Science.gov

Sample records for airway mucosal dendritic

  1. Mucosal dendritic cells shape mucosal immunity

    PubMed Central

    Chang, Sun-Young; Ko, Hyun-Jeong; Kweon, Mi-Na

    2014-01-01

    Dendritic cells (DCs) are key modulators that shape the immune system. In mucosal tissues, DCs act as surveillance systems to sense infection and also function as professional antigen-presenting cells that stimulate the differentiation of naive T and B cells. On the basis of their molecular expression, DCs can be divided into several subsets with unique functions. In this review, we focus on intestinal DC subsets and their function in bridging the innate signaling and adaptive immune systems to maintain the homeostasis of the intestinal immune environment. We also review the current strategies for manipulating mucosal DCs for the development of efficient mucosal vaccines to protect against infectious diseases. PMID:24626170

  2. Dendritic cell-targeting DNA-based mucosal adjuvants for the development of mucosal vaccines

    PubMed Central

    Kataoka, Kosuke; Fujihashi, Kohtaro

    2009-01-01

    In order to establish effective mucosal immunity against various mucosal pathogens, vaccines must be delivered via the mucosal route and contain effective adjuvant(s). Since mucosal adjuvants can simply mix with the antigen, it is relatively easy to adapt them for different types of vaccine development. Even in simple admixture vaccines, the adjuvant itself must be prepared without any complications. Thus, CpG oligodeoxynucleotides or plasmids encoding certain cDNA(s) would be potent mucosal adjuvant candidates when compared with other substances that can be used as mucosal adjuvants. The strategy of a DNA-based mucosal adjuvant facilitates the targeting of mucosal dendritic cells, and thus is an effective and safe approach. It would also provide great flexibility for the development of effective vaccines for various mucosal pathogens. PMID:19722892

  3. Airway cooling and mucosal injury during cold weather exercise.

    PubMed

    Davis, M S; Lockard, A J; Marlin, D J; Freed, A N

    2002-09-01

    In human subjects that exercise strenuously in cold weather, there is evidence that hyperventilation with cold air leads to peripheral airway cooling, desiccation and mucosal injury. Our hypothesis was that hyperventilation with cold air can result in penetration of unconditioned air (air that is not completely warmed and humidified) into the peripheral airways of exercising horses, resulting in peripheral airway mucosal injury. To test this hypothesis, a thermister-tipped catheter was inserted through the midcervical trachea and advanced into a sublobar bronchus in three horses that cantered on a treadmill at 6.6 m/s while breathing cold (5 degrees C) air. The mean (+/- s.e.) intra-airway temperature during cantering was 33.3 +/- 0.4 degrees C, a value comparable to the bronchial lumen temperatures measured in man during maximal exercise while breathing subfreezing dry air. In a second experiment, 6 fit Thoroughbred racehorses with satisfactory performance were used to determine whether strenuous exercise in cold conditions can produce airway injury. Horses were assigned to Exercise (E) or Control (C) groups in a random crossover design. Samples of bronchoalveolar lavage fluid (BALF) in the E treatment were recovered within 30 min of galloping exercise in 4 degrees C, 100% relative humidity (E), while in C BALF samples were obtained when the horses had not performed any exercise for at least 48 h prior. Ciliated epithelial cells in BALF were higher in E than in the C treatment. Similar results have been found in human athletes and laboratory animal models of cold weather exercise. These results support the hypothesis that, similar to man, horses that exercise in cold weather experience peripheral airway mucosal injury due to the penetration of unconditioned air. Furthermore, these results suggest that airway cooling and desiccation may be a factor in airway inflammation commonly found in equine athletes. PMID:12405726

  4. Classification of pulmonary airway disease based on mucosal color analysis

    NASA Astrophysics Data System (ADS)

    Suter, Melissa; Reinhardt, Joseph M.; Riker, David; Ferguson, John Scott; McLennan, Geoffrey

    2005-04-01

    Airway mucosal color changes occur in response to the development of bronchial diseases including lung cancer, cystic fibrosis, chronic bronchitis, emphysema and asthma. These associated changes are often visualized using standard macro-optical bronchoscopy techniques. A limitation to this form of assessment is that the subtle changes that indicate early stages in disease development may often be missed as a result of this highly subjective assessment, especially in inexperienced bronchoscopists. Tri-chromatic CCD chip bronchoscopes allow for digital color analysis of the pulmonary airway mucosa. This form of analysis may facilitate a greater understanding of airway disease response. A 2-step image classification approach is employed: the first step is to distinguish between healthy and diseased bronchoscope images and the second is to classify the detected abnormal images into 1 of 4 possible disease categories. A database of airway mucosal color constructed from healthy human volunteers is used as a standard against which statistical comparisons are made from mucosa with known apparent airway abnormalities. This approach demonstrates great promise as an effective detection and diagnosis tool to highlight potentially abnormal airway mucosa identifying a region possibly suited to further analysis via airway forceps biopsy, or newly developed micro-optical biopsy strategies. Following the identification of abnormal airway images a neural network is used to distinguish between the different disease classes. We have shown that classification of potentially diseased airway mucosa is possible through comparative color analysis of digital bronchoscope images. The combination of the two strategies appears to increase the classification accuracy in addition to greatly decreasing the computational time.

  5. Immunity and Tolerance Induced by Intestinal Mucosal Dendritic Cells.

    PubMed

    Aliberti, Julio

    2016-01-01

    Dendritic cells present in the digestive tract are constantly exposed to environmental antigens, commensal flora, and invading pathogens. Under steady-state conditions, these cells have high tolerogenic potential, triggering differentiation of regulatory T cells to protect the host from unwanted proinflammatory immune responses to innocuous antigens or commensals. On the other hand, these cells must discriminate between commensal flora and invading pathogens and mount powerful immune response against pathogens. A potential result of unbalanced tolerogenic versus proinflammatory responses mediated by dendritic cells is associated with chronic inflammatory conditions, such as Crohn's disease, ulcerative colitis, food allergies, and celiac disease. Herein, we review the dendritic cell population involved in mediating tolerance and immunity in mucosal surfaces, the progress in unveiling their development in vivo, and factors that can influence their functions. PMID:27034589

  6. Immunity and Tolerance Induced by Intestinal Mucosal Dendritic Cells

    PubMed Central

    Aliberti, Julio

    2016-01-01

    Dendritic cells present in the digestive tract are constantly exposed to environmental antigens, commensal flora, and invading pathogens. Under steady-state conditions, these cells have high tolerogenic potential, triggering differentiation of regulatory T cells to protect the host from unwanted proinflammatory immune responses to innocuous antigens or commensals. On the other hand, these cells must discriminate between commensal flora and invading pathogens and mount powerful immune response against pathogens. A potential result of unbalanced tolerogenic versus proinflammatory responses mediated by dendritic cells is associated with chronic inflammatory conditions, such as Crohn's disease, ulcerative colitis, food allergies, and celiac disease. Herein, we review the dendritic cell population involved in mediating tolerance and immunity in mucosal surfaces, the progress in unveiling their development in vivo, and factors that can influence their functions. PMID:27034589

  7. Interactions of bacterial pathogens with dendritic cells during invasion of mucosal surfaces.

    PubMed

    Granucci, Francesca; Ricciardi-Castagnoli, Paola

    2003-02-01

    Recent studies of mucosal immunity suggest a key role for dendritic cells in the regulation of gut immune responses, in both physiological and pathological conditions. Dendritic cells are widely distributed in the lamina propria of the gut and are involved in direct bacterial uptake across mucosal surfaces, which questions the role of dendritic cells in innate mucosal responses. Approximately 400 commensal microbial species are present in the gut lumen. So how do dendritic cells distinguish pathogens from luminal microflora? Are the cytokines and chemokines induced in dendritic cells tailored to the class of microbes being recognized? Several very important questions still need to be addressed. PMID:12615223

  8. TGF-β-mediated airway tolerance to allergens induced by peptide-based immunomodulatory mucosal vaccination.

    PubMed

    Michael, H; Li, Y; Wang, Y; Xue, D; Shan, J; Mazer, B D; McCusker, C T

    2015-11-01

    We sought to modulate mucosal immune responses using neonatal vaccination to avert the development of allergic airways disease (AAD). Pulmonary pathology in AAD is driven by T helper (TH)2 cytokines, in particular interleukin (IL)4 and IL13, the expression and actions of which are regulated by the transcription factor STAT6. We developed a peptide homolog of STAT6, STAT6-IP. Neonatal mice given, intranasally, STAT6-IP, in an effort to modulate de novo airways immune responses, developed tolerance following subsequent allergen sensitization, with either ovalbumin or ragweed allergens, as demonstrated by reduced TH2 cytokines and specific immunoglobulin (Ig)E and the significant increases in the latency-associated peptide (LAP)(+) T-regulatory (Treg) cell subset and expression of transforming growth factor (TGF)-β. This regulatory phenotype was transferrable by CD4(+) T cells or CD11c(+) dendritic cells (DCs) derived from STAT6-IP-vaccinated mice. Anti-TGF-β treatment during allergen sensitization, however, re-established the pro-inflammatory TH2 response. Thus, neonatal STAT6-IP vaccination induces prospective TGF-β-dependent tolerance to allergen and constitutes a novel highly effective immunomodulatory allergy prevention strategy. PMID:25783968

  9. Human cytomegalovirus tropism for mucosal myeloid dendritic cells

    PubMed Central

    Hertel, Laura

    2014-01-01

    SUMMARY Human CMV infections are a serious source of morbidity and mortality for immunocompromised patients and for the developing fetus. Because of this, the development of new strategies to prevent CMV acquisition and transmission is a top priority. Myeloid dendritic cells (DC) residing in the oral and nasal mucosae are among the first immune cells to encounter CMV during entry, and greatly contribute to virus dissemination, reactivation from latency, and horizontal spread. Albeit affected by the immunoevasive tactics of CMV, mucosal DC remain potent inducers of cellular and humoral immune responses against this virus. Their natural functions could thus be exploited to generate long-lasting protective immunity against CMV by vaccination via the oro-nasal mucosae. Although related, epithelial Langerhans-type DC (LC) and dermal monocyte-derived DC (MDDC) interact with CMV in dramatically different ways. While immature MDDC are fully permissive to infection, for instance, immature LC are completely resistant. Understanding these differences is essential to design innovative vaccines and new antiviral compounds to protect these cells from CMV infection in vivo. PMID:24888709

  10. Dendritic cell-derived tumor necrosis factor α modifies airway epithelial cell responses.

    PubMed

    Lutfi, R; Ledford, J R; Zhou, P; Lewkowich, I P; Page, K

    2012-01-01

    Mucosal dendritic cells (DC) are intimately associated with the airway epithelium and thus are ideally situated to be first responders to pathogens. We hypothesize that DC drive innate immune responses through early release of tumor necrosis factor (TNF) α, which drives airway epithelial cell responses. In a mouse model, TNFα release was significantly increased following a single exposure to German cockroach (GC) frass, an event independent of neutrophil recruitment into the airways. While lung epithelial cells and alveolar macrophages failed to release TNFα following GC frass exposure, bone marrow-derived DC (BMDC) produced substantial amounts of TNFα suggesting their importance as early responding cells. This was confirmed by flow cytometry of pulmonary myeloid DC. Addition of GC frass-pulsed BMDC or conditioned media from GC frass-pulsed BMDC to primary mouse tracheal epithelial cells (MTEC) or MLE-15 cells induced chemokine (C-C) motif ligand (CCL) 20 and granulocyte macrophage (GM) colony-stimulating factor (CSF), both of which are important for DC recruitment, survival and differentiation. Importantly, DC do not produce CCL20 or GM-CSF following allergen exposure. Blocking TNFα receptor 1 (TNFR1) completely abolished chemokine production, suggesting that BMDC-derived TNFα induced airway epithelial cell activation and enhancement of the innate immune response. Lastly, blocking TNFR1 in vivo resulted in significantly decreased CCL20 and GM-CSF production in the lungs of mice. Together, our data strongly suggest that DC-derived TNFα plays a crucial role in the initiation of innate immune responses through the modification of airway epithelial cell responses. PMID:22517116

  11. Dendritic Cell-Nerve Clusters Are Sites of T Cell Proliferation in Allergic Airway Inflammation

    PubMed Central

    Veres, Tibor Z.; Shevchenko, Marina; Krasteva, Gabriela; Spies, Emma; Prenzler, Frauke; Rochlitzer, Sabine; Tschernig, Thomas; Krug, Norbert; Kummer, Wolfgang; Braun, Armin

    2009-01-01

    Interactions between T cells and dendritic cells in the airway mucosa precede secondary immune responses to inhaled antigen. The purpose of this study was to identify the anatomical locations where dendritic cell–T cell interactions occur, resulting in T cells activation by dendritic cells. In a mouse model of allergic airway inflammation, we applied whole-mount immunohistology and confocal microscopy to visualize dendritic cells and T cells together with nerves, epithelium, and smooth muscle in three dimensions. Proliferating T cells were identified by the detection of the incorporation of the nucleotide analogue 5-ethynyl-2′-deoxyuridine into the DNA. We developed a novel quantification method that enabled the accurate determination of cell–cell contacts in a semi-automated fashion. Dendritic cell–T cell interactions occurred beneath the smooth muscle layer, but not in the epithelium. Approximately 10% of the dendritic cells were contacted by nerves, and up to 4% of T cells formed clusters with these dendritic cells. T cells that were clustered with nerve-contacting dendritic cells proliferated only in the airways of mice with allergic inflammation but not in the airways of negative controls. Taken together, these results suggest that during the secondary immune response, sensory nerves influence dendritic cell-driven T cell activation in the airway mucosa. PMID:19179611

  12. Dendritic cells and alveolar macrophages mediate IL-13–induced airway inflammation and chemokine production

    PubMed Central

    Crapster-Pregont, Margaret; Yeo, Janice; Sanchez, Raquel L.; Kuperman, Douglas A.

    2013-01-01

    Background IL-13 in the airway induces pathologies that are highly characteristic of asthma, including mucus metaplasia, airway hyperreactivity (AHR), and airway inflammation. As such, it is important to identify the IL-13–responding cell types that mediate each of the above pathologies. For example, IL-13’s effects on epithelium contribute to mucus metaplasia and AHR. IL-13’s effects on smooth muscle also contribute to AHR. However, it has been difficult to identify the cell types that mediate IL-13–induced airway inflammation. Objective We sought to determine which cell types mediate IL-13–induced airway inflammation. Methods We treated the airways of mice with IL-13 alone or in combination with IFN-γ. We associated the inhibitory effect of IFN-γ on IL-13–induced airway inflammation and chemokine production with cell types in the lung that coexpress IL-13 and IFN-γ receptors. We then evaluated IL-13–induced responses in CD11c promoter–directed diphtheria toxin receptor–expressing mice that were depleted of both dendritic cells and alveolar macrophages and in CD11b promoter–directed diphtheria toxin receptor– expressing mice that were depleted of dendritic cells. Results Dendritic cell and alveolar macrophage depletion protected mice from IL-13–induced airway inflammation and CCL11, CCL24, CCL22, and CCL17 chemokine production. Preferential depletion of dendritic cells protected mice from IL-13–induced airway inflammation and CCL22 and CCL17 chemokine production but not from IL-13–induced CCL11 and CCL24 chemokine production. In either case mice were not protected from IL-13–induced AHR and mucus metaplasia. Conclusions Pulmonary dendritic cells and alveolar macrophages mediate IL-13–induced airway inflammation and chemokine production. (J Allergy Clin Immunol 2012;129:1621-7.) PMID:22365581

  13. Molecular basis for pH-dependent mucosal dehydration in cystic fibrosis airways.

    PubMed

    Garland, Alaina L; Walton, William G; Coakley, Raymond D; Tan, Chong D; Gilmore, Rodney C; Hobbs, Carey A; Tripathy, Ashutosh; Clunes, Lucy A; Bencharit, Sompop; Stutts, M Jackson; Betts, Laurie; Redinbo, Matthew R; Tarran, Robert

    2013-10-01

    The ability to maintain proper airway surface liquid (ASL) volume homeostasis is vital for mucus hydration and clearance, which are essential aspects of the mammalian lung's innate defense system. In cystic fibrosis (CF), one of the most common life-threatening genetic disorders, ASL dehydration leads to mucus accumulation and chronic infection. In normal airways, the secreted protein short palate lung and nasal epithelial clone 1 (SPLUNC1) effectively inhibits epithelial Na(+) channel (ENaC)-dependent Na(+) absorption and preserves ASL volume. In CF airways, it has been hypothesized that increased ENaC-dependent Na(+) absorption contributes to ASL depletion, and hence increased disease. However, this theory is controversial, and the mechanism for abnormal ENaC regulation in CF airways has remained elusive. Here, we show that SPLUNC1 is a pH-sensitive regulator of ENaC and is unable to inhibit ENaC in the acidic CF airway environment. Alkalinization of CF airway cultures prevented CF ASL hyperabsorption, and this effect was abolished when SPLUNC1 was stably knocked down. Accordingly, we resolved the crystal structure of SPLUNC1 to 2.8 Å. Notably, this structure revealed two pH-sensitive salt bridges that, when removed, rendered SPLUNC1 pH-insensitive and able to regulate ASL volume in acidic ASL. Thus, we conclude that ENaC hyperactivity is secondary to reduced CF ASL pH. Together, these data provide molecular insights into the mucosal dehydration associated with a range of pulmonary diseases, including CF, and suggest that future therapy be directed toward alkalinizing the pH of CF airways. PMID:24043776

  14. Prominent role for plasmacytoid dendritic cells in mucosal T cell-independent IgA induction.

    PubMed

    Tezuka, Hiroyuki; Abe, Yukiko; Asano, Jumpei; Sato, Taku; Liu, Jiajia; Iwata, Makoto; Ohteki, Toshiaki

    2011-02-25

    Although both conventional dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs) are present in the gut-associated lymphoid tissues (GALT), the roles of pDCs in the gut remain largely unknown. Here we show a critical role for pDCs in T cell-independent (TI) IgA production by B cells in the GALT. When pDCs of the mesenteric lymph nodes (MLNs) and Peyer's patches (PPs) (which are representative GALT) were cultured with naive B cells to induce TI IgA class switch recombination (CSR), IgA production was substantially higher than in cocultures of these cells with cDCs. IgA production was dependent on APRIL and BAFF production by pDCs. Importantly, pDC expression of APRIL and BAFF was dependent on stromal cell-derived type I IFN signaling under steady-state conditions. Our findings provide insight into the molecular basis of pDC conditioning to induce mucosal TI IgA production, which may lead to improvements in vaccination strategies and treatment for mucosal-related disorders. PMID:21333555

  15. Dendritic cell CD83 homotypic interactions regulate inflammation and promote mucosal homeostasis

    PubMed Central

    Bates, J M; Flanagan, K; Mo, L; Ota, N; Ding, J; Ho, S; Liu, S; Roose-Girma, M; Warming, S; Diehl, L

    2015-01-01

    Dendritic cells (DCs) form an extensive network in the intestinal lamina propria, which orchestrates the mucosal immune response. Alterations in DC function can predispose to inflammatory bowel disease, although by unknown mechanisms. We show that CD83, a highly regulated DC cell surface protein, modulates the immune response to prevent colitis. Mice with a conditional knockout of CD83 in DCs develop exacerbated colitis following dextran sodium sulfate challenge, whereas mucosal overexpression of CD83 inhibits DC inflammatory response and protects against colitis. These CD83 perturbations can be modeled in vitro where we show that CD83 homotypic interaction occurs via cell–cell contact and inhibits pro-inflammatory responses. CD83 knockdown or cytoplasmic truncation abrogates the effects of homotypic binding. We demonstrate that CD83 homotypic interaction regulates DC activation via the mitogen-activated protein kinase pathway by inhibiting p38α phosphorylation. Our findings indicate that CD83 homotypic interactions regulate DC activation and promote mucosal homeostasis. PMID:25204675

  16. Interactions between airway epithelial cells and dendritic cells during viral infections using an in vitro co-culture model

    EPA Science Inventory

    Rationale: Historically, single cell culture models have been limited in pathological and physiological relevance. A co-culture model of dendritic cells (DCs) and differentiated human airway epithelial cells was developed to examine potential interactions between these two cell t...

  17. Airway mucosal permeability in chronic bronchitics and bronchial asthmatics with hypersecretion

    SciTech Connect

    Honda, I.; Shimura, S.; Sasaki, T.; Sasaki, H.; Takishima, T.; Nakamura, M.

    1988-04-01

    To determine airway mucosal permeability, radiolabeled albumin in sputum was examined on the basis of a 2-h period of sputum collection for as long as 8h after intravenous administration of /sup 131/I-labeled human serum albumin. This technique was applied to 12 patients with bronchial asthma associated with hypersecretion or chronic bronchitis. Group A consisted of 6 asthmatics (2 females and 4 males, 56.0 +/- 6.4 yr of age, mean +/- SEM); Group B consisted of 6 bronchitics (3 females and 3 males, 53.8 +/- 6.5 yr of age). Between Groups A and B, there was no significant difference in sputum volume per day or in obstructive impairment. Radiolabeled albumin concentration (cpm/ml) was obtained from radiocount of each sputum sample and then divided by serum concentration at the time of each sampling (2, 4, 6, and 8 h after administration). Group B showed large values compared with those in Group A. In Group A, the ratios were 2.0 +/- 0.8, 2.5 +/- 0.5, 2.2 +/- 0.2, and 1.5 +/- 0.4% (mean +/- SEM) at 2, 4, 6, and 8 h after the administration, respectively, whereas in Group B, the ratios were 3.0 +/- 0.6, 7.0 +/- 1.8, 7.2 +/- 1.8, and 7.4 +/- 2.4%, respectively. The differences between Groups A and B were statistically significant (two-way analysis of variance). These findings suggest that an increase in airway mucosal permeability is due to mucosal epithelial damage by chronic inflammation in bronchitics and not to the underlying abnormality of asthma.

  18. CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue.

    PubMed

    Cook, D N; Prosser, D M; Forster, R; Zhang, J; Kuklin, N A; Abbondanzo, S J; Niu, X D; Chen, S C; Manfra, D J; Wiekowski, M T; Sullivan, L M; Smith, S R; Greenberg, H B; Narula, S K; Lipp, M; Lira, S A

    2000-05-01

    Chemokine-directed migration of leukocyte subsets may contribute to the qualitative differences between systemic and mucosal immunity. Here, we demonstrate that in mice lacking the chemokine receptor CCR6, dendritic cells expressing CD11c and CD11b are absent from the subepithelial dome of Peyer's patches. These mice also have an impaired humoral immune response to orally administered antigen and to the enteropathic virus rotavirus. In addition, CCR6(-/-) mice have a 2-fold to 15-fold increase in cells of select T lymphocyte populations within the mucosa, including CD4+ and CD8+ alphabeta-TCR T cells. By contrast, systemic immune responses to subcutaneous antigens in CCR6(-/-) mice are normal. These findings demonstrate that CCR6 is a mucosa-specific regulator of humoral immunity and lymphocyte homeostasis in the intestinal mucosa. PMID:10843382

  19. Control of regulatory T cells and airway tolerance by lung macrophages and dendritic cells.

    PubMed

    Duan, Wei; Croft, Michael

    2014-12-01

    Airway tolerance, a state of immunological surveillance, suppresses the development of lung inflammatory disorders that are driven by various pathological effector cells of the immune system. Tolerance in the lung to inhaled antigens is primarily mediated by regulatory T cells (Treg cells) that can inhibit effector T cells via a myriad of mechanisms. Accumulating evidence suggests that regulatory antigen-presenting cells are critical for generating Treg cells and/or maintaining the suppressive environment in the lung. This review focuses on the control of airway tolerance by Treg cells and the role of regulatory lung tissue and alveolar macrophages, and lung and lymph node dendritic cells, in contributing to airway tolerance that is associated with suppression of allergic asthmatic disease. PMID:25525738

  20. Microbial Activation of Gut Dendritic Cells and the Control of Mucosal Immunity

    PubMed Central

    Owen, Jennifer L.

    2013-01-01

    Current data support a role for gut colonization in maintaining balanced mucosal and systemic immune responses and have suggested aberrant innate immune recognition of enteric bacteria as an initiator of the adaptive immune damage associated with inflammatory bowel disease (Crohn's disease and ulcerative colitis). In fact, data from human studies and experimental mouse models have implicated transformation of the gut microbiota from a beneficial symbiotic state to one of imbalance or “dysbiosis” in the pathogenesis of several autoinflammatory diseases, including allergic skin and respiratory disorders, rheumatoid arthritis, type I diabetes, and colorectal cancer. The host has evolved to co-exist and maintain a mutualistic relationship with the commensal microbes of the gut, and it is the function of the host innate immune system to initiate and maintain this homeostasis, while retaining the ability to respond appropriately to pathogenic organisms. In this review, we discuss the molecular and cellular interactions of the mucosal immune system that decide this delicate balance of mutualism. Furthermore, we will highlight the role of dendritic cells in preserving this precarious balance and how gene products of commensal microbes may play an integral role in re-establishing this balance once it has gone awry. PMID:23962004

  1. TGF-β-dependent dendritic cell chemokinesis in murine models of airway disease

    PubMed Central

    Hashimoto, Mitsuo; Yanagisawa, Haruhiko; Minagawa, Shunsuke; Sen, Debasish; Ma, Royce; Murray, Lynne A.; Tsui, Ping; Lou, Jianlong; Marks, James D.; Baron, Jody L.; Krummel, Matthew F.; Nishimura, Stephen L.

    2015-01-01

    Small airway chronic inflammation is a major pathologic feature of chronic obstructive pulmonary disease (COPD) and is refractory to current treatments. Dendritic cells (DCs) accumulate around small airways in COPD. DCs are critical mediators of antigen surveillance and antigen presentation and amplify adaptive immune responses. How DCs accumulate around airways remains largely unknown. We use 2-photon DC imaging of living murine lung sections to directly visualize the dynamic movement of living DCs around airways in response to either soluble mediators (IL-1β) or environmental stimuli (cigarette smoke or TLR3 ligands) implicated in COPD pathogenesis. We find that DCs accumulate around murine airways primarily by increasing velocity (chemokinesis) rather than directional migration (chemotaxis) in response to all three stimuli. DC accumulation maximally occurs in a specific zone located 26-50 μm from small airways, which overlaps with zones of maximal DC velocity. Our data suggest that increased accumulation of DCs around airways results from increased numbers of highly chemokinetic DCs entering the lung from the circulation with balanced rates of immigration and emigration. Increases in DC accumulation and chemokinesis are partially dependent on ccr6, a crucial DC chemokine receptor, and fibroblast expression of the integrin αvβ8, a critical activator of TGF-β αvβ8-mediated TGF-β activation is known to enhance IL-1β-dependent fibroblast expression of the only known endogenous ccr6 chemokine ligand, ccl20. Taken together, these data suggest a mechanism by which αvβ8, ccl20 and ccr6 interact to lead to DC accumulation around airways in response to COPD-relevant stimuli. PMID:26109638

  2. Link between allergic asthma and airway mucosal infection suggested by proteinase-secreting household fungi.

    PubMed

    Porter, P; Susarla, S C; Polikepahad, S; Qian, Y; Hampton, J; Kiss, A; Vaidya, S; Sur, S; Ongeri, V; Yang, T; Delclos, G L; Abramson, S; Kheradmand, F; Corry, D B

    2009-11-01

    Active fungal proteinases are powerful allergens that induce experimental allergic lung disease strongly resembling atopic asthma, but the precise relationship between proteinases and asthma remains unknown. Here, we analyzed dust collected from the homes of asthmatic children for the presence and sources of active proteinases to further explore the relationship between active proteinases, atopy, and asthma. Active proteinases were present in all houses and many were derived from fungi, especially Aspergillus niger. Proteinase-active dust extracts were alone insufficient to initiate asthma-like disease in mice, but conidia of A. niger readily established a contained airway mucosal infection, allergic lung disease, and atopy to an innocuous bystander antigen. Proteinase produced by A. niger enhanced fungal clearance from lung and was required for robust allergic disease. Interleukin 13 (IL-13) and IL-5 were required for optimal clearance of lung fungal infection and eosinophils showed potent anti-fungal activity in vitro. Thus, asthma and atopy may both represent a protective response against contained airway infection due to ubiquitous proteinase-producing fungi. PMID:19710638

  3. Extracellular nucleotides regulate CCL20 release from human primary airway epithelial cells, monocytes and monocyte-derived dendritic cells.

    PubMed

    Marcet, Brice; Horckmans, Michael; Libert, Frédérick; Hassid, Sergio; Boeynaems, Jean-Marie; Communi, Didier

    2007-06-01

    Extracellular nucleotides regulate ion transport and mucociliary clearance in human airway epithelial cells (HAECs) via the activation of P2 receptors, especially P2Y(2). Therefore, P2Y(2) receptor agonists represent potential pharmacotherapeutic agents to treat cystic fibrosis (CF). Nucleotides also modulate inflammatory properties of immune cells like dendritic cells (DCs), which play an important role in mucosal immunity. Using DNA-microarray experiments, quantitative RT-PCR and cytokine measurements, we show here that UTP up-regulated approximately 2- to 3-fold the antimicrobial chemokine CCL20 expression and release in primary HAECs cultured on permeable supports at an air-liquid interface (ALI). Both P2Y(2) (ATPgammaS, UTP, INS365) and P2Y(6) (UDP, INS48823) agonists increased CCL20 release. UTP-induced CCL20 release was insensitive to NF-kappaB pathway inhibitors but sensitive to inhibitors of ERK1/2 and p38/MAPK pathways. Furthermore, UTP had no effect on interleukin-(IL)-8 release and reduced the release of both CCL20 and IL-8 induced by TNF-alpha and LPS. Accordingly, UTP reduced the capacity of basolateral supernatants of HAECs treated with TNF-alpha or LPS to induce the chemoattraction of both CD4(+) T lymphocytes and neutrophils. In addition, we show that, in monocyte-derived DCs, ATPgammaS, and UDP but not UTP/INS365-stimulated CCL20 release. Likewise, UDP but not ATPgammaS was also able to increase CCL20 release from monocytes. Pharmacological experiments suggested an involvement of P2Y(11) or P2Y(6) receptors through NF-kappaB, ERK1/2, and p38/MAPK pathways. Altogether, our data demonstrate that nucleotides may modulate chemokine release and leukocyte recruitment in inflamed airways by acting on both epithelial and immune cells. Our results could be relevant for further clinical investigations in CF. PMID:17295217

  4. Pulmonary dendritic cell distribution and prevalence in guinea pig airways: effect of ovalbumin sensitization and challenge.

    PubMed

    Lawrence, T E; Millecchia, L L; Frazer, D G; Fedan, J S

    1997-08-01

    We characterized the localization and prevalence of dendritic cells (DC) in guinea pig airways before and after s.c. sensitization and aerosol challenge with ovalbumin (OVA). DC, eosinophils, macrophages, T cells and B cells in lung and trachea were identified and quantified in frozen sections using monoclonal antibodies and computer-assisted image analysis. Airway reactivity of conscious animals to inhaled methacholine was examined. In unsensitized animals, DC were localized primarily within the lamina propria of the trachea and bronchi, in the submucosa of the trachea and in the adventitia of the bronchi. In contrast to reported studies on rats, few DC were noted in the epithelium. After OVA challenge, sensitized animals demonstrated an early obstructive response and a late-phase response that was well developed by 18 hr. Challenge with OVA increased DC prevalence in the lamina propria and submucosa of the trachea and in the lamina propria and adventitia of the bronchi. There was widespread eosinophilia throughout the airways, but no changes in B cells or T cells were evident. Macrophages were increased in the epithelium of both OVA-treated and saline-treated animals. At 18 hr after challenge, sensitized guinea pigs but not saline-treated controls were hyperreactive to inhaled methacholine. Except for macrophages, none of these effects were observed after saline treatment. Our findings indicate that inflammation in the airways of OVA-sensitized guinea pigs involves infiltration of DC, which is seen at the time animals are hyperreactive to inhaled methacholine. PMID:9262368

  5. Mucosal-associated invariant T cells in autoimmunity, immune-mediated diseases and airways disease.

    PubMed

    Hinks, Timothy S C

    2016-05-01

    Mucosal-associated invariant T (MAIT) cells are a novel class of innate-like T cells, expressing a semi-invariant T-cell receptor (TCR) and able to recognize small molecules presented on the non-polymorphic MHC-related protein 1. Their intrinsic effector-memory phenotype, enabling secretion of pro-inflammatory cytokines, and their relative abundance in humans imply a significant potential to contribute to autoimmune processes. However, as MAIT cells were unknown until recently and specific immunological tools were unavailable, little is known of their roles in disease. Here I review observations from clinical studies and animal models of autoimmune and immune-mediated diseases including the roles of MAIT cells in systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease and airways diseases. MAIT cell deficiencies are frequently observed in peripheral blood, and at sites of disease such as the airways in asthma. However, MAIT cells have a specific sensitivity to suppression by therapeutic corticosteroids that may confound many of these observations, as may the tendency of the surface marker CD161 to activation-induced down-regulation. Nonetheless, the dependence on bacteria for the development of MAIT cells suggests a potentially important protective role linking the influences of early life microbial exposures and subsequent development of autoimmunity. Conversely, MAIT cells could contribute to chronic inflammation either through TCR-independent activation, or potentially by TCR recognition of as yet undiscovered ligands. Future research will be greatly facilitated by the immunological tools that are now available, including murine genetic models and human and murine specific tetramers. PMID:26778581

  6. A critical role for dendritic cells in the evolution of IL-1β-mediated murine airway disease

    PubMed Central

    Hashimoto, Mitsuo; Yanagisawa, Haruhiko; Minagawa, Shunsuke; Sen, Debasish; Goodsell, Amanda; Ma, Royce; Moermans, Catherine; McKnelly, Kate J.; Baron, Jody L.; Krummel, Matthew F.; Nishimura, Stephen L.

    2015-01-01

    Chronic airway inflammation and fibrosis, known as airway remodeling, are defining features of chronic obstructive pulmonary disease (COPD) and are refractory to current treatments. How and if chronic inflammation contributes to airway fibrosis remains controversial. Here, we use a model of COPD airway disease utilizing adenoviral (Ad) delivery of IL-1β to determine that adaptive T-cell immunity is required for airway remodeling since mice deficient in α/β T-cells (tcra −/−) are protected. Dendritic cells (DCs) accumulate around COPD airways and are critical to prime adaptive immunity, but have not been shown to directly influence airway remodeling. We show that DC depletion or deficiency in the crucial DC chemokine receptor, ccr6, both protect from Ad-IL-1β-induced airway adaptive T-cell immune responses, and fibrosis in mice. These results provide evidence that chronic airway inflammation, mediated by accumulation of α/β T-cells and driven by DCs, is critical to airway fibrosis. PMID:25786688

  7. Mucosal production of uric acid by airway epithelial cells contributes to particulate matter-induced allergic sensitization.

    PubMed

    Gold, M J; Hiebert, P R; Park, H Y; Stefanowicz, D; Le, A; Starkey, M R; Deane, A; Brown, A C; Liu, G; Horvat, J C; Ibrahim, Z A; Sukkar, M B; Hansbro, P M; Carlsten, C; VanEeden, S; Sin, D D; McNagny, K M; Knight, D A; Hirota, J A

    2016-05-01

    Exposure to particulate matter (PM), a major component of air pollution, contributes to increased morbidity and mortality worldwide. PM induces innate immune responses and contributes to allergic sensitization, although the mechanisms governing this process remain unclear. Lung mucosal uric acid has also been linked to allergic sensitization. The links among PM exposure, uric acid, and allergic sensitization remain unexplored. We therefore investigated the mechanisms behind PM-induced allergic sensitization in the context of lung mucosal uric acid. PM10 and house dust mite exposure selectively induced lung mucosal uric acid production and secretion in vivo, which did not occur with other challenges (lipopolysaccharide, virus, bacteria, or inflammatory/fibrotic stimuli). PM10-induced uric acid mediates allergic sensitization and augments antigen-specific T-cell proliferation, which is inhibited by uricase. We then demonstrate that human airway epithelial cells secrete uric acid basally and after stimulation through a previously unidentified mucosal secretion system. Our work discovers a previously unknown mechanism of air pollution-induced, uric acid-mediated, allergic sensitization that may be important in the pathogenesis of asthma. PMID:26509876

  8. Clusterin Modulates Allergic Airway Inflammation by Attenuating CCL20-Mediated Dendritic Cell Recruitment.

    PubMed

    Hong, Gyong Hwa; Kwon, Hyouk-Soo; Moon, Keun-Ai; Park, So Young; Park, Sunjoo; Lee, Kyoung Young; Ha, Eun Hee; Kim, Tae-Bum; Moon, Hee-Bom; Lee, Heung Kyu; Cho, You Sook

    2016-03-01

    Recruitment and activation of dendritic cells (DCs) in the lungs are critical for Th2 responses in asthma, and CCL20 secreted from bronchial epithelial cells (BECs) is known to influence the recruitment of DCs. Because asthma is a disease that is closely associated with oxidative stress, we hypothesized that clusterin, an oxidative stress regulatory molecule, may have a role in the development of allergic airway inflammation. The aim of this study was to examine whether clusterin regulates CCL20 production from the BECs and the subsequent DC recruitment in the lungs. To verify the idea, clusterin knockout (Clu(-/-)), clusterin heterogeneous (Clu(+/-)), and wild-type mice were exposed intranasally to house dust mite (HDM) extract to induce allergic airway inflammation. We found that the total number of immune cells in bronchoalveolar lavage fluid and the lung was increased in Clu(-/-) and Clu(+/-) mice. Of these immune cells, inflammatory DCs (CD11b(+)CD11c(+)) and Ly6C(high) monocyte populations in the lung were significantly increased, which was accompanied by increased levels of various chemokines, including CCL20 in bronchoalveolar lavage fluid, and increased oxidative stress markers in the lung. Moreover, HDM-stimulated human BECs with either up- or downregulated clusterin expression showed that CCL20 secretion was negatively associated with clusterin expression. Interestingly, clusterin also reduced the level of intracellular reactive oxygen species, which is related to induction of CCL20 expression after HDM stimulation. Thus, the antioxidant property of clusterin is suggested to regulate the expression of CCL20 in BECs and the subsequent recruitment of inflammatory DCs in the airway. PMID:26826245

  9. Spatiotemporally separated antigen uptake by alveolar dendritic cells and airway presentation to T cells in the lung

    PubMed Central

    Thornton, Emily E.; Looney, Mark R.; Bose, Oishee; Sen, Debasish; Sheppard, Dean; Locksley, Richard; Huang, Xiaozhu

    2012-01-01

    Asthma pathogenesis is focused around conducting airways. The reasons for this focus have been unclear because it has not been possible to track the sites and timing of antigen uptake or subsequent antigen presentation to effector T cells. In this study, we use two-photon microscopy of the lung parenchyma and note accumulation of CD11b+ dendritic cells (DCs) around the airway after allergen challenge but very limited access of these airway-adjacent DCs to the contents of the airspace. In contrast, we observed prevalent transepithelial uptake of particulate antigens by alveolar DCs. These distinct sites are temporally linked, as early antigen uptake in alveoli gives rise to DC and antigen retention in the airway-adjacent region. Antigen-specific T cells also accumulate in the airway-adjacent region after allergen challenge and are activated by the accumulated DCs. Thus, we propose that later airway hyperreactivity results from selective retention of allergen-presenting DCs and antigen-specific T cells in airway-adjacent interaction zones, not from variation in the abilities of individual DCs to survey the lung. PMID:22585735

  10. Reprogramming tumor-infiltrating dendritic cells for CD103+CD8+ mucosal T cell differentiation and breast cancer rejection

    PubMed Central

    Wu, Te-Chia; Xu, Kangling; Banchereau, Romain; Marches, Florentina; Yu, Chun I; Martinek, Jan; Anguiano, Esperanza; Pedroza-Gonzalez, Alexander; Snipes, G. Jackson; O’Shaughnessy, Joyce; Nishimura, Stephen; Liu, Yong-Jun; Pascual, Virginia; Banchereau, Jacques; Oh, Sangkon; Palucka, Karolina

    2014-01-01

    Our studies showed that tumor-infiltrating dendritic cells (DC) in breast cancer drive inflammatory T helper 2 (iTh2) cells and protumor inflammation. Here we show that intratumoral delivery of the β-glucan curdlan, a ligand of dectin-1, blocks the generation of iTh2 cells, and prevents breast cancer progression in vivo. Curdlan reprograms tumor-infiltrating DC via the ligation of dectin-1, enabling the DC to become resistant to cancer-derived thymic stromal lymphopoietin (TSLP), to produce IL12p70, and to favor the generation of T helper 1 (Th1) cells. DC activated via dectin-1, but not those activated with TLR-7/8 ligand or poly IC, induce CD8+ T cells to express CD103 (αE integrin), a ligand for cancer cells E-cadherin. Generation of these mucosal CD8+ T cells is regulated by DC-derived integrin αvβ8 and TGF-β activation in a dectin-1-dependent fashion. These CD103+CD8+ mucosal T cells accumulate in the tumors thereby increasing cancer necrosis and inhibiting cancer progression in vivo in a humanized mouse model of breast cancer. Importantly, CD103+CD8+ mucosal T cells elicited by reprogrammed DC can reject established cancer. Thus, reprogramming tumor-infiltrating DC represents a new strategy for cancer rejection. PMID:24795361

  11. Postbiotic Modulation of Retinoic Acid Imprinted Mucosal-like Dendritic Cells by Probiotic Lactobacillus reuteri 17938 In Vitro

    PubMed Central

    Haileselassie, Yeneneh; Navis, Marit; Vu, Nam; Qazi, Khaleda Rahman; Rethi, Bence; Sverremark-Ekström, Eva

    2016-01-01

    Lactobacilli are widely used as probiotics with beneficial effects on infection-associated diarrhea, but also used in clinical trials of e.g., necrotizing enterocolitis and inflammatory bowel diseases. The possibility of using probiotic metabolic products, so-called postbiotics, is desirable as it could prevent possible side effects of live bacteria in individuals with a disturbed gut epithelial barrier. Here, we studied how Lactobacillus reuteri DSM 17938 cell-free supernatant (L. reuteri-CFS) influenced retinoic acid (RA)-driven mucosal-like dendritic cells (DC) and their subsequent effect on T regulatory cells (Treg) in vitro. RA clearly imprinted a mucosal-like DC phenotype with higher IL10 production, increased CD103 and CD1d expression, and a downregulated mRNA expression of several inflammatory-associated genes (NFκB1, RELB, and TNF). Treatment with L. reuteri-CFS further influenced the tolerogenic phenotype of RA-DC by downregulating most genes involved in antigen uptake, antigen presentation, and signal transduction as well as several chemokine receptors, while upregulating IL10 production. L. reuteri-CFS also augmented CCR7 expression on RA-DC. In cocultures, RA-DC increased IL10 and FOXP3 expression in Treg, but pre-treatment with L. reuteri-CFS did not further influence the Treg phenotype. In conclusion, L. reuteri-CFS modulates the phenotype and function of mucosal-like DC, implicating its potential application as postbiotic. PMID:27014275

  12. Antigen-specific cytotoxic T lymphocytes target airway CD103+ and CD11b+ dendritic cells to suppress allergic inflammation.

    PubMed

    Daniels, N J; Hyde, E; Ghosh, S; Seo, K; Price, K M; Hoshino, K; Kaisho, T; Okada, T; Ronchese, F

    2016-01-01

    Allergic airway inflammation is driven by the recognition of inhaled allergen by T helper type 2 (Th2) cells in the airway and lung. Allergen-specific cytotoxic T lymphocytes (CTLs) can strongly reduce airway inflammation, however, the mechanism of their inhibitory activity is not fully defined. We used mouse models to show that allergen-specific CTLs reduced early cytokine production by Th2 cells in lung, and their subsequent accumulation and production of interleukin (IL)-4 and IL-13. In addition, treatment with specific CTLs also increased the proportion of caspase(+) dendritic cells (DCs) in mediastinal lymph node (MLN), and decreased the numbers of CD103(+) and CD11b(+) DCs in the lung. This decrease required expression of the cytotoxic mediator perforin in CTLs and of the appropriate MHC-antigen ligand on DCs, suggesting that direct CTL-DC contact was necessary. Lastly, lung imaging experiments revealed that in airway-challenged mice XCR1-GFP(+) DCs, corresponding to the CD103(+) DC subset, and XCR1-GFP(-) CD11c(+) cells, which include CD11b(+) DCs and alveolar macrophages, both clustered in the areas surrounding the small airways and were closely associated with allergen-specific CTLs. Thus, allergen-specific CTLs reduce allergic airway inflammation by depleting CD103(+) and CD11b(+) DC populations in the lung, and may constitute a mechanism through which allergic immune responses are regulated. PMID:26104914

  13. Dendritic cells inversely regulate airway inflammation in cigarette smoke-exposed mice.

    PubMed

    Givi, Masoumeh Ezzati; Akbari, Peyman; Boon, Louis; Puzovic, Vladimir S; Bezemer, Gillina F G; Ricciardolo, Fabio L M; Folkerts, Gert; Redegeld, Frank A; Mortaz, Esmaeil

    2016-01-01

    The recruitment and activation of inflammatory cells into the respiratory system is considered a crucial feature in the pathophysiology of chronic obstructive pulmonary disease (COPD). Because dendritic cells (DCs) have a pivotal role in the onset and regulation of immune responses, we investigated the effect of modulating DC subsets on airway inflammation by acute cigarette smoke (CS) exposure. CS-exposed mice (5 days) were treated with fms-like tyrosine kinase 3 ligand (Flt3L) and 120g8 antibody to increase total DC numbers and deplete plasmacytoid DCs (pDCs), respectively. Flt3L treatment decreased the number of inflammatory cells in the bronchoalveolar lavage (BALF) of the smoke-exposed mice and increased these in lung tissue. DC modulation reduced IL-17 and increased IL-10 levels, which may be responsible for the suppression of the BALF cells. Furthermore, depletion of pDCs led to increased infiltration of alveolar macrophages while restricting the presence of CD103(+) DCs. This study suggests that DC subsets may differentially and compartment-dependent influence the inflammation induced by CS. pDC may play a role in preventing the pathogenesis of CS by inhibiting the alveolar macrophage migration to lung and increasing CD103(+) DCs at inflammatory sites to avoid extensive lung tissue damage. PMID:26475733

  14. CD8α+β− and CD8α+β+ plasmacytoid dendritic cells induce Foxp3+ regulatory T cells and prevent the induction of airway hyperreactivity

    PubMed Central

    Lombardi, Vincent; Speak, Anneliese O.; Kerzerho, Jérôme; Szely, Natacha; Akbari, Omid

    2012-01-01

    Dendritic cells (DCs) control the balance between protection against pathogens and tolerance to innocuous or self-antigens. Here, we demonstrate for the first time that mouse plasmacytoid DCs (pDCs) can be segregated into three distinct populations, exhibiting phenotypic and functional differences, according to their surface expression of CD8α or CD8β as CD8α−β−, CD8α+β− or CD8α+β+. In a mouse model of lung inflammation, adoptive transfer of CD8α+β− or CD8α+β+ pDCs prevents the development of airway hyperreactivity. The tolerogenic features of these subsets are associated with increased production of retinoic acid, which leads to the enhanced induction of Foxp3+ regulatory T cells compared to CD8α−β− pDCs. Our data thus identify subsets of pDCs with potent tolerogenic functions that may contribute to the maintenance of tolerance in mucosal sites such as the lungs. PMID:22472775

  15. Retinoic acid imprints a mucosal-like phenotype on dendritic cells with an increased ability to fuel HIV-1 infection.

    PubMed

    Guerra-Pérez, Natalia; Frank, Ines; Veglia, Filippo; Aravantinou, Meropi; Goode, Diana; Blanchard, James L; Gettie, Agegnehu; Robbiani, Melissa; Martinelli, Elena

    2015-03-01

    The tissue microenvironment shapes the characteristics and functions of dendritic cells (DCs), which are important players in HIV infection and dissemination. Notably, DCs in the gut have the daunting task of orchestrating the balance between immune response and tolerance. They produce retinoic acid (RA), which imprints a gut-homing phenotype and influences surrounding DCs. To investigate how the gut microenvironment impacts the ability of DCs to drive HIV infection, we conditioned human immature monocyte-derived DCs (moDCs) with RA (RA-DCs), before pulsing them with HIV and mixing them with autologous T cells. RA-DCs showed a semimature, mucosal-like phenotype and released higher amounts of TGF-β1 and CCL2. Using flow cytometry, Western blot, and microscopy, we determined that moDCs express the cell adhesion molecule mucosal vascular addressin cell adhesion molecule-1 (MAdCAM-1) and that RA increases its expression. MAdCAM-1 was also detected on a small population of DCs in rhesus macaque (Macaca mulata) mesenteric lymph node. RA-DCs formed more DC-T cell conjugates and promoted significantly higher HIV replication in DC-T cell mixtures compared with moDCs. This correlated with the increase in MAdCAM-1 expression. Blocking MAdCAM-1 partially inhibited the enhanced HIV replication. In summary, RA influences DC phenotype, increasing their ability to exacerbate HIV infection. We describe a previously unknown mechanism that may contribute to rapid HIV spread in the gut, a major site of HIV replication after mucosal exposure. PMID:25624458

  16. Nasal retention of budesonide and fluticasone in man: Formation of airway mucosal budesonide-esters in vivo

    PubMed Central

    Petersen, Hannes; Kullberg, Annika; Edsbäcker, Staffan; Greiff, Lennart

    2001-01-01

    Aims The efficacy of topical glucocorticosteroids in rhinitis and asthma is likely to depend on drug retention in the airway mucosa. With fluticasone propionate, retention may be achieved exclusively by lipophilicity, whereas for budesonide an additional possibility may be provided by its ability to form fatty acid esters in the airway mucosa that release the active drug. The aim of the present study was to determine the nasal mucosal retention of budesonide and fluticasone propionate, and the occurrence of budesonide-esters (budesonide-oleate, budesonide-palmitate) in the nasal mucosa. Methods In the present study, involving 24 healthy subjects, we have examined nasal mucosal drug retention of single doses of topical budesonide (256 µg) and fluticasone propionate (200 µg). Treatments were given consecutively and the administration sequence was randomised. Subjects were randomised into four parallel groups and two nasal biopsies were taken from each subject, i.e. before and at 2 h, at 2 and 6 h, at 6 and 24 h, or before and at 24 h after drug administration, resulting in 12 biopsies/time point. The measurement of unesterified budesonide, budesonide-oleate, budesonide-palmitate, and fluticasone propionate was based on microwave extraction procedures combined with liquid-chromatography/tandem mass-spectrometry. Results Neither of the analytes was detected in samples taken before glucocorticosteroid administration. After administration, unesterified budesonide, budesonide-esters, and fluticasone propionate were detected in the tissue from 23, 20, and 19 subjects, respectively. The mean tissue levels of budesonide at 2 and 6 h were 1051 and 176 pmol g−1; the mean levels of fluticasone propionate at these time points were 237 and 10 pmol g−1. The dose-corrected budesonide/fluticasone propionate tissue concentration ratios were 3.5 (P = 0.07) and 13.7 (P < 0.0002), respectively. At 24 h, budesonide and fluticasone propionate were detected in 8/12 and 3/12 of the

  17. Effect of surface tension of mucosal lining liquid on upper airway mechanics in anesthetized humans.

    PubMed

    Kirkness, Jason P; Eastwood, Peter R; Szollosi, Irene; Platt, Peter R; Wheatley, John R; Amis, Terence C; Hillman, David R

    2003-07-01

    Upper airway (UA) patency may be influenced by surface tension (gamma) operating within the (UAL). We examined the role of gamma of UAL in the maintenance of UA patency in eight isoflurane-anesthetized supine human subjects breathing via a nasal mask connected to a pneumotachograph attached to a pressure delivery system. We evaluated 1). mask pressure at which the UA closed (Pcrit), 2). UA resistance upstream from the site of UA collapse (RUS), and 3). mask pressure at which the UA reopened (Po). A multiple pressure-transducer catheter was used to identify the site of airway closure (velopharyngeal in all subjects). UAL samples (0.2 microl) were collected, and the gamma of UAL was determined by using the "pull-off force" technique. Studies were performed before and after the intrapharyngeal instillation of 5 ml of exogenous surfactant (Exosurf, Glaxo Smith Kline). The gamma of UAL decreased from 61.9 +/- 4.1 (control) to 50.3 +/- 5.0 mN/m (surfactant; P < 0.02). Changes in Po, RUS, and Po - Pcrit (change = control - surfactant) were positively correlated with changes in gamma (r2 > 0.6; P < 0.02) but not with changes in Pcrit (r2 = 0.4; P > 0.9). In addition, mean peak inspiratory airflow (no flow limitation) significantly increased (P < 0.04) from 0.31 +/- 0.06 (control) to 0.36 +/- 0.06 l/s (surfactant). These findings suggest that gamma of UAL exerts a force on the UA wall that hinders airway opening. Instillation of exogenous surfactant into the UA lowers the gamma of UAL, thus increasing UA patency and augmenting reopening of the collapsed airway. PMID:12626492

  18. Notch-ligand expression by NALT dendritic cells regulates mucosal Th1- and Th2-type responses

    SciTech Connect

    Fukuyama, Yoshiko; Tokuhara, Daisuke; Sekine, Shinichi; Kataoka, Kosuke; Markham, Jonathan D.; Irwin, Allyson R.; Moon, Grace H.; Tokuhara, Yuka; Fujihashi, Keiko; Davydova, Julia; Yamamoto, Masato; Gilbert, Rebekah S.; Fujihashi, Kohtaro

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Nasal Ad-FL effectively up-regulates APC function by CD11c{sup +} DCs in mucosal tissues. Black-Right-Pointing-Pointer Nasal Ad-FL induces Notch ligand (L)-expressing CD11c{sup +} DCs. Black-Right-Pointing-Pointer Notch L-expressing DCs support the induction of Th1- and Th2-type cytokine responses. -- Abstract: Our previous studies showed that an adenovirus (Ad) serotype 5 vector expressing Flt3 ligand (Ad-FL) as nasal adjuvant activates CD11c{sup +} dendritic cells (DCs) for the enhancement of antigen (Ag)-specific IgA antibody (Ab) responses. In this study, we examined the molecular mechanism for activation of CD11c{sup +} DCs and their roles in induction of Ag-specific Th1- and Th2-cell responses. Ad-FL activated CD11c{sup +} DCs expressed increased levels of the Notch ligand (L)-expression and specific mRNA. When CD11c{sup +} DCs from various mucosal and systemic lymphoid tissues of mice given nasal OVA plus Ad-FL were cultured with CD4{sup +} T cells isolated from non-immunized OVA TCR-transgenic (OT II) mice, significantly increased levels of T cell proliferative responses were noted. Furthermore, Ad-FL activated DCs induced IFN-{gamma}, IL-2 and IL-4 producing CD4{sup +} T cells. Of importance, these APC functions by Ad-FL activated DCs were down-regulated by blocking Notch-Notch-L pathway. These results show that Ad-FL induces CD11c{sup +} DCs to the express Notch-ligands and these activated DCs regulate the induction of Ag-specific Th1- and Th2-type cytokine responses.

  19. Gut dendritic cell activation links an altered colonic microbiome to mucosal and systemic T-cell activation in untreated HIV-1 infection.

    PubMed

    Dillon, S M; Lee, E J; Kotter, C V; Austin, G L; Gianella, S; Siewe, B; Smith, D M; Landay, A L; McManus, M C; Robertson, C E; Frank, D N; McCarter, M D; Wilson, C C

    2016-01-01

    HIV-1-associated disruption of intestinal homeostasis is a major factor contributing to chronic immune activation and inflammation. Dendritic cells (DCs) are crucial in maintaining intestinal homeostasis, but the impact of HIV-1 infection on intestinal DC number and function has not been extensively studied. We compared the frequency and activation/maturation status of colonic myeloid DC (mDC) subsets (CD1c(+) and CD1c(neg)) and plasmacytoid DCs in untreated HIV-1-infected subjects with uninfected controls. Colonic mDCs in HIV-1-infected subjects had increased CD40 but decreased CD83 expression, and CD40 expression on CD1c(+) mDCs positively correlated with mucosal HIV-1 viral load, with mucosal and systemic cytokine production, and with frequencies of activated colon and blood T cells. Percentage of CD83(+)CD1c(+) mDCs negatively correlated with frequencies of interferon-γ-producing colon CD4(+) and CD8(+) T cells. CD40 expression on CD1c(+) mDCs positively associated with abundance of high prevalence mucosal Prevotella copri and Prevotella stercorea but negatively associated with a number of low prevalence mucosal species, including Rumminococcus bromii. CD1c(+) mDC cytokine production was greater in response to in vitro stimulation with Prevotella species relative to R. bromii. These findings suggest that, during HIV infection, colonic mDCs become activated upon exposure to mucosal pathobiont bacteria leading to mucosal and systemic immune activation. PMID:25921339

  20. Gut Dendritic Cell Activation Links an Altered Colonic Microbiome to Mucosal and Systemic T Cell Activation in Untreated HIV-1 infection

    PubMed Central

    Dillon, SM; Lee, EJ; Kotter, CV; Austin, GL; Gianella, S; Siewe, B; Smith, DM; Landay, AL; McManus, MC; Robertson, CE; Frank, DN; McCarter, MD; Wilson, CC

    2015-01-01

    HIV-1-associated disruption of intestinal homeostasis is a major factor contributing to chronic immune activation and inflammation. Dendritic cells (DCs) are crucial in maintaining intestinal homeostasis, but the impact of HIV-1 infection on intestinal DC number and function has not been extensively studied. We compared the frequency and activation/maturation status of colonic myeloid DC (mDC) subsets (CD1c+ and CD1cneg) and plasmacytoid DCs in untreated HIV-1-infected subjects with uninfected controls. Colonic mDCs in HIV-1-infected subjects had increased CD40 but decreased CD83 expression, and CD40 expression on CD1c+ mDCs positively correlated with mucosal HIV-1 viral load, with mucosal and systemic cytokine production, and with frequencies of activated colon and blood T cells. Percent of CD83+CD1c+ mDCs negatively correlated with frequencies of IFN-γ-producing colon CD4+ and CD8+ T cells. CD40 expression on CD1c+ mDCs positively associated with abundance of high prevalence mucosal Prevotella copri and P. stercorea, but negatively associated with a number of low prevalence mucosal species including Rumminococcus bromii. CD1c+ mDC cytokine production was greater in response to in vitro stimulation with Prevotella species relative to R. bromii. These findings suggest that during HIV infection, colonic mDCs become activated upon exposure to mucosal pathobiont bacteria leading to mucosal and systemic immune activation. PMID:25921339

  1. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells

    PubMed Central

    Varol, Chen; Landsman, Limor; Fogg, Darin K.; Greenshtein, Liat; Gildor, Boaz; Margalit, Raanan; Kalchenko, Vyacheslav; Geissmann, Frederic; Jung, Steffen

    2007-01-01

    The mononuclear phagocyte (MP) system is a body-wide macrophage (MΦ) and dendritic cell (DC) network, which contributes to tissue homeostasis, inflammation, and immune defense. The in vivo origins of MPs remain poorly understood. Here, we use an adoptive precursor cell transfer strategy into MP-depleted mice to establish the in vivo differentiation sequence from a recently identified MΦ/DC-restricted bone marrow (BM) precursor (MDP) via BM and blood intermediates to peripheral MΦs and DCs. We show that MDPs are in vivo precursors of BM and blood monocytes. Interestingly, grafted Gr1high “inflammatory” blood monocytes shuttle back to the BM in the absence of inflammation, convert into Gr1low monocytes, and contribute further to MP generation. The grafted monocytes give rise to DCs in the intestinal lamina propria and lung, but not to conventional CD11chigh DCs in the spleen, which develop during homeostasis from MDPs without a monocytic intermediate. PMID:17190836

  2. Roflumilast combined with adenosine increases mucosal hydration in human airway epithelial cultures after cigarette smoke exposure

    PubMed Central

    Tyrrell, Jean; Qian, Xiaozhong; Freire, Jose

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is a growing cause of morbidity and mortality worldwide. Recent studies have shown that cigarette smoke (CS) induces cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction, which leads to airway-surface liquid (ASL) dehydration. This in turn contributes to the mucus dehydration and impaired mucociliary clearance that are seen in the chronic bronchitis form of COPD. Roflumilast is a phosphodiesterase 4 inhibitor that may improve lung function and reduce the frequency of exacerbations in patients with COPD. Although roflumilast can affect cAMP metabolism, little is known about the downstream pharmacological effects in the airways. We hypothesized that roflumilast would increase ASL rehydration in human bronchial epithelial cultures (HBECs) after chronic CS exposure. cAMP production was measured by Förster resonance energy transfer in HEK293T cells and by ELISA in HBECs. ASL height was measured by xz-confocal microscopy after air exposure or following HBEC exposure to freshly produced CS. Roflumilast had little effect on cAMP or ASL height when applied on its own; however, roflumilast significantly potentiated adenosine-induced increases in cAMP and ASL height in CS-exposed HBECs. Roflumilast increased the rate of ASL height recovery in cultures after CS exposure compared with controls. In contrast, the β2-adrenergic receptor agonists isoproterenol and salmeterol failed to increase ASL height after CS exposure. Our data suggest that roflumilast can increase ASL hydration in CS-exposed HBECs, which is predicted to be beneficial for the treatment of mucus dehydration/mucus stasis in patients with COPD chronic bronchitis. PMID:25795727

  3. Roflumilast combined with adenosine increases mucosal hydration in human airway epithelial cultures after cigarette smoke exposure.

    PubMed

    Tyrrell, Jean; Qian, Xiaozhong; Freire, Jose; Tarran, Robert

    2015-05-15

    Chronic obstructive pulmonary disease (COPD) is a growing cause of morbidity and mortality worldwide. Recent studies have shown that cigarette smoke (CS) induces cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction, which leads to airway-surface liquid (ASL) dehydration. This in turn contributes to the mucus dehydration and impaired mucociliary clearance that are seen in the chronic bronchitis form of COPD. Roflumilast is a phosphodiesterase 4 inhibitor that may improve lung function and reduce the frequency of exacerbations in patients with COPD. Although roflumilast can affect cAMP metabolism, little is known about the downstream pharmacological effects in the airways. We hypothesized that roflumilast would increase ASL rehydration in human bronchial epithelial cultures (HBECs) after chronic CS exposure. cAMP production was measured by Förster resonance energy transfer in HEK293T cells and by ELISA in HBECs. ASL height was measured by xz-confocal microscopy after air exposure or following HBEC exposure to freshly produced CS. Roflumilast had little effect on cAMP or ASL height when applied on its own; however, roflumilast significantly potentiated adenosine-induced increases in cAMP and ASL height in CS-exposed HBECs. Roflumilast increased the rate of ASL height recovery in cultures after CS exposure compared with controls. In contrast, the β2-adrenergic receptor agonists isoproterenol and salmeterol failed to increase ASL height after CS exposure. Our data suggest that roflumilast can increase ASL hydration in CS-exposed HBECs, which is predicted to be beneficial for the treatment of mucus dehydration/mucus stasis in patients with COPD chronic bronchitis. PMID:25795727

  4. Dendritic cell-bound IgE functions to restrain allergic inflammation at mucosal sites

    PubMed Central

    Platzer, Barbara; Baker, Kristi; Vera, Miguel Pinilla; Singer, Kathleen; Panduro, Marisella; Lexmond, Willem S.; Turner, Devin; Vargas, Sara O.; Kinet, Jean-Pierre; Maurer, Dieter; Baron, Rebecca M.; Blumberg, Richard S.; Fiebiger, Edda

    2014-01-01

    Antigen-mediated crosslinking of Immunoglobulin E (IgE) bound to mast cells/basophils via FcεRI, the high affinity IgE Fc-receptor, is a well-known trigger of allergy. In humans, but not mice, dendritic cells (DCs) also express FcεRI that is constitutively occupied with IgE. In contrast to mast cells/basophils, the consequences of IgE/FcεRI signals for DC function remain poorly understood. We show that humanized mice that express FcεRI on DCs carry IgE like non-allergic humans and do not develop spontaneous allergies. Antigen-specific IgE/FcεRI crosslinking fails to induce maturation or production of inflammatory mediators in human DCs and FcεRI-humanized DCs. Furthermore, conferring expression of FcεRI to DCs decreases the severity of food allergy and asthma in disease-relevant models suggesting anti-inflammatory IgE/FcεRI signals. Consistent with the improved clinical parameters in vivo, antigen-specific IgE/FcεRI crosslinking on papain or LPS-stimulated DCs inhibits the production of pro-inflammatory cytokines and chemokines. Migration assays confirm that the IgE-dependent decrease in cytokine production results in diminished recruitment of mast cell progenitors; providing a mechanistic explanation for the reduced mast cell-dependent allergic phenotype observed in FcεRI-humanized mice. Our study demonstrates a novel immune regulatory function of IgE and proposes that DC-intrinsic IgE signals serve as a feedback mechanism to restrain allergic tissue inflammation. PMID:25227985

  5. Allergic airways disease develops after an increase in allergen capture and processing in the airway mucosa.

    PubMed

    von Garnier, Christophe; Wikstrom, Matthew E; Zosky, Graeme; Turner, Debra J; Sly, Peter D; Smith, Miranda; Thomas, Jennifer A; Judd, Samantha R; Strickland, Deborah H; Holt, Patrick G; Stumbles, Philip A

    2007-11-01

    Airway mucosal dendritic cells (AMDC) and other airway APCs continuously sample inhaled Ags and regulate the nature of any resulting T cell-mediated immune response. Although immunity develops to harmful pathogens, tolerance arises to nonpathogenic Ags in healthy individuals. This homeostasis is thought to be disrupted in allergic respiratory disorders such as allergic asthma, such that a potentially damaging Th2-biased, CD4(+) T cell-mediated inflammatory response develops against intrinsically nonpathogenic allergens. Using a mouse model of experimental allergic airways disease (EAAD), we have investigated the functional changes occurring in AMDC and other airway APC populations during disease onset. Onset of EAAD was characterized by early and transient activation of airway CD4(+) T cells coinciding with up-regulation of CD40 expression exclusively on CD11b(-) AMDC. Concurrent enhanced allergen uptake and processing occurred within all airway APC populations, including B cells, macrophages, and both CD11b(+) and CD11b(-) AMDC subsets. Immune serum transfer into naive animals recapitulated the enhanced allergen uptake observed in airway APC populations and mediated activation of naive allergen-specific, airway CD4(+) T cells following inhaled allergen challenge. These data suggest that the onset of EAAD is initiated by enhanced allergen capture and processing by a number of airway APC populations and that allergen-specific Igs play a role in the conversion of normally quiescent AMDC subsets into those capable of inducing airway CD4(+) T cell activation. PMID:17947647

  6. Lipopolysaccharide stimulation of dendritic cells induces interleukin-10 producing allergen-specific T cells in vitro but fails to prevent allergic airway disease.

    PubMed

    Ahrens, Birgit; Freund, Tobias; Rha, Ro-Dug; Dittrich, Anna-Maria; Quarcoo, David; Hutloff, Andreas; Hamelmann, Eckard

    2009-05-01

    Dendritic cells (DCs) play an important role in directing naive T cells towards a Th1/Th2 or regulatory T cells (Treg) cell phenotype. In this context, interleukin (IL)-10 has been shown to exhibit immune regulatory capacities. The aim of this study was to delineate the influence of high-IL-10-producing DCs on DC-T-cell interactions in inhibiting allergen-induced airway inflammation and hyperreactivity in a murine model of allergic airway disease. Bone marrow-derived dendritic cells (BMDCs) were generated from hemopoietic progenitors by culture with granulocyte-macrophage colony-stimulating factor (GM-CSF), and stimulated with ovalbumin (OVA) +/- lipopolysaccharide (LPS). The effects of ovalbumin-pulsed BMDCs on cytokine production by allergen-specific naive T cells were studied in vitro. The development of airway inflammation in Balb/c mice was determined after intranasal administration of BMDCs in vivo. LPS stimulation of BMDCs strongly enhanced IL-10 production. Coculture of LPS-modulated DCs exhibiting increased IL-10 production with allergen-specific naive T cells reduced the production of interferon (IFN)-gamma and IL-5, but enhanced the production of IL-10. After blockade with anti-IL-10 plus anti-IL-10-receptor antibodies, the level of IFN-gamma and IL-5 production by cocultured T cells was restored, underlining the regulatory function of IL-10. Intranasal administration of high-IL-10-producing LPS-stimulated, OVA-primed BMDCs prior to repetitive airway allergen challenges resulted in an even enhanced airway inflammation. These data demonstrate that increased IL-10 production by DCs may be a critical element for T-cell activation and differentiation in the context of allergen-induced immune responses in vitro. However, this DC modulation did not translate into suppression of allergic airway disease in vivo. PMID:19415548

  7. Dendritic cells induce Th2-mediated airway inflammatory responses to house dust mite via DNA-dependent protein kinase

    PubMed Central

    Mishra, Amarjit; Brown, Alexandra L.; Yao, Xianglan; Yang, Shutong; Park, Sung-Jun; Liu, Chengyu; Dagur, Pradeep K.; McCoy, J. Philip; Keeran, Karen J.; Nugent, Gayle Z.; Jeffries, Kenneth R.; Qu, Xuan; Yu, Zu-Xi; Levine, Stewart J.; Chung, Jay H.

    2015-01-01

    DNA-dependent protein kinase (DNA-PK) mediates double stranded DNA break repair, V(D)J recombination, and immunoglobulin class switch recombination, as well as innate immune and pro-inflammatory responses. However, there is limited information regarding the role of DNA-PK in adaptive immunity mediated by dendritic cells (DCs), which are the primary antigen-presenting cells in allergic asthma. Here we show that house dust mite induces DNA-PK phosphorylation, which is a marker of DNA-PK activation, in DCs via the generation of intracellular reactive oxygen species. We also demonstrate that pharmacological inhibition of DNA-PK, as well as the specific deletion of DNA-PK in DCs, attenuates the induction of allergic sensitization and Th2 immunity via a mechanism that involves the impaired presentation of mite antigens. Furthermore, pharmacological inhibition of DNA-PK following antigen priming similarly reduces the manifestations of mite-induced airway disease. Collectively, these findings suggest that DNA-PK may be a potential target for treatment of allergic asthma. PMID:25692509

  8. Effective treatment of allergic airway inflammation with Helicobacter pylori immunomodulators requires BATF3-dependent dendritic cells and IL-10.

    PubMed

    Engler, Daniela B; Reuter, Sebastian; van Wijck, Yolanda; Urban, Sabine; Kyburz, Andreas; Maxeiner, Joachim; Martin, Helen; Yogev, Nir; Waisman, Ari; Gerhard, Markus; Cover, Timothy L; Taube, Christian; Müller, Anne

    2014-08-12

    The prevalence of allergic asthma and other atopic diseases has reached epidemic proportions in large parts of the developed world. The gradual loss of the human indigenous microbiota has been held responsible for this trend. The bacterial pathogen Helicobacter pylori is a constituent of the normal gastric microbiota whose presence has been inversely linked to allergy and asthma in humans and experimental models. Here we show that oral or i.p. tolerization with H. pylori extract prevents the airway hyperresponsiveness, bronchoalveolar eosinophilia, pulmonary inflammation, and Th2 cytokine production that are hallmarks of allergen-induced asthma in mice. Asthma protection is not conferred by extracts from other enteropathogens and requires a heat-sensitive H. pylori component and the DC-intrinsic production of IL-10. The basic leucine zipper ATF-like 3 (BATF3)-dependent CD103(+)CD11b(-) dendritic cell lineage is enriched in the lungs of protected mice and strictly required for protection. Two H. pylori persistence determinants, the γ-glutamyl-transpeptidase GGT and the vacuolating cytotoxin VacA, are required and sufficient for asthma protection and can be administered in purified form to prevent asthma. In conclusion, we provide preclinical evidence for the concept that the immunomodulatory properties of H. pylori can be exploited for tolerization strategies aiming to prevent allergen-induced asthma. PMID:25074917

  9. Effective treatment of allergic airway inflammation with Helicobacter pylori immunomodulators requires BATF3-dependent dendritic cells and IL-10

    PubMed Central

    Engler, Daniela B.; Reuter, Sebastian; van Wijck, Yolanda; Urban, Sabine; Kyburz, Andreas; Maxeiner, Joachim; Martin, Helen; Yogev, Nir; Waisman, Ari; Gerhard, Markus; Cover, Timothy L.; Taube, Christian; Müller, Anne

    2014-01-01

    The prevalence of allergic asthma and other atopic diseases has reached epidemic proportions in large parts of the developed world. The gradual loss of the human indigenous microbiota has been held responsible for this trend. The bacterial pathogen Helicobacter pylori is a constituent of the normal gastric microbiota whose presence has been inversely linked to allergy and asthma in humans and experimental models. Here we show that oral or i.p. tolerization with H. pylori extract prevents the airway hyperresponsiveness, bronchoalveolar eosinophilia, pulmonary inflammation, and Th2 cytokine production that are hallmarks of allergen-induced asthma in mice. Asthma protection is not conferred by extracts from other enteropathogens and requires a heat-sensitive H. pylori component and the DC-intrinsic production of IL-10. The basic leucine zipper ATF-like 3 (BATF3)-dependent CD103+CD11b− dendritic cell lineage is enriched in the lungs of protected mice and strictly required for protection. Two H. pylori persistence determinants, the γ-glutamyl-transpeptidase GGT and the vacuolating cytotoxin VacA, are required and sufficient for asthma protection and can be administered in purified form to prevent asthma. In conclusion, we provide preclinical evidence for the concept that the immunomodulatory properties of H. pylori can be exploited for tolerization strategies aiming to prevent allergen-induced asthma. PMID:25074917

  10. Fluticasone propionate and pentamidine isethionate reduce airway hyperreactivity, pulmonary eosinophilia and pulmonary dendritic cell response in a guinea pig model of asthma.

    PubMed

    Lawrence, T E; Millecchia, L L; Fedan, J S

    1998-01-01

    In this study, we examined the effects of fluticasone propionate (FP) and pentamidine isethionate (PI) on antigen-induced lung inflammation and airway hyperreactivity in guinea pigs. Male guinea pigs were sensitized on days 0 and 14 with 10 micrograms of ovalbumin (OVA) plus 1 mg of Al(OH)3. On day 21, animals were challenged with a 2% OVA aerosol inhalation until they developed pulmonary obstruction. Animals were treated with aerosol inhalation of FP (2 ml of 0.5 mg/ml, five consecutive doses at 12-hr intervals with the last dose given 6 hr before OVA challenge) or PI (30 mg/ml for 30 min 1 hr before OVA challenge), and control animals received no drug before OVA challenge. Airway reactivity to methacholine (MCh) was assessed before sensitization and 18 hr after OVA challenge. At 18 hr after challenge, histological sections of trachea and lung were examined for eosinophil, dendritic cell (DC) and macrophage cell densities in the airways. In control animals, OVA evoked airway hyperreactivity to MCh in conjunction with pulmonary eosinophilia and increases in DC prevalence in the trachea and bronchi. Treatment with FP or PI abolished the OVA-induced hyperresponsiveness and significantly reduced the OVA-induced increases in eosinophils and DCs in the airways. FP and PI had no effect on saline-treated animals. Our study indicates that both inhaled FP and inhaled PI reduce antigen-induced airway hyperreactivity and pulmonary inflammation in guinea pigs. The results also suggest that the DC is a target of the anti-inflammatory effects of these drugs in the airways. PMID:9435182

  11. Activation-Induced TIM-4 Expression Identifies Differential Responsiveness of Intestinal CD103+ CD11b+ Dendritic Cells to a Mucosal Adjuvant

    PubMed Central

    Schmidt, Alfonso J.; Ronchese, Franca

    2016-01-01

    Macrophage and dendritic cell (DC) populations residing in the intestinal lamina propria (LP) are highly heterogeneous and have disparate yet collaborative roles in the promotion of adaptive immune responses towards intestinal antigen. Under steady-state conditions, macrophages are efficient at acquiring antigen but are non-migratory. In comparison, intestinal DC are inefficient at antigen uptake but migrate to the mesenteric lymph nodes (mLN) where they present antigen to T cells. Whether such distinction in the roles of DC and macrophages in the uptake and transport of antigen is maintained under immunostimulatory conditions is less clear. Here we show that the scavenger and phosphatidylserine receptor T cell Immunoglobulin and Mucin (TIM)-4 is expressed by the majority of LP macrophages at steady-state, whereas DC are TIM-4 negative. Oral treatment with the mucosal adjuvant cholera toxin (CT) induces expression of TIM-4 on a proportion of CD103+ CD11b+ DC in the LP. TIM-4+ DC selectively express high levels of co-stimulatory molecules after CT treatment and are detected in the mLN a short time after appearing in the LP. Importantly, intestinal macrophages and DC expressing TIM-4 are more efficient than their TIM-4 negative counterparts at taking up apoptotic cells and soluble antigen ex vivo. Taken together, our results show that CT induces phenotypic changes to migratory intestinal DC that may impact their ability to take up local antigens and in turn promote the priming of mucosal immunity. PMID:27379516

  12. Proton-Sensing Ovarian Cancer G Protein-Coupled Receptor 1 on Dendritic Cells Is Required for Airway Responses in a Murine Asthma Model

    PubMed Central

    Hisada, Takeshi; Nakakura, Takashi; Kamide, Yosuke; Ichimonji, Isao; Tomura, Hideaki; Tobo, Masayuki; Sato, Koichi; Tsurumaki, Hiroaki; Dobashi, Kunio; Mori, Tetsuya; Harada, Akihiro; Yamada, Masanobu; Mori, Masatomo; Ishizuka, Tamotsu; Okajima, Fumikazu

    2013-01-01

    Ovarian cancer G protein-coupled receptor 1 (OGR1) stimulation by extracellular protons causes the activation of G proteins and subsequent cellular functions. However, the physiological and pathophysiological roles of OGR1 in airway responses remain largely unknown. In the present study, we show that OGR1-deficient mice are resistant to the cardinal features of asthma, including airway eosinophilia, airway hyperresponsiveness (AHR), and goblet cell metaplasia, in association with a remarkable inhibition of Th2 cytokine and IgE production, in an ovalbumin (OVA)-induced asthma model. Intratracheal transfer to wild-type mice of OVA-primed bone marrow-derived dendritic cells (DCs) from OGR1-deficient mice developed lower AHR and eosinophilia after OVA inhalation compared with the transfer of those from wild-type mice. Migration of OVA-pulsed DCs to peribronchial lymph nodes was also inhibited by OGR1 deficiency in the adoption experiments. The presence of functional OGR1 in DCs was confirmed by the expression of OGR1 mRNA and the OGR1-sensitive Ca2+ response. OVA-induced expression of CCR7, a mature DC chemokine receptor, and migration response to CCR7 ligands in an in vitro Transwell assay were attenuated by OGR1 deficiency. We conclude that OGR1 on DCs is critical for migration to draining lymph nodes, which, in turn, stimulates Th2 phenotype change and subsequent induction of airway inflammation and AHR. PMID:24244587

  13. Candida albicans Airway Exposure Primes the Lung Innate Immune Response against Pseudomonas aeruginosa Infection through Innate Lymphoid Cell Recruitment and Interleukin-22-Associated Mucosal Response

    PubMed Central

    Mear, Jean Baptiste; Gosset, Philippe; Kipnis, Eric; Faure, Emmanuel; Dessein, Rodrigue; Jawhara, Samir; Fradin, Chantal; Faure, Karine; Poulain, Daniel; Sendid, Boualem

    2014-01-01

    Pseudomonas aeruginosa and Candida albicans are two pathogens frequently encountered in the intensive care unit microbial community. We have demonstrated that C. albicans airway exposure protected against P. aeruginosa-induced lung injury. The goal of the present study was to characterize the cellular and molecular mechanisms associated with C. albicans-induced protection. Airway exposure by C. albicans led to the recruitment and activation of natural killer cells, innate lymphoid cells (ILCs), macrophages, and dendritic cells. This recruitment was associated with the secretion of interleukin-22 (IL-22), whose neutralization abolished C. albicans-induced protection. We identified, by flow cytometry, ILCs as the only cellular source of IL-22. Depletion of ILCs by anti-CD90.2 antibodies was associated with a decreased IL-22 secretion and impaired survival after P. aeruginosa challenge. Our results demonstrate that the production of IL-22, mainly by ILCs, is a major and inducible step in protection against P. aeruginosa-induced lung injury. This cytokine may represent a clinical target in Pseudomonas aeruginosa-induced lung injury. PMID:24166952

  14. Histamine-induced airway mucosal exudation of bulk plasma and plasma-derived mediators is not inhibited by intravenous bronchodilators.

    PubMed

    Svensson, C; Alkner, U; Pipkorn, U; Persson, C G

    1994-01-01

    Experimental data suggest the possibility that common bronchodilators, such as the xanthines and beta 2-adrenoceptor agonists, may produce microvascular anti-permeability effects in the subepithelial microcirculation of the airways. In this study, we have examined the effect of bronchodilators given intravenously on exudation of different-sized plasma proteins (albumin and fibrinogen) and the generation of plasma-derived peptides (bradykinins) in human nasal airways challenged with histamine. In a double-blind, crossover, placebo-controlled and randomised trial, 12 normal volunteers were given i.v.infusions of terbutaline sulphate, theophylline and enprofylline to produce therapeutic drug levels. The effect of topical nasal provocation with histamine was closely followed by frequently nasal lavage with saline. The lavage fluid levels of albumin, fibrinogen and bradykinins increased significantly after each histamine provocation. The ratio of albumin-to-fibrinogen in plasma and the lavage fluid was 24 and 56, respectively, indicating that topical histamine provocation induced a largely non-sieved flux of macromolecules across the endothelial-epithelial barriers. The systemically administered drugs did not affect the nasal symptoms (sneezing, secretion and blockage), nor did they significantly reduce the levels of plasma proteins and plasma-derived mediators in the nasal lavage fluids. The present data suggest that systemic xanthines and beta 2-adrenoceptor agonists, at clinically employed plasma levels, may not affect the microvascular (and epithelial) exudative permeability and the bradykinin forming capacity of human airways. PMID:8005188

  15. Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions.

    PubMed

    Jeong, Young-Il; Kim, Seung Hyun; Ju, Jung Won; Cho, Shin Hyeong; Lee, Won Ja; Park, Jin Wook; Park, Yeong-Min; Lee, Sang Eun

    2011-04-22

    Asthma is characterized by Th2-mediated inflammation, resulting in airway hyperresponsiveness (AHR) through airway remodeling. Recent epidemiological and experimental reports have suggested an inverse relationship between the development of allergy and helminth infections. Infection by Clonorchis sinensis, a liver fluke that resides in the bile duct of humans, is endemic predominantly in Asia including Korea and China. Using a murine model for asthma, we investigated the effects of C. sinensis-derived total protein (Cs-TP) on allergen-induced airway inflammation and the mechanism underlying the protective effects of Cs-TP administration on asthma. Treatment with Cs-TP attenuated OVA-induced airway inflammation and methacholine-induced AHR, as well as eosinophilia development, lymphocyte infiltration into the lung, and goblet cell metaplasia. This protective effect of Cs-TP is associated with markedly reduced OVA-specific IgE and Th1/Th2 cytokine production. Moreover, Cs-TP increased the number of CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells as well as their suppressive activity. In fact, proliferation of OVA-restimulated splenocytes was suppressed significantly. Cs-TP also inhibited the expression of such co-stimulatory molecules as CD80, CD86, and CD40 in LPS- or OVA-stimulated dendritic cells (DCs), suggesting that Cs-TP could interfere with the capacity of airway DCs to prime naïve T cells. These data demonstrate the capacity of C. sinensis to ameliorate allergic asthma and broaden our understanding of the paradoxical relationship between the allergic immune response and helminth infection. PMID:21440530

  16. Boosting airway T-regulatory cells by gastrointestinal stimulation as a strategy for asthma control.

    PubMed

    Strickland, D H; Judd, S; Thomas, J A; Larcombe, A N; Sly, P D; Holt, P G

    2011-01-01

    The hallmark of atopic asthma is transient airways hyperresponsiveness (AHR) preceded by aeroallergen-induced Th-cell activation. This is preceded by upregulation of CD86 on resident airway dendritic cells (DCs) that normally lack competence in T-cell triggering. Moreover, AHR duration is controlled via T-regulatory (Treg) cells, which can attenuate CD86 upregulation on DC. We show that airway mucosal Treg/DC interaction represents an accessible therapeutic target for asthma control. Notably, baseline airway Treg activity in sensitized rats can be boosted by microbe-derived stimulation of the gut, resulting in enhanced capacity to control CD86 expression on airway DC triggered by aeroallergen and accelerated resolution of AHR. PMID:20668438

  17. Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions

    SciTech Connect

    Jeong, Young-Il; Kim, Seung Hyun; Ju, Jung Won; Cho, Shin Hyeong; Lee, Won Ja; Park, Jin Wook; Park, Yeong-Min; Lee, Sang Eun

    2011-04-22

    Highlights: {yields} Treatment with Clonorchis sinensis-derived total protein attenuates OVA-induced airway inflammation and AHR to methacholine. {yields} Induction of CD4{sup +}CD25{sup +}Foxp3{sup +} T cells and IL-10 along with suppression of splenocyte proliferation by C. sinensis-derived total protein. {yields} C. sinensis-derived total protein interferes with the expression of co-stimulatory molecules in DCs. -- Abstract: Asthma is characterized by Th2-mediated inflammation, resulting in airway hyperresponsiveness (AHR) through airway remodeling. Recent epidemiological and experimental reports have suggested an inverse relationship between the development of allergy and helminth infections. Infection by Clonorchis sinensis, a liver fluke that resides in the bile duct of humans, is endemic predominantly in Asia including Korea and China. Using a murine model for asthma, we investigated the effects of C. sinensis-derived total protein (Cs-TP) on allergen-induced airway inflammation and the mechanism underlying the protective effects of Cs-TP administration on asthma. Treatment with Cs-TP attenuated OVA-induced airway inflammation and methacholine-induced AHR, as well as eosinophilia development, lymphocyte infiltration into the lung, and goblet cell metaplasia. This protective effect of Cs-TP is associated with markedly reduced OVA-specific IgE and Th1/Th2 cytokine production. Moreover, Cs-TP increased the number of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T (Treg) cells as well as their suppressive activity. In fact, proliferation of OVA-restimulated splenocytes was suppressed significantly. Cs-TP also inhibited the expression of such co-stimulatory molecules as CD80, CD86, and CD40 in LPS- or OVA-stimulated dendritic cells (DCs), suggesting that Cs-TP could interfere with the capacity of airway DCs to prime naive T cells. These data demonstrate the capacity of C. sinensis to ameliorate allergic asthma and broaden our understanding of the paradoxical

  18. Reduced numbers of mucosal DR(int) macrophages and increased numbers of CD103(+) dendritic cells during anti-TNF-α treatment in patients with Crohn's disease.

    PubMed

    Dige, Anders; Magnusson, Maria K; Öhman, Lena; Hvas, Christian Lodberg; Kelsen, Jens; Wick, Mary Jo; Agnholt, Jørgen

    2016-06-01

    Objective Anti-TNF-α treatment constitutes a mainstay in the treatment of Crohn's disease (CD), but its mechanisms of action are not fully understood. We aimed to investigate the effects of adalimumab, a human monoclonal TNF-α antibody, on macrophage (MQ) and dendritic cell (DC) subsets in mucosal biopsies and peripheral blood. Material and methods Intestinal biopsies and blood samples were obtained from 12 different CD patients both before and 4 weeks after the initiation of the induction of adalimumab treatment. Endoscopic disease activity was estimated by the Simple Endoscopic Score for Crohn's Disease. Biopsies were obtained from inflamed and non-inflamed areas. The numbers of lamina propria CD14 (+) DR(int) and CD14 (+) DR(hi) MQs, CD141(+), CD141(-) and CD103(+ )DCs subsets, and circulating monocytes and DCs were analyzed using flow cytometry. Results At baseline, we observed higher numbers of DR(int) MQs and lower numbers of CD103(+ )DCs in inflamed versus non-inflamed mucosa [843 vs. 391/10(5) lamina propria mononuclear cells (LPMCs) (p < 0.05) and 9 vs. 19 × 10(5) LPMCs (p = 0.01), respectively]. After four weeks of adalimumab treatment, the numbers of DR(int) MQs decreased [843 to 379/10(5) LPMCs (p = 0.03)], whereas the numbers of CD103(+ )DCs increased [9-20 × 10(5) LPMCs (p = 0.003)] compared with baseline. In peripheral blood, no alterations were observed in monocyte or DC numbers between baseline and week 4. Conclusions In CD, mucosal inflammation is associated with high numbers of DR(int) MQs and low numbers of CD103(+ )DCs. This composition of intestinal myeloid subsets is reversed by anti-TNF-α treatment. These results suggest that DR(int) MQs play a pivotal role in CD inflammation. PMID:26784676

  19. Chlamydia pneumoniae infection induced allergic airway sensitization is controlled by regulatory T-cells and plasmacytoid dendritic cells.

    PubMed

    Crother, Timothy R; Schröder, Nicolas W J; Karlin, Justin; Chen, Shuang; Shimada, Kenichi; Slepenkin, Anatoly; Alsabeh, Randa; Peterson, Ellena; Arditi, Moshe

    2011-01-01

    Chlamydia pneumoniae (CP) is associated with induction and exacerbation of asthma. CP infection can induce allergic airway sensitization in mice in a dose- and time-dependent manner. Allergen exposure 5 days after a low dose (mild-moderate), but not a high dose (severe) CP infection induces antigen sensitization in mice. Innate immune signals play a critical role in controlling CP infection induced allergic airway sensitization, however these mechanisms have not been fully elucidated. Wild-type, TLR2-/-, and TLR4-/- mice were infected intranasally (i.n.) with a low dose of CP, followed by i.n. exposure to human serum albumin (HSA) and challenged with HSA 2 weeks later. Airway inflammation, immunoglobulins, eosinophils, and goblet cells were measured. Low dose CP infection induced allergic sensitization in TLR2-/- mice, but not in TLR4-/- mice, due to differential Treg responses in these genotypes. TLR2-/- mice had reduced numbers of Tregs in the lung during CP infection while TLR4-/- mice had increased numbers. High dose CP infection resulted in an increase in Tregs and pDCs in lungs, which prevented antigen sensitization in WT mice. Depletion of Tregs or pDCs resulted in allergic airway sensitization. We conclude that Tregs and pDCs are critical determinants regulating CP infection-induced allergic sensitization. Furthermore, TLR2 and TLR4 signaling during CP infection may play a regulatory role through the modulation of Tregs. PMID:21695198

  20. Airborne pollutant ROFA enhances the allergic airway inflammation through direct modulation of dendritic cells in an uptake-dependent mechanism.

    PubMed

    Arantes-Costa, Fernanda Magalhaes; Grund, Lidiane Zito; Martins, Milton Arruda; Lima, Carla

    2014-09-01

    Studies suggest that airborne pollutants are important cofactors in the exacerbation of lung diseases. The role of DC on the exacerbation of lung inflammation induced by particulate matter pollutants is unclear. We evaluated the effects of residual oil fly ash (ROFA) on the phenotype and function of bone marrow-derived dendritic cells (BMDCs) in vitro and lung dendritic cells (DCs) in vivo, and the subsequent T-cell response. In a model of asthma, exposure to ROFA exacerbated pulmonary inflammation, which was attributed to the increase of eosinophils, IL-5- and IFN-γ-producing T cells, and goblet cells as well as decreased number of Treg and pDC. However, the ROFA showed no ability to modulate the production of anaphylactic IgE. In vitro studies showed that ROFA directly induced the maturation of DCs up-regulating the expression of co-stimulatory molecules and cytokines and MMP production in an uptake-dependent and oxidative stress-dependent manner. Furthermore, ROFA-pulsed BMDC transferred to allergic mice exacerbated eosinophilic inflammation as well as promoted increased epithelial and goblet cells changes. Thus, pollutants may constitute an important and risk factor in the exacerbation of asthma with inhibition of the negative regulatory signals in the lung, with enhanced mDC activation that sustains the recruitment of effector T lymphocytes and eosinophil. PMID:24975839

  1. Airway and lung pathology due to mucosal surface dehydration in β-Epithelial Na+ Channel-overexpressing mice: role of TNFα and IL-4Rα signaling, influence of neonatal development, and limited efficacy of glucocorticoid treatment

    PubMed Central

    Livraghi, Alessandra; Grubb, Barbara R.; Hudson, Elizabeth J.; Wilkinson, Kristen J.; Sheehan, John K.; Mall, Marcus A.; O'Neal, Wanda K.; Boucher, Richard C.; Randell, Scott H.

    2009-01-01

    Overexpression of the epithelial Na+ channel β subunit (Scnn1b gene, βENaC protein) in transgenic (Tg) mouse airways dehydrates mucosal surfaces, producing mucus obstruction, inflammation, and neonatal mortality. Airway inflammation includes macrophage activation, neutrophil and eosinophil recruitment, and elevated KC, TNFα and chitinase levels. These changes recapitulate aspects of complex human obstructive airway diseases, but their molecular mechanisms are poorly understood. We used genetic and pharmacologic approaches to identify pathways relevant to the development of Scnn1b-Tg mouse lung pathology. Genetic deletion of tumor necrosis factor alpha (TNFα) or its receptor, TNFR1, had no measurable effect on the phenotype. Deletion of the interleukin-4 receptor alpha subunit (IL-4Rα) abolished transient mucous secretory cell (MuSC) abundance and eosinophilia normally observed in neonatal wild-type (WT) mice. Similarly, IL-4Rα deficiency decreased MuSC and eosinophils in neonatal Scnn1b-Tg mice, which correlated with improved neonatal survival. However, chronic lung pathology in adult Scnn1b-Tg mice was not affected by IL-4Rα status. Prednisolone treatment ablated eosinophilia and MuSC in adult Scnn1b-Tg mice, but did not decrease mucus plugging or neutrophilia. These studies demonstrate that: 1) normal neonatal mouse airway development entails an IL-4Rα-dependent, transient abundance of MuSC and eosinophils; 2) absence of IL-4Rα improved neonatal survival of Scnn1b-Tg mice, likely reflecting decreased formation of asphyxiating mucus plugs; and 3) in Scnn1b-Tg mice, neutrophilia, mucus obstruction, and airspace enlargement are IL-4Rα- and TNFα-independent, and only MuSC and eosinophilia are sensitive to glucocorticoids. Thus, manipulation of multiple pathways will likely be required to treat the complex pathogenesis caused by airway surface dehydration. PMID:19299736

  2. Ferulic Acid Induces Th1 Responses by Modulating the Function of Dendritic Cells and Ameliorates Th2-Mediated Allergic Airway Inflammation in Mice

    PubMed Central

    Lee, Chen-Chen; Wang, Ching-Chiung; Huang, Huei-Mei; Lin, Chu-Lun; Leu, Sy-Jye; Lee, Yueh-Lun

    2015-01-01

    This study investigated the immunomodulatory effects of ferulic acid (FA) on antigen-presenting dendritic cells (DCs) in vitro and its antiallergic effects against ovalbumin- (OVA-) induced Th2-mediated allergic asthma in mice. The activation of FA-treated bone marrow-derived DCs by lipopolysaccharide (LPS) stimulation induced a high level of interleukin- (IL-) 12 but reduced the expression levels of the proinflammatory cytokines IL-1β, IL-6, and tumor necrosis factor- (TNF-) α. Compared to control-treated DCs, FA significantly enhanced the expressions of Notch ligand Delta-like 4 (Dll4), MHC class II, and CD40 molecules by these DCs. Furthermore, these FA-treated DCs enhanced T-cell proliferation and Th1 cell polarization. In animal experiments, oral administration of FA reduced the levels of OVA-specific immunoglobulin E (IgE) and IgG1 and enhanced IgG2a antibody production in serum. It also ameliorated airway hyperresponsiveness and attenuated eosinophilic pulmonary infiltration in dose-dependent manners. In addition, FA treatment inhibited the production of eotaxin, Th2 cytokines (IL-4, IL-5, and IL-13), and proinflammatory cytokines but promoted the Th1 cytokine interferon- (IFN-) γ production in bronchoalveolar lavage fluid (BALF) and the culture supernatant of spleen cells. These findings suggest that FA exhibits an antiallergic effect via restoring Th1/Th2 imbalance by modulating DCs function in an asthmatic mouse model. PMID:26495021

  3. House dust mite allergen induces asthma via TLR4 triggering of airway structural cells

    PubMed Central

    HAMMAD, Hamida; CHIEPPA, Marcello; PERROS, Frederic; WILLART, Monique A.; GERMAIN, Ronald N.; LAMBRECHT, Bart N.

    2009-01-01

    Barrier epithelial cells and airway dendritic cells (DC) make up the first line of defence against inhaled substances like house dust mite (HDM) allergen and endotoxin. We hypothesized that these cells need to communicate to cause allergic disease. Using irradiated chimeric mice, we demonstrate that TLR4 expression on radioresistant lung structural cells is required and sufficient for DC activation in the lung and for priming of effector T helper responses to HDM. TLR4 triggering on structural cells caused production of the innate proallergic cytokines thymic stromal lymphopoietin, granulocyte-macrophage colony stimulating factor, interleukin-25 and IL-33. The absence of TLR4 on structural cells, but not on hematopoietic cells, abolished HDM driven allergic airway inflammation. Finally, inhalation of a TLR4 antagonist to target exposed epithelial cells suppressed the salient features of asthma including bronchial hyperreactivity. Our data identify an innate immune function of airway epithelial cells that drives allergic inflammation via activation of mucosal DCs. PMID:19330007

  4. Spatiotemporal Interplay of Severe Acute Respiratory Syndrome Coronavirus and Respiratory Mucosal Cells Drives Viral Dissemination in Rhesus Macaques

    PubMed Central

    Liu, Li; Wei, Qiang; Nishiura, Kenji; Peng, Jie; Wang, Haibo; Midkiff, Cecily; Alvarez, Xavier; Qin, Chuan; Lackner, Andrew; Chen, Zhiwei

    2015-01-01

    Innate immune responses play a critical role in the control of early virus replication and dissemination. It remains unknown, however, how SARS-CoV evades respiratory innate immunity to establish a systemic infection. Here, we show in Chinese macaques that SARS-CoV traversed the mucosa through the respiratory tract within 2 days, resulting in extensive mucosal infiltration by T cells, MAC387+ and CD163+ monocytes/macrophages followed by limited viral replication in the lung but persistent viral shedding into the upper airway. Mucosal monocytes/macrophages sequestered virions in intracellular vesicles together with infected Langerhans cells (LCs) and migrated into the tonsils and/or draining lymph nodes (LNs) within 2 days. In lymphoid tissues, viral RNA and proteins were detected in infected monocytes upon differentiation into dendritic cells (DCs) within 3 days. Systemic viral dissemination was observed within 7 days. This study provides a comprehensive overview of the spatiotemporal interactions of SARS-CoV, monocytes/macrophages and the dendritic cell network in mucosal tissues and highlights the fact that while these innate cells contribute to viral clearance, they probably also serve as shelters and vehicles to provide a mechanism for the virus to escape host mucosal innate immunity and disseminate systemically. PMID:26647718

  5. Mucosal vaccines

    PubMed Central

    Nizard, Mevyn; Diniz, Mariana O; Roussel, Helene; Tran, Thi; Ferreira, Luis CS; Badoual, Cecile; Tartour, Eric

    2014-01-01

    The mucosal immune system displays several adaptations reflecting the exposure to the external environment. The efficient induction of mucosal immune responses also requires specific approaches, such as the use of appropriate administration routes and specific adjuvants and/or delivery systems. In contrast to vaccines delivered via parenteral routes, experimental, and clinical evidences demonstrated that mucosal vaccines can efficiently induce local immune responses to pathogens or tumors located at mucosal sites as well as systemic response. At least in part, such features can be explained by the compartmentalization of mucosal B and T cell populations that play important roles in the modulation of local immune responses. In the present review, we discuss molecular and cellular features of the mucosal immune system as well as novel immunization approaches that may lead to the development of innovative and efficient vaccines targeting pathogens and tumors at different mucosal sites. PMID:25424921

  6. Management of the artificial airway.

    PubMed

    Branson, Richard D; Gomaa, Dina; Rodriquez, Dario

    2014-06-01

    Management of the artificial airway includes securing the tube to prevent dislodgement or migration as well as removal of secretions. Preventive measures include adequate humidification and appropriate airway suctioning. Monitoring airway patency and removing obstruction are potentially life-saving components of airway management. Cuff pressure management is important for preventing aspiration and mucosal damage as well as assuring adequate ventilation. A number of new monitoring techniques have been introduced, and automated cuff pressure control is becoming more common. The respiratory therapist should be adept with all these devices and understand the appropriate application and management. PMID:24891202

  7. Dendritic Cells and Monocytes with Distinct Inflammatory Responses Reside in Lung Mucosa of Healthy Humans.

    PubMed

    Baharom, Faezzah; Thomas, Saskia; Rankin, Gregory; Lepzien, Rico; Pourazar, Jamshid; Behndig, Annelie F; Ahlm, Clas; Blomberg, Anders; Smed-Sörensen, Anna

    2016-06-01

    Every breath we take contains potentially harmful pathogens or allergens. Dendritic cells (DCs), monocytes, and macrophages are essential in maintaining a delicate balance of initiating immunity without causing collateral damage to the lungs because of an exaggerated inflammatory response. To document the diversity of lung mononuclear phagocytes at steady-state, we performed bronchoscopies on 20 healthy subjects, sampling the proximal and distal airways (bronchial wash and bronchoalveolar lavage, respectively), as well as mucosal tissue (endobronchial biopsies). In addition to a substantial population of alveolar macrophages, we identified subpopulations of monocytes, myeloid DCs (MDCs), and plasmacytoid DCs in the lung mucosa. Intermediate monocytes and MDCs were highly frequent in the airways compared with peripheral blood. Strikingly, the density of mononuclear phagocytes increased upon descending the airways. Monocytes from blood and airways produced 10-fold more proinflammatory cytokines than MDCs upon ex vivo stimulation. However, airway monocytes were less inflammatory than blood monocytes, suggesting a more tolerant nature. The findings of this study establish how to identify human lung mononuclear phagocytes and how they function in normal conditions, so that dysregulations in patients with respiratory diseases can be detected to elucidate their contribution to immunity or pathogenesis. PMID:27183618

  8. Bystander suppression of allergic airway inflammation by lung resident memory CD8+ T cells

    NASA Astrophysics Data System (ADS)

    Marsland, Benjamin J.; Harris, Nicola L.; Camberis, Mali; Kopf, Manfred; Hook, Sarah M.; Le Gros, Graham

    2004-04-01

    CD8+ memory T cells have recently been recognized as playing a key role in natural immunity against unrelated viral infections, a phenomenon referred to as "heterologous antiviral immunity." We now provide data that the cellular immunological interactions that underlie such heterologous immunity can play an equally important role in regulating T helper 2 immune responses and protecting mucosal surfaces from allergen-induced inflammation. Our data show that CD8+ T cells, either retained in the lung after infection with influenza virus, or adoptively transferred via the intranasal route can suppress allergic airway inflammation. The suppression is mediated by IFN-, which acts to reduce the activation level, T helper 2 cytokine production, airways hyperresponsiveness, and migration of allergen-specific CD4+ T cells into the lung, whereas the systemic and draining lymph node responses remain unchanged. Of note, adoptive transfer of previously activated transgenic CD8+ T cells conferred protection against allergic airway inflammation, even in the absence of specific-antigen. Airway resident CD8+ T cells produced IFN- when directly exposed to conditioned media from activated dendritic cells or the proinflammatory cytokines IL-12 and IL-18. Taken together these data indicate that effector/memory CD8+ T cells present in the airways produce IFN- after inflammatory stimuli, independent of specific-antigen, and as a consequence play a key role in modifying the degree and frequency of allergic responses in the lung.

  9. Spatiotemporal interplay of severe acute respiratory syndrome coronavirus and respiratory mucosal cells drives viral dissemination in rhesus macaques.

    PubMed

    Liu, L; Wei, Q; Nishiura, K; Peng, J; Wang, H; Midkiff, C; Alvarez, X; Qin, C; Lackner, A; Chen, Z

    2016-07-01

    Innate immune responses have a critical role in the control of early virus replication and dissemination. It remains unknown, however, how severe acute respiratory syndrome coronavirus (SARS-CoV) evades respiratory innate immunity to establish a systemic infection. Here we show in Chinese macaques that SARS-CoV traversed the mucosa through the respiratory tract within 2 days, resulting in extensive mucosal infiltration by T cells, MAC387(+), and CD163(+) monocytes/macrophages followed by limited viral replication in the lung but persistent viral shedding into the upper airway. Mucosal monocytes/macrophages sequestered virions in intracellular vesicles together with infected Langerhans cells and migrated into the tonsils and/or draining lymph nodes within 2 days. In lymphoid tissues, viral RNA and proteins were detected in infected monocytes upon differentiation into dendritic cells (DCs) within 3 days. Systemic viral dissemination was observed within 7 days. This study provides a comprehensive overview of the spatiotemporal interactions of SARS-CoV, monocytes/macrophages, and the DC network in mucosal tissues and highlights the fact that, while these innate cells contribute to viral clearance, they probably also serve as shelters and vehicles to provide a mechanism for the virus to escape host mucosal innate immunity and disseminate systemically. PMID:26647718

  10. Mucosal immunoglobulins.

    PubMed

    Woof, Jenny M; Mestecky, Jiri

    2005-08-01

    Due to their vast surface area, the mucosal surfaces of the body represent a major site of potential attack by invading pathogens. The secretions that bathe mucosal surfaces contain significant levels of immunoglobulins (Igs), which play key roles in immune defense of these surfaces. IgA is the predominant antibody class in many external secretions and has many functional attributes, both direct and indirect, that serve to prevent infective agents such as bacteria and viruses from breaching the mucosal barrier. This review details current understanding of the structural and functional characteristics of IgA, including interaction with specific receptors (such as Fc(alpha)RI, Fc(alpha)/microR, and CD71) and presents examples of the means by which certain pathogens circumvent the protective properties of this important Ig. PMID:16048542

  11. Novel vaccine development strategies for inducing mucosal immunity

    PubMed Central

    Fujkuyama, Yoshiko; Tokuhara, Daisuke; Kataoka, Kosuke; Gilbert, Rebekah S; McGhee, Jerry R; Yuki, Yoshikazu; Kiyono, Hiroshi; Fujihashi, Kohtaro

    2012-01-01

    To develop protective immune responses against mucosal pathogens, the delivery route and adjuvants for vaccination are important. The host, however, strives to maintain mucosal homeostasis by responding to mucosal antigens with tolerance, instead of immune activation. Thus, induction of mucosal immunity through vaccination is a rather difficult task, and potent mucosal adjuvants, vectors or other special delivery systems are often used, especially in the elderly. By taking advantage of the common mucosal immune system, the targeting of mucosal dendritic cells and microfold epithelial cells may facilitate the induction of effective mucosal immunity. Thus, novel routes of immunization and antigen delivery systems also show great potential for the development of effective and safe mucosal vaccines against various pathogens. The purpose of this review is to introduce several recent approaches to induce mucosal immunity to vaccines, with an emphasis on mucosal tissue targeting, new immunization routes and delivery systems. Defining the mechanisms of mucosal vaccines is as important as their efficacy and safety, and in this article, examples of recent approaches, which will likely accelerate progress in mucosal vaccine development, are discussed. PMID:22380827

  12. Collaborative studies in mucosal immunology in Goroka.

    PubMed

    Clancy, Robert

    2010-01-01

    A collaborative program between the Papua New Guinea (PNG) Institute of Medical Research and the Hunter Mucosal Group has completed studies relevant to protection of the airways against bacterial infection. Specifically, these studies addressed the mucosal capacity to produce local immunoglobulins and the capacity of the airways to respond to an oral vaccine containing inactivated nontypeable Haemophilus influenzae (NTHi). The mucosal IgA response to NTHi antigens was blunted in both children and adults in PNG compared with that found in Australian children and adults, whose airways are colonized only intermittently. Despite this, when oral NTHi is given to Papua New Guinean adults with chronic airways disease, it is followed by a significant (50%) reduction in incidence of acute bronchitic episodes, and a 3-log reduction in density of colonization, which persisted about 10 months. The implications of these key findings are discussed with respect to both mechanism and wider control of pathology emanating from abnormal airways colonization in a PNG environment. PMID:23163182

  13. Mucosal expression of DEC-205 targeted allergen alleviates an asthmatic phenotype in mice.

    PubMed

    Maaske, A; Devos, F C; Niezold, T; Lapuente, D; Tannapfel, A; Vanoirbeek, J A; Überla, K; Peters, M; Tenbusch, M

    2016-09-10

    Considering the rising incidence of allergic asthma, the symptomatic treatments that are currently applied in most cases are less than ideal. Specific immunotherapy is currently the only treatment that is able to change the course of the disease, but suffers from a long treatment duration. A gene based immunization that elicits the targeting of allergens towards dendritic cells in a steady-state environment might have the potential to amend these difficulties. Here we used a replication deficient adenovirus to induce the mucosal expression of OVA coupled to a single-chain antibody against DEC-205. A single intranasal vaccination was sufficient to mitigate an OVA-dependent asthmatic phenotype in a murine model. Invasive airway measurements demonstrated improved lung function after Ad-Dec-OVA treatment, which was in line with a marked reduction of goblet cell hyperplasia and lung eosinophilia. Furthermore OVA-specific IgE titers and production of type 2 cytokines were significantly reduced. Together, the here presented data demonstrate the feasibility of mucosal expression of DEC-targeted allergens as a treatment of allergic asthma. PMID:27374625

  14. Patient-Specific Airway Wall Remodeling in Chronic Lung Disease.

    PubMed

    Eskandari, Mona; Kuschner, Ware G; Kuhl, Ellen

    2015-10-01

    Chronic lung disease affects more than a quarter of the adult population; yet, the mechanics of the airways are poorly understood. The pathophysiology of chronic lung disease is commonly characterized by mucosal growth and smooth muscle contraction of the airways, which initiate an inward folding of the mucosal layer and progressive airflow obstruction. Since the degree of obstruction is closely correlated with the number of folds, mucosal folding has been extensively studied in idealized circular cross sections. However, airflow obstruction has never been studied in real airway geometries; the behavior of imperfect, non-cylindrical, continuously branching airways remains unknown. Here we model the effects of chronic lung disease using the nonlinear field theories of mechanics supplemented by the theory of finite growth. We perform finite element analysis of patient-specific Y-branch segments created from magnetic resonance images. We demonstrate that the mucosal folding pattern is insensitive to the specific airway geometry, but that it critically depends on the mucosal and submucosal stiffness, thickness, and loading mechanism. Our results suggests that patient-specific airway models with inherent geometric imperfections are more sensitive to obstruction than idealized circular models. Our models help to explain the pathophysiology of airway obstruction in chronic lung disease and hold promise to improve the diagnostics and treatment of asthma, bronchitis, chronic obstructive pulmonary disease, and respiratory failure. PMID:25821112

  15. The mucosal immune system for vaccine development.

    PubMed

    Lamichhane, Aayam; Azegamia, Tatsuhiko; Kiyonoa, Hiroshi

    2014-11-20

    Mucosal surfaces are continuously exposed to the external environment and therefore represent the largest lymphoid organ of the body. In the mucosal immune system, gut-associated lymphoid tissues (GALTs), including Peyer's patches and isolated lymphoid follicles, play an important role in the induction of antigen-specific immune responses in the gut. GALTs have unique organogenesis characteristics and interact with the network of dendritic cells and T cells for the simultaneous induction and regulation of IgA responses and oral tolerance. In these lymphoid tissues, antigens are up taken by M cells in the epithelial layer, and antigen-specific immune responses are subsequently initiated by GALT cells. Nasopharynx- and tear-duct-associated lymphoid tissues (NALTs and TALTs) are key organized lymphoid structures in the respiratory tract and ocular cavities, respectively, and have been shown to interact with each other. Mucosal surfaces are also characterized by host-microbe interactions that affect the genesis and maturation of mucosa-associated lymphoid tissues and the induction and regulation of innate and acquired mucosal immune responses. Because most harmful pathogens enter the body through mucosal surfaces by ingestion, inhalation, or sexual contact, the mucosa is a candidate site for vaccination. Mucosal vaccination has some physiological and practical advantages, such as decreased costs and reduced risk of needle-stick injuries and transmission of bloodborne diseases, and it is painless. Recently, the application of modern bioengineering and biochemical engineering technologies, including gene transformation and manipulation systems, resulted in the development of systems to express vaccine antigens in transgenic plants and nanogels, which will usher in a new era of delivery systems for mucosal vaccine antigens. In this review, based on some of our research group's thirty seven years of progress and effort, we highlight the unique features of mucosal immune

  16. Surgical Airway

    PubMed Central

    Patel, Sapna A; Meyer, Tanya K

    2014-01-01

    Close to 3% of all intubation attempts are considered difficult airways, for which a plan for a surgical airway should be considered. Our article provides an overview of the different types of surgical airways. This article provides a comprehensive review of the main types of surgical airways, relevant anatomy, necessary equipment, indications and contraindications, preparation and positioning, technique, complications, and tips for management. It is important to remember that the placement of a surgical airway is a lifesaving procedure and should be considered in any setting when one “cannot intubate, cannot ventilate”. PMID:24741501

  17. Mucosal Immunology of Food Allergy

    PubMed Central

    Berin, M. Cecilia; Sampson, Hugh A.

    2013-01-01

    Food allergies are increasing in prevalence at a higher rate than can be explained by genetic factors, suggesting a role for as yet unidentified environmental factors. In this review, we summarize the state of knowledge about the healthy immune response to antigens in the diet and the basis of immune deviation that results in IgE sensitization and allergic reactivity to foods. The intestinal epithelium forms the interface between the external environment and the mucosal immune system, and emerging data suggest that the interaction between intestinal epithelial cells and mucosal dendritic cells is of particular importance in determining the outcome of immune responses to dietary antigens. Exposure to food allergens through non-oral routes, in particular through the skin, is increasingly recognized as a potentially important factor in the increasing rate of food allergy. There are many open questions on the role of environmental factors such as dietary factors and microbiota in the development of food allergy, but data suggest that both have an important modulatory effect on the mucosal immune system. Finally, we discuss recent developments in our understanding of immune mechanisms of clinical manifestations of food allergy. New experimental tools, particularly in the field of genomics and microbiome, are likely to shed light on factors responsible for the growing clinical problem of food allergy. PMID:23660362

  18. Voice Disorders in Mucosal Leishmaniasis

    PubMed Central

    Ruas, Ana Cristina Nunes; Lucena, Márcia Mendonça; da Costa, Ananda Dutra; Vieira, Jéssica Rafael; de Araújo-Melo, Maria Helena; Terceiro, Benivaldo Ramos Ferreira; de Sousa Torraca, Tania Salgado; de Oliveira Schubach, Armando; Valete-Rosalino, Claudia Maria

    2014-01-01

    Introduction Leishmaniasis is considered as one of the six most important infectious diseases because of its high detection coefficient and ability to produce deformities. In most cases, mucosal leishmaniasis (ML) occurs as a consequence of cutaneous leishmaniasis. If left untreated, mucosal lesions can leave sequelae, interfering in the swallowing, breathing, voice and speech processes and requiring rehabilitation. Objective To describe the anatomical characteristics and voice quality of ML patients. Materials and Methods A descriptive transversal study was conducted in a cohort of ML patients treated at the Laboratory for Leishmaniasis Surveillance of the Evandro Chagas National Institute of Infectious Diseases - Fiocruz, between 2010 and 2013. The patients were submitted to otorhinolaryngologic clinical examination by endoscopy of the upper airways and digestive tract and to speech-language assessment through directed anamnesis, auditory perception, phonation times and vocal acoustic analysis. The variables of interest were epidemiologic (sex and age) and clinic (lesion location, associated symptoms and voice quality. Results 26 patients under ML treatment and monitored by speech therapists were studied. 21 (81%) were male and five (19%) female, with ages ranging from 15 to 78 years (54.5+15.0 years). The lesions were distributed in the following structures 88.5% nasal, 38.5% oral, 34.6% pharyngeal and 19.2% laryngeal, with some patients presenting lesions in more than one anatomic site. The main complaint was nasal obstruction (73.1%), followed by dysphonia (38.5%), odynophagia (30.8%) and dysphagia (26.9%). 23 patients (84.6%) presented voice quality perturbations. Dysphonia was significantly associated to lesions in the larynx, pharynx and oral cavity. Conclusion We observed that vocal quality perturbations are frequent in patients with mucosal leishmaniasis, even without laryngeal lesions; they are probably associated to disorders of some resonance

  19. Oral mucositis - self-care

    MedlinePlus

    Cancer treatment - mucositis; Cancer treatment - mouth pain; Cancer treatment - mouth sores; Chemotherapy - mucositis; Chemotherapy - mouth pain; Chemotherapy - mouth sores; Radiation therapy - mucositis; Radiation therapy - mouth pain; Radiation ...

  20. Airway Microbiota and the Implications of Dysbiosis in Asthma.

    PubMed

    Durack, Juliana; Boushey, Homer A; Lynch, Susan V

    2016-07-01

    The mucosal surfaces of the human body are typically colonized by polymicrobial communities seeded in infancy and are continuously shaped by environmental exposures. These communities interact with the mucosal immune system to maintain homeostasis in health, but perturbations in their composition and function are associated with lower airway diseases, including asthma, a developmental and heterogeneous chronic disease with various degrees and types of airway inflammation. This review will summarize recent studies examining airway microbiota dysbioses associated with asthma and their relationship with the pathophysiology of this disease. PMID:27393699

  1. Mucosal Imprinting of Vaccine-Induced CD8+ T Cells Is Crucial to Inhibit the Growth of Mucosal Tumors

    PubMed Central

    Sandoval, Federico; Bureau, Michel-Francis; Freyburger, Ludovic; Clement, Olivier; Marcheteau, Elie; Gey, Alain; Fraisse, Guillaume; Bouguin, Cécilia; Merillon, Nathalie; Dransart, Estelle; Tran, Thi; Quintin-Colonna, Françoise; Autret, Gwennhael; Thiebaud, Marine; Suleman, Muhammad; Riffault, Sabine; Wu, Tzyy-Choou; Launay, Odile; Danel, Claire; Taieb, Julien; Richardson, Jennifer; Zitvogel, Laurence; Fridman, Wolf H.; Johannes, Ludger; Tartour, Eric

    2014-01-01

    Although many human cancers are located in mucosal sites, most cancer vaccines are tested against subcutaneous tumors in preclinical models. We therefore wondered whether mucosa-specific homing instructions to the immune system might influence mucosal tumor outgrowth. We showed that the growth of orthotopic head and neck or lung cancers was inhibited when a cancer vaccine was delivered by the intranasal mucosal route but not the intramuscular route. This antitumor effect was dependent on CD8+ T cells. Indeed, only intranasal vaccination elicited mucosal-specific CD8+ T cells expressing the mucosal integrin CD49a. Blockade of CD49a decreased intratumoral CD8+ T cell infiltration and the efficacy of cancer vaccine on mucosal tumor. We then showed that after intranasal vaccination, dendritic cells from lung parenchyma, but not those from spleen, induced the expression of CD49a on cocultured specific CD8+ T cells. Tumor-infiltrating lymphocytes from human mucosal lung cancer also expressed CD49a, which supports the relevance and possible extrapolation of these results in humans. We thus identified a link between the route of vaccination and the induction of a mucosal homing program on induced CD8+ T cells that controlled their trafficking. Immunization route directly affected the efficacy of the cancer vaccine to control mucosal tumors. PMID:23408053

  2. Innate lymphoid cells in the airways.

    PubMed

    Walker, Jennifer A; McKenzie, Andrew

    2012-06-01

    The airways, similar to other mucosal surfaces, are continuously exposed to the outside environment and a barrage of antigens, allergens, and microorganisms. Of critical importance therefore is the ability to mount rapid and effective immune responses to control commensal and pathogenic microbes, while simultaneously limiting the extent of these responses to prevent immune pathology and chronic inflammation. The function of the adaptive immune response in controlling these processes at mucosal surfaces has been well documented but the important role of the innate immune system, particularly the recently identified family of innate lymphoid cells, has only lately become apparent. In this review, we give an overview of the innate lymphoid cells that exist in the airways and examine the evidence pertaining to their emerging roles in airways immunity, inflammation, and homeostasis. PMID:22678892

  3. Respiratory mucosal permeability in asthma

    SciTech Connect

    Elwood, R.K.; Kennedy, S.; Belzberg, A.; Hogg, J.C.; Pare, P.D.

    1983-09-01

    The permeability of respiratory mucosa to technetium-labeled diethylenetriamine pentacetic acid (/sup 99m/Tc-DTPA) was measured in 10 clinically stable chronic asthmatics and the results were compared with those in 9 nonasthmatic control subjects. Nonspecific bronchial reactivity was measured using methacholine, and the PC20 was calculated. The intrapulmonary distribution and dose of the inhaled /sup 99m/Tc-DTPA was determined by a gamma camera and the half-life of the aerosolized label in the lung was calculated. The accumulation of radioactivity in the blood was monitored and a permeability index was calculated at 10, 25, and 60 min after aerosolization. Despite marked differences in airway reactivity, no differences in either parameter of permeability could be detected between the asthmatics and the control group. It is concluded that clinically stable asthmatics do not demonstrate increase mucosal permeability to small solutes when compared with normal subjects.

  4. Trefoil factor-2 reverses airway remodeling changes in allergic airways disease.

    PubMed

    Royce, Simon G; Lim, Clarice; Muljadi, Ruth C; Samuel, Chrishan S; Ververis, Katherine; Karagiannis, Tom C; Giraud, Andrew S; Tang, Mimi L K

    2013-01-01

    Trefoil factor 2 (TFF2) is a small peptide with an important role in mucosal repair. TFF2 is up-regulated in asthma, suggesting a role in asthma pathogenesis. Given its known biological role in promoting epithelial repair, TFF2 might be expected to exert a protective function in limiting the progression of airway remodeling in asthma. The contribution of TFF2 to airway remodeling in asthma was investigated by examining the expression of TFF2 in the airway and lung, and evaluating the effects of recombinant TFF2 treatment on established airway remodeling in a murine model of chronic allergic airways disease (AAD). BALB/c mice were sensitized and challenged with ovalbumin (OVA) or saline for 9 weeks, whereas mice with established OVA-induced AAD were treated with TFF2 or vehicle control (intranasally for 14 d). Effects on airway remodeling, airway inflammation, and airway hyperresponsiveness were then assessed, whereas TFF2 expression was determined by immunohistochemistry. TFF2 expression was significantly increased in the airways of mice with AAD, compared with expression levels in control mice. TFF2 treatment resulted in reduced epithelial thickening, subepithelial collagen deposition, goblet-cell metaplasia, bronchial epithelium apoptosis, and airway hyperresponsiveness (all P < 0.05, versus vehicle control), but TFF2 treatment did not influence airway inflammation. The increased expression of endogenous TFF2 in response to chronic allergic inflammation is insufficient to prevent the progression of airway inflammation and remodeling in a murine model of chronic AAD. However, exogenous TFF2 treatment is effective in reversing aspects of established airway remodeling. TFF2 has potential as a novel treatment for airway remodeling in asthma. PMID:22652198

  5. Airway Gland Structure and Function.

    PubMed

    Widdicombe, Jonathan H; Wine, Jeffrey J

    2015-10-01

    Submucosal glands contribute to airway surface liquid (ASL), a film that protects all airway surfaces. Glandular mucus comprises electrolytes, water, the gel-forming mucin MUC5B, and hundreds of different proteins with diverse protective functions. Gland volume per unit area of mucosal surface correlates positively with impaction rate of inhaled particles. In human main bronchi, the volume of the glands is ∼ 50 times that of surface goblet cells, but the glands diminish in size and frequency distally. ASL and its trapped particles are removed from the airways by mucociliary transport. Airway glands have a tubuloacinar structure, with a single terminal duct, a nonciliated collecting duct, then branching secretory tubules lined with mucous cells and ending in serous acini. They allow for a massive increase in numbers of mucus-producing cells without replacing surface ciliated cells. Active secretion of Cl(-) and HCO3 (-) by serous cells produces most of the fluid of gland secretions. Glands are densely innervated by tonically active, mutually excitatory airway intrinsic neurons. Most gland mucus is secreted constitutively in vivo, with large, transient increases produced by emergency reflex drive from the vagus. Elevations of [cAMP]i and [Ca(2+)]i coordinate electrolyte and macromolecular secretion and probably occur together for baseline activity in vivo, with cholinergic elevation of [Ca(2+)]i being mainly responsive for transient increases in secretion. Altered submucosal gland function contributes to the pathology of all obstructive diseases, but is an early stage of pathogenesis only in cystic fibrosis. PMID:26336032

  6. Allergen-induced airway responses.

    PubMed

    Gauvreau, Gail M; El-Gammal, Amani I; O'Byrne, Paul M

    2015-09-01

    Environmental allergens are an important cause of asthma and can contribute to loss of asthma control and exacerbations. Allergen inhalation challenge has been a useful clinical model to examine the mechanisms of allergen-induced airway responses and inflammation. Allergen bronchoconstrictor responses are the early response, which reaches a maximum within 30 min and resolves by 1-3 h, and late responses, when bronchoconstriction recurs after 3-4 h and reaches a maximum over 6-12 h. Late responses are followed by an increase in airway hyperresponsiveness. These responses occur when IgE on mast cells is cross-linked by an allergen, causing degranulation and the release of histamine, neutral proteases and chemotactic factors, and the production of newly formed mediators, such as cysteinyl leukotrienes and prostaglandin D2. Allergen-induced airway inflammation consists of an increase in airway eosinophils, basophils and, less consistently, neutrophils. These responses are mediated by the trafficking and activation of myeloid dendritic cells into the airways, probably as a result of the release of epithelial cell-derived thymic stromal lymphopoietin, and the release of pro-inflammatory cytokines from type 2 helper T-cells. Allergen inhalation challenge has also been a widely used model to study potential new therapies for asthma and has an excellent negative predictive value for this purpose. PMID:26206871

  7. The multifaceted biology of plasmacytoid dendritic cells

    PubMed Central

    Swiecki, Melissa; Colonna, Marco

    2015-01-01

    Plasmacytoid dendritic cells (pDCs) are a unique dendritic cell subset that specializes in the production of type I interferons (IFNs). pDCs promote antiviral immune responses and have been implicated in the pathogenesis of autoimmune diseases characterized by a type I IFN signature. However, pDCs can also induce tolerogenic immune responses. Here, we review recent progress from the field of pDC biology, focusing on: the molecular mechanisms that regulate pDC development and functions; the pathways involved in their sensing of pathogens and endogenous nucleic acids; the function of pDCs at mucosal sites; and their roles in infections, autoimmunity and cancer. PMID:26160613

  8. Dendrite inhibitor

    DOEpatents

    Miller, William E.

    1989-01-01

    An apparatus for removing dendrites or other crystalline matter from the surface of a liquid in a matter transport process, and an electrolytic cell including such an apparatus. A notch may be provided to allow continuous exposure of the liquid surface, and a bore may be further provided to permit access to the liquid.

  9. Dendrite inhibitor

    DOEpatents

    Miller, W.E.

    1988-06-07

    An apparatus for removing dendrites or other crystalline matter from the surface of a liquid in a matter transport process, and an electrolytic cell including such an apparatus. A notch may be provided to allow continuous exposure of the liquid surface, and a bore may be further provided to permit access to the liquid. 2 figs.

  10. Sensory neuropeptides and airway function.

    PubMed

    Solway, J; Leff, A R

    1991-12-01

    Sensory nerves synthesize tachykinins and calcitonin-gene related peptide and package these neuropeptides together in synaptic vesicles. Stimulation of these C-fibers by a range of chemical and physical factors results in afferent neuronal conduction that elicits central parasympathetic reflexes and in antidromic conduction that results in local release of neuropeptides through the axon reflex. In the airways, sensory neuropeptides act on bronchial smooth muscle, the mucosal vasculature, and submucosal glands to promote airflow obstruction, hyperemia, microvascular hyperpermeability, and mucus hypersecretion. In addition, tachykinins potentiate cholinergic neurotransmission. Proinflammatory effects of these peptides also promote the recruitment, adherence, and activation of granulocytes that may further exacerbate neurogenic inflammation (i.e., neuropeptide-induced plasma extravasation and vasodilation). Enzymatic degradation limits the physiological effects of tachykinins but may be impaired by respiratory infection or other factors. Given their sensitivity to noxious compounds and physical stimuli and their potent effects on airway function, it is possible that neuropeptide-containing sensory nerves play an important role in mediating airway responses in human disease. Supporting this view are the striking phenomenological similarities between hyperpnea-induced bronchoconstriction (HIB) in guinea pigs and HIB in patients with exercise-induced asthma. Endogenous tachykinins released from airway sensory nerves mediate HIB in guinea pigs and also cause hyperpnea-induced bronchovascular hyperpermeability in these animals. On the basis of these observations, it is reasonable to speculate that sensory neuropeptides participate in the pathogenesis of hyperpnea-induced airflow obstruction in human asthmatic subjects as well. PMID:1663932

  11. Why mucosal health?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquaculture species depend more heavily on mucosal barriers than their terrestrial agricultural counterparts as they are continuously interacting with the aquatic microbiota. Unlike classical immune centers, such as the spleen and kidney, the accessibility of mucosal surfaces through immersion/dip t...

  12. Dendrite Model

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Dr. Donald Gilles, the Discipline Scientist for Materials Science in NASA's Microgravity Materials Science and Applications Department, demonstrates to Carl Dohrman a model of dendrites, the branch-like structures found in many metals and alloys. Dohrman was recently selected by the American Society for Metals International as their 1999 ASM International Foundation National Merit Scholar. The University of Illinois at Urbana-Champaign freshman recently toured NASA's materials science facilities at the Marshall Space Flight Center.

  13. Gasoline-induced mucositis

    SciTech Connect

    Hoffman, D.L.; Swanson, B.Z. Jr.; Lutins, N.D.

    1980-02-01

    Gasoline-induced mucositis may become more common because of fuel shortages or increased fuel cost. Dentists should, therefore, consider this oral irritant in the differential diagnosis of oral lesions.

  14. Mucosal Health in Aquaculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract The mucosal surfaces (skin, gill, and intestine) constitute the first line of defense against pathogen invasion while simultaneously carrying out a diverse array of other critical physiological processes, including nutrient absorption, osmoregulation, and waste excretion. Aquaculture specie...

  15. Nasal mucosal biopsy

    MedlinePlus

    Biopsy - nasal mucosa; Nose biopsy ... to fast for a few hours before the biopsy. ... Nasal mucosal biopsy is usually done when abnormal tissue is seen during examination of the nose. It may also be done ...

  16. Mucosal delivery of vaccines.

    PubMed

    Del Giudice, G; Pizza, M; Rappuoli, R

    1999-09-01

    Oral delivery represents one of the most pursued approaches for large-scale human vaccination. Due to the different characteristics of mucosal immune response, as compared with systemic response, oral immunization requires particular methods of antigen preparation and selective strategies of adjuvanticity. In this paper, we describe the preparation and use of genetically detoxified bacterial toxins as mucosal adjuvants and envisage the possibility of their future exploitation for human oral vaccines. PMID:10525451

  17. Emergency airway puncture

    MedlinePlus

    Emergency airway puncture is the placement of a hollow needle through the throat into the airway. It ... Emergency airway puncture is done in an emergency situation, when someone is choking and all other efforts ...

  18. Plasma exudation in the airways: mechanisms and function.

    PubMed

    Persson, C G

    1991-11-01

    Inflammatory challenges of tracheobronchial and nasal mucosa produce prompt extravasation or exudation of plasma from the well developed microcirculation just beneath the epithelial base. Plasma exudation is not an exaggeration of the normal capilliary exchange of fluid and solutes but a specific inflammatory response of post-capilliary venules. The exuded plasma may not produce oedema. By a rapid, undirectional, unfiltered and yet non-injurious process, plasma exudates cross the mucosal lining to appear on the airway surface at the site of challenge. In vitro data suggests the possibility that a slightly increased hydrostatic pressure moves the acellular exudate through valve-like openings between epithelial cells. By the venular-mucosal exudation mechanism all the potent protein systems of circulating plasma will operate in respiratory defence on the surface of an intact mucosa. A further inference is that exudative indices obtained from the airway surface quantitatively reflect the intensity and time course of mucosal/submucosal inflammatory processes. Irrespective of which particular cellular mechanism happens to fuel the inflammation. Mucosal exudation of plasma characteristically occurs in health and disease also when there is no airway oedema, no epithelial disruption, and no increased absorbtion ability. However, exuded plasma and its derived peptide mediators potentially contribute to several pathophysical and pathophysiological characteristics of inflammatory airway diseases. PMID:1804675

  19. Blockage of upper airway

    MedlinePlus

    ... Airway obstruction - acute upper Images Throat anatomy Choking Respiratory system References Cukor J, Manno M. Pediatric respiratory emergencies: upper airway obstruction and infections. In: Marx ...

  20. The microbiome and regulation of mucosal immunity.

    PubMed

    McDermott, Andrew J; Huffnagle, Gary B

    2014-05-01

    The gastrointestinal tract is a mucosal surface constantly exposed to foreign antigens and microbes, and is protected by a vast array of immunologically active structures and cells. Epithelial cells directly participate in immunological surveillance and direction of host responses in the gut and can express numerous pattern recognition receptors, including Toll-like receptor 5 (TLR5), TLR1, TLR2, TLR3, TLR9, and nucleotide oligomerization domain 2, as well as produce chemotactic factors for both myeloid and lymphoid cells following inflammatory stimulation. Within the epithelium and in the underlying lamina propria resides a population of innate lymphoid cells that, following stimulation, can become activated and produce effector cytokines and exert both protective and pathogenic roles during inflammation. Lamina propria dendritic cells play a large role in determining whether the response to a particular antigen will be inflammatory or anti-inflammatory. It is becoming clear that the composition and metabolic activity of the intestinal microbiome, as a whole community, exerts a profound influence on mucosal immune regulation. The microbiome produces short-chain fatty acids, polysaccharide A, α-galactosylceramide and tryptophan metabolites, which can induce interleukin-22, Reg3γ, IgA and interleukin-17 responses. However, much of what is known about microbiome-host immune interactions has come from the study of single bacterial members of the gastrointestinal microbiome and their impact on intestinal mucosal immunity. Additionally, evidence continues to accumulate that alterations of the intestinal microbiome can impact not only gastrointestinal immunity but also immune regulation at distal mucosal sites. PMID:24329495

  1. Human airway ciliary dynamics

    PubMed Central

    Thompson, Kristin; Knowles, Michael R.; Davis, C. William

    2013-01-01

    Airway cilia depend on precise changes in shape to transport the mucus gel overlying mucosal surfaces. The ciliary motion can be recorded in several planes using video microscopy. However, cilia are densely packed, and automated computerized systems are not available to convert these ciliary shape changes into forms that are useful for testing theoretical models of ciliary function. We developed a system for converting planar ciliary motions recorded by video microscopy into an empirical quantitative model, which is easy to use in validating mathematical models, or in examining ciliary function, e.g., in primary ciliary dyskinesia (PCD). The system we developed allows the manipulation of a model cilium superimposed over a video of beating cilia. Data were analyzed to determine shear angles and velocity vectors of points along the cilium. Extracted waveforms were used to construct a composite waveform, which could be used as a standard. Variability was measured as the mean difference in position of points on individual waveforms and the standard. The shapes analyzed were the end-recovery, end-effective, and fastest moving effective and recovery with mean (± SE) differences of 0.31(0.04), 0.25(0.06), 0.50(0.12), 0.50(0.10), μm, respectively. In contrast, the same measures for three different PCD waveforms had values far outside this range. PMID:23144323

  2. Lung-gut cross-talk: evidence, mechanisms and implications for the mucosal inflammatory diseases.

    PubMed

    Tulic, M K; Piche, T; Verhasselt, V

    2016-04-01

    The mucosal immune system (including airway, intestinal, oral and cervical epithelium) is an integrated network of tissues, cells and effector molecules that protect the host from environmental insults and infections at mucous membrane surfaces. Dysregulation of immunity at mucosal surfaces is thought to be responsible for the alarming global increase in mucosal inflammatory diseases such as those affecting the gastrointestinal (Crohn's disease, ulcerative colitis and irritable bowel syndrome) and respiratory (asthma, allergy and chronic obstructive pulmonary disorder) system. Although immune regulation has been well-studied in isolated mucosal sites, the extent of the immune interaction between anatomically distant mucosal sites has been mostly circumstantial and the focus of much debate. With novel technology and more precise tools to examine histological and functional changes in tissues, today there is increased appreciation of the 'common mucosal immunological system' originally proposed by Bienenstock nearly 40 years ago. Evidence is amounting which shows that stimulation of one mucosal compartment can directly and significantly impact distant mucosal site, however the mechanisms are unknown. Today, we are only beginning to understand the complexity of relationships and communications that exist between different mucosal compartments. A holistic approach to studying the mucosal immune system as an integrated global organ is imperative for future advances in understanding mucosal immunology and for future treatment of chronic diseases. In this review, we particularly focus on the latest evidence and the mechanisms operational in driving the lung-gut cross-talk. PMID:26892389

  3. Airway Scope: early clinical experience in 405 patients.

    PubMed

    Hirabayashi, Yoshihiro; Seo, Norimasa

    2008-01-01

    The Airway Scope (Pentax, Tokyo, Japan) is a new device used for tracheal intubation. It allows visualization of the glottis through a non-line-of sight view. The aim of the present study was to evaluate the suitability of this device for the tracheal intubation of surgical patients. In this prospective study, the Airway Scope was used for the endotracheal intubation of 405 patients by 74 airway operators. The Airway Scope allowed visualization of the glottis in all 405 patients, including those with a Cormack-Lehane view of grade III (n = 15) or grade IV (n = 1) on Macintosh laryngoscopy. All tracheal intubations using the Airway Scope were successful. The mean time to complete tracheal intubation was 42.4 +/- 19.7 s (+/-SD; range, 13-192 s). No dental damage was encountered, though minor mucosal injury caused by the blade was experienced in 2 patients. The Airway Scope consistently permitted a better intubation environment. With its potential advantages, the Airway Scope could be an effective aid to airway management in surgical patients. PMID:18306022

  4. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells.

    PubMed

    Rimoldi, Monica; Chieppa, Marcello; Salucci, Valentina; Avogadri, Francesca; Sonzogni, Angelica; Sampietro, Gianluca M; Nespoli, Angelo; Viale, Giuseppe; Allavena, Paola; Rescigno, Maria

    2005-05-01

    The control of damaging inflammation by the mucosal immune system in response to commensal and harmful ingested bacteria is unknown. Here we show epithelial cells conditioned mucosal dendritic cells through the constitutive release of thymic stromal lymphopoietin and other mediators, resulting in the induction of 'noninflammatory' dendritic cells. Epithelial cell-conditioned dendritic cells released interleukins 10 and 6 but not interleukin 12, and they promoted the polarization of T cells toward a 'classical' noninflammatory T helper type 2 response, even after exposure to a T helper type 1-inducing pathogen. This control of immune responses seemed to be lost in patients with Crohn disease. Thus, the intimate interplay between intestinal epithelial cells and dendritic cells may help to maintain gut immune homeostasis. PMID:15821737

  5. Upper airway test (image)

    MedlinePlus

    An upper airway biopsy is obtained by using a flexible scope called a bronchoscope. The scope is passed down through ... may be performed when an abnormality of the upper airway is suspected. It may also be performed as ...

  6. Effects of histamine, ethanol, and a detergent on exudation and absorption across guinea pig airway mucosa in vivo.

    PubMed Central

    Greiff, L; Erjefält, I; Wollmer, P; Pipkorn, U; Persson, C G

    1991-01-01

    This study examined effects of three substances that cause mucosal provocation (histamine, ethanol, and the detergent dioctylsodium sulphosuccinate (DOSS] on the flux of solutes across airway vascular mucosal barriers in anaesthetised guinea pigs. The inward flux was assessed as absorption of iodine-131 labelled albumin (MW 69,000) from the tracheobronchial surface into the circulation and the outward flux as the exudation of two intravenously administered plasma tracers--125I albumin (MW 69,000) and fluorescein isothiocyanate conjugated (FITC) dextran (MW 70,000)--into the airway. The absorption of technetium-99m labelled DTPA (MW 492) from the tracheobronchial airways was determined in separate experiments. Histamine (5.0 nmol) dissolved in 40 microliters saline and superfused on the tracheobronchial mucosal surface caused significant and similar entry of 125I albumin and FITC dextran into the airway lumen. This dose of histamine did not, however, alter the absorption of small (99mTc DTPA) or large (131I albumin) solutes across the airway mucosa. Ethanol (0.17 mumol), superfused in the same way, also caused significant exudation of the plasma tracers into the airway lumen. In addition, ethanol increased the absorption of 131I albumin without causing change in the disappearance rate of 99mTc DTPA. The detergent, DOSS (0.28 nmol), dissolved in ethanol (0.17 mumol), caused a pronounced increase in exudation and much increased absorption of small and large tracer solutes. Thus three patterns of change in airway mucosal barriers were found. The agents that are toxic to membranes, ethanol and DOSS, caused a bidirectional increase in permeability across the mucosa, whereas histamine caused only an outward exudative flux. The results obtained with histamine are similar to those seen previously with bradykinin, capsaicin, and allergen, suggesting that endogenous inflammatory mediators have a role in mucosal defence, producing entry of plasma exudates into the airway lumen

  7. Isothermal Dendritic Growth Experiment - PVA Dendrites

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. IDGE used transparent organic liquids that form dendrites (treelike structures) similar to those inside metal alloys. Comparing Earth-based and space-based dendrite growth velocity, tip size and shape provides a better understanding of the fundamentals of dentritic growth, including gravity's effects. Shalowgraphic images of pivalic acid (PVA) dendrites forming from the melt show the subtle but distinct effects of gravity-driven heat convection on dentritic growth. In orbit, the dendrite grows as its latent heat is liberated by heat conduction. This yields a blunt dendrite tip. On Earth, heat is carried away by both conduction and gravity-driven convection. This yields a sharper dendrite tip. In addition, under terrestrial conditions, the sidebranches growing in the direction of gravity are augmented as gravity helps carry heat out of the way of the growing sidebranches as opposed to microgravity conditions where no augmentation takes place. IDGE was developed by Rensselaer Polytechnic Institute and NASA/Glenn Research Center. Advanced follow-on experiments are being developed for flight on the International Space Station. Photo Credit: NASA/Glenn Research Center

  8. Careers in Airway Science.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    The Federal Aviation Administration (FAA) has initiated the Airway Science curriculum as a method of preparing the next generation of aviation technicians and managers. This document: (1) discusses the FAA's role in the Airway Science program; (2) describes some of the career fields that FAA offers to Airway Science graduates (air traffic control…

  9. Enhanced mucosal reactions in AIDS patients receiving oropharyngeal irradiation

    SciTech Connect

    Watkins, E.B.; Findlay, P.; Gelmann, E.; Lane, H.C.; Zabell, A.

    1987-09-01

    The oropharynx and hypopharynx are common sites of involvement in AIDS patients with mucocutaneous Kaposi's sarcoma. The radiotherapist is often asked to intervene with these patients due to problems with pain, difficulty in swallowing, or impending airway obstruction. We have noted an unexpected decrease in normal tissue tolerance of the oropharyngeal mucosa to irradiation in AIDS patients treated in our department. Data on 12 patients with AIDS and Kaposi's sarcoma receiving oropharyngeal irradiation are presented here. Doses ranged from 1000 cGy to 1800 cGy delivered in 150-300 cGy fractions. Seven of eight patients receiving doses of 1200 cGy or more developed some degree of mucositis, four of these developed mucositis severe enough to require termination of treatment. All patients in this study received some form of systemic therapy during the course of their disease, but no influence on mucosal response to irradiation was noted. Four patients received total body skin electron treatments, but no effect on degree of mucositis was seen. Presence or absence of oral candidiasis was not an obvious factor in the radiation response of the oral mucosa in these patients. T4 counts were done on 9 of the 12 patients. Although the timing of the T4 counts was quite variable, no correlation with immune status and degree of mucositis was found. The degree of mucositis seen in these patients occurred at doses much lower than expected based on normal tissue tolerances seen in other patient populations receiving head and neck irradiations. We believe that the ability of the oral mucosa to repair radiation damage is somehow altered in patients with AIDS.

  10. IgG transport across mucosal barriers by neonatal Fc receptor for IgG and mucosal immunity.

    PubMed

    Yoshida, Masaru; Masuda, Atsuhiro; Kuo, Timothy T; Kobayashi, Kanna; Claypool, Steven M; Takagawa, Tetsuya; Kutsumi, Hiromu; Azuma, Takeshi; Lencer, Wayne I; Blumberg, Richard S

    2006-12-01

    Mucosal secretions of the human gastrointestinal, respiratory, and genital tracts contain significant quantities of IgG. The neonatal Fc receptor for IgG (FcRn) plays a major role in regulating host IgG levels and transporting IgG and associated antigens across polarized epithelial barriers. The FcRn can then recycle the IgG/antigen complex back across the intestinal barrier into the lamina propria for processing by dendritic cells and presentation to CD4(+) T cells in regional organized lymphoid structures. FcRn, through its ability to secrete and absorb IgG, thus integrates luminal antigen encounters with systemic immune compartments and, as such, provides essential host defense and immunoregulatory functions at the mucosal surfaces. PMID:17051393

  11. The Physiologically Difficult Airway.

    PubMed

    Mosier, Jarrod M; Joshi, Raj; Hypes, Cameron; Pacheco, Garrett; Valenzuela, Terence; Sakles, John C

    2015-12-01

    Airway management in critically ill patients involves the identification and management of the potentially difficult airway in order to avoid untoward complications. This focus on difficult airway management has traditionally referred to identifying anatomic characteristics of the patient that make either visualizing the glottic opening or placement of the tracheal tube through the vocal cords difficult. This paper will describe the physiologically difficult airway, in which physiologic derangements of the patient increase the risk of cardiovascular collapse from airway management. The four physiologically difficult airways described include hypoxemia, hypotension, severe metabolic acidosis, and right ventricular failure. The emergency physician should account for these physiologic derangements with airway management in critically ill patients regardless of the predicted anatomic difficulty of the intubation. PMID:26759664

  12. The Physiologically Difficult Airway

    PubMed Central

    Mosier, Jarrod M.; Joshi, Raj; Hypes, Cameron; Pacheco, Garrett; Valenzuela, Terence; Sakles, John C.

    2015-01-01

    Airway management in critically ill patients involves the identification and management of the potentially difficult airway in order to avoid untoward complications. This focus on difficult airway management has traditionally referred to identifying anatomic characteristics of the patient that make either visualizing the glottic opening or placement of the tracheal tube through the vocal cords difficult. This paper will describe the physiologically difficult airway, in which physiologic derangements of the patient increase the risk of cardiovascular collapse from airway management. The four physiologically difficult airways described include hypoxemia, hypotension, severe metabolic acidosis, and right ventricular failure. The emergency physician should account for these physiologic derangements with airway management in critically ill patients regardless of the predicted anatomic difficulty of the intubation. PMID:26759664

  13. Free dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.

    1984-01-01

    Free dendritic growth refers to the unconstrained development of crystals within a supercooled melt, which is the classical 'dendrite problem'. Great strides have been taken in recent years in both the theoretical understanding of dendritic growth and its experimental status. The development of this field will be sketched, showing that transport theory and interfacial thermodynamics (capillarity theory) were sufficient ingredients to develop a truly predictive model of dendrite formation. The convenient, but incorrect, notion of 'maximum velocity' was used for many years to estimate the behavior of dendritic transformations until supplanted by modern dynamic stability theory. The proper combinations of transport theory and morphological stability seem to able to predict the salient aspects of dendritic growth, especially in the neighborhood of the tip. The overall development of cast microstructures, such as equiaxed zone formation, rapidly solidified microstructures, etc., also seems to contain additional non-deterministic features which lie outside the current theories discussed here.

  14. Assessing mucus and airway morphology in response to a segmental allergen challenge using OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Adams, David C.; Miller, Alyssa J.; Holz, Jasmin A.; Szabari, Margit V.; Hariri, Lida P.; Harris, R. Scott; Cho, Jocelyn L.; Hamilos, Daniel L.; Luster, Andrew D.; Medoff, Benjamin D.; Suter, Melissa J.

    2016-03-01

    Asthma affects hundreds of millions of people worldwide, and the prevalence of the disease appears to be increasing. One of the most important aspects of asthma is the excessive bronchoconstriction that results in many of the symptoms experienced by asthma sufferers, but the relationship between bronchoconstriction and airway morphology is not clearly established. We present the imaging results of a study involving a segmental allergen challenge given to both allergic asthmatic (n = 12) and allergic non-asthmatic (n = 19) human volunteers. Using OCT, we have imaged and assessed baseline morphology in a right upper lobe (RUL) airway, serving as the control, and a right middle lobe (RML) airway, in which the allergen was to be administered. After a period of 24 hours had elapsed following the administration of the allergen, both airways were again imaged and the response morphology assessed. A number of airway parameters were measured and compared, including epithelial thickness, mucosal thickness and buckling, lumen area, and mucus content. We found that at baseline epithelial thickness, mucosal thickness, and mucosal buckling were greater in AAs than ANAs. We also observed statistically significant increases in these values 24 hours after the allergen had been administered for both the ANA and AA sets. In comparison, the control airway which received a diluent showed no statistically significant change.

  15. Optical Detection of Preneoplastic Lesions of the Central Airways

    PubMed Central

    van der Leest, C.; Amelink, A.; van Klaveren, R. J.; Hoogsteden, H. C.; Sterenborg, H. J. C. M.; Aerts, J. G. J. V.

    2012-01-01

    Current routine diagnosis of premalignant lesions of the central airways is hampered due to a limited sensitivity (white light bronchoscopy) and resolution (computer tomography (CT), positron emission tomography (PET)) of currently used techniques. To improve the detection of these subtle mucosal abnormalities, novel optical imaging bronchoscopic techniques have been developed over the past decade. In this review we highlight the technological developments in the field of endoscopic imaging, and describe their advantages and disadvantages in clinical use. PMID:22550600

  16. Experience with registered mucosal vaccines.

    PubMed

    Dietrich, Guido; Griot-Wenk, Monika; Metcalfe, Ian C; Lang, Alois B; Viret, Jean-François

    2003-01-30

    Most pathogens gain access to their host through mucosal surfaces. It is therefore desirable to develop vaccination strategies that lead to mucosal immune responses. Ideally, a vaccine should be administered mucosally in order to elicit mucosal protection. Several attenuated live viral and bacterial pathogens are registered as oral vaccines for human use, including the oral polio vaccine (Sabin) as well as attenuated strains of Salmonella typhi and Vibrio cholerae. These attenuated bacterial live vaccines-S. typhi Ty21a as well as V. cholerae CVD 103-HgR-are employed as vaccines against typhoid and cholera, respectively. In this manuscript, we review the immune responses that are induced by these vaccines, with a focus on mucosal immunity. PMID:12531339

  17. Mucosal biofilms of Candida albicans.

    PubMed

    Ganguly, Shantanu; Mitchell, Aaron P

    2011-08-01

    Biofilms are microbial communities that form on surfaces and are embedded in an extracellular matrix. C. albicans forms pathogenic mucosal biofilms that are evoked by changes in host immunity or mucosal ecology. Mucosal surfaces are inhabited by many microbial species; hence these biofilms are polymicrobial. Several recent studies have applied paradigms of biofilm analysis to study mucosal C. albicans infections. These studies reveal that the Bcr1 transcription factor is a master regulator of C. albicans biofilm formation under diverse conditions, though the most relevant Bcr1 target genes can vary with the biofilm niche. An important determinant of mucosal biofilm formation is the interaction with host defenses. Finally, studies of interactions between bacterial species and C. albicans provide insight into the communication mechanisms that endow polymicrobial biofilms with unique properties. PMID:21741878

  18. Elastic properties of the bronchial mucosa: epithelial unfolding and stretch in response to airway inflation.

    PubMed

    Noble, P B; Sharma, A; McFawn, P K; Mitchell, H W

    2005-12-01

    The bronchial mucosa contributes to elastic properties of the airway wall and may influence the degree of airway expansion during lung inflation. In the deflated lung, folds in the epithelium and associated basement membrane progressively unfold on inflation. Whether the epithelium and basement membrane also distend on lung inflation at physiological pressures is uncertain. We assessed mucosal distensibility from strain-stress curves in mucosal strips and related this to epithelial length and folding. Mucosal strips were prepared from pig bronchi and cycled stepwise from a strain of 0 (their in situ length at 0 transmural pressure) to a strain of 0.5 (50% increase in length). Mucosal stress and epithelial length in situ were calculated from morphometric data in bronchial segments fixed at 5 and 25 cmH(2)O luminal pressure. Mucosal strips showed nonlinear strain-stress properties, but regions at high and low stress were close to linear. Stresses calculated in bronchial segments at 5 and 25 cmH(2)O fell in the low-stress region of the strain-stress curve. The epithelium of mucosal strips was deeply folded at low strains (0-0.15), which in bronchial segments equated to < or =10 cmH(2)O transmural pressure. Morphometric measurements in mucosal strips at greater strains (0.3-0.4) indicated that epithelial length increased by approximately 10%. Measurements in bronchial segments indicated that epithelial length increased approximately 25% between 5 and 25 cmH(2)O. Our findings suggest that, at airway pressures <10 cmH(2)O, airway expansion is due primarily to epithelial unfolding but at higher pressures the epithelium also distends. PMID:16024520

  19. Mechanical properties of the tracheal mucosal membrane in the rabbit. I. steady-state stiffness as a function of age.

    PubMed

    Wang, L; Tepper, R; Bert, J L; Pinder, K L; Paré, P D; Okazawa, M

    2000-03-01

    Airway responsiveness is exaggerated in infancy and declines with maturation. These age-related differences (R.S. Tepper, T. Du, A. Styhler, M. Ludwig, and J.G. Martin. Am. J. Respir. Crit. Care Med. 151: 836-840, 1995; R.S. Tepper, S.J. Gunst, C.M. Doerschuk, Y. Shen, and W. Bray. J. Appl. Physiol. 78: 505-512, 1995; R.S. Tepper, J. Stevens, and H. Eigen. Am. J. Respir. Crit. Care Med. 149: 678-681, 1994) could be due to changes in the smooth muscle, the lung, and/or the airway wall. Folding of the mucosal membrane can provide an elastic load (R.K. Lambert, J. Appl. Physiol. 71: 666-673, 1991), which impedes smooth muscle shortening. We hypothesized that increased stiffness of the mucosal membrane occurs during aging, causing an increased mechanical load on airway smooth muscle and a decrease in airway responsiveness. Forty female New Zealand White rabbits between 0.75 and 35 mo of age were studied. Rectangular mucosal membrane strips oriented both longitudinally and circumferentially to the long axis of the trachea were dissected, and the stress-strain relationships of each strip were tested. The results showed that the membrane was stiffer in the longitudinal than in the circumferential direction of the airway. However, there was no significant change with age in either orientation. We conclude that the mechanical properties of the airway mucosal membrane did not change during maturation and were not likely to influence age-related changes in airway responsiveness. PMID:10710398

  20. Engineering Airway Epithelium

    PubMed Central

    Soleas, John P.; Paz, Ana; Marcus, Paula; McGuigan, Alison; Waddell, Thomas K.

    2012-01-01

    Airway epithelium is constantly presented with injurious signals, yet under healthy circumstances, the epithelium maintains its innate immune barrier and mucociliary elevator function. This suggests that airway epithelium has regenerative potential (I. R. Telford and C. F. Bridgman, 1990). In practice, however, airway regeneration is problematic because of slow turnover and dedifferentiation of epithelium thereby hindering regeneration and increasing time necessary for full maturation and function. Based on the anatomy and biology of the airway epithelium, a variety of tissue engineering tools available could be utilized to overcome the barriers currently seen in airway epithelial generation. This paper describes the structure, function, and repair mechanisms in native epithelium and highlights specific and manipulatable tissue engineering signals that could be of great use in the creation of artificial airway epithelium. PMID:22523471

  1. Conquering the difficult airway.

    PubMed

    Gandy, William E

    2008-01-01

    Every medic should practice regularly for the inevitable difficult airway case. Practice should include review of the causes of difficult airways, as well as skill practice. Having a preassembled airway kit can make your response to an unexpected difficult situation easier. Of all the devices mentioned, the bougie is the airway practitioner's best friend. Using the BURP technique, if not contraindicated, together with the bougie will enable you to intubate many difficult patients with confidence. Remember, "If your patient cannot breathe, nothing else matters. PMID:18251307

  2. Evaluation of Airway Reactivity and Immune Characteristics as Risk Factors for Wheezing Early in Life

    PubMed Central

    Yao, Weiguo; Barbé-Tuana, Florencia M.; Llapur, Conrado J.; Jones, Marcus H.; Tiller, Christina; Kimmel, Risa; Kisling, Jeffrey; Nguyen, Evelyn T.; Nguyen, James; Yu, Zhangsheng; Kaplan, Mark H.; Tepper, Robert S.

    2010-01-01

    Background Childhood asthma is most often characterized by recurrent wheezing, airway hyper-reactivity, and atopy; however, our understanding of these relationships from early in life remains unclear. Respiratory illnesses and atopic sensitization early in life may produce an interaction between innate and acquired immune responses leading to airway inflammation and heightened airway reactivity. Objective We hypothesized that pre-morbid airway reactivity and immunologic characteristics of infants without prior episodes of wheezing would be associated with subsequent wheezing during 1-year follow-up. Methods 116 infants with chronic dermatitis were enrolled prior to episodes of wheezing. Airway reactivity, allergen-specific IgE, cytokine production by stimulated peripheral blood mononuclear cells (PBMCs), and percentages of dendritic cells were measured upon entry and airway reactivity was reassessed at 1-year follow-up. Linear regression models were used to evaluate predictor’s effect on continuous outcomes. Results milk and/or egg sensitization was associated with heightened airway reactivity prior to wheezing and after the onset of wheezing; however, these factors were not associated with an increased risk of wheezing. There was an interaction between initial airway reactivity and wheezing as a determinant of airway reactivity at follow-up. In addition, cytokine production by stimulated PBMCs was a risk factor for wheezing, while increased percentages of conventional dendritic cells were protective for wheezing. Conclusion Our data in a selected cohort of infants support a model with multiple risk factors for subsequent wheezing that are independent of initial airway reactivity; however, the etiologic factors that produce wheezing very early in life may contribute to heightened airway reactivity. PMID:20816184

  3. Brachycephalic airway syndrome: management.

    PubMed

    Lodato, Dena L; Hedlund, Cheryl S

    2012-08-01

    Brachycephalic airway syndrome (BAS) is a group of primary and secondary abnormalities that result in upper airway obstruction. Several of these abnormalities can be addressed medically and/or surgically to improve quality of life. This article reviews potential complications, anesthetic considerations, recovery strategies, and outcomes associated with medical and surgical management of BAS. PMID:22935992

  4. Simvastatin Inhibits Airway Hyperreactivity

    PubMed Central

    Zeki, Amir A.; Franzi, Lisa; Last, Jerold; Kenyon, Nicholas J.

    2009-01-01

    Rationale: Statin use has been linked to improved lung health in asthma and chronic obstructive pulmonary disease. We hypothesize that statins inhibit allergic airway inflammation and reduce airway hyperreactivity via a mevalonate-dependent mechanism. Objectives: To determine whether simvastatin attenuates airway inflammation and improves lung physiology by mevalonate pathway inhibition. Methods: BALB/c mice were sensitized to ovalbumin over 4 weeks and exposed to 1% ovalbumin aerosol over 2 weeks. Simvastatin (40 mg/kg) or simvastatin plus mevalonate (20 mg/kg) was injected intraperitoneally before each ovalbumin exposure. Measurements and Main Results: Simvastatin reduced total lung lavage leukocytes, eosinophils, and macrophages (P < 0.05) in the ovalbumin-exposed mice. Cotreatment with mevalonate, in addition to simvastatin, reversed the antiinflammatory effects seen with simvastatin alone (P < 0.05). Lung lavage IL-4, IL-13, and tumor necrosis factor-α levels were all reduced by treatment with simvastatin (P < 0.05). Simvastatin treatment before methacholine bronchial challenge increased lung compliance and reduced airway hyperreactivity (P = 0.0001). Conclusions: Simvastatin attenuates allergic airway inflammation, inhibits key helper T cell type 1 and 2 chemokines, and improves lung physiology in a mouse model of asthma. The mevalonate pathway appears to modulate allergic airway inflammation, while the beneficial effects of simvastatin on lung compliance and airway hyperreactivity may be independent of the mevalonate pathway. Simvastatin and similar agents that modulate the mevalonate pathway may prove to be treatments for inflammatory airway diseases, such as asthma. PMID:19608720

  5. Mucosal Adjuvants For Vaccines To Control Upper Respiratory Infections In The Elderly

    PubMed Central

    Fujihashi, Kohtaro; Sato, Shintaro; Kiyono, Hiroshi

    2014-01-01

    Influenza virus and Streptococcus pneumoniae are two major pathogens that lead to significant morbidity and mortality in the elderly. Since both pathogens enter the host via the mucosa, especially the upper respiratory tract (URT), it is essential to elicit pathogen-specific secretory IgA (SIgA) antibody (Ab) responses at mucosal surfaces for defense of the elderly. However, as aging occurs, alterations in the mucosal immune system of older individuals result in a failure to induce SIgA Abs for protection from these infections. To overcome mucosal immunosenescence, we have developed a mucosal dendritic cell targeting, novel double adjuvant system which we show to be an attractive and effective immunological modulator. This system induces a more balanced Th1- and Th2- type cytokine response which supports both mucosal SIgA and systemic IgG1 and IgG2a Ab responses. Thus, adaptation of this adjuvant system to nasal vaccines for influenza virus and S. pneumoniae could successfully provide protection by supporting pathogen-specific SIgA Ab responses in the URT in the mouse model of aging. In summary, a double adjuvant system is considered to be an attractive and potentially important strategy for the future development of mucosal vaccines for the elderly. PMID:24440991

  6. Mucosal adjuvants for vaccines to control upper respiratory infections in the elderly.

    PubMed

    Fujihashi, Kohtaro; Sato, Shintaro; Kiyono, Hiroshi

    2014-06-01

    Influenza virus and Streptococcus pneumoniae are two major pathogens that lead to significant morbidity and mortality in the elderly. Since both pathogens enter the host via the mucosa, especially the upper respiratory tract (URT), it is essential to elicit pathogen-specific secretory IgA (SIgA) antibody (Ab) responses at mucosal surfaces for defense of the elderly. However, as aging occurs, alterations in the mucosal immune system of older individuals result in a failure to induce SIgA Abs for protection from these infections. To overcome mucosal immunosenescence, we have developed a mucosal dendritic cell targeting, novel double adjuvant system which we show to be an attractive and effective immunological modulator. This system induces a more balanced Th1- and Th2-type cytokine response which supports both mucosal SIgA and systemic IgG1 and IgG2a Ab responses. Thus, adaptation of this adjuvant system to nasal vaccines for influenza virus and S. pneumoniae could successfully provide protection by supporting pathogen-specific SIgA Ab responses in the URT in the mouse model of aging. In summary, a double adjuvant system is considered to be an attractive and potentially important strategy for the future development of mucosal vaccines for the elderly. PMID:24440991

  7. 12/15-Lipoxygenase deficiency protects mice from allergic airways inflammation and increases secretory IgA levels

    PubMed Central

    Hajek, Amanda R.; Lindley, Alexa R.; Favoreto, Silvio; Carter, Roderick; Schleimer, Robert P.; Kuperman, Douglas A.

    2009-01-01

    Background Induction of 15-lipoxygenase-1 (15-LO-1) has been observed in the airways of subjects with asthma, although its physiologic role in the airways has remained largely undefined. Objectives We sought to test the hypothesis that the mouse 15-LO-1 ortholog 12/15-LO contributes to the development of allergic airways inflammation. Methods Two models were used to evaluate wild-type and 12/15-LO–deficient mice. The systemic model involved intraperitoneal injections of allergen, and the mucosal model involved allergen exposures occurring exclusively in the airways. The systemic and mucosal-specific contributions of 12/15-LO to allergic sensitization and airways inflammation were determined by comparing the results obtained in the 2 models. Results In the mucosal model 12/15-LO knockout mice were protected from the development of allergic sensitization and airways inflammation, as evidenced by circulating levels of allergen-specific IgE, IgG1, and IgG2a; the profile of inflammatory cells in bronchoalveolar lavage fluid; and the expression of cytokines and mediators in lung tissue. In the systemic model 12/15-LO knockout mice were not protected. This suggested the presence of a lung-restricted protective role for 12/15-LO deficiency that was potentially accounted for by increased activation of mucosal B cells and increased production of the known mucosal-specific protective mediator secretory IgA. Conclusions Induction of 15-LO-1 in asthma might contribute to allergic sensitization and airways inflammation, potentially by causing suppression of secretory IgA. PMID:18692885

  8. Controversies in Pediatric Perioperative Airways

    PubMed Central

    Klučka, Jozef; Štourač, Petr; Štoudek, Roman; Ťoukálková, Michaela; Harazim, Hana; Kosinová, Martina

    2015-01-01

    Pediatric airway management is a challenge in routine anesthesia practice. Any airway-related complication due to improper procedure can have catastrophic consequences in pediatric patients. The authors reviewed the current relevant literature using the following data bases: Google Scholar, PubMed, Medline (OVID SP), and Dynamed, and the following keywords: Airway/s, Children, Pediatric, Difficult Airways, and Controversies. From a summary of the data, we identified several controversies: difficult airway prediction, difficult airway management, cuffed versus uncuffed endotracheal tubes for securing pediatric airways, rapid sequence induction (RSI), laryngeal mask versus endotracheal tube, and extubation timing. The data show that pediatric anesthesia practice in perioperative airway management is currently lacking the strong evidence-based medicine (EBM) data that is available for adult subpopulations. A number of procedural steps in airway management are derived only from adult populations. However, the objective is the same irrespective of patient age: proper securing of the airway and oxygenation of the patient. PMID:26759809

  9. Airway management in patients with deep neck infections: A retrospective analysis.

    PubMed

    Cho, Soo Young; Woo, Jae Hee; Kim, Yoon Jin; Chun, Eun Hee; Han, Jong In; Kim, Dong Yeon; Baik, Hee Jung; Chung, Rack Kyung

    2016-07-01

    Securing the airway in patients undergoing surgical intervention to control a deep neck infection (DNI) is challenging for anesthesiologists due to the distorted airway anatomy, limited mouth opening, tissue edema, and immobility. It is critical to assess the risk of a potential difficult airway and prepare the most appropriate airway management method.We reviewed our anesthetic experiences managing patients with DNIs, focusing on the need for video-laryngoscope or awake fiberoptic intubation beyond a standard intubation from the anesthesiologist's perspective.When patients had infections in the masticatory space, mouth of floor, oropharyngeal mucosal space, or laryngopharynx, their airways tended to be managed using methods requiring more effort by the anesthesiologists, and more extensive equipment preparation, compared with use of a standard laryngoscope. The degree to which the main lesion influenced the airway anatomy, especially at the level of epiglottis and aryepiglottic fold was related to the airway management method selected.When managing the airways of patients undergoing surgery for DNIs under general anesthesia, anesthesiologists should use imaging with computed tomography to evaluate the preoperative airway status and a comprehensive understanding of radiological findings, comorbidities, and patients' symptoms is needed. PMID:27399122

  10. An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia.

    PubMed

    Dillon, S M; Lee, E J; Kotter, C V; Austin, G L; Dong, Z; Hecht, D K; Gianella, S; Siewe, B; Smith, D M; Landay, A L; Robertson, C E; Frank, D N; Wilson, C C

    2014-07-01

    Human immunodeficiency virus-1 (HIV-1) infection disrupts the intestinal immune system, leading to microbial translocation and systemic immune activation. We investigated the impact of HIV-1 infection on the intestinal microbiome and its association with mucosal T-cell and dendritic cell (DC) frequency and activation, as well as with levels of systemic T-cell activation, inflammation, and microbial translocation. Bacterial 16S ribosomal DNA sequencing was performed on colon biopsies and fecal samples from subjects with chronic, untreated HIV-1 infection and uninfected control subjects. Colon biopsies of HIV-1-infected subjects had increased abundances of Proteobacteria and decreased abundances of Firmicutes compared with uninfected donors. Furthermore at the genus level, a significant increase in Prevotella and decrease in Bacteroides was observed in HIV-1-infected subjects, indicating a disruption in the Bacteroidetes bacterial community structure. This HIV-1-associated increase in Prevotella abundance was associated with increased numbers of activated colonic T cells and myeloid DCs. Principal coordinates analysis demonstrated an HIV-1-related change in the microbiome that was associated with increased mucosal cellular immune activation, microbial translocation, and blood T-cell activation. These observations suggest that an important relationship exists between altered mucosal bacterial communities and intestinal inflammation during chronic HIV-1 infection. PMID:24399150

  11. An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia

    PubMed Central

    Dillon, SM; Lee, EJ; Kotter, CV; Austin, GL; Dong, Z; Hecht, DK; Gianella, S; Siewe, B; Smith, DM; Landay, AL; Robertson, CE; Frank, DN; Wilson, CC

    2014-01-01

    HIV-1 infection disrupts the intestinal immune system, leading to microbial translocation and systemic immune activation. We investigated the impact of HIV-1 infection on the intestinal microbiome and its association with mucosal T cell and dendritic cell (DC) frequency and activation, as well as with levels of systemic T cell activation, inflammation and microbial translocation. Bacterial 16S ribosomal DNA sequencing was performed on colon biopsies and fecal samples from subjects with chronic, untreated HIV-1 infection and uninfected control subjects. Colon biopsies of HIV-1 infected subjects had increased abundances of Proteobacteria and decreased abundances of Firmicutes compared to uninfected donors. Furthermore at the genus level, a significant increase in Prevotella and decrease in Bacteroides was observed in HIV-1 infected subjects, indicating a disruption in the Bacteroidetes bacterial community structure. This HIV-1-associated increase in Prevotella abundance was associated with increased numbers of activated colonic T cells and myeloid DCs. Principal coordinates analysis demonstrated an HIV-1-related change in the microbiome that was associated with increased mucosal cellular immune activation, microbial translocation and blood T cell activation. These observations suggest that an important relationship exists between altered mucosal bacterial communities and intestinal inflammation during chronic HIV-1 infection. PMID:24399150

  12. Dendritic Growth Investigators

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Representatives of NASA materials science experiments supported the NASA exhibit at the Rernselaer Polytechnic Institute's Space Week activities, April 5 through 11, 1999. From left to right are: Angie Jackman, project manager at NASA's Marshall Space Flight Center for dendritic growth experiments; Dr. Martin Glicksman of Rennselaer Polytechnic Instutute, Troy, NY, principal investigator on the Isothermal Dendritic Growth Experiment (IDGE) that flew three times on the Space Shuttle; and Dr. Matthew Koss of College of the Holy Cross in Worcester, MA, a co-investigator on the IDGE and now principal investigator on the Transient Dendritic Solidification Experiment being developed for the International Space Station (ISS). The image at far left is a dendrite grown in Glicksman's IDGE tests aboard the Shuttle. Glicksman is also principal investigator for the Evolution of Local Microstructures: Spatial Instabilities of Coarsening Clusters.

  13. Development of Mucosal Immunity in Children: A Rationale for Sublingual Immunotherapy?

    PubMed Central

    Szczawinska-Poplonyk, Aleksandra

    2012-01-01

    The mucosal immune system has bidirectional tasks to mount an effective defense against invading harmful pathogens and to suppress the immune response to alimentary antigens and commensal bacterial flora. Oral tolerance is a suppression of the mucosal immune pathway related to a specific immunophenotype of the dendritic cells and an induction of the regulatory T cells as well as with the silencing of the effector T cell response by anergy and deletion. The physiological dynamic process of the anatomical and functional maturation of the immune system occurring in children during pre- and postnatal periods is a significant factor, having an impact on the fine balance between the activation and the suppression of the immune response. In this paper, mechanisms of mucosal immunity and tolerance induction in terms of maturational issues are discussed with a special emphasis on the implications for a novel therapeutic intervention in allergic diseases via the sublingual route. PMID:22121386

  14. Comparative dendritic cell biology of veterinary mammals.

    PubMed

    Summerfield, Artur; Auray, Gael; Ricklin, Meret

    2015-01-01

    Dendritic cells (DC) have a main function in innate immunity in that they sense infections and environmental antigens at the skin and mucosal surfaces and thereby critically influence decisions about immune activation or tolerance. As professional antigen-presenting cells, they are essential for induction of adaptive immune responses. Consequently, knowledge on this cell type is required to understand the immune systems of veterinary mammals, including cattle, sheep, pigs, dogs, cats, and horses. Recent ontogenic studies define bona fide DC as an independent lineage of hematopoietic cells originating from a common precursor. Distinct transcription factors control the development into the two subsets of classical DC and plasmacytoid DC. These DC subsets express a distinguishable transcriptome, which differs from that of monocyte-derived DC. Using a comparative approach based on phenotype and function, this review attempts to classify DC of veterinary mammals and to describe important knowledge gaps. PMID:25387110

  15. A marvel of mucosal T cells and secretory antibodies for the creation of first lines of defense.

    PubMed

    Kunisawa, J; Kiyono, H

    2005-06-01

    The mucosal immune system acts as a first line of defense against bacterial and viral infections while also playing a crucial role in the establishment and maintenance of mucosal homeostasis between the host and the outside environment. In addition to epithelial cells and antigen-presenting cells (dendritic cells and macrophages), B and T lymphocytes form a dynamic mucosal network for the induction and regulation of secretory IgA (S-IgA) and cytotoxic T lymphocyte (CTL) responses. This review seeks to shed light on the pathways of induction and regulation of these responses and to elucidate the role they simultaneously play in fending off pathogen invasion and maintaining mucosal homeostasis. PMID:15971106

  16. On the dendrites and dendritic transitions in undercooled germanium

    SciTech Connect

    Lau, C.F.; Kui, H.W. . Dept. of Physics)

    1993-07-01

    Undercooled molten Ge was allowed to solidify at initial bulk undercoolings, [Delta]T, from 10 to 200C under dehydrated boron oxide flux. It turned out that in addition to the (211) twin dendrite found by Billig and the (100) twin-free dendrite discovered by Devaud and Turnbill, there is a third novel twin dendrite, the (110) twin dendrite. The twin planes in a (110) dendrite always appear in multiple numbers and the orientation is (111). These different kinds of dendrites exist at different initial interfacial undercoolings and the transition temperatures for (110) to (211), (211) to (100) are [Delta]T = 61 and 93C, respectively.

  17. Isothermal Dendritic Growth Experiment - SCN Dendrites

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. IDGE used transparent organic liquids that form dendrites (treelike structures) similar to the crystals that form inside metal alloys. Comparing Earth-based and space-based dentrite growth velocity, tip size and shape provid a better understanding of the fundamentals of dentritic growth, including gravity's effects. These shadowgraphic images show succinonitrile (SCN) dentrites growing in a melt (liquid). The space-grown crystals also have cleaner, better defined sidebranches. IDGE was developed by Rensselaer Polytechnic Institude (RPI) and NASA/ Glenn Research Center(GRC). Advanced follow-on experiments are being developed for flight on the International Space Station. Photo gredit: NASA/Glenn Research Center

  18. Compartmentalization of the mucosal immune responses to commensal intestinal bacteria.

    PubMed

    Macpherson, Andrew J; Uhr, Therese

    2004-12-01

    Mammals coexist with a luxuriant load of bacteria in the lower intestine (up to 10(12) organisms/g of intestinal contents). Although these bacteria do not cause disease if they remain within the intestinal lumen, they contain abundant immunostimulatory molecules that trigger immunopathology if the bacteria penetrate the body in large numbers. The physical barrier consists only of a single epithelial cell layer with overlying mucus, but comparisons between animals kept in germ-free conditions and those colonized with bacteria show that bacteria induce both mucosal B cells and some T cell subsets; these adaptations are assumed to function as an immune barrier against bacterial penetration, but the mechanisms are poorly understood. In mice with normal intestinal flora, but no pathogens, there is a secretory IgA response against bacterial membrane proteins and other cell wall components. Whereas induction of IgA against cholera toxin is highly T help dependent, secretory IgA against commensal bacteria is induced by both T independent and T dependent pathways. When animals are kept in clean conditions and free of pathogens, there is still a profound intestinal secretory IgA response against the commensal intestinal flora. However, T dependent serum IgG responses against commensal bacteria do not occur in immunocompetent animals unless they are deliberately injected intravenously with 10(4) to 10(6) organisms. In other words, unmanipulated pathogen-free mice are systemically ignorant but not tolerant of their commensal flora despite the mucosal immune response to these organisms. In mice that are challenged with intestinal doses of commensal bacteria, small numbers of commensals penetrate the epithelial cell layer and survive within dendritic cells (DC). These commensal-loaded DC induce IgA, but because they are confined within the mucosal immune system by the mesenteric lymph nodes, they do not induce systemic immune responses. In this way the mucosal immune responses

  19. Airway dysfunction in swimmers.

    PubMed

    Bougault, Valérie; Boulet, Louis-Philippe

    2012-05-01

    Elite competitive swimmers are particularly affected by airway disorders that are probably related to regular and intense training sessions in a chlorinated environment. Upper and lower airway respiratory symptoms, rhinitis, airway hyper-responsiveness, and exercise-induced bronchoconstriction are highly prevalent in these athletes, but their influence on athletic performance is still unclear. The authors reviewed the main upper and lower respiratory ailments observed in competitive swimmers who train in indoor swimming pools, their pathophysiology, clinical significance and possible effects on performance. Issues regarding the screening of these disorders, their management and preventive measures are addressed. PMID:22247299

  20. Meteorological conditions along airways

    NASA Technical Reports Server (NTRS)

    Gregg, W R

    1927-01-01

    This report is an attempt to show the kind of meteorological information that is needed, and is in part available, for the purpose of determining operating conditions along airways. In general, the same factors affect these operating conditions along all airways though in varying degree, depending upon their topographic, geographic, and other characteristics; but in order to bring out as clearly as possible the nature of the data available, a specific example is taken, that of the Chicago-Dallas airway on which regular flying begins this year (1926).

  1. Direct contact between dendritic cells and bronchial epithelial cells inhibits T cell recall responses towards mite and pollen allergen extracts in vitro.

    PubMed

    Papazian, D; Wagtmann, V R; Hansen, S; Würtzen, P A

    2015-08-01

    Airway epithelial cells (AECs) form a polarized barrier along the respiratory tract. They are the first point of contact with airborne antigens and are able to instruct resident immune cells to mount appropriate immune responses by either soluble or contact-dependent mechanisms. We hypothesize that a healthy, polarized epithelial cell layer inhibits inflammatory responses towards allergens to uphold homeostasis. Using an in-vitro co-culture model of the airway epithelium, where a polarized cell layer of bronchial epithelial cells can interact with dendritic cells (DCs), we have investigated recall T cell responses in allergic patients sensitized to house dust mite, grass and birch pollen. Using allergen extract-loaded DCs to stimulate autologous allergen-specific T cell lines, we show that AEC-imprinted DCs inhibit T cell proliferation significantly of Bet v 1-specific T cell lines as well as decrease interleukin (IL)-5 and IL-13 production, whereas inhibition of Phl p 5-specific T cells varied between different donors. Stimulating autologous CD4(+) T cells from allergic patients with AEC-imprinted DCs also inhibited proliferation significantly and decreased production of both T helper type 1 (Th1) and Th2 cytokines upon rechallenge. The inhibitory effects of AECs' contact with DCs were absent when allergen extract-loaded DCs had been exposed only to AECs supernatants, but present after direct contact with AECs. We conclude that direct contact between DCs and AECs inhibits T cell recall responses towards birch, grass and house dust mite allergens in vitro, suggesting that AECs-DC contact in vivo constitute a key element in mucosal homeostasis in relation to allergic sensitisation. PMID:25707463

  2. A Lipopolysaccharide from Pantoea Agglomerans Is a Promising Adjuvant for Sublingual Vaccines to Induce Systemic and Mucosal Immune Responses in Mice via TLR4 Pathway.

    PubMed

    Fukasaka, Masahiro; Asari, Daisuke; Kiyotoh, Eiji; Okazaki, Arimichi; Gomi, Yasuyuki; Tanimoto, Takeshi; Takeuchi, Osamu; Akira, Shizuo; Hori, Mitsuhiko

    2015-01-01

    A lipopolysaccharide from Pantoea agglomerans (LPSpa) has been applied to various fields for human use as a Toll-like receptor 4 ligand and its safety has been confirmed. Here, we showed for the first time the application of LPSpa as an effective mucosal adjuvant for activating vaccine-induced antigen specific immune responses. Mice sublingually immunized with influenza vaccine (HA split vaccine) with LPSpa induced both HA-specific IgG (systemic) and IgA (mucosal) antibody responses, which led to a significant increase in survival rate against lethal influenza virus challenge compared with subcutaneous vaccination. After sublingual administration of ovalbumin with LPSpa, ovalbumin-specific mucosal IgA responses were induced at both mucosal surfaces close to the immunized site and at remote mucosal surfaces. Sublingual administration of LPSpa evoked local antigen-uptake by dendritic cells in cervical lymph nodes. LPSpa induced cytokine production and the maturation and proliferation of innate immune cells via Toll-like receptor 4 in dendritic cells. Collectively, these results suggest that LPSpa can be used as an effective mucosal adjuvant to stimulate and activate local innate immune cells to improve and enhance mucosal vaccine potency against various pathogens. PMID:25978818

  3. A Lipopolysaccharide from Pantoea Agglomerans Is a Promising Adjuvant for Sublingual Vaccines to Induce Systemic and Mucosal Immune Responses in Mice via TLR4 Pathway

    PubMed Central

    Kiyotoh, Eiji; Okazaki, Arimichi; Gomi, Yasuyuki; Tanimoto, Takeshi; Takeuchi, Osamu; Akira, Shizuo; Hori, Mitsuhiko

    2015-01-01

    A lipopolysaccharide from Pantoea agglomerans (LPSpa) has been applied to various fields for human use as a Toll-like receptor 4 ligand and its safety has been confirmed. Here, we showed for the first time the application of LPSpa as an effective mucosal adjuvant for activating vaccine-induced antigen specific immune responses. Mice sublingually immunized with influenza vaccine (HA split vaccine) with LPSpa induced both HA-specific IgG (systemic) and IgA (mucosal) antibody responses, which led to a significant increase in survival rate against lethal influenza virus challenge compared with subcutaneous vaccination. After sublingual administration of ovalbumin with LPSpa, ovalbumin-specific mucosal IgA responses were induced at both mucosal surfaces close to the immunized site and at remote mucosal surfaces. Sublingual administration of LPSpa evoked local antigen-uptake by dendritic cells in cervical lymph nodes. LPSpa induced cytokine production and the maturation and proliferation of innate immune cells via Toll-like receptor 4 in dendritic cells. Collectively, these results suggest that LPSpa can be used as an effective mucosal adjuvant to stimulate and activate local innate immune cells to improve and enhance mucosal vaccine potency against various pathogens. PMID:25978818

  4. INTEGRATED CT/BRONCHOSCOPY IN THE CENTRAL AIRWAYS: PRELIMINARY RESULTS

    PubMed Central

    Suter, Melissa J.; Reinhardt, Joseph M.; McLennan, Geoffrey

    2009-01-01

    Rationale and Objectives Many imaging modalities and methodologies exist for evaluating the pulmonary airways. Individually, each modality provides insight to the state of the airways however, alone they do not necessary provide a comprehensive description. The goal of this paper is to integrate complementary medical imaging datasets to form a synergistic description of the airways. Materials and Methods Two digital bronchoscopy techniques were used to evaluate the pulmonary mucosa. A digital color bronchoscopy system was used to detect mucosal color alterations, and a fluorescence detection system was used to assess the microvasculature of the bronchial mucosa. Study participants were also imaged with a multi-detector row computed tomography (MDCT) scanner. Virtual bronchoscopy and image registration techniques were exploited to combine 3D surface renderings, extracted from the MDCT data, together with the 2D digital bronchoscopy images. Validation of the fusion process was performed on a rubber phantom of an adult airway with 4 embedded metal beads. Results The fusion of the MDCT extracted airway tree and the digital bronchoscopy datasets were presented for 3 study participants. In addition, the detected accuracy of the registration method to reliably align the MDCT and bronchoscopy image datasets was determined to be 1.98 mm in the phantom airway model. Conclusion We have demonstrated that merging of three distinct digital datasets to provide a single synergistic description of the airways is possible. This is a pilot project in the field of eidomics, the process of combining digital image datasets and image based processes together. We anticipate that in the future eidomics will provide a universal and predictive imaging language that will change health care delivery. PMID:18486014

  5. Airway blood flow response to dry air hyperventilation in sheep

    SciTech Connect

    Parsons, G.H.; Baile, E.M.; Pare, P.D.

    1986-03-01

    Airway blood flow (Qaw) may be important in conditioning inspired air. To determine the effect of eucapneic dry air hyperventilation (hv) on Qaw in sheep the authors studied 7 anesthetized open-chest sheep after 25 min. of warm dry air hv. During each period of hv the authors have recorded vascular pressures, cardiac output (CO), and tracheal mucosal and inspired air temperature. Using a modification of the reference flow technique radiolabelled microspheres were injected into the left atrium to make separate measurements after humid air and dry air hv. In 4 animals a snare around the left main pulmonary artery was used following microsphere injection to prevent recirculation (entry into L lung of microspheres from the pulmonary artery). Qaw to the trachea and L lung as measured and Qaw for the R lung was estimated. After the final injection the sheep were killed and bronchi (Br) and lungs removed. Qaw (trachea plus L lung plus R lung) in 4 sheep increased from a mean of 30.8 to 67.0 ml/min. Airway mucosal temp. decreased from 39/sup 0/ to 33/sup 0/C. The authors conclude that dry air hv cools airway mucosa and increases Qaw in sheep.

  6. Airway management in trauma.

    PubMed

    Langeron, O; Birenbaum, A; Amour, J

    2009-05-01

    Maintenance of a patent and prevention of aspiration are essential for the management of the trauma patient, that requires experienced physicians in airway control techniques. Difficulties of the airway control in the trauma setting are increased by the vital failures, the risk of aspiration, the potential cervical spine injury, the combative patient, and the obvious risk of difficult tracheal intubation related to specific injury related to the trauma. Endotracheal intubation remains the gold standard in trauma patient airway management and should be performed via the oral route with a rapid sequence induction and a manual in-line stabilization maneuver, to decrease the risks previously mentioned. Different techniques to control the airway in trauma patients are presented: improvement of the laryngoscopic vision, lighted stylet tracheal intubation, retrograde technique for orotracheal intubation, the laryngeal mask and the intubating laryngeal mask airways, the combitube and cricothyroidotomy. Management of the airway in trauma patients requires regular training in these techniques and the knowledge of complementary techniques allowing tracheal intubation or oxygenation to overcome difficult intubation and to prevent major complications as hypoxemia and aspiration. PMID:19412149

  7. Dendritic Cells in the Gut: Interaction with Intestinal Helminths

    PubMed Central

    Mendlovic, Fela; Flisser, Ana

    2010-01-01

    The mucosal environment in mammals is highly tolerogenic; however, after exposure to pathogens or danger signals, it is able to shift towards an inflammatory response. Dendritic cells (DCs) orchestrate immune responses and are highly responsible, through the secretion of cytokines and expression of surface markers, for the outcome of such immune response. In particular, the DC subsets found in the intestine have specialized functions and interact with different immune as well as nonimmune cells. Intestinal helminths primarily induce Th2 responses where DCs have an important yet not completely understood role. In addition, this cross-talk results in the induction of regulatory T cells (T regs) as a result of the homeostatic mucosal environment. This review highlights the importance of studying the particular relation “helminth-DC-milieu” in view of the significance that each of these factors plays. Elucidating the mechanisms that trigger Th2 responses may provide the understanding of how we might modulate inflammatory processes. PMID:20224759

  8. Intestinal mucosal tolerance and impact of gut microbiota to mucosal tolerance

    PubMed Central

    Chistiakov, Dimitry A.; Bobryshev, Yuri V.; Kozarov, Emil; Sobenin, Igor A.; Orekhov, Alexander N.

    2015-01-01

    The mucosal barriers are very sensitive to pathogenic infection, thereby assuming the capacity of the mucosal immune system to induce protective immunity to harmful antigens and tolerance against harmless substances. This review provides current information about mechanisms of induction of mucosal tolerance and about impact of gut microbiota to mucosal tolerance. PMID:25628617

  9. Dendritic Polymers for Theranostics

    PubMed Central

    Ma, Yuan; Mou, Quanbing; Wang, Dali; Zhu, Xinyuan; Yan, Deyue

    2016-01-01

    Dendritic polymers are highly branched polymers with controllable structures, which possess a large population of terminal functional groups, low solution or melt viscosity, and good solubility. Their size, degree of branching and functionality can be adjusted and controlled through the synthetic procedures. These tunable structures correspond to application-related properties, such as biodegradability, biocompatibility, stimuli-responsiveness and self-assembly ability, which are the key points for theranostic applications, including chemotherapeutic theranostics, biotherapeutic theranostics, phototherapeutic theranostics, radiotherapeutic theranostics and combined therapeutic theranostics. Up to now, significant progress has been made for the dendritic polymers in solving some of the fundamental and technical questions toward their theranostic applications. In this review, we briefly summarize how to control the structures of dendritic polymers, the theranostics-related properties derived from their structures and their theranostics-related applications. PMID:27217829

  10. RNA is an Adjuvanticity Mediator for the Lipid-Based Mucosal Adjuvant, Endocine.

    PubMed

    Hayashi, Masayuki; Aoshi, Taiki; Ozasa, Koji; Kusakabe, Takato; Momota, Masatoshi; Haseda, Yasunari; Kobari, Shingo; Kuroda, Etsushi; Kobiyama, Kouji; Coban, Cevayir; Ishii, Ken J

    2016-01-01

    Nasal vaccination has the potential to elicit systemic and mucosal immunity against pathogens. However, split and subunit vaccines lack potency at stimulating mucosal immunity, and an adjuvant is indispensable for eliciting potent mucosal immune response to nasal vaccines. Endocine, a lipid-based mucosal adjuvant, potentiates both systemic and mucosal immune responses. Although Endocine has shown efficacy and tolerability in animal and clinical studies, its mechanism of action remains unknown. It has been reported recently that endogenous danger signals are essential for the effects of some adjuvants such as alum or MF59. However, the contribution of danger signals to the adjuvanticity of Endocine has not been explored. Here, we show that RNA is likely to be an important mediator for the adjuvanticity of Endocine. Administration of Endocine generated nucleic acids release, and activated dendritic cells (DCs) in draining lymph nodes in vivo. These results suggest the possibility that Endocine indirectly activates DCs via damage-associated molecular patterns. Moreover, the adjuvanticity of Endocine disappeared in mice lacking TANK-binding kinase 1 (Tbk1), which is a downstream molecule of nucleic acid sensing signal pathway. Furthermore, co-administration of RNase A reduced the adjuvanticity of Endocine. These data suggest that RNA is important for the adjuvanticity of Endocine. PMID:27374884

  11. RNA is an Adjuvanticity Mediator for the Lipid-Based Mucosal Adjuvant, Endocine

    PubMed Central

    Hayashi, Masayuki; Aoshi, Taiki; Ozasa, Koji; Kusakabe, Takato; Momota, Masatoshi; Haseda, Yasunari; Kobari, Shingo; Kuroda, Etsushi; Kobiyama, Kouji; Coban, Cevayir; Ishii, Ken J.

    2016-01-01

    Nasal vaccination has the potential to elicit systemic and mucosal immunity against pathogens. However, split and subunit vaccines lack potency at stimulating mucosal immunity, and an adjuvant is indispensable for eliciting potent mucosal immune response to nasal vaccines. Endocine, a lipid-based mucosal adjuvant, potentiates both systemic and mucosal immune responses. Although Endocine has shown efficacy and tolerability in animal and clinical studies, its mechanism of action remains unknown. It has been reported recently that endogenous danger signals are essential for the effects of some adjuvants such as alum or MF59. However, the contribution of danger signals to the adjuvanticity of Endocine has not been explored. Here, we show that RNA is likely to be an important mediator for the adjuvanticity of Endocine. Administration of Endocine generated nucleic acids release, and activated dendritic cells (DCs) in draining lymph nodes in vivo. These results suggest the possibility that Endocine indirectly activates DCs via damage-associated molecular patterns. Moreover, the adjuvanticity of Endocine disappeared in mice lacking TANK-binding kinase 1 (Tbk1), which is a downstream molecule of nucleic acid sensing signal pathway. Furthermore, co-administration of RNase A reduced the adjuvanticity of Endocine. These data suggest that RNA is important for the adjuvanticity of Endocine. PMID:27374884

  12. Immunology of Gut Mucosal Vaccines

    PubMed Central

    Pasetti, Marcela F.; Simon, Jakub K.; Sztein, Marcelo B.; Levine, Myron M.

    2011-01-01

    Summary Understanding the mechanisms underlying the induction of immunity in the gastrointestinal mucosa following oral immunization and the cross-talk between mucosal and systemic immunity should expedite the development of vaccines to diminish the global burden caused by enteric pathogens. Identifying an immunological correlate of protection in the course of field trials of efficacy, animal models (when available), or human challenge studies is also invaluable. In industrialized country populations, live attenuated vaccines (e.g. polio, typhoid, and rotavirus) mimic natural infection and generate robust protective immune responses. In contrast, a major challenge is to understand and overcome the barriers responsible for the diminished immunogenicity and efficacy of the same enteric vaccines in underprivileged populations in developing countries. Success in developing vaccines against some enteric pathogens has heretofore been elusive (e.g. Shigella). Different types of oral vaccines can selectively or inclusively elicit mucosal secretory immunoglobulin A and serum immunoglobulin G antibodies and a variety of cell-mediated immune responses. Areas of research that require acceleration include interaction between the gut innate immune system and the stimulation of adaptive immunity, development of safe yet effective mucosal adjuvants, better understanding of homing to the mucosa of immunologically relevant cells, and elicitation of mucosal immunologic memory. This review dissects the immune responses elicited in humans by enteric vaccines. PMID:21198669

  13. Lithium Dendrite Formation

    SciTech Connect

    2015-03-06

    Scientists at the Department of Energy’s Oak Ridge National Laboratory have captured the first real-time nanoscale images of lithium dendrite structures known to degrade lithium-ion batteries. The ORNL team’s electron microscopy could help researchers address long-standing issues related to battery performance and safety. Video shows annular dark-field scanning transmission electron microscopy imaging (ADF STEM) of lithium dendrite nucleation and growth from a glassy carbon working electrode and within a 1.2M LiPF6 EC:DM battery electrolyte.

  14. Stability of dendritic arrays

    NASA Technical Reports Server (NTRS)

    Warren, James A.; Langer, J. S.

    1990-01-01

    An approximate method for studying steady-state properties and linear stability of the dendritic arrays that are formed in directional solidification of alloys is proposed. This analysis is valid at high growth rates where the primary spacing between dendrites is larger than the velocity-dependent solutal diffusion length. A neutral stability boundary is computed and it is found that, in the situations where the results should be valid, the experimental data of Somboonsuk, et al. (1984) lie in the stable region, well away from the boundary.

  15. Isothermal Dendritic Growth Experiment Video

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This video, captured during the Isothermal Dendritic Growth Experiment (IDGE) flown on STS-87 as a part of the fourth United States Microgravity payload, shows the growth of a dendrite, and the surface solidification that occurred on the front and back windows of the growth chamber. Dendrites are tiny, tree like structures that form as metals solidify.

  16. Dendritic cells in inflammatory sinonasal diseases.

    PubMed

    Cao, P-P; Shi, L-L; Xu, K; Yao, Y; Liu, Z

    2016-07-01

    Dendritic cells (DCs) are critical in linking the innate and adaptive immune responses, which have been implicated in the pathogenesis of many immune and inflammatory diseases as well as the development of tumours. The role of DCs in the pathophysiology of lung diseases has been widely studied. However, the phenotype, subset and function of DCs in upper airways under physiological or pathological conditions remain largely undefined. Allergic rhinitis (AR) and chronic rhinosinusitis (CRS) are two important upper airway diseases with a high worldwide prevalence. Aberrant innate and adaptive immune responses have been considered to play an important role in the pathogenesis of AR and CRS. To this end, understanding the function of DCs in shaping the immune responses in sinonasal mucosa is critical in exploring the pathogenic mechanisms underlying AR and CRS as well as in developing novel therapeutic strategies. This review summarizes the phenotype, subset, function and regulation of DCs in sinonasal mucosa, particularly in the setting of AR and CRS. Furthermore, this review discusses the perspectives for future research and potential clinical utility focusing on DC pathways in the context of AR and CRS. PMID:27159777

  17. Neural Regulation of Mucosal Function

    PubMed Central

    Baraniuk, James N.

    2009-01-01

    Nociceptive, parasympathetic and sympathetic nerves play critical roles in regulating glandular, vascular and other processes in airway mucosa. These functions are vital for cleaning and humidifying ambient air before it is inhaled into the lungs. Recent identification of subsets of nociceptive nerves has tipped the donkey cart of dogma and led to the discovery of new receptor and ion channel families that respond to culinary odorants (“aromatherapy”), inhaled irritants, temperature and other “humors”; a new interpretation of airway nociceptive nerve axon responses; and an understanding of the neural plasticity induced by inflammation and different neurotrophic factors. PMID:17707667

  18. Role of upper airway ultrasound in airway management.

    PubMed

    Osman, Adi; Sum, Kok Meng

    2016-01-01

    Upper airway ultrasound is a valuable, non-invasive, simple, and portable point of care ultrasound (POCUS) for evaluation of airway management even in anatomy distorted by pathology or trauma. Ultrasound enables us to identify important sonoanatomy of the upper airway such as thyroid cartilage, epiglottis, cricoid cartilage, cricothyroid membrane, tracheal cartilages, and esophagus. Understanding this applied sonoanatomy facilitates clinician to use ultrasound in assessment of airway anatomy for difficult intubation, ETT and LMA placement and depth, assessment of airway size, ultrasound-guided invasive procedures such as percutaneous needle cricothyroidotomy and tracheostomy, prediction of postextubation stridor and left double-lumen bronchial tube size, and detecting upper airway pathologies. Widespread POCUS awareness, better technological advancements, portability, and availability of ultrasound in most critical areas facilitate upper airway ultrasound to become the potential first-line non-invasive airway assessment tool in the future. PMID:27529028

  19. Transport Processes in Dendritic Crystallization

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.

    1984-01-01

    Free dentritic growth refers to the unconstrained development of crystals within a supercooled melt, which is the classical dendrite problem. The development of theoretical understanding of dendritic growth and its experimental status is sketched showing that transport theory and interfacial thermodynamics (capillarity theory) are insufficient ingredients to develop a truly predictive model of dendrite formation. The convenient, but incorrect, notion of maximum velocity was used for many years to estimate the behavior of dendritic transformations until supplanted by modern dynamic stability theory. The proper combinations of transport theory and morphological stability seem to be able to predict the salient aspects of dendritic growth, especially in the neighborhood of the tip.

  20. The Mucosal Immune System of Teleost Fish

    PubMed Central

    Salinas, Irene

    2015-01-01

    Teleost fish possess an adaptive immune system associated with each of their mucosal body surfaces. Evidence obtained from mucosal vaccination and mucosal infection studies reveal that adaptive immune responses take place at the different mucosal surfaces of teleost. The main mucosa-associated lymphoid tissues (MALT) of teleosts are the gut-associated lymphoid tissue (GALT), skin-associated lymphoid tissue (SALT), the gill-associated lymphoid tissue (GIALT) and the recently discovered nasopharynx-associated lymphoid tissue (NALT). Teleost MALT includes diffuse B cells and T cells with specific phenotypes different from their systemic counterparts that have co-evolved to defend the microbe-rich mucosal environment. Both B and T cells respond to mucosal infection or vaccination. Specific antibody responses can be measured in the gills, gut and skin mucosal secretions of teleost fish following mucosal infection or vaccination. Rainbow trout studies have shown that IgT antibodies and IgT+ B cells are the predominant B cell subset in all MALT and respond in a compartmentalized manner to mucosal infection. Our current knowledge on adaptive immunity in teleosts is limited compared to the mammalian literature. New research tools and in vivo models are currently being developed in order to help reveal the great intricacy of teleost mucosal adaptive immunity and help improve mucosal vaccination protocols for use in aquaculture. PMID:26274978

  1. Primary mucosal melanomas: a comprehensive review

    PubMed Central

    Mihajlovic, Marija; Vlajkovic, Slobodan; Jovanovic, Predrag; Stefanovic, Vladisav

    2012-01-01

    Primary mucosal melanomas arise from melanocytes located in mucosal membranes lining respiratory, gastrointestinal and urogenital tract. Although a majority of mucosal melanomas originate from the mucosa of the nasal cavity and accessory sinuses, oral cavity, anorectum, vulva and vagina, they can arise in almost any part of mucosal membranes. Most of mucosal melanomas occur in occult sites, which together with the lack of early and specific signs contribute to late diagnosis, and poor prognosis. Because of their rareness the knowledge about their pathogenesis and risk factors is insufficient, and also there are not well established protocols for staging and treatment of mucosal melanomas. Surgery is the mainstay of treatment, with trends toward more conservative treatment since radical surgery did not show an advantage for survival. Radiotherapy can provide better local control in some locations, but did not show improvement in survival. There is no effective systemic therapy for these aggressive tumors. Compared with cutaneous and ocular melanoma, mucosal melanomas have lowest percent of five-year survival. Recently revealed molecular changes underlying mucosal melanomas offer new hope for development of more effective systemic therapy for mucosal melanomas. Herein we presented a comprehensive review of various locations of primary melanoma along mucosal membranes, their epidemiological and clinical features, and treatment options. We also gave a short comparison of some characteristics of cutaneous and mucosal melanomas. PMID:23071856

  2. Modification of dendritic development.

    PubMed

    Feria-Velasco, Alfredo; del Angel, Alma Rosa; Gonzalez-Burgos, Ignacio

    2002-01-01

    Since 1890 Ramón y Cajal strongly defended the theory that dendrites and their processes and spines had a function of not just nutrient transport to the cell body, but they had an important conductive role in neural impulse transmission. He extensively discussed and supported this theory in the Volume 1 of his extraordinary book Textura del Sistema Nervioso del Hombre y de los Vertebrados. Also, Don Santiago significantly contributed to a detailed description of the various neural components of the hippocampus and cerebral cortex during development. Extensive investigation has been done in the last Century related to the functional role of these complex brain regions, and their association with learning, memory and some limbic functions. Likewise, the organization and expression of neuropsychological qualities such as memory, exploratory behavior and spatial orientation, among others, depend on the integrity and adequate functional activity of the cerebral cortex and hippocampus. It is known that brain serotonin synthesis and release depend directly and proportionally on the availability of its precursor, tryptophan (TRY). By using a chronic TRY restriction model in rats, we studied their place learning ability in correlation with the dendritic spine density of pyramidal neurons in field CA1 of the hippocampus during postnatal development. We have also reported alterations in the maturation pattern of the ability for spontaneous alternation and task performance evaluating short-term memory, as well as adverse effects on the density of dendritic spines of hippocampal CA1 field pyramidal neurons and on the dendritic arborization and the number of dendritic spines of pyramidal neurons from the third layer of the prefrontal cortex using the same model of TRY restriction. The findings obtained in these studies employing a modified Golgi method, can be interpreted as a trans-synaptic plastic response due to understimulation of serotoninergic receptors located in the

  3. Supraglottic airway devices.

    PubMed

    Ramachandran, Satya Krishna; Kumar, Anjana M

    2014-06-01

    Supraglottic airway devices (SADs) are used to keep the upper airway open to provide unobstructed ventilation. Early (first-generation) SADs rapidly replaced endotracheal intubation and face masks in > 40% of general anesthesia cases due to their versatility and ease of use. Second-generation devices have further improved efficacy and utility by incorporating design changes. Individual second-generation SADs have allowed more dependable positive-pressure ventilation, are made of disposable materials, have integrated bite blocks, are better able to act as conduits for tracheal tube placement, and have reduced risk of pulmonary aspiration of gastric contents. SADs now provide successful rescue ventilation in > 90% of patients in whom mask ventilation or tracheal intubation is found to be impossible. However, some concerns with these devices remain, including failing to adequately ventilate, causing airway damage, and increasing the likelihood of pulmonary aspiration of gastric contents. Careful patient selection and excellent technical skills are necessary for successful use of these devices. PMID:24891199

  4. T-bet as a key regulator of mucosal immunity.

    PubMed

    Mohamed, Rami; Lord, Graham M

    2016-04-01

    Initially understood to be a key regulator of interferon-γ-producing helper T cells, our knowledge of T-bet's functional roles has expanded to encompass a growing range of cellular lineages. In addition to regulating other interferon-γ-producing adaptive immune cells, it is now clear that T-bet plays a fundamental role in the regulation of innate immune responses across mucosal surfaces. This homeostatic role is demonstrated by the spontaneous colitis that occurs when T-bet is deleted from innate immune cells in RAG(-/-) mice. Using this model as a focal point, we review our understanding of T-bet's regulation of adaptive and innate immune systems, focusing particularly on mucosal populations including innate lymphoid cells, dendritic cells and intraepithelial lymphocytes. With the increasingly diverse effects of T-bet on different lineages, the classical binding-centric paradigm of T-bet's molecular functionality has increasingly struggled to account for the versatility of T-bet's biological effects. Recent recognition of the synergistic interactions between T-bet and other canonical transcription factors has led to a co-operative paradigm that has provided greater explanatory power. Synthesizing insights from ChIP-seq and comparative biology, we expand the co-operative paradigm further and suggest a network approach as a powerful way to understand and model T-bet's diverse functionality. PMID:26726991

  5. Automatic airway wall segmentation and thickness measurement for long-range optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Qi, Li; Huang, Shenghai; Heidari, Andrew E.; Dai, Cuixia; Zhu, Jiang; Zhang, Xuping; Chen, Zhongping

    2016-03-01

    We present an automatic segmentation method for delineation and quantitative thickness measurement of multiple layers in endoscopic airway optical coherence tomography (OCT) images. The boundaries of the mucosa and the sub-mucosa layers were extracted using a graph-theory-based dynamic programming algorithm. The algorithm was tested with pig airway OCT images acquired with a custom built long range endoscopic OCT system. The performance of the algorithm was demonstrated by cross-validation between auto and manual segmentation experiments. Quantitative thicknesses changes in the mucosal layers are obtained automatically for smoke inhalation injury experiments.

  6. Mucosal immunization application to allergic disease: sublingual immunotherapy.

    PubMed

    Frati, Franco; Moingeon, Philippe; Marcucci, Francesco; Puccinelli, Paola; Sensi, Laura; Di Cara, Giuseppe; Incorvaia, Cristoforo

    2007-01-01

    Sublingual immunotherapy (SLIT) is an effective and safe treatment for respiratory allergy, and its mechanism of action currently is investigated with increasing attention. Studies of pharmacokinetics showed that allergen extracts administered via the sublingual route are not directly absorbed by the oral mucosa but are long retained at mucosal level, where the allergen molecules are captured by dendritic cells and, following their migration in the draining lymph nodes, presented to T cells. This seems to be the pivotal factor underlying the mechanisms of action of SLIT, at least for the long-term effects, and for the short-term efficacy, observed with ultrarush or coseasonal treatment, a down-regulation of mast cells resulting in hyporeactivity at the peak of the pollen season may be suggested. Regarding the clinically established long-lasting effects, the core mechanism is likely to consist of T regulatory (Treg) cell activation. In particular, Treg cells differentiate from naive T cells after application of soluble antigens to the mucosae, a crucial factor being the tolerogenic function of dendritic cells, and exert a suppressive effect on both Th1 and Th2 responses. Moreover, at least for the type 1 cells (Treg1), a production of IL-10 with consequent down-modulation of the immune response has been reported. Another characteristic of sublingual immunization is the absence of effectors cells, viz., mast cells, basophils, and eosinophils, in the oral mucosa of allergic subjects, which account for the excellent tolerability of SLIT. PMID:17390755

  7. Laryngo-tracheal ultrasonography to confirm correct endotracheal tube and laryngeal mask airway placement.

    PubMed

    Wojtczak, Jacek A; Cattano, Davide

    2014-12-01

    Waveform capnography was recommended as the most reliable method to confirm correct endotracheal tube or laryngeal mask airway placements. However, capnography may be unreliable during cardiopulmonary resuscitation and during low flow states. It may lead to an unnecessary removal of a well-placed endotracheal tube, re-intubation and interruption of chest compressions. Real-time upper airway (laryngo-tracheal) ultrasonography to confirm correct endotracheal tube placement was shown to be very useful in cadaveric models and during emergency intubation. Tracheal ultrasonography does not interrupt chest compressions and is not affected by low pulmonary flow or airway obstruction, but is limited by ultrasonography scattering and acoustic artifacts generated in air - mucosa interfaces. Sonographic upper airway assessment emerges as a rapid and easily available method to predict difficult intubation, to assess the laryngeal and hypopharyngeal size and visualize the position of the laryngeal mask airway in situ. This study demonstrates that the replacement of air with saline in endotracheal tube or laryngeal mask airway cuffs and the use of the contrast agents enables detection of cuffs in the airway. It also allows visualization of the surrounding structures or tissues as the ultrasound beam can be transmitted through the fluid - filled cuffs without being reflected from air - mucosal interfaces. PMID:26672974

  8. Issues of critical airway management (Which anesthesia; which surgical airway?).

    PubMed

    Bonanno, Fabrizio Giuseppe

    2012-10-01

    Which anesthesia for patients with critical airway? Safe and effective analgesia and anesthesia in critical airway is a skilled task especially after severe maxillofacial injury combined with head injury and hemorrhagic shock. If on one side sedation is wanted, on the other hand it may worsen the airway and hemodynamic situation to a point where hypoventilation and decrease of blood pressure, common side-effect of many opioids, may prejudice the patient's level of consciousness and hemodynamic compensation, compounding an already critical situation. What to do when endotracheal intubation fails and blood is trickling down the airways in an unconscious patient or when a conscious patient has to sit up to breathe? Which surgical airway in critical airway? Comparative studies among the various methods of emergency surgical airway would be unethical; furthermore, operator's training and experience is relevant for indications and performance. PMID:23248494

  9. Mucosal vaccination: lung versus nose.

    PubMed

    Vujanic, Ana; Sutton, Philip; Snibson, Kenneth J; Yen, Hung-Hsun; Scheerlinck, Jean-Pierre Y

    2012-07-15

    The induction of potent mucosal immune responses able to prevent the establishment of infection at the onset of mucosal pathogen colonisation represents a desirable but challenging goal for vaccine development. Here we compare nasal vaccine delivery with intra-pulmonary vaccination using a sheep lymphatic cannulation model. Our results demonstrate that nasal delivery of a non-infective ISCOMATRIX(®) influenza vaccine does not induce primary immune responses in the lymph draining the nasal lymph nodes, suggesting that local immune responses in the lymph nodes draining the nasal cavity are relatively weak. However, this mode of delivery can boost existing immunity in the nasal lymph. Using the same adjuvant we were able to induce very potent immune responses in both blood and bronchoalveolar lavage (BAL), following intra-pulmonary delivery of ISCOMATRIX(®) influenza vaccine, even when very small doses of antigen were employed. Lung delivery could also induce comparable immune responses against other recombinant antigens mixed with ISCOMATRIX(®) adjuvant and could therefore become a method of choice for the induction of immunity to mucosal pathogens infecting the lower respiratory tract. PMID:21492942

  10. Cryopreservation of Human Mucosal Leukocytes

    PubMed Central

    Shu, Zhiquan; Levy, Claire N.; Ferre, April L.; Hartig, Heather; Fang, Cifeng; Lentz, Gretchen; Fialkow, Michael; Kirby, Anna C.; Adams Waldorf, Kristina M.; Veazey, Ronald S.; Germann, Anja; von Briesen, Hagen; McElrath, M. Juliana; Dezzutti, Charlene S.; Sinclair, Elizabeth; Baker, Chris A. R.; Shacklett, Barbara L.; Gao, Dayong; Hladik, Florian

    2016-01-01

    Background Understanding how leukocytes in the cervicovaginal and colorectal mucosae respond to pathogens, and how medical interventions affect these responses, is important for developing better tools to prevent HIV and other sexually transmitted infections. An effective cryopreservation protocol for these cells following their isolation will make studying them more feasible. Methods and Findings To find an optimal cryopreservation protocol for mucosal mononuclear leukocytes, we compared cryopreservation media and procedures using human vaginal leukocytes and confirmed our results with endocervical and colorectal leukocytes. Specifically, we measured the recovery of viable vaginal T cells and macrophages after cryopreservation with different cryopreservation media and handling procedures. We found several cryopreservation media that led to recoveries above 75%. Limiting the number and volume of washes increased the fraction of cells recovered by 10–15%, possibly due to the small cell numbers in mucosal samples. We confirmed that our cryopreservation protocol also works well for both endocervical and colorectal leukocytes. Cryopreserved leukocytes had slightly increased cytokine responses to antigenic stimulation relative to the same cells tested fresh. Additionally, we tested whether it is better to cryopreserve endocervical cells on the cytobrush or in suspension. Conclusions Leukocytes from cervicovaginal and colorectal tissues can be cryopreserved with good recovery of functional, viable cells using several different cryopreservation media. The number and volume of washes has an experimentally meaningful effect on the percentage of cells recovered. We provide a detailed, step-by-step protocol with best practices for cryopreservation of mucosal leukocytes. PMID:27232996

  11. Total airway reconstruction.

    PubMed

    Connor, Matthew P; Barrera, Jose E; Eller, Robert; McCusker, Scott; O'Connor, Peter

    2013-02-01

    We present a case of obstructive sleep apnea (OSA) that required multilevel surgical correction of the airway and literature review and discuss the role supraglottic laryngeal collapse can have in OSA. A 34-year-old man presented to a tertiary otolaryngology clinic for treatment of OSA. He previously had nasal and palate surgeries and a Repose tongue suspension. His residual apnea hypopnea index (AHI) was 67. He had a dysphonia associated with a true vocal cord paralysis following resection of a benign neck mass in childhood. He also complained of inspiratory stridor with exercise and intolerance to continuous positive airway pressure. Physical examination revealed craniofacial hypoplasia, full base of tongue, and residual nasal airway obstruction. On laryngoscopy, the paretic aryepiglottic fold arytenoid complex prolapsed into the laryngeal inlet with each breath. This was more pronounced with greater respiratory effort. Surgical correction required a series of operations including awake tracheostomy, supraglottoplasty, midline glossectomy, genial tubercle advancement, maxillomandibular advancement, and reconstructive rhinoplasty. His final AHI was 1.9. Our patient's supraglottic laryngeal collapse constituted an area of obstruction not typically evaluated in OSA surgery. In conjunction with treating nasal, palatal, and hypopharyngeal subsites, our patient's supraglottoplasty represented a key component of his success. This case illustrates the need to evaluate the entire upper airway in a complicated case of OSA. PMID:22965285

  12. Epithelial hyperplasia, airways

    Cancer.gov

    Number of respiratory epithelial cells is increased diffusely or focally. Frequently luminal protrusions are observed, sometimes forming papillae. Mucous (goblet) cell metaplastic hyperplasia is a variant, in which the respiratory epithelium of conducting airways is replaced by mucous cells either as a single or a pseudostratified layer.

  13. Silicon dendritic web material

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Campbell, R. B.; Sienkiewicz, L. J.; Rai-Choudhury, P.

    1982-01-01

    The development of a low cost and reliable contact system for solar cells and the fabrication of several solar cell modules using ultrasonic bonding for the interconnection of cells and ethylene vinyl acetate as the potting material for module encapsulation are examined. The cells in the modules were made from dendritic web silicon. To reduce cost, the electroplated layer of silver was replaced with an electroplated layer of copper. The modules that were fabricated used the evaporated Ti, Pd, Ag and electroplated Cu (TiPdAg/Cu) system. Adherence of Ni to Si is improved if a nickel silicide can be formed by heat treatment. The effectiveness of Ni as a diffusion barrier to Cu and the ease with which nickel silicide is formed is discussed. The fabrication of three modules using dendritic web silicon and employing ultrasonic bonding for interconnecting calls and ethylene vinyl acetate as the potting material is examined.

  14. Advances in prehospital airway management

    PubMed Central

    Jacobs, PE; Grabinsky, A

    2014-01-01

    Prehospital airway management is a key component of emergency responders and remains an important task of Emergency Medical Service (EMS) systems worldwide. The most advanced airway management techniques involving placement of oropharyngeal airways such as the Laryngeal Mask Airway or endotracheal tube. Endotracheal tube placement success is a common measure of out-of-hospital airway management quality. Regional variation in regard to training, education, and procedural exposure may be the major contributor to the findings in success and patient outcome. In studies demonstrating poor outcomes related to prehospital-attempted endotracheal intubation (ETI), both training and skill level of the provider are usually often low. Research supports a relationship between the number of intubation experiences and ETI success. National standards for certification of emergency medicine provider are in general too low to guarantee good success rate in emergency airway management by paramedics and physicians. Some paramedic training programs require more intense airway training above the national standard and some EMS systems in Europe staff their system with anesthesia providers instead. ETI remains the cornerstone of definitive prehospital airway management, However, ETI is not without risk and outcomes data remains controversial. Many systems may benefit from more input and guidance by the anesthesia department, which have higher volumes of airway management procedures and extensive training and experience not just with training of airway management but also with different airway management techniques and adjuncts. PMID:24741499

  15. Methods of airway resistance assessment.

    PubMed

    Urbankowski, Tomasz; Przybyłowski, Tadeusz

    2016-01-01

    Airway resistance is the ratio of driving pressure to the rate of the airflow in the airways. The most frequent methods used to measure airway resistance are whole-body plethysmography, the interrupter technique and the forced oscillation technique. All these methods allow to measure resistance during respiration at the level close to tidal volume, they do not require forced breathing manoeuvres or deep breathing during measurement. The most popular method for measuring airway resistance is whole-body plethysmography. The results of plethysmography include among others the following parameters: airway resistance (Raw), airway conductance (Gaw), specific airway resistance (sRaw) and specific airway conductance (sGaw). The interrupter technique is based on the assumption that at the moment of airway occlusion, air pressure in the mouth is equal to the alveolar pressure . In the forced oscillation technique (FOT), airway resistance is calculated basing on the changes in pressure and flow caused by air vibration. The methods for measurement of airway resistance that are described in the present paper seem to be a useful alternative to the most common lung function test - spirometry. The target group in which these methods may be widely used are particularly the patients who are unable to perform spirometry. PMID:27238174

  16. Supraglottic airway devices in children

    PubMed Central

    Ramesh, S; Jayanthi, R

    2011-01-01

    Modern anaesthesia practice in children was made possible by the invention of the endotracheal tube (ET), which made lengthy and complex surgical procedures feasible without the disastrous complications of airway obstruction, aspiration of gastric contents or asphyxia. For decades, endotracheal intubation or bag-and-mask ventilation were the mainstays of airway management. In 1983, this changed with the invention of the laryngeal mask airway (LMA), the first supraglottic airway device that blended features of the facemask with those of the ET, providing ease of placement and hands-free maintenance along with a relatively secure airway. The invention and development of the LMA by Dr. Archie Brain has had a significant impact on the practice of anaesthesia, management of the difficult airway and cardiopulmonary resuscitation in children and neonates. This review article will be a brief about the clinical applications of supraglottic airways in children. PMID:22174464

  17. Management of the Traumatized Airway.

    PubMed

    Jain, Uday; McCunn, Maureen; Smith, Charles E; Pittet, Jean-Francois

    2016-01-01

    There is a lack of evidence-based approach regarding the best practice for airway management in patients with a traumatized airway. General recommendations for the management of the traumatized airway are summarized in table 5. Airway trauma may not be readily apparent, and its evaluation requires a high level of suspicion for airway disruption and compression. For patients with facial trauma, control of the airway may be significantly impacted by edema, bleeding, inability to clear secretions, loss of bony support, and difficulty with face mask ventilation. With the airway compression from neck swelling or hematoma, intubation attempts can further compromise the airway due to expanding hematoma. For patients with airway disruption, the goal is to pass the tube across the injured area without disrupting it or to insert the airway distal to the injury using a surgical approach. If airway injury is extensive, a surgical airway distal to the site of injury may be the best initial approach. Alternatively, if orotracheal intubation is chosen, spontaneous ventilation may be maintained or RSI may be performed. RSI is a common approach. Thus, some of the patients intubated may subsequently require tracheostomy. A stable patient with limited injuries may not require intubation but should be watched carefully for at least several hours. Because of a paucity of evidence-based data, the choice between these approaches and the techniques utilized is a clinical decision depending on the patient's condition, clinical setting, injuries to airway and other organs, and available personnel, expertise, and equipment. Inability to obtain a definitive airway is always an absolute indication for an emergency cricothyroidotomy or surgical tracheostomy. PMID:26517857

  18. Web-dendritic ribbon growth

    NASA Technical Reports Server (NTRS)

    Hilborn, R. B., Jr.; Faust, J. W., Jr.

    1976-01-01

    A web furnace was constructed for pulling dendritic-web samples. The effect of changes in the furnace thermal geometry on the growth of dendritic-web was studied. Several attempts were made to grow primitive dendrites for use as the dendritic seed crystals for web growth and to determine the optimum twin spacing in the dendritic seed crystal for web growth. Mathematical models and computer programs were used to determine the thermal geometries in the susceptor, crucible melt, meniscus, and web. Several geometries were determined for particular furnace geometries and growth conditions. The information obtained was used in conjunction with results from the experimental growth investigations in order to achieve proper conditions for sustained pulling of two dendrite web ribbons. In addition, the facilities for obtaining the following data were constructed: twin spacing, dislocation density, web geometry, resistivity, majority charge carrier type, and minority carrier lifetime.

  19. IDGE: Isothermal Dendritic Growth Experiment

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Isothermal Dendritic Growth Experiment (IDGE) flew on STS-62 to study the microscopic, tree-like structures (dendrites) that form within metals as they solidify from molten materials. The size, shape, and orientation of these dendrites affect the strength and usefulness of metals. Data from this experiment will be used to test and improve the mathematical models that support the industrial production of metals.

  20. Barrier function of the nasal mucosa in health and type-2 biased airway diseases.

    PubMed

    Zhang, N; Van Crombruggen, K; Gevaert, E; Bachert, C

    2016-03-01

    The mucosal lining of the upper airways represents the outer surface of the body to the ambient air and its contents and is prepared for it as the first line of defense. Apart from the well-described physical barrier and the mucociliary clearance, a variety of systems, including the airway microbiome, antimicrobial proteins, damage-associated molecular patterns, innate lymphoid cells, epithelial-derived cytokines and chemokines, and finally the adaptive immune system, as well as eosinophils as newly appreciated defense cells form different levels of protection against and response to any possible intruder. Of interest especially for allergic airway disease, mucosal germs might not just elicit a classical Th1/Th17-biased inflammatory response, but may directly induce a type-2 mucosal inflammation. Innovative therapeutic interventions may be possible at different levels also; however, whether modulations of the innate or adaptive immune responses will finally be more successful, and how the correction of the adaptive immune response might impact on the innate side, will be determined in the near future. PMID:26606240

  1. Perception of Better Nasal Patency Correlates with Increased Mucosal Cooling after Surgery for Nasal Obstruction

    NASA Astrophysics Data System (ADS)

    Garcia, Guilherme; Sullivan, Corbin; Frank-Ito, Dennis; Kimbell, Julia; Rhee, John

    2014-11-01

    Nasal airway obstruction (NAO) is a common health problem with 340,000 patients undergoing surgery annually in the United States. Traditionally, otolaryngologists have focused on airspace cross-sectional areas and nasal resistance to airflow as objective measures of nasal patency, but neither of these variables correlated consistently with patients' symptoms. Given that the sensation of nasal airflow is also associated with mucosal cooling (i.e., heat loss) during inspiration, we investigated the correlation between the sensation of nasal obstruction and mucosal cooling in 10 patients before and after NAO surgery. Three-dimensional models of the nasal anatomy were created based on pre- and post-surgery computed tomography scans. Computational fluid dynamics (CFD) simulations were conducted to quantify nasal resistance and mucosal cooling. Patient-reported symptoms were measured by a visual analog scale and the Nasal Obstruction Symptom Evaluation (NOSE), a disease-specific quality of life questionnaire. Our results revealed that the subjective sensation of nasal obstruction correlated with both nasal resistance and heat loss, but the strongest correlation was between the NOSE score and the nasal surface area where heat flux exceeds 50 W /m2 . In conclusion, a significant post-operative increase in mucosal cooling correlates well with patients' perception of better nasal patency after NAO surgery.

  2. 3D pulmonary airway color image reconstruction via shape from shading and virtual bronchoscopy imaging techniques

    NASA Astrophysics Data System (ADS)

    Suter, Melissa; Reinhardt, Joseph M.; Hoffman, Eric A.; McLennan, Geoffrey

    2005-04-01

    The dependence on macro-optical imaging of the human body in the assessment of possible disease is rapidly increasing concurrent with, and as a direct result of, advancements made in medical imaging technologies. Assessing the pulmonary airways through bronchoscopy is performed extensively in clinical practice however remains highly subjective due to limited visualization techniques and the lack of quantitative analyses. The representation of 3D structures in 2D visualization modes, although providing an insight to the structural content of the scene, may in fact skew the perception of the structural form. We have developed two methods for visualizing the optically derived airway mucosal features whilst preserving the structural scene integrity. Shape from shading (SFS) techniques can be used to extract 3D structural information from 2D optical images. The SFS technique presented addresses many limitations previously encountered in conventional techniques resulting in high-resolution 3D color images. The second method presented to combine both color and structural information relies on combined CT and bronchoscopy imaging modalities. External imaging techniques such as CT provide a means of determining the gross structural anatomy of the pulmonary airways, however lack the important optically derived mucosal color. Virtual bronchoscopy is used to provide a direct link between the CT derived structural anatomy and the macro-optically derived mucosal color. Through utilization of a virtual and true bronchoscopy matching technique we are able to directly extract combined structurally sound 3D color segments of the pulmonary airways. Various pulmonary airway diseases are assessed and the resulting combined color and texture results are presented demonstrating the effectiveness of the presented techniques.

  3. Upper Airway Mechanics

    PubMed Central

    Verbraecken, Johan A.; De Backer, Wilfried A.

    2009-01-01

    This review discusses the pathophysiological aspects of sleep-disordered breathing, with focus on upper airway mechanics in obstructive and central sleep apnoea, Cheyne-Stokes respiration and obesity hypoventilation syndrome. These disorders constitute the end points of a spectrum with distinct yet interrelated mechanisms that lead to substantial pathology, i.e. increased upper airway collapsibility, control of breathing instability, increased work of breathing, disturbed ventilatory system mechanics and neurohormonal changes. Concepts are changing. Although sleep apnoea is considered more and more to be an increased loop gain disorder, the central type of apnoea is now considered as an obstructive event, because it causes pharyngeal narrowing, associated with prolonged expiration. Although a unifying concept for the pathogenesis is lacking, it seems that these patients are in a vicious circle. Knowledge of common patterns of sleep-disordered breathing may help to identify these patients and guide therapy. PMID:19478479

  4. Dendritic Alloy Solidification Experiment (DASE)

    NASA Technical Reports Server (NTRS)

    Beckermann, C.; Karma, A.; Steinbach, I.; deGroh, H. C., III

    2001-01-01

    A space experiment, and supporting ground-based research, is proposed to study the microstructural evolution in free dendritic growth from a supercooled melt of the transparent model alloy succinonitrile-acetone (SCN-ACE). The research is relevant to equiaxed solidification of metal alloy castings. The microgravity experiment will establish a benchmark for testing of equiaxed dendritic growth theories, scaling laws, and models in the presence of purely diffusive, coupled heat and solute transport, without the complicating influences of melt convection. The specific objectives are to: determine the selection of the dendrite tip operating state, i.e. the growth velocity and tip radius, for free dendritic growth of succinonitrile-acetone alloys; determine the growth morphology and sidebranching behavior for freely grown alloy dendrites; determine the effects of the thermal/solutal interactions in the growth of an assemblage of equiaxed alloy crystals; determine the effects of melt convection on the free growth of alloy dendrites; measure the surface tension anisotropy strength of succinon itrile -acetone alloys establish a theoretical and modeling framework for the experiments. Microgravity experiments on equiaxed dendritic growth of alloy dendrites have not been performed in the past. The proposed experiment builds on the Isothermal Dendritic Growth Experiment (IDGE) of Glicksman and coworkers, which focused on the steady growth of a single crystal from pure supercooled melts (succinonitrile and pivalic acid). It also extends the Equiaxed Dendritic Solidification Experiment (EDSE) of the present investigators, which is concerned with the interactions and transients arising in the growth of an assemblage of equiaxed crystals (succinonitrile). However, these experiments with pure substances are not able to address the issues related to coupled heat and solute transport in growth of alloy dendrites.

  5. Brachycephalic airway syndrome.

    PubMed

    Meola, Stacy D

    2013-08-01

    Brachycephalic airway syndrome is a common finding in brachycephalic breeds. A combination of primary and secondary changes can progress to life-threatening laryngeal collapse. Early recognition of primary anatomic abnormalities that include stenotic nares, elongated soft palate, and hypoplastic trachea would allow the clinician to make early recommendations for medical and surgical management, which can improve the quality of life in affected animals. PMID:24182996

  6. Palatopharyngoplasty with bilateral buccal mucosal graft repair to alleviate oropharyngeal stenosis.

    PubMed

    Tompkins, Jared J; Vaughn, Cory A; Shaikh, Faisal A; Stocks, Rose Mary; Thompson, Jerome W

    2015-09-01

    Oropharyngeal stenosis is rare, but known complication from tonsillectomy procedure. A 15-year-old female presented with refractory dyspnea, mild obstructive sleep apnea, and dysphagia. She underwent tonsillectomy 3 years prior. Severe cicatricial oropharyngeal scar involving soft palate, anterior tonsillar pillars, and base of tongue, resulted in 1-cm(2) airway. Case report describing lysis of severe palatopharyngeal scar bands from tonsillectomy misadventure with immediate buccal mucosal grafts to repair resultant oropharyngeal defects. Patient no longer complains of difficulty breathing or dysphagia. PMID:26145205

  7. Upper airway resistance syndrome.

    PubMed

    Hasan, N; Fletcher, E C

    1998-07-01

    Many clinicians are familiar with the clinical symptoms and signs of obstructive sleep apnea (OSA). In its most blatant form, OSA is complete airway obstruction with repetitive, prolonged pauses in breathing, arterial oxyhemoglobin desaturation; followed by arousal with resumption of breathing. Daytime symptoms of this disorder include excessive daytime somnolence, intellectual dysfunction, and cardiovascular effects such as systemic hypertension, angina, myocardial infarction, and stroke. It has been recently recognized that increased pharyngeal resistance with incomplete obstruction can lead to a constellation of symptoms identical to OSA called "upper airway resistance syndrome" (UARS). The typical findings of UARS on sleep study are: (1) repetitive arousals from EEG sleep coinciding with a (2) waxing and waning of the respiratory airflow pattern and (3) increased respiratory effort as measured by esophageal pressure monitoring. There may be few, if any, obvious apneas or hypopneas with desaturation, but snoring may be a very prominent finding. Treatment with nasal positive airway pressure (NCPAP) eliminates the symptoms and confirms the diagnosis. Herein we describe two typical cases of UARS. PMID:9676067

  8. Airway closure in microgravity.

    PubMed

    Dutrieue, Brigitte; Verbanck, Sylvia; Darquenne, Chantal; Prisk, G Kim

    2005-08-25

    Recent single breath washout (SBW) studies in microgravity and on the ground have suggested an important effect of airway closure on gas mixing in the human lung, reflected particularly in the phase III slope of vital capacity SBW and bolus tests. In order to explore this effect, we designed a SBW in which subjects inspired 2-l from residual volume (RV) starting with a 150 ml bolus of He and SF6. In an attempt to vary the pattern of airways closure configuration before the test, the experiments were conducted in 1G and in microgravity during parabolic flight allowing the pre-test expiration to RV to be either in microgravity or at 1.8 G, with the actual test gas inhalation performed entirely in microgravity. Contrary to our expectations, the measured phase III slope and phase IV height and volume obtained from seven subjects in microgravity were essentially identical irrespective of the gravity level during the pre-test expiration to RV. The results suggest that airway closure configuration at RV before the test inspiration has no apparent impact on phases III and IV generation. PMID:15979418

  9. Eosinophils in mucosal immune responses

    PubMed Central

    Travers, J; Rothenberg, M E

    2015-01-01

    Eosinophils, multifunctional cells that contribute to both innate and adaptive immunity, are involved in the initiation, propagation and resolution of immune responses, including tissue repair. They achieve this multifunctionality by expression of a diverse set of activation receptors, including those that directly recognize pathogens and opsonized targets, and by their ability to store and release preformed cytotoxic mediators that participate in host defense, to produce a variety of de novo pleotropic mediators and cytokines and to interact directly and indirectly with diverse cell types, including adaptive and innate immunocytes and structural cells. Herein, we review the basic biology of eosinophils and then focus on new emerging concepts about their role in mucosal immune homeostasis, particularly maintenance of intestinal IgA. We review emerging data about their development and regulation and describe new concepts concerning mucosal eosinophilic diseases. We describe recently developed therapeutic strategies to modify eosinophil levels and function and provide collective insight about the beneficial and detrimental functions of these enigmatic cells. PMID:25807184

  10. Three-dimensional true color topographical analysis of the pulmonary airways

    NASA Astrophysics Data System (ADS)

    Suter, Melissa J.; Reinhardt, Joseph M.; Sonka, Milan; Higgins, William E.; Hoffman, Eric A.; McLennan, Geoffrey

    2004-04-01

    The development of pulmonary airway disease is characterized by mucosal color and topographical changes. Traditionally subjective visual interpretation of a bronchoscope procedure defines the identification of pulmonary airway disease however we have developed an optical imaging system used in conjunction with CT images to potentially quantify and classify these subtle variations. This paper presents a method for the construction of true color 3D images of the pulmonary airways from both optical and CT image data. Shape from Shading methods in the past decade have continually strived to achieve this goal by extracting 3D information from captured 2D images however these attempts have been severely limited in their application to bronchoscope images. Conversely the utilization of CT scans provides a sound tool for determining the gross structural anatomy of the airways however the accuracy of the rendered topographical surface maps is limited due to the resolution of the CT image data. Through integration of both the optical and CT imaging modalities we hope to create high resolution true color 3D images providing the necessary color and texture information to aid in future detection and classification of possible pulmonary airway disease. Preliminary combined color and texture results associated with various pulmonary airway diseases are presented highlighting the usefulness of this analysis technique.

  11. Pulmonary CD103 expression regulates airway inflammation in asthma.

    PubMed

    Bernatchez, Emilie; Gold, Matthew J; Langlois, Anick; Lemay, Anne-Marie; Brassard, Julyanne; Flamand, Nicolas; Marsolais, David; McNagny, Kelly M; Blanchet, Marie-Renee

    2015-04-15

    Although CD103(+) cells recently emerged as key regulatory cells in the gut, the role of CD103 ubiquitous expression in the lung and development of allergic airway disease has never been studied. To answer this important question, we evaluated the response of Cd103(-/-) mice in two separate well-described mouse models of asthma (ovalbumin and house dust mite extract). Pulmonary inflammation was assessed by analysis of bronchoalveolar lavage content, histology, and cytokine response. CD103 expression was analyzed on lung dendritic cells and T cell subsets by flow cytometry. Cd103(-/-) mice exposed to antigens developed exacerbated lung inflammation, characterized by increased eosinophilic infiltration, severe tissue inflammation, and altered cytokine response. In wild-type mice exposed to house dust mite, CD103(+) dendritic cells are increased in the lung and an important subset of CD4(+) T cells, CD8(+) T cells, and T regulatory cells express CD103. Importantly, Cd103(-/-) mice presented a deficiency in the resolution phase of inflammation, which supports an important role for this molecule in the control of inflammation severity. These results suggest an important role for CD103 in the control of airway inflammation in asthma. PMID:25681437

  12. Biology and Mucosal Immunity to Myxozoans

    PubMed Central

    Gómez, Daniela; Bartholomew, Jerri; Sunyer, J. Oriol

    2014-01-01

    Myxozoans are among the most abundant parasites in nature. Their life cycles involve two hosts: an invertebrate, usually an annelid, and a vertebrate, usually a fish. They affect fish species in their natural habitats but also constitute a menace for fish aquaculture. Using different strategies they are able to parasitize and cause damage in multiple organs, including mucosal tissues, which they use also as portals of entry. In fish, the main mucosal sites include the intestine, skin and gills. Recently the finding of a specific mucosal immunoglobulin in teleost (IgT), analogous to mammalian IgA, and the capacity of fish to develop a specific mucosal immune response against different pathogens, has highlighted the importance of studying immune responses at mucosal sites. In this review, we describe the major biological characteristics of myxozoan parasites and present the data available regarding immune responses for species that infect mucosal sites. As models for mucosal immunity we review the responses to Enteromyxum spp. and Ceratomyxa shasta, both of which parasitize the intestine. The immune response at the skin and gills is also described, as these mucosal tissues are used by myxozoans as attaching surfaces and portal of entry, and some species also parasitize these sites. Finally, the development of immunoprophylactic strategies is discussed. PMID:23994774

  13. Vaccination Strategies for Mucosal Immune Responses

    PubMed Central

    Ogra, Pearay L.; Faden, Howard; Welliver, Robert C.

    2001-01-01

    Mucosal administration of vaccines is an important approach to the induction of appropriate immune responses to microbial and other environmental antigens in systemic sites and peripheral blood as well as in most external mucosal surfaces. The development of specific antibody- or T-cell-mediated immunologic responses and the induction of mucosally induced systemic immunologic hyporesponsiveness (oral or mucosal tolerance) depend on complex sets of immunologic events, including the nature of the antigenic stimulation of specialized lymphoid structures in the host, antigen-induced activation of different populations of regulatory T cells (Th1 versus Th2), and the expression of proinflammatory and immunoregulatory cytokines. Availability of mucosal vaccines will provide a painless approach to deliver large numbers of vaccine antigens for human immunization. Currently, an average infant will receive 20 to 25 percutaneous injections for vaccination against different childhood infections by 18 months of age. It should be possible to develop for human use effective, nonliving, recombinant, replicating, transgenic, and microbial vector- or plant-based mucosal vaccines to prevent infections. Based on the experience with many dietary antigens, it is also possible to manipulate the mucosal immune system to induce systemic tolerance against environmental, dietary, and possibly other autoantigens associated with allergic and autoimmune disorders. Mucosal immunity offers new strategies to induce protective immune responses against a variety of infectious agents. Such immunization may also provide new prophylactic or therapeutic avenues in the control of autoimmune diseases in humans. PMID:11292646

  14. Chibby promotes ciliary vesicle formation and basal body docking during airway cell differentiation.

    PubMed

    Burke, Michael C; Li, Feng-Qian; Cyge, Benjamin; Arashiro, Takeshi; Brechbuhl, Heather M; Chen, Xingwang; Siller, Saul S; Weiss, Matthew A; O'Connell, Christopher B; Love, Damon; Westlake, Christopher J; Reynolds, Susan D; Kuriyama, Ryoko; Takemaru, Ken-Ichi

    2014-10-13

    Airway multiciliated epithelial cells play crucial roles in the mucosal defense system, but their differentiation process remains poorly understood. Mice lacking the basal body component Chibby (Cby) exhibit impaired mucociliary transport caused by defective ciliogenesis, resulting in chronic airway infection. In this paper, using primary cultures of mouse tracheal epithelial cells, we show that Cby facilitates basal body docking to the apical cell membrane through proper formation of ciliary vesicles at the distal appendage during the early stages of ciliogenesis. Cby is recruited to the distal appendages of centrioles via physical interaction with the distal appendage protein CEP164. Cby then associates with the membrane trafficking machinery component Rabin8, a guanine nucleotide exchange factor for the small guanosine triphosphatase Rab8, to promote recruitment of Rab8 and efficient assembly of ciliary vesicles. Thus, our study identifies Cby as a key regulator of ciliary vesicle formation and basal body docking during the differentiation of airway ciliated cells. PMID:25313408

  15. Follicular Dendritic Cell Sarcoma

    PubMed Central

    Udayakumar, Achandira M.; Al-Bahri, Maiya; Burney, Ikram A.; Al-Haddabi, Ibrahim

    2015-01-01

    Follicular dendritic cell sarcoma (FDCS) is a rare neoplasm with a non-specific and insidious presentation further complicated by the difficult diagnostic and therapeutic assessment. It has a low to intermediate risk of recurrence and metastasis. Unlike other soft tissue sarcomas or histiocytic and dendritic cell neoplasms, cytogenetic studies are very limited in FDCS cases. Although no specific chromosomal marker has yet been established, complex aberrations and different ploidy types have been documented. We report the case of a 39-year-old woman with FDCS who presented to the Sultan Qaboos University Hospital in Muscat, Oman, in February 2013. Ultrastructural, immunophenotypical and histological findings are reported. In addition, karyotypic findings showed deletions of the chromosomes 1p, 3q, 6q, 7q, 8q and 11q. To the best of the authors’ knowledge, these have not been reported previously in this tumour. Techniques such as spectral karyotyping may help to better characterise chromosomal abnormalities in this type of tumour. PMID:26355964

  16. Airway surface liquid depth imaged by surface laser reflectance microscopy.

    PubMed

    Thiagarajah, Jay R; Song, Yuanlin; Derichs, Nico; Verkman, A S

    2010-09-01

    The thin layer of liquid at the surface of airway epithelium, the airway surface liquid (ASL), is important in normal airway physiology and in the pathophysiology of cystic fibrosis. At present, the best method to measure ASL depth involves scanning confocal microscopy after staining with an aqueous-phase fluorescent dye. We describe here a simple, noninvasive imaging method to measure ASL depth by reflectance imaging of an epithelial mucosa in which the surface is illuminated at a 45-degree angle by an elongated 13-microm wide rectangular beam produced by a 670-nm micro-focus laser. The principle of the method is that air-liquid, liquid-liquid, and liquid-cell interfaces produce distinct specular or diffuse reflections that can be imaged to give a micron-resolution replica of the mucosal surface. The method was validated using fluid layers of specified thicknesses and applied to measure ASL depth in cell cultures and ex vivo fragments of pig trachea. In addition, the method was adapted to measure transepithelial fluid transport from the dynamics of fluid layer depth. Compared with confocal imaging, ASL depth measurement by surface laser reflectance microscopy does not require dye staining or costly instrumentation, and can potentially be adapted for in vivo measurements using fiberoptics. PMID:20713545

  17. Antioxidant airway responses following experimental exposure to wood smoke in man

    PubMed Central

    2010-01-01

    Background Biomass combustion contributes to the production of ambient particulate matter (PM) in rural environments as well as urban settings, but relatively little is known about the health effects of these emissions. The aim of this study was therefore to characterize airway responses in humans exposed to wood smoke PM under controlled conditions. Nineteen healthy volunteers were exposed to both wood smoke, at a particulate matter (PM2.5) concentration of 224 ± 22 μg/m3, and filtered air for three hours with intermittent exercise. The wood smoke was generated employing an experimental set-up with an adjustable wood pellet boiler system under incomplete combustion. Symptoms, lung function, and exhaled NO were measured over exposures, with bronchoscopy performed 24 h post-exposure for characterisation of airway inflammatory and antioxidant responses in airway lavages. Results Glutathione (GSH) concentrations were enhanced in bronchoalveolar lavage (BAL) after wood smoke exposure vs. air (p = 0.025), together with an increase in upper airway symptoms. Neither lung function, exhaled NO nor systemic nor airway inflammatory parameters in BAL and bronchial mucosal biopsies were significantly affected. Conclusions Exposure of healthy subjects to wood smoke, derived from an experimental wood pellet boiler operating under incomplete combustion conditions with PM emissions dominated by organic matter, caused an increase in mucosal symptoms and GSH in the alveolar respiratory tract lining fluids but no acute airway inflammatory responses. We contend that this response reflects a mobilisation of GSH to the air-lung interface, consistent with a protective adaptation to the investigated wood smoke exposure. PMID:20727160

  18. Regulation of Murine Airway Surface Liquid Volume by CFTR and Ca2+-activated Cl− Conductances

    PubMed Central

    Tarran, Robert; Loewen, Matthew E.; Paradiso, Anthony M.; Olsen, John C.; Gray, Micheal A.; Argent, Barry E.; Boucher, Richard C.; Gabriel, Sherif E.

    2002-01-01

    Two Cl− conductances have been described in the apical membrane of both human and murine proximal airway epithelia that are thought to play predominant roles in airway hydration: (1) CFTR, which is cAMP regulated and (2) the Ca2+-activated Cl− conductance (CaCC) whose molecular identity is uncertain. In addition to second messenger regulation, cross talk between these two channels may also exist and, whereas CFTR is absent or defective in cystic fibrosis (CF) airways, CaCC is preserved, and may even be up-regulated. Increased CaCC activity in CF airways is controversial. Hence, we have investigated the effects of CFTR on CaCC activity and have also assessed the relative contributions of these two conductances to airway surface liquid (ASL) height (volume) in murine tracheal epithelia. We find that CaCC is up-regulated in intact murine CF tracheal epithelia, which leads to an increase in UTP-mediated Cl−/volume secretion. This up-regulation is dependent on cell polarity and is lost in nonpolarized epithelia. We find no role for an increased electrical driving force in CaCC up-regulation but do find an increased Ca2+ signal in response to mucosal nucleotides that may contribute to the increased Cl−/volume secretion seen in intact epithelia. CFTR plays a critical role in maintaining ASL height under basal conditions and accordingly, ASL height is reduced in CF epithelia. In contrast, CaCC does not appear to significantly affect basal ASL height, but does appear to be important in regulating ASL height in response to released agonists (e.g., mucosal nucleotides). We conclude that both CaCC and the Ca2+ signal are increased in CF airway epithelia, and that they contribute to acute but not basal regulation of ASL height. PMID:12198094

  19. Impact of Toxoplasma gondii on Dendritic Cell Subset Function in the Intestinal Mucosa.

    PubMed

    Cohen, Sara B; Denkers, Eric Y

    2015-09-15

    The function of mucosal dendritic cell (DC) subsets in immunity and inflammation is not well understood. In this study, we define four DC subsets present within the lamina propria and mesenteric lymph node compartments based on expression of CD103 and CD11b. Using IL-12p40 YFP (Yet40) reporter mice, we show that CD103(+)CD11b(-) mucosal DCs are primary in vivo sources of IL-12p40; we also identified CD103(-)CD11b(-) mucosal DCs as a novel population producing this cytokine. Infection was preferentially found in CD11b(+) DCs that were negative for CD103. Lamina propria DCs containing parasites were negative for IL-12p40. Instead, production of the cytokine was strictly a property of noninfected cells. We also show that vitamin A metabolism, as measured by ALDH activity, was preferentially found in CD103(+)CD11b(+) DC and was strongly downregulated in all mucosal DC subsets during infection. Finally, overall apoptosis of lamina propria DC subsets was increased during infection. Combined, these results highlight the ability of intestinal Toxoplasma infection to alter mucosal DC activity at both the whole population level and at the level of individual subsets. PMID:26283477

  20. Ionotropic and Metabotropic Proton-Sensing Receptors Involved in Airway Inflammation in Allergic Asthma

    PubMed Central

    Aoki, Haruka; Mogi, Chihiro; Okajima, Fumikazu

    2014-01-01

    An acidic microenvironment has been shown to evoke a variety of airway responses, including cough, bronchoconstriction, airway hyperresponsiveness (AHR), infiltration of inflammatory cells in the lung, and stimulation of mucus hyperproduction. Except for the participation of transient receptor potential vanilloid-1 (TRPV1) and acid-sensing ion channels (ASICs) in severe acidic pH (of less than 6.0)-induced cough and bronchoconstriction through sensory neurons, the molecular mechanisms underlying extracellular acidic pH-induced actions in the airways have not been fully understood. Recent studies have revealed that ovarian cancer G protein-coupled receptor 1 (OGR1)-family G protein-coupled receptors, which sense pH of more than 6.0, are expressed in structural cells, such as airway smooth muscle cells and epithelial cells, and in inflammatory and immune cells, such as eosinophils and dendritic cells. They function in a variety of airway responses related to the pathophysiology of inflammatory diseases, including allergic asthma. In the present review, we discuss the roles of ionotropic TRPV1 and ASICs and metabotropic OGR1-family G protein-coupled receptors in the airway inflammation and AHR in asthma and respiratory diseases. PMID:25197168

  1. Adoptive transfer of induced-Treg cells effectively attenuates murine airway allergic inflammation.

    PubMed

    Xu, Wei; Lan, Qin; Chen, Maogen; Chen, Hui; Zhu, Ning; Zhou, Xiaohui; Wang, Julie; Fan, Huimin; Yan, Chun-Song; Kuang, Jiu-Long; Warburton, David; Togbe, Dieudonnée; Ryffel, Bernhard; Zheng, Song-Guo; Shi, Wei

    2012-01-01

    Both nature and induced regulatory T (Treg) lymphocytes are potent regulators of autoimmune and allergic disorders. Defects in endogenous Treg cells have been reported in patients with allergic asthma, suggesting that disrupted Treg cell-mediated immunological regulation may play an important role in airway allergic inflammation. In order to determine whether adoptive transfer of induced Treg cells generated in vitro can be used as an effective therapeutic approach to suppress airway allergic inflammation, exogenously induced Treg cells were infused into ovalbumin-sensitized mice prior to or during intranasal ovalbumin challenge. The results showed that adoptive transfer of induced Treg cells prior to allergen challenge markedly reduced airway hyperresponsiveness, eosinophil recruitment, mucus hyper-production, airway remodeling, and IgE levels. This effect was associated with increase of Treg cells (CD4(+)FoxP3(+)) and decrease of dendritic cells in the draining lymph nodes, and with reduction of Th1, Th2, and Th17 cell response as compared to the controls. Moreover, adoptive transfer of induced Treg cells during allergen challenge also effectively attenuate airway inflammation and improve airway function, which are comparable to those by natural Treg cell infusion. Therefore, adoptive transfer of in vitro induced Treg cells may be a promising therapeutic approach to prevent and treat severe asthma. PMID:22792275

  2. 21 CFR 868.5110 - Oropharyngeal airway.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5110 Oropharyngeal airway. (a... provide a patent airway. (b) Classification. Class I (general controls). The device is exempt from...

  3. 21 CFR 868.5110 - Oropharyngeal airway.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5110 Oropharyngeal airway. (a... provide a patent airway. (b) Classification. Class I (general controls). The device is exempt from...

  4. Development of dendrite polarity in Drosophila neurons

    PubMed Central

    2012-01-01

    Background Drosophila neurons have dendrites that contain minus-end-out microtubules. This microtubule arrangement is different from that of cultured mammalian neurons, which have mixed polarity microtubules in dendrites. Results To determine whether Drosophila and mammalian dendrites have a common microtubule organization during development, we analyzed microtubule polarity in Drosophila dendritic arborization neuron dendrites at different stages of outgrowth from the cell body in vivo. As dendrites initially extended, they contained mixed polarity microtubules, like mammalian neurons developing in culture. Over a period of several days this mixed microtubule array gradually matured to a minus-end-out array. To determine whether features characteristic of dendrites were localized before uniform polarity was attained, we analyzed dendritic markers as dendrites developed. In all cases the markers took on their characteristic distribution while dendrites had mixed polarity. An axonal marker was also quite well excluded from dendrites throughout development, although this was perhaps more efficient in mature neurons. To confirm that dendrite character could be acquired in Drosophila while microtubules were mixed, we genetically disrupted uniform dendritic microtubule organization. Dendritic markers also localized correctly in this case. Conclusions We conclude that developing Drosophila dendrites initially have mixed microtubule polarity. Over time they mature to uniform microtubule polarity. Dendrite identity is established before the mature microtubule arrangement is attained, during the period of mixed microtubule polarity. PMID:23111238

  5. Brachycephalic airway obstructive syndrome.

    PubMed

    Wykes, P M

    1991-06-01

    This is a complex condition, recognized primarily in brachycephalic breeds, that results in varying degrees of upper airway obstruction. The signs consist of respiratory distress, stridor, reduced exercise tolerance, and in more severe cases, cyanosis and collapse. The inherent anatomy of the brachycephalic skull contributes to the development of these signs. Such anatomic features include: a shortened and distorted nasopharynx, stenotic nares, an elongated soft palate, and everted laryngeal saccules. The increased negative pressure created in the pharyngolaryngeal region, as a result of these obstructing structures, ultimately results in distortion and collapse of the arytenoid cartilages of the larynx. PMID:1802247

  6. Particle Deposition During Airway Closure

    NASA Astrophysics Data System (ADS)

    Tai, Cheng-Feng; Halpern, David; Grotberg, James B.

    2011-11-01

    Inhaled aerosol particles deposit in the lung and may be from environmental, toxic, or medical therapy sources. While much research focuses on inspiratory deposition, primarily at airway bifurcations due to inertial impaction, there are other mechanisms that allow the particles to reach the airway surface, such as gravitational settling and diffusion depending on particle size. We introduce a new mechanism not previously studied, i.e. aerosol deposition from airway closure. The airways are lined with a liquid layer. Due to the surface tension driven instability, a liquid plug can form from this layer which blocks the airway. This process of airway closure tends to occur toward the end of expiration. In this study, the efficiency of the impaction of the particles during airway closure will be investigated. The particles will be released from the upstream of the airway and convected by the air flow and deposited onto the closing liquid layer. We solve the governing equations using a finite volume approach in conjunction with a sharp interface method for the interfaces. Once the velocity field of the gas flow is obtained, the path of the particles will be calculated and the efficiency of the deposition can be estimated. We acknowledge support from the National Institutes of Health grant number NIH HL85156.

  7. Treatment of oral mucositis due to chemotherapy

    PubMed Central

    Bagán-Sebastián, José V

    2016-01-01

    Introduction The management of oral mucositis is a challenge, due to its complex biological nature. Over the last 10 years, different strategies have been developed for the management of oral mucositis caused by chemotherapy in cancer patients. Material and Methods An exhaustive search was made of the PubMed-Medline, Cochrane Library and Scopus databases, crossing the key words “oral mucositis”, “prevention” and “treatment” with the terms “chemotherapy” and “radiotherapy” by means of the boolean operators “AND” and “NOT”. A total of 268 articles were obtained, of which 96 met the inclusion criteria. Results Several interventions for the prevention of oral mucositis, such as oral hygiene protocols, amifostine, benzidamine, calcium phosphate, cryotherapy and iseganan, among others, were found to yield only limited benefits. Other studies have reported a decrease in the appearance and severity of mucositis with the use of cytoprotectors (sucralfate, oral glutamine, hyaluronic acid), growth factors, topical polyvinylpyrrolidone, and low power laser irradiation. Conclusions Very few interventions of confirmed efficacy are available for the management of oral mucositis due to chemotherapy. However, according to the reviewed literature, the use of palifermin, cryotherapy and low power laser offers benefits, reducing the incidence and severity of oral mucositis – though further studies are needed to confirm the results obtained. Key words:Chemotherapy-Induced Oral Mucositis Treatment. PMID:27034762

  8. Dynamics of heat, water, and soluble gas exchange in the human airways: 1. A model study.

    PubMed

    Tsu, M E; Babb, A L; Ralph, D D; Hlastala, M P

    1988-01-01

    In order to provide a means for analysis of heat, water, and soluble gas exchange with the airways during tidal ventilation, a one dimensional theoretical model describing heat and water exchange in the respiratory airways has been extended to include soluble gas exchange with the airway mucosa and water exchange with the mucous layer lining the airways. Not only do heat, water, and gas exchange occur simultaneously, but they also interact. Heating and cooling of the airway surface and mucous lining affects both evaporative water and soluble gas exchange. Water evaporation provides a major source of heat exchange. The model-predicted mean airway temperature profiles agree well with literature data for both oral and nasal breathing validating that part of the model. With model parameters giving the best fit to experimental data, the model shows: (a) substantial heat recovery in the upper airways, (b) minimal respiratory heat and water loss, and (c) low average mucous temperatures and maximal increases in mucous thickness. For resting breathing of room air, heat and water conservation appear to be more important than conditioning efficiency. End-tidal expired partial pressures of very soluble gases eliminated by the lungs are predicted to be lower than the alveolar partial pressures due to the absorption of the expired gases by the airway mucosa. The model may be usable for design of experiments to examine mechanisms associated with the local hydration and dehydration dynamics of the mucosal surface, control of bronchial perfusion, triggering of asthma, mucociliary clearance and deposition of inhaled pollutant gases. PMID:3228218

  9. Operative endoscopy of the airway

    PubMed Central

    Walters, Dustin M.

    2016-01-01

    Airway endoscopy has long been an important and useful tool in the management of thoracic diseases. As thoracic specialists have gained experience with both flexible and rigid bronchoscopic techniques, the technology has continued to evolve so that bronchoscopy is currently the foundation for diagnosis and treatment of many thoracic ailments. Airway endoscopy plays a significant role in the biopsy of tumors within the airways, mediastinum, and lung parenchyma. Endoscopic methods have been developed to treat benign and malignant airway stenoses and tracheomalacia. And more recently, techniques have been conceived to treat end-stage emphysema and prolonged air leaks in select patients. This review describes the abundant uses of airway endoscopy, as well as technical considerations and limitations of the current technologies. PMID:26981263

  10. Dendritic cells in asthma.

    PubMed

    van Helden, Mary J; Lambrecht, Bart N

    2013-12-01

    The lungs are constantly exposed to antigens, most of which are non-pathogenic and do not require the induction of an immune response. Dendritic cells (DCs) are situated at the basolateral site of the lungs and continuously scan the environment to detect the presence of pathogens and subsequently initiate an immune response. They are a heterogeneous population of antigen-presenting cells that exert specific functions. Compelling evidence is now provided that DCs are both sufficient and necessary to induce allergic responses against several inhaled harmless allergens. How various DC subsets exactly contribute to the induction of allergic asthma is currently a subject of intense investigation. We here review the current progress in this field. PMID:24455765

  11. Palliation of radiation-related mucositis

    SciTech Connect

    Rothwell, B.R.; Spektor, W.S.

    1990-01-01

    Oral mucositis associated with head and neck radiotherapy can substantially hinder completion of cancer therapy. Alleviation of this often severe stomatitis can provide enhanced patient comfort and facilitate appropriate care. A double-blind format was used in a pilot project to measure, against a control rinse, the effectiveness of an oral rinse consisting of hydrocortisone, nystatin, tetracycline, and diphenhydramine in controlling radiation-related mucositis. A combination of clinical evaluation and patient responses to a questionnaire was used to judge the results of the topical medications. Patients using the experimental medication developed less mucositis than did patients in the control group.

  12. Oral mucositis. A complication of radiotherapy

    SciTech Connect

    Rider, C.A. )

    1990-11-01

    Oral mucositis is a complication of head and neck radiotherapy. It is understood what causes the inflammation and what biological tissue changes occur, however, a definite cure for oral mucositis has not yet been found. Supportive treatments, analgesics, antimicrobials and anti-inflammatory agents have been prescribed, none of which has been a thorough measure of treatment. An effective cure for oral mucositis is still in the midst of scientific research. In the interim local palliative treatments will help to alleviate the patients', debilitating symptoms.

  13. Temporal correlation of optical coherence tomography in-vivo images of rabbit airway for the diagnosis of edema

    NASA Astrophysics Data System (ADS)

    Kang, DongYel; Wang, Alex; Tjoa, Tjoson; Volgger, Veronika; Hamamoto, Ashley; Su, Erica; Jing, Joseph; Chen, Zhongping; Wong, Brian J. F.

    2014-03-01

    Recently, full-range optical coherence tomography (OCT) systems have been developed to image the human airway. These novel systems utilize a fiber-based OCT probe which acquires three-dimensional (3-D) images with micrometer resolution. Following an airway injury, mucosal edema is the first step in the body's inflammatory response, which occasionally leads to airway stenosis, a life-threatening condition for critically ill newborns. Therefore, early detection of edema is vital for airway management and prevention of stenosis. In order to examine the potential of the full-range OCT to diagnose edema, we investigated temporal correlation of OCT images obtained from the subglottic airway of live rabbits. Temporally correlated OCT images were acquired at fixed locations in the rabbit subglottis of either artificially induced edema or normal tissues. Edematous tissue was experimentally modeled by injecting saline beneath the epithelial layer of the subglottic mucosa. The calculated cross temporal correlations between OCT images of normal airway regions show periodicity that correlates with the respiratory motion of the airway. However, the temporal correlation functions calculated from OCT images of the edematous regions show randomness without the periodic characteristic. These in-vivo experimental results of temporal correlations between OCT images show the potential of a computer-based or -aided diagnosis of edema in the human respiratory mucosa with a full-range OCT system.

  14. Ozone-Induced Type 2 Immunity in Nasal Airways. Development and Lymphoid Cell Dependence in Mice.

    PubMed

    Ong, Chee Bing; Kumagai, Kazuyoshi; Brooks, Phillip T; Brandenberger, Christina; Lewandowski, Ryan P; Jackson-Humbles, Daven N; Nault, Rance; Zacharewski, Timothy R; Wagner, James G; Harkema, Jack R

    2016-03-01

    Inhalation exposures to ozone commonly encountered in photochemical smog cause airway injury and inflammation. Elevated ambient ozone concentrations have been epidemiologically associated with nasal airway activation of neutrophils and eosinophils. In the present study, we elucidated the temporal onset and lymphoid cell dependency of eosinophilic rhinitis and associated epithelial changes in mice repeatedly exposed to ozone. Lymphoid cell-sufficient C57BL/6 mice were exposed to 0 or 0.5 parts per million (ppm) ozone for 1, 2, 4, or 9 consecutive weekdays (4 h/d). Lymphoid cell-deficient, Rag2(-/-)Il2rg(-/-) mice were similarly exposed for 9 weekdays. Nasal tissues were taken at 2 or 24 hours after exposure for morphometric and gene expression analyses. C57BL/6 mice exposed to ozone for 1 day had acute neutrophilic rhinitis, with airway epithelial necrosis and overexpression of mucosal Ccl2 (MCP-1), Ccl11 (eotaxin), Cxcl1 (KC), Cxcl2 (MIP-2), Hmox1, Il1b, Il5, Il6, Il13, and Tnf mRNA. In contrast, 9-day ozone exposure elicited type 2 immune responses in C57BL/6 mice, with mucosal mRNA overexpression of Arg1, Ccl8 (MCP-2), Ccl11, Chil4 (Ym2), Clca1 (Gob5), Il5, Il10, and Il13; increased density of mucosal eosinophils; and nasal epithelial remodeling (e.g., hyperplasia/hypertrophy, mucous cell metaplasia, hyalinosis, and increased YM1/YM2 proteins). Rag2(-/-)Il2rg(-/-) mice exposed to ozone for 9 days, however, had no nasal pathology or overexpression of transcripts related to type 2 immunity. These results provide a plausible paradigm for the activation of eosinophilic inflammation and type 2 immunity found in the nasal airways of nonatopic individuals subjected to episodic exposures to high ambient ozone. PMID:26203683

  15. Can dendritic cells see light?

    NASA Astrophysics Data System (ADS)

    Chen, Aaron C.-H.; Huang, Ying-Ying; Sharma, Sulbha K.; Hamblin, Michael R.

    2010-02-01

    There are many reports showing that low-level light/laser therapy (LLLT) can enhance wound healing, upregulate cell proliferation and has anti-apoptotic effects by activating intracellular protective genes. In the field of immune response study, it is not known with any certainty whether light/laser is proinflammatory or anti-inflammatory. Increasingly in recent times dendritic cells have been found to play an important role in inflammation and the immunological response. In this study, we try to look at the impact of low level near infrared light (810-nm) on murine bone-marrow derived dendritic cells. Changes in surface markers, including MHC II, CD80 and CD11c and the secretion of interleukins induced by light may provide additional evidence to reveal the mystery of how light affects the maturation of dendritic cells as well how these light-induced mature dendritic cells would affect the activation of adaptive immune response.

  16. Optimal Current Transfer in Dendrites

    PubMed Central

    Bird, Alex D.

    2016-01-01

    Integration of synaptic currents across an extensive dendritic tree is a prerequisite for computation in the brain. Dendritic tapering away from the soma has been suggested to both equalise contributions from synapses at different locations and maximise the current transfer to the soma. To find out how this is achieved precisely, an analytical solution for the current transfer in dendrites with arbitrary taper is required. We derive here an asymptotic approximation that accurately matches results from numerical simulations. From this we then determine the diameter profile that maximises the current transfer to the soma. We find a simple quadratic form that matches diameters obtained experimentally, indicating a fundamental architectural principle of the brain that links dendritic diameters to signal transmission. PMID:27145441

  17. Transient Dendritic Solidification Experiment (TDSE)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Transient Dendritic Solidification Expepriment (TDSE) is being developed as a candidate for flight aboard the International Space Station. TDSE will study the growth of dendrites (treelike crystalline structures) in a transparent material (succinonitrile or SCN) that mimics the behavior of widely used iron-based metals. Basic work by three Space Shuttle missions of the Isothermal Dendritic Growth Expepriment (IDGE) is yielding new insights into virtually all industrially relevant metal and alloy forming operations. The TDSE is similar to IDGE, but will maintain a constant temperature while varying pressure on the dendrites. Shown here is an exploded view of major elements of TDSE. A similar view is available with labels. The principal investigator is Matthew Koss of College of the Holy Cross in Worcester, MA. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  18. Transient Dendritic Solidification Experiment (TDSE)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Transient Dendritic Solidification Experiment (TDSE) is being developed as a candidate for flight aboard the International Space Station. TDSE will study the growth of dendrites (treelike crystalline structures) in a transparent material (succinonitrile or SCN) that mimics the behavior or widely used iron-based metals. Basic work by three Space Shuttle missions of the Isothermal Dendritic Growth Experiment (IDGE) is yielding new insights into virtually all industrially relevant metal and alloy forming operations. The TDSE is similar to IDGE, but will maintain a constant temperature while varying pressure on the dendrites. Shown here is an exploded view of major elements of the TDSE. A similar view is availble without labels. The principal investigator is Matthew Koss of College of the Holy Cross in Worcester, MA. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  19. Dendritic cells in progression and pathology of HIV infection

    PubMed Central

    Manches, Olivier; Frleta, Davor; Bhardwaj, Nina

    2014-01-01

    Although the major targets of HIV infection are CD4+ T cells, dendritic cells (DC) represent a crucial subset in HIV infection as they influence viral transmission, target cell infection and antigen presentation of HIV antigens. DC are potent antigen presenting cells that can modulate anti-viral immune responses. Through secretion of inflammatory cytokines and interferons (IFN), DC also alter T cell proliferation and differentiation, participating in the immune dysregulation characteristic of chronic HIV infection. Their wide distribution in close proximity with the mucosal epithelia makes them one of the first cell types to encounter HIV during sexual transmission [1]. We will discuss here the multiple roles that DC play at different stages of HIV infection, emphasizing their relevance to HIV pathology and progression. PMID:24246474

  20. Microbiota and Mucosal Immunity in Amphibians

    PubMed Central

    Colombo, Bruno M.; Scalvenzi, Thibault; Benlamara, Sarah; Pollet, Nicolas

    2015-01-01

    We know that animals live in a world dominated by bacteria. In the last 20 years, we have learned that microbes are essential regulators of mucosal immunity. Bacteria, archeas, and viruses influence different aspects of mucosal development and function. Yet, the literature mainly covers findings obtained in mammals. In this review, we focus on two major themes that emerge from the comparative analysis of mammals and amphibians. These themes concern: (i) the structure and functions of lymphoid organs and immune cells in amphibians, with a focus on the gut mucosal immune system; and (ii) the characteristics of the amphibian microbiota and its influence on mucosal immunity. Lastly, we propose to use Xenopus tadpoles as an alternative small-animal model to improve the fundamental knowledge on immunological functions of gut microbiota. PMID:25821449

  1. Exploiting Mucosal Immunity for Antiviral Vaccines.

    PubMed

    Iwasaki, Akiko

    2016-05-20

    Mucosal surfaces provide a remarkably effective barrier against potentially dangerous pathogens. Therefore, enhancing mucosal immunity through vaccines-strengthening that first line of defense-holds significant promise for reducing the burden of viral diseases. The large and varied class of viral pathogens, however, continues to present thorny challenges to vaccine development. Two primary difficulties exist: Viruses exhibit a stunning diversity of strategies for evading the host immune response, and even when we understand the nature of effective immune protection against a given virus, eliciting that protection is technically challenging. Only a few mucosal vaccines have surmounted these obstacles thus far. Recent developments, however, could greatly improve vaccine design. In this review, we first sketch out our understanding of mucosal immunity and then compare the herpes simplex virus, human immunodeficiency virus, and influenza virus to illustrate the distinct challenges of developing successful vaccines and to outline potential solutions. PMID:27168245

  2. Putting the Squeeze on Airway Epithelia.

    PubMed

    Park, Jin-Ah; Fredberg, Jeffrey J; Drazen, Jeffrey M

    2015-07-01

    Asthma is characterized by chronic inflammation, airway hyperresponsiveness, and progressive airway remodeling. The airway epithelium is known to play a critical role in the initiation and perpetuation of these processes. Here, we review how excessive epithelial stress generated by bronchoconstriction is sufficient to induce airway remodeling, even in the absence of inflammatory cells. PMID:26136543

  3. Putting the Squeeze on Airway Epithelia

    PubMed Central

    Park, Jin-Ah; Fredberg, Jeffrey J.

    2015-01-01

    Asthma is characterized by chronic inflammation, airway hyperresponsiveness, and progressive airway remodeling. The airway epithelium is known to play a critical role in the initiation and perpetuation of these processes. Here, we review how excessive epithelial stress generated by bronchoconstriction is sufficient to induce airway remodeling, even in the absence of inflammatory cells. PMID:26136543

  4. Airway clearance in neuromuscular weakness.

    PubMed

    Gauld, Leanne Maree

    2009-05-01

    Impaired airway clearance leads to recurrent chest infections and respiratory deterioration in neuromuscular weakness. It is frequently the cause of death. Cough is the major mechanism of airway clearance. Cough has several components, and assessment tools are available to measure the different components of cough. These include measuring peak cough flow, respiratory muscle strength, and inspiratory capacity. Each is useful in assessing the ability to generate an effective cough, and can be used to guide when techniques of assisting airway clearance may be effective for the individual and which are most effective. Techniques to assist airway clearance include augmenting inspiration by air stacking, augmenting expiration by assisting the cough, and augmenting both inspiration and expiration with the mechanical insufflator-exsufflator or by direct suctioning via a tracheostomy. Physiotherapists are invaluable in assisting airway clearance, and in teaching patients and their families how to use these techniques. Use of the mechanical insufflator-exsufflator has gained popularity in recent times, but several simpler, more economical methods are available to assist airway clearance that can be used effectively alone or in combination. This review examines the literature available on the assessment and management of impaired airway clearance in neuromuscular weakness. PMID:19379290

  5. Localized Pemphigus Vegetans without Mucosal Involvement

    PubMed Central

    Jain, VK; Jindal, N; Imchen, S

    2014-01-01

    Pemphigus vegetans is a rare variant of pemphigus vulgaris. A 62-year-old woman presented with erythematous moist vegetative plaque on the left breast and left groin. There was no mucosal involvement. Histopathological and direct immunofluorescence findings were suggestive of pemphigus vegetans. She showed excellent response to oral steroids. Literature is scarcely available on the limited involvement with pemphigus vegetans without mucosal involvement. PMID:24700958

  6. VACCINES. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells.

    PubMed

    Stary, Georg; Olive, Andrew; Radovic-Moreno, Aleksandar F; Gondek, David; Alvarez, David; Basto, Pamela A; Perro, Mario; Vrbanac, Vladimir D; Tager, Andrew M; Shi, Jinjun; Yethon, Jeremy A; Farokhzad, Omid C; Langer, Robert; Starnbach, Michael N; von Andrian, Ulrich H

    2015-06-19

    Genital Chlamydia trachomatis (Ct) infection induces protective immunity that depends on interferon-γ-producing CD4 T cells. By contrast, we report that mucosal exposure to ultraviolet light (UV)-inactivated Ct (UV-Ct) generated regulatory T cells that exacerbated subsequent Ct infection. We show that mucosal immunization with UV-Ct complexed with charge-switching synthetic adjuvant particles (cSAPs) elicited long-lived protection in conventional and humanized mice. UV-Ct-cSAP targeted immunogenic uterine CD11b(+)CD103(-) dendritic cells (DCs), whereas UV-Ct accumulated in tolerogenic CD11b(-)CD103(+) DCs. Regardless of vaccination route, UV-Ct-cSAP induced systemic memory T cells, but only mucosal vaccination induced effector T cells that rapidly seeded uterine mucosa with resident memory T cells (T(RM) cells). Optimal Ct clearance required both T(RM) seeding and subsequent infection-induced recruitment of circulating memory T cells. Thus, UV-Ct-cSAP vaccination generated two synergistic memory T cell subsets with distinct migratory properties. PMID:26089520

  7. Targeting mucosal immunity in the battle to develop a mastitis vaccine.

    PubMed

    Bharathan, Mini; Mullarky, Isis K

    2011-12-01

    The mucosal immune system encounters antigens that enhance and suppress immune function, and serves as a selective barrier against invading pathogens. The mammary gland not only encounters antigens but also produces a nutrient evolved to protect and enhance mucosal development in the neonate. Efforts to manipulate antibody concentrations in milk to prevent mastitis, an infection of the mammary gland, have been hampered both by complexity and variation in target pathogens and limited knowledge of cellular immunity in the gland. Successful vaccination strategies must overcome the natural processes that regulate types and concentrations of milk antibodies for neonatal development, and enhance cellular immunity. Furthermore, the need to overcome dampening of immunity caused by non-pathogenic encounters to successfully prevent establishment of infection is an additional obstacle in vaccine development at mucosal sites. A significant mastitis pathogen, Staphylococcus aureus, not only resides as a normal flora on a multitude of species, but also causes clinical disease with limited treatment options. Using the bovine model of S. aureus mastitis, researchers can decipher the role of antigen selection and presentation by mammary dendritic cells, enhance development of central and effector memory function, and subsequently target specific memory cells to the mammary gland for successful vaccine development. This brief review provides an overview of adaptive immunity, previous vaccine efforts, current immunological findings relevant to enhancing immune memory, and research technologies that show promise in directing future vaccine efforts to enhance mammary gland immunity and prevent mastitis. PMID:21968537

  8. Nod2-mediated recognition of the microbiota is critical for mucosal adjuvant activity of cholera toxin.

    PubMed

    Kim, Donghyun; Kim, Yun-Gi; Seo, Sang-Uk; Kim, Dong-Jae; Kamada, Nobuhiko; Prescott, Dave; Philpott, Dana J; Rosenstiel, Philip; Inohara, Naohiro; Núñez, Gabriel

    2016-05-01

    Cholera toxin (CT) is a potent adjuvant for inducing mucosal immune responses. However, the mechanism by which CT induces adjuvant activity remains unclear. Here we show that the microbiota is critical for inducing antigen-specific IgG production after intranasal immunization. After mucosal vaccination with CT, both antibiotic-treated and germ-free (GF) mice had reduced amounts of antigen-specific IgG, smaller recall-stimulated cytokine responses, impaired follicular helper T (TFH) cell responses and reduced numbers of plasma cells. Recognition of symbiotic bacteria via the nucleotide-binding oligomerization domain containing 2 (Nod2) sensor in cells that express the integrin CD11c (encoded by Itgax) was required for the adjuvanticity of CT. Reconstitution of GF mice with a Nod2 agonist or monocolonization with Staphylococcus sciuri, which has high Nod2-stimulatory activity, was sufficient to promote robust CT adjuvant activity, whereas bacteria with low Nod2-stimulatory activity did not. Mechanistically, CT enhanced Nod2-mediated cytokine production in dendritic cells via intracellular cyclic AMP. These results show a role for the microbiota and the intracellular receptor Nod2 in promoting the mucosal adjuvant activity of CT. PMID:27064448

  9. Intestinal inflammation and mucosal barrier function.

    PubMed

    Sánchez de Medina, Fermín; Romero-Calvo, Isabel; Mascaraque, Cristina; Martínez-Augustin, Olga

    2014-12-01

    Intestinal mucosal barrier function is the capacity of the intestine to provide adequate containment of luminal microorganisms and molecules while preserving the ability to absorb nutrients. The central element is the epithelial layer, which physically separates the lumen and the internal milieu and is in charge of vectorial transport of ions, nutrients, and other substances. The secretion of mucus-forming mucins, sIgA, and antimicrobial peptides reinforces the mucosal barrier on the extraepithelial side, while a variety of immune cells contributes to mucosal defense in the inner side. Thus, the mucosal barrier is of physical, biochemical, and immune nature. In addition, the microbiota may be viewed as part of this system because of the mutual influence occurring between the host and the luminal microorganisms. Alteration of the mucosal barrier function with accompanying increased permeability and/or bacterial translocation has been linked with a variety of conditions, including inflammatory bowel disease. Genetic and environmental factors may converge to evoke a defective function of the barrier, which in turn may lead to overt inflammation of the intestine as a result of an exacerbated immune reaction toward the microbiota. According to this hypothesis, inflammatory bowel disease may be both precipitated and treated by either stimulation or downregulation of the different elements of the mucosal barrier, with the outcome depending on timing, the cell type affected, and other factors. In this review, we cover briefly the elements of the barrier and their involvement in functional defects and the resulting phenotype. PMID:25222662

  10. Role of bombesin on gut mucosal growth.

    PubMed Central

    Chu, K U; Evers, B M; Ishizuka, J; Townsend, C M; Thompson, J C

    1995-01-01

    OBJECTIVE: The authors examined the effects of exogenous bombesin (BBS) on gut mucosal growth in chow-fed rats and the mucosal regeneration after gut atrophy brought about by feeding an elemental diet and after intestinal injury produced by methotrexate (MTX). SUMMARY BACKGROUND DATA: Bombesin is one of many gastrointestinal peptides implicated in the regulation of gut mucosal growth. Although BBS is known to stimulate growth of normal pancreatic tissue, the trophic effect of BBS on gut mucosa is less clear and its exact role in gut mucosal regeneration and repair is not known. METHODS: Rats were fed a regular chow diet (control) or an elemental diet plus either saline or BBS (10 micrograms/kg). In another experiment, rats fed a chow diet and treated with saline or BBS were given MTX (20 micrograms/kg) or a single intraperitoneal injection. In all experiments, small and large bowel mucosa and pancreas were removed and analyzed for BBS-mediated proliferation. RESULTS: Bombesin produced significant mucosal proliferation of the small bowel at day 14, but not at day 7, in rats fed regular chow. In contrast, BBS treatment for 7 days produced significant proliferation in both the atrophic and injured gut mucosa of rats given elemental diet or MTX. CONCLUSIONS: Bombesin may be an important enterotrophic factor for normal mucosal proliferation and may be clinically beneficial as an agent to restore or maintain gut mucosa during periods of atrophy or injury. PMID:7618976

  11. Airway cooling and rewarming. The second reaction sequence in exercise-induced asthma.

    PubMed Central

    Gilbert, I A; McFadden, E R

    1992-01-01

    To determine if a relationship exists among the magnitude and rate of airway rewarming, and the severity of bronchial obstruction in thermally induced asthma, we had seven subjects perform three- to four-point stimulus response curves with isocapnic hyperventilation of frigid air with and without pretreatment with inhaled norepinephrine. The latter was employed to alter the heat supplied to the airway walls by producing vasoconstriction. 1-s forced expiratory volume (FEV1) was measured before and 5 min after the cessation of each bout of hyperpnea and before and after norepinephrine. On a separate day, the subjects repeated the above challenges while the temperatures of the airstream in the intrathoracic airways were measured. Prenorepinephrine, FEV1 progressively decreased in a stimulus response fashion as ventilation rose, while norepinephrine shifted this curve to the right. As the level of ventilation increased, the size of the temperature difference between the cooling of hyperpnea and the rewarming of recovery followed suit, and their magnitude was linearly related to the severity of bronchial narrowing. Reducing the mucosal blood supply of the airways with norepinephrine limited rewarming and attenuated the obstructive response. These data demonstrate that the airway narrowing that develops following hyperpnea and the magnitude of the thermal differences are related, and that alterations in blood supply directly affect bronchial heat flux and influence obstruction. PMID:1522227

  12. Mucosal Immunology of HIV Infection

    PubMed Central

    Xu, Huanbin; Wang, Xiaolei; Veazey, Ronald S.

    2013-01-01

    Summary Recent advances in the immunology, pathogenesis, and prevention of human immunodeficiency virus (HIV) infection continue to reveal clues to the mechanisms involved in the progressive immunodeficiency attributed to infection but more importantly have shed light on the correlates of immunity to infection and disease progression. HIV selectively infects, eliminates, and/or dysregulates several key cells of the human immune system, thwarting multiple arms of the host immune response, and inflicting severe damage to mucosal barriers, resulting in tissue infiltration of ‘symbiotic’ intestinal bacteria and viruses that essentially become opportunistic infections promoting systemic immune activation. This leads to activation and recruitment or more target cells for perpetuating HIV infection, resulting in persistent, high level viral replication in lymphoid tissues, rapid evolution of resistant strains, and continued evasion of immune responses. However, vaccine studies and studies of spontaneous controllers are finally providing correlates of immunity from protection and disease progression, including virus-specific CD4+ T-cell responses, binding antibodies, innate immune responses, and generation of antibodies with potent antibody-dependent cell-mediated cytotoxicity activity. Emerging correlates of immunity indicate that prevention of HIV infection may be possible through effective vaccine strategies that protect and stimulate key regulatory cells and immune responses in susceptible hosts. Further, immune therapies specifically directed towards boosting specific aspects of the immune system may eventually lead to a cure for HIV-infected patients. PMID:23772612

  13. Irritant-induced airway disorders.

    PubMed

    Brooks, Stuart M; Bernstein, I Leonard

    2011-11-01

    Thousands of persons experience accidental high-level irritant exposures each year but most recover and few die. Irritants function differently than allergens because their actions proceed nonspecifically and by nonimmunologic mechanisms. For some individuals, the consequence of a single massive exposure to an irritant, gas, vapor or fume is persistent airway hyperresponsiveness and the clinical picture of asthma, referred to as reactive airways dysfunction syndrome (RADS). Repeated irritant exposures may lead to chronic cough and continual airway hyperresponsiveness. Cases of asthma attributed to repeated irritant-exposures may be the result of genetic and/or host factors. PMID:21978855

  14. Increased airway glucose increases airway bacterial load in hyperglycaemia

    PubMed Central

    Gill, Simren K.; Hui, Kailyn; Farne, Hugo; Garnett, James P.; Baines, Deborah L.; Moore, Luke S.P.; Holmes, Alison H.; Filloux, Alain; Tregoning, John S.

    2016-01-01

    Diabetes is associated with increased frequency of hospitalization due to bacterial lung infection. We hypothesize that increased airway glucose caused by hyperglycaemia leads to increased bacterial loads. In critical care patients, we observed that respiratory tract bacterial colonisation is significantly more likely when blood glucose is high. We engineered mutants in genes affecting glucose uptake and metabolism (oprB, gltK, gtrS and glk) in Pseudomonas aeruginosa, strain PAO1. These mutants displayed attenuated growth in minimal medium supplemented with glucose as the sole carbon source. The effect of glucose on growth in vivo was tested using streptozocin-induced, hyperglycaemic mice, which have significantly greater airway glucose. Bacterial burden in hyperglycaemic animals was greater than control animals when infected with wild type but not mutant PAO1. Metformin pre-treatment of hyperglycaemic animals reduced both airway glucose and bacterial load. These data support airway glucose as a critical determinant of increased bacterial load during diabetes. PMID:27273266

  15. Increased airway glucose increases airway bacterial load in hyperglycaemia.

    PubMed

    Gill, Simren K; Hui, Kailyn; Farne, Hugo; Garnett, James P; Baines, Deborah L; Moore, Luke S P; Holmes, Alison H; Filloux, Alain; Tregoning, John S

    2016-01-01

    Diabetes is associated with increased frequency of hospitalization due to bacterial lung infection. We hypothesize that increased airway glucose caused by hyperglycaemia leads to increased bacterial loads. In critical care patients, we observed that respiratory tract bacterial colonisation is significantly more likely when blood glucose is high. We engineered mutants in genes affecting glucose uptake and metabolism (oprB, gltK, gtrS and glk) in Pseudomonas aeruginosa, strain PAO1. These mutants displayed attenuated growth in minimal medium supplemented with glucose as the sole carbon source. The effect of glucose on growth in vivo was tested using streptozocin-induced, hyperglycaemic mice, which have significantly greater airway glucose. Bacterial burden in hyperglycaemic animals was greater than control animals when infected with wild type but not mutant PAO1. Metformin pre-treatment of hyperglycaemic animals reduced both airway glucose and bacterial load. These data support airway glucose as a critical determinant of increased bacterial load during diabetes. PMID:27273266

  16. Rare Upper Airway Anomalies.

    PubMed

    Windsor, Alanna; Clemmens, Clarice; Jacobs, Ian N

    2016-01-01

    A broad spectrum of congenital upper airway anomalies can occur as a result of errors during embryologic development. In this review, we will describe the clinical presentation, diagnosis, and management strategies for a few select, rare congenital malformations of this system. The diagnostic tools used in workup of these disorders range from prenatal tests to radiological imaging, swallowing evaluations, indirect or direct laryngoscopy, and rigid bronchoscopy. While these congenital defects can occur in isolation, they are often associated with disorders of other organ systems or may present as part of a syndrome. Therefore workup and treatment planning for patients with these disorders often involves a team of multiple specialists, including paediatricians, otolaryngologists, pulmonologists, speech pathologists, gastroenterologists, and geneticists. PMID:26277452

  17. [Reactive airways dysfunction syndrome].

    PubMed

    Costa, R; Orriols, R

    2005-01-01

    Reactive airways dysfunction syndrome, better known as RADS, was described as a clinical entity consisting in the appearance of bronchial asthma due to massive toxic inhalation. The term was coined and recognised for the first time in 1985. Since then different publications have verified new cases as well as different causal agents. It usually arises from an accident at the work place and in closed or poorly ventilated spaces, where high concentrations of irritant products are inhaled in the form of gas, smoke or vapour. In the following minutes or hours symptoms of bronchial obstruction appear in an acute form, with bronchial hyperresponsiveness persisting for months or years. The affected patients do not show a recurrence of symptoms following exposure to non-toxic doses of the same agent that started the symptoms. This is why diagnosis is based on clinical manifestations as it is not reproducible through a provocation test. PMID:15915173

  18. Defensins as anti-inflammatory compounds and mucosal adjuvants

    PubMed Central

    Kohlgraf, Karl G; Pingel, Lindsey C; Dietrich, Deborah E; Brogden, Kim A

    2010-01-01

    Human neutrophil peptide α-defensins and human β-defensins are small, well-characterized peptides with broad antimicrobial activities. In mixtures with microbial antigens, defensins attenuate proinflammatory cytokine responses by dendritic cells in culture, attenuate proinflammatory cytokine responses in the nasal fluids of exposed mice and enhance antibody responses in the serum of vaccinated mice. Although the exact mechanisms are unknown, defensins first start by binding to microbial antigens and adhesins, often attenuating toxic or inflammatory-inducing capacities. Binding is not generic; it appears to be both defensin-specific and antigen-specific with high affinities. Binding of defensins to antigens may, in turn, alter the interaction of antigens with epithelial cells and antigen-presenting cells attenuating the production of proinflammatory cytokines. The binding of defensins to antigens may also facilitate the delivery of bound antigen to antigen-presenting cells in some cases via specific receptors. These interactions enhance the immunogenicity of the bound antigen in an adjuvant-like fashion. Future research will determine the extent to which defensins can suppress early events in inflammation and enhance systemic antibody responses, a very recent and exciting concept that could be exploited to develop therapeutics to prevent or treat a variety of oral mucosal infections, particularly where inflammation plays a role in the pathogenesis of disease and its long-term sequelae. PMID:20020832

  19. Mechanisms of Innate Lymphoid Cell and Natural Killer T Cell Activation during Mucosal Inflammation

    PubMed Central

    Altmayer, Nora

    2014-01-01

    Mucosal surfaces in the airways and the gastrointestinal tract are critical for the interactions of the host with its environment. Due to their abundance at mucosal tissue sites and their powerful immunomodulatory capacities, the role of innate lymphoid cells (ILCs) and natural killer T (NKT) cells in the maintenance of mucosal tolerance has recently moved into the focus of attention. While NKT cells as well as ILCs utilize distinct transcription factors for their development and lineage diversification, both cell populations can be further divided into three polarized subpopulations reflecting the distinction into Th1, Th2, and Th17 cells in the adaptive immune system. While bystander activation through cytokines mediates the induction of ILC and NKT cell responses, NKT cells become activated also through the engagement of their canonical T cell receptors (TCRs) by (glyco)lipid antigens (cognate recognition) presented by the atypical MHC I like molecule CD1d on antigen presenting cells (APCs). As both innate lymphocyte populations influence inflammatory responses due to the explosive release of copious amounts of different cytokines, they might represent interesting targets for clinical intervention. Thus, we will provide an outlook on pathways that might be interesting to evaluate in this context. PMID:24987710

  20. POPCORN FLAVORING EFFECTS ON REACTIVITY OF RAT AIRWAYS IN VIVO AND IN VITRO

    PubMed Central

    Zaccone, Eric J.; Thompson, Janet A.; Ponnoth, Dovenia S.; Cumpston, Amy M.; Goldsmith, W. Travis; Jackson, Mark C.; Kashon, Michael L.; Frazer, David G.; Hubbs, Ann F.; Shimko, Michael J.; Fedan, Jeffrey S.

    2015-01-01

    “Popcorn workers’ lung” is an obstructive pulmonary disease produced by inhalation of volatile artificial butter flavorings. In rats, inhalation of diacetyl, a major component of butter flavoring, and inhalation of a diacetyl substitute, 2,3-pentanedione, produce similar damage to airway epithelium. The effects of diacetyl and 2,3-pentanedione and mixtures of diacetyl, acetic acid, and acetoin, all components of butter flavoring, on pulmonary function and airway reactivity to methacholine (MCh) were investigated. Lung resistance (RL) and dynamic compliance (Cdyn) were negligibly changed 18 h after a 6-h inhalation exposure to diacetyl or 2,3-pentanedione (100–360 ppm). Reactivity to MCh was not markedly changed after diacetyl, but was modestly decreased after 2,3-pentanedione inhalation. Inhaled diacetyl exerted essentially no effect on reactivity to mucosally applied MCh, but 2,3-pentanedione (320 and 360 ppm) increased reactivity to MCh in the isolated, perfused trachea preparation (IPT). In IPT, diacetyl and 2,3-pentanedione (≥3 mM) applied to the serosal and mucosal surfaces of intact and epithelium-denuded tracheas initiated transient contractions followed by relaxations. Inhaled acetoin (150 ppm) exerted no effect on pulmonary function and airway reactivity in vivo; acetic acid (27 ppm) produced hyperreactivity to MCh; and exposure to diacetyl + acetoin + acetic acid (250 + 150 + 27 ppm) led to a diacetyl-like reduction in reactivity. Data suggest that the effects of 2,3-pentanedione on airway reactivity are greater than those of diacetyl, and that flavorings are airway smooth muscle relaxants and constrictors, thus indicating a complex mechanism. PMID:23941636

  1. Immunomodulation of airway epithelium cell activation by mesenchymal stromal cells ameliorates house dust mite-induced airway inflammation in mice.

    PubMed

    Duong, Khang M; Arikkatt, Jaisy; Ullah, M Ashik; Lynch, Jason P; Zhang, Vivian; Atkinson, Kerry; Sly, Peter D; Phipps, Simon

    2015-11-01

    Allergic asthma is underpinned by T helper 2 (Th2) inflammation. Redundancy in Th2 cytokine function and production by innate and adaptive immune cells suggests that strategies aimed at immunomodulation may prove more beneficial. Hence, we sought to determine whether administration of mesenchymal stromal cells (MSCs) to house dust mite (HDM) (Dermatophagoides pteronyssinus)-sensitized mice would suppress the development of Th2 inflammation and airway hyperresponsiveness (AHR) after HDM challenge. We report that the intravenous administration of allogeneic donor MSCs 1 hour before allergen challenge significantly attenuated the features of allergic asthma, including tissue eosinophilia, Th2 cytokine (IL-5 and IL-13) levels in bronchoalveolar lavage fluid, and AHR. The number of infiltrating type 2 innate lymphoid cells was not affected by MSC transfer, suggesting that MSCs may modulate the adaptive arm of Th2 immunity. The effect of MSC administration was long lasting; all features of allergic airway disease were significantly suppressed in response to a second round of HDM challenge 4 weeks after MSC administration. Further, we observed that MSCs decreased the release of epithelial cell-derived alarmins IL-1α and high mobility group box-1 in an IL-1 receptor antagonist-dependent manner. This significantly decreased the expression of the pro-Th2 cytokine IL-25 and reduced the number of activated and antigen-acquiring CD11c(+)CD11b(+) dendritic cells in the lung and mediastinal lymph nodes. Our findings suggest that MSC administration can ameliorate allergic airway inflammation by blunting the amplification of epithelial-derived inflammatory cytokines induced by HDM exposure and may offer long-term protection against Th2-mediated allergic airway inflammation and AHR. PMID:25789608

  2. Apoptosis and the Airway Epithelium

    PubMed Central

    White, Steven R.

    2011-01-01

    The airway epithelium functions as a barrier and front line of host defense in the lung. Apoptosis or programmed cell death can be elicited in the epithelium as a response to viral infection, exposure to allergen or to environmental toxins, or to drugs. While apoptosis can be induced via activation of death receptors on the cell surface or by disruption of mitochondrial polarity, epithelial cells compared to inflammatory cells are more resistant to apoptotic stimuli. This paper focuses on the response of airway epithelium to apoptosis in the normal state, apoptosis as a potential regulator of the number and types of epithelial cells in the airway, and the contribution of epithelial cell apoptosis in important airways diseases. PMID:22203854

  3. Extraglottic airway devices: A review

    PubMed Central

    Ramaiah, Ramesh; Das, Debasmita; Bhananker, Sanjay M; Joffe, Aaron M

    2014-01-01

    Extraglottic airway devices (EAD) have become an integral part of anesthetic care since their introduction into clinical practice 25 years ago and have been used safely hundreds of millions of times, worldwide. They are an important first option for difficult ventilation during both in-hospital and out-of-hospital difficult airway management and can be utilized as a conduit for tracheal intubation either blindly or assisted by another technology (fiberoptic endoscopy, lightwand). Thus, the EAD may be the most versatile single airway technique in the airway management toolbox. However, despite their utility, knowledge regarding specific devices and the supporting data for their use is of paramount importance to patient's safety. In this review, number of commercially available EADs are discussed and the reported benefits and potential pitfalls are highlighted. PMID:24741502

  4. United airway disease: current perspectives

    PubMed Central

    Giavina-Bianchi, Pedro; Aun, Marcelo Vivolo; Takejima, Priscila; Kalil, Jorge; Agondi, Rosana Câmara

    2016-01-01

    Upper and lower airways are considered a unified morphological and functional unit, and the connection existing between them has been observed for many years, both in health and in disease. There is strong epidemiologic, pathophysiologic, and clinical evidence supporting an integrated view of rhinitis and asthma: united airway disease in the present review. The term “united airway disease” is opportune, because rhinitis and asthma are chronic inflammatory diseases of the upper and lower airways, which can be induced by allergic or nonallergic reproducible mechanisms, and present several phenotypes. Management of rhinitis and asthma must be jointly carried out, leading to better control of both diseases, and the lessons of the Allergic Rhinitis and Its Impact on Asthma initiative cannot be forgotten. PMID:27257389

  5. Tachykinin receptors and airway pathophysiology.

    PubMed

    Maggi, C A

    1993-05-01

    The mammalian tachykinins (TKs), substance P and neurokinin A, are present in sensory nerve fibres in the upper and lower airways of various mammalian species, including humans. TKs are released from these afferent nerves in an "efferent" mode at peripheral level, especially in response to irritant stimuli. TKs exert a variety of biological effects (bronchoconstriction, plasma protein extravasation, stimulation of mucus secretion), collectively known as "neurogenic inflammation", and this process is thought to be of potential pathogenic relevance for various airway diseases. The recent development of potent and selective TK receptor antagonists on the one hand provides important new tools for the understanding of basic airway physiology and pathophysiology and, on the other, opens new possibilities for therapy of airway diseases. PMID:8390944

  6. Eosinophilic phenotypes of airway disease.

    PubMed

    Pavord, Ian D

    2013-12-01

    Our understanding of the clinical implications of eosinophilic airway inflammation has increased significantly over the last 20 years, aided by the development of noninvasive means to assess it. This pattern of airway inflammation can occur in a diverse range of airway diseases. It is associated with a positive response to corticosteroids and a high risk of preventable exacerbations. Our new understanding of the role of eosinophilic airway inflammation has paved the way for the clinical development of a number of more specific inhibitors that may become new treatment options. Different definitions, ideas of disease, and adoption of biomarkers that are not well known are necessary to fully realize the potential of these treatments. PMID:24313765

  7. Imaging of the Distal Airways

    PubMed Central

    Tashkin, Donald P.; de Lange, Eduard E.

    2009-01-01

    Imaging techniques of the lung continues to advance with improving ability to image the more distal airways. Two imaging techniques are reviewed, computerized tomography and magnetic resonance with hyperpolarized helium-3. PMID:19962040

  8. The Virtual Pediatric Airways Workbench.

    PubMed

    Quammen, Cory W; Taylor Ii, Russell M; Krajcevski, Pavel; Mitran, Sorin; Enquobahrie, Andinet; Superfine, Richard; Davis, Brad; Davis, Stephanie; Zdanski, Carlton

    2016-01-01

    The Virtual Pediatric Airways Workbench (VPAW) is a patient-centered surgical planning software system targeted to pediatric patients with airway obstruction. VPAW provides an intuitive surgical planning interface for clinicians and supports quantitative analysis regarding prospective surgeries to aid clinicians deciding on potential surgical intervention. VPAW enables a full surgical planning pipeline, including importing DICOM images, segmenting the airway, interactive 3D editing of airway geometries to express potential surgical treatment planning options, and creating input files for offline geometric analysis and computational fluid dynamics simulations for evaluation of surgical outcomes. In this paper, we describe the VPAW system and its use in one case study with a clinician to successfully describe an intended surgery outcome. PMID:27046595

  9. Effect of dexamethasone and ACC on bacteria-induced mucin expression in human airway mucosa.

    PubMed

    Hauber, Hans-Peter; Goldmann, Torsten; Vollmer, Ekkehard; Wollenberg, Barbara; Zabel, Peter

    2007-11-01

    Gram-negative bacteria can stimulate mucin production, but excessive mucus supports bacterial infection and consequently leads to airway obstruction. Therefore, the effect of dexamethasone (DEX) and the antioxidant acetyl-cysteine (ACC) on bacteria-induced mucus expression was investigated. Explanted human airway mucosa and mucoepidermoid cells (Calu-3) were stimulated with lipopolysaccharide (LPS) or PAM3 (a synthetic lipoprotein). DEX or ACC were added to either LPS- or PAM3-stimulated airway mucosa or Calu-3 cells. Mucin mRNA expression (MUC5AC) and total mucus glycoconjugates (mucin protein) were quantified using real-time PCR and periodic acid Schiff staining. LPS and PAM3 significantly increased mucin expression in airway mucosa and Calu-3 cells (P < 0.05). DEX alone had no significant effect on mucin expression in airway mucosa or Calu-3 cells (P > 0.05). In contrast, DEX significantly reduced LPS- and PAM3-induced mucin expression in explanted mucosal tissue and mucin expression in Calu-3 cells (P < 0.05). In explanted human airway mucosa ACC alone significantly increased mucin expression (P < 0.05). In contrast, ACC significantly decreased LPS- and PAM3-induced mucin expression (P < 0.05). In Calu-3 cells ACC alone had no significant effect on mucin expression (P > 0.05). ACC decreased LPS- and PAM3-induced mucin expression, but this effect was not significant (P > 0.05). These data suggest that DEX can effectively reduce bacteria-induced mucin expression in the airways. ACC alone may increase mucin expression in noninfected mucosa, but it decreased bacteria-induced mucin expression. Further studies are warranted to evaluate whether the effect of DEX or ACC is clinically relevant. PMID:17600317

  10. The active contribution of Toll-like receptors to allergic airway inflammation.

    PubMed

    Chen, Keqiang; Xiang, Yi; Yao, Xiaohong; Liu, Ying; Gong, Wanghua; Yoshimura, Teizo; Wang, Ji Ming

    2011-10-01

    Epithelia lining the respiratory tract represent a major portal of entry for microorganisms and allergens and are equipped with innate and adaptive immune signaling receptors for host protection. These include Toll-like receptors (TLRs) that recognize microbial components and evoke diverse responses in cells of the respiratory system. TLR stimulation by microorganism-derived molecules activates antigen presenting cells, control T helper (Th) 1, Th2, and Th17 immune cell differentiation, cytokine production by mast cells, and activation of eosinophils. It is clear that TLR are involved in the pathophysiology of allergic airway diseases such as asthma. Dendritic cells (DCs), a kind of antigen presenting cells, which play a key role in the induction of allergic airway inflammation, are privileged targets for pathogen associated molecular patterns (PAMPs). During the allergic responses, engagement of TLRs on DCs determines the Th2 polarization of the T cells. TLR signaling in mast cells increases the release of IL-5, and TLR activation of airway epithelial cells forces the generation of proallergic Th2 type of cytokines. Although these responses aim to protect the host, they may also result in inflammatory tissue damage in the airway. Under certain conditions, stimulation of TLRs, in particular, TLR9, may reduce Th2-dependent allergic inflammation by induction of Th1 responses. Therefore, understanding the complex regulatory roles of TLRs in the pathogenesis of allergic airway inflammation should facilitate the development of preventive and therapeutic measures for asthmatic patients. PMID:21624504

  11. Vehicular Exhaust Particles Promote Allergic Airway Inflammation via an Aryl Hydrocarbon Receptor-Notch Signaling Cascade

    PubMed Central

    Xia, Mingcan; Viera-Hutchins, Loida; Garcia-Lloret, Maria; Rivas, Magali Noval; Wise, Petra; MGhee, Sean A.; Chatila, Zena K.; Daher, Nancy; Sioutas, Constantinos; Chatila, Talal A.

    2015-01-01

    Background Traffic-related particulate matter (PM) has been linked to heightened incidence of asthma and allergic diseases. However, molecular mechanisms by which PM exposure promote allergic diseases remain elusive. Objective We sought to determine the expression, function and regulation of pathways involved in the promotion by PM of allergic airway inflammation. Methods We employed gene expression transcriptional profiling, in vitro culture assays, and vivo murine models of allergic airway inflammation. Results We identified genes of the Notch pathway, most notably Jagged 1 (Jag1), as targets of PM induction in human monocytes and murine dendritic cells (DCs). PM, especially ultrafine particles (UFP), upregulated T helper cytokine, IgE production and allergic airway inflammation in mice in a Jag1 and Notch-dependent manner especially in the context of the pro-asthmatic IL-4 receptor allele Il4raR576. PM-induced Jag1 expression was mediated by the aryl hydrocarbon receptor (AhR), which bound to and activated AhR response elements in the Jag1 promoter. Pharmacological antagonism of AhR or its lineage-specific deletion in CD11c+ cells abrogated the augmentation of airway inflammation by PM. Conclusion PM activate an AhR-Jag1-Notch cascade to promote allergic airway inflammation in concert with pro-asthmatic alleles. PMID:25825216

  12. Airway Surface Mycosis in Chronic Th2-Associated Airway Disease

    PubMed Central

    Porter, Paul; Lim, Dae Jun; Maskatia, Zahida Khan; Mak, Garbo; Tsai, Chu-Lin; Citardi, Martin J; Fakhri, Samer; Shaw, Joanne L.; Fothergil, Annette; Kheradmand, Farrah; Corry, David B; Luong, Amber

    2014-01-01

    Background Environmental fungi have been linked to T helper type 2 (Th2) cell-related airway inflammation and the Th2-associated chronic airway diseases asthma, chronic rhinosinusitis with nasal polyps (CRSwNP) and allergic fungal rhinosinusitis (AFRS), but whether these organisms participate directly or indirectly in disease pathology remains unknown. Objective To determine the frequency of fungus isolation and fungus-specific immunity in Th2-associated and non-associated airway disease patients. Methods Sinus lavage fluid and blood were collected from sinus surgery patients (n=118) including CRS patients with and without nasal polyps and AFRS and non-CRS/non-asthmatic control patients. Asthma status was deteremined from medical history. Sinus lavage fluids were cultured and directly examined for evidence of viable fungi. Peripheral blood mononuclear cells were restimulated with fungal antigens in an enzyme linked immunocell spot (ELISpot) assay to determine total memory fungus-specific IL-4-secreting cells. These data were compared to fungus-specific IgE levels measured from plasma by ELISA. Results Filamentous fungi were significantly more commonly cultured from Th2-associated airway disease subjects (asthma, CRSwNP, or AFRS: n=68) compared to non-Th2-associated control patients (n=31); 74% vs 16% respectively, p<0.001. Both fungus-specific IL-4 ELISpot (n=48) and specific IgE (n=70) data correlated with Th2-associated diseases (sensitivity 73% and specificity 100% vs. 50% and 77%, respectively). Conclusions The frequent isolation of fungi growing directly within the airways accompanied by specific immunity to these organisms only in patients with Th2-associated chronic airway diseases suggests that fungi participate directly in the pathogenesis of these conditions. Efforts to eradicate airway fungi from the airways should be considered in selected patients. Clinical Implications Airway fungi may contribute to the expression of sinusitis with nasal polyps and

  13. [Immunoglobulin for prevention of radiogenic mucositis].

    PubMed

    Mose, S; Adamietz, I A; Thilmann, C; Saran, F; Heyd, R; Knecht, R; Böttcher, H D

    1995-07-01

    Among various therapies administered during radiation-induced mucositis, treatment with immunoglobulin has proven clinically successful. In this study the efficacy of prophylactic applications of immunoglobulin was investigated from January 1992 through August 1993. Forty-two patients with histologically-proven head and neck cancer were given postoperative radiation treatment. In cases with macroscopic tumor residues or inoperability, combined radio-chemotherapy was given. This included 51.3 Gy at 1.9 Gy 5x/week, boosted to 10-26 Gy at 2 Gy 5x/week and carboplatin 60 mg/m2 at days 1-5 and 29-33. Panthenol (4x10 ml/day) and nystatin (4 x 1 ml/day) were given to 20 patients as prophylactic treatment for mucositis. Twenty-two subsequent patients also received intramuscular 800 mg (5 ml) human immunoglobulin (1x/week). According to the Seegenschmiedt/Sauer classification the extent of mucositis was determined 3x/week. Comparison of the distribution of maximal mucositis revealed a slightly more severe mucosal reaction in the control group (n.s.). Analysis of the mean degree of mucositis in both groups demonstrated statistically significant differences (p = 0.031) related to the whole collective and patients receiving concomitant chemotherapy while no effect of immunoglobulin was found in patients treated by radiation alone. In the immunoglobulin-treated-group, the time from the beginning of therapy to the first interruption was prolonged 5 days (37.5 +/- 13.1 vs. 42.7 +/- 13.3 days), but this difference was not significant. Although prophylactic application of immunoglobulin seemed to lower the degree of radiation-induced mucositis, this effect was less significant when compared to the immunoglobulin given in a therapeutic manner. PMID:7672999

  14. Viral piracy: HIV-1 targets dendritic cells for transmission.

    PubMed

    Lekkerkerker, Annemarie N; van Kooyk, Yvette; Geijtenbeek, Teunis B H

    2006-04-01

    Dendritic cells (DCs), the professional antigen presenting cells, are critical for host immunity by inducing specific immune responses against a broad variety of pathogens. Remarkably the human immunodeficiency virus-1 (HIV-1) subverts DC function leading to spread of the virus. At an early phase of HIV-1 transmission, DCs capture HIV-1 at mucosal surfaces and transmit the virus to T cells in secondary lymphoid tissues. Capture of the virus on DCs takes place via C-type lectins of which the dendritic cell-specific intercellular adhesion molecule-3 (ICAM-3) grabbing nonintegrin (DC-SIGN) is the best studied. DC-SIGN-captured HIV-1 particles accumulate in CD81(+) multivesicular bodies (MVBs) in DCs and are subsequently transmitted to CD4+ T cells resulting in infection of T cells. The viral cell-to-cell transmission takes place at the DC-T cell interface termed the infectious synapse. Recent studies demonstrate that direct infection of DCs contributes to the transmission to T cells at a later phase. Moreover, the infected DCs may function as cellular reservoirs for HIV-1. This review discusses the different processes that govern viral piracy of DCs by HIV-1, emphasizing the intracellular routing of the virus from capture on the cell surface to egress in the infectious synapse. PMID:16611055

  15. Airway obstruction with cricoid pressure.

    PubMed

    Hartsilver, E L; Vanner, R G

    2000-03-01

    Cricoid pressure may cause airway obstruction. We investigated whether this is related to the force applied and to the technique of application. We recorded expired tidal volumes and inflation pressures during ventilation via a face-mask and oral airway in 52 female patients who were anaesthetised and about to undergo elective surgery. An inspired tidal volume of 900 ml was delivered using a ventilator. Ventilation was assessed under five different conditions: no cricoid pressure, backwards cricoid pressure applied with a force of 30 N, cricoid pressure applied in an upward and backward direction with a force of 30 N, backwards cricoid pressure with a force of 44 N and through a tracheal tube. An expired tidal volume of < 200 ml was taken to indicate airway obstruction. Airway obstruction did not occur without cricoid pressure, but did occur in one patient (2%) with cricoid pressure at 30 N, in 29 patients (56%) with 30 N applied in an upward and backward direction and in 18 (35%) patients with cricoid pressure at 44 N. Cricoid pressure applied with a force of 44 N can cause airway obstruction but if cricoid pressure is applied with a force of 30 N, airway obstruction occurs less frequently (p = 0.0001) unless the force is applied in an upward and backward direction. PMID:10671836

  16. Tachykinin antagonists and the airways.

    PubMed

    Joos, G F; Kips, J C; Peleman, R A; Pauwels, R A

    1995-01-01

    There is now convincing evidence for the presence of substance P (SP) and neurokinin A (NKA) in human airway nerves. Studies on autopsy tissue, on bronchoalveolar lavage fluid and on sputum suggest that SP may be present in increased amounts in the asthmatic airway. Substance P and NKA are potent bronchoconstrictors of human airways, asthmatics being more sensitive than normal persons. The major enzyme responsible for the degradation of the tachykinins, the neutral endopeptidase, is present in the airways and is involved in the breakdown of exogenously administered SP and NKA, both in normal and asthmatic persons. Other, less well documented airway effects of SP and NKA include mucus secretion, vasodilation and plasma extravasation, as well as the chemoattraction and stimulation of various cells presumed to be involved in asthmatic airway inflammation. NK2 receptors and, to a lesser extent, NK1 receptors have been shown to be involved in bronchoconstriction, whereas NK1 receptors were found to be involved in mucus secretion, microvascular leakage and vasodilatation, and in most of the effects on inflammatory cells. The first clinical trial with FK224, a peptide NK1 and NK2 receptor antagonist, and CP99994, a nonpeptide NK1 receptor antagonist, are negative. However, FK224 failed to block the bronchoconstrictor effect of NKA in asthmatics and the dose of CP99994, needed to antagonize tachykinin effects in man, remains to be determined. PMID:7543746

  17. Surfactant and allergic airway inflammation.

    PubMed

    Winkler, Carla; Hohlfeld, Jens M

    2013-01-01

    Pulmonary surfactant is a complex mixture of unique proteins and lipids that covers the airway lumen. Surfactant prevents alveolar collapse and maintains airway patency by reducing surface tension at the air-liquid interface. Furthermore, it provides a defence against antigen uptake by binding foreign particles and enhancing cellular immune responses. Allergic asthma is associated with chronic airway inflammation and presents with episodes of airway narrowing. The pulmonary inflammation and bronchoconstriction can be triggered by exposure to allergens or pathogens present in the inhaled air. Pulmonary surfactant has the potential to interact with various immune cells which orchestrate allergen- or pathogen-driven episodes of airway inflammation. The complex nature of surfactant allows multiple sites of interaction, but also makes it susceptible to external alterations, which potentially impair its function. This duality of modulating airway physiology and immunology during inflammatory conditions, while at the same time being prone to alterations accompanied by restricted function, has stimulated numerous studies in recent decades, which are reviewed in this article. PMID:23896983

  18. Detection and monitoring of early airway injury effects of half-mustard (2-chloroethylethylsulfide) exposure using high-resolution optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Kreuter, Kelly A.; Mahon, Sari B.; Mukai, David S.; Su, Jianping; Jung, Woong-Gyu; Narula, Navneet; Guo, Shuguang; Wakida, Nicole; Raub, Chris; Berns, Michael W.; George, Steven C.; Chen, Zhongping; Brenner, Matthew

    2009-07-01

    Optical coherence tomography (OCT) is a noninvasive, high-resolution imaging technology capable of delivering real-time, near-histologic images of tissues. Mustard gas is a vesicant-blistering agent that can cause severe and lethal damage to airway and lungs. The ability to detect and assess airway injury in the clinical setting of mustard exposure is currently limited. The purpose of this study is to assess the ability to detect and monitor progression of half-mustard [2-chloroethylethylsulfide (CEES)] airway injuries with OCT techniques. A ventilated rabbit mustard exposure airway injury model is developed. A flexible fiber optic OCT probe is introduced into the distal trachea to image airway epithelium and mucosa in vivo. Progression of airway injury is observed over eight hours with OCT using a prototype time-domain superluminescent diode OCT system. OCT tracheal images from CEES exposed animals are compared to control rabbits for airway mucosal thickening and other changes. OCT detects the early occurrence and progression of dramatic changes in the experimental group after exposure to CEES. Histology and immunofluorescence staining confirms this finding. OCT has the potential to be a high resolution imaging modality capable of detecting, assessing, and monitoring treatment for airway injury following mustard vesicant agent exposures.

  19. Detection and monitoring of early airway injury effects of half-mustard (2-chloroethylethylsulfide) exposure using high-resolution optical coherence tomography

    PubMed Central

    Kreuter, Kelly A.; Mahon, Sari B.; Mukai, David S.; Su, Jianping; Jung, Woong-Gyu; Narula, Navneet; Guo, Shuguang; Wakida, Nicole; Raub, Chris; Berns, Michael W.; George, Steven C.; Chen, Zhongping; Brenner, Matthew

    2009-01-01

    Optical coherence tomography (OCT) is a non-invasive, high-resolution imaging technology capable of delivering real-time, near-histologic images of tissues. Mustard gas is a vesicant-blistering agent that can cause severe and lethal damage to airway and lungs. The ability to detect and assess airway injury in the clinical setting of mustard exposure is currently limited. The purpose of this study is to assess the ability to detect and monitor progression of half-mustard [2-chloroethylethylsulfide (CEES)] airway injuries with OCT techniques. A ventilated rabbit mustard exposure airway injury model is developed. A flexible fiber optic OCT probe is introduced into the distal trachea to image airway epithelium and mucosa in vivo. Progression of airway injury is observed over eight hours with OCT using a prototype time-domain superluminescent diode OCT system. OCT tracheal images from CEES exposed animals are compared to control rabbits for airway mucosal thickening and other changes. OCT detects the early occurrence and progression of dramatic changes in the experimental group after exposure to CEES. Histology and immunofluorescence staining confirms this finding. OCT has the potential to be a high resolution imaging modality capable of detecting, assessing, and monitoring treatment for airway injury following mustard vesicant agent exposures. PMID:19725748

  20. Intestinal dendritic cells survey circulatory antigens prior to induction of CD8+ T cells

    PubMed Central

    Chang, Sun Young; Song, Joo-Hye; Guleng, Bayasi; Cotoner, Carmen Alonso; Arihiro, Seiji; Zhao, Yun; Chiang, Hao-Sen; O'Keeffe, Michael; Liao, Gongxian; Karp, Christopher L.; Kweon, Mi-Na; Sharpe, Arlene H.; Bhan, Atul; Terhorst, Cox; Reinecker, Hans-Christian

    2013-01-01

    Circulatory antigens transit through the small intestine via the fenestrated capillaries in the lamina propria prior to entering into the draining lymphatics. But whether or how this process controls mucosal immune responses remains unknown. Here we demonstrate that dendritic cells (DCs) of the lamina propria can sample and process both circulatory and luminal antigens. Surprisingly, antigen cross-presentation by resident CX3CR1+ DCs induced differentiation of precursor cells into CD8+ T cells that expressed interleukin-10 (IL-10), IL-13 and IL-9 and could migrate into adjacent compartments. We conclude that lamina propria CX3CR1+ DCs facilitate the surveillance of circulatory antigens and act as a conduit for the processing of self- and intestinally-absorbed-antigens, leading to the induction of CD8+ T cells, that partake in the control of T cell activation during mucosal immune responses. PMID:23246312

  1. CARMA3 Is Critical for the Initiation of Allergic Airway Inflammation.

    PubMed

    Causton, Benjamin; Ramadas, Ravisankar A; Cho, Josalyn L; Jones, Khristianna; Pardo-Saganta, Ana; Rajagopal, Jayaraj; Xavier, Ramnik J; Medoff, Benjamin D

    2015-07-15

    Innate immune responses to allergens by airway epithelial cells (AECs) help initiate and propagate the adaptive immune response associated with allergic airway inflammation in asthma. Activation of the transcription factor NF-κB in AECs by allergens or secondary mediators via G protein-coupled receptors (GPCRs) is an important component of this multifaceted inflammatory cascade. Members of the caspase recruitment domain family of proteins display tissue-specific expression and help mediate NF-κB activity in response to numerous stimuli. We have previously shown that caspase recruitment domain-containing membrane-associated guanylate kinase protein (CARMA)3 is specifically expressed in AECs and mediates NF-κB activation in these cells in response to stimulation with the GPCR agonist lysophosphatidic acid. In this study, we demonstrate that reduced levels of CARMA3 in normal human bronchial epithelial cells decreases the production of proasthmatic mediators in response to a panel of asthma-relevant GPCR ligands such as lysophosphatidic acid, adenosine triphosphate, and allergens that activate GPCRs such as Alternaria alternata and house dust mite. We then show that genetically modified mice with CARMA3-deficient AECs have reduced airway eosinophilia and proinflammatory cytokine production in a murine model of allergic airway inflammation. Additionally, we demonstrate that these mice have impaired dendritic cell maturation in the lung and that dendritic cells from mice with CARMA3-deficient AECs have impaired Ag processing. In conclusion, we show that AEC CARMA3 helps mediate allergic airway inflammation, and that CARMA3 is a critical signaling molecule bridging the innate and adaptive immune responses in the lung. PMID:26041536

  2. CARMA3 Is Critical for the Initiation of Allergic Airway Inflammation

    PubMed Central

    Causton, Benjamin; Ramadas, Ravisankar A.; Cho, Josalyn L.; Jones, Khristianna; Pardo-Saganta, Ana; Rajagopal, Jayaraj; Xavier, Ramnik J.

    2015-01-01

    Innate immune responses to allergens by airway epithelial cells (AECs) help initiate and propagate the adaptive immune response associated with allergic airway inflammation in asthma. Activation of the transcription factor NF-κB in AECs by allergens or secondary mediators via G protein–coupled receptors (GPCRs) is an important component of this multifaceted inflammatory cascade. Members of the caspase recruitment domain family of proteins display tissue-specific expression and help mediate NF-κB activity in response to numerous stimuli. We have previously shown that caspase recruitment domain–containing membrane-associated guanylate kinase protein (CARMA)3 is specifically expressed in AECs and mediates NF-κB activation in these cells in response to stimulation with the GPCR agonist lysophosphatidic acid. In this study, we demonstrate that reduced levels of CARMA3 in normal human bronchial epithelial cells decreases the production of proasthmatic mediators in response to a panel of asthma-relevant GPCR ligands such as lysophosphatidic acid, adenosine triphosphate, and allergens that activate GPCRs such as Alternaria alternata and house dust mite. We then show that genetically modified mice with CARMA3-deficient AECs have reduced airway eosinophilia and proinflammatory cytokine production in a murine model of allergic airway inflammation. Additionally, we demonstrate that these mice have impaired dendritic cell maturation in the lung and that dendritic cells from mice with CARMA3-deficient AECs have impaired Ag processing. In conclusion, we show that AEC CARMA3 helps mediate allergic airway inflammation, and that CARMA3 is a critical signaling molecule bridging the innate and adaptive immune responses in the lung. PMID:26041536

  3. Consumption of Rice Bran Increases Mucosal Immunoglobulin A Concentrations and Numbers of Intestinal Lactobacillus spp.

    PubMed Central

    Henderson, Angela J.; Kumar, Ajay; Barnett, Brittany; Dow, Steven W.

    2012-01-01

    Abstract Gut-associated lymphoid tissue maintains mucosal homeostasis by combating pathogens and inducing a state of hyporesponsiveness to food antigens and commensal bacteria. Dietary modulation of the intestinal immune environment represents a novel approach for enhancing protective responses against pathogens and inflammatory diseases. Dietary rice bran consists of bioactive components with disease-fighting properties. Therefore, we conducted a study to determine the effects of whole dietary rice bran intake on mucosal immune responses and beneficial gut microbes. Mice were fed a 10% rice bran diet for 28 days. Serum and fecal samples were collected throughout the study to assess total immunoglobulin A (IgA) concentrations. Tissue samples were collected for cellular immune phenotype analysis, and concentrations of native gut Lactobacillus spp. were enumerated in the fecal samples. We found that dietary rice bran induced an increase in total IgA locally and systemically. In addition, B lymphocytes in the Peyer's patches of mice fed rice bran displayed increased surface IgA expression compared with lymphocytes from control mice. Antigen-presenting cells were also influenced by rice bran, with a significant increase in myeloid dendritic cells residing in the lamina propria and mesenteric lymph nodes. Increased colonization of native Lactobacillus was observed in rice bran–fed mice compared with control mice. These findings suggest that rice bran–induced microbial changes may contribute to enhanced mucosal IgA responses, and we conclude that increased rice bran consumption represents a promising dietary intervention to modulate mucosal immunity for protection against enteric infections and induction of beneficial gut bacteria. PMID:22248178

  4. Lysophosphatidic acid induces osteocyte dendrite outgrowth

    SciTech Connect

    Karagiosis, Sue A.; Karin, Norm J.

    2007-05-25

    A method was developed to measure dendrite formation in bone cells. Lysophosphatidic acid (LPA) was found to stimulate dendrite outgrowth. It is postulated that LPA plays a role in regulating the osteocyte network in vivo.

  5. Pharmacokinetics of Antiretrovirals in Mucosal Tissue

    PubMed Central

    Cottrell, M.L.; Srinivas, N.; Kashuba, A.D.M.

    2015-01-01

    Introduction In the absence of an HIV vaccine or cure, antiretroviral (ARV) based prevention strategies are being investigated to reduce HIV incidence. These prevention strategies depend on achieving effective drug concentrations at the site HIV exposure which is most commonly the mucosal tissues of the lower gastrointestinal tract and the female genital tract. Areas covered This article collates all known data regarding drug exposure in these vulnerable mucosal tissues, and reviews important mechanisms of ARV drug distribution. Research papers and abstracts describing antiretroviral pharmacokinetics in the female genital tract and lower gastrointestinal mucosal tissues available in MEDLINE® or presented at scientific conferences prior to December 2014 are reviewed in detail. Important influences on ARV mucosal tissue distribution, including protein binding, active drug transport, and endogenous hormones, are also reviewed. Expert opinion ARVs exhibit highly variable pharmacokinetics in mucosal tissues. In general, antiretroviral exposure is higher in the lower gastrointestinal tract compared to the female genital tract, but concentrations required for protective efficacy are largely unknown. The expected site of HIV exposure represents an important consideration when designing and optimizing antiretroviral based prevention strategies. PMID:25797064

  6. House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection.

    PubMed

    Fujimura, Kei E; Demoor, Tine; Rauch, Marcus; Faruqi, Ali A; Jang, Sihyug; Johnson, Christine C; Boushey, Homer A; Zoratti, Edward; Ownby, Dennis; Lukacs, Nicholas W; Lynch, Susan V

    2014-01-14

    Exposure to dogs in early infancy has been shown to reduce the risk of childhood allergic disease development, and dog ownership is associated with a distinct house dust microbial exposure. Here, we demonstrate, using murine models, that exposure of mice to dog-associated house dust protects against ovalbumin or cockroach allergen-mediated airway pathology. Protected animals exhibited significant reduction in the total number of airway T cells, down-regulation of Th2-related airway responses, as well as mucin secretion. Following dog-associated dust exposure, the cecal microbiome of protected animals was extensively restructured with significant enrichment of, amongst others, Lactobacillus johnsonii. Supplementation of wild-type animals with L. johnsonii protected them against both airway allergen challenge or infection with respiratory syncytial virus. L. johnsonii-mediated protection was associated with significant reductions in the total number and proportion of activated CD11c(+)/CD11b(+) and CD11c(+)/CD8(+) cells, as well as significantly reduced airway Th2 cytokine expression. Our results reveal that exposure to dog-associated household dust results in protection against airway allergen challenge and a distinct gastrointestinal microbiome composition. Moreover, the study identifies L. johnsonii as a pivotal species within the gastrointestinal tract capable of influencing adaptive immunity at remote mucosal surfaces in a manner that is protective against a variety of respiratory insults. PMID:24344318

  7. Cellular Mechanisms Underlying Eosinophilic and Neutrophilic Airway Inflammation in Asthma

    PubMed Central

    Vatrella, Alessandro; Busceti, Maria Teresa; Gallelli, Luca; Calabrese, Cecilia; Terracciano, Rosa

    2015-01-01

    Asthma is a phenotypically heterogeneous chronic disease of the airways, characterized by either predominant eosinophilic or neutrophilic, or even mixed eosinophilic/neutrophilic inflammatory patterns. Eosinophilic inflammation can be associated with the whole spectrum of asthma severity, ranging from mild-to-moderate to severe uncontrolled disease, whereas neutrophilic inflammation occurs mostly in more severe asthma. Eosinophilic asthma includes either allergic or nonallergic phenotypes underlying immune responses mediated by T helper (Th)2 cell-derived cytokines, whilst neutrophilic asthma is mostly dependent on Th17 cell-induced mechanisms. These immune-inflammatory profiles develop as a consequence of a functional impairment of T regulatory (Treg) lymphocytes, which promotes the activation of dendritic cells directing the differentiation of distinct Th cell subsets. The recent advances in the knowledge of the cellular and molecular mechanisms underlying asthmatic inflammation are contributing to the identification of novel therapeutic targets, potentially suitable for the implementation of future improvements in antiasthma pharmacologic treatments. PMID:25878402

  8. Cellular mechanisms underlying eosinophilic and neutrophilic airway inflammation in asthma.

    PubMed

    Pelaia, Girolamo; Vatrella, Alessandro; Busceti, Maria Teresa; Gallelli, Luca; Calabrese, Cecilia; Terracciano, Rosa; Maselli, Rosario

    2015-01-01

    Asthma is a phenotypically heterogeneous chronic disease of the airways, characterized by either predominant eosinophilic or neutrophilic, or even mixed eosinophilic/neutrophilic inflammatory patterns. Eosinophilic inflammation can be associated with the whole spectrum of asthma severity, ranging from mild-to-moderate to severe uncontrolled disease, whereas neutrophilic inflammation occurs mostly in more severe asthma. Eosinophilic asthma includes either allergic or nonallergic phenotypes underlying immune responses mediated by T helper (Th)2 cell-derived cytokines, whilst neutrophilic asthma is mostly dependent on Th17 cell-induced mechanisms. These immune-inflammatory profiles develop as a consequence of a functional impairment of T regulatory (Treg) lymphocytes, which promotes the activation of dendritic cells directing the differentiation of distinct Th cell subsets. The recent advances in the knowledge of the cellular and molecular mechanisms underlying asthmatic inflammation are contributing to the identification of novel therapeutic targets, potentially suitable for the implementation of future improvements in antiasthma pharmacologic treatments. PMID:25878402

  9. Comparing the Laryngeal Mask Airway, Cobra Perilaryngeal Airway and Face Mask in Children Airway Management

    PubMed Central

    Tekin, Beyza; Hatipoğlu, Zehra; Türktan, Mediha; Özcengiz, Dilek

    2016-01-01

    Objective We compared the effects of the laryngeal mask airway (LMA), face mask and Cobra perilaryngeal airway (PLA) in the airway management of spontaneously breathing paediatric patients undergoing elective inguinal surgery. Methods In this study, 90 cases of 1–14-year-old children undergoing elective inguinal surgery were scheduled. The patients were randomly divided into three groups. Anaesthesia was provided with sevoflurane and 50%–50% nitrous oxide and oxygen. After providing an adequate depth of anaesthesia, supraglottic airway devices were inserted in the group I and II patients. The duration and number of insertion, haemodynamic parameters, plateau and peak inspiratory pressure and positive end-expiratory pressure of the patients were recorded preoperatively, after induction and at 5, 10, 15 and 30 min peroperatively. Results There were no statistical differences between the groups in terms of haemodynamic parameters (p>0.05). In group II, instrumentation success was higher and instrumentation time was shorter than group II. The positive end-expiratory pressure and plateau and peak inspiratory pressure values were statistically lower in group II (p<0.05). Conclusion We concluded that for airway safety and to avoid possible complications, LMA and Cobra PLA could be alternatives to face mask and that the Cobra PLA provided lower airway pressure and had a faster and more easy placement than LMA. PMID:27366563

  10. Mechanisms and Function of Dendritic Exocytosis

    PubMed Central

    Kennedy, Matthew J.; Ehlers, Michael D.

    2011-01-01

    Summary Dendritic exocytosis is required for a broad array of neuronal functions including retrograde signaling, neurotransmitter release, synaptic plasticity, and establishment of neuronal morphology. While the details of synaptic vesicle exocytosis from presynaptic terminals have been intensely studied for decades, the mechanisms of dendritic exocytosis are only now emerging. Here we review the molecules and mechanisms of dendritic exocytosis, and discuss how exocytosis from dendrites influences neuronal function and circuit plasticity. PMID:21382547

  11. The yin and yang of intestinal epithelial cells in controlling dendritic cell function

    PubMed Central

    Iliev, Iliyan D.; Matteoli, Gianluca; Rescigno, Maria

    2007-01-01

    Recent work suggests that dendritic cells (DCs) in mucosal tissues are “educated” by intestinal epithelial cells (IECs) to suppress inflammation and promote immunological tolerance. After attack by pathogenic microorganisms, however, “non-educated” DCs are recruited from nearby areas, such as the dome of Peyer's patches (PPs) and the blood, to initiate inflammation and the ensuing immune response to the invader. Differential epithelial cell (EC) responses to commensals and pathogens may control these two tolorogenic and immunogenic functions of DCs. PMID:17893197

  12. Role of Small Airways in Asthma.

    PubMed

    Finkas, Lindsay K; Martin, Richard

    2016-08-01

    Asthma is an inflammatory condition of both the small and large airways. Recently the small airways have gained attention as studies have shown significant inflammation in the small airways in all severities of asthma. This inflammation has correlated with peripheral airway resistance and as a result, noninvasive methods to reliably measure small airways have been pursued. In addition, recent changes in asthma inhalers have led to alterations in drug formulations and the development of extrafine particle inhalers that improve delivery to the distal airways. PMID:27401620

  13. An Inverse Approach for Elucidating Dendritic Function

    PubMed Central

    Torben-Nielsen, Benjamin; Stiefel, Klaus M.

    2010-01-01

    We outline an inverse approach for investigating dendritic function–structure relationships by optimizing dendritic trees for a priori chosen computational functions. The inverse approach can be applied in two different ways. First, we can use it as a “hypothesis generator” in which we optimize dendrites for a function of general interest. The optimization yields an artificial dendrite that is subsequently compared to real neurons. This comparison potentially allows us to propose hypotheses about the function of real neurons. In this way, we investigated dendrites that optimally perform input-order detection. Second, we can use it as a “function confirmation” by optimizing dendrites for functions hypothesized to be performed by classes of neurons. If the optimized, artificial, dendrites resemble the dendrites of real neurons the artificial dendrites corroborate the hypothesized function of the real neuron. Moreover, properties of the artificial dendrites can lead to predictions about yet unmeasured properties. In this way, we investigated wide-field motion integration performed by the VS cells of the fly visual system. In outlining the inverse approach and two applications, we also elaborate on the nature of dendritic function. We furthermore discuss the role of optimality in assigning functions to dendrites and point out interesting future directions. PMID:21258425

  14. [Direct and indirect mucosal wave imaging techniques].

    PubMed

    Krasnodębska, Paulina; Szkiełkowska, Agata

    2016-04-01

    The vocal folds play a key role in the process of phonation. Cyclical movements of the vocal folds model a space called glottis, what leads to voice formation. The space contains surface between the vocal folds and the inner surface of the arytenoid cartilages. The best indicator of the vocal folds vibratory function is the mucosal wave. The presence and size of the mucosal wave is widely recognized as an indicator of tension and plasticity of vocal folds. It is also essential in the process of creating a proper, resonant voice. In the article, current knowledge of mucosal wave imaging techniques is given. Imaging can be carried out directly and indirectly. Among the direct methods, the following are distinguished: laryngostroboscopy, laryngovideostroboscopy, videokymography and high-speed digital imaging. Indirect methods include: electroglottography, photoglottography and ultrasonography. PMID:27137829

  15. Oral mucosal diseases: evaluation and management.

    PubMed

    Stoopler, Eric T; Sollecito, Thomas P

    2014-11-01

    Oral mucosal diseases encompass several common conditions that affect the general population. Some of these disorders present with signs and symptoms that are pathognomonic for the condition, whereas others present with similar features that can make clinical diagnosis difficult to achieve. It is important for physicians to have a clear understanding of these disorders to provide appropriate care to patients. This article reviews clinical aspects of common oral mucosal disorders, including candidiasis, herpes simplex viral infections, aphthous stomatitis, lichen planus, pemphigus vulgaris, and mucous membrane pemphigoid. PMID:25443679

  16. Oral mucositis in myelosuppressive cancer therapy.

    PubMed

    Epstein, J B; Schubert, M M

    1999-09-01

    Because the etiology of mucositis is multifactorial , approaches to prevention and management have also been multifactorial. Effective prevention and management of mucositis will reduce the pain and suffering experienced during cancer treatment. Oropharyngeal pain in cancer patients frequently requires systemic analgesics, adjunctive medications, physical therapy, and psychologic therapy in addition to oral care and topical treatments. Good oral hygiene reduces the severity of oral mucositis and does not increase the risk of bacteremia. Current approaches to management include frequent oral rinsing with saline or bicarbonate rinses, maintaining excellent oral hygiene, and using topical anesthetics and analgesics. Cryotherapy is a potential adjunctive approach in some cases. There are a number of approaches that appear to represent viable candidates for further study. Biologic response modifiers offer the potential for prevention and for acceleration of healing. Various cytokines will enter clinical trials in the near future; these offer the potential for reduction of epithelial cell sensitivity to the toxic effects of cancer therapy or for stimulation of repair of the damaged tissue. Other approaches include the use of medications to reduce exposure of the oral mucosa to chemotherapeutic drugs that are secreted in saliva. Antimicrobial approaches have met with conflicting results, little effect being seen with chlorhexidine and systemic antimicrobials in the prevention of mucositis in radiation patients. In patients with BMT and patients with leukemia, chlorhexidine may not be effective in preventing mucositis, although there may be reduction in oral colonization by Candida. Initial studies of topical antimicrobials that affect the gram-negative oral flora have shown reductions in ulcerative mucositis during radiation therapy but have not been assessed in leukemia/BMT. Among other approaches that require further study are low-energy lasers and anti

  17. The Airway Microbiome at Birth

    PubMed Central

    Lal, Charitharth Vivek; Travers, Colm; Aghai, Zubair H.; Eipers, Peter; Jilling, Tamas; Halloran, Brian; Carlo, Waldemar A.; Keeley, Jordan; Rezonzew, Gabriel; Kumar, Ranjit; Morrow, Casey; Bhandari, Vineet; Ambalavanan, Namasivayam

    2016-01-01

    Alterations of pulmonary microbiome have been recognized in multiple respiratory disorders. It is critically important to ascertain if an airway microbiome exists at birth and if so, whether it is associated with subsequent lung disease. We found an established diverse and similar airway microbiome at birth in both preterm and term infants, which was more diverse and different from that of older preterm infants with established chronic lung disease (bronchopulmonary dysplasia). Consistent temporal dysbiotic changes in the airway microbiome were seen from birth to the development of bronchopulmonary dysplasia in extremely preterm infants. Genus Lactobacillus was decreased at birth in infants with chorioamnionitis and in preterm infants who subsequently went on to develop lung disease. Our results, taken together with previous literature indicating a placental and amniotic fluid microbiome, suggest fetal acquisition of an airway microbiome. We speculate that the early airway microbiome may prime the developing pulmonary immune system, and dysbiosis in its development may set the stage for subsequent lung disease. PMID:27488092

  18. The Airway Microbiome at Birth.

    PubMed

    Lal, Charitharth Vivek; Travers, Colm; Aghai, Zubair H; Eipers, Peter; Jilling, Tamas; Halloran, Brian; Carlo, Waldemar A; Keeley, Jordan; Rezonzew, Gabriel; Kumar, Ranjit; Morrow, Casey; Bhandari, Vineet; Ambalavanan, Namasivayam

    2016-01-01

    Alterations of pulmonary microbiome have been recognized in multiple respiratory disorders. It is critically important to ascertain if an airway microbiome exists at birth and if so, whether it is associated with subsequent lung disease. We found an established diverse and similar airway microbiome at birth in both preterm and term infants, which was more diverse and different from that of older preterm infants with established chronic lung disease (bronchopulmonary dysplasia). Consistent temporal dysbiotic changes in the airway microbiome were seen from birth to the development of bronchopulmonary dysplasia in extremely preterm infants. Genus Lactobacillus was decreased at birth in infants with chorioamnionitis and in preterm infants who subsequently went on to develop lung disease. Our results, taken together with previous literature indicating a placental and amniotic fluid microbiome, suggest fetal acquisition of an airway microbiome. We speculate that the early airway microbiome may prime the developing pulmonary immune system, and dysbiosis in its development may set the stage for subsequent lung disease. PMID:27488092

  19. Non-neuronal cholinergic system in airways and lung cancer susceptibility

    PubMed Central

    Saracino, Laura; Zorzetto, Michele; Inghilleri, Simona; Pozzi, Ernesto

    2013-01-01

    In the airway tract acetylcholine (ACh) is known to be the mediator of the parasympathetic nervous system. However ACh is also synthesized by a large variety of non-neuronal cells. Strongest expression is documented in neuroendocrine and in epithelial cells (ciliated, basal and secretory elements). Growing evidence suggests that a cell-type specific Ach expression and release do exist and act with local autoparacrine loop in the non-neuronal airway compartment. Here we review the molecular mechanism by which Ach is involved in regulating various aspects of innate mucosal defense, including mucociliary clearance, regulation of macrophage activation as well as in promoting epithelial cells proliferation and conferring susceptibility to lung carcinoma onset. Importantly this non-neuronal cholinergic machinery is differently regulated than the neuronal one and could be specifically therapeutically targeted. PMID:25806244

  20. Intranasal epidermoid cyst causing upper airway obstruction in three brachycephalic dogs.

    PubMed

    Murgia, D; Pivetta, M; Bowlt, K; Volmer, C; Holloway, A; Dennis, R

    2014-08-01

    This case report describes three brachycephalic dogs with intranasal epidermoid cysts that were causing additional upper airway obstruction. Although epidermoid cysts have been described in several locations in dogs, to the authors' knowledge intranasal epidermoid cysts have not been previously reported. All dogs had mucopurulent to haemorrhagic nasal discharge. Magnetic resonance imaging of the head revealed the presence of unilateral or bilateral intranasal cystic lesions obstructing the nasal cavities partially or completely, with atrophy of the ipsilateral nasal turbinates. The cystic lesions were surgically excised in all dogs using a modified lateral alveolar mucosal approach to the affected nasal cavity. Aerobic, anaerobic and fungal culture of the cystic contents were negative and histology of the excised tissue was consistent with a benign intranasal epidermoid cyst in each dog. Upper airway obstruction was clinically improved in two dogs. PMID:24697627

  1. Intrinsic and extrinsic mechanisms of dendritic morphogenesis.

    PubMed

    Dong, Xintong; Shen, Kang; Bülow, Hannes E

    2015-01-01

    The complex, branched morphology of dendrites is a cardinal feature of neurons and has been used as a criterion for cell type identification since the beginning of neurobiology. Regulated dendritic outgrowth and branching during development form the basis of receptive fields for neurons and are essential for the wiring of the nervous system. The cellular and molecular mechanisms of dendritic morphogenesis have been an intensely studied area. In this review, we summarize the major experimental systems that have contributed to our understandings of dendritic development as well as the intrinsic and extrinsic mechanisms that instruct the neurons to form cell type-specific dendritic arbors. PMID:25386991

  2. Wiring dendrites in layers and columns.

    PubMed

    Luo, Jiangnan; McQueen, Philip G; Shi, Bo; Lee, Chi-Hon; Ting, Chun-Yuan

    2016-06-01

    The most striking structure in the nervous system is the complex yet stereotyped morphology of the neuronal dendritic tree. Dendritic morphologies and the connections they make govern information flow and integration in the brain. The fundamental mechanisms that regulate dendritic outgrowth and branching are subjects of extensive study. In this review, we summarize recent advances in the molecular and cellular mechanisms for routing dendrites in layers and columns, prevalent organizational structures in the brain. We highlight how dendritic patterning influences the formation of synaptic circuits. PMID:27315108

  3. Advanced dendritic web growth development

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.

    1985-01-01

    A program to develop the technology of the silicon dendritic web ribbon growth process is examined. The effort is being concentrated on the area rate and quality requirements necessary to meet the JPL/DOE goals for terrestrial PV applications. Closed loop web growth system development and stress reduction for high area rate growth is considered.

  4. DENDRITIC POLYMERS AS FIRE SUPPRESSANTS

    EPA Science Inventory

    This report describes an evaluation of the applicability of one of the latest advances in polymer technology (dendritic polymers) to suppressing fires, one of the greatest survivability threats to military personnel and vehicles. Certain types of alkali and transition metal compl...

  5. Plasma Cell Mucositis of Oro- and Hypopharynx: A Case Report

    PubMed Central

    Puvanendran, Mark; Lieder, Anja; Issing, Wolfgang

    2012-01-01

    Objective. To raise awareness of plasma cell mucositis as a rare differential diagnosis for oral mucosal ulceration and its macroscopic similarity to malignancy. Method. We report a patient who presented with oral features suggestive of malignancy. A biopsy revealed plasma cell mucositis. Results. The patient successfully had a full excision of one lesion and a spontaneous resolution of the other. Conclusion. With the increasing incidence of oral mucosal pathology, physicians should be aware of this differential diagnosis. PMID:22953106

  6. TCDD-Induced Activation of Aryl Hydrocarbon Receptor Inhibits Th17 Polarization and Regulates Non-Eosinophilic Airway Inflammation in Asthma

    PubMed Central

    Gu, Wen; Guo, Xue-jun

    2016-01-01

    The aryl hydrocarbon receptor (AhR), a transcription factor of the bHLH/PAS family, has recently been demonstrated to regulate T cell differentiation. Whether AhR activation participates in allergic airway inflammation remains unknown. In the current study, using a non-eosinophilic asthma model, we demonstrate that 2, 3, 7, 8-tetrachlorodibenzo-P-dioxin (TCDD), a potent AhR ligand, reduced the airway infiltration of neutrophils, airway hyperresponsiveness and Th17 cytokine expression. Furthermore, stimulation with TCDD promoted Treg differentiation and inhibited Th17 differentiation. However, the maturation of dendritic cells may not be inhibited by AhR activation. This study thus indicates a critical role of TCDD-induced AhR activation in the regulation of non-eosinophilic airway inflammation. PMID:26938767

  7. TCDD-Induced Activation of Aryl Hydrocarbon Receptor Inhibits Th17 Polarization and Regulates Non-Eosinophilic Airway Inflammation in Asthma.

    PubMed

    Li, Xiao-ming; Peng, Juan; Gu, Wen; Guo, Xue-jun

    2016-01-01

    The aryl hydrocarbon receptor (AhR), a transcription factor of the bHLH/PAS family, has recently been demonstrated to regulate T cell differentiation. Whether AhR activation participates in allergic airway inflammation remains unknown. In the current study, using a non-eosinophilic asthma model, we demonstrate that 2, 3, 7, 8-tetrachlorodibenzo-P-dioxin (TCDD), a potent AhR ligand, reduced the airway infiltration of neutrophils, airway hyperresponsiveness and Th17 cytokine expression. Furthermore, stimulation with TCDD promoted Treg differentiation and inhibited Th17 differentiation. However, the maturation of dendritic cells may not be inhibited by AhR activation. This study thus indicates a critical role of TCDD-induced AhR activation in the regulation of non-eosinophilic airway inflammation. PMID:26938767

  8. [Orthodontics and the upper airway].

    PubMed

    Cobo Plana, J; de Carlos Villafranca, F; Macías Escalada, E

    2004-03-01

    One of the general aims of orthodontic treatment and of the combination of orthodontics and orthognathic surgery is to achieve good occlusion and aesthetic improvement, especially in cases of severe dentoskeletal deformities. However, on many occasions, the parameters of the upper airways are not taken into account when the aims of conventional treatment are fulfilled. Patients with obstructive alterations during sleep represent for the orthodontist a type of patient who differs from the normal; for them, treatment should include the objective of improving oxygen saturation. Here, functional considerations should outweigh purely aesthetic ones. It is important, when making an orthodontic, surgical or combined diagnosis for a patient, to bear in mind the impact that treatment may have on the upper airways. Good aesthetics should never be achieved for some of our patients at the expense of diminishing the capacity of their upper airways. PMID:15301356

  9. Dendrite engineering on xenon crystals.

    PubMed

    Fell, Marco; Bilgram, Jörg

    2007-06-01

    The experimental work presented focuses on transient growth, morphological transitions, and control of xenon dendrites. Dendritic free growth is perturbed by two different mechanisms: Shaking and heating up to the melting temperature. Spontaneous and metastable multitip configurations are stabilized, coarsening is reduced, leading to a denser sidebranch growth, and a periodic tip splitting is found during perturbation by shaking. On the other hand, heating leads to controlled sidebranching and characteristic transitions of the tip shape. A deterministic behavior is found besides the random-noise-driven growth. The existence of a limit cycle is supported by the findings. Together the two perturbation mechanisms allow a "dendrite engineering"--i.e., a reproducible controlling of the crystal shape during its growth. The tip splitting for dendritic free growth is found not to be a splitting of the tip in two; rather, the respective growth velocities of the main tip and the fins change. The latter then surpass the main tip and develop into new tips. The occurrence of three- and four-tip configurations is explained with this mechanism. Finite-element calculations of the heat flow and the convective flow in the growth vessel show that the idea of a single axisymmetric toroidal convection roll across the whole growth vessel has to be dropped. The main effect of convection under Earth's gravity is the compression of the diffusive temperature field around the downward-growing tip. A model to explain the symmetry of dendritic crystals--e.g., snow crystals--is developed, based on the interaction of crystal shape and heat flow in the crystal. PMID:17677269

  10. Mucosal immunization with high-mobility group box 1 in chitosan enhances DNA vaccine-induced protection against coxsackievirus B3-induced myocarditis.

    PubMed

    Wang, Maowei; Yue, Yan; Dong, Chunsheng; Li, Xiaoyun; Xu, Wei; Xiong, Sidong

    2013-11-01

    Coxsackievirus B3 (CVB3), a small single-stranded RNA virus, belongs to the Picornaviridae family. Its infection is the most common cause of myocarditis, with no vaccine available. Gastrointestinal mucosa is the major entry port for CVB3; therefore, the induction of local immunity in mucosal tissues may help control initial viral infections and alleviate subsequent myocardial injury. Here we evaluated the ability of high-mobility group box 1 (HMGB1) encapsulated in chitosan particles to enhance the mucosal immune responses induced by the CVB3-specific mucosal DNA vaccine chitosan-pVP1. Mice were intranasally coimmunized with 4 doses of chitosan-pHMGB1 and chitosan-pVP1 plasmids, at 2-week intervals, and were challenged with CVB3 4 weeks after the last immunization. Compared with chitosan-pVP1 immunization alone, coimmunization with chitosan-pHMGB1 significantly (P < 0.05) enhanced CVB3-specific fecal secretory IgA levels and promoted mucosal T cell immune responses. In accordance, reduced severity of myocarditis was observed in coimmunized mice, as evidenced by significantly (P < 0.05) reduced viral loads, decreased myocardial injury, and increased survival rates. Flow cytometric analysis indicated that HMGB1 enhanced dendritic cell (DC) recruitment to mesenteric lymph nodes and promoted DC maturation, which might partly account for its mucosal adjuvant effect. This strategy may represent a promising approach to candidate vaccines against CVB3-induced myocarditis. PMID:24027262

  11. 21 CFR 868.5810 - Airway connector.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Airway connector. 868.5810 Section 868.5810 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5810 Airway connector. (a) Identification. An airway connector is a device intended to...

  12. Chronic effects of mechanical force on airways.

    PubMed

    Tschumperlin, Daniel J; Drazen, Jeffrey M

    2006-01-01

    Airways are embedded in the mechanically dynamic environment of the lung. In utero, this mechanical environment is defined largely by fluid secretion into the developing airway lumen. Clinical, whole lung, and cellular studies demonstrate pivotal roles for mechanical distention in airway morphogenesis and cellular behavior during lung development. In the adult lung, the mechanical environment is defined by a dynamic balance of surface, tissue, and muscle forces. Diseases of the airways modulate both the mechanical stresses to which the airways are exposed as well as the structure and mechanical behavior of the airways. For instance, in asthma, activation of airway smooth muscle abruptly changes the airway size and stress state within the airway wall; asthma also results in profound remodeling of the airway wall. Data now demonstrate that airway epithelial cells, smooth muscle cells, and fibroblasts respond to their mechanical environment. A prominent role has been identified for the epithelium in transducing mechanical stresses, and in both the fetal and mature airways, epithelial cells interact with mesenchymal cells to coordinate remodeling of tissue architecture in response to the mechanical environment. PMID:16460284

  13. Site of Fluid Secretion in Small Airways.

    PubMed

    Flores-Delgado, Guillermo; Lytle, Christian; Quinton, Paul M

    2016-03-01

    The secretion and management of readily transportable airway surface liquid (ASL) along the respiratory tract is crucial for the clearance of debris and pathogens from the lungs. In proximal large airways, submucosal glands (SMGs) can produce ASL. However, in distal small airways, SMGs are absent, although the lumens of these airways are, uniquely, highly plicated. Little is known about the production and maintenance of ASL in small airways, but using electrophysiology, we recently found that native porcine small airways simultaneously secrete and absorb. How these airways can concurrently transport ASL in opposite directions is puzzling. Using high expression of the Na-K-2Cl cotransport (NKCC) 1 protein (SLC12a2) as a phenotypic marker for fluid secretory cells, immunofluorescence microscopy of porcine small airways revealed two morphologically separated sets of luminal epithelial cells. NKCC1 was abundantly expressed by most cells in the contraluminal regions of the pleats but highly expressed very infrequently by cells in the luminal folds of the epithelial plications. In larger proximal airways, the acini of SMGs expressed NKCC1 prominently, but cells expressing NKCC1 in the surface epithelium were sparse. Our findings indicate that, in the small airway, cells in the pleats of the epithelium secrete ASL, whereas, in the larger proximal airways, SMGs mainly secrete ASL. We propose a mechanism in which the locations of secretory cells in the base of pleats and of absorptive cells in luminal folds physically help maintain a constant volume of ASL in small airways. PMID:26562629

  14. Mechanisms of Neonatal Mucosal Antibody Protection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Following an abrupt transition at birth from the sterile uterus to an environment with abundant commensal and pathogenic microbes, neonatal mammals are protected by maternal antibodies at mucosal surfaces. We show in mice that different antibody isotypes work in distinct ways to protect the neonatal...

  15. New frontiers in mucosal health in aquaculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dramatic decline in sequencing costs brought about by a shift in the last 5-10 years to massively parallel sequencing platforms has far-reaching consequences for the study of mucosal health in aquaculture. Transcriptome sequencing and gene expression profiling (RNA-seq) offer a rapid approach t...

  16. CpG DNA as mucosal adjuvant.

    PubMed

    McCluskie, M J; Davis, H L

    1999-09-01

    We have previously found synthetic oligodeoxynucleotides (ODN) containing immunostimulatory CpG motifs to be a potent adjuvant to protein administered by intramuscular injection or intranasal inhalation to BALB/c mice. Herein we have further evaluated the potential of CpG ODN as a mucosal adjuvant to purified hepatitis B surface antigen (HBsAg) when administered alone or with cholera toxin (CT). CpG ODN and CT both augmented systemic (humoral and cellular) and mucosal immune responses against HBsAg, and these could be further enhanced with higher doses of adjuvant or boosting. Overall, antibody isotypes with CT alone were predominantly IgG1 (Th2-like) whereas they were predominantly IgG2a (Th1-like) with CpG ODN alone or in combination with CT. Results from this study indicate that stimulatory CpG ODN are promising new adjuvants for mucosal vaccination strategies, whether used alone or in combination with other mucosal adjuvants. PMID:10506647

  17. Phosphodiesterase 4B is essential for TH2-cell function and development of airway hyperresponsiveness in allergic asthma

    PubMed Central

    Catherine Jin, S.-L.; Goya, Sho; Nakae, Susumu; Wang, Dan; Bruss, Matthew; Hou, Chiaoyin; Umetsu, Dale; Conti, Marco

    2010-01-01

    Background Cyclic AMP (cAMP) signaling modulates functions of inflammatory cells involved in the pathogenesis of asthma, and type 4 cAMP-specific phosphodiesterases (PDE4s) are essential components of this pathway. Induction of the PDE4 isoform PDE4B is necessary for Toll-like receptor signaling in monocytes and macrophages and is associated with T cell receptor/CD3 in T cells; however, its exact physiological function in the development of allergic asthma remains undefined. Objectives We investigated the role of PDE4B in the development of allergen-induced airway hyperresponsiveness (AHR) and TH2-driven inflammatory responses. Methods Wild-type and PDE4B−/− mice were sensitized and challenged with ovalbumin and AHR measured in response to inhaled methacholine. Airway inflammation was characterized by analyzing leukocyte infiltration and cytokine accumulation in the airways. Ovalbumin-stimulated cell proliferation and TH2 cytokine production were determined in cultured bronchial lymph node cells. Results Mice deficient in PDE4B do not develop AHR. This protective effect was associated with a significant decrease in eosinophils recruitment to the lungs and decreased TH2 cytokine levels in the bronchoalveolar lavage fluid. Defects in T-cell replication, TH2 cytokine production, and dendritic cell migration were evident in cells from the airway-draining lymph nodes. Conversely, accumulation of the TH1 cytokine IFN-γ was not affected in PDE4B−/− mice. Ablation of the orthologous PDE4 gene PDE4A has no impact on airway inflammation. Conclusion By relieving a cAMP-negative constraint, PDE4B plays an essential role in TH2-cell activation and dendritic cell recruitment during airway inflammation. These findings provide proof of concept that PDE4 inhibitors with PDE4B selectivity may have efficacy in asthma treatment. PMID:21047676

  18. Mucosal vaccines: non toxic derivatives of LT and CT as mucosal adjuvants.

    PubMed

    Pizza, M; Giuliani, M M; Fontana, M R; Monaci, E; Douce, G; Dougan, G; Mills, K H; Rappuoli, R; Del Giudice, G

    2001-03-21

    Most vaccines are still delivered by injection. Mucosal vaccination would increase compliance and decrease the risk of spread of infectious diseases due to contaminated syringes. However, most vaccines are unable to induce immune responses when administered mucosally, and require the use of strong adjuvant on effective delivery systems. Cholera toxin (CT) and Escherichia coli enterotoxin (LT) are powerful mucosal adjuvants when co-administered with soluble antigens. However, their use in humans is hampered by their extremely high toxicity. During the past few years, site-directed mutagenesis has permitted the generation of LT and CT mutants fully non toxic or with dramatically reduced toxicity, which still retain their strong adjuvanticity at the mucosal level. Among these mutants, are LTK63 (serine-to-lysine substitution at position 63 in the A subunit) and LTR72 (alanine-to-arginine substitution at position 72 in the A subunit). The first is fully non toxic, whereas the latter retains some residual enzymatic activity. Both of them are extremely active as mucosal adjuvants, being able to induce very high titers of antibodies specific for the antigen with which they are co-administered. Both mutants have now been tested as mucosal adjuvants in different animal species using a wide variety of antigens. Interestingly, mucosal delivery (nasal or oral) of antigens together with LTK63 or LTR72 mutants also conferred protection against challenge in appropriate animal models (e.g. tetanus, Helicobacter pylori, pertussis, pneumococci, influenza, etc). In conclusion, these LTK63 and LTR72 mutants are safe adjuvants to enhance the immunogenicity of vaccines at the mucosal level, and will be tested soon in humans. PMID:11257389

  19. Laryngeal mask airway: an alternative for the difficult airway.

    PubMed

    Jones, J R

    1995-10-01

    The laryngeal mask airway (LMA) was invented by Dr. Archie Brain at the London Hospital, Whitechapel, in 1981. Dr. Brain's main objective for the LMA was that it would provide a better method of maintaining a patient's airway than by face mask. Also, the LMA would be less hemodynamically stressful than with insertion of an endotracheal tube. The LMA consists of a silicone rubber tube connected to a miniature silicone mask. The perimeter of the mask consists of an inflatable elliptical cuff, which forms a tip at the distal aspect of the LMA. The aperture bars in the dome of the mask lift the epiglottis away, so the lumen remains unobstructive. The LMA forms a low pressure seal around the larynx. The LMA is contraindicated in any situation where the patient is at risk for pulmonary aspiration. The LMA is not a substitute for a properly placed endotracheal tube in this situation. The American Society of Anesthesiologists' difficult airway algorithm recommends the insertion of an LMA when ventilation and/or intubation are difficult. The distal aperture of the LMA is in close approximation to the vocal cords, so a 6.0-mm internal diameter endotracheal tube can be passed over an intubating stylet or a pediatric fiberoptic bronchoscope to secure a patient's airway. PMID:7502644

  20. Modulation of dendritic cell endocytosis and antigen processing pathways by Escherichia coli heat-labile enterotoxin and mutant derivatives.

    PubMed

    Petrovska, Liljana; Lopes, Luciene; Simmons, Cameron P; Pizza, Mariagrazia; Dougan, Gordon; Chain, Benjamin M

    2003-03-28

    Escherichia coli heat-labile enterotoxin (LT) is known to be a potent adjuvant of both the mucosal and systemic immune systems but the mechanism of action leading to adjuvant activity remains incompletely understood. This study investigates the action of LT and LT mutants with impaired enzymatic activity, on the function of dendritic cells. Wild-type LT and LTR72, which retains some ADP ribosyltransferase activity, induced a selective increase in cell surface expression of B7.1, and a selective decrease of CD40 expression on mouse bone marrow derived dendritic cells. LTK63 and LT-B had no obvious effect on the expression of these antigens on similar dendritic cells. LT-treated dendritic cells also showed a profoundly impaired ability to present protein antigen (ovalbumin) to cognate T cells, although this effect was not observed with non-toxic LT mutants. LT and LTR72-treated cells showed a slower rate of receptor-mediated endocytosis as measured by flow cytometric analysis of uptake of fluorescently labelled dextran. Furthermore, confocal microscopy showed changes in the intracellular distribution of endocytosed molecules, and of the class II containing acidic antigen processing compartments. This response of dendritic cells to toxin is likely to play an important role in determining the adjuvant activity of these molecules. PMID:12615441

  1. Gastro-intestinal tract: The leading role of mucosal immunity.

    PubMed

    Steinert, Anna; Radulovic, Katarina; Niess, Jan

    2016-01-01

    An understanding of mucosal immunity is essential for the comprehension of intestinal diseases that are often caused by a complex interplay between host factors, environmental influences and the intestinal microbiota. Not only improvements in endoscopic techniques, but also advances in high throughput sequencing technologies, have expanded knowledge of how intestinal diseases develop. This review discusses how the host interacts with intestinal microbiota by the direct contact of host receptors with highly conserved structural motifs or molecules of microbes and also by microbe-derived metabolites (produced by the microbe during adaptation to the gut environment), such as short-chain fatty acids, vitamins, bile acids and amino acids. These metabolites are recognised by metabolite-sensing receptors expressed by immune cells to influence functions of macrophages, dendritic cells and T cells, such as migration, conversion and maintenance of regulatory T cells and regulation of proinflammatory cytokine production, which is essential for the maintenance of intestinal homeostasis and the development of intestinal diseases, such as inflammatory bowel diseases. First interventions in these complex interactions between microbe-derived metabolites and the host immune system for the treatment of gastrointestinal diseases, such as modification of the diet, treatment with antibiotics, application of probiotics and faecal microbiota transplantation, have been introduced into the clinic. Specific targeting of metabolite sensing receptors for the treatment of gastrointestinal diseases is in development. In future, precision medicine approaches that consider individual variability in genes, the microbiota, the environment and lifestyle will become increasingly important for the care of patients with gastrointestinal diseases. PMID:27045424

  2. Intranasal Immunization with DOTAP Cationic Liposomes Combined with DC-Cholesterol Induces Potent Antigen-Specific Mucosal and Systemic Immune Responses in Mice

    PubMed Central

    Iwase, Naoko; Takahashi, Saeko; Yamakita, Yuki; Iwata, Tomoko; Muto, Shoko; Sato, Emi; Takayama, Noriko; Honjo, Emi; Kiyono, Hiroshi; Kunisawa, Jun; Aramaki, Yukihiko

    2015-01-01

    Despite the progress made by modern medicine, infectious diseases remain one of the most important threats to human health. Vaccination against pathogens is one of the primary methods used to prevent and treat infectious diseases that cause illness and death. Vaccines administered by the mucosal route are potentially a promising strategy to combat infectious diseases since mucosal surfaces are a major route of entry for most pathogens. However, this route of vaccination is not widely used in the clinic due to the lack of a safe and effective mucosal adjuvant. Therefore, the development of safe and effective mucosal adjuvants is key to preventing infectious diseases by enabling the use of mucosal vaccines in the clinic. In this study, we show that intranasal administration of a cationic liposome composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 3β-[N-(N',N'-dimethylaminoethane)-carbamoyl] (DC-chol) (DOTAP/DC-chol liposome) has a potent mucosal adjuvant effect in mice. Intranasal vaccination with ovalbumin (OVA) in combination with DOTAP/DC-chol liposomes induced the production of OVA-specific IgA in nasal tissues and increased serum IgG1 levels, suggesting that the cationic DOTAP/DC-chol liposome leads to the induction of a Th2 immune response. Additionally, nasal-associated lymphoid tissue and splenocytes from mice treated with OVA plus DOTAP/DC-chol liposome showed high levels of IL–4 expression. DOTAP/DC-chol liposomes also enhanced OVA uptake by CD11c+ dendritic cells in nasal-associated lymphoid tissue. These data demonstrate that DOTAP/DC-chol liposomes elicit immune responses via an antigen-specific Th2 reaction. These results suggest that cationic liposomes merit further development as a mucosal adjuvant for vaccination against infectious diseases. PMID:26440657

  3. [Airway equipment and its maintenance for a non difficult adult airway management (endotracheal intubation and its alternative: face mask, laryngeal mask airway, laryngeal tube)].

    PubMed

    Francon, D; Estèbe, J P; Ecoffey, C

    2003-08-01

    The airway equipment for a non difficult adult airway management are described: endotracheal tubes with a specific discussion on how to inflate the balloon, laryngoscopes and blades, stylets and intubation guides, oral airways, face masks, laryngeal mask airways and laryngeal tubes. Cleaning and disinfections with the maintenance are also discussed for each type of airway management. PMID:12943860

  4. Management of Mucositis During Chemotherapy: From Pathophysiology to Pragmatic Therapeutics.

    PubMed

    Van Sebille, Ysabella Z A; Stansborough, Romany; Wardill, Hannah R; Bateman, Emma; Gibson, Rachel J; Keefe, Dorothy M

    2015-11-01

    Chemotherapy-induced mucositis is a common condition caused by the breakdown of the mucosal barrier. Symptoms can include pain, vomiting and diarrhoea, which can often necessitate chemotherapy treatment breaks or dose reductions, thus compromising survival outcomes. Despite the significant impact of mucositis, there are currently limited clinically effective pharmacological therapies for the pathology. New emerging areas of research have been proposed to play key roles in the development of mucositis, providing rationale for potential new therapeutics for the prevention, treatment or management of chemotherapy-induced mucositis. This review aims to address these new areas of research and to comment on the therapeutics arising from them. PMID:26384312

  5. Jaw thrust can deteriorate upper airway patency.

    PubMed

    von Ungern-Sternberg, B S; Erb, T O; Frei, F J

    2005-04-01

    Upper airway obstruction is a frequent problem in spontaneously breathing children undergoing anesthesia or sedation procedures. Failure to maintain a patent airway can rapidly result in severe hypoxemia, bradycardia, or asystole, as the oxygen demand of children is high and oxygen reserve is low. We present two children with cervical masses in whom upper airway obstruction exaggerated while the jaw thrust maneuver was applied during induction of anesthesia. This deterioration in airway patency was probably caused by medial displacement of the lateral tumorous tissues which narrowed the pharyngeal airway. PMID:15777312

  6. Microtubule nucleation and organization in dendrites.

    PubMed

    Delandre, Caroline; Amikura, Reiko; Moore, Adrian W

    2016-07-01

    Dendrite branching is an essential process for building complex nervous systems. It determines the number, distribution and integration of inputs into a neuron, and is regulated to create the diverse dendrite arbor branching patterns characteristic of different neuron types. The microtubule cytoskeleton is critical to provide structure and exert force during dendrite branching. It also supports the functional requirements of dendrites, reflected by differential microtubule architectural organization between neuron types, illustrated here for sensory neurons. Both anterograde and retrograde microtubule polymerization occur within growing dendrites, and recent studies indicate that branching is enhanced by anterograde microtubule polymerization events in nascent branches. The polarities of microtubule polymerization events are regulated by the position and orientation of microtubule nucleation events in the dendrite arbor. Golgi outposts are a primary microtubule nucleation center in dendrites and share common nucleation machinery with the centrosome. In addition, pre-existing dendrite microtubules may act as nucleation sites. We discuss how balancing the activities of distinct nucleation machineries within the growing dendrite can alter microtubule polymerization polarity and dendrite branching, and how regulating this balance can generate neuron type-specific morphologies. PMID:27097122

  7. Inhalation of stable dust extract prevents allergen induced airway inflammation and hyperresponsiveness

    PubMed Central

    Peters, M; Kauth, M; Schwarze, J; Körner‐Rettberg, C; Riedler, J; Nowak, D; Braun‐Fahrländer, C; von Mutius, E; Bufe, A; Holst, O

    2006-01-01

    Background Recent epidemiological studies have shown that growing up on a traditional farm provides protection from the development of allergic disorders such as hay fever and allergic asthma. We present experimental evidence that substances providing protection from the development of allergic diseases can be extracted from dust collected in stables of animal farms. Methods Stable dust was collected from 30 randomly selected farms located in rural regions of the Alps (Austria, Germany and Switzerland). The dust was homogenised with glass beads and extracted with physiological sodium chloride solution. This extract was used to modulate immune response in a well established mouse model of allergic asthma. Results Treatment of mice by inhalation of stable dust extract during sensitisation to ovalbumin inhibited the development of airway hyperresponsiveness and airway eosinophilia upon challenge, as well as the production of interleukin 5 by splenocytes and of antigen specific IgG1 and IgE. Dust extract also suppressed the generation of human dendritic cells in vitro. The biological activity of the dust extract was not exclusively mediated by lipopolysaccharide. Conclusions Stable dust from animal farms contains strong immune modulating substances. These substances can interfere with the development of both cellular and humoral immunity against allergens, thus suppressing allergen sensitisation, airway inflammation, and airway hyperresponsiveness in a murine model of allergic asthma. PMID:16244088

  8. Secretory IgA induces tolerogenic dendritic cells through SIGNR1 dampening autoimmunity in mice.

    PubMed

    Diana, Julien; Moura, Ivan C; Vaugier, Céline; Gestin, Aurélie; Tissandie, Emilie; Beaudoin, Lucie; Corthésy, Blaise; Hocini, Hakim; Lehuen, Agnès; Monteiro, Renato C

    2013-09-01

    IgA plays ambivalent roles in the immune system. The balance between inhibitory and activating responses relies on the multimerization status of IgA and interaction with their cognate receptors. In mucosal sites, secretory IgA (SIgA) protects the host through immune-exclusion mechanisms, but its function in the bloodstream remains unknown. Using bone marrow-derived dendritic cells, we found that both human and mouse SIgA induce tolerogenic dendritic cells (DCs) following binding to specific ICAM-3 grabbing nonintegrin receptor 1. This interaction was dependent on Ca(2+) and mannose residues. SIgA-primed DCs (SIgA-DCs) are resistant to TLR-dependent maturation. Although SIgA-DCs fail to induce efficient proliferation and Th1 differentiation of naive responder T cells, they generate the expansion of regulatory T cells through IL-10 production. SIgA-DCs are highly potent in inhibiting autoimmune responses in mouse models of type 1 diabetes and multiple sclerosis. This discovery may offer new insights about mucosal-derived DC immunoregulation through SIgA opening new therapeutic approaches to autoimmune diseases. PMID:23926325

  9. Retinoic acid-primed human dendritic cells inhibit Th9 cells and induce Th1/Th17 cell differentiation.

    PubMed

    Rampal, Ritika; Awasthi, Amit; Ahuja, Vineet

    2016-07-01

    All-trans-retinoic acid plays a central role in mucosal immunity, where it promotes its synthesis by up-regulating CD103 expression on dendritic cells, induces gut tropic (α4β7(+) and CCR9(+)) T cells, and inhibits Th1/Th17 differentiation. Recently, murine studies have highlighted the proinflammatory role of retinoic acid in maintaining inflammation under a variety of pathologic conditions. However, as a result of limited human data, we investigated the effect of retinoic acid on human dendritic cells and CD4(+) T cell responses in the presence of polarizing (Th1/Th9/Th17) and inflammatory (LPS-induced dendritic cells) conditions. We report a novel role of retinoic acid in an inflammatory setup, where retinoic acid-primed dendritic cells (retinoic acid-monocyte-derived dendritic cells) up-regulated CCR9(+)T cells, which were observed to express high levels of IFN-γ in the presence of Th1/Th17 conditions. Retinoic acid-monocyte-derived dendritic cells, under Th17 conditions, also favored the induction of IL-17(+) T cells. Furthermore, in the presence of TGF-β1 and IL-4, retinoic acid-monocyte-derived dendritic cells inhibited IL-9 and induced IFN-γ expression on T cells. Experiments with naïve CD4(+) T cells, activated in the presence of Th1/Th17 conditions and absence of DCs, indicated that retinoic acid inhibited IFN-γ and IL-17 expression on T cells. These data revealed that in the face of inflammatory conditions, retinoic acid, in contrast from its anti-inflammatory role, could maintain or aggravate the intestinal inflammation. PMID:26980802

  10. Method of inhibiting dislocation generation in silicon dendritic webs

    DOEpatents

    Spitznagel, John A.; Seidensticker, Raymond G.; McHugh, James P.

    1990-11-20

    A method of tailoring the heat balance of the outer edge of the dendrites adjacent the meniscus to produce thinner, smoother dendrites, which have substantially less dislocation sources contiguous with the dendrites, by changing the view factor to reduce radiation cooling or by irradiating the dendrites with light from a quartz lamp or a laser to raise the temperature of the dendrites.

  11. Systems-level airway models of bronchoconstriction.

    PubMed

    Donovan, Graham M

    2016-09-01

    Understanding lung and airway behavior presents a number of challenges, both experimental and theoretical, but the potential rewards are great in terms of both potential treatments for disease and interesting biophysical phenomena. This presents an opportunity for modeling to contribute to greater understanding, and here, we focus on modeling efforts that work toward understanding the behavior of airways in vivo, with an emphasis on asthma. We look particularly at those models that address not just isolated airways but many of the important ways in which airways are coupled both with each other and with other structures. This includes both interesting phenomena involving the airways and the layer of airway smooth muscle that surrounds them, and also the emergence of spatial ventilation patterns via dynamic airway interaction. WIREs Syst Biol Med 2016, 8:459-467. doi: 10.1002/wsbm.1349 For further resources related to this article, please visit the WIREs website. PMID:27348217

  12. The Importance of Airway Management in Trauma

    PubMed Central

    Jacobs, Lenworth M.

    1988-01-01

    The airway is the most important priority in the management of the severely injured patient. It is essential to open and clear the airway to allow free access of air to the distal endobronchial tree. Manual methods of opening the airway are described. Numerous methods for establishing definitive control of the airway as well as the associated devices currently available to maintain control are described. Once the airway is maintained, it is important to ensure adequate oxygenation and ventilation through the airway. Modern portable devices that monitor the carbon dioxide in the expired air at the end of each breath are currently available. These devices allow the physician to verify the position of the tube in the airway as well as to continuously monitor the efficacy of ventilation. PMID:3073226

  13. Sarcoidosis of the upper and lower airways.

    PubMed

    Morgenthau, Adam S; Teirstein, Alvin S

    2011-12-01

    Sarcoidosis is a systemic granulomatous disease of undetermined etiology characterized by a variable clinical presentation and disease course. Although clinical granulomatous inflammation may occur within any organ system, more than 90% of sarcoidosis patients have lung disease. Sarcoidosis is considered an interstitial lung disease that is frequently characterized by restrictive physiologic dysfunction on pulmonary function tests. However, sarcoidosis also involves the airways (large and small), causing obstructive airways disease. It is one of a few interstitial lung diseases that affects the entire length of the respiratory tract - from the nose to the terminal bronchioles - and causes a broad spectrum of airways dysfunction. This article examines airway dysfunction in sarcoidosis. The anatomical structure of the airways is the organizational framework for our discussion. We discuss sarcoidosis involving the nose, sinuses, nasal passages, larynx, trachea, bronchi and small airways. Common complications of airways disease, such as, atelectasis, fibrosis, bullous leions, bronchiectasis, cavitary lesions and mycetomas, are also reviewed. PMID:22082167

  14. Mucosal immunity: its role in defense and allergy.

    PubMed

    Tlaskalová-Hogenová, Helena; Tucková, Ludmila; Lodinová-Zádniková, Rája; Stepánková, Renata; Cukrowska, Bozena; Funda, David P; Striz, Ilja; Kozáková, Hana; Trebichavský, Ilja; Sokol, Dan; Reháková, Zuzana; Sinkora, Jirí; Fundová, Petra; Horáková, Dana; Jelínková, Lenka; Sánchez, Daniel

    2002-06-01

    The interface between the organism and the outside world, which is the site of exchange of nutrients, export of products and waste components, must be selectively permeable and at the same time, it must constitute a barrier equipped with local defense mechanisms against environmental threats (e.g. invading pathogens). The boundaries with the environment (mucosal and skin surfaces) are therefore covered with special epithelial layers which support this barrier function. The immune system, associated with mucosal surfaces covering the largest area of the body (200-300 m(2)), evolved mechanisms discriminating between harmless antigens and commensal microorganisms and dangerous pathogens. The innate mucosal immune system, represented by epithelial and other mucosal cells and their products, is able to recognize the conserved pathogenic patterns on microbes by pattern recognition receptors such as Toll-like receptors, CD14 and others. As documented in experimental gnotobiotic models, highly protective colonization of mucosal surfaces by commensals has an important stimulatory effect on postnatal development of immune responses, metabolic processes (e.g. nutrition) and other host activities; these local and systemic immune responses are later replaced by inhibition, i.e. by induction of mucosal (oral) tolerance. Characteristic features of mucosal immunity distinguishing it from systemic immunity are: strongly developed mechanisms of innate defense, the existence of characteristic populations of unique types of lymphocytes, colonization of the mucosal and exocrine glands by cells originating from the mucosal organized tissues ('common mucosal system') and preferential induction of inhibition of the responses to nondangerous antigens (mucosal tolerance). Many chronic diseases, including allergy, may occur as a result of genetically based or environmentally induced changes in mechanisms regulating mucosal immunity and tolerance; this leads to impaired mucosal barrier

  15. Lipidome and Transcriptome Profiling of Pneumolysin Intoxication Identifies Networks Involved in Statin-Conferred Protection of Airway Epithelial Cells

    PubMed Central

    Statt, Sarah; Ruan, Jhen-Wei; Huang, Chih-Ting; Wu, Reen; Kao, Cheng-Yuan

    2015-01-01

    Pneumonia remains one of the leading causes of death in both adults and children worldwide. Despite the adoption of a wide variety of therapeutics, the mortality from community-acquired pneumonia has remained relatively constant. Although viral and fungal acute airway infections can result in pneumonia, bacteria are the most common cause of community-acquired pneumonia, with Streptococcus pneumoniae isolated in nearly 50% of cases. Pneumolysin is a cholesterol-dependent cytolysin or pore-forming toxin produced by Streptococcus pneumonia and has been shown to play a critical role in bacterial pathogenesis. Airway epithelium is the initial site of many bacterial contacts and its barrier and mucosal immunity functions are central to infectious lung diseases. In our studies, we have shown that the prior exposure to statins confers significant resistance of airway epithelial cells to the cytotoxicity of pneumolysin. We decided to take this study one step further, assessing changes in both the transcriptome and lipidome of human airway epithelial cells exposed to toxin, statin or both. Our current work provides the first global view in human airway epithelial cells of both the transcriptome and the lipid interactions that result in cellular protection from pneumolysin. PMID:26023727

  16. Controlled analysis of nanoparticle charge on mucosal and systemic antibody responses following pulmonary immunization.

    PubMed

    Fromen, Catherine A; Robbins, Gregory R; Shen, Tammy W; Kai, Marc P; Ting, Jenny P Y; DeSimone, Joseph M

    2015-01-13

    Pulmonary immunization enhances local humoral and cell-mediated mucosal protection, which are critical for vaccination against lung-specific pathogens such as influenza or tuberculosis. A variety of nanoparticle (NP) formulations have been tested preclinically for pulmonary vaccine development, yet the role of NP surface charge on downstream immune responses remains poorly understood. We used the Particle Replication in Non-Wetting Templates (PRINT) process to synthesize hydrogel NPs that varied only in surface charge and otherwise maintained constant size, shape, and antigen loading. Pulmonary immunization with ovalbumin (OVA)-conjugated cationic NPs led to enhanced systemic and lung antibody titers compared with anionic NPs. Increased antibody production correlated with robust germinal center B-cell expansion and increased activated CD4(+) T-cell populations in lung draining lymph nodes. Ex vivo treatment of dendritic cells (DCs) with OVA-conjugated cationic NPs induced robust antigen-specific T-cell proliferation with ∼ 100-fold more potency than soluble OVA alone. Enhanced T-cell expansion correlated with increased expression of surface MHCII, T-cell coactivating receptors, and key cytokines/chemokine expression by DCs treated with cationic NPs, which were not observed with anionic NPs or soluble OVA. Together, these studies highlight the importance of NP surface charge when designing pulmonary vaccines, and our findings support the notion that cationic NP platforms engender potent humoral and mucosal immune responses. PMID:25548169

  17. Perturbations of mucosal homeostasis through interactions of intestinal microbes with myeloid cells.

    PubMed

    Schey, Regina; Danzer, Claudia; Mattner, Jochen

    2015-02-01

    Mucosal surfaces represent the largest areas of interactions of the host with its environment. Subsequently, the mucosal immune system has evolved complex strategies to maintain the integrity of the host by inducing protective immune responses against pathogenic and tolerance against dietary and commensal microbial antigens within the broad range of molecules the intestinal epithelium is exposed to. Among many other specialized cell subsets, myeloid cell populations - due to their strategic location in the subepithelial lamina propria - are the first ones to scavenge and process these intestinal antigens and to send consecutive signals to other immune and non-immune cell subsets. Thus, myeloid cell populations represent attractive targets for clinical intervention in chronic inflammatory bowel diseases (IBDs) such as ulcerative colitis (UC) and Crohn's disease (CD) as they initiate and modulate inflammatory or regulatory immune response and shape the intestinal T cell pool. Here, we discuss the interactions of the intestinal microbiota with dendritic cell and macrophage populations and review in this context the literature on four promising candidate molecules that are critical for the induction and maintenance of intestinal homeostasis on the one hand, but also for the initiation and propagation of chronic intestinal inflammation on the other. PMID:25466587

  18. Perturbations of mucosal homeostasis through interactions of intestinal microbes with myeloid cells

    PubMed Central

    Schey, Regina; Danzer, Claudia; Mattner, Jochen

    2014-01-01

    Mucosal surfaces represent the largest areas of interactions of the host with its environment. Subsequently, the mucosal immune system has evolved complex strategies to maintain the integrity of the host by inducing protective immune responses against pathogenic and tolerance against dietary and commensal microbial antigens within the broad range of molecules the intestinal epithelium is exposed to. Among many other specialized cell subsets, myeloid cell populations - due to their strategic location in the subepithelial lamina propria - are the first ones to scavenge and process these intestinal antigens and to send consecutive signals to other immune and non-immune cell subsets. Thus, myeloid cell populations represent attractive targets for clinical intervention in chronic inflammatory bowel diseases (IBDs) such as ulcerative colitis (UC) and Crohn's disease (CD) as they initiate and modulate inflammatory or regulatory immune response and shape the intestinal T cell pool. Here, we discuss the interactions of the intestinal microbiota with dendritic cell and macrophage populations and review in this context the literature on four promising candidate molecules that are critical for the induction and maintenance of intestinal homeostasis on the one hand, but also for the initiation and propagation of chronic intestinal inflammation on the other. PMID:25466587

  19. Thermosolutal convection during dendritic solidification

    NASA Technical Reports Server (NTRS)

    Heinrich, J. C.; Nandapurkar, P.; Poirier, D. R.; Felicelli, S.

    1989-01-01

    This paper presents a mathematical model for directional solidification of a binary alloy including a dendritic region underlying an all-liquid region. It is assumed initially that there exists a nonconvecting state with planar isotherms and isoconcentrates solidifying at a constant velocity. The stability of this system has been analyzed and nonlinear calculations are performed that show the effect of convection in the solidification process when the system is unstable. Results of calculations for various cases defined by the initial temperature gradient at the dendrite tips and varying strength of the gravitational field are presented for systems involving lead-tin alloys. The results show that the systems are stable for a gravitational constant of 0.0001 g(0) and that convection can be suppressed by appropriate choice of the container's size for higher values of the gravitational constant. It is also concluded that for the lead-tin systems considered, convection in the mushy zone is not significant below the upper 20 percent of the dendritic zone, if al all.

  20. Annealing kinetics of electrodeposited lithium dendrites.

    PubMed

    Aryanfar, Asghar; Cheng, Tao; Colussi, Agustin J; Merinov, Boris V; Goddard, William A; Hoffmann, Michael R

    2015-10-01

    The densifying kinetics of lithium dendrites is characterized with effective activation energy of Ea ≈ 6 - 7 kcal mol(-1) in our experiments and molecular dynamics computations. We show that heating lithium dendrites for 55 °C reduces the representative dendrites length λ¯(T,t) up to 36%. NVT reactive force field simulations on three-dimensional glass phase dendrites produced by our coarse grained Monte Carlo method reveal that for any given initial dendrite morphology, there is a unique stable atomic arrangement for a certain range of temperature, combined with rapid morphological transition (∼10 ps) within quasi-stable states involving concurrent bulk and surface diffusions. Our results are useful for predicting the inherent structural characteristics of lithium dendrites such as dominant coordination number. PMID:26450322

  1. Dendritic Ion Channel Trafficking and Plasticity

    PubMed Central

    Shah, Mala M.; Hammond, Rebecca S.; Hoffman, Dax

    2010-01-01

    Dendrites, the elaborate processes emerging from neuronal cell bodies, receive most excitatory synaptic inputs. Voltage- and calcium-gated ion channels are abundant in dendrites and modify the shape, propagation and integration of synaptic signals. These ion channels also determine intrinsic dendritic excitability and are therfore important for the induction and manifestation of Hebbian and non-Hebbian plasticity. Revealingly, dendritic channels have distinct expression patterns and biophysical properties from those present in other neuronal compartments. Recent evidence suggests that dendritic ion channels are locally regulated, perhaps contributing to different forms of plasticity. In this review, we will discuss the implications of regulating dendritic ion channel function and trafficking in the context of plasticity and information processing. PMID:20363038

  2. Transcranial magnetic stimulation (TMS) inhibits cortical dendrites.

    PubMed

    Murphy, Sean C; Palmer, Lucy M; Nyffeler, Thomas; Müri, René M; Larkum, Matthew E

    2016-01-01

    One of the leading approaches to non-invasively treat a variety of brain disorders is transcranial magnetic stimulation (TMS). However, despite its clinical prevalence, very little is known about the action of TMS at the cellular level let alone what effect it might have at the subcellular level (e.g. dendrites). Here, we examine the effect of single-pulse TMS on dendritic activity in layer 5 pyramidal neurons of the somatosensory cortex using an optical fiber imaging approach. We find that TMS causes GABAB-mediated inhibition of sensory-evoked dendritic Ca(2+) activity. We conclude that TMS directly activates fibers within the upper cortical layers that leads to the activation of dendrite-targeting inhibitory neurons which in turn suppress dendritic Ca(2+) activity. This result implies a specificity of TMS at the dendritic level that could in principle be exploited for investigating these structures non-invasively. PMID:26988796

  3. Mucosal fluid evaporation is not the method of heat dissipation from fourth-degree laryngopharyngeal burns

    PubMed Central

    Wan, Jiang-bo; Zhang, Guo-an; Qiu, Yu-xuan; Wen, Chun-quan; Fu, Tai-ran

    2016-01-01

    This study was designed to explore whether mucosal fluid evaporation represents a method of heat dissipation from thermal air inhalation injury and to assess laryngopharyngeal tissue damage according to heat quantity changes of dry air and vapour. Fifteen adult male beagles were divided into five groups to inhale heated air or vapour for 10 min as follows: control group (ordinary air), group I (91–110 °C heated air), group II (148–175 °C heated air), group III (209–227 °C heated air), and group IV (96 °C saturated vapour). The heat quantity changes of the dry air and vapour were calculated via thermodynamic formulas. The macroscopic and histological features of the laryngopharynxes were examined and assessed by various tissue damage grading systems. Group IV exhibited the most serious laryngopharyngeal damage, including cilia exfoliation, submucosal thrombosis, glandular atrophy, and chondrocyte degeneration, which is indicative of fourth-degree injury. The quality, heat quantity, and proportional reduction of heat quantity of vapour in group IV were all higher than those in the other groups. Furthermore, we found that mucosal fluid evaporation is not the method of heat dissipation from thermal air inhalation injury used by the airways. Laryngopharyngeal tissue damage depends chiefly on the heat quantity of vapour in the air. PMID:27349685

  4. TLR-Dependent Human Mucosal Epithelial Cell Responses to Microbial Pathogens

    PubMed Central

    McClure, Ryan; Massari, Paola

    2014-01-01

    Toll-like receptor (TLR) signaling represents one of the best studied pathways to implement defense mechanisms against invading microbes in human being as well as in animals. TLRs respond to specific microbial ligands and to danger signals produced by the host during infection, and initiate downstream cascades that activate both innate and adaptive immunity. TLRs are expressed by professional immune cells and by the large majority of non-hematopoietic cells, including epithelial cells. In epithelial tissues, TLR functions are particularly important because these sites are constantly exposed to microorganisms, due to their location at the host interface with the environment. While at these sites specific defense mechanisms and inflammatory responses are initiated via TLR signaling against pathogens, suppression or lack of TLR activation is also observed in response to the commensal microbiota. The mechanisms by which TLR signaling is regulated in mucosal epithelial cells include differential expression and levels of TLRs (and their signaling partners), their cellular localization and positioning within the tissue in a fashion that favors responses to pathogens while dampening responses to commensals and maintaining tissue homeostasis in physiologic conditions. In this review, the expression and activation of TLRs in mucosal epithelial cells of several sites of the human body are examined. Specifically, the oral cavity, the ear canal and eye, the airways, the gut, and the reproductive tract are discussed, along with how site-specific host defense mechanisms are implemented via TLR signaling. PMID:25161655

  5. Mucosal fluid evaporation is not the method of heat dissipation from fourth-degree laryngopharyngeal burns.

    PubMed

    Wan, Jiang-Bo; Zhang, Guo-An; Qiu, Yu-Xuan; Wen, Chun-Quan; Fu, Tai-Ran

    2016-01-01

    This study was designed to explore whether mucosal fluid evaporation represents a method of heat dissipation from thermal air inhalation injury and to assess laryngopharyngeal tissue damage according to heat quantity changes of dry air and vapour. Fifteen adult male beagles were divided into five groups to inhale heated air or vapour for 10 min as follows: control group (ordinary air), group I (91-110 °C heated air), group II (148-175 °C heated air), group III (209-227 °C heated air), and group IV (96 °C saturated vapour). The heat quantity changes of the dry air and vapour were calculated via thermodynamic formulas. The macroscopic and histological features of the laryngopharynxes were examined and assessed by various tissue damage grading systems. Group IV exhibited the most serious laryngopharyngeal damage, including cilia exfoliation, submucosal thrombosis, glandular atrophy, and chondrocyte degeneration, which is indicative of fourth-degree injury. The quality, heat quantity, and proportional reduction of heat quantity of vapour in group IV were all higher than those in the other groups. Furthermore, we found that mucosal fluid evaporation is not the method of heat dissipation from thermal air inhalation injury used by the airways. Laryngopharyngeal tissue damage depends chiefly on the heat quantity of vapour in the air. PMID:27349685

  6. Noninvasive clearance of airway secretions.

    PubMed

    Hardy, K A; Anderson, B D

    1996-06-01

    Airway clearance techniques are indicated for specific diseases that have known clearance abnormalities (Table 2). Murray and others have commented that such techniques are required only for patients with a daily sputum production of greater than 30 mL. The authors have observed that patients with diseases known to cause clearance abnormalities can have sputum clearance with some techniques, such as positive expiratory pressure, autogenic drainage, and active cycle of breathing techniques, when PDPV has not been effective. Hasani et al has shown that use of the forced exhalatory technique in patients with nonproductive cough still resulted in movement of secretions proximally from all regions of the lung in patients with airway obstruction. It is therefore reasonable to consider airway clearance techniques for any patient who has a disease known to alter mucous clearance, including CF, dyskinetic cilia syndromes, and bronchiectasis from any cause. Patients with atelectasis from mucous plugs and hypersecretory states, such as asthma and chronic bronchitis, patients with pain secondary to surgical procedures, and patients with neuromuscular disease, weak cough, and abnormal patency of the airway may also benefit from the application of airway clearance techniques. Infants and children up to 3 years of age with airway clearance problems need to be treated with PDPV. Manual percussion with hands alone or a flexible face mask or cup and small mechanical vibrator/percussors, such as the ultrasonic devices, can be used. The intrapulmonary percussive ventilator shows growing promise in this area. The high-frequency oscillator is not supplied with vests of appropriate sizes for tiny babies and has not been studied in this group. Young patients with neuromuscular disease may require assisted ventilation and airway oscillations can be applied. CPAP alone has been shown to improve achievable flow rates that will increase air-liquid interactions for patients with these diseases

  7. Isothermal dendritic growth - A low gravity experiment

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Hahn, R. C.; Lograsso, T. A.; Rubinstein, E. R.; Winsa, E.

    1987-01-01

    The Isothermal Dendritic Growth Experiment has been designed to test dendritic growth theory at low undercoolings, under microgravity conditions in the Space Shuttle Cargo Bay-borne Material Science Laboratory. The experiment will be essentially autonomous, although limited in-flight interaction through a computer interface is planned. A crystal growth chamber able to yield oriented single-crystal dendritic growth will be incorporated; 'seeding' the chamber with a crystal of the requisite orientation will not in itself meet this requirement.

  8. Mucosal malignant melanoma of the maxillary sinus.

    PubMed

    Norhafizah, M; Mustafa, W M B W; Sabariah, A R; Shiran, M S; Pathmanathan, R

    2010-09-01

    Mucosal malignant melanoma (MMM) is an aggressive tumour occurring in the upper respiratory tract. It is rare compared to malignant melanoma of the skin. We report a case of a 53-year-old man with left paranasal swelling. A biopsy showed high-grade spindle cell tumour. Subsequently a subtotal maxillectomy was performed. Histopathological examination revealed a hypercellular tumour composed of mixed spindle and epitheloid cells with very occasional intracytoplasmic melanin pigment. The malignant cells were immunopositive for vimentin, S-100 protein and HMB-45. It was diagnosed as mucosal malignant melanoma (MMM). This article illustrates a rare case of MMM where the diagnosis may be missed or delayed without proper histopathological examination that include meticulous search for melanin pigment and appropriate immunohistochemical stains to confirm the diagnosis. Malignant melanoma can mimic many other types of high-grade malignancy and should be considered as a differential diagnosis in many of these instances. PMID:21939172

  9. Probiotics as Antifungals in Mucosal Candidiasis.

    PubMed

    Matsubara, Victor H; Bandara, H M H N; Mayer, Marcia P A; Samaranayake, Lakshman P

    2016-05-01

    Candidais an opportunistic pathogen that causes mucosal and deep systemic candidiasis. The emergence of drug resistance and the side effects of currently available antifungals have restricted their use as long-term prophylactic agents for candidal infections. Given this scenario, probiotics have been suggested as a useful alternative for the management of candidiasis. We analyzed the available data on the efficacy of probiotics in candidal colonization of host surfaces. A number of well-controlled studies indicate that probiotics, particularly lactobacilli, suppressCandidagrowth and biofilm development in vitro.A few clinical trials have also shown the beneficial effects of probiotics in reducing oral, vaginal, and enteric colonization byCandida; alleviation of clinical signs and symptoms; and, in some cases, reducing the incidence of invasive fungal infection in critically ill patients. Probiotics may serve in the future as a worthy ally in the battle against chronic mucosal candidal infections. PMID:26826375

  10. Perception of better nasal patency correlates with increases in mucosal cooling after surgery for nasal obstruction

    PubMed Central

    Sullivan, Corbin D.; Garcia, Guilherme J. M.; Frank, Dennis O.; Kimbell, Julia S.; Rhee, John S.

    2014-01-01

    Objectives 1. Quantify mucosal cooling (i.e., heat loss) spatially in the nasal passages of nasal airway obstruction (NAO) patients before and after surgery using computational fluid dynamics (CFD). 2. Correlate mucosal cooling with patient-reported symptoms, as measured by the Nasal Obstruction Symptom Evaluation (NOSE) and a visual analog scale (VAS) for sensation of nasal airflow. Study Design Prospective Setting Academic tertiary medical center. Subjects and Methods Computed tomography (CT) scans and NOSE and VAS surveys were obtained from 10 patients before and after surgery to relieve NAO. Three-dimensional models of each patient’s nasal anatomy were used to run steady-state CFD simulations of airflow and heat transfer during inspiration. Heat loss across the nasal vestibule and the entire nasal cavity, and the surface area of mucosa exposed to heat fluxes > 50 W/m2 were compared pre- and post-operatively. Results After surgery, heat loss increased significantly on the pre-operative most obstructed side (p values < 0.0002). A larger surface area of nasal mucosa was exposed to heat fluxes > 50 W/m2 after surgery. The best correlation between patient-reported and CFD measures of nasal patency was obtained for NOSE against surface area in which heat fluxes > 50 W/m2 (Pearson r = −0.76). Conclusion A significant post-operative increase in mucosal cooling correlates well with patients’ perception of better nasal patency after NAO surgery. CFD-derived heat fluxes may prove to be a valuable predictor of success in NAO surgery. PMID:24154749

  11. Epithelial barrier function: at the frontline of asthma immunology and allergic airway inflammation

    PubMed Central

    Georas, Steve N.; Rezaee, Fariba

    2014-01-01

    Airway epithelial cells form a barrier to the outside world, and are at the frontline of mucosal immunity. Epithelial apical junctional complexes are multi-protein subunits that promote cell-cell adhesion and barrier integrity. Recent studies in the skin and GI tract suggest that disruption of cell-cell junctions is required to initiate epithelial immune responses, but how this applies to mucosal immunity in the lung is not clear. Increasing evidence indicates that defective epithelial barrier function is a feature of airway inflammation in asthma. One challenge in this area is that barrier function and junctional integrity are difficult to study in the intact lung, but innovative approaches should provide new knowledge in this area in the near future. In this article, we review the structure and function of epithelial apical junctional complexes, emphasizing how regulation of the epithelial barrier impacts innate and adaptive immunity. We discuss why defective epithelial barrier function may be linked to Th2 polarization in asthma, and propose a rheostat model of barrier dysfunction that implicates the size of inhaled allergen particles as an important factor influencing adaptive immunity. PMID:25085341

  12. Absence of inflammatory response from upper airway epithelial cells after X irradiation.

    PubMed

    Reiter, R; Deutschle, T; Wiegel, T; Riechelmann, H; Bartkowiak, D

    2009-03-01

    Radiotherapy of head and neck tumors causes adverse reactions in normal tissue, especially mucositis. The dose- and time-dependent response of upper airway cells to X radiation should be analyzed in terms of the pro-inflammatory potential. Immortalized BEAS-2B lung epithelial cells were treated with 2, 5 and 8 Gy. Out of 1232 genes, those that were transcribed differentially after 2, 6 and 24 h were assigned to biological themes according to the Gene Ontology Consortium. Enrichment of differentially regulated gene clusters was determined with GOTree ( http://bioinfo.vanderbilt.edu/gotm ). Eleven cytokines were measured in culture supernatants. The cell cycle response up to 24 h and induction of apoptosis up to 4 days after exposure were determined by flow cytometry. A significant dose- and time-dependent gene activation was observed for the categories response to DNA damage, oxidative stress, cell cycle arrest and cell death/apoptosis but not for immune/inflammatory response. This correlated with functional G(2) arrest and apoptosis. Pro-inflammatory cytokines accumulated in supernatants of control cells but not of X-irradiated cells. The complex gene expression pattern of X-irradiated airway epithelial cells is accompanied by cell cycle arrest and induction of apoptosis. In vivo, this may impair the epithelial barrier. mRNA and protein expression suggest at most an indirect contribution of epithelial cells to early radiogenic mucositis. PMID:19267554

  13. Cough-induced Tracheobronchial Mucosal Bleeding.

    PubMed

    Hira, Harmanjit Singh

    2011-01-01

    A 56-year-old man presented with moderate hemoptysis. It was preceded by a severe bout of cough. Flexible bronchoscopy showed diffuse tracheobronchial mucosal petechiae and bleeding. The patient was not suffering with any coagulopathies. He did not receive antiplatelet drugs. Hemoptysis resolved with cough suppressant. Subsequent bronchoscopy revealed the complete resolution of petechiae. The mechanism of bleeding after the bout of coughing is discussed. PMID:23169019

  14. Precipitation dendrites in turbulent pipe flows

    NASA Astrophysics Data System (ADS)

    Angheluta, Luiza; Hawkins, Christopher; Hammer, Øyvind; Jamtveit, Bjørn

    2013-04-01

    Surface precipitation in pipelines, as well as freezing in water pipes is of great concern in many industrial applications where scaling phenomena becomes a control problem of pipe-clogging or an efficiency reduction in transport. Flow blockage often occurs even when only a small fraction is deposited non-uniformly on the walls in the form of dendrites. Dendritic patterns are commonly encountered in surface precipitation from supersaturated solutions, e.g. calcite dendrites, as well as in solidification from undercooled liquids, e.g. freezing of water into ice dendrites. We explore the mathematical similarities between precipitation and freezing processes and, in particular, investigate the effect of fluid flow on the precipitation dendrites on pipe walls. We use a phase field approach to model surface growth coupled with a lattice Boltzmann method that simulates a channel flow at varying Reynolds number. The dendrites orientation and shape depend non-trivially on the ratio between advection and diffusion, i.e. the Peclet number, as well as the Reynolds number. Roughness induced vortices near growing dendrites at high flow rates further affect the branch splitting of dendrites. We show how the transport rate in a pipeline may depend on the different dendritic morphologies, and provide estimates for the flow conditions that correspond to most efficient transport regimes.

  15. Dendrite preventing separator for secondary lithium batteries

    NASA Technical Reports Server (NTRS)

    Shen, David H. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor); Halpert, Gerald (Inventor)

    1993-01-01

    Dendrites are prevented from shorting a secondary lithium battery by use of a first porous separator, such as porous polypropylene, adjacent to the lithium anode that is unreactive with lithium and a second porous fluoropolymer separator between the cathode and the first separator, such as polytetrafluoroethylene, that is reactive with lithium. As the tip of a lithium dendrite contacts the second separator, an exothermic reaction occurs locally between the lithium dendrite and the fluoropolymer separator. This results in the prevention of the dendrite propagation to the cathode.

  16. Dendrite preventing separator for secondary lithium batteries

    NASA Technical Reports Server (NTRS)

    Shen, David H. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor); Halpert, Gerald (Inventor)

    1995-01-01

    Dendrites are prevented from shorting a secondary lithium battery by use of a first porous separator such as porous polypropylene adjacent the lithium anode that is unreactive with lithium and a second porous fluoropolymer separator between the cathode and the first separator such as polytetrafluoroethylene that is reactive with lithium. As the tip of a lithium dendrite contacts the second separator, an exothermic reaction occurs locally between the lithium dendrite and the fluoropolymer separator. This results in the prevention of the dendrite propagation to the cathode.

  17. Hierarchical assembly of diphenylalanine into dendritic nanoarchitectures.

    PubMed

    Han, Tae Hee; Oh, Jun Kyun; Lee, Gyoung-Ja; Pyun, Su-Il; Kim, Sang Ouk

    2010-09-01

    Highly ordered, multi-dimensional dendritic nanoarchitectures were created via self-assembly of diphenylalanine from an acidic buffer solution. The self-similarity of dendritic structures was characterized by examining their fractal dimensions with the box-counting method. The fractal dimension was determined to be 1.7, which demonstrates the fractal dimension of structures generated by diffusion limited aggregation on a two-dimensional substrate surface. By confining the dendritic assembly of diphenylalanine within PDMS microchannels, the self-similar dendritic growth could be hierarchically directed to create linearly assembled nanoarchitectures. Our approach offers a novel pathway for creating and directing hierarchical nanoarchitecture from biomolecular assembly. PMID:20605423

  18. FOXO1 Deletion Reduces Dendritic Cell Function and Enhances Susceptibility to Periodontitis

    PubMed Central

    Xiao, Wenmei; Dong, Guangyu; Pacios, Sandra; Alnammary, Maher; Barger, Laura A.; Wang, Yu; Wu, Yingying; Graves, Dana T.

    2016-01-01

    The host response plays both protective and destructive roles in periodontitis. FOXO1 is a transcription factor that is activated in dendritic cells (DCs), but its function in vivo has not been examined. We investigated the role of FOXO1 in activating DCs in experimental (CD11c.Cre+.FOXO1L/L) compared with matched control mice (CD11c.Cre−.FOXO1L/L) in response to oral pathogens. Lineage-specific FOXO1 deletion reduced the recruitment of DCs to oral mucosal epithelium by approximately 40%. FOXO1 was needed for expression of genes that regulate migration, including integrins αν and β3 and matrix metalloproteinase-2. Ablation of FOXO1 in DCs significantly decreased IL-12 produced by DCs in mucosal surfaces. Moreover, FOXO1 deletion reduced migration of DCs to lymph nodes, reduced capacity of DCs to induce formation of plasma cells, and reduced production of bacteria-specific antibody. The decrease in DC function in the experimental mice led to increased susceptibility to periodontitis through a mechanism that involved a compensatory increase in osteoclastogenic factors, IL-1β, IL-17, and RANKL. Thus, we reveal a critical role for FOXO1 in DC recruitment to oral mucosal epithelium and activation of adaptive immunity induced by oral inoculation of bacteria. PMID:25794707

  19. Differential roles of migratory and resident DCs in T cell priming after mucosal or skin HSV-1 infection

    PubMed Central

    Lee, Heung Kyu; Zamora, Melodie; Linehan, Melissa M.; Iijima, Norifumi; Gonzalez, David; Haberman, Ann

    2009-01-01

    Although mucosal surfaces represent the main portal of entry for pathogens, the mechanism of antigen presentation by dendritic cells (DCs) that patrol various mucosal tissues remains unclear. Instead, much effort has focused on the understanding of initiation of immune responses generated against antigens delivered by injection. We examined the contributions of migratory versus lymph node–resident DC populations in antigen presentation to CD4 and CD8 T cells after needle injection, epicutaneous infection, or vaginal mucosal herpes simplex virus (HSV) 1 infection. We show that upon needle injection, HSV-1 became lymph-borne and was rapidly presented by lymph node–resident DCs to CD4 and CD8 T cells. In contrast, after vaginal HSV-1 infection, antigens were largely presented by tissue-derived migrant DCs with delayed kinetics. In addition, migrant DCs made more frequent contact with HSV-specific T cells after vaginal infection compared with epicutaneous infection. Thus, both migrant and resident DCs play an important role in priming CD8 and CD4 T cell responses, and their relative importance depends on the mode of infection in vivo. PMID:19153243

  20. A Bacterial Flagellin, Vibrio vulnificus FlaB, Has a Strong Mucosal Adjuvant Activity To Induce Protective Immunity

    PubMed Central

    Lee, Shee Eun; Kim, Soo Young; Jeong, Byung Chul; Kim, Young Ran; Bae, Soo Jang; Ahn, Ouk Seon; Lee, Je-Jung; Song, Ho-Chun; Kim, Jung Mogg; Choy, Hyon E.; Chung, Sun Sik; Kweon, Mi-Na; Rhee, Joon Haeng

    2006-01-01

    Flagellin, the structural component of flagellar filament in various locomotive bacteria, is the ligand for Toll-like receptor 5 (TLR5) of host cells. TLR stimulation by various pathogen-associated molecular patterns leads to activation of innate and subsequent adaptive immune responses. Therefore, TLR ligands are considered attractive adjuvant candidates in vaccine development. In this study, we show the highly potent mucosal adjuvant activity of a Vibrio vulnificus major flagellin (FlaB). Using an intranasal immunization mouse model, we observed that coadministration of the flagellin with tetanus toxoid (TT) induced significantly enhanced TT-specific immunoglobulin A (IgA) responses in both mucosal and systemic compartments and IgG responses in the systemic compartment. The mice immunized with TT plus FlaB were completely protected from systemic challenge with a 200× minimum lethal dose of tetanus toxin. Radiolabeled FlaB administered into the nasal cavity readily reached the cervical lymph nodes and systemic circulation. FlaB bound directly to human TLR5 expressed on cultured epithelial cells and consequently induced NF-κB and interleukin-8 activation. Intranasally administered FlaB colocalized with CD11c as patches in putative dendritic cells and caused an increase in the number of TLR5-expressing cells in cervical lymph nodes. These results indicate that flagellin would serve as an efficacious mucosal adjuvant inducing protective immune responses through TLR5 activation. PMID:16369026

  1. Studies on transcriptional regulation of the mucosal T-cell integrin αEβ7 (CD103)

    PubMed Central

    Robinson, Paul W; Green, Sally J; Carter, Christine; Coadwell, John; Kilshaw, Peter J

    2001-01-01

    Integrin αEβ7 is expressed almost exclusively by mucosal T cells and mucosal dendritic antigen-presenting cells (APCs) and is thought to be induced locally by transforming growth factor-β (TGF-β). In mice, mRNA for the αE subunit was found to be abundant in mucosal T cells but absent from other tissues. Exposure of a T-cell line to TGF-β strongly up-regulated αE mRNA levels within 30 min, and nuclear run-on experiments established that regulation occurred at the level of transcription. The organization of the human αE gene and a very closely linked novel gene, ELG, was determined. The αE promoter was tested in T cells and fibroblasts and functioned equally well in both cell types and did not confer TGF-β responsiveness. Regions of the promoter providing enhancer activity and phorbol 12-myristate 13-acetate (PMA) responsiveness were identified by deletion studies. DNAse 1 hypersensitivity analysis of 36 kb of the αE gene revealed one hypersensitive site, found only in αE+ cells, located near the transcription start points. These results show that, unlike the situation with other integrins, lineage specificity and cytokine responsiveness of αE transcription are not conferred by the proximal promoter. Specificity may depend on distant control elements that have not yet been identified. PMID:11412301

  2. Topical cocaine for relief of mucosal pain.

    PubMed

    Newport, Kristina; Coyne, Patrick

    2010-06-01

    Painful mucosal lesions negatively affect quality of life. When located in the oral cavity, they can cause pain that interferes with speech and swallowing. Acute pain from intra-oral lesions is difficult to treat with conventional methods such as systemic opioids or viscous lidocaine. These cases exemplify a safe, fast and effective method for treating painful mouth lesions that are not responsive to standard treatments. Mr. D and Mr. G had from painful oral lesions caused by squamous cell carcinoma. Severe pain interfered with their ability to speak and swallow, resulting in poor nutrition and dehydration. 4% liquid cocaine, self-applied topically to the open mouth sores, resulted in relief within minutes in both cases. Repeated dosing every six hours allowed both patients to restart oral nutrition without any reported side effects. Topical cocaine has not been described for repeated dosing for oral or other mucosal pain. Potential side effects of mucosal administration include gingival recession and erythematous lesions. If the recommended topical doses are exceeded, liquid cocaine may be absorbed systemically causing a stimulant response or addiction. When used appropriately, however, this intervention can result in a dramatic improvement in quality of life and functional status. PMID:20504138

  3. Oral mucosal manifestations of autoimmune skin diseases.

    PubMed

    Mustafa, Mayson B; Porter, Stephen R; Smoller, Bruce R; Sitaru, Cassian

    2015-10-01

    A group of autoimmune diseases is characterised by autoantibodies against epithelial adhesion structures and/or tissue-tropic lymphocytes driving inflammatory processes resulting in specific pathology at the mucosal surfaces and the skin. The most frequent site of mucosal involvement in autoimmune diseases is the oral cavity. Broadly, these diseases include conditions affecting the cell-cell adhesion causing intra-epithelial blistering and those where autoantibodies or infiltration lymphocytes cause a loss of cell-matrix adhesion or interface inflammation. Clinically, patients present with blistering, erosions and ulcers that may affect the skin as well as further mucosal surfaces of the eyes, nose and genitalia. While the autoimmune disease may be suspected based on clinical manifestations, demonstration of tissue-bound and circulating autoantibodies, or lymphocytic infiltrates, by various methods including histological examination, direct and indirect immunofluorescence microscopy, immunoblotting and quantitative immunoassay is a prerequisite for definitive diagnosis. Given the frequency of oral involvement and the fact that oral mucosa is the initially affected site in many cases, the informed practitioner should be well acquainted with diagnostic and therapeutic aspects of autoimmune dermatosis with oral involvement. This paper reviews the pathogenesis and clinical presentation of these conditions in the oral cavity with a specific emphasis on their differential diagnosis and current management approaches. PMID:26117595

  4. Integrated care pathways for airway diseases (AIRWAYS-ICPs).

    PubMed

    Bousquet, J; Addis, A; Adcock, I; Agache, I; Agusti, A; Alonso, A; Annesi-Maesano, I; Anto, J M; Bachert, C; Baena-Cagnani, C E; Bai, C; Baigenzhin, A; Barbara, C; Barnes, P J; Bateman, E D; Beck, L; Bedbrook, A; Bel, E H; Benezet, O; Bennoor, K S; Benson, M; Bernabeu-Wittel, M; Bewick, M; Bindslev-Jensen, C; Blain, H; Blasi, F; Bonini, M; Bonini, S; Boulet, L P; Bourdin, A; Bourret, R; Bousquet, P J; Brightling, C E; Briggs, A; Brozek, J; Buhl, R; Bush, A; Caimmi, D; Calderon, M; Calverley, P; Camargos, P A; Camuzat, T; Canonica, G W; Carlsen, K H; Casale, T B; Cazzola, M; Cepeda Sarabia, A M; Cesario, A; Chen, Y Z; Chkhartishvili, E; Chavannes, N H; Chiron, R; Chuchalin, A; Chung, K F; Cox, L; Crooks, G; Crooks, M G; Cruz, A A; Custovic, A; Dahl, R; Dahlen, S E; De Blay, F; Dedeu, T; Deleanu, D; Demoly, P; Devillier, P; Didier, A; Dinh-Xuan, A T; Djukanovic, R; Dokic, D; Douagui, H; Dubakiene, R; Eglin, S; Elliot, F; Emuzyte, R; Fabbri, L; Fink Wagner, A; Fletcher, M; Fokkens, W J; Fonseca, J; Franco, A; Frith, P; Furber, A; Gaga, M; Garcés, J; Garcia-Aymerich, J; Gamkrelidze, A; Gonzales-Diaz, S; Gouzi, F; Guzmán, M A; Haahtela, T; Harrison, D; Hayot, M; Heaney, L G; Heinrich, J; Hellings, P W; Hooper, J; Humbert, M; Hyland, M; Iaccarino, G; Jakovenko, D; Jardim, J R; Jeandel, C; Jenkins, C; Johnston, S L; Jonquet, O; Joos, G; Jung, K S; Kalayci, O; Karunanithi, S; Keil, T; Khaltaev, N; Kolek, V; Kowalski, M L; Kull, I; Kuna, P; Kvedariene, V; Le, L T; Lodrup Carlsen, K C; Louis, R; MacNee, W; Mair, A; Majer, I; Manning, P; de Manuel Keenoy, E; Masjedi, M R; Melen, E; Melo-Gomes, E; Menzies-Gow, A; Mercier, G; Mercier, J; Michel, J P; Miculinic, N; Mihaltan, F; Milenkovic, B; Molimard, M; Momas, I; Montilla-Santana, A; Morais-Almeida, M; Morgan, M; N'Diaye, M; Nafti, S; Nekam, K; Neou, A; Nicod, L; O'Hehir, R; Ohta, K; Paggiaro, P; Palkonen, S; Palmer, S; Papadopoulos, N G; Papi, A; Passalacqua, G; Pavord, I; Pigearias, B; Plavec, D; Postma, D S; Price, D; Rabe, K F; Radier Pontal, F; Redon, J; Rennard, S; Roberts, J; Robine, J M; Roca, J; Roche, N; Rodenas, F; Roggeri, A; Rolland, C; Rosado-Pinto, J; Ryan, D; Samolinski, B; Sanchez-Borges, M; Schünemann, H J; Sheikh, A; Shields, M; Siafakas, N; Sibille, Y; Similowski, T; Small, I; Sola-Morales, O; Sooronbaev, T; Stelmach, R; Sterk, P J; Stiris, T; Sud, P; Tellier, V; To, T; Todo-Bom, A; Triggiani, M; Valenta, R; Valero, A L; Valiulis, A; Valovirta, E; Van Ganse, E; Vandenplas, O; Vasankari, T; Vestbo, J; Vezzani, G; Viegi, G; Visier, L; Vogelmeier, C; Vontetsianos, T; Wagstaff, R; Wahn, U; Wallaert, B; Whalley, B; Wickman, M; Williams, D M; Wilson, N; Yawn, B P; Yiallouros, P K; Yorgancioglu, A; Yusuf, O M; Zar, H J; Zhong, N; Zidarn, M; Zuberbier, T

    2014-08-01

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will add value to existing public health knowledge by: 1) proposing a common framework of care pathways for chronic respiratory diseases, which will facilitate comparability and trans-national initiatives; 2) informing cost-effective policy development, strengthening in particular those on smoking and environmental exposure; 3) aiding risk stratification in chronic disease patients, using a common strategy; 4) having a significant impact on the health of citizens in the short term (reduction of morbidity, improvement of education in children and of work in adults) and in the long-term (healthy ageing); 5) proposing a common simulation tool to assist physicians; and 6) ultimately reducing the healthcare burden (emergency visits, avoidable hospitalisations, disability and costs) while improving quality of life. In the longer term, the incidence of disease may be reduced by innovative prevention strategies. AIRWAYSICPs was initiated by Area 5 of the Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing. All stakeholders are involved (health and social care, patients, and policy makers). PMID:24925919

  5. Interaction between haemopoietic regulation and airway inflammation.

    PubMed

    O'Byrne, P M; Gauvreau, G M; Wood, L J

    1999-06-01

    Asthma is characterized by reversible airway narrowing, by airway hyperresponsiveness, and by airway inflammation. Inhaled allergens are the most important of the stimuli known to cause asthma. Methods for studying inhaled allergen in the laboratory have been well standardized and extensively used for the investigation of the pathophysiology and the pharmacological modulation of allergen-induced airway responses. Allergen inhalation by a sensitized subject results in an early asthmatic response, and, in the majority of subjects, a late asthmatic response and airway hyperresponsiveness. The late response and airway hyperresponsiveness are associated with increases in airway eosinophils and metachromatic cells. Allergen-induced airway inflammation in dogs (predominantly neutrophilic) is associated with increased granulocyte-macrophage progenitors in bone marrow, which is dependent on the effects of a circulating serum factor stimulating the bone marrow. The newly formed cells traffic to the airways. These increases in granulocyte-macrophage progenitors are blocked by inhaled corticosteroids. In human subjects, allergen-induced eosinophilic inflammation is associated with increases in Eo/B progenitors, mediated through up-regulation if the IL-5 receptor on progenitors and increases responsiveness to IL-5. Inhaled corticosteroids also attenuate all allergen-induced physiological responses and airway inflammation, an effect possibly mediated, in part, through inhibition of eosinophil and basophil maturation or release from the bone marrow. PMID:10421819

  6. Paediatric airway management: What is new?

    PubMed Central

    Ramesh, S; Jayanthi, R; Archana, SR

    2012-01-01

    Airway management plays a pivotal role in Paediatric Anaesthesia. Over the last two decades many improvements in this area have helped us to overcome this final frontier. From an era where intubation with a conventional laryngoscope or blind nasal intubation was the only tool for airway management, we have come a long way. Today supraglottic airway devices have pride of place in the Operating Room and are becoming important airway devices used in routine procedures. Direct and indirect fibreoptic laryngoscopes and transtracheal devices help us overcome difficult and previously impossible airway situations. These developments mean that we need to update our knowledge on these devices. Also much of our basic understanding of the physiology and anatomy of the paediatric airway has changed. This article attempts to shed light on some of the most important advances/opinions in paediatric airway management like, cuffed endotracheal tubes, supraglottic airway devices, video laryngoscopes, rapid sequence intubation, the newly proposed algorithm for difficult airway management and the role of Ex Utero Intrapartum Treatment (EXIT) procedure in the management of the neonatal airway. PMID:23293383

  7. Systemic, nasal and oral live vaccines against Pseudomonas aeruginosa: a clinical trial of immunogenicity in lower airways of human volunteers.

    PubMed

    Bumann, Dirk; Behre, Christoph; Behre, Katharina; Herz, Steffen; Gewecke, Britta; Gessner, J Engelbert; von Specht, Bernd Ulrich; Baumann, Ulrich

    2010-01-01

    Vaccination against Pseudomonas aeruginosa is a desirable, yet challenging strategy for prevention of airway infection in patients with cystic fibrosis. We compared the formation of antibodies in lower airways induced by systemic and mucosal vaccination strategies. We immunised 48 volunteers in six vaccination groups with either a systemic, a nasal, or four newly constructed oral live vaccines based on attenuated live Salmonella (strains CVD908 and Ty21a), followed by a systemic booster vaccination. All vaccines were based on a recombinant fusion protein of the highly conserved P. aeruginosa outer membrane proteins OprF and OprI as antigen. While systemic and mucosal vaccines induced a comparable rise of serum antibody titers, a significant rise of IgA and IgG antibodies in the lower airways was noted only after nasal and oral vaccinations. We conclude that nasal and oral OprF-OprI vaccines are promising candidates for development of antipseudomonal immunisation through inducing a specific antibody response in the lung. PMID:19887136

  8. Chitosan-based mucosal adjuvants: Sunrise on the ocean.

    PubMed

    Xia, Yufei; Fan, Qingze; Hao, Dongxia; Wu, Jie; Ma, Guanghui; Su, Zhiguo

    2015-11-01

    Mucosal vaccination, which is shown to elicit systemic and mucosal immune responses, serves as a non-invasive and convenient alternative to parenteral administration, with stronger capability in combatting diseases at the site of entry. The exploration of potent mucosal adjuvants is emerging as a significant area, based on the continued necessity to amplify the immune responses to a wide array of antigens that are poorly immunogenic at the mucosal sites. As one of the inspirations from the ocean, chitosan-based mucosal adjuvants have been developed with unique advantages, such as, ability of mucosal adhesion, distinct trait of opening the junctions to allow the paracellular transport of antigen, good tolerability and biocompatibility, which guaranteed the great potential in capitalizing on their application in human clinical trials. In this review, the state of art of chitosan and its derivatives as mucosal adjuvants, including thermo-sensitive chitosan system as mucosal adjuvant that were newly developed by author's group, was described, as well as the clinical application perspective. After a brief introduction of mucosal adjuvants, chitosan and its derivatives as robust immune potentiator were discussed in detail and depth, in regard to the metabolism, safety profile, mode of actions and preclinical and clinical applications, which may shed light on the massive clinical application of chitosan as mucosal adjuvant. PMID:26271831

  9. Hematopoietic LTβR deficiency results in skewed T cell cytokine profiles during a mucosal viral infection.

    PubMed

    Sun, Tian; Rojas, Olga L; Li, Conglei; Philpott, Dana J; Gommerman, Jennifer L

    2016-07-01

    The lymphotoxin signaling pathway plays an important role in the homeostasis and function of peripheral and mucosal dendritic cells, and dendritic cell-intrinsic lymphotoxin β receptor expression is required for optimal responses to opportunistic intestinal bacteria. However, it is unknown whether dendritic cell-intrinsic lymphotoxin β receptor signaling is required for responses to intestinal viral infections. We explored this question by orally administrating murine rotavirus to chimeric mice that lack lymphotoxin β receptor signaling in the myeloid compartment but retain lymphoid tissues. We found that although clearance of rotavirus was unimpaired in the lymphotoxin β receptor(-/-) → wild-type chimeric mice compared with wild-type → wild-type chimeric mice, IFN-γ-producing CD8(+) and CD4(+) T cells were significantly increased in the small intestinal lamina propria of lymphotoxin β receptor(-/-) → wild-type chimeric mice. In contrast, IL-17-producing CD4(+) T cells were reduced in lymphotoxin β receptor(-/-) → wild-type chimeric mice in the steady state, and this reduction persisted after rotavirus inoculation. In spite of this altered cytokine profile in the small intestinal lamina propria of lymphotoxin β receptor(-/-) → wild-type chimeric mice, the local production of rotavirus-specific IgA was unperturbed. Collectively, our results demonstrate that lymphotoxin β receptor signaling in radio-sensitive myeloid cells regulates the balance of IFN-γ and IL-17 cytokine production within the small intestinal lamina propria; however, these perturbations do not affect mucosal antiviral IgA responses. PMID:26657790

  10. Innate Immune Response to LPS in Airway Epithelium Is Dependent on Chronological Age and Antecedent Exposures

    PubMed Central

    Maniar-Hew, Kinjal; Clay, Candice C.; Postlethwait, Edward M.; Evans, Michael J.; Fontaine, Justin H.

    2013-01-01

    The immune mechanisms for neonatal susceptibility to respiratory pathogens are poorly understood. Given that mucosal surfaces serve as a first line of host defense, we hypothesized that the innate immune response to infectious agents may be developmentally regulated in airway epithelium. To test this hypothesis, we determined whether the expression of IL-8 and IL-6 in airway epithelium after LPS exposure is dependent on chronological age. Tracheas from infant, juvenile, and adult rhesus monkeys were first exposed to LPS ex vivo, and then processed for air–liquid interface primary airway epithelial cell cultures and secondary LPS treatment in vitro. Compared with adult cultures, infant and juvenile cultures expressed significantly reduced concentrations of IL-8 after LPS treatment. IL-8 protein in cultures increased with animal age, whereas LPS-induced IL-6 protein was predominantly associated with juvenile cultures. Toll-like receptor (TLR) pathway RT-PCR arrays showed differential expressions of multiple mRNAs in infant cultures relative to adult cultures, including IL-1α, TLR10, and the peptidoglycan recognition protein PGLYRP2. To determine whether the age-dependent cytokine response to LPS is reflective of antecedent exposures, we assessed primary airway epithelial cell cultures established from juvenile monkeys housed in filtered air since birth. Filtered air–housed animal cultures exhibited LPS-induced IL-8 and IL-6 expression that was discordant with age-matched ambient air–housed animals. A single LPS aerosol in vivo also affected this cytokine profile. Cumulatively, our findings demonstrate that the innate immune response to LPS in airway epithelium is variable with age, and may be modulated by previous environmental exposures. PMID:23600597

  11. Airway anastomosis for lung transplantation

    PubMed Central

    Diso, Daniele; Rendina, Erino Angelo; Venuta, Federico

    2016-01-01

    Lung transplantation (LT) is the only viable option for a selected group of patients with end stage pulmonary diseases. During the recent years satisfactory results in terms of long-term survival and quality of life have been achieved with improvements in surgical technique, immunosuppression and perioperative management. Since the beginning, the airway anastomosis has been considered crucial and significant efforts have been made to understand the healing process. A number of experimental studies allowed improving the surgical technique by modifying the technique of suturing, the anastomotic protection and type and dose of immunosuppression, reducing the risk of airway complications. Furthermore, a huge progress has been made in the management of such complications. Early diagnosis of bronchial complications and their prompt and correct management are crucial to achieve long-term survival. PMID:26981271

  12. Dendritic Cell-Lymphocyte Cross Talk Downregulates Host Restriction Factor SAMHD1 and Stimulates HIV-1 Replication in Dendritic Cells

    PubMed Central

    Biedma, Marina Elizabeth; Lederle, Alexandre; Peressin, Maryse; Lambotin, Mélanie; Proust, Alizé; Decoville, Thomas; Schmidt, Sylvie; Laumond, Géraldine

    2014-01-01

    ABSTRACT Human immunodeficiency virus type 1 (HIV-1) replication in dendritic cells (DCs) is restricted by SAMHD1. This factor is counteracted by the viral protein Vpx; Vpx is found in HIV-2 and simian immunodeficiency virus (SIV) from sooty mangabeys (SIVsm) or from macaques (SIVmac) but is absent from HIV-1. We previously observed that HIV-1 replication in immature DCs is stimulated by cocultivation with primary T and B lymphocytes, suggesting that HIV-1 restriction in DCs may be overcome under coculture conditions. Here, we aimed to decipher the mechanism of SAMHD1-mediated restriction in DC-lymphocyte coculture. We found that coculture with lymphocytes downregulated SAMHD1 expression and was associated with increased HIV-1 replication in DCs. Moreover, in infected DC-T lymphocyte cocultures, DCs acquired maturation status and secreted type 1 interferon (alpha interferon [IFN-α]). The blockade of DC-lymphocyte cross talk by anti-ICAM-1 antibody markedly inhibited the stimulation of HIV-1 replication and prevented the downregulation of SAMHD1 expression in cocultured DCs. These results demonstrate that, in contrast to purified DCs, cross talk with lymphocytes downregulates SAMHD1 expression in DCs, triggering HIV-1 replication and an antiviral immune response. Therefore, HIV-1 replication and immune sensing by DCs should be investigated in more physiologically relevant models of DC/lymphocyte coculture. IMPORTANCE SAMHD1 restricts HIV-1 replication in dendritic cells (DCs). Here, we demonstrate that, in a coculture model of DCs and lymphocytes mimicking early mucosal HIV-1 infection, stimulation of HIV-1 replication in DCs is associated with downregulation of SAMHD1 expression and activation of innate immune sensing by DCs. We propose that DC-lymphocyte cross talk occurring in vivo modulates host restriction factor SAMHD1, promoting HIV-1 replication in cellular reservoirs and stimulating immune sensing. PMID:24574390

  13. Mucosal Immune Responses Predict Clinical Outcomes during Influenza Infection Independently of Age and Viral Load

    PubMed Central

    Oshansky, Christine M.; Gartland, Andrew J.; Wong, Sook-San; Jeevan, Trushar; Wang, David; Roddam, Philippa L.; Caniza, Miguela A.; Hertz, Tomer; DeVincenzo, John P.; Webby, Richard J.

    2014-01-01

    Rationale: Children are an at-risk population for developing complications following influenza infection, but immunologic correlates of disease severity are not understood. We hypothesized that innate cellular immune responses at the site of infection would correlate with disease outcome. Objectives: To test the immunologic basis of severe illness during natural influenza virus infection of children and adults at the site of infection. Methods: An observational cohort study with longitudinal sampling of peripheral and mucosal sites in 84 naturally influenza-infected individuals, including infants. Cellular responses, viral loads, and cytokines were quantified from nasal lavages and blood, and correlated to clinical severity. Measurements and Main Results: We show for the first time that although viral loads in children and adults were similar, innate responses in the airways were stronger in children and varied considerably between plasma and site of infection. Adjusting for age and viral load, an innate immune profile characterized by increased nasal lavage monocyte chemotactic protein-3, IFN-α2, and plasma IL-10 levels at enrollment predicted progression to severe disease. Increased plasma IL-10, monocyte chemotactic protein-3, and IL-6 levels predicted hospitalization. This inflammatory cytokine production correlated significantly with monocyte localization from the blood to the site of infection, with conventional monocytes positively correlating with inflammation. Increased frequencies of CD14lo monocytes were in the airways of participants with lower inflammatory cytokine levels. Conclusions: An innate profile was identified that correlated with disease progression independent of viral dynamics and age. The airways and blood displayed dramatically different immune profiles emphasizing the importance of cellular migration and localized immune phenotypes. PMID:24308446

  14. Mode of dendrite growth in undercooled alloy melts

    SciTech Connect

    Li, J.; Yang, G.; Zhou, Y.

    1998-01-01

    The mode of dendrite growth in the undercooled Ni-50 at% Cu alloy was investigated. At lower undercoolings, the dendrite growth is mainly controlled by solute diffusion, and the formed dendritic morphologies are similar to those of the conventional as-cast equiaxed crystals, except that here the branches are much denser. At higher undercoolings, however, the severe solutal trapping that results from high dendrite growth velocity weakens the effect of solute diffusion on the dendrite growth. In this case, the dendrites branch in the bunching form. The dendrite spacings were measured, and the results were interpreted with the current dendrite growth theories.

  15. Partial airway obstruction following manufacturing defect in laryngeal mask airway (Laryngeal Mask Silken™).

    PubMed

    Jangra, Kiran; Malhotra, Surender Kumar; Saini, Vikas

    2014-10-01

    Laryngeal mask (LM) airway is commonly used for securing airway in day-care surgeries. Various problems have been described while using LM airway. Out of those, mechanical obstruction causing airway compromise is most common. Here, we describe a case report of 4-year-old child who had partial upper airway obstruction due to LM manufacturer's defect. There was a silicon band in upper one-third of shaft of LM airway. This band was made up of the same material as that of LM airway so it was not identifiable on external inspection of transparent shaft. We suggest that such as non-transparent laryngeal mask, a transparent LM airway should also be inspected looking inside the lumen with naked eyes or by using a probe to rule out any manufacturing defect before its insertion. PMID:25422617

  16. Airway management in cervical spine injury

    PubMed Central

    Austin, Naola; Krishnamoorthy, Vijay; Dagal, Arman

    2014-01-01

    To minimize risk of spinal cord injury, airway management providers must understand the anatomic and functional relationship between the airway, cervical column, and spinal cord. Patients with known or suspected cervical spine injury may require emergent intubation for airway protection and ventilatory support or elective intubation for surgery with or without rigid neck stabilization (i.e., halo). To provide safe and efficient care in these patients, practitioners must identify high-risk patients, be comfortable with available methods of airway adjuncts, and know how airway maneuvers, neck stabilization, and positioning affect the cervical spine. This review discusses the risks and benefits of various airway management strategies as well as specific concerns that affect patients with known or suspected cervical spine injury. PMID:24741498

  17. Airway injury during high-level exercise.

    PubMed

    Kippelen, Pascale; Anderson, Sandra D

    2012-05-01

    Airway epithelial cells act as a physical barrier against environmental toxins and injury, and modulate inflammation and the immune response. As such, maintenance of their integrity is critical. Evidence is accumulating to suggest that exercise can cause injury to the airway epithelium. This seems the case particularly for competitive athletes performing high-level exercise, or when exercise takes place in extreme environmental conditions such as in cold dry air or in polluted air. Dehydration of the small airways and increased forces exerted on to the airway surface during severe hyperpnoea are thought to be key factors in determining the occurrence of injury of the airway epithelium. The injury-repair process of the airway epithelium may contribute to the development of the bronchial hyper-responsiveness that is documented in many elite athletes. PMID:22247295

  18. Roles of M cells in infection and mucosal vaccines

    PubMed Central

    Wang, Miao; Gao, Zeqian; Zhang, Zhongwang; Pan, Li; Zhang, Yongguang

    2014-01-01

    The mucosal immune system plays a crucial part in the control of infection. Exposure of humans and animals to potential pathogens generally occurs through mucosal surfaces, thus, strategies that target the mucosa seem rational and efficient vaccination measures. Vaccination through the mucosal immune system can induce effective systemic immune responses simultaneously with mucosal immunity compared with parenteral vaccination. M cells are capable of transporting luminal antigens to the underlying lymphoid tissues and can be exploited by pathogens as an entry portal to invade the host. Therefore, targeting M-cell-specific molecules might enhance antigen entry, initiate the immune response, and induce protection against mucosal pathogens. Here, we outline our understanding of the distribution and function of M cells, and summarize the advances in mucosal vaccine strategies that target M cells. PMID:25483705

  19. Mucosal vaccines: novel advances in technology and delivery.

    PubMed

    Yuki, Yoshikazu; Kiyono, Hiroshi

    2009-08-01

    Mucosal vaccines are considered the most suitable type of vaccines to combat emerging and re-emerging infectious diseases because of their ability to induce both mucosal and systemic immunity. Considerable advances have been made toward the development of mucosal vaccines against influenza virus and rotavirus. Many additional mucosal vaccines are in development, including vaccines against cholera, typhoid, traveler's diarrhea and respiratory infections. In addition to oral and nasal vaccines, transcutaneous (or skin patch) and sublingual immunizations are now part of a new generation of mucosal vaccines. Furthermore, a rice-based oral vaccine (MucoRice) has been receiving global attention as a new form of cold chain-free vaccine, because it is stable at room temperature for a prolonged period. This review describes recent developments in mucosal vaccines with promising preclinical and clinical results. PMID:19627189

  20. Antibodies and Their Receptors: Different Potential Roles in Mucosal Defense

    PubMed Central

    Horton, Rachel E.; Vidarsson, Gestur

    2013-01-01

    Over recent years it has become increasingly apparent that mucosal antibodies are not only restricted to the IgM and IgA isotypes, but that also other isotypes and particularly IgG can be found in significant quantities at some mucosal surfaces, such as in the genital tract. Their role is more complex than traditionally believed with, among other things, the discovery of novel function of mucosal immunoglobulin receptors. A thorough knowledge in the source and function and mucosal immunoglobulins is particularly important in development of vaccines providing mucosal immunity, and also in the current climate of microbicide development, to combat major world health issues such as HIV. We present here a comprehensive review of human antibody mediated mucosal immunity. PMID:23882268

  1. Fungal Aflatoxins Reduce Respiratory Mucosal Ciliary Function.

    PubMed

    Lee, Robert J; Workman, Alan D; Carey, Ryan M; Chen, Bei; Rosen, Phillip L; Doghramji, Laurel; Adappa, Nithin D; Palmer, James N; Kennedy, David W; Cohen, Noam A

    2016-01-01

    Aflatoxins are mycotoxins secreted by Aspergillus flavus, which can colonize the respiratory tract and cause fungal rhinosinusitis or bronchopulmonary aspergillosis. A. flavus is the second leading cause of invasive aspergillosis worldwide. Because many respiratory pathogens secrete toxins to impair mucociliary immunity, we examined the effects of acute exposure to aflatoxins on airway cell physiology. Using air-liquid interface cultures of primary human sinonasal and bronchial cells, we imaged ciliary beat frequency (CBF), intracellular calcium, and nitric oxide (NO). Exposure to aflatoxins (0.1 to 10 μM; 5 to 10 minutes) reduced baseline (~6-12%) and agonist-stimulated CBF. Conditioned media (CM) from A. fumigatus, A. niger, and A. flavus cultures also reduced CBF by ~10% after 60 min exposure, but effects were blocked by an anti-aflatoxin antibody only with A. flavus CM. CBF reduction required protein kinase C but was not associated with changes in calcium or NO. However, AFB2 reduced NO production by ~50% during stimulation of the ciliary-localized T2R38 receptor. Using a fluorescent reporter construct expressed in A549 cells, we directly observed activation of PKC activity by AFB2. Aflatoxins secreted by respiratory A. flavus may impair motile and chemosensory functions of airway cilia, contributing to pathogenesis of fungal airway diseases. PMID:27623953

  2. Ragweed subpollen particles of respirable size activate human dendritic cells.

    PubMed

    Pazmandi, Kitti; Kumar, Brahma V; Szabo, Krisztina; Boldogh, Istvan; Szoor, Arpad; Vereb, Gyorgy; Veres, Agota; Lanyi, Arpad; Rajnavolgyi, Eva; Bacsi, Attila

    2012-01-01

    Ragweed (Ambrosia artemisiifolia) pollen grains, which are generally considered too large to reach the lower respiratory tract, release subpollen particles (SPPs) of respirable size upon hydration. These SPPs contain allergenic proteins and functional NAD(P)H oxidases. In this study, we examined whether exposure to SPPs initiates the activation of human monocyte-derived dendritic cells (moDCs). We found that treatment with freshly isolated ragweed SPPs increased the intracellular levels of reactive oxygen species (ROS) in moDCs. Phagocytosis of SPPs by moDCs, as demonstrated by confocal laser-scanning microscopy, led to an up-regulation of the cell surface expression of CD40, CD80, CD86, and HLA-DQ and an increase in the production of IL-6, TNF-α, IL-8, and IL-10. Furthermore, SPP-treated moDCs had an increased capacity to stimulate the proliferation of naïve T cells. Co-culture of SPP-treated moDCs with allogeneic CD3(+) pan-T cells resulted in increased secretion of IFN-γ and IL-17 by T cells of both allergic and non-allergic subjects, but induced the production of IL-4 exclusively from the T cells of allergic individuals. Addition of exogenous NADPH further increased, while heat-inactivation or pre-treatment with diphenyleneiodonium (DPI), an inhibitor of NADPH oxidases, strongly diminished, the ability of SPPs to induce phenotypic and functional changes in moDCs, indicating that these processes were mediated, at least partly, by the intrinsic NAD(P)H oxidase activity of SPPs. Collectively, our data suggest that inhaled ragweed SPPs are fully capable of activating dendritic cells (DCs) in the airways and SPPs' NAD(P)H oxidase activity is involved in initiation of adaptive immune responses against innocuous pollen proteins. PMID:23251688

  3. Airway Assessment for Office Sedation/Anesthesia.

    PubMed

    Rosenberg, Morton B; Phero, James C

    2015-01-01

    Whenever a patient is about to receive sedation or general anesthesia, no matter what the technique, the preoperative assessment of the airway is one of the most important steps in ensuring patient safety and positive outcomes. This article, Part III in the series on airway management, is directed at the ambulatory office practice and focuses on predicting the success of advanced airway rescue techniques. PMID:26061578

  4. Paranasal sinus opacification at MRI in lower airway disease (the HUNT study-MRI).

    PubMed

    Hansen, Aleksander Grande; Helvik, Anne-Sofie; Thorstensen, Wenche Moe; Nordgård, Ståle; Langhammer, Arnulf; Bugten, Vegard; Stovner, Lars Jacob; Eggesbø, Heidi Beate

    2016-07-01

    The study builds on the concept of united airways, which describes the link between the upper and lower airways. Explorations of this concept have mainly related to asthma and less to chronic obstructive pulmonary disease (COPD). The aim of this study was to investigate paranasal sinus opacification at magnetic resonance imaging (MRI) in COPD, self-reported asthma and respiratory symptoms. In this cross-sectional study, 880 randomly selected participants in the Nord-Trøndelag health survey (HUNT) (mean age 57.7 years, range 50-66 years, 463 women) were investigated using MRI of the paranasal sinuses. Participants were allocated to four mutually exclusive groups: (1) COPD (n = 20), (2) asthma (n = 89), (3) respiratory symptoms (n = 199), and (4) reference group (n = 572). Paranasal sinus opacifications were categorised as mucosal thickening, polyps and retention cysts, and fluid. In each participant, measurements ≥1 mm from all sinuses were summed to give a total for each category of opacities. The sums for these three categories were further added together, and referred to as the total sum. Using the 75th percentile cut-off values, the likelihood of having paranasal sinus opacifications was more than six times higher in participants with COPD and twice as high in participants with asthma than among the reference group. Respiratory symptoms were only associated with mucosal thickening. The present study shows that paranasal sinus opacification is associated not only with asthma, but also with COPD and respiratory symptoms. This is in accordance with the united airways hypothesis, and should be kept in mind when handling patients with these conditions. PMID:26499376

  5. Concurrent Mucosal Melanoma and Angiofibroma of the Nose

    PubMed Central

    Hwang, Jae Hyung; Ha, Jin Bu; Lee, Junguee; Lee, Joohyung

    2016-01-01

    Malignant melanoma rarely develops in the paranasal sinuses, and generally has a poor prognosis. However, mucosal melanoma can masquerade both clinically and histopathologically as a benign lesion, rendering accurate early diagnosis difficult. On the other hand, angiofibroma, a benign tumor, is more easily diagnosed than a mucosal melanoma, because the former exhibits specific histopathological features. No cases of concurrent angiofibroma and mucosal melanoma have been reported to date. We describe such a case below. PMID:27095516

  6. Diesel Exhaust Particle-Exposed Human Bronchial Epithelial Cells Induce Dendritic Cell Maturation and Polarization via Thymic Stromal Lymphopoietin

    PubMed Central

    Bleck, Bertram; Tse, Doris B.; Curotto de Lafaille, Maria A.; Zhang, Feijie

    2009-01-01

    Human exposure to air pollutants, including ambient particulate matter, has been proposed as a mechanism for the rise in allergic disorders. Diesel exhaust particles, a major component of ambient particulate matter, induce sensitization to neoallergens, but the mechanisms by which sensitization occur remain unclear. We show that diesel exhaust particles upregulate thymic stromal lymphopoietin in human bronchial epithelial cells in an oxidant-dependent manner. Thymic stromal lymphopoietin induced by diesel exhaust particles was associated with maturation of myeloid dendritic cells, which was blocked by anti-thymic stromal lymphopoietin antibodies or silencing epithelial cell-derived thymic stromal lymphopoietin. Dendritic cells exposed to diesel exhaust particle-treated human bronchial epithelial cells induced Th2 polarization in a thymic stromal lymphopoietin-dependent manner. These findings provide new insight into the mechanisms by which diesel exhaust particles modify human lung mucosal immunity. PMID:18049884

  7. Enhanced Mucosal Immune Responses Induced by a Combined Candidate Mucosal Vaccine Based on Hepatitis A Virus and Hepatitis E Virus Structural Proteins Linked to Tuftsin

    PubMed Central

    Gao, Yan; Su, Qiudong; Yi, Yao; Jia, Zhiyuan; Wang, Hao; Lu, Xuexin; Qiu, Feng; Bi, Shengli

    2015-01-01

    Hepatitis A virus (HAV) and Hepatitis E virus (HEV) are the most common causes of infectious hepatitis. These viruses are spread largely by the fecal-oral route and lead to clinically important disease in developing countries. To evaluate the potential of targeting hepatitis A and E infection simultaneously, a combined mucosal candidate vaccine was developed with the partial open reading frame 2 (ORF2) sequence (aa 368–607) of HEV (HE-ORF2) and partial virus protein 1 (VP1) sequence (aa 1–198) of HAV (HA-VP1), which included the viral neutralization epitopes. Tuftsin is an immunostimulatory peptide which can enhance the immunogenicity of a protein by targeting it to macrophages and dendritic cells. Here, we developed a novel combined protein vaccine by conjugating tuftsin to HE-ORF2 and HA-VP1 and used synthetic CpG oligodeoxynucleotides (ODNs) as the adjuvant. Subsequent experiments in BALB/c mice demonstrated that tuftsin enhanced the serum-specific IgG and IgA antibodies against HEV and HAV at the intestinal, vaginal and pulmonary interface when delivered intranasally. Moreover, mice from the intranasally immunized tuftsin group (HE-ORF2-tuftsin + HA-VP1-tuftsin + CpG) showed higher levels of IFN-γ-secreting splenocytes (Th1 response) and ratio of CD4+/CD8+ T cells than those of the no-tuftsin group (HE-ORF2 + HA-VP1 + CpG). Thus, the tuftsin group generated stronger humoral and cellular immune responses compared with the no-tuftsin group. Moreover, enhanced responses to the combined protein vaccine were obtained by intranasal immunization compared with intramuscular injection. By integrating HE-ORF2, HA-VP1 and tuftsin in a vaccine, this study validated an important concept for further development of a combined mucosal vaccine against hepatitis A and E infection. PMID:25875115

  8. Intratracheal myriocin enhances allergen‐induced Th2 inflammation and airway hyper‐responsiveness

    PubMed Central

    Edukulla, Ramakrishna; Rehn, Kira Lee; Liu, Bo; McAlees, Jaclyn W.; Hershey, Gurjit K.; Wang, Yui Hsi; Lewkowich, Ian

    2016-01-01

    Introduction Ceramide is the central substrate of sphingolipid metabolism and plays a key role in cellular signal transduction pathways, regulating apoptosis, differentiation, and chemotaxis. Alterations in airway ceramide levels are observed in multiple pulmonary diseases and recent human genetic association studies have linked dysregulation of sphingolipid regulatory genes with asthma pathogenesis. Methods Utilizing myriocin, a potent inhibitor of sphingolipid synthesis, we evaluated the immune regulatory role of de novo ceramide generation in vitro and in vivo. Intratracheal myriocin was administered alone or during house dust mite sensitization (HDM) of BALB/C mice and airway hyper‐responsiveness (AHR) was evaluated by invasive plethysmography followed by bronchial lavage (BAL) cytology and cytokine quantification. Results Myriocin inhibits and HDM exposure activates de novo ceramide synthesis in bone marrow‐derived dendritic cells. Mice receiving intratracheal myriocin developed a mild airway neutrophilic infiltrate without inducing a significant increase in AHR. CXCL1 was elevated in the BAL fluid of myriocin‐treated mice while the neutrophilic chemotactic factors anaphylatoxin C5a, leukotriene B4, and IL‐17 were unaffected. HDM treatment combined with myriocin led to a dramatic enhancement of AHR (63% increase over HDM alone, p < 0.001) and increased granulocyte pulmonary infiltrates versus HDM or myriocin alone. Elevated Th2 T cell counts and Th2 cytokines/chemokines (IL5, IL13, CCL17) were observed in mice treated with combined HDM/myriocin compared to HDM alone. Myriocin‐treated pulmonary CD11c+ cells stimulated with HDM secreted significantly more CXCL1 than cells stimulated with HDM alone while HDM stimulated airway epithelial cells showed no change in CXCL1 secretion following myriocin treatment. Conclusions Intratracheal myriocin, likely acting via ceramide synthesis inhibition, enhances allergen‐induced airway inflammation

  9. A bug's view of allergic airways disease.

    PubMed

    Hsu, Peter S; Campbell, Dianne E

    2016-06-01

    The increase in allergic airways disease has been linked to modern urbanization and lifestyle. Recent evidence suggests that the associated reduction in microbial exposure, reduction in dietary fibre intake and increased antibiotic use may cause early dysbiosis in infancy, which predisposes to immune dysregulation and allergic airways disease later in life. This implies that there may be a window of opportunity for primary prevention strategies aimed to protect or restore the microbiome early in life and thereby decrease the risk of developing allergic airways disease. Alternatively, strategies that correct dysbiosis may aid in the treatment of established allergic airways disease. PMID:27012478

  10. Airway vascular damage in elite swimmers.

    PubMed

    Moreira, André; Palmares, Carmo; Lopes, Cristina; Delgado, Luís

    2011-11-01

    We postulated that high level swimming can promote airway inflammation and thus asthma by enhancing local vascular permeability. We aimed to test this hypothesis by a cross-sectional study comparing swimmers (n = 13, 17 ± 3 years, competing 7 ± 4 years, training 18 ± 3 h per week), asthmatic-swimmers (n = 6, 17 ± 2 years, competing 8 ± 3 years, training 16 ± 4 h per week), and asthmatics (n = 19, 14 ± 3 years). Subjects performed induced sputum and had exhaled nitric oxide, lung volumes, and airway responsiveness determined. Airway vascular permeability index was defined as the ratio of albumin in sputum and serum. Results from the multiple linear regression showed each unit change in airway vascular permeability index was associated with an increase of 0.97% (95%CI: 0.02 to 1.92; p = 0.047) in sputum eosinophilis, and of 2.64% (95%CI:0.96 to 4.31; p = 0.006) in sputum neutrophils after adjustment for confounders. In a general linear model no significant differences between airway vascular permeability between index study groups existed, after controlling for sputum eosinophilis and neutrophils. In conclusion, competitive swimmers training in chlorine-rich pools have similar levels of airway vascular permeability than asthmatics. Although competitive swimming has been associated with asthma, airway inflammation and airway hyperesponsiveness do not seem to be dependent on increased airway vascular permeability. PMID:21669516

  11. Automated lobe-based airway labeling.

    PubMed

    Gu, Suicheng; Wang, Zhimin; Siegfried, Jill M; Wilson, David; Bigbee, William L; Pu, Jiantao

    2012-01-01

    Regional quantitative analysis of airway morphological abnormalities is of great interest in lung disease investigation. Considering that pulmonary lobes are relatively independent functional unit, we develop and test a novel and efficient computerized scheme in this study to automatically and robustly classify the airways into different categories in terms of pulmonary lobe. Given an airway tree, which could be obtained using any available airway segmentation scheme, the developed approach consists of four basic steps: (1) airway skeletonization or centerline extraction, (2) individual airway branch identification, (3) initial rule-based airway classification/labeling, and (4) self-correction of labeling errors. In order to assess the performance of this approach, we applied it to a dataset consisting of 300 chest CT examinations in a batch manner and asked an image analyst to subjectively examine the labeled results. Our preliminary experiment showed that the labeling accuracy for the right upper lobe, the right middle lobe, the right lower lobe, the left upper lobe, and the left lower lobe is 100%, 99.3%, 99.3%, 100%, and 100%, respectively. Among these, only two cases are incorrectly labeled due to the failures in airway detection. It takes around 2 minutes to label an airway tree using this algorithm. PMID:23093951

  12. Airway sonography in live models and cadavers.

    PubMed

    Tsui, Ban; Ip, Vivian; Walji, Anil

    2013-06-01

    Sonography using cadavers is beneficial in teaching and learning sonoanatomy, which is particularly important because imaging of the airway can be challenging due to the cartilaginous landmarks and air artifacts. In this exploratory study, we have attempted to compare the airway sonoanatomy of cadavers and live models. Our observations support the use of cadavers as teaching tools for learning airway sonoanatomy and practicing procedures involving airway structures, such as superior laryngeal nerve blocks, transtracheal injections, and needle cricothyroidotomy, before performance on patients in clinical situations. We believe this process will improve patient safety and enhance the competency of trainees and practitioners in rare procedures such as needle cricothyroidotomy. PMID:23716527

  13. Anatomic Optical Coherence Tomography of Upper Airways

    NASA Astrophysics Data System (ADS)

    Chin Loy, Anthony; Jing, Joseph; Zhang, Jun; Wang, Yong; Elghobashi, Said; Chen, Zhongping; Wong, Brian J. F.

    The upper airway is a complex and intricate system responsible for respiration, phonation, and deglutition. Obstruction of the upper airways afflicts an estimated 12-18 million Americans. Pharyngeal size and shape are important factors in the pathogenesis of airway obstructions. In addition, nocturnal loss in pharyngeal muscular tone combined with high pharyngeal resistance can lead to collapse of the airway and periodic partial or complete upper airway obstruction. Anatomical optical coherence tomography (OCT) has the potential to provide high-speed three-dimensional tomographic images of the airway lumen without the use of ionizing radiation. In this chapter we describe the methods behind endoscopic OCT imaging and processing to generate full three dimensional anatomical models of the human airway which can be used in conjunction with numerical simulation methods to assess areas of airway obstruction. Combining this structural information with flow dynamic simulations, we can better estimate the site and causes of airway obstruction and better select and design surgery for patients with obstructive sleep apnea.

  14. Physical principle of airway design in human lungs

    NASA Astrophysics Data System (ADS)

    Park, Keunhwan; Son, Taeho; Kim, Wonjung; Kim, Ho-Young

    2014-11-01

    From an engineering perspective, lungs are natural microfluidic devices that extract oxygen from air. In the bronchial tree, airways branch by dichotomy with a systematic reduction of their diameters. It is generally accepted that in conducting airways, which air passes on the way to the acinar airways from the atmosphere, the reduction ratio of diameter is closely related to the minimization of viscous dissipation. Such a principle is formulated as the Hess-Murray law. However, in acinar airways, where oxygen transfer to alveolae occurs, the diameter reduction with progressive generations is more moderate than in conducting airways. Noting that the dominant transfer mechanism in acinar airways is diffusion rather than advection, unlike conducting airways, we construct a mathematical model for oxygen transfer through a series of acinar airways. Our model allows us to predict the optimal airway reduction ratio that maximizes the oxygen transfer in a finite airway volume, thereby rationalizing the observed airway reduction ratio in acinar airways.

  15. Microbiota and their role in the pathogenesis of oral mucositis.

    PubMed

    Vanhoecke, B; De Ryck, T; Stringer, A; Van de Wiele, T; Keefe, D

    2015-01-01

    Oral mucositis in patients undergoing cancer therapy is a significant problem. Its prevalence ranges between 20 and 100%, depending on treatment type and protocols and patient-based variables. Mucositis is self-limiting when uncomplicated by infection. Unfortunately, the incidence of developing a local or systemic infection during the course of the treatment is very high. At this stage, it is unclear which role oral microbiota play in the onset, duration, and severity of oral mucositis. Nevertheless, there is growing interest in this underexplored topic, and new studies are being undertaken to unravel their impact on the pathogenesis of mucositis. PMID:24456144

  16. Mucosal and systemic adjuvant activity of alphavirus replicon particles

    NASA Astrophysics Data System (ADS)

    Thompson, Joseph M.; Whitmore, Alan C.; Konopka, Jennifer L.; Collier, Martha L.; Richmond, Erin M. B.; Davis, Nancy L.; Staats, Herman F.; Johnston, Robert E.

    2006-03-01

    Vaccination represents the most effective control measure in the fight against infectious diseases. Local mucosal immune responses are critical for protection from, and resolution of, infection by numerous mucosal pathogens. Antigen processing across mucosal surfaces is the natural route by which mucosal immunity is generated, as peripheral antigen delivery typically fails to induce mucosal immune responses. However, we demonstrate in this article that mucosal immune responses are evident at multiple mucosal surfaces after parenteral delivery of Venezuelan equine encephalitis virus replicon particles (VRP). Moreover, coinoculation of null VRP (not expressing any transgene) with inactivated influenza virions, or ovalbumin, resulted in a significant increase in antigen-specific systemic IgG and fecal IgA antibodies, compared with antigen alone. Pretreatment of VRP with UV light largely abrogated this adjuvant effect. These results demonstrate that alphavirus replicon particles possess intrinsic systemic and mucosal adjuvant activity and suggest that VRP RNA replication is the trigger for this activity. We feel that these observations and the continued experimentation they stimulate will ultimately define the specific components of an alternative pathway for the induction of mucosal immunity, and if the activity is evident in humans, will enable new possibilities for safe and inexpensive subunit and inactivated vaccines. vaccine vector | Venezuelan equine encephalitis virus | viral immunology | RNA virus

  17. Vaginal type-II mucosa is an inductive site for primary CD8⁺ T-cell mucosal immunity.

    PubMed

    Wang, Yichuan; Sui, Yongjun; Kato, Shingo; Hogg, Alison E; Steel, Jason C; Morris, John C; Berzofsky, Jay A

    2015-01-01

    The structured lymphoid tissues are considered the only inductive sites where primary T-cell immune responses occur. The naïve T cells in structured lymphoid tissues, once being primed by antigen-bearing dendritic cells, differentiate into memory T cells and traffic back to the mucosal sites through the bloodstream. Contrary to this belief, here we show that the vaginal type-II mucosa itself, despite the lack of structured lymphoid tissues, can act as an inductive site during primary CD8(+) T-cell immune responses. We provide evidence that the vaginal mucosa supports both the local immune priming of naïve CD8(+) T cells and the local expansion of antigen-specific CD8(+) T cells, thereby demonstrating a different paradigm for primary mucosal T-cell immune induction. PMID:25600442

  18. Early events in axon/dendrite polarization.

    PubMed

    Cheng, Pei-lin; Poo, Mu-ming

    2012-01-01

    Differentiation of axons and dendrites is a critical step in neuronal development. Here we review the evidence that axon/dendrite formation during neuronal polarization depends on the intrinsic cytoplasmic asymmetry inherited by the postmitotic neuron, the exposure of the neuron to extracellular chemical factors, and the action of anisotropic mechanical forces imposed by the environment. To better delineate the functions of early signals among a myriad of cellular components that were shown to influence axon/dendrite formation, we discuss their functions by distinguishing their roles as determinants, mediators, or modulators and consider selective degradation of these components as a potential mechanism for axon/dendrite polarization. Finally, we examine whether these early events of axon/dendrite formation involve local autocatalytic activation and long-range inhibition, as postulated by Alan Turing for the morphogenesis of patterned biological structure. PMID:22715881

  19. Vertical solidification of dendritic binary alloys

    NASA Technical Reports Server (NTRS)

    Heinrich, J. C.; Felicelli, S.; Poirier, D. R.

    1991-01-01

    Three numerical techniques are employed to analyze the influence of thermosolutal convection on defect formation in directionally solidified (DS) alloys. The finite-element models are based on the Boussinesq approximation and include the plane-front model and two plane-front models incorporating special dendritic regions. In the second model the dendritic region has a time-independent volume fraction of liquid, and in the last model the dendritic region evolves as local conditions dictate. The finite-element models permit the description of nonlinear thermosolutal convection by treating the dendritic regions as porous media with variable porosities. The models are applied to lead-tin alloys including DS alloys, and severe segregation phenomena such as freckles and channels are found to develop in the DS alloys. The present calculations and the permeability functions selected are shown to predict behavior in the dendritic regions that qualitatively matches that observed experimentally.

  20. Macrophages and dendritic cells in the post-testicular environment.

    PubMed

    Da Silva, Nicolas; Barton, Claire R

    2016-01-01

    Macrophages (MΦ) and dendritic cells (DCs) are heterogeneous families of functionally and developmentally related immune cells that play crucial roles in tissue homeostasis and the regulation of immune responses. During the past 5 years, immunologists have generated a considerable amount of data that challenge dogmas about the ontogeny and functions of these highly versatile cells. The male excurrent duct system plays a critical role in the establishment of fertility by allowing sperm maturation, transport and storage. In addition, it is challenged by pathogens and must establish a protective and tolerogenic environment for a continuous flow of autoantigenic spermatozoa. The post-testicular environment and, in particular, the epididymis contain an intricate network of DCs and MΦ; however, the immunophysiology of this intriguing and highly specialized mucosal system is poorly understood. This review summarizes the current trends in mouse MΦ and DC biology and speculates about their roles in the steady-state epididymis. Unraveling immune cell functions in the male reproductive tract is an essential prerequisite for the design of innovative strategies aimed at controlling male fertility and treating infertility. PMID:26337514

  1. Tissue dendritic cells as portals for HIV entry.

    PubMed

    Harman, Andrew N; Kim, Min; Nasr, Najla; Sandgren, Kerrie J; Cameron, Paul U

    2013-09-01

    Dendritic cells (DCs) are found at the portals of pathogen entry such as the mucosal surfaces of the respiratory, gastrointestinal and genital tracts where they represent the first line of contact between the immune system and the foreign invaders. They are found throughout the body in multiple subsets where they express unique combinations of C-type lectin receptors to best aid them in detection of pathogens associated with their anatomical location. DCs are important in the establishment in HIV infection for two reasons. Firstly, they are one of the first cells to encounter the virus, and the specific interaction that occurs between these cells and HIV is critical to HIV establishing a foothold infection. Secondly and most importantly, HIV is able to efficiently transfer the virus to its primary target cell, the CD4(+) T lymphocyte, in which it replicates explosively. Infection of CD4(+) T lymphocytes via DCs is far more efficient than direct infection. This review surveys the various DCs subsets found within the human sexual mucosa and their interactions with HIV. Mechanisms of HIV uptake are discussed as well as how the virus then traffics through the DC and is transferred to T cells. Until recently, most research has focussed on vaginal transmission despite the increased transmission rate associated with anal intercourse. Here, we also discuss recent advances in our understanding of HIV transmission in the colon. PMID:23908074

  2. Topical protection of human esophageal mucosal integrity.

    PubMed

    Woodland, P; Batista-Lima, F; Lee, C; Preston, S L; Dettmar, P; Sifrim, D

    2015-06-15

    Patients with nonerosive reflux disease exhibit impaired esophageal mucosal integrity, which may underlie enhanced reflux perception. In vitro topical application of an alginate solution can protect mucosal biopsies against acid-induced changes in transepithelial electrical resistance (TER). We aimed to confirm this finding in a second model using 3D cell cultures and to assess prolonged protection in a biopsy model. We assessed the protective effect of a topically applied alginate solution 1 h after application. 3D cell cultures were grown by using an air-liquid interface and were studied in Ussing chambers. The apical surface was "protected" with 200 μl of either alginate or viscous control or was unprotected. The tissue was exposed to pH 3 + bile acid solution for 30 min and TER change was calculated. Distal esophageal mucosal biopsies were taken from 12 patients and studied in Ussing chambers. The biopsies were coated with either alginate or viscous control solution. The biopsies were then bathed in pH 7.4 solution for 1 h. The luminal chamber solution was replaced with pH 2 solution for 30 min. Percentage changes in TER were recorded. In five biopsies fluorescein-labeled alginate solution was used to allow immunohistological localization of the alginate after 1 h. In the cell culture model, alginate solution protected tissue against acid-induced change in TER. In biopsies, 60 min after protection with alginate solution, the acidic exposure caused a -8.3 ± 2.2% change in TER compared with -25.1 ± 4.5% change after protection with the viscous control (P < 0.05). Labeled alginate could be seen coating the luminal surface in all cases. In vitro, alginate solutions can adhere to the esophageal mucosa for up to 1 h and exert a topical protectant effect. Durable topical protectants can be further explored as first-line/add-on therapies for gastroesophageal reflux disease. PMID:25907692

  3. Multiscale modeling of mucosal immune responses

    PubMed Central

    2015-01-01

    Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM. Background Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Implementation Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. Conclusion We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut

  4. Research controversies in management of oral mucositis.

    PubMed

    Biron, P; Sebban, C; Gourmet, R; Chvetzoff, G; Philip, I; Blay, J Y

    2000-01-01

    The management of mucositis is the subject of many controversies, and the optimal treatment is still not known. Several evaluation scoring systems have been described, but no one of these is appropriate to all clinical situations: a simple scale such as that devised by the WHO can be used routinely, and more sophisticated ones can be implemented by trained experimenters working in research. We have considered the impact of each of the treatments currently available on each stage of mucositis. In attempts at prevention, self-care, in the sense of oral hygiene, must remain atraumatic. It is probably advisable to differentiate patients with good previous oral care, in whom tooth brushing is beneficial, from others, in whom the risk of hemorrhage and infection excludes any brushing. Before the dosage of chemotherapy is reduced, the curative or palliative intent of the strategy must be carefully evaluated. In the vascular phase protection of the proliferating cells is attempted by means of vasoconstriction (cryotherapy), cytoprotection (prostaglandin E2 and other antioxidants) or epithelial cell-inhibiting factors such as TGF-B3. Treatments applied in the epithelial phase are directed at increasing the cell proliferation to accelerate epithelial restoration by sucralfate and several growth factors: hematopoietic GF, which has demonstrated a direct effect on the mucosa (GM-CSF), or epithelial growth factors such as keratinocyte GF. In the ulcerative and bacteriological phase attempts are made to attenuate sepsis by means of antiseptics (chlorhexidine), amphotericin B and antiviral agents or antibiotic lozenges. In the healing phase application of the low-energy helium-neon laser has demonstrably been followed by a later time of onset, less pronounced peak severity and shorter duration of oral mucositis. After cancer treatment, oral hygiene, inhibition of oral flora, and pain relief are the main goals. Physiopathogen-specific treatment is the next step, with the emphasis

  5. Engineering crystals of dendritic molecules.

    PubMed

    Lukin, Oleg; Schubert, Dirk; Müller, Claudia M; Schweizer, W Bernd; Gramlich, Volker; Schneider, Julian; Dolgonos, Grygoriy; Shivanyuk, Alexander

    2009-07-01

    A detailed single-crystal X-ray study of conformationally flexible sulfonimide-based dendritic molecules with systematically varied molecular architectures was undertaken. Thirteen crystal structures reported in this work include 9 structures of the second-generation dendritic sulfonimides decorated with different aryl groups, 2 compounds bearing branches of both second and first generation, and 2 representatives of the first generation. Analysis of the packing patterns of 9 compounds bearing second-generation branches shows that despite their lack of strong directive functional groups there is a repeatedly reproduced intermolecular interaction mode consisting in an anchor-type packing of complementary second-generation branches of neighbouring molecules. The observed interaction tolerates a wide range of substituents in meta- and para-positions of the peripheral arylsulfonyl rings. Quantum chemical calculations of the molecule-molecule interaction energies agree at the qualitative level with the packing preferences found in the crystalline state. The calculations can therefore be used as a tool to rationalize and predict molecular structures with commensurate and non-commensurate branches for programming of different packing modes in crystal. PMID:19549870

  6. Engineering crystals of dendritic molecules

    PubMed Central

    Lukin, Oleg; Schubert, Dirk; Müller, Claudia M.; Schweizer, W. Bernd; Gramlich, Volker; Schneider, Julian; Dolgonos, Grygoriy; Shivanyuk, Alexander

    2009-01-01

    A detailed single-crystal X-ray study of conformationally flexible sulfonimide-based dendritic molecules with systematically varied molecular architectures was undertaken. Thirteen crystal structures reported in this work include 9 structures of the second-generation dendritic sulfonimides decorated with different aryl groups, 2 compounds bearing branches of both second and first generation, and 2 representatives of the first generation. Analysis of the packing patterns of 9 compounds bearing second-generation branches shows that despite their lack of strong directive functional groups there is a repeatedly reproduced intermolecular interaction mode consisting in an anchor-type packing of complementary second-generation branches of neighbouring molecules. The observed interaction tolerates a wide range of substituents in meta- and para-positions of the peripheral arylsulfonyl rings. Quantum chemical calculations of the molecule-molecule interaction energies agree at the qualitative level with the packing preferences found in the crystalline state. The calculations can therefore be used as a tool to rationalize and predict molecular structures with commensurate and non-commensurate branches for programming of different packing modes in crystal. PMID:19549870

  7. Pharyngolaryngeal location of Kaposi's sarcoma with airway obstruction in an HIV-negative patient.

    PubMed

    Torretta, Sara; Gaffuri, Michele; Recalcati, Sebastiano; Marzano, Angelo Valerio; Cantarella, Giovanna; Iofrida, Elisabetta; Pignataro, Lorenzo

    2013-01-01

    Kaposi's sarcoma (KS) is a human herpes virus-8 (HHV-8)-associated angioproliferative disorder, and its occurrence may be favored by human immunodeficiency virus (HIV) infection and iatrogenic immunosuppression. It has also been postulated that a chronic inflammatory disease of the skin can pave the way to its development. KS generally involves mucosal and cutaneous sites, including the head and neck. An oropharyngeal location is quite common, but laryngeal involvement with possible upper airway obstruction and respiratory distress requiring tracheotomy is rare, and no hypopharyngeal locations have yet been reported. We describe the case of a 68-year-old male patient who developed KS after immunosuppressive treatment for pemphigus vulgaris, an autoimmune bullous disease presenting with blisters and erosions on the skin and the oral mucosa. KS was initially localized to the oral cavity and oropharynx, but subsequent involvement of the laryngeal and hypopharyngeal tract led to acute airway obstruction and the need for tracheotomy. This unique case of pharyngolaryngeal KS suggests that clinicians faced with purple nodular lesions should consider a differential diagnosis of KS in immunocompromised patients, even if they are HIV negative, and should carefully manage the patency of the upper airways. PMID:24362871

  8. The mucosal humoral immune response of the horse to infective challenge and vaccination with equine herpesvirus-1 antigens.

    PubMed

    Breathnach, C C; Yeargan, M R; Sheoran, A S; Allen, G P

    2001-11-01

    Equine herpesvirus-1 (EHV-1) remains a frequent cause of upper respiratory tract infection and abortion in horses worldwide. However, little is known about the local antibody response elicited in the upper airways of horses following exposure to EHV-1. This study analysed the mucosal humoral immune response of weanling foals following experimental infection with virulent EHV-1, or vaccination with either of 2 commercial vaccines. Twenty weanlings were assigned to 5 groups and were inoculated with, or vaccinated against, EHV-1 following different regimens. Finally, all weanlings were simultaneously challenged intranasally with virulent EHV-1 Army 183 (A183). Nasal wash and serum samples were collected at regular intervals until 13 weeks after final challenge. Nasal washes were assayed for EHV-1-specific equine IgGa, IgGb, IgG(T), IgA, IgM and total virus-specific antibody using an indirect, quantitative ELISA. Total serum antibody responses were also monitored, and clinical signs of EHV-disease were recorded for each individual. Virus-specific IgA dominated the mucosal antibody response elicited in weanlings inoculated with A183, being detectable at up to 3.1 microg/mg total IgA 13 weeks after challenge. Neither inactivated EHV-1 administered i.m., nor attenuated EHV-1 administered intranasally induced detectable mucosal antibodies. EHV-1-specific mucosal antibodies impeded EHV-1 plaque formation in vitro. Such virus-neutralising antibody probably contributes to a reduction of shedding of EHV-1 from the respiratory tract of virus-infected horses. PMID:11770985

  9. Gastric Mucosal Protection by Aegle Marmelos Against Gastric Mucosal Damage: Role of Enterochromaffin Cell and Serotonin

    PubMed Central

    Singh, Purnima; Dutta, Shubha R.; Guha, Debjani

    2015-01-01

    Background/Aims: Serotonin (5-hydroxytryptamine; 5-HT) released from enterochromaffin (EC) cells in gastric mucosa inhibits gastric acidity by increasing the gastric mucus secretion. In the present study, we evaluated the effect of aqueous extract of Aegle marmelos (AM) ripe fruit pulp (250 mg/kg body weight) on mean ulcer index (MUI), EC cells, 5-HT content, and adherent mucosal thickness of ulcerated gastric tissue in adult albino rats. Material and Methods: Ulceration was induced by using aspirin (500 mg/kg, p.o.), cerebellar nodular lesion and applying cold-restraint stress. Results: In all cases increased MUI in gastric tissue along with decreased EC cell count was observed with concomitant decrease of 5-HT content and adherent mucosal thickness (P < 0.05). Pretreatment with AM for 14 days decreased MUI, increased EC cell count, and 5-HT content as well as adherent mucosal thickness in all ulcerated group (P < 0.05). Conclusion: AM produces gastric mucosal protection mediated by increased EC cell count and 5-HT levels. PMID:25672237

  10. Evaluation of a suspicious oral mucosal lesion.

    PubMed

    Williams, P Michele; Poh, Catherine F; Hovan, Allan J; Ng, Samson; Rosin, Miriam P

    2008-04-01

    Dentists who encounter a change in the oral mucosa of a patient must decide whether the abnormality requires further investigation. In this paper, we describe a systematic approach to the assessment of oral mucosal conditions that are thought likely to be premalignant or an early cancer. These steps, which include a comprehensive history, step-by-step clinical examination (including use of adjunctive visual tools), diagnostic testing and formulation of diagnosis, are routinely used in clinics affiliated with the British Columbia Oral Cancer Prevention Program (BC OCPP) and are recommended for consideration by dentists for use in daily practice. PMID:18387268

  11. Peptic activity and gastroduodenal mucosal damage.

    PubMed Central

    Raufman, J. P.

    1996-01-01

    This contribution reviews briefly the history of the discovery and characterization of peptic activity; secretory models and current concepts regarding the regulation of pepsinogen secretion; and evidence that pepsin is a necessary co-factor for gastroduodenal mucosal injury. Several animal studies indicate that peptic activity is required for acid- and nonsteroidal anti-inflammatory drug-induced gastroduodenal ulceration. A more vigorous approach to the development of anti-peptic drugs for the treatment of peptic ulcer disease is encouraged. Images Figure 1 PMID:9041694

  12. Mucosal Lesions in an Allergy Practice.

    PubMed

    Kohorst, John J; Bruce, Alison J; Torgerson, Rochelle R

    2016-04-01

    The diagnosis and treatment of mucosal disease with an allergic pathogenesis are challenging. Oral allergy is often a hypersensitivity reaction with variable symptoms and physical exam findings. Clinical diagnosis requires a history of prior allergen exposure, a delay from exposure to clinical findings, and improvement following allergen removal. The past decades have seen great contributions to the field of oral allergy. The aim of this review is to provide an approach to the diagnosis and treatment of oral dermatologic disease with a focus on diseases with an investigated allergic pathogenesis. PMID:26922434

  13. Retinoic acid treated human dendritic cells induce T regulatory cells via the expression of CD141 and GARP which is impaired with age.

    PubMed

    Agrawal, Sudhanshu; Ganguly, Sreerupa; Tran, Alexander; Sundaram, Padmaja; Agrawal, Anshu

    2016-06-01

    Aged subjects display increased susceptibility to mucosal diseases. Retinoic Acid (RA) plays a major role in inducing tolerance in the mucosa. RA acts on Dendritic cells (DCs) to induce mucosal tolerance. Here we compared the response of DCs from aged and young individuals to RA with a view to understand the role of DCs in age-associated increased susceptibility to mucosal diseases. Our investigations revealed that compared to young DCs, RA stimulated DCs from aged subjects are defective in inducing IL-10 and T regulatory cells. Examinations of the underlying mechanisms indicated that RA exposure led to the upregulation of CD141 and GARP on DCs which rendered the DCs tolerogenic. CD141(hi), GARP(+) DCs displayed enhanced capacity to induce T regulatory cells compared to CD141(lo) and GARP(-) DCs. Unlike RA stimulated DCs from young, DCs from aged subjects exhibited diminished upregulation of both CD141 and GARP. The percentage of DCs expressing CD141 and GARP on RA treatment was significantly reduced in DCs from aged individuals. Furthermore, the remaining CD141(hi), GARP(+) DCs from aged individuals were also deficient in inducing T regs. In summary, reduced response of aged DCs to RA enhances mucosal inflammation in the elderly, increasing their susceptibility to mucosal diseases. PMID:27244900

  14. Retinoic acid treated human dendritic cells induce T regulatory cells via the expression of CD141 and GARP which is impaired with age

    PubMed Central

    Agrawal, Sudhanshu; Ganguly, Sreerupa; Tran, Alexander; Sundaram, Padmaja; Agrawal, Anshu

    2016-01-01

    Aged subjects display increased susceptibility to mucosal diseases. Retinoic Acid (RA) plays a major role in inducing tolerance in the mucosa. RA acts on Dendritic cells (DCs) to induce mucosal tolerance. Here we compared the response of DCs from aged and young individuals to RA with a view to understand the role of DCs in age-associated increased susceptibility to mucosal diseases. Our investigations revealed that compared to young DCs, RA stimulated DCs from aged subjects are defective in inducing IL-10 and T regulatory cells. Examinations of the underlying mechanisms indicated that RA exposure led to the upregulation of CD141 and GARP on DCs which rendered the DCs tolerogenic. CD141hi, GARP+ DCs displayed enhanced capacity to induce T regulatory cells compared to CD141lo and GARP− DCs. Unlike RA stimulated DCs from young, DCs from aged subjects exhibited diminished upregulation of both CD141 and GARP. The percentage of DCs expressing CD141 and GARP on RA treatment was significantly reduced in DCs from aged individuals. Furthermore, the remaining CD141hi, GARP+ DCs from aged individuals were also deficient in inducing T regs. In summary, reduced response of aged DCs to RA enhances mucosal inflammation in the elderly, increasing their susceptibility to mucosal diseases. PMID:27244900

  15. Effects of tracheal airway occlusion on hyoid muscle length and upper airway volume.

    PubMed

    van Lunteren, E; Haxhiu, M A; Cherniack, N S

    1989-12-01

    Complex relationships exist among electromyograms (EMGs) of the upper airway muscles, respective changes in muscle length, and upper airway volume. To test the effects of preventing lung inflation on these relationships, recordings were made of EMGs and length changes of the geniohyoid (GH) and sternohyoid (SH) muscles as well as of tidal changes in upper airway volume in eight anesthetized cats. During resting breathing, tracheal airway occlusion tended to increase the inspiratory lengthening of GH and SH. In response to progressive hypercapnia, the GH eventually shortened during inspiration in all animals; the extent of muscle shortening was minimally augmented by airway occlusion despite substantial increases in EMGs. SH lengthened during inspiration in six of eight animals under hypercapnic conditions, and in these cats lengthening was greater during airway occlusion even though EMGs increased. Despite the above effects on SH and GH length, upper airway tidal volume was increased significantly by tracheal occlusion under hypercapnic conditions. These data suggest that the thoracic and upper airway muscle reflex effects of preventing lung inflation during inspiration act antagonistically on hyoid muscle length, but, because of the mechanical arrangement of the hyoid muscles relative to the airway and thorax, they act agonistically to augment tidal changes in upper airway volume. The augmentation of upper airway tidal volume may occur in part as a result of the effects of thoracic movements being passively transmitted through the hyoid muscles. PMID:2606835

  16. Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma

    PubMed Central

    An, S.S.; Bai, T.R.; Bates, J.H.T.; Black, J.L.; Brown, R.H.; Brusasco, V.; Chitano, P.; Deng, L.; Dowell, M.; Eidelman, D.H.; Fabry, B.; Fairbank, N.J.; Ford, L.E.; Fredberg, J.J.; Gerthoffer, W.T.; Gilbert, S.H.; Gosens, R.; Gunst, S.J.; Halayko, A.J.; Ingram, R.H.; Irvin, C.G.; James, A.L.; Janssen, L.J.; King, G.G.; Knight, D.A.; Lauzon, A.M.; Lakser, O.J.; Ludwig, M.S.; Lutchen, K.R.; Maksym, G.N.; Martin, J.G.; Mauad, T.; McParland, B.E.; Mijailovich, S.M.; Mitchell, H.W.; Mitchell, R.W.; Mitzner, W.; Murphy, T.M.; Paré, P.D.; Pellegrino, R.; Sanderson, M.J.; Schellenberg, R.R.; Seow, C.Y.; Silveira, P.S.P.; Smith, P.G.; Solway, J.; Stephens, N.L.; Sterk, P.J.; Stewart, A.G.; Tang, D.D.; Tepper, R.S.; Tran, T.; Wang, L.

    2008-01-01

    Excessive airway obstruction is the cause of symptoms and abnormal lung function in asthma. As airway smooth muscle (ASM) is the effecter controlling airway calibre, it is suspected that dysfunction of ASM contributes to the pathophysiology of asthma. However, the precise role of ASM in the series of events leading to asthmatic symptoms is not clear. It is not certain whether, in asthma, there is a change in the intrinsic properties of ASM, a change in the structure and mechanical properties of the noncontractile components of the airway wall, or a change in the interdependence of the airway wall with the surrounding lung parenchyma. All these potential changes could result from acute or chronic airway inflammation and associated tissue repair and remodelling. Anti-inflammatory therapy, however, does not “cure” asthma, and airway hyperresponsiveness can persist in asthmatics, even in the absence of airway inflammation. This is perhaps because the therapy does not directly address a fundamental abnormality of asthma, that of exaggerated airway narrowing due to excessive shortening of ASM. In the present study, a central role for airway smooth muscle in the pathogenesis of airway hyperresponsiveness in asthma is explored. PMID:17470619

  17. Dexmedetomidine decreases the oral mucosal blood flow.

    PubMed

    Kawaai, Hiroyoshi; Yoshida, Kenji; Tanaka, Eri; Togami, Kohei; Tada, Hitoshi; Ganzberg, Steven; Yamazaki, Shinya

    2013-12-01

    There is an abundance of blood vessels in the oral cavity, and intraoperative bleeding can disrupt operations. There have been some interesting reports about constriction of vessels in the oral cavity, one of which reported that gingival blood flow in cats is controlled by sympathetic α-adrenergic fibres that are involved with vasoconstriction. Dexmedetomidine is a sedative and analgesic agent that acts through the α-2 adrenoceptor, and is expected to have a vasoconstrictive action in the oral cavity. We have focused on the relation between the effects of α-adrenoceptors by dexmedetomidine and vasoconstriction in oral tissues, and assessed the oral mucosal blood flow during sedation with dexmedetomidine. The subjects comprised 13 healthy male volunteers, sedated with dexmedetomidine in a loading dose of 6 μg/kg/h for 10 min and a continuous infusion of 0.7 μg/kg/h for 32 min. The mean arterial pressure (MAP), heart rate (HR), cardiac output (CO), stroke volume (SV), systemic vascular resistance (SVR), and palatal mucosal blood flow (PMBF) were measured at 0, 5, 10, 12, 22, and 32 min after the start of the infusion. The HR, CO, and PBMF decreased significantly during the infusion even though there were no differences in the SV. The SVR increased significantly but the PMBF decreased significantly. In conclusion, PMBF was reduced by the mediating effect of dexmedetomidine on α-2 adrenoceptors. PMID:23958351

  18. Gastrointestinal mucosal barrier function and diseases.

    PubMed

    Oshima, Tadayuki; Miwa, Hiroto

    2016-08-01

    The gastrointestinal mucosal barrier plays an essential role in the separation of the inside of the body from the outside environment. Tight junctions (TJs) are the most important component for construction of a constitutive barrier of epithelial cells, and they regulate the permeability of the barrier by tightly sealing the cell-cell junctions. TJ proteins are represented by claudins, occludin, junctional adhesion molecules, and scaffold protein zonula occludens. Among these TJ proteins, claudins are the major components of TJs and are responsible for the barrier and the polarity of the epithelial cells. Gastrointestinal diseases including reflux esophagitis, inflammatory bowel disease, functional gastrointestinal disorders, and cancers may be regulated by these molecules, and disruption of their functions leads to chronic inflammatory conditions and chronic or progressive disease. Therefore, regulation of the barrier function of epithelial cells by regulating the expression and localization of TJ proteins is a potential new target for the treatment of these diseases. Treatment strategies for these diseases might thus be largely altered if symptom generation and/or immune dysfunction could be regulated through improvement of mucosal barrier function. Since TJ proteins may also modify tumor infiltration and metastasis, other important goals include finding a good TJ biomarker of cancer progression and patient prognosis, and developing TJ protein-targeted therapies that can modify patient prognosis. This review summarizes current understanding of gastrointestinal barrier function, TJ protein expression, and the mechanisms underlying epithelial barrier dysregulation in gastrointestinal diseases. PMID:27048502

  19. Canine oral mucosal mast cell tumours.

    PubMed

    Elliott, J W; Cripps, P; Blackwood, L; Berlato, D; Murphy, S; Grant, I A

    2016-03-01

    Mast cell tumours (MCTs) are the most common cutaneous tumours of dogs, however rarely they can arise from the oral mucosa. This subset of MCT is reported to demonstrate a more aggressive clinical course than those tumours on the haired skin and the authors hypothesised that dogs with oral, mucosal MCT would have a high incidence of local lymph node metastasis at presentation and that this would be a negative prognostic factor. An additional hypothesis was that mitotic index (MI) would be prognostic. This retrospective study examines 33 dogs with MCTs arising from the oral mucosa. The results suggest that oral mucosal MCTs in the dog have a high incidence of lymph node metastasis at diagnosis (55%) which results in a poor prognosis. MI and nodal metastasis is highly prognostic. Loco-regional progression is common in these patients and dogs with adequate local control of their tumour had an improved outcome. Despite a more aggressive clinical course, treatment can result in protracted survivals, even when metastasis is present. PMID:24215587

  20. Athletic Trainers' Knowledge Regarding Airway Adjuncts

    ERIC Educational Resources Information Center

    Edler, Jessica R.; Eberman, Lindsey E.; Kahanov, Leamor; Roman, Christopher; Mata, Heather Lynne

    2015-01-01

    Context: Research suggests that knowledge gaps regarding the appropriate use of airway adjuncts exist among various health care practitioners, and that knowledge is especially limited within athletic training. Objective: To determine the relationship between perceived knowledge (PK) and actual knowledge (AK) of airway adjunct use and the…

  1. SUBCHRONIC ENDOTOXIN INHALATION CAUSES PERSISTENT AIRWAY DISEASE

    EPA Science Inventory

    ABSTRACT

    The endotoxin component of organic dusts causes acute reversible airflow obstruction and airway inflammation. To test the hypothesis that endotoxin alone causes airway remodeling, we have compared the response of two inbred mouse strains to subchronic endotoxin ...

  2. Airway and Extracellular Matrix Mechanics in COPD

    PubMed Central

    Bidan, Cécile M.; Veldsink, Annemiek C.; Meurs, Herman; Gosens, Reinoud

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the most common lung diseases worldwide, and is characterized by airflow obstruction that is not fully reversible with treatment. Even though airflow obstruction is caused by airway smooth muscle contraction, the extent of airway narrowing depends on a range of other structural and functional determinants that impact on active and passive tissue mechanics. Cells and extracellular matrix in the airway and parenchymal compartments respond both passively and actively to the mechanical stimulation induced by smooth muscle contraction. In this review, we summarize the factors that regulate airway narrowing and provide insight into the relative contributions of different constituents of the extracellular matrix and their biomechanical impact on airway obstruction. We then review the changes in extracellular matrix composition in the airway and parenchymal compartments at different stages of COPD, and finally discuss how these changes impact airway narrowing and the development of airway hyperresponsiveness. Finally, we position these data in the context of therapeutic research focused on defective tissue repair. As a conclusion, we propose that future works should primarily target mild or early COPD, prior to the widespread structural changes in the alveolar compartment that are more characteristic of severe COPD. PMID:26696894

  3. 21 CFR 868.5100 - Nasopharyngeal airway.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nasopharyngeal airway. 868.5100 Section 868.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5100 Nasopharyngeal airway....

  4. 21 CFR 868.5110 - Oropharyngeal airway.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Oropharyngeal airway. 868.5110 Section 868.5110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5110 Oropharyngeal airway....

  5. 21 CFR 868.5100 - Nasopharyngeal airway.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nasopharyngeal airway. 868.5100 Section 868.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5100 Nasopharyngeal airway....

  6. 21 CFR 868.5110 - Oropharyngeal airway.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Oropharyngeal airway. 868.5110 Section 868.5110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5110 Oropharyngeal airway....

  7. 21 CFR 868.5100 - Nasopharyngeal airway.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nasopharyngeal airway. 868.5100 Section 868.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5100 Nasopharyngeal airway....

  8. 21 CFR 868.5100 - Nasopharyngeal airway.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nasopharyngeal airway. 868.5100 Section 868.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5100 Nasopharyngeal airway....

  9. 21 CFR 868.5110 - Oropharyngeal airway.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Oropharyngeal airway. 868.5110 Section 868.5110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5110 Oropharyngeal airway....

  10. 21 CFR 868.5100 - Nasopharyngeal airway.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nasopharyngeal airway. 868.5100 Section 868.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5100 Nasopharyngeal airway....

  11. Resveratrol Enhances Airway Surface Liquid Depth in Sinonasal Epithelium by Increasing Cystic Fibrosis Transmembrane Conductance Regulator Open Probability

    PubMed Central

    Zhang, Shaoyan; Blount, Angela C.; McNicholas, Carmel M.; Skinner, Daniel F.; Chestnut, Michael; Kappes, John C.; Sorscher, Eric J.; Woodworth, Bradford A.

    2013-01-01

    Background Chronic rhinosinusitis engenders enormous morbidity in the general population, and is often refractory to medical intervention. Compounds that augment mucociliary clearance in airway epithelia represent a novel treatment strategy for diseases of mucus stasis. A dominant fluid and electrolyte secretory pathway in the nasal airways is governed by the cystic fibrosis transmembrane conductance regulator (CFTR). The objectives of the present study were to test resveratrol, a strong potentiator of CFTR channel open probability, in preparation for a clinical trial of mucociliary activators in human sinus disease. Methods Primary sinonasal epithelial cells, immortalized bronchoepithelial cells (wild type and F508del CFTR), and HEK293 cells expressing exogenous human CFTR were investigated by Ussing chamber as well as patch clamp technique under non-phosphorylating conditions. Effects on airway surface liquid depth were measured using confocal laser scanning microscopy. Impact on CFTR gene expression was measured by quantitative reverse transcriptase polymerase chain reaction. Results Resveratrol is a robust CFTR channel potentiator in numerous mammalian species. The compound also activated temperature corrected F508del CFTR and enhanced CFTR-dependent chloride secretion in human sinus epithelium ex vivo to an extent comparable to the recently approved CFTR potentiator, ivacaftor. Using inside out patches from apical membranes of murine cells, resveratrol stimulated an ~8 picosiemens chloride channel consistent with CFTR. This observation was confirmed in HEK293 cells expressing exogenous CFTR. Treatment of sinonasal epithelium resulted in a significant increase in airway surface liquid depth (in µm: 8.08+/-1.68 vs. 6.11+/-0.47,control,p<0.05). There was no increase CFTR mRNA. Conclusion Resveratrol is a potent chloride secretagogue from the mucosal surface of sinonasal epithelium, and hydrates airway surface liquid by increasing CFTR channel open probability

  12. Production of β-defensins by human airway epithelia

    PubMed Central

    Singh, Pradeep K.; Jia, Hong Peng; Wiles, Kerry; Hesselberth, Jay; Liu, Lide; Conway, Barbara-Ann D.; Greenberg, Everett P.; Valore, Erika V.; Welsh, Michael J.; Ganz, Tomas; Tack, Brian F.; McCray, Paul B.

    1998-01-01

    Human β-defensins (HBDs) are antimicrobial peptides that may play a role in mucosal defense. Diminished activity of these peptides has been implicated in the pathogenesis of cystic fibrosis (CF) lung disease. We show that HBD-1 and HBD-2 mRNAs are expressed in excised surface and submucosal gland epithelia from non-CF and CF patients. The pro-inflammatory cytokine interleukin-1β stimulated the expression of HBD-2 but not HBD-1 mRNA and peptide in primary cultures of airway epithelia. HBD-1 was found in bronchoalveolar lavage (BAL) fluid from normal volunteers, CF patients, and patients with inflammatory lung diseases, whereas HBD-2 was detected in BAL fluid from patients with CF or inflammatory lung diseases, but not in normal volunteers. Both HBD-1 and HBD-2 were found in BAL fluid in concentrations of several ng/ml, and both recombinant peptides showed salt-sensitive bactericidal activity. These data suggest that in the lung HBD-2 expression is induced by inflammation, whereas HBD-1 may serve as a defense in the absence of inflammation. PMID:9843998

  13. Neurturin influences inflammatory responses and airway remodeling in different mouse asthma models.

    PubMed

    Mauffray, Marion; Domingues, Olivia; Hentges, François; Zimmer, Jacques; Hanau, Daniel; Michel, Tatiana

    2015-02-15

    Neurturin (NTN) was previously described for its neuronal activities, but recently, we have shown that this factor is also involved in asthma physiopathology. However, the underlying mechanisms of NTN are unclear. The aim of this study was to investigate NTN involvement in acute bronchial Th2 responses, to analyze its interaction with airway structural cells, and to study its implication in remodeling during acute and chronic bronchial inflammation in C57BL/6 mice. We analyzed the features of allergic airway inflammation in wild-type and NTN(-/-) mice after sensitization with two different allergens, OVA and house dust mite. We showed that NTN(-/-) dendritic cells and T cells had a stronger tendency to activate the Th2 pathway in vitro than similar wild-type cells. Furthermore, NTN(-/-) mice had significantly increased markers of airway remodeling like collagen deposition. NTN(-/-) lung tissues showed higher levels of neutrophils, cytokine-induced neutrophil chemoattractant, matrix metalloproteinase 9, TNF-α, and IL-6. Finally, NTN had the capacity to decrease IL-6 and TNF-α production by immune and epithelial cells, showing a direct anti-inflammatory activity on these cells. Our findings support the hypothesis that NTN could modulate the allergic inflammation in different mouse asthma models. PMID:25595789

  14. Bystander immunotherapy as a strategy to control allergen-driven airway inflammation.

    PubMed

    Navarro, S; Lazzari, A; Kanda, A; Fleury, S; Dombrowicz, D; Glaichenhaus, N; Julia, V

    2015-07-01

    Allergic asthma is a chronic inflammatory disease characterized by airway hyperresponsiveness (AHR), lung infiltration of Th2 cells, and high levels of IgE. To date, allergen-specific immunotherapy (SIT) is the only treatment that effectively alleviates clinical symptoms and has a long-term effect after termination. Unfortunately, SIT is unsuitable for plurisensitized patients, and highly immunogenic allergens cannot be used. To overcome these hurdles, we sought to induce regulatory CD4(+) T cells (Treg) specific to an exogenous antigen that could be later activated as needed in vivo to control allergic responses. We have established an experimental approach in which mice tolerized to ovalbumin (OVA) were sensitized to the Leishmania homolog of receptors for activated c kinase (LACK) antigen, and subsequently challenged with aerosols of LACK alone or LACK and OVA together. Upon OVA administration, AHR and allergic airway responses were strongly reduced. OVA-induced suppression was mediated by CD25(+) Treg, required CTLA-4 and ICOS signaling and resulted in decreased numbers of migrating airway dendritic cells leading to a strong impairment in the proliferation of allergen-specific Th2 cells. Therefore, inducing Treg specific to a therapeutic antigen that could be further activated in vivo may represent a safe and novel curative approach for allergic asthma. PMID:25425267

  15. Difficult Airway Response Team: A Novel Quality Improvement Program for Managing Hospital-Wide Airway Emergencies

    PubMed Central

    Mark, Lynette J.; Herzer, Kurt R.; Cover, Renee; Pandian, Vinciya; Bhatti, Nasir I.; Berkow, Lauren C.; Haut, Elliott R.; Hillel, Alexander T.; Miller, Christina R.; Feller-Kopman, David J.; Schiavi, Adam J.; Xie, Yanjun J.; Lim, Christine; Holzmueller, Christine; Ahmad, Mueen; Thomas, Pradeep; Flint, Paul W.; Mirski, Marek A.

    2015-01-01

    Background Difficult airway cases can quickly become emergencies, increasing the risk of life-threatening complications or death. Emergency airway management outside the operating room is particularly challenging. Methods We developed a quality improvement program—the Difficult Airway Response Team (DART)—to improve emergency airway management outside the operating room. DART was implemented by a team of anesthesiologists, otolaryngologists, trauma surgeons, emergency medicine physicians, and risk managers in 2005 at The Johns Hopkins Hospital in Baltimore, Maryland. The DART program had three core components: operations, safety, and education. The operations component focused on developing a multidisciplinary difficult airway response team, standardizing the emergency response process, and deploying difficult airway equipment carts throughout the hospital. The safety component focused on real-time monitoring of DART activations and learning from past DART events to continuously improve system-level performance. This objective entailed monitoring the paging system, reporting difficult airway events and DART activations to a web-based registry, and using in situ simulations to identify and mitigate defects in the emergency airway management process. The educational component included development of a multispecialty difficult airway curriculum encompassing case-based lectures, simulation, and team building/communication to ensure consistency of care. Educational materials were also developed for non-DART staff and patients to inform them about the needs of patients with difficult airways and ensure continuity of care with other providers after discharge. Results Between July 2008 and June 2013, DART managed 360 adult difficult airway events comprising 8% of all code activations. Predisposing patient factors included body mass index > 40, history of head and neck tumor, prior difficult intubation, cervical spine injury, airway edema, airway bleeding, and previous

  16. OCT visualization of acute radiation mucositis: pilot study

    NASA Astrophysics Data System (ADS)

    Gladkova, Natalia; Maslennikova, Anna; Terentieva, Anna; Fomina, Yulia; Khomutinnikova, Nina; Balalaeva, Irina; Vyseltseva, Yulia; Larin, Roman; Kornoukhova, Natalia; Shakhov, Andrey; Shakhova, Natalia; Gelikonov, Grigory; Kamensky, Vladislav; Feldchtein, Felix

    2005-08-01

    We present pilot results in optical coherence tomography (OCT) visualization of normal mucosa radiation damage. 15 patients undergoing radiation treatment of head and neck cancer were enrolled. OCT was used to monitor the mucositis development during and after treatment. OCT can see stages of radiation mucositis development, including hidden ones, before any clinical manifestations.

  17. Induction of mucosal immunity through systemic immunization: Phantom or reality?

    PubMed

    Su, Fei; Patel, Girishchandra B; Hu, Songhua; Chen, Wangxue

    2016-04-01

    Generation of protective immunity at mucosal surfaces can greatly assist the host defense against pathogens which either cause disease at the mucosal epithelial barriers or enter the host through these surfaces. Although mucosal routes of immunization, such as intranasal and oral, are being intensely explored and appear promising for eliciting protective mucosal immunity in mammals, their application in clinical practice has been limited due to technical and safety related challenges. Most of the currently approved human vaccines are administered via systemic (such as intramuscular and subcutaneous) routes. Whereas these routes are acknowledged as being capable to elicit antigen-specific systemic humoral and cell-mediated immune responses, they are generally perceived as incapable of generating IgA responses or protective mucosal immunity. Nevertheless, currently licensed systemic vaccines do provide effective protection against mucosal pathogens such as influenza viruses and Streptococcus pneumoniae. However, whether systemic immunization induces protective mucosal immunity remains a controversial topic. Here we reviewed the current literature and discussed the potential of systemic routes of immunization for the induction of mucosal immunity. PMID:26752023

  18. Effects of mucosal loading on vocal fold vibration

    NASA Astrophysics Data System (ADS)

    Tao, Chao; Jiang, Jack J.

    2009-06-01

    A chain model was proposed in this study to examine the effects of mucosal loading on vocal fold vibration. Mucosal loading was defined as the loading caused by the interaction between the vocal folds and the surrounding tissue. In the proposed model, the vocal folds and the surrounding tissue were represented by a series of oscillators connected by a coupling spring. The lumped masses, springs, and dampers of the oscillators modeled the tissue properties of mass, stiffness, and viscosity, respectively. The coupling spring exemplified the tissue interactions. By numerically solving this chain model, the effects of mucosal loading on the phonation threshold pressure, phonation instability pressure, and energy distribution in a voice production system were studied. It was found that when mucosal loading is small, phonation threshold pressure increases with the damping constant Rr, the mass constant Rm, and the coupling constant Rμ of mucosal loading but decreases with the stiffness constant Rk. Phonation instability pressure is also related to mucosal loading. It was found that phonation instability pressure increases with the coupling constant Rμ but decreases with the stiffness constant Rk of mucosal loading. Therefore, it was concluded that mucosal loading directly affects voice production.

  19. Airway tissue engineering for congenital laryngotracheal disease.

    PubMed

    Maughan, Elizabeth; Lesage, Flore; Butler, Colin R; Hynds, Robert E; Hewitt, Richard; Janes, Sam M; Deprest, Jan A; Coppi, Paolo De

    2016-06-01

    Regenerative medicine offers hope of a sustainable solution for severe airway disease by the creation of functional, immunocompatible organ replacements. When considering fetuses and newborns, there is a specific spectrum of airway pathologies that could benefit from cell therapy and tissue engineering applications. While hypoplastic lungs associated with congenital diaphragmatic hernia (CDH) could benefit from cellular based treatments aimed at ameliorating lung function, patients with upper airway obstruction could take advantage from a de novo tissue engineering approach. Moreover, the international acceptance of the EXIT procedure as a means of securing the precarious neonatal airway, together with the advent of fetal surgery as a method of heading off postnatal co-morbidities, offers the revolutionary possibility of extending the clinical indication for tissue-engineered airway transplantation to infants affected by diverse severe congenital laryngotracheal malformations. This article outlines the necessary basic components for regenerative medicine solutions in this potential clinical niche. PMID:27301606

  20. Regulation of human airway surface liquid.

    PubMed

    Widdicombe, J H; Widdicombe, J G

    1995-01-01

    Human airways are lined with a film of liquid from 5-100 microns in depth, consisting of a periciliary sol around and a mucous gel above the cilia. Microscopical studies have shown the sol to be invariably the same depth as the length of the cilia, and we discuss possible reasons for this. The composition and sources of the airway surface liquid are also described. In addition the forces regulating its volume are analyzed. Several airway diseases are characterised by dramatic changes in the volume and composition of airway liquid. We review recent research suggesting that the accumulation of airway mucous secretions in cystic fibrosis is caused by alterations in active transport of ions and water across both the surface and gland epithelia. PMID:7740210

  1. Awake Craniotomy: A New Airway Approach.

    PubMed

    Sivasankar, Chitra; Schlichter, Rolf A; Baranov, Dimitry; Kofke, W Andrew

    2016-02-01

    Awake craniotomies have been performed regularly at the University of Pennsylvania since 2004. Varying approaches to airway management are described for this procedure, including intubation with an endotracheal tube and use of a laryngeal mask airway, simple facemask, or nasal cannula. In this case series, we describe the successful use (i.e., no need for endotracheal intubation related to inadequate gas exchange) of bilateral nasopharyngeal airways in 90 patients undergoing awake craniotomies. The use of nasopharyngeal airways can ease the transition between the asleep and awake phases of the craniotomy without the need to stimulate the airway. Our purpose was to describe our experience and report adverse events related to this technique. PMID:26579845

  2. Airway fires during surgery: Management and prevention

    PubMed Central

    Akhtar, Navaid; Ansar, Farrukh; Baig, Mirza Shahzad; Abbas, Akbar

    2016-01-01

    Airway fires pose a serious risk to surgical patients. Fires during surgery have been reported for many years with flammable anesthetic agents being the main culprits in the past. Association of airway fires with laser surgery is well-recognized, but there are reports of endotracheal tube fires ignited by electrocautery during pharyngeal surgery or tracheostomy or both. This uncommon complication has potentially grave consequences. While airway fires are relatively uncommon occurrences, they are very serious and can often be fatal. Success in preventing such events requires a thorough understanding of the components leading to a fire (fuel, oxidizer, and ignition source), as well as good communication between all members present to appropriately manage the fire and ensure patient safety. We present a case of fire in the airway during routine adenotonsillectomy. We will review the causes, preventive measures, and brief management for airway fires. PMID:27006554

  3. Anaesthetic management of acute airway obstruction

    PubMed Central

    Wong, Patrick; Wong, Jolin; Mok, May Un Sam

    2016-01-01

    The acutely obstructed airway is a medical emergency that can potentially result in serious morbidity and mortality. Apart from the latest advancements in anaesthetic techniques, equipment and drugs, publications relevant to our topic, including the United Kingdom’s 4th National Audit Project on major airway complications in 2011 and the updated American Society of Anesthesiologists’ difficult airway algorithm of 2013, have recently been published. The former contained many reports of adverse events associated with the management of acute airway obstruction. By analysing the data and concepts from these two publications, this review article provides an update on management techniques for the acutely obstructed airway. We discuss the principles and factors relevant to the decision-making process in formulating a logical management plan. PMID:26996162

  4. Anaesthetic management of acute airway obstruction.

    PubMed

    Wong, Patrick; Wong, Jolin; Mok, May Un Sam

    2016-03-01

    The acutely obstructed airway is a medical emergency that can potentially result in serious morbidity and mortality. Apart from the latest advancements in anaesthetic techniques, equipment and drugs, publications relevant to our topic, including the United Kingdom's 4th National Audit Project on major airway complications in 2011 and the updated American Society of Anesthesiologists' difficult airway algorithm of 2013, have recently been published. The former contained many reports of adverse events associated with the management of acute airway obstruction. By analysing the data and concepts from these two publications, this review article provides an update on management techniques for the acutely obstructed airway. We discuss the principles and factors relevant to the decision-making process in formulating a logical management plan. PMID:26996162

  5. Hyperosmolar solution effects in guinea pig airways. IV. Lipopolysaccharide-induced alterations in airway reactivity and epithelial bioelectric responses to methacholine and hyperosmolarity.

    PubMed

    Johnston, Richard A; Van Scott, Michael R; Kommineni, Choudari; Millecchia, Lyndell L; Dortch-Carnes, Juanita; Fedan, Jeffrey S

    2004-01-01

    We investigated the in vivo and in vitro effects of lipopolysaccharide (LPS) treatment (4 mg/kg i.p.) on guinea pig airway smooth muscle reactivity and epithelial bioelectric responses to methacholine (MCh) and hyperosmolarity. Hyperosmolar challenge of the epithelium releases epithelium-derived relaxing factor (EpDRF). Using a two-chamber, whole body plethysmograph 18 h post-treatment, animals treated with LPS were hyporeactive to inhaled MCh aerosol. This could involve an increase in the release and/or actions of EpDRF, because LPS treatment enhanced EpDRF-induced smooth muscle relaxation in vitro in the isolated perfused trachea apparatus. In isolated perfused tracheas the basal transepithelial potential difference (Vt) was increased after LPS treatment. The increase in Vt was inhibited by amiloride and indomethacin. Concentration-response curves for changes in Vt in response to serosally and mucosally applied MCh were biphasic (hyperpolarization, <3 x 10(-7)M; depolarization, >3 x 10(-7)M); MCh was more potent when applied serosally. The hyperpolarization response to MCh, but not the depolarization response, was potentiated after LPS treatment. In both treatment groups, mucosally applied hyperosmolar solution (using added NaCl) depolarized the epithelium; this response was greater in tracheas from LPS-treated animals. The results of this study indicate that airway hyporeactivity in vivo after LPS treatment is accompanied by an increase in the release and/or actions of EpDRF in vitro. These changes may involve LPS-induced bioelectric alterations in the epithelium. PMID:14566002

  6. Investigating the geometry of pig airways using computed tomography

    NASA Astrophysics Data System (ADS)

    Mansy, Hansen A.; Azad, Md Khurshidul; McMurray, Brandon; Henry, Brian; Royston, Thomas J.; Sandler, Richard H.

    2015-03-01

    Numerical modeling of sound propagation in the airways requires accurate knowledge of the airway geometry. These models are often validated using human and animal experiments. While many studies documented the geometric details of the human airways, information about the geometry of pig airways is scarcer. In addition, the morphology of animal airways can be significantly different from that of humans. The objective of this study is to measure the airway diameter, length and bifurcation angles in domestic pigs using computed tomography. After imaging the lungs of 3 pigs, segmentation software tools were used to extract the geometry of the airway lumen. The airway dimensions were then measured from the resulting 3 D models for the first 10 airway generations. Results showed that the size and morphology of the airways of different animals were similar. The measured airway dimensions were compared with those of the human airways. While the trachea diameter was found to be comparable to the adult human, the diameter, length and branching angles of other airways were noticeably different from that of humans. For example, pigs consistently had an early airway branching from the trachea that feeds the superior (top) right lung lobe proximal to the carina. This branch is absent in the human airways. These results suggested that the human geometry may not be a good approximation of the pig airways and may contribute to increasing the errors when the human airway geometric values are used in computational models of the pig chest.

  7. Solidification under microgravity conditions - Dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Hahn, R. C.; Lograsso, T. A.; Rubinstein, E. R.; Winsa, E.

    1987-01-01

    The experimental approach and apparatus of a zero-gravity active crystal growth experiment to test dendritic growth theory at low supercoolings are discussed. The experiment consists of 20 experimental cycles. Estimates have been made as to how low gravitational accelerations would have to be reduced to observe convection-free dendritic growth at supercoolings from 0.01-1.0 K. The experiment requires temperature control of + or - 2 mK and photographic resolution of a few microns with a depth of field of + or - 6 mm. The thermostatic bath and temperature control system, photographic system, growth chamber, and dendrite detection system are described in detail.

  8. Some aspects of the electroanatomy of dendrites.

    PubMed

    Lux, H D; Schubert, P

    1975-01-01

    An understanding of the neuronal function requires the knowledge of the electroanatomy of dendrites, which comprise the major area and receive the main input in most neurons. Some simplifying assumptions are necessary to describe the electrical characteristics of the dendritic tree. The applicability of the simplified model of a combined equivalent dendritic cylinder proposed by Rall, was tested and verified by a combined analysis of anatomic and electrical data from the same spinal motoneurons. Assuming a uniform somadendritic membrane, estimates of the specific membrane resistance (RM: 2,700 +/- 920 omegacm2) were made by relating the neuronal input resistance with the combined dendritic trunk parameter (sigmaD3/2: 320 +/- 150-10(-6) CM3/2). From these combined anatomic and electrical data the dendritic electrotonic lengths (Lgeom: 1.5 +/- 0.3 times the length constant) were derived. Comparable L values (Ltrans: 1.5 +/- 0.3) resulted independently from analysis of membrane voltage transients during current steps. The linear dendritic cable model has proved its applicability for the analysis of small voltage deflections during current step applications at the soma as well as for the analysis of the majority of minimal postsynaptic potentials (PSP's). During the transmission along the dendritic cable the PSP undergoes changes in shape. These changes often permit a determination of the distance of the dendritic input from the soma. Unfortunately, the attenuation of the dendritic signal cannot be directly assessed. Dendritic synaptic transmission can be observed in isolation in chromatolytic motoneurons because the somal synapses are peeled off from the soma by proliferating glial cells in the course of retrograde reaction. These observations support the prediction that the PSP's with relatively short rise-times and duration originate from synapses near the soma. It may be questioned as to whether the linear dendritic cable approximation also applies to the larger

  9. Evidence for Eigenfrequencies in Dendritic Growth Dynamics

    NASA Astrophysics Data System (ADS)

    Lacombe, Jeffrey C.; Koss, Matthew B.; Giummarra, Cindie; Frei, Julie E.; Lupulescu, Afina O.; Glicksman, Martin E.

    Microgravity dendritic growth experiments, conducted aboard the space shuttle Columbia, are described. In-situ video images reveal that pivalic acid dendrites growing in the diffusion-controlled environment of low-earth orbit exhibit a range of transient or non-steady-state behaviors. The observed transient features of the growth process are being studied with the objective of understanding the mechanisms responsible for these behaviors. Included in these observations is possible evidence for characteristic frequencies or limit cycles in the growth behavior near the tip of the dendrites. These data, and their interpretations, will be discussed.

  10. Dendritic cells in lung immunopathology.

    PubMed

    Cook, Peter C; MacDonald, Andrew S

    2016-07-01

    Dendritic cells (DCs) lie at the heart of the innate immune system, specialised at recognising danger signals in many forms including foreign material, infection or tissue damage and initiating powerful adaptive immune and inflammatory responses. In barrier sites such as the lung, the instrumental role that DCs play at the interface between the environment and the host places them in a pivotal position in determining the severity of inflammatory disease. The past few years has seen a significant increase in our fundamental understanding of the subsets of DCs involved in pulmonary immunity, as well as the mechanisms by which they are activated and which they may use to coordinate downstream inflammation and pathology. In this review, we will summarise current understanding of the multi-faceted role that DCs play in the induction, maintenance and regulation of lung immunopathology, with an emphasis on allergic pulmonary disease. PMID:27256370

  11. Tumor Targeting, Trifunctional Dendritic Wedge

    PubMed Central

    2015-01-01

    We report in vitro and in vivo evaluation of a newly designed trifunctional theranostic agent for targeting solid tumors. This agent combines a dendritic wedge with high boron content for boron neutron capture therapy or boron MRI, a monomethine cyanine dye for visible-light fluorescent imaging, and an integrin ligand for efficient tumor targeting. We report photophysical properties of the new agent, its cellular uptake and in vitro targeting properties. Using live animal imaging and intravital microscopy (IVM) techniques, we observed a rapid accumulation of the agent and its retention for a prolonged period of time (up to 7 days) in fully established animal models of human melanoma and murine mammary adenocarcinoma. This macromolecular theranostic agent can be used for targeted delivery of high boron load into solid tumors for future applications in boron neutron capture therapy. PMID:25350602

  12. Dendritic Cell-Targeted Vaccines

    PubMed Central

    Cohn, Lillian; Delamarre, Lélia

    2014-01-01

    Despite significant effort, the development of effective vaccines inducing strong and durable T-cell responses against intracellular pathogens and cancer cells has remained a challenge. The initiation of effector CD8+ T-cell responses requires the presentation of peptides derived from internalized antigen on class I major histocompatibility complex molecules by dendritic cells (DCs) in a process called cross-presentation. A current strategy to enhance the effectiveness of vaccination is to deliver antigens directly to DCs. This is done via selective targeting of antigen using monoclonal antibodies directed against endocytic receptors on the surface of the DCs. In this review, we will discuss considerations relevant to the design of such vaccines: the existence of DC subsets with specialized functions, the impact of the antigen intracellular trafficking on cross-presentation, and the influence of maturation signals received by DCs on the outcome of the immune response. PMID:24910635

  13. Fate Mapping of Dendritic Cells

    PubMed Central

    Poltorak, Mateusz Pawel; Schraml, Barbara Ursula

    2015-01-01

    Dendritic cells (DCs) are a heterogeneous group of mononuclear phagocytes with versatile roles in immunity. They are classified predominantly based on phenotypic and functional properties, namely their stellate morphology, expression of the integrin CD11c, and major histocompatibility class II molecules, as well as their superior capacity to migrate to secondary lymphoid organs and stimulate naïve T cells. However, these attributes are not exclusive to DCs and often change within inflammatory or infectious environments. This led to debates over cell identification and questioned even the mere existence of DCs as distinct leukocyte lineage. Here, we review experimental approaches taken to fate map DCs and discuss how these have shaped our understanding of DC ontogeny and lineage affiliation. Considering the ontogenetic properties of DCs will help to overcome the inherent shortcomings of purely phenotypic- and function-based approaches to cell definition and will yield a more robust way of DC classification. PMID:25999945

  14. Puberty and Upper Airway Dynamics During Sleep

    PubMed Central

    Bandla, Preetam; Huang, Jingtao; Karamessinis, Laurie; Kelly, Andrea; Pepe, Michelle; Samuel, John; Brooks, Lee; Mason, Thornton. A.; Gallagher, Paul R.; Marcus, Carole L.

    2008-01-01

    Study Objectives: The upper airway compensatory response to subatmospheric pressure loading declines with age. The epidemiology of obstructive sleep apnea suggests that sex hormones play a role in modulating upper airway function. Sex hormones increase gradually during puberty, from minimally detectable to adult levels. We hypothesized that the upper airway response to subatmospheric pressure loading decreased with increasing pubertal Tanner stage in males but remained stable during puberty in females. Design: Upper airway dynamic function during sleep was measured over the course of puberty. Participants: Normal subjects of Tanner stages 1 to 5. Measurements: During sleep, maximal inspiratory airflow was measured while varying the level of nasal pressure. The slope of the upstream pressure-flow relationship (SPF) was measured. Results: The SPF correlated with age and Tanner stage. However, the relationship with Tanner stage became nonsignificant when the correlation due to the mutual association with age was removed. Females had a lower SPF than males. Conclusions: In both sexes, the upper airway compensatory response to subatmospheric pressure loading decreased with age rather than degree of pubertal development. Thus, changes in sex hormones are unlikely to be a primary modulator of upper airway function during the transition from childhood to adulthood. Although further studies of upper airway structural changes during puberty are needed, we speculate that the changes in upper airway function with age are due to the depressant effect of age on ventilatory drive, leading to a decrease in upper airway neuromotor tone. Citation: Bandla P; Huang J; Karamessinis L; Kelly A; Pepe M; Samuel J; Brooks L; Mason TA; Gallagher PR; Marcus CL. Puberty and Upper Airway Dynamics During Sleep. SLEEP 2008;31(4):534-541. PMID:18457241

  15. Intrathoracic airway measurement: ex-vivo validation

    NASA Astrophysics Data System (ADS)

    Reinhardt, Joseph M.; Raab, Stephen A.; D'Souza, Neil D.; Hoffman, Eric A.

    1997-05-01

    High-resolution x-ray CT (HRCT) provides detailed images of the lungs and bronchial tree. HRCT-based imaging and quantitation of peripheral bronchial airway geometry provides a valuable tool for assessing regional airway physiology. Such measurements have been sued to address physiological questions related to the mechanics of airway collapse in sleep apnea, the measurement of airway response to broncho-constriction agents, and to evaluate and track the progression of disease affecting the airways, such as asthma and cystic fibrosis. Significant attention has been paid to the measurements of extra- and intra-thoracic airways in 2D sections from volumetric x-ray CT. A variety of manual and semi-automatic techniques have been proposed for airway geometry measurement, including the use of standardized display window and level settings for caliper measurements, methods based on manual or semi-automatic border tracing, and more objective, quantitative approaches such as the use of the 'half-max' criteria. A recently proposed measurements technique uses a model-based deconvolution to estimate the location of the inner and outer airway walls. Validation using a plexiglass phantom indicates that the model-based method is more accurate than the half-max approach for thin-walled structures. In vivo validation of these airway measurement techniques is difficult because of the problems in identifying a reliable measurement 'gold standard.' In this paper we report on ex vivo validation of the half-max and model-based methods using an excised pig lung. The lung is sliced into thin sections of tissue and scanned using an electron beam CT scanner. Airways of interest are measured from the CT images, and also measured with using a microscope and micrometer to obtain a measurement gold standard. The result show no significant difference between the model-based measurements and the gold standard; while the half-max estimates exhibited a measurement bias and were significantly

  16. Mucosal Correlates of Protection in HIV-1-Exposed Seronegative Persons

    PubMed Central

    Shen, Ruizhong; Smith, Phillip D.

    2014-01-01

    Resistance to HIV-1 infection in HIV-1-exposed seronegative (HESN) persons offers a promising opportunity to identify mechanisms of “natural” protection. Unique features of the mucosa in particular may contribute to this protection. Here we highlight several key issues pertaining to the mucosal correlates of protection in HESN persons, including humoral immune responses, mechanisms of mucosal HIV-1-neutralization, immune cell activation, and role of the microbiota in mucosal responses. We also discuss mucosal model systems that can be used to investigate the mechanisms of resistance in HESN subjects. A clear understanding of the mucosal correlates of protection against HIV-1 in HESN persons will provide critical new insights for the development of effective vaccine and microbicide strategies for the prevention of HIV-1 transmission. PMID:24428610

  17. Expression Profile of Human Fc Receptors in Mucosal Tissue: Implications for Antibody-Dependent Cellular Effector Functions Targeting HIV-1 Transmission

    PubMed Central

    Cheeseman, Hannah M.; Carias, Ann M.; Evans, Abbey B.; Olejniczak, Natalia J.; Ziprin, Paul; King, Deborah F. L.; Hope, Thomas J.; Shattock, Robin J.

    2016-01-01

    The majority of new Human Immunodeficiency Virus (HIV)-1 infections are acquired via sexual transmission at mucosal surfaces. Partial efficacy (31.2%) of the Thai RV144 HIV-1 vaccine trial has been correlated with Antibody-dependent Cellular Cytotoxicity (ADCC) mediated by non-neutralizing antibodies targeting the V1V2 region of the HIV-1 envelope. This has led to speculation that ADCC and other antibody-dependent cellular effector functions might provide an important defense against mucosal acquisition of HIV-1 infection. However, the ability of antibody-dependent cellular effector mechanisms to impact on early mucosal transmission events will depend on a variety of parameters including effector cell type, frequency, the class of Fc-Receptor (FcR) expressed, the number of FcR per cell and the glycoslyation pattern of the induced antibodies. In this study, we characterize and compare the frequency and phenotype of IgG (CD16 [FcγRIII], CD32 [FcγRII] and CD64 [FcγRI]) and IgA (CD89 [FcαR]) receptor expression on effector cells within male and female genital mucosal tissue, colorectal tissue and red blood cell-lysed whole blood. The frequency of FcR expression on CD14+ monocytic cells, myeloid dendritic cells and natural killer cells were similar across the three mucosal tissue compartments, but significantly lower when compared to the FcR expression profile of effector cells isolated from whole blood, with many cells negative for all FcRs. Of the three tissues tested, penile tissue had the highest percentage of FcR positive effector cells. Immunofluorescent staining was used to determine the location of CD14+, CD11c+ and CD56+ cells within the three mucosal tissues. We show that the majority of effector cells across the different mucosal locations reside within the subepithelial lamina propria. The potential implication of the observed FcR expression patterns on the effectiveness of FcR-dependent cellular effector functions to impact on the initial events in

  18. Autologous Transplantation of Oral Mucosal Epithelial Cell Sheets Cultured on an Amniotic Membrane Substrate for Intraoral Mucosal Defects

    PubMed Central

    Amemiya, Takeshi; Nakamura, Takahiro; Yamamoto, Toshiro; Kinoshita, Shigeru; Kanamura, Narisato

    2015-01-01

    The human amniotic membrane (AM) is a thin intrauterine placental membrane that is highly biocompatible and possesses anti-inflammatory and anti-scarring properties. Using AM, we developed a novel method for cultivating oral mucosal epithelial cell sheets. We investigated the autologous transplantation of oral mucosal epithelial cells cultured on AM in patients undergoing oral surgeries. We obtained specimens of AM from women undergoing cesarean sections. This study included five patients without any history of a medical disorder who underwent autologous cultured oral epithelial transplantation following oral surgical procedures. Using oral mucosal biopsy specimens obtained from these patients, we cultured oral epithelial cells on an AM carrier. We transplanted the resultant cell sheets onto the oral mucosal defects. Patients were followed-up for at least 12 months after transplantation. After 2–3 weeks of being cultured on AM, epithelial cells were well differentiated and had stratified into five to seven layers. Immunohistochemistry revealed that the cultured cells expressed highly specific mucosal epithelial cell markers and basement membrane proteins. After the surgical procedures, no infection, bleeding, rejection, or sheet detachment occurred at the reconstructed sites, at which new oral mucous membranes were evident. No recurrence was observed in the long-term follow-up, and the postoperative course was excellent. Our results suggest that AM-cultured oral mucosal epithelial cell sheets represent a useful biomaterial and feasible method for oral mucosal reconstruction. However, our primary clinical study only evaluated their effects on a limited number of small oral mucosal defects. PMID:25915046

  19. The Protein Dendrite Arborization and Synapse Maturation 1 (Dasm-1) Is Dispensable for Dendrite Arborization▿ †

    PubMed Central

    Mishra, Archana; Knerr, Boris; Paixão, Sónia; Kramer, Edgar R.; Klein, Rüdiger

    2008-01-01

    The development of a highly branched dendritic tree is essential for the establishment of functional neuronal connections. The evolutionarily conserved immunoglobulin superfamily member, the protein dendrite arborization and synapse maturation 1 (Dasm-1) is thought to play a critical role in dendrite formation of dissociated hippocampal neurons. RNA interference-mediated Dasm-1 knockdown was previously shown to impair dendrite, but not axonal, outgrowth and branching (S. H. Shi, D. N. Cox, D. Wang, L. Y. Jan, and Y. N. Jan, Proc. Natl. Acad. Sci. USA 101:13341-13345, 2004). Here, we report the generation and analysis of Dasm-1 null mice. We find that genetic ablation of Dasm-1 does not interfere with hippocampal dendrite growth and branching in vitro and in vivo. Moreover, the absence of Dasm-1 does not affect the modulation of dendritic outgrowth induced by brain-derived neurotrophic factor. Importantly, the previously observed impairment in dendrite growth after Dasm-1 knockdown is also observed when the Dasm-1 knockdown is performed in cultured hippocampal neurons from Dasm-1 null mice. These findings indicate that the dendrite arborization phenotype was caused by off-target effects and that Dasm-1 is dispensable for hippocampal dendrite arborization. PMID:18268009

  20. Standard versus Rotation Technique for Insertion of Supraglottic Airway Devices: Systematic Review and Meta-Analysis

    PubMed Central

    Park, Jin Ha; Lee, Jong Seok; Nam, Sang Beom; Ju, Jin Wu

    2016-01-01

    Purpose Supraglottic airway devices have been widely utilized as an alternative to tracheal intubation in various clinical situations. The rotation technique has been proposed to improve the insertion success rate of supraglottic airways. However, the clinical efficacy of this technique remains uncertain as previous results have been inconsistent, depending on the variable evaluated. Materials and Methods We systematically searched PubMed, Embase, and the Cochrane Central Register of Controlled Trials in April 2015 for randomized controlled trials that compared the rotation and standard techniques for inserting supraglottic airways. Results Thirteen randomized controlled trials (1505 patients, 753 with the rotation technique) were included. The success rate at the first attempt was significantly higher with the rotation technique than with the standard technique [relative risk (RR): 1.13; 95% confidence interval (CI): 1.05 to 1.23; p=0.002]. The rotation technique provided significantly higher overall success rates (RR: 1.06; 95% CI: 1.04 to 1.09; p<0.001). Device insertion was completed faster with the rotation technique (mean difference: -4.6 seconds; 95% CI: -7.37 to -1.74; p=0.002). The incidence of blood staining on the removed device (RR: 0.36; 95% CI: 0.27 to 0.47; p<0.001) was significantly lower with the rotation technique. Conclusion The rotation technique provided higher first-attempt and overall success rates, faster insertion, and a lower incidence of blood on the removed device, reflecting less mucosal trauma. Thus, it may be considered as an alternative to the standard technique when predicting or encountering difficulty in inserting supraglottic airways. PMID:27189296

  1. Chemokines and their receptors in the allergic airway inflammatory process.

    PubMed

    Velazquez, Juan Raymundo; Teran, Luis Manuel

    2011-08-01

    The development of the allergic airway disease conveys several cell types, such as T-cells, eosinophils, mast cells, and dendritic cells, which act in a special and temporal synchronization. Cellular mobilization and its complex interactions are coordinated by a broad range of bioactive mediators known as chemokines. These molecules are an increasing family of small proteins with common structural motifs and play an important role in the recruitment and cell activation of both leukocytes and resident cells at the allergic inflammatory site via their receptors. Trafficking and recruitment of cell populations with specific chemokines receptors assure the presence of reactive allergen-specific T-cells in the lung, and therefore the establishment of an allergic inflammatory process. Different approaches directed against chemokines receptors have been developed during the last decades with promising therapeutic results in the treatment of asthma. In this review we explore the role of the chemokines and chemokine receptors in allergy and asthma and discuss their potential as targets for therapy. PMID:20352527

  2. German cockroach proteases and protease-activated receptor-2 regulate chemokine production and dendritic cell recruitment.

    PubMed

    Day, Scottie B; Ledford, John R; Zhou, Ping; Lewkowich, Ian P; Page, Kristen

    2012-01-01

    We recently showed that serine proteases in German cockroach (GC) feces (frass) decreased experimental asthma through the activation of protease-activated receptor (PAR)-2. Since dendritic cells (DCs) play an important role in the initiation of asthma, we queried the role of GC frass proteases in modulating CCL20 (chemokine C-C motif ligand 20) and granulocyte macrophage colony-stimulating factor (GM-CSF) production, factors that regulate pulmonary DCs. A single exposure to GC frass resulted in a rapid, but transient, increase in GM-CSF and a steady increase in CCL20 in the airways of mice. Instillation of protease-depleted GC frass or instillation of GC frass in PAR-2-deficient mice significantly decreased chemokine release. A specific PAR-2-activating peptide was also sufficient to induce CCL20 production. To directly assess the role of the GC frass protease in chemokine release, we enriched the protease from GC frass and confirmed that the protease was sufficient to induce both GM-CSF and CCL20 production in vivo. Primary airway epithelial cells produced both GM-CSF and CCL20 in a protease- and PAR-2-dependent manner. Finally, we show a decreased percentage of myeloid DCs in the lung following allergen exposure in PAR-2-deficient mice compared to wild-type mice. However, there was no difference in GC frass uptake. Our data indicate that, through the activation of PAR-2, allergen-derived proteases are sufficient to induce CCL20 and GM-CSF production in the airways. This leads to increased recruitment and/or differentiation of myeloid DC populations in the lungs and likely plays an important role in the initiation of allergic airway responses. PMID:21876326

  3. Podosomes of dendritic cells facilitate antigen sampling

    PubMed Central

    Reinieren-Beeren, Inge; Cambi, Alessandra; Figdor, Carl G.; van den Bogaart, Geert

    2014-01-01

    Summary Dendritic cells sample the environment for antigens and play an important role in establishing the link between innate and acquired immunity. Dendritic cells contain mechanosensitive adhesive structures called podosomes that consist of an actin-rich core surrounded by integrins, adaptor proteins and actin network filaments. They facilitate cell migration via localized degradation of extracellular matrix. Here we show that podosomes of human dendritic cells locate to spots of low physical resistance in the substrate (soft spots) where they can evolve into protrusive structures. Pathogen recognition receptors locate to these protrusive structures where they can trigger localized antigen uptake, processing and presentation to activate T-cells. Our data demonstrate a novel role in antigen sampling for podosomes of dendritic cells. PMID:24424029

  4. Fluctuation effects on dendritic growth morphology

    NASA Astrophysics Data System (ADS)

    Brener, E.; Ihle, T.; Müller-Krumbhaar, H.; Saito, Y.; Shiraishi, K.

    1994-03-01

    Dendrites are the typical patterns for many anisotropic growth processes. A detailed understanding of their dynamics appears to be crucial for a proper classification of various growth morphologies. In particular the morphology transitions occurring for varying anisotropy were predicted to depend upon fluctuations. In the present investigation we compare analytical and numerical results on the stability of dendrites under influence of external fluctuations. In particular we confirm the previous ideas that the dendrites are linearly stable under influence of noise even in the limit of extremely small but nonzero anisotropy. This supports the concept of a smooth change-over from compact to fractal dendrites and finally to fractal seaweed whose internal length scale was predicted to depend on noise.

  5. Dendritic spine dysgenesis in Rett syndrome

    PubMed Central

    Xu, Xin; Miller, Eric C.; Pozzo-Miller, Lucas

    2014-01-01

    Spines are small cytoplasmic extensions of dendrites that form the postsynaptic compartment of the majority of excitatory synapses in the mammalian brain. Alterations in the numerical density, size, and shape of dendritic spines have been correlated with neuronal dysfunction in several neurological and neurodevelopmental disorders associated with intellectual disability, including Rett syndrome (RTT). RTT is a progressive neurodevelopmental disorder associated with intellectual disability that is caused by loss of function mutations in the transcriptional regulator methyl CpG-binding protein 2 (MECP2). Here, we review the evidence demonstrating that principal neurons in RTT individuals and Mecp2-based experimental models exhibit alterations in the number and morphology of dendritic spines. We also discuss the exciting possibility that signaling pathways downstream of brain-derived neurotrophic factor (BDNF), which is transcriptionally regulated by MeCP2, offer promising therapeutic options for modulating dendritic spine development and plasticity in RTT and other MECP2-associated neurodevelopmental disorders. PMID:25309341

  6. Dendritic polymers: Universal glue for cells

    NASA Astrophysics Data System (ADS)

    Frey, Holger

    2012-05-01

    A dendritic polymer consisting of inversely oriented lipid head groups on a polyvalent polyglycerol scaffold makes an effective reversible biomembrane adhesive that may find use as a tissue sealant and a drug-delivery vehicle.

  7. Dendritic Spine Pathology in Neurodegenerative Diseases.

    PubMed

    Herms, Jochen; Dorostkar, Mario M

    2016-05-23

    Substantial progress has been made toward understanding the neuropathology, genetic origins, and epidemiology of neurodegenerative diseases, including Alzheimer's disease; tauopathies, such as frontotemporal dementia; α-synucleinopathies, such as Parkinson's disease or dementia with Lewy bodies; Huntington's disease; and amyotrophic lateral sclerosis with dementia, as well as prion diseases. Recent evidence has implicated dendritic spine dysfunction as an important substrate of the pathogenesis of dementia in these disorders. Dendritic spines are specialized structures, extending from the neuronal processes, on which excitatory synaptic contacts are formed, and the loss of dendritic spines correlates with the loss of synaptic function. We review the literature that has implicated direct or indirect structural alterations at dendritic spines in the pathogenesis of major neurodegenerative diseases, focusing on those that lead to dementias such as Alzheimer's, Parkinson's, and Huntington's diseases, as well as frontotemporal dementia and prion diseases. We stress the importance of in vivo studies in animal models. PMID:26907528

  8. Dendritic Growth in Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Martin, Joshua; Garg, Shila

    2000-03-01

    The experimental study of the onset of electrohydrodynamic convection (EHC) through a dendritic growth is reported. If a magnetic Freedericksz-distorted liquid crystal of negative dielectric anisotropy is subjected to an electric field parallel to the magnetic field, EHC sets in through the nucleation of dendrites [1,2]. Measurements of tip speeds of the dendrites as a function of applied voltage at a fixed magnetic field are made. The goal is to explore the effect of the magnetic and electric fields on the dendritic growth. In addition, pattern dynamics is monitored once the final state of spatio-temporal chaos is reached by the system. [1] J. T. Gleeson, Nature 385, 511 (1997). [2] J. T. Gleeson, Physica A 239, 211 (1997). This research was supported by NSF grants DMR 9704579 and DMR 9619406.

  9. Educating the Educator: Teaching Airway Adjunct Techniques in Athletic Training

    ERIC Educational Resources Information Center

    Berry, David C.; Seitz, S. Robert

    2011-01-01

    The 5th edition of the "Athletic Training Education Competencies" ("Competencies") now requires athletic training educators (ATEs) to introduce into the curriculum various types of airway adjuncts including: (1) oropharyngeal airways (OPA), (2) nasopharyngeal airways (NPA), (3) supraglottic airways (SGA), and (4) suction. The addition of these…

  10. Cyclosporin metabolism by human gastrointestinal mucosal microsomes.

    PubMed Central

    Webber, I R; Peters, W H; Back, D J

    1992-01-01

    The in vitro metabolism of the immunosuppressant cyclosporin (CsA) by human gastrointestinal mucosal microsomes has been studied. Macroscopically normal intestinal (n = 4) and liver (n = 2) tissue was obtained from kidney transplant donors, and microsomes prepared. Intestinal metabolism was most extensive with duodenal protein (15% conversion to metabolites M1/M17 after 2 h incubation at 37 degrees C; metabolite measurement by h.p.l.c). Western blotting confirmed the presence of P-4503A (enzyme subfamily responsible for CsA metabolism) in duodenum and ileum tissue, but not in colon tissue. The results of this study indicate that the gut wall may play a role in the first-pass metabolism of CsA, and could therefore be a contributory factor to the highly variable oral bioavailability of CsA. PMID:1389941

  11. Head and neck mucosal melanoma: a review.

    PubMed

    Lourenço, Silvia V; Fernandes, Juliana D; Hsieh, Ricardo; Coutinho-Camillo, Claudia M; Bologna, Sheyla; Sangueza, Martin; Nico, Marcello M S

    2014-07-01

    Head and neck mucosal melanoma (MM) is an aggressive and rare neoplasm of melanocytic origin. To date, few retrospective series and case reports have been reported on MM. This article reviews the current evidence on head and neck MM and the molecular pathways that mediate the pathogenesis of this disease. Head and neck MM accounts for 0.7%-3.8% of all melanomas and involve (in decreasing order of frequency) the sinonasal cavity, oral cavity, pharynx, larynx, and upper esophagus. Although many studies have examined MM of the head and neck and the underlying molecular pathways, individual genetic and molecular alterations were less investigated. Further studies are needed to complement existing data and to increase our understanding of melanocytes tumorigenesis. PMID:24423929

  12. Dendritic cells in autoimmune thyroid disease.

    PubMed

    Kabel, P J; Voorbij, H A; van der Gaag, R D; Wiersinga, W M; de Haan, M; Drexhage, H A

    1987-01-01

    Dendritic cells form a morphologically distinct class of cells characterized by shape, reniform nucleus, absent to weak acid-phosphatase activity and strong Class II MHC determinant positivity. Functionally they are the most efficient cells in antigen presentation to T-lymphocytes which indicates their role in the initiation of an immune response. Using immunehistochemical techniques we studied the presence of dendritic cells in normal Wistar rat and human thyroids, in thyroids of BBW rats developing thyroid autoimmunity and in Graves' goitres. Dendritic cells could be identified in all thyroids studied and were positioned underneath the thyrocytes in between the follicles. Skin dendritic cells travel via lymphatics to draining lymph nodes, thus forming an antigen presenting cell system. It is likely that a similar cell system exists on the level of the thyroid for dendritic cells have also been detected in thyroid draining lymph nodes. In normal thyroid tissue of both human and rat dendritic cells were relatively scarce. During the initial phases of the thyroid autoimmune response in the BBW rat (before the appearance of Tg-antibodies in the circulation) numbers of thyroid dendritic cells increased. Intrathyroidal T-helper cells, B-cells or plasma cells could not be found. The thyroid draining lymph node contained large numbers of plasma cells. During the later stages of the thyroid autoimmune response in the BB/W rat (after the appearance of Tg-antibodies in the circulation) and in Graves' goitres dendritic cells were not only present in high number, but 20-30% were seen in contact with now-present intrathyroidal T-helper lymphocytes.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3475920

  13. Small particles disrupt postnatal airway development

    PubMed Central

    Lee, DongYoub; Wallis, Chris; Schelegle, Edward S.; Van Winkle, Laura S.; Plopper, Charles G.; Fanucchi, Michelle V.; Kumfer, Ben; Kennedy, Ian M.; Chan, Jackie K. W.

    2010-01-01

    Increasing numbers of epidemiologic studies associate air pollution exposure in children with decreased lung function development. The objective of this study was to examine the effects of exposure to combustion-generated fine [230 and 212 nm number mean aerodynamic particle diameter (NMAD)] to ultrafine (73 nm NMAD) particles differing in elemental (EC) and organic (OC) carbon content on postnatal airway development in rats. Neonatal Sprague-Dawley rats were exposed from postnatal day 7 through 25, and lung function and airway architecture were evaluated 81 days of age. In a separate group of rats, cell proliferation was examined after a single particle exposure at 7 days of age. Early life exposure to 73 nm high OC/EC particles altered distal airway architecture and resulted in subtle changes in lung mechanics. Early life exposure to 212 nm high OC/EC particles did not alter lung architecture but did alter lung mechanics in a manner suggestive of central airway changes. In contrast, early life exposure to 230 nm low OC/EC particles did not alter lung architecture or mechanics. A single 6-h exposure to 73 nm high OC/EC particle decreased airway cell proliferation, whereas 212 nm high OC/EC particles increased it and 230 nm low OC/EC particles did not. The early life exposure to ultrafine, high OC/EC particles results in persistent alterations in distal airway architecture that is characterized by an initial decrease in airway cell proliferation. PMID:20634362

  14. Lung Transplantation: The State of the Airways.

    PubMed

    Husain, Aliya N; Garrity, Edward R

    2016-03-01

    Context .- Lung transplantation has become a viable option for definitive treatment of several end-stage lung diseases for which there are no other options available. However, long-term survival continues to be limited by chronic lung allograft dysfunction, which primarily affects the airways. Objective . -To highlight the complications occurring mainly in the airways of the lung transplant recipient from the early to late posttransplant periods. Data Sources .- Review literature focusing on the airways in patients with lung transplants and clinical experience of the authors. Conclusions .- Postsurgical complications and infections of the airways have decreased because of better techniques and management. Acute cellular rejection of the airways can be distinguished from infection pathologically and on cultures. Separating small from large airways need not be an issue because both are risk factors for bronchiolitis obliterans. Grading of airway rejection needs to be standardized. Chronic lung allograft dysfunction consists of both bronchiolitis obliterans and restrictive allograft syndrome, neither of which can be treated very effectively at present. PMID:26927718

  15. Comparison of analysis methods for airway quantification

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.

    2012-03-01

    Diseased airways have been known for several years as a possible contributing factor to airflow limitation in Chronic Obstructive Pulmonary Diseases (COPD). Quantification of disease severity through the evaluation of airway dimensions - wall thickness and lumen diameter - has gained increased attention, thanks to the availability of multi-slice computed tomography (CT). Novel approaches have focused on automated methods of measurement as a faster and more objective means that the visual assessment routinely employed in the clinic. Since the Full-Width Half-Maximum (FWHM) method of airway measurement was introduced two decades ago [1], several new techniques for quantifying airways have been detailed in the literature, but no approach has truly become a standard for such analysis. Our own research group has presented two alternative approaches for determining airway dimensions, one involving a minimum path and the other active contours [2, 3]. With an increasing number of techniques dedicated to the same goal, we decided to take a step back and analyze the differences of these methods. We consequently put to the test our two methods of analysis and the FWHM approach. We first measured a set of 5 airways from a phantom of known dimensions. Then we compared measurements from the three methods to those of two independent readers, performed on 35 airways in 5 patients. We elaborate on the differences of each approach and suggest conclusions on which could be defined as the best one.

  16. Breath tests and airway gas exchange.

    PubMed

    Anderson, Joseph C; Hlastala, Michael P

    2007-01-01

    Measuring soluble gas in the exhaled breath is a non-invasive technique used to estimate levels of respiratory, solvent, and metabolic gases. The interpretation of these measurements is based on the assumption that the measured gases exchange in the alveoli. While the respiratory gases have a low blood-solubility and exchange in the alveoli, high blood-soluble gases exchange in the airways. The effect of airway gas exchange on the interpretation of these exhaled breath measurements can be significant. We describe airway gas exchange in relation to exhaled measurements of soluble gases that exchange in the alveoli. The mechanisms of airway gas exchange are reviewed and criteria for determining if a gas exchanges in the airways are provided. The effects of diffusion, perfusion, temperature and breathing maneuver on airway gas exchange and on measurement of exhaled soluble gas are discussed. A method for estimating the impact of airway gas exchange on exhaled breath measurements is presented. We recommend that investigators should carefully control the inspired air conditions and type of exhalation maneuver used in a breath test. Additionally, care should be taken when interpreting breath tests from subjects with pulmonary disease. PMID:16413216

  17. Enhancing dendritic cell activation and HIV vaccine effectiveness through nanoparticle vaccination.

    PubMed

    Glass, Joshua J; Kent, Stephen J; De Rose, Robert

    2016-06-01

    Novel vaccination approaches are needed to prevent and control human immunodeficiency virus (HIV) infection. A growing body of literature demonstrates the potential of nanotechnology to modulate the human immune system and generate targeted, controlled immune responses. In this Review, we summarize important advances in how 'nanovaccinology' can be used to develop safe and effective vaccines for HIV. We highlight the central role of dendritic cells in the immune response to vaccination and describe how nanotechnology can be used to enhance delivery to and activation of these important antigen-presenting cells. Strategies employed to improve biodistribution are discussed, including improved lymph node delivery and mucosal penetration concepts, before detailing methods to enhance the humoral and/or cellular immune response to vaccines. We conclude with a commentary on the current state of nanovaccinology. PMID:26783186

  18. A case of fatal idiopathic enteritis and multiple opportunistic infections associated with dendritic cell deficiencies.

    PubMed

    Lord, James D; Chen, Janice; Kozarek, Richard A

    2013-03-01

    We present a case of an adult patient with new-onset severe, idiopathic, protein-wasting enteropathy, in whom an extensive immunological workup was performed. We found a lack of dendritic cell (DC) subsets in the blood and bowel, as well as elevated circulating TGF-beta levels and decreased numbers of circulating FOXP3+ regulatory T cells with diminished CTLA4 expression. She failed to respond to glucocorticoids and infliximab, and instead developed a constellation of opportunistic infections, including CMV ileitis, Mucormycosis, and Pneumocystis carinii pneumonia, and ultimately passed away. While the cause of her lack of DCs is unknown, this data suggests a key role for these cells in both regulating mucosal immunity and promoting effective cell-mediated immunity against pathogens in humans. PMID:23539396

  19. Regulation of macrophage and dendritic cell function by pathogens and through immunomodulation in the avian mucosa.

    PubMed

    de Geus, Eveline D; Vervelde, Lonneke

    2013-11-01

    Macrophages (MPh) and dendritic cells (DC) are members of the mononuclear phagocyte system. In chickens, markers to distinguish MPh from DC are lacking, but whether MPh and DC can be distinguished in humans and mice is under debate, despite the availability of numerous markers. Mucosal MPh and DC are strategically located to ingest foreign antigens, suggesting they can rapidly respond to invading pathogens. This review addresses our current understanding of DC and MPh function, the receptors expressed by MPh and DC involved in pathogen recognition, and the responses of DC and MPh against respiratory and intestinal pathogens in the chicken. Furthermore, potential opportunities are described to modulate MPh and DC responses to enhance disease resistance, highlighting modulation through nutraceuticals and vaccination. PMID:23542704

  20. IgA production requires B cell interaction with subepithelial dendritic cells in Peyer's patches.

    PubMed

    Reboldi, Andrea; Arnon, Tal I; Rodda, Lauren B; Atakilit, Amha; Sheppard, Dean; Cyster, Jason G

    2016-05-13

    Immunoglobulin A (IgA) induction primarily occurs in intestinal Peyer's patches (PPs). However, the cellular interactions necessary for IgA class switching are poorly defined. Here we show that in mice, activated B cells use the chemokine receptor CCR6 to access the subepithelial dome (SED) of PPs. There, B cells undergo prolonged interactions with SED dendritic cells (DCs). PP IgA class switching requires innate lymphoid cells, which promote lymphotoxin-β receptor (LTβR)-dependent maintenance of DCs. PP DCs augment IgA production by integrin αvβ8-mediated activation of transforming growth factor-β (TGFβ). In mice where B cells cannot access the SED, IgA responses against oral antigen and gut commensals are impaired. These studies establish the PP SED as a niche supporting DC-B cell interactions needed for TGFβ activation and induction of mucosal IgA responses. PMID:27174992

  1. Topical and mucosal liposomes for vaccine delivery.

    PubMed

    Romero, Eder Lilia; Morilla, Maria Jose

    2011-01-01

    Mucosal (and in minor extent transcutanous) stimulation can induce local or distant mucosa secretory IgA. Liposomes and other vesicles as mucosal and transcutaneous adjuvants are attractive alternatives to parenteral vaccination. Liposomes can be massively produced under good manufacturing practices and stored for long periods, at high antigen/vesicle mass ratios. However, their uptake by antigen-presenting cells (APC) at the inductive sites remains as a major challenge. As neurotoxicity is a major concern in intranasal delivery, complexes between archaeosomes and calcium as well as cationic liposomes complexed with plasmids encoding for antigenic proteins could safely elicit secretory and systemic antigen-specific immune responses. Oral bilosomes generate intense immune responses that remain to be tested against challenge, but the admixing with toxins or derivatives is mandatory to reduce the amount of antigen. Most of the current experimental designs, however, underestimate the mucus blanket 100- to 1000-fold thicker than a 100-nm diameter liposome, which has first to be penetrated to access the underlying M cells. Overall, designing mucoadhesive chemoenzymatic resistant liposomes, or selectively targeted to M cells, has produced less relevant results than tailoring the liposomes to make them mucus penetrating. Opposing, the nearly 10 µm thickness stratum corneum interposed between liposomes and underlying APC can be surpassed by ultradeformable liposomes (UDL), with lipid matrices that penetrate up to the limit with the viable epidermis. UDL made of phospholipids and detergents, proved to be better transfection agents than conventional liposomes and niosomes, without the toxicity of ethosomes, in the absence of classical immunomodulators. PMID:21360692

  2. Infection and mucosal injury in cancer treatment.

    PubMed

    Khan, S A; Wingard, J R

    2001-01-01

    The oral and gastrointestinal mucosa acts as an important mechanical barrier that prevents local or systemic invasion by microorganisms. Cytotoxic chemotherapy-induced mucosal injury (MI) of oral cavity and intestinal epithelium occurs in many patients treated for malignancy. Compromise of the mucosal barrier can contribute to local invasion by colonizing microorganisms and, subsequently, to systemic infection. Historically, gram-negative bacteremia has been the most problematic bacterial infection in neutropenic patients, but its incidence has reduced over time because of the use of prophylactic antibiotics. There has been a shift in the type of infecting organisms responsible for bacteremia in these patients, from predominantly gram-negative organisms to gram-positive cocci. The viridans group of streptococci is composed of the most frequent bacterial pathogens associated with MI. When speciated, oral colonizers such as Streptococcus mitis, Streptococcus oralis, and Streptococcus sangulis II are the most frequently identified pathogens. Other systemic infections caused by vancomycin-resistant enterococci, Stenotrophomonas maltophilia, and Candida species have also been associated with MI after cancer treatment. Infection can also exacerbate MI after cancer treatment. The best recognized example is herpes simplex virus type 1 (HSV-1). Latent virus is frequently reactivated in HSV-seropositive patients; this reactivation leads to stomatitis, which can be indistinguishable from MI caused by cytoreductive therapies. Antiviral prophylaxis or treatment can control the virus-induced MI and bring about overall amelioration of MI. Recognition of this infectious cause of MI is important in order for clinicians to anticipate and minimize oral toxicity and to facilitate optimal delivery of the antineoplastic regimen. PMID:11694563

  3. Distinct Pathways of Humoral and Cellular Immunity Induced with the Mucosal Administration of a Nanoemulsion Adjuvant

    PubMed Central

    Makidon, Paul E.; Janczak, Katarzyna W.; Blanco, Luz P.; Swanson, Benjamin; Smith, Douglas M.; Pham, Tiffany; Szabo, Zsuzsanna; Kukowska-Latallo, Jolanta F.; Baker, James R.

    2014-01-01

    Nasal administration of an oil-in-water nanoemulsion (NE) adjuvant W805EC produces potent systemic and mucosal, Th-1– and Th-17–balanced cellular responses. However, its molecular mechanism of action has not been fully characterized and is of particular interest because NE does not contain specific ligands for innate immune receptors. In these studies, we demonstrate that W805EC NE adjuvant activates innate immunity, induces specific gene transcription, and modulates NF-κB activity via TLR2 and TLR4 by a mechanism that appears to be distinct from typical TLR agonists. Nasal immunization with NE-based vaccine showed that the TLR2, TLR4, and MyD88 pathways and IL-12 and IL-12Rβ1 expression are not required for an Ab response, but they are essential for the induction of balanced Th-1 polarization and Th-17 cellular immunity. NE adjuvant induces MHC class II, CD80, and CD86 costimulatory molecule expression and dendritic cell maturation. Further, upon immunization with NE, adjuvant mice deficient in the CD86 receptor had normal Ab responses but significantly reduced Th-1 cellular responses, whereas animals deficient in both CD80 and CD86 or lacking CD40 failed to produce either humoral or cellular immunity. Overall, our data show that intranasal administration of Ag with NE induces TLR2 and TLR4 activation along with a MyD88-independent Ab response and a MyD88-dependent Th-1 and Th-17 cell–mediated immune response. These findings suggest that the unique properties of NE adjuvant may offer novel opportunities for understanding previously unrecognized mechanisms of immune activation important for generating effective mucosal and systemic immune responses. PMID:24532579

  4. CD46-Mediated Transduction of a Species D Adenovirus Vaccine Improves Mucosal Vaccine Efficacy

    PubMed Central

    Camacho, Zenaido T.; Turner, Mallory A.; Barry, Michael A.

    2014-01-01

    Abstract The high levels of preexisting immunity against Adenovirus type 5 (Ad5) have deemed Ad5 unusable for translation as a human vaccine vector. Low seroprevalent alternative viral vectors may be less impacted by preexisting immunity, but they may also have significantly different phenotypes from that of Ad5. In this study we compare species D Ads (26, 28, and 48) to the species C Ad5. In vitro transduction studies show striking differences between the species C and D viruses. Most notably, Ad26 transduced human dendritic cells much more effectively than Ad5. In vivo imaging studies showed strikingly different transgene expression profiles. The Ad5 virus was superior to the species D viruses in BALB/c mice when delivered intramuscularly. However, the inverse was true when the viruses were delivered mucosally via the intranasal epithelia. Intramuscular transduction was restored in mice that ubiquitously expressed human CD46, the primary receptor for species D viruses. We analyzed both species C and D Ads for their ability to induce prophylactic immunity against influenza in the CD46 transgenic mouse model. Surprisingly, the species D vaccines again failed to induce greater levels of protective immunity as compared with the species C Ad5 when delivered intramuscularly. However, the species D Ad vaccine vector, Ad48, induced significantly greater protection as compared with Ad5 when delivered mucosally via the intranasal route in CD46 transgenic mice. These data shed light on the complexities between the species and types of Ad. Our findings indicate that more research will be required to identify the mechanisms that play a key role in the induction of protective immunity induced by species D Ad vaccines. PMID:24635714

  5. CD46-mediated transduction of a species D adenovirus vaccine improves mucosal vaccine efficacy.

    PubMed

    Camacho, Zenaido T; Turner, Mallory A; Barry, Michael A; Weaver, Eric A

    2014-04-01

    The high levels of preexisting immunity against Adenovirus type 5 (Ad5) have deemed Ad5 unusable for translation as a human vaccine vector. Low seroprevalent alternative viral vectors may be less impacted by preexisting immunity, but they may also have significantly different phenotypes from that of Ad5. In this study we compare species D Ads (26, 28, and 48) to the species C Ad5. In vitro transduction studies show striking differences between the species C and D viruses. Most notably, Ad26 transduced human dendritic cells much more effectively than Ad5. In vivo imaging studies showed strikingly different transgene expression profiles. The Ad5 virus was superior to the species D viruses in BALB/c mice when delivered intramuscularly. However, the inverse was true when the viruses were delivered mucosally via the intranasal epithelia. Intramuscular transduction was restored in mice that ubiquitously expressed human CD46, the primary receptor for species D viruses. We analyzed both species C and D Ads for their ability to induce prophylactic immunity against influenza in the CD46 transgenic mouse model. Surprisingly, the species D vaccines again failed to induce greater levels of protective immunity as compared with the species C Ad5 when delivered intramuscularly. However, the species D Ad vaccine vector, Ad48, induced significantly greater protection as compared with Ad5 when delivered mucosally via the intranasal route in CD46 transgenic mice. These data shed light on the complexities between the species and types of Ad. Our findings indicate that more research will be required to identify the mechanisms that play a key role in the induction of protective immunity induced by species D Ad vaccines. PMID:24635714

  6. Human airway measurement from CT images

    NASA Astrophysics Data System (ADS)

    Lee, Jaesung; Reeves, Anthony P.; Fotin, Sergei; Apanasovich, Tatiyana; Yankelevitz, David

    2008-03-01

    A wide range of pulmonary diseases, including common ones such as COPD, affect the airways. If the dimensions of airway can be measured with high confidence, the clinicians will be able to better diagnose diseases as well as monitor progression and response to treatment. In this paper, we introduce a method to assess the airway dimensions from CT scans, including the airway segments that are not oriented axially. First, the airway lumen is segmented and skeletonized, and subsequently each airway segment is identified. We then represent each airway segment using a segment-centric generalized cylinder model and assess airway lumen diameter (LD) and wall thickness (WT) for each segment by determining inner and outer wall boundaries. The method was evaluated on 14 healthy patients from a Weill Cornell database who had two scans within a 2 month interval. The corresponding airway segments were located in two scans and measured using the automated method. The total number of segments identified in both scans was 131. When 131 segments were considered altogether, the average absolute change over two scans was 0.31 mm for LD and 0.12 mm for WT, with 95% limits of agreement of [-0.85, 0.83] for LD and [-0.32, 0.26] for WT. The results were also analyzed on per-patient basis, and the average absolute change was 0.19 mm for LD and 0.05 mm for WT. 95% limits of agreement for per-patient changes were [-0.57, 0.47] for LD and [-0.16, 0.10] for WT.

  7. Oral Immunization with a Recombinant Lactococcus lactis-Expressing HIV-1 Antigen on Group A Streptococcus Pilus Induces Strong Mucosal Immunity in the Gut.

    PubMed

    Chamcha, Venkateswarlu; Jones, Andrew; Quigley, Bernard R; Scott, June R; Amara, Rama Rao

    2015-11-15

    The induction of a potent humoral and cellular immune response in mucosal tissue is important for the development of an effective HIV vaccine. Most of the current HIV vaccines under development use the i.m. route for immunization, which is relatively poor in generating potent and long-lived mucosal immune responses. In this article, we explore the ability of an oral vaccination with a probiotic organism, Lactococcus lactis, to elicit HIV-specific immune responses in the mucosal and systemic compartments of BALB/c mice. We expressed the HIV-1 Gag-p24 on the tip of the T3 pilus of Streptococcus pyogenes as a fusion to the Cpa protein (LL-Gag). After four monthly LL-Gag oral immunizations, we observed strong Gag-specific IgG and IgA responses in serum, feces, and vaginal secretions. However, the Gag-specific CD8 T cell responses in the blood were at or below our detection limit. After an i.m. modified vaccinia Ankara/Gag boost, we observed robust Gag-specific CD8 T cell responses both in systemic and in mucosal tissues, including intraepithelial and lamina propria lymphocytes of the small intestine, Peyer's patches, and mesenteric lymph nodes. Consistent with strong immunogenicity, the LL-Gag induced activation of CD11c(+) CD11b(+) dendritic cells in the Peyer's patches after oral immunization. Our results demonstrate that oral immunization with L. lactis expressing an Ag on the tip of the group A Streptococcus pilus serves as an excellent vaccine platform to induce strong mucosal humoral and cellular immunity against HIV. PMID:26482408

  8. Free Energy and Dendritic Self-Organization

    PubMed Central

    Kiebel, Stefan J.; Friston, Karl J.

    2011-01-01

    In this paper, we pursue recent observations that, through selective dendritic filtering, single neurons respond to specific sequences of presynaptic inputs. We try to provide a principled and mechanistic account of this selectivity by applying a recent free-energy principle to a dendrite that is immersed in its neuropil or environment. We assume that neurons self-organize to minimize a variational free-energy bound on the self-information or surprise of presynaptic inputs that are sampled. We model this as a selective pruning of dendritic spines that are expressed on a dendritic branch. This pruning occurs when postsynaptic gain falls below a threshold. Crucially, postsynaptic gain is itself optimized with respect to free energy. Pruning suppresses free energy as the dendrite selects presynaptic signals that conform to its expectations, specified by a generative model implicit in its intracellular kinetics. Not only does this provide a principled account of how neurons organize and selectively sample the myriad of potential presynaptic inputs they are exposed to, but it also connects the optimization of elemental neuronal (dendritic) processing to generic (surprise or evidence-based) schemes in statistics and machine learning, such as Bayesian model selection and automatic relevance determination. PMID:22013413

  9. Transcranial magnetic stimulation (TMS) inhibits cortical dendrites

    PubMed Central

    Murphy, Sean C; Palmer, Lucy M; Nyffeler, Thomas; Müri, René M; Larkum, Matthew E

    2016-01-01

    One of the leading approaches to non-invasively treat a variety of brain disorders is transcranial magnetic stimulation (TMS). However, despite its clinical prevalence, very little is known about the action of TMS at the cellular level let alone what effect it might have at the subcellular level (e.g. dendrites). Here, we examine the effect of single-pulse TMS on dendritic activity in layer 5 pyramidal neurons of the somatosensory cortex using an optical fiber imaging approach. We find that TMS causes GABAB-mediated inhibition of sensory-evoked dendritic Ca2+ activity. We conclude that TMS directly activates fibers within the upper cortical layers that leads to the activation of dendrite-targeting inhibitory neurons which in turn suppress dendritic Ca2+ activity. This result implies a specificity of TMS at the dendritic level that could in principle be exploited for investigating these structures non-invasively. DOI: http://dx.doi.org/10.7554/eLife.13598.001 PMID:26988796

  10. Dental students' ability to detect and diagnose oral mucosal lesions.

    PubMed

    Ali, Mohammad A; Joseph, Bobby K; Sundaram, Devipriya B

    2015-02-01

    The aim of this study was to assess the ability of dental students in the screening clinic of the Kuwait University Dental Center to detect and diagnose oral mucosal lesions. Clinical examinations performed by dental students between January 2009 and February 2011 were included. All their findings regarding the oral mucosal lesions and dental carious lesions detected were recorded, after which the patients were re-examined by faculty examiners. The students rated their own ability to detect mucosal and carious lesions before each examination. Among the 341 patients screened, 375 oral mucosal lesions were found by the faculty examiners. Of those, the students detected 178 (47.5%). Out of the 375 lesions, including the ones they failed to detect, the students diagnosed 272 (72.5%) correctly. The students were more likely (p≤0.01) to correctly diagnose a mucosal lesion when they themselves had detected it (n=169/178) than when they failed to detect it and had it subsequently pointed out by the faculty examiners (n=103/197). The students were more competent in detecting carious lesions (p≤0.001) than in detecting mucosal lesions. A significantly higher proportion of students who felt confident in detecting mucosal lesions were actually more competent in detecting the lesions than those who were not confident (p≤0.001). Further educational strategies are needed to motivate Kuwait University dental students to develop the knowledge, skills, and judgment necessary to integrate a complete intraoral examination into their routine practice. PMID:25640618

  11. Oral Mucosal Lesions in Indians From Northeast Brazil

    PubMed Central

    Cury, Patricia Ramos; Porto, Lia Pontes Arruda; dos Santos, Jean Nunes; e Ribeiro, Livia Silva Figueiredo; de Aquino Xavier, Flavia Caló; Figueiredo, Andreia Leal; Ramalho, Luciana Maria Pedreira

    2014-01-01

    Abstract The aim of this cross-sectional study was to evaluate the prevalence of oral mucosal lesions, and their risk indicators in adult Kiriri Indians from Northeast Brazil. Clinical oral examination was performed on a representative sample of 223 Indians (age ≥19 years). A systematic evaluation of lips, labial mucosa and sulcus, commissures, buccal mucosa and sulcus, gingiva and alveolar ridge, tongue, floor of the mouth, and soft and hard palate was performed. Bivariate analysis was conducted to assess associations between mucosal conditions and age, gender, income, educational level, diabetic status, and smoking status. Mucosal lesions were found in 50 participants (22.4%). The most prevalent lesions were fistulae (6.2%) and traumatic ulcers (4.48%). Oral mucosal was associated with higher age (≥35 years; odds ratio [OR] = 1.99, 95% confidence interval [CI]: 1.05–3.76, P = 0.03) and lower education level (<9 years; OR = 2.13, 95% CI: 0.96–4.71, P = 0.06). Mucosal conditions are prevalent in Kiriri Indians and the presence of mucosal lesions is associated with advanced age and lower education. A public health program aimed at preventing and treating mucosal lesions and targeted toward the high-risk group is vital to improve the oral health status of this population. PMID:25501053

  12. The mucosal immune system: From dentistry to vaccine development

    PubMed Central

    KIYONO, Hiroshi; AZEGAMI, Tatsuhiko

    2015-01-01

    The oral cavity is the beginning of the aero-digestive tract, which is covered by mucosal epithelium continuously under the threat of invasion of pathogens, it is thus protected by the mucosal immune system. In the early phase of our scientific efforts for the demonstration of mucosal immune system, dental science was one of major driving forces due to their foreseeability to use oral immunity for the control of oral diseases. The mucosal immune system is divided functionally into, but interconnected inductive and effector sites. Intestinal Peyer’s patches (PPs) are an inductive site containing antigen-sampling M cells and immunocompetent cells required to initiate antigen-specific immune responses. At effector sites, PP-originated antigen-specific IgA B cells become plasma cells to produce polymeric IgA and form secretory IgA by binding to poly-Ig receptor expressed on epithelial cells for protective immunity. The development of new-generation mucosal vaccines, including the rice-based oral vaccine MucoRice, on the basis of the coordinated mucosal immune system is a promising strategy for the control of mucosal infectious diseases. PMID:26460320

  13. Modeling mucosal candidiasis in larval zebrafish by swimbladder injection.

    PubMed

    Gratacap, Remi L; Bergeron, Audrey C; Wheeler, Robert T

    2014-01-01

    Early defense against mucosal pathogens consists of both an epithelial barrier and innate immune cells. The immunocompetency of both, and their intercommunication, are paramount for the protection against infections. The interactions of epithelial and innate immune cells with a pathogen are best investigated in vivo, where complex behavior unfolds over time and space. However, existing models do not allow for easy spatio-temporal imaging of the battle with pathogens at the mucosal level. The model developed here creates a mucosal infection by direct injection of the fungal pathogen, Candida albicans, into the swimbladder of juvenile zebrafish. The resulting infection enables high-resolution imaging of epithelial and innate immune cell behavior throughout the development of mucosal disease. The versatility of this method allows for interrogation of the host to probe the detailed sequence of immune events leading to phagocyte recruitment and to examine the roles of particular cell types and molecular pathways in protection. In addition, the behavior of the pathogen as a function of immune attack can be imaged simultaneously by using fluorescent protein-expressing C. albicans. Increased spatial resolution of the host-pathogen interaction is also possible using the described rapid swimbladder dissection technique. The mucosal infection model described here is straightforward and highly reproducible, making it a valuable tool for the study of mucosal candidiasis. This system may also be broadly translatable to other mucosal pathogens such as mycobacterial, bacterial or viral microbes that normally infect through epithelial surfaces. PMID:25490695

  14. Modeling Mucosal Candidiasis in Larval Zebrafish by Swimbladder Injection

    PubMed Central

    Gratacap, Remi L.; Bergeron, Audrey C.; Wheeler, Robert T.

    2016-01-01

    Early defense against mucosal pathogens consists of both an epithelial barrier and innate immune cells. The immunocompetency of both, and their intercommunication, are paramount for the protection against infections. The interactions of epithelial and innate immune cells with a pathogen are best investigated in vivo, where complex behavior unfolds over time and space. However, existing models do not allow for easy spatio-temporal imaging of the battle with pathogens at the mucosal level. The model developed here creates a mucosal infection by direct injection of the fungal pathogen, Candida albicans, into the swimbladder of juvenile zebrafish. The resulting infection enables high-resolution imaging of epithelial and innate immune cell behavior throughout the development of mucosal disease. The versatility of this method allows for interrogation of the host to probe the detailed sequence of immune events leading to phagocyte recruitment and to examine the roles of particular cell types and molecular pathways in protection. In addition, the behavior of the pathogen as a function of immune attack can be imaged simultaneously by using fluorescent protein-expressing C. albicans. Increased spatial resolution of the host-pathogen interaction is also possible using the described rapid swimbladder dissection technique. The mucosal infection model described here is straightforward and highly reproducible, making it a valuable tool for the study of mucosal candidiasis. This system may also be broadly translatable to other mucosal pathogens such as mycobacterial, bacterial or viral microbes that normally infect through epithelial surfaces. PMID:25490695

  15. Mucosal healing in inflammatory bowel diseases: a systematic review.

    PubMed

    Neurath, Markus F; Travis, Simon P L

    2012-11-01

    Recent studies have identified mucosal healing on endoscopy as a key prognostic parameter in the management of inflammatory bowel diseases (IBD), thus highlighting the role of endoscopy for monitoring of disease activity in IBD. In fact, mucosal healing has emerged as a key treatment goal in IBD that predicts sustained clinical remission and resection-free survival of patients. The structural basis of mucosal healing is an intact barrier function of the gut epithelium that prevents translocation of commensal bacteria into the mucosa and submucosa with subsequent immune cell activation. Thus, mucosal healing should be considered as an initial event in the suppression of inflammation of deeper layers of the bowel wall, rather than as a sign of complete healing of gut inflammation. In this systematic review, the clinical studies on mucosal healing are summarised and the effects of anti-inflammatory or immunosuppressive drugs such as 5-aminosalicylates, corticosteroids, azathioprine, ciclosporin and anti-TNF antibodies (adalimumab, certolizumab pegol, infliximab) on mucosal healing are discussed. Finally, the implications of mucosal healing for subsequent clinical management in patients with IBD are highlighted. PMID:22842618

  16. Secondary Reverse Slide Tracheoplasty for Airway Rescue.

    PubMed

    Kopelovich, Jonathan C; Wine, Todd M; Rutter, Michael J; Mitchell, Max B; Prager, Jeremy D

    2016-03-01

    Slide tracheoplasty is used in cases of tracheal stenosis or injury. With expanding indications for its use at tertiary centers, salvage techniques for dehiscence or restenosis after slide tracheoplasty are increasingly relevant. We present a case in which slide tracheoplasty was augmented with an anterior costochondral graft that stenosed again and ultimately failed. We salvaged this airway emergency by performing a secondary reverse slide tracheoplasty. Using this technique, we were able to establish a safe and durable airway using only native airway tissue. PMID:26897214

  17. Airways disorders and the swimming pool.

    PubMed

    Bougault, Valérie; Boulet, Louis-Philippe

    2013-08-01

    Concerns have been expressed about the possible detrimental effects of chlorine derivatives in indoor swimming pool environments. Indeed, a controversy has arisen regarding the possibility that chlorine commonly used worldwide as a disinfectant favors the development of asthma and allergic diseases. The effects of swimming in indoor chlorinated pools on the airways in recreational and elite swimmers are presented. Recent studies on the influence of swimming on airway inflammation and remodeling in competitive swimmers, and the phenotypic characteristics of asthma in this population are reviewed. Preventative measures that could potentially reduce the untoward effects of pool environment on airways of swimmers are discussed. PMID:23830132

  18. Brachycephalic airway syndrome: pathophysiology and diagnosis.

    PubMed

    Lodato, Dena L; Hedlund, Cheryl S

    2012-07-01

    Brachycephalic airway syndrome (BAS) is a group of abnormalities that result in upper airway obstruction. Primary malformations include stenotic nares, elongated soft palate, and hypoplastic trachea, which cause an increase in negative pressure within the upper airways that can eventually lead to secondary abnormalities such as everted laryngeal saccules, everted tonsils, and laryngeal and tracheal collapse. Abnormal nasopharyngeal turbinates are also encountered, but have not been classified as primary or secondary. BAS is readily diagnosed, and quality of life is improved with appropriate medical and/or surgical management. PMID:22847322

  19. Airway nitric oxide in microgravity

    NASA Astrophysics Data System (ADS)

    Linnarsson, D.; Gustafsson, L.; Hemmingsson, Tryggve; Frostell, C.; Paiva, M.

    2005-10-01

    Nitric Oxide (NO), a molecule with a wide range of biological effects, is found in exhaled gas. Elevation of expired NO is an early sign of airway inflammation in asthma and dust inhalation. Animal experiments have demonstrated a marked increase of expired NO after venous gas emboli (bubbles, VGE), which may occur after decompression in conjunction with extravehicular activity (EVA). For this MAP project, astronauts will perform a simple inhalation-exhalation procedure weekly during their flights, and before and after EVA. Furthermore, the microgravity environment offers a possibility to gain new insights into how and where NO is formed in the lungs and what local effects NO may have there. The planned experiments have been made possible by recent developments of new techniques by the team's industrial partners; Aerocrine has developed a highly compact and accurate NO analyser, and Linde Gas Theapeutics has developed a highly compact device for NO administration in the inhaled air.

  20. Volatile Organic Compounds Enhance Allergic Airway Inflammation in an Experimental Mouse Model

    PubMed Central

    Bönisch, Ulrike; Böhme, Alexander; Kohajda, Tibor; Mögel, Iljana; Schütze, Nicole; von Bergen, Martin; Simon, Jan C.; Lehmann, Irina; Polte, Tobias

    2012-01-01

    Background Epidemiological studies suggest an association between exposure to volatile organic compounds (VOCs) and adverse allergic and respiratory symptoms. However, whether VOCs exhibit a causal role as adjuvants in asthma development remains unclear. Methods To investigate the effect of VOC exposure on the development of allergic airway inflammation Balb/c mice were exposed to VOCs emitted by new polyvinylchloride (PVC) flooring, sensitized with ovalbumin (OVA) and characterized in acute and chronic murine asthma models. Furthermore, prevalent evaporated VOCs were analyzed and mice were exposed to selected single VOCs. Results Exposure of mice to PVC flooring increased eosinophilic lung inflammation and OVA-specific IgE serum levels compared to un-exposed control mice. The increased inflammation was associated with elevated levels of Th2-cytokines. Long-term exposure to PVC flooring exacerbated chronic airway inflammation. VOCs with the highest concentrations emitted by new PVC flooring were N-methyl-2-pyrrolidone (NMP) and 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB). Exposure to NMP or TXIB also increased the allergic immune response in OVA-sensitized mice. In vitro or in vivo exposure to NMP or TXIB reduced IL-12 production in maturing dendritic cells (DCs) and enhanced airway inflammation after adoptive DC transfer into Balb/c mice. At higher concentrations both VOCs induced oxidative stress demonstrated by increased isoprostane and glutathione-S-transferase-pi1 protein levels in the lung of non-sensitized mice. Treatment of PVC flooring-exposed mice with N-acetylcysteine prevented the VOC-induced increase of airway inflammation. Conclusions Our results demonstrate that exposure to VOCs may increase the allergic immune response by interfering with DC function and by inducing oxidative stress and has therefore to be considerate as risk factor for the development of allergic diseases. PMID:22802943

  1. Comprehensive Airway Management of Patients with Maxillofacial Trauma

    PubMed Central

    Kellman, Robert M.; Losquadro, William D.

    2008-01-01

    Airway management in patients with maxillofacial trauma is complicated by injuries to routes of intubation, and the surgeon is frequently asked to secure the airway. Airway obstruction from hemorrhage, tissue prolapse, or edema may require emergent intervention for which multiple intubation techniques exist. Competing needs for both airway and surgical access create intraoperative conflicts during repair of maxillofacial fractures. Postoperatively, edema and maxillomandibular fixation place the patient at risk for further airway compromise. PMID:22110788

  2. Mechanisms Linking Advanced Airway Management and Cardiac Arrest Outcomes

    PubMed Central

    Benoit, Justin L.; Prince, David K.; Wang, Henry E.

    2015-01-01

    Advanced airway management – such as endotracheal intubation (ETI) or supraglottic airway (SGA) insertion – is one of the most prominent interventions in out-of-hospital cardiac arrest (OHCA) resuscitation. While randomized controlled trials are currently in progress to identify the best advanced airway technique in OHCA, the mechanisms by which airway management may influence OHCA outcomes remain unknown. We provide a conceptual model describing potential mechanisms linking advanced airway management with OHCA outcomes. PMID:26073275

  3. Chitosan-based nanoparticles for mucosal delivery of RNAi therapeutics.

    PubMed

    Martirosyan, Alina; Olesen, Morten Jarlstad; Howard, Kenneth A

    2014-01-01

    RNA interference (RNAi) gene silencing by small interfering RNAs (siRNAs) offers a potent and highly specific therapeutic strategy; however, enabling technologies that overcome extracellular and intracellular barriers are required. Polycation-based nanoparticles (termed polyplexes) composed of the polysaccharide chitosan have been used to facilitate delivery of siRNA across mucosal surfaces following local administration. This chapter describes the mucosal barriers that need to be addressed in order to design an effective mucosal delivery strategy and the utilization of the mucoadhesive properties of chitosan. Focus is given to preparation methods and the preclinical application of chitosan nanoparticles for respiratory and oral delivery of siRNA. PMID:25409611

  4. Tolerance of gastric mucosal flap to postoperative irradiation

    SciTech Connect

    Devineni, V.R.; Hayden, R.; Fredrickson, J.; Sicard, G. )

    1991-05-01

    When malignant lesions of the oral cavity, base of tongue, and oropharynx are treated with radical resection, adequate reconstruction is required. The free gastric mucosal flap with microvascular transfer is being used with increasing frequency at Washington University Medical Center. Because of the advanced nature of the primary lesions, most patients also require postoperative radiation therapy. In this paper the tolerance of the gastric mucosal flap to postoperative radiation therapy is reviewed. The changes resulting from radiation therapy in the mucosal flap were found to be acceptable, and no major complications were encountered.

  5. Mucosal disease of cattle: a late sequel to fetal infection.

    PubMed

    Roeder, P L; Drew, T W

    1984-03-31

    The introduction of a heifer which was persistently infected with bovine virus diarrhoea-mucosal disease virus into groups of pregnant cattle resulted in abortion, neonatal death, persistent infection and, subsequently, mucosal disease in the surviving progeny. Cattle affected with mucosal disease were invariably seronegative at the time of investigation and subsequent cases occurred only in calves previously identified as seronegative and persistently infected. The detection of virus antigen by immunofluorescent staining of cells obtained from the nasopharynx was shown to be an efficient and rapid method for identifying persistently infected cattle, correlating perfectly with virus isolation. PMID:6328725

  6. Nasal airway responses to nasal continuous positive airway pressure breathing: An in-vivo pilot study.

    PubMed

    White, David E; Bartley, Jim; Shakeel, Muhammad; Nates, Roy J; Hankin, Robin K S

    2016-06-14

    The nasal cycle, through variation in nasal airflow partitioning, allows the upper airway to accommodate the contrasting demands of air conditioning and removal of entrapped air contaminants. The purpose of this study was to investigate the influence of nasal continuous positive airway pressure (nCPAP) breathing has on both nasal airflow partitioning and nasal geometry. Using a custom-made nasal mask, twenty healthy participants had the airflow in each naris measured during normal nasal breathing followed by nCPAP breathing. Eight participants also underwent magnetic resonance imaging (MRI) of the nasal region during spontaneous nasal breathing, and then nCPAP breathing over a range of air pressures. During nCPAP breathing, a simultaneous reduction in airflow through the patent airway together with a corresponding increase in airway flow within the congested nasal airway were observed in sixteen of the twenty participants. Nasal airflow resistance is inversely proportional to airway cross-sectional area. MRI data analysis during nCPAP breathing confirmed airway cross-sectional area reduced along the patent airway while the congested airway experienced an increase in this parameter. During awake breathing, nCPAP disturbs the normal inter-nasal airflow partitioning. This could partially explain the adverse nasal drying symptoms frequently reported by many users of this therapy. PMID:27173595

  7. Airway registry: a performance improvement surveillance project of emergency department airway management.

    PubMed

    Phelan, Michael P; Glauser, Jonathan; Yuen, Ho-Wang A; Sturges-Smith, Elizabeth; Schrump, Stefanie E

    2010-01-01

    The aim of this study was to determine if use of a standardized airway data collection sheet can survey airway management practices in an emergency department. Success rates and trends from the authors' facility have been benchmarked against the National Emergency Airway Registry (NEAR). This study included all patients requiring invasive airway management during a 21-month period (July 1, 2005, through March 31, 2007). An audit form was developed and implemented to collect data on intubations. During the study period, 224 patients required invasive airway control. Of all airways managed by emergency medicine residents, the intubation success rate was 99% (200/203; 95% confidence interval [CI] = 96%-100%), with 3% of those (6/203; 95% CI = 1%-6%) requiring more than 3 attempts; 3 patients (1%; 95% CI = 0%-4%) could not be intubated and required a surgical airway. Use of an airway registry based on the NEAR registry as a benchmark of rates and types of successful intubation allows comparison of airway practices. PMID:20505111

  8. Plasmacytoid Dendritic Cells in Atherosclerosis

    PubMed Central

    Döring, Yvonne; Zernecke, Alma

    2012-01-01

    Atherosclerosis, a chronic inflammatory disease of the vessel wall and the underlying cause of cardiovascular disease, is initiated and maintained by innate and adaptive immunity. Accumulating evidence suggests an important contribution of autoimmune responses to this disease. Plasmacytoid dendritic cells (pDCs), a specialized cell type known to produce large amounts of type I interferons (IFNs) in response to bacterial and viral infections, have recently been revealed to play important roles in atherosclerosis. For example, the development of autoimmune complexes consisting of self-DNA and antimicrobial peptides, which trigger chronic type I IFN production by pDCs, promote early atherosclerotic lesion formation. pDCs and pDC-derived type I IFNs can also induce the maturation of conventional DCs and macrophages, and the development of autoreactive B cells and antibody production. These mechanisms, known to play a role in the pathogenesis of other autoimmune diseases such as systemic lupus erythematosus and psoriasis, may also affect the development and progression of atherosclerotic lesion formation. This review discusses emerging evidence showing a contribution of pDCs in the onset and progression of atherosclerosis. PMID:22754539

  9. Sex Hormones Selectively Impact the Endocervical Mucosal Microenvironment: Implications for HIV Transmission

    PubMed Central

    Goode, Diana; Aravantinou, Meropi; Jarl, Sebastian; Truong, Rosaline; Derby, Nina; Guerra-Perez, Natalia; Kenney, Jessica; Blanchard, James; Gettie, Agegnehu; Robbiani, Melissa; Martinelli, Elena

    2014-01-01

    Several studies suggest that progesterone and estrogens may affect HIV transmission in different, possibly opposing ways. Nonetheless, a direct comparison of their effects on the mucosal immune system has never been done. We hypothesize that sex hormones might impact the availability of cells and immune factors important in early stages of mucosal transmission, and, in doing so influence the risk of HIV acquisition. To test this hypothesis, we employed 15 ovarectomized rhesus macaques: 5 were treated with Depot Medroxy Progesterone Acetate (DMPA), 6 with 17-β estradiol (E2) and 4 were left untreated. All animals were euthanized 5 weeks after the initiation of hormone treatment, a time post-DMPA injection associated with high susceptibility to SIV infection. We found that DMPA-treated macaques exhibited higher expression of integrin α4β7 (α4β7) on CD4+ T cells, the gut homing receptor and a marker of cells highly susceptible to HIV, in the endocervix than did the E2-treated animals. In contrast, the frequency of CCR5+ CD4+ T cells in DMPA-treated macaques was higher than in the E2-treated group in vaginal tissue, but lower in endocervix. α4β7 expression on dendritic cells (DCs) was higher in the DMPA-treated group in the endocervical tissue, but lower in vaginal tissue and on blood DCs compared with the E2-treated animals. Soluble MAdCAM-1, the α4β7 ligand, was present in the vaginal fluids of the control and E2-treated groups, but absent in the fluids from DMPA-treated animals. Both hormones modulated the expression and release of inflammatory factors and modified the distribution of sialomucins in the endocervix. In summary, we found that sex hormones profoundly impact mucosal immune factors that are directly implicated in HIV transmission. The effect is particularly significant in the endocervix. This may increase our understanding of the potential hormone-driven modulation of HIV susceptibility and potentially guide contraceptive policies in high

  10. Perinatal opiate treatment delays growth of cortical dendrites.

    PubMed

    Ricalde, A A; Hammer, R P

    1990-07-31

    Basilar dendritic arborizations of layer II-III pyramidal neurons in primary somatosensory cortex of 5-day-old male rats were reconstructed following perinatal morphine, morphine/naltrexone, or saline vehicle administration. Morphine treatment was observed to reduce total dendritic length. This effect was limited to higher order dendritic branches, with terminal dendrites manifesting the greatest reduction of length. The action of morphine was presumably mediated by opiate receptors, since concurrent naltrexone administration completely reversed morphine effects on dendritic length and branching. These results suggest that opiates act during late ontogenesis to affect dendritic growth in cerebral cortex. PMID:2172870

  11. Integrins establish dendrite-substrate relationships that promote dendritic self-avoidance and patterning in Drosophila sensory neurons

    PubMed Central

    Kim, Michelle E.; Shrestha, Brikha R.; Blazeski, Richard; Mason, Carol A.; Grueber, Wesley B.

    2012-01-01

    Summary Dendrites achieve characteristic spacing patterns during development to ensure appropriate coverage of territories. Mechanisms of dendrite positioning via repulsive dendrite-dendrite interactions are beginning to be elucidated, but the control, and importance, of dendrite positioning relative to their substrate is poorly understood. We found that dendritic branches of Drosophila dendritic arborization sensory neurons can be positioned either at the basal surface of epidermal cells, or enclosed within epidermal invaginations. We show that integrins control dendrite positioning on or within the epidermis in a cell autonomous manner by promoting dendritic retention on the basal surface. Loss of integrin function in neurons resulted in excessive self-crossing and dendrite maintenance defects, the former indicating a novel role for substrate interactions in self-avoidance. In contrast to a contact-mediated mechanism, we find that integrins prevent crossings that are non-contacting between dendrites in different three-dimensional positions, revealing a requirement for combined dendrite-dendrite and dendrite-substrate interactions in self-avoidance. PMID:22243748

  12. Therapeutic bronchoscopic interventions for malignant airway obstruction

    PubMed Central

    Dalar, Levent; Özdemir, Cengiz; Abul, Yasin; Karasulu, Levent; Sökücü, Sinem Nedime; Akbaş, Ayşegül; Altın, Sedat

    2016-01-01

    Abstract There is no definitive consensus about the factors affecting the choice of interventional bronchoscopy in the management of malignant airway obstruction. The present study defines the choice of the interventional bronchoscopic modality and analyzes the factors influencing survival in patients with malignant central airway obstruction. Totally, over 7 years, 802 interventional rigid bronchoscopic procedures were applied in 547 patients having malignant airway obstruction. There was a significant association between the type of stent and the site of the lesion in the present study. Patients with tracheal involvement and/or involvement of the main bronchi had the worst prognosis. The sites of the lesion and endobronchial treatment modality were independent predictors of survival in the present study. The selection of different types of airway stents can be considered on the base of site of the lesion. Survival can be estimated based on the site of the lesion and endobronchial brochoscopic modality used. PMID:27281104

  13. BEHAVIOR OF CIGARETTE SMOKE IN HUMAN AIRWAYS

    EPA Science Inventory

    Experimental deposition patterns of cigarette smoke in surrogate human airway systems are very heterogeneous. article deposits are enhanced at predictable, well-defined morphological regions; most specifically, carinal ridges within bifurcation zones, and along posterior sections...

  14. 21 CFR 868.5810 - Airway connector.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... airway connector is a device intended to connect a breathing gas source to a tracheal tube, tracheostomy tube, or mask. (b) Classification. Class I (general controls). The device is exempt from the...

  15. 21 CFR 868.5810 - Airway connector.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... airway connector is a device intended to connect a breathing gas source to a tracheal tube, tracheostomy tube, or mask. (b) Classification. Class I (general controls). The device is exempt from the...

  16. 21 CFR 868.5810 - Airway connector.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... airway connector is a device intended to connect a breathing gas source to a tracheal tube, tracheostomy tube, or mask. (b) Classification. Class I (general controls). The device is exempt from the...

  17. 21 CFR 868.5810 - Airway connector.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... airway connector is a device intended to connect a breathing gas source to a tracheal tube, tracheostomy tube, or mask. (b) Classification. Class I (general controls). The device is exempt from the...

  18. Diesel exhaust particles and airway inflammation

    EPA Science Inventory

    Purpose of review. Epidemiologic investigation has associated traffic-related air pollution with adverse human health outcomes. The capacity ofdiesel exhaust particles (DEP), a major emission source air pollution particle, to initiate an airway inflammation has subsequently been ...

  19. Role of platelets in allergic airway inflammation.

    PubMed

    Idzko, Marco; Pitchford, Simon; Page, Clive

    2015-06-01

    Increasing evidence suggests an important role for platelets and their products (e.g., platelet factor 4, β-thromboglobulin, RANTES, thromboxane, or serotonin) in the pathogenesis of allergic diseases. A variety of changes in platelet function have been observed in patients with asthma, such as alterations in platelet secretion, expression of surface molecules, aggregation, and adhesion. Moreover, platelets have been found to actively contribute to most of the characteristic features of asthma, including bronchial hyperresponsiveness, bronchoconstriction, airway inflammation, and airway remodeling. This review brings together the current available data from both experimental and clinical studies that have investigated the role of platelets in allergic airway inflammation and asthma. It is anticipated that a better understanding of the role of platelets in the pathogenesis of asthma might lead to novel promising therapeutic approaches in the treatment of allergic airway diseases. PMID:26051948

  20. Virtual Airway Skills Trainer (VAST) Simulator.

    PubMed

    Demirel, Doga; Yu, Alexander; Halic, Tansel; Sankaranarayanan, Ganesh; Ryason, Adam; Spindler, David; Butler, Kathryn L; Cao, Caroline; Petrusa, Emil; Molina, Marcos; Jones, Dan; De, Suvranu; Demoya, Marc; Jones, Stephanie

    2016-01-01

    This paper presents a simulation of Virtual Airway Skill Trainer (VAST) tasks. The simulated tasks are a part of two main airway management techniques; Endotracheal Intubation (ETI) and Cricothyroidotomy (CCT). ETI is a simple nonsurgical airway management technique, while CCT is the extreme surgical alternative to secure the airway of a patient. We developed identification of Mallampati class, finding the optimal angle for positioning pharyngeal/mouth axes tasks for ETI and identification of anatomical landmarks and incision tasks for CCT. Both ETI and CCT simulators were used to get physicians' feedback at Society for Education in Anesthesiology and Association for Surgical Education spring meetings. In this preliminary validation study, total 38 participants for ETI and 48 for CCT performed each simulation task and completed pre and post questionnaires. In this work, we present the details of the simulation for the tasks and also the analysis of the collected data from the validation study. PMID:27046559