 mL/min. Mucin (MUC5B and MUC7) concentrations were generally similar or higher in patients. Despite the abundance of these moisture-retaining proteins, patients exhibited reduced mucosal hydration (wetness) and significantly lower saliva spinnbarkeit (stringiness), suggesting a loss of the lubricating and retention/adhesion properties of saliva, which, at least partially, are associated with mucin glycoproteins. Over 90% of patients with dry mouth (DMPs) consistently had unstimulated whole mouth saliva (UWMS) spinnbarkeit below the proposed normal cutoff (10 mm). Further analysis of mucins revealed the reduced glycosylation of mucins in DMPs compared to healthy controls. Our data indicate that UWMS mucin concentrations are not reduced in dry mouth but that the mucin structure (glycosylation) is altered. UWMS from DMPs had reduced spinnbarkeit, the assessment of which, in conjunction with sialometry, could improve sensitivity for the diagnosis of dry mouth. Additionally, it may be useful to

  2. Characterization of mucin glycoprotein-specific translation products from swine and human trachea, pancreas and colon.

    PubMed

    Sangadala, S; Wallace, P; Mendicino, J

    1991-07-24

    RNA was isolated from cultured swine trachea epithelial cells and mucus-secreting tumor cell lines from human pancreas, lung and colon by extraction with guanidine isothiocyanate. Poly(A)+mRNA rich fractions were purified by repeated chromatography on oligo (dT)-cellulose columns and they were translated in a cell-free rabbit reticulocyte system. Translation products labelled with 35S-methionine were isolated by immunoprecipitation with specific antibodies to the polypeptide chains of mucin glycoproteins and they were analyzed by SDS-PAGE and fluorography. A single principal polypeptide band of 67 kDa was found in all cases when the immunoprecipitates were washed with buffer containing bovine serum albumin and unlabeled deglycosylated mucin glycoprotein. The intensity of the 67 kDa band decreased when unlabeled deglycosylated mucin glycoprotein was added to the translation mixture before immunoprecipitation. Affinity purified monospecific antibodies elicited against chemically deglycosylated polypeptide chains of purified mucin glycoproteins from human and swine trachea and Cowper's gland were all equally effective in immunoprecipitating the 67 kDa translation product. Monospecific antibodies directed against the glycosylated and unglycosylated regions of the polypeptide chain yielded single bands with a molecular size of 67 kDa in each case. Peptide profiles obtained by digestion of the 67 kDa translation product with S. aureus V-8 protease were identical to those obtained with deglycosylated human and swine trachea mucin glycoproteins. These studies clearly demonstrate that the translation product of swine trachea and human lung, colon and pancreatic mucin glycoprotein gene is a single polypeptide chain of 67 kDa. The relative size and properties of the translation products synthesized with poly (A)+RNA isolated from mucus-secreting cells derived from three different tissues are similar to those of mucin glycoproteins purified directly from mucus secretions of

  3. Transcriptional Activation of Mucin by Pseudomonas aeruginosa Lipopolysaccharide in the Pathogenesis of Cystic Fibrosis Lung Disease

    NASA Astrophysics Data System (ADS)

    Li, Jian-Dong; Dohrman, Austin F.; Gallup, Marianne; Miyata, Susumu; Gum, James R.; Kim, Young S.; Nadel, Jay A.; Prince, Alice; Basbaum, Carol B.

    1997-02-01

    An unresolved question in cystic fibrosis (CF) research is how mutations of the CF transmembrane conductance regulator, a CI ion channel, cause airway mucus obstruction leading to fatal lung disease. Recent evidence has linked the CF transmembrane conductance regulator mutation to the onset and persistence of Pseudomonas aeruginosa infection in the airways, and here we provide evidence directly linking P. aeruginosa infection to mucus overproduction. We show that P. aeruginosa lipopolysaccharide profoundly upregulates transcription of the mucin gene MUC 2 in epithelial cells via inducible enhancer elements and that this effect is blocked by the tyrosine kinase inhibitors genistein and tyrphostin AG 126. These findings improve our understanding of CF pathogenesis and suggest that the attenuation of mucin production by lipopolysaccharide antagonists and tyrosine kinase inhibitors could reduce morbidity and mortality in this disease.

  4. OZONE EXPOSURE INITIATES A SEQUENTIAL SIGNALING CASCADE IN AIRWAYS INVOLVING INTERLEUKIN-1BETA RELEASE, NERVE GROWTH FACTOR SECRETION, AND SUBSTANCE P UPREGULATION

    PubMed Central

    Barker, Joshua S.; Wu, Zhongxin; Hunter, Dawn D.; Dey, Richard D.

    2015-01-01

    Previous studies demonstrated that interleukin-1β (IL-1β) and nerve growth factor (NGF) increase synthesis of substance P (SP) in airway neurons both after ozone (O3) exposure and by direct application. It was postulated that NGF mediates O3-induced IL-1β effects on SP. The current study specifically focused on the influence of O3 on IL-1β, NGF, and SP levels in mice bronchoalveolar lavage fluid (BALF) and whether these mediators may be linked in an inflammatory-neuronal cascade in vivo. The findings showed that in vivo O3 exposure induced an increase of all three proteins in mouse BALF and that O3-induced elevations in both NGF and SP are mediated by the inflammatory cytokine IL-1β. Further, inhibition of NGF reduced O3 induced increases of SP in both the lung BALF and lung tissue, demonstrating NGF serves as a mediator of IL-1β effects on SP. These data indicate that IL-1β is an early mediator of O3-induced rise in NGF and subsequent SP release in mice in vivo. PMID:25734767

  5. Bacillus cereus NVH 0500/00 Can Adhere to Mucin but Cannot Produce Enterotoxins during Gastrointestinal Simulation

    PubMed Central

    Tsilia, Varvara; Kerckhof, Frederiek-Maarten; Heyndrickx, Marc

    2015-01-01

    Adhesion to the intestinal epithelium could constitute an essential mechanism of Bacillus cereus pathogenesis. However, the enterocytes are protected by mucus, a secretion composed mainly of mucin glycoproteins. These may serve as nutrients and sites of adhesion for intestinal bacteria. In this study, the food poisoning bacterium B. cereus NVH 0500/00 was exposed in vitro to gastrointestinal hurdles prior to evaluation of its attachment to mucin microcosms and its ability to produce nonhemolytic enterotoxin (Nhe). The persistence of mucin-adherent B. cereus after simulated gut emptying was determined using a mucin adhesion assay. The stability of Nhe toward bile and pancreatin (intestinal components) in the presence of mucin agar was also investigated. B. cereus could grow and simultaneously adhere to mucin during in vitro ileal incubation, despite the adverse effect of prior exposure to a low pH or intestinal components. The final concentration of B. cereus in the simulated lumen at 8 h of incubation was 6.62 ± 0.87 log CFU ml−1. At that point, the percentage of adhesion was approximately 6%. No enterotoxin was detected in the ileum, due to either insufficient bacterial concentrations or Nhe degradation. Nevertheless, mucin appears to retain B. cereus and to supply it to the small intestine after simulated gut emptying. Additionally, mucin may play a role in the protection of enterotoxins from degradation by intestinal components. PMID:26497468

  6. Bacillus cereus NVH 0500/00 Can Adhere to Mucin but Cannot Produce Enterotoxins during Gastrointestinal Simulation.

    PubMed

    Tsilia, Varvara; Kerckhof, Frederiek-Maarten; Rajkovic, Andreja; Heyndrickx, Marc; Van de Wiele, Tom

    2015-10-23

    Adhesion to the intestinal epithelium could constitute an essential mechanism of Bacillus cereus pathogenesis. However, the enterocytes are protected by mucus, a secretion composed mainly of mucin glycoproteins. These may serve as nutrients and sites of adhesion for intestinal bacteria. In this study, the food poisoning bacterium B. cereus NVH 0500/00 was exposed in vitro to gastrointestinal hurdles prior to evaluation of its attachment to mucin microcosms and its ability to produce nonhemolytic enterotoxin (Nhe). The persistence of mucin-adherent B. cereus after simulated gut emptying was determined using a mucin adhesion assay. The stability of Nhe toward bile and pancreatin (intestinal components) in the presence of mucin agar was also investigated. B. cereus could grow and simultaneously adhere to mucin during in vitro ileal incubation, despite the adverse effect of prior exposure to a low pH or intestinal components. The final concentration of B. cereus in the simulated lumen at 8 h of incubation was 6.62 ± 0.87 log CFU ml(-1). At that point, the percentage of adhesion was approximately 6%. No enterotoxin was detected in the ileum, due to either insufficient bacterial concentrations or Nhe degradation. Nevertheless, mucin appears to retain B. cereus and to supply it to the small intestine after simulated gut emptying. Additionally, mucin may play a role in the protection of enterotoxins from degradation by intestinal components.

  7. Mucins and Their Sugars. Critical Mediators of Hyperreactivity and Inflammation

    PubMed Central

    Raclawska, Dorota S.; Ttofali, Fani; Fletcher, Ashley A.; Harper, Daniel N.; Bochner, Bruce S.; Janssen, William J.

    2016-01-01

    Excessive mucus causes severe airflow obstruction in fatal asthma. It is also present in mild to moderate disease, but is poorly understood and treated. Mucus overproduction is associated with dysregulated expression of the mucins MUC5AC and MUC5B. Whereas increased MUC5AC is a consistent finding, MUC5B varies—remaining stably produced in some patients but strongly repressed in others (>90%). Patients with lower MUC5B display worsened asthma phenotypes including airway hyperreactivity (AHR) to methacholine (MCh) and eosinophilic inflammation. To better understand the roles of mucins in asthma, we generated Muc5ac and Muc5b knockout (−/−) mice. AHR to MCh was abolished in antigen-challenged Muc5ac−/− mice, due to prevention of heterogeneous mucous plugging that occurred in allergic wild-type mice during MCh-induced bronchoconstriction. Thus, in addition to the established role of smooth muscle–mediated airway narrowing, Muc5ac is an essential noncontractile AHR component. We also found that, unlike Muc5ac−/− mice, Muc5b-deficient mice were not protected from asthma phenotypes. Furthermore, whereas inflammation was unaffected by Muc5ac deficiency, it was exaggerated in the absence of Muc5b. On the basis of these differential effects, we are now determining how asthma phenotypes are regulated by mucin isoform specificity. Glycosylation is dramatically different: Muc5ac is heavily fucosylated whereas Muc5b is mainly sialylated. Fucosylation increases mucus viscoelasticity, and FUT2, the enzyme that catalyzes mucin α1,2-fucosylation, is associated with severe asthma exacerbation risk. Sialylation is required for binding to siglec (sialic acid–binding immunoglobulin-like lectin) receptors on leukocytes. Eosinophils express Siglec-F (mouse) or Siglec-8 (human). Engagement by sialoside ligands induces eosinophil apoptosis, and Muc5b via sialylated termini that require the α2,3-sialyltransferase ST3Gal3 for synthesis binds Siglec-F and induces apoptosis

  8. Airway acidification initiates host defense abnormalities in cystic fibrosis mice

    PubMed Central

    Shah, Viral S.; Meyerholz, David K.; Tang, Xiao Xiao; Reznikov, Leah; Alaiwa, Mahmoud Abou; Ernst, Sarah E.; Karp, Philip H.; Wohlford-Lenane, Christine L.; Heilmann, Kristopher P.; Leidinger, Mariah R.; Allen, Patrick D.; Zabner, Joseph; McCray, Paul B.; Ostedgaard, Lynda S.; Stoltz, David A.; Randak, Christoph O.; Welsh, Michael J.

    2016-01-01

    Cystic fibrosis (CF) is caused by mutations in the gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. In humans and pigs, the loss of CFTR impairs respiratory host defenses, causing airway infection. But CF mice are spared. We found that in all three species, CFTR secreted bicarbonate into airway surface liquid. In humans and pigs lacking CFTR, unchecked H+ secretion by the nongastric H+/K+ adenosine triphosphatase (ATP12A) acidified airway surface liquid, which impaired airway host defenses. In contrast, mouse airways expressed little ATP12A and secreted minimal H+; consequently, airway surface liquid in CF and non-CF mice had similar pH. Inhibiting ATP12A reversed host defense abnormalities in human and pig airways. Conversely, expressing ATP12A in CF mouse airways acidified airway surface liquid, impaired defenses, and increased airway bacteria. These findings help explain why CF mice are protected from infection and nominate ATP12A as a potential therapeutic target for CF. PMID:26823428

  9. Particle tracking microrheology of purified gastrointestinal mucins.

    PubMed

    Georgiades, Pantelis; Pudney, Paul D A; Thornton, David J; Waigh, Thomas A

    2014-04-01

    The rheological characteristics of gastric and duodenal mucin solutions, the building blocks of the mucus layer that covers the epithelia of the two organs, were investigated using particle tracking microrheology. We used biochemically well characterized purified porcine mucins (MUC5AC and MUC2) as models for human mucins, to probe their viscoelasticity as a function of mucin concentration and pH. Furthermore, we used both reducing (dithiothreitol, DTT) and chaotropic agents (guanidinium chloride and urea) to probe the mesoscopic forces that mediate the integrity of the polymer network. At neutral pH both gastric and duodenal mucins formed self-assembled semi-dilute networks above a certain critical mucin concentration (c*) with the viscosity (η) scaling as η∼c(0.53±0.08) for MUC5AC and η∼c(0.53±0.06) for MUC2, where c is the mucin concentration. Above an even higher mucin concentration threshold (ce , the entanglement concentration) reptation occurs and there is a dramatic increase in the viscosity scaling, η∼c(3.92±0.38) for MUC5AC and η∼c(5.1±0.8) for MUC2. The dynamics of the self-assembled comb polymers is examined in terms of a scaling model for flexible polyelectrolyte combs. Both duodenum and gastric mucin are found to be pH switchable gels, gelation occurring at low pHs. There is a hundred-fold increase in the elastic shear modulus once the pH is decreased. The addition of DTT, guanidinium chloride and urea disassembles both the semi-dilute and gel structures causing a large increase in the compliance (decrease in their shear moduli). Addition of the polyphenol EGCG has a reverse effect on mucin viscoelasticity, that is, it triggers a sol-gel transition in semi-dilute mucin solutions at neutral pH.

  10. The Phillips airway.

    PubMed

    Haridas, R P; Wilkinson, D J

    2012-07-01

    The Phillips airway was developed by George Ramsay Phillips. There is no known original description of the airway and the earliest known reference to it is from 1919. The airway and its modifications are described.

  11. Toxin Synthesis and Mucin Breakdown Are Related to Swarming Phenomenon in Clostridium septicum

    PubMed Central

    Macfarlane, Sandra; Hopkins, Mark J.; Macfarlane, George T.

    2001-01-01

    Clostridium septicum is responsible for several diseases in humans and animals. The bacterium is capable of a simple kind of multicellular behavior known as swarming. In this investigation, environmental and physiologic factors affecting growth and swarm cell formation in C. septicum were studied over a range of dilution rates (D = 0.02 to 0.65 h−1) in glucose-limited, glucose-excess, and mucin-limited chemostats. Cellular differentiation was observed at low specific growth rates, irrespective of the carbon and energy source, showing that swarming occurred in response to nutrient depletion. Differential expression of virulence determinants was detected in swarm cells. Hemolysin was secreted by short motile rods but not swarm cells, whereas in cultures grown with glucose, only swarm cells formed DNase, hyaluronidase, and neuraminidase. However, neuraminidase and, to a lesser degree, hyaluronidase were induced in short motile rods in mucin-limited cultures. Both swarm cells and short rods were cytotoxic to Vero cells. Mucin was chemotaxic to C. septicum, and large amounts of mucin-degrading enzymes (β-galactosidase, N-acetyl β-glucosaminidase, glycosulfatase, and neuraminidase) were produced. Synthesis of these enzymes was catabolite regulated. In chemostat experiments, glycosulfatase secretion occurred only in swarm cells at low dilution rates in mucin-limited cultures. Determinations of oligosaccharide utilization demonstrated that N-acetylglucosamine, galactose, and N-acetylgalactosamine were the main carbon sources for C. septicum in mucin. Neuraminic acid was not assimilated, showing that neuraminidase does not have a direct nutritional function in this pathogen. PMID:11160009

  12. Increased luminal mucin does not disturb glucose or ovalbumin absorption in rats fed insoluble dietary fiber.

    PubMed

    Morita, Tatsuya; Tanabe, Hiroki; Ito, Hiroyuki; Yuto, Shunsuke; Matsubara, Takeshi; Matsuda, Tsukasa; Sugiyama, Kimio; Kiriyama, Shuhachi

    2006-10-01

    We tested whether increased mucin secretion due to ingestion of insoluble dietary fiber (IDF) affects small intestinal nutrient absorption in rats. Polystyrene foam (PSF) with a true expansion ratio of 54.9 was used as a model for IDF with high bulk-forming properties. In Expt. 1, rats were fed a control diet or diet containing 50 g PSF/kg for 1, 3, 5, or 7 d. Small intestinal mucin fractions were isolated, and O-linked oligosaccharide chains were measured. The luminal mucin content reached a maximum within 5 d after PSF ingestion. In Expt. 2, rats were fed a control diet or diet containing 50 g PSF/kg for 7 d, and then all rats were switched to the control diet for 1, 3, or 5 d. The increased capacity for luminal mucin secretion disappeared within 5 d after ceasing PSF ingestion. In Expt. 3, rats were fed a control diet or diet containing 70 g PSF/kg for 7 d. Glucose (1g/kg) was administered orally after 12 h of food deprivation. The blood glucose concentrations did not differ between the groups. In Expt. 4, rats were fed a control diet or diet containing 90 g PSF/kg for 14 d. At d 7, portal cannulae were installed. A mixed solution of glucose (1g/kg) and ovalbumin (OVA, 250 mg/kg) was orally administered after 12 h of food deprivation, and responses of portal glucose and OVA concentrations were monitored for 120 min. Although luminal mucin contents were almost doubled in the 9% PSF group compared with the control group, neither portal glucose nor OVA concentration differed at any time point. The results suggest that the short-term ingestion of IDF significantly increases the luminal mucin content, but that this does not disturb nutrient absorption.

  13. Secondary mucinous carcinoma of the skin.

    PubMed

    Frances, Laura; Cuesta, Laura; Leiva-Salinas, Maria; Bañuls, Jose

    2014-04-16

    We report a case of a woman who presented with a cystic-appearing nodule on her left nipple. After cutaneous biopsy and gynecological staging study, she was diagnosed with skin invasion of mucinous carcinoma of the breast. We describe the main features of this rare tumor and the controversies in its diagnosis because primary and metastatic mucinous carcinomas in skin are histologically indistinguishable.

  14. Entamoeba histolytica Cysteine Proteinase 5 Evokes Mucin Exocytosis from Colonic Goblet Cells via αvβ3 Integrin

    PubMed Central

    Cornick, Steve; Moreau, France; Chadee, Kris

    2016-01-01

    Critical to the pathogenesis of intestinal amebiasis, Entamoeba histolytica (Eh) induces mucus hypersecretion and degrades the colonic mucus layer at the site of invasion. The parasite component(s) responsible for hypersecretion are poorly defined, as are regulators of mucin secretion within the host. In this study, we have identified the key virulence factor in live Eh that elicits the fast release of mucin by goblets cells as cysteine protease 5 (EhCP5) whereas, modest mucus secretion occurred with secreted soluble EhCP5 and recombinant CP5. Coupling of EhCP5-αvβ3 integrin on goblet cells facilitated outside-in signaling by activating SRC family kinases (SFK) and focal adhesion kinase that resulted in the activation/phosphorlyation of PI3K at the site of Eh contact and production of PIP3. PKCδ was activated at the EhCP5-αvβ3 integrin contact site that specifically regulated mucin secretion though the trafficking vesicle marker myristoylated alanine-rich C-kinase substrate (MARCKS). This study has identified that EhCP5 coupling with goblet cell αvβ3 receptors can initiate a signal cascade involving PI3K, PKCδ and MARCKS to drive mucin secretion from goblet cells critical in disease pathogenesis. PMID:27073869

  15. Mucinous micropapillary carcinoma of the breast: an aggressive counterpart to conventional pure mucinous tumors.

    PubMed

    Barbashina, Violetta; Corben, Adriana D; Akram, Muzaffar; Vallejo, Christina; Tan, Lee K

    2013-08-01

    Mucinous micropapillary carcinoma of the breast, also described as "pure mucinous carcinoma with micropapillary pattern," has recently come to attention as an unusual form of invasive breast cancer exhibiting dual mucinous and micropapillary differentiation. Despite increasing awareness of this morphologic variant, its clinical significance has not yet been elucidated. Here, we present 15 additional examples of these rare tumors to highlight some important differences between mucinous micropapillary carcinoma of the breast and ordinary pure mucinous carcinomas. The key features of mucinous micropapillary carcinoma of the breast included (a) largely or entirely mucinous appearance (>90% mucinous morphology), (b) distinctive micropapillary arrangement of the neoplastic cells, (c) intermediate to high nuclear grade, (d) "hobnail" cells, and (e) frequent psammomatous calcifications. In contrast to ordinary pure mucinous carcinomas, 20% of mucinous micropapillary carcinomas of the breast were characterized by human epidermal growth factor receptor 2 positivity, and 23% were p53 positive. More than half of mucinous micropapillary carcinomas of the breast (60%) demonstrated lymphovascular invasion, sometimes extensive. Synchronous axillary lymph node metastases were detected in 33% of patients and, on 2 occasions, involved more than 10 nodes. With a median follow-up of 4.5 years, we identified 1 patient (7%) with chest wall recurrence of mucinous micropapillary carcinoma of the breast after mastectomy. We conclude that mucinous micropapillary carcinomas of the breast constitute a clinically aggressive subset of mucin-producing breast carcinomas characterized by an increased capacity for lymphatic invasion and regional lymph node metastasis, reflective of their dual phenotype. Recognition of the morphologic and biologic heterogeneity within breast cancer subtypes should allow for a more accurate classification of the individual tumors and better patient stratification for

  16. Blockage of upper airway

    MedlinePlus

    ... Airway obstruction - acute upper Images Throat anatomy Choking Respiratory system References Cukor J, Manno M. Pediatric respiratory emergencies: upper airway obstruction and infections. In: Marx ...

  17. Mucinous eccrine nevus: a case report and literature review.

    PubMed

    Chen, Jia; Sun, Jian-fang; Zeng, Xue-si; Liu, Yi; Jiang, Yi-qun; Li, A-mei; Song, Ya-li

    2009-06-01

    Mucinous eccrine nevus (MEN) is a rare variant of eccrine nevus, characterized by a proliferation of normal eccrine structure surrounded by mucin deposits. We report herein the eighth case of mucinous eccrine nevus in the literature, with abundant mucin deposits not only in the stroma surrounding the eccrine glands but also in the superficial dermis. The literature is reviewed.

  18. Sialic acid-to-urea ratio as a measure of airway surface hydration.

    PubMed

    Esther, Charles R; Hill, David B; Button, Brian; Shi, Shuai; Jania, Corey; Duncan, Elizabeth A; Doerschuk, Claire M; Chen, Gang; Ranganathan, Sarath; Stick, Stephen M; Boucher, Richard C

    2017-03-01

    Although airway mucus dehydration is key to pathophysiology of cystic fibrosis (CF) and other airways diseases, measuring mucus hydration is challenging. We explored a robust method to estimate mucus hydration using sialic acid as a marker for mucin content. Terminal sialic acid residues from mucins were cleaved by acid hydrolysis from airway samples, and concentrations of sialic acid, urea, and other biomarkers were analyzed by mass spectrometry. In mucins purified from human airway epithelial (HAE), sialic acid concentrations after acid hydrolysis correlated with mucin concentrations (r(2) = 0.92). Sialic acid-to-urea ratios measured from filters applied to the apical surface of cultured HAE correlated to percent solids and were elevated in samples from CF HAEs relative to controls (2.2 ± 1.1 vs. 0.93 ± 1.8, P < 0.01). Sialic acid-to-urea ratios were elevated in bronchoalveolar lavage fluid (BALF) from β-epithelial sodium channel (ENaC) transgenic mice, known to have reduced mucus hydration, and mice sensitized to house dust mite allergen. In a translational application, elevated sialic acid-to-urea ratios were measured in BALF from young children with CF who had airway infection relative to those who did not (5.5 ± 3.7 vs. 1.9 ± 1.4, P < 0.02) and could be assessed simultaneously with established biomarkers of inflammation. The sialic acid-to-urea ratio performed similarly to percent solids, the gold standard measure of mucus hydration. The method proved robust and has potential to serve as flexible techniques to assess mucin hydration, particularly in samples like BALF in which established methods such as percent solids cannot be utilized.

  19. Effects of concentrated ambient particles and diesel engine exhaust on allergic airway disease in Brown Norway rats.

    PubMed

    Harkema, Jack R; Wagner, James G; Kaminski, Norbert E; Morishita, Masako; Keeler, Gerald J; McDonald, Jacob D; Barrett, Edward G

    2009-11-01

    studies, rats were killed 24 hours after the last OVA challenge, bronchoalveolar lavage fluid (BALF) was collected and analyzed for cellularity and secreted mediators, and lungs and nose were processed for histopathologic examination and morphometric analysis of intraepithelial mucosubstances (IM). The results of our animal inhalation studies in the southwest (SW) Detroit community, an area with elevated ambient PM2.5 concentrations, suggested that, during allergen challenge, exposure to CAPs that were predominantly associated with emissions from combustion sources markedly enhanced the OVA-induced allergic airway disease, which was characterized by an increased infiltration in the lungs of eosinophilic and lymphocytic inflammation, increased IM in conducting airways, and increased concentrations in BALF of mucin-specific proteins and inflammatory cytokines. These findings suggest that urban airborne PM2.5 derived from stationary combustion sources (e.g., refineries, coal-burning power plants, waste-treatment plants) may enhance the development of human allergic airway diseases like childhood asthma. Previous animal inhalation studies in this community have also suggested that these fine, ambient combustion-derived particles may also exacerbate preexisting allergic airway disease. In contrast to our CAPs studies in Detroit, the controlled DEE exposures of allergen-sensitized BN rats, during either allergen sensitization or challenge periods, caused only a few mild modifications in the character of the allergen-induced disease. This finding contrasts with other reported studies that indicate that DEPs at relatively higher exposure doses do enhance allergic airway disease in some rodent models. The reasons for these disparities between studies likely reflect differences in exposure dose, animal models, the timing of exposures to the allergens and DEP exposures, the methods of allergen sensitization and challenge, or physicochemical differences among DEEs.

  20. Biomimetic oral mucin from polymer micelle networks

    NASA Astrophysics Data System (ADS)

    Authimoolam, Sundar Prasanth

    Mucin networks are formed by the complexation of bottlebrush-like mucin glycoprotein with other small molecule glycoproteins. These glycoproteins create nanoscale strands that then arrange into a nanoporous mesh. These networks play an important role in ensuring surface hydration, lubricity and barrier protection. In order to understand the functional behavior in mucin networks, it is important to decouple their chemical and physical effects responsible for generating the fundamental property-function relationship. To achieve this goal, we propose to develop a synthetic biomimetic mucin using a layer-by-layer (LBL) deposition approach. In this work, a hierarchical 3-dimensional structures resembling natural mucin networks was generated using affinity-based interactions on synthetic and biological surfaces. Unlike conventional polyelectrolyte-based LBL methods, pre-assembled biotin-functionalized filamentous (worm-like) micelles was utilized as the network building block, which from complementary additions of streptavidin generated synthetic networks of desired thickness. The biomimetic nature in those synthetic networks are studied by evaluating its structural and bio-functional properties. Structurally, synthetic networks formed a nanoporous mesh. The networks demonstrated excellent surface hydration property and were able capable of microbial capture. Those functional properties are akin to that of natural mucin networks. Further, the role of synthetic mucin as a drug delivery vehicle, capable of providing localized and tunable release was demonstrated. By incorporating antibacterial curcumin drug loading within synthetic networks, bacterial growth inhibition was also demonstrated. Thus, such bioactive interfaces can serve as a model for independently characterizing mucin network properties and through its role as a drug carrier vehicle it presents exciting future opportunities for localized drug delivery, in regenerative applications and as bio

  1. Giant Mucinous Cystadenoma in Nnewi, Nigeria

    PubMed Central

    Okafor, CI; Onyegbule, OA; Etigbue, J; Uyoh, IS; Ezenri, U

    2015-01-01

    Mucinous ovarian tumors are the second commonest type of epithelial ovarian tumors. Most of these tumors are benign. Occasionally, these tumors may reach enormous dimensions without being symptomatic. We reported the occurrence of a huge benign ovarian tumor (mucinous cystadenoma) in Nnewi. The data were collected from history taking, clinical examination, laboratory investigation, ultrasonographic examination, operative findings and histopathological examination of the surgical specimen. The case was reported as a massive ovarian mucinous cystadenoma. This case report emphasizes the importance of a thorough evaluation of women who presented with vague abdominal pain. Although the condition is very rare, it is potentially hazardous if early diagnosis and timely intervention is not instituted PMID:26097766

  2. Primary Mucinous Cystadenocarcinoma of the Breast: Cytologic Finding and Expression of MUC5 Are Different from Mucinous Carcinoma.

    PubMed

    Kim, Sung Eun; Park, Ji Hye; Hong, Soonwon; Koo, Ja Seung; Jeong, Joon; Jung, Woo-Hee

    2012-12-01

    Mucinous cystadenocarcinoma (MCA) in the breast is a rare neoplasm. There have been 13 cases of primary breast MCA reported. The MCA presents as a large, partially cystic mass in postmenopausal woman with a good prognosis. The microscopic findings resemble those of ovarian, pancreatic, or appendiceal MCA. The aspiration findings showed mucin-containing cell clusters in the background of mucin and necrotic material. The cell clusters had intracytoplasmic mucin displacing atypical nuclei to the periphery. Histologically, the tumor revealed an abundant mucin pool with small floating clusters of mucin-containing tumor cells. There were also small cysts lined by a single layer of tall columnar mucinous cells, resembling those of the uterine endocervix. The cancer cells were positive for mucin (MUC) 5 and negative for MUC2 and MUC6. This mucin profile is different from ordinary mucinous carcinoma and may be a unique characteristic of breast MCA.

  3. Inhibition of airway surface fluid absorption by cholinergic stimulation

    PubMed Central

    Joo, Nam Soo; Krouse, Mauri E.; Choi, Jae Young; Cho, Hyung-Ju; Wine, Jeffrey J.

    2016-01-01

    In upper airways airway surface liquid (ASL) depth and clearance rates are both increased by fluid secretion. Secretion is opposed by fluid absorption, mainly via the epithelial sodium channel, ENaC. In static systems, increased fluid depth activates ENaC and decreased depth inhibits it, suggesting that secretion indirectly activates ENaC to reduce ASL depth. We propose an alternate mechanism in which cholinergic input, which causes copious airway gland secretion, also inhibits ENaC-mediated absorption. The conjoint action accelerates clearance, and the increased transport of mucus out of the airways restores ASL depth while cleansing the airways. We were intrigued by early reports of cholinergic inhibition of absorption by airways in some species. To reinvestigate this phenomenon, we studied inward short-circuit currents (Isc) in tracheal mucosa from human, sheep, pig, ferret, and rabbit and in two types of cultured cells. Basal Isc was inhibited 20–70% by the ENaC inhibitor, benzamil. Long-lasting inhibition of ENaC-dependent Isc was also produced by basolateral carbachol in all preparations except rabbit and the H441 cell line. Atropine inhibition produced a slow recovery or prevented inhibition if added before carbachol. The mechanism for inhibition was not determined and is most likely multi-factorial. However, its physiological significance is expected to be increased mucus clearance rates in cholinergically stimulated airways. PMID:26846701

  4. Mometasone Furoate Suppresses PMA-Induced MUC-5AC and MUC-2 Production in Human Airway Epithelial Cells

    PubMed Central

    Koontongkaew, Sittichai; Monthanapisut, Paopanga; Pattanacharoenchai, Napaporn

    2017-01-01

    Background Mucus hypersecretion from airway epithelium is a characteristic feature of airway inflammatory diseases. Tumor necrosis factor α (TNF-α) regulates mucin synthesis. Glucocorticoids including mometasone fuorate (MF) have been used to attenuate airway inflammation. However, effects of MF on mucin production have not been reported. Methods Effects of MF and budesonide (BUD) on the phorbol-12-myristate-13-acetate (PMA)–induction of mucin and TNF-α in human airway epithelial cells (NCI-H292) were investigated in the present study. Confluent NCI-H292 cells were pretreated with PMA (200 nM) for 2 hours. Subsequently, the cells were stimulated with MF (1–500 ng/mL) or BUD (21.5 ng/mL) for 8 hours. Dexamethasone (1 µg/mL) was used as the positive control. Real-time polymerase chain reaction was used to determine MUC2 and MUC5AC mRNA levels. The level of total mucin, MUC2, MUC5AC, and TNF-α in culture supernatants were measured using enzyme-linked immunosorbent assay. Results MF and BUD significantly suppressed MUC2 and MUC5AC gene expression in PMA-stimulated NCI-H292 cells. The inhibitory effects of the two steroid drugs were also observed in the production of total mucin, MUC2 and MUC5AC proteins, and TNF-α. Conclusion Our findings demonstrated that MF and BUD attenuated mucin and TNF-α production in PMA-induced human airway epithelial cells. PMID:28119748

  5. Affinity of bronchial secretion glycoproteins and cells of human bronchial mucosa for Ricinus communis lectins.

    PubMed

    Lhermitte, M; Lamblin, G; Degand, P; Roussel, P; Mazzuca, M

    1977-01-01

    The coupling of Ricinus communis lectins to Sephadex G 25 was used in order to study mucins and other glycoproteins from human bronchial secretion. The major part of human bronchial mucins and other glycoproteins such as immunoglobulins A, bronchotransferrin and alpha1-antichymotrypsin were isolated by this procedure. A parallel study of human bronchial mucosa was achieved with peroxidase labeled Ricinus communis lectins; this study characterized goblet cells and mucous cells which contain mucins, and serous cells which are involved in the synthesis or the secretion of the other glycoproteins.

  6. Triggers of airway inflammation.

    PubMed

    Kerrebijn, K F

    1986-01-01

    Most asthmatics have hyperresponsive airways. This makes them more sensitive than non-asthmatics to bronchoconstricting environmental exposures which, in their turn, may enhance responsiveness. Airway inflammation is considered to be a key determinant of airway hyperresponsiveness: the fact that chronic airway inflammation in cystic fibrosis does not lead to airway hyperresponsiveness of any importance indicates, however, that the role of airway inflammation is complex and incompletely elucidated. The main inducers of airway inflammation are viral infections, antigens, occupational stimuli and pollutants. Although exercise, airway cooling and hyper- or hypotonic aerosols are potent stimuli of bronchoconstriction, it is questionable if airway inflammation is involved in their mode of action. Each of the above-mentioned stimuli is discussed, with emphasis laid on the relation of symptoms to mechanisms.

  7. Effect of Dietary Exogenous Enzyme Supplementation on Enteric Mucosal Morphological Development and Adherent Mucin Thickness in Turkeys

    PubMed Central

    Ayoola, Ayuub A.; Malheiros, Ramon D.; Grimes, Jesse L.; Ferket, Peter R.

    2015-01-01

    Anti-nutritional factors (ANFs) in feed ingredients can challenge gut health and reduce nutrient utilization. Birds typically activate their innate immune system as a protective response against the adverse effects of ANF, which often involves the secretion of mucin. Although dietary supplementation of exogenous enzymes are commonly used to alleviate the adverse effects of ANF on apparent nutrient digestibility, little is known about how they affect gut health, particularly in relation to the morphological development and mucin secretion of enteric mucosa. We carried out two trials to examine the effect of dietary supplementation of different types of exogenous enzymes on gut health of by accessing the effect of jejunum morphological development and ileal enteric adherent mucin thickness layer in turkeys. Dietary β-mannanase supplementation reduced ileal adherent mucin thickness layer (804 vs 823 μg/g; p < 0.05), while a commercial blend of xylanase, amylase, and protease (XAP) reduced ileal adherent mucin layer thickness (589 vs 740 μg/g; p < 0.05); thus reducing the apparent endogenous loss of nutrients. Both enzyme supplements also affected gut morphological characteristics. In comparison to the control treatment, dietary β-mannanase supplementation improved the jejunum tip width (219 vs 161; p < 0.05), base width (367 vs 300; p < 0.05), surface area (509,870 vs 380, 157; p < 0.05) and villi height/crypt depth ratio (7.49 vs 5.70; p < 0.05), and XAP improved the crypt depth (p < 0.05). In conclusion, dietary supplementation of exogenous enzymes may help alleviate the adverse effects of ANF on nutrient utilization by directly or indirectly removing the mucosal irritation that stimulates enteric mucin secretion. PMID:26664972

  8. Deposition of aerosol particles and flow resistance in mathematical and experimental airway models.

    PubMed

    Kim, C S; Brown, L K; Lewars, G G; Sackner, M A

    1983-07-01

    Aerosol deposition and flow resistance in obstructed airways were determined from five mathematical and experimental airway models. The first three models were theoretical and based upon Weibel's symmetrical lung model with 1) uniform reduction of airway diameter in various groups of airway generations; 2) obstruction of a few major airways such that a severe uneven flow distribution occurs in the lung; 3) focal constriction of selected large airways. In model 3, an empirical formula was utilized to assess deposition and resistance in the constricted airways. The remaining two models were tested experimentally; 4) oscillation of a compliant wall in a straight tube and 5) two-phase gas-liquid flow utilizing human sputum in a rigid branching tube. In models 1, 2, and 3, airway resistance increased to a greater extent than did the increase of aerosol deposition except when small airways were obstructed in model 1. Here, the increase of aerosol deposition was slightly higher than the rise in airway resistance. A sharp increase of aerosol deposition with a minimal increase of flow resistance was demonstrated in models 4 and 5. These data indicate that aerosol deposition may be a more sensitive indicator of airway abnormalities than overall airway resistance in small airways obstruction, during oscillation of large and medium airway walls, and when excessive secretions within the airways move with a wave or slug motion.

  9. EGFR Interacts with the Fusion Protein of Respiratory Syncytial Virus Strain 2-20 and Mediates Infection and Mucin Expression

    PubMed Central

    Stobart, Christopher C.; Hotard, Anne L.; Villenave, Remi; Meng, Jia; Pretto, Carla D.; Shields, Michael D.; Nguyen, Minh Trang; Todd, Sean O.; Chi, Michael H.; Hammonds, Jason; Krumm, Stefanie A.; Spearman, Paul; Plemper, Richard K.; Sakamoto, Kaori; Peebles, R. Stokes; Power, Ultan F.; Moore, Martin L.

    2016-01-01

    Respiratory syncytial virus (RSV) is the major cause of viral lower respiratory tract illness in children. In contrast to the RSV prototypic strain A2, clinical isolate RSV 2–20 induces airway mucin expression in mice, a clinically relevant phenotype dependent on the fusion (F) protein of the RSV strain. Epidermal growth factor receptor (EGFR) plays a role in airway mucin expression in other systems; therefore, we hypothesized that the RSV 2–20 F protein stimulates EGFR signaling. Infection of cells with chimeric strains RSV A2-2-20F and A2-2-20GF or over-expression of 2–20 F protein resulted in greater phosphorylation of EGFR than infection with RSV A2 or over-expression of A2 F, respectively. Chemical inhibition of EGFR signaling or knockdown of EGFR resulted in diminished infectivity of RSV A2-2-20F but not RSV A2. Over-expression of EGFR enhanced the fusion activity of 2–20 F protein in trans. EGFR co-immunoprecipitated most efficiently with RSV F proteins derived from “mucogenic” strains. RSV 2–20 F and EGFR co-localized in H292 cells, and A2-2-20GF-induced MUC5AC expression was ablated by EGFR inhibitors in these cells. Treatment of BALB/c mice with the EGFR inhibitor erlotinib significantly reduced the amount of RSV A2-2-20F-induced airway mucin expression. Our results demonstrate that RSV F interacts with EGFR in a strain-specific manner, EGFR is a co-factor for infection, and EGFR plays a role in RSV-induced mucin expression, suggesting EGFR is a potential target for RSV disease. PMID:27152417

  10. [Expression and role of sugar chains on airway mucus during the exacerbation of airway inflammation].

    PubMed

    Ishibashi, Yuji; Inouye, Yoshio; Taniguchi, Akiyoshi

    2012-01-01

    Human bronchial mucins, such as MUC5AC, have traditionally been defined as a family of high-molecular weight glycoproteins. Changes in the contents of sugar chains on MUC5AC are among the fundamental features in inflammatory respiratory disease. The changes have been shown to lead to unfavorable alterations in the viscosity of mucus, resulting in impairment of mucociliary transport, vulnerability to viral/bacterial infection as sugar chains play an important role in adhesion of some viruses and bacteria to the epithelium, and finally inflammatory cell infiltration in the airway. Recently, we found that expression of some glycosyltransferases associated with the contents and structure of sugar chains is regulated by phosphatidylinositol-phospholipase (PI-PL) C signaling in cells. L-Carbocisteine, a mucoregulatory drug, normalized or balanced fucosylated and sialylated sugar chains, such as sialyl Lewis x through inhibition of PI-PL C signaling. We prepared MUC5AC fusion protein with tandem repeats associated with MUC5AC, and confirmed that L-carbocisteine inhibited the increases in viscosity associated with sialyl Lewis x expression levels. In addition, the clinical study (2008) noted that L-carbocisteine reduced the frequency of common colds and exacerbation of symptoms in patients with COPD. These favorable effects in patients may be due to normalization of sugar chain contents on mucins. We suggest that the inhibitory effect on infection of airway epithelial cells by rhinoviruses, respiratory syncytial virus, and influenza viruses by treatment with L-carbocisteine may also be based on the regulation of sugar chain contents or structures on mucins.

  11. Histology and mucin histochemistry of the digestive tract of yellow catfish, Pelteobagrus fulvidraco.

    PubMed

    Cao, X J; Wang, W M

    2009-08-01

    The histology and characteristics of mucins secreted by epithelial mucous cells of the digestive tract in yellow catfish, Pelteobagrus fulvidraco were investigated using light microscope and transmission electron microscope. The digestive tract was divided into a pharynx, oesophagus, U-shaped stomach (with a cardiac, fundic and pyloric part) and intestine, composed of anterior intestine, middle intestine and posterior intestine, which consisted of a mucosa (epithelial layer), lamina propria-submucosa, muscularis and serosa. A large number of isolated longitudinal striated muscular bundles were present in the lamina propria-submucosa of pharynx. Goblet cells were observed throughout the digestive tract, except in the stomach. In the cardiac and fundic stomach, a plenty of gastric glands were observed, whereas they were absent in the pyloric part. Numerous mitochondria and endoplasmic reticulum were observed in the columnar epithelial cells of the intestine, especially of the anterior part. The epithelial mucous cells contained neutral or other two mixtures of acid and neutral mucins, the first being the most common. The neutral mucin was the only type of mucins in the stomach, anterior intestine and middle intestine. The results of this study will be helpful for understanding the digestive physiology and diagnosing some gastrointestinal diseases in yellow catfish.

  12. Emergency airway puncture

    MedlinePlus

    ... support for only a very short period of time. Alternative Names Needle cricothyrotomy Images Emergency airway puncture Cricoid cartilage Emergency airway puncture - series References Hebert RB, Bose S, Mace SE. Cricothyrotomy and ...

  13. Upper airway biopsy

    MedlinePlus

    ... upper airway Images Upper airway test Bronchoscopy Throat anatomy References Yung RC, Boss EF. Tracheobronchial endoscopy. In: Flint PW, Haughey BH, Lund LJ, et al, eds. Cummings Otolaryngology: Head & Neck Surgery. 5th ed. Philadelphia, PA: Elsevier Mosby; ...

  14. Taste Receptors in Upper Airway Immunity.

    PubMed

    Carey, Ryan M; Lee, Robert J; Cohen, Noam A

    2016-01-01

    Taste receptors are well known for their role in communicating information from the tongue to the brain about nutritional value or potential toxicity of ingested substances. More recently, it has been shown that taste receptors are expressed in other locations throughout the body, including the airway, gastrointestinal tract, brain and pancreas. The roles of some 'extraoral' taste receptors are largely unknown, but emerging research suggests that bitter and sweet taste receptors in the airway are capable of sensing bacteria and modulating innate immunity. This chapter focuses on the role of bitter and sweet taste receptors in human airway innate immunity and their clinical relevance to rhinosinusitis. The bitter taste receptor T2R38 expressed in sinonasal cilia detects bitter bacterial quorum-sensing molecules and activates a nitric oxide-dependent innate immune response; moreover, there are polymorphisms in T2R38 that underlie susceptibility to chronic rhinosinusitis (CRS). Bitter and sweet receptors in sinonasal solitary chemosensory cells control secretion of antimicrobial peptides in the upper airway and may have a profound impact on airway infections in patients with CRS and diabetes. Future research on taste receptors in the airway has enormous potential to expand our understanding of host-pathogen immune interactions and provide novel therapeutic targets.

  15. Increased Understanding of the Biochemistry and Biosynthesis of MUC2 and Other Gel-Forming Mucins Through the Recombinant Expression of Their Protein Domains

    PubMed Central

    Ambort, Daniel; Thomsson, Elisabeth; Johansson, Malin E. V.; Hansson, Gunnar C.

    2016-01-01

    The gel-forming mucins are large and heavily O-glycosylated proteins which build up mucus gels. The recombinant production of full-length gel-forming mucins has not been possible to date. In order to study mucin biosynthesis and biochemistry, we and others have taken the alternative approach of constructing different recombinant proteins consisting of one or several domains of these large proteins and expressing them separately in different cell lines. Using this approach, we have determined that MUC2, the intestinal gel-forming mucin, dimerizes via its C-terminal cysteine-knot domain and also trimerizes via one of the N-terminal von Willebrand D domains. Both of these interactions are disulfide bond mediated. Via this assembly, a molecular network is built by which the mucus gel is formed. Here we discuss not only the functional understanding obtained from studies of the recombinant proteins, but also highlight the difficulties encountered when these proteins were produced recombinantly. We often found an accumulation of the proteins in the ER and consequently no secretion. This was especially apparent when the cysteine-rich domains of the N- and C-terminal parts of the mucins were expressed. Other proteins that we constructed were either not secreted or not expressed at all. Despite these problems, the knowledge of mucin biosynthesis and assembly has advanced considerably through the studies of these recombinant proteins. PMID:23359125

  16. Control of Lung Defense by Mucins and Macrophages: Ancient defense mechanisms with modern functions

    PubMed Central

    Janssen, William J.; Stefanski, Adrianne L.; Bochner, Bruce S.; Evans, Christopher M.

    2016-01-01

    Due to the need to balance the requirement for efficient respiration in the face of tremendous levels of exposure to endogenous and environmental challenges, it is crucial for the lungs to maintain sustainable defense that minimizes damage caused by exposures and the detrimental effects of inflammation to delicate gas exchange surfaces. Accordingly, epithelial and macrophage defenses constitute essential 1st and 2nd lines of protection that prevent the accumulation of potentially harmful agents in the lungs, and under homeostatic conditions do so effectively without inducing inflammation. Though seemingly distinct, recent data show that epithelial and macrophage mediated defenses are linked through their shared reliance on airway mucins, in particular the polymeric mucin MUC5B. This review highlights our understanding of novel mechanisms that link mucus and macrophage defenses. The roles of phagocytosis and the effects of factors that are contained within mucus on phagocytosis, as well as newly identified roles for mucin glycoproteins in the direct regulation of leukocyte functions are discussed. The emergence of this nascent field of glycoimmunobiology sets forth a new paradigm for considering how homeostasis is maintained under healthy conditions and how it is restored in disease. PMID:27587549

  17. Lung mucin production is stimulated by the air pollutant residual oil fly ash.

    PubMed

    Longphre, M; Li, D; Li, J; Matovinovic, E; Gallup, M; Samet, J M; Basbaum, C B

    2000-01-15

    Human and animal exposure to particulate air pollution is correlated with airway mucus hypersecretion and increased susceptibility to infection. Seeking clues to the mechanisms underlying this pathology, we examined the effect of the particulate air pollutant residual oil fly ash (ROFA) on production of the major component of mucus, mucin, and the major antibacterial protein of the respiratory tract, lysozyme. We found that following in vitro exposure to ROFA, epithelial cells showed an increase in mucin (MUC5AC) and lysozyme (LYS) steady state mRNA. This upregulation was controlled at least partly at the level of transcription as shown by reporter assays. Experiments testing the ability of the major components of ROFA to mimic these effects showed that vanadium, a metal making up 18.8% by weight, accounted for the bulk of the response. A screen of signaling inhibitors showed that MUC5AC and LYS induction by ROFA are mediated by dissimilar signaling pathways, both of which are, however, phosphotyrosine dependent. Recognizing that the ROFA constituent vanadium is a potent tyrosine phosphatase inhibitor and that mucin induction by pathogens is phophotyrosine dependent, we suggest that vanadium-containing air pollutants trigger disease-like conditions by unmasking phosphorylation-dependent pathogen resistance pathways.

  18. Careers in Airway Science.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    The Federal Aviation Administration (FAA) has initiated the Airway Science curriculum as a method of preparing the next generation of aviation technicians and managers. This document: (1) discusses the FAA's role in the Airway Science program; (2) describes some of the career fields that FAA offers to Airway Science graduates (air traffic control…

  19. Host-microbe interactions in distal airways: relevance to chronic airway diseases.

    PubMed

    Martin, Clémence; Burgel, Pierre-Régis; Lepage, Patricia; Andréjak, Claire; de Blic, Jacques; Bourdin, Arnaud; Brouard, Jacques; Chanez, Pascal; Dalphin, Jean-Charles; Deslée, Gaetan; Deschildre, Antoine; Gosset, Philippe; Touqui, Lhousseine; Dusser, Daniel

    2015-03-01

    This article is the summary of a workshop, which took place in November 2013, on the roles of microorganisms in chronic respiratory diseases. Until recently, it was assumed that lower airways were sterile in healthy individuals. However, it has long been acknowledged that microorganisms could be identified in distal airway secretions from patients with various respiratory diseases, including cystic fibrosis (CF) and non-CF bronchiectasis, chronic obstructive pulmonary disease, asthma and other chronic airway diseases (e.g. post-transplantation bronchiolitis obliterans). These microorganisms were sometimes considered as infectious agents that triggered host immune responses and contributed to disease onset and/or progression; alternatively, microorganisms were often considered as colonisers, which were considered unlikely to play roles in disease pathophysiology. These concepts were developed at a time when the identification of microorganisms relied on culture-based methods. Importantly, the majority of microorganisms cannot be cultured using conventional methods, and the use of novel culture-independent methods that rely on the identification of microorganism genomes has revealed that healthy distal airways display a complex flora called the airway microbiota. The present article reviews some aspects of current literature on host-microbe (mostly bacteria and viruses) interactions in healthy and diseased airways, with a special focus on distal airways.

  20. Intraductal Papillary Mucinous Neoplasm of Pancreas

    PubMed Central

    Machado, Norman Oneil; al Qadhi, Hani; al Wahibi, Khalifa

    2015-01-01

    Intraductal papillary mucinous neoplasms (IPMNs) of the pancreas are neoplasms that are characterized by ductal dilation, intraductal papillary growth, and thick mucus secretion. This relatively recently defined pathology is evolving in terms of its etiopathogenesis, clinical features, diagnosis, management, and treatment guidelines. A PubMed database search was performed. All the relevant abstracts in English language were reviewed and the articles in which cases of IPMN could be identified were further scrutinized. Information of IPMN was derived, and duplication of information in several articles and those with areas of persisting uncertainties were excluded. The recent consensus guidelines were examined. The reported incidence of malignancy varies from 57% to 92% in the main duct-IPMN (MD-IPMN) and from 6% to 46% in the branch duct-IPMN (BD-IPMN). The features of high-risk malignant lesions that raise concern include obstructive jaundice in a patient with a cystic lesion in the pancreatic head, the findings on radiological imaging of a mass lesion of >30 mm, enhanced solid component, and the main pancreatic duct (MPD) of size ≥10 mm; while duct size 5-9 mm and cyst size <3 mm are considered as “worrisome features.” Magnetic resonance imaging (MRI) and endoscopic ultrasound (EUS) are primary investigations in diagnosing and following up on these patients. The role of pancreatoscopy and the analysis of aspirated cystic fluid for cytology and DNA analysis is still to be established. In general, resection is recommended for most MD-IPMN, mixed variant, and symptomatic BD-IPMN. The 5-year survival of patients after surgical resection for noninvasive IPMN is reported to be at 77-100%, while for those with invasive carcinoma, it is significantly lower at 27-60%. The follow-up of these patients could vary from 6 months to 1 year and would depend on the risk stratification for invasive malignancy and the pathology of the resected specimen. The understanding of

  1. In vitro utilization of mucin by Bacteroides fragilis.

    PubMed Central

    Roberton, A M; Stanley, R A

    1982-01-01

    A method for isolating pig colon mucin in a soluble high-molecular-weight form, suitable for addition to bacterial growth media, is described. This preparation was utilized as a sole carbohydrate energy source by two strains of Bacteroides fragilis. The extent of degradation was compared with that of commercial pig gastric mucin by the same strains. Gas-liquid chromatographic analysis of the mucin carbohydrates and gel chromatography of the preparations were carried out before and after in vitro degradation. The mucin carbohydrates were utilized only to a very limited extent, colon mucin being more resistant to degradation than gastric mucin. Both mucins chromatographed at or near the excluded volume on Sepharose 4B, and only in the case of ATCC 25285 grown on gastric mucin was a significant degradation peak detected. If mucins are degraded in vivo by the sequential action of several bacteria, a pure culture in vitro might be expected to degrade mucins to a limited extent only. Techniques previously used to examine mucin utilization by pure cultures may have overlooked limited mucin degradation demonstrated by the methods used in this work. PMID:6174077

  2. Mucinous carcinoma occurring in the male breast.

    PubMed

    Ishida, Mitsuaki; Umeda, Tomoko; Kawai, Yuki; Mori, Tsuyoshi; Kubota, Yoshihiro; Abe, Hajime; Iwai, Muneo; Yoshida, Keiko; Kagotani, Akiko; Tani, Tohru; Okabe, Hidetoshi

    2014-02-01

    Male breast carcinoma is an uncommon neoplasm, accounting for 0.6% of all breast carcinomas. Invasive ductal carcinoma of no special type is the most common type of male breast carcinoma, and mucinous carcinoma occurring in the male breast is extremely rare. In the present study, we report a case of mucinous carcinoma of the male breast and discuss the clinicopathological features of this type of tumor. A 63-year-old Japanese male presented with a gradually enlarged nodule in the right breast. The resected breast specimen revealed pure mucinous carcinoma and immunohistochemical analyses demonstrated that tumor cells were positive for estrogen receptor (ER), but negative for progesterone receptor (PgR). In addition, HER2 expression was not amplified. Pure mucinous carcinoma is generally associated with a low incidence of lymph node or distant metastases, and excellent disease-free survival in females. However, certain cases of this type of tumor with axillary lymph node metastasis in the male breast have been reported. In addition, the immunoprofiles of mucinous carcinoma in males are fundamentally the same as those in females. More than 90% of cases show positive immunoreactivity for ER and/or PgR, and HER2 expression is not amplified. However, it has been reported that breast cancer in males is more frequently positive for ER than in females, and has less HER2 overexpression. The high rate of hormone receptor-positive breast cancer in males is considered to be due to similar conditions as those in breast cancer in postmenopausal women. The pathogenesis of male breast carcinoma, including mucinous carcinoma, remains unclear; therefore, additional clinicopathological studies are required.

  3. Mucins in the host defence against Naegleria fowleri and mucinolytic activity as a possible means of evasion.

    PubMed

    Cervantes-Sandoval, Isaac; Serrano-Luna, José de Jesús; García-Latorre, Ethel; Tsutsumi, Víctor; Shibayama, Mineko

    2008-12-01

    Naegleria fowleri is the aetiological agent of primary amoebic meningoencephalitis (PAM). This parasite invades its host by penetrating the olfactory mucosa. During the initial stages of infection, the host response is initiated by the secretion of mucus that traps the trophozoites. Despite this response, some trophozoites are able to reach, adhere to and penetrate the epithelium. In the present work, we evaluated the effect of mucins on amoebic adherence and cytotoxicity to Madin-Darby canine kidney (MDCK) cells and the MUC5AC-inducing cell line NCI-H292. We showed that mucins inhibited the adhesion of amoebae to both cell lines; however, this inhibition was overcome in a time-dependent manner. N. fowleri re-established the capacity to adhere faster than N. gruberi. Moreover, mucins reduced the cytotoxicity to target cells and the progression of the illness in mice. In addition, we demonstrated mucinolytic activity in both Naegleria strains and identified a 37 kDa protein with mucinolytic activity. The activity of this protein was inhibited by cysteine protease inhibitors. Based on these results, we suggest that mucus, including its major mucin component, may act as an effective protective barrier that prevents most cases of PAM; however, when the number of amoebae is sufficient to overwhelm the innate immune response, the parasites may evade the mucus by degrading mucins via a proteolytic mechanism.

  4. The distribution of mucous secreting cells in the gastrointestinal tracts of three small rodents from Saudi Arabia: Acomys dimidiatus, Meriones rex and Meriones libycus.

    PubMed

    Johnson, Olga; Marais, Sumine; Walters, Jacklynn; van der Merwe, Elizabeth L; Alagaili, Abdulaziz N; Mohammed, Osama B; Bennett, Nigel C; Kotzé, Sanet H

    2016-03-01

    The proportion of mucin phenotypes (which form the protective biofilm of the gastrointestinal tract) differs between intestinal regions. This study examines the distribution of mucin secreting cells in the gastrointestinal tracts of the Eastern spiny mouse (Acomys dimidiatus), King jird (Meriones rex) and Libyan jird (Meriones libycus), which inhabit the dry and hot deserts of Saudi Arabia. Intestinal tract samples were processed to wax and tissue sections stained with Alcian Blue-Periodic Acid Schiff (AB-PAS) and High Iron Diamine-Alcian Blue (HID-AB) in order to determine different mucin phenotypes by quantitative analysis. Mixed mucin secreting cells (combined neutral and acid) was the predominant mucin secreting cell type observed throughout the gastrointestinal tract in all species. Acid mucin secreting goblet cells were mainly located in the colon. A. dimidiatus presented with significantly more total sialo than sulfomucin secreting cells while the opposite was true for both Meriones species. The distribution of mucin secreting cells is therefore similar to previously reported results for small mammals not living under arid conditions.

  5. Extracellular proteins from Lactobacillus plantarum BMCM12 prevent adhesion of enteropathogens to mucin.

    PubMed

    Sánchez, Borja; Urdaci, María C

    2012-06-01

    The aim of this study was to study the interference of the extracellular proteins produced by Lactobacillus plantarum BMCM12 with the adhesion of some well-known gut pathogens. The extracellular proteins secreted by L. plantarum BMCM12 in MRS broth were precipitated, resolved by SDS-PAGE, and identified by tandem mass spectrometry. Discordances between the observed and the theoretical molecular masses of several proteins suggested the presence of protein glycosylation, corroborated with specific glycoprotein staining after protein de-glycosylation using trifluoromethanesulfonic acid. Experiments of exclusion, competition, or prevention of the pathogen adhesion to mucin were performed using BMCM12 extracellular proteins, using Escherichia coli LMG2092 and Salmonella enterica subsp. enterica LMG15860. Extracellular proteins from BMCM12 reduced significantly the adhesion of the pathogens when they were added prior to adhesion assays. These proteins play thus important roles in preventing pathogen adhesion to the mucin layer.

  6. Retroperitoneal mucinous cystadenoma of the appendix mimicking hydatid cyst: A case report

    PubMed Central

    Sikar, Hasan Ediz; Çetin, Kenan; Gündoğan, Ersin; Gündoğan, Gökçen Alinak; Kaptanoğlu, Levent

    2016-01-01

    Appendiceal mucocele is a cystic dilatation of the appendix due to abnormal appendiceal mucinous secretion. Cystadenoma of the appendix is one of the most common causes and is encountered in 0.6% of all appendectomy specimens. The diagnosis may be difficult due to the asymptomatic nature of the disease; pain in the right lower quadrant may be the only symptom. Complex ovarian cyst, urolithiasis or cystic hydatid disease of the liver have been reported as mimicking appendiceal mucocele in the literature. In this study, we present a case of mucinous cystadenoma of the appendix mimicking retroperitoneal hydatid cyst in a 59-year-old woman. The patient was treated with laparoscopic appendectomy with partial resection of the caecum following laparoscopic exploration. PMID:27446577

  7. Dual Roles of Gastric Gland Mucin-specific O-glycans in Prevention of Gastric Cancer

    PubMed Central

    Nakayama, Jun

    2014-01-01

    Gastric gland mucin is secreted from gland mucous cells, including pyloric gland cells and mucous neck cells located in the lower layer of the gastric mucosa. These mucins typically contain O-glycans carrying terminal α1,4-linked N-acetylglucosamine residues (αGlcNAc) attached to the scaffold protein MUC6, and biosynthesis of the O-glycans is catalyzed by the glycosyltransferase, α1,4-N-acetylglucosaminyltransferase (α4GnT). We previously used expression cloning to isolate cDNA encoding α4GnT, and then demonstrated that αGlcNAc functions as natural antibiotic against Helicobacter pylori, a microbe causing various gastric diseases including gastric cancer. More recently, it was shown that αGlcNAc serves as a tumor suppressor for differentiated-type adenocarcinoma. This review summarizes these findings and identifies dual roles for αGlcNAc in gastric cancer. PMID:24761044

  8. Sialylated glycans and mucins in the lacrimal gland and eyelid of man and pig. Potential receptors for pathogenic microorganisms.

    PubMed

    Kirkeby, Svend; Mikkelsen, Hanne B; Vorum, Henrik

    2011-12-20

    The conjunctiva of the eyelid is coated by secretion products from the lacrimal and eyelid glands, and by mucins produced by conjunctival goblet cells, which together form a glycoprotein-rich layer that lubricates and protects the surface of the eye. However, these ocular carbohydrates may also act as adhesives for viruses and bacteria and thereby facilitate their colonization. This paper provides histochemical demonstration of the in situ localization of such carbohydrate receptors in the form of sialylated glycans and mucins in the lacrimal and eyelid glands and conjunctiva from both humans and pigs. The pig is included in this study because viruses of swine origin may be capable of transmission to humans. We found that the human and pig ocular surfaces contain receptors for bacteria and viruses in the form of mucins (both membrane bound and secreted) and carbohydrates terminating in Sialylα2-6Gal epitopes and to a lesser degree in Sialylα2-3Gal. The glycosylation of the human soft palate could indicate a mucinous route for the spread of microorganisms from the eye via the nasolacrimal duct to the nasopharynx and thus to the upper part of the respiratory tract.

  9. Airways microbiota: Hidden Trojan horses in asbestos exposed individuals?

    PubMed

    Magouliotis, Dimitrios E; Tasiopoulou, Vasiliki S; Molyvdas, Paschalis-Adam; Gourgoulianis, Konstantinos I; Hatzoglou, Chrissi; Zarogiannis, Sotirios G

    2014-11-01

    Malignant pleura mesothelioma (MPM) is a rare type of cancer with devastating prognosis, which develops in the pleural cavity from transformed mesothelium. MPM has been directly associated with asbestos exposure however there are aspects of the pathophysiology involved in the translocation of asbestos fibers in the pleura that remain unclear. Here, we propose and discuss that certain proteins secreted by airways symbiotic microbiota create membrane pores to the airway epithelial cells, through which asbestos fibers can penetrate the lung parenchyma and reach the sub-pleural areas. We evaluate this hypothesis using data from the published literature regarding the airways microbiota toxins such as cholesterol-dependent cytolysins (CDCs).

  10. Do clinical and immunohistochemical findings of pure mucinous breast carcinoma differ from mixed mucinous breast carcinoma?

    PubMed

    Erhan, Y; Ciris, M; Zekioglu, O; Erhan, Y; Kapkac, M; Makay, O; Ozdemir, N

    2009-01-01

    Mucinous carcinoma of the breast is a relatively rare histologic type with two subtypes: pure and mixed. It has a favourable prognosis with a low risk of axillary metastases. The prognosis for pure mucinous carcinoma (PMC) was much better than for the mixed mucinous carcinoma (MMC). The aim of the study is to determine suitable candidates for breast or axillary conservation in mucinous carcinoma subtypes. The slides of 26 pure and 23 mixed mucinous carcinomas of the breast were evaluated. The clinical, pathological and immunohistochemical features between PMCs and MMCs were compared. MMC displayed greater metastatic potential (p < 0.05), p53 positivity (p < 0.05) and c-erbB-2 positivity (p <0.001) than PMCs. PMCs smaller than 2 cm had less metastatic capacity and extranodal invasion compared to MMCs smaller than 2 cm (p < 0.001 and p < 0.01, respectively). MMCs smaller than 2 cm displayed weaker ER positivity but greater c-erbB-2 positivity than PMCs smaller than 2 cm (p < 0.01). In conclusion, MMC had worse prognostic factors than PMC with both types of mucinous carcinoma showing similar ER and PR positive status. Even if PMCs and especially smaller PMCs display more favourable prognostic features, including less axillary lymph node involvement, it is appropriate to use sentinel lymph node biopsy to make better axillary assessment.

  11. Structure and function of airway surface layer of the human lungs & mobility of probe particles in complex fluids

    NASA Astrophysics Data System (ADS)

    Cai, Liheng

    Numerous infectious particles such as bacteria and pathogens are deposited on the airway surface of the human lungs during our daily breathing. To avoid infection the lung has evolved to develop a smart and powerful defense system called mucociliary clearance. The airway surface layer is a critical component of this mucus clearance system, which consists of two parts: (1) a mucus layer, that traps inhaled particles and transports them out of the lung by cilia-generated flow; and (2) a periciliary layer, that provides a favorable environment for ciliary beating and cell surface lubrication. For 75 years, it has been dogma that a single gel-like mucus layer, which is composed of secreted mucin glycoproteins, is transported over a "watery" periciliary layer. This one-gel model, however, does not explain fundamental features of the normal system, e.g. formation of a distinct mucus layer, nor accurately predict how the mucus clearance system fails in disease. In the first part of this thesis we propose a novel "Gel-on-Brush" model with a mucus layer (the "gel") and a "brush-like" periciliary layer, composed of mucins tethered to the luminal of airway surface, and supporting data accurately describes both the biophysical and cell biological bases for normal mucus clearance and its failure in disease. Our "Gel-on-Brush" model describes for the first time how and why mucus is efficiently cleared in health and unifies the pathogenesis of major human diseases, including cystic fibrosis and chronic obstructive pulmonary disease. It is expected that this "Gel-on-Brush" model of airway surface layer opens new directions for treatments of airway diseases. A dilemma regarding the function of mucus is that, although mucus traps any inhaled harmful particulates, it also poses a long-time problem for drug delivery: mobility of cargos carrying pharmaceutical agents is slowed down in mucus. The second part of this thesis aims to answer the question: can we theoretically understand the

  12. Quantitative microscopic evaluation of mucin areas and its percentage in mucinous carcinoma of the breast using tissue histological images.

    PubMed

    Saha, Monjoy; Arun, Indu; Basak, Bijan; Agarwal, Sanjit; Ahmed, Rosina; Chatterjee, Sanjoy; Bhargava, Rohit; Chakraborty, Chandan

    2016-06-01

    Mucinous carcinoma (MC) of the breast is very rare (∼1-7% of all breast cancers), invasive ductal carcinoma. Presence of pools of extracellular mucin is one of the most important histological features for MC. This paper aims at developing a quantitative computer-aided methodology for automated identification of mucin areas and its percentage using tissue histological images. The proposed method includes pre-processing (i.e., colour space transformation and colour normalization), mucin regions segmentation, post-processing, and performance evaluation. The proposed algorithm achieved 97.74% segmentation accuracy in comparison to ground truths. In addition, the percentage of mucin present in the tissue regions is calculated by the mucin index (MI) for grading MC (pure, moderately, minimally mucinous).

  13. Acute pulmonary edema and airway hemorrhage in a goat during sevoflurane anesthesia.

    PubMed

    Adami, C; Levionnois, O; Spadavecchia, C

    2011-02-01

    A goat was scheduled for experimental surgery under general anesthesia. The first attempt of performing endotracheal intubation failed and provoked laryngeal spasm. After repeated succesful intubation of inhalation anesthesia was delivered in high concentrations of sevoflurane. Suddenly hypertension and tachycardia were observed, followed by foamy airway secretion and then severe airway hemorrhage. The authors hypothesize that laryngeal spasm provoked respiratory distress and pulmonary edema. The delivered high concentrations of sevoflurane probably enhanced a hyperadrenergic response, predisposing to the development of airway hemorrhage.

  14. NEU1 Sialidase Regulates Membrane-tethered Mucin (MUC1) Ectodomain Adhesiveness for Pseudomonas aeruginosa and Decoy Receptor Release.

    PubMed

    Lillehoj, Erik P; Hyun, Sang Won; Liu, Anguo; Guang, Wei; Verceles, Avelino C; Luzina, Irina G; Atamas, Sergei P; Kim, K Chul; Goldblum, Simeon E

    2015-07-24

    Airway epithelia express sialylated receptors that recognize exogenous danger signals. Regulation of receptor responsiveness to these signals remains incompletely defined. Here, we explore the mechanisms through which the human sialidase, neuraminidase-1 (NEU1), promotes the interaction between the sialoprotein, mucin 1 (MUC1), and the opportunistic pathogen, Pseudomonas aeruginosa. P. aeruginosa flagellin engaged the MUC1 ectodomain (ED), increasing NEU1 association with MUC1. The flagellin stimulus increased the association of MUC1-ED with both NEU1 and its chaperone/transport protein, protective protein/cathepsin A. Scatchard analysis demonstrated NEU1-dependent increased binding affinity of flagellin to MUC1-expressing epithelia. NEU1-driven MUC1-ED desialylation rapidly increased P. aeruginosa adhesion to and invasion of the airway epithelium. MUC1-ED desialylation also increased its shedding, and the shed MUC1-ED competitively blocked P. aeruginosa adhesion to cell-associated MUC1-ED. Levels of desialylated MUC1-ED were elevated in the bronchoalveolar lavage fluid of mechanically ventilated patients with P. aeruginosa airway colonization. Preincubation of P. aeruginosa with these same ex vivo fluids competitively inhibited bacterial adhesion to airway epithelia, and MUC1-ED immunodepletion completely abrogated their inhibitory activity. These data indicate that a prokaryote, P. aeruginosa, in a ligand-specific manner, mobilizes eukaryotic NEU1 to enhance bacterial pathogenicity, but the host retaliates by releasing MUC1-ED into the airway lumen as a hyperadhesive decoy receptor.

  15. Mechanosensitive ATP Release Maintains Proper Mucus Hydration of Airways

    PubMed Central

    Button, Brian; Okada, Seiko F.; Frederick, Charles Brandon; Thelin, William R.; Boucher, Richard C.

    2013-01-01

    The clearance of mucus from the airways protects the lungs from inhaled noxious and infectious materials. Proper hydration of the mucus layer enables efficient mucus clearance through beating of cilia on airway epithelial cells, and reduced clearance of excessively concentrated mucus occurs in patients with chronic obstructive pulmonary disease and cystic fibrosis. Key steps in the mucus transport process are airway epithelia sensing and responding to changes in mucus hydration. We reported that extracellular adenosine triphosphate (ATP) and adenosine were important luminal auto-crine and paracrine signals that regulated the hydration of the surface of human airway epithelial cultures through their action on apical membrane purinoceptors. Mucus hydration in human airway epithelial cultures was sensed by an interaction between cilia and the overlying mucus layer: Changes in mechanical strain, proportional to mucus hydration, regulated ATP release rates, adjusting fluid secretion to optimize mucus layer hydration. This system provided a feedback mechanism by which airways maintained mucus hydration in an optimum range for cilia propulsion. Understanding how airway epithelia can sense and respond to changes in mucus properties helps us to understand how the mucus clearance system protects the airways in health and how it fails in lung diseases such as cystic fibrosis. PMID:23757023

  16. Mechanosensitive ATP release maintains proper mucus hydration of airways.

    PubMed

    Button, Brian; Okada, Seiko F; Frederick, Charles Brandon; Thelin, William R; Boucher, Richard C

    2013-06-11

    The clearance of mucus from the airways protects the lungs from inhaled noxious and infectious materials. Proper hydration of the mucus layer enables efficient mucus clearance through beating of cilia on airway epithelial cells, and reduced clearance of excessively concentrated mucus occurs in patients with chronic obstructive pulmonary disease and cystic fibrosis. Key steps in the mucus transport process are airway epithelia sensing and responding to changes in mucus hydration. We reported that extracellular adenosine triphosphate (ATP) and adenosine were important luminal autocrine and paracrine signals that regulated the hydration of the surface of human airway epithelial cultures through their action on apical membrane purinoceptors. Mucus hydration in human airway epithelial cultures was sensed by an interaction between cilia and the overlying mucus layer: Changes in mechanical strain, proportional to mucus hydration, regulated ATP release rates, adjusting fluid secretion to optimize mucus layer hydration. This system provided a feedback mechanism by which airways maintained mucus hydration in an optimum range for cilia propulsion. Understanding how airway epithelia can sense and respond to changes in mucus properties helps us to understand how the mucus clearance system protects the airways in health and how it fails in lung diseases such as cystic fibrosis.

  17. Mucinous Cystadenocarcinoma in a Horse Shoe Kidney Masquerading as Giant Hydronephrosis – A Case Report: Diagnostic Challenges, Lessons Learnt and Review of Literature

    PubMed Central

    Joseph, Leena Dennis; Swaminathan, Rajendiran; Kripesh, Gokul; Sekar, Hariharasudhan

    2016-01-01

    Primary epithelial tumour of the renal pelvis is a rare entity. So far, very few cases are reported in literature. Of these, mucin secreting adenocarcinomas are distinctly rare. However, mucinous cystadenocarcinoma, that too arising in a horse shoe kidney is extremely rare to be reported. Mucinous cystadenomas and carcinomas arising from the renal pelvis are regarded to be secondary to a metaplastic change in the urothelium. Here, we present a case of a 51-year-old male, who complained of abdominal pain, palpable abdominal mass, haematuria along with passage of mucoid material in the urine, with a very poorly functioning kidney. A pre-operative diagnosis of horse shoe kidney with pelvi ureteric junction obstruction and a poorly functioning kidney was made. Intraoperative findings and frozen section biopsy were suggestive of mucin secreting cystic mass and a right heminephrectomy was done. The final histopathology was suggestive of mucinous cystadenocarcinoma of the renal pelvis of the right moiety. This case is presented for its rarity, diagnostic challenges faced and the lessons learnt, stressing on the need for having a high index of clinical suspicion in making such diagnosis. PMID:28050435

  18. Long-term ingestion of insoluble dietary fiber increases luminal mucin content, but has no effect on nutrient absorption in rats.

    PubMed

    Morita, Tatsuya; Tanabe, Hiroki; Ito, Hiroyuki; Sugiyama, Kimio; Kiriyama, Shuhachi

    2008-03-01

    We reexamined the hypothesis that increased mucin secretion by the ingestion of insoluble dietary fiber (IDF) could affect small intestinal nutrient absorption. Polystyrene foam (PSF) was used as IDF. Rats were fed a diet with or without 90 g of PSF/kg for 1, 2 and 4 wk. At the end of each period, a glucose and ovalbumin (OVA) solution was intubated after 12 h of food depletion, and the changes in serum concentrations of these components were monitored. Luminal mucin was measured as O-linked oligosaccharide chains and also determined by ELISA. In all periods, the luminal mucin content was greater in the PSF-fed group than in the fiber-free control. However, the changes in serum glucose and OVA concentrations were comparable between the groups at any time during any period. These results show that the enhancement of luminal mucin secretion lasted even after chronic ingestion of IDF, but that the increased luminal mucin content had no effect on the rate of luminal nutrient absorption.

  19. Physiology of Epithelial Chloride and Fluid Secretion

    PubMed Central

    Frizzell, Raymond A.; Hanrahan, John W.

    2012-01-01

    Epithelial salt and water secretion serves a variety of functions in different organ systems, such as the airways, intestines, pancreas, and salivary glands. In cystic fibrosis (CF), the volume and/or composition of secreted luminal fluids are compromised owing to mutations in the gene encoding CFTR, the apical membrane anion channel that is responsible for salt secretion in response to cAMP/PKA stimulation. This article examines CFTR and related cellular transport processes that underlie epithelial anion and fluid secretion, their regulation, and how these processes are altered in CF disease to account for organ-specific secretory phenotypes. PMID:22675668

  20. Allergic airway inflammation induces a pro-secretory epithelial ion transport phenotype in mice.

    PubMed

    Anagnostopoulou, P; Dai, L; Schatterny, J; Hirtz, S; Duerr, J; Mall, M A

    2010-12-01

    The airway epithelium is a central effector tissue in allergic inflammation and T-helper cell (Th) type 2-driven epithelial responses, such as mucus hypersecretion contribute to airflow obstruction in allergic airway disease. Previous in vitro studies demonstrated that Th2 cytokines also act as potent modulators of epithelial ion transport and fluid secretion, but the in vivo effect of allergic inflammation on airway ion transport remains unknown. We, therefore, induced allergic inflammation by intratracheal instillation of Aspergillus fumigatus extract or interleukin-13 in mice and determined effects on ion transport in native tracheal and bronchial tissues. We demonstrate that allergic inflammation enhanced basal Cl(-) secretion in both airway regions and inhibited epithelial Na(+) channel (ENaC)-mediated Na(+) absorption and increased Ca²(+)-dependent Cl(-) secretion in bronchi. Allergen-induced alterations in bronchial ion transport were associated with reduced transcript levels of α-, β- and γENaC, and were largely abrogated in signal transducer and activator of transcription (Stat)6(-/-) mice. Our studies demonstrate that Th2-dependent airway inflammation produced a pro-secretory ion transport phenotype in vivo, which was largely Stat6-dependent. These results suggest that Th2-mediated fluid secretion may improve airway surface hydration and clearance of mucus that is hypersecreted in allergic airway diseases such as asthma, and identify epithelial Stat6 signalling as a potential therapeutic target to promote mucus hydration and airway clearance.

  1. Acid-Sensing Ion Channel 1a Contributes to Airway Hyperreactivity in Mice

    PubMed Central

    Reznikov, Leah R.; Meyerholz, David K.; Adam, Ryan J.; Abou Alaiwa, Mahmoud; Jaffer, Omar; Michalski, Andrew S.; Powers, Linda S.; Price, Margaret P.; Stoltz, David A.; Welsh, Michael J.

    2016-01-01

    Neurons innervating the airways contribute to airway hyperreactivity (AHR), a hallmark feature of asthma. Several observations suggested that acid-sensing ion channels (ASICs), neuronal cation channels activated by protons, might contribute to AHR. For example, ASICs are found in vagal sensory neurons that innervate airways, and asthmatic airways can become acidic. Moreover, airway acidification activates ASIC currents and depolarizes neurons innervating airways. We found ASIC1a protein in vagal ganglia neurons, but not airway epithelium or smooth muscle. We induced AHR by sensitizing mice to ovalbumin and found that ASIC1a-/- mice failed to exhibit AHR despite a robust inflammatory response. Loss of ASIC1a also decreased bronchoalveolar lavage fluid levels of substance P, a sensory neuropeptide secreted from vagal sensory neurons that contributes to AHR. These findings suggest that ASIC1a is an important mediator of AHR and raise the possibility that inhibiting ASIC channels might be beneficial in asthma. PMID:27820848

  2. Wheatgrass Extract Ameliorates Hypoxia-induced Mucin Gene Expression in A549 cells

    PubMed Central

    Sim, Ju hwan; Choi, Moon-Hee; Shin, Hyun-Jae; Lee, Ji-Eun

    2017-01-01

    Background: Wheatgrass is known to have antioxidant, antiaging, and anti-inflammatory effect. However, its protective effect against hypoxia is not yet evaluated. Objective: In this study, we evaluated the protective and anti-inflammatory effect of wheatgrass against the hypoxia in airway epithelial cells. Materials and Methods: A549 human lung adenocarcinoma cells were incubated in a hypoxic condition (CO2 5%/O2 1%) for 24 hr in the presence of different concentration of wheatgrass 50, 75, 100, and 150 μg/mL, and the magnitude of each immunologic response produced by the A549 cells was compared. The mRNA expression level of mucin gene (MUC), 5A, 5B, 8, GM-CSF, TNF-α, and VEGF were evaluated by using real-time polymerase chain reaction. The MUC proteins level before and after knocking out the hypoxia-inducible factor (hif)-1α via short interfering (si) RNA transfection were assessed by immunoblot analysis. Accordingly, the involved cell signaling pathway was evaluated by immunoblot analysis. Results: The inflammatory cytokines (GM-CSF, TNF- α) and the expressions of MUC 5A, 5B, and 8 were augmented by hypoxia. The augmented MUC expression was decreased by the wheatgrass extract administration. Hif-1α gene expression after hypoxia exposure was decreased by wheatgrass. Knockdown of hif-1α by siRNA reduced the mucin gene expression and which was more enhanced by wheatgrass extract. Conclusion: Theses results suggest that wheatgrass may be useful in the treatment of sinonasal disease by inhibiting mucus hypersecretion in airway epithelium. SUMMARY Wheatgrass extract decreases the hypoxia-induced MUC 5A, 5B and 8 expression.Hif-1α gene expression after hypoxia exposure was decreased by wheatgrass.Wheatgrass inhibits p44/42 phosphorylation in hypoxia-exposed airway epithelial cells. Abbreviations used: A549: human lung adenocarcinoma cells, GM-CSF: granulocyte-macrophage colony stimulating factor, HIF: hypoxia inducible factor, IL: interleukin, MUC: mucin, MTT: 3

  3. Curcumin regulates airway epithelial cell cytokine responses to the pollutant cadmium

    SciTech Connect

    Rennolds, Jessica; Malireddy, Smitha; Hassan, Fatemat; Tridandapani, Susheela; Parinandi, Narasimham; Boyaka, Prosper N.; Cormet-Boyaka, Estelle

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cadmium induces secretion of IL-6 and IL-8 by two distinct pathways. Black-Right-Pointing-Pointer Cadmium increases NAPDH oxidase activity leading to Erk activation and IL-8 secretion. Black-Right-Pointing-Pointer Curcumin prevents cadmium-induced secretion of both IL-6 and IL-8 by airway cells. Black-Right-Pointing-Pointer Curcumin could be use to suppress lung inflammation due to cadmium inhalation. -- Abstract: Cadmium is a toxic metal present in the environment and its inhalation can lead to pulmonary disease such as lung cancer and chronic obstructive pulmonary disease. These lung diseases are characterized by chronic inflammation. Here we show that exposure of human airway epithelial cells to cadmium promotes a polarized apical secretion of IL-6 and IL-8, two pivotal pro-inflammatory cytokines known to play an important role in pulmonary inflammation. We also determined that two distinct pathways controlled secretion of these proinflammatory cytokines by human airway epithelial cells as cadmium-induced IL-6 secretion occurs via an NF-{kappa}B dependent pathway, whereas IL-8 secretion involves the Erk1/2 signaling pathway. Interestingly, the natural antioxidant curcumin could prevent both cadmium-induced IL-6 and IL-8 secretion by human airway epithelial cells. In conclusion, curcumin could be used to prevent airway inflammation due to cadmium inhalation.

  4. Adhesion of human enterotoxigenic Escherichia coli to human mucus secreting HT-29 cell subpopulations in culture.

    PubMed Central

    Kerneis, S; Bernet, M F; Coconnier, M H; Servin, A L

    1994-01-01

    Enterotoxigenic Escherichia coli (ETEC) bearing the fimbrial colonisation factor antigens CFA/I, CFA/II, CFA/III, and the non-fimbrial antigen 2230 were tested for their ability to adhere to two cultured human intestinal HT-29 mucus secreting cell subpopulations. These populations are referred to as HT29-MTX and HT29-FU, which differ in the amount of secreted mucins and in their gastric or colonic mucin immunoreactivity respectively. Adherence of radiolabelled bacteria to cell monolayers infected apically was assessed. All ETEC strains adhered to the mucus secreting HT29-FU subpopulation, which secretes mucins of colonic immunoreactivity. Visualisation of bacteria by scanning electron microscopy showed that ETEC bound to the HT29-FU cells possessing a brush border, but not to the mucus and that ETEC binding developed as a function of cell differentiation. The adhesion of ETEC to cells possessing a brush border and to mucus secreting cells was also analysed by indirect immunofluorescence in HT29-MTX cells, which secrete mucins of gastric immunoreactivity. Fluorescein isothiocyanate labelling using specific anti-CFA/I antibody was used to show ETEC; rhodamine isothiocyanate labelling using a monoclonal antibody (designated M1) against purified human gastric mucus was used to detect secreted mucins, and rhodamine isothiocyanate labelling using a monoclonal antibody (designated 4H3) against human dipeptidylpeptidase IV was used to show cells possessing a brush border. Binding of bacteria colocalised with dipeptidylpeptidase IV of enterocytes and not with mucins. Images Figure 1 Figure 2 Figure 3 Figure 5 PMID:7959203

  5. Controversies in Pediatric Perioperative Airways

    PubMed Central

    Klučka, Jozef; Štourač, Petr; Štoudek, Roman; Ťoukálková, Michaela; Harazim, Hana; Kosinová, Martina

    2015-01-01

    Pediatric airway management is a challenge in routine anesthesia practice. Any airway-related complication due to improper procedure can have catastrophic consequences in pediatric patients. The authors reviewed the current relevant literature using the following data bases: Google Scholar, PubMed, Medline (OVID SP), and Dynamed, and the following keywords: Airway/s, Children, Pediatric, Difficult Airways, and Controversies. From a summary of the data, we identified several controversies: difficult airway prediction, difficult airway management, cuffed versus uncuffed endotracheal tubes for securing pediatric airways, rapid sequence induction (RSI), laryngeal mask versus endotracheal tube, and extubation timing. The data show that pediatric anesthesia practice in perioperative airway management is currently lacking the strong evidence-based medicine (EBM) data that is available for adult subpopulations. A number of procedural steps in airway management are derived only from adult populations. However, the objective is the same irrespective of patient age: proper securing of the airway and oxygenation of the patient. PMID:26759809

  6. Delivery of a mucin domain enriched in cysteine residues strengthens the intestinal mucous barrier

    PubMed Central

    Gouyer, Valérie; Dubuquoy, Laurent; Robbe-Masselot, Catherine; Neut, Christel; Singer, Elisabeth; Plet, Ségolène; Geboes, Karel; Desreumaux, Pierre; Gottrand, Frédéric; Desseyn, Jean-Luc

    2015-01-01

    A weakening of the gut mucous barrier permits an increase in the access of intestinal luminal contents to the epithelial cells, which will trigger the inflammatory response. In inflammatory bowel diseases, there is an inappropriate and ongoing activation of the immune system, possibly because the intestinal mucus is less protective against the endogenous microflora. General strategies aimed at improving the protection of the intestinal epithelium are still missing. We generated a transgenic mouse that secreted a molecule consisting of 12 consecutive copies of a mucin domain into its intestinal mucus, which is believed to modify the mucus layer by establishing reversible interactions. We showed that the mucus gel was more robust and that mucin O-glycosylation was altered. Notably, the gut epithelium of transgenic mice housed a greater abundance of beneficial Lactobacillus spp. These modifications were associated with a reduced susceptibility of transgenic mice to chemically induced colitis. Furthermore, transgenic mice cleared faster Citrobacter rodentium bacteria which were orally given and mice were more protected against bacterial translocation induced by gavage with adherent–invasive Escherichia coli. Our data show that delivering the mucin CYS domain into the gut lumen strengthens the intestinal mucus blanket which is impaired in inflammatory bowel diseases. PMID:25974250

  7. Membrane-bound mucin modular domains: from structure to function.

    PubMed

    Jonckheere, Nicolas; Skrypek, Nicolas; Frénois, Frédéric; Van Seuningen, Isabelle

    2013-06-01

    Mucins belong to a heterogeneous family of large O-glycoproteins composed of a long peptidic chain called apomucin on which are linked hundreds of oligosaccharidic chains. Among mucins, membrane-bound mucins are modular proteins and have a structural organization usually containing Pro/Thr/Ser-rich O-glycosylated domains (PTS), EGF-like and SEA domains. Via these modular domains, the membrane-bound mucins participate in cell signalling and cell interaction with their environment in normal and pathological conditions. Moreover, the recent knowledge of these domains and their biological activities led to the development of new therapeutic approaches involving mucins. In this review, we show 3D structures of EGF and SEA domains. We also describe the functional features of the evolutionary conserved domains of membrane-bound mucins and discuss consequences of splice events.

  8. Airway epithelium stimulates smooth muscle proliferation.

    PubMed

    Malavia, Nikita K; Raub, Christopher B; Mahon, Sari B; Brenner, Matthew; Panettieri, Reynold A; George, Steven C

    2009-09-01

    Communication between the airway epithelium and stroma is evident during embryogenesis, and both epithelial shedding and increased smooth muscle proliferation are features of airway remodeling. Hence, we hypothesized that after injury the airway epithelium could modulate airway smooth muscle proliferation. Fully differentiated primary normal human bronchial epithelial (NHBE) cells at an air-liquid interface were co-cultured with serum-deprived normal primary human airway smooth muscle cells (HASM) using commercially available Transwells. In some co-cultures, the NHBE were repeatedly (x4) scrape-injured. An in vivo model of tracheal injury consisted of gently denuding the tracheal epithelium (x3) of a rabbit over 5 days and then examining the trachea by histology 3 days after the last injury. Our results show that HASM cell number increases 2.5-fold in the presence of NHBE, and 4.3-fold in the presence of injured NHBE compared with HASM alone after 8 days of in vitro co-culture. In addition, IL-6, IL-8, monocyte chemotactic protein (MCP)-1 and, more markedly, matrix metalloproteinase (MMP)-9 concentration increased in co-culture correlating with enhanced HASM growth. Inhibiting MMP-9 release significantly attenuated the NHBE-dependent HASM proliferation in co-culture. In vivo, the injured rabbit trachea demonstrated proliferation in the smooth muscle (trachealis) region and significant MMP-9 staining, which was absent in the uninjured control. The airway epithelium modulates smooth muscle cell proliferation via a mechanism that involves secretion of soluble mediators including potential smooth muscle mitogens such as IL-6, IL-8, and MCP-1, but also through a novel MMP-9-dependent mechanism.

  9. [Mucinous papillary cystadenoma of the pancreas].

    PubMed

    Ledezma, G; Salloum, S; de Sulbarán, Y; de Armas, L

    1992-01-01

    The case of a 15-years-old female patient is presented, who referred pain and presence of a mass in the left upper quadrant of the abdomen. Diagnostic imaging showed a 9 cm diameter cystic lesion in the tail of the pancreas which was removed surgically. Histology demonstrated a pancreatic mucinous cystadenoma with borderline biological behaviour. A review of the literature related to cystic neoplasms of the pancreas is realized.

  10. [A case of multiple breast mucinous carcinomas].

    PubMed

    Maeda, Tetsuyo; Enomoto, Katsuhisa; Sakurai, Kenichi; Amano, Sadao

    2010-11-01

    A case was a 46-year-old woman who presented with the left breast lump confirmed about 30 years ago. In August 2006, the patient came to our hospital for consultation due to her breast lump was enlarged. Mammography revealed a frequent occurrence of the mass shadow of marginal irregularity and we diagnosed it with category 4. Breast echography showed a lot of irregular lesions. Even breast MRI presented a multiple mass-related lesion. The malignancy was possible, and a needle biopsy diagnosed them to be mucinous carcinoma. Pectoralis muscle preservation mastectomy and sentinel lymph node biopsy technique were used for surgery. Histopathology also diagnosed it to be mucinous carcinoma, T2N0 M0, stage IIA, ER (+), PgR (+), HER2 score 0. It has been 4 years since the operation but no sign of recurrence/metastasis was observed at present. There have been few reports of breast cancer with multiple cases, mucinous carcinoma as a case in point. Therefore, we report the invaluable case in addition to some paper consideration with it.

  11. The characterization of the first anti-mouse Muc6 antibody shows an increased expression of the mucin in pancreatic tissue of Cftr-knockout mice.

    PubMed

    Gouyer, Valérie; Leir, Shih-Hsing; Tetaert, Daniel; Liu, Yamin; Gottrand, Frédéric; Harris, Ann; Desseyn, Jean-Luc

    2010-05-01

    Gel-forming mucins are large high-molecular weight secreted O-glycoproteins responsible for the gel-properties of the mucus blanket. Five orthologous gel-forming mucins have been cloned in human and mouse. Among them, the mucin MUC6 has been less studied, particularly in rodents and no anti rodent-Muc6 antibody has been reported yet. In order to further study Muc6 in mice, our aims were to obtain a specific Muc6 antibody, to validate it and to test it in Cftr deficient mice. A polyclonal serum named CP4 was isolated from a rabbit immunized by a mouse Muc6 peptide. In Western blot experiments, the antibody detected a high-molecular weight molecule secreted by the gastric tissue. Using immunohistochemistry, we showed that the antibody reacted strongly with deep glands of duodenum and ileum and mucous neck cells of gastric body. CP4 also recognized Muc6 protein secreted at the surface of the stomach and renal collecting tubules. The centroacinar cells of pancreatic tissue also reacted with the antibody. Cftr-/- mice showed a higher expression of Muc6 at both protein and RNA levels compared with their control Cftr+/+ littermates suggesting that as in the human disease, Muc6 may contribute to the formation of materials that block pancreatic acini and ducts in mouse models of cystic fibrosis. The rabbit anti-mouse Muc6 polyclonal antibody seems highly specific to the mouse mucin and will be useful to study pancreatic pathology in cystic fibrosis.

  12. [Intraductal papillary mucinous tumor: diagnostic and therapeutic approach].

    PubMed

    Seijo Ríos, Susana; Lariño Noia, José; Iglesias García, Julio; Lozano León, Antonio; Domínguez Muñoz, Juan Enrique

    2008-02-01

    Primary cystic pancreatic neoplasms are rare tumors, with an approximate prevalence of 10% of cystic pancreatic lesions. Most of these lesions correspond to mucinous cystic neoplasm, serous cystoadenoma and intraductal papillary mucinous tumor (IPMT). IPMT is characterized by diffuse dilatation of the main pancreatic duct and/or side branches with inner defects related to mucin or tumor, or mucin extrusion from a patent ampulla. IPMT has a low potential for malignancy, with a low growth rate, a low rate of metastatic spread and postsurgical recurrence. Over the last few years, major advances have been made in the diagnostic and therapeutic management of this tumor.

  13. Quercetin Blocks Airway Epithelial Cell Chemokine Expression

    PubMed Central

    Nanua, Suparna; Zick, Suzanna M.; Andrade, Juan E.; Sajjan, Umadevi S.; Burgess, John R.; Lukacs, Nicholas W.; Hershenson, Marc B.

    2006-01-01

    Quercetin (3,3′,4′,5,7-pentahydroxyflavone), a dietary flavonoid, is an inhibitor of phosphatidylinositol (PI) 3-kinase and potent antioxidant. We hypothesized that quercetin blocks airway epithelial cell chemokine expression via PI 3-kinase–dependent mechanisms. Pretreatment with quercetin and the PI 3–kinase inhibitor LY294002 each reduced TNF-α–induced IL-8 and monocyte chemoattractant protein (MCP)-1 (also called CCL2) expression in cultured human airway epithelial cells. Quercetin also inhibited TNF-α–induced PI 3-kinase activity, Akt phosphorylation, intracellular H2O2 production, NF-κB transactivation, IL-8 promoter activity, and steady-state mRNA levels, consistent with the notion that quercetin inhibits chemokine expression by attenuating NF-κB transactivation via a PI 3-kinase/Akt-dependent pathway. Quercetin also reduced TNF-α–induced chemokine secretion in the presence of the transcriptional inhibitor actinomycin D, while inducing phosphorylation of eukaryotic translation initiation factor (eIF)-2α, suggesting that quercetin attenuates chemokine expression by post-transcriptional as well as transcriptional mechanisms. Finally, we tested the effects of quercetin in cockroach antigen–sensitized and –challenged mice. These mice show MCP-1–dependent airways hyperresponsiveness and inflammation. Quercetin significantly reduced lung MCP-1 and methacholine responsiveness. We conclude that quercetin blocks airway cell chemokine expression via transcriptional and post-transcriptional pathways. PMID:16794257

  14. Transcriptional PROFILING OF MUCOCILIARY DIFFERENTIATION IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    When cultured at an air-liquid interface (ALI) in the appropriate medium, primary human airway epithelial cells form a polarized, pseudostratified epithelium composed of ciliated and mucus-secreting cells. This culture system provides a useful tool for the in vitro study of...

  15. Regulation of airway surface liquid volume and mucus transport by active ion transport.

    PubMed

    Tarran, Robert

    2004-01-01

    Mucus clearance is an important component of the lung's innate defense against disease, and the ability of the airways to clear mucus is strongly dependent on the volume of liquid on airway surfaces. Whether airway surface liquid (ASL) volume is maintained by passive surface forces or by active ion transport is controversial yet crucial to the understanding of how this system operates in both health and disease. In support of active ion transport being the major determinant of ASL volume, we have demonstrated that normal airway epithelia sense and autoregulate ASL height (volume) by adjusting the rates of Na+ absorption and Cl- secretion to maintain mucus transport.

  16. Effect of Perinatal secondhand tobacco smoke exposure on in vivo and intrinsic airway structure/function in non-human primates

    SciTech Connect

    Joad, Jesse P. Kott, Kayleen S.; Bric, John M.; Peake, Janice L.; Pinkerton, Kent E.

    2009-02-01

    Infants exposed to second hand smoke (SHS) experience more problems with wheezing. This study was designed to determine if perinatal SHS exposure increases intrinsic and/or in vivo airway responsiveness to methacholine and whether potential structural/cellular alterations in the airway might explain the change in responsiveness. Pregnant rhesus monkeys were exposed to filtered air (FA) or SHS (1 mg/m{sup 3} total suspended particulates) for 6 h/day, 5 days/week starting at 50 days gestational age. The mother/infant pairs continued the SHS exposures postnatally. At 3 months of age each infant: 1) had in vivo lung function measurements in response to inhaled methacholine, or 2) the right accessory lobe filled with agarose, precision-cut to 600 {mu}m slices, and bathed in increasing concentrations of methacholine. The lumenal area of the central airway was determined using videomicrometry followed by fixation and histology with morphometry. In vivo tests showed that perinatal SHS increases baseline respiratory rate and decreases responsiveness to methacholine. Perinatal SHS did not alter intrinsic airway responsiveness in the bronchi. However in respiratory bronchioles, SHS exposure increased airway responsiveness at lower methacholine concentrations but decreased it at higher concentrations. Perinatal SHS did not change eosinophil profiles, epithelial volume, smooth muscle volume, or mucin volume. However it did increase the number of alveolar attachments in bronchi and respiratory bronchioles. In general, as mucin increased, airway responsiveness decreased. We conclude that perinatal SHS exposure alters in vivo and intrinsic airway responsiveness, and alveolar attachments.

  17. Effect of perinatal secondhand tobacco smoke exposure on in vivo and intrinsic airway structure/function in non-human primates.

    PubMed

    Joad, Jesse P; Kott, Kayleen S; Bric, John M; Peake, Janice L; Pinkerton, Kent E

    2009-02-01

    Infants exposed to second hand smoke (SHS) experience more problems with wheezing. This study was designed to determine if perinatal SHS exposure increases intrinsic and/or in vivo airway responsiveness to methacholine and whether potential structural/cellular alterations in the airway might explain the change in responsiveness. Pregnant rhesus monkeys were exposed to filtered air (FA) or SHS (1 mg/m(3) total suspended particulates) for 6 h/day, 5 days/week starting at 50 days gestational age. The mother/infant pairs continued the SHS exposures postnatally. At 3 months of age each infant: 1) had in vivo lung function measurements in response to inhaled methacholine, or 2) the right accessory lobe filled with agarose, precision-cut to 600 mum slices, and bathed in increasing concentrations of methacholine. The lumenal area of the central airway was determined using videomicrometry followed by fixation and histology with morphometry. In vivo tests showed that perinatal SHS increases baseline respiratory rate and decreases responsiveness to methacholine. Perinatal SHS did not alter intrinsic airway responsiveness in the bronchi. However in respiratory bronchioles, SHS exposure increased airway responsiveness at lower methacholine concentrations but decreased it at higher concentrations. Perinatal SHS did not change eosinophil profiles, epithelial volume, smooth muscle volume, or mucin volume. However it did increase the number of alveolar attachments in bronchi and respiratory bronchioles. In general, as mucin increased, airway responsiveness decreased. We conclude that perinatal SHS exposure alters in vivo and intrinsic airway responsiveness, and alveolar attachments.

  18. Oral N-acetylcysteine reduces bleomycin-induced lung damage and mucin Muc5ac expression in rats.

    PubMed

    Mata, M; Ruíz, A; Cerdá, M; Martinez-Losa, M; Cortijo, J; Santangelo, F; Serrano-Mollar, A; Llombart-Bosch, A; Morcillo, E J

    2003-12-01

    Oxidative stress is involved in the pathogenesis of pulmonary fibrosis, therefore antioxidants may be of therapeutic value. Clinical work indicates that N-acetylcysteine (NAC) may be beneficial in this disease. The activity of this antioxidant was examined on bleomycin-induced lung damage, mucus secretory cells hyperplasia and mucin Muc5ac gene expression in rats. NAC (3 mmol x kg(-1) x day(-1)) or saline was given orally to Sprague-Dawley rats for 1 week prior to a single intratracheal instillation of bleomycin (2.5 U x kg(-1)) and for 14 days postinstillation. NAC decreased collagen deposition in bleomycin-exposed rats (hydroxyproline content was 4,257+/-323 and 3,200+/-192 microg x lung(-1) in vehicle- and NAC-treated rats, respectively) and lessened the fibrotic area assessed by morphometric analysis. The bleomycin-induced increases in lung tumour necrosis factor-alpha and myeloperoxidase activity were reduced by NAC treatment. The numbers of mucus secretory cells in airway epithelium, and the Muc5ac messenger ribonucleic acid and protein expression, were markedly augmented in rats exposed to bleomycin. These changes were significantly reduced in NAC-treated rats. These results indicate that bleomycin increases the number of airway secretory cells and their mucin production, and that oral N-acetylcysteine improved pulmonary lesions and reduced the mucus hypersecretion in the bleomycin rat model.

  19. [The cleaning system of the airways: physiology, pathophysiology and effects of ambroxol].

    PubMed

    Wunderer, Horst; Morgenroth, Konrad; Weis, Günter

    2009-02-01

    The human airways are faced by a mucous membrane that keeps the airways humid and protects them. One of the main factors of this protection system is the secretion that covers the surface of the membrane. Like an escalator, secretion is moved steadily, day and night in order to eliminate germs and pollutants from the airways. Healthy people normally do not notice this transport. Infection of the airways accompanied by cough disturbs the transport. The aim of the therapy should be the reconstitution of the transport, not the unsighted suppression of mucus production. Therefore adequate rheological properties of the secretion are needed as well as the balance of its components. Ambroxol affects this system at several sites.

  20. Isolated mucinous adrenal metastasis in a breast cancer patient.

    PubMed

    Demirci, Umut; Buyukberber, Suleyman; Cakir, Tansel; Poyraz, Aylar; Baykara, Meltem; Karakus, Esra; Tufan, Gulnihal; Benekli, Mustafa; Coskun, Ugur

    2011-12-01

    Mucinous breast carcinoma (MBC) is a rare histological type of breast cancer and rarely associated with advanced disease. We report a case that had MBC with an isolated adrenal metastasis which was removed by laparoscopic adrenelectomy. This case is unique due to the unexpected metastasis of pure mucinous carcinoma developed after 4 years of hormone therapy.

  1. Heterogeneity and persistence length in human ocular mucins.

    PubMed Central

    Round, A N; Berry, M; McMaster, T J; Stoll, S; Gowers, D; Corfield, A P; Miles, M J

    2002-01-01

    Atomic force microscopy (AFM) has been used to investigate the heterogeneity and flexibility of human ocular mucins and their subunits. We have paid particular attention, in terms of theory and experiment, to the problem of inducing the polymers to assume equilibrium conformations at a surface. Mucins deposited from a buffer containing Ni(2+) ions adopt extended conformations on mica akin to those observed for DNA under similar conditions. The heterogeneity of the intracellular native mucins is evident from a histogram of contour lengths, reflecting, in part, the diversity of mucin gene products expressed. Reduction of the native mucin with dithiothreitol, thereby breaking the S==S bonds between cysteine residues, causes a marked reduction in polymer length. These results reflect the modes of transport and assembly of newly synthesized mucins in vivo. By modifying the worm-like chain model for applicability to two dimensions, we have confirmed that under the conditions employed mucin adsorbs to mica in an equilibrated conformation. The determined persistence length of the native mucin, 36 nm, is consistent with that of an extended, flexible polymer; such characteristics will influence the properties of the gels formed in vivo. PMID:12202389

  2. Human carcinoma-associated and salivary mucins detected by anti-bovine submaxillary mucin antibodies.

    PubMed

    Golubović, S J; Bojić-Trbojević, Z T

    2006-01-01

    Polyclonal rabbit anti-bovine submaxillary mucin antibodies, anti-BSM IgG, were analyzed by autoradiography and densitometry (after SDS electrophoresis and blotting), ELISA, and IRMA assays for reactivity against native antigen BSM, deglycosylated and desialylated BSM, and human salivary and carcinoma-associated mucins. Known human tumor marker CA19-9 antigen reacted with rabbit anti-BSM IgG under different conditions, either soluble or immobilized. As soluble antigen, in IRMA it reacted with anti-BSM antibodies used both as a catcher and a tracer, as well as in combination with monoclonal anti-CA19-9 antibodies as a catcher. MUC1 mucin is a carrier of this carbohydrate antigen, CA19-9, or sialyl-Lewis(a), as well as of CA15-3 antigen, a known breast tumor marker. Autoradiography and densitometry demonstrated binding of anti-BSM IgG to intact MUC1 in a sample of commercial standard preparation of CA19-9 antigen. The same method and analysis demonstrated binding of anti-BSM IgG to MUC1 and to smaller antigens of 85-120 kD in samples containing CA15-3 antigen: commercial standard preparation, human breast tissue, and human milk. In a sample of whole human saliva, reactions of both isoforms of MUC7 were detected by autoradiography, as bands of 85 and 115 kD, and densitogram analysis also demonstrated reaction with MUC5B. Chemical modifications performed as periodate oxidation and desialylation of the BSM demonstrated carbohydrate (i.e., sialic acid) epitope sensitivity for anti-BSM IgG. The results presented in this work indicate that polyclonal anti-BSM antibodies are specific for sialylated carbohydrate structure on mucins and could serve as a tool for investigation of human carcinoma-associated and salivary mucins.

  3. Glutathione redox regulates airway hyperresponsiveness and airway inflammation in mice.

    PubMed

    Koike, Yoko; Hisada, Takeshi; Utsugi, Mitsuyoshi; Ishizuka, Tamotsu; Shimizu, Yasuo; Ono, Akihiro; Murata, Yukie; Hamuro, Junji; Mori, Masatomo; Dobashi, Kunio

    2007-09-01

    Glutathione is the major intracellular redox buffer. We have shown that glutathione redox status, which is the balance between intracellular reduced (GSH) and oxidized (GSSG) glutathione, in antigen-presenting cells (APC) regulates the helper T cell type 1 (Th1)/Th2 balance due to the production of IL-12. Bronchial asthma is a typical Th2 disease. Th2 cells and Th2 cytokines are characteristic of asthma and trigger off an inflammation. Accordingly, we studied the effects of the intracellular glutathione redox status on airway hyperresponsiveness (AHR) and allergen-induced airway inflammation in a mouse model of asthma. We used gamma-Glutamylcysteinylethyl ester (gamma-GCE), which is a membrane-permeating GSH precursor, to elevate the intracellular GSH level and GSH/GSSG ratio of mice. In vitro, gamma-GCE pretreatment of human monocytic THP-1 cells elevated the GSH/GSSG ratio and enhanced IL-12(p70) production induced by LPS. In the mouse asthma model, intraperitoneal injection of gamma-GCE elevated the GSH/GSSG ratio of lung tissue and reduced AHR. gamma-GCE reduced levels of IL-4, IL-5, IL-10, and the chemokines eotaxin and RANTES (regulated on activation, normal T cell expressed and secreted) in bronchoalveolar lavage fluid, whereas it enhanced the production of IL-12 and IFN-gamma. Histologically, gamma-GCE suppressed eosinophils infiltration. Interestingly, we also found that gamma-GCE directly inhibited chemokine-induced eosinophil chemotaxis without affecting eotaxin receptor chemokine receptor 3 (CCR3) expressions. Taken together, these findings suggest that changing glutathione redox balance, increase in GSH level, and the GSH/GSSG ratio by gamma-GCE, ameliorate bronchial asthma by altering the Th1/Th2 imbalance through IL-12 production from APC and suppressing chemokine production and eosinophil migration itself.

  4. Studies on the binding of amylopectin sulfate with gastric mucin.

    PubMed

    Kim, Y S; Bella, A; Whitehead, J S; Isaacs, R; Remer, L

    1975-07-01

    Amylopectin sulfate, a sulfated polysaccharide that has an antipeptic property, was examined for its ability to bind gastric mucins. After chemically cross-linking the amylopectin sulfate into an insoluble gel, its binding with mucins isolated from antral and fundic mucosa of canine stomachs was studied with chromatography. A component present in both mucin fractions bound to the amylopectin sulfate gel below pH 4.5. This binding was reversible, and the complex dissociated above pH 5. Similar binding properties were found with soluble amylopectin sulfate. The component of the mucine which bound to amylopectin sulfate differed from the one which did not bind in its electrophoretic mobility and in its higher proportion of basic amino acids and a lower hexosamine, serine, and threonine content. This study suggests that amylopectin sulfate may bind to gastric mucins only under conditions of low pH.

  5. Surgical treatment of mucin-producing cholangiocarcinoma arising from intraductal papillary neoplasm of the intrahepatic bile duct: a report of 2 cases

    PubMed Central

    Baterdene, Namsrai; Lee, Jong-Wook; Jung, Min-Jae; Shin, Heeji; Seo, Hye Kyoung; Kim, Myeong-Hwan; Lee, Sung-Koo

    2016-01-01

    Intraductal papillary neoplasms of the bile duct (IPNB) leads to malignant transformation and mucin production. Herein, we presented two cases of mucin-producing IPNB with obstructive jaundice who underwent resection of the intrahepatic lesions and bypass hepaticojejunostomy. The first case was a 69 year-old male patient with 5-year follow up for gallstone disease. Imaging studies showed mucin-secreting IPNB mainly in the hepatic segment III bile duct (B3) and multiple intrahepatic duct stones for which, segment III resection, intrahepatic stone removal, end-to-side choledochojejunostomy and B3 hepaticojejunostomy were conducted. The second case was a 74 year-old female patient with 11-year follow up for gallstone disease. Imaging studies showed mucin-producing IPNB with dilatation of the segment IV duct (B4) and mural nodules for which, segment IV resection, partial resection of the diaphragm and central hepaticojejunostomy were conducted. Both patients recovered uneventfully from surgery. These cases highlight that in patients with IPNB, abundant production of highly viscous mucin inducing obstructive jaundice may be associated with malignant transformation. PMID:27621752

  6. Surface Tension Gradient Driven Spreading on Aqueous Mucin Solutions: A Possible Route to Enhanced Pulmonary Drug Delivery

    PubMed Central

    Koch, Kevin; Dew, Beautia; Corcoran, Timothy E.; Przybycien, Todd M.; Tilton, Robert D.; Garoff, Stephen

    2011-01-01

    Surface tension gradient driven, or “Marangoni,” flow can be used to move exogenous fluid, either surfactant dispersions or drug carrying formulations, through the lung. In this paper, we investigate the spreading of aqueous solutions of water-soluble surfactants over entangled, aqueous mucin solutions that mimic the airway surface liquid of the lung. We measure the movement of the formulation by incorporating dyes into the formulation while we measure surface flows of the mucin solution subphase using tracer particles. Surface tension forces and/or Marangoni stresses initiate a convective spreading flow over this rheologically complex subphase. As expected, when the concentration of surfactant is reduced until its surface tension is above that of the mucin solution, the convective spreading does not occur. The convective spreading front moves ahead of the drop containing the formulation. Convective spreading ends with the solution confined to a well-defined static area which must be governed by a surface tension balance. Further motion of the spread solution progresses by much slower diffusive processes. Spreading behaviors are qualitatively similar for formulations based on anionic, cationic, or nonionic surfactants, containing either hydrophilic or hydrophobic dyes, on mucin as well as on other entangled aqueous polymer solution subphases. This independence of qualitative spreading behaviors from the chemistry of the surfactant and subphase indicates that there is little chemical interaction between the formulation and the subphase during the spreading process. The spreading and final solution distributions are controlled by capillary and hydrodynamic phenomena and not by specific chemical interactions among the components of the system. It is suggested that capillary forces and Marangoni flows driven by soluble surfactants may thereby enhance the uniformity of drug delivery to diseased lungs. PMID:21250745

  7. New insights into upper airway innate immunity

    PubMed Central

    Hariri, Benjamin M.

    2016-01-01

    Background: Protecting the upper airway from microbial infection is an important function of the immune system. Proper detection of these pathogens is paramount for sinonasal epithelial cells to be able to prepare a defensive response. Toll-like receptors and, more recently, bitter taste receptors and sweet taste receptors have been implicated as sensors able to detect the presence of these pathogens and certain compounds that they secrete. Activation of these receptors also triggers innate immune responses to prevent or counteract infection, including mucociliary clearance and the production and secretion of antimicrobial compounds (e.g., defensins). Objective: To provide an overview of the current knowledge of the role of innate immunity in the upper airway, the mechanisms by which it is carried out, and its clinical relevance. Methods: A literature review of the existing knowledge of the role of innate immunity in the human sinonasal cavity was performed. Results: Clinical and basic science studies have shown that the physical epithelial cell barrier, mucociliary clearance, and antimicrobial compound secretion play pivotal innate immune roles in defending the sinonasal cavity from infection. Clinical findings have also linked dysfunction of these defense mechanisms with diseases, such as chronic rhinosinusitis and cystic fibrosis. Recent discoveries have elucidated the significance of bitter and sweet taste receptors in modulating immune responses in the upper airway. Conclusion: Numerous innate immune mechanisms seem to work in a concerted fashion to keep the sinonasal cavity free of infection. Understanding sinonasal innate immune function and dysfunction in health and disease has important implications for patients with respiratory ailments, such as chronic rhinosinusitis and cystic fibrosis. PMID:27657896

  8. Systems physiology of the airways in health and obstructive pulmonary disease.

    PubMed

    Bates, Jason H T

    2016-09-01

    Fresh air entering the mouth and nose is brought to the blood-gas barrier in the lungs by a repetitively branching network of airways. Provided the individual airway branches remain patent, this airway tree achieves an enormous amplification in cross-sectional area from the trachea to the terminal bronchioles. Obstructive lung diseases such as asthma occur when airway patency becomes compromised. Understanding the pathophysiology of these obstructive diseases thus begins with a consideration of the factors that determine the caliber of an individual airway, which include the force balance between the inward elastic recoil of the airway wall, the outward tethering forces of its parenchymal attachments, and any additional forces due to contraction of airway smooth muscle. Other factors may also contribute significantly to airway narrowing, such as thickening of the airway wall and accumulation of secretions in the lumen. Airway obstruction becomes particularly severe when these various factors occur in concert. However, the effect of airway abnormalities on lung function cannot be fully understood only in terms of what happens to a single airway because narrowing throughout the airway tree is invariably heterogeneous and interdependent. Obstructive lung pathologies thus manifest as emergent phenomena arising from the way in which the airway tree behaves a system. These emergent phenomena are studied with clinical measurements of lung function made by spirometry and by mechanical impedance measured with the forced oscillation technique. Anatomically based computational models are linking these measurements to underlying anatomic structure in systems physiology terms. WIREs Syst Biol Med 2016, 8:423-437. doi: 10.1002/wsbm.1347 For further resources related to this article, please visit the WIREs website.

  9. [Intraductal papillary mucinous neoplasm and recurrent pancreatitis].

    PubMed

    Gálvez, Eduardo; Gálvez, Gustavo; Barboza, Aurelio; Barboza, Eduardo; Combe, Juan Manuel; Combe, Mario R; Combe, Juan; Arias Stella C, Javier; Arias Stella, Javier

    2013-01-01

    Ohashi described for the first time the IPMN on 1982 as a pancreatic neoplasia with mucine cells forming papillae and producing dilatation of the main pancreatic duct or its branches. The IPMN represent the 1% of the pancreatic tumors and 5% of the cystic neoplasias. It is potentially malignant in a period of five years being more frequent in males between 60-70 and clinically these patients' presents as acute, recurrent or chronic pancreatitis, with an incidence of malignancy from 25% to 70%. CT scan and cholangio MRI allows the diagnosis, the variety, localization and possibility of determine malignancy. The treatment is the Whipple resection. We are reporting the case of an obese middle age male, being observed along the last 10 years because of recurrent pancreatitis with a cystic lesion of the head of the pancreas. The CT scan, endoscopic-ultrasound and the analysis of the liquid content suggested a mucinous lesion, reason why the patient underwent a pancreatic-duodenal resection. The histology study confirms the diagnosis of IPMN.

  10. The effects of inhaled corticosteroids on intrinsic responsiveness and histology of airways from infant monkeys exposed to house dust mite allergen and ozone

    SciTech Connect

    Joad, Jesse P. Kott, Kayleen S.; Bric, John M.; Schelegle, Edward S.; Gershwin, Laurel J.; Plopper, Charles G.; Peake, Janice L.; Pinkerton, Kent E.

    2008-01-15

    Inhaled corticosteroids (ICS) are recommended to treat infants with asthma, some with intermittent asthma. We previously showed that exposing infant monkeys to allergen/ozone resulted in asthma-like characteristics of their airways. We evaluated the effects of ICS on histology and intrinsic responsiveness of allergen/ozone-exposed and normal infant primate airways. Infant monkeys were exposed by inhalation to (1) filtered air and saline, (2) house dust mite allergen (HDMA) + ozone and saline, (3) filtered air and ICS (budesonide) or (4) HDMA + ozone and ICS. Allergen/ozone exposures started at 1 month and ICS at 3 months of age. At 6 months of age, methacholine-induced changes in luminal area of airways in proximal and distal lung slices were determined using videomicrometry, followed by histology of the same slices. Proximal airway responsiveness was increased by allergen/ozone and by ICS. Eosinophil profiles were increased by allergen/ozone in both proximal and distal airways, an effect that was decreased by ICS in distal airways. In both allergen/ozone- and air-exposed monkeys, ICS increased the number of alveolar attachments in distal airways, decreased mucin in proximal airways and decreased epithelial volume in both airways. ICS increased smooth muscle in air-exposed animals while decreasing it in allergen/ozone-exposed animals in both airways. In proximal airways, there was a small but significant positive correlation between smooth muscle and airway responsiveness, as well as between alveolar attachments and responsiveness. ICS change morphology and function in normal airways as well as allergen/ozone-exposed airways, suggesting that they should be reserved for infants with active symptoms.

  11. [Mucoprotein secretion in calculous gallbladder].

    PubMed

    Fernández Lobato, R; Ortega, L; Balibrea, J L; Torres, A J; García-Calvo, M; Alvarez Sánchez, J A

    1994-05-01

    Secretion of mucoproteins or mucine (MP) have been studied as possible markers in several pathological conditions of the digestive tract, such us colonic polyposis or gastric dysplasia. In the gallbladder (VB) it has been established that form the core of crystalization for the calculi. A study in 100 gallbladders have been made based on the utility of the analysis of the qualitative and quantitative modifications of MP in lithogenesis. It was been determined by histochemical techniques the three main types of MP (neutral, low and high sulphated acid) to evaluate the alterations in the process of lithiasis. Results show a high production of the MP in VB with lithiasis, presenting in 97% a mixed composition of MP (48.9% of 2 types, and 3 types in 46%), without a predominating type in this pathology.

  12. A short-term ingestion of fructo-oligosaccharides increases immunoglobulin A and mucin concentrations in the rat cecum, but the effects are attenuated with the prolonged ingestion.

    PubMed

    Komura, Mika; Fukuta, Tomonori; Genda, Tomomi; Hino, Shingo; Aoe, Seiichiro; Kawagishi, Hirokazu; Morita, Tatsuya

    2014-01-01

    We examined the effects of fructo-oligosaccharides (FOS) on IgA and mucin secretion in the rat cecum after different ingestion periods. Rats were fed a control diet or a diet containing FOS for 1, 2, 4, and 8 wk. FOS ingestion greatly increased IgA and mucin concentrations at 1 and 2 wk, but the effects were disappeared or attenuated at 4 and 8 wk. After 1 wk, FOS induced higher lactobacilli and lactate concentrations and lower cecal pH in the cecum, but the alterations were moderated with the prolonged ingestion accompanying with increasing short-chain fatty acid concentrations. At 1 and 2 wk, FOS increased IgA plasma cells and polymeric immunoglobulin receptor expression in the cecal mucosa and strongly depressed fecal mucinase activities related to the lower cecal pH. These findings may explain the FOS-induced early elevation of IgA and mucin. Clearly, FOS effects on IgA and mucin secretion considerably differ depending on the ingestion period.

  13. Cystic fibrosis lung disease starts in the small airways: can we treat it more effectively?

    PubMed

    Tiddens, Harm A W M; Donaldson, Scott H; Rosenfeld, Margaret; Paré, Peter D

    2010-02-01

    The aims of this article are to summarize existing knowledge regarding the pathophysiology of small airways disease in cystic fibrosis (CF), to speculate about additional mechanisms that might play a role, and to consider the available or potential options to treat it. In the first section, we review the evidence provided by pathologic, physiologic, and imaging studies suggesting that obstruction of small airways begins early in life and is progressive. In the second section we discuss how the relationships between CF transmembrane conductance regulator (CFTR), ion transport, the volume of the periciliary liquid layer and airway mucus might lead to defective mucociliary clearance in small airways. In addition, we discuss how chronic endobronchial bacterial infection and a chronic neutrophilic inflammatory response increase the viscosity of CF secretions and exacerbate the clearance problem. Next, we discuss how the mechanical properties of small airways could be altered early in the disease process and how remodeling can contribute to small airways disease. In the final section, we discuss how established therapies impact small airways disease and new directions that may lead to improvement in the treatment of small airways disease. We conclude that there are many reasons to believe that small airways play an important role in the pathophysiology of (early) CF lung disease. Therapy should be aimed to target the small airways more efficiently, especially with drugs that can correct the basic defect at an early stage of disease.

  14. Airway Secretory microRNAome Changes during Rhinovirus Infection in Early Childhood

    PubMed Central

    Gutierrez, Maria J.; Gomez, Jose L.; Perez, Geovanny F.; Pancham, Krishna; Val, Stephanie; Pillai, Dinesh K.; Giri, Mamta; Ferrante, Sarah; Freishtat, Robert; Rose, Mary C.; Preciado, Diego; Nino, Gustavo

    2016-01-01

    Background Innate immune responses are fine-tuned by small noncoding RNA molecules termed microRNAs (miRs) that modify gene expression in response to the environment. During acute infections, miRs can be secreted in extracellular vesicles (EV) to facilitate cell-to-cell genetic communication. The purpose of this study was to characterize the baseline population of miRs secreted in EVs in the airways of young children (airway secretory microRNAome) and examine the changes during rhinovirus (RV) infection, the most common cause of asthma exacerbations and the most important early risk factor for the development of asthma beyond childhood. Methods Nasal airway secretions were obtained from children (≤3 yrs. old) during PCR-confirmed RV infections (n = 10) and age-matched controls (n = 10). Nasal EVs were isolated with polymer-based precipitation and global miR profiles generated using NanoString microarrays. We validated our in vivo airway secretory miR data in an in vitro airway epithelium model using apical secretions from primary human bronchial epithelial cells (HBEC) differentiated at air-liquid interface (ALI). Bioinformatics tools were used to determine the unified (nasal and bronchial) signature airway secretory miRNAome and changes during RV infection in children. Results Multiscale analysis identified four signature miRs comprising the baseline airway secretory miRNAome: hsa-miR-630, hsa-miR-302d-3p, hsa- miR-320e, hsa-miR-612. We identified hsa-miR-155 as the main change in the baseline miRNAome during RV infection in young children. We investigated the potential biological relevance of the airway secretion of hsa-mir-155 using in silico models derived from gene datasets of experimental in vivo human RV infection. These analyses confirmed that hsa-miR-155 targetome is an overrepresented pathway in the upper airways of individuals infected with RV. Conclusions Comparative analysis of the airway secretory microRNAome in children indicates that RV infection

  15. Mucin glycan foraging in the human gut microbiome

    PubMed Central

    Tailford, Louise E.; Crost, Emmanuelle H.; Kavanaugh, Devon; Juge, Nathalie

    2015-01-01

    The availability of host and dietary carbohydrates in the gastrointestinal (GI) tract plays a key role in shaping the structure-function of the microbiota. In particular, some gut bacteria have the ability to forage on glycans provided by the mucus layer covering the GI tract. The O-glycan structures present in mucin are diverse and complex, consisting predominantly of core 1-4 mucin-type O-glycans containing α- and β- linked N-acetyl-galactosamine, galactose and N-acetyl-glucosamine. These core structures are further elongated and frequently modified by fucose and sialic acid sugar residues via α1,2/3/4 and α2,3/6 linkages, respectively. The ability to metabolize these mucin O-linked oligosaccharides is likely to be a key factor in determining which bacterial species colonize the mucosal surface. Due to their proximity to the immune system, mucin-degrading bacteria are in a prime location to influence the host response. However, despite the growing number of bacterial genome sequences available from mucin degraders, our knowledge on the structural requirements for mucin degradation by gut bacteria remains fragmented. This is largely due to the limited number of functionally characterized enzymes and the lack of studies correlating the specificity of these enzymes with the ability of the strain to degrade and utilize mucin and mucin glycans. This review focuses on recent findings unraveling the molecular strategies used by mucin-degrading bacteria to utilize host glycans, adapt to the mucosal environment, and influence human health. PMID:25852737

  16. CGRP induction in cystic fibrosis airways alters the submucosal gland progenitor cell niche in mice

    PubMed Central

    Xie, Weiliang; Fisher, John T.; Lynch, Thomas J.; Luo, Meihui; Evans, Turan I.A.; Neff, Traci L.; Zhou, Weihong; Zhang, Yulong; Ou, Yi; Bunnett, Nigel W.; Russo, Andrew F.; Goodheart, Michael J.; Parekh, Kalpaj R.; Liu, Xiaoming; Engelhardt, John F.

    2011-01-01

    In cystic fibrosis (CF), a lack of functional CF transmembrane conductance regulator (CFTR) chloride channels causes defective secretion by submucosal glands (SMGs), leading to persistent bacterial infection that damages airways and necessitates tissue repair. SMGs are also important niches for slow-cycling progenitor cells (SCPCs) in the proximal airways, which may be involved in disease-related airway repair. Here, we report that calcitonin gene–related peptide (CGRP) activates CFTR-dependent SMG secretions and that this signaling pathway is hyperactivated in CF human, pig, ferret, and mouse SMGs. Since CGRP-expressing neuroendocrine cells reside in bronchiolar SCPC niches, we hypothesized that the glandular SCPC niche may be dysfunctional in CF. Consistent with this hypothesis, CFTR-deficient mice failed to maintain glandular SCPCs following airway injury. In wild-type mice, CGRP levels increased following airway injury and functioned as an injury-induced mitogen that stimulated SMG progenitor cell proliferation in vivo and altered the proliferative potential of airway progenitors in vitro. Components of the receptor for CGRP (RAMP1 and CLR) were expressed in a very small subset of SCPCs, suggesting that CGRP indirectly stimulates SCPC proliferation in a non-cell-autonomous manner. These findings demonstrate that CGRP-dependent pathways for CFTR activation are abnormally upregulated in CF SMGs and that this sustained mitogenic signal alters properties of the SMG progenitor cell niche in CF airways. This discovery may have important implications for injury/repair mechanisms in the CF airway. PMID:21765217

  17. Mucin-interacting proteins: from function to therapeutics

    PubMed Central

    Senapati, Shantibhusan; Das, Srustidhar; Batra, Surinder K.

    2010-01-01

    Mucins are high molecular weight glycoproteins that are involved in regulating diverse cellular activities both in normal and pathological conditions. Mucin activity and localization is mediated by several molecular mechanisms, including discrete interactions with other proteins. An understanding of the biochemistry behind the known interactions between mucins and other proteins, coupled with an appreciation of their pathophysiological significance, can lend insight into the development of novel therapeutic agents. Indeed, a recent study demonstrated that a cell permeable inhibitor, PMIP, which disrupts the MUC1–EGFR interaction, is effective in killing breast cancer cells in vitro and in tumor models. PMID:19913432

  18. Membrane-Tethered MUC1 Mucin Counter-Regulates the Phagocytic Activity of Macrophages.

    PubMed

    Kato, Kosuke; Uchino, Reina; Lillehoj, Erik P; Knox, Kenneth; Lin, Yong; Kim, K Chul

    2016-04-01

    MUC1 (MUC in human; Muc in animals) is a transmembrane mucin glycoprotein expressed in mucosal epithelial cells and hematopoietic cells. MUC1 is involved in the resolution of inflammation during airway Pseudomonas aeruginosa (Pa) infection by suppressing Toll-like receptor signaling in airway epithelial cells. Although alveolar macrophages are recognized as critical mediators of cell-mediated immunity against microorganisms inhaled into the airways, the role of MUC1 in regulating their response is unknown. The aims of this study were to determine whether macrophages express MUC1, and, if so, whether MUC1 expression might be associated with macrophage M0/M1/M2 differentiation or phagocytic activity. Human and mouse MUC1/Muc1 expression was drastically up-regulated in classically activated (M1) macrophages compared with nonactivated (M0) and alternatively activated (M2) macrophages. M1 polarization and Pa stimulation each increased MUC1 ectodomain shedding from the macrophage surface in a TNF-α-converting enzyme-dependent manner. MUC1/Muc1 deficiency in M0 macrophages increased adhesion and phagocytosis of Pa and Escherichia coli compared with MUC1/Muc1-expressing cells, and attenuation of phagocytosis by MUC1 was augmented after polarization into M1 macrophages compared with M0 macrophages. Finally, MUC1/Muc1 deficiency in macrophages increased reactive oxygen species production and TNF-α release in response to Pa compared with MUC1/Muc1-sufficient cells. These results indicate that MUC1/Muc1 expression by macrophages is predominantly in the M1 subtype, and that MUC1/Muc1 expression in these cells decreases their phagocytic activity in an antiinflammatory manner.

  19. Influence of microemulsion-mucin interaction on the fate of microemulsions diffusing through pig gastric mucin solutions.

    PubMed

    Zhang, Jianbin; Lv, Yan; Wang, Bing; Zhao, Shan; Tan, Mingqian; Lv, Guojun; Ma, Xiaojun

    2015-03-02

    Mucus layer, a selective diffusion barrier, has an important effect on the fate of drug delivery systems in the gastrointestinal tract. To study the fate of microemulsions in the mucus layer, four microemulsion formulations with different particle sizes and lipid compositions were prepared. The microemulsion-mucin interaction was demonstrated by the fluorescence resonance energy transfer (FRET) method. Moreover, the microemulsions were observed aggregated into micron-sized emulsions by laser confocal microscopy. We concluded the microemulsion-mucin interaction not only led to microemulsions closely adhered to mucins but also destroyed the structure of microemulsions. At last, the diffusion of blank microemulsions and microemulsion-carried drugs (resveratrol and hymecromone) through mucin solutions was determined by the fluorescence recovery after photobleaching (FRAP) method and the Franz diffusion cell method. The results demonstrated the diffusion of microemulsions was significantly hindered by mucin solutions. The particle size of microemulsions had a negligible effect on the diffusion coefficients. However, the type of lipid played an important role, which could form hydrophobic interactions with mucins. Interestingly, microemulsion-carried drugs with different core/shell locations seemed to suffer different fates in the mucin solutions. The drug incorporated in the oil core of microemulsions, resveratrol, was transported through the mucus layer by the carriers, while the drug incorporated in the surfactant shell of microemulsions, hymecromone, was separated from the carriers and diffused toward the epithelium in the form of free molecules.

  20. Impairment of Salivary Mucin Production Resulting in Declined Salivary Viscosity During Naproxen Administration as a Potential Link to Upper Alimentary Tract Mucosal Injury

    PubMed Central

    Garcia, Cesar J; Castro-Combs, Juan; Dias, Ajoy; Alfaro, Rodrigo; Vasallo, Javier; Majewski, Marek; Jaworski, Tom; Wallner, Grzegorz; Sarosiek, Jerzy

    2013-01-01

    OBJECTIVES: Nonsteroidal anti-inflammatory drugs (NSAIDs) contribute to the esophageal mucosal injury through its direct topical impact on the luminal aspect of the surface epithelium. Its indirect, systemic impact, however, on salivary component of the esophageal pre-epithelial barrier remains to be explored. Therefore, salivary mucin secretion and viscosity at baseline and during naproxen-placebo, as well as naproxen-rabeprazole, administration were investigated. METHODS: Twenty-one asymptomatic volunteers were included in this double-blind, placebo-controlled, crossover designed study. Salivary samples were obtained in basal and pentagastrin-stimulated conditions (6 mg/kg s.c.) mimicking the food-stimulated conditions. Patients received 7 days of naproxen-placebo or naproxen-rabeprazole with a 2-week washout period in between. Salivary mucin content and viscosity were measured before and after treatment using periodic acid/Schiff's methodology and Cone/Plate Digital Viscometer, respectively. RESULTS: The rate of salivary mucin secretion in basal condition declined by 32% during administration of naproxen-placebo (11.3±1.7 vs. 16.8±3.3 mg/h). Salivary mucin secretion in pentagastrin-stimulated condition declined significantly (by 34%) during the administration of naproxen-placebo (13.6±1.5 vs. 20.7±3.0 mg/h; P<0.05). Viscosity significantly decreased after naproxen-placebo administration in basal (by 60%) and stimulated conditions (by 56%) (P<0.001). Coadministration of rabeprazole at least partly restored the naproxen-induced decline of salivary mucin in basal condition (by 8%), and pentagastrin-stimulated conditions (by 30%). CONCLUSIONS: A significant decline of salivary mucin and viscosity during administration of naproxen may at least partly explain a propensity of patients on chronic therapy with NSAIDs to the development of esophageal mucosal injury and complications. In addition the trend to restorative capacity of rabeprazole on the

  1. Upper airway radiographs in infants with upper airway insufficiency.

    PubMed Central

    Tonkin, S L; Davis, S L; Gunn, T R

    1994-01-01

    Upper airway measurements in nine infants considered to be at risk of upper airway insufficiency, six of whom presented after an apnoeic episode, were compared with measurements taken in two age groups of healthy infants. Paired, inspiratory and expiratory, lateral upper airway radiographs were obtained while the infants were awake and breathing quietly. The radiographs of all nine infants demonstrated narrowing in the oropharyngeal portion of the airway during inspiration and in six infants there was ballooning of the upper airway during expiration. Seven of the nine infants subsequently experienced recurrent apnoeic episodes which required vigorous stimulation to restore breathing. Experience suggests that respiratory phase timed radiographs are a useful adjunct to the evaluation of infants who are suspected of having upper airway dysfunction. They provide information regarding both the dimensions and compliance of the upper airway as well as the site of any restriction. Images PMID:8048825

  2. Role of Extracellular Transaldolase from Bifidobacterium bifidum in Mucin Adhesion and Aggregation

    PubMed Central

    González-Rodríguez, Irene; Sánchez, Borja; Ruiz, Lorena; Turroni, Francesca; Ventura, Marco; Ruas-Madiedo, Patricia; Gueimonde, Miguel

    2012-01-01

    The ability of bifidobacteria to establish in the intestine of mammals is among the main factors considered to be important for achieving probiotic effects. The role of surface molecules from Bifidobacterium bifidum taxon in mucin adhesion capability and the aggregation phenotype of this bacterial species was analyzed. Adhesion to the human intestinal cell line HT29 was determined for a collection of 12 B. bifidum strains. In four of them—B. bifidum LMG13195, DSM20456, DSM20239, and A8—the involvement of surface-exposed macromolecules in the aggregation phenomenon was determined. The aggregation of B. bifidum A8 and DSM20456 was abolished after treatment with proteinase K, this effect being more pronounced for the strain A8. Furthermore, a mucin binding assay of B. bifidum A8 surface proteins showed a high adhesive capability for its transaldolase (Tal). The localization of this enzyme on the surface of B. bifidum A8 was unequivocally demonstrated by immunogold electron microscopy experiments. The gene encoding Tal from B. bifidum A8 was expressed in Lactococcus lactis, and the protein was purified to homogeneity. The pure protein was able to restore the autoaggregation phenotype of proteinase K-treated B. bifidum A8 cells. A recombinant L. lactis strain, engineered to secrete Tal, displayed a mucin- binding level more than three times higher than the strain not producing the transaldolase. These findings suggest that Tal, when exposed on the cell surface of B. bifidum, could act as an important colonization factor favoring its establishment in the gut. PMID:22447584

  3. Isolation and characterization of cDNA clones encoding pig gastric mucin.

    PubMed Central

    Turner, B S; Bhaskar, K R; Hadzopoulou-Cladaras, M; Specian, R D; LaMont, J T

    1995-01-01

    Polyclonal antibodies raised to deglycosylated pig gastric mucin were used to screen a cDNA library constructed with pig stomach mucosal mRNA. Immunocytochemistry indicated that the antibody recognizes intracellular and secreted mucin in surface mucous cells of pig gastric epithelium. A total of 70 clones producing proteins immunoreactive to this antibody were identified, two of which (PGM-2A,9B) were fully sequenced from both ends. Clone PGM-9B hybridized to a polydisperse mRNA (3-9 kb) from pig stomach, but not liver, intestine or spleen, nor to mRNA from human, mouse, rabbit or rat stomach. Sequence analysis indicated that PGM-9B encodes 33 tandem repeats of a 16-amino-acid consensus sequence rich in serine (46%) and threonine (17%). Using the restriction enzyme MwoI, which has a single target site in the repeat, it was demonstrated that PGM-9B consists entirely of this tandem repeat. Southern-blot analysis indicated that the repeat region is contained in a 20 kb HindIII-EcoRI fragment, and BamHI digestion suggested that most of the repeats are contained in a 10 kb fragment. In situ hybridization with an antisense probe to PGM-9B showed an intense signal in the entire gastric gland. Clone PGM-2A also contains the same repeat sequence as 9B, but, in addition, has a 64-amino-acid-long non-repeat region at its 5' end. Interestingly the non-repeat region of PGM-2A has five cysteine residues, the arrangement of which is identical with that reported for human intestinal mucin gene MUC2. Images Figure 1 Figure 2 Figure 5 Figure 6 Figure 7 Figure 8 PMID:7755593

  4. Deficiency of intestinal mucin-2 ameliorates experimental alcoholic liver disease in mice

    PubMed Central

    Hartmann, Phillipp; Chen, Peng; Wang, Hui J.; Wang, Lirui; McCole, Declan F.; Brandl, Katharina; Stärkel, Peter; Belzer, Clara; Hellerbrand, Claus; Tsukamoto, Hidekazu; Ho, Samuel B.; Schnabl, Bernd

    2013-01-01

    The intestinal mucus layer protects the epithelium from noxious agents, viruses, and pathogenic bacteria present in the gastrointestinal tract. It is composed of mucins, predominantly mucin-2 (Muc2), secreted by goblet cells of the intestine. Experimental alcoholic liver disease requires translocation of bacterial products across the intestinal barrier into the systemic circulation, which induces an inflammatory response in the liver and contributes to steatohepatitis. We investigated the roles of the intestinal mucus layer, and in particular Muc2, in development of experimental alcohol-associated liver disease in mice. We studied experimental alcohol-induced liver disease, induced by the Tsukamoto-French method (which involves continuous intragastric feeding of an isocaloric diet or alcohol) in wild-type and Muc2−/− mice. Muc2−/− mice showed less alcohol-induced liver injury and steatosis that developed in wild-type mice. Most notably, Muc2−/− mice had significantly lower plasma levels of lipopolysaccharide than wild-type mice after alcohol feeding. In contrast to wild-type mice, Muc2−/− mice were protected from alcohol-associated microbiome changes that are dependent on intestinal mucins. The anti-microbial proteins Reg3b and Reg3g were expressed at significantly higher levels in the jejunum of Muc2−/− mice fed the isocaloric diet or alcohol, compared with wild-type mice. Consequently, Muc2−/− mice showed increased killing of commensal bacteria and prevented intestinal bacterial overgrowth. Conclusion: Muc2−/− mice are protected from intestinal bacterial overgrowth and dysbiosis in response to alcohol feeding. Subsequently, lower amounts of bacterial products such as endotoxin translocate into the systemic circulation, decreasing liver disease. PMID:23408358

  5. Lipoxin A4 Counter-regulates Histamine-stimulated Glycoconjugate Secretion in Conjunctival Goblet Cells

    PubMed Central

    Hodges, Robin R.; Li, Dayu; Shatos, Marie A.; Serhan, Charles N.; Dartt, Darlene A.

    2016-01-01

    Conjunctival goblet cells synthesize and secrete mucins which play an important role in protecting the ocular surface. Pro-resolution mediators, such as lipoxin A4 (LXA4), are produced during inflammation returning the tissue to homeostasis and are also produced in non-inflamed tissues. The purpose of this study was to determine the actions of LXA4 on cultured human conjunctival goblet cell mucin secretion and increase in intracellular [Ca2+] ([Ca2+]i) and on histamine-stimulated responses. LXA4 increased mucin secretion and [Ca2+]i, and activated ERK1/2 in human goblet cells. Addition of LXA4 before resolvin D1 (RvD1) decreased RvD1 responses though RvD1 did not block LXA4 responses. LXA4 inhibited histamine-stimulated increases in mucin secretion, [Ca2+]i, and ERK1/2 activation through activation of β-adrenergic receptor kinase 1. We conclude that conjunctival goblet cells respond to LXA4 through the ALX/FPR2 receptor to maintain homeostasis of the ocular surface and regulate histamine responses and could provide a new therapeutic approach for allergic conjunctivitis and dry eye diseases. PMID:27824117

  6. Supraglottic airway devices in children

    PubMed Central

    Ramesh, S; Jayanthi, R

    2011-01-01

    Modern anaesthesia practice in children was made possible by the invention of the endotracheal tube (ET), which made lengthy and complex surgical procedures feasible without the disastrous complications of airway obstruction, aspiration of gastric contents or asphyxia. For decades, endotracheal intubation or bag-and-mask ventilation were the mainstays of airway management. In 1983, this changed with the invention of the laryngeal mask airway (LMA), the first supraglottic airway device that blended features of the facemask with those of the ET, providing ease of placement and hands-free maintenance along with a relatively secure airway. The invention and development of the LMA by Dr. Archie Brain has had a significant impact on the practice of anaesthesia, management of the difficult airway and cardiopulmonary resuscitation in children and neonates. This review article will be a brief about the clinical applications of supraglottic airways in children. PMID:22174464

  7. Is mucinous carcinoma of the colorectum a distinct genetic entity?

    PubMed Central

    Hanski, C.

    1995-01-01

    Mucinous carcinomas are defined on the basis of the amount of the mucus component in the tumour mass. Apart from this quantitative criterion, a number of clinicopathological parameters (such as localisation, prevalence in different countries and age groups, association with HNPCC and inflammatory processes) and genetic alterations (e.g. frequency of mutation in Ki-ras and p53 genes, level of MUC2 expression) differentiate these tumours from the non-mucinous ones. Since a different set of genetic lesions implies different inducing agents, these observations suggest that there may be a 'mucinous pathway of carcinogenesis'. Further identification of genetic changes characteristic of the mucinous phenotype will help to understand the aetiology of these tumours and possibly establish markers for detection of the high-risk group. PMID:8519644

  8. A mucin-like peptide from Fasciola hepatica instructs dendritic cells with parasite specific Th1-polarizing activity

    PubMed Central

    Noya, Verónica; Brossard, Natalie; Rodríguez, Ernesto; Dergan-Dylon, L. Sebastián; Carmona, Carlos; Rabinovich, Gabriel A.; Freire, Teresa

    2017-01-01

    Fasciolosis is a trematode zoonosis of interest in public health and cattle production. We report here the immunostimulatory effect of a 66 mer mucin-like peptide from Fasciola hepatica (Fhmuc), which synergizes with lipopolysaccharide (LPS) to promote dendritic cell (DC) maturation, endowing these cells with Th1-polarizing capacity. Exposure of DCs to Fhmuc in presence of LPS induced enhanced secretion of pro-inflammatory cytokines and expression of co-stimulatory molecules by DCs, promoting their T cell stimulatory capacity and selectively augmenting IFN-γ secretion by allogeneic T cells. Furthermore, exposure of DCs to Fhmuc augmented LPS-induced Toll-like receptor (TLR) 4 expression on the cell surface. Finally, Fhmuc-conditioned DCs induced parasite specific-adaptive immunity with increased levels of IFN-γ secreted by splenocytes from vaccinated animals, and higher parasite-specific IgG antibodies. However, Fhmuc-treated DC conferred modest protection against F. hepatica infection highlighting the potent immuno-regulatory capacity of the parasite. In summary, this work highlights the capacity of a mucin-derived peptide from F. hepatica to enhance LPS-maturation of DCs and induce parasite-specific immune responses with potential implications in vaccination and therapeutic strategies. PMID:28079156

  9. A mucin-like peptide from Fasciola hepatica instructs dendritic cells with parasite specific Th1-polarizing activity.

    PubMed

    Noya, Verónica; Brossard, Natalie; Rodríguez, Ernesto; Dergan-Dylon, L Sebastián; Carmona, Carlos; Rabinovich, Gabriel A; Freire, Teresa

    2017-01-12

    Fasciolosis is a trematode zoonosis of interest in public health and cattle production. We report here the immunostimulatory effect of a 66 mer mucin-like peptide from Fasciola hepatica (Fhmuc), which synergizes with lipopolysaccharide (LPS) to promote dendritic cell (DC) maturation, endowing these cells with Th1-polarizing capacity. Exposure of DCs to Fhmuc in presence of LPS induced enhanced secretion of pro-inflammatory cytokines and expression of co-stimulatory molecules by DCs, promoting their T cell stimulatory capacity and selectively augmenting IFN-γ secretion by allogeneic T cells. Furthermore, exposure of DCs to Fhmuc augmented LPS-induced Toll-like receptor (TLR) 4 expression on the cell surface. Finally, Fhmuc-conditioned DCs induced parasite specific-adaptive immunity with increased levels of IFN-γ secreted by splenocytes from vaccinated animals, and higher parasite-specific IgG antibodies. However, Fhmuc-treated DC conferred modest protection against F. hepatica infection highlighting the potent immuno-regulatory capacity of the parasite. In summary, this work highlights the capacity of a mucin-derived peptide from F. hepatica to enhance LPS-maturation of DCs and induce parasite-specific immune responses with potential implications in vaccination and therapeutic strategies.

  10. Absence of microsatellite instability in mucinous carcinomas of the breast.

    PubMed

    Lacroix-Triki, Magali; Lambros, Maryou B; Geyer, Felipe C; Suarez, Paula H; Reis-Filho, Jorge S; Weigelt, Britta

    2010-11-27

    Microsatellite instability (MSI) is a form of genetic instability that results from defects in DNA mismatch repair. MSI is reported to be rare in unselected breast cancers, however it is a common feature in subsets of colorectal, ovarian and endometrial cancers. In these anatomical sites, MSI-high carcinomas often display a mucinous histology. The aim of this study was to determine whether mucinous carcinomas of the breast would more frequently display MSI-high than invasive ductal carcinomas of no special type (IDC-NSTs). The expression of four MSI markers (i.e. MSH2, MSH6, MLH1 and PMS2) was immunohistochemically assessed in 35 mucinous breast carcinomas and 35 histological grade- and oestrogen receptor (ER) status-matched IDC-NSTs, and in a series of 245 invasive breast cancers. Cases were considered as potentially MSI-high if tumour cells lacked expression of at least two MSI markers and internal controls displayed nuclear staining. Nine mucinous carcinomas were microdissected and subjected to MSI analysis by PCR using the MSI markers BAT26 and BAT40. No immunohistochemical evidence of MSI-high was found in the 35 mucinous carcinomas and 35 grade- and ER-matched IDC-NSTs, and in the cohort of 245 invasive breast cancers. In addition, no evidence of MSI-high was observed by PCR analysis using the BAT26 and BAT40 markers in the nine mucinous carcinomas tested. Our results demonstrate that MSI-high phenotype is remarkably rare in invasive breast cancer, and that, in contrast to mucinous carcinomas of other anatomical sites, MSI is not a common event in mucinous carcinomas of the breast.

  11. Irinotecan-induced mucositis manifesting as diarrhoea corresponds with an amended intestinal flora and mucin profile

    PubMed Central

    Stringer, Andrea M; Gibson, Rachel J; Bowen, Joanne M; Logan, Richard M; Ashton, Kimberly; Yeoh, Ann SJ; Al-Dasooqi, Noor; Keefe, Dorothy MK

    2009-01-01

    Chemotherapy-induced diarrhoea is a major oncological problem, caused by the cytotoxic effects of cancer chemotherapy. Irinotecan is linked with severe mucositis and diarrhoea, the mechanisms of which remain poorly understood. Bacterial β-glucuronidase is thought to be involved in the metabolism of irinotecan, implicating the intestinal flora. Intestinal mucins may also be implicated in the development of chemotherapy-induced diarrhoea. Rats were treated with 200 mg/kg of irinotecan and killed at 96, 120 and 144 h. The rats were monitored for diarrhoea. Pathology and immunohistochemical staining was performed. The samples were cultured and faecal DNA was analysed using real-time polymerase chain reaction. Severe diarrhoea was observed from 72 to 96 h. A decrease in body mass was also observed after treatment. Significant changes in goblet cell numbers (both complete and cavitated cells) were observed in the small and large intestines. Changes in MUC gene expression were observed in the small intestine only. Modifications were observed to the intestinal flora profile, especially Escherichia coli, and an increase in the expression of β-glucuronidase was detected. In conclusion, irinotecan-induced diarrhoea may be caused by an increase in some β-glucuronidase-producing bacteria, especially E. coli, exacerbating the toxicity of active metabolites. Accelerated mucous secretion and mucin release may also contribute to the delayed onset of diarrhoea. PMID:19765103

  12. Irinotecan-induced mucositis manifesting as diarrhoea corresponds with an amended intestinal flora and mucin profile.

    PubMed

    Stringer, Andrea M; Gibson, Rachel J; Bowen, Joanne M; Logan, Richard M; Ashton, Kimberly; Yeoh, Ann S J; Al-Dasooqi, Noor; Keefe, Dorothy M K

    2009-10-01

    Chemotherapy-induced diarrhoea is a major oncological problem, caused by the cytotoxic effects of cancer chemotherapy. Irinotecan is linked with severe mucositis and diarrhoea, the mechanisms of which remain poorly understood. Bacterial beta-glucuronidase is thought to be involved in the metabolism of irinotecan, implicating the intestinal flora. Intestinal mucins may also be implicated in the development of chemotherapy-induced diarrhoea. Rats were treated with 200 mg/kg of irinotecan and killed at 96, 120 and 144 h. The rats were monitored for diarrhoea. Pathology and immunohistochemical staining was performed. The samples were cultured and faecal DNA was analysed using real-time polymerase chain reaction. Severe diarrhoea was observed from 72 to 96 h. A decrease in body mass was also observed after treatment. Significant changes in goblet cell numbers (both complete and cavitated cells) were observed in the small and large intestines. Changes in MUC gene expression were observed in the small intestine only. Modifications were observed to the intestinal flora profile, especially Escherichia coli, and an increase in the expression of beta-glucuronidase was detected. In conclusion, irinotecan-induced diarrhoea may be caused by an increase in some beta-glucuronidase-producing bacteria, especially E. coli, exacerbating the toxicity of active metabolites. Accelerated mucous secretion and mucin release may also contribute to the delayed onset of diarrhoea.

  13. In vivo imaging of the Muc5b gel-forming mucin

    PubMed Central

    Portal, Céline; Gouyer, Valérie; Magnien, Mylène; Plet, Ségolène; Gottrand, Frédéric; Desseyn, Jean-Luc

    2017-01-01

    Gel-forming mucins are macromolecules produced by goblet cells and responsible for the mucus gel formation. Changes in goblet cell density and in gel-forming mucin production have emerged as sensitive indicators for mucosal diseases. A Muc5b-GFP tagged reporter mouse was used to assess Muc5b production in mouse tissues by immunofluorescence microscopy and fluorescent activity using stereromicroscopy and probe-based confocal laser endomicroscopy. Muc5b production was followed longitudinally by recording the fluorescent activity in vagina and in embryonic lung explants under stimulation by interleukin 13. We show that the GFP is easily visualized in the mouse adult ear, nose, trachea, gallbladder, and cervix. Live Muc5b is also easily monitored in the nasal cavity, trachea and vagina where its production varies during the estrus cycle with a peak at the proestrus phase and in pregnant mice. Explant culture of reporter mouse embryonic whole lung shows that interleukin 13 stimulates Muc5b production. The transgenic Muc5b-GFP mouse is unique and suitable to study the mechanisms that regulate Muc5b production/secretion and mucous cell differentiation by live imaging and can be applied to test drug efficacy in mucosal disease models. PMID:28294161

  14. Genetically engineered mucin mouse models for inflammation and cancer

    PubMed Central

    Joshi, Suhasini; Kumar, Sushil; Bafna, Sangeeta; Rachagani, Satyanarayana; Wagner, Kay-Uwe; Jain, Maneesh

    2015-01-01

    Mucins are heavily O-glycosylated proteins primarily produced by glandular and ductal epithelial cells, either in membrane-tethered or secretory forms, for providing lubrication and protection from various exogenous and endogenous insults. However, recent studies have linked their aberrant overexpression with infection, inflammation, and cancer that underscores their importance in tissue homeostasis. In this review, we present current status of the existing mouse models that have been developed to gain insights into the functional role(s) of mucins under physiological and pathological conditions. Knockout mouse models for membrane-associated (Muc1 and Muc16) and secretory mucins (Muc2) have helped us to elucidate the role of mucins in providing effective and protective barrier functions against pathological threats, participation in disease progression, and improved our understanding of mucin interaction with biotic and abiotic environmental components. Emphasis is also given to available transgenic mouse models (MUC1 and MUC7), which has been exploited to understand the context-dependent regulation and therapeutic potential of human mucins during inflammation and cancer. PMID:25634251

  15. Salivary mucins promote the coexistence of competing oral bacterial species.

    PubMed

    Frenkel, Erica Shapiro; Ribbeck, Katharina

    2017-01-24

    Mucus forms a major ecological niche for microbiota in various locations throughout the human body such as the gastrointestinal tract, respiratory tract and oral cavity. The primary structural components of mucus are mucin glycoproteins, which crosslink to form a complex polymer network that surrounds microbes. Although the mucin matrix could create constraints that impact inhabiting microbes, little is understood about how this key environmental factor affects interspecies interactions. In this study, we develop an experimental model using gel-forming human salivary mucins to understand the influence of mucin on the viability of two competing species of oral bacteria. We use this dual-species model to show that mucins promote the coexistence of the two competing bacteria and that mucins shift cells from the mixed-species biofilm into the planktonic form. Taken together, these findings indicate that the mucus environment could influence bacterial viability by promoting a less competitive mode of growth.The ISME Journal advance online publication, 24 January 2017; doi:10.1038/ismej.2016.200.

  16. Viscous boundary lubrication of hydrophobic surfaces by mucin.

    PubMed

    Yakubov, Gleb E; McColl, James; Bongaerts, Jeroen H H; Ramsden, Jeremy J

    2009-02-17

    The lubricating behavior of the weakly charged short-side-chain glycoprotein mucin "Orthana" (Mw=0.55 MDa) has been investigated between hydrophobic and hydrophilic PDMS substrates using soft-contact tribometry. It was found that mucin facilitates lubrication between hydrophobic PDMS surfaces, leading to a 10-fold reduction in boundary friction coefficient for rough surfaces. The presence of mucin also results in a shift of the mixed lubrication regime to lower entrainment speeds. The observed boundary lubrication behavior of mucin was found to depend on the bulk concentration, and we linked this to the structure and dynamics of the adsorbed mucin films, which are assessed using optical waveguide light spectroscopy. We observe a composite structure of the adsorbed mucin layer, with its internal structure governed by entanglement. The film thickness of this adsorbed layer increases with concentration, while the boundary friction coefficient for rough surfaces was found to be inversely proportional to the thickness of the adsorbed film. This link between lubrication and structure of the film is consistent with a viscous boundary lubrication mechanism, i.e., a thicker adsorbed film, at a given sliding speed, results in a lower local shear rate and, hence, in a lower local shear stress. The estimated local viscosities of the adsorbed layer, derived from the friction measurements and the polymer layer density, are in agreement with each other.

  17. Clinicopathologic characteristics of mucinous carcinoma of the breast.

    PubMed

    Hanagiri, Takeshi; Ono, Kenji; Baba, Teturo; So, Tetsuya; Yamasaki, Masaharu; Nagata, Yoshika; Uramoto, Hidetaka; Takenoyama, Mitsuhiro; Yasumoto, Kosei

    2010-01-01

    The mucinous carcinoma of breast cancer is a relatively rare malignant tumor. This study investigated the clinical and pathologic features of mucinous carcinoma. The medical records of 237 patients with invasive breast cancer who underwent surgery between 1995 and 2006 were reviewed. These cases included 10 patients (4.2%) with mucinous carcinoma. The age of the patients ranged from 43 to 71 years (mean, 55.5 years). The tumor size was T1 in 5 patients and T2 in 5 patients. Lymph node metastasis was diagnosed as being negative in 9 patients and positive in 1 patient. Six patients (60%) were positive both for estrogen and progesterone receptor. The 10-year survival rates of mucinous carcinoma and other types of invasive breast cancer were 87.5% and 80.7%, respectively. Mucinous carcinoma showed a lower incidence of lymph node metastasis than other types of invasive breast cancer. Mucinous carcinoma tended to have a better prognosis in comparison with other types of invasive breast carcinoma.

  18. Developmental expression of mucin genes in the human gastrointestinal system

    PubMed Central

    Reid, C; Harris, A

    1998-01-01

    Background and aims—Mucin glycoproteins play a key role in the normal function of the epithelium lining the gastrointestinal tract. The expression of mucin genes, MUC 3, 4, 5AC, 5B, 6, 7, and 8 in human fetal tissues was examined to establish the localisation and age of onset of expression of each mucin gene during human development. 
Methods—Mucin gene expression was assayed by mRNA in situ hybridisation. 
Results—Expression of MUC3 was detected in the small intestine and colon from 13 weeks gestation onwards and at low levels in the main pancreatic duct at 13 weeks only. MUC4 expression was seen at a low level in the colonic epithelium from 13 weeks of gestation but not elsewhere in the gastrointestinal tract. MUC5AC mRNA was detected in the colon at 17 weeks and at high levels in the stomach at 23 weeks. MUC6 transcripts were evident in the pancreatic ducts from 13 weeks of gestation and at high levels in the stomach at 23 weeks. MUC5B, MUC7, and MUC8 transcripts were not detected. 
Conclusions—Mucin genes are expressed from the early mid-trimester of gestation in the developing human fetal gastrointestinal tract. 

 Keywords: mucin; developmental expression; gastrointestinal tract PMID:9536947

  19. A mucin-like peptide from Fasciola hepatica induces parasite-specific Th1-type cell immunity.

    PubMed

    Noya, Verónica; Brossard, Natalie; Berasaín, Patricia; Rodríguez, Ernesto; Chiale, Carolina; Mazal, Daniel; Carmona, Carlos; Freire, Teresa

    2016-03-01

    Fasciolosis, caused by the liver fluke Fasciola hepatica, is a major parasitic disease of livestock that causes significant economic losses worldwide. Although drugs are effective against liver flukes, they do not prevent reinfection, and continuous treatment is costly. Moreover, resistant fluke strains are emerging. In this context, vaccination is a good alternative since it provides a cost-effective long-term prevention strategy to control fasciolosis. In this paper, we evaluate the Fhmuc peptide as a potential vaccine against fasciolosis. This peptide derives from a mucin-like protein highly expressed in the infective stage of Fasciola hepatica. Mucin-like molecules expressed by parasites can contribute to several infection processes by protecting the parasite from host proteases and recognition by the immune system. We show that the Fhmuc peptide induces Th1-like immune responses specific for F. hepatica excretion-secretion products (FhESP) with a high production of IFNγ. We also investigated whether this peptide could protect animals from infection, and present preliminary data indicating that animals treated with Fhmuc exhibited reduced liver damage compared to non-immunised animals and that this protection was associated with a recruitment of B and T lymphocytes in the peritoneum, as well as eosinophils and mature dendritic cells. These results suggest that the mucin-like peptide Fhmuc could constitute a potential vaccine candidate against fasciolosis and pave the way towards the development of vaccines against parasites.

  20. Human milk mucin 1 and mucin 4 inhibit Salmonella enterica serovar Typhimurium invasion of human intestinal epithelial cells in vitro.

    PubMed

    Liu, Bo; Yu, Zhuoteng; Chen, Ceng; Kling, David E; Newburg, David S

    2012-08-01

    Many human milk glycans inhibit pathogen binding to host receptors and their consumption by infants is associated with reduced risk of disease. Salmonella infection is more frequent among infants than among the general population, but the incidence is lower in breast-fed babies, suggesting that human milk could contain components that inhibit Salmonella. This study aimed to test whether human milk per se inhibits Salmonella invasion of human intestinal epithelial cells in vitro and, if so, to identify the milk components responsible for inhibition. Salmonella enterica serovar Typhimurium SL1344 (SL1344) invasion of FHs 74 Int and Caco-2 cells were the models of human intestinal epithelium infection. Internalization of fluorescein-5-isothiocyanate-labeled SL1344 into intestinal cells was measured by flow cytometry to quantify infection. Human milk and its fractions inhibited infection; the inhibitory activity localized to the high molecular weight glycans. Mucin 1 and mucin 4 were isolated to homogeneity. At 150 μg/L, a typical concentration in milk, human milk mucin 1 and mucin 4 inhibited SL1344 invasion of both target cell types. These mucins inhibited SL1344 invasion of epithelial cells in a dose-dependent manner. Thus, mucins may prove useful as a basis for developing novel oral prophylactic and therapeutic agents that inhibit infant diseases caused by Salmonella and related pathogens.

  1. Role of neutrophilic inflammation in ozone-induced epithelial alterations in the nasal airways of rats

    NASA Astrophysics Data System (ADS)

    Cho, Hye Youn

    Ozone is a principal oxidant air pollutant in photochemical smog. Epithelial cells lining the centriacinar region of lung and the proximal aspects of nasal passage are primary target sites for ozone-induced injury in laboratory animals. Acute exposure of rats to high ambient concentrations of ozone (e.g., 0.5 ppm) results in neutrophilic inflammation, epithelial hyperplasia and mucous cell metaplasia (MCM) in the nasal transitional epithelium (NTE) lining the proximal nasal airways. The principal purpose of the present study was to investigate the role of pre-metaplastic cellular responses, especially neutrophilic inflammation, in the pathogenesis of ozone-induced MCM in rat NTE. For this purpose, three specific hypotheses-based whole-animal inhalation studies were conducted. Male F344/N rats were exposed in whole-body inhalation chambers to 0 (filtered air) or 0.5 ppm ozone for 1-3 days (8 h/day). Histochemical, immunochemical, molecular and morphometric techniques were used to investigate the ozone-induced cellular and molecular events in the NTE. Two in vitro studies were also conducted to examine the effects of ozone-inducible cytokines (i.e., tumor necrosis factor-alpha; TNF- a, and interleukin-6; IL-6) on mucin gene (rMuc-5AC) expression. Ozone induced a rapid increase of rMuc-5AC mRNA in nasal tissues within hours after the start of exposure. It preceded the appearance of MCM, and persisted with MCM. Ozone-induced neutrophilic inflammation accompanied the mucin gene upregulation, but was resolved when MCM first appeared in the NTE. Antibody-mediated depletion of circulating neutrophils attenuated ozone-induced MCM, although it did not affect the ozone-induced epithelial hyperplasia and mucin mRNA upregulation. In another study, it was found that preexisting neutrophilic rhinitis induced by endotoxin augmented the ozone-induced MCM. However, pre-existing rhinitis did not alter the severity of ozone-induced epithelial hyperplasia and mucin gene upregulation

  2. Real-time imaging of exocytotic mucin release and swelling in Calu-3 cells using acridine orange.

    PubMed

    Shumilov, Dmytro; Popov, Alexander; Fudala, Rafal; Akopova, Irina; Gryczynski, Ignacy; Borejdo, Julian; Gryczynski, Zygmunt; Grygorczyk, Ryszard

    2014-03-15

    Mucus secretion is the first-line of defence against the barrage of irritants inhaled into human lungs, but abnormally thick and viscous mucus results in many respiratory diseases. Understanding the processes underlying mucus pathology is hampered, in part, by lack of appropriate experimental tools for labeling and studying mucin granule secretion from live cells with high sensitivity and temporal resolution. In this report we present original spectroscopic properties of acridine orange (AO) which could be utilized to study granule release and mucin swelling with various advanced fluorescence imaging approaches. Low concentration (<200 μM) AO solutions presented absorption maximum at 494 nm, emission maximum at 525 nm and only ∼1.76 ns fluorescence lifetime. By contrast at high concentrations (4-30 mM) favoring formation of AO aggregates, a very different absorption with maximum at ∼440 nm, dramatically red-shifted emission with maximum at 630 nm, and over 10-fold increased fluorescence lifetime (∼20 ns) was observed. To verify potential utility of AO for real-time imaging we have performed confocal, total internal reflection fluorescence (TIRF) and fluorescence lifetime imaging (FLIM) of AO-stained Calu-3 cells. We found similar red-shifted fluorescence spectra and long fluorescence lifetime in intracellular granules as compared to that in the cytoplasm consistent with granular AO accumulation. Mechanical stimulation of Calu-3 cells resulted in multiple exocytotic secretory events of AO-stained granules followed by post-exocytotic swelling of their fluorescently-labeled content that was seen in single-line TIRF images as rapidly-expanding bright-fluorescence patches. The rate of their size expansion followed first-order kinetics with diffusivity of 3.98±0.07×10(-7)c m(2)/s, as expected for mucus gel swelling. This was followed by fluorescence decrease due to diffusional loss of AO that was ∼10-fold slower in the secreted mucus compared to bulk aqueous

  3. Specific allergen immunotherapy attenuates allergic airway inflammation in a rat model of Alstonia scholaris pollen induced airway allergy.

    PubMed

    Datta, Ankur; Moitra, Saibal; Hazra, Iman; Mondal, Somnath; Das, Prasanta Kumar; Singh, Manoj Kumar; Chaudhuri, Suhnrita; Bhattacharya, Debanjan; Tripathi, Santanu Kumar; Chaudhuri, Swapna

    2016-01-01

    Pollen grains are well established to be an important cause of respiratory allergy. Current pharmacologic therapies for allergic asthma do not cure the disease. Allergen specific immunotherapy is the only treatment method which re-directs the immune system away from allergic response leading to a long lasting effect. The mechanism by which immunotherapy achieves this goal is an area of active research world-wide. The present experimental study was designed to develop an experimental model of allergic lung inflammation based on a relevant human allergen, Alstonia scholaris pollen, and to establish the immunological and cellular features of specific allergen immunotherapy using this same pollen extract. Our results revealed that Alstonia scholaris pollen sensitization and challenge causes eosinophilic airway inflammation with mucin hypersecretion. This is associated with increased total IgE, increased expression of FcɛRI on lung mast cells and increased levels of IL-4, IL-5 & IL-13 as confirmed by ELISA, in-situ immunofluorescence and FACS assay. Allergen specific immunotherapy reduced airway inflammation and also decreased total IgE level, FcɛRI expression, IL-4, IL-5 & IL-13 levels. It was further noted that the reduction of these levels was more by intra-nasal route than by intra-peritoneal route. Thus we present a novel animal model of Alstonia scholaris pollen allergic disease and specific allergen immunotherapy which will pave the way towards the development of better treatment modalities.

  4. The serine protease motif of Pic mediates a dose-dependent mucolytic activity after binding to sugar constituents of the mucin substrate.

    PubMed

    Gutiérrez-Jiménez, Javier; Arciniega, Ivonne; Navarro-García, Fernando

    2008-08-01

    The pic gene is harbored on the chromosomes of three important pathogens: enteroaggregative Escherichia coli (EAEC), uropathogenic E. coli (UPEC), and Shigella flexneri. Since Pic is secreted into the intestinal lumen during EAEC infection, we sought to identify intestinal-mucosal substrates for Pic. Pic did not damage epithelial cells, cleave fodrin, or degrade host defense proteins embedded in the mucus layer (sIgA, lactoferrin and lysozyme). However, by using a solid-phase assay to evaluate the mucinolytic activity of EAEC Pic, we documented a specific, dose-dependent mucinolytic activity. A serine protease inhibitor and an enzymatically inactive variant of Pic were used to show that the Pic serine protease motif is required for mucinolytic activity. Pic binds mucin, and this binding was blocked in competition assays using monosaccharide constituents of the oligosaccharide side chains of mucin. Moreover, Pic mucinolytic activity decreased when sialic acid was removed from mucin. Thus, Pic is a mucinase with lectin-like activity that can be related to its reported hemagglutinin activity. Our results suggest that EAEC may secrete Pic into the intestinal lumen as a strategy for penetrating the gel-like mucus layer during EAEC colonization.

  5. Ocular melanoma and mammary mucinous carcinoma in an African lion

    PubMed Central

    2012-01-01

    Background Reports of neoplasms in Panthera species are increasing, but they are still an uncommon cause of disease and death in captive wild felids. The presence of two or more primary tumor in large felids is rarely reported, and there are no documented cases of ocular melanoma and mammary mucinous carcinoma in African lions. Case presentation An ocular melanoma and a mammary mucinous carcinoma are described in an African lion (Panthera leo). The first tumour was histologically characterized by the presence of epithelioid and fusiform melanocytes, while the latter was composed of mucus-producing cells with an epithelial phenotype that contained periodic acid-Schiff (PAS) and Alcian blue staining mucins. Metastases of both tumor were identified in various organs and indirect immunohistochemistry was used to characterize them. Peribiliary cysts were observed in the liver. Conclusions This is the first description of these tumor in African lions. PMID:23009723

  6. Mucin biopolymers as broad-spectrum antiviral agents

    PubMed Central

    Lieleg, Oliver; Lieleg, Corinna; Bloom, Jesse; Buck, Christopher B.; Ribbeck, Katharina

    2012-01-01

    Mucus is a porous biopolymer matrix that coats all wet epithelia in the human body and serves as the first line of defense against many pathogenic bacteria and viruses. However, under certain conditions viruses are able to penetrate this infection barrier, which compromises the protective function of native mucus. Here, we find that isolated porcine gastric mucin polymers, key structural components of native mucus, can protect an underlying cell layer from infection by small viruses such as human papillomavirus (HPV), Merkel cell polyomavirus (MCV), or a strain of influenza A virus. Single particle analysis of virus mobility inside the mucin barrier reveals that this shielding effect is in part based on a retardation of virus diffusion inside the biopolymer matrix. Our findings suggest that purified mucins may be used as a broad-range antiviral supplement to personal hygiene products, baby formula or lubricants to support our immune system. PMID:22475261

  7. Mechanical intestinal obstruction secondary to appendiceal mucinous cystadenoma

    PubMed Central

    Xu, Zheng-shui; Xu, Wei; Ying, Jia-qi; Cheng, Hua

    2017-01-01

    Abstract Background: Appendiceal mucinous cystadenoma can present in various ways, and it is most commonly encountered incidentally during appendectomy, but mechanical intestinal obstruction secondary to an appendiceal mucocele has been rarely reported. Methods: We report a case of mechanical intestinal obstruction secondary to appendiceal mucinous cystadenoma. After nasogastric decompression and initial aggressive intravenous fluid resuscitation, an emergency operation was performed under the diagnosis of acute mechanical intestinal obstruction. Results: We performed an appendectomy and intraoperative enteral decompression without anastomoses. The pathologic examination (PE) revealed appendiceal mucinous cystadenoma. After the operation, the patient's recovery went smoothly, and the patient was discharged on the fifth postoperative day. No tumor recurrence was recorded over an 8 month follow-up period. Conclusion: Early operative intervention should be recommended to the patient with acute mechanical complete intestinal obstruction, especially the patient who had no previous abdominal surgery. And it is vital to discriminate benign and malignantappendiceal mucocel in determining the extent of surgery. PMID:28151903

  8. Radiologic findings of urachal mucinous cystadenocarcinoma causing pseudomyxoma peritonei.

    PubMed

    Kebapçı, Mahmut; Saylısoy, Suzan; Can, Cavit; Dündar, Emine

    2012-05-01

    Urachal mucinous cystadenocarcinoma causing pseudomyxoma peritonei is very rare. We report a case of a 59-year-old man with urachal mucinous adenocarcinoma associated with pseudomyxoma peritonei, and our radiologic findings. Ultrasonography revealed a well delineated, large cystic tumor adjacent to the anterior wall of the abdomen. Computed tomography and magnetic resonance imaging revealed a tumor of which the left posterior wall was defective. A large amount of ascites was present in the peritoneal cavity. The ascites caused displacement of the intestinal structures toward the dorsal region. The tumor wall and septa in the ascites were well enhanced on contrast-enhanced images. Radiologically, pseudomyxoma peritonei due to rupture of urachal cystic tumor was considered. The pathologic diagnosis was mucinous adenocarcinoma and pseudomyxoma peritonei.

  9. Genome wide analysis of the bovine mucin genes and their gastrointestinal transcription profile

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mucins are large glycoproteins implicated in protection of all mucosal surfaces. In humans and rodents, the mucin gene family has been well described and previous studies have investigated the distribution and function of mucins in the respiratory, urogenital and gastrointestinal (GI) tracts. In con...

  10. Operative endoscopy of the airway

    PubMed Central

    Walters, Dustin M.

    2016-01-01

    Airway endoscopy has long been an important and useful tool in the management of thoracic diseases. As thoracic specialists have gained experience with both flexible and rigid bronchoscopic techniques, the technology has continued to evolve so that bronchoscopy is currently the foundation for diagnosis and treatment of many thoracic ailments. Airway endoscopy plays a significant role in the biopsy of tumors within the airways, mediastinum, and lung parenchyma. Endoscopic methods have been developed to treat benign and malignant airway stenoses and tracheomalacia. And more recently, techniques have been conceived to treat end-stage emphysema and prolonged air leaks in select patients. This review describes the abundant uses of airway endoscopy, as well as technical considerations and limitations of the current technologies. PMID:26981263

  11. Global airway disease beyond allergy.

    PubMed

    Hellings, Peter W; Prokopakis, Emmanuel P

    2010-03-01

    Besides the anatomic continuity of the upper and lower airways, inflammation in one part of the airway influences the homeostasis of the other. The mechanisms underlying this interaction have been studied primarily in allergic disease, showing systemic immune activation, induction of inflammation at a distance, and a negative impact of nasal inflammation on bronchial homeostasis. In addition to allergy, other inflammatory conditions of the upper airways are associated with lower airway disease. Rhinosinusitis is frequently associated with asthma and chronic obstructive pulmonary disease. The impairment of purification, humidification, and warming up of the inspired air by the nose in rhinosinusitis may be responsible in part for bronchial pathology. The resolution of sinonasal inflammation via medical and/or surgical treatment is responsible for the beneficial effect of the treatment on bronchial disease. This article provides a comprehensive overview of the current knowledge of upper and lower airway communication beyond allergic disease.

  12. Recurrent airway obstruction: a review.

    PubMed

    Pirie, R S

    2014-05-01

    Recurrent airway obstruction is a widely recognised airway disorder, characterised by hypersensitivity-mediated neutrophilic airway inflammation and lower airway obstruction in a subpopulation of horses when exposed to suboptimal environments high in airborne organic dust. Over the past decade, numerous studies have further advanced our understanding of different aspects of the disease. These include clarification of the important inhaled airborne agents responsible for disease induction, improving our understanding of the underlying genetic basis of disease susceptibility and unveiling the fundamental immunological mechanisms leading to establishment of the classic disease phenotype. This review, as well as giving a clinical overview of recurrent airway obstruction, summarises much of the work in these areas that have culminated in a more thorough understanding of this debilitating disease.

  13. The airway microbiome and disease.

    PubMed

    Marsland, Benjamin J; Yadava, Koshika; Nicod, Laurent P

    2013-08-01

    Although traditionally thought to be sterile, accumulating evidence now supports the concept that our airways harbor a microbiome. Thus far, studies have focused upon characterizing the bacterial constituents of the airway microbiome in both healthy and diseased lungs, but what perhaps provides the greatest impetus for the exploration of the airway microbiome is that different bacterial phyla appear to dominate diseased as compared with healthy lungs. As yet, there is very limited evidence supporting a functional role for the airway microbiome, but continued research in this direction is likely to provide such evidence, particularly considering the progress that has been made in understanding host-microbe mutualism in the intestinal tract. In this review, we highlight the major advances that have been made discovering and describing the airway microbiome, discuss the experimental evidence that supports a functional role for the microbiome in health and disease, and propose how this emerging field is going to impact clinical practice.

  14. [Intraductal papillary mucinous neoplasm of the pancreas, IPMN].

    PubMed

    Sirén, Jukka

    2013-01-01

    With the development and increasing use of imaging techniques, intraductal papillary mucinous neoplasm (IPMN) is being detected with increasing frequency. Two forms of the disease are distinguished, the rare main duct form and the common accessory pancreatic duct form. The former often progresses to malignancy, the latter only seldom. The mixed form of IPMN exhibits features of both forms. In main duct IPMN, mucin production obstructs the pancreatic duct causing its dilatation and often symptoms typical of chronic pancreatitis. Main duct IPMN is always an indication for surgery, whereas monitoring is often sufficient for side duct IPMN.

  15. Mucinous Borderline Ovarian Tumor in Very Old Aged Postmenopausal Woman

    PubMed Central

    Lee, Seung-Hee; Lee, Hae-Hyeog; Lee, Arum; Kim, Yeon-Suk; Jeon, Dong-Su; Kwak, Jeong Ja; Yang, Yo-Sep

    2015-01-01

    Mucinous borderline ovarian tumors (BOTs) occur most often in women between the ages of 20 and 30. Early-stage detection of the condition has a more favorable prognosis. In this case report, the authors present an elderly 93-year old woman who visited our hospital due to severe abdominal pain after being diagnosed with a pelvic mass 2 years ago and not undergoing any treatment since the diagnosis was made. She underwent emergency left salpingo-oophorectomy and was diagnosed with mucinous BOT according to biopsy results. PMID:26793682

  16. Interleukin-1beta causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung.

    PubMed

    Lappalainen, Urpo; Whitsett, Jeffrey A; Wert, Susan E; Tichelaar, Jay W; Bry, Kristina

    2005-04-01

    The production of the inflammatory cytokine interleukin (IL)-1 is increased in lungs of patients with chronic obstructive pulmonary disease (COPD) or asthma. To characterize the in vivo actions of IL-1 in the lung, transgenic mice were generated in which human IL-1beta was expressed in the lung epithelium with a doxycycline-inducible system controlled by the rat Clara cell secretory protein (CCSP) promoter. Induction of IL-1beta expression in the lungs of adult mice caused pulmonary inflammation characterized by neutrophil and macrophage infiltrates. IL-1beta caused distal airspace enlargement, consistent with emphysema. IL-1beta caused disruption of elastin fibers in alveolar septa and fibrosis in airway walls and in the pleura. IL-1beta increased the thickness of conducting airways, enhanced mucin production, and caused lymphocytic aggregates in the airways. Decreased immunostaining for the winged helix transcription factor FOXA2 was associated with goblet cell hyperplasia in IL-1beta-expressing mice. The production of the neutrophil attractant CXC chemokines KC (CXCL1) and MIP-2 (CXCL2), and of matrix metalloproteases MMP-9 and MMP-12, was increased by IL-1beta. Chronic production of IL-1beta in respiratory epithelial cells of adult mice causes lung inflammation, enlargement of distal airspaces, mucus metaplasia, and airway fibrosis in the adult mouse.

  17. Secretion of Proteases by an Opportunistic Fungal Pathogen Scedosporium aurantiacum

    PubMed Central

    Kautto, Liisa; Nevalainen, Helena

    2017-01-01

    Scedosporium aurantiacum is an opportunistic filamentous fungus increasingly isolated from the sputum of cystic fibrosis patients, and is especially prevalent in Australia. At the moment, very little is known about the infection mechanism of this fungus. Secreted proteases have been shown to contribute to fungal virulence in several studies with other fungi. Here we have compared the profiles of proteases secreted by a clinical isolate Scedosporium aurantiacum (WM 06.482) and an environmental strain (WM 10.136) grown on a synthetic cystic fibrosis sputum medium supplemented with casein or mucin. Protease activity was assessed using class-specific substrates and inhibitors. Subtilisin-like and trypsin-like serine protease activity was detected in all cultures. The greatest difference in the secretion of proteases between the two strains occurred in mucin-supplemented medium, where the activities of the elastase-like, trypsin-like and aspartic proteases were, overall, 2.5–75 fold higher in the clinical strain compared to the environmental strain. Proteases secreted by the two strains in the mucin-supplemented medium were further analyzed by mass spectrometry. Six homologs of fungal proteases were identified from the clinical strain and five from the environmental strain. Of these, three were common for both strains including a subtilisin peptidase, a putative leucine aminopeptidase and a PA-SaNapH-like protease. Trypsin-like protease was identified by mass spectrometry only in the clinical isolate even though trypsin-like activity was present in all cultures. In contrast, high elastase-like activity was measured in the culture supernatant of the clinical strain but could not be identified by mass spectrometry searching against other fungi in the NCBI database. Future availability of an annotated genome will help finalise identification of the S. aurantiacum proteases. PMID:28060882

  18. Secretion of Proteases by an Opportunistic Fungal Pathogen Scedosporium aurantiacum.

    PubMed

    Han, Zhiping; Kautto, Liisa; Nevalainen, Helena

    2017-01-01

    Scedosporium aurantiacum is an opportunistic filamentous fungus increasingly isolated from the sputum of cystic fibrosis patients, and is especially prevalent in Australia. At the moment, very little is known about the infection mechanism of this fungus. Secreted proteases have been shown to contribute to fungal virulence in several studies with other fungi. Here we have compared the profiles of proteases secreted by a clinical isolate Scedosporium aurantiacum (WM 06.482) and an environmental strain (WM 10.136) grown on a synthetic cystic fibrosis sputum medium supplemented with casein or mucin. Protease activity was assessed using class-specific substrates and inhibitors. Subtilisin-like and trypsin-like serine protease activity was detected in all cultures. The greatest difference in the secretion of proteases between the two strains occurred in mucin-supplemented medium, where the activities of the elastase-like, trypsin-like and aspartic proteases were, overall, 2.5-75 fold higher in the clinical strain compared to the environmental strain. Proteases secreted by the two strains in the mucin-supplemented medium were further analyzed by mass spectrometry. Six homologs of fungal proteases were identified from the clinical strain and five from the environmental strain. Of these, three were common for both strains including a subtilisin peptidase, a putative leucine aminopeptidase and a PA-SaNapH-like protease. Trypsin-like protease was identified by mass spectrometry only in the clinical isolate even though trypsin-like activity was present in all cultures. In contrast, high elastase-like activity was measured in the culture supernatant of the clinical strain but could not be identified by mass spectrometry searching against other fungi in the NCBI database. Future availability of an annotated genome will help finalise identification of the S. aurantiacum proteases.

  19. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system.

    PubMed

    Pelaseyed, Thaher; Bergström, Joakim H; Gustafsson, Jenny K; Ermund, Anna; Birchenough, George M H; Schütte, André; van der Post, Sjoerd; Svensson, Frida; Rodríguez-Piñeiro, Ana M; Nyström, Elisabeth E L; Wising, Catharina; Johansson, Malin E V; Hansson, Gunnar C

    2014-07-01

    The gastrointestinal tract is covered by mucus that has different properties in the stomach, small intestine, and colon. The large highly glycosylated gel-forming mucins MUC2 and MUC5AC are the major components of the mucus in the intestine and stomach, respectively. In the small intestine, mucus limits the number of bacteria that can reach the epithelium and the Peyer's patches. In the large intestine, the inner mucus layer separates the commensal bacteria from the host epithelium. The outer colonic mucus layer is the natural habitat for the commensal bacteria. The intestinal goblet cells secrete not only the MUC2 mucin but also a number of typical mucus components: CLCA1, FCGBP, AGR2, ZG16, and TFF3. The goblet cells have recently been shown to have a novel gate-keeping role for the presentation of oral antigens to the immune system. Goblet cells deliver small intestinal luminal material to the lamina propria dendritic cells of the tolerogenic CD103(+) type. In addition to the gel-forming mucins, the transmembrane mucins MUC3, MUC12, and MUC17 form the enterocyte glycocalyx that can reach about a micrometer out from the brush border. The MUC17 mucin can shuttle from a surface to an intracellular vesicle localization, suggesting that enterocytes might control and report epithelial microbial challenge. There is communication not only from the epithelial cells to the immune system but also in the opposite direction. One example of this is IL10 that can affect and improve the properties of the inner colonic mucus layer. The mucus and epithelial cells of the gastrointestinal tract are the primary gate keepers and controllers of bacterial interactions with the host immune system, but our understanding of this relationship is still in its infancy.

  20. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system

    PubMed Central

    Pelaseyed, Thaher; Bergström, Joakim H.; Gustafsson, Jenny K.; Ermund, Anna; Birchenough, George M. H.; Schütte, André; van der Post, Sjoerd; Svensson, Frida; Rodríguez-Piñeiro, Ana M.; Nyström, Elisabeth E.L.; Wising, Catharina; Johansson, Malin E.V.; Hansson, Gunnar C.

    2014-01-01

    Summary The gastrointestinal tract is covered by mucus that has different properties in the stomach, small intestine and colon. The large highly glycosylated gel-forming mucins MUC2 and MUC5AC are the major components of the mucus in the intestine and stomach, respectively. In the small intestine mucus limits the number of bacteria that can reach the epithelium and the Peyer’s patches. In the large intestine the inner mucus layer separates the commensal bacteria from the host epithelium. The outer colonic mucus layer is the natural habitat for the commensal bacteria. The intestinal goblet cells not only secrete the MUC2 mucin, but also a number of typical mucus components: CLCA1, FCGBP, AGR2, ZG16, and TFF3. The goblet cells have recently been shown to have a novel gate-keeping role for the presentation of oral antigens to the immune system. Goblet cells deliver small intestinal luminal material to the lamina propria dendritic cells of the tolerogenic CD103+-type. In addition to the gel forming mucins, the transmembrane mucins MUC3, MUC12 and MUC17 form the enterocyte glycocalyx that can reach about a micrometer out from the brush border. The MUC17 mucin can shuttle from a surface to an intracellular vesicle localization suggesting that enterocytes might control and report epithelial microbial challenge. There is not only communication from the epithelial cells to the immune system, but also in the opposite direction. One example of this is IL10 that can affect and improve the properties of the inner colonic mucus layer. The mucus and epithelial cells of the gastrointestinal tract are the primary gate keepers and controllers of bacterial interactions with the host immune system, but our understanding of this relationship is still in its infancy. PMID:24942678

  1. Estrogen switches pure mucinous breast cancer to invasive lobular carcinoma with mucinous features.

    PubMed

    Jambal, Purevsuren; Badtke, Melanie M; Harrell, J Chuck; Borges, Virginia F; Post, Miriam D; Sollender, Grace E; Spillman, Monique A; Horwitz, Kathryn B; Jacobsen, Britta M

    2013-01-01

    Mucinous breast cancer (MBC) is mainly a disease of postmenopausal women. Pure MBC is rare and augurs a good prognosis. In contrast, MBC mixed with other histological subtypes of invasive disease loses the more favorable prognosis. Because of the relative rarity of pure MBC, little is known about its cell and tumor biology and relationship to invasive disease of other subtypes. We have now developed a human breast cancer cell line called BCK4, in which we can control the behavior of MBC. BCK4 cells were derived from a patient whose poorly differentiated primary tumor was treated with chemotherapy, radiation and tamoxifen. Malignant cells from a recurrent pleural effusion were xenografted in mammary glands of a nude mouse. Cells from the solid tumor xenograft were propagated in culture to generate the BCK4 cell line. Multiple marker and chromosome analyses demonstrate that BCK4 cells are human, near diploid and luminal, expressing functional estrogen, androgen, and progesterone receptors. When xenografted back into immunocompromised cycling mice, BCK4 cells grow into small pure MBC. However, if mice are supplemented with continuous estradiol, tumors switch to invasive lobular carcinoma (ILC) with mucinous features (mixed MBC), and growth is markedly accelerated. Tamoxifen prevents the expansion of this more invasive component. The unexpected ability of estrogens to convert pure MBC into mixed MBC with ILC may explain the rarity of the pure disease in premenopausal women. These studies show that MBC can be derived from lobular precursors and that BCK4 cells are new, unique models to study the phenotypic plasticity, hormonal regulation, optimal therapeutic interventions, and metastatic patterns of MBC.

  2. Pulmonary mucinous adenocarcinomas: architectural patterns in correlation with genetic changes, prognosis and survival.

    PubMed

    Geles, Abidin; Gruber-Moesenbacher, Ulrike; Quehenberger, Franz; Manzl, Claudia; Al Effah, Mohamed; Grygar, Elisabeth; Juettner-Smolle, Freyja; Popper, Helmut H

    2015-12-01

    Of pulmonary adenocarcinomas, about 25-30 % of cases is of a mucinous type. Mucinous adenocarcinomas are regarded as more aggressive compared to their non-mucinous counterparts. Invasive mucinous adenocarcinoma, colloid, and enteric adenocarcinomas are variants within adenocarcinomas. We investigated 76 invasive mucinous adenocarcinomas, including colloid variants, for predominant and secondary patterns, their different form of mucin storage and release, expression of cytokeratin 7 and 20, TTF1 and CDX2, MUC1, 2, and 5AC proteins, p14 and p16 proteins, possible rearrangements for EML4ALK and ROS1, as well as KRAS mutational status, and correlated this with survival. For comparison, 259 non-mucinous adenocarcinomas were selected. Overall survival for invasive mucinous adenocarcinomas corrected for T and N stage was not different from their non-mucinous counterpart. Most were of an acinar pattern. Neither pattern, nor type of mucin storage and release, such as luminal, extracellular, or goblet cell type had any influence on survival. Of adenocarcinomas expressing CK20, all but one expressed TTF1 either strongly or at least focally, and 8 co-expressed CDX2 focally. Most mucinous adenocarcinomas expressed either MUC1 or MUC5AC proteins, but rarely MUC2, while a few cases co-expressed both or all three. Loss of p16 expression correlated with worse outcome. KRAS mutation was found in 56 % of mucinous adenocarcinomas. Mutational status was neither correlated with architectural pattern nor survival. Codon 12 mutations were most frequent, and one case presented with KRAS mutations in codon 12 and 61. Goblet cell variants of mucinous adenocarcinomas presented predominantly with codon 12 mutations, while all colloid variants had KRAS mutation. Two cases had EML4 and ALK1 rearranged; ROS1 rearrangement was not found. Mucinous adenocarcinomas behave similar to non-mucinous variants. TNM stage is the most important factor followed by p16 loss predicting overall survival.

  3. Influence of intrauterine growth restriction on airway development in fetal and postnatal sheep.

    PubMed

    Wignarajah, Dharshini; Cock, Megan L; Pinkerton, Kent E; Harding, Richard

    2002-06-01

    Epidemiologic studies suggest that intrauterine growth restriction (IUGR) can lead to impaired lung function, yet little information exists on the effects of IUGR on airway development. Our objectives were to characterize morphometrically effects of IUGR on airway structure in the fetus and to determine whether alterations persist into postnatal life. We used two groups of sheep, each with appropriate controls; a fetal group was subjected to IUGR by restriction of placental function from 120 to 140 d (term approximately 147 d), and a postnatal group, killed 8 wk after birth, was subjected to IUGR from 120 d to birth at term. In both fetuses and postnatal lambs, IUGR did not alter lung weight relative to body weight. In IUGR fetuses, the luminal areas and basement membrane perimeters of the trachea and larger bronchi (generations 0-8, trachea = 0) were smaller than in controls. Airway wall areas, relative to basement membrane perimeters, were reduced in IUGR fetuses compared with controls, largely due to reduced areas of cartilage and epithelium. At 8 wk after birth, there were no significant differences in airway dimensions between IUGR and control lambs. However, the number of profiles of bronchial submucosal glands, relative to basement membrane perimeters, was lower in IUGR lambs than in controls and the area of epithelial mucin was increased. We conclude that restriction of fetal growth during late gestation impairs the growth of bronchial walls that could affect airway compliance in the immediate postnatal period. Although airway growth deficits are reversed by 8 wk, alterations in mucus elements persist.

  4. Micropatterned Endotracheal Tubes Reduce Secretion-Related Lumen Occlusion.

    PubMed

    Mann, Ethan E; Magin, Chelsea M; Mettetal, M Ryan; May, Rhea M; Henry, MiKayla M; DeLoid, Heather; Prater, Justin; Sullivan, Lauren; Thomas, John G; Twite, Mark D; Parker, Albert E; Brennan, Anthony B; Reddy, Shravanthi T

    2016-12-01

    Tracheal intubation disrupts physiological homeostasis of secretion production and clearance, resulting in secretion accumulation within endotracheal tubes (ETTs). Novel in vitro and in vivo models were developed to specifically recapitulate the clinical manifestations of ETT occlusion. The novel Sharklet™ micropatterned ETT was evaluated, using these models, for the ability to reduce the accumulation of both bacterial biofilm and airway mucus compared to a standard care ETT. Novel ETTs with micropattern on the inner and outer surfaces were placed adjacent to standard care ETTs in in vitro biofilm and airway patency (AP) models. The primary outcome for the biofilm model was to compare commercially-available ETTs (standard care and silver-coated) to micropatterned for quantity of biofilm accumulation. The AP model's primary outcome was to evaluate accumulation of artificial airway mucus. A 24-h ovine mechanical ventilation model evaluated the primary outcome of relative quantity of airway secretion accumulation in the ETTs tested. The secondary outcome was measuring the effect of secretion accumulation in the ETTs on airway resistance. Micropatterned ETTs significantly reduced biofilm by 71% (p = 0.016) compared to smooth ETTs. Moreover, micropatterned ETTs reduced lumen occlusion, in the AP model, as measured by cross-sectional area, in distal (85%, p = 0.005), middle (84%, p = 0.001) and proximal (81%, p = 0.002) sections compared to standard care ETTs. Micropatterned ETTs reduced the volume of secretion accumulation in a sheep model of occlusion by 61% (p < 0.001) after 24 h of mechanical ventilation. Importantly, micropatterned ETTs reduced the rise in ventilation peak inspiratory pressures over time by as much as 49% (p = 0.005) compared to standard care ETTs. Micropatterned ETTs, demonstrated here to reduce bacterial contamination and mucus occlusion, will have the capacity to limit complications occurring during mechanical ventilation and

  5. Mucinous Cystadenoma of the Testis: A Case Report with Immunohistochemical Findings

    PubMed Central

    Kim, Gilhyang; Kwon, Dohee; Na, Hee Young; Kim, Sehui; Moon, Kyung Chul

    2017-01-01

    Mucinous cystadenoma of the testis is a very rare tumor. Herein, we report a case of mucinous cystadenoma arising in the testis of a 61-year-old man, along with a literature review. Computed tomography showed a 2.5-cm-sized poorly enhancing cystic mass. Grossly, the tumor was a unilocular cystic mass filled with mucinous material and confined to the testicular parenchyma. Histologically, the cyst had a fibrotic wall lined by mucinous columnar epithelium without atypia. Immunohistochemical staining was positive for cytokeratin 20 and CDX2, as well as focally positive for cytokeratin 7. The pathologic diagnosis was mucinous cystadenoma. PMID:28189139

  6. Putting the Squeeze on Airway Epithelia

    PubMed Central

    Park, Jin-Ah; Fredberg, Jeffrey J.

    2015-01-01

    Asthma is characterized by chronic inflammation, airway hyperresponsiveness, and progressive airway remodeling. The airway epithelium is known to play a critical role in the initiation and perpetuation of these processes. Here, we review how excessive epithelial stress generated by bronchoconstriction is sufficient to induce airway remodeling, even in the absence of inflammatory cells. PMID:26136543

  7. Repeated allergen exposure of sensitized Brown-Norway rats induces airway cell DNA synthesis and remodelling.

    PubMed

    Salmon, M; Walsh, D A; Koto, H; Barnes, P J; Chung, K F

    1999-09-01

    Chronic inflammation in asthmatic airways can lead to characteristic airway smooth muscle (ASM) thickening and pathological changes within the airway wall. This study assessed the effect of repeated allergen exposure on ASM and epithelial cell deoxyribonucleic acid (DNA) synthesis, cell recruitment and airway wall pathology. Brown-Norway rats were sensitized and then exposed to ovalbumin or saline aerosol every 3 days on six occasions. After the final exposure, rats were administered twice daily for 7 days with the DNA S-phase marker bromodeoxyuridine (BrdU). Using a triple immunohistochemical staining technique, BrdU incorporation into ASM and epithelium was quantified employing computer-assisted image analysis. There were >3-fold mean increases in BrdU incorporation into ASM from 1.3% of cells (95% confidence interval (CI) 1.0-1.6) in saline controls to 4.7% (95% CI 2.6-6.7) after allergen exposure (p<0.001), and in airway epithelium, from 1.3 (95% CI 0.6-2.0) BrdU-positive cells x mm basement membrane(-1) in saline controls to 4.9 (95% CI 3.0-6.7) after allergen exposure (p<0.001). There was increased subepithelial collagen deposition and mucus secretion along with a significant eosinophil and lymphocyte recruitment to the airways. Increased rates of deoxyribonucleic acid synthesis in both airway smooth muscle and epithelial cells along with changes to the airway wall pathology may precede the establishment of smooth muscle thickening and airway remodelling after repeated allergen exposure in rats. This model seems to be appropriate for studying structural changes within the airways as observed in asthma.

  8. [Airway clearance techniques in chronic obstructive pulmonary syndrome : 2011 update].

    PubMed

    Opdekamp, C

    2011-09-01

    For many years the airway clearance techniques used in chest physical therapy were assimilated with the singular technique of postural drainage, percussions and vibrations. However the side effects and counter indications and the lack of scientific proof regarding this technique have forced reflection and development of other techniques more comfortable and without deleterious effects. If all these techniques show a high efficiency in terms of improved mucociliary clearance, the literature is unanimous on how little effect these techniques have in the short and the long-term with regards to lung function and arterial blood gases. In view of the scientific literature, it is clear that the airway clearance techniques don't have the same recognition concerning their efficiency in all obstructive pulmonary diseases. As the cornerstone in the management of cystic fibrosis, the efficiency of the bronchial hygiene techniques are in general poorly documented in the management of the non-cystic fibrosis bronchiectasis, bronchitis or emphysema. The use of the chest physical therapy seems more to do with the interpretation of the imagery and symptomatology. The airway clearance techniques should be individualised according to symptoms, the amount of expectorated mucus and the objectives signs of secretions retention or subjective signs of difficulty expectorating secretions with progression of the disease.

  9. Chloride and potassium channels in cystic fibrosis airway epithelia

    NASA Astrophysics Data System (ADS)

    Welsh, Michael J.; Liedtke, Carole M.

    1986-07-01

    Cystic fibrosis, the most common lethal genetic disease in Caucasians, is characterized by a decreased permeability in sweat gland duct and airway epithelia. In sweat duct epithelium, a decreased Cl- permeability accounts for the abnormally increased salt content of sweat1. In airway epithelia a decreased Cl- permeability, and possibly increased sodium absorption, may account for the abnormal respiratory tract fluid2,3. The Cl- impermeability has been localized to the apical membrane of cystic fibrosis airway epithelial cells4. The finding that hormonally regulated Cl- channels make the apical membrane Cl- permeable in normal airway epithelial cells5 suggested abnormal Cl- channel function in cystic fibrosis. Here we report that excised, cell-free patches of membrane from cystic fibrosis epithelial cells contain Cl- channels that have the same conductive properties as Cl- channels from normal cells. However, Cl- channels from cystic fibrosis cells did not open when they were attached to the cell. These findings suggest defective regulation of Cl- channels in cystic fibrosis epithelia; to begin to address this issue, we performed two studies. First, we found that isoprenaline, which stimulates Cl- secretion, increases cellular levels of cyclic AMP in a similar manner in cystic fibrosis and non-cystic fibrosis epithelial cells. Second, we show that adrenergic agonists open calcium-activated potassium channels, indirectly suggesting that calcium-dependent stimulus-response coupling is intact in cystic fibrosis. These data suggest defective regulation of Cl- channels at a site distal to cAMP accumulation.

  10. Ion channel regulation of intracellular calcium and airway smooth muscle function.

    PubMed

    Perez-Zoghbi, Jose F; Karner, Charlotta; Ito, Satoru; Shepherd, Malcolm; Alrashdan, Yazan; Sanderson, Michael J

    2009-10-01

    Airway hyper-responsiveness associated with asthma is mediated by airway smooth muscle cells (SMCs) and has a complicated etiology involving increases in cell contraction and proliferation and the secretion of inflammatory mediators. Although these pathological changes are diverse, a common feature associated with their regulation is a change in intracellular Ca(2+) concentration ([Ca(2+)](i)). Because the [Ca(2+)](i) itself is a function of the activity and expression of a variety of ion channels, in both the plasma membrane and sarcoplasmic reticulum of the SMC, the modification of this ion channel activity may predispose airway SMCs to hyper-responsiveness. Our objective is to review how ion channels determine the [Ca(2+)](i) and influence the function of airway SMCs and emphasize the potential of ion channels as sites for therapeutic approaches to asthma.

  11. Airway complications after lung transplantation.

    PubMed

    Machuzak, Michael; Santacruz, Jose F; Gildea, Thomas; Murthy, Sudish C

    2015-01-01

    Airway complications after lung transplantation present a formidable challenge to the lung transplant team, ranging from mere unusual images to fatal events. The exact incidence of complications is wide-ranging depending on the type of event, and there is still evolution of a universal characterization of the airway findings. Management is also wide-ranging. Simple observation or simple balloon bronchoplasty is sufficient in many cases, but vigilance following more severe necrosis is required for late development of both anastomotic and nonanastomotic airway strictures. Furthermore, the impact of coexisting infection, rejection, and medical disease associated with high-level immunosuppression further complicates care.

  12. Gene Delivery to the Airway

    PubMed Central

    Keiser, Nicholas W.; Engelhardt, John F.

    2013-01-01

    This unit describes generation of and gene transfer to several commonly used airway models. Isolation and transduction of primary airway epithelial cells are first described. Next, the preparation of polarized airway epithelial monolayers is outlined. Transduction of these polarized cells is also described. Methods are presented for generation of tracheal xenografts as well as both ex vivo and in vivo gene transfer to these xenografts. Finally, a method for in vivo gene delivery to the lungs of rodents is included. Methods for evaluating transgene expression are given in the support protocols. PMID:23853081

  13. Colonic mucin synthesis is increased by sodium butyrate.

    PubMed

    Finnie, I A; Dwarakanath, A D; Taylor, B A; Rhodes, J M

    1995-01-01

    The effects of sodium butyrate and sodium bromo-octanoate (an inhibitor of beta oxidation) on colonic mucus glycoprotein (mucin) synthesis have been assessed using tissue from colonic resection samples. Epithelial biopsy specimens were incubated for 16 hours in RPMI 1640 with glutamine, supplemented with 10% fetal calf serum and N-acetyl-[3H]-glucosamine ([3H]-Glc NAc), and differing concentrations of sodium butyrate. Incorporation of [3H] Glc NAc into mucin by normal epithelium at least 10 cm distant from colonic cancer was increased in the presence of sodium butyrate in a dose dependent manner, with maximum effect (476%) at a concentration of 0.1 mM (number of specimens = 24 from six patients, p < 0.001). The increase in response to butyrate was not seen when specimens were incubated in the presence of the beta oxidation inhibitor sodium bromo-octanoate 0.05 M. The striking increase in mucin synthesis that results when butyrate is added to standard nutrient medium suggests that this may be an important mechanism affecting the rate of mucin synthesis in vivo and may also explain the therapeutic effect of butyrate in colitis.

  14. Adhesion Properties of Lactic Acid Bacteria on Intestinal Mucin

    PubMed Central

    Nishiyama, Keita; Sugiyama, Makoto; Mukai, Takao

    2016-01-01

    Lactic acid bacteria (LAB) are Gram-positive bacteria that are natural inhabitants of the gastrointestinal (GI) tracts of mammals, including humans. Since Mechnikov first proposed that yogurt could prevent intestinal putrefaction and aging, the beneficial effects of LAB have been widely demonstrated. The region between the duodenum and the terminal of the ileum is the primary region colonized by LAB, particularly the Lactobacillus species, and this region is covered by a mucus layer composed mainly of mucin-type glycoproteins. The mucus layer plays a role in protecting the intestinal epithelial cells against damage, but is also considered to be critical for the adhesion of Lactobacillus in the GI tract. Consequently, the adhesion exhibited by lactobacilli on mucin has attracted attention as one of the critical factors contributing to the persistent beneficial effects of Lactobacillus in a constantly changing intestinal environment. Thus, understanding the interactions between Lactobacillus and mucin is crucial for elucidating the survival strategies of LAB in the GI tract. This review highlights the properties of the interactions between Lactobacillus and mucin, while concomitantly considering the structure of the GI tract from a histochemical perspective. PMID:27681930

  15. Laparoscopic treatment of mucinous urachal adenocarcinoma with mucocele.

    PubMed

    Oberndoerfer, Marine; Bucher, Pascal; Caviezel, Alessandro; Platon, Alexandra; Ott, Vincent; Egger, Jean-François; Morel, Philippe

    2009-02-01

    We present a case of an asymptomatic 76-year-old woman treated laparoscopically for an urachal mucocele owing to a nonmetastatic urachal mucinous adenocarcinoma. Since laparoscopic en bloc resection of the urachus and partial cystectomy, the patient has been healthy and disease-free for 12 months. Modern surgical treatment of urachal adenocarcinoma is discussed in the light of this case.

  16. Mupirocin-mucin agar for selective enumeration of Bifidobacterium bifidum.

    PubMed

    Pechar, Radko; Rada, Vojtech; Parafati, Lucia; Musilova, Sarka; Bunesova, Vera; Vlkova, Eva; Killer, Jiri; Mrazek, Jakub; Kmet, Vladimir; Svejstil, Roman

    2014-11-17

    Bifidobacterium bifidum is a bacterial species exclusively found in the human intestinal tract. This species is becoming increasingly popular as a probiotic organism added to lyophilized products. In this study, porcine mucin was used as the sole carbon source for the selective enumeration of B. bifidum in probiotic food additives. Thirty-six bifidobacterial strains were cultivated in broth with mucin. Only 13 strains of B. bifidum utilized the mucin to produce acids. B. bifidum was selectively enumerated in eight probiotic food supplements using agar (MM agar) containing mupirocin (100 mg/L) and mucin (20 g/L) as the sole carbon source. MM agar was fully selective if the B. bifidum species was presented together with Bifidobacterium animalis subsp. lactis, Bifidobacterium breve, and Bifidobacterium longum subsp. longum species and with lactic acid bacteria (lactobacilli, streptococci). Isolated strains of B. bifidum were identified using biochemical, PCR, MALDI-TOF procedures and 16S rRNA gene sequencing. The novel selective medium was also suitable for the isolation of B. bifidum strains from human fecal samples.

  17. Clinical outcomes among women with mucinous adenocarcinoma of the ovary

    PubMed Central

    Massad, L. Stewart; Gao, Feng; Hagemann, Ian; Powell, Mathew

    2016-01-01

    Background/Aims Patterns of metastasis and clinical behavior of mucinous ovarian cancers are poorly understood because of their rarity. Methods A retrospective review of records of women identified with pure mucinous invasive ovarian/tubal/peritoneal cancer 1992–2012 at one institution. Survival differences were compared using Kaplan-Meier methods with log-rank tests. Results Among 42 women with mucinous adenocarcinomas the median age was 55 years (range 33–83 years). Most cancers were well differentiated (n = 26, 68%) and stage I/II (n = 31, 74%). One of 27 women with sampled nodes had nodal metastasis; one additional woman recurred in a pelvic node. Most had no visible residual tumor after initial surgery, but of 10 women with stage III/IV cancer and documented residual, 8 had >2cm residual. Except for one woman alive with disease at last follow-up, all who recurred died of disease. Five-year survival was 83% for stage I/II cases but 29% among stage III/IV cases. Stage was a strong predictor of survival (hazard ratio of death among women with stage III/IV cancer 7.73, 95% C.I. 2.33–25.66, P<0.001 vs women with stage I/II cancer). Conclusion Mucinous ovarian cancers have a distinct biology, such that lymphadenectomy for staging is unnecessary and metastatic cancers have poor prognosis. PMID:26583769

  18. Physical Properties of Human Whole Salivary Mucin:A Dynamic Light Scattering Study

    NASA Astrophysics Data System (ADS)

    Mahajan, Manish; Kumar, Vijay; Saraswat, Mayank; Yadav, Savita; Shukla, N. K.; Singh, T. P.

    2008-04-01

    Human salivary mucin, a primary mucous membrane coating glycoprotein forms the first line of defense against adverse environments, attributed to the complex formation between mucin subunits and non mucin species. Aim of the study was to emphasize the effect of pH, denaturants (guanidinum hydrochloride, urea) and detergents (CHAPS, TRITON X -100, SDS on human whole salivary mucin. Hydrodynamic size distribution was measured using DLS. It was observed that aggregation was due to increase in hydrophobic interactions, believed to be accomplished by unfolding of the protein core. Whereas, the detergents which solubilize the proteins by decreasing hydrophobicity lead to disaggregation of mucin into smaller fragments. Mucin subjected to tobacco extract and upon subsequent addition of nicotine was found to have a disaggregating effect on it, suggesting nicotine may be one of the factors responsible for the disaggregating effect of tobacco on mucin, an important carcinogenetic mechanism.

  19. Mucinous Carcinoma with Extensive Signet Ring Cell Differentiation: A Case Report

    PubMed Central

    Kim, Hye Min; Kim, Eun Kyung; Koo, Ja Seung

    2017-01-01

    Breast cancers that present with mucin include mucinous carcinoma and carcinoma with signet ring cell differentiation. The former shows extracellular mucin and the latter shows abundant intracellular mucin. Here, we report a case of breast cancer showing both extracellular mucin and extensive signet ring cell differentiation due to abundant intracellular mucin. Unlike mucinous carcinoma, this case had the features of high-grade nuclear pleomorphism, high mitotic index, estrogen receptor negativity, progesterone receptor negativity, human epidermal growth factor receptor-2 positivity, and ductal type with positivity for E-cadherin. In a case with signet ring cell differentiation, differential diagnosis with metastatic signet ring cell carcinoma of the stomach and colon is essential. In this case, the presence of accompanied ductal carcinoma in situ component and mammaglobin and gross cystic disease fluid protein-15 positivity were findings that suggested the breast as the origin. PMID:28316229

  20. Regulation of NK-cell function by mucins via antigen-presenting cells.

    PubMed

    Laskarin, G; Redzovic, A; Medancic, S Srsen; Rukavina, D

    2010-12-01

    Decidual antigen-presenting cells including dendritic cells (DCs) and CD14(+) macrophages, as mediators of the first encounter with fetal antigens, appear to be critically involved in the initiation of primary immune response by regulating innate- and adaptive immunity. Interleukin-15, produced by them, permits the proliferation and differentiation of CD3(-)CD16(-)CD94(+)NKG2A(+)CD56(+bright) decidual NK cells that identify trophoblast cells. These cells are able to kill them after Th1 cytokine overstimulation and by increasing the release of preformed cytotoxic mediators. Thus, the local microenvironment is a potent modulator of antigen-presenting cell functions. Tumor associated glycoprotein-72 (TAG-72) and mucine 1 (MUC-1) are glycoproteins secreted by uterine epithelial cells. Our hypothesis is that TAG-72 and MUC-1 are the natural ligands for carbohydrate recognition domains (CRDs) of endocytic mannose receptor (MR or CD206) and DC-specific ICAM non-integrin (DC-SIGN or CD209) expressed on decidual CD14(+) macrophages and CD1a(+) DCs. They might be able to condition antigen-presenting cells to produce distinct profiles of cyto/chemokines with consequential reduction in NK-cell numbers and cytotoxic potential leading to insufficient control over trophoblast growth. This hypothesis could explain the disappearance of MUC-1 beneath the attached embryo during the process of successful implantation when tight regulation of trophoblast invasion is needed. As IL-15 is the earliest and the most important factor in NK-cell proliferation, differentiation, and maturation, we expected primarily an increase of IL-15 expression in antigen-presenting cells concomitant with the disappearance of mucins and the enhancement in NK cells numbers and of cytotoxic potential after their close contact with early pregnancy decidual antigen-presenting cells. If our hypothesis is correct, it would contribute to the understanding of the role of mucins in the redirection of immune response

  1. Acanthamoeba protease activity promotes allergic airway inflammation via protease-activated receptor 2.

    PubMed

    Park, Mi Kyung; Cho, Min Kyoung; Kang, Shin Ae; Park, Hye-Kyung; Kim, Dong-Hee; Yu, Hak Sun

    2014-01-01

    Acanthamoeba is a free-living amoeba commonly present in the environment and often found in human airway cavities. Acanthamoeba possesses strong proteases that can elicit allergic airway inflammation. To our knowledge, the aeroallergenicity of Acanthamoeba has not been reported. We repeatedly inoculated mice with Acanthamoeba trophozoites or excretory-secretory (ES) proteins intra-nasally and evaluated symptoms and airway immune responses. Acanthamoeba trophozoites or ES proteins elicited immune responses in mice that resembled allergic airway inflammation. ES proteins had strong protease activity and activated the expression of several chemokine genes (CCL11, CCL17, CCL22, TSLP, and IL-25) in mouse lung epithelial cells. The serine protease inhibitor phenyl-methane-sulfonyl fluoride (PMSF) inhibited ES protein activity. ES proteins also stimulated dendritic cells and enhanced the differentiation of naive T cells into IL-4-secreting T cells. After repeated inoculation of the protease-activated receptor 2 knockout mouse with ES proteins, airway inflammation and Th2 immune responses were markedly reduced, but not to basal levels. Furthermore, asthma patients had higher Acanthamoeba-specific IgE titers than healthy controls and we found Acanthamoeba specific antigen from house dust in typical living room. Our findings suggest that Acanthamoeba elicits allergic airway symptoms in mice via a protease allergen. In addition, it is possible that Acanthamoeba may be one of the triggers human airway allergic disease.

  2. Protein-carbohydrate interactions between Lactobacillus salivarius and pig mucins.

    PubMed

    Iñiguez-Palomares, C; Jiménez-Flores, R; Vázquez-Moreno, L; Ramos-Clamont-Montfort, G; Acedo-Félix, E

    2011-10-01

    Adherence to the gastrointestinal tract is a key element desirable for many of the proposed beneficial health effects of probiotic bacteria. The aims of this study were to determine the amounts of adhesion of 3 Lactobacillus salivarius strains (Lb6, Lb9, and Lb10) to porcine small intestinal mucins and to determine whether adhesion is a function of lectin-like activities. Dot and Western blot assays were performed to investigate bacterial adhesion. Several carbohydrates and glycoproteins were evaluated to determine whether they interfered with adhesion of the Lactobacillus strains to intestinal mucins and to determine whether they had lectin-like activities. The Lb9 and Lb10 strains had greater association with piglet mucins than did those from 22- to 24-wk-old finishing pigs (P = 0.021 and 0.037, respectively), whereas the Lb6 strain adhered to both (P = 0.138). Western blot assays showed that bacterial adhesion detected piglet mucosa from the duodenum, jejunum, and ileum. In finishing pigs, the adhesion was variable throughout the gastrointestinal tract. Galactose and mannose diminished the interaction of the Lb9 and Lb10 strains in intestinal mucosa (P = 0.028 and 0.026, respectively), whereas pig gastric mucin reduced the adhesion of the Lb6 strain (P = 0.013). Adhesion of the Lb9 and Lb10 strains to intestinal mucosa was less after protease treatment (P = 0.023 and 0.018, respectively), which indicates that proteins are needed for the Lb9 and Lb10 strains to recognize mucin. The Lb6 strain also demonstrated diminished adhesion after periodate treatment (P = 0.038). From these results, we suggest that the nature of the bacterial lectin-like substance is a surface protein that loosely binds to the bacterial cell surface. All the tested strains adhered to specific targets in the small intestinal mucosa of piglets, and the bacteria had lectin-like proteins involved in this adhesion.

  3. The molecular background of mucinous carcinoma beyond MUC2

    PubMed Central

    Simons, Michiel; Halilović, Altuna; van der Post, Rachel S; Bogers, Anna J; Marijnissen‐van Zanten, Monica AJ; de Wilt, Johannes HW; Nagtegaal, Iris D

    2014-01-01

    Abstract The increasing interest of the oncology community in tumour classification and prediction of outcome to targeted therapies has put emphasis on an improved identification of tumour types. Colorectal mucinous adenocarcinoma (MC) is a subtype that is characterized by the presence of abundant extracellular mucin that comprises at least 50% of the tumour volume and is found in 10–15% of colorectal cancer patients. MC development is poorly understood, however, the distinct clinical and pathological presentation of MC suggests a deviant development and molecular background. In this review we identify common molecular and genetic alterations in colorectal MC. MC is characterized by a high rate of MUC2 expression. Mutation rates in the therapeutically important RAS/RAF/MAPK and PI3K/AKT pathways are significantly higher in MC compared with non‐mucinous adenocarcinoma. Furthermore, mucinous adenocarcinoma shows higher rates of microsatellite instability and is more frequently of the CpG island methylator phenotype. Although the majority of MCs arise from the large intestine, this subtype also develops in other organs, such as the stomach, pancreas, biliary tract, ovary, breast and lung. We compared findings from colorectal MC with tumour characteristics of MCs from other organs. In these organs, MCs show different mutation rates in the RAS/RAF/MAPK and PI3K/AKT pathways as well, but a common mucinous pathway cannot be identified. Identification of conditions and molecular aberrations that are associated with MC generates insight into the aetiology of this subtype and improves understanding of resistance to therapies. PMID:27499889

  4. Facilitation of Allergic Sensitization and Allergic Airway Inflammation by Pollen-Induced Innate Neutrophil Recruitment.

    PubMed

    Hosoki, Koa; Aguilera-Aguirre, Leopoldo; Brasier, Allan R; Kurosky, Alexander; Boldogh, Istvan; Sur, Sanjiv

    2016-01-01

    Neutrophil recruitment is a hallmark of rapid innate immune responses. Exposure of airways of naive mice to pollens rapidly induces neutrophil recruitment. The innate mechanisms that regulate pollen-induced neutrophil recruitment and the contribution of this neutrophilic response to subsequent induction of allergic sensitization and inflammation need to be elucidated. Here we show that ragweed pollen extract (RWPE) challenge in naive mice induces C-X-C motif ligand (CXCL) chemokine synthesis, which stimulates chemokine (C-X-C motif) receptor 2 (CXCR2)-dependent recruitment of neutrophils into the airways. Deletion of Toll-like receptor 4 (TLR4) abolishes CXCL chemokine secretion and neutrophil recruitment induced by a single RWPE challenge and inhibits induction of allergic sensitization and airway inflammation after repeated exposures to RWPE. Forced induction of CXCL chemokine secretion and neutrophil recruitment in mice lacking TLR4 also reconstitutes the ability of multiple challenges of RWPE to induce allergic airway inflammation. Blocking RWPE-induced neutrophil recruitment in wild-type mice by administration of a CXCR2 inhibitor inhibits the ability of repeated exposures to RWPE to stimulate allergic sensitization and airway inflammation. Administration of neutrophils derived from naive donor mice into the airways of Tlr4 knockout recipient mice after each repeated RWPE challenge reconstitutes allergic sensitization and inflammation in these mice. Together these observations indicate that pollen-induced recruitment of neutrophils is TLR4 and CXCR2 dependent and that recruitment of neutrophils is a critical rate-limiting event that stimulates induction of allergic sensitization and airway inflammation. Inhibiting pollen-induced recruitment of neutrophils, such as by administration of CXCR2 antagonists, may be a novel strategy to prevent initiation of pollen-induced allergic airway inflammation.

  5. United airway disease: current perspectives

    PubMed Central

    Giavina-Bianchi, Pedro; Aun, Marcelo Vivolo; Takejima, Priscila; Kalil, Jorge; Agondi, Rosana Câmara

    2016-01-01

    Upper and lower airways are considered a unified morphological and functional unit, and the connection existing between them has been observed for many years, both in health and in disease. There is strong epidemiologic, pathophysiologic, and clinical evidence supporting an integrated view of rhinitis and asthma: united airway disease in the present review. The term “united airway disease” is opportune, because rhinitis and asthma are chronic inflammatory diseases of the upper and lower airways, which can be induced by allergic or nonallergic reproducible mechanisms, and present several phenotypes. Management of rhinitis and asthma must be jointly carried out, leading to better control of both diseases, and the lessons of the Allergic Rhinitis and Its Impact on Asthma initiative cannot be forgotten. PMID:27257389

  6. Apoptosis and the Airway Epithelium

    PubMed Central

    White, Steven R.

    2011-01-01

    The airway epithelium functions as a barrier and front line of host defense in the lung. Apoptosis or programmed cell death can be elicited in the epithelium as a response to viral infection, exposure to allergen or to environmental toxins, or to drugs. While apoptosis can be induced via activation of death receptors on the cell surface or by disruption of mitochondrial polarity, epithelial cells compared to inflammatory cells are more resistant to apoptotic stimuli. This paper focuses on the response of airway epithelium to apoptosis in the normal state, apoptosis as a potential regulator of the number and types of epithelial cells in the airway, and the contribution of epithelial cell apoptosis in important airways diseases. PMID:22203854

  7. Extraglottic airway devices: A review

    PubMed Central

    Ramaiah, Ramesh; Das, Debasmita; Bhananker, Sanjay M; Joffe, Aaron M

    2014-01-01

    Extraglottic airway devices (EAD) have become an integral part of anesthetic care since their introduction into clinical practice 25 years ago and have been used safely hundreds of millions of times, worldwide. They are an important first option for difficult ventilation during both in-hospital and out-of-hospital difficult airway management and can be utilized as a conduit for tracheal intubation either blindly or assisted by another technology (fiberoptic endoscopy, lightwand). Thus, the EAD may be the most versatile single airway technique in the airway management toolbox. However, despite their utility, knowledge regarding specific devices and the supporting data for their use is of paramount importance to patient's safety. In this review, number of commercially available EADs are discussed and the reported benefits and potential pitfalls are highlighted. PMID:24741502

  8. Infanticide secrets

    PubMed Central

    Barr, Jennieffer A.; Beck, Cheryl T.

    2008-01-01

    ABSTRACT OBJECTIVE To explore thoughts of infanticide that did not lead to the act among mothers with postpartum depression. DESIGN A phenomenologic hermeneutic study in which women were invited to share their experiences of having thoughts of infanticide. SETTING Community setting in a large metropolitan city, Brisbane, Australia. PARTICIPANTS Fifteen women who had been diagnosed as clinically depressed with postpartum onset whose babies were 12 months of age or younger. METHOD Audiotaped, in-depth interviews were transcribed verbatim. Thematic analysis commenced immediately after the first interview, and data collection continued until saturation was achieved. A questioning approach that reflected hermeneutics was facilitated by use of journals by the researchers. MAIN FINDINGS Six themes emerged from the data: imagined acts of infanticide, the experience of horror, distorted sense of responsibility, consuming negativity, keeping secrets, and managing the crisis. CONCLUSION Women who experienced nonpsychotic depression preferred not to disclose their thoughts of infanticide to health professionals, including trusted general practitioners or psychiatrists. These women were more likely to mention their suicidal thoughts than their infanticidal thoughts in order to obtain health care. General practitioners and other health professionals should directly ask about whether a woman has been experiencing thoughts of harming herself or her baby, regardless of the reason why she has presented. PMID:19074717

  9. A new removable airway stent

    PubMed Central

    Amundsen, Tore; Sørhaug, Sveinung; Leira, Håkon Olav; Tyvold, Stig Sverre; Langø, Thomas; Hammer, Tommy; Manstad-Hulaas, Frode; Mattsson, Erney

    2016-01-01

    Background Malignant airway obstruction is a feared complication and will most probably occur more frequently in the future because of increasing cancer incidence and increased life expectancy in cancer patients. Minimal invasive treatment using airway stents represents a meaningful and life-saving palliation. We present a new removable airway stent for improved individualised treatment. Methods To our knowledge, the new airway stent is the world's first knitted and uncovered self-expanding metal stent, which can unravel and be completely removed. In an in vivo model using two anaesthetised and spontaneously breathing pigs, we deployed and subsequently removed the stents by unravelling the device. The procedures were executed by flexible bronchoscopy in an acute and a chronic setting – a ‘proof-of-principle’ study. Results The new stent was easily and accurately deployed in the central airways, and it remained fixed in its original position. It was easy to unravel and completely remove from the airways without clinically significant complications. During the presence of the stent in the chronic study, granulation tissue was induced. This tissue disappeared spontaneously with the removal. Conclusions The new removable stent functioned according to its purpose and unravelled easily, and it was completely removed without significant technical or medical complications. Induced granulation tissue disappeared spontaneously. Further studies on animals and humans are needed to define its optimal indications and future use. PMID:27608269

  10. Comparative glycopattern analysis of mucins in the Brunner's glands of the guinea-pig and the house mouse (Rodentia).

    PubMed

    Scillitani, Giovanni; Mentino, Donatella

    2015-09-01

    The mucins secreted by the Brunner's glands and the duodenal goblet cells of the Guinea-pig and the house mouse were compared by conventional and FITC-conjugated lectin histochemistry. Methylation/saponification and sialidase digestion were performed prior to lectin binding to detect the residues subterminal to sulfated groups and sialic acid, respectively. In the Guinea-pig the Brunner's glands produce class-III stable sulfosialomucins. Sialic acid is mostly 2,6-linked to galactose or to N-acetylgalactosamine and is in part O-acetylated in C7, C8, and C9. Sulfated groups are probably linked to sialic acid and N-acetylgalactosamine. Terminal residuals of N-acetylglucosamine, galactose, N-acetylgalactosamine and fucose linked in α1,2, α1,3, and α1,4 are also present. Duodenal goblet cells of the Guinea-pig present a lower number of residuals in respect to the Brunner's glandular ones, with sialic acid and N-acetylgalactosamine subterminal to sulfated groups. In the house mouse the Brunner's glands produce class-III stable neutral mucins, binding to same lectins as in the Guinea-pig except for those specific to sialic acid. A diversity of fucosylated residuals higher than in the Guinea-pig is observed. The mouse duodenal goblet cells lack stable class-III mucins, have little sialic acid and present a lower number of residuals in respect to the correspondent Brunner's glands. Regulation of the acidic intestinal microenvironment, prevention of pathologies and hosting of microflora can explain the observed results and the differences observed between the two rodents.

  11. Rat and human colonic mucins bind to and inhibit adherence lectin of Entamoeba histolytica.

    PubMed Central

    Chadee, K; Petri, W A; Innes, D J; Ravdin, J I

    1987-01-01

    Establishment of adherence by Entamoeba histolytica is mediated by a 170-kD Gal/GalNAc inhibitable lectin and is required for cytolysis and phagocytosis of mammalian target cells. We studied the biochemical mechanisms of the in vitro interaction between rat and human colonic mucins and axenic E. histolytica trophozoites. Crude mucus prevented amebic adherence to Chinese hamster ovary (CHO) cells by up to 70%. Purification of the colonic mucins by Sepharose 4B chromatography, nuclease digestion, and cesium chloride gradient centrifugation resulted in a 1,000-fold enrichment of the inhibitory mucins. Purified rat mucin inhibited amebic adherence to and cytolysis of homologous rat colonic epithelial cells. Oxidation and enzymatic cleavage of rat mucin Gal and GalNAc residues completely abrogated mucin inhibition of amebic adherence. The binding of rat 125I-mucin to amebae was galactose specific, saturable, reversible, and pH dependent. A monoclonal antibody specific for the 170-kD amebic Gal/GalNAc lectin completely inhibited the binding of rat 125I-mucin. Rat mucin bound to Affigel affinity purified the amebic lectin from conditioned medium. Colonic mucin glycoproteins act as an important host defense by binding to the parasite's adherence lectin, thus preventing amebic attachment to and cytolysis of host epithelial cells. Images PMID:2890655

  12. Structural investigation of porcine stomach mucin by X-ray fiber diffraction and homology modeling

    SciTech Connect

    Veluraja, K.; Vennila, K.N.; Umamakeshvari, K.; Jasmine, A.; Velmurugan, D.

    2011-03-25

    Research highlights: {yields} Techniques to get oriented mucin fibre. {yields} X-ray fibre diffraction pattern for mucin. {yields} Molecular modeling of mucin based on X-ray fibre diffraction pattern. -- Abstract: The basic understanding of the three dimensional structure of mucin is essential to understand its physiological function. Technology has been developed to achieve orientated porcine stomach mucin molecules. X-ray fiber diffraction of partially orientated porcine stomach mucin molecules show d-spacing signals at 2.99, 4.06, 4.22, 4.7, 5.37 and 6.5 A. The high intense d-spacing signal at 4.22 A is attributed to the antiparallel {beta}-sheet structure identified in the fraction of the homology modeled mucin molecule (amino acid residues 800-980) using Nidogen-Laminin complex structure as a template. The X-ray fiber diffraction signal at 6.5 A reveals partial organization of oligosaccharides in porcine stomach mucin. This partial structure of mucin will be helpful in establishing a three dimensional structure for the whole mucin molecule.

  13. A procedure for Alcian blue staining of mucins on polyvinylidene difluoride membranes.

    PubMed

    Dong, Weijie; Matsuno, Yu-ki; Kameyama, Akihiko

    2012-10-16

    The isolation and characterization of mucins are critically important for obtaining insight into the molecular pathology of various diseases, including cancers and cystic fibrosis. Recently, we developed a novel membrane electrophoretic method, supported molecular matrix electrophoresis (SMME), which separates mucins on a polyvinylidene difluoride (PVDF) membrane impregnated with a hydrophilic polymer. Alcian blue staining is widely used to visualize mucopolysaccharides and acidic mucins on both blotted membranes and SMME membranes; however, this method cannot be used to stain mucins with a low acidic glycan content. Meanwhile, periodic acid-Schiff staining can selectively visualize glycoproteins, including mucins, but is incompatible with glycan analysis, which is indispensable for mucin characterizations. Here we describe a novel staining method, designated succinylation-Alcian blue staining, for visualizing mucins on a PVDF membrane. This method can visualize mucins regardless of the acidic residue content and shows a sensitivity 2-fold higher than that of Pro-Q Emerald 488, a fluorescent periodate Schiff-base stain. Furthermore, we demonstrate the compatibility of this novel staining procedure with glycan analysis using porcine gastric mucin as a model mucin.

  14. Species variation and spatial differences in mucin expression from corneal epithelial cells.

    PubMed

    Leonard, Brian C; Yañez-Soto, Bernardo; Raghunathan, Vijay Krishna; Abbott, Nicholas L; Murphy, Christopher J

    2016-11-01

    Mucins are large glycoproteins expressed by epithelial cells of both the conjunctiva and cornea, and principle components of the glycocalyx. They are thought to play an important role in determining the interactions between the cornea/conjunctiva and the overlying tear film. The purpose of this study was to characterize the membrane-associated corneal mucin expression pattern from multiple species commonly used in ophthalmic research and drug development to better define the biochemical attributes of the ocular surface. Humans, rhesus macaques and dogs were found to have a very similar pattern of mucin expression, with mucin 16 (MUC16) being the most prevalent mucin transcript. In contrast, the rabbit had a unique mucin expression pattern with all mucin transcripts expressed at relatively similar levels. To determine if there were spatial differences in expression, peripheral and central corneal epithelium were individually isolated and evaluated for mucin expression. In all species examined, MUC1, MUC4 and MUC16 had higher peripheral corneal expression when compared with central, which reached statistical significance in MUC1 (rhesus and dog). The data demonstrated variation in corneal epithelial membrane-associated mucin expression between species, with the rabbit having a distinct expression pattern. These differences may be reflective of the environment, pathogen exposure or tear film dynamics of the respective species. The species differences, as well as regional mucin expression patterns, characterized in this study further define the biochemical composition of the ocular surface and may play an important role in tear film stability.

  15. Periadnexal Mucin as an Additional Histopathologic Feature of Chronic Eczematous Dermatitis

    PubMed Central

    Lee, Noo Ri; Kim, Jae-Hong; Park, Hwa-Young; Yoon, Na Young

    2015-01-01

    Background Cutaneous mucinoses are a heterogeneous group of disorders characterized by an abnormal amount of mucin in the skin. However, the pathomechanism of an excessive mucin deposition in the skin is still unknown. Eczematous dermatitis is sub-classified histologically into acute, subacute, and chronic variants. The characteristic histopathologic findings for chronic eczema are variable. However, periadnexal mucin deposition is not known as a feature of chronic eczema. Objective To evaluate the presence of periadnexal mucin deposition in chronic eczematous dermatitis. Methods We analyzed the skin biopsy specimens from 36 patients who were pathologically diagnosed with chronic eczematous dermatitis. Alcian blue, colloidal iron, and periodic acid-Schiff stains were used to evaluate the mucin deposition in histologic sections. Two dermatologists and two dermatopathologists evaluated the degree of mucin deposition using a 4-point scale. Results Various amounts of mucin deposition were observed in the periadnexal area of patients who were diagnosed with chronic eczema. Mucin deposition was more visible after staining with mucin-specific stains. Evaluation of the staining analysis scores revealed that the staining intensities were significantly higher in patients with chronic eczema than age- and site-matched controls (normal, acute to subacute eczema, and psoriasis vulgaris). Conclusion Periadnexal mucin (secondary mucinoses) may be an additional finding of chronic eczematous dermatitis. PMID:25834351

  16. Overview of the clinical problem: facts and current issues of mucinous cystic neoplasms of the pancreas.

    PubMed

    Jeurnink, S M; Vleggaar, F P; Siersema, P D

    2008-11-01

    Pancreatic cystic lesions are uncommon and consist of pseudocysts, congenital cysts and cystic neoplasms including mucinous cystic neoplasms, intraductal papillary mucinous neoplasms and serous cystic neoplasms. Mucinous cystic neoplasms are large septated cysts without connection to the ductal system, characterised by the presence of thick-walled ovarian-type stroma and mucin. They occur predominantly in women and often are malignant. Therefore, surgical resection is recommended. Intraductal papillary mucinous neoplasms are neoplasms with tall, columnar, mucin-containing epithelium involving the main pancreatic ducts or major side branches. Intraductal papillary mucinous neoplasms occur in men and women in their 60s and 70s and may differentiate into malignant neoplasms. Therefore, surgical resection is mandatory. Serous cystic neoplasms appear as multiple cysts lined with cubic flat epithelium containing glycogen-rich cells with clear cytoplasm. They mainly occur in women in their 50s and are generally benign. Therefore, a conservative approach is recommended. As both mucinous cystic neoplasm and intraductal papillary mucinous neoplasms have a high malignant potential, it is important to differentiate between the various pancreatic cystic lesions. Several imaging techniques and tumour markers have been evaluated. Nonetheless, definitive guidelines to differentiate between serous cystic neoplasms, mucinous cystic neoplasms and intraductal papillary mucinous neoplasms are still poorly defined. A number of management issues regarding these neoplasms are still under debate, for example which imaging technique to use, differentiation between malignant or benign lesions and the preferred treatment modality for each pancreatic cystic neoplasm. Further research may lead to a definitive guideline for the diagnosis and treatment of mucinous cystic neoplasms, intraductal papillary mucinous neoplasms and serous cystic neoplasms.

  17. Human airway ciliary dynamics

    PubMed Central

    Thompson, Kristin; Knowles, Michael R.; Davis, C. William

    2013-01-01

    Airway cilia depend on precise changes in shape to transport the mucus gel overlying mucosal surfaces. The ciliary motion can be recorded in several planes using video microscopy. However, cilia are densely packed, and automated computerized systems are not available to convert these ciliary shape changes into forms that are useful for testing theoretical models of ciliary function. We developed a system for converting planar ciliary motions recorded by video microscopy into an empirical quantitative model, which is easy to use in validating mathematical models, or in examining ciliary function, e.g., in primary ciliary dyskinesia (PCD). The system we developed allows the manipulation of a model cilium superimposed over a video of beating cilia. Data were analyzed to determine shear angles and velocity vectors of points along the cilium. Extracted waveforms were used to construct a composite waveform, which could be used as a standard. Variability was measured as the mean difference in position of points on individual waveforms and the standard. The shapes analyzed were the end-recovery, end-effective, and fastest moving effective and recovery with mean (± SE) differences of 0.31(0.04), 0.25(0.06), 0.50(0.12), 0.50(0.10), μm, respectively. In contrast, the same measures for three different PCD waveforms had values far outside this range. PMID:23144323

  18. Allergen-induced airway remodeling is impaired in galectin-3 deficient mice1

    PubMed Central

    Ge, Xiao Na; Bahaie, Nooshin S.; Kang, Bit Na; Hosseinkhani, Reza M.; Ha, Sung Gil; Frenzel, Elizabeth M.; Liu, Fu-Tong; Rao, Savita P.; Sriramarao, P.

    2010-01-01

    The role played by the β-galactoside-binding lectin galectin-3 (Gal-3) in airway remodeling, a characteristic feature of asthma that leads to airway dysfunction and poor clinical outcome in humans, was investigated in a murine model of chronic allergic airway inflammation. Wild-type (WT) and Gal-3 knock-out (KO) mice were subjected to repetitive allergen challenge with ovalbumin (OVA) up to 12 weeks and bronchoalveolar lavage fluid (BALF) and lung tissue collected after the last challenge were evaluated for cellular features associated with airway remodeling. Compared to WT mice, chronic OVA challenge in Gal-3 KO mice resulted in diminished remodeling of the airways with significantly reduced mucus secretion, sub-epithelial fibrosis, smooth muscle thickness, and peribronchial angiogenesis. The higher degree of airway remodeling in WT mice was associated with higher Gal-3 expression in the BALF as well as lung tissue. Cell counts in BALF and lung immunohistology demonstrated that eosinophil infiltration in OVA-challenged Gal-3 KO mice was significantly reduced compared to WT mice. Evaluation of cellular mediators associated with eosinophil recruitment and airway remodeling revealed that levels of eotaxin-1, IL-5, IL-13, FIZZ1 and TGF-β were substantially lower in Gal-3 KO mice. Finally, leukocytes from Gal-3 KO mice demonstrated decreased trafficking (rolling) on vascular endothelial adhesion molecules compared to WT cells. Overall, these studies demonstrate that Gal-3 is an important lectin that promotes airway remodeling via airway recruitment of inflammatory cells, specifically eosinophils, and the development of a Th2 phenotype as well as increased expression of eosinophil-specific chemokines, pro-fibrogenic and angiogenic mediators. PMID:20543100

  19. Fluid and electrolyte transport by cultured human airway epithelia.

    PubMed Central

    Smith, J J; Welsh, M J

    1993-01-01

    An understanding of the fluid and electrolyte transport properties of any epithelium requires knowledge of the direction, rate, and regulation of fluid transport and the composition of the fluid. Although human airway epithelial likely play a key role in controlling the quantity and composition of the respiratory tract fluid, evidence for such a role is not available. To obtain such knowledge, we measured fluid and electrolyte transport by cultured human nasal epithelia. Under basal conditions we found that epithelia absorbed Na+ and fluid; both processes were inhibited by addition of amiloride to the mucosal surface. These data suggest that active Na+ absorption is responsible for fluid absorption. Interestingly, Na+ absorption was not accompanied by the net absorption of Cl-; some other anion accompanied Na+. The combination of cAMP agonists and mucosal amiloride stimulated the secretion of NaCl-rich fluid. But surprisingly, the response to cAMP agonists in the absence of amiloride showed substantial intersubject variability: cAMP stimulated fluid secretion across some epithelia, for others, cAMP stimulated fluid absorption. The explanation for the differences in response is uncertain, but we speculate that the magnitude of apical membrane Na+ conductance may modulate the direction of fluid transport in response to cAMP. We also found that airway epithelial secrete H+ and absorb K+ under basal conditions; both processes were inhibited by cAMP agonists. Because the H+/K(+)-ATPase inhibitor, SCH 28080, inhibited K+ absorption, an apical membrane H+/K(+)-ATPase may be at least partly responsible for K+ and H+ transport. However, H+/K+ exchange could not entirely account for the luminal acidification. The finding that cAMP agonists inhibited luminal acidification may be explained by the recent finding that cAMP increases apical HCO3- conductance. These results provide new insights into how the intact airway epithelium may modify the composition of the respiratory

  20. Efficacy of Surgical Airway Plasty for Benign Airway Stenosis

    PubMed Central

    Takahama, Makoto; Nakajima, Ryu; Kimura, Michitaka; Inoue, Hidetoshi; Yamamoto, Ryoji

    2015-01-01

    Background: Long-term patency is required during treatment for benign airway stenosis. This study investigated the effectiveness of surgical airway plasty for benign airway stenosis. Methods: Clinical courses of 20 patients, who were treated with surgical plasty for their benign airway stenosis, were retrospectively investigated. Results: Causes of stenosis were tracheobronchial tuberculosis in 12 patients, post-intubation stenosis in five patients, malacia in two patients, and others in one patient. 28 interventional pulmonology procedures and 20 surgical plasty were performed. Five patients with post-intubation stenosis and four patients with tuberculous stenosis were treated with tracheoplasty. Eight patients with tuberculous stenosis were treated with bronchoplasty, and two patients with malacia were treated with stabilization of the membranous portion. Anastomotic stenosis was observed in four patients, and one to four additional treatments were required. Performance status, Hugh–Jones classification, and ventilatory functions were improved after surgical plasty. Outcomes were fair in patients with tuberculous stenosis and malacia. However, efficacy of surgical plasty for post-intubation stenosis was not observed. Conclusion: Surgical airway plasty may be an acceptable treatment for tuberculous stenosis. Patients with malacia recover well after surgical plasty. There may be untreated patients with malacia who have the potential to benefit from surgical plasty. PMID:26567879

  1. Muc5ac gastric mucin glycosylation is shaped by FUT2 activity and functionally impacts Helicobacter pylori binding

    PubMed Central

    Magalhães, Ana; Rossez, Yannick; Robbe-Masselot, Catherine; Maes, Emmanuel; Gomes, Joana; Shevtsova, Anna; Bugaytsova, Jeanna; Borén, Thomas; Reis, Celso A.

    2016-01-01

    The gastrointestinal tract is lined by a thick and complex layer of mucus that protects the mucosal epithelium from biochemical and mechanical aggressions. This mucus barrier confers protection against pathogens but also serves as a binding site that supports a sheltered niche of microbial adherence. The carcinogenic bacteria Helicobacter pylori colonize the stomach through binding to host glycans present in the glycocalyx of epithelial cells and extracellular mucus. The secreted MUC5AC mucin is the main component of the gastric mucus layer, and BabA-mediated binding of H. pylori to MUC5AC confers increased risk for overt disease. In this study we unraveled the O-glycosylation profile of Muc5ac from glycoengineered mice models lacking the FUT2 enzyme and therefore mimicking a non-secretor human phenotype. Our results demonstrated that the FUT2 determines the O-glycosylation pattern of Muc5ac, with Fut2 knock-out leading to a marked decrease in α1,2-fucosylated structures and increased expression of the terminal type 1 glycan structure Lewis-a. Importantly, for the first time, we structurally validated the expression of Lewis-a in murine gastric mucosa. Finally, we demonstrated that loss of mucin FUT2-mediated fucosylation impairs gastric mucosal binding of H. pylori BabA adhesin, which is a recognized feature of pathogenicity. PMID:27161092

  2. Airway management in emergency situations.

    PubMed

    Dörges, Volker

    2005-12-01

    Securing and monitoring the airway are among the key requirements of appropriate therapy in emergency patients. Failures to secure the airways can drastically increase morbidity and mortality of patients within a very short time. Therefore, the entire range of measures needed to secure the airway in an emergency, without intermediate ventilation and oxygenation, is limited to 30-40 seconds. Endotracheal intubation is often called the 'gold standard' for airway management in an emergency, but multiple failed intubation attempts do not result in maintaining oxygenation; instead, they endanger the patient by prolonging hypoxia and causing additional trauma to the upper airways. Thus, knowledge and availability of alternative procedures are also essential in every emergency setting. Given the great variety of techniques available, it is important to establish a well-planned, methodical protocol within the framework of an algorithm. This not only facilitates the preparation of equipment and the training of personnel, it also ensures efficient decision-making under time pressure. Most anaesthesia-related deaths are due to hypoxaemia when difficulty in securing the airway is encountered, especially in obstetrics during induction of anaesthesia for caesarean delivery. The most commonly occurring adverse respiratory events are failure to intubate, failure to recognize oesophageal intubation, and failure to ventilate. Thus, it is essential that every anaesthesiologist working on the labour and delivery ward is comfortable with the algorithm for the management of failed intubation. The algorithm for emergency airway management describing the sequence of various procedures has to be adapted to internal standards and to techniques that are available.

  3. Fetal Exposure of Rhesus Macaques to Bisphenol A Alters Cellular Development of the Conducting Airway by Changing Epithelial Secretory Product Expression

    PubMed Central

    Murphy, Shannon R.; Boetticher, Miriam V.; VandeVoort, Catherine A.

    2013-01-01

    Background: Bisphenol A (BPA) exposure early in life results in organizational changes in reproductive organs, but the effect of BPA on conducting airway cellular maturation has not been studied. Late gestation is characterized by active differentiation of secretory cells in the lung epithelium. Objective: We evaluated the hypothesis that BPA exposure disrupts epithelial secretory cell development in the fetal conducting airway of the rhesus macaque. Methods: We exposed animals to BPA during either the second (early term) or the third (late term) trimester. There were four treatment groups: a) sham control early term, b) sham control late term, c) BPA early term (BPA-early), and d) BPA late term (BPA-late). Because cellular maturation occurs nonuniformly in the lung, we defined mRNA and protein expression by airway level using microdissection. Results: BPA exposure of the dam during late term significantly accelerated secretory cell maturation in the proximal airways of the fetus; both Clara cell secretory protein (CCSP) and MUC5AC/5B mRNA and protein expression increased. Conclusions: BPA exposure during late gestation accelerates secretory cell maturation in the proximal conducting airways. We identified a critical window of fetal susceptibility for BPA effects on lung epithelial cell maturation in the third trimester. This is of environmental health importance because increases in airway mucins are hallmarks of a number of childhood lung diseases that may be affected by BPA exposure. PMID:23757601

  4. Expression of IL-4/IL-13 receptors in differentiating human airway epithelial cells

    PubMed Central

    Martin, Linda D.; Stern, Randi; Laxman, Bharathi; Marroquin, Bertha A.

    2010-01-01

    IL-4 and IL-13 elicit several important responses in airway epithelium including chemokine secretion and mucous secretion that may contribute to airway inflammation, cell migration, and differentiation. These cytokines have overlapping but not identical effector profiles likely due to shared subunits in their receptor complexes. These receptors are variably described in epithelial cells, and the relative expression, localization, and function of these receptors in differentiated and repairing epithelial cells are not clear. We examined IL-4/IL-13 receptor expression and localization in primary airway epithelial cells collected from normal human lungs and grown under conditions yielding both undifferentiated and differentiated cells inclusive of basal, goblet, and ciliated cell phenotypes. Gene expression of the IL-4Rα, IL-2Rγc, IL-13Rα1, and IL-13Rα2 receptor subunits increased with differentiation, but different patterns of localization and protein abundance were seen for each subunit based on both differentiation and the cell subtypes present. Increased expression of receptor subunits observed in more differentiated cells was associated with more substantial functional responses to IL-4 stimulation including increased eotaxin-3 expression and accelerated migration after injury. We demonstrate substantial differences in IL-4/IL-13 receptor subunit expression and responsiveness to IL-4 based on the extent of airway epithelial cell differentiation and suggest that these differences may have functional consequences in airway inflammation. PMID:20729386

  5. Primary retroperitoneal mucinous cystadenoma with sarcoma-like mural nodule

    PubMed Central

    Bakker, R. F. R.; Stoot, J. H. M. B.; Blok, P.

    2007-01-01

    Primary retroperitoneal cystadenomas are extremely rare. This is the first report in literature to describe a primary retroperitoneal cystadenoma with a sarcoma-like mural nodule. A 45-year-old woman complained of a left-sided abdominal mass. A computed tomography scan revealed a cystic mass with a mural nodule, which seemed to originate from the tail of the pancreas. At laparotomy the cyst was not adhered to the pancreas but localized retroperitoneally. Histologic examination showed a mucinous cystadenoma with only foci of borderline malignancy with a mural “sarcoma-like” nodule. In view of the surgical and histopathological findings, the mucinous cystadenoma was regarded as primary retroperitoneal. This case demonstrates that in the era of radiological preoperative refinement, pathological diagnosis remains of utmost importance, especially for rare cases. PMID:17690906

  6. Endocrine mucin-producing sweat gland carcinoma of the eyelid.

    PubMed

    Collinson, Anne C; Sun, Michelle T; James, Craig; Huilgol, Shyamala C; Selva, Dinesh

    2015-12-01

    An elderly woman was incidentally noted to have a nodular mass on the upper eyelid, whilst under investigation for cataracts. Punch biopsy of this presumed basal cell carcinoma revealed it to be endocrine mucin-producing sweat gland carcinoma (EMPSGC). The tumour extended to the deep dermal layer and comprised solid nests with foci of cystic and papillary change, and additional cytoplasmic and focal extracellular mucin deposits. Immunohistochemistry confirmed epithelial lineage and neuroendocrine differentiation, and adjacent tissue invasion. The tumour was excised completely with Mohs micrographic surgery with no recurrence after 8 months. EMPSGC is a low-grade sweat gland carcinoma with variable neuroendocrine differentiation, a solid, papillary, or cystic growth pattern, and a predilection for the eyelid of elderly women [Am J Surg Pathol 29:1330-1339, 2005]. There have been 54 previously documented cases of EMPSCG. We report an additional case and review the literature.

  7. Enzymatically active biomimetic micropropellers for the penetration of mucin gels

    PubMed Central

    Walker, Debora; Käsdorf, Benjamin T.; Jeong, Hyeon-Ho; Lieleg, Oliver; Fischer, Peer

    2015-01-01

    In the body, mucus provides an important defense mechanism by limiting the penetration of pathogens. It is therefore also a major obstacle for the efficient delivery of particle-based drug carriers. The acidic stomach lining in particular is difficult to overcome because mucin glycoproteins form viscoelastic gels under acidic conditions. The bacterium Helicobacter pylori has developed a strategy to overcome the mucus barrier by producing the enzyme urease, which locally raises the pH and consequently liquefies the mucus. This allows the bacteria to swim through mucus and to reach the epithelial surface. We present an artificial system of reactive magnetic micropropellers that mimic this strategy to move through gastric mucin gels by making use of surface-immobilized urease. The results demonstrate the validity of this biomimetic approach to penetrate biological gels, and show that externally propelled microstructures can actively and reversibly manipulate the physical state of their surroundings, suggesting that such particles could potentially penetrate native mucus. PMID:26824056

  8. Endocrine Mucin-Producing Sweat Gland Carcinoma, a Histological Challenge

    PubMed Central

    Salama, Samih; Gohla, Gabriella; Alowami, Salem

    2017-01-01

    Endocrine mucin-producing sweat gland carcinoma (EMPSGC) is a rare adnexal tumor of the skin with low-grade cytological features and neuroendocrine differentiation. It has a predilection for the skin of the eyelid, but has also been reported in the face and rarely extra-facial locations. The tumor is seen more frequently in women and on average affects the elderly. It is histologically and immunohistochemically analogous to solid papillary carcinoma of the breast/endocrine ductal carcinoma in situ with a nodular, solid, papillary, and/or cribriforming architecture, neuroendocrine differentiation, and mucin production. Since it was first described by Flieder et al. in 1997, less than 60 cases have been reported in literature. We describe the morphological and immunohistochemical features of another case with a review of the common histological differential diagnoses and emphasize the salient features that help distinguish this rare neoplasm. PMID:28299221

  9. Synthetic Oral Mucin Mimic from Polymer Micelle Networks

    PubMed Central

    2015-01-01

    Mucin networks are formed in the oral cavity by complexation of glycoproteins with other salivary proteins, yielding a hydrated lubricating barrier. The function of these networks is linked to their structural, chemical, and mechanical properties. Yet, as these properties are interdependent, it is difficult to tease out their relative importance. Here, we demonstrate the ability to recreate the fibrous like network through a series of complementary rinses of polymeric worm-like micelles, resulting in a 3-dimensional (3D) porous network that can be deposited layer-by-layer onto any surface. In this work, stability, structure, and microbial capture capabilities were evaluated as a function of network properties. It was found that network structure alone was sufficient for bacterial capture, even with networks composed of the adhesion-resistant polymer, poly(ethylene glycol). The synthetic networks provide an excellent, yet simple, means of independently characterizing mucin network properties (e.g., surface chemistry, stiffness, and pore size). PMID:24992241

  10. Molecular pathogenesis of intraductal papillary mucinous neoplasms of the pancreas.

    PubMed

    Thosani, Nirav; Dasari, Chandra S; Bhutani, Manoop S; Raimondo, Massimo; Guha, Sushovan

    2010-11-01

    Over the last 3 decades, there have been substantial improvements in diagnostic imaging and sampling techniques to evaluate pancreatic diseases. The modern technology has helped us to recognize premalignant conditions of pancreas including mucinous cystic neoplasms and intraductal papillary mucinous neoplasms (IPMNs). Differentiation between benign and malignant lesions and early detection of any malignant transformation in premalignant lesion are extremely important for further management decisions. Diagnostic cytology has limited sensitivity to further differentiate between benign, premalignant, and malignant lesions of the pancreas. There is limited information about the epidemiological risk factors and molecular mechanisms leading to development and further progression to malignancy of IPMNs. Several studies have shown that pancreatic juice and pancreatic tissue from the lesion can be tested for molecular markers including K-ras, p53, and p16 to differentiate between cancer and chronic inflammatory process. We review cellular signaling pathways that contribute to pathogenesis of IPMNs of the pancreas to further identify potential biomarkers and molecular targets.

  11. R1: Immunohistochemical study of mucins in human intestinal spirochetosis.

    PubMed

    Ogata, Sho; Shimizu, Ken; Tominaga, Susumu; Nakanishi, Kuniaki

    2017-02-08

    Most patients with human intestinal spirochetosis (HIS; a colorectal bacterial infection caused by Brachyspira species) seem asymptomatic, and its pathogenicity remains unclear. Recently, alterations in mucin expression were reported in animal Brachyspira infection. The present question was "Is mucin expression altered in HIS?". Using antibodies for MUCs 1, 2, 4, 5 AC, and 6, we immunohistochemically compared 215 specimens from 83 histology-confirmed HIS cases with 106 specimens from 26 non-HIS cases. Positive staining (which included even focal positive staining) was rated "high (+)" or "low (+)". Results were analysed for four categories of lesions, and associations between MUC expression and spirochetal presence were also analysed. In the "specimens without polyps or adenocarcinoma" category: high (+) MUC2-positivity was more frequent in HIS than in control. In the hyperplasia/serrated polyp category: in HIS (vs. control), the MUC5AC-positivity rate was lower, while high (+) MUC4-positivity was more frequent. In the conventional adenoma category: in HIS (vs. control), the MUC1-positivity rate was lower, while both high (+) MUC2-positivity and high (+) MUC5AC-positivity were less frequent. In the adenocarcinoma category: high (+) MUC2-positivity was more frequent in HIS than in control. Among the above mucins, only MUC1-positivity was significantly associated with an absence of the so-called fringe formation, an absence of spiral organisms within mucus, and an absence of strong immunopositive materials within the epithelial layer and within the subepithelial layer. The results suggest that Brachyspira infection or a related change in the microbiome may alter the large intestine mucin-expression profile in humans.

  12. The Airway Microbiome at Birth

    PubMed Central

    Lal, Charitharth Vivek; Travers, Colm; Aghai, Zubair H.; Eipers, Peter; Jilling, Tamas; Halloran, Brian; Carlo, Waldemar A.; Keeley, Jordan; Rezonzew, Gabriel; Kumar, Ranjit; Morrow, Casey; Bhandari, Vineet; Ambalavanan, Namasivayam

    2016-01-01

    Alterations of pulmonary microbiome have been recognized in multiple respiratory disorders. It is critically important to ascertain if an airway microbiome exists at birth and if so, whether it is associated with subsequent lung disease. We found an established diverse and similar airway microbiome at birth in both preterm and term infants, which was more diverse and different from that of older preterm infants with established chronic lung disease (bronchopulmonary dysplasia). Consistent temporal dysbiotic changes in the airway microbiome were seen from birth to the development of bronchopulmonary dysplasia in extremely preterm infants. Genus Lactobacillus was decreased at birth in infants with chorioamnionitis and in preterm infants who subsequently went on to develop lung disease. Our results, taken together with previous literature indicating a placental and amniotic fluid microbiome, suggest fetal acquisition of an airway microbiome. We speculate that the early airway microbiome may prime the developing pulmonary immune system, and dysbiosis in its development may set the stage for subsequent lung disease. PMID:27488092

  13. Role of Matrix Metalloproteinases-1 and -2 in Interleukin-13–Suppressed Elastin in Airway Fibroblasts in Asthma

    PubMed Central

    Slade, David; Church, Tony D.; Francisco, Dave; Heck, Karissa; Sigmon, R. Wesley; Ghio, Michael; Murillo, Anays; Firszt, Rafael; Lugogo, Njira L.; Que, Loretta; Sunday, Mary E.; Kraft, Monica

    2016-01-01

    Elastin synthesis and degradation in the airway and lung parenchyma contribute to airway mechanics, including airway patency and elastic recoil. IL-13 mediates many features of asthma pathobiology, including airway remodeling, but the effects of IL-13 on elastin architecture in the airway wall are not known. We hypothesized that IL-13 modulates elastin expression in airway fibroblasts from subjects with allergic asthma. Twenty-five subjects with mild asthma (FEV1, 89 ± 3% predicted) and 30 normal control subjects (FEV1, 102 ± 2% predicted) underwent bronchoscopy with endobronchial biopsy. Elastic fibers were visualized in airway biopsy specimens using Weigert’s resorcin-fuchsin elastic stain. Airway fibroblasts were exposed to IL-13; a pan-matrix metalloproteinase (MMP) inhibitor (GM6001); specific inhibitors to MMP-1, -2, -3, and -8; and combinations of IL-13 with MMP inhibitors in separate conditions in serum-free media for 48 hours. Elastin (ELN) expression as well as MMP secretion and activity were quantified. Results of this study show that elastic fiber staining of airway biopsy tissue was significantly associated with methacholine PC20 (i.e., the provocative concentration of methacholine resulting in a 20% fall in FEV1 levels) in patients with asthma. IL-13 significantly suppressed ELN expression in asthmatic airway fibroblasts as compared with normal control fibroblasts. The effect of IL-13 on ELN expression was significantly correlated with postbronchodilator FEV1/FVC in patients with asthma. MMP inhibition significantly stimulated ELN expression in patients with asthma as compared with normal control subjects. Specific inhibition of MMP-1 and MMP-2, but not MMP-3 or MMP-8, reversed the IL-13–induced suppression of ELN expression. In asthma, MMP-1 and MMP-2 mediate IL-13–induced suppression of ELN expression in airway fibroblasts. PMID:26074138

  14. Lipoxin A4 activates ALX/FPR2 Receptor to Regulate Conjunctival Goblet Cell Secretion

    PubMed Central

    Hodges, Robin R.; Li, Dayu; Shatos, Marie A.; Bair, Jeffrey A.; Lippestad, Marit; Serhan, Charles N.; Dartt, Darlene A.

    2016-01-01

    Conjunctival goblet cells play a major role in maintaining the mucous layer of the tear film under physiological conditions as well as in inflammatory diseases like dry eye and allergic conjunctivitis.. Resolution of inflammation is mediated by pro-resolution agonists such as lipoxin A4 (LXA4) that can also function under physiological conditions. The purpose of this study was to determine the actions of LXA4 on cultured rat conjunctival goblet cell mucin secretion, intracellular [Ca2+] ([Ca2+]i) and identify signaling pathways activated by LXA4. ALX/FPR was localized to goblet cells in rat conjunctiva and in cultured goblet cells. LXA4 significantly increased mucin secretion, [Ca2+]i, and ERK 1/2 activation. These functions were inhibited by ALX/FPR2 inhibitors. Stable analogs of LXA4 increased [Ca2+]i to the same extent as LXA4. Sequential addition of either LXA4 or resolvin D1 followed by the second compound decreased [Ca2+]i of the second compound compared to its initial response. LXA4 activated phospholipase C, -D, and A2 and downstream molecules protein kinase C, ERK 1/2, and Ca2+/calmodulin dependent kinase to increase mucin secretion and [Ca2+]i. We conclude that conjunctival goblet cells respond to LXA4 to maintain the homeostasis of the ocular surface and could be a novel treatment for dry eye diseases. PMID:27072607

  15. Mucins help to avoid alloreactivity at the maternal fetal interface.

    PubMed

    Redzovic, Arnela; Laskarin, Gordana; Dominovic, Marin; Haller, Herman; Rukavina, Daniel

    2013-01-01

    During gestation, many different mechanisms act to render the maternal immune system tolerant to semi-allogeneic trophoblast cells of foetal origin, including those mediated via mucins that are expressed during the peri-implantation period in the uterus. Tumour- associated glycoprotein-72 (TAG-72) enhances the already established tolerogenic features of decidual dendritic cells with the inability to progress towards Th1 immune orientation due to lowered interferon (IFN)- γ and interleukin (IL)-15 expression. Mucine 1 (Muc 1) supports alternative activation of decidual macrophages, restricts the proliferation of decidual regulatory CD56(+) bright natural killer (NK) cells, and downregulates their cytotoxic potential, including cytotoxic mediator protein expression. Removing TAG-72 and Muc 1 from the eutopic implantation site likely contributes to better control of trophoblast invasion by T cells and NK cells and appears to have important immunologic advantages for successful implantation, in addition to mechanical advantages. However, these processes may lead to uncontrolled trophoblast growth after implantation, inefficient defence against infection or tumours, and elimination of unwanted immunocompetent cells at the maternal-foetal interface. The use of mucins by tumour cells to affect the local microenvironment in order to avoid the host immune response and to promote local tumour growth, invasion, and metastasis confirms this postulation.

  16. Mucins Help to Avoid Alloreactivity at the Maternal Fetal Interface

    PubMed Central

    Redzovic, Arnela; Laskarin, Gordana; Haller, Herman

    2013-01-01

    During gestation, many different mechanisms act to render the maternal immune system tolerant to semi-allogeneic trophoblast cells of foetal origin, including those mediated via mucins that are expressed during the peri-implantation period in the uterus. Tumour- associated glycoprotein-72 (TAG-72) enhances the already established tolerogenic features of decidual dendritic cells with the inability to progress towards Th1 immune orientation due to lowered interferon (IFN)-γ and interleukin (IL)-15 expression. Mucine 1 (Muc 1) supports alternative activation of decidual macrophages, restricts the proliferation of decidual regulatory CD56+ bright natural killer (NK) cells, and downregulates their cytotoxic potential, including cytotoxic mediator protein expression. Removing TAG-72 and Muc 1 from the eutopic implantation site likely contributes to better control of trophoblast invasion by T cells and NK cells and appears to have important immunologic advantages for successful implantation, in addition to mechanical advantages. However, these processes may lead to uncontrolled trophoblast growth after implantation, inefficient defence against infection or tumours, and elimination of unwanted immunocompetent cells at the maternal-foetal interface. The use of mucins by tumour cells to affect the local microenvironment in order to avoid the host immune response and to promote local tumour growth, invasion, and metastasis confirms this postulation. PMID:23864879

  17. Salivary Mucins Protect Surfaces from Colonization by Cariogenic Bacteria

    PubMed Central

    Frenkel, Erica Shapiro

    2014-01-01

    Understanding how the body's natural defenses function to protect the oral cavity from the myriad of bacteria that colonize its surfaces is an ongoing topic of research that can lead to breakthroughs in treatment and prevention. One key defense mechanism on all moist epithelial linings, such as the mouth, gastrointestinal tract, and lungs, is a layer of thick, well-hydrated mucus. The main gel-forming components of mucus are mucins, large glycoproteins that play a key role in host defense. This study focuses on elucidating the connection between MUC5B salivary mucins and dental caries, one of the most common oral diseases. Dental caries is predominantly caused by Streptococcus mutans attachment and biofilm formation on the tooth surface. Once S. mutans attaches to the tooth, it produces organic acids as metabolic by-products that dissolve tooth enamel, leading to cavity formation. We utilize CFU counts and fluorescence microscopy to quantitatively show that S. mutans attachment and biofilm formation are most robust in the presence of sucrose and that aqueous solutions of purified human MUC5B protect surfaces by acting as an antibiofouling agent in the presence of sucrose. In addition, we find that MUC5B does not alter S. mutans growth and decreases surface attachment and biofilm formation by maintaining S. mutans in the planktonic form. These insights point to the importance of salivary mucins in oral health and lead to a better understanding of how MUC5B could play a role in cavity prevention or diagnosis. PMID:25344244

  18. Diffusion through Pig Gastric Mucin: Effect of Relative Humidity

    PubMed Central

    Runnsjö, Anna; Dabkowska, Aleksandra P.; Sparr, Emma; Kocherbitov, Vitaly; Arnebrant, Thomas; Engblom, Johan

    2016-01-01

    Mucus covers the epithelium found in all intestinal tracts, where it serves as an important protecting barrier, and pharmaceutical drugs administrated by the oral, rectal, vaginal, ocular, or nasal route need to penetrate the mucus in order to reach their targets. Furthermore, the diffusion in mucus as well as the viscosity of mucus in the eyes, nose and throat can change depending on the relative humidity of the surrounding air. In this study we have investigated how diffusion through gels of mucin, the main protein in mucus, is affected by changes in ambient relative humidity (i.e. water activity). Already a small decrease in water activity was found to give rise to a significant decrease in penetration rate through the mucin gel of the antibacterial drug metronidazole. We also show that a decrease in water activity leads to decreased diffusion rate in the mucin gel for the fluorophore fluorescein. This study shows that it is possible to alter transport rates of molecules through mucus by changing the water activity in the gel. It furthermore illustrates the importance of considering effects of the water activity in the mucosa during development of potential pharmaceuticals. PMID:27336158

  19. Tea Derived Galloylated Polyphenols Cross-Link Purified Gastrointestinal Mucins

    PubMed Central

    Georgiades, Pantelis; Pudney, Paul D. A.; Rogers, Sarah; Thornton, David J.; Waigh, Thomas A.

    2014-01-01

    Polyphenols derived from tea are thought to be important for human health. We show using a combination of particle tracking microrheology and small-angle neutron scattering that polyphenols acts as cross-linkers for purified gastrointestinal mucin, derived from the stomach and the duodenum. Both naturally derived purified polyphenols, and green and black tea extracts are shown to act as cross-linkers. The main active cross-linking component is found to be the galloylated forms of catechins. The viscosity, elasticity and relaxation time of the mucin solutions experience an order of magnitude change in value upon addition of the polyphenol cross-linkers. Similarly small-angle neutron scattering experiments demonstrate a sol-gel transition with the addition of polyphenols, with a large increase in the scattering at low angles, which is attributed to the formation of large scale (>10 nm) heterogeneities during gelation. Cross-linking of mucins by polyphenols is thus expected to have an impact on the physicochemical environment of both the stomach and duodenum; polyphenols are expected to modulate the barrier properties of mucus, nutrient absorption through mucus and the viscoelastic microenvironments of intestinal bacteria. PMID:25162539

  20. Primary mammary mucinous cystadenocarcinoma: cytological and histological findings.

    PubMed

    Sentani, Kazuhiro; Tashiro, Takashi; Uraoka, Naohiro; Aosaki, Yoriyuki; Yano, Satomi; Takaeko, Fumio; Yasui, Wataru

    2012-07-01

    Mucinous cystadenocarcinoma (MCA), commonly encountered in the ovary or pancreas, is rare in the breast and was only recently described as a distinct variant of invasive ductal carcinoma of the breast. Only 11 cases of primary mammary MCA have been reported. In this article, we report a case of primary mammary MCA with focus on cytological and histological findings. A 65-year-old female noticed right palpable breast mass. Sonography showed an irregularly shaped 2.8 × 2.4 cm lesion in the upper outer quadrant of the right breast. Fine-needle aspiration cytology was performed on the right breast nodule, and cytopathologic examination suggested an adenocarcinoma composed of tall columnar cells with mucin. A partial mastectomy of the right breast and the axillary lymph nodes dissection was performed. The gross examination revealed a well-demarcated and mucus-filled tumor. Histologically, it had complex papillae, some of which were supported by delicate fibrovascular stroma lined by simple to slightly stratified columnar neoplastic epithelial cells with intracellular mucin, coexisting with MCA in situ and ordinary intraductal carcinoma component (ICC). Immunohistochemically, ICC was HER2-negative and estrogen receptor/progesterone receptor-positive, while MCA was triple negative. MCA might be derived from a metaplasia of ordinary ICC, but its pathogenesis and biologic behavior remains unclear. Despite the invasive nature of mammary MCA, these carcinomas appear to be associated with a good prognosis. The patient has remained well and disease-free for 6 months after the operation.

  1. Palliative Surgical Approach in Advanced Nonresponsive Mucinous Ovarian Cancer: A Rare Case Report

    PubMed Central

    Agarwal, Manika; Kumar, Ritesh; Topno, Noor; Mishra, Shweta; Dhirasaria, Ashish; Singh, A Santa

    2016-01-01

    Advanced mucinous ovarian cancer is a separate entity and has different biological behaviour. There is a wide range of therapeutic challenges and dilemmas in the management of these patients. The authors present a case of advanced ovarian mucinous cystadenocarcinoma with pseudomyxoma peritonei who had poor response to standard neoadjuvant chemotherapy. This case is highlighted to emphasize the challenges in the decision making for the management of advanced mucinous ovarian cancer. PMID:27162429

  2. A Rare Renal Epithelial Tumor: Mucinous Cystadenocarcinoma Case Report and Review of the Literature

    PubMed Central

    Tepeler, Abdulkadir; Erdem, Mehmet Remzi; Kurt, Omer; Topaktas, Ramazan; Kilicaslan, Isin; Armağan, Abdullah; Önol, Şinasi Yavuz

    2011-01-01

    Primary renal mucinous cystadenocarcinoma is a very rare lesion of kidney which originates from the metaplasia of the renal pelvic uroepithelium. Only one case with primary mucinous cystadenocarcinoma has been reported in the English literature. We report second case of mucinous cystadenocarcinoma which was radiologically classified as type-IIF Bosniak cyst in peripheral localization. We aimed to present this extreme and unusual entity with its radiological, surgical, and pathologic aspects under the light of literature. PMID:22110514

  3. Growth in and breakdown of purified rabbit small intestinal mucin by Yersinia enterocolitica.

    PubMed Central

    Mantle, M; Rombough, C

    1993-01-01

    The mucus lining of the gastrointestinal tract serves as a protective barrier over the epithelial surface that must be crossed by invading bacteria seeking entry into the mucosa. The gel-forming component of mucus is mucin, a large polymeric glycoprotein. The present study examined the growth of Yersinia enterocolitica (with and without its virulence plasmid) in purified rabbit small intestinal mucin and the ability of bacteria to degrade mucin. Both virulent and nonvirulent organisms showed enhanced growth in mucin-supplemented media compared with unsupplemented media, but only at 37 degrees C and not at 25 degrees C. The effects of mucin were not specific because medium supplemented with bovine serum albumin also enhanced bacterial growth at 37 degrees C. Purified mucin was broken down into lower-molecular-weight components (assessed by monitoring its elution profile on a Sepharose CL-2B column) by plasmid-bearing Y. enterocolitica but not by plasmid-cured organisms. Culturing virulent Y. enterocolitica at 25 degrees C completely suppressed its capacity to degrade mucin, suggesting that this activity depends on plasmid expression. These results were confirmed in similar studies with purified rabbit colonic mucin. Mucin-degrading activity could be demonstrated in spent culture media from virulent Y. enterocolitica incubated at 37 degrees C but not in bacterial membrane preparations. Changes in the elution profiles of small intestinal and colonic mucins exposed to plasmid-bearing Y. enterocolitica at 37 degrees C were consistent with proteolytic depolymerization. The ability to grow well in mucin may help Y. enterocolitica to colonize the intestine, while the production of a mucin-degrading enzyme(s) by plasmid-bearing organisms may assist pathogenic strains to solubilize and penetrate the mucus gel layer. PMID:8406802

  4. Mucin Agarose Gel Electrophoresis: Western Blotting for High-molecular-weight Glycoproteins.

    PubMed

    Ramsey, Kathryn A; Rushton, Zachary L; Ehre, Camille

    2016-06-14

    Mucins, the heavily-glycosylated proteins lining mucosal surfaces, have evolved as a key component of innate defense by protecting the epithelium against invading pathogens. The main role of these macromolecules is to facilitate particle trapping and clearance while promoting lubrication of the mucosa. During protein synthesis, mucins undergo intense O-glycosylation and multimerization, which dramatically increase the mass and size of these molecules. These post-translational modifications are critical for the viscoelastic properties of mucus. As a result of the complex biochemical and biophysical nature of these molecules, working with mucins provides many challenges that cannot be overcome by conventional protein analysis methods. For instance, their high-molecular-weight prevents electrophoretic migration via regular polyacrylamide gels and their sticky nature causes adhesion to experimental tubing. However, investigating the role of mucins in health (e.g., maintaining mucosal integrity) and disease (e.g., hyperconcentration, mucostasis, cancer) has recently gained interest and mucins are being investigated as a therapeutic target. A better understanding of the production and function of mucin macromolecules may lead to novel pharmaceutical approaches, e.g., inhibitors of mucin granule exocytosis and/or mucolytic agents. Therefore, consistent and reliable protocols to investigate mucin biology are critical for scientific advancement. Here, we describe conventional methods to separate mucin macromolecules by electrophoresis using an agarose gel, transfer protein into nitrocellulose membrane, and detect signal with mucin-specific antibodies as well as infrared fluorescent gel reader. These techniques are widely applicable to determine mucin quantitation, multimerization and to test the effects of pharmacological compounds on mucins.

  5. Cystic Fibrosis Transmembrane Conductance Regulator in Sarcoplasmic Reticulum of Airway Smooth Muscle. Implications for Airway Contractility

    PubMed Central

    Cook, Daniel P.; Rector, Michael V.; Bouzek, Drake C.; Michalski, Andrew S.; Gansemer, Nicholas D.; Reznikov, Leah R.; Li, Xiaopeng; Stroik, Mallory R.; Ostedgaard, Lynda S.; Abou Alaiwa, Mahmoud H.; Thompson, Michael A.; Prakash, Y. S.; Krishnan, Ramaswamy; Meyerholz, David K.; Seow, Chun Y.

    2016-01-01

    Rationale: An asthma-like airway phenotype has been described in people with cystic fibrosis (CF). Whether these findings are directly caused by loss of CF transmembrane conductance regulator (CFTR) function or secondary to chronic airway infection and/or inflammation has been difficult to determine. Objectives: Airway contractility is primarily determined by airway smooth muscle. We tested the hypothesis that CFTR is expressed in airway smooth muscle and directly affects airway smooth muscle contractility. Methods: Newborn pigs, both wild type and with CF (before the onset of airway infection and inflammation), were used in this study. High-resolution immunofluorescence was used to identify the subcellular localization of CFTR in airway smooth muscle. Airway smooth muscle function was determined with tissue myography, intracellular calcium measurements, and regulatory myosin light chain phosphorylation status. Precision-cut lung slices were used to investigate the therapeutic potential of CFTR modulation on airway reactivity. Measurements and Main Results: We found that CFTR localizes to the sarcoplasmic reticulum compartment of airway smooth muscle and regulates airway smooth muscle tone. Loss of CFTR function led to delayed calcium reuptake following cholinergic stimulation and increased myosin light chain phosphorylation. CFTR potentiation with ivacaftor decreased airway reactivity in precision-cut lung slices following cholinergic stimulation. Conclusions: Loss of CFTR alters porcine airway smooth muscle function and may contribute to the airflow obstruction phenotype observed in human CF. Airway smooth muscle CFTR may represent a therapeutic target in CF and other diseases of airway narrowing. PMID:26488271

  6. Cryptococcus neoformans Infection in Mice Lacking Type I Interferon Signaling Leads to Increased Fungal Clearance and IL-4-Dependent Mucin Production in the Lungs

    PubMed Central

    Sato, Ko; Yamamoto, Hideki; Nomura, Toshiki; Matsumoto, Ikumi; Miyasaka, Tomomitsu; Zong, Tong; Kanno, Emi; Uno, Kazuko; Ishii, Keiko; Kawakami, Kazuyoshi

    2015-01-01

    Type I interferons (IFNs) are secreted by many cell types upon stimulation via pattern recognition receptors and bind to IFN-α/β receptor (IFNAR), which is composed of IFNAR1 and IFNAR2. Although type I IFNs are well known as anti-viral cytokines, limited information is available on their role during fungal infection. In the present study, we addressed this issue by examining the effect of IFNAR1 defects on the host defense response to Cryptococcus neoformans. In IFNAR1KO mice, the number of live colonies was lower and the host immune response mediated not only by Th1 but also by Th2 and Th17-related cytokines was more accelerated in the infected lungs than in WT mice. In addition, mucin production by bronchoepithelial cells and expression of MUC5AC, a major core protein of mucin in the lungs, were significantly higher in IFNAR1KO mice than in WT mice. This increase in mucin and MUC5AC production was significantly inhibited by treatment with neutralizing anti-IL-4 mAb. In contrast, administration of recombinant IFN-αA/D significantly suppressed the production of IL-4, but not of IFN-γ and IL-17A, in the lungs of WT mice after cryptococcal infection. These results indicate that defects of IFNAR1 led to improved clearance of infection with C. neoformans and enhanced synthesis of IFN-γ and the IL-4-dependent production of mucin. They also suggest that type I IFNs may be involved in the negative regulation of early host defense to this infection. PMID:26384031

  7. AARC Clinical Practice Guideline: Effectiveness of Pharmacologic Airway Clearance Therapies in Hospitalized Patients.

    PubMed

    Strickland, Shawna L; Rubin, Bruce K; Haas, Carl F; Volsko, Teresa A; Drescher, Gail S; O'Malley, Catherine A

    2015-07-01

    Aerosolized medications are used as airway clearance therapy to treat a variety of airway diseases. These guidelines were developed from a systematic review with the purpose of determining whether the use of these medications to promote airway clearance improves oxygenation and respiratory mechanics, reduces ventilator time and ICU stay, and/or resolves atelectasis/consolidation compared with usual care. Recombinant human dornase alfa should not be used in hospitalized adult and pediatric patients without cystic fibrosis. The routine use of bronchodilators to aid in secretion clearance is not recommended. The routine use of aerosolized N-acetylcysteine to improve airway clearance is not recommended. Aerosolized agents to change mucus biophysical properties or promote airway clearance are not recommended for adult or pediatric patients with neuromuscular disease, respiratory muscle weakness, or impaired cough. Mucolytics are not recommended to treat atelectasis in postoperative adult or pediatric patients, and the routine administration of bronchodilators to postoperative patients is not recommended. There is no high-level evidence related to the use of bronchodilators, mucolytics, mucokinetics, and novel therapy to promote airway clearance in these populations.

  8. [Orthodontics and the upper airway].

    PubMed

    Cobo Plana, J; de Carlos Villafranca, F; Macías Escalada, E

    2004-03-01

    One of the general aims of orthodontic treatment and of the combination of orthodontics and orthognathic surgery is to achieve good occlusion and aesthetic improvement, especially in cases of severe dentoskeletal deformities. However, on many occasions, the parameters of the upper airways are not taken into account when the aims of conventional treatment are fulfilled. Patients with obstructive alterations during sleep represent for the orthodontist a type of patient who differs from the normal; for them, treatment should include the objective of improving oxygen saturation. Here, functional considerations should outweigh purely aesthetic ones. It is important, when making an orthodontic, surgical or combined diagnosis for a patient, to bear in mind the impact that treatment may have on the upper airways. Good aesthetics should never be achieved for some of our patients at the expense of diminishing the capacity of their upper airways.

  9. The effect of the space flight environment on mucin production in the mouse uterine tube

    NASA Astrophysics Data System (ADS)

    Svalina, Gorica; Forsman, Allan D.

    2013-06-01

    Numerous studies have indicated that the microgravity environment of space has harmful effects on several tissues throughout the body. Although this phenomenon is well documented, research in this area is still in its relative infancy. This study investigates the effects of space flight on mucin production of the uterine tubes of mice. This study examined the epithelium of the uterine tubes from female mice that were flown on the space shuttle Endeavour for 13 days in August, 2007 and their concomitant controls. The tissue was qualitatively analyzed for the type of mucin produced, i.e., acidic, neutral, acidic/neutral mixture. Further, the tissue was quantitatively analyzed for the amounts of mucins produced by measuring the thickness of the mucin layer for each region of the uterine tube: isthmus, ampulla, and infundibulum. One way ANOVA tests were used to compare mucin thickness between all three sets of animals. Results indicate similar but not identical results between the three regions of the uterine tube. The Baseline tissue had the thickest mucin layer regardless of treatment group. In the ampulla the mucin layer was the thinnest in the Flight tissue, followed by the Ground Control, with the Baseline being the thickest. Analysis of the mucin layer of the infundibulum of the three treatment groups indicated no difference in its thickness between the three regions of the uterine tube. These results indicate a trend toward thinning of the mucin layer of the uterine tube in space flight, but also indicate an influence by the housing environment.

  10. Profile of the intermolecular forces governing the interaction of drugs with mucin.

    PubMed

    Caron, Giulia; Visentin, Sonja; Pontremoli, Carlotta; Ermondi, Giuseppe

    2015-07-05

    The study highlights the balance of the intermolecular forces governing the interaction between drugs and mucin. The interaction strength is expressed as a retention factor k (data retrieved from the literature (Gargano et al., 2014)) obtained by a new bio-affinity chromatographic method in which the stationary phase is based on covalently immobilized mucin (porcine gastric mucin, PGM). A quantitative structure-property relationship (QSPR) between logk and 82 VolSurf+ descriptors was established and mechanistically interpreted. Results evidence that all blocks contribute similarly to the model; moreover, hydrogen bonding donor (HBD) properties of solutes favor the interaction with mucin; and thus, support their detrimental role on drug permeability.

  11. Mucin-bacterial interactions in the human oral cavity and digestive tract

    PubMed Central

    van Passel, Mark WJ; van de Bovenkamp, Jeroen HB; Schipper, Raymond G; de Vos, Willem M; Dekker, Jan

    2010-01-01

    Mucins are a family of heavily glycosylated proteins that are the major organic components of the mucus layer, the protective layer covering the epithelial cells in many human and animal organs, including the entire gastro-intestinal tract. Microbes that can associate with mucins benefit from this interaction since they can get available nutrients, experience physico-chemical protection and adhere, resulting in increased residence time. Mucin-degrading microorganisms, which often are found in consortia, have not been extensively characterized as mucins are high molecular weight glycoproteins that are hard to study because of their size, complexity and heterogeneity. The purpose of this review is to discuss how advances in mucus and mucin research, and insight in the microbial ecology promoted our understanding of mucin degradation. Recent insight is presented in mucin structure and organization, the microorganisms known to use mucin as growth substrate, with a specific attention on Akkermansia muciniphila, and the molecular basis of microbial mucin degradation owing to availability of genome sequences. PMID:21327032

  12. Emerging Potential of Natural Products for Targeting Mucins for Therapy Against Inflammation and Cancer

    PubMed Central

    Macha, Muzafar A.; Krishn, Shiv Ram; Jahan, Rahat; Banerjee, Kasturi; Batra, Surinder K.; Jain, Maneesh

    2015-01-01

    Deregulated mucin expression is a hallmark of several inflammatory and malignant pathologies. Emerging evidence suggests that, apart from biomarkers, these deregulated mucins are functional contributors to pathogenesis in inflammation and cancer. Both overexpression and downregulation of mucins in various organ systems is associated with pathobiology of inflammation and cancer. Restoration of mucin homeostasis has become an important goal for therapy and management of such disorders and has fueled the quest for selective mucomodulators. With improved understanding of mucin regulation and mechanistic insights into their pathobiological roles, there is optimism to find selective non-toxic agents capable of modulating mucin expression and function. Recently, natural compounds derived from dietary sources have drawn attention due to their anti-inflammatory and anti-oxidant properties and low toxicity. Considerable efforts have been directed towards evaluating dietary natural products as chemopreventive and therapeutic agents; identification, characterization and synthesis of their active compounds; and improving their delivery and bioavailability. We describe the current understanding of mucin regulation, rationale for targeting mucins with natural products and discuss some natural products that modulate mucin expression and functions. We further discuss the approaches and parameters that should guide future research to identify and evaluate selective natural mucomodulators for therapy. PMID:25624117

  13. Mucinous carcinoma of breast with psammomatous calcification: report of a rare case with extensive axillary metastases.

    PubMed

    Bahadur, Shalini; Pujani, Mukta; Jetley, Sujata; Raina, Prabhat Kumar

    2014-01-01

    Pure mucinous carcinoma of the breast accounts for about 2% of all breast carcinomas and is associated with a favourable prognosis due to its lower nuclear grade and infrequent axillary or hematogenous metastases. Micropapillary variant of mucinous carcinoma breast has recently received attention as a unique form of invasive carcinoma of the breast exhibiting dual differentiation towards mucinous as well as micropapillary. The characteristic features for labeling a tumor as mucinous micropapillary carcinoma are micropapillary pattern, nuclear pleomorphism, hobnail cells and psammoma bodies in addition to the predominant mucinous component. Micropapillary mucinous carcinoma (MUMPC) when compared to pure mucinous carcinoma tends to have a higher nuclear grade, axillary lymph node metastases, lymphovascular invasion and overexpression of Her 2, p53 and Ki-67, thereby displaying an aggressive clinical behaviour. We present a rare case of micropapillary mucinous carcinoma to highlight the fact that this being a unique and rare variant of mucinous carcinoma should be recognized and reported as a separate category by the pathologists owing to its aggressive clinical behaviour and its influence on the nature of therapy.

  14. Expression of androgen, estrogen and progesterone receptors in mucinous carcinoma of the breast.

    PubMed

    Cho, Li-Chen; Hsu, Yung-Hsiang

    2008-05-01

    Hormone receptors play important roles in breast cancer. We investigated the expression of hormone receptors in breast cancer to evaluate the importance of hormone receptors in the clinicopathology of breast cancer. Androgen receptor (AR), estrogen receptor (ER) and progesterone receptor (PR) expression characteristics were evaluated using immunohistochemistry stain, comparing patient age, tumor size and axillary lymph node status for 23 pure mucinous and 105 non-mucinous infiltrating ductal carcinomas in the human female breast. Mucinous carcinoma with axillary lymph node metastasis occurred less frequently than non-mucinous carcinoma (11.8% vs. 55.2%; p = 0.01). Compared with the non-mucinous type, mucinous carcinoma specimens showed less AR expression (21.7% vs. 51.4%; p = 0.01) but more ER expression (78.3% vs. 52.4%; p = 0.02). In addition, AR expression was also associated with ER and/or PR coexpression (37/74, 50%) in infiltrating ductal carcinoma. But only three of 20 (15%) mucinous carcinoma specimens with AR expression had associated ER and/or PR coexpression. Our findings revealed that mucinous carcinoma samples from the breast show distinct clinicopathologic and hormone receptor expression features compared to non-mucinous carcinoma.

  15. Airway Assessment for Office Sedation/Anesthesia.

    PubMed

    Rosenberg, Morton B; Phero, James C

    2015-01-01

    Whenever a patient is about to receive sedation or general anesthesia, no matter what the technique, the preoperative assessment of the airway is one of the most important steps in ensuring patient safety and positive outcomes. This article, Part III in the series on airway management, is directed at the ambulatory office practice and focuses on predicting the success of advanced airway rescue techniques.

  16. Comments to Role of upper airway ultrasound in airway management.

    PubMed

    Lien, Wan-Ching

    2017-01-01

    Tracheal ultrasound can be an alternative diagnostic tool in airway management, besides traditional confirmatory methods such as capnography and auscultation. The standard image is a hyperechoic air-mucosa (A-M) interface with a reverberation artifact posteriorly (comet-tail artifact). If the second A-M interface appears, which we call a "double-tract sign," esophageal intubation is considered.

  17. Spectrum of mucin-producing neoplastic conditions of the abdomen and pelvis: cross-sectional imaging evaluation.

    PubMed

    Lee, Nam Kyung; Kim, Suk; Kim, Hyun Sung; Jeon, Tae Yong; Kim, Gwang Ha; Kim, Dong Uk; Park, Do Youn; Kim, Tae Un; Kang, Dae Hwan

    2011-11-21

    Various mucin-producing neoplasms originate in different abdominal and pelvic organs. Mucinous neoplasms differ from non-mucinous neoplasms because of the differences in clinical outcome and imaging appearance. Mucinous carcinoma, in which at least 50% of the tumor is composed of large pools of extracellular mucin and columns of malignant cells, is associated with a worse prognosis. Signet ring cell carcinoma is characterized by large intracytoplasmic mucin vacuoles that expand in the malignant cells with the nucleus displaced to the periphery. Its prognosis is also generally poor. In contrast, intraductal papillary mucinous neoplasm of the bile duct and pancreas, which is characterized by proliferation of ductal epithelium and variable mucin production, has a better prognosis than other malignancies in the pancreaticobiliary tree. Imaging modalities play a critical role in differentiating mucinous from non-mucinous neoplasms. Due to high water content, mucin has a similar appearance to water on ultrasound (US), computed tomography (CT), and magnetic resonance imaging, except when thick and proteinaceous, and then it tends to be hypoechoic with fine internal echoes or have complex echogenicity on US, hyperdense on CT, and hyperintense on T1- and hypointense on T2-weighted images, compared to water. Therefore, knowledge of characteristic mucin imaging features is helpful to diagnose various mucin-producing neoplastic conditions and to facilitate appropriate treatment.

  18. Lipoxin A4 Stimulates Calcium-Activated Chloride Currents and Increases Airway Surface Liquid Height in Normal and Cystic Fibrosis Airway Epithelia

    PubMed Central

    Al-Alawi, Mazen; Costello, Richard W.; McNally, Paul; Chiron, Raphaël; Harvey, Brian J.; Urbach, Valérie

    2012-01-01

    Cystic Fibrosis (CF) is a genetic disease characterised by a deficit in epithelial Cl− secretion which in the lung leads to airway dehydration and a reduced Airway Surface Liquid (ASL) height. The endogenous lipoxin LXA4 is a member of the newly identified eicosanoids playing a key role in ending the inflammatory process. Levels of LXA4 are reported to be decreased in the airways of patients with CF. We have previously shown that in normal human bronchial epithelial cells, LXA4 produced a rapid and transient increase in intracellular Ca2+. We have investigated, the effect of LXA4 on Cl− secretion and the functional consequences on ASL generation in bronchial epithelial cells obtained from CF and non-CF patient biopsies and in bronchial epithelial cell lines. We found that LXA4 stimulated a rapid intracellular Ca2+ increase in all of the different CF bronchial epithelial cells tested. In non-CF and CF bronchial epithelia, LXA4 stimulated whole-cell Cl− currents which were inhibited by NPPB (calcium-activated Cl− channel inhibitor), BAPTA-AM (chelator of intracellular Ca2+) but not by CFTRinh-172 (CFTR inhibitor). We found, using confocal imaging, that LXA4 increased the ASL height in non-CF and in CF airway bronchial epithelia. The LXA4 effect on ASL height was sensitive to bumetanide, an inhibitor of transepithelial Cl− secretion. The LXA4 stimulation of intracellular Ca2+, whole-cell Cl− currents, conductances and ASL height were inhibited by Boc-2, a specific antagonist of the ALX/FPR2 receptor. Our results provide, for the first time, evidence for a novel role of LXA4 in the stimulation of intracellular Ca2+ signalling leading to Ca2+-activated Cl− secretion and enhanced ASL height in non-CF and CF bronchial epithelia. PMID:22662206

  19. TRPC3 regulates release of brain-derived neurotrophic factor from human airway smooth muscle.

    PubMed

    Vohra, Pawan K; Thompson, Michael A; Sathish, Venkatachalem; Kiel, Alexander; Jerde, Calvin; Pabelick, Christina M; Singh, Brij B; Prakash, Y S

    2013-12-01

    Exogenous brain-derived neurotrophic factor (BDNF) enhances Ca(2+) signaling and cell proliferation in human airway smooth muscle (ASM), especially with inflammation. Human ASM also expresses BDNF, raising the potential for autocrine/paracrine effects. The mechanisms by which ASM BDNF secretion occurs are not known. Transient receptor potential channels (TRPCs) regulate a variety of intracellular processes including store-operated Ca(2+) entry (SOCE; including in ASM) and secretion of factors such as cytokines. In human ASM, we tested the hypothesis that TRPC3 regulates BDNF secretion. At baseline, intracellular BDNF was present, and BDNF secretion was detectable by enzyme linked immunosorbent assay (ELISA) of cell supernatants or by real-time fluorescence imaging of cells transfected with GFP-BDNF vector. Exposure to the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) (20ng/ml, 48h) or a mixture of allergens (ovalbumin, house dust mite, Alternaria, and Aspergillus extracts) significantly enhanced BDNF secretion and increased TRPC3 expression. TRPC3 knockdown (siRNA or inhibitor Pyr3; 10μM) blunted BDNF secretion, and prevented inflammation effects. Chelation of extracellular Ca(2+) (EGTA; 1mM) or intracellular Ca(2+) (BAPTA; 5μM) significantly reduced secreted BDNF, as did the knockdown of SOCE proteins STIM1 and Orai1 or plasma membrane caveolin-1. Functionally, secreted BDNF had autocrine effects suggested by phosphorylation of high-affinity tropomyosin-related kinase TrkB receptor, prevented by chelating extracellular BDNF with chimeric TrkB-Fc. These data emphasize the role of TRPC3 and Ca(2+) influx in the regulation of BDNF secretion by human ASM and the enhancing effects of inflammation. Given the BDNF effects on Ca(2+) and cell proliferation, BDNF secretion may contribute to altered airway structure and function in diseases such as asthma.

  20. Airway Epithelial Cell Cilia and Obstructive Lung Disease

    PubMed Central

    Yaghi, Asma; Dolovich, Myrna B.

    2016-01-01

    Airway epithelium is the first line of defense against exposure of the airway and lung to various inflammatory stimuli. Ciliary beating of airway epithelial cells constitutes an important part of the mucociliary transport apparatus. To be effective in transporting secretions out of the lung, the mucociliary transport apparatus must exhibit a cohesive beating of all ciliated epithelial cells that line the upper and lower respiratory tract. Cilia function can be modulated by exposures to endogenous and exogenous factors and by the viscosity of the mucus lining the epithelium. Cilia function is impaired in lung diseases such as COPD and asthma, and pharmacologic agents can modulate cilia function and mucus viscosity. Cilia beating is reduced in COPD, however, more research is needed to determine the structural-functional regulation of ciliary beating via all signaling pathways and how this might relate to the initiation or progression of obstructive lung diseases. Additionally, genotypes and how these can influence phenotypes and epithelial cell cilia function and structure should be taken into consideration in future investigations. PMID:27845721

  1. Functional small airways defence in symptomless cigarette smokers.

    PubMed Central

    Agnew, J E; Lopez-Vidriero, M T; Pavia, D; Clarke, S W

    1986-01-01

    Smoking induced changes in the secretory cells of bronchiolar epithelium by facilitating secretion of cross linked glycoprotein mucus may influence the efficiency of mucus-cilia coupling. The functional impact on mucociliary transport in small (peripheral) airways has been studied by comparing data on aerosol deposition and clearance from symptomless cigarette smokers (30 tests, 18 subjects) with data from age matched non-smokers (30 tests, 19 subjects). Gamma camera images, assessed in terms of a penetration index comparing peripheral with inner zone deposition, indicated closely similar initial deposition in the two groups. Alveolar deposition, however, assessed in terms of particle retention at 24 hours, was significantly (p less than 0.01) less in the smokers. Given the similarity of initial deposition, this implies that an increased proportion of small conducting airways are protected by mucociliary defence in the smokers' lungs. Clearance from conducting airways of the peripheral zone in tests with relatively high peripheral deposition (14 tests on smokers, and 12 on non-smokers) nevertheless proceeded at the same rate in smokers as in non-smokers. PMID:3787532

  2. PAX2, PAX8 and CDX2 Expression in Metastatic Mucinous, Primary Ovarian Mucinous and Seromucinous Tumors and Review of the Literature.

    PubMed

    Ates Ozdemir, D; Usubutun, A

    2016-07-01

    Ovarian cancer is the most common cause of gynecologic cancer death. Both morphologically and immunohistochemically, metastatic mucinous tumors are the best mimickers of mucinous ovarian tumors; its pathogenesis still remains a mystery. PAX2 and PAX8 immunohisyochemistries are useful for differentiating numerous primary tumour types from metastatic ones. There are few studies in literature about PAX expressions in mucinous and seromucinous tumors. None of these are takes into account the histologic type (whether it is seromucinous or mucinous) or the metastatic origin. With this purpose hematoxylin and eosine slides of ovarian mucinous and seromucinous tumors were re-evaluated and one block was chosen for each case. The study included 76 ovarian mucinous and seromucinous tumors of the ovary reported in Hacettepe University department of pathology between 2000 and 2013. Tissue microarray (TMA) was designed from the chosen blocks, PAX2, PAX8, CDX2 immunostains was preformed to the TMA slides. As a result, most of the metastatic cases were negative for PAX2 (91.2 %) and PAX8 (86.3 %), many were diffusely and strongly positive for CDX2 (68.2 %). Seromucinous tumors were devoid of CDX2 expression; but all cases (except one) displayed strong and diffuse positivity with PAX8. In other words differing from mucinous tumors, seromucinous tumors show strong PAX8 positivity-similar to serous tumors. This study shows that PAX8 and CDX2 could be useful in differentiating primary mucinous from metastatic tumor. Furthermore unlike the homogeneity in seromucinous tumors for PAX8 and CDX2 mucinous tumors shows heterogeneity with different expression patterns.

  3. Goblet Cell Hyperplasia Requires High Bicarbonate Transport To Support Mucin Release

    PubMed Central

    Gorrieri, Giulia; Scudieri, Paolo; Caci, Emanuela; Schiavon, Marco; Tomati, Valeria; Sirci, Francesco; Napolitano, Francesco; Carrella, Diego; Gianotti, Ambra; Musante, Ilaria; Favia, Maria; Casavola, Valeria; Guerra, Lorenzo; Rea, Federico; Ravazzolo, Roberto; Di Bernardo, Diego; Galietta, Luis J. V.

    2016-01-01

    Goblet cell hyperplasia, a feature of asthma and other respiratory diseases, is driven by the Th-2 cytokines IL-4 and IL-13. In human bronchial epithelial cells, we find that IL-4 induces the expression of many genes coding for ion channels and transporters, including TMEM16A, SLC26A4, SLC12A2, and ATP12A. At the functional level, we find that IL-4 enhances calcium- and cAMP-activated chloride/bicarbonate secretion, resulting in high bicarbonate concentration and alkaline pH in the fluid covering the apical surface of epithelia. Importantly, mucin release, elicited by purinergic stimulation, requires the presence of bicarbonate in the basolateral solution and is defective in cells derived from cystic fibrosis patients. In conclusion, our results suggest that Th-2 cytokines induce a profound change in expression and function in multiple ion channels and transporters that results in enhanced bicarbonate transport ability. This change is required as an important mechanism to favor release and clearance of mucus. PMID:27786259

  4. α-Galactosylceramide-induced airway eosinophilia is mediated through the activation of NKT cells.

    PubMed

    Chuang, Ya-Hui; Wang, Tzu-Chun; Jen, Hsiao-Yu; Yu, Alice L; Chiang, Bor-Luen

    2011-04-15

    Invariant NKT (iNKT) cells bridge innate and adaptive immune responses, resulting in the expansion of Ag-specific B and T cell responses. α-Galactosylceramide (α-GalCer), the most studied glycolipid that activates iNKT cells, has been proposed to be an effective adjuvant against infections and tumors. We found that the activation of iNKT cells by intranasal injection of α-GalCer induced airway eosinophilia in naive mice. Eosinophils, which mediate tissue damage and dysfunction by secreting mediators, play important roles in the pathogenesis of allergic diseases. In this study, we investigated the mechanism of how eosinophils are recruited to the lung by α-GalCer. Our results demonstrated that α-GalCer-induced eosinophil inflammation was mediated through iNKT cells. These cells secreted IL-5 to recruit eosinophils directly to the lung and/or secreted IL-4 and IL-13 to recruit eosinophils indirectly by inducing lung epithelial cells, endothelial cells, and fibroblast to secrete the eosinophil chemoattractant eotaxin. In addition, in the OVA-alum murine model of allergic asthma, α-GalCer administration in OVA-immunized mice also increased airway eosinophilia after challenge. Given our findings, intranasal administration of α-GalCer induced airway eosinophilic inflammation in both naive and allergic mice. Hence, it remains to be determined whether the activation of iNKT cells would be applicable in therapeutics for human diseases.

  5. Cigarette smoke extract reduces VEGF in primary human airway epithelial cells.

    PubMed

    Thaikoottathil, J V; Martin, R J; Zdunek, J; Weinberger, A; Rino, J G; Chu, H W

    2009-04-01

    Reduced vascular endothelial growth factor (VEGF) has been reported in bronchoalveolar lavage fluid and lungs of severe emphysema patients. Airway epithelial cells (AEC) are exposed to various environmental insults like cigarette smoke and bacterial infections, but their direct effect on VEGF production in well-differentiated primary human AEC remains unclear. The current authors determined the effect of cigarette smoke extract (CSE) alone and in combination with Mycoplasma pneumoniae (Mp) on VEGF production in well-differentiated primary normal human bronchial epithelial (NHBE) and small airway epithelial cells (SAEC) in air-liquid interface cultures. Secretion and expression of VEGF were determined by ELISA and real-time RT-PCR, respectively. Cell growth, apoptosis, extracellular signal-regulated kinase (ERK)1/2 and protein kinase (PK)C signalling pathways were evaluated to further dissect VEGF regulation under CSE treatment. CSE significantly reduced VEGF secretion in NHBE and SAEC. In SAEC, Mp alone significantly increased the VEGF, while the presence of CSE attenuated Mp-induced VEGF production. While ERK inhibitor reduced VEGF secretion only in NHBE, a PKC inhibitor significantly decreased VEGF secretion in both NHBE and SAEC. In conclusion, direct cigarette smoke extract exposure significantly reduced vascular endothelial growth factor production in well-differentiated primary human airway epithelial cells, in part through modifying extracellular signal-regulated kinase 1/2 and protein kinase C signalling pathways.

  6. Endotoxin responsiveness of human airway epithelia is limited by low expression of MD-2.

    PubMed

    Jia, Hong Peng; Kline, Joel N; Penisten, Andrea; Apicella, Michael A; Gioannini, Theresa L; Weiss, Jerrold; McCray, Paul B

    2004-08-01

    The expression of inducible antimicrobial peptides, such as human beta-defensin-2 (HBD-2) by epithelia, comprises a component of innate pulmonary defenses. We hypothesized that HBD-2 induction in airway epithelia is linked to pattern recognition receptors such as the Toll-like receptors (TLRs). We found that primary cultures of well-differentiated human airway epithelia express the mRNA for TLR-4, but little or no MD-2 mRNA, and display little HBD-2 expression in response to treatment with purified endotoxin +/- LPS binding protein (LBP) and soluble CD14. Expression of endogenous MD-2 by transduction of airway epithelial cells with an adenoviral vector encoding MD-2 or extracellular addition of recombinant MD-2 both increased the responses of airway epithelia to endotoxin + LBP and sCD14 by >100-fold, as measured by NF-kappaB-luciferase activity and HBD-2 mRNA expression. MD-2 mRNA could be induced in airway epithelia by exposure of these cells to specific bacterial or host products (e.g., killed Haemophilus influenzae, the P6 outer membrane protein from H. influenzae, or TNF-alpha + IFN-gamma). These findings suggest that MD-2, either coexpressed with TLR-4 or secreted when produced in excess of TLR-4 from neighboring cells, is required for airway epithelia to respond sensitively to endotoxin. The regulation of MD-2 expression in airway epithelia and pulmonary macrophages may serve as a means to modify endotoxin responsiveness in the airway.

  7. Mucinous carcinoma of the breast is genomically distinct from invasive ductal carcinomas of no special type.

    PubMed

    Lacroix-Triki, Magali; Suarez, Paula H; MacKay, Alan; Lambros, Maryou B; Natrajan, Rachael; Savage, Kay; Geyer, Felipe C; Weigelt, Britta; Ashworth, Alan; Reis-Filho, Jorge S

    2010-11-01

    Mucinous carcinomas are a rare entity accounting for up to 2% of all breast cancers, which have been shown to display a gene expression profile distinct from that of invasive ductal carcinomas of no special type (IDC-NSTs). Here, we have defined the genomic aberrations that are characteristic of this special type of breast cancer and have investigated whether mucinous carcinomas might constitute a genomic entity distinct from IDC-NSTs. Thirty-five pure and 11 mixed mucinous breast carcinomas were assessed by immunohistochemistry using antibodies against oestrogen receptor (ER), progesterone receptor, HER2, Ki67, cyclin D1, cortactin, Bcl-2, p53, E-cadherin, basal markers, neuroendocrine markers, and WT1. Fifteen pure mucinous carcinomas and 30 grade- and ER-matched IDC-NSTs were microdissected and subjected to high-resolution microarray-based comparative genomic hybridization (aCGH). In addition, the distinct components of seven mixed mucinous carcinomas were microdissected separately and subjected to aCGH. Pure mucinous carcinomas consistently expressed ER (100%), lacked HER2 expression (97.1%), and showed a relatively low level of genetic instability. Unsupervised hierarchical cluster analysis revealed that pure mucinous carcinomas were homogeneous and preferentially clustered together, separately from IDC-NSTs. They less frequently harboured gains of 1q and 16p and losses of 16q and 22q than grade- and ER-matched IDC-NSTs, and no pure mucinous carcinoma displayed concurrent 1q gain and 16q loss, a hallmark genetic feature of low-grade IDC-NSTs. Finally, both components of all but one mixed mucinous carcinoma displayed similar patterns of genetic aberrations and preferentially clustered together with pure mucinous carcinomas on unsupervised clustering analysis. Our results demonstrate that mucinous carcinomas are more homogeneous between themselves at the genetic level than IDC-NSTs. Both components of mixed mucinous tumours are remarkably similar at the

  8. The Lung Microbiome and Airway Disease.

    PubMed

    Lynch, Susan V

    2016-12-01

    A growing body of literature has demonstrated relationships between the composition of the airway microbiota (mixed-species communities of microbes that exist in the respiratory tract) and critical features of immune response and pulmonary function. These studies provide evidence that airway inflammatory status and capacity for repair are coassociated with specific taxonomic features of the airway microbiome. Although directionality has yet to be established, the fact that microbes are known drivers of inflammation and tissue damage suggests that in the context of chronic inflammatory airway disease, the composition and, more importantly, the function, of the pulmonary microbiome represent critical factors in defining airway disease outcomes.

  9. Airway nerves: in vitro electrophysiology.

    PubMed

    Fox, Alyson

    2002-06-01

    Recording the activity of single airway sensory fibres or neuronal cell bodies in vitro has allowed detailed characterisation of fibre types and membrane properties. Fibre types can be identified by their conduction velocities and further studied by the application of drugs to their receptive field. C-fibres are sensitive to mechanical stimuli and a range of irritant chemicals (bradykinin, capsaicin, low pH, platelet-activating factor), whereas Adelta-fibres are relatively insensitive to chemical stimuli and appear to correlate to the rapidly adapting receptors identified in airways in vivo. Their site of origin also differs: upper airway C-fibres arise predominantly from the jugular ganglion and Adelta-fibres from the jugular and nodose ganglia. Intracellular recording from cell bodies in the ganglia has revealed a calcium-dependent potassium current common to many putative C-fibre cell bodies. This slow after hyperpolarisation current may be inhibited by stimuli that excite and sensitise C-fibres - this could be an important mechanism underlying the sensitisation of C-fibres in airway irritability.

  10. Histochemical and structural analysis of mucous glycoprotein secreted by the gill of Mytilus edulis

    SciTech Connect

    Ahn, Hae-Young.

    1988-01-01

    Studies were carried out to characterized various mucous cells in the gill filament, to ascertain structural characteristics of the secreted mucous glycoproteins, and to determine the ability of the gill epithelium to incorporate ({sup 14}C)glucosamine as a precursor in the biosynthesis and secretion of mucous glycoproteins. Using histochemical staining techniques, mucous cells containing neutral and acidic mucins were found in the lateral region, whereas mucous cells containing primarily neutral or sulfated mucins were found in the postlateral region. Serotonin, but not dopamine, stimulated the mucous secretion. In tissues pretreated with ({sup 14}C)glucosamine, the secreted glycoproteins contain incorporated radiolabel. Analysis by column chromatography using Bio-Gel P-2 and P-6 shows that the secretion contains two glycoprotein populations. Glycoprotein II has a molecular weight of 2.3 {times} 10{sup 4} daltons. Upon alkaline reductive borohydride cleavage of the O-glycosidic linkages of glycoprotein I, about 70% of the radiolabel was removed from the protein. Gas chromatographic analysis of the carbohydrate composition shows that the glycoproteins contains N-acetylglucosamine (GluNAc), N-acetylgalactosamine (GalNAc), and galactose, fucose and mannose. Amino acid analysis shows that the glycoproteins are rich in serine, threonine and proline.

  11. Basolateral Cl channels in primary airway epithelial cultures.

    PubMed

    Fischer, Horst; Illek, Beate; Finkbeiner, Walter E; Widdicombe, Jonathan H

    2007-06-01

    Salt and water absorption and secretion across the airway epithelium are important for maintaining the thin film of liquid lining the surface of the airway epithelium. Movement of Cl across the apical membrane involves the CFTR Cl channel; however, conductive pathways for Cl movement across the basolateral membrane have been little studied. Here, we determined the regulation and single-channel properties of the Cl conductance (G(Cl)) in airway surface epithelia using epithelial cultures from human or bovine trachea and freshly isolated ciliated cells from the human nasal epithelium. In Ussing chamber studies, a swelling-activated basolateral G(Cl) was found, which was further stimulated by forskolin and blocked by N-phenylanthranilic acid (DPC) = sucrose > flufenamic acid = niflumic acid = glibenclamide > CdCl(2) = 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) = DIDS = ZnCl(2) > tamoxifen > 4,4'-dinitro-2,2'-stilbene-disulfonate disodium salt (DNDS). In whole cell patch-clamp experiments, three types of G(Cl) were identified: 1) a voltage-activated, DIDS- (but not Cd-) blockable and osmosensitive G(Cl); 2) an inwardly rectifying, hyperpolarization-activated and Cd-sensitive G(Cl); and 3) a forskolin-activated, linear G(Cl), which was insensitive to Cd and DIDS. In cell-attached patch-clamp recordings, the basolateral pole of isolated ciliated cells expressed three types of Cl channels: 1) an outwardly rectifying, swelling-activated Cl channel; 2) a strongly inwardly rectifying Cl channel; and 3) a forskolin-activated, low-conductance channel. We propose that, depending on the driving force for Cl across the apical membrane, basolateral Cl channels confine Cl(-) secretion or support transcellular Cl(-) absorption.

  12. Airway malacia in children with achondroplasia.

    PubMed

    Dessoffy, Kimberly E; Modaff, Peggy; Pauli, Richard M

    2014-02-01

    This study was undertaken to assess the frequency of airway malacia in infants and young children with achondroplasia, a population well known to be at risk for a variety of respiratory problems. We also wished to evaluate what, if any, contribution airway malacia makes to the complex respiratory issues that may be present in those with achondroplasia. Retrospective chart review of all infants and young children with achondroplasia who were assessed through the Midwest Regional Bone Dysplasia Clinics from 1985 through 2012 (n = 236) was completed. Records of comprehensive clinical examinations, polysomnographic assessments, and airway visualization were reviewed and abstracted using a data collection form. Analyses were completed comparing the group with and those without evidence for airway malacia. Thirteen of 236 patients (5.5%) were found to have airway malacia. Most of those affected had lower airway involvement (9/13). The presence of airway malacia was correlated with an increased occurrence of obstructive sleep apnea as well as need for oxygen supplementation, airway surgeries and tracheostomy placement. Although estimates of the frequency of airway malacia in the general population are limited, its frequency in children with achondroplasia appears to be much higher than any published general population estimate. The presence of airway malacia appears to confound other breathing abnormalities in this population and results in the need for more invasive airway treatments.

  13. Regulation of protein secretion by ... protein secretion?

    PubMed

    Atmakuri, Krishnamohan; Fortune, Sarah M

    2008-09-11

    Mycobacterium tuberculosis (Mtb) requires an alternative protein secretion system, ESX1, for virulence. Recently, Raghavan et al. (2008) reported a new regulatory circuit that may explain how ESX1 activity is controlled during infection. Mtb appears to regulate ESX1 by modulating transcription of associated genes rather than structural components of the secretion system itself.

  14. Sarcoidosis of the upper and lower airways.

    PubMed

    Morgenthau, Adam S; Teirstein, Alvin S

    2011-12-01

    Sarcoidosis is a systemic granulomatous disease of undetermined etiology characterized by a variable clinical presentation and disease course. Although clinical granulomatous inflammation may occur within any organ system, more than 90% of sarcoidosis patients have lung disease. Sarcoidosis is considered an interstitial lung disease that is frequently characterized by restrictive physiologic dysfunction on pulmonary function tests. However, sarcoidosis also involves the airways (large and small), causing obstructive airways disease. It is one of a few interstitial lung diseases that affects the entire length of the respiratory tract - from the nose to the terminal bronchioles - and causes a broad spectrum of airways dysfunction. This article examines airway dysfunction in sarcoidosis. The anatomical structure of the airways is the organizational framework for our discussion. We discuss sarcoidosis involving the nose, sinuses, nasal passages, larynx, trachea, bronchi and small airways. Common complications of airways disease, such as, atelectasis, fibrosis, bullous leions, bronchiectasis, cavitary lesions and mycetomas, are also reviewed.

  15. Mucus secretion by single tracheal submucosal glands from normal and cystic fibrosis transmembrane conductance regulator knockout mice

    PubMed Central

    Ianowski, Juan P; Choi, Jae Young; Wine, Jeffrey J; Hanrahan, John W

    2007-01-01

    Submucosal glands line the cartilaginous airways and produce most of the antimicrobial mucus that keeps the airways sterile. The glands are defective in cystic fibrosis (CF), but how this impacts airway health remains uncertain. Although most CF mouse strains exhibit mild airway defects, those with the C57Bl/6 genetic background have increased airway pathology and susceptibility to Pseudomonas. Thus, they offer the possibility of studying whether, and if so how, abnormal submucosal gland function contributes to CF airway disease. We used optical methods to study fluid secretion by individual glands in tracheas from normal, wild-type (WT) mice and from cystic fibrosis transmembrane conductance regulator (CFTR) knockout mice (Cftrm1UNC/Cftrm1UNC; CF mice). Glands from WT mice qualitatively resembled those in humans by responding to carbachol and vasoactive intestinal peptide (VIP), although the relative rates of VIP- and forskolin-stimulated secretion were much lower in mice than in large mammals. The pharmacology of mouse gland secretion was also similar to that in humans; adding bumetanide or replacement of HCO3− by Hepes reduced the carbachol response by ∼50%, and this inhibition increased to 80% when both manoeuvres were performed simultaneously. It is important to note that glands from CFTR knockout mice responded to carbachol but did not secrete when exposed to VIP or forskolin, as has been shown previously for glands from CF patients. Tracheal glands from WT and CF mice both had robust secretory responses to electrical field stimulation that were blocked by tetrodotoxin. It is interesting that local irritation of the mucosa using chili pepper oil elicited secretion from WT glands but did not stimulate glands from CF mice. These results clarify the mechanisms of murine submucosal gland secretion and reveal a novel defect in local regulation of glands lacking CFTR which may also compromise airway defence in CF patients. PMID:17204498

  16. Mixed Mucinous and Infiltrating Carcinoma Occurring in Male Breast- Study of Clinico-Pathological Features: A Rare Case Report.

    PubMed

    Gupta, Kavita; Sharma, Swati; Kudva, Ranjini; Kumar, Sandeep

    2015-06-01

    Mucinous carcinoma is a less common histologic variant of breast cancer. Cases of mucinous carcinomas in male breast are extremely rare. Here, we describe a case of mixed mucinous carcinoma i.e. mucinous carcinoma with infiltrating ductal carcinoma component and showing apocrine differentiation in a 73-year-old man. This uncommon tumour entity has dismal prognosis and treatment depends largely on the tumour type, size, lymph node involvement and hormonal status.

  17. Store-operated Ca2+ channels in airway epithelial cell function and implications for asthma

    PubMed Central

    Samanta, Krishna; Parekh, Anant B.

    2016-01-01

    The epithelial cells of the lung are at the interface of a host and its environment and are therefore directly exposed to the inhaled air-borne particles. Rather than serving as a simple physical barrier, airway epithelia detect allergens and other irritants and then help organize the subsequent immune response through release of a plethora of secreted signals. Many of these signals are generated in response to opening of store-operated Ca2+ channels in the plasma membrane. In this review, we describe the properties of airway store-operated channels and their role in regulating airway epithelial cell function. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377718

  18. Front-runners for pharmacotherapeutic correction of the airway ion transport defect in cystic fibrosis.

    PubMed

    Clunes, Mark T; Boucher, Richard C

    2008-06-01

    Although cystic fibrosis (CF) patients display multiorgan dysfunction (e.g. pancreas, gut, and lung) it is lung disease that is the leading cause of premature death in these patients. CF lung disease is characterized by persistent pulmonary infection and mucus plugging of the airways initiated by the failure of solute transport across the airway epithelium. Many drug therapies aim to alleviate the secondary characteristics of CF lung disease; however, new therapies in development are targeted at correcting the ion transport deficiency of CF. The goal is to hydrate airway surfaces by stimulating secretion (through activation of the CF transmembrane conductance regulator and calcium-activated chloride channels), and/or inhibiting absorption (through the epithelial sodium channel) thereby stimulating healthy mucociliary clearance. If mucociliary clearance can be stimulated sufficiently from an early age, then there is the possibility that secondary lung infection may be eradicated from the syndrome of CF disease.

  19. Front-Runners for pharmacotherapeutic correction of the airway ion transport defect in cystic fibrosis

    PubMed Central

    Clunes, Mark T.; Boucher, Richard C.

    2008-01-01

    Summary Although cystic fibrosis patients display multi organ dysfunction (e.g. pancreas, gut, lung) it is lung disease that is the leading cause of premature death in these patients. Cystic fibrosis lung disease is characterized by persistent pulmonary infection and mucus plugging of the airways initiated by failure of solute transport across the airway epithelium. Many drug therapies aim to alleviate the secondary characteristics of CF lung disease, however, new therapies in development are targeted at correcting the ion transport deficiency of CF. The goal is to hydrate airway surfaces by stimulating secretion (through activation of the cystic fibrosis transmembrane conductance regulator and calcium activated chloride channels), and/or inhibiting absorption (through the epithelial sodium channel) thereby stimulating healthy mucociliary clearance. If mucociliary clearance can be stimulated sufficiently from an early age then there is the possibility that secondary lung infection may be eradicated from the syndrome of CF disease. PMID:18468487

  20. Airway remodeling in asthma: what really matters.

    PubMed

    Fehrenbach, Heinz; Wagner, Christina; Wegmann, Michael

    2017-03-01

    Airway remodeling is generally quite broadly defined as any change in composition, distribution, thickness, mass or volume and/or number of structural components observed in the airway wall of patients relative to healthy individuals. However, two types of airway remodeling should be distinguished more clearly: (1) physiological airway remodeling, which encompasses structural changes that occur regularly during normal lung development and growth leading to a normal mature airway wall or as an acute and transient response to injury and/or inflammation, which ultimately results in restoration of a normal airway structures; and (2) pathological airway remodeling, which comprises those structural alterations that occur as a result of either disturbed lung development or as a response to chronic injury and/or inflammation leading to persistently altered airway wall structures and function. This review will address a few major aspects: (1) what are reliable quantitative approaches to assess airway remodeling? (2) Are there any indications supporting the notion that airway remodeling can occur as a primary event, i.e., before any inflammatory process was initiated? (3) What is known about airway remodeling being a secondary event to inflammation? And (4), what can we learn from the different animal models ranging from invertebrate to primate models in the study of airway remodeling? Future studies are required addressing particularly pheno-/endotype-specific aspects of airway remodeling using both endotype-specific animal models and "endotyped" human asthmatics. Hopefully, novel in vivo imaging techniques will be further advanced to allow monitoring development, growth and inflammation of the airways already at a very early stage in life.

  1. Mucin aggregation from a rod-like meso-scale model

    NASA Astrophysics Data System (ADS)

    Moreno, Nicolas; Perilla, Jairo E.; Colina, Coray M.; Lísal, Martin

    2015-05-01

    Dissipative particle dynamics, a meso-scale particle-based model, was used to study the aggregation of mucins in aqueous solutions. Concentration, strength of the mucin-water interactions, as well as the effects of size, shape, and composition of the model molecules were studied. Model proteins were represented as rod-like objects formed by coarse-grained beads. In the first model, only one type of beads formed the mucin. It was found that all the surfaces were available to form aggregates and the conformation of the aggregates was a function of the strength of the mucin-water interaction. With this model, the number of aggregates was unaffected by the initial position of the mucins in the simulation box, except for the lowest mucin concentration. In a more refined mucin model, two kinds of beads were used in the molecule in order to represent the existence of cysteine-like terminal groups in the actual molecule. With this new scheme, aggregation took place by the interaction of the terminal groups between model molecules. The kinetic analysis of the evolution of the number of aggregates with time was also studied for both mucin models.

  2. Inhibition of gastric mucosal mucin receptor by Helicobacter pylori lipopolysaccharide: effect of sulglycotide.

    PubMed

    Piotrowski, J; Majka, J; Murty, V L; Czajkowski, A; Slomiany, A; Slomiany, B L

    1994-09-01

    1. A receptor for mucin was isolated from the solubilized gastric epithelial cell membrane by affinity chromatography on Sepharose-bound wheat germ agglutinin. 2. The receptor protein displayed a molecular weight of 97 kDa and exhibited specific affinity towards mucin-coated surfaces. The optimum for mucin binding occurred at 60-100 micrograms/ml, while the values for the receptor were 2.0-3.1 micrograms/ml. 3. The mucin binding to the receptor was susceptible to Helicobacter pylori lipopolysaccharide which caused maximum inhibition of 91% at 30 mu/ml. This inhibitory effect of the lipopolysaccharide was abolished by a gastroprotective agent, sulglycotide. 4. The effect of sulglycotide was dose dependent and at 50 micrograms/ml produced a 94% restoration in receptor-mucin binding. Furthermore, sulglycotide was also capable of enhancing (97%) the mucin binding to its receptor in the absence of the lipopolysaccharide. 5. The results demonstrate that H. pylori through its lipopolysaccharide interferes in the interaction of mucin with gastric epithelial surfaces and that a gastroprotective agent, sulglycotide, counteracts this effect, and hence is capable of preventing the loss of mucin coat continuity occurring with H. pylori infection.

  3. Effect of reserpine on the histochemical and biochemical properties of rat intestinal mucin

    SciTech Connect

    Forstner, J.; Roomi, N.; Khorasani, R.; Kuhns, W.; Forstner, G. )

    1991-04-01

    Biochemical and histochemical parameters of intestinal mucins were examined in control and reserpine-treated rats. An assay for intestinal mucin sulfotransferase was developed and the activity shown to increase 3.4 times over control levels in rats given intraperitonal reserpine (0.5 mg/kg body wt) daily for 7 days. Histochemical staining of intestinal sections revealed an increase in sulfomucins in goblet cells of reserpine-treated rats. The effects were prominent as early as 1 day following injection, particularly in the distal third of the small intestine, and during the next 6 days these changes spread progressively to the middle and proximal thirds. After 3 days of treatment mucins were purified from each intestinal segment and compared to control mucins with respect to composition and (35S)NaSO{sub 4} incorporation. Although individual amino acid and carbohydrate molar ratios were unchanged, the total carbohydrate and sulfate content of mucins in treated animals was elevated (two to three times above control) in the middle and distal thirds of the intestine. In vivo ({sup 35}S)SO{sub 4} incorporation into these mucins was also proportionaltely elevated, and was targetted to O-linked oligosaccharide side chains. These findings are consistent with an action of reserpine causing an increased production of mucin which is enriched in glycoprotein components bearing sulfated oligosaccharide chains. The relevance of these findings to the production of hypersulfated and hyperglycosylated mucins in cystic fibrosis is discussed.

  4. HER2 drives Mucin-like 1 to control proliferation in breast cancer cells

    PubMed Central

    Conley, S J; Bosco, E E; Tice, D A; Hollingsworth, R E; Herbst, R; Xiao, Z

    2016-01-01

    Mucin-like 1 (MUCL1) was first identified as a breast-specific gene over a decade ago. Based on its highly restricted mRNA expression in breast tissue and continued expression during breast tumorigenesis and progression, MUCL1 is an attractive tumor-associated antigen and a potential therapeutic target. However, very little is known about the cellular location, biological functions and regulation of the MUCL1 protein, which will have a major impact on its druggability. Here we describe our efforts to fully characterize the cellular localization of MUCL1, investigate its regulation by key breast cancer oncogenes such as human epidermal growth factor receptor 2 (HER2) and discover its functional roles in breast cancer. Although some mucins are membrane bound, our data indicate that MUCL1 is secreted by some breast cancer cells, whereas others only express high levels of intracellular MUCL1. MUCL1 expression is highest in HER2-amplified breast tumors and inhibiting HER2 activity in tumor cells resulted in a decreased MUCL1 expression. In-depth investigation demonstrated that phosphoinositide3-kinase/Akt pathway, but not Ras/MEK pathway, controls MUCL1 expression downstream of HER2. Phenotypic assays revealed a strong dependence of HER2-positive cells on MUCL1 for cell proliferation. We further identified the mechanism by which MUCL1 regulates cell growth. Knockdown of MUCL1 induced a G1/S phase arrest concomitant with decreased cyclin D and increased p21 and p27 levels. Finally, we investigated the impact of MUCL1 loss on kinase signaling pathways in breast cancer cells through phospho-kinase array profiling. MUCL1 silencing abrogated phospho-focal adhesion kinase (FAK), Jun NH2-terminal kinase (JNK) and c-Jun signals, but not extracellular signal-regulated kinase or Akt pathway activities, thereby pointing to FAK/JNK pathway as the downstream effector of MUCL1 signaling. We are the first to identify an important role for MUCL1 in the proliferation of breast cancer

  5. Mucosal adenosine stimulates chloride secretion in canine tracheal epithelium

    SciTech Connect

    Pratt, A.D.; Clancy, G.; Welsh, M.J.

    1986-08-01

    Adenosine is a local regulator of a variety of physiological functions in many tissues and has been observed to stimulate secretion in several Cl-secreting epithelia. In canine tracheal epithelium the authors found that adenosine stimulates Cl secretion from both the mucosal and submucosal surfaces. Addition of adenosine, or its analogue 2-chloroadenosine, to the mucosal surface potently stimulated Cl secretion with no effect on the rate of Na absorption. Stimulation resulted from an interaction of adenosine with adenosine receptors, because it was blocked by the adenosine receptor blocker, 8-phenyltheophylline. The adenosine receptor was a stimulatory receptor as judged by the rank-order potency of adenosine and its analogues and by the increase in cellular adenosine 3',5'-cyclic monophosphate levels produced by 2-chloroadenosine. Adenosine also stimulated Cl secretion when it was added to the submucosal surface, although the maximal increase in secretion was less and it was much less potent. The observation that mucosal 8-phenyletheophylline blocked the effect of submucosal 2-chloroadenosine, whereas submucosal 8-phenyltheophylline did not prevent a response to mucosal or submucosal 2-chloroadenosine, suggests that adenosine receptors are located on the mucosal surface. Thus submucosal adenosine may stimulate secretion by crossing the epithelium and interacting with receptors located on the mucosal surface. Because adenosine can be released from mast cells located in the airway lumen in response to inhaled material, and because adenosine stimulated secretion from the mucosal surface, it may be in a unique position to control the epithelium on a regional level.

  6. Differential effects of cyclic and constant stress on ATP release and mucociliary transport by human airway epithelia

    PubMed Central

    Button, Brian; Picher, Maryse; Boucher, Richard C

    2007-01-01

    In the lungs, the first line of defence against bacterial infection is the thin layer of airway surface liquid (ASL) lining the airway surface. The superficial airway epithelium exhibits complex regulatory pathways that blend ion transport to adjust ASL volume to maintain proper mucociliary clearance (MCC). We hypothesized that stresses generated by airflow and transmural pressures during breathing govern ASL volume by regulating the rate of epithelial ATP release. Luminal ATP, via interactions with apical membrane P2-purinoceptors, regulates the balance of active ion secretion versus absorption to maintain ASL volume at optimal levels for MCC. In this study we tested the hypothesis that cyclic compressive stress (CCS), mimicking normal tidal breathing, regulates ASL volume in airway epithelia. Polarized tracheobronchial epithelial cultures from normal and cystic fibrosis (CF) subjects responded to a range of CCS by increasing the rate of ATP release. In normal airway epithelia, the CCS-induced increase in ASL ATP concentration was sufficient to induce purinoceptor-mediated increases in ASL height and MCC, via inhibition of epithelial Na+-channel-mediated Na+ absorption and stimulation of Cl− secretion through CFTR and the Ca2+-activated chloride channels. In contrast, static, non-oscillatory stress did not stimulate ATP release, ion transport or MCC, emphasizing the importance of rhythmic mechanical stress for airway defence. In CF airway cultures, which exhibit basal ASL depletion, CCS was partially effective, producing less ASL volume secretion than in normal cultures, but a level sufficient to restore MCC. The present data suggest that CCS may (1) regulate ASL volume in the normal lung and (2) improve clearance in the lungs of CF patients, potentially explaining the beneficial role of exercise in lung defence. PMID:17317749

  7. Mucinous subtype of invasive ductal carcinoma arising within a fibroadenoma.

    PubMed

    Monsefi, Nahid; Nikpour, Hossein; Safavi, Moienadin; Lashkarizadeh, Mohammad Reza; Dabiri, Shahriar

    2013-06-01

    Fibroadenoma is a common benign tumor observed during the second and third decades of life. Malignancy transformation in the epithelial component of a fibroadenoma is rare and can occur 20 years after its diagnosis. Mammographic findings in this phenomenon include indistinct margins and microcalcifications. Here we present a 58-year-old woman with a mobile, lateral upper quadrant mass that was rather firm when palpated. The mammography showed a lobulated mass without calcification suggestive of a benign process, most probably fibroadenoma. However the excisional biopsy contained both an intracanalicular fibroadenoma and invasive ductal carcinoma with mucinous components.

  8. Mucin-1 and its relation to grade, stage and survival in ovarian carcinoma patients

    PubMed Central

    2012-01-01

    Background Mucin-1 is known to be over-expressed by various human carcinomas and is shed into the circulation where it can be detected in patient’s serum by specific anti-Mucin-1 antibodies, such as the tumour marker assays CA 15–3 and CA 27.29. The prognostic value of Mucin-1 expression in ovarian carcinoma remains uncertain. One aim of this study was to compare the concentrations of Mucin-1 in a cohort of patients with either benign or malignant ovarian tumours detected by CA 15–3 and CA 27.29. Another aim of this study was to evaluate Mucin-1 expression by immunohistochemistry in a different cohort of ovarian carcinoma patients with respect to grade, stage and survival. Methods Patients diagnosed with and treated for ovarian tumours were included in the study. Patient characteristics, histology including histological subtype, tumour stage, grading and follow-up data were available from patient records. Serum Mucin-1 concentrations were measured with ELISA technology detecting CA 15–3 and CA 27.29, Mucin-1 tissue expression was determined by immunohistochemistry using the VU4H5 and VU3C6 anti-Mucin-1 antibodies. Statistical analysis was performed by using SPSS 18.0. Results Serum samples of 118 patients with ovarian tumours were obtained to determine levels of Mucin-1. Median CA 15–3 and CA 27.29 concentrations were significantly higher in patients with malignant disease (p< 0.001) than in patients with benign disease. Paraffin-embedded tissue of 154 patients with ovarian carcinoma was available to determine Mucin-1 expression. The majority of patients presented with advanced stage disease at primary diagnosis. Median follow-up time was 11.39 years. Immunohistochemistry results for VU4H5 showed significant differences with respect to tumour grade, FIGO stage and overall survival. Patients with negative expression had a mean overall survival of 9.33 years compared to 6.27 years for patients with positive Mucin-1 expression. Conclusions This study found

  9. Airway uric acid is a sensor of inhaled protease allergens and initiates type 2 immune responses in respiratory mucosa1

    PubMed Central

    Hara, Kenichiro; Iijima, Koji; Elias, Martha K.; Seno, Satoshi; Tojima, Ichiro; Kobayashi, Takao; Kephart, Gail M.; Kurabayashi, Masahiko; Kita, Hirohito

    2014-01-01

    While type 2 immune responses to environmental antigens are thought to play pivotal roles in asthma and allergic airway diseases, the immunological mechanisms that initiate the responses are largely unknown. Many allergens have biologic activities, including enzymatic activities and abilities to engage innate pattern-recognition receptors such as TLR4. Here we report that IL-33 and thymic stromal lymphopoietin (TSLP) were produced quickly in the lungs of naïve mice exposed to cysteine proteases, such as bromelain and papain, as a model for allergens. IL-33 and TSLP sensitized naïve animals to an innocuous airway antigen OVA, which resulted in production of type 2 cytokines and IgE antibody and eosinophilic airway inflammation when mice were challenged with the same antigen. Importantly, upon exposure to proteases, uric acid (UA) was rapidly released into the airway lumen, and removal of this endogenous UA by uricase prevented type 2 immune responses. UA promoted secretion of IL-33 by airway epithelial cells in vitro, and administration of UA into the airways of naïve animals induced extracellular release of IL-33, followed by both innate and adaptive type 2 immune responses in vivo. Finally, a potent UA synthesis inhibitor, febuxostat, mitigated asthma phenotypes that were caused by repeated exposure to natural airborne allergens. These findings provide mechanistic insights into the development of type 2 immunity to airborne allergens and recognize airway UA as a key player that regulates the process in respiratory mucosa. PMID:24663677

  10. Airway uric acid is a sensor of inhaled protease allergens and initiates type 2 immune responses in respiratory mucosa.

    PubMed

    Hara, Kenichiro; Iijima, Koji; Elias, Martha K; Seno, Satoshi; Tojima, Ichiro; Kobayashi, Takao; Kephart, Gail M; Kurabayashi, Masahiko; Kita, Hirohito

    2014-05-01

    Although type 2 immune responses to environmental Ags are thought to play pivotal roles in asthma and allergic airway diseases, the immunological mechanisms that initiate the responses are largely unknown. Many allergens have biologic activities, including enzymatic activities and abilities to engage innate pattern-recognition receptors such as TLR4. In this article, we report that IL-33 and thymic stromal lymphopoietin were produced quickly in the lungs of naive mice exposed to cysteine proteases, such as bromelain and papain, as a model for allergens. IL-33 and thymic stromal lymphopoietin sensitized naive animals to an innocuous airway Ag OVA, which resulted in production of type 2 cytokines and IgE Ab, and eosinophilic airway inflammation when mice were challenged with the same Ag. Importantly, upon exposure to proteases, uric acid (UA) was rapidly released into the airway lumen, and removal of this endogenous UA by uricase prevented type 2 immune responses. UA promoted secretion of IL-33 by airway epithelial cells in vitro, and administration of UA into the airways of naive animals induced extracellular release of IL-33, followed by both innate and adaptive type 2 immune responses in vivo. Finally, a potent UA synthesis inhibitor, febuxostat, mitigated asthma phenotypes that were caused by repeated exposure to natural airborne allergens. These findings provide mechanistic insights into the development of type 2 immunity to airborne allergens and recognize airway UA as a key player that regulates the process in respiratory mucosa.

  11. Mucin can enhance growth, biofilm formation, and survival of Streptococcus mutans.

    PubMed

    Mothey, Deepa; Buttaro, Bettina A; Piggot, Patrick J

    2014-01-01

    Streptococcus mutans is a member of the dental plaque and is the primary causative agent of dental caries. It can survive extended periods of starvation, which may occur in different niches within the oral cavity. We have found that mucin compensated for the absence of amino acids to promote exponential growth and biofilm formation of S. mutans in minimal medium supplemented with glucose and sucrose, respectively. Mucin extended survival in conditions where there was no net growth provided the operon encoding the pyruvate dehydrogenase complex was intact. Mucin extended survival in conditions of amino acid sufficiency provided the tagatose pathway for galactose utilization was intact, suggesting that S. mutans can scavenge sufficient galactose from mucin to enhance survival, although not to serve as a primary carbon and energy source. The results suggest that mucin has a metabolic role in promoting survival of S. mutans.

  12. Repression of flagella motility in enterohemorrhagic Escherichia coli O157:H7 by mucin components.

    PubMed

    Kim, Jong Chul; Yoon, Jang W; Kim, Cheorl-Ho; Park, Mi-Sun; Cho, Seung-Hak

    2012-07-13

    Whole genome-scale transcriptome analysis of enterohemorrhagic Escherichia coli (EHEC) O157:H7 EDL933 was performed to investigate the influence of mucin components on the EHEC gene expression. Here we report that the 732 candidate genes were differentially expressed by the presence of 0.5% porcine stomach mucin, including the 8 flagella-related genes. Quantitative real-time PCR analyses revealed that the transcription expression of the flg genes (encoding the structural components for flagella basal body) was down-regulated by the mucin components. Indeed, bacterial swarming motility was drastically reduced when grown on 0.3% trypton agar plates containing the mucin. These results imply that gastrointestinal (GI) mucin is a possible environmental signal which negatively regulates the flagellation of EHEC O157:H7 in the GI tract.

  13. Residual mucin and response after neoadjuvant chemotherapy (NAC) in breast cancer.

    PubMed

    Jove, Maria; Verghese, Eldo; Sharma, Nisha; Lane, Sally

    2016-05-06

    Neoadjuvant chemotherapy (NAC) is the standard of care for patients with breast cancer with inoperable disease or smaller tumours who might benefit from a conservative surgery after downstaging of their disease. Nevertheless, evidence shows that preoperative and postoperative chemotherapy are equivalent in terms of long-term survival. Response and histological changes after NAC have been widely studied in invasive ductal carcinoma not otherwise specified, but there is a paucity of characterisation of patterns of response to chemotherapy in less frequent histological types. We report extensive residual mucin deposits after chemotherapy in a woman with locally advanced breast cancer and a prominent mucinous component at diagnosis. Interestingly, residual mucin was co-located with the initial tumour, in the breast as well as in the axillary lymph nodes. The distribution of mucin may be a valuable marker of the extent of mucinous carcinomas prior to NAC.

  14. Function of the HVCN1 proton channel in airway epithelia and a naturally occurring mutation, M91T.

    PubMed

    Iovannisci, David; Illek, Beate; Fischer, Horst

    2010-07-01

    Airways secrete considerable amounts of acid. In this study, we investigated the identity and the pH-dependent function of the apical H(+) channel in the airway epithelium. In pH stat recordings of confluent JME airway epithelia in Ussing chambers, Zn-sensitive acid secretion was activated at a mucosal threshold pH of approximately 7, above which it increased pH-dependently at a rate of 339 +/- 34 nmol x h(-1) x cm(-2) per pH unit. Similarly, H(+) currents measured in JME cells in patch clamp recordings were readily blocked by Zn and activated by an alkaline outside pH. Small interfering RNA-mediated knockdown of HVCN1 mRNA expression in JME cells resulted in a loss of H(+) currents in patch clamp recordings. Cloning of the open reading frame of HVCN1 from primary human airway epithelia resulted in a wild-type clone and a clone characterized by two sequential base exchanges (452T>C and 453G>A) resulting in a novel missense mutation, M91T HVCN1. Out of 95 human genomic DNA samples that were tested, we found one HVCN1 allele that was heterozygous for the M91T mutation. The activation of acid secretion in epithelia that natively expressed M91T HVCN1 required approximately 0.5 pH units more alkaline mucosal pH values compared with wild-type epithelia. Similarly, activation of H(+) currents across recombinantly expressed M91T HVCN1 required significantly larger pH gradients compared with wild-type HVCN1. This study provides both functional and molecular indications that the HVCN1 H(+) channel mediates pH-regulated acid secretion by the airway epithelium. These data indicate that apical HVCN1 represents a mechanism to acidify an alkaline airway surface liquid.

  15. Quorum-sensing inhibition abrogates the deleterious impact of Pseudomonas aeruginosa on airway epithelial repair.

    PubMed

    Ruffin, Manon; Bilodeau, Claudia; Maillé, Émilie; LaFayette, Shantelle L; McKay, Geoffrey A; Trinh, Nguyen Thu Ngan; Beaudoin, Trevor; Desrosiers, Martin-Yvon; Rousseau, Simon; Nguyen, Dao; Brochiero, Emmanuelle

    2016-09-01

    Chronic Pseudomonas aeruginosa lung infections are associated with progressive epithelial damage and lung function decline. In addition to its role in tissue injury, the persistent presence of P. aeruginosa-secreted products may also affect epithelial repair ability, raising the need for new antivirulence therapies. The purpose of our study was to better understand the outcomes of P. aeruginosa exoproducts exposure on airway epithelial repair processes to identify a strategy to counteract their deleterious effect. We found that P. aeruginosa exoproducts significantly decreased wound healing, migration, and proliferation rates, and impaired the ability of directional migration of primary non-cystic fibrosis (CF) human airway epithelial cells. Impact of exoproducts was inhibited after mutations in P. aeruginosa genes that encoded for the quorum-sensing (QS) transcriptional regulator, LasR, and the elastase, LasB, whereas impact was restored by LasB induction in ΔlasR mutants. P. aeruginosa purified elastase also induced a significant decrease in non-CF epithelial repair, whereas protease inhibition with phosphoramidon prevented the effect of P. aeruginosa exoproducts. Furthermore, treatment of P. aeruginosa cultures with 4-hydroxy-2,5-dimethyl-3(2H)-furanone, a QS inhibitor, abrogated the negative impact of P. aeruginosa exoproducts on airway epithelial repair. Finally, we confirmed our findings in human airway epithelial cells from patients with CF, a disease featuring P. aeruginosa chronic respiratory infection. These data demonstrate that secreted proteases under the control of the LasR QS system impair airway epithelial repair and that QS inhibitors could be of benefit to counteract the deleterious effect of P. aeruginosa in infected patients.-Ruffin, M., Bilodeau, C., Maillé, É., LaFayette, S. L., McKay, G. A., Trinh, N. T. N., Beaudoin, T., Desrosiers, M.-Y., Rousseau, S., Nguyen, D., Brochiero, E. Quorum-sensing inhibition abrogates the deleterious impact

  16. PLUNC Is a Novel Airway Surfactant Protein with Anti-Biofilm Activity

    PubMed Central

    Penterman, Jon; Mizrachi, Dario; Singh, Pradeep K.; Mallampalli, Rama K.; Ramaswamy, S.; McCray, Paul B.

    2010-01-01

    Background The PLUNC (“Palate, lung, nasal epithelium clone”) protein is an abundant secretory product of epithelia present throughout the conducting airways of humans and other mammals, which is evolutionarily related to the lipid transfer/lipopolysaccharide binding protein (LT/LBP) family. Two members of this family - the bactericidal/permeability increasing protein (BPI) and the lipopolysaccharide binding protein (LBP) - are innate immune molecules with recognized roles in sensing and responding to Gram negative bacteria, leading many to propose that PLUNC may play a host defense role in the human airways. Methodology/Principal Findings Based on its marked hydrophobicity, we hypothesized that PLUNC may be an airway surfactant. We found that purified recombinant human PLUNC greatly enhanced the ability of aqueous solutions to spread on a hydrophobic surface. Furthermore, we discovered that PLUNC significantly reduced surface tension at the air-liquid interface in aqueous solutions, indicating novel and biologically relevant surfactant properties. Of note, surface tensions achieved by adding PLUNC to solutions are very similar to measurements of the surface tension in tracheobronchial secretions from humans and animal models. Because surfactants of microbial origin can disperse matrix-encased bacterial clusters known as biofilms [1], we hypothesized that PLUNC may also have anti-biofilm activity. We found that, at a physiologically relevant concentration, PLUNC inhibited biofilm formation by the airway pathogen Pseudomonas aeruginosa in an in vitro model. Conclusions/Significance Our data suggest that the PLUNC protein contributes to the surfactant properties of airway secretions, and that this activity may interfere with biofilm formation by an airway pathogen. PMID:20161732

  17. Rectal Cancer: Mucinous Carcinoma on Magnetic Resonance Imaging Indicates Poor Response to Neoadjuvant Chemoradiation

    SciTech Connect

    Oberholzer, Katja; Menig, Matthias; Kreft, Andreas; Schneider, Astrid; Junginger, Theodor; Heintz, Achim; Kreitner, Karl-Friedrich; Hoetker, Andreas M.; Hansen, Torsten; Dueber, Christoph; Schmidberger, Heinz

    2012-02-01

    Purpose: To assess response of locally advanced rectal carcinoma to chemoradiation with regard to mucinous status and local tumor invasion found at pretherapeutic magnetic resonance imaging (MRI). Methods and Materials: A total of 88 patients were included in this prospective study of patients with advanced mrT3 and mrT4 carcinomas. Carcinomas were categorized by MRI as mucinous (mucin proportion >50% within the tumor volume), and as nonmucinous. Patients received neoadjuvant chemoradiation consisting of 50.4 Gy (1.8 Gy/fraction) and 5-fluorouracil on Days 1 to 5 and Days 29 to 33. Therapy response was assessed by comparing pretherapeutic MRI with histopathology of surgical specimens (minimum distance between outer tumor edge and circumferential resection margin = CRM, T, and N category). Results: A mucinous carcinoma was found in 21 of 88 patients. Pretherapeutic mrCRM was 0 mm (median) in the mucinous and nonmucinous group. Of the 88 patients, 83 underwent surgery with tumor resection. The ypCRM (mm) at histopathology was significantly lower in mucinous carcinomas than in nonmucinous carcinomas (p {<=} 0.001). Positive resection margins (ypCRM {<=} 1 mm) were found more frequently in mucinous carcinomas than in nonmucinous ones (p {<=} 0.001). Treatment had less effect on local tumor stage in mucinous carcinomas than in nonmucinous carcinomas (for T downsizing, p = 0.012; for N downstaging, p = 0.007). Disease progression was observed only in patients with mucinous carcinomas (n = 5). Conclusion: Mucinous status at pretherapeutic MRI was associated with a noticeably worse response to chemoradiation and should be assessed by MRI in addition to local tumor staging to estimate response to treatment before it is initiated.

  18. Relationships among CFTR expression, HCO3- secretion, and host defense may inform gene- and cell-based cystic fibrosis therapies.

    PubMed

    Shah, Viral S; Ernst, Sarah; Tang, Xiao Xiao; Karp, Philip H; Parker, Connor P; Ostedgaard, Lynda S; Welsh, Michael J

    2016-05-10

    Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. Airway disease is the major source of morbidity and mortality. Successful implementation of gene- and cell-based therapies for CF airway disease requires knowledge of relationships among percentages of targeted cells, levels of CFTR expression, correction of electrolyte transport, and rescue of host defense defects. Previous studies suggested that, when ∼10-50% of airway epithelial cells expressed CFTR, they generated nearly wild-type levels of Cl(-) secretion; overexpressing CFTR offered no advantage compared with endogenous expression levels. However, recent discoveries focused attention on CFTR-mediated HCO3 (-) secretion and airway surface liquid (ASL) pH as critical for host defense and CF pathogenesis. Therefore, we generated porcine airway epithelia with varying ratios of CF and wild-type cells. Epithelia with a 50:50 mix secreted HCO3 (-) at half the rate of wild-type epithelia. Likewise, heterozygous epithelia (CFTR(+/-) or CFTR(+/∆F508)) expressed CFTR and secreted HCO3 (-) at ∼50% of wild-type values. ASL pH, antimicrobial activity, and viscosity showed similar relationships to the amount of CFTR. Overexpressing CFTR increased HCO3 (-) secretion to rates greater than wild type, but ASL pH did not exceed wild-type values. Thus, in contrast to Cl(-) secretion, the amount of CFTR is rate-limiting for HCO3 (-) secretion and for correcting host defense abnormalities. In addition, overexpressing CFTR might produce a greater benefit than expressing CFTR at wild-type levels when targeting small fractions of cells. These findings may also explain the risk of airway disease in CF carriers.

  19. Integrated care pathways for airway diseases (AIRWAYS-ICPs).

    PubMed

    Bousquet, J; Addis, A; Adcock, I; Agache, I; Agusti, A; Alonso, A; Annesi-Maesano, I; Anto, J M; Bachert, C; Baena-Cagnani, C E; Bai, C; Baigenzhin, A; Barbara, C; Barnes, P J; Bateman, E D; Beck, L; Bedbrook, A; Bel, E H; Benezet, O; Bennoor, K S; Benson, M; Bernabeu-Wittel, M; Bewick, M; Bindslev-Jensen, C; Blain, H; Blasi, F; Bonini, M; Bonini, S; Boulet, L P; Bourdin, A; Bourret, R; Bousquet, P J; Brightling, C E; Briggs, A; Brozek, J; Buhl, R; Bush, A; Caimmi, D; Calderon, M; Calverley, P; Camargos, P A; Camuzat, T; Canonica, G W; Carlsen, K H; Casale, T B; Cazzola, M; Cepeda Sarabia, A M; Cesario, A; Chen, Y Z; Chkhartishvili, E; Chavannes, N H; Chiron, R; Chuchalin, A; Chung, K F; Cox, L; Crooks, G; Crooks, M G; Cruz, A A; Custovic, A; Dahl, R; Dahlen, S E; De Blay, F; Dedeu, T; Deleanu, D; Demoly, P; Devillier, P; Didier, A; Dinh-Xuan, A T; Djukanovic, R; Dokic, D; Douagui, H; Dubakiene, R; Eglin, S; Elliot, F; Emuzyte, R; Fabbri, L; Fink Wagner, A; Fletcher, M; Fokkens, W J; Fonseca, J; Franco, A; Frith, P; Furber, A; Gaga, M; Garcés, J; Garcia-Aymerich, J; Gamkrelidze, A; Gonzales-Diaz, S; Gouzi, F; Guzmán, M A; Haahtela, T; Harrison, D; Hayot, M; Heaney, L G; Heinrich, J; Hellings, P W; Hooper, J; Humbert, M; Hyland, M; Iaccarino, G; Jakovenko, D; Jardim, J R; Jeandel, C; Jenkins, C; Johnston, S L; Jonquet, O; Joos, G; Jung, K S; Kalayci, O; Karunanithi, S; Keil, T; Khaltaev, N; Kolek, V; Kowalski, M L; Kull, I; Kuna, P; Kvedariene, V; Le, L T; Lodrup Carlsen, K C; Louis, R; MacNee, W; Mair, A; Majer, I; Manning, P; de Manuel Keenoy, E; Masjedi, M R; Melen, E; Melo-Gomes, E; Menzies-Gow, A; Mercier, G; Mercier, J; Michel, J P; Miculinic, N; Mihaltan, F; Milenkovic, B; Molimard, M; Momas, I; Montilla-Santana, A; Morais-Almeida, M; Morgan, M; N'Diaye, M; Nafti, S; Nekam, K; Neou, A; Nicod, L; O'Hehir, R; Ohta, K; Paggiaro, P; Palkonen, S; Palmer, S; Papadopoulos, N G; Papi, A; Passalacqua, G; Pavord, I; Pigearias, B; Plavec, D; Postma, D S; Price, D; Rabe, K F; Radier Pontal, F; Redon, J; Rennard, S; Roberts, J; Robine, J M; Roca, J; Roche, N; Rodenas, F; Roggeri, A; Rolland, C; Rosado-Pinto, J; Ryan, D; Samolinski, B; Sanchez-Borges, M; Schünemann, H J; Sheikh, A; Shields, M; Siafakas, N; Sibille, Y; Similowski, T; Small, I; Sola-Morales, O; Sooronbaev, T; Stelmach, R; Sterk, P J; Stiris, T; Sud, P; Tellier, V; To, T; Todo-Bom, A; Triggiani, M; Valenta, R; Valero, A L; Valiulis, A; Valovirta, E; Van Ganse, E; Vandenplas, O; Vasankari, T; Vestbo, J; Vezzani, G; Viegi, G; Visier, L; Vogelmeier, C; Vontetsianos, T; Wagstaff, R; Wahn, U; Wallaert, B; Whalley, B; Wickman, M; Williams, D M; Wilson, N; Yawn, B P; Yiallouros, P K; Yorgancioglu, A; Yusuf, O M; Zar, H J; Zhong, N; Zidarn, M; Zuberbier, T

    2014-08-01

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will add value to existing public health knowledge by: 1) proposing a common framework of care pathways for chronic respiratory diseases, which will facilitate comparability and trans-national initiatives; 2) informing cost-effective policy development, strengthening in particular those on smoking and environmental exposure; 3) aiding risk stratification in chronic disease patients, using a common strategy; 4) having a significant impact on the health of citizens in the short term (reduction of morbidity, improvement of education in children and of work in adults) and in the long-term (healthy ageing); 5) proposing a common simulation tool to assist physicians; and 6) ultimately reducing the healthcare burden (emergency visits, avoidable hospitalisations, disability and costs) while improving quality of life. In the longer term, the incidence of disease may be reduced by innovative prevention strategies. AIRWAYSICPs was initiated by Area 5 of the Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing. All stakeholders are involved (health and social care, patients, and policy makers).

  20. The Role of Bitter and Sweet Taste Receptors in Upper Airway Immunity

    PubMed Central

    Workman, Alan D.; Palmer, James N.; Adappa, Nithin D.

    2016-01-01

    Over the past several years, taste receptors have emerged as key players in the regulation of innate immune defenses in the mammalian respiratory tract. Several cell types in the airway, including ciliated epithelial cells, solitary chemosensory cells, and bronchial smooth muscle cells, all display chemoresponsive properties that utilize taste receptors. A variety of bitter products secreted by microbes are detected with resultant downstream inflammation, increased mucous clearance, antimicrobial peptide secretion, and direct bacterial killing. Genetic variation of bitter taste receptors also appears to play a role in the susceptibility to infection in respiratory disease states, including that of chronic rhinosinusitis. Ongoing taste receptor research may yield new therapeutics that harness innate immune defenses in the respiratory tract and may offer alternatives to antibiotic treatment. The present review discusses taste receptor-protective responses and analyzes the role these receptors play in mediating airway immune function. PMID:26492878

  1. The Role of Bitter and Sweet Taste Receptors in Upper Airway Immunity.

    PubMed

    Workman, Alan D; Palmer, James N; Adappa, Nithin D; Cohen, Noam A

    2015-12-01

    Over the past several years, taste receptors have emerged as key players in the regulation of innate immune defenses in the mammalian respiratory tract. Several cell types in the airway, including ciliated epithelial cells, solitary chemosensory cells, and bronchial smooth muscle cells, all display chemoresponsive properties that utilize taste receptors. A variety of bitter products secreted by microbes are detected with resultant downstream inflammation, increased mucous clearance, antimicrobial peptide secretion, and direct bacterial killing. Genetic variation of bitter taste receptors also appears to play a role in the susceptibility to infection in respiratory disease states, including that of chronic rhinosinusitis. Ongoing taste receptor research may yield new therapeutics that harness innate immune defenses in the respiratory tract and may offer alternatives to antibiotic treatment. The present review discusses taste receptor-protective responses and analyzes the role these receptors play in mediating airway immune function.

  2. Matrix metalloproteinase expression and activity in human airway smooth muscle cells

    PubMed Central

    Elshaw, Shona R; Henderson, Neil; Knox, Alan J; Watson, Susan A; Buttle, David J; Johnson, Simon R

    2004-01-01

    Airway remodelling is a feature of chronic asthma comprising smooth muscle hypertrophy and deposition of extracellular matrix (ECM) proteins. Matrix metalloproteinases (MMPs) breakdown ECM, are involved in tissue remodelling and have been implicated in airway remodelling. Although mesenchymal cells are an important source of MMPs, little data are available on airway smooth muscle (ASM) derived MMPs. We therefore investigated MMP and tissue inhibitor of metalloproteinase (TIMP) production and activity in human ASM cells.MMPs and TIMPs were examined using quantitative real-time RT–PCR, Western blotting, zymography and a quench fluorescence (QF) assay of total MMP activity.The most abundant MMPs were pro-MMP-2, pro- MMP-3, active MMP-3 and MT1-MMP. TIMP-1 and TIMP-2 expression was low in cell lysates but high in conditioned medium. High TIMP secretion was confirmed by the ability of ASM-conditioned medium to inhibit recombinant MMP-2 in a QF assay. Thrombin increased MMP activity by activation of pro-MMP-2 independent of the conventional smooth muscle thrombin receptors PAR 1 and 4.In conclusion, ASM cells express pro-MMP-2, pro and active MMP-3, MMP-9 and MT1-MMP. Unstimulated cells secrete excess TIMP 1 and 2, preventing proteolytic activity. MMP-2 can be activated by thrombin which may contribute to airway remodelling. PMID:15265805

  3. Coupling Effect of Double Lungs on a VCV Ventilator with Automatic Secretion Clearance Function.

    PubMed

    Shi, Yan; Zhang, Bolun; Cai, Maolin; Xu, Weiqing

    2017-02-16

    For patients with mechanical ventilation, secretions in airway are harmful and sometimes even mortal, it's of great significance to clear secretion timely and efficiently. In this paper, a new secretion clearance method for VCV (volume-controlled ventilation) ventilator is put forward, and a secretion clearance system with a VCV ventilator and double lungs is designed. Furthermore, the mathematical model of the secretion clearance system is built and verified via experimental study. Finally, to illustrate the influence of key parameters of respiratory system and secretion clearance system on the secretion clearance characteristics, coupling effects of two lungs on VCV secretion clearance system are studied by an orthogonal experiment, it can be obtained that rise of tidal volume adds to efficiency of secretion clearance while effect of area, compliance and suction pressure on efficiency of secretion clearance needs further study. Rise of compliance improves bottom pressure of secretion clearance while rise of area, tidal volume and suction pressure decreases bottom pressure of secretion clearance. This paper can be referred to in researches of secretion clearance for VCV.

  4. HSP70/CD80 DNA vaccine inhibits airway remodeling by regulating the transcription factors T-bet and GATA-3 in a murine model of chronic asthma

    PubMed Central

    Yan, Li; Xiao-Ling, Shi; Zheng-Yan, Cheng; Guo-Ping, Li; Sen, Zhong

    2013-01-01

    Introduction Airway remodeling is an important pathologic feature of chronic asthma. T-bet and GATA-3, the key transcription factors for differentiation toward Th1 and Th2 cells, play an important role in the pathogenesis of airway inflammation, airway hyperresponsiveness and airway remodeling. Previous studies showed that HSP70/CD80 DNA vaccine can reduce airway hyperresponsiveness and airway inflammation in acute asthmatic mice. The present study was designed to determine the effect of HSP70/CD80 DNA vaccine on airway remodeling through regulating the development of Th1/Th2. Material and methods Before being sensitized and challenged by ovalbumin, the BALB/c mice were immunized with DNA vaccine. Lung tissues were assessed by histological examinations. Interferon-γ (IFN-γ)/interleukin-4 (IL-4) levels in bronchoalveolar lavage fluid were determined by ELISA and expressions of IFN-γ, IL-4, T-bet and GATA-3 in spleen were evaluated by real-time polymerase chain reaction. Results Chronic asthmatic mice had higher airway hyperresponsiveness, a thicker airway wall, more PAS-positive goblet cells, more subepithelial extracellular matrix deposition and more proliferating airway smooth muscle (ASM)-like cells than control mice (p < 0.05). Compared with the chronic asthmatic mice, the treatment with HSP70/CD80 DNA vaccine could reduce airway hyperreactivity, mucus secretion, subepithelial collagen deposition, and smooth muscle cell proliferation (p < 0.05). DNA vaccination also increased levels of IFN-γ/IL-4 in BAL fluid (p < 0.05), and expression of T-bet/GATA-3 in the spleen (p < 0.05). Conclusions HSP70/CD80 DNA vaccine can inhibit airway remodeling through regulating the development of Th1/Th2 subsets in asthmatic mice. PMID:24273578

  5. Human Trefoil Factor 2 Is a Lectin That Binds α-GlcNAc-capped Mucin Glycans with Antibiotic Activity against Helicobacter pylori*

    PubMed Central

    Hanisch, Franz-Georg; Bonar, David; Schloerer, Nils; Schroten, Horst

    2014-01-01

    Helicobacter pylori infection is the major cause of gastric cancer and remains an important health care challenge. The trefoil factor peptides are a family of small highly conserved proteins that are claimed to play essential roles in cytoprotection and epithelial repair within the gastrointestinal tract. H. pylori colocalizes with MUC5AC at the gastric surface epithelium, but not with MUC6 secreted in concert with TFF2 by deep gastric glands. Both components of the gastric gland secretome associate non-covalently and show increased expression upon H. pylori infection. Although blood group active O-glycans of the Lewis-type form the basis of H. pylori adhesion to the surface mucin layer and to epithelial cells, α1,4-GlcNAc-capped O-glycans on gastric mucins were proposed to inhibit H. pylori growth as a natural antibiotic. We show here that the gastric glycoform of TFF2 is a calcium-independent lectin, which binds with high specificity to O-linked α1,4-GlcNAc-capped hexasaccharides on human and porcine stomach mucin. The structural assignments of two hexasaccharide isomers and the binding active glycotope were based on mass spectrometry, linkage analysis, 1H nuclear magnetic resonance spectroscopy, glycan inhibition, and lectin competition of TFF2-mucin binding. Neoglycolipids derived from the C3/C6-linked branches of the two isomers revealed highly specific TFF2 binding to the 6-linked trisaccharide in GlcNAcα1-4Galβ1-4GlcNAcβ1-6(Fucα1-2Galβ1-3)GalNAc-ol(Structure 1). Supposedly, lectin TFF2 is involved in protection of gastric epithelia via a functional relationship to defense against H. pylori launched by antibiotic α1,4-GlcNAc-capped mucin glycans. Lectin-carbohydrate interaction may have also an impact on more general functional aspects of TFF members by mediating their binding to cell signaling receptors. PMID:25124036

  6. Generation of Pig Airways using Rules Developed from the Measurements of Physical Airways

    PubMed Central

    Azad, Md Khurshidul; Mansy, Hansen A.

    2017-01-01

    Background A method for generating bronchial tree would be helpful when constructing models of the tree for benchtop experiments as well as for numerical modeling of flow or sound propagation in the airways. Early studies documented the geometric details of the human airways that were used to develop methods for generating human airway tree. However, methods for generating animal airway tree are scarcer. Earlier studies suggested that the morphology of animal airways can be significantly different from that of humans. Hence, using algorithms for the human airways may not be accurate in generating models of animal airway geometry. Objective The objective of this study is to develop an algorithm for generating pig airway tree based on the geometric details extracted from the physical measurements. Methods In the current study, measured values of branch diameters, lengths and bifurcation angles and rotation of bifurcating planes were used to develop an algorithm that is capable of generating a realistic pig airway tree. Results The generation relations between parent and daughter branches were found to follow certain trends. The diameters and the length of different branches were dependent on airway generations while the bifurcation angles were primarily dependent on bifurcation plane rotations. These relations were sufficient to develop rules for generating a model of the pig large airways. Conclusion The results suggested that the airway tree generated from the algorithm can provide an approximate geometric model of pig airways for computational and benchtop studies. PMID:28255517

  7. Small angle neutron scattering (SANS) study of gastric mucin solutions

    NASA Astrophysics Data System (ADS)

    Hong, Z.; Bansil, R.; Waigh, T.; Turner, B.; Bhaskar, K. R.; Afdhal, N.; Lal, J.

    2002-03-01

    We report the first results from a SANS study of purified porcine gastric mucin solutions in D2O. The ability of this glycoprotein to protect the stomach epithelium from acid damage, may be due to a pH dependent conformational transition which leads to gelation at low pH Cao et. al. (Biophysical. J. 76, 1250, 1999). SANS measurements were made over the concentration range of 1 -15 mg/ml at pH 7, 4 and 2. The data indicate that at pH 7 the excluded volume exponent is 1.7, characteristic of swollen chains whereas at pH 2 this exponent increases to 2, indicating theta or poor solvent conditions, consistent with the hydrophobic interactions increasing at lower pH. From a Guinier analysis of the 1mg/ml data at low q's (0.003- 0.007 Å-1) we estimate the cross section radius of the effective cylinder to be 23nm and its length as 96nm in an unbuffered sample, i.e. close to pH 7. In the intermediate q-range (0.01 -0.1Å-1) at pH 7 a fit to the Debye chain gives radius of gyration Rg of 16nm. Mucin is best modelled as an elongated micelle with a cylindrical or worm-like chain to represent the protein core and the sugar chains forming the corona. Results of such calculations will be presented.

  8. Hepatocellular carcinoma with characteristic mucin production: a case report

    PubMed Central

    Lee, Kyung Hwa; Kim, Young Bog; Cho, Sung Bum; Lee, Min Cheol; Park, Chang Soo

    2009-01-01

    We present a unique case of hepatocellular carcinoma with mucin-producing gland formation. A 53-year-old man with hepatitis B infection presented with weight loss for the past month. Computed tomography demonstrated a 10 × 9.8 cm mass in the right hepatic lobe accompanied by cirrhotic changes in the hepatic parenchyma. Right hepatectomy was performed, and the tumor cut surface showed a poorly-circumscribed, white to pink tumor with numerous nodules and extensive necrosis. Microscopically, the tumor was composed of thick trabeculae and large, irregularly-shaped islands, both of which were filled with pleomorphic eosinophilic hepatoid cells or gland-forming columnar cells with mucin production. Those cells were immunoreactive for cytokeratin 19 in both the trabeculae and the glands. In some tumor cells, limited immunoreactivity for cytokeratin 7, epithelial membrane antigen and carcinoembryonic antigen was noted. The cells forming thick trabeculae were focally positive for hepatocyte paraffin 1 and alpha-fetoprotein. We suggest that this tumor shows bidirectional differentiation into hepatocytes and cholangiocytes, supporting the concepts that human hepatocarcinogenesis can be based on transformation of progenitor cells which can imply divergent differentiation. PMID:19918544

  9. Viscoelastic Properties and Dynamics of Porcine Gastric Mucin

    SciTech Connect

    Celli,J.; Gregor, B.; Turner, B.; Afdhal, N.; Bansil, R.; Erramilli, S.

    2005-01-01

    Gastric mucin is a glycoprotein known to undergo a pH-dependent sol-gel transition that is crucial to the protective function of the gastric mucus layer in mammalian stomachs. We present microscope-based dynamic light scattering data on porcine gastric mucin at pH 6 (solution) and pH 2 (gel) with and without the presence of tracer particles. The data provide a measurement of the microscale viscosity and the shear elastic modulus as well as an estimate of the mesh size of the gel formed at pH 2. We observe that the microscale viscosity in the gel is about 100-fold lower than its macroscopic viscosity, suggesting that large pores open up in the gel reducing frictional effects. The data presented here help to characterize physiologically relevant viscoelastic properties of an important biological macromolecule and may also serve to shed light on diffusive motion of small particles in the complex heterogeneous environment of a polymer gel network.

  10. Middle ear adenoma. A tumor displaying mucinous and neuroendocrine differentiation.

    PubMed

    Wassef, M; Kanavaros, P; Polivka, M; Nemeth, J; Monteil, J P; Frachet, B; Tran Ba Huy, P

    1989-10-01

    Middle ear adenoma (MEA) is a distinctive, rare entity that appears to be derived from the lining epithelium of the middle ear mucosa. We report four cases of MEA displaying the typical histologic growth pattern. Two distinct tumor cell immunophenotypes were identified in all cases; the first type exhibited positivity with anti-epithelial membrane antigen and anti-keratin antibodies, and the second type showed immunoreactivity with anti-keratin, anti-vimentin, and anti-neuron-specific enolase antibodies. Ultrastructural studies revealed bidirectional mucinous and neuroendocrine differentiation, demonstrated by the presence of two distinct cell types containing apically located mucous granules and basally concentrated neuroendocrine granules, respectively. The presence of neuroendocrine differentiation was supported by the immunohistochemical detection of vasoactive intestinal polypeptide in the tumor cells in one case and neuron-specific enolase in three cases. These findings suggest that the potential for mixed mucinous/neuroendocrine differentiation described in other endodermally derived tumors also exists in middle ear mucosa. We also believe that the rare lesions diagnosed as primary carcinoid tumors of the middle ear might in fact be MEA with predominant or only neuroendocrine differentiation. The clinical course of our four cases and our review of the pertinent literature confirm the benign nature of MEA and indicate that these tumors should be treated by complete local excision without additional therapy.

  11. Molecular pathology of intraductal papillary mucinous neoplasms of the pancreas

    PubMed Central

    Paini, Marina; Crippa, Stefano; Partelli, Stefano; Scopelliti, Filippo; Tamburrino, Domenico; Baldoni, Andrea; Falconi, Massimo

    2014-01-01

    Since the first description of intraductal papillary mucinous neoplasms (IPMNs) of the pancreas in the eighties, their identification has dramatically increased in the last decades, hand to hand with the improvements in diagnostic imaging and sampling techniques for the study of pancreatic diseases. However, the heterogeneity of IPMNs and their malignant potential make difficult the management of these lesions. The objective of this review is to identify the molecular characteristics of IPMNs in order to recognize potential markers for the discrimination of more aggressive IPMNs requiring surgical resection from benign IPMNs that could be observed. We briefly summarize recent research findings on the genetics and epigenetics of intraductal papillary mucinous neoplasms, identifying some genes, molecular mechanisms and cellular signaling pathways correlated to the pathogenesis of IPMNs and their progression to malignancy. The knowledge of molecular biology of IPMNs has impressively developed over the last few years. A great amount of genes functioning as oncogenes or tumor suppressor genes have been identified, in pancreatic juice or in blood or in the samples from the pancreatic resections, but further researches are required to use these informations for clinical intent, in order to better define the natural history of these diseases and to improve their management. PMID:25110429

  12. Recent trends in airway management

    PubMed Central

    Karlik, Joelle; Aziz, Michael

    2017-01-01

    Tracheal intubation remains a life-saving procedure that is typically not difficult for experienced providers in routine conditions. Unfortunately, difficult intubation remains challenging to predict and intubation conditions may make the event life threatening. Recent technological advances aim to further improve the ease, speed, safety, and success of intubation but have not been fully investigated. Video laryngoscopy, though proven effective in the difficult airway, may result in different intubation success rates in various settings and in different providers’ hands. The rescue surgical airway remains a rarely used but critical skill, and research continues to investigate optimal techniques. This review highlights some of the new thoughts and research on these important topics. PMID:28299194

  13. Identification of the mucin-binding adhesin of Pseudomonas cepacia isolated from patients with cystic fibrosis.

    PubMed Central

    Sajjan, S U; Forstner, J F

    1992-01-01

    In previous experiments, we have shown that isolates of Pseudomonas cepacia from sputa of patients with cystic fibrosis (CF), particularly those with severe lung infection, exhibited specific binding to purified respiratory or intestinal mucins (U. Sajjan, M. Corey, M. Karmali, and J. Forstner, J. Clin. Invest. 89:648-656, 1992). The present report describes the identification of the adhesin as a protein located on fimbriae of mucin-binding P. cepacia. From a total of 53 isolates available (from 22 patients with CF), we used three mucin-binding and three non-mucin-binding isolates for our experiments. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of crude P. cepacia homogenates was performed, the separated proteins were blotted onto nitrocellulose and overlaid with purified mucin, and mucin-binding components were detected with an antimucin antibody and then a second-antibody-alkaline phosphatase conjugate system. Only mucin-binding isolates exhibited a positively stained band at an Mr of 22,000. The 22-kDa protein was purified, and a polyclonal antibody specific for it was developed in rabbits. By electron microscopy and immunogold labelling, both the antibody and mucin (separately) were localized to pili present over the entire surface of the bacterial cells. Non-mucin-binding isolates did not have (or had very few) pili and did not stain with either mucin or the antibody to the 22-kDa protein. The purified 22-kDa protein and its antibody were each able to inhibit piliated P. cepacia binding to mucin. The amino acid composition of the 22-kDa protein was dissimilar to those of the major pilin proteins of Escherichia coli (type 1 pilus) and P. aeruginosa (PAK and PAO1 strains). Both the pili of P. aeruginosa PAK and PAO1 and antibodies to these pili failed to inhibit P. cepacia binding to mucin. Thus, P. cepacia adhesion to mucin is mediated by a pilin-associated 22-kDa protein which differs from epithelial-cell-binding pilin proteins of P. aeruginosa

  14. Epithelial cell-extracellular matrix interactions and stem cells in airway epithelial regeneration.

    PubMed

    Coraux, Christelle; Roux, Jacqueline; Jolly, Thomas; Birembaut, Philippe

    2008-08-15

    In healthy subjects, the respiratory epithelium forms a continuous lining to the airways and to the environment, and plays a unique role as a barrier against external deleterious agents to protect the airways from the insults. In respiratory diseases such as cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), chronic bronchitis, or asthma, the airway epithelium is frequently remodeled and injured, leading to the impairment of its defense functions. The rapid restoration of the epithelial barrier is crucial for these patients. The complete regeneration of the airway epithelium is a complex phenomenon, including not only the epithelial wound repair but also the epithelial differentiation to reconstitute a fully well differentiated and functional epithelium. The regeneration implies two partners: the epithelial stem/progenitor cells and factors able to regulate this process. Among these factors, epithelial cells-extracellular matrix (ECM) interactions play a crucial role. The secretion of a provisional ECM, the cell-ECM relationships through epithelial receptors, and the remodeling of the ECM by proteases (mainly matrix metalloproteinases) contribute not only to airway epithelial repair by modulating epithelial cell migration and proliferation, but also to the differentiation of repairing cells leading to the complete restoration of the wounded epithelium. A better characterization of resident stem cells and of effectors of the regeneration process is an essential prerequisite to propose new regenerative therapeutics to patients suffering from infectious/inflammatory respiratory diseases.

  15. Contribution of α7 nicotinic receptor to airway epithelium dysfunction under nicotine exposure.

    PubMed

    Maouche, Kamel; Medjber, Kahina; Zahm, Jean-Marie; Delavoie, Franck; Terryn, Christine; Coraux, Christelle; Pons, Stéphanie; Cloëz-Tayarani, Isabelle; Maskos, Uwe; Birembaut, Philippe; Tournier, Jean-Marie

    2013-03-05

    Loss or dysfunction of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) leads to impairment of airway mucus transport and to chronic lung diseases resulting in progressive respiratory failure. Nicotinic acetylcholine receptors (nAChRs) bind nicotine and nicotine-derived nitrosamines and thus mediate many of the tobacco-related deleterious effects in the lung. Here we identify α7 nAChR as a key regulator of CFTR in the airways. The airway epithelium in α7 knockout mice is characterized by a higher transepithelial potential difference, an increase of amiloride-sensitive apical Na(+) absorption, a defective cAMP-dependent Cl(-) conductance, higher concentrations of Na(+), Cl(-), K(+), and Ca(2+) in secretions, and a decreased mucus transport, all relevant to a deficient CFTR activity. Moreover, prolonged nicotine exposure mimics the absence of α7 nAChR in mice or its inactivation in vitro in human airway epithelial cell cultures. The functional coupling of α7 nAChR to CFTR occurs through Ca(2+) entry and activation of adenylyl cyclases, protein kinase A, and PKC. α7 nAChR, CFTR, and adenylyl cyclase-1 are physically and functionally associated in a macromolecular complex within lipid rafts at the apical membrane of surface and glandular airway epithelium. This study establishes the potential role of α7 nAChR in the regulation of CFTR function and in the pathogenesis of smoking-related chronic lung diseases.

  16. Airway Microbiota in Bronchoalveolar Lavage Fluid from Clinically Well Infants with Cystic Fibrosis

    PubMed Central

    Wagner, Brandie D.; Williams, Cynthia B.; Stevens, Mark J.; Robertson, Charles E.; Welchlin, Cole W.; Moen, Catherine E.; Zemanick, Edith T.; Harris, Jonathan K.

    2016-01-01

    Background Upper airway cultures guide the identification and treatment of lung pathogens in infants with cystic fibrosis (CF); however, this may not fully reflect the spectrum of bacteria present in the lower airway. Our objectives were to characterize the airway microbiota using bronchoalveolar lavage fluid (BALF) from asymptomatic CF infants during the first year of life and to investigate the relationship between BALF microbiota, standard culture and clinical characteristics. Methods BALF, nasopharyngeal (NP) culture and infant pulmonary function testing data were collected at 6 months and one year of age during periods of clinical stability from infants diagnosed with CF by newborn screening. BALF was analyzed for total bacterial load by qPCR and for bacterial community composition by 16S ribosomal RNA sequencing. Clinical characteristics and standard BALF and NP culture results were recorded over five years of longitudinal follow-up. Results 12 BALF samples were collected from 8 infants with CF. Streptococcus, Burkholderia, Prevotella, Haemophilus, Porphyromonas, and Veillonella had the highest median relative abundance in infant CF BALF. Two of the 3 infants with repeat BALF had changes in their microbial communities over six months (Morisita-Horn diversity index 0.36, 0.38). Although there was excellent percent agreement between standard NP and BALF cultures, these techniques did not routinely detect all bacteria identified by sequencing. Conclusions BALF in asymptomatic CF infants contains complex microbiota, often missed by traditional culture of airway secretions. Anaerobic bacteria are commonly found in the lower airways of CF infants. PMID:27930727

  17. Partial airway obstruction following manufacturing defect in laryngeal mask airway (Laryngeal Mask Silken™).

    PubMed

    Jangra, Kiran; Malhotra, Surender Kumar; Saini, Vikas

    2014-10-01

    Laryngeal mask (LM) airway is commonly used for securing airway in day-care surgeries. Various problems have been described while using LM airway. Out of those, mechanical obstruction causing airway compromise is most common. Here, we describe a case report of 4-year-old child who had partial upper airway obstruction due to LM manufacturer's defect. There was a silicon band in upper one-third of shaft of LM airway. This band was made up of the same material as that of LM airway so it was not identifiable on external inspection of transparent shaft. We suggest that such as non-transparent laryngeal mask, a transparent LM airway should also be inspected looking inside the lumen with naked eyes or by using a probe to rule out any manufacturing defect before its insertion.

  18. Surfactant Driven Post-Deposition Spreading of Aerosols on Complex Aqueous Subphases. 2: Low Deposition Flux Representative of Aerosol Delivery to Small Airways

    PubMed Central

    Sharma, Ramankur; Khanal, Amsul; Corcoran, Timothy E.; Przybycien, Todd M.; Tilton, Robert D.

    2015-01-01

    Abstract Background: Cystic fibrosis (CF) is associated with the accumulation of dehydrated mucus in the pulmonary airways. This alters ventilation and aerosol deposition patterns in ways that limit drug delivery to peripheral lung regions. We investigated the use of surfactant-based, self-dispersing aerosol carriers that produce surface tension gradients to drive two-dimensional transport of aerosolized medications via Marangoni flows after deposition on the airway surface liquid (ASL). We considered the post-deposition spreading of individual aerosol droplets and two-dimensional expansion of a field of aerosol droplets, when deposited at low fluxes that are representative of aerosol deposition in the small airways. Methods: We used physically entangled aqueous solutions of poly(acrylamide) or porcine gastric mucin as simple ASL mimics that adequately capture the full miscibility but slow penetration of entangled macromolecular chains of the ASL into the deposited drop. Surfactant formulations were prepared with aqueous solutions of nonionic tyloxapol or FS-3100 fluorosurfactant. Fluorescein dye served as a model “drug” tracer and to visualize the extent of post-deposition spreading. Results: The surfactants not only enhanced post-deposition spreading of individual aerosol droplets due to localized Marangoni stresses, as previously observed with macroscopic drops, but they also produced large-scale Marangoni stresses that caused the deposited aerosol fields to expand into initially unexposed regions of the subphase. We show that the latter is the main mechanism for spreading drug over large distances when aerosol is deposited at low fluxes representative of the small airways. The large scale convective expansion of the aerosol field drives the tracer (drug mimic) over areas that would cover an entire airway generation or more, in peripheral airways, where sub-monolayer droplet deposition is expected during aerosol inhalation. Conclusions: The results suggest

  19. Mucin-positive epithelial mesotheliomas: a histochemical, immunohistochemical, and ultrastructural comparison with mucin-producing pulmonary adenocarcinomas.

    PubMed

    Hammar, S P; Bockus, D E; Remington, F L; Rohrbach, K A

    1996-01-01

    Pathologists routinely use histochemistry, immunohistochemistry, and electron microscopy to differentiate epithelial mesotheliomas from pulmonary adenocarcinomas. Epithelial mesotheliomas are usually mucicarmine-, PAS-diastase, and carcinoembryonic antigen-negative, whereas about 60-75% of pulmonary adenocarcinomas are mucicarmine- and PAS-diastase-positive, and about 90% express polyclonal carcinoembryonic antigen. During a pathologic evaluation of pleural neoplasms between 1975 and 1990, 10 epithelial mesotheliomas were identified that were mucicarmine- and in some instances PAS-diastase-positive (diagnosis of mesothelioma confirmed by ultrastructural examination), with four mesotheliomas focally expressing carcinoembryonic antigen. The mucicarmine, PAS-diastase, and carcinoembryonic antigen staining were usually eradicated or reduced in intensity by pretreatment of the tissue sections with hyaluronidase, suggesting that hyaluronic acid was responsible for the positive mucin reactions. In three cases the epithelial mesotheliomas showed focal regions of mucicarmine, PAS-d-, and Alcian blue-hyaluronidase-resistant staining. In contrast, 10 mucicarmine-, PAS-diastase-, Alcian blue-, and carcinoembryonic antigen-positive pulmonary adenocarcinomas were not affected by hyaluronidase pretreatment of the tissue. Besides the usual ultrastructural features of well- to moderately well-differentiated epithelial mesotheliomas, the mucin-positive epithelial mesotheliomas often showed medium-electron-dense secretory material covering the microvilli, aggregates of medium electron-dense material in association with the microvilli, producing an ultrastructural morphology that has been observed only in epithelial mesotheliomas.

  20. Treatment of disorders characterized by reversible airway obstruction in childhood: are anti-cholinergic agents the answer?

    PubMed

    Quizon, Annabelle; Colin, Andrew A; Pelosi, Umberto; Rossi, Giovanni A

    2012-01-01

    Release of acetylcholine from parasympathetic nerves in the airways activates postjunctional muscarinic receptors present on smooth muscle, submucosal glands and blood vessels. This triggers bronchoconstriction, muscle hypertrophy, mucus secretion, and vasodilatation, respectively. The release of acetylcholine from parasympathetic nerves in lungs is induced by a variety of stimuli and downregulated by the inhibitory activity of neuronal M2 muscarinic receptors via a feedback mechanism. Increased parasympathetic nerve activity occurs in a variety of airway diseases in childhood, including viral-induced wheeze and asthma. Common to these conditions are reversible airway obstruction, mucus hypersecretion, vasodilation and enhanced vascular permeability. In animal models of airway hyperreactivity similar findings of increased acetylcholine release resulting in enhanced supply of this neurotransmitter to the postjunctional smooth muscles, submucosal glands and airway vessels, were demonstrated. While the number and function of postjunctional muscarinic receptors in the airways are unchanged in such airway disorders, inhibitory activity on the parasympathetic nerves appears to be impaired. Specifically, M2 muscarinic receptor dysfunction has been demonstrated in models of bronchial hyperreactivity induced by a variety of triggers, including viruses, atmospheric pollutants and allergens. The mechanisms leading to impairment of neuronal M2 muscarinic receptor function and their putative relevance to the pathogenesis and the treatment of airway disease in childhood are described. Finally, the available data on the activity of ipratropium bromide, a short-acting anticholinergic drug, in the most common pediatric airway disease are reported and the possible therapeutic efficacy of tiotropium bromide, a more recently introduced long-acting, selective anticholinergic compound, is discussed.

  1. MiR-205 and MiR-373 Are Associated with Aggressive Human Mucinous Colorectal Cancer

    PubMed Central

    Eyking, Annette; Reis, Henning; Frank, Magdalena; Gerken, Guido; Schmid, Kurt W.; Cario, Elke

    2016-01-01

    Mucinous adenocarcinoma (MAC) represents a distinct histopathological entity of colorectal cancer (CRC), which is associated with disease progression and poor prognosis. Here, we found that expression levels of miR-205 and miR-373 were specifically upregulated only in patients with mucinous colon cancers, but not in CRC that lack mucinous components. To investigate the effects of miR-205 and miR-373 on intestinal epithelial cell (IEC) biology by gain- and loss-of-function experiments in a proof-of-concept approach, we chose previously established in-vitro human Caco-2-based models of differentiated, non-invasive (expressing TLR4 wild-type; termed Caco-2[WT]) versus undifferentiated, invasive (expressing TLR4 mutant D299G; termed Caco-2[D299G]) IEC. Enterocyte-like Caco-2[WT] showed low levels of miR-205 and miR-373 expression, while both miRNAs were significantly upregulated in colorectal carcinoma-like Caco-2[D299G], thus resembling the miRNA expression pattern of paired normal versus tumor samples from MAC patients. Using stable transfection, we generated miR-205- or miR-373-expressing and miR-205- or miR-373-inhibiting subclones of these IEC lines. We found that introduction of miR-205 into Caco-2[WT] led to expansion of mucus-secreting goblet cell-like cells, which was associated with induction of KLF4, MUC2 and TGFβ1 expression. Activation of miR-205 in Caco-2[WT] induced chemoresistance, while inhibition of miR-205 in Caco-2[D299G] promoted chemosensitivity. Caco-2[WT] overexpressing miR-373 showed mitotic abnormalities and underwent morphologic changes (loss of epithelial polarity, cytoskeletal reorganization, and junctional disruption) associated with epithelial-mesenchymal transition and progression to inflammation-associated colonic carcinoma, which correlated with induction of phosphorylated STAT3 and N-CADHERIN expression. Functionally, introduction of miR-373 into Caco-2[WT] mediated loss of cell-cell adhesion and increased proliferation and invasion

  2. Immune-driven alterations in mucin sulphation is an important mediator of Trichuris muris helminth expulsion

    PubMed Central

    Dawson, Paul A.; Lourie, Rohan; Hutson, Peter; Tong, Hui; Grencis, Richard K.

    2017-01-01

    Mucins are heavily glycosylated proteins that give mucus its gel-like properties. Moreover, the glycans decorating the mucin protein core can alter the protective properties of the mucus barrier. To investigate whether these alterations could be parasite-induced we utilized the Trichuris muris (T. muris) infection model, using different infection doses and strains of mice that are resistant (high dose infection in BALB/c and C57BL6 mice) or susceptible (high dose infection in AKR and low dose infection in BALB/c mice) to chronic infection by T. muris. During chronicity, within the immediate vicinity of the T. muris helminth the goblet cell thecae contained mainly sialylated mucins. In contrast, the goblet cells within the epithelial crypts in the resistant models contained mainly sulphated mucins. Maintained mucin sulphation was promoted by TH2-immune responses, in particular IL-13, and contributed to the protective properties of the mucus layer, making it less vulnerable to degradation by T. muris excretory secretory products. Mucin sulphation was markedly reduced in the caecal goblet cells in the sulphate anion transporter-1 (Sat-1) deficient mice. We found that Sat-1 deficient mice were susceptible to chronic infection despite a strong TH2-immune response. Lower sulphation levels lead to decreased efficiency of establishment of T. muris infection, independent of egg hatching. This study highlights the complex process by which immune-regulated alterations in mucin glycosylation occur following T. muris infection, which contributes to clearance of parasitic infection. PMID:28192541

  3. Differential expression of matrix metalloproteinase-13 in mucinous and nonmucinous colorectal carcinomas.

    PubMed

    Foda, Abd Al-Rahman Mohammad; El-Hawary, Amira K; Abdel-Aziz, Azza

    2013-08-01

    Colorectal carcinoma (CRC) is a major health problem all over the world. Mucinous CRCs are known to have a peculiar behavior and genetic derangements. This study aimed to investigate matrix metalloproteinase (MMP)-13 expression in mucinous and nonmucinous CRCs. We studied tumor tissue specimens from 150 patients with mucinous and nonmucinous CRC who underwent radical surgery from January 2007 to January 2012. High-density manual tissue microarrays were constructed using a modified mechanical pencil tip technique, and paraffin sections were submitted for immunohistochemistry using MMP-13. Statistical analysis was performed for clinical and pathological data of all studied cases together with MMP-13 expression in mucinous and nonmucinous groups. Mucinous carcinoma was significantly associated with young age, more depth of invasion, lymph node metastasis, and less peritumoral and intratumoral neutrophils. Nonmucinous carcinomas showed higher MMP-13 expression compared with mucinous carcinomas. Despite the negative or low expression of MMP-13, mucinous carcinomas had more depth of invasion and more frequency of lymph node metastasis than did nonmucinous carcinomas.

  4. Analysis of mucin composition in gastric juices of chronic rheumatic patients with upper gastrointestinal damage.

    PubMed

    Ikezawa, Tomoaki; Ichikawa, Takafumi; Adachi, Ken; Sugano, Satoshi; Ojima, Tatsuya; Nakamura, Youko; Watanabe, Yukio; Ishihara, Kazuhiko

    2005-08-01

    Assessment of the mucin subclasses in the gastric juices of severe chronic rheumatoid arthritis (RA) patients was compared with non-RA cases which received the eradication treatment of Helicobacter pylori (H. pylori). Gastric juice samples were obtained from 8 RA patients (5 for H. pylori-negative and 3 for H. pylori-positive) and 5 control subjects in which we confirmed the successful eradication of H. pylori. The gastric luminal mucins were extracted and isolated by the ethanol precipitation method. These mucin solutions were digested with chymotrypsin, dialyzed, lyophilized, and redissolved. The obtained specimen was applied to an ion exchange column containing DEAE-Sepharose CL-6B and eluted with a discontinuous salt gradient in three salt steps. The gastric luminal mucins were divided into three fractions based on the distinctive sialic acid content. The proportion of acidic mucin rich in sialic acid from the gastric juice of RA patients without the H. pylori infection was significantly lower than those RA patients with H. pylori or the control subjects. A decrease in the acidic mucin content after eradication of H. pylori was commonly observed in all the control subjects. Our investigation raises the possibility that the gastric mucosae of RA patients have resistance against H. pylori infection. And the analysis of the composition in the gastric luminal mucin may be a very useful tool for the evaluation of gastric homeostasis in RA patients.

  5. Method for 3D Airway Topology Extraction

    PubMed Central

    Grothausmann, Roman; Kellner, Manuela; Heidrich, Marko; Lorbeer, Raoul-Amadeus; Ripken, Tammo; Meyer, Heiko; Kuehnel, Mark P.; Ochs, Matthias; Rosenhahn, Bodo

    2015-01-01

    In lungs the number of conducting airway generations as well as bifurcation patterns varies across species and shows specific characteristics relating to illnesses or gene variations. A method to characterize the topology of the mouse airway tree using scanning laser optical tomography (SLOT) tomograms is presented in this paper. It is used to test discrimination between two types of mice based on detected differences in their conducting airway pattern. Based on segmentations of the airways in these tomograms, the main spanning tree of the volume skeleton is computed. The resulting graph structure is used to distinguish between wild type and surfactant protein (SP-D) deficient knock-out mice. PMID:25767561

  6. Automated Lobe-Based Airway Labeling

    PubMed Central

    Gu, Suicheng; Wang, Zhimin; Siegfried, Jill M.; Wilson, David; Bigbee, William L.; Pu, Jiantao

    2012-01-01

    Regional quantitative analysis of airway morphological abnormalities is of great interest in lung disease investigation. Considering that pulmonary lobes are relatively independent functional unit, we develop and test a novel and efficient computerized scheme in this study to automatically and robustly classify the airways into different categories in terms of pulmonary lobe. Given an airway tree, which could be obtained using any available airway segmentation scheme, the developed approach consists of four basic steps: (1) airway skeletonization or centerline extraction, (2) individual airway branch identification, (3) initial rule-based airway classification/labeling, and (4) self-correction of labeling errors. In order to assess the performance of this approach, we applied it to a dataset consisting of 300 chest CT examinations in a batch manner and asked an image analyst to subjectively examine the labeled results. Our preliminary experiment showed that the labeling accuracy for the right upper lobe, the right middle lobe, the right lower lobe, the left upper lobe, and the left lower lobe is 100%, 99.3%, 99.3%, 100%, and 100%, respectively. Among these, only two cases are incorrectly labeled due to the failures in airway detection. It takes around 2 minutes to label an airway tree using this algorithm. PMID:23093951

  7. Anatomic Optical Coherence Tomography of Upper Airways

    NASA Astrophysics Data System (ADS)

    Chin Loy, Anthony; Jing, Joseph; Zhang, Jun; Wang, Yong; Elghobashi, Said; Chen, Zhongping; Wong, Brian J. F.

    The upper airway is a complex and intricate system responsible for respiration, phonation, and deglutition. Obstruction of the upper airways afflicts an estimated 12-18 million Americans. Pharyngeal size and shape are important factors in the pathogenesis of airway obstructions. In addition, nocturnal loss in pharyngeal muscular tone combined with high pharyngeal resistance can lead to collapse of the airway and periodic partial or complete upper airway obstruction. Anatomical optical coherence tomography (OCT) has the potential to provide high-speed three-dimensional tomographic images of the airway lumen without the use of ionizing radiation. In this chapter we describe the methods behind endoscopic OCT imaging and processing to generate full three dimensional anatomical models of the human airway which can be used in conjunction with numerical simulation methods to assess areas of airway obstruction. Combining this structural information with flow dynamic simulations, we can better estimate the site and causes of airway obstruction and better select and design surgery for patients with obstructive sleep apnea.

  8. Analysis of mucosal mucins separated by SDS-urea agarose polyacrylamide composite gel electrophoresis.

    PubMed

    Issa, Samah M A; Schulz, Benjamin L; Packer, Nicolle H; Karlsson, Niclas G

    2011-12-01

    Efficient separation of mucins (200 kDa-2 MDa) was demonstrated using gradient SDS agarose/polyacrylamide composite gel electrophoresis (SDS-AgPAGE). Inclusion of urea (SDS-UAgPAGE) in the gels casting were shown to have no effect on the migration of mucins in the gel and allowed casting of gel at room temperature. This simplified the procedure for multiple casting of agarose polyacrylamide gradients and increased reproducibility of these gels. Hence, the implementation of urea makes the technique applicable for high throughput isolation and screening of mucin oligosaccharides by LC-MS after releasing the oligosaccharides from isolated, blotted mucin subpopulations. It was also shown that the urea addition had no effect on other supporting applications such as western and lectin blotting. In addition, identification of the mucin protein after tryptic digestion and LC-MS was possible and no protein carbamylation due to the presence of urea in the gel was detected. LC-MS software developed for metabolomic analysis was used for O-linked oligosaccharide detection and differential display of various mucin samples. Using this method, heterogeneous glycosylation of mucins and mucin-type molecules isolated by SDS-AgPAGE and SDS-UAgPAGE was shown to consist of more than 80 different components in a single band, and in the extreme cases, up to 300-500 components (MUC5B/AC from saliva and sputum and). Metabolomic software was also used to show that the migration of mucin isoforms within the gel is due to heterogeneous size distribution of the oligosaccharides, with the slower migrating bands enriched in high-molecular-weight oligosaccharides.

  9. Prevalence and clinical significance of acellular mucin in locally advanced rectal cancer patients showing pathologic complete response to preoperative chemoradiotherapy.

    PubMed

    Lim, Seok-Byung; Hong, Seung-Mo; Yu, Chang Sik; Hong, Yong Sang; Kim, Tae Won; Park, Jin-hong; Kim, Jong Hoon; Kim, Jin Cheon

    2013-01-01

    Occasionally, patients with locally advanced rectal adenocarcinoma who receive preoperative chemoradiotherapy (CRT) show acellular mucin in resection specimens that had shown pathologic complete response (pCR), but the clinical and prognostic significance of this finding has been controversial. This study analyzed data from 217 consecutive patients showing pCR to preoperative CRT followed by resection to evaluate the clinicopathologic features and prognostic significance of acellular mucin. Patients were categorized according to the presence of acellular mucin, as identified by pathologic analysis. The clinicopathologic findings and oncologic results were compared. Acellular mucins were identified in 35 (16.1%) of 217 pCR patients. Acellular mucins were found predominantly in male patients (20.8% vs. 9.8%, P=0.039) and in those with mucinous/signet ring cell differentiation (66.7% vs. 15.1%, P=0.008). The presence of acellular mucin was more frequent in patients with a shorter (<42 d) CRT-operation interval (22.6% vs. 10.3%, P=0.017). With a mean follow-up of 41 months (range, 2 to 119 mo), the 3-year overall survival (96.8% with mucin vs. 95.9% without mucin, P=0.314) and the 3-year disease-free survival (97.0% with mucin vs. 93.0% without mucin, P=0.131) did not differ between the groups. The presence of acellular mucin in rectal cancer patients showing pCR to preoperative CRT is associated with male sex and mucinous differentiation and does not have a significant impact on oncologic outcomes. Acellular mucins are also associated with the CRT-operation interval as a phenomenon of time-dependent response to CRT.

  10. GTP-Binding Proteins Inhibit cAMP Activation of Chloride Channels in Cystic Fibrosis Airway Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Schwiebert, Erik M.; Kizer, Neil; Gruenert, Dieter C.; Stanton, Bruce A.

    1992-11-01

    Cystic fibrosis (CF) is a genetic disease characterized, in part, by defective regulation of Cl^- secretion by airway epithelial cells. In CF, cAMP does not activate Cl^- channels in the apical membrane of airway epithelial cells. We report here whole-cell patch-clamp studies demonstrating that pertussis toxin, which uncouples heterotrimeric GTP-binding proteins (G proteins) from their receptors, and guanosine 5'-[β-thio]diphosphate, which prevents G proteins from interacting with their effectors, increase Cl^- currents and restore cAMP-activated Cl^- currents in airway epithelial cells isolated from CF patients. In contrast, the G protein activators guanosine 5'-[γ-thio]triphosphate and AlF^-_4 reduce Cl^- currents and inhibit cAMP from activating Cl^- currents in normal airway epithelial cells. In CF cells treated with pertussis toxin or guanosine 5'-[β-thio]diphosphate and in normal cells, cAMP activates a Cl^- conductance that has properties similar to CF transmembrane-conductance regulator Cl^- channels. We conclude that heterotrimeric G proteins inhibit cAMP-activated Cl^- currents in airway epithelial cells and that modulation of the inhibitory G protein signaling pathway may have the therapeutic potential for improving cAMP-activated Cl^- secretion in CF.

  11. Acidic pH increases airway surface liquid viscosity in cystic fibrosis

    PubMed Central

    Tang, Xiao Xiao; Ostedgaard, Lynda S.; Hoegger, Mark J.; Moninger, Thomas O.; Karp, Philip H.; McMenimen, James D.; Choudhury, Biswa; Varki, Ajit; Stoltz, David A.; Welsh, Michael J.

    2016-01-01

    Cystic fibrosis (CF) disrupts respiratory host defenses, allowing bacterial infection, inflammation, and mucus accumulation to progressively destroy the lungs. Our previous studies revealed that mucus with abnormal behavior impaired mucociliary transport in newborn CF piglets prior to the onset of secondary manifestations. To further investigate mucus abnormalities, here we studied airway surface liquid (ASL) collected from newborn piglets and ASL on cultured airway epithelia. Fluorescence recovery after photobleaching revealed that the viscosity of CF ASL was increased relative to that of non-CF ASL. CF ASL had a reduced pH, which was necessary and sufficient for genotype-dependent viscosity differences. The increased viscosity of CF ASL was not explained by pH-independent changes in HCO3– concentration, altered glycosylation, additional pH-induced disulfide bond formation, increased percentage of nonvolatile material, or increased sulfation. Treating acidic ASL with hypertonic saline or heparin largely reversed the increased viscosity, suggesting that acidic pH influences mucin electrostatic interactions. These findings link loss of cystic fibrosis transmembrane conductance regulator–dependent alkalinization to abnormal CF ASL. In addition, we found that increasing Ca2+ concentrations elevated ASL viscosity, in part, independently of pH. The results suggest that increasing pH, reducing Ca2+ concentration, and/or altering electrostatic interactions in ASL might benefit early CF. PMID:26808501

  12. Altered Sputum Microstructure as a Marker of Airway Obstruction in Cystic Fibrosis Patients

    NASA Astrophysics Data System (ADS)

    Duncan, Gregg; Jung, James; West, Natalie; Boyle, Michael; Suk, Jung Soo; Hanes, Justin

    In the lungs of cystic fibrosis (CF) patients, highly viscoelastic mucus remains stagnant in the lung leading to obstructed airways prone to recurrent infections. Bulk-fluid rheological measurement is primarily used to assess the pathological features of mucus. However, this approach is limited in detecting microscopic properties on the length scale of pathogens and immune cells. We have shown in prior work based on the transport of muco-inert nanoparticles (MIP) in CF sputum that patients can carry significantly different microstructural properties. In this study, we aimed to determine the factors leading to variations between patients in sputum microstructure and their clinical implications. The microrheological properties of CF sputum were measured using multi-particle tracking experiments of MIP. MIP were made by grafting polyethylene glycol onto the surface of polystyrene nanoparticles which prior work has shown prevents adhesion to CF sputum. Biochemical analyses show that sputum microstructure was significantly altered by elevated mucin and DNA content. Reduction in sputum pore size is characteristic of patients with obstructed airways as indicated by measured pulmonary function tests. Our microstructural read-out may serve as a novel biomarker for CF.

  13. Acidic pH increases airway surface liquid viscosity in cystic fibrosis.

    PubMed

    Tang, Xiao Xiao; Ostedgaard, Lynda S; Hoegger, Mark J; Moninger, Thomas O; Karp, Philip H; McMenimen, James D; Choudhury, Biswa; Varki, Ajit; Stoltz, David A; Welsh, Michael J

    2016-03-01

    Cystic fibrosis (CF) disrupts respiratory host defenses, allowing bacterial infection, inflammation, and mucus accumulation to progressively destroy the lungs. Our previous studies revealed that mucus with abnormal behavior impaired mucociliary transport in newborn CF piglets prior to the onset of secondary manifestations. To further investigate mucus abnormalities, here we studied airway surface liquid (ASL) collected from newborn piglets and ASL on cultured airway epithelia. Fluorescence recovery after photobleaching revealed that the viscosity of CF ASL was increased relative to that of non-CF ASL. CF ASL had a reduced pH, which was necessary and sufficient for genotype-dependent viscosity differences. The increased viscosity of CF ASL was not explained by pH-independent changes in HCO3- concentration, altered glycosylation, additional pH-induced disulfide bond formation, increased percentage of nonvolatile material, or increased sulfation. Treating acidic ASL with hypertonic saline or heparin largely reversed the increased viscosity, suggesting that acidic pH influences mucin electrostatic interactions. These findings link loss of cystic fibrosis transmembrane conductance regulator-dependent alkalinization to abnormal CF ASL. In addition, we found that increasing Ca2+ concentrations elevated ASL viscosity, in part, independently of pH. The results suggest that increasing pH, reducing Ca2+ concentration, and/or altering electrostatic interactions in ASL might benefit early CF.

  14. [Mucinous adenocarcinoma of the renal pelvis associated with renal calculi of the inflammatory type].

    PubMed

    Kalafatis, P; Zarifis, I; Sotrillis, T; Stefis, A

    1999-03-01

    A rare