Sample records for airway oxidative stress

  1. Oxidative airway inflammation leads to systemic and vascular oxidative stress in a murine model of allergic asthma.

    PubMed

    Al-Harbi, Naif O; Nadeem, A; Al-Harbi, Mohamed M; Imam, F; Al-Shabanah, Othman A; Ahmad, Sheikh F; Sayed-Ahmed, Mohamed M; Bahashwan, Saleh A

    2015-05-01

    Oxidant-antioxidant imbalance plays an important role in repeated cycles of airway inflammation observed in asthma. It is when reactive oxygen species (ROS) overwhelm antioxidant defenses that a severe inflammatory state becomes apparent and may impact vasculature. Several studies have shown an association between airway inflammation and cardiovascular complications; however so far none has investigated the link between airway oxidative stress and systemic/vascular oxidative stress in a murine model of asthma. Therefore, this study investigated the contribution of oxidative stress encountered in asthmatic airways in modulation of vascular/systemic oxidant-antioxidant balance. Rats were sensitized intraperitoneally with ovalbumin (OVA) in the presence of aluminum hydroxide followed by several intranasal (i.n.) challenges with OVA. Rats were then assessed for airway and vascular inflammation, oxidative stress (ROS, lipid peroxides) and antioxidants measured as total antioxidant capacity (TAC) and thiol content. Challenge with OVA led to increased airway inflammation and oxidative stress with a concomitant increase in vascular inflammation and oxidative stress. Oxidative stress in the vasculature was significantly inhibited by antioxidant treatment, N-acetyl cysteine; whereas hydrogen peroxide (H2O2) inhalation worsened it. Therefore, our study shows that oxidative airway inflammation is associated with vascular/systemic oxidative stress which might predispose these patients to increased cardiovascular risk. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Systemic and airway oxidative stress in competitive swimmers.

    PubMed

    Škrgat, Sabina; Marčun, Robert; Kern, Izidor; Šilar, Mira; Šelb, Julij; Fležar, Matjaž; Korošec, Peter

    2018-04-01

    The environment in swimming pools, which contain chlorine, might interact with the airway epithelium, resulting in oxidative stress and/or inflammation during high intensity training periods. We evaluated pulmonary functional (metacholine challenge test, FEV1 and VC), cellular (eosinophils and neutrophils), inflammatory (FeNo, IL-5, IL-6, IL-8 and TNF-α), oxidative (8-isoprostanes) and angiogenesis factors (VEGF) in induced sputum and peripheral blood of 41 healthy non-asthmatic elite swimmers (median 16 years) during the period of high intensity training before a national championship. The second paired sampling was performed seven months later after training had been stopped for one month. There was a ten-fold increase (median 82-924 pg/ml; P < 0.001) in 8-isoprostanes in induced sputum and five-fold increase (median 82-924 pg/ml; P < 0.001) in sera during training in comparison to the period of rest. However, there was no difference in FEV1 (113 vs 116%), VC (119 vs 118%), FeNo (median 34 vs 38 ppb), eosinophils (2.7 vs 2.9% in sputum; 180 vs 165 cells/μl in blood), neutrophils, different cytokines or VEGF in induced sputum or sera. The only exception was TNF-α, which was moderately increased in sera (median 23 vs 40 pg/ml; P = 0.02) during the peak training period. Almost half (18 of 41) of swimmers showed bronchial hyperresponsiveness during the peak training period (PC20 cutoff was 4 mg/ml). There was no correlation between hyperresponsiveness and the markers of oxidative stress or inflammation. High intensity training in healthy, non-asthmatic competitive swimmers results in marked oxidative stress at the airway and systemic levels, but does not lead to airway inflammation. However, we could not confirm that oxidative stress is associated with bronchial hyperresponsiveness (AHR), which is often observed during the peak exercise training period. Copyright © 2018. Published by Elsevier Ltd.

  3. Mesenchymal stem cells alleviate oxidative stress-induced mitochondrial dysfunction in the airways.

    PubMed

    Li, Xiang; Michaeloudes, Charalambos; Zhang, Yuelin; Wiegman, Coen H; Adcock, Ian M; Lian, Qizhou; Mak, Judith C W; Bhavsar, Pankaj K; Chung, Kian Fan

    2018-05-01

    Oxidative stress-induced mitochondrial dysfunction can contribute to inflammation and remodeling in patients with chronic obstructive pulmonary disease (COPD). Mesenchymal stem cells protect against lung damage in animal models of COPD. It is unknown whether these effects occur through attenuating mitochondrial dysfunction in airway cells. We sought to examine the effect of induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) on oxidative stress-induce mitochondrial dysfunction in human airway smooth muscle cells (ASMCs) in vitro and in mouse lungs in vivo. ASMCs were cocultured with iPSC-MSCs in the presence of cigarette smoke medium (CSM), and mitochondrial reactive oxygen species (ROS) levels, mitochondrial membrane potential (ΔΨm), and apoptosis were measured. Conditioned medium from iPSC-MSCs and transwell cocultures were used to detect any paracrine effects. The effect of systemic injection of iPSC-MSCs on airway inflammation and hyperresponsiveness in ozone-exposed mice was also investigated. Coculture of iPSC-MSCs with ASMCs attenuated CSM-induced mitochondrial ROS, apoptosis, and ΔΨm loss in ASMCs. iPSC-MSC-conditioned medium or transwell cocultures with iPSC-MSCs reduced CSM-induced mitochondrial ROS but not ΔΨm or apoptosis in ASMCs. Mitochondrial transfer from iPSC-MSCs to ASMCs was observed after direct coculture and was enhanced by CSM. iPSC-MSCs attenuated ozone-induced mitochondrial dysfunction, airway hyperresponsiveness, and inflammation in mouse lungs. iPSC-MSCs offered protection against oxidative stress-induced mitochondrial dysfunction in human ASMCs and in mouse lungs while reducing airway inflammation and hyperresponsiveness. These effects are, at least in part, dependent on cell-cell contact, which allows for mitochondrial transfer, and paracrine regulation. Therefore iPSC-MSCs show promise as a therapy for oxidative stress-dependent lung diseases, such as COPD. Copyright © 2017 American Academy of Allergy

  4. Oxidative stress in Nipah virus-infected human small airway epithelial cells.

    PubMed

    Escaffre, Olivier; Halliday, Hailey; Borisevich, Viktoriya; Casola, Antonella; Rockx, Barry

    2015-10-01

    Nipah virus (NiV) is a zoonotic emerging pathogen that can cause severe and often fatal respiratory disease in humans. The pathogenesis of NiV infection of the human respiratory tract remains unknown. Reactive oxygen species (ROS) produced by airway epithelial cells in response to viral infections contribute to lung injury by inducing inflammation and oxidative stress; however, the role of ROS in NiV-induced respiratory disease is unknown. To investigate whether NiV induces oxidative stress in human respiratory epithelial cells, we used oxidative stress markers and monitored antioxidant gene expression. We also used ROS scavengers to assess their role in immune response modulation. Oxidative stress was confirmed in infected cells and correlated with the reduction in antioxidant enzyme gene expression. Infected cells treated by ROS scavengers resulted in a significant decrease of the (F2)-8-isoprostane marker, inflammatory responses and virus replication. In conclusion, ROS are induced during NiV infection in human respiratory epithelium and contribute to the inflammatory response. Understanding how oxidative stress contributes to NiV pathogenesis is crucial for therapeutic development.

  5. Emodin mitigates diesel exhaust particles-induced increase in airway resistance, inflammation and oxidative stress in mice.

    PubMed

    Nemmar, Abderrahim; Al-Salam, Suhail; Yuvaraju, Priya; Beegam, Sumaya; Ali, Badreldin H

    2015-08-15

    Clinical and experimental studies have reported that short-term exposure to particulate air pollution is associated with inflammation, oxidative stress and impairment of lung function. Emodin (1,3,8-trihydroxy-6-methylanthraquinone) has a strong antioxidant and anti-inflammatory actions. Therefore, in the present study, we evaluated the possible ameliorative effect of emodin on diesel exhaust particles (DEP)-induced impairment of lung function, inflammation and oxidative stress in mice. Mice were intratracheally instilled with DEP (20 μg/mouse) or saline (control). Emodin was administered intraperitoneally 1h before and 7h after pulmonary exposure to DEP. Twenty-four hours following DEP exposure, we evaluated airway resistance measured by forced oscillation technique, lung inflammation and oxidative stress. Emodin treatment abated the DEP-induced increase in airway resistance, and prevented the influx of neutrophils in bronchoalveolar lavage fluid. Similarly, lung histopathology confirmed the protective effect of emodin on DEP-induced lung inflammation. DEP induced a significant increase of proinflammatory cytokines in the lung including tumor necrosis factor α, interleukin 6 and interleukin 1β. The latter effect was significantly ameliorated by emodin. DEP caused a significant increase in lung lipid peroxidation, reactive oxygen species and a significant decrease of reduced glutathione concentration. These effects were significantly mitigated by emodin. We conclude that emodin significantly mitigated DEP-induced increase of airway resistance, lung inflammation and oxidative stress. Pending further pharmacological and toxicological studies, emodin may be considered a potentially useful pulmonary protective agent against particulate air pollution-induced lung toxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Effects of long-term azithromycin therapy on airway oxidative stress markers in non-cystic fibrosis bronchiectasis.

    PubMed

    Diego, Afredo De; Milara, Javier; Martinez-Moragón, Eva; Palop, Marta; León, Montse; Cortijo, Julio

    2013-10-01

    To explore the effect of long-term therapy with azithromycin in regards to airway oxidative stress markers in exhaled breath condensate (EBC) of adult patients with stable non-cystic fibrosis (CF) bronchiectasis. Open-label prospective study of 30 patients randomized to azithromycin 250 mg three times per week during 3 months (16 patients) or control (14 patients). Primary outcome were changes in nitric oxide, 8-isoprostane, pH, nitrites and nitrates in EBC. Secondary outcomes were changes in exacerbation rates, dyspnoea (Borg scale), sputum volume (cc), sputum colour (15-point scale), bacterial infection, health-related quality of life (St George's Respiratory Questionnaire), lung function and radiological extension. Azithromycin produced a significant decrease in sputum volume (8.9 (1.8) mL vs 2.1 (3.4) mL) and number of exacerbations (0.1 (0.6) vs 1.2 (0.9)). Dyspnoea (0.4 (0.1) vs 0.1 (0.2)) and health-related quality of life also improved after therapy. However, oxidative stress markers in EBC, systemic inflammatory markers as well as functional respiratory tests did not differ from the control group after therapy. A post-hoc analysis comparing patients infected or not with Pseudomonas aeruginosa revealed that these effects were more pronounced in infected patients. In this subgroup, treatment was followed by a significant reduction in sputum volume, number of exacerbations, dyspnoea and St George's Respiratory Questionnaire total score. Of all airway oxidative stress markers, only nitrates in EBC were reduced after therapy. Long-term azythromicin treatment has some clinical benefits in patients with non-CF stable bronchiectasis, but it does not affect airway oxidative stress markers. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  7. Endocrine disruptors found in food contaminants enhance allergic sensitization through an oxidative stress that promotes the development of allergic airway inflammation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Takuma, E-mail: katotaku@doc.medic.mie-u.ac.jp; Tada-Oikawa, Saeko; Wang, Linan

    In the past few decades, there has been a significant increase in incidence of allergic diseases. The hygiene hypothesis may provide some clues to explain this rising trend, but it may also be attributable to other environmental factors that exert a proallergic adjuvant effects. However, there is limited information on the risks of developing allergic asthma and related diseases through the ingestion of environmental chemicals found in food contaminants. In the present study, we have shown that oral administration of tributyltin, used as a model environmental chemical, induced oxidative-stress status in the bronchial lymph node, mesenteric lymph node and spleen,more » but not in the lung, where the initial step of allergic asthma pathogenesis takes place. Mice exposed to tributyltin exhibited heightened Th2 immunity to the allergen with more severe airway inflammation. Tributyltin also induced Treg cells apoptosis preferentially over non-Treg cells. All these effects of tributyltin exposure were canceled by the administration of glutathione monoethyl ester. Meanwhile, tributyltin did not affect airway inflammation of mice transferred with allergen-specific Th2 cells. Collectively, these results suggest that tributyltin exerts its pathological effect during the sensitization phase through oxidative stress that enhances the development of allergic diseases. The current study dissects the pathogenic role of oxidative stress induced by oral exposure to an environmental chemical during the sensitization phase of allergic airway inflammation and would be important for developing therapeutics for prevention of allergic diseases. - Highlights: • Oral exposure to TBT exacerbates airway inflammation. • TBT induces oxidative stress in secondary lymphoid organs, but not in the lung. • TBT preferentially induces regulatory T cell apoptosis over non-Treg cells. • TBT does not enhance pre-existing airway inflammation in sensitized mice. • Chemicals in food

  8. Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease.

    PubMed

    Wiegman, Coen H; Michaeloudes, Charalambos; Haji, Gulammehdi; Narang, Priyanka; Clarke, Colin J; Russell, Kirsty E; Bao, Wuping; Pavlidis, Stelios; Barnes, Peter J; Kanerva, Justin; Bittner, Anton; Rao, Navin; Murphy, Michael P; Kirkham, Paul A; Chung, Kian Fan; Adcock, Ian M

    2015-09-01

    Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress-induced pathology. We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells. Mice were exposed to ozone, and lung inflammation, airway hyperresponsiveness (AHR), and mitochondrial function were determined. Human ASM cells were isolated from bronchial biopsy specimens from healthy subjects, smokers, and patients with COPD. Inflammation and mitochondrial function in mice and human ASM cells were measured with and without the presence of the mitochondria-targeted antioxidant MitoQ. Mice exposed to ozone, a source of oxidative stress, had lung inflammation and AHR associated with mitochondrial dysfunction and reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial oxidative stress, and reduced mitochondrial complex I, III, and V expression. Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ reduced inflammation and AHR. ASM cells from patients with COPD have reduced ΔΨm, adenosine triphosphate content, complex expression, basal and maximum respiration levels, and respiratory reserve capacity compared with those from healthy control subjects, whereas mitochondrial reactive oxygen species (ROS) levels were increased. Healthy smokers were intermediate between healthy nonsmokers and patients with COPD. Hydrogen peroxide induced mitochondrial dysfunction in ASM cells from healthy subjects. MitoQ and Tiron inhibited TGF-β-induced ASM cell proliferation and CXCL8 release. Mitochondrial dysfunction in patients with COPD is associated with excessive mitochondrial ROS levels, which contribute to enhanced inflammation and cell hyperproliferation. Targeting mitochondrial ROS represents

  9. S-adenosylmethionine reduces airway inflammation and fibrosis in a murine model of chronic severe asthma via suppression of oxidative stress.

    PubMed

    Yoon, Sun-Young; Hong, Gyong Hwa; Kwon, Hyouk-Soo; Park, Sunjoo; Park, So Young; Shin, Bomi; Kim, Tae-Bum; Moon, Hee-Bom; Cho, You Sook

    2016-06-03

    Increased oxidative stress has an important role in asthmatic airway inflammation and remodeling. A potent methyl donor, S-adenosylmethionine (SAMe), is known to protect against tissue injury and fibrosis through modulation of oxidative stress. The aim of this study was to evaluate the effect of SAMe on airway inflammation and remodeling in a murine model of chronic asthma. A mouse model was generated by repeated intranasal challenge with ovalbumin and Aspergillus fungal protease twice a week for 8 weeks. SAMe was orally administered every 24 h for 8 weeks. We performed bronchoalveolar lavage (BAL) fluid analysis and histopathological examination. The levels of various cytokines and 4-hydroxy-2-nonenal (HNE) were measured in the lung tissue. Cultured macrophages and fibroblasts were employed to evaluate the underlying anti-inflammatory and antifibrotic mechanisms of SAMe. The magnitude of airway inflammation and fibrosis, as well as the total BAL cell counts, were significantly suppressed in the SAMe-treated groups. A reduction in T helper type 2 pro-inflammatory cytokines and HNE levels was observed in mouse lung tissue after SAMe administration. Macrophages cultured with SAMe also showed reduced cellular oxidative stress and pro-inflammatory cytokine production. Moreover, SAMe treatment attenuated transforming growth factor-β (TGF-β)-induced fibronectin expression in cultured fibroblasts. SAMe had a suppressive effect on airway inflammation and fibrosis in a mouse model of chronic asthma, at least partially through the attenuation of oxidative stress and TGF-β-induced fibronectin expression. The results of this study suggest a potential role for SAMe as a novel therapeutic agent in chronic asthma.

  10. Biomarkers of airway acidity and oxidative stress in exhaled breath condensate from grain workers.

    PubMed

    Do, Ron; Bartlett, Karen H; Dimich-Ward, Helen; Chu, Winnie; Kennedy, Susan M

    2008-11-15

    Grain workers report adverse respiratory symptoms due to exposures to grain dust and endotoxin. Studies have shown that biomarkers in exhaled breath condensate (EBC) vary with the severity of airway inflammation. The purpose of the study was to evaluate biomarkers of airway acidity (pH and ammonium [NH(4)(+)]) and oxidative stress (8-isoprostane) in the EBC of grain workers. A total of 75 workers from 5 terminal elevators participated. In addition to EBC sampling, exposure monitoring for inhalable grain dust and endotoxin was performed; spirometry, allergy testing, and a respiratory questionnaire derived from that of the American Thoracic Society were administered. Dust and endotoxin levels ranged from 0.010 to 13 mg/m(3) (median, 1.0) and 8.1 to 11,000 endotoxin units/m(3) (median, 610) respectively. EBC pH values varied from 4.3 to 8.2 (median, 7.9); NH(4)(+) values from 22 to 2,400 microM (median, 420); and 8-isoprostane values from 1.3 to 45 pg/ml (median, 11). Univariate and multivariable analyses revealed a consistent effect of cumulative smoking and obesity with decreased pH and NH(4)(+), and intensity of grain dust and endotoxin with increased 8-isoprostane. Duration of work on the test day was associated with decreased pH and NH(4)(+), whereas duration of employment in the industry was associated with decreased 8-isoprostane. Chronic exposures are associated with airway acidity, whereas acute exposures are more closely associated with oxidative stress. These results suggest that the collection of EBC may contribute to predicting the pathological state of the airways of workers exposed to acute and chronic factors.

  11. Endocrine disruptors found in food contaminants enhance allergic sensitization through an oxidative stress that promotes the development of allergic airway inflammation.

    PubMed

    Kato, Takuma; Tada-Oikawa, Saeko; Wang, Linan; Murata, Mariko; Kuribayashi, Kagemasa

    2013-11-15

    In the past few decades, there has been a significant increase in incidence of allergic diseases. The hygiene hypothesis may provide some clues to explain this rising trend, but it may also be attributable to other environmental factors that exert a proallergic adjuvant effects. However, there is limited information on the risks of developing allergic asthma and related diseases through the ingestion of environmental chemicals found in food contaminants. In the present study, we have shown that oral administration of tributyltin, used as a model environmental chemical, induced oxidative-stress status in the bronchial lymph node, mesenteric lymph node and spleen, but not in the lung, where the initial step of allergic asthma pathogenesis takes place. Mice exposed to tributyltin exhibited heightened Th2 immunity to the allergen with more severe airway inflammation. Tributyltin also induced Treg cells apoptosis preferentially over non-Treg cells. All these effects of tributyltin exposure were canceled by the administration of glutathione monoethyl ester. Meanwhile, tributyltin did not affect airway inflammation of mice transferred with allergen-specific Th2 cells. Collectively, these results suggest that tributyltin exerts its pathological effect during the sensitization phase through oxidative stress that enhances the development of allergic diseases. The current study dissects the pathogenic role of oxidative stress induced by oral exposure to an environmental chemical during the sensitization phase of allergic airway inflammation and would be important for developing therapeutics for prevention of allergic diseases. © 2013.

  12. TRPA1 is a major oxidant sensor in murine airway sensory neurons

    PubMed Central

    Bessac, Bret F.; Sivula, Michael; von Hehn, Christian A.; Escalera, Jasmine; Cohn, Lauren; Jordt, Sven-Eric

    2008-01-01

    Sensory neurons in the airways are finely tuned to respond to reactive chemicals threatening airway function and integrity. Nasal trigeminal nerve endings are particularly sensitive to oxidants formed in polluted air and during oxidative stress as well as to chlorine, which is frequently released in industrial and domestic accidents. Oxidant activation of airway neurons induces respiratory depression, nasal obstruction, sneezing, cough, and pain. While normally protective, chemosensory airway reflexes can provoke severe complications in patients affected by inflammatory airway conditions like rhinitis and asthma. Here, we showed that both hypochlorite, the oxidizing mediator of chlorine, and hydrogen peroxide, a reactive oxygen species, activated Ca2+ influx and membrane currents in an oxidant-sensitive subpopulation of chemosensory neurons. These responses were absent in neurons from mice lacking TRPA1, an ion channel of the transient receptor potential (TRP) gene family. TRPA1 channels were strongly activated by hypochlorite and hydrogen peroxide in primary sensory neurons and heterologous cells. In tests of respiratory function, Trpa1–/– mice displayed profound deficiencies in hypochlorite- and hydrogen peroxide–induced respiratory depression as well as decreased oxidant-induced pain behavior. Our results indicate that TRPA1 is an oxidant sensor in sensory neurons, initiating neuronal excitation and subsequent physiological responses in vitro and in vivo. PMID:18398506

  13. Oxidative stress and quality of life in elderly patients with obstructive sleep apnea syndrome: are there differences after six months of Continuous Positive Airway Pressure treatment?

    PubMed Central

    Yagihara, Fabiana; Lucchesi, Ligia Mendonça; D'Almeida, Vânia; de Mello, Marco Túlio; Tufik, Sergio; Bittencourt, Lia Rita Azeredo

    2012-01-01

    OBJECTIVES: This study evaluated the effect of Continuous Positive Airway Pressure treatment on oxidative stress parameters and the quality of life of elderly patients with obstructive sleep apnea syndrome. METHODS: In total, 30 obstructive sleep apnea syndrome patients and 27 subjects without obstructive sleep apnea syndrome were included in this study. Both groups underwent quality of life and oxidative stress evaluations at baseline and after six months. Polysomnography was performed in both groups at baseline and a second time in the obstructive sleep apnea syndrome group after six months of Continuous Positive Airway Pressure treatment. All of the variables were compared between the control and obstructive sleep apnea syndrome groups in this prospective case-control study. RESULTS: The baseline concentrations of the antioxidant enzyme catalase were higher in the obstructive sleep apnea syndrome group than the control group. After Continuous Positive Airway Pressure treatment, the obstructive sleep apnea syndrome group exhibited a reduction in the level of oxidative stress, as indicated by a decrease in the level of lipid peroxidation measured by the malondialdehyde (MDA) concentration [pre: 2.7 nmol malondialdehyde/mL (95% 1.6-3.7) vs. post: 1.3 nmol MDA/mL (0.7-1.9), p<0.01]. Additionally, improvements were observed in two domains covered by the SF-36 questionnaire: functional capacity [pre: 77.4 (69.2-85.5) vs. post: 83.4 (76.9-89.9), p = 0.002] and pain [pre: 65.4 (52.8-78.1) vs. post: 77.8 (67.2-88.3), p = 0.004]. CONCLUSION: Our study demonstrated that the use of Continuous Positive Airway Pressure to treat obstructive sleep apnea syndrome in elderly patients reduced oxidative stress and improved the quality of life. PMID:22760893

  14. Neurokinin-1 receptor mediates stress-exacerbated allergic airway inflammation and airway hyperresponsiveness in mice.

    PubMed

    Joachim, Ricarda A; Sagach, Viktoriya; Quarcoo, David; Dinh, Q Thai; Arck, Petra C; Klapp, Burghard F

    2004-01-01

    A wealth of clinical observation has suggested that stress and asthma morbidity are associated. We have previously established a mouse model of stress-exacerbated allergic airway inflammation, which reflects major clinical findings. The aim of the current study was to investigate the role of the neurokinin- (NK-)1 receptor in the mediation of stress effects in allergic airway inflammation. BALB/c mice were systemically sensitized with ovalbumin (OVA) on assay days 1, 14, and 21 and repeatedly challenged with OVA aerosol on days 26 and 27. Sound stress was applied to the animals for 24 hours, starting with the first airway challenge. Additionally, one group of stressed and one group of nonstressed mice received the highly specific NK-1 receptor antagonist RP 67580. Bronchoalveolar lavage fluid was obtained, and cell numbers and differentiation were determined. Airway hyperreactivity was measured in vitro by electrical field stimulation of tracheal smooth-muscle elements. Application of stress in sensitized and challenged animals resulted in a significant increase in leukocyte number in the bronchoalveolar lavage fluid. Furthermore, stressed animals showed enhanced airway reactivity. The increase of inflammatory cells and airway reactivity was blocked by treatment of animals with the NK-1 receptor antagonist. These data indicate that the NK-1 receptor plays an important role in mediating stress effects in allergen-induced airway inflammation.

  15. [Airway oxidative stress and inflammation markers in chronic obstructive pulmonary diseases(COPD) patients are linked with exposure to traffic-related air pollution: a panel study].

    PubMed

    Chen, J; Zhao, Q; Liu, B B; Wang, J; Xu, H B; Zhang, Y; Song, X M; He, B; Huang, W

    2016-05-01

    To investigate the effects of short-term exposure to traffic-related air pollution on airway oxidative stress and inflammation in chronic obstructive pulmonary diseases (COPD) patients. A panel of forty-five diagnosed COPD patients were recruited and followed with repeated measurements of biomarkers reflecting airway oxidative stress and inflammation in exhaled breath condensate (EBC), including nitrate and nitrite, 8-isoprostane, interleukin-8 and acidity of EBC (pH), between 5(th) September in 2014 and 26(th) May in 2015. The associations between air pollution and biomarkers were analyzed with mixed-effects models, controlling for confounding covariates. The concentration of PM2.5, black carbon, NO2 and number concentration of particles with diameter less than 100 nm (PNC100), and particles in size ranges between 100 nm to 200 nm (PNC100-200) during the first follow-up were (156.5±117.7), (10.7±0.7), (165.9±66.0)μg/m(3) and 397 521±96 712, 79 421±44 090 per cubic meter, respectively; the concentration were (67.9±29.6), (3.4±1.3), (126.1±10.9) μg/m(3) and (295 682±39 430), (24 693±12 369) per cubic meter, respectively during the second follow-up. The differences were of significance, with t value being 3.10, 4.42, 2.61, 4.02, 5.12, respectively and P value being 0.005,<0.001, 0.016, <0.001 and <0.001, respectively. In our COPD-patient panel, per interquartile range (IQR) increase in PNC100-200, we observed an increase of 65% (95% CI: 8%-152%) in nitrate and nitrite in EBC reflecting airway oxidative stress. For an IQR increase in PM2.5, black carbon and PNC100-200, respective increases of 0.17 ng/ml (95% CI: 0.02-0.33), 0.12 ng/ml (95% CI: 0.01-0.24) and 0.13 ng/ml (95% CI:0.02-0.24) in interleukin-8 in EBC reflecting airway inflammation were also observed. An IQR increase in ozone was also associated with a 0.24 (95%CI: 0.05-0.42) decrease in pH of EBC reflecting increased airway inflammation. No significant association observed between air pollution

  16. Oxidative stress modulates the expression of genes involved in cell survival in ΔF508 cystic fibrosis airway epithelial cells.

    PubMed

    Voisin, Grégory; Bouvet, Guillaume F; Legendre, Pierre; Dagenais, André; Massé, Chantal; Berthiaume, Yves

    2014-09-01

    Although cystic fibrosis (CF) pathophysiology is explained by a defect in CF transmembrane conductance regulator (CFTR) protein, the broad spectrum of disease severity is the consequence of environmental and genetic factors. Among them, oxidative stress has been demonstrated to play an important role in the evolution of this disease, with susceptibility to oxidative damage, decline of pulmonary function, and impaired lung antioxidant defense. Although oxidative stress has been implicated in the regulation of inflammation, its molecular outcomes in CF cells remain to be evaluated. To address the question, we compared the gene expression profile in NuLi-1 cells with wild-type CFTR and CuFi-1 cells homozygous for ΔF508 mutation cultured at air-liquid interface. We analyzed the transcriptomic response of these cell lines with microarray technology, under basal culture conditions and after 24 h oxidative stress induced by 15 μM 2,3-dimethoxy-1,4-naphtoquinone. In the absence of oxidative conditions, CuFi-1 gene profiling showed typical dysregulated inflammatory responses compared with NuLi-1. In the presence of oxidative conditions, the transcriptome of CuFi-1 cells reflected apoptotic transcript modulation. These results were confirmed in the CFBE41o- and corrCFBE41o- cell lines as well as in primary culture of human CF airway epithelial cells. Altogether, our data point to the influence of oxidative stress on cell survival functions in CF and identify several genes that could be implicated in the inflammation response observed in CF patients. Copyright © 2014 the American Physiological Society.

  17. Airway driving pressure and lung stress in ARDS patients.

    PubMed

    Chiumello, Davide; Carlesso, Eleonora; Brioni, Matteo; Cressoni, Massimo

    2016-08-22

    Lung-protective ventilation strategy suggests the use of low tidal volume, depending on ideal body weight, and adequate levels of PEEP. However, reducing tidal volume according to ideal body weight does not always prevent overstress and overstrain. On the contrary, titrating mechanical ventilation on airway driving pressure, computed as airway pressure changes from PEEP to end-inspiratory plateau pressure, equivalent to the ratio between the tidal volume and compliance of respiratory system, should better reflect lung injury. However, possible changes in chest wall elastance could affect the reliability of airway driving pressure. The aim of this study was to evaluate if airway driving pressure could accurately predict lung stress (the pressure generated into the lung due to PEEP and tidal volume). One hundred and fifty ARDS patients were enrolled. At 5 and 15 cmH2O of PEEP, lung stress, driving pressure, lung and chest wall elastance were measured. The applied tidal volume (mL/kg of ideal body weight) was not related to lung gas volume (r (2) = 0.0005 p = 0.772). Patients were divided according to an airway driving pressure lower and equal/higher than 15 cmH2O (the lower and higher airway driving pressure groups). At both PEEP levels, the higher airway driving pressure group had a significantly higher lung stress, respiratory system and lung elastance compared to the lower airway driving pressure group. Airway driving pressure was significantly related to lung stress (r (2) = 0.581 p < 0.0001 and r (2) = 0.353 p < 0.0001 at 5 and 15 cmH2O of PEEP). For a lung stress of 24 and 26 cmH2O, the optimal cutoff value for the airway driving pressure were 15.0 cmH2O (ROC AUC 0.85, 95 % CI = 0.782-0.922); and 16.7 (ROC AUC 0.84, 95 % CI = 0.742-0.936). Airway driving pressure can detect lung overstress with an acceptable accuracy. However, further studies are needed to establish if these limits could be used for ventilator settings.

  18. Oxidative stress–induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease

    PubMed Central

    Wiegman, Coen H.; Michaeloudes, Charalambos; Haji, Gulammehdi; Narang, Priyanka; Clarke, Colin J.; Russell, Kirsty E.; Bao, Wuping; Pavlidis, Stelios; Barnes, Peter J.; Kanerva, Justin; Bittner, Anton; Rao, Navin; Murphy, Michael P.; Kirkham, Paul A.; Chung, Kian Fan; Adcock, Ian M.; Brightling, Christopher E.; Davies, Donna E.; Finch, Donna K.; Fisher, Andrew J.; Gaw, Alasdair; Knox, Alan J.; Mayer, Ruth J.; Polkey, Michael; Salmon, Michael; Singh, David

    2015-01-01

    Background Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress–induced pathology. Objective We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells. Methods Mice were exposed to ozone, and lung inflammation, airway hyperresponsiveness (AHR), and mitochondrial function were determined. Human ASM cells were isolated from bronchial biopsy specimens from healthy subjects, smokers, and patients with COPD. Inflammation and mitochondrial function in mice and human ASM cells were measured with and without the presence of the mitochondria-targeted antioxidant MitoQ. Results Mice exposed to ozone, a source of oxidative stress, had lung inflammation and AHR associated with mitochondrial dysfunction and reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial oxidative stress, and reduced mitochondrial complex I, III, and V expression. Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ reduced inflammation and AHR. ASM cells from patients with COPD have reduced ΔΨm, adenosine triphosphate content, complex expression, basal and maximum respiration levels, and respiratory reserve capacity compared with those from healthy control subjects, whereas mitochondrial reactive oxygen species (ROS) levels were increased. Healthy smokers were intermediate between healthy nonsmokers and patients with COPD. Hydrogen peroxide induced mitochondrial dysfunction in ASM cells from healthy subjects. MitoQ and Tiron inhibited TGF-β–induced ASM cell proliferation and CXCL8 release. Conclusions Mitochondrial dysfunction in patients with COPD is associated with excessive mitochondrial ROS levels, which contribute to enhanced inflammation and cell

  19. Inflammation, oxidative stress, and higher expression levels of Nrf2 and NQO1 proteins in the airways of women chronically exposed to biomass fuel smoke.

    PubMed

    Mondal, Nandan Kumar; Saha, Hirak; Mukherjee, Bidisha; Tyagi, Neetu; Ray, Manas Ranjan

    2018-01-24

    The study was carried out to examine whether chronic exposure to smoke during daily household cooking with biomass fuel (BMF) elicits changes in airway cytology and expressions of Nrf2 (nuclear factor erythroid 2 [NF-E2]-related factor 2 [Nrf2]), Keap1 (Kelch-like erythroid-cell-derived protein with CNC homology [ECH]-associated protein 1), and NQO1 (NAD(P)H:quinone oxidoreductase 1) proteins in the airways. For this, 282 BMF-using women (median age 34 year) and 236 age-matched women who cooked with liquefied petroleum gas (LPG) were enrolled. Particulate matter with diameters of < 10 µm (PM 10 ) and < 2.5 µm (PM 2.5 ) were measured in indoor air with real-time laser photometer. Routine hematology, sputum cytology, Nrf2, Keap1, NQO1, and generation of reactive oxygen species (ROS) along with the levels of superoxide dismutase (SOD) and catalase were measured in both groups. PM 10 and PM 2.5 levels were significantly higher in BMF-using households compared to LPG. Compared with LPG users, BMF users had 32% more leukocytes in circulation and their sputa were 1.4-times more cellular with significant increase in absolute number of neutrophils, lymphocytes, eosinophils, and alveolar macrophages, suggesting airway inflammation. ROS generation was 1.5-times higher in blood neutrophils and 34% higher in sputum cells of BMF users while erythrocyte SOD was 31% lower and plasma catalase was relatively unchanged, suggesting oxidative stress. In BMF users, Keap1 expression was reduced, the percentage of AEC with nuclear expression of Nrf2 was two- to three-times more, and NQO1 level in sputum cell lysate was two-times higher than that of LPG users. In conclusion, cooking with BMF was associated with Nrf2 activation and elevated NQO1 protein level in the airways. The changes may be adaptive cellular response to counteract biomass smoke-elicited oxidative stress and inflammation-related tissue injury in the airways.

  20. Static and dynamic stress heterogeneity in a multiscale model of the asthmatic airway wall

    PubMed Central

    Hiorns, J. E.

    2016-01-01

    Airway hyperresponsiveness (AHR) is a key characteristic of asthma that remains poorly understood. Tidal breathing and deep inspiration ordinarily cause rapid relaxation of airway smooth muscle (ASM) (as demonstrated via application of length fluctuations to tissue strips) and are therefore implicated in modulation of AHR, but in some cases (such as application of transmural pressure oscillations to isolated intact airways) this mechanism fails. Here we use a multiscale biomechanical model for intact airways that incorporates strain stiffening due to collagen recruitment and dynamic force generation by ASM cells to show that the geometry of the airway, together with interplay between dynamic active and passive forces, gives rise to large stress and compliance heterogeneities across the airway wall that are absent in tissue strips. We show further that these stress heterogeneities result in auxotonic loading conditions that are currently not replicated in tissue-strip experiments; stresses in the strip are similar to hoop stress only at the outer airway wall and are under- or overestimates of stresses at the lumen. Taken together these results suggest that a previously underappreciated factor, stress heterogeneities within the airway wall and consequent ASM cellular response to this micromechanical environment, could contribute to AHR and should be explored further both theoretically and experimentally. PMID:27197860

  1. Hyaluronan mediates airway hyperresponsiveness in oxidative lung injury

    PubMed Central

    Lazrak, Ahmed; Creighton, Judy; Yu, Zhihong; Komarova, Svetlana; Doran, Stephen F.; Aggarwal, Saurabh; Emala, Charles W.; Stober, Vandy P.; Trempus, Carol S.; Garantziotis, Stavros

    2015-01-01

    Chlorine (Cl2) inhalation induces severe oxidative lung injury and airway hyperresponsiveness (AHR) that lead to asthmalike symptoms. When inhaled, Cl2 reacts with epithelial lining fluid, forming by-products that damage hyaluronan, a constituent of the extracellular matrix, causing the release of low-molecular-weight fragments (L-HA, <300 kDa), which initiate a series of proinflammatory events. Cl2 (400 ppm, 30 min) exposure to mice caused an increase of L-HA and its binding partner, inter-α-trypsin-inhibitor (IαI), in the bronchoalveolar lavage fluid. Airway resistance following methacholine challenge was increased 24 h post-Cl2 exposure. Intratracheal administration of high-molecular-weight hyaluronan (H-HA) or an antibody against IαI post-Cl2 exposure decreased AHR. Exposure of human airway smooth muscle (HASM) cells to Cl2 (100 ppm, 10 min) or incubation with Cl2-exposed H-HA (which fragments it to L-HA) increased membrane potential depolarization, intracellular Ca2+, and RhoA activation. Inhibition of RhoA, chelation of intracellular Ca2+, blockade of cation channels, as well as postexposure addition of H-HA, reversed membrane depolarization in HASM cells. We propose a paradigm in which oxidative lung injury generates reactive species and L-HA that activates RhoA and Ca2+ channels of airway smooth muscle cells, increasing their contractility and thus causing AHR. PMID:25747964

  2. Let-7a modulates particulate matter (≤ 2.5 μm)-induced oxidative stress and injury in human airway epithelial cells by targeting arginase 2.

    PubMed

    Song, Lei; Li, Dan; Gu, Yue; Li, Xiaoping; Peng, Liping

    2016-10-01

    Epidemiological studies show that particulate matter (PM) with an aerodynamic diameter ≤ 2.5 μm (PM2.5) is associated with cardiorespiratory diseases via the induction of excessive oxidative stress. However, the precise mechanism underlying PM2.5-mediated oxidative stress injury has not been fully elucidated. Accumulating evidence has indicated the microRNA let-7 family might play a role in PM-mediated pathological processes. In this study, we investigated the role of let-7a in oxidative stress and cell injury in human bronchial epithelial BEAS2B (B2B) cells after PM2.5 exposure. The let-7a level was the most significantly decreased in B2B cells after PM2.5 exposure. The overexpression of let-7a suppressed intracellular reactive oxygen species levels and the percentage of apoptotic cells after PM2.5 exposure, while the let-7a level decreased arginase 2 (ARG2) mRNA and protein levels in B2B cells by directly targeting the ARG2 3'-untranslated region. ARG2 expression was upregulated in B2B cells during PM2.5 treatment, and ARG2 knockdown could remarkably reduce oxidative stress and cellular injury. Moreover, its restoration could abrogate the protective effects of let-7a against PM2.5-induced injury. In conclusion, let-7a decreases and ARG2 increases resulting from PM2.5 exposure may exacerbate oxidative stress, cell injury and apoptosis of B2B cells. The let-7a/ARG2 axis is a likely therapeutic target for PM2.5-induced airway epithelial injury. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Interaction between endoplasmic/sarcoplasmic reticulum stress (ER/SR stress), mitochondrial signaling and Ca(2+) regulation in airway smooth muscle (ASM).

    PubMed

    Delmotte, Philippe; Sieck, Gary C

    2015-02-01

    Airway inflammation is a key aspect of diseases such as asthma. Several inflammatory cytokines (e.g., TNFα and IL-13) increase cytosolic Ca(2+) ([Ca(2+)]cyt) responses to agonist stimulation and Ca(2+) sensitivity of force generation, thereby enhancing airway smooth muscle (ASM) contractility (hyper-reactive state). Inflammation also induces ASM proliferation and remodeling (synthetic state). In normal ASM, the transient elevation of [Ca(2+)]cyt induced by agonists leads to a transient increase in mitochondrial Ca(2+) ([Ca(2+)]mito) that may be important in matching ATP production with ATP consumption. In human ASM (hASM) exposed to TNFα and IL-13, the transient increase in [Ca(2+)]mito is blunted despite enhanced [Ca(2+)]cyt responses. We also found that TNFα and IL-13 induce reactive oxidant species (ROS) formation and endoplasmic/sarcoplasmic reticulum (ER/SR) stress (unfolded protein response) in hASM. ER/SR stress in hASM is associated with disruption of mitochondrial coupling with the ER/SR membrane, which relates to reduced mitofusin 2 (Mfn2) expression. Thus, in hASM it appears that TNFα and IL-13 result in ROS formation leading to ER/SR stress, reduced Mfn2 expression, disruption of mitochondrion-ER/SR coupling, decreased mitochondrial Ca(2+) buffering, mitochondrial fragmentation, and increased cell proliferation.

  4. Role of OSGIN1 in mediating smoking-induced autophagy in the human airway epithelium.

    PubMed

    Wang, Guoqing; Zhou, Haixia; Strulovici-Barel, Yael; Al-Hijji, Mohammed; Ou, Xuemei; Salit, Jacqueline; Walters, Matthew S; Staudt, Michelle R; Kaner, Robert J; Crystal, Ronald G

    2017-07-03

    Enhanced macroautophagy/autophagy is recognized as a component of the pathogenesis of smoking-induced airway disease. Based on the knowledge that enhanced autophagy is linked to oxidative stress and the DNA damage response, both of which are linked to smoking, we used microarray analysis of the airway epithelium to identify smoking upregulated genes known to respond to oxidative stress and the DNA damage response. This analysis identified OSGIN1 (oxidative stress induced growth inhibitor 1) as significantly upregulated by smoking, in both the large and small airway epithelium, an observation confirmed by an independent small airway microarray cohort, TaqMan PCR of large and small airway samples and RNA-Seq of small airway samples. High and low OSGIN1 expressors have different autophagy gene expression patterns in vivo. Genome-wide correlation of RNAseq analysis of airway basal/progenitor cells showed a direct correlation of OSGIN1 mRNA levels to multiple classic autophagy genes. In vitro cigarette smoke extract exposure of primary airway basal/progenitor cells was accompanied by a dose-dependent upregulation of OSGIN1 and autophagy induction. Lentivirus-mediated expression of OSGIN1 in human primary basal/progenitor cells induced puncta-like staining of MAP1LC3B and upregulation of MAP1LC3B mRNA and protein and SQSTM1 mRNA expression level in a dose and time-dependent manner. OSGIN1-induction of autophagosome, amphisome and autolysosome formation was confirmed by colocalization of MAP1LC3B with SQSTM1 or CD63 (endosome marker) and LAMP1 (lysosome marker). Both OSGIN1 overexpression and knockdown enhanced the smoking-evoked autophagic response. Together, these observations support the concept that smoking-induced upregulation of OSGIN1 is one link between smoking-induced stress and enhanced-autophagy in the human airway epithelium.

  5. Associations of oxidative stress and inflammatory biomarkers with chemically-characterized air pollutant exposures in an elderly cohort

    PubMed Central

    Zhang, Xian; Staimer, Norbert; Gillen, Daniel L.; Tjoa, Tomas; Schauer, James J.; Shafer, Martin M.; Hasheminassab, Sina; Pakbin, Payam; Vaziri, Nosratola D.; Sioutas, Constantinos; Delfino, Ralph J.

    2016-01-01

    Background Exposure to air pollution has been associated with cardiorespiratory morbidity and mortality. However, the chemical constituents and pollution sources underlying these associations remain unclear. Method We conducted a cohort panel study involving 97 elderly subjects living in the Los Angeles metropolitan area. Airway and circulating biomarkers of oxidative stress and inflammation were measured weekly over 12 weeks and included, exhaled breath condensate malondialdehyde (EBC MDA), fractional exhaled nitric oxide (FeNO), plasma oxidized low-density lipoprotein (oxLDL), and plasma interleukin-6 (IL-6). Exposures included 7-day personal nitrogen oxides (NOX), daily criteria-pollutant data, five-day average particulate matter (PM) measured in three size-fractions and characterized by chemical components including transition metals, and in vitro PM oxidative potential (dithiothreitol and macrophage reactive oxygen species). Associations between biomarkers and pollutants were assessed using linear mixed effects regression models. Results We found significant positive associations of airway oxidative stress and inflammation with traffic-related air pollutants, ultrafine particles and transition metals. Positive but nonsignificant associations were observed with PM oxidative potential. The strongest associations were observed among PM variables in the ultrafine range (PM <0.18 μm). It was estimated that an interquartile increase in 5-day average ultrafine polycyclic aromatic hydrocarbons was associated with a 6.3% (95% CI: 1.1%, 11.6%) increase in EBC MDA and 6.7% (95% CI: 3.4%, 10.2%) increase in FeNO. In addition, positive but nonsignificant associations were observed between oxLDL and traffic-related pollutants, ultrafine particles and transition metals while plasma IL-6 was positively associated with 1-day average traffic-related pollutants. Conclusion Our results suggest that exposure to pollutants with high oxidative potential (traffic-related pollutants

  6. Protein Sulfenylation: A Novel Readout of Environmental Oxidant Stress

    PubMed Central

    Wages, Phillip A.; Lavrich, Katelyn S.; Zhang, Zhenfa; Cheng, Wan-Yun; Corteselli, Elizabeth; Gold, Avram; Bromberg, Philip; Simmons, Steven O.; Samet, James M.

    2016-01-01

    Oxidative stress is a commonly cited mechanism of toxicity of environmental agents. Ubiquitous environmental chemicals such as the diesel exhaust component 1,2-naphthoquinone (1,2-NQ) induce oxidative stress by redox cycling, which generates hydrogen peroxide (H2O2). Cysteinyl thiolate residues on regulatory proteins are subjected to oxidative modification by H2O2 in physiological contexts and are also toxicological targets of oxidant stress induced by environmental contaminants. We investigated whether exposure to environmentally relevant concentrations of 1,2-NQ can induce H2O2-dependent oxidation of cysteinyl thiols in regulatory proteins as a readout of oxidant stress in human airway epithelial cells. BEAS-2B cells were exposed to 0–1000 μM 1,2-NQ for 0–30 min, and levels of H2O2 were measured by ratiometric spectrofluorometry of HyPer. H2O2-dependent protein sulfenylation was measured using immunohistochemistry, immunoblotting, and isotopic mass spectrometry. Catalase overexpression was used to investigate the relationship between H2O2 generation and protein sulfenylation in cells exposed to 1,2-NQ. Multiple experimental approaches showed that exposure to 1,2-NQ at concentrations as low as 3 μM induces H2O2-dependent protein sulfenylation in BEAS-2B cells. Moreover, the time of onset and duration of 1,2-NQ-induced sulfenylation of the regulatory proteins GAPDH and PTP1B showed significant differences. Oxidative modification of regulatory cysteinyl thiols in human lung cells exposed to relevant concentrations of an ambient air contaminant represents a novel marker of oxidative environmental stress. PMID:26605980

  7. The novel compound Sul-121 inhibits airway inflammation and hyperresponsiveness in experimental models of chronic obstructive pulmonary disease

    PubMed Central

    Han, Bing; Poppinga, Wilfred J.; Zuo, Haoxiao; Zuidhof, Annet B.; Bos, I. Sophie T.; Smit, Marieke; Vogelaar, Pieter; Krenning, Guido; Henning, Robert H.; Maarsingh, Harm; Halayko, Andrew J.; van Vliet, Bernard; Stienstra, Stef; Graaf, Adrianus Cornelis van der; Meurs, Herman; Schmidt, Martina

    2016-01-01

    COPD is characterized by persistent airflow limitation, neutrophilia and oxidative stress from endogenous and exogenous insults. Current COPD therapy involving anticholinergics, β2-adrenoceptor agonists and/or corticosteroids, do not specifically target oxidative stress, nor do they reduce chronic pulmonary inflammation and disease progression in all patients. Here, we explore the effects of Sul-121, a novel compound with anti-oxidative capacity, on hyperresponsiveness (AHR) and inflammation in experimental models of COPD. Using a guinea pig model of lipopolysaccharide (LPS)-induced neutrophilia, we demonstrated that Sul-121 inhalation dose-dependently prevented LPS-induced airway neutrophilia (up to ~60%) and AHR (up to ~90%). Non-cartilaginous airways neutrophilia was inversely correlated with blood H2S, and LPS-induced attenuation of blood H2S (~60%) was prevented by Sul-121. Concomitantly, Sul-121 prevented LPS-induced production of the oxidative stress marker, malondialdehyde by ~80%. In immortalized human airway smooth muscle (ASM) cells, Sul-121 dose-dependently prevented cigarette smoke extract-induced IL-8 release parallel with inhibition of nuclear translocation of the NF-κB subunit, p65 (each ~90%). Sul-121 also diminished cellular reactive oxygen species production in ASM cells, and inhibited nuclear translocation of the anti-oxidative response regulator, Nrf2. Our data show that Sul-121 effectively inhibits airway inflammation and AHR in experimental COPD models, prospectively through inhibition of oxidative stress. PMID:27229886

  8. The effect of early-life stress on airway inflammation in adult mice.

    PubMed

    Vig, Rattanjeet; Gordon, John R; Thébaud, Bernard; Befus, A Dean; Vliagoftis, Harissios

    2010-01-01

    Neonatal stress induces permanent physiological changes that may influence the immune system. Early-life stress increases asthma disease severity in children. We investigated the effects of early-life stress on allergic airway inflammation using a murine model of asthma coupled to maternal separation as an early-life stress stimulus. Maternally separated (MS) and unseparated control (CON) mice were sensitized with ovalbumin (OVA) beginning at day 31 after birth. Challenging mice with OVA increased airway hyperresponsiveness (AHR) and the number of inflammatory cells recovered in the bronchoalveolar lavage (BAL), compared to saline-challenged mice. Challenging MS mice with OVA resulted in less total inflammatory cells, eosinophils, interferon-gamma, and interleukin-4 in BAL compared to CON mice. However, MS mice challenged with OVA exhibited AHR similar to CON mice challenged with OVA. In contrast, an enhanced stress protocol (MS+) involving removal of pups from their home cages following the removal of the dam resulted in inflammatory cell accumulation and cytokine levels in the BAL similar to CON mice and higher than MS mice. These findings indicate that the effect of early-life psychological factors on the development of airway inflammatory diseases such as asthma is very complex and depends on the quality of the psychological stress stimulus.

  9. Inducible nitric oxide synthase expression is reduced in cystic fibrosis murine and human airway epithelial cells.

    PubMed Central

    Kelley, T J; Drumm, M L

    1998-01-01

    It has been reported that exhaled nitric oxide levels are reduced in cystic fibrosis (CF) patients. We have examined the inducible isoform of nitric oxide synthase (iNOS) in the airways by immunostaining and found that iNOS is constitutively expressed in the airway epithelia of non-CF mouse and human tissues but essentially absent in the epithelium of CF airways. We explored potential consequences of lost iNOS expression and found that iNOS inhibition significantly increases mouse nasal trans-epithelial potential difference, and hindered the ability of excised mouse lungs to prevent growth of Pseudomonas aeruginosa. The absence of continuous nitric oxide production in epithelial cells of CF airways may play a role in two CF-associated characteristics: hyperabsorption of sodium and susceptibility to bacterial infections. PMID:9739054

  10. Interaction between endoplasmic/sarcoplasmic reticulum stress (ER/SR stress), mitochondrial signaling and Ca2+ regulation in airway smooth muscle (ASM)1

    PubMed Central

    Delmotte, Philippe; Sieck, Gary C.

    2015-01-01

    Airway inflammation is a key aspect of diseases such as asthma. Several inflammatory cytokines (e.g., TNFα and IL-13) increase cytosolic Ca2+ ([Ca2+]cyt) responses to agonist stimulation and Ca2+ sensitivity of force generation, thereby enhancing airway smooth muscle (ASM) contractility (hyper-reactive state). Inflammation also induces ASM proliferation and remodeling (synthetic state). In normal ASM, the transient elevation of [Ca2+]cyt induced by agonists leads to a transient increase in mitochondrial Ca2+ ([Ca2+]mito) that may be important in matching ATP production with ATP consumption. In human ASM (hASM) exposed to TNFα and IL-13, the transient increase in [Ca2+]mito is blunted despite enhanced [Ca2+]cyt responses. We also found that TNFα and IL-13 induce reactive oxidant species (ROS) formation and endoplasmic/sarcoplasmic reticulum (ER/SR) stress (unfolded protein response) in hASM. ER/SR stress in hASM is associated with disruption of mitochondrial coupling with the ER/SR membrane, which relates to reduced mitofusin 2 (Mfn2) expression. Thus, in hASM it appears that TNFα and IL-13 result in ROS formation leading to ER/SR stress, reduced Mfn2 expression, disruption of mitochondrion–ER/SR coupling, decreased mitochondrial Ca2+ buffering, mitochondrial fragmentation, and increased cell proliferation. PMID:25506723

  11. Varying susceptibility of clinical and environmental Scedosporium isolates to chemical oxidative stress in conidial germination.

    PubMed

    Staerck, Cindy; Godon, Charlotte; Bouchara, Jean-Philippe; Fleury, Maxime J J

    2018-04-01

    Scedosporium species are opportunistic pathogens causing a great variety of infections in both immunocompetent and immunocompromised individuals. The Scedosporium genus ranks the second among the filamentous fungi colonizing the airways of patients with cystic fibrosis (CF), after Aspergillus fumigatus, and most species are capable to chronically colonize the respiratory tract of these patients. Nevertheless, few data are available regarding evasion of the inhaled conidia to the host immune response. Upon microbial infection, macrophages and neutrophils release reactive oxygen species (ROS). To colonize the respiratory tract, the conidia need to germinate despite the oxidative stress generated by phagocytic cells. Germination of spores from different clinical or environmental isolates of the major Scedosporium species was investigated in oxidative stress conditions. All tested species showed susceptibility to oxidative stress. However, when comparing clinical and environmental isolates, differences in germination capabilities under oxidative stress conditions were seen between species as well as within each species. Among environmental isolates, Scedosporium aurantiacum isolates were the most resistant to oxidative stress whereas Scedosporium dehoogii were the most susceptible. Overall, the differences observed between Scedosporium species in the capacity to germinate under oxidative stress conditions could explain their varying prevalence and pathogenicity.

  12. Oxygen and oxidative stress in the perinatal period.

    PubMed

    Torres-Cuevas, Isabel; Parra-Llorca, Anna; Sánchez-Illana, Angel; Nuñez-Ramiro, Antonio; Kuligowski, Julia; Cháfer-Pericás, Consuelo; Cernada, María; Escobar, Justo; Vento, Máximo

    2017-08-01

    Fetal life evolves in a hypoxic environment. Changes in the oxygen content in utero caused by conditions such as pre-eclampsia or type I diabetes or by oxygen supplementation to the mother lead to increased free radical production and correlate with perinatal outcomes. In the fetal-to-neonatal transition asphyxia is characterized by intermittent periods of hypoxia ischemia that may evolve to hypoxic ischemic encephalopathy associated with neurocognitive, motor, and neurosensorial impairment. Free radicals generated upon reoxygenation may notably increase brain damage. Hence, clinical trials have shown that the use of 100% oxygen given with positive pressure in the airways of the newborn infant during resuscitation causes more oxidative stress than using air, and increases mortality. Preterm infants are endowed with an immature lung and antioxidant system. Clinical stabilization of preterm infants after birth frequently requires positive pressure ventilation with a gas admixture that contains oxygen to achieve a normal heart rate and arterial oxygen saturation. In randomized controlled trials the use high oxygen concentrations (90% to 100%) has caused more oxidative stress and clinical complications that the use of lower oxygen concentrations (30-60%). A correlation between the amount of oxygen received during resuscitation and the level of biomarkers of oxidative stress and clinical outcomes was established. Thus, based on clinical outcomes and analytical results of oxidative stress biomarkers relevant changes were introduced in the resuscitation policies. However, it should be underscored that analysis of oxidative stress biomarkers in biofluids has only been used in experimental and clinical research but not in clinical routine. The complexity of the technical procedures, lack of automation, and cost of these determinations have hindered the routine use of biomarkers in the clinical setting. Overcoming these technical and economical difficulties constitutes a

  13. Oral Sulforaphane increases Phase II antioxidant enzymes in the human upper airway

    PubMed Central

    Riedl, Marc A.; Saxon, Andrew; Diaz-Sanchez, David

    2009-01-01

    Background Cellular oxidative stress is an important factor in asthma and is thought to be the principle mechanism by which oxidant pollutants such as ozone and particulates mediate their pro-inflammatory effects. Endogenous Phase II enzymes abrogate oxidative stress through the scavenging of reactive oxygen species and metabolism of reactive chemicals. Objective We conducted a placebo-controlled dose escalation trial to investigate the in vivo effects of sulforaphane, a naturally occurring potent inducer of Phase II enzymes, on the expression of glutathione-s-transferase M1 (GSTM1), glutathione-s-transferase P1 (GSTP1), NADPH quinone oxidoreductase (NQO1), and hemoxygenase-1 (HO-1) in the upper airway of human subjects. Methods Study subjects consumed oral sulforaphane doses contained in a standardized broccoli sprout homogenate (BSH). RNA expression for selected Phase II enzymes was measured in nasal lavage cells by RT-PCR before and after sulforaphane dosing. Results All subjects tolerated oral sulforaphane dosing without significant adverse events. Increased Phase II enzyme expression in nasal lavage cells occurred in a dose-dependent manner with maximal enzyme induction observed at the highest dose of 200 grams broccoli sprouts prepared as BSH. Significant increases were seen in all sentinel Phase II enzymes RNA expression compared to baseline. Phase II enzyme induction was not seen with ingestion of non-sulforaphane containing alfalfa sprouts. Conclusion Oral sulforaphane safely and effectively induces mucosal Phase II enzyme expression in the upper airway of human subjects. This study demonstrates the potential of antioxidant Phase II enzymes induction in the human airway as a strategy to reduce the inflammatory effects of oxidative stress. Clinical Implications This study demonstrates the potential of enhancement of Phase II enzyme expression as a novel therapeutic strategy for oxidant induced airway disease. Capsule Summary A placebo-controlled dose

  14. Nitric oxide enhances Th9 cell differentiation and airway inflammation

    PubMed Central

    Niedbala, Wanda; Besnard, Anne-Gaelle; Nascimento, Daniele Carvalho; Donate, Paula Barbim; Sonego, Fabiane; Yip, Edwin; Guabiraba, Rodrigo; Chang, Hyun-Dong; Fukada, Sandra Y.; Salmond, Robert J.; Schmitt, Edgar; Bopp, Tobias; Ryffel, Bernhard; Liew, Foo Y.

    2014-01-01

    Th9 cells protect hosts against helminthic infection but also mediate allergic disease. Here we show that nitric oxide (NO) promotes Th9 cell polarization of murine and human CD4+ T cells. NO de-represses the tumor suppressor gene p53 via nitrosylation of Mdm2. NO also increases p53-mediated IL-2 production, STAT5 phosphorylation and IRF4 expression, all essential for Th9 polarization. NO also increases the expression of TGFβR and IL-4R, pivotal to Th9 polarization. OVA-sensitized mice treated with an NO donor developed more severe airway inflammation. Transferred Th9 cells induced airway inflammation, which was exacerbated by NO and blocked by anti-IL-9 antibody. Nos2−/− mice had less Th9 cells and developed attenuated eosinophilia during OVA-induced airway inflammation compared to wild-type mice. Our data demonstrate that NO is an important endogenous inducer of Th9 cells and provide a hitherto unrecognized mechanism for NO-mediated airway inflammation via the expansion of Th9 cells. PMID:25099390

  15. Nitric oxide enhances Th9 cell differentiation and airway inflammation.

    PubMed

    Niedbala, Wanda; Besnard, Anne-Gaelle; Nascimento, Daniele Carvalho; Donate, Paula Barbim; Sonego, Fabiane; Yip, Edwin; Guabiraba, Rodrigo; Chang, Hyun-Dong; Fukada, Sandra Y; Salmond, Robert J; Schmitt, Edgar; Bopp, Tobias; Ryffel, Bernhard; Liew, Foo Y

    2014-08-07

    Th9 cells protect hosts against helminthic infection but also mediate allergic disease. Here we show that nitric oxide (NO) promotes Th9 cell polarization of murine and human CD4(+) T cells. NO de-represses the tumour suppressor gene p53 via nitrosylation of Mdm2. NO also increases p53-mediated IL-2 production, STAT5 phosphorylation and IRF4 expression, all essential for Th9 polarization. NO also increases the expression of TGFβR and IL-4R, pivotal to Th9 polarization. OVA-sensitized mice treated with an NO donor developed more severe airway inflammation. Transferred Th9 cells induced airway inflammation, which was exacerbated by NO and blocked by anti-IL-9 antibody. Nos2(-/-) mice had less Th9 cells and developed attenuated eosinophilia during OVA-induced airway inflammation compared with wild-type mice. Our data demonstrate that NO is an important endogenous inducer of Th9 cells and provide a hitherto unrecognized mechanism for NO-mediated airway inflammation via the expansion of Th9 cells.

  16. Nitric oxide deficiency contributes to impairment of airway relaxation in cystic fibrosis mice.

    PubMed

    Mhanna, M J; Ferkol, T; Martin, R J; Dreshaj, I A; van Heeckeren, A M; Kelley, T J; Haxhiu, M A

    2001-05-01

    The pulmonary disease of cystic fibrosis (CF) is characterized by persistent airway obstruction, which has been attributed to chronic endobronchial infection and inflammation. The levels of exhaled nitric oxide (NO) are reduced in CF patients, which could contribute to bronchial obstruction through dysregulated constriction of airway smooth muscle. Because airway epithelium from CF mice has been shown to have reduced expression of inducible NO synthase, we examined airway responsiveness and relaxation in isolated tracheas of CF mice. Airway relaxation as measured by percent relaxation of precontracted tracheal segments to electrical field stimulation (EFS) and substance P, a nonadrenergic, noncholinergic substance, was significantly impaired in CF mice. The airway relaxation in response to prostaglandin E2 was similar in CF and non-CF animals. Treatment with the NO synthase inhibitor NG-nitro-L-arginine methylester reduced tracheal relaxation induced by EFS in wild-type animals but had virtually no effect in the CF mice. Conversely, exogenous NO and L-arginine, a NO substrate, reversed the relaxation defect in CF airway. We conclude that the relative absence of NO compromises airways relaxation in CF, and may contribute to the bronchial obstruction seen in the disease.

  17. Oxidative Stress and Respiratory System: Pharmacological and Clinical Reappraisal of N-Acetylcysteine

    PubMed Central

    Santus, Pierachille; Corsico, Angelo; Solidoro, Paolo; Braido, Fulvio; Di Marco, Fabiano

    2014-01-01

    The large surface area for gas exchange makes the respiratory system particularly susceptible to oxidative stress-mediated injury. Both endogenous and exogenous pro-oxidants (e.g. cigarette smoke) trigger activation of leukocytes and host defenses. These mechanisms interact in a “multilevel cycle” responsible for the control of the oxidant/antioxidant homeostasis. Several studies have demonstrated the presence of increased oxidative stress and decreased antioxidants (e.g. reduced glutathione [GSH]) in subjects with chronic obstructive pulmonary disease (COPD), but the contribution of oxidative stress to the pathophysiology of COPD is generally only minimally discussed. The aim of this review was to provide a comprehensive overview of the role of oxidative stress in the pathogenesis of respiratory diseases, particularly COPD, and to examine the available clinical and experimental evidence on the use of the antioxidant N-acetylcysteine (NAC), a precursor of GSH, as an adjunct to standard therapy for the treatment of COPD. The proposed concept of “multilevel cycle” helps understand the relationship between respiratory diseases and oxidative stress, thus clarifying the rationale for using NAC in COPD. Until recently, antioxidant drugs such as NAC have been regarded only as mucolytic agents. Nevertheless, several clinical trials indicate that NAC may reduce the rate of COPD exacerbations and improve small airways function. The most plausible explanation for the beneficial effects observed in patients with COPD treated with NAC lies in the mucolytic and antioxidant effects of this drug. Modulation of bronchial inflammation by NAC may further account for these favorable clinical results. PMID:24787454

  18. Histone deacetylase inhibitors suppress RSV infection and alleviate virus-induced airway inflammation.

    PubMed

    Feng, Qiuqin; Su, Zhonglan; Song, Shiyu; Χu, Hui; Zhang, Bin; Yi, Long; Tian, Man; Wang, Hongwei

    2016-09-01

    Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants and young children. However, the majority of RSV-infected patients only show mild symptoms. Different severities of infection and responses among the RSV-infected population indicate that epigenetic regulation as well as personal genetic background may affect RSV infectivity. Histone deacetylase (HDAC) is an important epigenetic regulator in lung diseases. The present study aimed to explore the possible connection between HDAC expression and RSV-induced lung inflammation. To address this question, RSV-infected airway epithelial cells (BEAS‑2B) were prepared and a mouse model of RSV infection was established, and then treated with various concentrations of HDAC inhibitors (HDACis), namely trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA). Viral replication and markers of virus-induced airway inflammation or oxidative stress were assessed. The activation of the nuclear factor-κB (NF-κB), cyclo-oxygenase-2 (COX-2), mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling pathways was evaluated by western blot analysis. Our results showed that RSV infection in airway epithelial cells (AECs) significantly decreased histone acetylation levels by altering HDAC2 expression. The treatment of RSV-infected AECs with HDACis significantly restricted RSV replication by upregulating the interferon-α (IFN-α) related signaling pathways. The treatment of RSV-infected AECs with HDACis also significantly inhibited RSV-induced pro-inflammatory cytokine release [interleukin (IL)-6 and IL-8] and oxidative stress-related molecule production [malondialdehyde (MDA), and nitrogen monoxide (NO)]. The activation of NF-κB, COX-2, MAPK and Stat3, which orchestrate pro‑inflammatory gene expression and oxidative stress injury, was also significantly inhibited. Our in vivo study using a mouse model of

  19. Histone deacetylase inhibitors suppress RSV infection and alleviate virus-induced airway inflammation

    PubMed Central

    Feng, Qiuqin; Su, Zhonglan; Song, Shiyu; Xu, Hui; Zhang, Bin; Yi, Long; Tian, Man; Wang, Hongwei

    2016-01-01

    Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants and young children. However, the majority of RSV-infected patients only show mild symptoms. Different severities of infection and responses among the RSV-infected population indicate that epigenetic regulation as well as personal genetic background may affect RSV infectivity. Histone deacetylase (HDAC) is an important epigenetic regulator in lung diseases. The present study aimed to explore the possible connection between HDAC expression and RSV-induced lung inflammation. To address this question, RSV-infected airway epithelial cells (BEAS-2B) were prepared and a mouse model of RSV infection was established, and then treated with various concentrations of HDAC inhibitors (HDACis), namely trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA). Viral replication and markers of virus-induced airway inflammation or oxidative stress were assessed. The activation of the nuclear factor-κB (NF-κB), cyclo-oxygenase-2 (COX-2), mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling pathways was evaluated by western blot analysis. Our results showed that RSV infection in airway epithelial cells (AECs) significantly decreased histone acetylation levels by altering HDAC2 expression. The treatment of RSV-infected AECs with HDACis significantly restricted RSV replication by upregulating the interferon-α (IFN-α) related signaling pathways. The treatment of RSV-infected AECs with HDACis also significantly inhibited RSV-induced pro-inflammatory cytokine release [interleukin (IL)-6 and IL-8] and oxidative stress-related molecule production [malondialdehyde (MDA), and nitrogen monoxide (NO)]. The activation of NF-κB, COX-2, MAPK and Stat3, which orchestrate pro-inflammatory gene expression and oxidative stress injury, was also significantly inhibited. Our in vivo study using a mouse model of RSV infection

  20. Airway diffusing capacity of nitric oxide and steroid therapy in asthma.

    PubMed

    Shin, Hye-Won; Rose-Gottron, Christine M; Cooper, Dan M; Newcomb, Robert L; George, Steven C

    2004-01-01

    Exhaled nitric oxide (NO) concentration is a noninvasive index for monitoring lung inflammation in diseases such as asthma. The plateau concentration at constant flow is highly dependent on the exhalation flow rate and the use of corticosteroids and cannot distinguish airway and alveolar sources. In subjects with steroid-naive asthma (n = 8) or steroid-treated asthma (n = 12) and in healthy controls (n = 24), we measured flow-independent NO exchange parameters that partition exhaled NO into airway and alveolar regions and correlated these with symptoms and lung function. The mean (+/-SD) maximum airway flux (pl/s) and airway tissue concentration [parts/billion (ppb)] of NO were lower in steroid-treated asthmatic subjects compared with steroid-naive asthmatic subjects (1,195 +/- 836 pl/s and 143 +/- 66 ppb compared with 2,693 +/- 1,687 pl/s and 438 +/- 312 ppb, respectively). In contrast, the airway diffusing capacity for NO (pl.s-1.ppb-1) was elevated in both asthmatic groups compared with healthy controls, independent of steroid therapy (11.8 +/- 11.7, 8.71 +/- 5.74, and 3.13 +/- 1.57 pl.s-1.ppb-1 for steroid treated, steroid naive, and healthy controls, respectively). In addition, the airway diffusing capacity was inversely correlated with both forced expired volume in 1 s and forced vital capacity (%predicted), whereas the airway tissue concentration was positively correlated with forced vital capacity. Consistent with previously reported results from Silkoff et al. (Silkoff PE, Sylvester JT, Zamel N, and Permutt S, Am J Respir Crit Med 161: 1218-1228, 2000) that used an alternate technique, we conclude that the airway diffusing capacity for NO is elevated in asthma independent of steroid therapy and may reflect clinically relevant changes in airways.

  1. Expression of nitric oxide synthase-2 in the lungs decreases airway resistance and responsiveness.

    PubMed

    Hjoberg, Josephine; Shore, Stephanie; Kobzik, Lester; Okinaga, Shoji; Hallock, Arlene; Vallone, Joseph; Subramaniam, Venkat; De Sanctis, George T; Elias, Jack A; Drazen, Jeffrey M; Silverman, Eric S

    2004-07-01

    Individuals with asthma have increased levels of nitric oxide in their exhaled air. To explore its role, we have developed a regulatable transgenic mouse capable of overexpressing inducible nitric oxide synthase in a lung-specific fashion. The CC10-rtTA-NOS-2 mouse contains two transgenes, a reverse tetracycline transactivator under the control of the Clara cell protein promoter and the mouse nitric oxide synthase-2 (NOS-2) coding region under control of a tetracycline operator. Addition of doxycycline to the drinking water of CC10-rtTA-NOS-2 mice causes an increase in nitric oxide synthase-2 that is largely confined to the airway epithelium. The fraction of expired nitric oxide increases over the first 24 h from approximately 10 parts per billion to a plateau of approximately 20 parts per billion. There were no obvious differences between CC10-rtTA-NOS-2 mice, with or without doxycycline, and wild-type mice in lung histology, bronchoalveolar protein, total cell count, or count differentials. However, airway resistance was lower in CC10-rtTA-NOS-2 mice with doxycycline than in CC10-rtTA-NOS-2 mice without doxycycline or wild-type mice with doxycycline. Moreover, doxycycline-treated CC10-rtTA-NOS-2 mice were hyporesponsive to methacholine compared with other groups. These data suggest that increased nitric oxide in the airways has no proinflammatory effects per se and may have beneficial effects on pulmonary function.

  2. Role of Oxidative Stress in the Neurocognitive Dysfunction of Obstructive Sleep Apnea Syndrome.

    PubMed

    Zhou, Li; Chen, Ping; Peng, Yating; Ouyang, Ruoyun

    2016-01-01

    Obstructive sleep apnea syndrome (OSAS) is characterized by chronic nocturnal intermittent hypoxia and sleep fragmentations. Neurocognitive dysfunction, a significant and extraordinary complication of OSAS, influences patients' career, family, and social life and reduces quality of life to some extent. Previous researches revealed that repetitive hypoxia and reoxygenation caused mitochondria and endoplasmic reticulum dysfunction, overactivated NADPH oxidase, xanthine oxidase, and uncoupling nitric oxide synthase, induced an imbalance between prooxidants and antioxidants, and then got rise to a series of oxidative stress (OS) responses, such as protein oxidation, lipid peroxidation, and DNA oxidation along with inflammatory reaction. OS in brain could trigger neuron injury especially in the hippocampus and cerebral cortex regions. Those two regions are fairly susceptible to hypoxia and oxidative stress production which could consequently result in cognitive dysfunction. Apart from continuous positive airway pressure (CPAP), antioxidant may be a promising therapeutic method to improve partially reversible neurocognitive function. Understanding the role that OS played in the cognitive deficits is crucial for future research and therapeutic strategy development. In this paper, recent important literature concerning the relationship between oxidative stress and cognitive impairment in OSAS will be summarized and the results can provide a rewarding overview for future breakthrough in this field.

  3. Role of Oxidative Stress in the Neurocognitive Dysfunction of Obstructive Sleep Apnea Syndrome

    PubMed Central

    Chen, Ping

    2016-01-01

    Obstructive sleep apnea syndrome (OSAS) is characterized by chronic nocturnal intermittent hypoxia and sleep fragmentations. Neurocognitive dysfunction, a significant and extraordinary complication of OSAS, influences patients' career, family, and social life and reduces quality of life to some extent. Previous researches revealed that repetitive hypoxia and reoxygenation caused mitochondria and endoplasmic reticulum dysfunction, overactivated NADPH oxidase, xanthine oxidase, and uncoupling nitric oxide synthase, induced an imbalance between prooxidants and antioxidants, and then got rise to a series of oxidative stress (OS) responses, such as protein oxidation, lipid peroxidation, and DNA oxidation along with inflammatory reaction. OS in brain could trigger neuron injury especially in the hippocampus and cerebral cortex regions. Those two regions are fairly susceptible to hypoxia and oxidative stress production which could consequently result in cognitive dysfunction. Apart from continuous positive airway pressure (CPAP), antioxidant may be a promising therapeutic method to improve partially reversible neurocognitive function. Understanding the role that OS played in the cognitive deficits is crucial for future research and therapeutic strategy development. In this paper, recent important literature concerning the relationship between oxidative stress and cognitive impairment in OSAS will be summarized and the results can provide a rewarding overview for future breakthrough in this field. PMID:27774119

  4. Mind-body interactions in the regulation of airway inflammation in asthma: A PET study of acute and chronic stress

    PubMed Central

    Rosenkranz, Melissa A.; Esnault, Stephane; Christian, Bradley T.; Crisafi, Gina; Gresham, Lauren K.; Higgins, Andrew T.; Moore, Mollie N.; Moore, Sarah M.; Weng, Helen Y.; Salk, Rachel H.; Busse, William W.; Davidson, Richard J.

    2016-01-01

    Background Psychological stress has long been recognized as a contributing factor to asthma symptom expression and disease progression. Yet, the neural mechanisms that underlie this relationship have been largely unexplored in research addressing the pathophysiology and management of asthma. Studies that have examined the mechanisms of this relationship in the periphery suggest that it is the superimposition of acute stress on top of chronic stress that is of greatest concern for airway inflammation. Methods We compared asthmatic individuals with high and low levels of chronic life stress in their neural and peripheral physiological responses to the Trier Social Stress Test and a matched control task. We used FDG-PET to measure neural activity during performance of the two tasks. We used both circulating and airway-specific markers of asthma-related inflammation to assess the impact of acute stress in these two groups. Results Asthmatics under chronic stress had a larger HPA-axis response to an acute stressor, which failed to show the suppressive effects on inflammatory markers observed in those with low chronic stress. Moreover, our PET data suggest that greater activity in the anterior insula during acute stress may reflect regulation of the effect of stress on inflammation. In contrast, greater activity in the mid-insula and perigenual anterior cingulate seems to reflect greater reactivity and was associated with greater airway inflammation, a more robust alpha amylase response, and a greater stress-induced increase in proinflammatory cytokine mRNA expression in airway cells. Conclusions Acute stress is associated with increases in markers of airway inflammation in asthmatics under chronic stress. This relationship may be mediated by interactions between the insula and anterior cingulate cortex, that determine the salience of environmental cues, as well as descending regulatory influence of inflammatory pathways in the periphery. PMID:27039241

  5. Mind-body interactions in the regulation of airway inflammation in asthma: A PET study of acute and chronic stress.

    PubMed

    Rosenkranz, Melissa A; Esnault, Stephane; Christian, Bradley T; Crisafi, Gina; Gresham, Lauren K; Higgins, Andrew T; Moore, Mollie N; Moore, Sarah M; Weng, Helen Y; Salk, Rachel H; Busse, William W; Davidson, Richard J

    2016-11-01

    Psychological stress has long been recognized as a contributing factor to asthma symptom expression and disease progression. Yet, the neural mechanisms that underlie this relationship have been largely unexplored in research addressing the pathophysiology and management of asthma. Studies that have examined the mechanisms of this relationship in the periphery suggest that it is the superimposition of acute stress on top of chronic stress that is of greatest concern for airway inflammation. We compared asthmatic individuals with high and low levels of chronic life stress in their neural and peripheral physiological responses to the Trier Social Stress Test and a matched control task. We used FDG-PET to measure neural activity during performance of the two tasks. We used both circulating and airway-specific markers of asthma-related inflammation to assess the impact of acute stress in these two groups. Asthmatics under chronic stress had a larger HPA-axis response to an acute stressor, which failed to show the suppressive effects on inflammatory markers observed in those with low chronic stress. Moreover, our PET data suggest that greater activity in the anterior insula during acute stress may reflect regulation of the effect of stress on inflammation. In contrast, greater activity in the mid-insula and perigenual anterior cingulate seems to reflect greater reactivity and was associated with greater airway inflammation, a more robust alpha amylase response, and a greater stress-induced increase in proinflammatory cytokine mRNA expression in airway cells. Acute stress is associated with increases in markers of airway inflammation in asthmatics under chronic stress. This relationship may be mediated by interactions between the insula and anterior cingulate cortex, that determine the salience of environmental cues, as well as descending regulatory influence of inflammatory pathways in the periphery. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Differential effects of cyclic and constant stress on ATP release and mucociliary transport by human airway epithelia

    PubMed Central

    Button, Brian; Picher, Maryse; Boucher, Richard C

    2007-01-01

    In the lungs, the first line of defence against bacterial infection is the thin layer of airway surface liquid (ASL) lining the airway surface. The superficial airway epithelium exhibits complex regulatory pathways that blend ion transport to adjust ASL volume to maintain proper mucociliary clearance (MCC). We hypothesized that stresses generated by airflow and transmural pressures during breathing govern ASL volume by regulating the rate of epithelial ATP release. Luminal ATP, via interactions with apical membrane P2-purinoceptors, regulates the balance of active ion secretion versus absorption to maintain ASL volume at optimal levels for MCC. In this study we tested the hypothesis that cyclic compressive stress (CCS), mimicking normal tidal breathing, regulates ASL volume in airway epithelia. Polarized tracheobronchial epithelial cultures from normal and cystic fibrosis (CF) subjects responded to a range of CCS by increasing the rate of ATP release. In normal airway epithelia, the CCS-induced increase in ASL ATP concentration was sufficient to induce purinoceptor-mediated increases in ASL height and MCC, via inhibition of epithelial Na+-channel-mediated Na+ absorption and stimulation of Cl− secretion through CFTR and the Ca2+-activated chloride channels. In contrast, static, non-oscillatory stress did not stimulate ATP release, ion transport or MCC, emphasizing the importance of rhythmic mechanical stress for airway defence. In CF airway cultures, which exhibit basal ASL depletion, CCS was partially effective, producing less ASL volume secretion than in normal cultures, but a level sufficient to restore MCC. The present data suggest that CCS may (1) regulate ASL volume in the normal lung and (2) improve clearance in the lungs of CF patients, potentially explaining the beneficial role of exercise in lung defence. PMID:17317749

  7. Limitations in Using Chemical Oxidative Potential to Understand Oxidative Stress from Particulate Matter

    NASA Astrophysics Data System (ADS)

    Chan, A. W. H.; Wang, S.; Wang, X.; Kohl, L.; Chow, C. W.

    2017-12-01

    Particulate matter (PM) in the atmosphere is known to cause adverse cardiorespiratory health effects. It has been suggested that the ability of PM to generate oxidative stress leads to a proinflammatory response. In this work, we study the biological relevance of using a chemical oxidative potential (OP) assay to evaluate proinflammatory response in airway epithelial cells. Here we study the OPs of laboratory secondary organic aerosol (SOA) and metal mixtures, ambient PM from India, ash from the 2016 Alberta wildfires, and diesel exhaust particles. We use SOA derived from naphthalene and from monoterpenes as model systems for SOA. We measure OP using the dithiothreitol (DTT) assay, and cytosolic reactive oxygen species (ROS) production in BEAS-2B cell culture was measured using CellROX assay. We found that both SOA and copper show high OPs individually, but the OP of the combined SOA/copper mixture, which is more atmospherically relevant, was lower than either of the individual OPs. The reduced activity is attributed to chelation between metals and organic compounds using proton nuclear magnetic resonance. There is reasonable association between DTT activity and cellular ROS production within each particle type, but weak association across different particle types, suggesting that particle composition plays an important role in distinguishing between antioxidant consumption and ROS production. Our results highlight that while oxidative potential is a useful metric of PM's ability to generate oxidative stress, the chemical composition and cellular environment should be considered in understanding health impacts of PM.

  8. Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems.

    PubMed

    Huh, Dongeun; Fujioka, Hideki; Tung, Yi-Chung; Futai, Nobuyuki; Paine, Robert; Grotberg, James B; Takayama, Shuichi

    2007-11-27

    We describe a microfabricated airway system integrated with computerized air-liquid two-phase microfluidics that enables on-chip engineering of human airway epithelia and precise reproduction of physiologic or pathologic liquid plug flows found in the respiratory system. Using this device, we demonstrate cellular-level lung injury under flow conditions that cause symptoms characteristic of a wide range of pulmonary diseases. Specifically, propagation and rupture of liquid plugs that simulate surfactant-deficient reopening of closed airways lead to significant injury of small airway epithelial cells by generating deleterious fluid mechanical stresses. We also show that the explosive pressure waves produced by plug rupture enable detection of the mechanical cellular injury as crackling sounds.

  9. Sex, stress and sleep apnoea: Decreased susceptibility to upper airway muscle dysfunction following intermittent hypoxia in females.

    PubMed

    O'Halloran, Ken D; Lewis, Philip; McDonald, Fiona

    2017-11-01

    Obstructive sleep apnoea syndrome (OSAS) is a devastating respiratory control disorder more common in men than women. The reasons for the sex difference in prevalence are multifactorial, but are partly attributable to protective effects of oestrogen. Indeed, OSAS prevalence increases in post-menopausal women. OSAS is characterized by repeated occlusions of the pharyngeal airway during sleep. Dysfunction of the upper airway muscles controlling airway calibre and collapsibility is implicated in the pathophysiology of OSAS, and sex differences in the neuro-mechanical control of upper airway patency are described. It is widely recognized that chronic intermittent hypoxia (CIH), a cardinal feature of OSAS due to recurrent apnoea, drives many of the morbid consequences characteristic of the disorder. In rodents, exposure to CIH-related redox stress causes upper airway muscle weakness and fatigue, associated with mitochondrial dysfunction. Of interest, in adults, there is female resilience to CIH-induced muscle dysfunction. Conversely, exposure to CIH in early life, results in upper airway muscle weakness equivalent between the two sexes at 3 and 6 weeks of age. Ovariectomy exacerbates the deleterious effects of exposure to CIH in adult female upper airway muscle, an effect partially restored by oestrogen replacement therapy. Intriguingly, female advantage intrinsic to upper airway muscle exists with evidence of substantially greater loss of performance in male muscle during acute exposure to severe hypoxic stress. Sex differences in upper airway muscle physiology may have relevance to human OSAS. The oestrogen-oestrogen receptor α axis represents a potential therapeutic target in OSAS, particularly in post-menopausal women. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Oxidative Stress, Nitric Oxide, and Diabetes

    PubMed Central

    Pitocco, Dario; Zaccardi, Francesco; Di Stasio, Enrico; Romitelli, Federica; Santini, Stefano A.; Zuppi, Cecilia; Ghirlanda, Giovanni

    2010-01-01

    In the recent decades, oxidative stress has become focus of interest in most biomedical disciplines and many types of clinical research. Increasing evidence from research on several diseases show that oxidative stress is associated with the pathogenesis of diabetes, obesity, cancer, ageing, inflammation, neurodegenerative disorders, hypertension, apoptosis, cardiovascular diseases, and heart failure. Based on this research, the emerging concept is that oxidative stress is the “final common pathway”, through which risk factors of several diseases exert their deleterious effects. Oxidative stress causes a complex dysregulation of cell metabolism and cell-cell homeostasis. In this review, we discuss the role of oxidative stress in the pathogenesis of insulin resistance and beta-cell dysfunction. These are the two most relevant mechanisms in the pathophysiology of type 2 diabetes, and in the pathogenesis of diabetic vascular complications, the leading cause of death in diabetic patients. PMID:20703435

  11. Pulmonary Stress Induced by Hyperthermia: Role of Airway Sensory Nerves

    DTIC Science & Technology

    2011-10-01

    patients with mild asthma, allergic rhinitis and upper respiratory infection, which makes these patients more susceptible to the bronchoconstriction...and other respiratory dysfunctions induced by thermal stress. There are two specific aims for the first year of this translational project: 1) To...dyspnea, airway constriction, cough, etc) in healthy volunteers, and in patients with mild asthma, allergic rhinitis and post upper respiratory

  12. Normoxic Cyclic GMP-independent Oxidative Signaling by Nitrite Enhances Airway Epithelial Cell Proliferation and Wound Healing

    PubMed Central

    Wang, Ling; Frizzell, Sheila A.; Zhao, Xuejun; Gladwin, Mark T.

    2013-01-01

    The airway epithelium provides important barrier and host defense functions. Recent studies reveal that nitrite is an endocrine reservoir of nitric oxide (NO) bioactivity that is converted to NO by enzymatic reductases along the physiological oxygen gradient. Nitrite signaling has been described as NO dependent activation mediated by reactions with deoxygenated redox active hemoproteins, such as hemoglobin, myoglobin, neuroglobin, xanthine oxidoreductase (XO) and NO synthase at low pH and oxygen tension. However, nitrite can also be readily oxidized to nitrogen dioxide (NO2•) via heme peroxidase reactions, suggesting the existence of alternative oxidative signaling pathways for nitrite under normoxic conditions. In the present study we examined normoxic signaling effects of sodium nitrite on airway epithelial cell wound healing. In an in vitro scratch injury model under normoxia, we exposed cultured monolayers of human airway epithelial cells to various concentrations of sodium nitrite and compared responses to NO donor. We found sodium nitrite potently enhanced airway epithelium wound healing at physiological concentrations (from 1uM). The effect of nitrite was blocked by the NO and NO2• scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (c-PTIO). Interestingly, nitrite treatment did not increase cyclic guanosine monophosphate (cGMP) levels under these normoxic conditions, even in the presence of a phosphodiesterase 5 inhibitor, suggesting cGMP independent signaling. Consistent with an oxidative signaling pathway requiring hydrogen peroxide (H2O2)/heme peroxidase/NO2• signaling, the effects of nitrite were potentiated by superoxide dismutase (SOD) and low concentration H2O2, whereas inhibited completely by catalase, followed by downstream extracellular-signal-regulated kinase (ERK) 1/2 activation. Our data represent the first description of normoxic nitrite signaling on lung epithelial cell proliferation and wound healing and suggest

  13. Arginase inhibition in airways from normal and nitric oxide synthase 2-knockout mice exposed to ovalbumin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bratt, Jennifer M.; Franzi, Lisa M.; Linderholm, Angela L.

    Arginase1 and nitric oxide synthase2 (NOS2) utilize L-arginine as a substrate, with both enzymes expressed at high levels in the asthmatic lung. Inhibition of arginase in ovalbumin-exposed C57BL/6 mice with the transition state inhibitor N{sup o}mega-hydroxy-nor-L-arginine (nor-NOHA) significantly increased total L-arginine content in the airway compartment. We hypothesized that such an increase in L-arginine content would increase the amount of nitric oxide (NO) being produced in the airways and thereby decrease airway hyperreactivity and eosinophilic influx. We further hypothesized that despite arginase inhibition, NOS2 knockout (NOS2-/-) mice would be unable to up-regulate NO production in response to allergen exposure andmore » would demonstrate higher amounts of airway hyperreactivity and eosinophilia under conditions of arginase inhibition than C57BL/6 animals. We found that administration of nor-NOHA significantly decreased airway hyperreactivity and eosinophilic airway inflammation in ovalbumin-exposed C57BL/6 mice, but these parameters were unchanged in ovalbumin-exposed NOS2-/- mice. Arginase1 protein content was increased in mice exposed to ovalbumin, an effect that was reversed upon nor-NOHA treatment in C57BL/6 mice. Arginase1 protein content in the airway compartment directly correlated with the degree of airway hyperreactivity in all treatment groups. NOS2-/- mice had significantly greater arginase1 and arginase2 concentrations compared to their respective C57BL/6 groups, indicating that inhibition of arginase may be dependent upon NOS2 expression. Arginase1 and 2 content were not affected by nor-NOHA administration in the NOS2-/- mice. We conclude that L-arginine metabolism plays an important role in the development of airway hyperreactivity and eosinophilic airway inflammation. Inhibition of arginase early in the allergic inflammatory response decreases the severity of the chronic inflammatory phenotype. These effects appear to be attributable to

  14. Stress and strain in the contractile and cytoskeletal filaments of airway smooth muscle.

    PubMed

    Deng, Linhong; Bosse, Ynuk; Brown, Nathan; Chin, Leslie Y M; Connolly, Sarah C; Fairbank, Nigel J; King, Greg G; Maksym, Geoffrey N; Paré, Peter D; Seow, Chun Y; Stephen, Newman L

    2009-10-01

    Stress and strain are omnipresent in the lung due to constant lung volume fluctuation associated with respiration, and they modulate the phenotype and function of all cells residing in the airways including the airway smooth muscle (ASM) cell. There is ample evidence that the ASM cell is very sensitive to its physical environment, and can alter its structure and/or function accordingly, resulting in either desired or undesired consequences. The forces that are either conferred to the ASM cell due to external stretching or generated inside the cell must be borne and transmitted inside the cytoskeleton (CSK). Thus, maintaining appropriate levels of stress and strain within the CSK is essential for maintaining normal function. Despite the importance, the mechanisms regulating/dysregulating ASM cytoskeletal filaments in response to stress and strain remained poorly understood until only recently. For example, it is now understood that ASM length and force are dynamically regulated, and both can adapt over a wide range of length, rendering ASM one of the most malleable living tissues. The malleability reflects the CSK's dynamic mechanical properties and plasticity, both of which strongly interact with the loading on the CSK, and all together ultimately determines airway narrowing in pathology. Here we review the latest advances in our understanding of stress and strain in ASM cells, including the organization of contractile and cytoskeletal filaments, range and adaptation of functional length, structural and functional changes of the cell in response to mechanical perturbation, ASM tone as a mediator of strain-induced responses, and the novel glassy dynamic behaviors of the CSK in relation to asthma pathophysiology.

  15. Genetic deletion of apolipoprotein A-I increases airway hyperresponsiveness, inflammation, and collagen deposition in the lung

    PubMed Central

    Wang, Weiling; Xu, Hao; Shi, Yang; Nandedkar, Sandhya; Zhang, Hao; Gao, Haiqing; Feroah, Thom; Weihrauch, Dorothee; Schulte, Marie L.; Jones, Deron W.; Jarzembowski, Jason; Sorci-Thomas, Mary; Pritchard, Kirkwood A.

    2010-01-01

    The relationship between high-density lipoprotein and pulmonary function is unclear. To determine mechanistic relationships we investigated the effects of genetic deletion of apolipoprotein A-I (apoA-I) on plasma lipids, paraoxonase (PON1), pro-inflammatory HDL (p-HDL), vasodilatation, airway hyperresponsiveness and pulmonary oxidative stress, and inflammation. ApoA-I null (apoA-I−/−) mice had reduced total and HDL cholesterol but increased pro-inflammatory HDL compared with C57BL/6J mice. Although PON1 protein was increased in apoA-I−/− mice, PON1 activity was decreased. ApoA-I deficiency did not alter vasodilatation of facialis arteries, but it did alter relaxation responses of pulmonary arteries. Central airway resistance was unaltered. However, airway resistance mediated by tissue dampening and elastance were increased in apoA-I−/− mice, a finding also confirmed by positive end-expiratory pressure (PEEP) studies. Inflammatory cells, collagen deposition, 3-nitrotyrosine, and 4-hydroxy-2-nonenal were increased in apoA-I−/− lungs but not oxidized phospholipids. Colocalization of 4-hydroxy-2-nonenal with transforming growth factor β-1 (TGFβ-1 was increased in apoA-I−/− lungs. Xanthine oxidase, myeloperoxidase and endothelial nitric oxide synthase were increased in apoA-I−/− lungs. Dichlorodihydrofluorescein-detectable oxidants were increased in bronchoalveolar lavage fluid (BALF) in apoA-I−/− mice. In contrast, BALF nitrite+nitrate levels were decreased in apoA-I−/− mice. These data demonstrate that apoA-I plays important roles in limiting pulmonary inflammation and oxidative stress, which if not prevented, will decrease pulmonary artery vasodilatation and increase airway hyperresponsiveness. PMID:20498409

  16. TLR-2 IS INVOLVED IN AIRWAY EPITHELIAL CELL RESPONE TO AIR POLLUTION PARTICLES

    EPA Science Inventory

    Primary cultures of normal human airway epithelial cells (NHBE) respond to ambient air pollution particulate matter (PM) by increased production of the cytokine IL-8, and the induction of a number of oxidant stress response genes. Components of ambient air PM responsible for stim...

  17. PROINFLAMMATORY OXIDANT HYPOCHLOROUS ACID (HOCL) INDUCES DUAL SIGNALING PATHWAYS IN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    In the airway of inflammatory diseases such as bacterial infection, cystic fibrosis and COPD, high level of HOCL (local concentration of up to 5mM) can be generated through a reaction catalyzed by leukocyte granule enzyme- Myeloperoxidase (MPO). HOCL is a very potent oxidative ag...

  18. Inflammation and oxidative stress in obstructive sleep apnea syndrome.

    PubMed

    Selmi, Carlo; Montano, Nicola; Furlan, Raffaello; Keen, Carl L; Gershwin, M Eric

    2007-12-01

    Similar to obesity, with which it is closely associated, obstructive sleep apnea syndrome (OSAS) is rapidly becoming a worldwide epidemic. Current knowledge of its pathogenesis has been significantly enriched by numerous experimental studies that have demonstrated an important role of oxidative stress and inflammation. Furthermore, new and exciting data strongly connect these two components in the perpetuation of the condition via the overexpression of nuclear factor kappaB. Experimental data support the hypothesis that nutrition might represent a promising future approach with antioxidants currently being good candidates for the modulation of cardiovascular sequelae, although weight reduction and controlled positive airway pressure remain the only established treatments for OSAS. We discuss herein the recent literature that illustrates these new paradigms and speculate on possible implications and future scenarios.

  19. Pulmonary Stress Induced by Hyperthermia: Role of Airway Sensory Nerves

    DTIC Science & Technology

    2016-01-01

    temperatures and whole-animal oxygen consumption after exercise. Am J Physiol 221: 427-431, 1971. 33. Brouns I, De Proost I, Pintelon I, Timmermans JP...lactic acid production (Fig. 8). The lack of effect is not unexpected because the increase in arterial O2 content by oxygen ventilation is limited to the...triggering the bronchospasm; 2) whether this effect is heightened by acute airway inflammation; and 3) the temperature thresholds of thermal stress in

  20. Does oxidative stress shorten telomeres?

    PubMed

    Boonekamp, Jelle J; Bauch, Christina; Mulder, Ellis; Verhulst, Simon

    2017-05-01

    Oxidative stress shortens telomeres in cell culture, but whether oxidative stress explains variation in telomere shortening in vivo at physiological oxidative stress levels is not well known. We therefore tested for correlations between six oxidative stress markers and telomere attrition in nestling birds (jackdaws Corvus monedula ) that show a high rate of telomere attrition in early life. Telomere attrition was measured between ages 5 and 30 days, and was highly variable (average telomere loss: 323 bp, CV = 45%). Oxidative stress markers were measured in blood at age 20 days and included markers of oxidative damage (TBARS, dROMs and GSSG) and markers of antioxidant protection (GSH, redox state, uric acid). Variation in telomere attrition was not significantly related to these oxidative stress markers (| r | ≤ 0.08, n = 87). This finding raises the question whether oxidative stress accelerates telomere attrition in vivo The accumulation of telomere attrition over time depends both on the number of cell divisions and on the number of base pairs lost per DNA replication and, based on our findings, we suggest that in a growing animal cell proliferation, dynamics may be more important for explaining variation in telomere attrition than oxidative stress. © 2017 The Author(s).

  1. E-cigarette aerosols induce lower oxidative stress in vitro when compared to tobacco smoke.

    PubMed

    Taylor, Mark; Carr, Tony; Oke, Oluwatobiloba; Jaunky, Tomasz; Breheny, Damien; Lowe, Frazer; Gaça, Marianna

    2016-07-01

    Tobacco smoking is a risk factor for various diseases. The underlying cellular mechanisms are not fully characterized, but include oxidative stress, apoptosis, and necrosis. Electronic-cigarettes (e-cigarettes) have emerged as an alternative to and a possible means to reduce harm from tobacco smoking. E-cigarette vapor contains significantly lower levels of toxicants than cigarette smoke, but standardized methods to assess cellular responses to exposure are not well established. We investigated whether an in vitro model of the airway epithelium (human bronchial epithelial cells) and commercially available assays could differentiate cellular stress responses to aqueous aerosol extracts (AqE) generated from cigarette smoke and e-cigarette aerosols. After exposure to AqE concentrations of 0.063-0.500 puffs/mL, we measured the intracellular glutathione ratio (GSH:GSSG), intracellular generation of oxidant species, and activation of the nuclear factor erythroid-related factor 2 (Nrf2)-controlled antioxidant response elements (ARE) to characterize oxidative stress. Apoptotic and necrotic responses were characterized by increases in caspase 3/7 activity and reductions in viable cell protease activities. Concentration-dependent responses indicative of oxidative stress were obtained for all endpoints following exposure to cigarette smoke AqE: intracellular generation of oxidant species increased by up to 83%, GSH:GSSG reduced by 98.6% and transcriptional activation of ARE increased by up to 335%. Caspase 3/7 activity was increased by up to 37% and the viable cell population declined by up to 76%. No cellular stress responses were detected following exposure to e-cigarette AqE. The methods used were suitably sensitive to be employed for comparative studies of tobacco and nicotine products.

  2. [Increasing oxidative stress in aging].

    PubMed

    Shimosawa, Tatsuo

    2005-06-01

    The balance between reactive oxigen species (ROS) production and degradation is important in defining oxidative stress. In aging process, ROS production increases and degradation is impaired and thus oxidative stress is accumulated. Oxidative stress damages organs both directly and indirectly. Protein, lipid, as well as DNA are directly react with ROS, more over, ROS interact with intracellular signaling system. It is reported that several transcription factors such as NF-kappaB, AP-1 and ASK-1 and also it interferes MAPK activity. Besides these signaling, we recently showed that insulin resistance is induced by accumulated oxidative stress in aged mice. Adrenomedullin deficient mice accumulate higher oxidative stress and insulin resistance developed in aging. Oxidative stress in aging relates not only direct organ damage but also induce risk factors for vascular damage such as metabolic syndrome.

  3. Nitric oxide airway diffusing capacity and mucosal concentration in asthmatic schoolchildren.

    PubMed

    Pedroletti, Christophe; Högman, Marieann; Meriläinen, Pekka; Nordvall, Lennart S; Hedlin, Gunilla; Alving, Kjell

    2003-10-01

    Asthmatic patients show increased concentrations of nitric oxide (NO) in exhaled air (Feno). The diffusing capacity of NO in the airways (Dawno), the NO concentrations in the alveoli and the airway wall, and the maximal airway NO diffusion rate have previously been estimated noninvasively by measuring Feno at different exhalation flow rates in adults. We investigated these variables in 15 asthmatic schoolchildren (8-18 y) and 15 age-matched control subjects, with focus on their relation to exhaled NO at the recommended exhalation flow rate of 0.05 L/s (Feno0.05), age, and volume of the respiratory anatomic dead space. NO was measured on-line by chemiluminescence according to the European Respiratory Society's guidelines, and the NO plateau values at three different exhalation flow rates (11, 99, and 382 mL/s) were incorporated in a two-compartment model for NO diffusion. The NO concentration in the airway wall (p < 0.001), Dawno (p < 0.01), and the maximal airway NO diffusion rate (p < 0.001) were all higher in the asthmatic children than in control children. In contrast, there was no difference in the NO concentration in the alveoli (p = 0.13) between the groups. A positive correlation was seen between the volume of the respiratory anatomic dead space and Feno0.05 (r = 0.68, p < 0.01), the maximal airway NO diffusion rate (r = 0.71, p < 0.01), and Dawno (r = 0.56, p < 0.01) in control children, but not in asthmatic children. Feno0.05 correlated better with Dawno in asthmatic children (r = 0.65, p < 0.01) and with the NO concentration in the airway wall in control subjects (r < 0.77, p < 0.001) than vice versa. We conclude that Feno0.05 increases with increasing volume of the respiratory anatomic dead space in healthy children, suggesting that normal values for Feno0.05 should be related to age or body weight in this age group. Furthermore, the elevated Feno0.05 seen in asthmatic children is related to an increase in both Dawno and NO concentration in the airway

  4. Exposure to welding fumes and lower airway infection with Streptococcus pneumoniae.

    PubMed

    Suri, Reetika; Periselneris, Jimstan; Lanone, Sophie; Zeidler-Erdely, Patti C; Melton, Geoffrey; Palmer, Keith T; Andujar, Pascal; Antonini, James M; Cohignac, Vanessa; Erdely, Aaron; Jose, Ricardo J; Mudway, Ian; Brown, Jeremy; Grigg, Jonathan

    2016-02-01

    Welders are at increased risk of pneumococcal pneumonia. The mechanism for this association is not known. The capacity of pneumococci to adhere to and infect lower airway cells is mediated by host-expressed platelet-activating factor receptor (PAFR). We sought to assess the effect of mild steel welding fumes (MS-WF) on PAFR-dependent pneumococcal adhesion and infection to human airway cells in vitro and on pneumococcal airway infection in a mouse model. The oxidative potential of MS-WF was assessed by their capacity to reduce antioxidants in vitro. Pneumococcal adhesion and infection of A549, BEAS-2B, and primary human bronchial airway cells were assessed by means of quantitative bacterial culture and expressed as colony-forming units (CFU). After intranasal instillation of MS-WF, mice were infected with Streptococcus pneumoniae, and bronchoalveolar lavage fluid (BALF) and lung CFU values were determined. PAFR protein levels were assessed by using immunofluorescence and immunohistochemistry, and PAFR mRNA expression was assessed by using quantitative PCR. PAFR was blocked by CV-3988, and oxidative stress was attenuated by N-acetylcysteine. MS-WF exhibited high oxidative potential. In A549 and BEAS-2B cells MS-WF increased pneumococcal adhesion and infection and PAFR protein expression. Both CV-3988 and N-acetylcysteine reduced MS-WF-stimulated pneumococcal adhesion and infection of airway cells. MS-WF increased mouse lung PAFR mRNA expression and increased BALF and lung pneumococcal CFU values. In MS-WF-exposed mice CV-3988 reduced BALF CFU values. Hypersusceptibility of welders to pneumococcal pneumonia is in part mediated by the capacity of welding fumes to increase PAFR-dependent pneumococcal adhesion and infection of lower airway cells. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  5. Exposure to welding fumes and lower airway infection with Streptococcus pneumoniae

    PubMed Central

    Suri, Reetika; Periselneris, Jimstan; Lanone, Sophie; Zeidler-Erdely, Patti C.; Melton, Geoffrey; Palmer, Keith T.; Andujar, Pascal; Antonini, James M.; Cohignac, Vanessa; Erdely, Aaron; Jose, Ricardo J.; Mudway, Ian; Brown, Jeremy; Grigg, Jonathan

    2015-01-01

    Background Welders are at increased risk of pneumococcal pneumonia. The mechanism for this association is not known. The capacity of pneumococci to adhere to and infect lower airway cells is mediated by host-expressed platelet-activating factor receptor (PAFR). Objective We sought to assess the effect of mild steel welding fumes (MS-WF) on PAFR-dependent pneumococcal adhesion and infection to human airway cells in vitro and on pneumococcal airway infection in a mouse model. Methods The oxidative potential of MS-WF was assessed by their capacity to reduce antioxidants in vitro. Pneumococcal adhesion and infection of A549, BEAS-2B, and primary human bronchial airway cells were assessed by means of quantitative bacterial culture and expressed as colony-forming units (CFU). After intranasal instillation of MS-WF, mice were infected with Streptococcus pneumoniae, and bronchoalveolar lavage fluid (BALF) and lung CFU values were determined. PAFR protein levels were assessed by using immunofluorescence and immunohistochemistry, and PAFR mRNA expression was assessed by using quantitative PCR. PAFR was blocked by CV-3988, and oxidative stress was attenuated by N-acetylcysteine. Results: MS-WF exhibited high oxidative potential. In A549 and BEAS-2B cells MS-WF increased pneumococcal adhesion and infection and PAFR protein expression. Both CV-3988 and N-acetylcysteine reduced MS-WF–stimulated pneumococcal adhesion and infection of airway cells. MS-WF increased mouse lung PAFR mRNA expression and increased BALF and lung pneumococcal CFU values. In MS-WF–exposed mice CV-3988 reduced BALF CFU values. Conclusions Hypersusceptibility of welders to pneumococcal pneumonia is in part mediated by the capacity of welding fumes to increase PAFR-dependent pneumococcal adhesion and infection of lower airway cells. PMID:26277596

  6. Clusterin Modulates Allergic Airway Inflammation by Attenuating CCL20-Mediated Dendritic Cell Recruitment.

    PubMed

    Hong, Gyong Hwa; Kwon, Hyouk-Soo; Moon, Keun-Ai; Park, So Young; Park, Sunjoo; Lee, Kyoung Young; Ha, Eun Hee; Kim, Tae-Bum; Moon, Hee-Bom; Lee, Heung Kyu; Cho, You Sook

    2016-03-01

    Recruitment and activation of dendritic cells (DCs) in the lungs are critical for Th2 responses in asthma, and CCL20 secreted from bronchial epithelial cells (BECs) is known to influence the recruitment of DCs. Because asthma is a disease that is closely associated with oxidative stress, we hypothesized that clusterin, an oxidative stress regulatory molecule, may have a role in the development of allergic airway inflammation. The aim of this study was to examine whether clusterin regulates CCL20 production from the BECs and the subsequent DC recruitment in the lungs. To verify the idea, clusterin knockout (Clu(-/-)), clusterin heterogeneous (Clu(+/-)), and wild-type mice were exposed intranasally to house dust mite (HDM) extract to induce allergic airway inflammation. We found that the total number of immune cells in bronchoalveolar lavage fluid and the lung was increased in Clu(-/-) and Clu(+/-) mice. Of these immune cells, inflammatory DCs (CD11b(+)CD11c(+)) and Ly6C(high) monocyte populations in the lung were significantly increased, which was accompanied by increased levels of various chemokines, including CCL20 in bronchoalveolar lavage fluid, and increased oxidative stress markers in the lung. Moreover, HDM-stimulated human BECs with either up- or downregulated clusterin expression showed that CCL20 secretion was negatively associated with clusterin expression. Interestingly, clusterin also reduced the level of intracellular reactive oxygen species, which is related to induction of CCL20 expression after HDM stimulation. Thus, the antioxidant property of clusterin is suggested to regulate the expression of CCL20 in BECs and the subsequent recruitment of inflammatory DCs in the airway. Copyright © 2016 by The American Association of Immunologists, Inc.

  7. Inhibitors of ceramide de novo biosynthesis rescue damages induced by cigarette smoke in airways epithelia.

    PubMed

    Zulueta, Aida; Caretti, Anna; Campisi, Giuseppe Matteo; Brizzolari, Andrea; Abad, Jose Luis; Paroni, Rita; Signorelli, Paola; Ghidoni, Riccardo

    2017-07-01

    Exposure to cigarette smoke represents the most important risk factor for the development of chronic obstructive pulmonary disease (COPD). COPD is characterized by chronic inflammation of the airways, imbalance of proteolytic activity resulting in the destruction of lung parenchyma, alveolar hypoxia, oxidative stress, and apoptosis. Sphingolipids are structural membrane components whose metabolism is altered during stress. Known as apoptosis and inflammation inducer, the sphingolipid ceramide was found to accumulate in COPD airways and its plasma concentration increased as well. The present study investigates the role of sphingolipids in the cigarette smoke-induced damage of human airway epithelial cells. Lung epithelial cells were pre-treated with sphingolipid synthesis inhibitors (myriocin or XM462) and then exposed to a mixture of nicotine, acrolein, formaldehyde, and acetaldehyde, the major toxic cigarette smoke components. The inflammatory and proteolytic responses were investigated by analysis of the mRNA expression (RT-PCR) of cytokines IL-1β and IL-8, and matrix metalloproteinase-9 and of the protein expression (ELISA) of IL-8. Ceramide intracellular amounts were measured by LC-MS technique. Ferric-reducing antioxidant power test and superoxide anion radical scavenging activity assay were used to assess the antioxidant power of the inhibitors of ceramide synthesis. We here show that ceramide synthesis is enhanced under treatment with a cigarette smoke mixture correlating with increased expression of inflammatory cytokines and matrix metalloproteinase 9. The use of inhibitors of ceramide synthesis protected from smoke induced damages such as inflammation, oxidative stress, and proteolytic imbalance in airways epithelia.

  8. Airway inflammation in chronic obstructive pulmonary disease (COPD): a true paradox.

    PubMed

    Eapen, Mathew Suji; Myers, Stephen; Walters, Eugene Haydn; Sohal, Sukhwinder Singh

    2017-10-01

    Chronic obstructive pulmonary disease (COPD) is primarily an airway condition, which mainly affects cigarette smokers and presents with shortness of breath that is progressive and poorly reversible. In COPD research, there has been a long held belief that airway disease progression is due to inflammation. Although this may be true in the airway lumen with innate immunity activated by the effect of smoke or secondary to infection, the accurate picture of inflammatory cells in the airway wall, where the pathophysiological COPD remodeling occurs, is uncertain and debatable. Areas covered: The current review provides a comprehensive literature survey of the changes in the main inflammatory cells in human COPD patients and focuses on contrarian views that affect the prevailing dogma on inflammation. The review also delves into the role of oxidative stress and inflammasomes in modulating the immune response in COPD. Further, the effects of inflammation in affecting the epithelium, fibroblasts, and airway remodeling are discussed. Expert commentary: Inflammation as a driving force for airway wall damage and remodelling in early COPD is at the very least 'oversimplified' and is likely to be misleading. This has serious implications for rational thinking about the illness, including pathogenesis and designing therapy.

  9. Oxidative stress during extracorporeal circulation.

    PubMed

    McDonald, Charles Ian; Fraser, John Francis; Coombes, Jeff S; Fung, Yoke Lin

    2014-12-01

    There is an increased oxidative stress response in patients having cardiac surgery, haemodialysis or extracorporeal membrane oxygenation that is related to poorer outcomes and increased mortality. Exposure of the patients' blood to the artificial surfaces of these extracorporeal devices, coupled with inflammatory responses, hyperoxia and the pathophysiological aspects of the underlying illness itself, all contribute to this oxidative stress response. Oxidative stress occurs when there is a disruption of redox signalling and loss of control of redox balance. Ongoing oxidative stress occurring during extracorporeal circulation (ECC) results in damage to lipids, proteins and DNA and contributes to morbidity and mortality. This review discusses reactive species generation and the potential clinical consequences of oxidative stress during ECC as well as provides an overview of some current antioxidant compounds that are available to potentially mitigate the oxidative stress response. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  10. Good Stress, Bad Stress and Oxidative Stress: Insights from Anticipatory Cortisol Reactivity

    PubMed Central

    Aschbacher, Kirstin; O'Donovan, Aoife; Wolkowitz, Owen M.; Dhabhar, Firdaus S.; Su, Yali; Epel, Elissa

    2014-01-01

    Chronic psychological stress appears to accelerate biological aging, and oxidative damage is an important potential mediator of this process. However, the mechanisms by which psychological stress promotes oxidative damage are poorly understood. This study investigates the theory that cortisol increases in response to an acutely stressful event have the potential to either enhance or undermine psychobiological resilience to oxidative damage, depending on the body's prior exposure to chronic psychological stress. In order to achieve a range of chronic stress exposure, forty-eight post-menopausal women were recruited in a case-control design that matched women caring for spouses with dementia (a chronic stress model) with similarly aged control women whose spouses were healthy. Participants completed a questionnaire assessing perceived stress over the previous month and provided fasting blood. Three markers of oxidative damage were assessed: 8-iso-prostaglandin F2α (IsoP), lipid peroxidation, 8-hydroxyguanosine (8-OxoG) and 8-hydroxy-2′-deoxyguanosine (8-OHdG), reflecting oxidative damage to RNA/DNA respectively. Within approximately one week, participants completed a standardized acute laboratory stress task while salivary cortisol responses were measured. The increase from 0 to 30 min was defined as “peak” cortisol reactivity, while the increase from 0 to 15 min was defined as “anticipatory” cortisol reactivity, representing a cortisol response that began while preparing for the stress task. Women under chronic stress had higher 8-oxoG, oxidative damage to RNA (p<.01). A moderated mediation model was tested, in which it was hypothesized that heightened anticipatory cortisol reactivity would mediate the relationship between perceived stress and elevated oxidative stress damage, but only among women under chronic stress. Consistent with this model, bootstrapped path analysis found significant indirect paths from perceived stress to 8-OxoG and IsoP (but not

  11. Good stress, bad stress and oxidative stress: insights from anticipatory cortisol reactivity.

    PubMed

    Aschbacher, Kirstin; O'Donovan, Aoife; Wolkowitz, Owen M; Dhabhar, Firdaus S; Su, Yali; Epel, Elissa

    2013-09-01

    Chronic psychological stress appears to accelerate biological aging, and oxidative damage is an important potential mediator of this process. However, the mechanisms by which psychological stress promotes oxidative damage are poorly understood. This study investigates the theory that cortisol increases in response to an acutely stressful event have the potential to either enhance or undermine psychobiological resilience to oxidative damage, depending on the body's prior exposure to chronic psychological stress. In order to achieve a range of chronic stress exposure, forty-eight post-menopausal women were recruited in a case-control design that matched women caring for spouses with dementia (a chronic stress model) with similarly aged control women whose spouses were healthy. Participants completed a questionnaire assessing perceived stress over the previous month and provided fasting blood. Three markers of oxidative damage were assessed: 8-iso-prostaglandin F(2α) (IsoP), lipid peroxidation, 8-hydroxyguanosine (8-oxoG) and 8-hydroxy-2'-deoxyguanosine (8-OHdG), reflecting oxidative damage to RNA/DNA respectively. Within approximately one week, participants completed a standardized acute laboratory stress task while salivary cortisol responses were measured. The increase from 0 to 30 min was defined as "peak" cortisol reactivity, while the increase from 0 to 15 min was defined as "anticipatory" cortisol reactivity, representing a cortisol response that began while preparing for the stress task. Women under chronic stress had higher 8-oxoG, oxidative damage to RNA (p<.01). A moderated mediation model was tested, in which it was hypothesized that heightened anticipatory cortisol reactivity would mediate the relationship between perceived stress and elevated oxidative stress damage, but only among women under chronic stress. Consistent with this model, bootstrapped path analysis found significant indirect paths from perceived stress to 8-oxoG and IsoP (but not 8-OHd

  12. Air pollution induces enhanced mitochondrial oxidative stress in cystic fibrosis airway epithelium.

    PubMed

    Kamdar, O; Le, Wei; Zhang, J; Ghio, A J; Rosen, G D; Upadhyay, D

    2008-10-29

    We studied the effects of airborne particulate matters (PM) on cystic fibrosis (CF) epithelium. We noted that PM enhanced human CF bronchial epithelial apoptosis, activated caspase-9 and PARP-1; and reduced mitochondrial membrane potential. Mitochondrial inhibitors (4,4-diisothiocyanatostilbene-2,2'disulfonic acid, rotenone and thenoyltrifluoroacetone) blocked PM-induced generation of reactive oxygen species and apoptosis. PM upregulated pro-apoptotic Bad, Bax, p53 and p21; and enhanced mitochondrial localization of Bax. The anti-apoptotic Bcl-2, Bcl-xl, Mcl-1 and Xiap remained unchanged; however, overexpression of Bcl-xl blocked PM-induced apoptosis. Accordingly, we provide the evidence that PM enhances oxidative stress and mitochondrial signaling mediated apoptosis via the modulation of Bcl family proteins in CF.

  13. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response

    PubMed Central

    Busch, Andrea W.U.; Montgomery, Beronda L.

    2015-01-01

    Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS) associated with alterations in tetrapyrrole homeostasis. ROS accumulation can result in cellular damage and detrimental effects on organismal fitness, or ROS molecules can serve as signals to induce a protective or damage-mitigating oxidative stress signaling response in cells. Induced oxidative stress responses include tetrapyrrole-dependent and -independent mechanisms for mitigating ROS generation and/or accumulation. Thus, tetrapyrroles can be contributors to oxidative stress, but are also essential in the oxidative stress response to protect cells by contributing to detoxification of ROS. In this review, we highlight the interconnection and interdependence of tetrapyrrole metabolism with the occurrence of oxidative stress and protective oxidative stress signaling responses in photosynthetic organisms. PMID:25618582

  14. Airway and alveolar nitric oxide production, lung function, and pulmonary blood flow in sickle cell disease.

    PubMed

    Lunt, Alan; Ahmed, Na'eem; Rafferty, Gerrard F; Dick, Moira; Rees, David; Height, Sue; Thein, Swee Lay; Greenough, Anne

    2016-02-01

    Children with sickle cell disease (SCD) often have obstructive lung function abnormalities which could be due to asthma or increased pulmonary blood volume; it is important to determine the underlying mechanism to direct appropriate treatment. In asthmatics, exhaled nitric oxide (FeNO) is elevated. FeNO, however, can also be raised due to increased alveolar production. Our aim, therefore, was to determine if airway or alveolar NO production differed between SCD children and ethnic and age-matched controls. Lung function, airway NO flux and alveolar NO production, and effective pulmonary blood flow were assessed in 18 SCD children and 18 ethnic and age-matched controls. The SCD children compared to the controls had a higher respiratory system resistance (P = 0.0008), alveolar NO production (P = 0.0224), and pulmonary blood flow (P < 0.0001), but not airway NO flux. There was no significant correlation between FeNO and respiratory system resistance in either group, but in the SCD children, there were correlations between alveolar NO production (P = 0.0006) and concentration (P < 0.0001) and pulmonary blood flow. Airway NO flux was not elevated in the SCD children nor correlated with airways obstruction, suggesting that airways obstruction, at least in some SCD children, is not due to asthma.

  15. How irritating: the role of TRPA1 in sensing cigarette smoke and aerogenic oxidants in the airways

    PubMed Central

    Simon, Sidney A.; Liedtke, Wolfgang

    2008-01-01

    Airway irritants cause a variety of lung pathologies. Two separate studies, the first recently reported in the JCI by Bessac et al. and the second reported by Andrè et al. in the current issue of the JCI (see the related article beginning on page 2574), have identified irritants that activate transient receptor potential cation channel, subfamily A, member 1 (TRPA1) receptors in airway sensory neurons, resulting in neurogenic inflammation and respiratory hypersensitivity. The identification of TRPA1 activation by toxicants from cigarette smoke and polluted air, such as crotonaldehyde, acrolein, and oxidizing agents such as hydrogen peroxide, is an important finding. These two studies enhance our understanding of how pollution and cigarette smoke can damage airway function and will hopefully pave the way for the development of rational alternative therapeutics for such airway injury. PMID:18568080

  16. Exercise-induced bronchoconstriction alters airway nitric oxide exchange in a pattern distinct from spirometry.

    PubMed

    Shin, Hye-Won; Schwindt, Christina D; Aledia, Anna S; Rose-Gottron, Christine M; Larson, Jennifer K; Newcomb, Robert L; Cooper, Dan M; George, Steven C

    2006-12-01

    Exhaled nitric oxide (NO) is altered in asthmatic subjects with exercise-induced bronchoconstriction (EIB). However, the physiological interpretation of exhaled NO is limited because of its dependence on exhalation flow and the inability to distinguish completely proximal (large airway) from peripheral (small airway and alveolar) contributions. We estimated flow-independent NO exchange parameters that partition exhaled NO into proximal and peripheral contributions at baseline, postexercise challenge, and postbronchodilator administration in steroid-naive mild-intermittent asthmatic subjects with EIB (24-43 yr old, n = 9) and healthy controls (20-31 yr old, n = 9). The mean +/- SD maximum airway wall flux and airway diffusing capacity were elevated and forced expiratory flow, midexpiratory phase (FEF(25-75)), forced expiratory volume in 1 s (FEV(1)), and FEV(1)/forced vital capacity (FVC) were reduced at baseline in subjects with EIB compared with healthy controls, whereas the steady-state alveolar concentration of NO and FVC were not different. Compared with the response of healthy controls, exercise challenge significantly reduced FEV(1) (-23 +/- 15%), FEF(25-75) (-37 +/- 18%), FVC (-12 +/- 12%), FEV(1)/FVC (-13 +/- 8%), and maximum airway wall flux (-35 +/- 11%) relative to baseline in subjects with EIB, whereas bronchodilator administration only increased FEV(1) (+20 +/- 21%), FEF(25-75) (+56 +/- 41%), and FEV(1)/FVC (+13 +/- 9%). We conclude that mild-intermittent steroid-naive asthmatic subjects with EIB have altered airway NO exchange dynamics at baseline and after exercise challenge but that these changes occur by distinct mechanisms and are not correlated with alterations in spirometry.

  17. Endoplasmic Reticulum Stress Links Oxidative Stress to Impaired Pancreatic Beta-Cell Function Caused by Human Oxidized LDL.

    PubMed

    Plaisance, Valérie; Brajkovic, Saška; Tenenbaum, Mathie; Favre, Dimitri; Ezanno, Hélène; Bonnefond, Amélie; Bonner, Caroline; Gmyr, Valéry; Kerr-Conte, Julie; Gauthier, Benoit R; Widmann, Christian; Waeber, Gérard; Pattou, François; Froguel, Philippe; Abderrahmani, Amar

    2016-01-01

    Elevated plasma concentration of the pro-atherogenic oxidized low density lipoprotein cholesterol (LDL) triggers adverse effects in pancreatic beta-cells and is associated with type 2 diabetes. Here, we investigated whether the endoplasmic reticulum (ER) stress is a key player coupling oxidative stress to beta-cell dysfunction and death elicited by human oxidized LDL. We found that human oxidized LDL activates ER stress as evidenced by the activation of the inositol requiring 1α, and the elevated expression of both DDIT3 (also called CHOP) and DNAJC3 (also called P58IPK) ER stress markers in isolated human islets and the mouse insulin secreting MIN6 cells. Silencing of Chop and inhibition of ER stress markers by the chemical chaperone phenyl butyric acid (PBA) prevented cell death caused by oxidized LDL. Finally, we found that oxidative stress accounts for activation of ER stress markers induced by oxidized LDL. Induction of Chop/CHOP and p58IPK/P58IPK by oxidized LDL was mimicked by hydrogen peroxide and was blocked by co-treatment with the N-acetylcystein antioxidant. As a conclusion, the harmful effects of oxidized LDL in beta-cells requires ER stress activation in a manner that involves oxidative stress. This mechanism may account for impaired beta-cell function in diabetes and can be reversed by antioxidant treatment.

  18. GENETIC DIFFERENCES IN IN VIVO/IN VITRO AIRWAY INJURY AND INFLAMMATION AFTER OIL FLY ASH EXPOSURE

    EPA Science Inventory

    GENETIC DIFFERENCES IN IN VIVO/ IN VITRO AIRWAY INJURY/ INFLAMMATION AFTER OIL FLY ASH EXPOSURE

    Janice Dye, Debora Andrews, Judy Richards, Annette King*, Urmila Kodavanti. US EPA & *SEE Program, RTP, NC.

    Oxidative stress is implicated in the pathogenesis and progres...

  19. The contribution of airway smooth muscle to airway narrowing and airway hyperresponsiveness in disease.

    PubMed

    Martin, J G; Duguet, A; Eidelman, D H

    2000-08-01

    Airway hyperresponsiveness (AHR), the exaggerated response to constrictor agonists in asthmatic subjects, is incompletely understood. Changes in either the quantity or properties of airway smooth muscle (ASM) are possible explanations for AHR. Morphometric analyses demonstrate structural changes in asthmatic airways, including subepithelial fibrosis, gland hyperplasia/hypertrophy, neovascularization and an increase in ASM mass. Mathematical modelling of airway narrowing suggests that, of all the changes in structure, the increase in ASM mass is the most probable cause of AHR. An increase in ASM mass in the large airways is more closely associated with a greater likelihood of dying from asthma than increases in ASM mass in other locations within the airway tree. ASM contraction is opposed by the elastic recoil of the lungs and airways, which appears to limit the degree of bronchoconstriction in vivo. The cyclical nature of tidal breathing applies stresses to the airway wall that enhance the bronchodilating influence of the lung tissues on the contracting ASM, in all probability by disrupting cross-bridges. However, the increase in ASM mass in asthma may overcome the limitation resulting from the impedances to ASM shortening imposed by the lung parenchyma and airway wall tissues. Additionally, ASM with the capacity to shorten rapidly may achieve shorter lengths and cause a greater degree of bronchoconstriction when stimulated to contract than slower ASM. Changes in ASM properties are induced by the process of sensitization and allergen-exposure such as enhancement of phospholipase C activity and inositol phosphate turnover, and increases in myosin light chain kinase activity. Whether changes in ASM mass or biochemical/biomechanical properties form the basis for asthma remains to be determined.

  20. Attenuation of Cigarette Smoke-Induced Airway Mucus Production by Hydrogen-Rich Saline in Rats

    PubMed Central

    Zhang, Jingxi; Dong, Yuchao; Xu, Wujian; Li, Qiang

    2013-01-01

    Background Over-production of mucus is an important pathophysiological feature in chronic airway disease such as chronic obstructive pulmonary disease (COPD) and asthma. Cigarette smoking (CS) is the leading cause of COPD. Oxidative stress plays a key role in CS-induced airway abnormal mucus production. Hydrogen protected cells and tissues against oxidative damage by scavenging hydroxyl radicals. In the present study we investigated the effect of hydrogen on CS-induced mucus production in rats. Methods Male Sprague-Dawley rats were divided into four groups: sham control, CS group, hydrogen-rich saline pretreatment group and hydrogen-rich saline control group. Lung morphology and tissue biochemical changes were determined by immunohistochemistry, Alcian Blue/periodic acid-Schiff staining, TUNEL, western blot and realtime RT-PCR. Results Hydrogen-rich saline pretreatment attenuated CS-induced mucus accumulation in the bronchiolar lumen, goblet cell hyperplasia, muc5ac over-expression and abnormal cell apoptosis in the airway epithelium as well as malondialdehyde increase in the BALF. The phosphorylation of EGFR at Tyr1068 and Nrf2 up-regulation expression in the rat lungs challenged by CS exposure were also abrogated by hydrogen-rich saline. Conclusion Hydrogen-rich saline pretreatment ameliorated CS-induced airway mucus production and airway epithelium damage in rats. The protective role of hydrogen on CS-exposed rat lungs was achieved at least partly by its free radical scavenging ability. This is the first report to demonstrate that intraperitoneal administration of hydrogen-rich saline protected rat airways against CS damage and it could be promising in treating abnormal airway mucus production in COPD. PMID:24376700

  1. Copper oxide nanoparticles aggravate airway inflammation and mucus production in asthmatic mice via MAPK signaling.

    PubMed

    Park, Ji-Won; Lee, In-Chul; Shin, Na-Rae; Jeon, Chan-Mi; Kwon, Ok-Kyoung; Ko, Je-Won; Kim, Jong-Choon; Oh, Sei-Ryang; Shin, In-Sik; Ahn, Kyung-Seop

    2016-01-01

    Copper oxide nanoparticles (CuONPs), metal oxide nanoparticles were used in multiple applications including wood preservation, antimicrobial textiles, catalysts for carbon monoxide oxidation and heat transfer fluid in machines. We investigated the effects of CuONPs on the respiratory system in Balb/c mice. In addition, to investigate the effects of CuONPs on asthma development, we used a murine model of ovalbumin (OVA)-induced asthma. CuONPs markedly increased airway hyper-responsiveness (AHR), inflammatory cell counts, proinflammatory cytokines and reactive oxygen species (ROS). CuONPs induced airway inflammation and mucus secretion with increases in phosphorylation of the MAPKs (Erk, JNK and p38). In the OVA-induced asthma model, CuONPs aggravated the increased AHR, inflammatory cell count, proinflammatory cytokines, ROS and immunoglobulin E induced by OVA exposure. In addition, CuONPs markedly increased inflammatory cell infiltration into the lung and mucus secretions, and MAPK phosphorylation was elevated compared to OVA-induced asthmatic mice. Taken together, CuONPs exhibited toxicity on the respiratory system, which was associated with the MAPK phosphorylation. In addition, CuONPs exposure aggravated the development of asthma. We conclude that CuONPs exposure has a potential toxicity in humans with respiratory disease.

  2. Oxidative stress adaptation with acute, chronic, and repeated stress.

    PubMed

    Pickering, Andrew M; Vojtovich, Lesya; Tower, John; A Davies, Kelvin J

    2013-02-01

    Oxidative stress adaptation, or hormesis, is an important mechanism by which cells and organisms respond to, and cope with, environmental and physiological shifts in the level of oxidative stress. Most studies of oxidative stress adaption have been limited to adaptation induced by acute stress. In contrast, many if not most environmental and physiological stresses are either repeated or chronic. In this study we find that both cultured mammalian cells and the fruit fly Drosophila melanogaster are capable of adapting to chronic or repeated stress by upregulating protective systems, such as their proteasomal proteolytic capacity to remove oxidized proteins. Repeated stress adaptation resulted in significant extension of adaptive responses. Repeated stresses must occur at sufficiently long intervals, however (12-h or more for MEF cells and 7 days or more for flies), for adaptation to be successful, and the levels of both repeated and chronic stress must be lower than is optimal for adaptation to acute stress. Regrettably, regimens of adaptation to both repeated and chronic stress that were successful for short-term survival in Drosophila nevertheless also caused significant reductions in life span for the flies. Thus, although both repeated and chronic stress can be tolerated, they may result in a shorter life. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Effect of a chemical chaperone, tauroursodeoxycholic acid, on HDM-induced allergic airway disease

    PubMed Central

    Siddesha, Jalahalli M.; Nakada, Emily M.; Mihavics, Bethany R.; Hoffman, Sidra M.; Rattu, Gurkiranjit K.; Chamberlain, Nicolas; Cahoon, Jonathon M.; Lahue, Karolyn G.; Daphtary, Nirav; Aliyeva, Minara; Chapman, David G.; Desai, Dhimant H.; Poynter, Matthew E.

    2016-01-01

    Endoplasmic reticulum (ER) stress-induced unfolded protein response plays a critical role in inflammatory diseases, including allergic airway disease. However, the benefits of inhibiting ER stress in the treatment of allergic airway disease are not well known. Herein, we tested the therapeutic potential of a chemical chaperone, tauroursodeoxycholic acid (TUDCA), in combating allergic asthma, using a mouse model of house dust mite (HDM)-induced allergic airway disease. TUDCA was administered during the HDM-challenge phase (preventive regimen), after the HDM-challenge phase (therapeutic regimen), or therapeutically during a subsequent HDM rechallenge (rechallenge regimen). In the preventive regimen, TUDCA significantly decreased HDM-induced inflammation, markers of ER stress, airway hyperresponsiveness (AHR), and fibrosis. Similarly, in the therapeutic regimen, TUDCA administration efficiently decreased HDM-induced airway inflammation, mucus metaplasia, ER stress markers, and AHR, but not airway remodeling. Interestingly, TUDCA administered therapeutically in the HDM rechallenge regimen markedly attenuated HDM-induced airway inflammation, mucus metaplasia, ER stress markers, methacholine-induced AHR, and airway fibrotic remodeling. These results indicate that the inhibition of ER stress in the lungs through the administration of chemical chaperones could be a valuable strategy in the treatment of allergic airway diseases. PMID:27154200

  4. Older women exhibit greater airway 8-isoprostane responses to strenuous exercise compared with older men and younger controls.

    PubMed

    Kurti, Stephanie P; Emerson, Sam R; Smith, Joshua R; Rosenkranz, Sara K; Alexander, Samantha A; Lovoy, Garrett M; Harms, Craig A

    2018-05-01

    Development of late-onset respiratory diseases is associated with elevated 8-isoprostane, a marker of oxidative stress, in the airways. However, sex differences exist in development of these diseases. Using an exhaustive exercise bout as a physiological stressor may elucidate whether there is a sex difference with aging in pre- to postexercise airway 8-isoprostane generation. The purpose of this study was to determine whether older women exhibit a greater airway 8-isoprostane response to exhaustive exercise compared with older men and younger controls. Thirty-six individuals completed the study (12 postmenopausal older women (OW) and 12 age-matched older men (OM), 65 ± 4 years of age; and 12 younger controls (YC), 21 ± 2 years of age). Baseline measurements included exhaled breath condensate (EBC) for assessment of airway 8-isoprostane and standard pulmonary function tests (PFTs) to assess forced expiratory volume in 1-s (FEV 1 ), forced vital capacity (FVC), FEV 1 /FVC, and forced expiratory flow at 25%-75% of FVC. Subjects then performed a peak oxygen uptake test to exhaustion on a cycle ergometer. Immediately postexercise, PFTs and EBC were performed. The generation of airway 8-isoprostane from pre- to postexercise was greater in OW compared with OM and YC (p < 0.01), increasing ∼74% ± 77% in OW, while decreasing in OM (∼12% ± 50%) and YC (∼20.9% ± 30%). The OW exhibited a greater airway 8-isoprostane response to exhaustive exercise compared with OM and YC, which may suggest that sex differences in oxidative stress generation following exhaustive exercise may provide a mechanistic rationale for sex differences in late-onset respiratory diseases.

  5. Dimethylthiourea protects against chlorine induced changes in airway function in a murine model of irritant induced asthma.

    PubMed

    McGovern, Toby K; Powell, William S; Day, Brian J; White, Carl W; Govindaraju, Karuthapillai; Karmouty-Quintana, Harry; Lavoie, Normand; Tan, Ju Jing; Martin, James G

    2010-10-06

    Exposure to chlorine (Cl2) causes airway injury, characterized by oxidative damage, an influx of inflammatory cells and airway hyperresponsiveness. We hypothesized that Cl2-induced airway injury may be attenuated by antioxidant treatment, even after the initial injury. Balb/C mice were exposed to Cl2 gas (100 ppm) for 5 mins, an exposure that was established to alter airway function with minimal histological disruption of the epithelium. Twenty-four hours after exposure to Cl2, airway responsiveness to aerosolized methacholine (MCh) was measured. Bronchoalveolar lavage (BAL) was performed to determine inflammatory cell profiles, total protein, and glutathione levels. Dimethylthiourea (DMTU;100 mg/kg) was administered one hour before or one hour following Cl2 exposure. Mice exposed to Cl2 had airway hyperresponsiveness to MCh compared to control animals pre-treated and post-treated with DMTU. Total cell counts in BAL fluid were elevated by Cl2 exposure and were not affected by DMTU treatment. However, DMTU-treated mice had lower protein levels in the BAL than the Cl2-only treated animals. 4-Hydroxynonenal analysis showed that DMTU given pre- or post-Cl2 prevented lipid peroxidation in the lung. Following Cl2 exposure glutathione (GSH) was elevated immediately following exposure both in BAL cells and in fluid and this change was prevented by DMTU. GSSG was depleted in Cl2 exposed mice at later time points. However, the GSH/GSSG ratio remained high in chlorine exposed mice, an effect attenuated by DMTU. Our data show that the anti-oxidant DMTU is effective in attenuating Cl2 induced increase in airway responsiveness, inflammation and biomarkers of oxidative stress.

  6. Inhalation of progesterone inhibits chronic airway inflammation of mice exposed to ozone.

    PubMed

    Fei, Xia; Bao, Wuping; Zhang, Pengyu; Zhang, Xue; Zhang, Guoqing; Zhang, Yingying; Zhou, Xin; Zhang, Min

    2017-05-01

    Chronic ozone exposure leads to a model of mice with lung inflammation, emphysema and oxidative stress. Progesterone plays an important role in attenuating the neuroinflammation. We assume that progesterone will reduce the chronic airway inflammation exposed to ozone and evaluate whether combination of progesterone with glucocorticoids results in synergistic effects. C57/BL6 mice were exposed to ozone (2.5ppm, 3h) 12 times over 6 weeks, and were administered with progesterone (0.03 or 0.3mg/L; inhaled) alone or combined with budesonide (BUD) (0.2g/L) after each exposure until the tenth week. Mice were studied 24h after final exposure, cells and inflammatory mediators were assessed in bronchoalveolar lavage fluid (BALF) and lungs used for evaluation of glucocorticoids receptors (GR), p38 mitogen-activated protein kinase (MAPK) phosphorylation and nuclear transcription factor κB (NF-κB) activation. Exposure to ozone resulted in a marked lung neutrophilia. Moreover, in ozone-exposed group, the levels of oxidative stress-related interleukin (IL)-1β, IL-6, IL-8, IL-17A, activated NF-κB and p38MAPK, airway inflammatory cells infiltration density, mean linear intercept (Lm) were greatly increased, FEV 25 and glucocorticoids receptors (GR) were markedly decreased. Comparable to BUD, progesterone treatment dose-dependently led to a significant reduction of IL-1β, IL-6, IL-8, IL-17A, activated NF-κB and p38MAPK, and an increase of FEV 25 and GR. Progesterone combined with BUD resulted in dramatic changes, compared to monotherapy of BUD or progesterone. Therefore, these results demonstrate that chronic ozone exposure has profound airway inflammatory effects counteracted by progesterone and progesterone acts synergistically with glucocorticoids in attenuating the airway inflammation dose-dependently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Volatile Organic Compounds Enhance Allergic Airway Inflammation in an Experimental Mouse Model

    PubMed Central

    Bönisch, Ulrike; Böhme, Alexander; Kohajda, Tibor; Mögel, Iljana; Schütze, Nicole; von Bergen, Martin; Simon, Jan C.; Lehmann, Irina; Polte, Tobias

    2012-01-01

    Background Epidemiological studies suggest an association between exposure to volatile organic compounds (VOCs) and adverse allergic and respiratory symptoms. However, whether VOCs exhibit a causal role as adjuvants in asthma development remains unclear. Methods To investigate the effect of VOC exposure on the development of allergic airway inflammation Balb/c mice were exposed to VOCs emitted by new polyvinylchloride (PVC) flooring, sensitized with ovalbumin (OVA) and characterized in acute and chronic murine asthma models. Furthermore, prevalent evaporated VOCs were analyzed and mice were exposed to selected single VOCs. Results Exposure of mice to PVC flooring increased eosinophilic lung inflammation and OVA-specific IgE serum levels compared to un-exposed control mice. The increased inflammation was associated with elevated levels of Th2-cytokines. Long-term exposure to PVC flooring exacerbated chronic airway inflammation. VOCs with the highest concentrations emitted by new PVC flooring were N-methyl-2-pyrrolidone (NMP) and 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB). Exposure to NMP or TXIB also increased the allergic immune response in OVA-sensitized mice. In vitro or in vivo exposure to NMP or TXIB reduced IL-12 production in maturing dendritic cells (DCs) and enhanced airway inflammation after adoptive DC transfer into Balb/c mice. At higher concentrations both VOCs induced oxidative stress demonstrated by increased isoprostane and glutathione-S-transferase-pi1 protein levels in the lung of non-sensitized mice. Treatment of PVC flooring-exposed mice with N-acetylcysteine prevented the VOC-induced increase of airway inflammation. Conclusions Our results demonstrate that exposure to VOCs may increase the allergic immune response by interfering with DC function and by inducing oxidative stress and has therefore to be considerate as risk factor for the development of allergic diseases. PMID:22802943

  8. Volatile organic compounds enhance allergic airway inflammation in an experimental mouse model.

    PubMed

    Bönisch, Ulrike; Böhme, Alexander; Kohajda, Tibor; Mögel, Iljana; Schütze, Nicole; von Bergen, Martin; Simon, Jan C; Lehmann, Irina; Polte, Tobias

    2012-01-01

    Epidemiological studies suggest an association between exposure to volatile organic compounds (VOCs) and adverse allergic and respiratory symptoms. However, whether VOCs exhibit a causal role as adjuvants in asthma development remains unclear. To investigate the effect of VOC exposure on the development of allergic airway inflammation Balb/c mice were exposed to VOCs emitted by new polyvinylchloride (PVC) flooring, sensitized with ovalbumin (OVA) and characterized in acute and chronic murine asthma models. Furthermore, prevalent evaporated VOCs were analyzed and mice were exposed to selected single VOCs. Exposure of mice to PVC flooring increased eosinophilic lung inflammation and OVA-specific IgE serum levels compared to un-exposed control mice. The increased inflammation was associated with elevated levels of Th2-cytokines. Long-term exposure to PVC flooring exacerbated chronic airway inflammation. VOCs with the highest concentrations emitted by new PVC flooring were N-methyl-2-pyrrolidone (NMP) and 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB). Exposure to NMP or TXIB also increased the allergic immune response in OVA-sensitized mice. In vitro or in vivo exposure to NMP or TXIB reduced IL-12 production in maturing dendritic cells (DCs) and enhanced airway inflammation after adoptive DC transfer into Balb/c mice. At higher concentrations both VOCs induced oxidative stress demonstrated by increased isoprostane and glutathione-S-transferase-pi1 protein levels in the lung of non-sensitized mice. Treatment of PVC flooring-exposed mice with N-acetylcysteine prevented the VOC-induced increase of airway inflammation. Our results demonstrate that exposure to VOCs may increase the allergic immune response by interfering with DC function and by inducing oxidative stress and has therefore to be considerate as risk factor for the development of allergic diseases.

  9. Oxidative stress in Alzheimer disease

    PubMed Central

    Durany, Nuria

    2009-01-01

    Alzheimer disease (AD) is a progressive dementia affecting a large proportion of the aging population. The histopathological changes in AD include neuronal cell death, formation of amyloid plaques and neurofibrillary tangles. There is also evidence that brain tissue in patients with AD is exposed to oxidative stress (e.g., protein oxidation, lipid oxidation, DNA oxidation and glycoxidation) during the course of the disease. Advanced glycation endproducts (AGEs) are present in amyloid plaques in AD, and its extracellular accumulation may be caused by an accelerated oxidation of glycated proteins. AGEs participate in neuronal death causing direct (chemical) and indirect (cellular) free radical production and consequently increase oxidative stress. The development of drugs for the treatment of AD that breaks the vicious cycles of oxidative stress and neurodegeneration offer new opportunities. These approaches include AGE-inhibitors, antioxidants and anti-inflammatory substances, which prevent free radical production. PMID:19372765

  10. Oxidative stress in Alzheimer disease.

    PubMed

    Gella, Alejandro; Durany, Nuria

    2009-01-01

    Alzheimer disease (AD) is a progressive dementia affecting a large proportion of the aging population. The histopathological changes in AD include neuronal cell death, formation of amyloid plaques and neurofibrillary tangles. There is also evidence that brain tissue in patients with AD is exposed to oxidative stress (e.g., protein oxidation, lipid oxidation, DNA oxidation and glycoxidation) during the course of the disease. Advanced glycation endproducts (AGEs) are present in amyloid plaques in AD, and its extracellular accumulation may be caused by an accelerated oxidation of glycated proteins. AGEs participate in neuronal death causing direct (chemical) and indirect (cellular) free radical production and consequently increase oxidative stress. The development of drugs for the treatment of AD that breaks the vicious cycles of oxidative stress and neurodegeneration offer new opportunities. These approaches include AGE-inhibitors, antioxidants and anti-inflammatory substances, which prevent free radical production.

  11. [Oxidative stress and infectious pathology].

    PubMed

    Romero Alvira, D; Guerrero Navarro, L; Gotor Lázaro, M A; Roche Collado, E

    1995-03-01

    Pathogenic organism can be considered as pro-oxidant agents because they produce cell death and tissue damage. In addition organism can be eliminated by specific cell defense mechanism which utilize in part, reactive oxygen radicals formed by oxidative stress responses. The cause of the necessarily defense process results in cell damage thereby leading to development of inflammation, a characteristic oxidative stress situation. This fact shows the duality of oxidative stress in infections and inflammation: oxygen free radicals protect against microorganism attack and can produce tissue damage during this protection to trigger inflammation. Iron, a transition metal which participates generating oxygen free radicals, displays also this duality in infection. We suggest also that different infectious pathologies, such as sickle cell anemia/malaria and AIDS, may display in part this duality. In addition, it should be noted that oxidative damage observed in infectious diseases is mostly due the inflammatory response than to the oxidative potential of the pathogenic agent, this last point is exemplified in cases of respiratory distress and in glomerulonephritis. This review analyzes these controversial facts of infectious pathology in relation with oxidative stress.

  12. Inducible nitric oxide synthase evoked nitric oxide counteracts capsaicin-induced airway smooth muscle contraction, but exacerbates plasma extravasation.

    PubMed

    Li, Ping-Chia; Shaw, Chen-Fu; Kuo, Tin-Fan; Chien, Chiang-Ting

    2005-04-18

    The contribution of nitric oxide (NO) to capsaicin-evoked airway responses was investigated in rats. The measurement of plasma NO level, airway dynamics, airway smooth muscle electromyogram, and plasma extravasation by India ink and Evans blue leakage technique was adapted. Capsaicin-evoked hypotension, bronchoconstriction, trachea plasma extravasation as well as increases in plasma NO level in a dose-dependent manner. L-732138 (NK1 receptor antagonist) or SR-48968 (NK2 receptor antagonist) pretreatment reduced capsaicin-enhanced hypotension, bronchoconstriction, plasma extravasation, and plasma NO level. N(G)-nitro-L-Arginine methyl ester (L-NAME, 10 mg/kg, i.v.), a non-selective NO synthase (NOS) inhibitor, or aminoguanidine (10 mg/kg, i.v.), a selective inducible NOS (iNOS) inhibitor, reduced capsaicin-induced increases in plasma NO level and protected against capsaicin-induced plasma extravasation, whereas L-arginine (150 mg/kg, i.v.), a NO precursor, enhanced capsaicin-evoked plasma NO level and plasma extravasation. L-Arginine pretreatment ameliorated capsaicin-induced bronchoconstriction, whereas L-NAME and aminoguanidine exaggerated capsaicin-induced bronchoconstriction. In summary, NK1 and NK2 receptors and iNOS play a role in NO formation and on capsaicin-induced bronchoconstriction and plasma extravasation. NO generated by iNOS counteracts tachykinin-mediated bronchoconstriction, but exacerbates tachykinin-mediated plasma extravasation.

  13. Effect of Continuous Positive Airway Pressure on Airway Reactivity in Asthma. A Randomized, Sham-controlled Clinical Trial

    PubMed Central

    Sugar, Elizabeth A.; Brown, Robert H.; Drye, Lea T.; Irvin, Charles G.; Schwartz, Alan R.; Tepper, Robert S.; Wise, Robert A.; Yasin, Razan Z.; Busk, Michael F.

    2016-01-01

    Rationale: Studies have demonstrated that application of stress suppresses airway smooth muscle contractility. In animal models of asthma, continuous positive airway pressure (CPAP) reduced airway reactivity. Short-term studies of CPAP in patients with asthma showed reductions in airway reactivity. Objectives: To evaluate whether nocturnal CPAP decreased the provocative concentration of methacholine to reduce FEV1 by 20% (PC20). Methods: One hundred ninety-four individuals with asthma were randomized (1:1:1) to use CPAP with warmed, filtered, humidified air at night at pressures either less than 1 cm H2O (sham) or at 5 cm H2O or 10 cm H2O. The primary outcome was change in PC20 after 12 weeks. Measurements and Main Results: Adherence to CPAP was low in all groups. Regardless, all groups had a significant improvement in PC20, with 12 weeks/baseline PC20 ratios of 2.12, 1.73, and 1.78 for the sham, 5 cm H2O, and 10 cm H2O groups, respectively, and no significant differences between the active and sham groups. Changes in FEV1 and exhaled nitric oxide were minimal in all groups. The sham group had larger improvements in most patient-reported outcomes measuring asthma symptoms and quality of life, as well as sinus symptoms, than the 5 cm H2O group. The 10 cm H2O group showed similar but less consistent improvements in scores, which were not different from improvements in the sham group. Conclusions: Adherence to nocturnal CPAP was low. There was no evidence to support positive pressure as being effective for reducing airway reactivity in people with well-controlled asthma. Regardless, airway reactivity was improved in all groups, which may represent an effect of participating in a study and/or an effect of warm, humid, filtered air on airway reactivity. Clinical trial registered with www.clinicaltrials.gov (NCT01629823). PMID:27398992

  14. Parametric Study of Wall Shear Stress in Idealized Avian Airways

    NASA Astrophysics Data System (ADS)

    Farnsworth, Michael S.; Riede, Tobias; Thomson, Scott L.

    2017-11-01

    Because wall shear stress (WSS) affects cell response, WSS patterns in avian respiratory airways may be related to the origin of the syrinx and corresponding voice-producing tissue structures (e.g., membranes or vocal folds) in birds. To explore possible linkages between WSS patterns and the locations of avian voice-producing structures, a computational model of flow through an idealized portion of the avian respiratory airway, including trachea and primary bronchi sections, has been developed. The flow is governed by the Navier-Stokes equations, with velocity boundary conditions derived from pressure-flow data in an adult zebra finch during quiet respiration. Geometric parameters such as tracheal/bronchial diameter and length, as well as bronchial branching angle, are parametrically varied based on data for different avian species. Simulation results predict elevated WSS in the vicinity of the tracheobronchial juncture, the location at which voice-producing tissues are found in avian species. In this presentation, the model will be described and spatial distributions of WSS during inspiration and expiration will be presented and compared for different geometric configurations and respiration rates and waveforms. Funding for this project from the Gordon and Betty Moore Foundation (Grant 4498) is gratefully acknowledged.

  15. Effects of acute ethanol exposure on cytokine production by primary airway smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaphalia, Lata; Kalita, Mridul; Kaphalia, Bhupendra S.

    Both chronic and binge alcohol abuse can be significant risk factors for inflammatory lung diseases such as acute respiratory distress syndrome and chronic obstructive pulmonary disease. However, metabolic basis of alcohol-related lung disease is not well defined, and may include key metabolites of ethanol [EtOH] in addition to EtOH itself. Therefore, we investigated the effects of EtOH, acetaldehyde [ACE], and fatty acid ethyl esters [FAEEs] on oxidative stress, endoplasmic reticulum (ER) stress, AMP-activated protein kinase (AMPK) signaling and nuclear translocation of phosphorylated (p)-NF-κB p65 in primary human airway smooth muscle (HASM) cells stimulated to produce cytokines using LPS exposure. Bothmore » FAEEs and ACE induced evidence of cellular oxidative stress and ER stress, and increased p-NF-κB in nuclear extracts. EtOH and its metabolites decreased p-AMPKα activation, and induced expression of fatty acid synthase, and decreased expression of sirtuin 1. In general, EtOH decreased secretion of IP-10, IL-6, eotaxin, GCSF, and MCP-1. However, FAEEs and ACE increased these cytokines, suggesting that both FAEEs and ACE as compared to EtOH itself are proinflammatory. A direct effect of EtOH could be consistent with blunted immune response. Collectively, these two features of EtOH exposure, coupled with the known inhibition of innate immune response in our model might explain some clinical manifestations of EtOH exposure in the lung. - Highlights: • Metabolic basis for EtOH toxicity was studied in human airway smooth muscle (HASM) cells. • In HASM cells, EtOH metabolites were found to be relatively more toxic than EtOH itself. • EtOH metabolites mediate deactivation of AMPK via oxidative stress and ER stress. • EtOH metabolites were found to be more proinflammatory than EtOH itself in HASM cells.« less

  16. Role of oxidative stress and nitric oxide in atherothrombosis

    PubMed Central

    Lubos, Edith; Handy, Diane E.; Loscalzo, Joseph

    2008-01-01

    During the last decade basic and clinical research has highlighted the central role of reactive oxygen species (ROS) in cardiovascular disease. Enhanced production or attenuated degradation of ROS leads to oxidative stress, a process that affects endothelial and vascular function, and contributes to vascular disease. Nitric oxide (NO), a product of the normal endothelium, is a principal determinant of normal endothelial and vascular function. In states of inflammation, NO production by the vasculature increases considerably and, in conjunction with other ROS, contributes to oxidative stress. This review examines the role of oxidative stress and NO in mechanisms of endothelial and vascular dysfunction with an emphasis on atherothrombosis. PMID:18508590

  17. Flavonone treatment reverses airway inflammation and remodelling in an asthma murine model

    PubMed Central

    Toledo, AC; Sakoda, CPP; Perini, A; Pinheiro, NM; Magalhães, RM; Grecco, S; Tibério, IFLC; Câmara, NO; Martins, MA; Lago, JHG; Prado, CM

    2013-01-01

    Background and Purpose Asthma is an inflammatory disease that involves airway hyperresponsiveness and remodelling. Flavonoids have been associated to anti-inflammatory and antioxidant activities and may represent a potential therapeutic treatment of asthma. Our aim was to evaluate the effects of the sakuranetin treatment in several aspects of experimental asthma model in mice. Experimental Approach Male BALB/c mice received ovalbumin (i.p.) on days 0 and 14, and were challenged with aerolized ovalbumin 1% on days 24, 26 and 28. Ovalbumin-sensitized animals received vehicle (saline and dimethyl sulfoxide, DMSO), sakuranetin (20 mg kg–1 per mice) or dexamethasone (5 mg kg–1 per mice) daily beginning from 24th to 29th day. Control group received saline inhalation and nasal drop vehicle. On day 29, we determined the airway hyperresponsiveness, inflammation and remodelling as well as specific IgE antibody. RANTES, IL-5, IL-4, Eotaxin, IL-10, TNF-α, IFN-γ and GMC-SF content in lung homogenate was performed by Bioplex assay, and 8-isoprostane and NF-kB activations were visualized in inflammatory cells by immunohistochemistry. Key Results We have demonstrated that sakuranetin treatment attenuated airway hyperresponsiveness, inflammation and remodelling; and these effects could be attributed to Th2 pro-inflammatory cytokines and oxidative stress reduction as well as control of NF-kB activation. Conclusions and Implications These results highlighted the importance of counteracting oxidative stress by flavonoids in this asthma model and suggest sakuranetin as a potential candidate for studies of treatment of asthma. PMID:23170811

  18. Nutrients and Oxidative Stress: Friend or Foe?

    PubMed Central

    Tan, Bee Ling; Liew, Winnie-Pui-Pui

    2018-01-01

    There are different types of nutritionally mediated oxidative stress sources that trigger inflammation. Much information indicates that high intakes of macronutrients can promote oxidative stress and subsequently contribute to inflammation via nuclear factor-kappa B- (NF-κB-) mediated cell signaling pathways. Dietary carbohydrates, animal-based proteins, and fats are important to highlight here because they may contribute to the long-term consequences of nutritionally mediated inflammation. Oxidative stress is a central player of metabolic ailments associated with high-carbohydrate and animal-based protein diets and excessive fat consumption. Obesity has become an epidemic and represents the major risk factor for several chronic diseases, including diabetes, cardiovascular disease (CVD), and cancer. However, the molecular mechanisms of nutritionally mediated oxidative stress are complex and poorly understood. Therefore, this review aimed to explore how dietary choices exacerbate or dampen the oxidative stress and inflammation. We also discussed the implications of oxidative stress in the adipocyte and glucose metabolism and obesity-associated noncommunicable diseases (NCDs). Taken together, a better understanding of the role of oxidative stress in obesity and the development of obesity-related NCDs would provide a useful approach. This is because oxidative stress can be mediated by both extrinsic and intrinsic factors, hence providing a plausible means for the prevention of metabolic disorders. PMID:29643982

  19. Nutrients and Oxidative Stress: Friend or Foe?

    PubMed

    Tan, Bee Ling; Norhaizan, Mohd Esa; Liew, Winnie-Pui-Pui

    2018-01-01

    There are different types of nutritionally mediated oxidative stress sources that trigger inflammation. Much information indicates that high intakes of macronutrients can promote oxidative stress and subsequently contribute to inflammation via nuclear factor-kappa B- (NF- κ B-) mediated cell signaling pathways. Dietary carbohydrates, animal-based proteins, and fats are important to highlight here because they may contribute to the long-term consequences of nutritionally mediated inflammation. Oxidative stress is a central player of metabolic ailments associated with high-carbohydrate and animal-based protein diets and excessive fat consumption. Obesity has become an epidemic and represents the major risk factor for several chronic diseases, including diabetes, cardiovascular disease (CVD), and cancer. However, the molecular mechanisms of nutritionally mediated oxidative stress are complex and poorly understood. Therefore, this review aimed to explore how dietary choices exacerbate or dampen the oxidative stress and inflammation. We also discussed the implications of oxidative stress in the adipocyte and glucose metabolism and obesity-associated noncommunicable diseases (NCDs). Taken together, a better understanding of the role of oxidative stress in obesity and the development of obesity-related NCDs would provide a useful approach. This is because oxidative stress can be mediated by both extrinsic and intrinsic factors, hence providing a plausible means for the prevention of metabolic disorders.

  20. Endotoxin-induced nitric oxide production rescues airway growth and maturation in atrophic fetal rat lung explants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rae, C.; Cherry, J.I.; Land, F.M.

    Inflammation induces premature maturation of the fetal lung but the signals causing this effect remain unclear. We determined if nitric oxide (NO) synthesis, evoked by Escherichia coli lipopolysaccharide (LPS, 2 {mu}g ml{sup -1}), participated in this process. Fetal rat lung airway surface complexity rose 2.5-fold over 96 h in response to LPS and was associated with increased iNOS protein expression and activity. iNOS inhibition by N6-(1-iminoethyl)-L-lysine-2HCl (L-NIL) abolished this and induced airway atrophy similar to untreated explants. Surfactant protein-C (SP-C) expression was also induced by LPS and abolished by L-NIL. As TGF{beta} suppresses iNOS activity, we determined if feedback regulationmore » modulated NO-dependent maturation. LPS induced TGF{beta}1 release and SMAD4 nuclear translocation 96 h after treatment. Treatment of explants with a blocking antibody against TGF{beta}1 sustained NO production and airway morphogenesis whereas recombinant TGF{beta}1 antagonized these effects. Feedback regulation of NO synthesis by TGF{beta} may, thus, modulate airway branching and maturation of the fetal lung.« less

  1. Ventilation heterogeneity is a major determinant of airway hyperresponsiveness in asthma, independent of airway inflammation

    PubMed Central

    Downie, Sue R; Salome, Cheryl M; Verbanck, Sylvia; Thompson, Bruce; Berend, Norbert; King, Gregory G

    2007-01-01

    Background Airway hyperresponsiveness is the ability of airways to narrow excessively in response to inhaled stimuli and is a key feature of asthma. Airway inflammation and ventilation heterogeneity have been separately shown to be associated with airway hyperresponsiveness. A study was undertaken to establish whether ventilation heterogeneity is associated with airway hyperresponsiveness independently of airway inflammation in subjects with asthma and to determine the effect of inhaled corticosteroids on this relationship. Methods Airway inflammation was measured in 40 subjects with asthma by exhaled nitric oxide, ventilation heterogeneity by multiple breath nitrogen washout and airway hyperresponsiveness by methacholine challenge. In 18 of these subjects with uncontrolled symptoms, measurements were repeated after 3 months of treatment with inhaled beclomethasone dipropionate. Results At baseline, airway hyperresponsiveness was independently predicted by airway inflammation (partial r2 = 0.20, p<0.001) and ventilation heterogeneity (partial r2 = 0.39, p<0.001). Inhaled corticosteroid treatment decreased airway inflammation (p = 0.002), ventilation heterogeneity (p = 0.009) and airway hyperresponsiveness (p<0.001). After treatment, ventilation heterogeneity was the sole predictor of airway hyperresponsiveness (r2 = 0.64, p<0.001). Conclusions Baseline ventilation heterogeneity is a strong predictor of airway hyperresponsiveness, independent of airway inflammation in subjects with asthma. Its persistent relationship with airway hyperresponsiveness following anti‐inflammatory treatment suggests that it is an important independent determinant of airway hyperresponsiveness. Normalisation of ventilation heterogeneity is therefore a potential goal of treatment that may lead to improved long‐term outcomes. PMID:17311839

  2. Oxidation stress evolution and relaxation of oxide film/metal substrate system

    NASA Astrophysics Data System (ADS)

    Dong, Xuelin; Feng, Xue; Hwang, Keh-Chih

    2012-07-01

    Stresses in the oxide film/metal substrate system are crucial to the reliability of the system at high temperature. Two models for predicting the stress evolution during isothermal oxidation are proposed. The deformation of the system is depicted by the curvature for single surface oxidation. The creep strain of the oxide and metal, and the lateral growth strain of the oxide are considered. The proposed models are compared with the experimental results in literature, which demonstrates that the elastic model only considering for elastic strain gives an overestimated stress in magnitude, but the creep model is consistent with the experimental data and captures the stress relaxation phenomenon during oxidation. The effects of the parameter for the lateral growth strain rate are also analyzed.

  3. Nutrigenetics and modulation of oxidative stress.

    PubMed

    Da Costa, Laura A; Badawi, Alaa; El-Sohemy, Ahmed

    2012-01-01

    Oxidative stress develops as a result of an imbalance between the production and accumulation of reactive species and the body's ability to manage them using exogenous and endogenous antioxidants. Exogenous antioxidants obtained from the diet, including vitamin C, vitamin E, and carotenoids, have important roles in preventing and reducing oxidative stress. Individual genetic variation affecting proteins involved in the uptake, utilization and metabolism of these antioxidants may alter their serum levels, exposure to target cells and subsequent contribution to the extent of oxidative stress. Endogenous antioxidants include the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, paraoxanase, and glutathione S-transferase. These enzymes metabolize reactive species and their by-products, reducing oxidative stress. Variation in the genes coding these enzymes may impact their enzymatic antioxidant activity and, thus, the levels of reactive species, oxidative stress, and risk of disease development. Oxidative stress may contribute to the development of chronic disease, including osteoporosis, type 2 diabetes, neurodegenerative diseases, cardiovascular disease, and cancer. Indeed, polymorphisms in most of the genes that code for antioxidant enzymes have been associated with several types of cancer, although inconsistent findings between studies have been reported. These inconsistencies may, in part, be explained by interactions with the environment, such as modification by diet. In this review, we highlight some of the recent studies in the field of nutrigenetics, which have examined interactions between diet, genetic variation in antioxidant enzymes, and oxidative stress. Copyright © 2012 S. Karger AG, Basel.

  4. Oxidative Stress Related Diseases in Newborns

    PubMed Central

    Aykac, Kubra

    2016-01-01

    We review oxidative stress-related newborn disease and the mechanism of oxidative damage. In addition, we outline diagnostic and therapeutic strategies and future directions. Many reports have defined oxidative stress as an imbalance between an enhanced reactive oxygen/nitrogen species and the lack of protective ability of antioxidants. From that point of view, free radical-induced damage caused by oxidative stress seems to be a probable contributing factor to the pathogenesis of many newborn diseases, such as respiratory distress syndrome, bronchopulmonary dysplasia, periventricular leukomalacia, necrotizing enterocolitis, patent ductus arteriosus, and retinopathy of prematurity. We share the hope that the new understanding of the concept of oxidative stress and its relation to newborn diseases that has been made possible by new diagnostic techniques will throw light on the treatment of those diseases. PMID:27403229

  5. Reproductive Benefit of Oxidative Damage: An Oxidative Stress “Malevolence”?

    PubMed Central

    Poljsak, B.; Milisav, I.; Lampe, T.; Ostan, I.

    2011-01-01

    High levels of reactive oxygen species (ROS) compared to antioxidant defenses are considered to play a major role in diverse chronic age-related diseases and aging. Here we present an attempt to synthesize information about proximate oxidative processes in aging (relevant to free radical or oxidative damage hypotheses of aging) with an evolutionary scenario (credited here to Dawkins hypotheses) involving tradeoffs between the costs and benefits of oxidative stress to reproducing organisms. Oxidative stress may be considered a biological imperfection; therefore, the Dawkins' theory of imperfect adaptation of beings to environment was applied to the role of oxidative stress in processes like famine and infectious diseases and their consequences at the molecular level such as mutations and cell signaling. Arguments are presented that oxidative damage is not necessarily an evolutionary mistake but may be beneficial for reproduction; this may prevail over its harmfulness to health and longevity in evolution. Thus, Dawkins' principle of biological “malevolence” may be an additional biological paradigm for explaining the consequences of oxidative stress. PMID:21969876

  6. Role of oxidative stress in epileptic seizures

    PubMed Central

    Shin, Eun-Joo; Jeong, Ji Hoon; Chung, Yoon Hee; Kim, Won-Ki; Ko, Kwang-Ho; Bach, Jae-Hyung; Hong, Jau-Shyong; Yoneda, Yukio; Kim, Hyoung-Chun

    2013-01-01

    Oxidative stress resulting from excessive free-radical release is likely implicated in the initiation and progression of epilepsy. Therefore, antioxidant therapies aimed at reducing oxidative stress have received considerable attention in epilepsy treatment. However, much evidence suggests that oxidative stress does not always have the same pattern in all seizures models. Thus, this review provides an overview aimed at achieving a better understanding of this issue. We summarize work regarding seizure models (i.e., genetically epilepsy-prone rats, kainic acid, pilocarpine, pentylenetetrazol, and trimethyltin), oxidative stress as an etiologic factor in epileptic seizures (i.e., impairment of antioxidant systems, mitochondrial dysfunction, involvement of redox-active metals, arachidonic acid pathway activation, and aging), and antioxidant strategies for seizure treatment. Combined, this review highlights pharmacological mechanisms associated with oxidative stress in epileptic seizures and the potential for neuroprotection in epilepsy that targets oxidative stress and is supported by effective antioxidant treatment. PMID:21672578

  7. Contribution of air pollution to COPD and small airway dysfunction.

    PubMed

    Berend, Norbert

    2016-02-01

    Although in many Western countries levels of ambient air pollution have been improving with the setting of upper limits and better urban planning, air pollution in developing countries and particularly those with rapid industrialization has become a major global problem. Together with increased motor vehicle ownership and traffic congestion, there is a growing issue with airborne particles of respirable size. These particles are thought responsible for respiratory and cardiovascular effects and have also been implicated in cancer pathogenesis. The pathologic effects in the lung are mediated via inflammatory pathways and involve oxidative stress similar to cigarette smoking. These effects are seen in the peripheral airways where the smaller particle fractions are deposited and lead to airway remodelling. However, emphysema and loss of bronchioles seen with cigarette smoking have not been described with ambient air pollution, and there are few studies specifically looking at peripheral airway function. Definitive evidence of air pollution causing COPD is lacking and a different study design is required to link air pollution and COPD. © 2015 Asian Pacific Society of Respirology.

  8. Toxicological Assessment of CoO and La2O3 Metal Oxide Nanoparticles in Human Small Airway Epithelial Cells

    PubMed Central

    Pirela, Sandra V.; Shaffer, Justine; Mihalchik, Amy L.; Chisholm, William P.; Andrew, Michael E.; Schwegler-Berry, Diane; Castranova, Vincent; Demokritou, Philip; Qian, Yong

    2016-01-01

    Cobalt monoxide (CoO) and lanthanum oxide (La2O3) nanoparticles are 2 metal oxide nanoparticles with different redox potentials according to their semiconductor properties. By utilizing these two nanoparticles, this study sought to determine how metal oxide nanoparticle’s mode of toxicological action is related to their physio-chemical properties in human small airway epithelial cells (SAEC). We investigated cellular toxicity, production of superoxide radicals and alterations in gene expression related to oxidative stress, and cellular death at 6 and 24 h following exposure to CoO and La2O3 (administered doses: 0, 5, 25, and 50 µg/ml) nanoparticles. CoO nanoparticles induced gene expression related to oxidative stress at 6 h. After characterizing the nanoparticles, transmission electron microscope analysis showed SAEC engulfed CoO and La2O3 nanoparticles. CoO nanoparticles were toxic after 6 and 24 h of exposure to 25.0 and 50.0 µg/ml administered doses, whereas, La2O3 nanoparticles were toxic only after 24 h using the same administered doses. Based upon the Volumetric Centrifugation Method in vivo Sedimentation, Diffusion, and Dosimetry, the dose of CoO and La2O3 nanoparticles delivered at 6 and 24 h were determined to be: CoO: 1.25, 6.25, and 12.5 µg/ml; La2O3: 5, 25, and 50 µg/ml and CoO: 4, 20, and 40 µg/ml; and La2O3: 5, 25, 50 µg/ml, respectively. CoO nanoparticles produced more superoxide radicals and caused greater stimulation of total tyrosine and threonine phosphorylation at both 6 and 24 h when compared with La2O3 nanoparticles. Taken together, these data provide evidence that different toxicological modes of action were involved in CoO and La2O3 metal oxide nanoparticle-induced cellular toxicity. PMID:26769336

  9. Oxidative stress and the ageing endocrine system.

    PubMed

    Vitale, Giovanni; Salvioli, Stefano; Franceschi, Claudio

    2013-04-01

    Ageing is a process characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-related diseases and death. Several hundred theories have attempted to explain this phenomenon. One of the most popular is the 'oxidative stress theory', originally termed the 'free radical theory'. The endocrine system seems to have a role in the modulation of oxidative stress; however, much less is known about the role that oxidative stress might have in the ageing of the endocrine system and the induction of age-related endocrine diseases. This Review outlines the interactions between hormones and oxidative metabolism and the potential effects of oxidative stress on ageing of endocrine organs. Many different mechanisms that link oxidative stress and ageing are discussed, all of which converge on the induction or regulation of inflammation. All these mechanisms, including cell senescence, mitochondrial dysfunction and microRNA dysregulation, as well as inflammation itself, could be targets of future studies aimed at clarifying the effects of oxidative stress on ageing of endocrine glands.

  10. Environmentally persistent free radicals induce airway hyperresponsiveness in neonatal rat lungs

    PubMed Central

    2011-01-01

    Background Increased asthma risk/exacerbation in children and infants is associated with exposure to elevated levels of ultrafine particulate matter (PM). The presence of a newly realized class of pollutants, environmentally persistent free radicals (EPFRs), in PM from combustion sources suggests a potentially unrecognized risk factor for the development and/or exacerbation of asthma. Methods Neonatal rats (7-days of age) were exposed to EPFR-containing combustion generated ultrafine particles (CGUFP), non-EPFR containing CGUFP, or air for 20 minutes per day for one week. Pulmonary function was assessed in exposed rats and age matched controls. Lavage fluid was isolated and assayed for cellularity and cytokines and in vivo indicators of oxidative stress. Pulmonary histopathology and characterization of differential protein expression in lung homogenates was also performed. Results Neonates exposed to EPFR-containing CGUFP developed significant pulmonary inflammation, and airway hyperreactivity. This correlated with increased levels of oxidative stress in the lungs. Using differential two-dimensional electrophoresis, we identified 16 differentially expressed proteins between control and CGUFP exposed groups. In the rats exposed to EPFR-containing CGUFP; peroxiredoxin-6, cofilin1, and annexin A8 were upregulated. Conclusions Exposure of neonates to EPFR-containing CGUFP induced pulmonary oxidative stress and lung dysfunction. This correlated with alterations in the expression of various proteins associated with the response to oxidative stress and the regulation of glucocorticoid receptor translocation in T lymphocytes. PMID:21388553

  11. Oxidative stress, thiols, and redox profiles.

    PubMed

    Harris, Craig; Hansen, Jason M

    2012-01-01

    Oxidative stress has been recognized as a contributing factor in the toxicity of a large number of developmental toxicants. Traditional definitions of oxidative stress state that a shift in the balance between reduced and oxidized biomolecules within cells, in favor of the latter, result in changes that are deleterious to vital cell functions and can culminate in malformations and death. The glutathione (GSH)/glutathione disulfide (GSSG) redox couple has been the traditional marker of choice for characterization of oxidative stress because of its high concentrations and direct roles as antioxidant and cellular protectant. Steady state depletion of GSH through conjugation, oxidation, or export has often been reported as the sole criteria for invoking oxidative stress and a myriad of associated deleterious consequences. Numerous other, mostly qualitative, observations have also been reported to suggest oxidative stress has occurred but it is not always clear how well they reflect the state of a cell or its functions. Our emerging understanding of redox signaling and the roles of reactive oxygen species (ROS), thiols, oxidant molecules, and cellular antioxidants, all acting as second messengers, has prompted a redefinition of oxidative stress based on changes in the real posttranslational protein thiol modifications that are central to redox regulation and control. Thiol-based redox couples such as GSH/GSSG, cysteine/cystine (cys/cySS), thioredoxin-reduced/thioredoxin-oxidized (TRX(red)/TRX(ox)) form independent signaling nodes that selectively regulate developmental events and are closely linked to changes in intracellular redox potentials. Accurate assessment of the consequences of increased free radicals in developing conceptuses should best be made using a battery of measurements including the quantitative assessment of intracellular redox potential, ROS, redox status of biomolecules, and induced changes in specific redox signaling nodes. Methods are presented for

  12. Classification of oxidative stress based on its intensity

    PubMed Central

    Lushchak, Volodymyr I.

    2014-01-01

    In living organisms production of reactive oxygen species (ROS) is counterbalanced by their elimination and/or prevention of formation which in concert can typically maintain a steady-state (stationary) ROS level. However, this balance may be disturbed and lead to elevated ROS levels called oxidative stress. To our best knowledge, there is no broadly acceptable system of classification of oxidative stress based on its intensity due to which proposed here system may be helpful for interpretation of experimental data. Oxidative stress field is the hot topic in biology and, to date, many details related to ROS-induced damage to cellular components, ROS-based signaling, cellular responses and adaptation have been disclosed. However, it is common situation when researchers experience substantial difficulties in the correct interpretation of oxidative stress development especially when there is a need to characterize its intensity. Careful selection of specific biomarkers (ROS-modified targets) and some system may be helpful here. A classification of oxidative stress based on its intensity is proposed here. According to this classification there are four zones of function in the relationship between “Dose/concentration of inducer” and the measured “Endpoint”: I – basal oxidative stress (BOS); II – low intensity oxidative stress (LOS); III – intermediate intensity oxidative stress (IOS); IV – high intensity oxidative stress (HOS). The proposed classification will be helpful to describe experimental data where oxidative stress is induced and systematize it based on its intensity, but further studies will be in need to clear discriminate between stress of different intensity. PMID:26417312

  13. Nitric Oxide Promotes Airway Epithelial Wound Repair through Enhanced Activation of MMP-9

    PubMed Central

    Bove, Peter F.; Wesley, Umadevi V.; Greul, Anne-Katrin; Hristova, Milena; Dostmann, Wolfgang R.; van der Vliet, Albert

    2007-01-01

    The airway epithelium provides a protective barrier against inhaled environmental toxins and microorganisms, and epithelial injury initiates a number of processes to restore its barrier integrity, including activation of matrix metalloproteinases such as MMP-9 (92-kD gelatinase B). Airway epithelial cells continuously produce nitric oxide (NO), which has been linked to cell migration and MMP-9 regulation in several cell types, but the importance of epithelial NO in mediating airway epithelial repair or MMP-9 activation is unknown. Using primary or immortalized human bronchial epithelial cells, we demonstrate that low concentrations of NO promote epithelial cell migration and wound repair in an in vitro wound assay, which was associated with increased localized expression and activation of MMP-9. In addition, in HBE1 cells that were stably transfected with inducible NOS (NOS2), to mimic constitutive epithelial NOS2 expression in vivo, NOS inhibition decreased epithelial wound repair and MMP-9 expression. The stimulatory effects of NO on epithelial wound repair and MMP-9 expression were dependent on cGMP-mediated pathways and were inhibited by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylyl cyclase. Inhibition of cGMP-dependent protein kinase (PKG) attenuated NO-mediated epithelial wound closure, but did not affect MMP-9 expression. However, pharmacologic MMP inhibition and siRNA knockdown of MMP-9 expression demonstrated the contribution of MMP-9 to NO-mediated wound closure. Overall, our results demonstrate that NOS2-derived NO contributes to airway epithelial repair by both PKG-dependent and -independent mechanisms, and involves NO-dependent expression and activation of MMP-9. PMID:16980554

  14. Oxidative Stress and Antioxidant System in Periodontitis

    PubMed Central

    Wang, Yue; Andrukhov, Oleh; Rausch-Fan, Xiaohui

    2017-01-01

    Periodontitis is a common inflammatory disease, which is initiated by bacterial infection and subsequently progressed by aberrant host response. It can result in the destruction of teeth supporting tissues and have an influence on systemic health. When periodontitis occurs, reactive oxygen species, which are overproduced mostly by hyperactive neutrophils, could not be balanced by antioxidant defense system and cause tissues damage. This is characterized by increased metabolites of lipid peroxidation, DNA damage and protein damage. Local and systemic activities of antioxidants can also be influenced by periodontitis. Total antioxidant capacity, total oxidant status and oxidative stress index have been used to evaluate the oxidative stress associated with periodontitis. Studies have confirmed that inflammatory response in periodontitis is associated with an increased local and systemic oxidative stress and compromised antioxidant capacity. Our review focuses on increased oxidative stress in periodontal disease, specifically, on the relationship between the local and systemic biomarkers of oxidative stress and periodontitis and their association with the pathogenesis of periodontitis. Also, the relationship between periodontitis and systemic inflammation, and the effects of periodontal therapy on oxidative stress parameters will be discussed. PMID:29180965

  15. Reciprocal regulation of airway rejection by the inducible gas-forming enzymes heme oxygenase and nitric oxide synthase.

    PubMed

    Minamoto, Kanji; Harada, Hiroaki; Lama, Vibha N; Fedarau, Maksim A; Pinsky, David J

    2005-07-18

    Obliterative bronchiolitis (OB) develops insidiously in nearly half of all lung transplant recipients. Although typically preceded by a CD8(+) T cell-rich lymphocytic bronchitis, it remains unresponsive to conventional immunosuppression. Using an airflow permissive model to study the role of gases flowing over the transplanted airway, it is shown that prolonged inhalation of sublethal doses of carbon monoxide (CO), but not nitric oxide (NO), obliterate the appearance of the obstructive airway lesion. Induction of the enzyme responsible for the synthesis of CO, heme oxygenase (Hmox) 1, increased carboxyhemoglobin levels and suppressed lymphocytic bronchitis and airway luminal occlusion after transplantation. In contrast, zinc protoporphyrin IX, a competitive inhibitor of Hmox, increased airway luminal occlusion. Compared with wild-type allografts, expression of inducible NO synthase (iNOS), which promotes the influx of cytoeffector leukocytes and airway graft rejection, was strikingly reduced by either enhanced expression of Hmox-1 or exogenous CO. Hmox-1/CO decreased nuclear factor (NF)-kappaB binding activity to the iNOS promoter region and iNOS expression. Inhibition of soluble guanylate cyclase did not interfere with the ability of CO to suppress OB, implicating a cyclic guanosine 3',5'-monophosphate-independent mechanism through which CO suppresses NF-kappaB, iNOS transcription, and OB. Prolonged CO inhalation represents a new immunosuppresive strategy to prevent OB.

  16. Oxidative Stress Resistance in Deinococcus radiodurans†

    PubMed Central

    Slade, Dea; Radman, Miroslav

    2011-01-01

    Summary: Deinococcus radiodurans is a robust bacterium best known for its capacity to repair massive DNA damage efficiently and accurately. It is extremely resistant to many DNA-damaging agents, including ionizing radiation and UV radiation (100 to 295 nm), desiccation, and mitomycin C, which induce oxidative damage not only to DNA but also to all cellular macromolecules via the production of reactive oxygen species. The extreme resilience of D. radiodurans to oxidative stress is imparted synergistically by an efficient protection of proteins against oxidative stress and an efficient DNA repair mechanism, enhanced by functional redundancies in both systems. D. radiodurans assets for the prevention of and recovery from oxidative stress are extensively reviewed here. Radiation- and desiccation-resistant bacteria such as D. radiodurans have substantially lower protein oxidation levels than do sensitive bacteria but have similar yields of DNA double-strand breaks. These findings challenge the concept of DNA as the primary target of radiation toxicity while advancing protein damage, and the protection of proteins against oxidative damage, as a new paradigm of radiation toxicity and survival. The protection of DNA repair and other proteins against oxidative damage is imparted by enzymatic and nonenzymatic antioxidant defense systems dominated by divalent manganese complexes. Given that oxidative stress caused by the accumulation of reactive oxygen species is associated with aging and cancer, a comprehensive outlook on D. radiodurans strategies of combating oxidative stress may open new avenues for antiaging and anticancer treatments. The study of the antioxidation protection in D. radiodurans is therefore of considerable potential interest for medicine and public health. PMID:21372322

  17. Oxidative Stress in BPH.

    PubMed

    Savas, M; Verit, A; Ciftci, H; Yeni, E; Aktan, E; Topal, U; Erel, O

    2009-01-01

    In the present study, we investigated the relationship between potency of oxidative stress and BPH and this may assist to contribute to the realistic explanation of the ethiopathogenesis of BPH. Seventy four newly diagnosed men with BPH (mean age: 54+/-11.2), who had not undergone any previous treatment for BPH, and 62 healthy volunteers (mean age: 55+/-14) were enrolled in the present study. To determine the antioxidative status of plasma, total antioxidant capacity (TAC) was calculated, and to determine the oxidative status of plasma (TOS) total peroxide levels were measured. The ratio of TAC to total peroxide was accepted as an indicator of oxidative stress (OSI). Data are presented as mean SD +/- unless specified. Student t-test and correlation analyses were used to evaluate the statistical significance differences in the median values recorded for all parameters between BPH and control group. Plasma TAC TOS were found in patients and controls (1.70 +/- 0.32, 1.68 +/- 0.19 micromol Trolox Equiv./L), (12.48 +/- 1.98, 12.40 +/- 1.14 micromol / L) respectively. OSI was calculated as 7.57 +/- 1.91, 7.48 +/- 1.33, respectively. Plasma TAC, TOS and OSI levels were not found to be significantly difference between patients and control subjects (p>0.05, p>0.05, p>0.05). The present study has shown that there were not relationship between potency of oxidative stress and BPH. Further well designed studies should be planned to find out whether the oxidative stress-related parameters play role in BPH as an interesting pathology in regard of the etiopathogenesis.

  18. Imaging of Oxidative Stress in Prostate Cancer

    DTIC Science & Technology

    2013-10-01

    transformative imaging agent. 15. SUBJECT TERMS Positron Emission Tomography, Oxidative Stress, Hydrogen Peroxide, 18F, 124I, Prostate...AD_________________ Award Number: W81XWH-12-1-0029 TITLE: Imaging of Oxidative Stress in...27September2012-26September2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Imaging of Oxidative Stress in Prostate Cancer 5b. GRANT NUMBER

  19. Clinical Perspective of Oxidative Stress in Sporadic ALS

    PubMed Central

    D’Amico, Emanuele; Factor-Litvak, Pam; Santella, Regina M.; Mitsumoto, Hiroshi

    2013-01-01

    Sporadic amyotrophic lateral sclerosis (sALS) is one of the most devastating neurological diseases; most patients die within 3 to 4 years after symptom onset. Oxidative stress is a disturbance in the pro-oxidative/anti-oxidative balance favoring the pro-oxidative state. Autopsy and laboratory studies in ALS indicate that oxidative stress plays a major role in motor neuron degeneration and astrocyte dysfunction. Oxidative stress biomarkers in cerebrospinal fluid, plasma, and urine, are elevated, suggesting that abnormal oxidative stress is generated outside of the central nervous system. Our review indicates that agricultural chemicals, heavy metals, military service, professional sports, excessive physical exertion, chronic head trauma, and certain foods might be modestly associated with ALS risk, with a stronger association between risk and smoking. At the cellular level, these factors are all involved in generating oxidative stress. Experimental studies indicate that a combination of insults that induce modest oxidative stress can exert additive deleterious effects on motor neurons, suggesting multiple exposures in real-world environments are important. As the disease progresses, nutritional deficiency, cachexia, psychological stress, and impending respiratory failure may further increase oxidative stress. Moreover, accumulating evidence suggests that ALS is possibly a systemic disease. Laboratory, pathologic, and epidemiologic evidence clearly support the hypothesis that oxidative stress is central in the pathogenic process, particularly in genetically susceptive individuals. If we are to improve ALS treatment, well-designed biochemical and genetic epidemiological studies, combined with a multidisciplinary research approach, are needed and will provide knowledge crucial to our understanding of ALS etiology, pathophysiology, and prognosis. PMID:23797033

  20. Oxidative Stress in Aging Human Skin

    PubMed Central

    Rinnerthaler, Mark; Bischof, Johannes; Streubel, Maria Karolin; Trost, Andrea; Richter, Klaus

    2015-01-01

    Oxidative stress in skin plays a major role in the aging process. This is true for intrinsic aging and even more for extrinsic aging. Although the results are quite different in dermis and epidermis, extrinsic aging is driven to a large extent by oxidative stress caused by UV irradiation. In this review the overall effects of oxidative stress are discussed as well as the sources of ROS including the mitochondrial ETC, peroxisomal and ER localized proteins, the Fenton reaction, and such enzymes as cyclooxygenases, lipoxygenases, xanthine oxidases, and NADPH oxidases. Furthermore, the defense mechanisms against oxidative stress ranging from enzymes like superoxide dismutases, catalases, peroxiredoxins, and GSH peroxidases to organic compounds such as L-ascorbate, α-tocopherol, beta-carotene, uric acid, CoQ10, and glutathione are described in more detail. In addition the oxidative stress induced modifications caused to proteins, lipids and DNA are discussed. Finally age-related changes of the skin are also a topic of this review. They include a disruption of the epidermal calcium gradient in old skin with an accompanying change in the composition of the cornified envelope. This modified cornified envelope also leads to an altered anti-oxidative capacity and a reduced barrier function of the epidermis. PMID:25906193

  1. Choline attenuates immune inflammation and suppresses oxidative stress in patients with asthma.

    PubMed

    Mehta, Amit K; Singh, Bhanu P; Arora, Naveen; Gaur, Shailendra N

    2010-07-01

    Asthma is a chronic immune inflammatory disease characterized by variable airflow obstruction and increased bronchial hyperreactivity (BHR). Therapeutic interventions reduce airway inflammation and relieve symptoms but associated with potential side effects that limit their usefulness. The present study was undertaken to assess the effect of choline on immune inflammation and BHR in asthma subjects. The patients of asthma (n=76) were recruited and treated with choline supplement (1500 mg twice) or standard pharmacotherapy for 6 months in two groups. The patients were evaluated by clinical, immunologic and biochemical parameters. The treatment with choline showed significant reduction in symptom/drug score and improvement in PC(20) FEV1 compared to baseline or standard pharmacotherapy (p<0.01). Choline therapy significantly reduced IL-4, IL-5 and TNF-alpha level as compared to baseline or standard pharmacotherapy after 6 months (p<0.01). Blood eosinophil count and total IgE levels were reduced in both the treatment groups. Cysteinyl leukotriene and leukotriene B4 were suppressed significantly by choline treatment (p<0.01). This was accompanied by decreased 8-isoprostanes, a biomarker for oxidative stress after choline treatment (p<0.01). Choline therapy modulates immune inflammation and suppresses oxidative stress in asthma patients. It can be used as an adjunct therapy for asthma patients. Copyright 2009 Elsevier GmbH. All rights reserved.

  2. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  3. Cardiopulmonary Bypass and Oxidative Stress

    PubMed Central

    Zakkar, Mustafa; Guida, Gustavo; Suleiman, M-Saadeh; Angelini, Gianni D.

    2015-01-01

    The development of the cardiopulmonary bypass (CPB) revolutionized cardiac surgery and contributed immensely to improved patients outcomes. CPB is associated with the activation of different coagulation, proinflammatory, survival cascades and altered redox state. Haemolysis, ischaemia, and perfusion injury and neutrophils activation during CPB play a pivotal role in oxidative stress and the associated activation of proinflammatory and proapoptotic signalling pathways which can affect the function and recovery of multiple organs such as the myocardium, lungs, and kidneys and influence clinical outcomes. The administration of agents with antioxidant properties during surgery either intravenously or in the cardioplegia solution may reduce ROS burst and oxidative stress during CPB. Alternatively, the use of modified circuits such as minibypass can modify both proinflammatory responses and oxidative stress. PMID:25722792

  4. "Cumulative Stress": The Effects of Maternal and Neonatal Oxidative Stress and Oxidative Stress-Inducible Genes on Programming of Atopy.

    PubMed

    Manti, Sara; Marseglia, Lucia; D'Angelo, Gabriella; Cuppari, Caterina; Cusumano, Erika; Arrigo, Teresa; Gitto, Eloisa; Salpietro, Carmelo

    2016-01-01

    Although extensive epidemiological and laboratory studies have been performed to identify the environmental and immunological causes of atopy, genetic predisposition seems to be the biggest risk factor for allergic diseases. The onset of atopic diseases may be the result of heritable changes of gene expression, without any alteration in DNA sequences occurring in response to early environmental stimuli. Findings suggest that the establishment of a peculiar epigenetic pattern may also be generated by oxidative stress (OS) and perpetuated by the activation of OS-related genes. Analyzing the role of maternal and neonatal oxidative stress and oxidative stress-inducible genes, the purpose of this review was to summarize what is known about the relationship between maternal and neonatal OS-related genes and the development of atopic diseases.

  5. Pulmonary Stress Induced by Hyperthermia: Role of Airway Sensory Nerves

    DTIC Science & Technology

    2014-12-01

    developed in Ova -sensitized mice was less pronounced in TRPV1-null mice, indicating an important role of TRPV1. 2) An increase in airway temperature...actively sensitized by inhalation of ovalbumin ( Ova ) aerosol for 3 weeks). These rats were divided into two groups: control and sensitized groups...airway extravasation in Ova -sensitized rats. 2) The airway 5 extravasation can be prevented by pretreatment with the selective antagonist of NK-1

  6. Pulmonary Stress Induced by Hyperthermia: Role of Airway Sensory Nerves

    DTIC Science & Technology

    2012-10-01

    conclusions: 1) Airway hyperresponsiveness developed in Ova-sensitized mice was less pronounced in TRPV1 -null mice, indicating an important role of TRPV1 ...expression of the transient receptor potential vanilloid type 1 ( TRPV1 ) channel is up-regulated in the airway mucosa of patients with mild asthma... TRPV1 channel in triggering the bronchoconstriction caused by airway hyperthermia, and to determine whether this acute bronchoconstrictive effect was

  7. Involvement of the MAPK and PI3K pathways in chitinase 3-like 1-regulated hyperoxia-induced airway epithelial cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Mi Na; Lee, Kyung Eun; Hong, Jung Yeon

    Highlights: Black-Right-Pointing-Pointer Hyperoxia induces apoptosis and chitinase 3-like 1 expression in human airway epithelial cells. Black-Right-Pointing-Pointer Presence of chitinase 3-like 1 affects airway epithelial cell death after hyperoxic exposure. Black-Right-Pointing-Pointer Silencing chitinase 3-like 1 manipulate the phosphorylation of ERK, p38 and Akt. -- Abstract: Background: Exposure to 100% oxygen causes hyperoxic acute lung injury characterized by cell death and injury of alveolar epithelial cells. Recently, the role of chitinase 3-like 1 (CHI3L1), a member of the glycosyl hydrolase 18 family that lacks chitinase activity, in oxidative stress was demonstrated in murine models. High levels of serum CHI3L1 have been associatedmore » with various diseases of the lung, such as asthma, chronic obstructive pulmonary disease, and cancer. However, the role of CHI3L1 in human airway epithelial cells undergoing oxidative stress remains unknown. In addition, the signaling pathways associated with CHI3L1 in this process are poorly understood. Purpose: In this study, we demonstrate the role of CHI3L1, along with the MAPK and PI3K signaling pathways, in hyperoxia-exposed airway epithelial cells. Method: The human airway epithelial cell line, BEAS-2B, was exposed to >95% oxygen (hyperoxia) for up to 72 h. Hyperoxia-induced cell death was determined by assessing cell viability, Annexin-V FITC staining, caspase-3 and -7 expression, and electron microscopy. CHI3L1 knockdown and overexpression studies were conducted in BEAS-2B cells to examine the role of CHI3L1 in hyperoxia-induced apoptosis. Activation of the MAPK and PI3K pathways was also investigated to determine the role of these signaling cascades in this process. Results: Hyperoxia exposure increased CHI3L1 expression and apoptosis in a time-dependent manner. CHI3L1 knockdown protected cells from hyperoxia-induced apoptosis. In contrast, CHI3L1 overexpression promoted cell death after hyperoxia exposure

  8. Oxidative stress, redox stress or redox success?

    PubMed

    Gutteridge, John M C; Halliwell, Barry

    2018-05-09

    The first life forms evolved in a highly reducing environment. This reduced state is still carried by cells today, which makes the concept of "reductive stress" somewhat redundant. When oxygen became abundant on the Earth, due to the evolution of photosynthesis, life forms had to adapt or become extinct. Living organisms did adapt, proliferated and an explosion of new life forms resulted, using reactive oxygen species (ROS) to drive their evolution. Adaptation to oxygen and its reduction intermediates necessitated the simultaneous evolution of select antioxidant defences, carefully regulated to allow ROS to perform their major roles. Clearly this "oxidative stress" did not cause a major problem to the evolution of complex life forms. Why not? Iron and oxygen share a close relationship in aerobic evolution. Iron is used in proteins to transport oxygen, promote electron transfers, and catalyse chemical reactions. In all of these functions, iron is carefully sequestered within proteins and restricted from reacting with ROS, this sequestration being one of our major antioxidant defences. Iron was abundant to life forms before the appearance of oxygen. However, oxygen caused its oxidative precipitation from solution and thereby decreased its bioavailability and thus the risk of iron-dependent oxidative damage. Micro-organisms had to adapt and develop strategies involving siderophores to acquire iron from the environment and eventually their host. This battle for iron between bacteria and animal hosts continues today, and is a much greater daily threat to our survival than "oxidative stress" and "redox stress". Copyright © 2018. Published by Elsevier Inc.

  9. Oxidative Stress and Neurodegenerative Disorders

    PubMed Central

    Li, Jie; O, Wuliji; Li, Wei; Jiang, Zhi-Gang; Ghanbari, Hossein A.

    2013-01-01

    Living cells continually generate reactive oxygen species (ROS) through the respiratory chain during energetic metabolism. ROS at low or moderate concentration can play important physiological roles. However, an excessive amount of ROS under oxidative stress would be extremely deleterious. The central nervous system (CNS) is particularly vulnerable to oxidative stress due to its high oxygen consumption, weakly antioxidative systems and the terminal-differentiation characteristic of neurons. Thus, oxidative stress elicits various neurodegenerative diseases. In addition, chemotherapy could result in severe side effects on the CNS and peripheral nervous system (PNS) of cancer patients, and a growing body of evidence demonstrates the involvement of ROS in drug-induced neurotoxicities as well. Therefore, development of antioxidants as neuroprotective drugs is a potentially beneficial strategy for clinical therapy. In this review, we summarize the source, balance maintenance and physiologic functions of ROS, oxidative stress and its toxic mechanisms underlying a number of neurodegenerative diseases, and the possible involvement of ROS in chemotherapy-induced toxicity to the CNS and PNS. We ultimately assess the value for antioxidants as neuroprotective drugs and provide our comments on the unmet needs. PMID:24351827

  10. Differential Roles of Hydrogen Peroxide in Adaptive and Inflammatory Gene Expression Induced by Exposure of Human Airway Epithelial Cells to Zn2+

    EPA Science Inventory

    Oxidant stress is believed to play an important role in particulate matter (PM)–mediated toxicity in the respiratory tract. Zinc (Zn2+) is a ubiquitous component of PM that has been shown to induce adverse responses such as inflammatory and adaptive gene expression in airway epit...

  11. Biomarkers of oxidative stress in pre-eclampsia.

    PubMed

    Poston, Lucilla; Chappell, Lucy; Seed, Paul; Shennan, Andrew

    2011-01-01

    Pre-eclampsia is associated with oxidative stress, confirmed by measurement of biomarkers and relevant antioxidant enzymes in the placenta and maternal circulation. Studies in vitro have described the pathways by which placental ischaemia can lead to oxidative stress as well as endoplasmic reticulum stress, which is coupled to synthesis of reactive oxygen species. However, clinical trials of antioxidants vitamins C and E, with an associated increase of plasma vitamins C and E concentrations have shown no benefit in prevention of the disorder, which may infer lack of a mechanistic role. Before oxidative stress is dismissed as an irrelevant accompaniment to pre-eclampsia further studies of proven biomarkers of oxidative stress are required to determine whether vitamins C and E supplementation leads to evidence of reversal of oxidative processes and tissue damage. If not, alternative antioxidant strategies may be worthy of consideration. Copyright © 2010 Society of Egyptian Anesthesiologists. Published by Elsevier B.V. All rights reserved.

  12. 8-oxoguanine DNA Glycosylase 1-Deficiency Modifies Allergic Airway Inflammation by Regulating STAT6 and IL-4 in Cells and in Mice

    PubMed Central

    Li, Guoping; Yuan, Kefei; Yan, Chunguang; Fox, John; Gaid, Madeleine; Breitwieser, Wayne; Bansal, Arvind K.; Zeng, Huawei; Gao, Hongwei; Wu, Min

    2013-01-01

    8-oxoguanine-DNA glycosylase (OGG-1) is a base excision DNA repair enzyme; however, its function in modulating allergic diseases remains undefined. Using OGG-1 knockout (KO) mice, we show that this protein impacts allergic airway inflammation following sensitization and challenge by ovalbumin (OVA). OGG-1 KO mice exhibited less inflammatory cell infiltration and reduced oxidative stress in the lungs after OVA challenge compared to WT mice. The KO phenotype included decreased IL-4, IL-6, IL-10, and IL-17 in lung tissues. In addition, OGG-1 KO mice showed decreased expression and phosphorylation of STAT6 as well as NF-κB. Down-regulation of OGG-1 by siRNA lowered ROS and IL-4 levels but increased INF-γ production in cultured epithelial cells following exposure to house dust mite (HDM) extracts. OGG-1 may affect the levels of oxidative stress and proinflammatory cytokines during asthmatic conditions. OGG-1-deficiency negatively regulates allergen-induced airway inflammatory response. PMID:22100973

  13. Evaluation of Oxidative Stress in Bipolar Disorder in terms of Total Oxidant Status, Total Antioxidant Status, and Oxidative Stress Index

    PubMed Central

    CİNGİ YİRÜN, Merve; ÜNAL, Kübranur; ALTUNSOY ŞEN, Neslihan; YİRÜN, Onur; AYDEMİR, Çiğdem; GÖKA, Erol

    2016-01-01

    Introduction Bipolar disorder is one of the most debilitating psychiatric disorders characterized by disruptive episodes of mania/hypomania and depression. Considering the complex role of biological and environmental factors in the etiology of affective disorders, recent studies have focused on oxidative stress, which may damage nerve cell components and take part in pathophysiology. The aim of the present study was to contribute to the data about oxidative stress in bipolar disorder by detecting the total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) levels of manic episode (ME) and euthymic (EU) patients and by comparing these results with those of healthy controls (HCs). Methods The study population consisted of 28 EU outpatients meeting the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria for bipolar disorder I and 23 inpatients who were currently hospitalized in a psychiatry ward with the diagnosis of the bipolar disorder ME according to the DSM-5 criteria. Forty-three healthy subjects were included in the study as the control group (HC). Serum TAS, TOS, and OSI levels of all the participants were determined. Results Statistical analysis of serum TAS, TOS, and OSI levels did not show any significant differences between the ME patients, EU patients, and HCs. Comparison between the bipolar disorder patients (ME+EU) and HC also did not reveal any statistically significant difference between these two groups in terms of serum TAS, TOS, and OSI levels. Conclusion To date, studies on oxidative stress in bipolar disorder have led to controversial results. In the present study, no statistically significant difference was detected between the oxidative parameters of bipolar disorder patients and HCs. In order to comprehensively evaluate oxidative stress in bipolar disorder, further studies are needed. PMID:28373794

  14. Evaluation of Oxidative Stress in Bipolar Disorder in terms of Total Oxidant Status, Total Antioxidant Status, and Oxidative Stress Index.

    PubMed

    Cingi Yirün, Merve; Ünal, Kübranur; Altunsoy Şen, Neslihan; Yirün, Onur; Aydemir, Çiğdem; Göka, Erol

    2016-09-01

    Bipolar disorder is one of the most debilitating psychiatric disorders characterized by disruptive episodes of mania/hypomania and depression. Considering the complex role of biological and environmental factors in the etiology of affective disorders, recent studies have focused on oxidative stress, which may damage nerve cell components and take part in pathophysiology. The aim of the present study was to contribute to the data about oxidative stress in bipolar disorder by detecting the total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) levels of manic episode (ME) and euthymic (EU) patients and by comparing these results with those of healthy controls (HCs). The study population consisted of 28 EU outpatients meeting the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria for bipolar disorder I and 23 inpatients who were currently hospitalized in a psychiatry ward with the diagnosis of the bipolar disorder ME according to the DSM-5 criteria. Forty-three healthy subjects were included in the study as the control group (HC). Serum TAS, TOS, and OSI levels of all the participants were determined. Statistical analysis of serum TAS, TOS, and OSI levels did not show any significant differences between the ME patients, EU patients, and HCs. Comparison between the bipolar disorder patients (ME+EU) and HC also did not reveal any statistically significant difference between these two groups in terms of serum TAS, TOS, and OSI levels. To date, studies on oxidative stress in bipolar disorder have led to controversial results. In the present study, no statistically significant difference was detected between the oxidative parameters of bipolar disorder patients and HCs. In order to comprehensively evaluate oxidative stress in bipolar disorder, further studies are needed.

  15. CVD and Oxidative Stress

    PubMed Central

    Cervantes Gracia, Karla; Llanas-Cornejo, Daniel; Husi, Holger

    2017-01-01

    Nowadays, it is known that oxidative stress plays at least two roles within the cell, the generation of cellular damage and the involvement in several signaling pathways in its balanced normal state. So far, a substantial amount of time and effort has been expended in the search for a clear link between cardiovascular disease (CVD) and the effects of oxidative stress. Here, we present an overview of the different sources and types of reactive oxygen species in CVD, highlight the relationship between CVD and oxidative stress and discuss the most prominent molecules that play an important role in CVD pathophysiology. Details are given regarding common pharmacological treatments used for cardiovascular distress and how some of them are acting upon ROS-related pathways and molecules. Novel therapies, recently proposed ROS biomarkers, as well as future challenges in the field are addressed. It is apparent that the search for a better understanding of how ROS are contributing to the pathophysiology of CVD is far from over, and new approaches and more suitable biomarkers are needed for the latter to be accomplished. PMID:28230726

  16. Space flight and oxidative stress

    NASA Technical Reports Server (NTRS)

    Stein, T. P.

    2002-01-01

    Space flight is associated with an increase in oxidative stress after return to 1g. The effect is more pronounced after long-duration space flight. The effects lasts for several weeks after landing. In humans there is increased lipid peroxidation in erythrocyte membranes, reduction in some blood antioxidants, and increased urinary excretion of 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine. Isoprostane 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine are markers for oxidative damage to lipids and DNA, respectively. The changes have been attributed to a combination of the energy deficiency that occurs during flight and substrate competition for amino acids occurring between repleting muscle and other tissues during the recovery phase. The observations in humans have been complemented by rodent studies. Most rodent studies showed increased production of lipid peroxidation products postflight and decreased antioxidant enzyme activity postflight. The rodent observations were attributed to the stress associated with reentry into Earth's gravity. Decreasing the imbalance between the production of endogenous oxidant defenses and oxidant production by increasing the supply of dietary antioxidants may lessen the severity of the postflight increase in oxidative stress.

  17. Hyperoside attenuates OVA-induced allergic airway inflammation by activating Nrf2.

    PubMed

    Ye, Peng; Yang, Xi-Liang; Chen, Xing; Shi, Cai

    2017-03-01

    Allergic airways disease (AAD) is one of the most common medical illnesses that is associated with an increased allergic airway inflammation. Hyperoside, an active compound isolated from Rhododendron brachycarpum G. Don, has been reported to have anti-inflammatory effect. The aim of this study was to analyze the protective effect of hyperoside on OVA-induced allergic airway inflammation in mice. In the present study, the mouse asthma model was induced by given OVA and hyperoside was administrated 1h before OVA challenge. The levels of IL-4, IL-5, IL-13, and IgE were detected by ELISA. H&E staining was used to assess lung histopathological changes. The expression of NF-κB p65, IκB, HO-1, and Nf-E2 related factor 2 (Nrf2) were measured by western blot analysis. The results showed that hyperoside significantly reduced the inflammatory cells infiltration and the levels of IL-4, IL-5, IL-13, and IgE. Hyperoside significantly inhibited OVA-induced oxidative stress as demonstrated by decreased MDA, and increased GSH and SOD levels. Treatment of hyperoside also inhibited OVA-induced airway hyperresponsiveness (AHR). Furthermore, the results showed that treatment of hyperoside significantly inhibited LPS-induced NF-κB activation. In addition, hyperoside was found to activate Nrf2/HO-1 signaling pathway. In conclusion, these results suggest that hyperoside ameliorates OVA-induced allergic airway inflammation by activating Nrf2 signaling pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Activation of calcitonin gene-related peptide receptor during ozone inhalation contributes to airway epithelial injury and repair.

    PubMed

    Oslund, Karen L; Hyde, Dallas M; Putney, Leialoha F; Alfaro, Mario F; Walby, William F; Tyler, Nancy K; Schelegle, Edward S

    2009-10-01

    The authors investigated the importance of the neuropeptide, calcitonin gene-related peptide (CGRP), in epithelial injury, repair, and neutrophil emigration after ozone exposure. Wistar rats were administered either a CGRP-receptor antagonist (CGRP(8-37)) or saline and exposed to 8 hours of 1-ppm ozone or filtered air with an 8-hour postexposure period. Immediately after exposure, ethidium homodimer was instilled into lungs as a marker of necrotic airway epithelial cells. After fixation, airway dissected lung lobes were stained for 5'-bromo-2'-deoxyuridine, a marker of epithelial proliferation. Positive epithelial cells were quantified in specific airway generations. Rats treated with CGRP(8-37) had significantly reduced epithelial injury in terminal bronchioles and reduced epithelial proliferation in proximal airways and terminal bronchioles. Bronchoalveolar lavage and sections of terminal bronchioles showed no significant difference in the number of neutrophils emigrating into airways in CGRP(8-37)-treated rats. The airway epithelial cell line, HBE-1, showed no difference in the number of oxidant stress positive cells during exposure to hydrogen peroxide and a range of CGRP(8-37) doses, demonstrating no antioxidant effect of CGRP(8-37). We conclude that activation of CGRP receptors during ozone inhalation contributes to airway epithelial injury and subsequent epithelial proliferation, a critical component of repair, but does not influence neutrophil emigration into airways.

  19. Free radicals, reactive oxygen species, oxidative stress and its classification.

    PubMed

    Lushchak, Volodymyr I

    2014-12-05

    Reactive oxygen species (ROS) initially considered as only damaging agents in living organisms further were found to play positive roles also. This paper describes ROS homeostasis, principles of their investigation and technical approaches to investigate ROS-related processes. Especial attention is paid to complications related to experimental documentation of these processes, their diversity, spatiotemporal distribution, relationships with physiological state of the organisms. Imbalance between ROS generation and elimination in favor of the first with certain consequences for cell physiology has been called "oxidative stress". Although almost 30years passed since the first definition of oxidative stress was introduced by Helmut Sies, to date we have no accepted classification of oxidative stress. In order to fill up this gape here classification of oxidative stress based on its intensity is proposed. Due to that oxidative stress may be classified as basal oxidative stress (BOS), low intensity oxidative stress (LOS), intermediate intensity oxidative stress (IOS), and high intensity oxidative stress (HOS). Another classification of potential interest may differentiate three categories such as mild oxidative stress (MOS), temperate oxidative stress (TOS), and finally severe (strong) oxidative stress (SOS). Perspective directions of investigations in the field include development of sophisticated classification of oxidative stresses, accurate identification of cellular ROS targets and their arranged responses to ROS influence, real in situ functions and operation of so-called "antioxidants", intracellular spatiotemporal distribution and effects of ROS, deciphering of molecular mechanisms responsible for cellular response to ROS attacks, and ROS involvement in realization of normal cellular functions in cellular homeostasis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Patterns of recruitment and injury in a heterogeneous airway network model

    PubMed Central

    Stewart, Peter S.; Jensen, Oliver E.

    2015-01-01

    In respiratory distress, lung airways become flooded with liquid and may collapse due to surface-tension forces acting on air–liquid interfaces, inhibiting gas exchange. This paper proposes a mathematical multiscale model for the mechanical ventilation of a network of occluded airways, where air is forced into the network at a fixed tidal volume, allowing investigation of optimal recruitment strategies. The temporal response is derived from mechanistic models of individual airway reopening, incorporating feedback on the airway pressure due to recruitment. The model accounts for stochastic variability in airway diameter and stiffness across and between generations. For weak heterogeneity, the network is completely ventilated via one or more avalanches of recruitment (with airways recruited in quick succession), each characterized by a transient decrease in the airway pressure; avalanches become more erratic for airways that are initially more flooded. However, the time taken for complete ventilation of the network increases significantly as the network becomes more heterogeneous, leading to increased stresses on airway walls. The model predicts that the most peripheral airways are most at risk of ventilation-induced damage. A positive-end-expiratory pressure reduces the total recruitment time but at the cost of larger stresses exerted on airway walls. PMID:26423440

  1. Oxidative stress and psychological functioning among medical students

    PubMed Central

    Srivastava, Rani; Batra, Jyoti

    2014-01-01

    Background: Oxidative stress has gained attention recently in behavioral medicine and has been reported to be associated with various psychological disturbances and their prognoses. Objectives: Study aims to evaluate the oxidative stress (malonylaldehyde (MDA) levels) and its relation with psychological factors (dimensions of personality, levels of anxiety, stress, and depression) among medical/paramedical students of 1st and 3rd year). Materials and Methods: A total of 150 students; 75 from 1st year (2010–2011) and75 from 3rd year (2009–2010); of medical and paramedical background were assessed on level of MDA (oxidative stress) and personality variables, that is, level of anxiety, stress, and depression. These psychological variables were correlated with the level of their oxidative stress. Results: Findings revealed that both groups are influenced by oxidative stress and their psychological variables are also compatible in order to confirm their vulnerabilities to stress. Conclusions: Stress in 3rd year students was significantly higher and it was noted that it adversely affects the psychological parameters. Hence, special attention on mental health aspect in these students may be given. PMID:25788802

  2. Oxidative Stress and Nucleic Acid Oxidation in Patients with Chronic Kidney Disease

    PubMed Central

    Sung, Chih-Chien; Hsu, Yu-Chuan; Lin, Yuh-Feng

    2013-01-01

    Patients with chronic kidney disease (CKD) have high cardiovascular mortality and morbidity and a high risk for developing malignancy. Excessive oxidative stress is thought to play a major role in elevating these risks by increasing oxidative nucleic acid damage. Oxidative stress results from an imbalance between reactive oxygen/nitrogen species (RONS) production and antioxidant defense mechanisms and can cause vascular and tissue injuries as well as nucleic acid damage in CKD patients. The increased production of RONS, impaired nonenzymatic or enzymatic antioxidant defense mechanisms, and other risk factors including gene polymorphisms, uremic toxins (indoxyl sulfate), deficiency of arylesterase/paraoxonase, hyperhomocysteinemia, dialysis-associated membrane bioincompatibility, and endotoxin in patients with CKD can inhibit normal cell function by damaging cell lipids, arachidonic acid derivatives, carbohydrates, proteins, amino acids, and nucleic acids. Several clinical biomarkers and techniques have been used to detect the antioxidant status and oxidative stress/oxidative nucleic acid damage associated with long-term complications such as inflammation, atherosclerosis, amyloidosis, and malignancy in CKD patients. Antioxidant therapies have been studied to reduce the oxidative stress and nucleic acid oxidation in patients with CKD, including alpha-tocopherol, N-acetylcysteine, ascorbic acid, glutathione, folic acid, bardoxolone methyl, angiotensin-converting enzyme inhibitor, and providing better dialysis strategies. This paper provides an overview of radical production, antioxidant defence, pathogenesis and biomarkers of oxidative stress in patients with CKD, and possible antioxidant therapies. PMID:24058721

  3. Reduced resistance to oxidative stress during reproduction as a cost of early-life stress.

    PubMed

    Zimmer, Cédric; Spencer, Karen A

    2015-05-01

    Stress exposure during early-life development can have long-term consequences for a variety of biological functions including oxidative stress. The link between early-life stress and oxidative balance is beginning to be explored and previous studies have focused on this link in adult non-breeding or immature individuals. However, as oxidative stress is considered as the main physiological mechanism underlying the trade-off between self-maintenance and investment in reproduction, it is necessary to look at the consequences of early-life stress on oxidative status during reproduction. Here, we investigated the effects of exposure to pre- and/or post-natal stress on oxidative balance during reproduction under benign or stressful environmental conditions in an avian model species, the Japanese quail. We determined total antioxidant status (TAS), total oxidant status (TOS) and resistance to a free-radical attack in individual exposed to pre-natal stress, post-natal stress or both and in control individuals exposed to none of the stressors. TAS levels decreased over time in all females that reproduced under stressful conditions. TOS decreased between the beginning and the end of reproductive period in pre-natal control females. In all females, resistance to a free-radical attack decreased over the reproductive event but this decrease was more pronounced in females from a pre-natal stress development. Our results suggest that pre-natal stress may be associated with a higher cost of reproduction in terms of oxidative stress. These results also confirm that early-life stress can be associated with both benefits and costs depending of the life-history stage or environmental context. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Measurement of exercise-induced oxidative stress in lymphocytes.

    PubMed

    Turner, James E; Bosch, Jos A; Aldred, Sarah

    2011-10-01

    Vigorous exercise is associated with oxidative stress, a state that involves modifications to bodily molecules due to release of pro-oxidant species. Assessment of such modifications provides non-specific measures of oxidative stress in human tissues and blood, including circulating lymphocytes. Lymphocytes are a very heterogeneous group of white blood cells, consisting of subtypes that have different functions in immunity. Importantly, exercise drastically changes the lymphocyte composition in blood by increasing the numbers of some subsets, while leaving other cells unaffected. This fact may imply that observed changes in oxidative stress markers are confounded by changes in lymphocyte composition. For example, lymphocyte subsets may differ in exposure to oxidative stress because of subset differences in cell division and the acquisition of cytotoxic effector functions. The aim of the present review is to raise awareness of interpretational issues related to the assessment of oxidative stress in lymphocytes with exercise and to address the relevance of lymphocyte subset phenotyping in these contexts.

  5. Genetics of Oxidative Stress in Obesity

    PubMed Central

    Rupérez, Azahara I.; Gil, Angel; Aguilera, Concepción M.

    2014-01-01

    Obesity is a multifactorial disease characterized by the excessive accumulation of fat in adipose tissue and peripheral organs. Its derived metabolic complications are mediated by the associated oxidative stress, inflammation and hypoxia. Oxidative stress is due to the excessive production of reactive oxygen species or diminished antioxidant defenses. Genetic variants, such as single nucleotide polymorphisms in antioxidant defense system genes, could alter the efficacy of these enzymes and, ultimately, the risk of obesity; thus, studies investigating the role of genetic variations in genes related to oxidative stress could be useful for better understanding the etiology of obesity and its metabolic complications. The lack of existing literature reviews in this field encouraged us to gather the findings from studies focusing on the impact of single nucleotide polymorphisms in antioxidant enzymes, oxidative stress-producing systems and transcription factor genes concerning their association with obesity risk and its phenotypes. In the future, the characterization of these single nucleotide polymorphisms (SNPs) in obese patients could contribute to the development of controlled antioxidant therapies potentially beneficial for the treatment of obesity-derived metabolic complications. PMID:24562334

  6. Genetics of oxidative stress in obesity.

    PubMed

    Rupérez, Azahara I; Gil, Angel; Aguilera, Concepción M

    2014-02-20

    Obesity is a multifactorial disease characterized by the excessive accumulation of fat in adipose tissue and peripheral organs. Its derived metabolic complications are mediated by the associated oxidative stress, inflammation and hypoxia. Oxidative stress is due to the excessive production of reactive oxygen species or diminished antioxidant defenses. Genetic variants, such as single nucleotide polymorphisms in antioxidant defense system genes, could alter the efficacy of these enzymes and, ultimately, the risk of obesity; thus, studies investigating the role of genetic variations in genes related to oxidative stress could be useful for better understanding the etiology of obesity and its metabolic complications. The lack of existing literature reviews in this field encouraged us to gather the findings from studies focusing on the impact of single nucleotide polymorphisms in antioxidant enzymes, oxidative stress-producing systems and transcription factor genes concerning their association with obesity risk and its phenotypes. In the future, the characterization of these single nucleotide polymorphisms (SNPs) in obese patients could contribute to the development of controlled antioxidant therapies potentially beneficial for the treatment of obesity-derived metabolic complications.

  7. Mechanism of Oxidative Stress in Neurodegeneration

    PubMed Central

    Gandhi, Sonia; Abramov, Andrey Y.

    2012-01-01

    Biological tissues require oxygen to meet their energetic demands. However, the consumption of oxygen also results in the generation of free radicals that may have damaging effects on cells. The brain is particularly vulnerable to the effects of reactive oxygen species due to its high demand for oxygen, and its abundance of highly peroxidisable substrates. Oxidative stress is caused by an imbalance in the redox state of the cell, either by overproduction of reactive oxygen species, or by dysfunction of the antioxidant systems. Oxidative stress has been detected in a range of neurodegenerative disease, and emerging evidence from in vitro and in vivo disease models suggests that oxidative stress may play a role in disease pathogenesis. However, the promise of antioxidants as novel therapies for neurodegenerative diseases has not been borne out in clinical studies. In this review, we critically assess the hypothesis that oxidative stress is a crucial player in common neurodegenerative disease and discuss the source of free radicals in such diseases. Furthermore, we examine the issues surrounding the failure to translate this hypothesis into an effective clinical treatment. PMID:22685618

  8. Multi-cellular human bronchial models exposed to diesel exhaust particles: assessment of inflammation, oxidative stress and macrophage polarization.

    PubMed

    Ji, Jie; Upadhyay, Swapna; Xiong, Xiaomiao; Malmlöf, Maria; Sandström, Thomas; Gerde, Per; Palmberg, Lena

    2018-05-02

    Diesel exhaust particles (DEP) are a major component of outdoor air pollution. DEP mediated pulmonary effects are plausibly linked to inflammatory and oxidative stress response in which macrophages (MQ), epithelial cells and their cell-cell interaction plays a crucial role. Therefore, in this study we aimed at studying the cellular crosstalk between airway epithelial cells with MQ and MQ polarization following exposure to aerosolized DEP by assessing inflammation, oxidative stress, and MQ polarization response markers. Lung mucosa models including primary bronchial epithelial cells (PBEC) cultured at air-liquid interface (ALI) were co-cultured without (PBEC-ALI) and with MQ (PBEC-ALI/MQ). Cells were exposed to 12.7 μg/cm 2 aerosolized DEP using XposeALI ® . Control (sham) models were exposed to clean air. Cell viability was assessed. CXCL8 and IL-6 were measured in the basal medium by ELISA. The mRNA expression of inflammatory markers (CXCL8, IL6, TNFα), oxidative stress (NFKB, HMOX1, GPx) and MQ polarization markers (IL10, IL4, IL13, MRC1, MRC2 RETNLA, IL12 andIL23) were measured by qRT-PCR. The surface/mRNA expression of TLR2/TLR4 was detected by FACS and qRT-PCR. In PBEC-ALI exposure to DEP significantly increased the secretion of CXCL8, mRNA expression of inflammatory markers (CXCL8, TNFα) and oxidative stress markers (NFKB, HMOX1, GPx). However, mRNA expressions of these markers (CXCL8, IL6, NFKB, and HMOX1) were reduced in PBEC-ALI/MQ models after DEP exposure. TLR2 and TLR4 mRNA expression increased after DEP exposure in PBEC-ALI. The surface expression of TLR2 and TLR4 on PBEC was significantly reduced in sham-exposed PBEC-ALI/MQ compared to PBEC-ALI. After DEP exposure surface expression of TLR2 was increased on PBEC of PBEC-ALI/MQ, while TLR4 was decreased in both models. DEP exposure resulted in similar expression pattern of TLR2/TLR4 on MQ as in PBEC. In PBEC-ALI/MQ, DEP exposure increased the mRNA expression of anti-inflammatory M2 macrophage

  9. Dietary Modulation of Oxidative Stress in Alzheimer's Disease.

    PubMed

    Thapa, Arjun; Carroll, Nick J

    2017-07-21

    Cells generate unpaired electrons, typically via oxygen- or nitrogen-based by-products during normal cellular respiration and under stressed situations. These pro-oxidant molecules are highly unstable and may oxidize surrounding cellular macromolecules. Under normal conditions, the reactive oxygen or nitrogen species can be beneficial to cell survival and function by destroying and degrading pathogens or antigens. However, excessive generation and accumulation of the reactive pro-oxidant species over time can damage proteins, lipids, carbohydrates, and nucleic acids. Over time, this oxidative stress can contribute to a range of aging-related degenerative diseases such as cancer, diabetes, macular degeneration, and Alzheimer's, and Parkinson's diseases. It is well accepted that natural compounds, including vitamins A, C, and E, β-carotene, and minerals found in fruits and vegetables are powerful anti-oxidants that offer health benefits against several different oxidative stress induced degenerative diseases, including Alzheimer's disease (AD). There is increasing interest in developing anti-oxidative therapeutics to prevent AD. There are contradictory and inconsistent reports on the possible benefits of anti-oxidative supplements; however, fruits and vegetables enriched with multiple anti-oxidants (e.g., flavonoids and polyphenols) and minerals may be highly effective in attenuating the harmful effects of oxidative stress. As the physiological activation of either protective or destructive pro-oxidant behavior remains relatively unclear, it is not straightforward to relate the efficacy of dietary anti-oxidants in disease prevention. Here, we review oxidative stress mediated toxicity associated with AD and highlight the modulatory roles of natural dietary anti-oxidants in preventing AD.

  10. Biomarkers for oxidative stress: clinical application in pediatric medicine.

    PubMed

    Tsukahara, Hirokazu

    2007-01-01

    Loads of reactive oxygen species (ROS), including superoxide anion and nitric oxide, that overburden antioxidant systems induce oxidative stress in the body. Major cellular targets of ROS are membrane lipids, proteins, nucleic acids, and carbohydrates. Circumstantial evidence suggests that ROS play a crucial role in the initiation and progression of various diseases in children and adolescents. The involvement of ROS and oxidative stress in pediatric diseases is an important concern, but oxidative stress status in young subjects and appropriate methods for its measurement remain to be defined. Recently, specific biomarkers for oxidative damage and antioxidant defense have been introduced into the field of pediatric medicine. This review is intended to provide an overview of clinical applications of oxidative stress biomarkers in the field of pediatric medicine. First, this review presents the biochemistry and pathophysiology of ROS and antioxidant defense systems. Second, it presents a list of clinically applicable biomarkers, along with pediatric diseases in which enhanced oxidative stress might be involved. The discussion emphasizes that several reliable biomarkers are easily measurable using enzyme-linked immunosorbent assay. Third, this review presents age-related reference normal ranges of oxidative stress biomarkers, including urinary acrolein-lysine, 8-hydroxy-2'-deoxyguanosine, nitrite/nitrate, and pentosidine, and the changes of the parameters in several clinical conditions, including atopic dermatitis and diabetes mellitus. New and interesting data on oxidative stress and antioxidant defenses in neonatal biology are also presented. Fourth, this review discusses the ever-accumulating body of data linking oxidative stress to disturbances of the nitric oxide system and vascular endothelial activation/dysfunction. Finally, this review describes the reported clinical trials that have evaluated the efficacy of antioxidants for oxidative-stress related diseases

  11. Chronic unpredictable stress deteriorates the chemopreventive efficacy of pomegranate through oxidative stress pathway.

    PubMed

    Hasan, Shirin; Suhail, Nida; Bilal, Nayeem; Ashraf, Ghulam Md; Zaidi, Syed Kashif; AlNohair, Sultan; Banu, Naheed

    2016-05-01

    Chronic unpredictable stress (CUS) can influence the risk and progression of cancer through increased oxidative stress. Pomegranate is known to protect carcinogenesis through its anti-oxidative properties. This study is carried out to examine whether CUS affects the chemopreventive potential of pomegranate through oxidative stress pathway. Role of CUS on early stages of 7, 12 dimethyl benz(a) anthracene (DMBA) induced carcinogenesis, and its pre-exposure effect on chemopreventive efficacy of pomegranate juice (PJ) was examined in terms of in vivo antioxidant and biochemical parameters in Swiss albino rats. Rats were divided in various groups and were subjected to CUS paradigm, DMBA administration (65 mg/kg body weight, single dose), and PJ treatment. Exposure to stress (alone) and DMBA (alone) led to increased oxidative stress by significantly decreasing the antioxidant enzymes activities and altering the glutathione (GSH), malondialdehyde (MDA), glutamate oxaloacetate transaminase (GOT), and glutamate pyruvate transaminase (GPT) levels. A significant increase in DNA damage demonstrated by comet assay was seen in the liver cells. Stress exposure to DMBA-treated rats further increased the oxidative stress and disturbed the biochemical parameters as compared to DMBA (alone)-treated rats. Chemoprevention with PJ in DMBA (alone)-treated rats restored the altered parameters. However, in the pre-stress DMBA-treated rats, the overall antioxidant potential of PJ was significantly diminished. Our results indicate that chronic stress not only increases the severity of carcinogenesis but also diminishes the anti-oxidative efficacy of PJ. In a broader perspective, special emphasis should be given to stress management and healthy diet during cancer chemoprevention.

  12. The glutathione mimic ebselen inhibits oxidative stress but not endoplasmic reticulum stress in endothelial cells.

    PubMed

    Ahwach, Salma Makhoul; Thomas, Melanie; Onstead-Haas, Luisa; Mooradian, Arshag D; Haas, Michael J

    2015-08-01

    Reactive oxygen species are associated with cardiovascular disease, diabetes, and atherosclerosis, yet the use of antioxidants in clinical trials has been ineffective at improving outcomes. In endothelial cells, high-dextrose-induced oxidative stress and endoplasmic reticulum stress promote endothelial dysfunction leading to the recruitment and activation of peripheral blood lymphocytes and the breakdown of barrier function. Ebselen, a glutathione peroxidase 1 (GPX1) mimic, has been shown to improve β-cell function in diabetes and prevent atherosclerosis. To determine if ebselen inhibits both oxidative stress and endoplasmic reticulum (ER) stress in endothelial cells, we examined its effects in human umbilical vein endothelial cells (HUVEC) and human coronary artery endothelial cells (HCAEC) with and without high-dextrose. Oxidative stress and ER stress were measured by 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride chemiluminescence and ER stress alkaline phosphatase assays, respectively. GPX1 over-expression and knockdown were performed by transfecting cells with a GPX1 expression construct or a GPX1-specific siRNA, respectively. Ebselen inhibited dextrose-induced oxidative stress but not ER stress in both HUVEC and HCAEC. Ebselen also had no effect on tunicamycin-induced ER stress in HCAEC. Furthermore, augmentation of GPX1 activity directly by sodium selenite supplementation or transfection of a GPX1 expression plasmid decreased dextrose-induced oxidative stress but not ER stress, while GPX1 knockout enhanced oxidative stress but had no effect on ER stress. These results suggest that ebselen targets only oxidative stress but not ER stress. Copyright © 2015. Published by Elsevier Inc.

  13. Association between prenatal psychological stress and oxidative stress during pregnancy.

    PubMed

    Eick, Stephanie M; Barrett, Emily S; van 't Erve, Thomas J; Nguyen, Ruby H N; Bush, Nicole R; Milne, Ginger; Swan, Shanna H; Ferguson, Kelly K

    2018-03-30

    Prenatal psychological stress during pregnancy has been associated with adverse reproductive outcomes. A growing animal literature supports an association between psychological stress and oxidative stress. We assessed this relationship in pregnant women, hypothesising that psychological stress is associated with higher concentrations of oxidative stress biomarkers during pregnancy. Psychosocial status and stressful life events (SLE) were self-reported. 8-iso-prostaglandin F 2α (8-iso-PGF 2α ) was measured as a biomarker of oxidative stress in urine samples at median 32 weeks' gestation. We examined SLEs individually (ever vs never) and in summary (any vs none) and psychosocial status as measured by individual subscales and in summary (poor vs good). Linear models estimated associations between these parameters and urinary 8-iso-PGF 2α concentrations after adjusting for covariates. The geometric mean of 8-iso-PGF 2α was significantly higher among pregnant women who were non-White, smokers, had less than a college education, higher pre-pregnancy BMI and were unmarried. Having ever had a death in the family (n = 39) during pregnancy was associated with a 22.9% increase in 8-iso-PGF 2α in unadjusted models (95% confidence interval [CI] 1.50, 48.8). Poor psychosocial status was associated with a 13.1% (95% CI 2.43, 25.0) greater mean 8-iso-PGF 2α in unadjusted analyses. Associations were attenuated, but remained suggestive, after covariate adjustment. These data suggest that 8-iso-PGF 2α is elevated in pregnant women with who are at a sociodemographic disadvantage and who have higher psychological stress in pregnancy. Previous studies have observed that 8-iso-PGF 2α levels are associated with adverse birth outcomes, oxidative stress could be a mediator in these relationships. © 2018 John Wiley & Sons Ltd.

  14. Oxidative shielding or oxidative stress?

    PubMed

    Naviaux, Robert K

    2012-09-01

    In this review I report evidence that the mainstream field of oxidative damage biology has been running fast in the wrong direction for more than 50 years. Reactive oxygen species (ROS) and chronic oxidative changes in membrane lipids and proteins found in many chronic diseases are not the result of accidental damage. Instead, these changes are the result of a highly evolved, stereotyped, and protein-catalyzed "oxidative shielding" response that all eukaryotes adopt when placed in a chemically or microbially hostile environment. The machinery of oxidative shielding evolved from pathways of innate immunity designed to protect the cell from attack and limit the spread of infection. Both oxidative and reductive stress trigger oxidative shielding. In the cases in which it has been studied explicitly, functional and metabolic defects occur in the cell before the increase in ROS and oxidative changes. ROS are the response to disease, not the cause. Therefore, it is not the oxidative changes that should be targeted for therapy, but rather the metabolic conditions that create them. This fresh perspective is relevant to diseases that range from autism, type 1 diabetes, type 2 diabetes, cancer, heart disease, schizophrenia, Parkinson's disease, and Alzheimer disease. Research efforts need to be redirected. Oxidative shielding is protective and is a misguided target for therapy. Identification of the causal chemistry and environmental factors that trigger innate immunity and metabolic memory that initiate and sustain oxidative shielding is paramount for human health.

  15. Cigarette Smoke Modulates Repair and Innate Immunity following Injury to Airway Epithelial Cells.

    PubMed

    Amatngalim, Gimano D; Broekman, Winifred; Daniel, Nadia M; van der Vlugt, Luciën E P M; van Schadewijk, Annemarie; Taube, Christian; Hiemstra, Pieter S

    2016-01-01

    Cigarette smoking is the main risk factor associated with chronic obstructive pulmonary disease (COPD), and contributes to COPD development and progression by causing epithelial injury and inflammation. Whereas it is known that cigarette smoke (CS) may affect the innate immune function of airway epithelial cells and epithelial repair, this has so far not been explored in an integrated design using mucociliary differentiated airway epithelial cells. In this study, we examined the effect of whole CS exposure on wound repair and the innate immune activity of mucociliary differentiated primary bronchial epithelial cells, upon injury induced by disruption of epithelial barrier integrity or by mechanical wounding. Upon mechanical injury CS caused a delayed recovery in the epithelial barrier integrity and wound closure. Furthermore CS enhanced innate immune responses, as demonstrated by increased expression of the antimicrobial protein RNase 7. These differential effects on epithelial repair and innate immunity were both mediated by CS-induced oxidative stress. Overall, our findings demonstrate modulation of wound repair and innate immune responses of injured airway epithelial cells that may contribute to COPD development and progression.

  16. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malaviya, Rama; Laskin, Jeffrey D.; Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injurymore » associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.« less

  17. Oxidative stress signaling to chromatin in health and disease

    PubMed Central

    Kreuz, Sarah; Fischle, Wolfgang

    2016-01-01

    Oxidative stress has a significant impact on the development and progression of common human pathologies, including cancer, diabetes, hypertension and neurodegenerative diseases. Increasing evidence suggests that oxidative stress globally influences chromatin structure, DNA methylation, enzymatic and non-enzymatic post-translational modifications of histones and DNA-binding proteins. The effects of oxidative stress on these chromatin alterations mediate a number of cellular changes, including modulation of gene expression, cell death, cell survival and mutagenesis, which are disease-driving mechanisms in human pathologies. Targeting oxidative stress-dependent pathways is thus a promising strategy for the prevention and treatment of these diseases. We summarize recent research developments connecting oxidative stress and chromatin regulation. PMID:27319358

  18. Endoplasmic Reticulum Stress and Oxidative Stress: A Vicious Nexus Implicated in Bowel Disease Pathophysiology

    PubMed Central

    Chong, Wai Chin; Shastri, Madhur D.; Eri, Rajaraman

    2017-01-01

    The endoplasmic reticulum (ER) is a complex protein folding and trafficking organelle. Alteration and discrepancy in the endoplasmic reticulum environment can affect the protein folding process and hence, can result in the production of misfolded proteins. The accumulation of misfolded proteins causes cellular damage and elicits endoplasmic reticulum stress. Under such stress conditions, cells exhibit reduced functional synthesis, and will undergo apoptosis if the stress is prolonged. To resolve the ER stress, cells trigger an intrinsic mechanism called an unfolded protein response (UPR). UPR is an adaptive signaling process that triggers multiple pathways through the endoplasmic reticulum transmembrane transducers, to reduce and remove misfolded proteins and improve the protein folding mechanism, in order to improve and maintain endoplasmic reticulum homeostasis. An increasing number of studies support the view that oxidative stress has a strong connection with ER stress. During the protein folding process, reactive oxygen species are produced as by-products, leading to impaired reduction-oxidation (redox) balance conferring oxidative stress. As the protein folding process is dependent on redox homeostasis, the oxidative stress can disrupt the protein folding mechanism and enhance the production of misfolded proteins, causing further ER stress. It is proposed that endoplasmic reticulum stress and oxidative stress together play significant roles in the pathophysiology of bowel diseases. PMID:28379196

  19. Endoplasmic Reticulum Stress and Oxidative Stress: A Vicious Nexus Implicated in Bowel Disease Pathophysiology.

    PubMed

    Chong, Wai Chin; Shastri, Madhur D; Eri, Rajaraman

    2017-04-05

    The endoplasmic reticulum (ER) is a complex protein folding and trafficking organelle. Alteration and discrepancy in the endoplasmic reticulum environment can affect the protein folding process and hence, can result in the production of misfolded proteins. The accumulation of misfolded proteins causes cellular damage and elicits endoplasmic reticulum stress. Under such stress conditions, cells exhibit reduced functional synthesis, and will undergo apoptosis if the stress is prolonged. To resolve the ER stress, cells trigger an intrinsic mechanism called an unfolded protein response (UPR). UPR is an adaptive signaling process that triggers multiple pathways through the endoplasmic reticulum transmembrane transducers, to reduce and remove misfolded proteins and improve the protein folding mechanism, in order to improve and maintain endoplasmic reticulum homeostasis. An increasing number of studies support the view that oxidative stress has a strong connection with ER stress. During the protein folding process, reactive oxygen species are produced as by-products, leading to impaired reduction-oxidation (redox) balance conferring oxidative stress. As the protein folding process is dependent on redox homeostasis, the oxidative stress can disrupt the protein folding mechanism and enhance the production of misfolded proteins, causing further ER stress. It is proposed that endoplasmic reticulum stress and oxidative stress together play significant roles in the pathophysiology of bowel diseases.

  20. Cigarette smoke–induced induction of antioxidant enzyme activities in airway leukocytes is absent in active smokers with COPD

    PubMed Central

    Dove, Rosamund E.; Leong-Smith, Pheneatia; Roos-Engstrand, Ester; Pourazar, Jamshid; Shah, Mittal; Behndig, Annelie F.; Mudway, Ian S.; Blomberg, Anders

    2015-01-01

    Background Oxidative injury to the airway has been proposed as an important underlying mechanism in the pathogenesis of chronic obstructive pulmonary disease (COPD). As the extent of oxidant-mediated damage is dependent on the endogenous antioxidant defences within the airways, we examined whether COPD was associated with deficiencies in the antioxidant network within the respiratory tract lining fluids (RTLFs) and resident airway leukocytes. We hypothesised that COPD would be associated with both basal depression of antioxidant defences and impaired adaptive antioxidant responses to cigarette smoke. Methods Low molecular weight and enzymatic antioxidants together with metal-handling proteins were quantified in bronchoalveolar lavage fluid and airway leukocytes, derived from current (n=9) and ex-smoking COPD patients (n=15), as well as from smokers with normal lung function (n=16) and healthy never smokers (n=13). Results Current cigarette smoking was associated with an increase in ascorbate and glutathione within peripheral RTLFs in both smokers with normal lung function compared with healthy never smokers and in COPD smokers compared with COPD ex-smokers. In contrast, intra-cellular antioxidant enzyme activities (glutathione peroxidase, glutathione reductase, and catalase) were only up-regulated in smokers with normal lung function compared with healthy never smokers and not in actively smoking COPD patients relative to COPD ex-smokers. Conclusions We found no evidence of impaired basal antioxidant defences, within either the RTLFs or airway leukocytes in stable ex-smoking COPD patients compared with healthy never smoking controls. Current cigarette smoking induced an up-regulation of low molecular weight antioxidants in the RTLFs of both control subjects with normal lung function and patients with COPD. Importantly, the present data demonstrated a cigarette smoke–induced increase in intra-cellular antioxidant enzyme activities only within the smokers with

  1. Relationship between hyposalivation and oxidative stress in aging mice.

    PubMed

    Yamauchi, Yoshitaka; Matsuno, Tomonori; Omata, Kazuhiko; Satoh, Tazuko

    2017-07-01

    The increase in oxidative stress that accompanies aging has been implicated in the abnormal advance of aging and in the onset of various systemic diseases. However, the details of what effects the increase in oxidative stress that accompanies aging has on saliva secretion are not known. In this study, naturally aging mice were used to examine the stimulated whole saliva flow rate, saliva and serum oxidative stress, antioxidant level, submandibular gland H-E staining, and immunofluorescence staining to investigate the effect of aging on the volume of saliva secretion and the relationship with oxidative stress, as well as the effect of aging on the structure of salivary gland tissue. The stimulated whole saliva flow rate decreased significantly with age. Also, oxidative stress increased significantly with age. Antioxidant levels, however, decreased significantly with age. Structural changes of the submandibular gland accompanying aging included atrophy of parenchyma cells and fatty degeneration and fibrosis of stroma, and the submandibular gland weight ratio decreased. These results suggest that oxidative stress increases with age, not just systemically but also locally in the submandibular gland, and that oxidative stress causes changes in the structure of the salivary gland and is involved in hyposalivation.

  2. Local oxidative stress in interdigital tinea pedis.

    PubMed

    Ozturk, Perihan; Arican, Ozer; Kurutas, Ergul B; Karakas, Tugba; Gungor, Meltem

    2013-02-01

    Several skin diseases are believed to be associated with oxidative stress. Tinea pedis is an infection of the feet caused by fungi. The infectious diseases caused by dermatophytes are mainly related to the enzymes produced by these fungi. The cutaneous oxidative stress status of tinea pedis has not been demonstrated in the published work up to now. The aim of the present study was to evaluate the role of oxidative stress in affected skin areas in a group of patients with interdigital tinea pedis. Thirty-one consecutive patients with a diagnosis of unilateral interdigital tinea pedis were enrolled. The samples were obtained by scraping the skin surface. Oxidative stress biomarkers such as superoxide dismutase, catalase and malondialdehyde levels were measured spectrophotometrically. The activities of superoxide dismutase and catalase and the levels of malondialdehyde were significantly higher on the lesional area than the non-lesional area (P < 0.001). According to sex and fungal subtypes, there was no significant difference in the levels of oxidative stress biomarkers in patients with tinea pedis (P > 0.05). Our results suggested that antioxidant defense of lesional skin surface was higher compared to non-lesional skin. This is possibly due to a compensatory response to various fungal infections and thereby protects the cells against oxidative damage. © 2012 Japanese Dermatological Association.

  3. Vapors Produced by Electronic Cigarettes and E-Juices with Flavorings Induce Toxicity, Oxidative Stress, and Inflammatory Response in Lung Epithelial Cells and in Mouse Lung

    PubMed Central

    Lerner, Chad A.; Sundar, Isaac K.; Yao, Hongwei; Gerloff, Janice; Ossip, Deborah J.; McIntosh, Scott; Robinson, Risa; Rahman, Irfan

    2015-01-01

    Oxidative stress and inflammatory response are the key events in the pathogenesis of chronic airway diseases. The consumption of electronic cigarettes (e-cigs) with a variety of e-liquids/e-juices is alarmingly increasing without the unrealized potential harmful health effects. We hypothesized that electronic nicotine delivery systems (ENDS)/e-cigs pose health concerns due to oxidative toxicity and inflammatory response in lung cells exposed to their aerosols. The aerosols produced by vaporizing ENDS e-liquids exhibit oxidant reactivity suggesting oxidants or reactive oxygen species (OX/ROS) may be inhaled directly into the lung during a “vaping” session. These OX/ROS are generated through activation of the heating element which is affected by heating element status (new versus used), and occurs during the process of e-liquid vaporization. Unvaporized e-liquids were oxidative in a manner dependent on flavor additives, while flavors containing sweet or fruit flavors were stronger oxidizers than tobacco flavors. In light of OX/ROS generated in ENDS e-liquids and aerosols, the effects of ENDS aerosols on tissues and cells of the lung were measured. Exposure of human airway epithelial cells (H292) in an air-liquid interface to ENDS aerosols from a popular device resulted in increased secretion of inflammatory cytokines, such as IL-6 and IL-8. Furthermore, human lung fibroblasts exhibited stress and morphological change in response to treatment with ENDS/e-liquids. These cells also secrete increased IL-8 in response to a cinnamon flavored e-liquid and are susceptible to loss of cell viability by ENDS e-liquids. Finally, exposure of wild type C57BL/6J mice to aerosols produced from a popular e-cig increase pro-inflammatory cytokines and diminished lung glutathione levels which are critical in maintaining cellular redox balance. Thus, exposure to e-cig aerosols/juices incurs measurable oxidative and inflammatory responses in lung cells and tissues that could lead to

  4. Oxidative Stress in Schizophrenia: An Integrated Approach

    PubMed Central

    Bitanihirwe, Byron K.Y.; Woo, Tsung-Ung W.

    2010-01-01

    Oxidative stress has been suggested to contribute to the pathophysiology of schizophrenia. In particular, oxidative damage to lipids, proteins, and DNA as observed in schizophrenia is known to impair cell viability and function, which may subsequently account for the deteriorating course of the illness. Currently available evidence points towards an alteration in the activities of enzymatic and nonenzymatic antioxidant systems in schizophrenia. In fact, experimental models have demonstrated that oxidative stress induces behavioural and molecular anomalies strikingly similar to those observed in schizophrenia. These findings suggest that oxidative stress is intimately linked to a variety of pathophysiological processes, such as inflammation, oligodendrocyte abnormalities, mitochondrial dysfunction, hypoactive N-methyl-D-aspartate receptors and the impairment of fast-spiking gamma-aminobutyric acid interneurons.[bkyb1] Such self-sustaining mechanisms may progressively worsen producing the functional and structural consequences associated with schizophrenia. Recent clinical studies have shown antioxidant treatment to be effective in ameliorating schizophrenic symptoms. Hence, identifying viable therapeutic strategies to tackle oxidative stress and the resulting physiological disturbances provide an exciting opportunity for the treatment and ultimately prevention of schizophrenia. PMID:20974172

  5. Diabetic Neuropathy and Oxidative Stress: Therapeutic Perspectives

    PubMed Central

    Hosseini, Asieh; Abdollahi, Mohammad

    2013-01-01

    Diabetic neuropathy (DN) is a widespread disabling disorder comprising peripheral nerves' damage. DN develops on a background of hyperglycemia and an entangled metabolic imbalance, mainly oxidative stress. The majority of related pathways like polyol, advanced glycation end products, poly-ADP-ribose polymerase, hexosamine, and protein kinase c all originated from initial oxidative stress. To date, no absolute cure for DN has been defined; although some drugs are conventionally used, much more can be found if all pathophysiological links with oxidative stress would be taken into account. In this paper, although current therapies for DN have been reviewed, we have mainly focused on the links between DN and oxidative stress and therapies on the horizon, such as inhibitors of protein kinase C, aldose reductase, and advanced glycation. With reference to oxidative stress and the related pathways, the following new drugs are under study such as taurine, acetyl-L-carnitine, alpha lipoic acid, protein kinase C inhibitor (ruboxistaurin), aldose reductase inhibitors (fidarestat, epalrestat, ranirestat), advanced glycation end product inhibitors (benfotiamine, aspirin, aminoguanidine), the hexosamine pathway inhibitor (benfotiamine), inhibitor of poly ADP-ribose polymerase (nicotinamide), and angiotensin-converting enzyme inhibitor (trandolapril). The development of modern drugs to treat DN is a real challenge and needs intensive long-term comparative trials. PMID:23738033

  6. Activation of airway epithelial bitter taste receptors by Pseudomonas aeruginosa quinolones modulates calcium, cyclic-AMP, and nitric oxide signaling.

    PubMed

    Freund, Jenna R; Mansfield, Corrine J; Doghramji, Laurel J; Adappa, Nithin D; Palmer, James N; Kennedy, David W; Reed, Danielle R; Jiang, Peihua; Lee, Robert J

    2018-05-10

    Bitter taste receptors (T2Rs), discovered in many tissues outside the tongue, have recently become potential therapeutic targets. We showed previously that airway epithelial cells express several T2Rs that activate innate immune responses that may be important for treatment of airway diseases such as chronic rhinosinusitis. It is imperative to more clearly understand what compounds activate airway T2Rs as well as their full range of functions. T2R isoforms in airway motile cilia (T2Rs 4, 14, 16, and 38) produce bactericidal levels of nitric oxide (NO) that also increase ciliary beating, promoting clearance of mucus and trapped pathogens. Bacterial quorum-sensing acyl-homoserine lactones (AHLs) activate T2Rs and stimulate these responses in primary airway cells.  Quinolones are another type of quorum sensing molecule used by Pseudomonas aeruginosa.  To elucidate if bacterial quinolones activate airway T2Rs, we analyzed calcium, cAMP, and NO dynamics using a combination of fluorescent indicator dyes and FRET-based protein biosensors.  T2R-transfected HEK293T cells, several lung epithelial cell lines, and primary sinonasal cells grown and differentiated at air-liquid interface were tested with 2-heptyl-3-hydroxy-4-quinolone (known as Pseudomonas quinolone signal; PQS), 2,4-dihydroxyquinolone (DHQ), and 4-hydroxy-2-heptylquinolone (HHQ). In HEK293T cells, PQS activated T2R4, 16, and 38 while HHQ activated T2R14.  DHQ had no effect.  PQS and HHQ increased calcium and decreased both baseline and stimulated cAMP levels in cultured and primary airway cells.  In primary cells, PQS and HHQ activated levels of NO synthesis previously shown to be bactericidal. This study suggests airway T2R-mediated immune responses are activated by bacterial quinolones as well as AHLs. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Thyroid hormone-induced oxidative stress.

    PubMed

    Venditti, P; Di Meo, S

    2006-02-01

    Hypermetabolic state in hyperthyroidism is associated with tissue oxidative injury. Available data indicate that hyperthyroid tissues exhibit an increased ROS and RNS production. The increased mitochondrial ROS generation is a side effect of the enhanced level of electron carriers, by which hyperthyroid tissues increase their metabolic capacity. Investigations of antioxidant defence system have returned controversial results. Moreover, other thyroid hormone-linked biochemical changes increase tissue susceptibility to oxidative challenge, which exacerbates the injury and dysfunction they suffer under stressful conditions. Mitochondria, as a primary target for oxidative stress, might account for hyperthyroidism linked tissue dysfunction. This is consistent with the inverse relationship found between functional recovery of ischemic hyperthyroid hearts and mitochondrial oxidative damage and respiration impairment. However, thyroid hormone-activated mitochondrial mechanisms provide protection against excessive tissue dysfunction, including increased expression of uncoupling proteins, proteolytic enzymes and transcriptional coactivator PGC-1, and stimulate opening of permeability transition pores.

  8. Tolerance of pentose utilising yeast to hydrogen peroxide-induced oxidative stress.

    PubMed

    Spencer, Jennifer; Phister, Trevor G; Smart, Katherine A; Greetham, Darren

    2014-03-17

    Bioethanol fermentations follow traditional beverage fermentations where the yeast is exposed to adverse conditions such as oxidative stress. Lignocellulosic bioethanol fermentations involve the conversion of pentose and hexose sugars into ethanol. Environmental stress conditions such as osmotic stress and ethanol stress may affect the fermentation performance; however, oxidative stress as a consequence of metabolic output can also occur. However, the effect of oxidative stress on yeast with pentose utilising capabilities has yet to be investigated. Assaying for the effect of hydrogen peroxide-induced oxidative stress on Candida, Pichia and Scheffersomyces spp. has demonstrated that these yeast tolerate hydrogen peroxide-induced oxidative stress in a manner consistent with that demonstrated by Saccharomyces cerevisiae. Pichia guillermondii appears to be more tolerant to hydrogen peroxide-induced oxidative stress when compared to Candida shehatae, Candida succiphila or Scheffersomyces stipitis. Sensitivity to hydrogen peroxide-induced oxidative stress increased in the presence of minimal media; however, addition of amino acids and nucleobases was observed to increase tolerance. In particular adenine increased tolerance and methionine reduced tolerance to hydrogen peroxide-induced oxidative stress.

  9. Tolerance of pentose utilising yeast to hydrogen peroxide-induced oxidative stress

    PubMed Central

    2014-01-01

    Background Bioethanol fermentations follow traditional beverage fermentations where the yeast is exposed to adverse conditions such as oxidative stress. Lignocellulosic bioethanol fermentations involve the conversion of pentose and hexose sugars into ethanol. Environmental stress conditions such as osmotic stress and ethanol stress may affect the fermentation performance; however, oxidative stress as a consequence of metabolic output can also occur. However, the effect of oxidative stress on yeast with pentose utilising capabilities has yet to be investigated. Results Assaying for the effect of hydrogen peroxide-induced oxidative stress on Candida, Pichia and Scheffersomyces spp. has demonstrated that these yeast tolerate hydrogen peroxide-induced oxidative stress in a manner consistent with that demonstrated by Saccharomyces cerevisiae. Pichia guillermondii appears to be more tolerant to hydrogen peroxide-induced oxidative stress when compared to Candida shehatae, Candida succiphila or Scheffersomyces stipitis. Conclusions Sensitivity to hydrogen peroxide-induced oxidative stress increased in the presence of minimal media; however, addition of amino acids and nucleobases was observed to increase tolerance. In particular adenine increased tolerance and methionine reduced tolerance to hydrogen peroxide-induced oxidative stress. PMID:24636079

  10. Hypertension and physical exercise: The role of oxidative stress.

    PubMed

    Korsager Larsen, Monica; Matchkov, Vladimir V

    2016-01-01

    Oxidative stress is associated with the pathogenesis of hypertension. Decreased bioavailability of nitric oxide (NO) is one of the mechanisms involved in the pathogenesis. It has been suggested that physical exercise could be a potential non-pharmacological strategy in treatment of hypertension because of its beneficial effects on oxidative stress and endothelial function. The aim of this review is to investigate the effect of oxidative stress in relation to hypertension and physical exercise, including the role of NO in the pathogenesis of hypertension. Endothelial dysfunction and decreased NO levels have been found to have the adverse effects in the correlation between oxidative stress and hypertension. Most of the previous studies found that aerobic exercise significantly decreased blood pressure and oxidative stress in hypertensive subjects, but the intense aerobic exercise can also injure endothelial cells. Isometric exercise decreases normally only systolic blood pressure. An alternative exercise, Tai chi significantly decreases blood pressure and oxidative stress in normotensive elderly, but the effect in hypertensive subjects has not yet been studied. Physical exercise and especially aerobic training can be suggested as an effective intervention in the prevention and treatment of hypertension and cardiovascular disease via reduction in oxidative stress. Copyright © 2016 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  11. Severe Life Stress and Oxidative Stress in the Brain: From Animal Models to Human Pathology

    PubMed Central

    Jaquet, Vincent; Trabace, Luigia; Krause, Karl-Heinz

    2013-01-01

    Abstract Significance: Severe life stress (SLS), as opposed to trivial everyday stress, is defined as a serious psychosocial event with the potential of causing an impacting psychological traumatism. Recent Advances: Numerous studies have attempted to understand how the central nervous system (CNS) responds to SLS. This response includes a variety of morphological and neurochemical modifications; among them, oxidative stress is almost invariably observed. Oxidative stress is defined as disequilibrium between oxidant generation and the antioxidant response. Critical Issues: In this review, we discuss how SLS leads to oxidative stress in the CNS, and how the latter impacts pathophysiological outcomes. We also critically discuss experimental methods that measure oxidative stress in the CNS. The review covers animal models and human observations. Animal models of SLS include sleep deprivation, maternal separation, and social isolation in rodents, and the establishment of hierarchy in non-human primates. In humans, SLS, which is caused by traumatic events such as child abuse, war, and divorce, is also accompanied by oxidative stress in the CNS. Future Directions: The outcome of SLS in humans ranges from resilience, over post-traumatic stress disorder, to development of chronic mental disorders. Defining the sources of oxidative stress in SLS might in the long run provide new therapeutic avenues. Antioxid. Redox Signal. 18, 1475–1490. PMID:22746161

  12. Airway fires during surgery: Management and prevention

    PubMed Central

    Akhtar, Navaid; Ansar, Farrukh; Baig, Mirza Shahzad; Abbas, Akbar

    2016-01-01

    Airway fires pose a serious risk to surgical patients. Fires during surgery have been reported for many years with flammable anesthetic agents being the main culprits in the past. Association of airway fires with laser surgery is well-recognized, but there are reports of endotracheal tube fires ignited by electrocautery during pharyngeal surgery or tracheostomy or both. This uncommon complication has potentially grave consequences. While airway fires are relatively uncommon occurrences, they are very serious and can often be fatal. Success in preventing such events requires a thorough understanding of the components leading to a fire (fuel, oxidizer, and ignition source), as well as good communication between all members present to appropriately manage the fire and ensure patient safety. We present a case of fire in the airway during routine adenotonsillectomy. We will review the causes, preventive measures, and brief management for airway fires. PMID:27006554

  13. Airway fires during surgery: Management and prevention.

    PubMed

    Akhtar, Navaid; Ansar, Farrukh; Baig, Mirza Shahzad; Abbas, Akbar

    2016-01-01

    Airway fires pose a serious risk to surgical patients. Fires during surgery have been reported for many years with flammable anesthetic agents being the main culprits in the past. Association of airway fires with laser surgery is well-recognized, but there are reports of endotracheal tube fires ignited by electrocautery during pharyngeal surgery or tracheostomy or both. This uncommon complication has potentially grave consequences. While airway fires are relatively uncommon occurrences, they are very serious and can often be fatal. Success in preventing such events requires a thorough understanding of the components leading to a fire (fuel, oxidizer, and ignition source), as well as good communication between all members present to appropriately manage the fire and ensure patient safety. We present a case of fire in the airway during routine adenotonsillectomy. We will review the causes, preventive measures, and brief management for airway fires.

  14. Oxidative stress and mitochondrial dysfunction in Kindler syndrome.

    PubMed

    Zapatero-Solana, Elisabeth; García-Giménez, Jose Luis; Guerrero-Aspizua, Sara; García, Marta; Toll, Agustí; Baselga, Eulalia; Durán-Moreno, Maria; Markovic, Jelena; García-Verdugo, Jose Manuel; Conti, Claudio J; Has, Cristina; Larcher, Fernando; Pallardó, Federico V; Del Rio, Marcela

    2014-12-21

    Kindler Syndrome (KS) is an autosomal recessive skin disorder characterized by skin blistering, photosensitivity, premature aging, and propensity to skin cancer. In spite of the knowledge underlying cause of this disease involving mutations of FERMT1 (fermitin family member 1), and efforts to characterize genotype-phenotype correlations, the clinical variability of this genodermatosis is still poorly understood. In addition, several pathognomonic features of KS, not related to skin fragility such as aging, inflammation and cancer predisposition have been strongly associated with oxidative stress. Alterations of the cellular redox status have not been previously studied in KS. Here we explored the role of oxidative stress in the pathogenesis of this rare cutaneous disease. Patient-derived keratinocytes and their respective controls were cultured and classified according to their different mutations by PCR and western blot, the oxidative stress biomarkers were analyzed by spectrophotometry and qPCR and additionally redox biosensors experiments were also performed. The mitochondrial structure and functionality were analyzed by confocal microscopy and electron microscopy. Patient-derived keratinocytes showed altered levels of several oxidative stress biomarkers including MDA (malondialdehyde), GSSG/GSH ratio (oxidized and reduced glutathione) and GCL (gamma-glutamyl cysteine ligase) subunits. Electron microscopy analysis of both, KS skin biopsies and keratinocytes showed marked morphological mitochondrial abnormalities. Consistently, confocal microscopy studies of mitochondrial fluorescent probes confirmed the mitochondrial derangement. Imbalance of oxidative stress biomarkers together with abnormalities in the mitochondrial network and function are consistent with a pro-oxidant state. This is the first study to describe mitochondrial dysfunction and oxidative stress involvement in KS.

  15. Implantation of Neural Probes in the Brain Elicits Oxidative Stress

    PubMed Central

    Ereifej, Evon S.; Rial, Griffin M.; Hermann, John K.; Smith, Cara S.; Meade, Seth M.; Rayyan, Jacob M.; Chen, Keying; Feng, He; Capadona, Jeffrey R.

    2018-01-01

    Clinical implantation of intracortical microelectrodes has been hindered, at least in part, by the perpetual inflammatory response occurring after device implantation. The neuroinflammatory response observed after device implantation has been correlated to oxidative stress that occurs due to neurological injury and disease. However, there has yet to be a definitive link of oxidative stress to intracortical microelectrode implantation. Thus, the objective of this study is to give direct evidence of oxidative stress following intracortical microelectrode implantation. This study also aims to identify potential molecular targets to attenuate oxidative stress observed postimplantation. Here, we implanted adult rats with silicon non-functional microelectrode probes for 4 weeks and compared the oxidative stress response to no surgery controls through postmortem gene expression analysis and qualitative histological observation of oxidative stress markers. Gene expression analysis results at 4 weeks postimplantation indicated that EH domain-containing 2, prion protein gene (Prnp), and Stearoyl-Coenzyme A desaturase 1 (Scd1) were all significantly higher for animals implanted with intracortical microelectrode probes compared to no surgery control animals. To the contrary, NADPH oxidase activator 1 (Noxa1) relative gene expression was significantly lower for implanted animals compared to no surgery control animals. Histological observation of oxidative stress showed an increased expression of oxidized proteins, lipids, and nucleic acids concentrated around the implant site. Collectively, our results reveal there is a presence of oxidative stress following intracortical microelectrode implantation compared to no surgery controls. Further investigation targeting these specific oxidative stress linked genes could be beneficial to understanding potential mechanisms and downstream therapeutics that can be utilized to reduce oxidative stress-mediated damage following

  16. A biomechanical model of agonist-initiated contraction in the asthmatic airway.

    PubMed

    Brook, B S; Peel, S E; Hall, I P; Politi, A Z; Sneyd, J; Bai, Y; Sanderson, M J; Jensen, O E

    2010-01-31

    This paper presents a modelling framework in which the local stress environment of airway smooth muscle (ASM) cells may be predicted and cellular responses to local stress may be investigated. We consider an elastic axisymmetric model of a layer of connective tissue and circumferential ASM fibres embedded in parenchymal tissue and model the active contractile force generated by ASM via a stress acting along the fibres. A constitutive law is proposed that accounts for active and passive material properties as well as the proportion of muscle to connective tissue. The model predicts significantly different contractile responses depending on the proportion of muscle to connective tissue in the remodelled airway. We find that radial and hoop-stress distributions in remodelled muscle layers are highly heterogenous with distinct regions of compression and tension. Such patterns of stress are likely to have important implications, from a mechano-transduction perspective, on contractility, short-term cytoskeletal adaptation and long-term airway remodelling in asthma. Copyright 2009 Elsevier B.V. All rights reserved.

  17. Computational analysis of microbubble flows in bifurcating airways: role of gravity, inertia, and surface tension.

    PubMed

    Chen, Xiaodong; Zielinski, Rachel; Ghadiali, Samir N

    2014-10-01

    Although mechanical ventilation is a life-saving therapy for patients with severe lung disorders, the microbubble flows generated during ventilation generate hydrodynamic stresses, including pressure and shear stress gradients, which damage the pulmonary epithelium. In this study, we used computational fluid dynamics to investigate how gravity, inertia, and surface tension influence both microbubble flow patterns in bifurcating airways and the magnitude/distribution of hydrodynamic stresses on the airway wall. Direct interface tracking and finite element techniques were used to simulate bubble propagation in a two-dimensional (2D) liquid-filled bifurcating airway. Computational solutions of the full incompressible Navier-Stokes equation were used to investigate how inertia, gravity, and surface tension forces as characterized by the Reynolds (Re), Bond (Bo), and Capillary (Ca) numbers influence pressure and shear stress gradients at the airway wall. Gravity had a significant impact on flow patterns and hydrodynamic stress magnitudes where Bo > 1 led to dramatic changes in bubble shape and increased pressure and shear stress gradients in the upper daughter airway. Interestingly, increased pressure gradients near the bifurcation point (i.e., carina) were only elevated during asymmetric bubble splitting. Although changes in pressure gradient magnitudes were generally more sensitive to Ca, under large Re conditions, both Re and Ca significantly altered the pressure gradient magnitude. We conclude that inertia, gravity, and surface tension can all have a significant impact on microbubble flow patterns and hydrodynamic stresses in bifurcating airways.

  18. Mammalian Metallothionein-2A and Oxidative Stress

    PubMed Central

    Ling, Xue-Bin; Wei, Hong-Wei; Wang, Jun; Kong, Yue-Qiong; Wu, Yu-You; Guo, Jun-Li; Li, Tian-Fa; Li, Ji-Ke

    2016-01-01

    Mammalian metallothionein-2A (MT2A) has received considerable attention in recent years due to its crucial pathophysiological role in anti-oxidant, anti-apoptosis, detoxification and anti-inflammation. For many years, most studies evaluating the effects of MT2A have focused on reactive oxygen species (ROS), as second messengers that lead to oxidative stress injury of cells and tissues. Recent studies have highlighted that oxidative stress could activate mitogen-activated protein kinases (MAPKs), and MT2A, as a mediator of MAPKs, to regulate the pathogenesis of various diseases. However, the molecule mechanism of MT2A remains elusive. A deeper understanding of the functional, biochemical and molecular characteristics of MT2A would be identified, in order to bring new opportunities for oxidative stress therapy. PMID:27608012

  19. Oxidative stress parameters in localized scleroderma patients.

    PubMed

    Kilinc, F; Sener, S; Akbaş, A; Metin, A; Kirbaş, S; Neselioglu, S; Erel, O

    2016-11-01

    Localized scleroderma (LS) (morphea) is a chronic, inflammatory skin disease with unknown cause that progresses with sclerosis in the skin and/or subcutaneous tissues. Its pathogenesis is not completely understood. Oxidative stress is suggested to have a role in the pathogenesis of localized scleroderma. We have aimed to determine the relationship of morphea lesions with oxidative stress. The total oxidant capacity (TOC), total antioxidant capacity (TAC), paroxonase (PON) and arylesterase (ARES) activity parameters of PON 1 enzyme levels in the serum were investigated in 13 LS patients (generalized and plaque type) and 13 healthy controls. TOC values of the patient group were found higher than the TOC values of the control group (p < 0.01). ARES values of the patient group was found to be higher than the control group (p < 0.0001). OSI was significantly higher in the patient group when compared to the control (p < 0.005). Oxidative stress seems to be effective in the pathogenesis. ARES levels have increased in morphea patients regarding to the oxidative stress and its reduction. Further controlled studies are required in wider series.

  20. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney.

    PubMed

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Farkhondeh, Tahereh; Samini, Fariborz

    2017-03-01

    Restraint stress has been indicated to induce oxidative damage in tissues. Several investigations have reported that curcumin (CUR) may have a protective effect against oxidative stress. The present study was designed to investigate the protective effects of CUR on restraint stress induced oxidative stress damage in the brain, liver and kidneys. For chronic restraint stress, rats were kept in the restrainers for 1h every day, for 21 consecutive days. The animals received systemic administrations of CUR daily for 21days. In order to evaluate the changes of the oxidative stress parameters following restraint stress, the levels of malondialdehyde (MDA), reduced glutathione (GSH), as well as antioxidant enzyme activities superoxide dismutase (SOD) glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were measured in the brain, liver and kidney of rats after the end of restraint stress. The restraint stress significantly increased MDA level, but decreased the level of GSH and activists of SOD, GPx, GR, and CAT the brain, liver and kidney of rats in comparison to the normal rats (P<0.001). Intraperitoneal administration of CUR significantly attenuated oxidative stress and lipid peroxidation, prevented apoptosis, and increased antioxidant defense mechanism activity in the tissues versus the control group (P<0.05). This study shows that CUR can prevent restraint stress-induced oxidative damage in the brain, liver and kidney of rats and propose that CUR may be useful agents against oxidative stress in the tissues. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Oxidative stress in organophosphate poisoning: role of standard antidotal therapy.

    PubMed

    Vanova, Nela; Pejchal, Jaroslav; Herman, David; Dlabkova, Alzbeta; Jun, Daniel

    2018-08-01

    Despite the main mechanism of organophosphate (OP) toxicity through inhibition of acetylcholinesterase (AChE) being well known over the years, some chronic adverse health effects indicate the involvement of additional pathways. Oxidative stress is among the most intensively studied. Overstimulation of cholinergic and glutamatergic nervous system is followed by intensified generation of reactive species and oxidative damage in many tissues. In this review, the role of oxidative stress in pathophysiology of OP poisoning and the influence of commonly used medical interventions on its levels are discussed. Current standardized therapy of OP intoxications comprises live-saving administration of the anticholinergic drug atropine accompanied by oxime AChE reactivator and diazepam. The capability of these antidotes to ameliorate OP-induced oxidative stress varies between both therapeutic groups and individual medications within the drug class. Regarding oxidative stress, atropine does not seem to have a significant effect on oxidative stress parameters in OP poisoning. In a case of AChE reactivators, pro-oxidative and antioxidative properties could be found. It is assumed that the ability of oximes to trigger oxidative stress is rather associated with their chemical structure than reactivation efficacy. The data indicating the potency of diazepam in preventing OP-induced oxidative stress are not available. Based on current knowledge on the mechanism of OP-mediated oxidative stress, alternative approaches (including antioxidants or multifunctional drugs) in therapy of OP poisoning are under consideration. Copyright © 2018 John Wiley & Sons, Ltd.

  2. Strawberry polyphenols decrease oxidative stress in chronic diseases

    PubMed

    Oviedo-Solís, Cecilia Isabel; Cornejo-Manzo, Sinthia; Murillo-Ortiz, Blanca Olivia; Guzmán-Barrón, Michelle Montserrat; Ramírez-Emiliano, Joel

    2018-01-01

    Consumption of hypercaloric diets leads to increase of free fatty acids (FFA), pro-inflammatory cytokines and production of oxygen and nitrogen reactive species. These alterations induce oxidative and nitrosative stress causing dysfunction of tissues and consequently the development of chronic diseases. Therefore, it is important to decrease oxidative stress and thus preventing the development of these diseases. Strawberry has a lot of Vitamin C and polyphenols, compounds with excellent antioxidant properties, which may be an option for reducing oxidative stress and therefore to prevent the development of some diseases. Studies conducted in vitro in animal models and clinical studies support that this fruit can be a good alternative to reduce oxidative stress and thus reducing and/or preventing the development of diseases in humans. Copyright: © 2018 SecretarÍa de Salud.

  3. Oxidative and Anti-Oxidative Stress Markers in Chronic Glaucoma: A Systematic Review and Meta-Analysis

    PubMed Central

    Benoist d’Azy, Cédric; Pereira, Bruno; Chiambaretta, Frédéric

    2016-01-01

    Chronic glaucoma is a multifactorial disease among which oxidative stress may play a major pathophysiological role. We conducted a systematic review and meta-analysis to evaluate the levels of oxidative and antioxidative stress markers in chronic glaucoma compared with a control group. The PubMed, Cochrane Library, Embase and Science Direct databases were searched for studies reporting oxidative and antioxidative stress markers in chronic glaucoma and in healthy controls using the following keywords: “oxidative stress” or “oxidant stress” or “nitrative stress” or “oxidative damage” or “nitrative damage” or “antioxidative stress” or “antioxidant stress” or “antinitrative stress” and “glaucoma”. We stratified our meta-analysis on the type of biomarkers, the type of glaucoma, and the origin of the sample (serum or aqueous humor). We included 22 case-control studies with a total of 2913 patients: 1614 with glaucoma and 1319 healthy controls. We included 12 studies in the meta-analysis on oxidative stress markers and 19 on antioxidative stress markers. We demonstrated an overall increase in oxidative stress markers in glaucoma (effect size = 1.64; 95%CI 1.20–2.09), ranging from an effect size of 1.29 in serum (95%CI 0.84–1.74) to 2.62 in aqueous humor (95%CI 1.60–3.65). Despite a decrease in antioxidative stress marker in serum (effect size = –0.41; 95%CI –0.72 to –0.11), some increased in aqueous humor (superoxide dismutase, effect size = 3.53; 95%CI 1.20–5.85 and glutathione peroxidase, effect size = 6.60; 95%CI 3.88–9.31). The differences in the serum levels of oxidative stress markers between glaucoma patients and controls were significantly higher in primary open angle glaucoma vs primary angle closed glaucoma (effect size = 12.7; 95%CI 8.78–16.6, P < 0.001), and higher in pseudo-exfoliative glaucoma vs primary angle closed glaucoma (effect size = 12.2; 95%CI 8.96–15.5, P < 0.001). In conclusion, oxidative

  4. Transient motion of mucus plugs in respiratory airways

    NASA Astrophysics Data System (ADS)

    Zamankhan, Parsa; Hu, Yingying; Helenbrook, Brian; Takayama, Shuichi; Grotberg, James B.

    2011-11-01

    Airway closure occurs in lung diseases such as asthma, cystic fibrosis, or emphysema which have an excess of mucus that forms plugs. The reopening process involves displacement of mucus plugs in the airways by the airflow of respiration. Mucus is a non-Newtonian fluid with a yield stress; therefore its behavior can be approximated by a Bingham fluid constitutive equation. In this work the reopening process is approximated by simulation of a transient Bingham fluid plug in a 2D channel. The governing equations are solved by an Arbitrary Lagrangian Eulerian (ALE) finite element method through an in-house code. The constitutive equation for the Bingham fluid is implemented through a regularization method. The effects of the yield stress on the flow features and wall stresses are discussed with applications to potential injuries to the airway epithelial cells which form the wall. The minimum driving pressure for the initiation of the motion is computed and its value is related to the mucus properties and the plug shape. Supported by HL84370 and HL85156.

  5. Visualization of Oxidative Stress Induced by Experimental Periodontitis in Keap1-Dependent Oxidative Stress Detector-Luciferase Mice.

    PubMed

    Kataoka, Kota; Ekuni, Daisuke; Tomofuji, Takaaki; Irie, Koichiro; Kunitomo, Muneyoshi; Uchida, Yoko; Fukuhara, Daiki; Morita, Manabu

    2016-11-16

    The aim of this study was to investigate whether a Keap1-dependent oxidative stress detector-luciferase (OKD-LUC) mouse model would be useful for the visualization of oxidative stress induced by experimental periodontitis. A ligature was placed around the mandibular first molars for seven days to induce periodontitis. Luciferase activity was measured with an intraperitoneal injection of d-luciferin on days 0, 1, and 7. The luciferase activity in the periodontitis group was significantly greater than that in the control group at seven days. The expressions of heme oxygenase-1 (HO-1) and malondialdehyde in periodontal tissue were significantly higher in the periodontitis group than in the control group. Immunofluorescent analysis confirmed that the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) occurred more frequently in the periodontitis group than in the control group. This study found that under oxidative stress induced by experimental periodontitis, the Nrf2/antioxidant defense pathway was activated and could be visualized from the luciferase activity in the OKD-LUC model. Thus, the OKD-LUC mouse model may be useful for exploring the mechanism underlying the relationship between the Nrf2/antioxidant defense pathway and periodontitis by enabling the visualization of oxidative stress over time.

  6. Oxidative stress induces senescence in human mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandl, Anita; Meyer, Matthias; Bechmann, Volker

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolongedmore » low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.« less

  7. Respiratory health of elite athletes - preventing airway injury: a critical review.

    PubMed

    Kippelen, Pascale; Fitch, Kenneth D; Anderson, Sandra Doreen; Bougault, Valerie; Boulet, Louis-Philippe; Rundell, Kenneth William; Sue-Chu, Malcolm; McKenzie, Donald C

    2012-06-01

    Elite athletes, particularly those engaged in endurance sports and those exposed chronically to airborne pollutants/irritants or allergens, are at increased risk for upper and lower airway dysfunction. Airway epithelial injury may be caused by dehydration and physical stress applied to the airways during severe exercise hyperpnoea and/or by inhalation of noxious agents. This is thought to initiate an inflammatory cascade/repair process that, ultimately, could lead to airway hyperresponsiveness (AHR) and asthma in susceptible athletes. The authors review the evidence relating to prevention or reduction of the risk of AHR/asthma development. Appropriate measures should be implemented when athletes exercise strenuously in an attempt to attenuate the dehydration stress and reduce the exposure to noxious airborne agents. Environmental interventions are the most important. Non-pharmacological strategies can assist, but currently, pharmacological measures have not been demonstrated to be effective. Whether early prevention of airway injury in elite athletes can prevent or reduce progression to AHR/asthma remains to be established.

  8. Oxidative stress in uremia: nature, mechanisms, and potential consequences.

    PubMed

    Vaziri, Nosratola D

    2004-09-01

    Oxidative stress has emerged as a constant feature of chronic renal failure (CRF). The presence of oxidative stress in CRF is evidenced by an overabundance of lipid, carbohydrate, and protein oxidation products in the plasma and tissues of uremic patients and animals. We recently have shown that oxidative stress in CRF animals is associated with and, in part, owing to up-regulation of superoxide-producing enzyme, nicotinamide-adenine dinucleotide phosphate (NAD(P)H) oxidase, and down-regulation of superoxide dismutase (SOD). The functional significance of these findings was confirmed by favorable response to administration of the cell-permeable SOD-mimetic agent, tempol, in CRF rats. Oxidative stress in CRF plays an important role in the pathogenesis of the associated hypertension (oxidation of NO and arachidonic acid and vascular remodeling), cardiovascular disease (oxidation of lipoproteins, atherogenesis), neurologic disorders (nitration of brain proteins, oxidation of myelin), anemia (reduction of erythrocyte lifespan), inflammation (nuclear factor kappa B activation), fibrosis, apoptosis, and accelerated aging. The CRF-induced oxidative stress is aggravated by diabetes, uncontrolled hypertension, and autoimmune diseases, which independently increase production of reactive oxygen intermediates, and frequently are associated with CRF. In addition, dialysis treatment (blood interaction with dialyzer membrane and dialysate impurities), acute and chronic infections (blood access infection, hepatitis, and so forth), and excessive parenteral iron administration intensify CRF-associated oxidative stress and its adverse consequences in patients with end-stage renal disease. The problem is compounded by limited intake of fresh fruits and vegetables (K(+) restriction), which contain numerous natural phytochemicals and antioxidant vitamins.

  9. Ozone-Induced Injury and Oxidative Stress in Bronchiolar Epithelium Are Associated with Altered Pulmonary Mechanics

    PubMed Central

    Sunil, Vasanthi R.

    2013-01-01

    In these studies, we analyzed the effects of ozone on bronchiolar epithelium. Exposure of rats to ozone (2 ppm, 3h) resulted in rapid (within 3h) and persistent (up to 72h) histological changes in the bronchiolar epithelium, including hypercellularity, loss of cilia, and necrotizing bronchiolitis. Perivascular edema and vascular congestion were also evident, along with a decrease in Clara cell secretory protein in bronchoalveolar lavage, which was maximal 24h post-exposure. Ozone also induced the appearance of 8-hydroxy-2′-deoxyguanosine, Ym1, and heme oxygenase-1 in the bronchiolar epithelium. This was associated with increased expression of cleaved caspase-9 and beclin-1, indicating initiation of apoptosis and autophagy. A rapid and persistent increase in galectin-3, a regulator of epithelial cell apoptosis, was also observed. Following ozone exposure (3–24h), increased expression of cyclooxygenase-2, inducible nitric oxide synthase, and arginase-1 was noted in bronchiolar epithelium. Ozone-induced injury and oxidative stress in bronchiolar epithelium were linked to methacholine-induced alterations in pulmonary mechanics. Thus, significant increases in lung resistance and elastance, along with decreases in lung compliance and end tidal volume, were observed at higher doses of methacholine. This indicates that ozone causes an increase in effective stiffness of the lung as a consequence of changes in the conducting airways. Collectively, these studies demonstrate that bronchiolar epithelium is highly susceptible to injury and oxidative stress induced by acute exposure to ozone; moreover, this is accompanied by altered lung functioning. PMID:23492811

  10. Alcohol and Airways Function in Health and Disease

    PubMed Central

    Sisson, Joseph H.

    2007-01-01

    The volatility of alcohol promotes the movement of alcohol from the bronchial circulation across the airway epithelium and into the conducting airways of the lung. The exposure of the airways through this route likely accounts for many of the biologic effects of alcohol on lung airway functions. The impact of alcohol on lung airway functions is dependent on the concentration, duration and route of exposure. Brief exposure to mild concentrations of alcohol may enhance mucociliary clearance, stimulates bronchodilation and probably attenuates the airway inflammation and injury observed in asthma and COPD. Prolonged and heavy exposure to alcohol impairs mucociliary clearance, may complicate asthma management and likely worsens outcomes including lung function and mortality in COPD patients. Non-alcohol congeners and alcohol metabolites act as triggers for airway disease exacerbations especially in atopic asthmatics and in Asian populations who have a reduced capacity to metabolize alcohol. Research focused on the mechanisms of alcohol-mediated changes in airway functions has identified specific mechanisms that mediate alcohol effects within the lung airways. These include prominent roles for the second messengers calcium and nitric oxide, regulatory kinases including PKG and PKA, alcohol and acetaldehyde-metabolizing enzymes such as aldehyde dehydrogenase type 2 (ALDH2). The role alcohol may play in the pathobiology of airway mucus, bronchial blood flow, airway smooth muscle regulation and the interaction with other airway exposure agents, such as cigarette smoke, represent opportunities for future investigation. PMID:17764883

  11. Alcohol and airways function in health and disease.

    PubMed

    Sisson, Joseph H

    2007-08-01

    The volatility of alcohol promotes the movement of alcohol from the bronchial circulation across the airway epithelium and into the conducting airways of the lung. The exposure of the airways through this route likely accounts for many of the biologic effects of alcohol on lung airway functions. The effect of alcohol on lung airway functions is dependent on the concentration, duration, and route of exposure. Brief exposure to mild concentrations of alcohol may enhance mucociliary clearance, stimulates bronchodilation, and probably attenuates the airway inflammation and injury observed in asthma and chronic obstructive pulmonary disease (COPD). Prolonged and heavy exposure to alcohol impairs mucociliary clearance, may complicate asthma management, and likely worsens outcomes including lung function and mortality in COPD patients. Nonalcohol congeners and alcohol metabolites act as triggers for airway disease exacerbations especially in atopic asthmatics and in Asian populations who have a reduced capacity to metabolize alcohol. Research focused on the mechanisms of alcohol-mediated changes in airway functions has identified specific mechanisms that mediate alcohol effects within the lung airways. These include prominent roles for the second messengers calcium and nitric oxide, regulatory kinases including PKG and PKA, alcohol- and acetaldehyde-metabolizing enzymes such as aldehyde dehydrogenase 2. The role alcohol may play in the pathobiology of airway mucus, bronchial blood flow, airway smooth muscle regulation, and the interaction with other airway exposure agents, such as cigarette smoke, represents opportunities for future investigation.

  12. Prohibitin as an oxidative stress biomarker in the eye

    PubMed Central

    Lee, Hyunju; Arnouk, Hilal; Sripathi, Srinivas; Chen, Ping; Zhang, Ruonan; Hunt, Richard C.; Hrushesky, William J. M.; Chung, Hyewon; Lee, Sung Haeng; Jahng, Wan Jin

    2016-01-01

    Identification of biomarker proteins in the retina and the retinal pigment epithelium (RPE) under oxidative stress may imply new insights into signaling mechanisms of retinal degeneration at the molecular level. Proteomic data from an in vivo mice model in constant light and an in vitro oxidative stress model are compared to controls under normal conditions. Our proteomic study shows that prohibitin is involved in oxidative stress signaling in the retina and RPE. The identity of prohibitin in the retina and the RPE was studied using 2D electrophoresis, immunohistochemistry, western blot, and mass spectrometry analysis. Comparison of expression levels with apoptotic markers as well as translocation between mitochondria and the nucleus imply that the regulation of prohibitin is an early signaling event in the RPE and retina under oxidative stress. Immunohistochemical analysis of murine aged and diabetic eyes further suggests that the regulation of prohibitin in the RPE/retina is related to aging- and diabetes-induced oxidative stress. Our proteomic approach implies that prohibitin in the RPE and the retina could be a new biomarker protein of oxidative stress in aging and diabetes. PMID:20832420

  13. Prohibitin as an oxidative stress biomarker in the eye.

    PubMed

    Lee, Hyunju; Arnouk, Hilal; Sripathi, Srinivas; Chen, Ping; Zhang, Ruonan; Bartoli, Manuela; Hunt, Richard C; Hrushesky, William J M; Chung, Hyewon; Lee, Sung Haeng; Jahng, Wan Jin

    2010-12-01

    Identification of biomarker proteins in the retina and retinal pigment epithelium (RPE) under oxidative stress may imply new insights into signaling mechanisms of retinal degeneration at the molecular level. Proteomic data from an in vivo mice model in constant light and an in vitro oxidative stress model are compared to controls under normal conditions. Our proteomic study shows that prohibitin is involved in oxidative stress signaling in the retina and RPE. The identity of prohibitin in the retina and RPE was studied using 2D electrophoresis, immunohistochemistry, western blot, and mass spectrometry analysis. Comparison of expression levels with apoptotic markers as well as translocation between mitochondria and the nucleus imply that the regulation of prohibitin is an early signaling event in the RPE and retina under oxidative stress. Immunohistochemical analysis of murine aged and diabetic eyes further suggests that the regulation of prohibitin in the RPE/retina is related to aging- and diabetes-induced oxidative stress. Our proteomic approach implies that prohibitin in the RPE and the retina could be a new biomarker protein of oxidative stress in aging and diabetes. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. The effect of body weight on distal airway function and airway inflammation.

    PubMed

    van de Kant, Kim D G; Paredi, Paolo; Meah, Sally; Kalsi, Harpal S; Barnes, Peter J; Usmani, Omar S

    Obesity is a global health problem that adversely influences the respiratory system. We assessed the effects of body mass index (BMI) on distal airway function and airway inflammation. Impulse oscillometry (IOS) as a measure of distal airway function, together with spirometry, were assessed in adults with a range of different BMIs. Airway inflammation was assessed with the fraction of exhaled nitric oxide (FeNO) and participants exhaled at various exhalation flows to determine alveolar and bronchial NO. In total 34 subjects were enrolled in the study; 19 subjects had a normal BMI (18.50-24.99), whilst 15 subjects were overweight (BMI 25.00-29.99), or obese (BMI ≥30). All subjects had normal spirometry. However, IOS measures of airway resistance (R) at 5Hz, 20Hz and frequency dependence (R 5-20 ) were elevated in overweight/obese individuals, compared to subjects with a normal BMI (median (interquartile range)); 5Hz: 0.41 (0.37, 0.45) vs. 0.32 (0.30, 0.37)kPa/l/s; 20Hz: 0.34 (0.30, 0.37) vs. 0.30 (0.26, 0.33)kPa/l/s; R 5-20 : 0.06 (0.04, 0.11) vs. 0.03 (0.01, 0.05)kPa/l/s; p<0.05), whereas airway reactance at 20Hz was decreased in overweight/obese individuals (20Hz: 0.07 (0.03, 0.09) vs. 0.10 (0.07, 0.13)kPa/l/s, p=0.009; 5Hz: -0.12 (-0.15, -0.10) vs. -0.10 (-0.13, -0.09)kPa/l/s, p=0.07). In contrast, within-breath IOS measures (a sign of expiratory flow limitation) and FeNO inflammatory measures, did not differ between groups (p>0.05). Being overweight has significant effects on distal and central airway function as determined by IOS, which is not detected by spirometry. Obesity does not influence airway inflammation as measured by FeNO. IOS is a reliable technique to identify airway abnormalities in the presence of normal spirometry in overweight people. Copyright © 2015 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  15. Oxidative Stress in Myopia

    PubMed Central

    Francisco, Bosch-Morell; Salvador, Mérida; Amparo, Navea

    2015-01-01

    Myopia affected approximately 1.6 billion people worldwide in 2000, and it is expected to increase to 2.5 billion by 2020. Although optical problems can be corrected by optics or surgical procedures, normal myopia and high myopia are still an unsolved medical problem. They frequently predispose people who have them to suffer from other eye pathologies: retinal detachment, glaucoma, macular hemorrhage, cataracts, and so on being one of the main causes of visual deterioration and blindness. Genetic and environmental factors have been associated with myopia. Nevertheless, lack of knowledge in the underlying physiopathological molecular mechanisms has not permitted an adequate diagnosis, prevention, or treatment to be found. Nowadays several pieces of evidence indicate that oxidative stress may help explain the altered regulatory pathways in myopia and the appearance of associated eye diseases. On the one hand, oxidative damage associated with hypoxia myopic can alter the neuromodulation that nitric oxide and dopamine have in eye growth. On the other hand, radical superoxide or peroxynitrite production damage retina, vitreous, lens, and so on contributing to the appearance of retinopathies, retinal detachment, cataracts and so on. The objective of this review is to suggest that oxidative stress is one of the key pieces that can help solve this complex eye problem. PMID:25922643

  16. Nitric oxide ameliorates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.

    PubMed

    Kaushik, Manish Singh; Srivastava, Meenakshi; Srivastava, Alka; Singh, Anumeha; Mishra, Arun Kumar

    2016-11-01

    In cyanobacterium Anabaena 7120, iron deficiency leads to oxidative stress with unavoidable consequences. Nitric oxide reduces pigment damage and supported the growth of Anabaena 7120 in iron-deficient conditions. Elevation in nitric oxide accumulation and reduced superoxide radical production justified the role of nitric oxide in alleviating oxidative stress in iron deficiency. Increased activities of antioxidative enzymes and higher levels of ROS scavengers (ascorbate, glutathione and thiol) in iron deficiency were also observed in the presence of nitric oxide. Nitric oxide also supported the membrane integrity of Anabaena cells and reduces protein and DNA damage caused by oxidative stress induced by iron deficiency. Results suggested that nitric oxide alleviates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.

  17. Nitrative and Oxidative Stress in Toxicology and Disease

    PubMed Central

    Roberts, Ruth A.; Laskin, Debra L.; Smith, Charles V.; Robertson, Fredika M.; Allen, Erin M. G.; Doorn, Jonathan A.; Slikker, William

    2009-01-01

    Persistent inflammation and the generation of reactive oxygen and nitrogen species play pivotal roles in tissue injury during disease pathogenesis and as a reaction to toxicant exposures. The associated oxidative and nitrative stress promote diverse pathologic reactions including neurodegenerative disorders, atherosclerosis, chronic inflammation, cancer, and premature labor and stillbirth. These effects occur via sustained inflammation, cellular proliferation and cytotoxicity and via induction of a proangiogenic environment. For example, exposure to the ubiquitous air pollutant ozone leads to generation of reactive oxygen and nitrogen species in lung macrophages that play a key role in subsequent tissue damage. Similarly, studies indicate that genes involved in regulating oxidative stress are altered by anesthetic treatment resulting in brain injury, most notable during development. In addition to a role in tissue injury in the brain, inflammation, and oxidative stress are implicated in Parkinson's disease, a neurodegenerative disease characterized by the loss of dopamine neurons. Recent data suggest a mechanistic link between oxidative stress and elevated levels of 3,4-dihydroxyphenylacetaldehyde, a neurotoxin endogenous to dopamine neurons. These findings have significant implications for development of therapeutics and identification of novel biomarkers for Parkinson's disease pathogenesis. Oxidative and nitrative stress is also thought to play a role in creating the proinflammatory microenvironment associated with the aggressive phenotype of inflammatory breast cancer. An understanding of fundamental concepts of oxidative and nitrative stress can underpin a rational plan of treatment for diseases and toxicities associated with excessive production of reactive oxygen and nitrogen species. PMID:19656995

  18. Pulmonary Stress Induced by Hyperthermia: Role of Airway Sensory Nerves

    DTIC Science & Technology

    2013-10-01

    ABSTRACT Based upon the results obtained from these studies, we can draw the following conclusions: 1) Airway hyperresponsiveness developed in Ova ...hyperthermia in Ova -sensitized rats. The manuscript reporting the results obtained frim this study has been accepted for publication by the Journal of...to increasing airway temperature. Our results showed: 1) In Brown-Norway rats actively sensitized by ovalbumin ( Ova ), isocapnic hyperventilation with

  19. The effect of omalizumab on small airway inflammation as measured by exhaled nitric oxide in moderate-to-severe asthmatic patients.

    PubMed

    Pasha, M Asghar; Jourd'heuil, David; Jourd'heuil, Francis; Mahon, Lori; Romero, Francisco; Feustel, Paul J; Evans, Mary; Smith, Thomas; Mitchell, Jesse; Gendapodi, Pradeep; Demeyere-Coursey, Kelly C; Townley, Robert G

    2014-01-01

    Measurement of fractional nitric oxide concentration in exhaled breath (FENO) is a simple, noninvasive method to evaluate eosinophilic airway inflammation. Nitric oxide (NO) arising from peripheral small airways/alveoli (alveolar NO concentration [CalvNO]) can be estimated using multiple flow rates and a two-compartment model of the airways and alveoli. Omalizumab, a monoclonal anti-IgE antibody, is approved for the treatment of allergic asthma and also has been shown to decrease FENO levels. This study investigates the effects of omalizumab, when added to an inhaled corticosteroid (ICS) ± long-acting beta-adrenergic agonist (LABA) treatment, on peripheral small airway/alveolar inflammation reflected by FENO measurements at higher flow rates. We hypothesized that compared with placebo, omalizumab would decrease CalvNO levels in asthmatic patients on ICS ± LABA. Forty-two patients with moderate-to-severe asthma were randomly assigned 2:1 to either omalizumab (n = 29) or placebo treatment (n = 13) for 16 weeks. Selection criteria included moderate-to-severe asthmatic patients on an ICS ± LABA, positive skin test to one or more perennial allergen, screening FENO of >13 ppb, and a baseline IgE of 30-700 IU/mL. FENO measured at multiple flow rates was used to calculate CalvNO over the course of 16 weeks. FENO levels decrease with increasing flow rates (p < 0.05 repeated measures ANOVA) but no differences between the placebo and treatment groups in overall CalvNO levels or in the changes of CalvNO with time were found. Omalizumab did not lower the CalvNO, which could have been caused by the initial low CalvNO in this asthmatic population. The model used may not be completely sufficient and/or sensitive enough to detect small changes in CalvNO.

  20. Nanoparticle-induced oxidation of corona proteins initiates an oxidative stress response in cells†

    PubMed Central

    Jayaram, Dhanya T.; Runa, Sabiha; Kemp, Melissa L.

    2017-01-01

    Titanium dioxide nanoparticles (TiO2 NPs), used as pigments and photocatalysts, are ubiquitous in our daily lives. Previous work has observed cellular oxidative stress in response to the UV-excitation of photocatalytic TiO2 NPs. In comparison, most human exposure to TiO2 NPs takes place in the dark, in the lung following inhalation or in the gut following consumption of TiO2 NP food pigment. Our spectroscopic characterization shows that both photocatalytic and food grade TiO2 NPs, in the dark, generate low levels of reactive oxygen species (ROS), specifically hydroxyl radicals and superoxides. These ROS oxidize serum proteins that form a corona of proteins on the NP surface. This protein layer is the interface between the NP and the cell. An oxidized protein corona triggers an oxidative stress response, detected with PCR and western blotting. Surface modification of TiO2 NPs to increase or decrease surface defects correlates with ROS generation and oxidative stress, suggesting that NP surface defects, likely oxygen vacancies, are the underlying cause of TiO2 NP-induced oxidative stress. PMID:28537609

  1. Protein Quality Control Under Oxidative Stress Conditions

    PubMed Central

    Dahl, Jan-Ulrik; Gray, Michael J.; Jakob, Ursula

    2015-01-01

    Accumulation of reactive oxygen and chlorine species (RO/CS) is generally regarded to be a toxic and highly undesirable event, which serves as contributing factor in aging and many age-related diseases. However, it is also put to excellent use during host defense, when high levels of RO/CS are produced to kill invading microorganisms and regulate bacterial colonization. Biochemical and cell biological studies of how bacteria and other microorganisms deal with RO/CS have now provided important new insights into the physiological consequences of oxidative stress, the major targets that need protection, and the cellular strategies employed by organisms to mitigate the damage. This review examines the redox-regulated mechanisms by which cells maintain a functional proteome during oxidative stress. We will discuss the well-characterized redox-regulated chaperone Hsp33, and review recent discoveries demonstrating that oxidative stress-specific activation of chaperone function is a much more widespread phenomenon than previously anticipated. New members of this group include the cytosolic ATPase Get3 in yeast, the E. coli protein RidA, and the mammalian protein α2-macroglobin. We will conclude our review with recent evidence showing that inorganic polyphosphate (polyP), whose accumulation significantly increases bacterial oxidative stress resistance, works by a protein-like chaperone mechanism. Understanding the relationship between oxidative and proteotoxic stresses will improve our understanding of both host-microbe interactions and of how mammalian cells combat the damaging side effects of uncontrolled RO/CS production, a hallmark of inflammation. PMID:25698115

  2. The Role of Oxidative Stress and Antioxidants in Liver Diseases

    PubMed Central

    Li, Sha; Tan, Hor-Yue; Wang, Ning; Zhang, Zhang-Jin; Lao, Lixing; Wong, Chi-Woon; Feng, Yibin

    2015-01-01

    A complex antioxidant system has been developed in mammals to relieve oxidative stress. However, excessive reactive species derived from oxygen and nitrogen may still lead to oxidative damage to tissue and organs. Oxidative stress has been considered as a conjoint pathological mechanism, and it contributes to initiation and progression of liver injury. A lot of risk factors, including alcohol, drugs, environmental pollutants and irradiation, may induce oxidative stress in liver, which in turn results in severe liver diseases, such as alcoholic liver disease and non-alcoholic steatohepatitis. Application of antioxidants signifies a rational curative strategy to prevent and cure liver diseases involving oxidative stress. Although conclusions drawn from clinical studies remain uncertain, animal studies have revealed the promising in vivo therapeutic effect of antioxidants on liver diseases. Natural antioxidants contained in edible or medicinal plants often possess strong antioxidant and free radical scavenging abilities as well as anti-inflammatory action, which are also supposed to be the basis of other bioactivities and health benefits. In this review, PubMed was extensively searched for literature research. The keywords for searching oxidative stress were free radicals, reactive oxygen, nitrogen species, anti-oxidative therapy, Chinese medicines, natural products, antioxidants and liver diseases. The literature, including ours, with studies on oxidative stress and anti-oxidative therapy in liver diseases were the focus. Various factors that cause oxidative stress in liver and effects of antioxidants in the prevention and treatment of liver diseases were summarized, questioned, and discussed. PMID:26540040

  3. Oxidative stress markers imbalance in late-life depression.

    PubMed

    Diniz, Breno S; Mendes-Silva, Ana Paula; Silva, Lucelia Barroso; Bertola, Laiss; Vieira, Monica Costa; Ferreira, Jessica Diniz; Nicolau, Mariana; Bristot, Giovana; da Rosa, Eduarda Dias; Teixeira, Antonio L; Kapczinski, Flavio

    2018-03-20

    Oxidative stress has been implicated in the pathophysiology of mood disorders in young adults. However, there is few data to support its role in the elderly. The primary aim of this study was to evaluate whether subjects with late-life depression (LLD) presented with changes in oxidative stress response in comparison with the non-depressed control group. We then explored how oxidative stress markers associated with specific features of LLD, in particular cognitive performance and age of onset of major depressive disorder in these individuals. We included a convenience sample of 124 individuals, 77 with LLD and 47 non-depressed subjects (Controls). We measure the plasma levels of 6 oxidative stress markers: thiobarbituric acid reactive substances (TBARS), protein carbonil content (PCC), free 8-isoprostane, glutathione peroxidase (GPx) activity, glutathione reductase (GR) activity, and glutathione S-transferase (GST) activity. We found that participants with LLD had significantly higher free 8-isoprostane levels (p = 0.003) and lower glutathione peroxidase activity (p = 0.006) compared to controls. Free 8-isoprostane levels were also significantly correlated with worse scores in the initiation/perseverance (r = -0.24, p = 0.01), conceptualization (r = -0.22, p = 0.02) sub-scores, and the total scores (r = -0.21, p = 0.04) on the DRS. Our study provides robust evidence of the imbalance between oxidative stress damage, in particular lipid peroxidation, and anti-oxidative defenses as a mechanism related to LLD, and cognitive impairment in this population. Interventions aiming to reduce oxidative stress damage can have a potential neuroprotective effect for LLD subjects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Flow characteristics in the airways of a COPD patient with a saber-sheath trachea

    NASA Astrophysics Data System (ADS)

    Jin, Dohyun; Choi, Haecheon; Lee, Changhyun; Choi, Jiwoong; Kim, Kwanggi

    2016-11-01

    The chronic obstructive pulmonary disease (COPD) is a lung disease characterized by the irreversible airflow limitation caused by the damaged small airways and air sacs. Although COPD is not a disease of the trachea, many patients with COPD have saber-sheath tracheas. The effects of this morphological change in the trachea geometry on airflow are investigated in the present study. An unstructured finite volume method is used for the simulations during tidal breathing in normal and COPD airways, respectively. During inspiration, local large pressure drop is observed in the saber-sheath region of the COPD patient. During expiration, vortical structures are observed at the right main bronchus of the COPD airway, while the flow in the normal airway remains nearly laminar. High wall shear stress exists at convex regions of both airways during inspiration and expiration. However, due to the morphological changes in the COPD airway, relatively higher wall shear stress is observed in the patient airways.

  5. Stressed Oxidation of C/SiC Composites

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Brewer, David N.; Eckel, Andrew J.; Cawley, James D.

    1997-01-01

    Constant load, stressed oxidation testing was performed on T-300 C/SiC composites with a SiC seal coat. Test conditions included temperatures ranging from 350 C to 1500 C at stresses of 69 MPa and 172 MPa (10 and 25 ksi). The coupon subjected to stressed oxidation at 550 C/69 MPa for 25 hours had a room temperature residual strength one-half that of the as-received coupons. The coupon tested at the higher stress and all coupons tested at higher temperatures failed in less than 25 hr. Microstructural analysis of the fracture surfaces, using SEM (scanning electron microscopy), revealed the formation of reduced cross-sectional fibers with pointed tips. Analysis of composite cross-sections show pathways for oxygen ingress. The discussion will focus on fiber/matrix interphase oxidation and debonding as well as the formation and implications of the fiber tip morphology.

  6. Effects of nitrous oxide on the production of cytokines and chemokines by the airway epithelium during anesthesia with sevoflurane and propofol.

    PubMed

    Kumakura, Seiichiro; Yamaguchi, Keisuke; Sugasawa, Yusuke; Murakami, Taisuke; Kikuchi, Toshihiro; Inada, Eiichi; Nagaoka, Isao

    2013-12-01

    The aim of this study was to evaluate the effects of nitrous oxide (a gaseous anesthetic) on the in vivo production of inflammatory cytokines and chemokines by the airway epithelium, when combined with sevoflurane or propofol. Subjects undergoing simple or segmental mastectomy were randomly assigned to the sevoflurane and nitrous oxide, sevoflurane and air, propofol and nitrous oxide, or propofol and air group (all n=13). Epithelial lining fluid (ELF) was obtained using the bronchoscopic microsampling method prior to and following the mastectomy to enable measurement of the pre- and post-operative levels of certain inflammatory cytokines and chemokines using a cytometric bead array system. Notably, the levels of interleukin (IL)-1β, IL-8 and monocyte chemotactic protein-1 (MCP-1) in the ELF were significantly increased following the operations which involved the inhalation of sevoflurane and nitrous oxide, although the levels of these molecules were not significantly changed by the inhalation of sevoflurane and air. Furthermore, the IL-12p70 levels were significantly reduced in the ELF following the operations that involved the inhalation of sevoflurane and air, although the IL-12p70 levels were not significantly changed by the inhalation of nitrous oxide and sevoflurane. These observations suggest that the combination of sevoflurane and nitrous oxide induces an inflammatory response (increased production of IL-1β, IL-8 and MCP-1) and suppresses the anti-inflammatory response (reduced production of IL-12p70) in the local milieu of the airway. Thus, the combination of these compounds should be carefully administered for anesthesia.

  7. 13 reasons why the brain is susceptible to oxidative stress.

    PubMed

    Cobley, James Nathan; Fiorello, Maria Luisa; Bailey, Damian Miles

    2018-05-01

    The human brain consumes 20% of the total basal oxygen (O 2 ) budget to support ATP intensive neuronal activity. Without sufficient O 2 to support ATP demands, neuronal activity fails, such that, even transient ischemia is neurodegenerative. While the essentiality of O 2 to brain function is clear, how oxidative stress causes neurodegeneration is ambiguous. Ambiguity exists because many of the reasons why the brain is susceptible to oxidative stress remain obscure. Many are erroneously understood as the deleterious result of adventitious O 2 derived free radical and non-radical species generation. To understand how many reasons underpin oxidative stress, one must first re-cast free radical and non-radical species in a positive light because their deliberate generation enables the brain to achieve critical functions (e.g. synaptic plasticity) through redox signalling (i.e. positive functionality). Using free radicals and non-radical derivatives to signal sensitises the brain to oxidative stress when redox signalling goes awry (i.e. negative functionality). To advance mechanistic understanding, we rationalise 13 reasons why the brain is susceptible to oxidative stress. Key reasons include inter alia unsaturated lipid enrichment, mitochondria, calcium, glutamate, modest antioxidant defence, redox active transition metals and neurotransmitter auto-oxidation. We review RNA oxidation as an underappreciated cause of oxidative stress. The complex interplay between each reason dictates neuronal susceptibility to oxidative stress in a dynamic context and neural identity dependent manner. Our discourse sets the stage for investigators to interrogate the biochemical basis of oxidative stress in the brain in health and disease. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  8. The impact of oxidative stress on hair.

    PubMed

    Trüeb, R M

    2015-12-01

    Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to detoxify the reactive intermediates or to repair the resulting damage. Reactive oxygen species or free radicals are highly reactive molecules that can directly damage lipids, proteins, and DNA. They are generated by a multitude of endogenous and environmental challenges, while the body possesses endogenous defense mechanisms. With age, production of free radicals increases, while the endogenous defense mechanisms decrease. This imbalance leads to progressive damage of cellular structures, presumably resulting in the aging phenotype. While the role of oxidative stress has been widely discussed in skin aging, little focus has been placed on its impact on hair condition. Moreover, most literature on age-related hair changes focuses on alopecia, but it is equally important that the hair fibers that emerge from the scalp exhibit significant age-related changes that have equal impact on the overall cosmetic properties of hair. Sources of oxidative stress with impact on the pre-emerging fiber include: oxidative metabolism, smoking, UVR, and inflammation from microbial, pollutant, or irritant origins. Sources of oxidative stress with impact on the post-emerging fiber include: UVR (enhanced by copper), chemical insults, and oxidized scalp lipids. The role of the dermatologist is recognition and treatment of pre- and post-emerging factors for lifetime scalp and hair health. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  9. Identification of Scedosporium boydii catalase A1 gene, a reactive oxygen species detoxification factor highly expressed in response to oxidative stress and phagocytic cells.

    PubMed

    Mina, Sara; Staerck, Cindy; d'Almeida, Sènan M; Marot, Agnès; Delneste, Yves; Calenda, Alphonse; Tabiasco, Julie; Bouchara, Jean-Philippe; Fleury, Maxime J J

    2015-12-01

    Scedosporium boydii is an opportunistic filamentous fungus which may be responsible for a large variety of infections in both immunocompetent and immunocompromised individuals. This fungus belongs to the Scedosporium apiospermum species complex which usually ranks second among the filamentous fungi colonizing the airways of patients with cystic fibrosis (CF). Species of the S. apiospermum complex are able to chronically colonize the CF airways suggesting pathogenic mechanisms allowing persistence and growth of these fungi in the respiratory tract. Few putative virulence factors have been purified and characterized so far in the S. apiospermum complex including a cytosolic Cu,Zn-superoxide dismutase (SOD) and a monofunctional catalase (catalase A1). Upon microbial infection, host phagocytes release reactive oxygen species (ROS), such as hydrogen peroxide, as part of the antimicrobial response. Catalases are known to protect pathogens against ROS by degradation of the hydrogen peroxide. Here, we identified the S. boydii catalase A1 gene (CATA1) and investigated its expression in response to the environmental conditions encountered in the CF airways and to the oxidative stress. Results showed that S. boydii CATA1 gene expression is not affected by hypoxia, hypercapnia or pH changes. In contrast, CATA1 gene was overexpressed in response to a chemically induced oxidative stress with a relative gene expression 37-fold higher in the presence of 250 μM H(2)O(2), 20-fold higher with 250 μM menadione and 5-fold higher with 2 mM paraquat. Moreover, S. boydii CATA1 gene expression progressively increased upon exposure to activated THP-1-derived macrophages, reaching a maximum after 12 h (26 fold). Activated HL60-derived neutrophils and activated human peripheral blood neutrophils more rapidly induced S. boydii CATA1 gene overexpression, a maximum gene expression level being reached at 75 min (17 fold) and 60 min (15 fold), respectively. In contrast expression of the gene

  10. IGF-1, oxidative stress, and atheroprotection

    PubMed Central

    Higashi, Yusuke; Sukhanov, Sergiy; Anwar, Asif; Shai, Shaw-Yung; Delafontaine, Patrice

    2009-01-01

    Atherosclerosis is a chronic inflammatory disease in which early endothelial dysfunction and subintimal modified lipoprotein deposition progress to complex, advanced lesions that are predisposed to erosion, rupture and thrombosis. Oxidative stress plays a critical role not only in initial lesion formation but also in lesion progression and destabilization. While growth factors are thought to promote vascular smooth muscle cell proliferation and migration, thereby increasing neointima, recent animal studies indicate that IGF-1 exerts pleiotropic anti-oxidant effects along with anti-inflammatory effects that together reduce atherosclerotic burden. This review discusses the effects of IGF-1 in vascular injury and atherosclerosis models, emphasizing the relationship between oxidative stress and potential atheroprotective actions of IGF-1. PMID:20071192

  11. The Role of Oxidative Stress in Parkinson’s Disease

    PubMed Central

    Dias, Vera; Junn, Eunsung; Mouradian, M. Maral

    2014-01-01

    Oxidative stress plays an important role in the degeneration of dopaminergic neurons in Parkinson’s disease (PD). Disruptions in the physiologic maintenance of the redox potential in neurons interfere with several biological processes, ultimately leading to cell death. Evidence has been developed for oxidative and nitrative damage to key cellular components in the PD substantia nigra. A number of sources and mechanisms for the generation of reactive oxygen species (ROS) are recognized including the metabolism of dopamine itself, mitochondrial dysfunction, iron, neuroinflammatory cells, calcium, and aging. PD causing gene products including DJ-1, PINK1, parkin, alpha-synuclein and LRRK2 also impact in complex ways mitochondrial function leading to exacerbation of ROS generation and susceptibility to oxidative stress. Additionally, cellular homeostatic processes including the ubiquitin-proteasome system and mitophagy are impacted by oxidative stress. It is apparent that the interplay between these various mechanisms contributes to neurodegeneration in PD as a feed forward scenario where primary insults lead to oxidative stress, which damages key cellular pathogenetic proteins that in turn cause more ROS production. Animal models of PD have yielded some insights into the molecular pathways of neuronal degeneration and highlighted previously unknown mechanisms by which oxidative stress contributes to PD. However, therapeutic attempts to target the general state of oxidative stress in clinical trials have failed to demonstrate an impact on disease progression. Recent knowledge gained about the specific mechanisms related to PD gene products that modulate ROS production and the response of neurons to stress may provide targeted new approaches towards neuroprotection. PMID:24252804

  12. Cytoprotective Effects of Pumpkin (Cucurbita Moschata) Fruit Extract against Oxidative Stress and Carbonyl Stress.

    PubMed

    Shayesteh, Reyhaneh; Kamalinejad, Mohammad; Adiban, Hasan; Kardan, Azin; Keyhanfar, Fariborz; Eskandari, Mohammad Reza

    2017-10-01

    Background Diabetes mellitus is a chronic endocrine disorder that is associated with significant mortality and morbidity due to microvascular and macrovascular complications. Diabetes complications accompanied with oxidative stress and carbonyl stress in different organs of human body because of the increased generation of free radicals and impaired antioxidant defense systems. In the meantime, reactive oxygen species (ROS) and reactive carbonyl species (RCS) have key mediatory roles in the development and progression of diabetes complications. Therapeutic strategies have recently focused on preventing such diabetes-related abnormalities using different natural and chemical compounds. Pumpkin ( Cucurbita moschata ) is one of the most important vegetables in the world with a broad-range of pharmacological activities such as antihyperglycemic effect. Methods In the present study, the cytoprotective effects of aqueous extract of C. moschata fruit on hepatocyte cytotoxicity induced by cumene hydroperoxide (oxidative stress model) or glyoxal (carbonylation model) were investigated using freshly isolated rat hepatocytes. Results The extract of C. moschata (50 μg/ml) excellently prevented oxidative and carbonyl stress markers, including hepatocyte lysis, ROS production, lipid peroxidation, glutathione depletion, mitochondrial membrane potential collapse, lysosomal damage, and cellular proteolysis. In addition, protein carbonylation was prevented by C. moschata in glyoxal-induced carbonyl stress. Conclusion It can be concluded that C. moschata has cytoprotective effects in oxidative stress and carbonyl stress models and this valuable vegetable can be considered as a suitable herbal product for the prevention of toxic subsequent of oxidative stress and carbonyl stress seen in chronic hyperglycemia. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Oxidative Stress in Diabetes: Implications for Vascular and Other Complications

    PubMed Central

    Pitocco, Dario; Tesauro, Manfredi; Alessandro, Rizzi; Ghirlanda, Giovanni; Cardillo, Carmine

    2013-01-01

    In recent decades, oxidative stress has become a focus of interest in most biomedical disciplines and many types of clinical research. Increasing evidence shows that oxidative stress is associated with the pathogenesis of diabetes, obesity, cancer, ageing, inflammation, neurodegenerative disorders, hypertension, apoptosis, cardiovascular diseases, and heart failure. Based on these studies, an emerging concept is that oxidative stress is the “final common pathway” through which the risk factors for several diseases exert their deleterious effects. Oxidative stress causes a complex dysregulation of cell metabolism and cell–cell homeostasis; in particular, oxidative stress plays a key role in the pathogenesis of insulin resistance and β-cell dysfunction. These are the two most relevant mechanisms in the pathophysiology of type 2 diabetes and its vascular complications, the leading cause of death in diabetic patients. PMID:24177571

  14. Oxidative Stress in Placenta: Health and Diseases

    PubMed Central

    Wu, Fan; Tian, Fu-Ju; Lin, Yi

    2015-01-01

    During pregnancy, development of the placenta is interrelated with the oxygen concentration. Embryo development takes place in a low oxygen environment until the beginning of the second trimester when large amounts of oxygen are conveyed to meet the growth requirements. High metabolism and oxidative stress are common in the placenta. Reactive oxidative species sometimes harm placental development, but they are also reported to regulate gene transcription and downstream activities such as trophoblast proliferation, invasion, and angiogenesis. Autophagy and apoptosis are two crucial, interconnected processes in the placenta that are often influenced by oxidative stress. The proper interactions between them play an important role in placental homeostasis. However, an imbalance between the protective and destructive mechanisms of autophagy and apoptosis seems to be linked with pregnancy-related disorders such as miscarriage, preeclampsia, and intrauterine growth restriction. Thus, potential therapies to hold oxidative stress in leash, promote placentation, and avoid unwanted apoptosis are discussed. PMID:26693479

  15. Moderate treadmill exercise prevents oxidative stress-induced anxiety-like behavior in rats.

    PubMed

    Salim, Samina; Sarraj, Nada; Taneja, Manish; Saha, Kaustuv; Tejada-Simon, Maria Victoria; Chugh, Gaurav

    2010-04-02

    Recent work has suggested correlation of oxidative stress with anxiety-like behavior. There also is evidence for anxiolytic effects of physical exercise. However, a direct role of oxidative stress in anxiety is not clear and a protective role of physical exercise in oxidative stress-mediated anxiety has never been addressed. In this study, we have utilized rats to test direct involvement of oxidative stress with anxiety-like behavior and have identified oxidative stress mechanisms likely involved in anxiolytic effects of physical exercise. Intraperitoneal injections at non-toxic dose of l-buthionine-(S,R)-sulfoximine (BSO), an agent that increases oxidative stress markers, increased anxiety-like behavior of rats compared to vehicle-treated control rats. Prior 2 weeks treatment with the antioxidant, tempol attenuated BSO-induced anxiety-like behavior of rats suggesting a role of oxidative stress in this phenomenon. Moreover, moderate treadmill exercise prevented BSO-induced anxiety-like behavior of rats and also prevented BSO-mediated increase in oxidative stress markers in serum, urine and brain tissue homogenates from hippocampus, amygdala and locus coeruleus. Thus increasing oxidative stress increases anxiety-like behavior of rats. Moreover, antioxidant or treadmill exercise training both reduce oxidative stress in the rat brain regions implicated in anxiety response and prevent anxiety-like behavior of rats. Published by Elsevier B.V.

  16. A review: oxidative stress in fish induced by pesticides.

    PubMed

    Slaninova, Andrea; Smutna, Miriam; Modra, Helena; Svobodova, Zdenka

    2009-01-01

    The knowledge in oxidative stress in fish has a great importance for environmental and aquatic toxicology. Because oxidative stress is evoked by many chemicals including some pesticides, pro-oxidant factors' action in fish organism can be used to assess specific area pollution or world sea pollution. Hepatotoxic effect of DDT may be related with lipid peroxidation. Releasing of reactive oxygen species (ROS) after HCB exposure can be realized via two ways: via the uncoupling of the electron transport chain from monooxygenase activity and via metabolism of HCB major metabolite pentachlorophenol. Chlorothalonil disrupts mitochondrial metabolism due to the impairment of NADPH oxidase function. Activation of spleen macrophages and a decrease of catalase (CAT) activity have been observed after endosulfan exposure. Excessive release of superoxide radicals after etoxazole exposure can cause a decrease of CAT activity and increase phagocytic activity of splenocytes. Anticholinergic activity of organophosphates leads to the accumulation of ROS and resulting lipid peroxidation. Carbaryl induces changes in the content of glutathione and antioxidant enzymes activities. The antioxidant enzymes changes have been observed after actuation of pesticides deltamethrin and cypermethrin. Bipyridyl herbicides are able to form redox cycles and thereby cause oxidative stress. Low concentrations of simazine do not cause oxidative stress in carps during sub-chronic tests while sublethal concentrations of atrazin can induce oxidative stress in bluegill sunfish. Butachlor causes increased activity of superoxide dismutase -catalase system in the kidney. Rotenon can inhibit the electron transport in mitochondria and thereby increase ROS production. Dichloroaniline, the metabolite of diuron, has oxidative effects. Oxidative damage from fenpyroximate actuation is related to the disruption of mitochondrial redox respiratory chain. Low concentration of glyphosate can cause mild oxidative stress.

  17. Oxidative stress in MeHg-induced neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farina, Marcelo, E-mail: farina@ccb.ufsc.br; Aschner, Michael; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN

    2011-11-15

    Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have beenmore » reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the

  18. Respiratory health of elite athletes – preventing airway injury: a critical review

    PubMed Central

    Kippelen, Pascale; Fitch, Kenneth D; Anderson, Sandra Doreen; Bougault, Valerie; Boulet, Louis-Philippe; Rundell, Kenneth William; Sue-Chu, Malcolm; McKenzie, Donald C

    2012-01-01

    Elite athletes, particularly those engaged in endurance sports and those exposed chronically to airborne pollutants/irritants or allergens, are at increased risk for upper and lower airway dysfunction. Airway epithelial injury may be caused by dehydration and physical stress applied to the airways during severe exercise hyperpnoea and/or by inhalation of noxious agents. This is thought to initiate an inflammatory cascade/repair process that, ultimately, could lead to airway hyperresponsiveness (AHR) and asthma in susceptible athletes. The authors review the evidence relating to prevention or reduction of the risk of AHR/asthma development. Appropriate measures should be implemented when athletes exercise strenuously in an attempt to attenuate the dehydration stress and reduce the exposure to noxious airborne agents. Environmental interventions are the most important. Non-pharmacological strategies can assist, but currently, pharmacological measures have not been demonstrated to be effective. Whether early prevention of airway injury in elite athletes can prevent or reduce progression to AHR/asthma remains to be established. PMID:22522585

  19. Oxidative stress negatively affects human sperm mitochondrial respiration.

    PubMed

    Ferramosca, Alessandra; Pinto Provenzano, Sara; Montagna, Daniela Domenica; Coppola, Lamberto; Zara, Vincenzo

    2013-07-01

    To correlate the level of oxidative stress in serum and seminal fluid and the level of sperm deoxyribonucleic acid (DNA) fragmentation with sperm mitochondrial respiratory efficiency. Sperm mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically treated sperm cells. A possible relationship between sperm mitochondrial respiratory efficiency, the level of oxidative stress, and the level of sperm DNA fragmentation was investigated. Sperm motility was positively correlated with mitochondrial respiration but negatively correlated with oxidative stress and DNA fragmentation. Interestingly, sperm mitochondrial respiratory activity was negatively affected by oxidative stress and DNA fragmentation. Our data indicate that sperm mitochondrial respiration is decreased in patients with high levels of reactive oxygen species by an uncoupling between electron transport and adenosine triphosphate synthesis. This reduction in mitochondrial functionality might be 1 of the reasons responsible for the decrease in spermatozoa motility. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Effect of Ventilation Support on Oxidative Stress and Ischemia-Modified Albumin in Neonates.

    PubMed

    Dursun, Arzu; Okumuş, Nurullah; Erol, Sara; Bayrak, Tülin; Zenciroğlu, Ayşegül

    2016-01-01

    Mechanical ventilation (MV) can induce oxidative stress, which plays a critical role in pulmonary injury in intubated neonates. Ischemia-modified albumin (IMA)-a variant of human serum albumin-is a novel biomarker of myocardial ischemia that occurs due to reactive oxygen species during ischemic insult. This study aimed to investigate IMA production due to oxidative stress induced during MV in neonates. This study included 17 neonates that were ventilated using synchronized intermittent mechanical ventilation (SIMV; SIMV group) and 20 neonates ventilated using continuous positive airway pressure (CPAP; CPAP group). Blood samples were collected from each neonate during ventilation support and following cessation of ventilation support. Total antioxidant capacity (TAC) and total oxidant status (TOS) were measured using the Erel method. IMA was measured via an enzyme-linked immunosorbent assay kit (Cusabio Biotech Co., Ltd., Wuhan, China). The oxidant stress index (OSI) was calculated as OSI = TOS/TAC. Statistical analysis was performed using SPSS v.18.0 (SPSS Inc., Chicago, IL) for Windows. Among the neonates included in the study, mean gestational age was 34.7 ± 3.8 weeks, mean birth weight was 2,553 ± 904 g, and 54% were premature. There were not any significant differences in mean gestational age or birth weight between the SIMV and CPAP groups. Among the neonates in both the groups, mean IMA, TOS, and OSI levels were significantly higher during ventilation support (102.2 ± 9.3 IU mL(-1), 15.5 ± 1.3 µmol H2O2 equivalent L(-1), and 0.85 ± 0.22 arbitrary units [ABU], respectively), as compared with following cessation of ventilation support (82.9 ± 11.9 IU mL(-1), 13.4 ± 1.3 µmol H2O2 equivalent L(-1), and 0.64 ± 0.14 ABU, respectively) (p = 0.001). Among all the neonates in the study, mean TAC was significantly lower during ventilation support than the postventilation support (1.82 ± 0.28 mmol 6-hydroxy-2

  1. A computational study of the respiratory airflow characteristics in normal and obstructed human airways.

    PubMed

    Sul, Bora; Wallqvist, Anders; Morris, Michael J; Reifman, Jaques; Rakesh, Vineet

    2014-09-01

    Obstructive lung diseases in the lower airways are a leading health concern worldwide. To improve our understanding of the pathophysiology of lower airways, we studied airflow characteristics in the lung between the 8th and the 14th generations using a three-dimensional computational fluid dynamics model, where we compared normal and obstructed airways for a range of breathing conditions. We employed a novel technique based on computing the Pearson׳s correlation coefficient to quantitatively characterize the differences in airflow patterns between the normal and obstructed airways. We found that the airflow patterns demonstrated clear differences between normal and diseased conditions for high expiratory flow rates (>2300ml/s), but not for inspiratory flow rates. Moreover, airflow patterns subjected to filtering demonstrated higher sensitivity than airway resistance for differentiating normal and diseased conditions. Further, we showed that wall shear stresses were not only dependent on breathing rates, but also on the distribution of the obstructed sites in the lung: for the same degree of obstruction and breathing rate, we observed as much as two-fold differences in shear stresses. In contrast to previous studies that suggest increased wall shear stress due to obstructions as a possible damage mechanism for small airways, our model demonstrated that for flow rates corresponding to heavy activities, the wall shear stress in both normal and obstructed airways was <0.3Pa, which is within the physiological limit needed to promote respiratory defense mechanisms. In summary, our model enables the study of airflow characteristics that may be impractical to assess experimentally. Published by Elsevier Ltd.

  2. Oxidative Stress and Metabolic Pathologies: From an Adipocentric Point of View

    PubMed Central

    Le Lay, Soazig; Martinez, Maria Carmen; Andriantsitohaina, Ramaroson

    2014-01-01

    Oxidative stress plays a pathological role in the development of various diseases including diabetes, atherosclerosis, or cancer. Systemic oxidative stress results from an imbalance between oxidants derivatives production and antioxidants defenses. Reactive oxygen species (ROS) are generally considered to be detrimental for health. However, evidences have been provided that they can act as second messengers in adaptative responses to stress. Obesity represents a major risk factor for deleterious associated pathologies such as type 2 diabetes, liver, and coronary heart diseases. Many evidences regarding obesity-induced oxidative stress accumulated over the past few years based on established correlations of biomarkers or end-products of free-radical-mediated oxidative stress with body mass index. The hypothesis that oxidative stress plays a significant role in the development of metabolic disorders, especially insulin-resistance state, is supported by several studies where treatments reducing ROS production reverse metabolic alterations, notably through improvement of insulin sensitivity, hyperlipidemia, or hepatic steatosis. In this review, we will develop the mechanistic links between oxidative stress generated by adipose tissue in the context of obesity and its impact on metabolic complications development. We will also attempt to discuss potential therapeutic approaches targeting obesity-associated oxidative stress in order to prevent associated-metabolic complications. PMID:25143800

  3. Oxidative stress status in patients with melasma.

    PubMed

    Seçkin, Havva Yıldız; Kalkan, Göknur; Baş, Yalçın; Akbaş, Ali; Önder, Yalçın; Özyurt, Hüseyin; Sahin, Mehmet

    2014-09-01

    Melasma is an acquired skin disease characterized clinically by development of gray-brown macules or patches. The lesions have geographic borders and most often seen on face and less frequently on the neck and forearms. Pathogenesis has not been completely understood yet. Although the disease constitutes a very disturbing cosmetic problem, it has not obtained an efficient treatment. There were not any studies in the literature that evaluates the role of oxidative stress in melasma. The evaluation of the role of oxidative stress in melasma. Fifty melasma patients and 50 healthy volunteers were included in the study. The diagnosis was made clinically and the patients were evaluated by Melasma Area Severity Index. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) enzyme activities and malondialdehyde, nitric oxide, protein carbonyl levels were measured both in the melasma group and the control group. SOD and GSH-Px enzyme activities were significantly higher in the patient group in comparison with the control group (p < 0.001). Protein carbonyl levels were significantly lower in the patient group (p < 0.001). The results show that the balance between oxidant and anti-oxidants was disrupted and the oxidative stress increased in melasma. These results improve the understanding of etiology-pathogenesis of the disease and its treatment.

  4. Mycotoxin-Containing Diet Causes Oxidative Stress in the Mouse

    PubMed Central

    Hou, Yan-Jun; Zhao, Yong-Yan; Xiong, Bo; Cui, Xiang-Shun; Kim, Nam-Hyung; Xu, Yin-Xue; Sun, Shao-Chen

    2013-01-01

    Mycotoxins which mainly consist of Aflatoxin (AF), Zearalenone (ZEN) and Deoxynivalenol (DON) are commonly found in many food commodities. Although each component has been shown to cause liver toxicity and oxidative stress in several species, there is no evidence regarding the effect of naturally contained multiple mycotoxins on tissue toxicity and oxidative stress in vivo. In the present study, mycotoxins-contaminated maize (AF 597 µg/kg, ZEN 729 µg/kg, DON 3.1 mg/kg maize) was incorporated into the diet at three different doses (0, 5 and 20%) to feed the mice, and blood and tissue samples were collected to examine the oxidative stress related indexes. The results showed that the indexes of liver, kidney and spleen were all increased and the liver and kidney morphologies changed in the mycotoxin-treated mice. Also, the treatment resulted in the elevated glutathione peroxidase (GPx) activity and malondialdehyde (MDA) level in the serum and liver, indicating the presence of the oxidative stress. Moreover, the decrease of catalase (CAT) activity in the serum, liver and kidney as well as superoxide dismutase (SOD) activity in the liver and kidney tissue further confirmed the occurrence of oxidative stress. In conclusion, our data indicate that the naturally contained mycotoxins are toxic in vivo and able to induce the oxidant stress in the mouse. PMID:23555961

  5. IGF-1, oxidative stress and atheroprotection.

    PubMed

    Higashi, Yusuke; Sukhanov, Sergiy; Anwar, Asif; Shai, Shaw-Yung; Delafontaine, Patrice

    2010-04-01

    Atherosclerosis is a chronic inflammatory disease in which early endothelial dysfunction and subintimal modified lipoprotein deposition progress to complex, advanced lesions that are predisposed to erosion, rupture and thrombosis. Oxidative stress plays a crucial role not only in initial lesion formation but also in lesion progression and destabilization. Although most growth factors are thought to promote vascular smooth muscle cell proliferation and migration, thereby increasing neointima, recent animal studies indicate that insulin-like growth factor (IGF)-1 exerts both pleiotropic anti-oxidant effects and anti-inflammatory effects, which together reduce atherosclerotic burden. This review discusses the effects of IGF-1 in models of vascular injury and atherosclerosis, emphasizing the relationship between oxidative stress and potential atheroprotective actions of IGF-1. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. [Influence of dietary intake on plasma biomarkers of oxidative stress in humans].

    PubMed

    Barbosa, K B F; Bressan, J; Zulet, M A; Martínez Hernández, J A

    2008-01-01

    Oxidative stress is related to an imbalance between the production of reactive species and the antioxidant defenses. In essence, oxidative stress has been defined as a disturbance in the pro-oxidant/antioxidant balance, leading to potential damage. It has been suggested that oxidative stress is involved in the etiology of several chronic diseases including cardiovascular disease, diabetes, cancer and neurodegenerative processes. The antioxidant defenses include nonenzymatic (especially dietary antioxidants) and antioxidant enzymes. Vitamins, minerals and phytochemicals (polyphenols and carotenoids) are among the major dietary antioxidants. The assessment of oxidative stress status though specific biomarkers has acquired great importance. The major biomarkers include the products of the attack of free radicals and reactive species to various substrates: lipids, proteins and nucleic acids. Measurement of antioxidant capacity may also involve the assessment of specific oxidative stress biomarkers. Most of the studies that have examined the association between diet and oxidative stress consider the effects of antioxidant supplements (vitamins and minerals), drinks and foods with bioactive compounds or dietary patterns on oxidative stress biomarkers. Some of these studies have demonstrated beneficial results on oxidative stress markers. However, the role of diet on oxidative stress biomarkers remains unclear and represents a potentially fruitful area for further research in the health area.

  7. Influence of Endodontic Treatment on Systemic Oxidative Stress

    PubMed Central

    Inchingolo, Francesco; Marrelli, Massimo; Annibali, Susanna; Cristalli, Maria Paola; Dipalma, Gianna; Inchingolo, Alessio Danilo; Palladino, Antonio; Inchingolo, Angelo Michele; Gargari, Marco; Tatullo, Marco

    2014-01-01

    Introduction: An increased production of oxidizing species related to reactive oral diseases, such as chronic apical periodontitis, could have systemic implications such as an increase in cardiovascular morbidity. Based on this consideration, we conducted a prospective study to assess whether subjects affected by chronic periodontitis presented with higher values of oxidative stress than reference values before endodontic treatment, and whether endodontic treatment can reduce the oxidative imbalance and bring it back to normal in these subjects. Materials and methods: The authors recruited 2 groups of patients from private studies and dental clinics: these patients were recruited randomly. The oxidative balance in both patients with chronic apical periodontitis (CAP) and healthy control patients was determined by measuring the oxidant status, using an identification of the reactive oxygen metabolites (d-ROMs) test, while the antioxidant status in these patients was determined using a biological antioxidant potential (BAP) test. Both these tests were carried on plasma samples taken from enrolled patients. Values were measured both before the endodontic treatment of the patients with chronic apical periodontitis, and 30 and 90 days after treatment, and compared to those obtained from healthy control patients. Results: It was found that, on recruitment, the patients with chronic apical periodontitis exhibited significantly higher levels of oxidative stress than control patients, as determined by the d-ROMs and BAP tests. Furthermore, the d-ROMs test values were shown to decrease and the BAP test values to increase over time in patients with chronic apical periodontitis following endodontic therapy. As the levels of oxidative stress in these patients tended to reduce and return to normal by 90 days following treatment. Conclusions: This study has demonstrated a positive association between chronic apical periodontitis and oxidative stress. Subjects affected by chronic

  8. Staphylococcus aureus CymR Is a New Thiol-based Oxidation-sensing Regulator of Stress Resistance and Oxidative Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Quanjiang; Zhang, Liang; Sun, Fei

    As a human pathogen, Staphylococcus aureus must cope with oxidative stress generated by the human immune system. Here, we report that CymR utilizes its sole Cys-25 to sense oxidative stress. Oxidation followed by thiolation of this cysteine residue leads to dissociation of CymR from its cognate promoter DNA. In contrast, the DNA binding of the CymRC25S mutant was insensitive to oxidation and thiolation, suggesting that CymR senses oxidative stress through oxidation of its sole cysteine to form a mixed disulfide with low molecular weight thiols. The determined crystal structures of the reduced and oxidized forms of CymR revealed that Cys-25more » is oxidized to Cys-25-SOH in the presence of H{sub 2}O{sub 2}. Deletion of cymR reduced the resistance of S. aureus to oxidative stresses, and the resistance was restored by expressing a C25S mutant copy of cymR. In a C25S substitution mutant, the expression of two genes, tcyP and mccB, was constitutively repressed and did not respond to hydrogen peroxide stress, whereas the expression of the genes were highly induced under oxidative stress in a wild-type strain, indicating the critical role of Cys-25 in redox signaling in vivo. Thus, CymR is another master regulator that senses oxidative stress and connects stress responses to virulence regulation in S. aureus.« less

  9. Assessment of Eccentric Exercise-Induced Oxidative Stress Using Oxidation-Reduction Potential Markers

    PubMed Central

    Stagos, Dimitrios; Goutzourelas, Nikolaos; Ntontou, Amalia-Maria; Kafantaris, Ioannis; Deli, Chariklia K.; Poulios, Athanasios; Jamurtas, Athanasios Z.; Bar-Or, David; Kouretas, Dimitrios

    2015-01-01

    The aim of the present study was to investigate the use of static (sORP) and capacity ORP (cORP) oxidation-reduction potential markers as measured by the RedoxSYS Diagnostic System in plasma, for assessing eccentric exercise-induced oxidative stress. Nineteen volunteers performed eccentric exercise with the knee extensors. Blood was collected before, immediately after exercise, and 24, 48, and 72 h after exercise. Moreover, common redox biomarkers were measured, which were protein carbonyls, thiobarbituric acid-reactive substances, total antioxidant capacity in plasma, and catalase activity and glutathione levels in erythrocytes. When the participants were examined as one group, there were not significant differences in any marker after exercise. However, in 11 participants there was a high increase in cORP after exercise, while in 8 participants there was a high decrease. Thus, the participants were divided in low cORP group exhibiting significant decrease in cORP after exercise and in high cORP group exhibiting significant increase. Moreover, only in the low cORP group there was a significant increase in lipid peroxidation after exercise suggesting induction of oxidative stress. The results suggested that high decreases in cORP values after exercise may indicate induction of oxidative stress by eccentric exercise, while high increases in cORP values after exercise may indicate no existence of oxidative stress. PMID:25874019

  10. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    PubMed Central

    Malaviya, Rama; Laskin, Jeffrey D.; Laskin, Debra L.

    2015-01-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. PMID:24398106

  11. Exercise-Induced Oxidative Stress Responses in the Pediatric Population

    PubMed Central

    Avloniti, Alexandra; Chatzinikolaou, Athanasios; Deli, Chariklia K.; Vlachopoulos, Dimitris; Gracia-Marco, Luis; Leontsini, Diamanda; Draganidis, Dimitrios; Jamurtas, Athanasios Z.; Mastorakos, George; Fatouros, Ioannis G.

    2017-01-01

    Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty. PMID:28106721

  12. Electromagnetic Fields, Oxidative Stress, and Neurodegeneration

    PubMed Central

    Consales, Claudia; Merla, Caterina; Marino, Carmela; Benassi, Barbara

    2012-01-01

    Electromagnetic fields (EMFs) originating both from both natural and manmade sources permeate our environment. As people are continuously exposed to EMFs in everyday life, it is a matter of great debate whether they can be harmful to human health. On the basis of two decades of epidemiological studies, an increased risk for childhood leukemia associated with Extremely Low Frequency fields has been consistently assessed, inducing the International Agency for Research on Cancer to insert them in the 2B section of carcinogens in 2001. EMFs interaction with biological systems may cause oxidative stress under certain circumstances. Since free radicals are essential for brain physiological processes and pathological degeneration, research focusing on the possible influence of the EMFs-driven oxidative stress is still in progress, especially in the light of recent studies suggesting that EMFs may contribute to the etiology of neurodegenerative disorders. This review synthesizes the emerging evidences about this topic, highlighting the wide data uncertainty that still characterizes the EMFs effect on oxidative stress modulation, as both pro-oxidant and neuroprotective effects have been documented. Care should be taken to avoid methodological limitations and to determine the patho-physiological relevance of any alteration found in EMFs-exposed biological system. PMID:22991514

  13. Evaluation of oxidative stress in hunting dogs during exercise.

    PubMed

    Pasquini, A; Luchetti, E; Cardini, G

    2010-08-01

    Exercise has been shown to increase the production of reactive oxygen species (ROS) to a point that can exceed antioxidant defenses, to cause oxidative stress. The aim of our trials was to evaluate oxidative stress and recovery times in trained dogs during two different hunting exercises, with reactive oxygen metabolites-derivatives (d-ROMs) and biological antioxidant potential (BAP) tests. A group of nine privately owned Italian hounds were included. A 20-min aerobic exercise and a 4-h aerobic exercise, after 30 days of rest, were performed by the dogs. Our results show an oxidative stress after exercise due to both the high concentration of oxidants (d-ROMs) and the low level of antioxidant power (BAP). Besides, the recovery time is faster after the 4-h aerobic exercise than the 20-min aerobic exercise. Oxidative stress monitoring during dogs exercise could become an interesting aid to establish ideal adaptation to training. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Piracetam improves mitochondrial dysfunction following oxidative stress

    PubMed Central

    Keil, Uta; Scherping, Isabel; Hauptmann, Susanne; Schuessel, Katin; Eckert, Anne; Müller, Walter E

    2005-01-01

    Mitochondrial dysfunction including decrease of mitochondrial membrane potential and reduced ATP production represents a common final pathway of many conditions associated with oxidative stress, for example, hypoxia, hypoglycemia, and aging. Since the cognition-improving effects of the standard nootropic piracetam are usually more pronounced under such pathological conditions and young healthy animals usually benefit little by piracetam, the effect of piracetam on mitochondrial dysfunction following oxidative stress was investigated using PC12 cells and dissociated brain cells of animals treated with piracetam. Piracetam treatment at concentrations between 100 and 1000 μM improved mitochondrial membrane potential and ATP production of PC12 cells following oxidative stress induced by sodium nitroprusside (SNP) and serum deprivation. Under conditions of mild serum deprivation, piracetam (500 μM) induced a nearly complete recovery of mitochondrial membrane potential and ATP levels. Piracetam also reduced caspase 9 activity after SNP treatment. Piracetam treatment (100–500 mg kg−1 daily) of mice was also associated with improved mitochondrial function in dissociated brain cells. Significant improvement was mainly seen in aged animals and only less in young animals. Moreover, the same treatment reduced antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, and glutathione reductase) in aged mouse brain only, which are elevated as an adaptive response to the increased oxidative stress with aging. In conclusion, therapeutically relevant in vitro and in vivo concentrations of piracetam are able to improve mitochondrial dysfunction associated with oxidative stress and/or aging. Mitochondrial stabilization and protection might be an important mechanism to explain many of piracetam's beneficial effects in elderly patients. PMID:16284628

  15. Chrononutrition against Oxidative Stress in Aging

    PubMed Central

    Garrido, M.; Terrón, M. P.; Rodríguez, A. B.

    2013-01-01

    Free radicals and oxidative stress have been recognized as important factors in the biology of aging and in many age-associated degenerative diseases. Antioxidant systems deteriorate during aging. It is, thus, considered that one way to reduce the rate of aging and the risk of chronic disease is to avoid the formation of free radicals and reduce oxidative stress by strengthening antioxidant defences. Phytochemicals present in fruits, vegetables, grains, and other foodstuffs have been linked to reducing the risk of major oxidative stress-induced diseases. Some dietary components of foods possess biological activities which influence circadian rhythms in humans. Chrononutrition studies have shown that not only the content of food, but also the time of ingestion contributes to the natural functioning of the circadian system. Dietary interventions with antioxidant-enriched foods taking into account the principles of chrononutrition are of particular interest for the elderly since they may help amplify the already powerful benefits of phytochemicals as natural instruments with which to prevent or delay the onset of common age-related diseases. PMID:23861994

  16. Mechanical properties of different airway stents.

    PubMed

    Ratnovsky, Anat; Regev, Noa; Wald, Shaily; Kramer, Mordechai; Naftali, Sara

    2015-04-01

    Airway stents improve pulmonary function and quality of life in patients suffering from airway obstruction. The aim of this study was to compare main types of stents (silicone, balloon-dilated metal, self-expanding metal, and covered self-expanding metal) in terms of their mechanical properties and the radial forces they exert on the trachea. Mechanical measurements were carried out using a force gauge and specially designed adaptors fabricated in our lab. Numerical simulations were performed for eight different stent geometries, inserted into trachea models. The results show a clear correlation between stent diameter (oversizing) and the levels of stress it exerts on the trachea. Compared with uncovered metal stents, metal stents that are covered with less stiff material exert significantly less stress on the trachea while still maintaining strong contact with it. The use of such stents may reduce formation of mucosa necrosis and fistulas while still preventing stent migration. Silicone stents produce the lowest levels of stress, which may be due to weak contact between the stent and the trachea and can explain their propensity for migration. Unexpectedly, stents made of the same materials exerted different stresses due to differences in their structure. Stenosis significantly increases stress levels in all stents. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Effect of interface reaction and diffusion on stress-oxidation coupling at high temperature

    NASA Astrophysics Data System (ADS)

    Yue, Mengkun; Dong, Xuelin; Fang, Xufei; Feng, Xue

    2018-04-01

    High-temperature structural materials undergo oxidation during the service, and stress would generate in the oxide film. Understanding the coupling effect between stress and oxidation contributes to the understanding of material degradation and failure during the oxidation process. Here, we propose a model to investigative the coupling effect of stress and oxidation at high temperature by considering the three-stage oxidation process, where both the interface reaction and the diffusion process are present. The governing equations including the oxidation kinetics and stress equilibrium for isothermal oxidation under stress-oxidation coupling effect have been derived. The theory is validated by comparing with the experimental results of SiO2 grown on Si substrate. Results show that the coupling of stress and oxidation influences the growth of the oxide film by affecting all three stages of the oxidation process.

  18. Salivary markers of oxidative stress in oral diseases

    PubMed Central

    Tóthová, L'ubomíra; Kamodyová, Natália; Červenka, Tomáš; Celec, Peter

    2015-01-01

    Saliva is an interesting alternative diagnostic body fluid with several specific advantages over blood. These include non-invasive and easy collection and related possibility to do repeated sampling. One of the obstacles that hinders the wider use of saliva for diagnosis and monitoring of systemic diseases is its composition, which is affected by local oral status. However, this issue makes saliva very interesting for clinical biochemistry of oral diseases. Periodontitis, caries, oral precancerosis, and other local oral pathologies are associated with oxidative stress. Several markers of lipid peroxidation, protein oxidation and DNA damage induced by reactive oxygen species can be measured in saliva. Clinical studies have shown an association with oral pathologies at least for some of the established salivary markers of oxidative stress. This association is currently limited to the population level and none of the widely used markers can be applied for individual diagnostics. Oxidative stress seems to be of local oral origin, but it is currently unclear whether it is caused by an overproduction of reactive oxygen species due to inflammation or by the lack of antioxidants. Interventional studies, both, in experimental animals as well as humans indicate that antioxidant treatment could prevent or slow-down the progress of periodontitis. This makes the potential clinical use of salivary markers of oxidative stress even more attractive. This review summarizes basic information on the most commonly used salivary markers of oxidative damage, antioxidant status, and carbonyl stress and the studies analyzing these markers in patients with caries or periodontitis. PMID:26539412

  19. Nitric oxide donors rescue diabetic nephropathy through oxidative-stress-and nitrosative-stress-mediated Wnt signaling pathways

    PubMed Central

    Hsu, Yung-Chien; Lee, Pei-Hsien; Lei, Chen-Chou; Ho, Cheng; Shih, Ya-Hsueh; Lin, Chun-Liang

    2015-01-01

    Aims/Introduction The role of the renal nitric oxide (NO) system in the pathophysiology of diabetic nephropathy constitutes a very challenging and fertile field for future investigation. The purpose of the present study was to investigate whether NO donors can attenuate diabetic renal fibrosis and apoptosis through modulating oxidative-and nitrosative-stress, and Wnt signaling using in vivo diabetic models. Materials and Methods Diabetic rat was induced by a single intraperitoneal injection of streptozotocin. Rats in each group were intraperitoneally given 2,2′-(hydroxynitrosohydrazino)bis-ethanamine (1 U/kg/day) and vehicle for 28 and 56 consecutive days. Expression of the oxidative-and nitrosative-stress, and Wnt signaling components were examined in kidneys from diabetic animals by quantitative reverse transcription polymerase chain reaction, western blot analysis and immunohistochemical staining. Results NO donor treatment significantly reduced the ratio of kidney weight to bodyweight and proteinuria. This treatment also significantly restored the suppressive effect of diabetes on urinary NO2 + NO3 levels. Immunohistochemistry showed that NO donor treatment significantly reduced transforming growth factor (TGF)-β1, fibronectin, cleaved caspase-3 and triphosphate-biotin nick end-labeling expression in the glomeruli of diabetic rats. We found that diabetes promoted 8-hydroxy-2′-deoxyguanosine, and peroxynitrite expression coincided with reduced endothelial NO synthase expression in glomeruli. Interestingly, NO donor treatment completely removed oxidative stress and nitrosative stress, and restored endothelial NO synthase expression in diabetic renal glomeruli. Immunohistomorphometry results showed that NO donor treatment significantly restored suppressed Wnt5a expression and β-catenin immunoreactivities in glomeruli. Based on laser-captured microdissection for quantitative reverse transcription polymerase chain reaction, diabetes significantly increased

  20. Oxidative stress in hepatitis C infected end-stage renal disease subjects

    PubMed Central

    Horoz, Mehmet; Bolukbas, Cengiz; Bolukbas, Filiz F; Aslan, Mehmet; Koylu, Ahmet O; Selek, Sahbettin; Erel, Ozcan

    2006-01-01

    Background Both uremia and hepatitis C infection is associated with increased oxidative stress. In the present study, we aimed to find out whether hepatitis C infection has any impact on oxidative stress in hemodialysis subjects. Methods Sixteen hepatitis C (+) hemodialysis subjects, 24 hepatitis C negative hemodialysis subjects and 24 healthy subjects were included. Total antioxidant capacity, total peroxide level and oxidative stress index were determined in all subjects. Results Total antioxidant capacity was significantly higher in controls than hemodialysis subjects with or without hepatitis C infection (all p < 0.05/3), while total peroxide level and oxidative stress index were significantly lower (all p < 0.05/3). Hepatitis C (-) hemodialysis subjects had higher total antioxidant capacity compared to hepatitis C (+) hemodialysis subjects (all p < 0.05/3). Total peroxide level and oxidative stress index was comparable between hemodialysis subjects with or without hepatitis C infection (p > 0.05/3). Conclusion Oxidative stress is increased in both hepatitis C (+) and hepatitis C (-) hemodialysis subjects. However, hepatitis C infection seems to not cause any additional increase in oxidative stress in hemodialysis subjects and it may be partly due to protective effect of dialysis treatment on hepatitis C infection. PMID:16842626

  1. Oxidative stress in hepatitis C infected end-stage renal disease subjects.

    PubMed

    Horoz, Mehmet; Bolukbas, Cengiz; Bolukbas, Filiz F; Aslan, Mehmet; Koylu, Ahmet O; Selek, Sahbettin; Erel, Ozcan

    2006-07-14

    Both uremia and hepatitis C infection is associated with increased oxidative stress. In the present study, we aimed to find out whether hepatitis C infection has any impact on oxidative stress in hemodialysis subjects. Sixteen hepatitis C (+) hemodialysis subjects, 24 hepatitis C negative hemodialysis subjects and 24 healthy subjects were included. Total antioxidant capacity, total peroxide level and oxidative stress index were determined in all subjects. Total antioxidant capacity was significantly higher in controls than hemodialysis subjects with or without hepatitis C infection (all p < 0.05/3), while total peroxide level and oxidative stress index were significantly lower (all p < 0.05/3). Hepatitis C (-) hemodialysis subjects had higher total antioxidant capacity compared to hepatitis C (+) hemodialysis subjects (all p < 0.05/3). Total peroxide level and oxidative stress index was comparable between hemodialysis subjects with or without hepatitis C infection (p > 0.05/3). Oxidative stress is increased in both hepatitis C (+) and hepatitis C (-) hemodialysis subjects. However, hepatitis C infection seems to not cause any additional increase in oxidative stress in hemodialysis subjects and it may be partly due to protective effect of dialysis treatment on hepatitis C infection.

  2. Airway Basal Cells. The “Smoking Gun” of Chronic Obstructive Pulmonary Disease

    PubMed Central

    2014-01-01

    The earliest abnormality in the lung associated with smoking is hyperplasia of airway basal cells, the stem/progenitor cells of the ciliated and secretory cells that are central to pulmonary host defense. Using cell biology and ’omics technologies to assess basal cells isolated from bronchoscopic brushings of nonsmokers, smokers, and smokers with chronic obstructive pulmonary disease (COPD), compelling evidence has been provided in support of the concept that airway basal cells are central to the pathogenesis of smoking-associated lung diseases. When confronted by the chronic stress of smoking, airway basal cells become disorderly, regress to a more primitive state, behave as dictated by their inheritance, are susceptible to acquired changes in their genome, lose the capacity to regenerate the epithelium, are responsible for the major changes in the airway that characterize COPD, and, with persistent stress, can undergo malignant transformation. Together, these observations led to the conclusion that accelerated loss of lung function in susceptible individuals begins with disordered airway basal cell biology (i.e., that airway basal cells are the “smoking gun” of COPD, a potential target for the development of therapies to prevent smoking-related lung disorders). PMID:25354273

  3. A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress.

    PubMed

    Chaudhari, Namrata; Talwar, Priti; Parimisetty, Avinash; Lefebvre d'Hellencourt, Christian; Ravanan, Palaniyandi

    2014-01-01

    Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER) is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded-protein response (UPR) through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS). Toxic accumulation of ROS within ER and mitochondria disturbs fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways have been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease, and others. In this review, we have discussed the UPR signaling pathways, and networking between ER stress-induced inflammatory pathways, oxidative stress, and mitochondrial signaling events, which further induce or exacerbate ER stress.

  4. A Molecular Web: Endoplasmic Reticulum Stress, Inflammation, and Oxidative Stress

    PubMed Central

    Chaudhari, Namrata; Talwar, Priti; Parimisetty, Avinash; Lefebvre d’Hellencourt, Christian; Ravanan, Palaniyandi

    2014-01-01

    Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER) is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded-protein response (UPR) through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS). Toxic accumulation of ROS within ER and mitochondria disturbs fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways have been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease, and others. In this review, we have discussed the UPR signaling pathways, and networking between ER stress-induced inflammatory pathways, oxidative stress, and mitochondrial signaling events, which further induce or exacerbate ER stress. PMID:25120434

  5. Nanomaterial induction of oxidative stress in lung epithelial cells and macrophages

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Pal, Anoop K.; Isaacs, Jacqueline A.; Bello, Dhimiter; Carrier, Rebecca L.

    2014-09-01

    Oxidative stress in the lung epithelial A549 cells and macrophages J774A.1 due to contact with commercially important nanomaterials [i.e., nano-silver (nAg), nano-alumina (nAl2O3), single-wall carbon nanotubes (CNT), and nano-titanium oxide anatase (nTiO2)] was evaluated. Nanomaterial-induced intracellular oxidative stress was analyzed by both H2DCFDA fluorescein probe and GSH depletion, extracellular oxidative stress was assessed by H2HFF fluorescein probes, and the secretion of chemokine IL-8 by A549 cells due to elevation of cellular oxidative stress was also monitored, in order to provide a comprehensive in vitro study on nanomaterial-induced oxidative stress in lung. In addition, results from this study were also compared with an acellular "ferric reducing ability of serum" (FRAS) assay and a prokaryotic cell-based assay in evaluating oxidative damage caused by the same set of nanomaterials, for comparison purposes. In general, it was found that nanomaterial-induced oxidative stress is highly cell-type dependent. In A549 lung epithelial cells, nAg appeared to induce highest level of oxidative stress and cell death followed by CNT, nTiO2, and nAl2O3. Different biological oxidative damage (BOD) assays' (i.e., H2DCFA, GSH, and IL-8 release) results generally agreed with each other, and the same trends of nanomaterial-induced BOD were also observed in acellular FRAS and prokaryotic E. coli K12-based assay. In macrophage J774A.1 cells, nAl2O3 and nTiO2 appeared to induce highest levels of oxidative stress. These results suggest that epithelial and macrophage cell models may provide complimentary information when conducting cell-based assays to evaluate nanomaterial-induced oxidative damage in lung.

  6. [Oxidative stress. Should it be measured in the diabetic patient?].

    PubMed

    Villa-Caballero, L; Nava-Ocampo, A A; Frati-Munari, A C; Ponce-Monter, H

    2000-01-01

    Oxidative stress has been defined as a loss of counterbalance between free radical or reactive oxygen species production and the antioxidant systems, with negative effects on carbohydrates, lipids, and proteins. It is also involved in the progression of different chronic diseases and apoptosis. Diabetes mellitus is associated to a high oxidative stress level through different biochemical pathways, i.e. protein glycosylation, glucose auto-oxidation, and the polyol pathway, mainly induced by hyperglycemia. Oxidative stress could also be involved in the pathogenesis of atherosclerotic lesions and other chronic diabetic complications. Measurement of oxidative stress could be useful to investigate its role in the initiation and development processes of chronic diabetic complications and also to evaluate preventive actions, including antioxidative therapy. Different attempts have been made to obtain a practical, accurate, specific, and sensitive method to evaluate oxidative stress in clinical practice. However, this ideal method is not currently available to date and the usefulness of the current methods needs to be confirmed in daily practice. We suggest quantifying oxidated and reduced glutation (GSSG/GSH) and the thiobarbituric reactive substances (TBARS) with currently alternatives. Currently available alternative methods while we await better options.

  7. Oxidative stress in juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum)

    USGS Publications Warehouse

    Welker, T.L.; Congleton, J.L.

    2004-01-01

    Juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum), were held in 8-11??C freshwater, starved for 3 days and subjected to a low-water stressor to determine the relationship between the general stress response and oxidative stress. Lipid peroxidation (LPO) levels (lipid hydroperoxides) were measured in kidney, liver and brain samples taken at the beginning of the experiment (0-h unstressed controls) and at 6, 24 and 48 h after application of a continuous low-water stressor. Tissue samples were also taken at 48 h from fish that had not been exposed to the stressor (48-h unstressed controls). Exposure to the low-water stressor affected LPO in kidney and brain tissues. In kidney, LPO decreased 6 h after imposition of the stressor; similar but less pronounced decreases also occurred in the liver and brain. At 48 h, LPO increased (in comparison with 6-h stressed tissues) in the kidney and brain. In comparison with 48-h unstressed controls, LPO levels were higher in the kidney and brain of stressed fish. Although preliminary, results suggest that stress can cause oxidative tissue damage in juvenile chinook salmon. Measures of oxidative stress have shown similar responses to stress in mammals; however, further research is needed to determine the extent of the stress-oxidative stress relationship and the underlying physiological mechanisms in fish.

  8. The Role of Oxidative Stress in Cerebral Aneurysm Formation and Rupture

    PubMed Central

    Starke, Robert M.; Chalouhi, Nohra; Ali, Muhammad S.; Jabbour, Pascal M.; Tjoumakaris, Stavropoula I.; Gonzalez, L. Fernando; Rosenwasser, Robert H.; Koch, Walter J.; Dumont, Aaron S.

    2013-01-01

    Oxidative stress is known to contribute to the progression of cerebrovascular disease. Additionally, oxidative stress may be increased by, but also augment inflammation, a key contributor to cerebral aneurysm development and rupture. Oxidative stress can induce important processes leading to cerebral aneurysm formation including direct endothelial injury as well as smooth muscle cell phenotypic switching to an inflammatory phenotype and ultimately apoptosis. Oxidative stress leads to recruitment and invasion of inflammatory cells through upregulation of chemotactic cytokines and adhesion molecules. Matrix metalloproteinases can be activated by free radicals leading to vessel wall remodeling and breakdown. Free radicals mediate lipid peroxidation leading to atherosclerosis and contribute to hemodynamic stress and hypertensive pathology, all integral elements of cerebral aneurysm development. Preliminary studies suggest that therapies targeted at oxidative stress may provide a future beneficial treatment for cerebral aneurysms, but further studies are indicated to define the role of free radicals in cerebral aneurysm formation and rupture. The goal of this review is to assess the role of oxidative stress in cerebral aneurysm pathogenesis. PMID:23713738

  9. Oxidative stress and skin diseases: possible role of physical activity.

    PubMed

    Kruk, Joanna; Duchnik, Ewa

    2014-01-01

    The skin is the largest body organ that regulates excretion of metabolic waste products, temperature, and plays an important role in body protection against environmental physical and chemical, as well as biological factors. These include agents that may act as oxidants or catalysts of reactions producing reactive oxygen species (ROS), reactive nitrogen species (RNS), and other oxidants in skin cells. An increased amount of the oxidants, exceeding the antioxidant defense system capacity is called oxidative stress, leading to chronic inflammation, which, in turn, can cause collagen fragmentation and disorganization of collagen fibers and skin cell functions, and thus contribute to skin diseases including cancer. Moreover, research suggests that oxidative stress participates in all stages of carcinogenesis. We report here a summary of the present state of knowledge on the role of oxidative stress in pathogenesis of dermatologic diseases, defensive systems against ROS/RNS, and discuss how physical activity may modulate skin diseases through effects on oxidative stress. The data show duality of physical activity actions: regular moderate activity protects against ROS/RNS damage, and endurance exercise with a lack of training mediates oxidative stress. These findings indicate that the redox balance should be considered in the development of new antioxidant strategies linked to the prevention and therapy of skin diseases.

  10. Selected oxidative stress markers in a South American crocodilian species.

    PubMed

    Furtado-Filho, Orlando V; Polcheira, Cássia; Machado, Daniel P; Mourão, Guilherme; Hermes-Lima, Marcelo

    2007-01-01

    Crocodilians and other diving vertebrates experience hypoperfusion and hypoxia of several internal organs during long dives. At the end of a dive, reperfusion of aerated blood may cause a physiologically relevant oxidative stress. In this study, we analyzed selected markers of oxidative stress in eight organs of normoxic Paraguayan caiman (Caiman yacare) captured in the Brazilian Pantanal wetlands during the winter of 2001 (six mature-adult males and eight young-adult males; AD-1 and YA-1 groups, respectively), and during the summer of 2002 (six young-adult males (YA-2 group), ten hatchlings and five embryos). Lipid peroxidation products determined by three different assays were generally highest in brain, liver and kidney (in comparison with all other organs), and lowest in white muscles from the tail and hind legs. Liver and kidney showed the highest levels of carbonyl protein, while brain showed low levels. Intermediate levels of oxidative stress markers were mostly found in the heart ventricles and lung. Differences in oxidative stress markers between AD-1 and YA-1 were organ-specific, showing no age-related correlation. However, most oxidative stress markers in YA-2 organs were either higher than (by 1.4- to 3.7-fold) or not significantly different from respective values in hatchlings organs. This pattern (hatchlings versus young-adults) was confirmed using correlation analysis of individual caiman size versus levels of oxidative damage markers in four organs. The higher level of oxidative stress markers in young-adults possibly relates to the fast growth rate (and thus, increased oxidative metabolic rate) of C. yacare in the first years of life. Differences in oxidative stress markers between YA-1 and YA-2 were also observed and were ascribed to seasonal changes in free radical metabolism. These results in normoxic C. yacare represent the first step towards understanding the age-related physiological oxidative stress of a diving reptile from a seasonally

  11. Nitric oxide and vasoactive intestinal peptide as co-transmitters of airway smooth-muscle relaxation: analysis in neuronal nitric oxide synthase knockout mice.

    PubMed

    Hasaneen, Nadia A; Foda, Hussein D; Said, Sami I

    2003-09-01

    Both vasoactive intestinal peptide (VIP) and nitric oxide (NO) relax airway smooth muscle and are potential co-transmitters of neurogenic airway relaxation. The availability of neuronal NO synthase (nNOS) knockout mice (nNOS-/-) provides a unique opportunity for evaluating NO. To evaluate the relative importance of NO, especially that generated by nNOS, and VIP as transmitters of the inhibitory nonadrenergic, noncholinergic (NANC) system. In this study, we compared the neurogenic (tetrodotoxin-sensitive) NANC relaxation of tracheal segments from nNOS-/- mice and control wild-type mice (nNOS(+/+)), induced by electrical field stimulation (EFS). We also examined the tracheal contractile response to methacholine and its relaxant response to VIP. EFS (at 60 V for 2 ms, at 10, 15, or 20 Hz) dose-dependently reduced tracheal tension, and the relaxations were consistently smaller (approximately 40%) in trachea from nNOS-/- mice than from control wild-type mice (p < 0.001). VIP (10(- 8) to 10(-6) mol/L) induced concentration-dependent relaxations that were approximately 50% smaller in nNOS-/- tracheas than in control tracheas. Methacholine induced concentration-dependent contractions that were consistently higher in the nNOS-/- tracheas relative to wild-type mice tracheas (p > 0.05). Our data suggest that, in mouse trachea, NO is probably responsible for mediating a large (approximately 60%) component of neurogenic NANC relaxation, and a similar (approximately 50%) component of the relaxant effect of VIP. The results imply that NO contributes significantly to neurogenic relaxation of mouse airway smooth muscle, whether due to neurogenic stimulation or to the neuropeptide VIP.

  12. Measured Pulmonary and Systemic Markers of Inflammation and Oxidative Stress Following Wildland Firefighter Simulations.

    PubMed

    Ferguson, Matthew D; Semmens, Erin O; Dumke, Charles; Quindry, John C; Ward, Tony J

    2016-04-01

    A controlled human exposure study was conducted to investigate the impact of inhalational exposures to wood smoke PM2.5 on measured concentrations of airway and systemic inflammatory biomarkers. Mimicking wildland firefighter activities, 10 participants were exposed to three doses of wood smoke PM2.5 (filtered-air, 250 μg/m, and 500 μg/m) while exercising on a treadmill. Exhaled breath condensate (EBC) and blood plasma samples were obtained pre-, immediately post-, and 1-hour postexposure. 8-isoprostane, pH, and myeloperoxidase were measured in EBC, while H2O2, surfactant protein D, and pentraxin-3 (PTX3) were measured in both EBC and plasma. Only pH, 8-isoprostane, and PTX3 displayed significant changes when comparing pre- and postexposures. Markers of inflammation and oxidative stress, including PTX3, pH, and 8-isoprostane in EBC and/or plasma, are sensitive to wood smoke inhalation, with further investigations warranted.

  13. Measured pulmonary and systemic markers of inflammation and oxidative stress following wildland firefighter simulations

    PubMed Central

    Ferguson, Matthew D.; Semmens, Erin O.; Dumke, Charles; Quindry, John C.; Ward, Tony J.

    2016-01-01

    Objective A controlled human exposure study was conducted to investigate the impact of inhalational exposures to wood smoke PM2.5 on measured concentrations of airway and systemic inflammatory biomarkers. Methods Mimicking wildland firefighter activities, 10 participants were exposed to three doses of wood smoke PM2.5 (filtered-air, 250 µg/m3, and 500 µg/m3) while exercising on a treadmill. Exhaled breath condensate (EBC) and blood plasma samples were obtained pre-, immediately post-, and 1-hour post-exposure. 8-isoprostane, pH, and myeloperoxidase were measured in EBC while H2O2, surfactant protein D, and pentraxin-3 (PTX3) were measured in both EBC and plasma. Results Only pH, 8-isoprostane, and PTX3 displayed significant changes when comparing pre- and post- exposures. Conclusions Markers of inflammation and oxidative stress, including PTX3, pH, and 8-isoprostane in EBC and/or plasma, are sensitive to wood smoke inhalation, with further investigations warranted. PMID:27058482

  14. Potential role of punicalagin against oxidative stress induced testicular damage.

    PubMed

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg-1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility.

  15. Potential role of punicalagin against oxidative stress induced testicular damage

    PubMed Central

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg−1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility. PMID:26763544

  16. Mechanisms of Heightened Airway Sensitivity and Responses to Inhaled SO2 in Asthmatics.

    PubMed

    Reno, Anita L; Brooks, Edward G; Ameredes, Bill T

    2015-01-01

    Sulfur dioxide (SO2) is a problematic inhalable air pollutant in areas of widespread industrialization, not only in the United States but also in countries undergoing rapid industrialization, such as China, and it can be a potential trigger factor for asthma exacerbations. It is known that asthmatics are sensitive to the effects of SO2; however, the basis of this enhanced sensitivity remains incompletely understood. A PubMed search was performed over the course of 2014, encompassing the following terms: asthma, airway inflammation, sulfur dioxide, IL-10, mouse studies, and human studies. This search indicated that biomarkers of SO2 exposure, SO2 effects on airway epithelial cell function, and animal model data are useful in our understanding of the body's response to SO2, as are SO2-associated amplification of allergic inflammation, and potential promotion of neurogenic inflammation due to chemical irritant properties. While definitive answers are still being sought, these areas comprise important foci of consideration regarding asthmatic responses to inhaled SO2. Furthermore, IL-10 deficiency associated with asthma may be another important factor associated with an inability to resolve inflammation and mitigate oxidative stress resulting from SO2 inhalation, supporting the idea that asthmatics are predisposed to SO2 sensitivity, leading to asthma exacerbations and airway dysfunction.

  17. Mechanisms of Heightened Airway Sensitivity and Responses to Inhaled SO2 in Asthmatics

    PubMed Central

    Reno, Anita L; Brooks, Edward G; Ameredes, Bill T

    2015-01-01

    Sulfur dioxide (SO2) is a problematic inhalable air pollutant in areas of widespread industrialization, not only in the United States but also in countries undergoing rapid industrialization, such as China, and it can be a potential trigger factor for asthma exacerbations. It is known that asthmatics are sensitive to the effects of SO2; however, the basis of this enhanced sensitivity remains incompletely understood. A PubMed search was performed over the course of 2014, encompassing the following terms: asthma, airway inflammation, sulfur dioxide, IL-10, mouse studies, and human studies. This search indicated that biomarkers of SO2 exposure, SO2 effects on airway epithelial cell function, and animal model data are useful in our understanding of the body’s response to SO2, as are SO2-associated amplification of allergic inflammation, and potential promotion of neurogenic inflammation due to chemical irritant properties. While definitive answers are still being sought, these areas comprise important foci of consideration regarding asthmatic responses to inhaled SO2. Furthermore, IL-10 deficiency associated with asthma may be another important factor associated with an inability to resolve inflammation and mitigate oxidative stress resulting from SO2 inhalation, supporting the idea that asthmatics are predisposed to SO2 sensitivity, leading to asthma exacerbations and airway dysfunction. PMID:25922579

  18. Chronic unpredictable mild stress generates oxidative stress and systemic inflammation in rats.

    PubMed

    López-López, Ana Laura; Jaime, Herlinda Bonilla; Escobar Villanueva, María Del Carmen; Padilla, Malinalli Brianza; Palacios, Gonzalo Vázquez; Aguilar, Francisco Javier Alarcón

    2016-07-01

    Stress is considered to be a causal agent of chronic degenerative diseases, such as cardiovascular disease, diabetes mellitus, arthritis and Alzheimer's. Chronic glucocorticoid and catecholamine release into the circulation during the stress response has been suggested to activate damage mechanisms, which in the long term produce metabolic alterations associated with oxidative stress and inflammation. However, the consequences of stress in animal models for periods longer than 40days have not been explored. The goal of this work was to determine whether chronic unpredictable mild stress (CUMS) produced alterations in the redox state and the inflammatory profile of rats after 20, 40, and 60days. CUMS consisted of random exposure of the animals to different stressors. The following activities were measured in the liver and pancreas: reduced glutathione (GSH), lipid peroxidation (LPO), superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (TAC), and protein oxidation. Similarly, serum cytokine levels (IL-6, TNF-α, IL-1β, and IL-10) were determined. CUMS activated the stress response from day 20 until day 60. In the liver and pancreas, GHS levels were decreased from day 40, whereas protein lipid peroxidation and protein oxidation were increased. This is the first work to report that the pancreas redox state is subject to chronic stress conditions. The TAC was constant in the liver and reduced in the pancreas. An increase in the TNF-α, IL-1β, and IL-6 inflammatory markers and a decrease in the IL-10 level due to CUMS was shown, thereby resulting in the generation of a systemic inflammation state after 60days of treatment. Together, the CUMS consequences on day 60 suggest that both processes can contribute to the development of chronic degenerative diseases, such as cardiovascular disease and diabetes mellitus. CUMS is an animal model that in addition to avoiding habituation activates damage mechanisms such as oxidative stress and low-grade chronic

  19. Oxidative stress treatment for clinical trials in neurodegenerative diseases.

    PubMed

    Ienco, Elena Caldarazzo; LoGerfo, Annalisa; Carlesi, Cecilia; Orsucci, Daniele; Ricci, Giulia; Mancuso, Michelangelo; Siciliano, Gabriele

    2011-01-01

    Oxidative stress is a metabolic condition arising from imbalance between the production of potentially reactive oxygen species and the scavenging activities. Mitochondria are the main providers but also the main scavengers of cell oxidative stress. The role of mitochondrial dysfunction and oxidative stress in the pathogenesis of neurodegenerative diseases is well documented. Therefore, therapeutic approaches targeting mitochondrial dysfunction and oxidative damage hold great promise in neurodegenerative diseases. Despite this evidence, human experience with antioxidant neuroprotectants has generally been negative with regards to the clinical progress of disease, with unclear results in biochemical assays. Here we review the antioxidant approaches performed so far in neurodegenerative diseases and the future challenges in modern medicine.

  20. Protein Sulfenylation: A Novel Readout of Environmental Oxidant Stress

    EPA Science Inventory

    Oxidative stress is a commonly cited mechanism of toxicity of environmental agents. Ubiquitous environmental chemicals such as the diesel exhaust component 1,2-naphthoquinone (1,2-NQ)induce oxidative stress by redox cycling, which generates hydrogen peroxide (H202). Cysteinylthio...

  1. A mechanical design principle for tissue structure and function in the airway tree.

    PubMed

    LaPrad, Adam S; Lutchen, Kenneth R; Suki, Béla

    2013-01-01

    With every breath, the dynamically changing mechanical pressures must work in unison with the cells and soft tissue structures of the lung to permit air to efficiently traverse the airway tree and undergo gas exchange in the alveoli. The influence of mechanics on cell and tissue function is becoming apparent, raising the question: how does the airway tree co-exist within its mechanical environment to maintain normal cell function throughout its branching structure of diminishing dimensions? We introduce a new mechanical design principle for the conducting airway tree in which mechanotransduction at the level of cells is driven to orchestrate airway wall structural changes that can best maintain a preferred mechanical microenvironment. To support this principle, we report in vitro radius-transmural pressure relations for a range of airway radii obtained from healthy bovine lungs and model the data using a strain energy function together with a thick-walled cylinder description. From this framework, we estimate circumferential stresses and incremental Young's moduli throughout the airway tree. Our results indicate that the conducting airways consistently operate within a preferred mechanical homeostatic state, termed mechanical homeostasis, that is characterized by a narrow range of circumferential stresses and Young's moduli. This mechanical homeostatic state is maintained for all airways throughout the tree via airway wall dimensional and mechanical relationships. As a consequence, cells within the airway walls throughout the airway tree experience similar oscillatory strains during breathing that are much smaller than previously thought. Finally, we discuss the potential implications of how the maintenance of mechanical homeostasis, while facilitating healthy tissue-level alterations necessary for maturation, may lead to airway wall structural changes capable of chronic asthma.

  2. A Mechanical Design Principle for Tissue Structure and Function in the Airway Tree

    PubMed Central

    LaPrad, Adam S.; Lutchen, Kenneth R.; Suki, Béla

    2013-01-01

    With every breath, the dynamically changing mechanical pressures must work in unison with the cells and soft tissue structures of the lung to permit air to efficiently traverse the airway tree and undergo gas exchange in the alveoli. The influence of mechanics on cell and tissue function is becoming apparent, raising the question: how does the airway tree co-exist within its mechanical environment to maintain normal cell function throughout its branching structure of diminishing dimensions? We introduce a new mechanical design principle for the conducting airway tree in which mechanotransduction at the level of cells is driven to orchestrate airway wall structural changes that can best maintain a preferred mechanical microenvironment. To support this principle, we report in vitro radius-transmural pressure relations for a range of airway radii obtained from healthy bovine lungs and model the data using a strain energy function together with a thick-walled cylinder description. From this framework, we estimate circumferential stresses and incremental Young's moduli throughout the airway tree. Our results indicate that the conducting airways consistently operate within a preferred mechanical homeostatic state, termed mechanical homeostasis, that is characterized by a narrow range of circumferential stresses and Young's moduli. This mechanical homeostatic state is maintained for all airways throughout the tree via airway wall dimensional and mechanical relationships. As a consequence, cells within the airway walls throughout the airway tree experience similar oscillatory strains during breathing that are much smaller than previously thought. Finally, we discuss the potential implications of how the maintenance of mechanical homeostasis, while facilitating healthy tissue-level alterations necessary for maturation, may lead to airway wall structural changes capable of chronic asthma. PMID:23737742

  3. Impact of early life stress on the pathogenesis of mental disorders: relation to brain oxidative stress.

    PubMed

    Schiavone, Stefania; Colaianna, Marilena; Curtis, Logos

    2015-01-01

    Stress is an inevitable part of human life and it is experienced even before birth. Stress to some extent could be considered normal and even necessary for the survival and the regular psychological development during childhood or adolescence. However, exposure to prolonged stress could become harmful and strongly impact mental health increasing the risk of developing psychiatric disorders. Recent studies have attempted to clarify how the human central nervous system (CNS) reacts to early life stress, focusing mainly on neurobiological modifications. Oxidative stress, defined as a disequilibrium between the oxidant generation and the antioxidant response, has been recently described as a candidate for most of the observed modifications. In this review, we will discuss how prolonged stressful events during childhood or adolescence (such as early maternal separation, parental divorce, physical violence, sexual or psychological abuses, or exposure to war events) can lead to increased oxidative stress in the CNS and enhance the risk to develop psychiatric diseases such as anxiety, depression, drug abuse or psychosis. Defining the sources of oxidative stress following exposure to early life stress might open new beneficial insights in therapeutic approaches to these mental disorders.

  4. Quercetin prevents chronic unpredictable stress induced behavioral dysfunction in mice by alleviating hippocampal oxidative and inflammatory stress.

    PubMed

    Mehta, Vineet; Parashar, Arun; Udayabanu, Malairaman

    2017-03-15

    It is now evident that chronic stress is associated with anxiety, depression and cognitive dysfunction and very few studies have focused on identifying possible methods to prevent these stress-induced disorders. Previously, we identified abundance of quercetin in Urtica dioica extract, which efficiently attenuated stress related complications. Therefore, current study was designed to investigate the effect of quercetin on chronic unpredicted stress (CUS) induced behavioral dysfunction, oxidative stress and neuroinflammation in the mouse hippocampus. Animals were subjected to unpredicted stress for 21days, during which 30mg/kg quercetin was orally administered to them. Effect of CUS and quercetin treatment on animal behavior was assessed between day 22-26. Afterward, the hippocampus was processed to evaluate neuronal damage, oxidative and inflammatory stress. Results revealed that stressed animals were highly anxious (Elevated Plus Maze and Open Field), showed depressive-like behavior (sucrose preference task), performed poorly in short-term and long-term associative memory task (passive avoidance step-through task) and displayed reduced locomotion (open field). Quercetin alleviated behavioral dysfunction in chronically stressed animals. Compared to CUS, quercetin treatment significantly reduced anxiety, attenuated depression, improved cognitive dysfunction and normalized locomotor activity. Further, CUS elevated the levels of oxidative stress markers (TBARS, nitric oxide), lowered antioxidants (total thiol, catalase), enhanced expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1β and COX-2) in the hippocampus and damaged hippocampal neurons. Quercetin treatment significantly lowered oxidative and inflammatory stress and prevented neural damage. In conclusion, quercetin can efficiently prevent stress induced neurological complications by rescuing brain from oxidative and inflammatory stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Photo-oxidative stress in emerging and senescing leaves: a mirror image?

    PubMed

    Juvany, Marta; Müller, Maren; Munné-Bosch, Sergi

    2013-08-01

    The life cycle of a leaf can be characterized as consisting of different stages: from primordial leaf initiation in the shoot apical meristem (SAM) to leaf senescence. Leaf development, from early leaf growth to senescence, is tightly controlled by plant development and the environment. Here, we primarily focus on summarizing current evidence indicating that photo-oxidative stress occurs at the two extremes of a leaf's lifespan. Some recent studies clearly indicate that--as happens in senescing leaves--emerging new leaves suffer from photo-oxidative stress, which suggests that oxidative stress plays a key role at both ends of the leaf life cycle. We discuss the causes and consequences of suffering from photo-oxidative stress during leaf development, paying attention to the particularities of this process at the two extremes of leaf development. Of particular importance is the current evidence showing mechanisms that maintain an adequate cellular reactive oxygen species/antioxidant (redox) balance that allows growth and prevents oxidative damage in young emerging leaves, while later on photo-oxidative stress induces cell death in senescing leaves. Also of interest is the fact that reductions in the efficiency of photosystem II photochemistry may not necessarily indicate photo-oxidative stress in emerging leaves. In this review, we summarize current knowledge of photoinhibition, photoprotection, and photo-oxidative stress at the two ends of the leaf life cycle: early leaf growth and leaf senescence.

  6. Irreversible airway obstruction assessed by high-resolution computed tomography (HRCT), exhaled nitric oxide (FENO), and biological markers in induced sputum in patients with asthma.

    PubMed

    Zhang, Lanlan; Gang, Jin; Zhigang, Cao; Yali, Cui; Baozhong, Shen; Fangbiao, Zhang; Liu, Chuntao

    2014-09-01

    The objective of this study was to explore the significance of assessing irreversible airway obstruction (IAO) in asthma patients by high-resolution computed tomography (HRCT), biological markers in induced sputum, and exhaled nitric oxide (FENO). The study was conducted in 34 patients with IAO, 46 patients with reversible airway obstruction (RAO), 40 patients who did not have airway obstruction (NAO), and 40 healthy subjects serving as controls. These patients received a step therapy for at least 3 months based on the guidelines for the prevention and treatment of asthma. After achieving complete or partial control of asthma, HRCT, lung function, FENO, and chemokine levels in induced sputum were measured. The airway wall area (WA; %) correlated with forced expiratory volume-1 (FEV-1(L); r = -0.67, p < 0.0001), and significant differences in bronchial wall thickening (BWT) of the LEVEL E generation airways were observed between the asthma and control groups (p < 0.01). FENO levels correlated with FEV-1 (%) in the IAO group (r = 0.49, p = 0.01). The levels of matrix metalloproteases-9 (MMP-9) and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) in asthma patients with IAO, RAO, and NAO were significantly higher than those in the controls (p < 0.05). The level of neutrophilia in the sputum from the IAO group was higher than that from the RAO, NAO and control groups. Asthma patients with IAO have an increased BWT. Airway measurements with HRCT scans appear to be valuable in the evaluation of airway remodeling in asthma patients with IAO.

  7. Oxidative stress accumulates in adipose tissue during aging and inhibits adipogenesis.

    PubMed

    Findeisen, Hannes M; Pearson, Kevin J; Gizard, Florence; Zhao, Yue; Qing, Hua; Jones, Karrie L; Cohn, Dianne; Heywood, Elizabeth B; de Cabo, Rafael; Bruemmer, Dennis

    2011-04-14

    Aging constitutes a major independent risk factor for the development of type 2 diabetes and is accompanied by insulin resistance and adipose tissue dysfunction. One of the most important factors implicitly linked to aging and age-related chronic diseases is the accumulation of oxidative stress. However, the effect of increased oxidative stress on adipose tissue biology remains elusive. In this study, we demonstrate that aging in mice results in a loss of fat mass and the accumulation of oxidative stress in adipose tissue. In vitro, increased oxidative stress through glutathione depletion inhibits preadipocyte differentiation. This inhibition of adipogenesis is at least in part the result of reduced cell proliferation and an inhibition of G(1)→S-phase transition during the initial mitotic clonal expansion of the adipocyte differentiation process. While phosphorylation of the retinoblastoma protein (Rb) by cyclin/cdk complexes remains unaffected, oxidative stress decreases the expression of S-phase genes downstream of Rb. This silencing of S phase gene expression by increased oxidative stress is mediated through a transcriptional mechanism involving the inhibition of E2F recruitment and transactivation of its target promoters. Collectively, these data demonstrate a previously unrecognized role of oxidative stress in the regulation of adipogenesis which may contribute to age-associated adipose tissue dysfunction.

  8. Oxidative Stress Accumulates in Adipose Tissue during Aging and Inhibits Adipogenesis

    PubMed Central

    Findeisen, Hannes M.; Pearson, Kevin J.; Gizard, Florence; Zhao, Yue; Qing, Hua; Jones, Karrie L.; Cohn, Dianne; Heywood, Elizabeth B.; de Cabo, Rafael; Bruemmer, Dennis

    2011-01-01

    Aging constitutes a major independent risk factor for the development of type 2 diabetes and is accompanied by insulin resistance and adipose tissue dysfunction. One of the most important factors implicitly linked to aging and age-related chronic diseases is the accumulation of oxidative stress. However, the effect of increased oxidative stress on adipose tissue biology remains elusive. In this study, we demonstrate that aging in mice results in a loss of fat mass and the accumulation of oxidative stress in adipose tissue. In vitro, increased oxidative stress through glutathione depletion inhibits preadipocyte differentiation. This inhibition of adipogenesis is at least in part the result of reduced cell proliferation and an inhibition of G1→S-phase transition during the initial mitotic clonal expansion of the adipocyte differentiation process. While phosphorylation of the retinoblastoma protein (Rb) by cyclin/cdk complexes remains unaffected, oxidative stress decreases the expression of S-phase genes downstream of Rb. This silencing of S phase gene expression by increased oxidative stress is mediated through a transcriptional mechanism involving the inhibition of E2F recruitment and transactivation of its target promoters. Collectively, these data demonstrate a previously unrecognized role of oxidative stress in the regulation of adipogenesis which may contribute to age-associated adipose tissue dysfunction. PMID:21533223

  9. 20-HETE mediates ozone-induced, neutrophil-independent airway hyper-responsiveness in mice.

    PubMed

    Cooper, Philip R; Mesaros, A Clementina; Zhang, Jie; Christmas, Peter; Stark, Christopher M; Douaidy, Karim; Mittelman, Michael A; Soberman, Roy J; Blair, Ian A; Panettieri, Reynold A

    2010-04-20

    Ozone, a pollutant known to induce airway hyper-responsiveness (AHR), increases morbidity and mortality in patients with obstructive airway diseases and asthma. We postulate oxidized lipids mediate in vivo ozone-induced AHR in murine airways. Male BALB/c mice were exposed to ozone (3 or 6 ppm) or filtered air (controls) for 2 h. Precision cut lung slices (PCLS; 250 microm thickness) containing an intrapulmonary airway ( approximately 0.01 mm(2) lumen area) were prepared immediately after exposure or 16 h later. After 24 h, airways were contracted to carbachol (CCh). Log EC(50) and E(max) values were then calculated by measuring the airway lumen area with respect to baseline. In parallel studies, dexamethasone (2.5 mg/kg), or 1-aminobenzotriazol (ABT) (50 mg/kg) were given intraperitoneal injection to naïve mice 18 h prior to ozone exposure. Indomethacin (10 mg/kg) was administered 2 h prior. Cell counts, cytokine levels and liquid chromatography-mass spectrometry (LC-MS) for lipid analysis were assessed in bronchoalveolar lavage (BAL) fluid from ozone exposed and control mice. Ozone acutely induced AHR to CCh. Dexamethasone or indomethacin had little effect on the ozone-induced AHR; while, ABT, a cytochrome P450 inhibitor, markedly attenuated airway sensitivity. BAL fluid from ozone exposed animals, which did not contain an increase in neutrophils or interleukin (IL)-6 levels, increased airway sensitivity following in vitro incubation with a naïve PCLS. In parallel, significant increases in oxidized lipids were also identified using LC-MS with increases of 20-HETE that were decreased following ABT treatment. These data show that ozone acutely induces AHR to CCh independent of inflammation and is insensitive to steroid treatment or cyclooxygenase (COX) inhibition. BAL fluid from ozone exposed mice mimicked the effects of in vivo ozone exposure that were associated with marked increases in oxidized lipids. 20-HETE plays a pivotal role in mediating acute ozone

  10. Air-Q intubating laryngeal airway: A study of the second generation supraglottic airway device.

    PubMed

    Attarde, Viren Bhaskar; Kotekar, Nalini; Shetty, Sarika M

    2016-05-01

    Air-Q intubating laryngeal mask airway (ILA) is used as a supraglottic airway device and as a conduit for endotracheal intubation. This study aims to assess the efficacy of the Air-Q ILA regarding ease of insertion, adequacy of ventilation, rate of successful intubation, haemodynamic response and airway morbidity. Sixty patients presenting for elective surgery at our Medical College Hospital were selected. Following adequate premedication, baseline vital parameters, pulse rate and blood pressure were recorded. Air-Q size 3.5 for patients 50-70 kg and size 4.5 for 70-100 kg was selected. After achieving adequate intubating conditions, Air-Q ILA was introduced. Confirming adequate ventilation, appropriate sized endotracheal tube was advanced through the Air-Q blindly to intubate the trachea. Placement of the endotracheal tube in trachea was confirmed. Air-Q ILA was successfully inserted in 88.3% of patients in first attempt and 11.7% patients in second attempt. Ventilation was adequate in 100% of patients. Intubation was successful in 76.7% of patients with Air-Q ILA. 23.3% of patients were intubated by direct laryngoscopy following failure with two attempts using Air-Q ILA. Post-intubation the change in heart rate was statistically significant (P < 0.0001). 10% of patients were noted to have a sore throat and 5% of patients had mild airway trauma. Air-Q ILA is a reliable device as a supraglottic airway ensuring adequate ventilation as well as a conduit for endotracheal intubation. It benefits the patient by avoiding the stress of direct laryngoscopy and is also superior alternative device for use in a difficult airway.

  11. Wood combustion particles induce adverse effects to normal and diseased airway epithelia.

    PubMed

    Krapf, Manuel; Künzi, Lisa; Allenbach, Sandrine; Bruns, Emily A; Gavarini, Ilaria; El-Haddad, Imad; Slowik, Jay G; Prévôt, André S H; Drinovec, Luka; Močnik, Griša; Dümbgen, Lutz; Salathe, Matthias; Baumlin, Nathalie; Sioutas, Constantinos; Baltensperger, Urs; Dommen, Josef; Geiser, Marianne

    2017-04-19

    Residential wood burning is a major source of poorly characterized, deleterious particulate matter, whose composition and toxicity may vary with wood type, burning condition and photochemical age. The causative link between ambient wood particle constituents and observed adverse health effects is currently lacking. Here we investigate the relationship between chemical properties of primary and atmospherically aged wood combustion particles and acute toxicity in human airway epithelial cells. Emissions from a log wood burner were diluted and injected into a smog chamber for photochemical aging. After concentration-enrichment and removal of oxidizing gases, directly emitted and atmospherically aged particles were deposited on cell cultures at the air-liquid interface for 2 hours in an aerosol deposition chamber mimicking physiological conditions in lungs. Cell models were fully differentiated normal and diseased (cystic fibrosis and asthma) human bronchial epithelia (HBE) and the bronchial epithelial cell line BEAS-2B. Cell responses were assessed at 24 hours after aerosol exposure. Atmospherically relevant doses of wood combustion particles significantly increased cell death in all but the asthma cell model. Expression of oxidative stress markers increased in HBE from all donors. Increased cell death and inflammatory responses could not be assigned to a single chemical fraction of the particles. Exposure to primary and aged wood combustion particles caused adverse effects to airway epithelia, apparently induced by several interacting components.

  12. Acute restraint stress induces endothelial dysfunction: role of vasoconstrictor prostanoids and oxidative stress.

    PubMed

    Carda, Ana P P; Marchi, Katia C; Rizzi, Elen; Mecawi, André S; Antunes-Rodrigues, José; Padovan, Claudia M; Tirapelli, Carlos R

    2015-01-01

    We hypothesized that acute stress would induce endothelial dysfunction. Male Wistar rats were restrained for 2 h within wire mesh. Functional and biochemical analyses were conducted 24 h after the 2-h period of restraint. Stressed rats showed decreased exploration on the open arms of an elevated-plus maze (EPM) and increased plasma corticosterone concentration. Acute restraint stress did not alter systolic blood pressure, whereas it increased the in vitro contractile response to phenylephrine and serotonin in endothelium-intact rat aortas. NG-nitro-l-arginine methyl ester (l-NAME; nitric oxide synthase, NOS, inhibitor) did not alter the contraction induced by phenylephrine in aortic rings from stressed rats. Tiron, indomethacin and SQ29548 reversed the increase in the contractile response to phenylephrine induced by restraint stress. Increased systemic and vascular oxidative stress was evident in stressed rats. Restraint stress decreased plasma and vascular nitrate/nitrite (NOx) concentration and increased aortic expression of inducible (i) NOS, but not endothelial (e) NOS. Reduced expression of cyclooxygenase (COX)-1, but not COX-2, was observed in aortas from stressed rats. Restraint stress increased thromboxane (TX)B(2) (stable TXA(2) metabolite) concentration but did not affect prostaglandin (PG)F2α concentration in the aorta. Restraint reduced superoxide dismutase (SOD) activity, whereas concentrations of hydrogen peroxide (H(2)O(2)) and reduced glutathione (GSH) were not affected. The major new finding of our study is that restraint stress increases vascular contraction by an endothelium-dependent mechanism that involves increased oxidative stress and the generation of COX-derived vasoconstrictor prostanoids. Such stress-induced endothelial dysfunction could predispose to the development of cardiovascular diseases.

  13. [Oxidative stress and vascular function].

    PubMed

    Urbański, Karol; Nowak, Michal; Guzik, Tomasz J

    2013-01-01

    The maintenance of blood vessel homeostasis is closely associated with Reactive Oxygen and Nitrogen Species (ROS and RNS) production in the blood vessel wall. The main molecules taking part in this process are nitric oxide (NO), superoxide anion (O2*-), hydrogen peroxide (H2O2) and their derivatives. The production of these factors occurs in health and disease, however the increased ROS release is often referred to as oxidative stress. While initially oxidative stress was considered systemically, recent data indicate that it occurs locally in subcellular spaces and may be a result of dysfunction of individual enzyme systems. Oxidative stress induces inflammation, proliferation and migration of vascular smooth muscle cells, may regulate apoptosis and the function of the cells of vascular wall, finally leading to dysfunction of endothelium, media and adventitia, leading to cardiovascular diseases such as atherosclerosis, hypertension or heart failure. It is believed that a family of NADPH oxidases is the main source of ROS in the vessel wall, but also in other organs and tissues. It consists of seven known and quite precisely characterized homologues (NOX1, NOX2, NOX3, NOX4, NOX5, DUOX1 and DUOX2) which often have very distinct activity and cellular localization and function. Besides harmful actions, we are beginning to understand the protective effects of ROS and RNS. They have many functions regulating redox-sensitive gene expression and influencing a proper function of cells and vessels. NOX4 has been particularly well characterized in this respect. Thus, the maintenance of the right homeostasis depends not only on ROS removing capabilities, but especially on preserving the adequate level of ROS production.

  14. Anti-Oxidative Effects of Rooibos Tea (Aspalathus linearis) on Immobilization-Induced Oxidative Stress in Rat Brain

    PubMed Central

    Kim, Hyun-Pyo

    2014-01-01

    Exposure to chronic psychological stress may be related to increased reactive oxygen species (ROS) or free radicals, and thus, long-term exposure to high levels of oxidative stress may cause the accumulation of oxidative damage and eventually lead to many neurodegenerative diseases. Compared with other organs, the brain appears especially susceptible to excessive oxidative stress due to its high demand for oxygen. In the case of excessive ROS production, endogenous defense mechanisms against ROS may not be sufficient to suppress ROS-associated oxidative damage. Dietary antioxidants have been shown to protect neurons against a variety of experimental neurodegenerative conditions. In particular, Rooibos tea might be a good source of antioxidants due to its larger proportion of polyphenolic compounds. An optimal animal model for stress should show the features of a stress response and should be able to mimic natural stress progression. However, most animal models of stress, such as cold-restraint, electric foot shock, and burn shock, usually involve physical abuse in addition to the psychological aspects of stress. Animals subjected to chronic restraint or immobilization are widely believed to be a convenient and reliable model to mimic psychological stress. Therefore, in the present study, we propose that immobilization-induced oxidative stress was significantly attenuated by treatment with Rooibos tea. This conclusion is demonstrated by Rooibos tea’s ability to (i) reverse the increase in stress-related metabolites (5-HIAA and FFA), (ii) prevent lipid peroxidation (LPO), (iii) restore stress-induced protein degradation (PD), (iv) regulate glutathione metabolism (GSH and GSH/GSSG ratio), and (v) modulate changes in the activities of antioxidant enzymes (SOD and CAT). PMID:24466326

  15. Nitric oxide mitigates arsenic-induced oxidative stress and genotoxicity in Vicia faba L.

    PubMed

    Shukla, Pratiksha; Singh, A K

    2015-09-01

    The protective effects of nitric oxide (NO) against arsenic (As)-induced structural disturbances in Vicia faba have been investigated. As treatment (0.25, 0.50, and 1 mM) resulted in a declined growth of V. faba seedlings. Arsenic treatment stimulates the activity of SOD and CAT while the activities of APX and GST content were decreased. The oxidative stress markers such as superoxide radical, hydrogen peroxide and malondialdehyde (lipid peroxidation) contents were enhanced by As. Overall results revealed that significant accumulation of As suppressed growth, photosynthesis, antioxidant enzymes (SOD, CAT, APX, and GST activity), mitotic index, and induction of different chromosomal abnormalities, hence led to oxidative stress. The concentration of SNP (0.02 mM) was very effective in counteracting the adverse effect of As toxicity. These abnormalities use partially or fully reversed by a simultaneous application of As and NO donor and sodium nitroprusside and has an ameliorating effect against As-induced oxidative stress and genotoxicity in V. faba roots.

  16. Role of Oxidative Stress in Epigenetic Modification in Endometriosis.

    PubMed

    Ito, Fuminori; Yamada, Yuki; Shigemitsu, Aiko; Akinishi, Mika; Kaniwa, Hiroko; Miyake, Ryuta; Yamanaka, Shoichiro; Kobayashi, Hiroshi

    2017-11-01

    Aberrant DNA methylation and histone modification are associated with an increased risk of reproductive disorders such as endometriosis. However, a cause-effect relationship between epigenetic mechanisms and endometriosis development has not been fully determined. This review provides current information based on oxidative stress in epigenetic modification in endometriosis. This article reviews the English-language literature on epigenetics, DNA methylation, histone modification, and oxidative stress associated with endometriosis in an effort to identify epigenetic modification that causes a predisposition to endometriosis. Oxidative stress, secondary to the influx of hemoglobin, heme, and iron during retrograde menstruation, is involved in the expression of CpG demethylases, ten-eleven translocation, and jumonji (JMJ). Ten-eleven translocation and JMJ recognize a wide range of endogenous DNA methyltransferases (DNMTs). The increased expression levels of DNMTs may be involved in the subsequent downregulation of the decidualization-related genes. This review supports the hypothesis that there are at least 2 distinct phases of epigenetic modification in endometriosis: the initial wave of iron-induced oxidative stress would be followed by the second big wave of epigenetic modulation of endometriosis susceptibility genes. We summarize the recent advances in our understanding of the underlying epigenetic mechanisms focusing on oxidative stress in endometriosis.

  17. Dynamic airway pressure-time curve profile (Stress Index): a systematic review.

    PubMed

    Terragni, Pierpaolo; Bussone, Guido; Mascia, Luciana

    2016-01-01

    The assessment of respiratory mechanics at the bedside is necessary in order to identify the most protective ventilatory strategy. Indeed in the last 20 years, adverse effects of positive ventilation to the lung structures have led to a reappraisal of the objectives of mechanical ventilation. The ventilator setting requires repeated readjustment over the period of mechanical ventilation dependency and careful respiratory monitoring to minimize the risks, preventing further injury and permitting the lung and airways healing. Among the different methods that have been proposed and validated, the analysis of dynamic P-t curve (named Stress Index, SI) represents an adequate tool available at the bedside, repeatable and, therefore, able to identify the amount of overdistension occurring in the daily clinical practice, when modifying positive end-expiratory pressure. In this review we will analyze the evidence that supports respiratory mechanics assessment at the bedside and the application of the dynamic P/t curve profile (SI) to optimize protective ventilation in patients with acute respiratory failure.

  18. Endogenous ROS levels in C. elegans under exogenous stress support revision of oxidative stress theory of life-history tradeoffs.

    PubMed

    Smith, Samson W; Latta, Leigh C; Denver, Dee R; Estes, Suzanne

    2014-07-24

    The oxidative stress theory of life-history tradeoffs states that oxidative stress caused by damaging free radicals directly underpins tradeoffs between reproduction and longevity by altering the allocation of energetic resources between these tasks. We test this theory by characterizing the effects of exogenous oxidative insult and its interaction with thermal stress and diet quality on a suite of life-history traits and correlations in Caenorhabditis elegans nematodes. We also quantify demographic aging rates and endogenous reactive oxygen species (ROS) levels in live animals. Our findings indicate a tradeoff between investment in reproduction and antioxidant defense (somatic maintenance) consistent with theoretical predictions, but correlations between standard life-history traits yield little evidence that oxidative stress generates strict tradeoffs. Increasing oxidative insult, however, shows a strong tendency to uncouple positive phenotypic correlations and, in particular, to reduce the correlation between reproduction and lifespan. We also found that mild oxidative insult results in lower levels of endogenous ROS accompanied by hormetic changes in lifespan, demographic aging, and reproduction that disappear in combined-stress treatments--consistent with the oxidative stress theory of aging. Our findings demonstrate that oxidative stress is a direct contributor to life-history trait variation and that traditional tradeoffs are not necessary to invoke oxidative stress as a mediator of relationships between life-history traits, supporting previous calls for revisions to theory.

  19. Endogenous ROS levels in C. elegans under exogenous stress support revision of oxidative stress theory of life-history tradeoffs

    PubMed Central

    2014-01-01

    Background The oxidative stress theory of life-history tradeoffs states that oxidative stress caused by damaging free radicals directly underpins tradeoffs between reproduction and longevity by altering the allocation of energetic resources between these tasks. We test this theory by characterizing the effects of exogenous oxidative insult and its interaction with thermal stress and diet quality on a suite of life-history traits and correlations in Caenorhabditis elegans nematodes. We also quantify demographic aging rates and endogenous reactive oxygen species (ROS) levels in live animals. Results Our findings indicate a tradeoff between investment in reproduction and antioxidant defense (somatic maintenance) consistent with theoretical predictions, but correlations between standard life-history traits yield little evidence that oxidative stress generates strict tradeoffs. Increasing oxidative insult, however, shows a strong tendency to uncouple positive phenotypic correlations and, in particular, to reduce the correlation between reproduction and lifespan. We also found that mild oxidative insult results in lower levels of endogenous ROS accompanied by hormetic changes in lifespan, demographic aging, and reproduction that disappear in combined-stress treatments--consistent with the oxidative stress theory of aging. Conclusions Our findings demonstrate that oxidative stress is a direct contributor to life-history trait variation and that traditional tradeoffs are not necessary to invoke oxidative stress as a mediator of relationships between life-history traits, supporting previous calls for revisions to theory. PMID:25056725

  20. Role of mitochondrial oxidative stress in hypertension

    PubMed Central

    Ungvari, Zoltan

    2013-01-01

    Based on mosaic theory, hypertension is a multifactorial disorder that develops because of genetic, environmental, anatomical, adaptive neural, endocrine, humoral, and hemodynamic factors. It has been recently proposed that oxidative stress may contribute to all of these factors and production of reactive oxygen species (ROS) play an important role in the development of hypertension. Previous studies focusing on the role of vascular NADPH oxidases provided strong support of this concept. Although mitochondria represent one of the most significant sources of cellular ROS generation, the regulation of mitochondrial ROS generation in the cardiovascular system and its pathophysiological role in hypertension are much less understood. In this review, the role of mitochondrial oxidative stress in the pathophysiology of hypertension and cross talk between angiotensin II signaling, pathways involved in mechanotransduction, NADPH oxidases, and mitochondria-derived ROS are considered. The possible benefits of therapeutic strategies that have the potential to attenuate mitochondrial oxidative stress for the prevention/treatment of hypertension are also discussed. PMID:24043248

  1. A potential biomarker for fatigue: Oxidative stress and anti-oxidative activity.

    PubMed

    Fukuda, Sanae; Nojima, Junzo; Motoki, Yukari; Yamaguti, Kouzi; Nakatomi, Yasuhito; Okawa, Naoko; Fujiwara, Kazumi; Watanabe, Yasuyoshi; Kuratsune, Hirohiko

    2016-07-01

    We sought to determine whether oxidative stress and anti-oxidative activity could act as biomarkers that discriminate patients with chronic fatigue syndrome (CFS) from healthy volunteers at acute and sub-acute fatigue and resting conditions. We calculated the oxidative stress index (OSI) from reactive oxygen metabolites-derived compounds (d-ROMs) and the biological antioxidant potential (BAP). We determined changes in d-ROMs, BAP, and OSI in acute and sub-acute fatigue in two healthy groups, and compared their values at rest between patients with CFS (diagnosed by Fukuda 1994 criteria) and another group of healthy controls. Following acute fatigue in healthy controls, d-ROMs and OSI increased, and BAP decreased. Although d-ROMs and OSI were significantly higher after sub-acute fatigue, BAP did not decrease. Resting condition yielded higher d-ROMs, higher OSI, and lower BAP in patients with CFS than in healthy volunteers, but lower d-ROMs and OSI when compared with sub-acute controls. BAP values did not significantly differ between patients with CFS and controls in the sub-acute condition. However, values were significantly higher than in the resting condition for controls. Thus, measured of oxidative stress (d-ROMS) and anti-oxidative activity (BAP) might be useful for discriminating acute, sub-acute, and resting fatigue in healthy people from patients with CFS, or for evaluating fatigue levels in healthy people. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Antioxidants Mediate Both Iron Homeostasis and Oxidative Stress.

    PubMed

    Imam, Mustapha Umar; Zhang, Shenshen; Ma, Jifei; Wang, Hao; Wang, Fudi

    2017-06-28

    Oxidative stress is a common denominator in the pathogenesis of many chronic diseases. Therefore, antioxidants are often used to protect cells and tissues and reverse oxidative damage. It is well known that iron metabolism underlies the dynamic interplay between oxidative stress and antioxidants in many pathophysiological processes. Both iron deficiency and iron overload can affect redox state, and these conditions can be restored to physiological conditions using iron supplementation and iron chelation, respectively. Similarly, the addition of antioxidants to these treatment regimens has been suggested as a viable therapeutic approach for attenuating tissue damage induced by oxidative stress. Notably, many bioactive plant-derived compounds have been shown to regulate both iron metabolism and redox state, possibly through interactive mechanisms. This review summarizes our current understanding of these mechanisms and discusses compelling preclinical evidence that bioactive plant-derived compounds can be both safe and effective for managing both iron deficiency and iron overload conditions.

  3. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders.

    PubMed

    Islam, Md Torequl

    2017-01-01

    Reactive species play an important role in physiological functions. Overproduction of reactive species, notably reactive oxygen (ROS) and nitrogen (RNS) species along with the failure of balance by the body's antioxidant enzyme systems results in destruction of cellular structures, lipids, proteins, and genetic materials such as DNA and RNA. Moreover, the effects of reactive species on mitochondria and their metabolic processes eventually cause a rise in ROS/RNS levels, leading to oxidation of mitochondrial proteins, lipids, and DNA. Oxidative stress has been considered to be linked to the etiology of many diseases, including neurodegenerative diseases (NDDs) such as Alzheimer diseases, Amyotrophic lateral sclerosis, Friedreich's ataxia, Huntington's disease, Multiple sclerosis, and Parkinson's diseases. In addition, oxidative stress causing protein misfold may turn to other NDDs include Creutzfeldt-Jakob disease, Bovine Spongiform Encephalopathy, Kuru, Gerstmann-Straussler-Scheinker syndrome, and Fatal Familial Insomnia. An overview of the oxidative stress and mitochondrial dysfunction-linked NDDs has been summarized in this review.

  4. Antioxidants Mediate Both Iron Homeostasis and Oxidative Stress

    PubMed Central

    Zhang, Shenshen; Ma, Jifei; Wang, Hao; Wang, Fudi

    2017-01-01

    Oxidative stress is a common denominator in the pathogenesis of many chronic diseases. Therefore, antioxidants are often used to protect cells and tissues and reverse oxidative damage. It is well known that iron metabolism underlies the dynamic interplay between oxidative stress and antioxidants in many pathophysiological processes. Both iron deficiency and iron overload can affect redox state, and these conditions can be restored to physiological conditions using iron supplementation and iron chelation, respectively. Similarly, the addition of antioxidants to these treatment regimens has been suggested as a viable therapeutic approach for attenuating tissue damage induced by oxidative stress. Notably, many bioactive plant-derived compounds have been shown to regulate both iron metabolism and redox state, possibly through interactive mechanisms. This review summarizes our current understanding of these mechanisms and discusses compelling preclinical evidence that bioactive plant-derived compounds can be both safe and effective for managing both iron deficiency and iron overload conditions. PMID:28657578

  5. Oxidative stress and anti-oxidant enzyme activities in the trophocytes and fat cells of queen honeybees (Apis mellifera).

    PubMed

    Hsieh, Yu-Shan; Hsu, Chin-Yuan

    2013-08-01

    Trophocytes and fat cells of queen honeybees have been used for delayed cellular senescence studies, but their oxidative stress and anti-oxidant enzyme activities with advancing age are unknown. In this study, we assayed reactive oxygen species (ROS) and anti-oxidant enzymes in the trophocytes and fat cells of young and old queens. Young queens had lower ROS levels, lower superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, and higher thioredoxin reductase (TR) activity compared to old queens. These results show that oxidative stress and anti-oxidant enzyme activities in trophocytes and fat cells increase with advancing age in queens and suggest that an increase in oxidative stress and a consequent increase in stress defense mechanisms are associated with the longevity of queen honeybees.

  6. Chronic stress increases vulnerability to diet-related abdominal fat, oxidative stress, and metabolic risk.

    PubMed

    Aschbacher, Kirstin; Kornfeld, Sarah; Picard, Martin; Puterman, Eli; Havel, Peter J; Stanhope, Kimber; Lustig, Robert H; Epel, Elissa

    2014-08-01

    In preclinical studies, the combination of chronic stress and a high sugar/fat diet is a more potent driver of visceral adiposity than diet alone, a process mediated by peripheral neuropeptide Y (NPY). In a human model of chronic stress, we investigated whether the synergistic combination of highly palatable foods (HPF; high sugar/fat) and stress was associated with elevated metabolic risk. Using a case-control design, we compared 33 post-menopausal caregivers (the chronic stress group) to 28 age-matched low-stress control women on reported HPF consumption (modified Block Food Frequency Questionnaire), waistline circumference, truncal fat ultrasound, and insulin sensitivity using a 3-h oral glucose tolerance test. A fasting blood draw was assayed for plasma NPY and oxidative stress markers (8-hydroxyguanosine and F2-Isoprostanes). Among chronically stressed women only, greater HPF consumption was associated with greater abdominal adiposity, oxidative stress, and insulin resistance at baseline (all p's≤.01). Furthermore, plasma NPY was significantly elevated in chronically stressed women (p<.01), and the association of HPF with abdominal adiposity was stronger among women with high versus low NPY. There were no significant predictions of change over 1-year, likely due to high stability (little change) in the primary outcomes over this period. Chronic stress is associated with enhanced vulnerability to diet-related metabolic risk (abdominal adiposity, insulin resistance, and oxidative stress). Stress-induced peripheral NPY may play a mechanistic role. Copyright © 2014. Published by Elsevier Ltd.

  7. Dietary antioxidents and oxidative stress in predialysis chronic kidney disease patients.

    PubMed

    L Gupta, Krishan; Sahni, Nancy

    2012-10-01

    Dietary antioxidants are important in protecting against human diseases. Oxidative stress, a non- traditional risk factors of cardio-vascular disease is far more prevalent in chronic kidney disease (CKD) patients than in normal subjects. Directory of Open Access Journals (DOAJ), Google Scholar, Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. Oxidative stress could be a consequence of an increase in reactive oxygen species as well as a decrease in antioxidant defenses. Among the important factors that can be involved in triggering oxidative stress is insufficient dietary intake of antioxidants. Malnourished CKD patients are reported to have more oxidative stress than well nourished ones. Moving beyond the importance of assessment of dietary protein and energy in pre dialysis CKD patients to the assessment of dietary antioxidants is of utmost importance to help combat enhanced oxidative stress levels in such patients.

  8. Myocardial Oxidative Stress in Infants Undergoing Cardiac Surgery.

    PubMed

    Sznycer-Taub, Nathaniel; Mackie, Stewart; Peng, Yun-Wen; Donohue, Janet; Yu, Sunkyung; Aiyagari, Ranjit; Charpie, John

    2016-04-01

    Cardiac surgery for congenital heart disease often necessitates a period of myocardial ischemia during cardiopulmonary bypass and cardioplegic arrest, followed by reperfusion after aortic cross-clamp removal. In experimental models, myocardial ischemia-reperfusion is associated with significant oxidative stress and ventricular dysfunction. A prospective observational study was conducted in infants (<1 year) who underwent elective surgical repair of a ventricular septal defect (VSD) or tetralogy of Fallot (TOF). Blood samples were drawn following anesthetic induction (baseline) and directly from the coronary sinus at 1, 3, 5, and 10 min following aortic cross-clamp removal. Samples were analyzed for oxidant stress using assays for thiobarbituric acid-reactive substances, protein carbonyl, 8-isoprostane, and total antioxidant capacity. For each subject, raw assay data were normalized to individual baseline samples and expressed as fold-change from baseline. Results were compared using a one-sample t test with Bonferroni correction for multiple comparisons. Sixteen patients (ten with TOF and six with VSD) were enrolled in the study, and there were no major postoperative complications observed. For the entire cohort, there was an immediate, rapid increase in myocardial oxidative stress that was sustained for 10 min following aortic cross-clamp removal in all biomarker assays (all P < 0.01), except total antioxidant capacity. Infant cardiac surgery is associated with a rapid, robust, and time-dependent increase in myocardial oxidant stress as measured from the coronary sinus in vivo. Future studies with larger enrollment are necessary to assess any association between myocardial oxidative stress and early postoperative outcomes.

  9. [A case of postoperative airway obstruction by Quincke edema].

    PubMed

    Ebata, S; Fujii, Y; Kojima, Y; Tanaka, H

    1994-05-01

    A 42-year-old female was scheduled for removal of brain tumor under general anesthesia with nitrous oxide, oxygen and isoflurane. Two days after operation, airway obstruction by increased swelling around the neck was observed. The first neck X-ray films and CT-scans after operation were not indicative of the hematoma or cyst but suggestive of the neurovascular edema (Quincke). It is necessary not to overlook postoperative airway obstruction by Quincke's edema.

  10. Ursodeoxycholic Acid Ameliorated Diabetic Nephropathy by Attenuating Hyperglycemia-Mediated Oxidative Stress.

    PubMed

    Cao, Aili; Wang, Li; Chen, Xia; Guo, Hengjiang; Chu, Shuang; Zhang, Xuemei; Peng, Wen

    2016-08-01

    Oxidative stress has a great role in diabetes and diabetes induced organ damage. Endoplasmic reticulum (ER) stress is involved in the onset of diabetic nephropathy. We hypothesize that ER stress inhibition could protect against kidney injury through anti-oxidative effects. To test whether block ER stress could attenuate oxidative stress and improve diabetic nephropathy in vivo and in vitro, the effect of ursodeoxycholic acid (UDCA), an ER stress inhibitor, on spontaneous diabetic nephropathy db/db mice, ER stress inducer or high glucose-triggered podocytes were studied. Mice were assigned to 3 groups (n=6 per group): control group (treated with vehicle), db/db group (treated with vehicle), and UDCA group (db/db mice treated with 40 mg/kg/d UDCA). After 8 weeks treatment, mice were sacrificed. Blood and kidneys were collected for the assessment of albumin/creatinine ratio, blood urea nitrogen (BUN), serum creatinine (SCr), insulin, total cholesterol, triglyceride, low density lipoprotein cholesterol (LDL-C), oxidized LDL-C, high density lipoprotein cholesterol (HDL-C), non-esterified fatty acid (NEFA), superoxide dismutase (SOD), catalase (CAT), methane dicarboxylic aldehyde (MDA), the expressions of SOD isoforms and glutathione peroxidase 1, as well as histopathological examination. In addition, generation of reactive oxygen species (ROS) was detected by 2'7'-dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence. The results showed that UDCA alleviated renal ER stress-evoked cell death, oxidative stress, renal dysfunction, ROS production, upregulated the expression of Bcl-2 and suppressed Bax in vivo and in vitro. Hence, inhibition ER stress diminishes oxidative stress and exerts renoprotective effects.

  11. Evolution of thermal stress and failure probability during reduction and re-oxidation of solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Jiang, Wenchun; Luo, Yun; Zhang, Yucai; Tu, Shan-Tung

    2017-12-01

    The reduction and re-oxidation of anode have significant effects on the integrity of the solid oxide fuel cell (SOFC) sealed by the glass-ceramic (GC). The mechanical failure is mainly controlled by the stress distribution. Therefore, a three dimensional model of SOFC is established to investigate the stress evolution during the reduction and re-oxidation by finite element method (FEM) in this paper, and the failure probability is calculated using the Weibull method. The results demonstrate that the reduction of anode can decrease the thermal stresses and reduce the failure probability due to the volumetric contraction and porosity increasing. The re-oxidation can result in a remarkable increase of the thermal stresses, and the failure probabilities of anode, cathode, electrolyte and GC all increase to 1, which is mainly due to the large linear strain rather than the porosity decreasing. The cathode and electrolyte fail as soon as the linear strains are about 0.03% and 0.07%. Therefore, the re-oxidation should be controlled to ensure the integrity, and a lower re-oxidation temperature can decrease the stress and failure probability.

  12. [Role of green tea in oxidative stress prevention].

    PubMed

    Metro, D; Muraca, U; Manasseri, L

    2006-01-01

    Oxidative stress is a condition caused by an increase of Reactive Oxygen Species (ROS) or by a shortage of the mechanisms of cellular protection and antioxidant defence. ROS have a potential oxidative effect towards various cellular macromolecules: proteins, nucleic acids, proteoglycans, lipids, with consequent damages in several cellular districts and promotion of the ageing process of the organism. However, some substances are able to prevent and/or reduce the damages caused by ROS; therefore, they are defined antioxidant. The present research studied, in a group of subjects, the antioxidant effects of the green tea, that was administered with fruit and vegetables in a strictly controlled diet. 50 subjects were selected and requested to daily consume 2-3 fruit portions (especially pineapple), 3-5 portions of vegetables (especially tomato) and 2-3 glasses of green tea for about 2 months to integrate the controlled basic diet. Some indicators of the oxidative stress were measured in the plasma before and after the integration period. The integration of a basic diet with supplements of fruit, vegetables and green tea turned out to be able in increasing both plasmatic total antioxidant capacity and endogenous antioxidant levels and to reduce the lipid peroxidation of the membranes, suggesting a reduction of the oxidative stress. These data suggest that an adequate supplement of antioxidants can prevent oxidative stress and correlated pathologies.

  13. Blockade of Drp1 rescues oxidative stress-induced osteoblast dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, Xueqi; Huang, Shengbin; Yu, Qing

    Osteoblast dysfunction, induced by oxidative stress, plays a critical role in the pathophysiology of osteoporosis. However, the underlying mechanisms remain unclarified. Imbalance of mitochondrial dynamics has been closely linked to oxidative stress. Here, we reveal an unexplored role of dynamic related protein 1(Drp1), the major regulator in mitochondrial fission, in the oxidative stress-induced osteoblast injury model. We demonstrate that levels of phosphorylation and expression of Drp1 significantly increased under oxidative stress. Blockade of Drp1, through pharmaceutical inhibitor or gene knockdown, significantly protected against H{sub 2}O{sub 2}-induced osteoblast dysfunction, as shown by increased cell viability, improved cellular alkaline phosphatase (ALP) activitymore » and mineralization and restored mitochondrial function. The protective effects of blocking Drp1 in H{sub 2}O{sub 2}-induced osteoblast dysfunction were evidenced by increased mitochondrial function and suppressed production of reactive oxygen species (ROS). These findings provide new insights into the role of the Drp1-dependent mitochondrial pathway in the pathology of osteoporosis, indicating that the Drp1 pathway may be targetable for the development of new therapeutic approaches in the prevention and the treatment of osteoporosis. - Highlights: • Oxidative stress is an early pathological event in osteoporosis. • Imbalance of mitochondrial dynamics are linked to oxidative stress in osteoporosis. • The role of the Drp1-dependent mitochondrial pathway in osteoporosis.« less

  14. Are metallothioneins equally good biomarkers of metal and oxidative stress?

    PubMed

    Figueira, Etelvina; Branco, Diana; Antunes, Sara C; Gonçalves, Fernando; Freitas, Rosa

    2012-10-01

    Several researchers investigated the induction of metallothioneins (MTs) in the presence of metals, namely Cadmium (Cd). Fewer studies observed the induction of MTs due to oxidizing agents, and literature comparing the sensitivity of MTs to different stressors is even more scarce or even nonexistent. The role of MTs in metal and oxidative stress and thus their use as a stress biomarker, remains to be clearly elucidated. To better understand the role of MTs as a biomarker in Cerastoderma edule, a bivalve widely used as bioindicator, a laboratory assay was conducted aiming to assess the sensitivity of MTs to metal and oxidative stressors. For this purpose, Cd was used to induce metal stress, whereas hydrogen peroxide (H2O2), being an oxidizing compound, was used to impose oxidative stress. Results showed that induction of MTs occurred at very different levels in metal and oxidative stress. In the presence of the oxidizing agent (H2O2), MTs only increased significantly when the degree of oxidative stress was very high, and mortality rates were higher than 50 percent. On the contrary, C. edule survived to all Cd concentrations used and significant MTs increases, compared to the control, were observed in all Cd exposures. The present work also revealed that the number of ions and the metal bound to MTs varied with the exposure conditions. In the absence of disturbance, MTs bound most (60-70 percent) of the essential metals (Zn and Cu) in solution. In stressful situations, such as the exposure to Cd and H2O2, MTs did not bind to Cu and bound less to Zn. When organisms were exposed to Cd, the total number of ions bound per MT molecule did not change, compared to control. However the sort of ions bound per MT molecule differed; part of the Zn and all Cu ions where displaced by Cd ions. For organisms exposed to H2O2, each MT molecule bound less than half of the ions compared to control and Cd conditions, which indicates a partial oxidation of thiol groups in the cysteine

  15. Role of oxidative stress in melasma: a prospective study on serum and blood markers of oxidative stress in melasma patients.

    PubMed

    Choubey, Vikrant; Sarkar, Rashmi; Garg, Vijay; Kaushik, Smita; Ghunawat, Sneha; Sonthalia, Sidharth

    2017-09-01

    Melasma is a common pigmentary disorder presenting in the dermatological clinic. Many factors have been implicated in the pathogenesis, however, the cause still remains elusive. Recently the effect of oxidative damage has been proposed in the etiopathogenesis of melasma. This study was undertaken to evaluate the role of oxidative stress in patients with melasma. Fifty patients with melasma, age 18 years of age and older, and an equal number of age and sex-matched controls were included in the study. Baseline severity assessment using the modified Melasma Area and Severity Index (modified MASI score) was done in all patients. Serum malondialdehyde, blood superoxide dismutase, and blood glutathione peroxidase levels were measured in cases and controls group and results were compared. The serum levels of malondialdehyde, superoxide dismutase, and blood glutathione were significantly higher among the cases compared to controls. The difference in the serum concentrations was significant between the two groups (P < 0.01). A positive correlation was found between these enzyme levels and severity of melasma (modified MASI score); however, this correlation was statistically significant with serum malondialdehyde only. The level of oxidative stress among the male and female melasma patients was not statistically different. Oxidative stress was found to be increased in cases of melasma compared to the control group in this study. This substantiates the role of oxidative stress in etiopathogenesis of melasma; however, further studies are required to reach a definitive conclusion. © 2017 The International Society of Dermatology.

  16. Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao Hongwei; Rahman, Irfan, E-mail: irfan_rahman@urmc.rochester.edu

    Chronic obstructive pulmonary disease (COPD) is a global health problem. The current therapies for COPD are poorly effective and the mainstays of pharmacotherapy are bronchodilators. A better understanding of the pathobiology of COPD is critical for the development of novel therapies. In the present review, we have discussed the roles of oxidative/aldehyde stress, inflammation/immunity, and chromatin remodeling in the pathogenesis of COPD. An imbalance of oxidants/antioxidants caused by cigarette smoke and other pollutants/biomass fuels plays an important role in the pathogenesis of COPD by regulating redox-sensitive transcription factors (e.g., NF-{kappa}B), autophagy and unfolded protein response leading to chronic lung inflammatorymore » response. Cigarette smoke also activates canonical/alternative NF-{kappa}B pathways and their upstream kinases leading to sustained inflammatory response in lungs. Recently, epigenetic regulation has been shown to be critical for the development of COPD because the expression/activity of enzymes that regulate these epigenetic modifications have been reported to be abnormal in airways of COPD patients. Hence, the significant advances made in understanding the pathophysiology of COPD as described herein will identify novel therapeutic targets for intervention in COPD.« less

  17. The Effects of Resveratrol on Inflammation and Oxidative Stress in a Rat Model of Chronic Obstructive Pulmonary Disease.

    PubMed

    Wang, Xiao-Li; Li, Ting; Li, Ji-Hong; Miao, Shu-Ying; Xiao, Xian-Zhong

    2017-09-12

    Oxidative stress and inflammation are hypothesized to contribute to the pathogenesis of chronic obstructive pulmonary disease (COPD). Resveratrol (trans-3,5,4'-trihydroxystilbene) is known for its antioxidant and anti-inflammatory properties. The study aimed to investigate the effects of resveratrol in a rat model with COPD on the regulation of oxidative stress and inflammation via the activation of Sirtuin1 (SIRTl) and proliferator-activated receptor-γ coactivator-1α (PGC-1α). Thirty Wistar rats were randomly divided into three groups: control group, COPD group and resveratrol intervention group. The COPD model was established by instilling with lipopolysaccharide (LPS) and challenging with cigarette smoke (CS). The levels of interleukin-6 (IL-6) and interleukin-8 (IL-8) in serum were measured. The levels of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD) were measured. The expression levels of SIRT1 and PGC-1α in the lung tissues were examined by immunohistochemistry as well as real-time reverse transcriptase polymerase chain reaction (real-time RT-PCR) and western blotting analysis. After the treatment with resveratrol (50 mg/kg), compared with the COPD group, alleviation of inflammation and reconstruction in the small airways of the lungs were seen. Resveratrol might be correlated not only with the lower level of MDA and the higher activity of SOD, but also with the upregulation of SIRT1 and PGC-1α expression. Resveratrol treatment decreased serum levels of IL-6 and IL-8. Our findings indicate that resveratrol had a therapeutic effect in our rat COPD model, which is related to the inhibition of oxidative stress and inflammatory response. The mechanism may be related to the activation and upgrading of the SIRT1/PGC-1α signaling pathways. Thus resveratrol might be a therapeutic modality in COPD.

  18. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver

    PubMed Central

    Satapati, Santhosh; Kucejova, Blanka; Duarte, Joao A.G.; Fletcher, Justin A.; Reynolds, Lacy; Sunny, Nishanth E.; He, Tianteng; Nair, L. Arya; Livingston, Kenneth; Fu, Xiaorong; Merritt, Matthew E.; Sherry, A. Dean; Malloy, Craig R.; Shelton, John M.; Lambert, Jennifer; Parks, Elizabeth J.; Corbin, Ian; Magnuson, Mark A.; Browning, Jeffrey D.; Burgess, Shawn C.

    2015-01-01

    Mitochondria are critical for respiration in all tissues; however, in liver, these organelles also accommodate high-capacity anaplerotic/cataplerotic pathways that are essential to gluconeogenesis and other biosynthetic activities. During nonalcoholic fatty liver disease (NAFLD), mitochondria also produce ROS that damage hepatocytes, trigger inflammation, and contribute to insulin resistance. Here, we provide several lines of evidence indicating that induction of biosynthesis through hepatic anaplerotic/cataplerotic pathways is energetically backed by elevated oxidative metabolism and hence contributes to oxidative stress and inflammation during NAFLD. First, in murine livers, elevation of fatty acid delivery not only induced oxidative metabolism, but also amplified anaplerosis/cataplerosis and caused a proportional rise in oxidative stress and inflammation. Second, loss of anaplerosis/cataplerosis via genetic knockdown of phosphoenolpyruvate carboxykinase 1 (Pck1) prevented fatty acid–induced rise in oxidative flux, oxidative stress, and inflammation. Flux appeared to be regulated by redox state, energy charge, and metabolite concentration, which may also amplify antioxidant pathways. Third, preventing elevated oxidative metabolism with metformin also normalized hepatic anaplerosis/cataplerosis and reduced markers of inflammation. Finally, independent histological grades in human NAFLD biopsies were proportional to oxidative flux. Thus, hepatic oxidative stress and inflammation are associated with elevated oxidative metabolism during an obesogenic diet, and this link may be provoked by increased work through anabolic pathways. PMID:26571396

  19. Essential hypertension and oxidative stress: New insights

    PubMed Central

    González, Jaime; Valls, Nicolás; Brito, Roberto; Rodrigo, Ramón

    2014-01-01

    Essential hypertension is a highly prevalent pathological condition that is considered as one of the most relevant cardiovascular risk factors and is an important cause of morbidity and mortality around the world. Despite the fact that mechanisms underlying hypertension are not yet fully elucidated, a large amount of evidence shows that oxidative stress plays a central role in its pathophysiology. Oxidative stress can be defined as an imbalance between oxidant agents, such as superoxide anion, and antioxidant molecules, and leads to a decrease in nitric oxide bioavailability, which is the main factor responsible for maintaining the vascular tone. Several vasoconstrictor peptides, such as angiotensin II, endothelin-1 and urotensin II, act through their receptors to stimulate the production of reactive oxygen species, by activating enzymes like NADPH oxidase and xanthine oxidase. The knowledge of the mechanism described above has allowed generating new therapeutic strategies against hypertension based on the use of antioxidants agents, including vitamin C and E, N-Acetylcysteine, polyphenols and selenium, among others. These substances have different therapeutic targets, but all represent antioxidant reinforcement. Several clinical trials using antioxidants have been made. The aim of the present review is to provide new insights about the key role of oxidative stress in the pathophysiology of essential hypertension and new clinical attempts to demonstrate the usefulness of antioxidant therapy in the treatment of hypertension. PMID:24976907

  20. Colorectal Carcinogenesis: Role of Oxidative Stress and Antioxidants.

    PubMed

    Carini, Francesco; Mazzola, Margherita; Rappa, Francesca; Jurjus, Abdo; Geagea, Alice Gerges; Al Kattar, Sahar; Bou-Assi, Tarek; Jurjus, Rosalyn; Damiani, Provvidenza; Leone, Angelo; Tomasello, Giovanni

    2017-09-01

    One of the contributory causes of colon cancer is the negative effect of reactive oxygen species on DNA repair mechanisms. Currently, there is a growing support for the concept that oxidative stress may be an important etiological factor for carcinogenesis. The purpose of this review is to elucidate the role of oxidative stress in promoting colorectal carcinogenesis and to highlight the potential protective role of antioxidants. Several studies have documented the importance of antioxidants in countering oxidative stress and preventing colorectal carcinogenesis. However, there are conflicting data in the literature concerning its proper use in humans, since these studies did not yield definitive results and were performed mostly in vitro on cell populations, or in vivo in experimental animal models. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  1. Nitric oxide leads to cytoskeletal reorganization in the retinal pigment epithelium under oxidative stress.

    PubMed

    Sripathi, Srinivas R; He, Weilue; Um, Ji-Yeon; Moser, Trevor; Dehnbostel, Stevie; Kindt, Kimberly; Goldman, Jeremy; Frost, Megan C; Jahng, Wan Jin

    2012-01-01

    Light is a risk factor for various eye diseases, including age-related macular degeneration (AMD) and retinitis pigmentosa (RP). We aim to understand how cytoskeletal proteins in the retinal pigment epithetlium (RPE) respond to oxidative stress, including light and how these responses affect apoptotic signaling. Previously, proteomic analysis revealed that the expression levels of vimentin and serine/threonine protein phosphatase 2A (PP2A) are significantly increased when mice are exposed under continuous light for 7 days compared to a condition of 12 hrs light/dark cycling exposure using retina degeneration 1 (rd1) model. When melatonin is administered to animals while they are exposed to continuous light, the levels of vimentin and PP2A return to a normal level. Vimentin is a substrate of PP2A that directly binds to vimentin and dephosphorylates it. The current study shows that upregulation of PP2Ac (catalytic subunit) phosphorylation negatively correlates with vimentin phosphorylation under stress condition. Stabilization of vimentin appears to be achieved by decreased PP2Ac phosphorylation by nitric oxide induction. We tested our hypothesis that site-specific modifications of PP2Ac may drive cytoskeletal reorganization by vimentin dephosphorylation through nitric oxide signaling. We speculate that nitric oxide determines protein nitration under stress conditions. Our results demonstrate that PP2A and vimentin are modulated by nitric oxide as a key element involved in cytoskeletal signaling. The current study suggests that external stress enhances nitric oxide to regulate PP2Ac and vimentin phosphorylation, thereby stabilizing or destabilizing vimentin. Phosphorylation may result in depolymerization of vimentin, leading to nonfilamentous particle formation. We propose that a stabilized vimentin might act as an anti-apoptotic molecule when cells are under oxidative stress.

  2. Nitric oxide leads to cytoskeletal reorganization in the retinal pigment epithelium under oxidative stress

    PubMed Central

    Um, Ji-Yeon; Moser, Trevor; Dehnbostel, Stevie; Kindt, Kimberly; Goldman, Jeremy; Frost, Megan C.; Jahng, Wan Jin

    2016-01-01

    Light is a risk factor for various eye diseases, including age-related macular degeneration (AMD) and retinitis pigmentosa (RP). We aim to understand how cytoskeletal proteins in the retinal pigment epithetlium (RPE) respond to oxidative stress, including light and how these responses affect apoptotic signaling. Previously, proteomic analysis revealed that the expression levels of vimentin and serine/threonine protein phosphatase 2A (PP2A) are significantly increased when mice are exposed under continuous light for 7 days compared to a condition of 12 hrs light/dark cycling exposure using retina degeneration 1 (rd1) model. When melatonin is administered to animals while they are exposed to continuous light, the levels of vimentin and PP2A return to a normal level. Vimentin is a substrate of PP2A that directly binds to vimentin and dephosphorylates it. The current study shows that upregulation of PP2Ac (catalytic subunit) phosphorylation negatively correlates with vimentin phosphorylation under stress condition. Stabilization of vimentin appears to be achieved by decreased PP2Ac phosphorylation by nitric oxide induction. We tested our hypothesis that site-specific modifications of PP2Ac may drive cytoskeletal reorganization by vimentin dephosphorylation through nitric oxide signaling. We speculate that nitric oxide determines protein nitration under stress conditions. Our results demonstrate that PP2A and vimentin are modulated by nitric oxide as a key element involved in cytoskeletal signaling. The current study suggests that external stress enhances nitric oxide to regulate PP2Ac and vimentin phosphorylation, thereby stabilizing or destabilizing vimentin. Phosphorylation may result in depolymerization of vimentin, leading to nonfilamentous particle formation. We propose that a stabilized vimentin might act as an anti-apoptotic molecule when cells are under oxidative stress. PMID:27974994

  3. Oxidative Stress and Periodontal Disease in Obesity.

    PubMed

    Dursun, Erhan; Akalin, Ferda Alev; Genc, Tolga; Cinar, Nese; Erel, Ozcan; Yildiz, Bulent Okan

    2016-03-01

    Periodontal disease is a chronic inflammatory disease of the jaws and is more prevalent in obesity. Local and systemic oxidative stress may be an early link between periodontal disease and obesity. The primary aim of this study was to detect whether increased periodontal disease susceptibility in obese individuals is associated with local and systemic oxidative stress. Accordingly; we analyzed periodontal status and systemic (serum) and local (gingival crevicular fluid [GCF]) oxidative status markers in young obese women in comparison with age-matched lean women.Twenty obese and 20 lean women participated. Periodontal condition was determined by clinical periodontal indices including probing depth, clinical attachment level, gingival index, gingival bleeding index, and plaque index. Anthropometric, hormonal, and metabolic measurements were also performed. Blood and GCF sampling was performed at the same time after an overnight fasting. Serum and GCF total antioxidant capacity (TAOC), and total oxidant status (TOS) levels were determined, and oxidative stress index (OSI) was calculated.Clinical periodontal analyses showed higher gingival index and gingival bleeding index in the obese group (P = 0.001 for both) with no significant difference in probing depth, clinical attachment level, and plaque index between the obese and the lean women. Oxidant status analyses revealed lower GCF and serum TAOC, and higher GCF and serum OSI values in the obese women (P < 0.05 for all). GCF TOS was higher in the obese women (P < 0.05), whereas there was a nonsignificant trend for higher serum TOS in obese women (P = 0.074). GCF TAOC values showed a negative correlation with body mass index, whereas GCF OSI was positively correlated with fasting insulin and low-density lipoprotein-cholesterol levels (P < 0.05 for all). Clinical periodontal indices showed significant correlations with body mass index, insulin, and lipid levels, and also oxidant status markers

  4. Oxidative Stress and Periodontal Disease in Obesity

    PubMed Central

    Dursun, Erhan; Akalın, Ferda Alev; Genc, Tolga; Cinar, Nese; Erel, Ozcan; Yildiz, Bulent Okan

    2016-01-01

    Abstract Periodontal disease is a chronic inflammatory disease of the jaws and is more prevalent in obesity. Local and systemic oxidative stress may be an early link between periodontal disease and obesity. The primary aim of this study was to detect whether increased periodontal disease susceptibility in obese individuals is associated with local and systemic oxidative stress. Accordingly; we analyzed periodontal status and systemic (serum) and local (gingival crevicular fluid [GCF]) oxidative status markers in young obese women in comparison with age-matched lean women. Twenty obese and 20 lean women participated. Periodontal condition was determined by clinical periodontal indices including probing depth, clinical attachment level, gingival index, gingival bleeding index, and plaque index. Anthropometric, hormonal, and metabolic measurements were also performed. Blood and GCF sampling was performed at the same time after an overnight fasting. Serum and GCF total antioxidant capacity (TAOC), and total oxidant status (TOS) levels were determined, and oxidative stress index (OSI) was calculated. Clinical periodontal analyses showed higher gingival index and gingival bleeding index in the obese group (P = 0.001 for both) with no significant difference in probing depth, clinical attachment level, and plaque index between the obese and the lean women. Oxidant status analyses revealed lower GCF and serum TAOC, and higher GCF and serum OSI values in the obese women (P < 0.05 for all). GCF TOS was higher in the obese women (P < 0.05), whereas there was a nonsignificant trend for higher serum TOS in obese women (P = 0.074). GCF TAOC values showed a negative correlation with body mass index, whereas GCF OSI was positively correlated with fasting insulin and low-density lipoprotein-cholesterol levels (P < 0.05 for all). Clinical periodontal indices showed significant correlations with body mass index, insulin, and lipid levels, and also oxidant status

  5. Dietary antioxidents and oxidative stress in predialysis chronic kidney disease patients

    PubMed Central

    L Gupta, Krishan; Sahni, Nancy

    2012-01-01

    Context Dietary antioxidants are important in protecting against human diseases. Oxidative stress, a non- traditional risk factors of cardio-vascular disease is far more prevalent in chronic kidney disease (CKD) patients than in normal subjects. Evidence Acquisitions Directory of Open Access Journals (DOAJ), Google Scholar, Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. Results Oxidative stress could be a consequence of an increase in reactive oxygen species as well as a decrease in antioxidant defenses. Among the important factors that can be involved in triggering oxidative stress is insufficient dietary intake of antioxidants. Malnourished CKD patients are reported to have more oxidative stress than well nourished ones. Conclusions Moving beyond the importance of assessment of dietary protein and energy in pre dialysis CKD patients to the assessment of dietary antioxidants is of utmost importance to help combat enhanced oxidative stress levels in such patients. PMID:24475404

  6. Carbon monoxide exposure enhances arrhythmia after cardiac stress: involvement of oxidative stress.

    PubMed

    André, Lucas; Gouzi, Fares; Thireau, Jérôme; Meyer, Gregory; Boissiere, Julien; Delage, Martine; Abdellaoui, Aldja; Feillet-Coudray, Christine; Fouret, Gilles; Cristol, Jean-Paul; Lacampagne, Alain; Obert, Philippe; Reboul, Cyril; Fauconnier, Jérémy; Hayot, Maurice; Richard, Sylvain; Cazorla, Olivier

    2011-11-01

    Arrhythmias following cardiac stress are a key predictor of death in healthy population. Carbon monoxide (CO) is a ubiquitous pollutant promoting oxidative stress and associated with hospitalization for cardiovascular disease and cardiac mortality. We investigated the effect of chronic CO exposure on the occurrence of arrhythmic events after a cardiac stress test and the possible involvement of related oxidative stress. Wistar rats exposed chronically (4 weeks) to sustained urban CO pollution presented more arrhythmic events than controls during recovery after cardiac challenge with isoprenaline in vivo. Sudden death occurred in 22% of CO-exposed rats versus 0% for controls. Malondialdehyde (MDA), an end-product of lipid peroxidation, was increased in left ventricular tissue of CO-exposed rats. Cardiomyocytes isolated from CO-exposed rats showed higher reactive oxygen species (ROS) production (measured with MitoSox Red dye), higher diastolic Ca(2+) resulting from SR calcium leak and an higher occurrence of irregular Ca(2+) transients (measured with Indo-1) in comparison to control cells after a high pacing sequence. Acute treatment with a ROS scavenger (N-acetylcysteine, 20 mmol/L, 1 h) prevented this sequence of alterations and decreased the number of arrhythmic cells following high pacing. Chronic CO exposure promotes oxidative stress that alters Ca(2+) homeostasis (through RYR2 and SERCA defects) and thereby mediates the triggering of ventricular arrhythmia after cardiac stress that can lead to sudden death.

  7. Intrinsic stress evolution during amorphous oxide film growth on Al surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flötotto, D., E-mail: d.floetotto@is.mpg.de; Wang, Z. M.; Jeurgens, L. P. H.

    2014-03-03

    The intrinsic stress evolution during formation of ultrathin amorphous oxide films on Al(111) and Al(100) surfaces by thermal oxidation at room temperature was investigated in real-time by in-situ substrate curvature measurements and detailed atomic-scale microstructural analyses. During thickening of the oxide a considerable amount of growth stresses is generated in, remarkably even amorphous, ultrathin Al{sub 2}O{sub 3} films. The surface orientation-dependent stress evolutions during O adsorption on the bare Al surfaces and during subsequent oxide-film growth can be interpreted as a result of (i) adsorption-induced surface stress changes and (ii) competing processes of free volume generation and structural relaxation, respectively.

  8. Neuronal NOS localises to human airway cilia.

    PubMed

    Jackson, Claire L; Lucas, Jane S; Walker, Woolf T; Owen, Holly; Premadeva, Irnthu; Lackie, Peter M

    2015-01-30

    Airway NO synthase (NOS) isoenzymes are responsible for rapid and localised nitric oxide (NO) production and are expressed in airway epithelium. We sought to determine the localisation of neuronal NOS (nNOS) in airway epithelium due to the paucity of evidence. Sections of healthy human bronchial tissue in glycol methacrylate resin and human nasal polyps in paraffin wax were immunohistochemically labelled and reproducibly demonstrated nNOS immunoreactivity, particularly at the proximal portion of cilia; this immunoreactivity was blocked by a specific nNOS peptide fragment. Healthy human epithelial cells differentiated at an air-liquid interface (ALI) confirmed the presence of all three NOS isoenzymes by immunofluorescence labelling. Only nNOS immunoreactivity was specific to the ciliary axonemeand co-localised with the cilia marker β-tubulin in the proximal part of the ciliary axoneme. We report a novel localisation of nNOS at the proximal portion of cilia in airway epithelium and conclude that its independent and local regulation of NO levels is crucial for normal cilia function. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Oxidative Stress and Antioxidants in the Diagnosis and Therapy of Periodontitis

    PubMed Central

    Tóthová, L'ubomíra; Celec, Peter

    2017-01-01

    Oxidative stress has been implicated in the pathogenesis of numerous diseases. However, large interventional studies with antioxidants failed to show benefits in the prevention or treatment of cardiovascular diseases, cancer, or diabetes mellitus. Numerous clinical studies have confirmed the association of oxidative stress markers and periodontitis. Technical and biological variability is high for most of the analyzed markers and none of them seems to be optimal for routine clinical use. In a research setting, analysis of a palette of oxidative stress markers is needed to cover lipid peroxidation, protein oxidation, and the antioxidant status. The source of reactive oxygen species and their role in the pathogenesis of periodontitis remains unclear. Interventional experiments indicate that oxidative stress might be more than just a simple consequence of the inflammation. Small studies have confirmed that some antioxidants could have therapeutic value at least as an addition to the standard non-surgical treatment of periodontitis. A clear evidence for the efficiency of antioxidant treatment in large patient cohorts is lacking. Potentially, because lowering of oxidative stress markers might be a secondary effect of anti-inflammatory or antibacterial agents. As the field of research of oxidative stress in periodontitis gains attraction and the number of relevant published papers is increasing a systematic overview of the conducted observational and interventional studies is needed. This review summarizes the currently available literature linking oxidative stress and periodontitis and points toward the potential of adjuvant antioxidant treatment, especially in cases where standard treatment fails to improve the periodontal status. PMID:29311982

  10. Transfer RNAs Mediate the Rapid Adaptation of Escherichia coli to Oxidative Stress

    PubMed Central

    Du, Gaofei; Sun, Xuesong; He, Qing-Yu; Zhang, Gong

    2015-01-01

    Translational systems can respond promptly to sudden environmental changes to provide rapid adaptations to environmental stress. Unlike the well-studied translational responses to oxidative stress in eukaryotic systems, little is known regarding how prokaryotes respond rapidly to oxidative stress in terms of translation. In this study, we measured protein synthesis from the entire Escherichia coli proteome and found that protein synthesis was severely slowed down under oxidative stress. With unchanged translation initiation, this slowdown was caused by decreased translation elongation speed. We further confirmed by tRNA sequencing and qRT-PCR that this deceleration was caused by a global, enzymatic downregulation of almost all tRNA species shortly after exposure to oxidative agents. Elevation in tRNA levels accelerated translation and protected E. coli against oxidative stress caused by hydrogen peroxide and the antibiotic ciprofloxacin. Our results showed that the global regulation of tRNAs mediates the rapid adjustment of the E. coli translation system for prompt adaptation to oxidative stress. PMID:26090660

  11. Oxidative stress in myelin sheath: The other face of the extramitochondrial oxidative phosphorylation ability.

    PubMed

    Ravera, S; Bartolucci, M; Cuccarolo, P; Litamè, E; Illarcio, M; Calzia, D; Degan, P; Morelli, A; Panfoli, I

    2015-01-01

    Oxidative phosphorylation (OXPHOS) is not only the main source of ATP for the cell, but also a major source of reactive oxygen species (ROS), which lead to oxidative stress. At present, mitochondria are considered the organelles responsible for the OXPHOS, but in the last years we have demonstrated that it can also occur outside the mitochondrion. Myelin sheath is able to conduct an aerobic metabolism, producing ATP that we have hypothesized is transferred to the axon, to support its energetic demand. In this work, spectrophotometric, cytofluorimetric, and luminometric analyses were employed to investigate the oxidative stress production in isolated myelin, as far as its respiratory activity is concerned. We have evaluated the levels of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), markers of lipid peroxidation, as well as of hydrogen peroxide (H2O2), marker of ROS production. To assess the presence of endogenous antioxidant systems, superoxide dismutase, catalase, and glutathione peroxidase activities were assayed. The effect of certain uncoupling or antioxidant molecules on oxidative stress in myelin was also investigated. We report that isolated myelin produces high levels of MDA, 4-HNE, and H2O2, likely through the pathway composed by Complex I-III-IV, but it also contains active superoxide dismutase, catalase, and glutathione peroxidase, as antioxidant defense. Uncoupling compounds or Complex I inhibitors increase oxidative stress, while antioxidant compounds limit ROS generation. Data may shed new light on the role of myelin sheath in physiology and pathology. In particular, it can be presumed that the axonal degeneration associated with myelin loss in demyelinating diseases is related to oxidative stress caused by impaired OXPHOS.

  12. The link between radiofrequencies emitted from wireless technologies and oxidative stress.

    PubMed

    Dasdag, Suleyman; Akdag, Mehmet Zulkuf

    2016-09-01

    Wireless communication such as cellular telephones and other types of handheld phones working with frequencies of 900MHz, 1800MHz, 2100MHz, 2450MHz have been increasing rapidly. Therefore, public opinion concern about the potential human health hazards of short and long-term effect of exposure to radiofrequency (RF) radiation. Oxidative stress is a biochemical condition, which is defined by the imbalance between reactive oxygen species (ROS) and the anti-oxidative defense. In this review, we evaluated available in vitro and in vivo studies carried out on the relation between RF emitted from mobile phones and oxidative stress. The results of the studies we reviewed here indicated that mobile phones and similar equipment or radars can be thought as a factor, which cause oxidative stress. Even some of them claimed that oxidative stress originated from radiofrequencies can be resulted with DNA damage. For this reason one of the points to think on is relation between mobile phones and oxidative stress. However, more performance is necessary especially on human exposure studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Oxidative stress and vascular inflammation in aging.

    PubMed

    El Assar, Mariam; Angulo, Javier; Rodríguez-Mañas, Leocadio

    2013-12-01

    Vascular aging, a determinant factor for cardiovascular disease and health status in the elderly, is now viewed as a modifiable risk factor. Impaired endothelial vasodilation is a early hallmark of arterial aging that precedes the clinical manifestations of vascular dysfunction, the first step to cardiovascular disease and influencing vascular outcomes in the elderly. Accordingly, the preservation of endothelial function is thought to be an essential determinant of healthy aging. With special attention on the effects of aging on the endothelial function, this review is focused on the two main mechanisms of aging-related endothelial dysfunction: oxidative stress and inflammation. Aging vasculature generates an excess of the reactive oxygen species (ROS), superoxide and hydrogen peroxide, that compromise the vasodilatory activity of nitric oxide (NO) and facilitate the formation of the deleterious radical, peroxynitrite. Main sources of ROS are mitochondrial respiratory chain and NADPH oxidases, although NOS uncoupling could also account for ROS generation. In addition, reduced antioxidant response mediated by erythroid-2-related factor-2 (Nrf2) and downregulation of mitochondrial manganese superoxide dismutase (SOD2) contributes to the establishment of chronic oxidative stress in aged vessels. This is accompanied by a chronic low-grade inflammatory phenotype that participates in defective endothelial vasodilation. The redox-sensitive transcription factor, nuclear factor-κB (NF-κB), is upregulated in vascular cells from old subjects and drives a proinflammatory shift that feedbacks oxidative stress. This chronic NF-κB activation is contributed by increased angiotensin-II signaling and downregulated sirtuins and precludes adequate cellular response to acute ROS generation. Interventions targeted to recover endogenous antioxidant capacity and cellular stress response rather than exogenous antioxidants could reverse oxidative stress-inflammation vicious cycle in

  14. Acute and sub-lethal exposure to copper oxide nanoparticles causes oxidative stress and teratogenicity in zebrafish embryos.

    PubMed

    Ganesan, Santhanamari; Anaimalai Thirumurthi, Naveenkumar; Raghunath, Azhwar; Vijayakumar, Savitha; Perumal, Ekambaram

    2016-04-01

    Nano-copper oxides are a versatile inorganic material. As a result of their versatility, the immense applications and usage end up in the environment causing a concern for the lifespan of various beings. The ambiguities surround globally on the toxic effects of copper oxide nanoparticles (CuO-NPs). Hence, the present study endeavored to study the sub-lethal acute exposure effects on the developing zebrafish embryos. The 48 hpf LC50 value was about 64 ppm. Therefore, we have chosen the sub-lethal dose of 40 and 60 ppm for the study. Accumulation of CuO-NPs was evidenced from the SEM-EDS and AAS analyzes. The alterations in the AChE and Na(+)/K(+)-ATPase activities disrupted the development process. An increment in the levels of oxidants with a concomitant decrease in the antioxidant enzymes confirmed the induction of oxidative stress. Oxidative stress triggered apoptosis in the exposed embryos. Developmental anomalies were observed with CuO-NPs exposure in addition to oxidative stress in the developing embryos. Decreased heart rate and hatching delay hindered the normal developmental processes. Our work has offered valuable data on the connection between oxidative stress and teratogenicity leading to lethality caused by CuO-NPs. A further molecular mechanism unraveling the uncharted connection between oxidative stress and teratogenicity will aid in the safe use of CuO-NPs. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Evaluating the Toxicity of Cigarette Whole Smoke Solutions in an Air-Liquid-Interface Human In Vitro Airway Tissue Model.

    PubMed

    Cao, Xuefei; Muskhelishvili, Levan; Latendresse, John; Richter, Patricia; Heflich, Robert H

    2017-03-01

    Exposure to cigarette smoke causes a multitude of pathological changes leading to tissue damage and disease. Quantifying such changes in highly differentiated in vitro human tissue models may assist in evaluating the toxicity of tobacco products. In this methods development study, well-differentiated human air-liquid-interface (ALI) in vitro airway tissue models were used to assess toxicological endpoints relevant to tobacco smoke exposure. Whole mainstream smoke solutions (WSSs) were prepared from 2 commercial cigarettes (R60 and S60) that differ in smoke constituents when machine-smoked under International Organization for Standardization conditions. The airway tissue models were exposed apically to WSSs 4-h per day for 1-5 days. Cytotoxicity, tissue barrier integrity, oxidative stress, mucin secretion, and matrix metalloproteinase (MMP) excretion were measured. The treatments were not cytotoxic and had marginal effects on tissue barrier properties; however, other endpoints responded in time- and dose-dependent manners, with the R60 resulting in higher levels of response than the S60 for many endpoints. Based on the lowest effect dose, differences in response to the WSSs were observed for mucin induction and MMP secretion. Mitigation of mucin induction by cotreatment of cultures with N-acetylcysteine suggests that oxidative stress contributes to mucus hypersecretion. Overall, these preliminary results suggest that quantifying disease-relevant endpoints using ALI airway models is a potential tool for tobacco product toxicity evaluation. Additional research using tobacco samples generated under smoking machine conditions that more closely approximate human smoking patterns will inform further methods development. Published by Oxford University Press on behalf of the Society of Toxicology 2017. This work is written by US Government employees and is in the public domain in the US.

  16. Role of Magnesium in Oxidative Stress in Individuals with Obesity.

    PubMed

    Morais, Jennifer Beatriz Silva; Severo, Juliana Soares; Santos, Loanne Rocha Dos; de Sousa Melo, Stéfany Rodrigues; de Oliveira Santos, Raisa; de Oliveira, Ana Raquel Soares; Cruz, Kyria Jayanne Clímaco; do Nascimento Marreiro, Dilina

    2017-03-01

    Adipose tissue is considered an endocrine organ that promotes excessive production of reactive oxygen species when in excess, thus contributing to lipid peroxidation. Magnesium deficiency contributes to the development of oxidative stress in obese individuals, as this mineral plays a role as an antioxidant, participates as a cofactor of several enzymes, maintains cell membrane stability and mitigates the effects of oxidative stress. The objective of this review is to bring together updated information on the participation of magnesium in the oxidative stress present in obesity. We conducted a search of articles published in the PubMed, SciELO and LILACS databases, using the keywords 'magnesium', 'oxidative stress', 'malondialdehyde', 'superoxide dismutase', 'glutathione peroxidase', 'reactive oxygen species', 'inflammation' and 'obesity'. The studies show that obese subjects have low serum concentrations of magnesium, as well as high concentrations of oxidative stress marker in these individuals. Furthermore, it is evident that the adequate intake of magnesium contributes to its appropriate homeostasis in the body. Thus, this review of current research can help define the need for intervention with supplementation of this mineral for the prevention and treatment of disorders associated with this chronic disease.

  17. Honey Bee (Apis mellifera) Drones Survive Oxidative Stress due to Increased Tolerance instead of Avoidance or Repair of Oxidative Damage

    PubMed Central

    Li-Byarlay, Hongmei; Huang, Ming Hua; Simone-Finstrom, Michael; Strand, Micheline K.; Tarpy, David R.; Rueppell, Olav

    2016-01-01

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked; considerable variation in oxidative stress resistance exists among and within species and typically covaries with life expectancy. However, it is unclear whether stress-resistant, long-lived individuals avoid, repair, or tolerate molecular damage to survive longer than others. The honey bee (Apis mellifera L.) is an emerging model system that is well-suited to address this question. Furthermore, this species is the most economically important pollinator, whose health may be compromised by pesticide exposure, including oxidative stressors. Here, we develop a protocol for inducing oxidative stress in honey bee males (drones) via Paraquat injection. After injection, individuals from different colony sources were kept in common social conditions to monitor their survival compared to saline-injected controls. Oxidative stress was measured in susceptible and resistant individuals. Paraquat drastically reduced survival but individuals varied in their resistance to treatment within and among colony sources. Longer-lived individuals exhibited higher levels of lipid peroxidation than individuals dying early. In contrast, the level of protein carbonylation was not significantly different between the two groups. This first study of oxidative stress in male honey bees suggests that survival of an acute oxidative stressor is due to tolerance, not prevention or repair, of oxidative damage to lipids. It also demonstrates colony differences in oxidative stress resistance that might be useful for breeding stress-resistant honey bees. PMID:27422326

  18. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage.

    PubMed

    Li-Byarlay, Hongmei; Huang, Ming Hua; Simone-Finstrom, Michael; Strand, Micheline K; Tarpy, David R; Rueppell, Olav

    2016-10-01

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked; considerable variation in oxidative stress resistance exists among and within species and typically covaries with life expectancy. However, it is unclear whether stress-resistant, long-lived individuals avoid, repair, or tolerate molecular damage to survive longer than others. The honey bee (Apis mellifera L.) is an emerging model system that is well-suited to address this question. Furthermore, this species is the most economically important pollinator, whose health may be compromised by pesticide exposure, including oxidative stressors. Here, we develop a protocol for inducing oxidative stress in honey bee males (drones) via Paraquat injection. After injection, individuals from different colony sources were kept in common social conditions to monitor their survival compared to saline-injected controls. Oxidative stress was measured in susceptible and resistant individuals. Paraquat drastically reduced survival but individuals varied in their resistance to treatment within and among colony sources. Longer-lived individuals exhibited higher levels of lipid peroxidation than individuals dying early. In contrast, the level of protein carbonylation was not significantly different between the two groups. This first study of oxidative stress in male honey bees suggests that survival of an acute oxidative stressor is due to tolerance, not prevention or repair, of oxidative damage to lipids. It also demonstrates colony differences in oxidative stress resistance that might be useful for breeding stress-resistant honey bees. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Oxidative stress in hemodialysis patients receiving intravenous iron therapy and the role of N-acetylcysteine in preventing oxidative stress.

    PubMed

    Swarnalatha, G; Ram, R; Neela, Prasad; Naidu, M U R; Dakshina Murty, K V

    2010-09-01

    To determine the contribution of injectable iron administered to hemodialysis (HD) patients in causing oxidative stress and the beneficial effect of N-acetylcysteine (NAC) in reducing it, we studied in a prospective, double blinded, randomized controlled, cross over trial 14 adult HD patients who were randomized into two groups; one group received NAC in a dose of 600 mgs twice daily for 10 days prior to intravenous iron therapy and the other group received placebo. Both the groups were subjected to intravenous iron therapy, 100 mg of iron sucrose in 100 mL of normal saline given over a period of one hour. Blood samples for the markers of oxidative stress were taken before and after iron therapy. After the allowance of a week of wash out period for the effect of N-acetylcysteine we crossed over the patients to the opposite regimen. We measured the lipid peroxidation marker, malondiaaldehyde (MDA), to evaluate the oxidative stress and total anti-oxidant capacity (TAC) for the antioxidant level in addition to the highly sensitive C-reactive protein (HsCRP). Non-invasive assessment of endothelial dysfunction was measured by digital plethysmography before and after intravenous iron therapy. There was an increase of MDA (21.97 + 3.65% vs 7.06 + 3.65%) and highly sensitive C-reactive protein (HsCRP) (11.19 + 24.63% vs 13.19 + 7.7%) after iron administration both in the placebo and the NAC groups. NAC reduced the baseline acute systemic generation of oxidative stress when compared to placebo, which was statistically significant with MDA (12.76 + 4.4% vs 9.37 + 4.40%: P = 0.032) but not with HsCRP though there was a declining trend (2.85 + 22.75 % vs 8.93 + 5.19%: P = 0.112). Pre-treatment with NAC reduced the endothelial dysfunction when compared to placebo, but it was not statistically significant, except for reflection index (RI). We conclude that in our HD patients NAC reduced the oxidative stress before and after the administration of intravenous iron therapy in

  20. Oxidative stress and maternal obesity: feto-placental unit interaction.

    PubMed

    Malti, N; Merzouk, H; Merzouk, S A; Loukidi, B; Karaouzene, N; Malti, A; Narce, M

    2014-06-01

    To determine oxidative stress markers in maternal obesity during pregnancy and to evaluate feto-placental unit interaction, especially predictors of fetal metabolic alterations. 40 obese pregnant women (prepregnancy BMI > 30 kg/m²) were compared to 50 control pregnant women. Maternal, cord blood and placenta samples were collected at delivery. Biochemical parameters (total cholesterol and triglycerides) and oxidative stress markers (malondialdehyde, carbonyl proteins, superoxide anion expressed as reduced Nitroblue Tetrazolium, nitric oxide expressed as nitrite, reduced glutathione, catalase, superoxide dismutase) were assayed by biochemical methods. Maternal, fetal and placental triglyceride levels were increased in obese group compared to control. Maternal malondialdehyde, carbonyl proteins, nitric oxide and superoxide anion levels were high while reduced glutathione concentrations and superoxide dismutase activity were low in obesity. In the placenta and in newborns of these obese mothers, variations of redox balance were also observed indicating high oxidative stress. Maternal and placental interaction constituted a strong predictor of fetal redox variations in obese pregnancies. Maternal obesity compromised placental metabolism and antioxidant status which strongly impacted fetal redox balance. Oxidative stress may be one of the key downstream mediators that initiate programming of the offspring. Maternal obesity is associated with metabolic alterations and dysregulation of redox balance in the mother-placenta - fetus unit. These perturbations could lead to maternal and fetal complications and should be carefully considered. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Protein Carbonyl Formation in Response to Propiconazole-Induced Oxidative Stress.

    EPA Science Inventory

    Propiconazole, a widely used fungicide, is hepatotoxic and hepatotumorigenic in mice. Previous genomic analysis of liver tissues from propiconazole-treated mice identified genes and pathways involved in oxidative stress, suggesting that oxidative stress may play a role in propico...

  2. The role of oxidative stress in nervous system aging.

    PubMed

    Sims-Robinson, Catrina; Hur, Junguk; Hayes, John M; Dauch, Jacqueline R; Keller, Peter J; Brooks, Susan V; Feldman, Eva L

    2013-01-01

    While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1(-/-)) mice, a mouse model of increased oxidative stress. Sod1(-/-) mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1(+/+) mice at 30 months and the Sod1(-/-) mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging.

  3. Accelerated aging in schizophrenia patients: the potential role of oxidative stress.

    PubMed

    Okusaga, Olaoluwa O

    2014-08-01

    Several lines of evidence suggest that schizophrenia, a severe mental illness characterized by delusions, hallucinations and thought disorder is associated with accelerated aging. The free radical (oxidative stress) theory of aging assumes that aging occurs as a result of damage to cell constituents and connective tissues by free radicals arising from oxygen-associated reactions. Schizophrenia has been associated with oxidative stress and chronic inflammation, both of which also appear to reciprocally induce each other in a positive feedback manner. The buildup of damaged macromolecules due to increased oxidative stress and failure of protein repair and maintenance systems is an indicator of aging both at the cellular and organismal level. When compared with age-matched healthy controls, schizophrenia patients have higher levels of markers of oxidative cellular damage such as protein carbonyls, products of lipid peroxidation and DNA hydroxylation. Potential confounders such as antipsychotic medication, smoking, socio-economic status and unhealthy lifestyle make it impossible to solely attribute the earlier onset of aging-related changes or oxidative stress to having a diagnosis of schizophrenia. Regardless of whether oxidative stress can be attributed solely to a diagnosis of schizophrenia or whether it is due to other factors associated with schizophrenia, the available evidence is in support of increased oxidative stress-induced cellular damage of macromolecules which may play a role in the phenomenon of accelerated aging presumed to be associated with schizophrenia.

  4. Modulation of Hypercholesterolemia-Induced Oxidative/Nitrative Stress in the Heart

    PubMed Central

    Sárközy, Márta; Pipicz, Márton; Dux, László; Csont, Tamás

    2016-01-01

    Hypercholesterolemia is a frequent metabolic disorder associated with increased risk for cardiovascular morbidity and mortality. In addition to its well-known proatherogenic effect, hypercholesterolemia may exert direct effects on the myocardium resulting in contractile dysfunction, aggravated ischemia/reperfusion injury, and diminished stress adaptation. Both preclinical and clinical studies suggested that elevated oxidative and/or nitrative stress plays a key role in cardiac complications induced by hypercholesterolemia. Therefore, modulation of hypercholesterolemia-induced myocardial oxidative/nitrative stress is a feasible approach to prevent or treat deleterious cardiac consequences. In this review, we discuss the effects of various pharmaceuticals, nutraceuticals, some novel potential pharmacological approaches, and physical exercise on hypercholesterolemia-induced oxidative/nitrative stress and subsequent cardiac dysfunction as well as impaired ischemic stress adaptation of the heart in hypercholesterolemia. PMID:26788247

  5. Proteomic Changes of Tissue-Tolerable Plasma Treated Airway Epithelial Cells and Their Relation to Wound Healing.

    PubMed

    Lendeckel, Derik; Eymann, Christine; Emicke, Philipp; Daeschlein, Georg; Darm, Katrin; O'Neil, Serena; Beule, Achim G; von Woedtke, Thomas; Völker, Uwe; Weltmann, Klaus-Dieter; Jünger, Michael; Hosemann, Werner; Scharf, Christian

    2015-01-01

    The worldwide increasing number of patients suffering from nonhealing wounds requires the development of new safe strategies for wound repair. Recent studies suggest the possibility of nonthermal (cold) plasma application for the acceleration of wound closure. An in vitro wound healing model with upper airway S9 epithelial cells was established to determine the macroscopically optimal dosage of tissue-tolerable plasma (TTP) for wound regeneration, while a 2D-difference gel electrophoresis (2D-DIGE) approach was used to quantify the proteomic changes in a hypothesis-free manner and to evaluate the balance of beneficial and adverse effects due to TTP application. Plasma doses from 30 s up to 360 s were tested in relation to wound closure after 24 h, 48 h, 72 h, 96 h, and 120 h, in which lower doses (30, 60, and 120 s) resulted in dose-dependent improved wound healing rate compared to untreated cells. Thereby, the 120 s dose caused significantly the best wound healing properties after 96 and 120 h. The proteome analysis combined with IPA revealed that a lot of affected stress adaptation responses are linked to oxidative stress response emphasizing oxidative stress as a possible key event in the regeneration process of epithelial cells as well as in the adaptation to plasma exposure. Further cellular and molecular functions like proliferation and apoptosis were significantly up- or downregulated by all TTP treatments but mostly by the 120 s dose. For the first time, we were able to show plasma effects on cellular adaptation of upper airway epithelial S9 cells improving wound healing. This is of particular interest for plasma application, for example, in the surgery field of otorhinolaryngology or internal medicine.

  6. Proteomic Changes of Tissue-Tolerable Plasma Treated Airway Epithelial Cells and Their Relation to Wound Healing

    PubMed Central

    Lendeckel, Derik; Eymann, Christine; Emicke, Philipp; Daeschlein, Georg; Darm, Katrin; O'Neil, Serena; Beule, Achim G.; von Woedtke, Thomas; Völker, Uwe; Weltmann, Klaus-Dieter; Jünger, Michael; Hosemann, Werner; Scharf, Christian

    2015-01-01

    Background. The worldwide increasing number of patients suffering from nonhealing wounds requires the development of new safe strategies for wound repair. Recent studies suggest the possibility of nonthermal (cold) plasma application for the acceleration of wound closure. Methods. An in vitro wound healing model with upper airway S9 epithelial cells was established to determine the macroscopically optimal dosage of tissue-tolerable plasma (TTP) for wound regeneration, while a 2D-difference gel electrophoresis (2D-DIGE) approach was used to quantify the proteomic changes in a hypothesis-free manner and to evaluate the balance of beneficial and adverse effects due to TTP application. Results. Plasma doses from 30 s up to 360 s were tested in relation to wound closure after 24 h, 48 h, 72 h, 96 h, and 120 h, in which lower doses (30, 60, and 120 s) resulted in dose-dependent improved wound healing rate compared to untreated cells. Thereby, the 120 s dose caused significantly the best wound healing properties after 96 and 120 h. The proteome analysis combined with IPA revealed that a lot of affected stress adaptation responses are linked to oxidative stress response emphasizing oxidative stress as a possible key event in the regeneration process of epithelial cells as well as in the adaptation to plasma exposure. Further cellular and molecular functions like proliferation and apoptosis were significantly up- or downregulated by all TTP treatments but mostly by the 120 s dose. Conclusions. For the first time, we were able to show plasma effects on cellular adaptation of upper airway epithelial S9 cells improving wound healing. This is of particular interest for plasma application, for example, in the surgery field of otorhinolaryngology or internal medicine. PMID:26539504

  7. Natural thermal adaptation increases heat shock protein levels and decreases oxidative stress.

    PubMed

    Oksala, Niku K J; Ekmekçi, F Güler; Ozsoy, Ergi; Kirankaya, Serife; Kokkola, Tarja; Emecen, Güzin; Lappalainen, Jani; Kaarniranta, Kai; Atalay, Mustafa

    2014-01-01

    Heat shock proteins (HSPs), originally identified as heat-inducible gene products, are a family of highly conserved proteins that respond to a wide variety of stress including oxidative stress. Although both acute and chronic oxidative stress have been well demonstrated to induce HSP responses, little evidence is available whether increased HSP levels provide enhanced protection against oxidative stress under elevated yet sublethal temperatures. We studied relationships between oxidative stress and HSPs in a physiological model by using Garra rufa (doctor fish), a fish species naturally acclimatized to different thermal conditions. We compared fish naturally living in a hot spring with relatively high water temperature (34.4±0.6°C) to those living in normal river water temperature (25.4±4.7°C), and found that levels of all the studied HSPs (HSP70, HSP60, HSP90, HSC70 and GRP75) were higher in fish living in elevated water temperature compared with normal river water temperature. In contrast, indicators of oxidative stress, including protein carbonyls and lipid hydroperoxides, were decreased in fish living in the elevated temperature, indicating that HSP levels are inversely associated with oxidative stress. The present results provide evidence that physiologically increased HSP levels provide protection against oxidative stress and enhance cytoprotection. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Coping with Physiological Oxidative Stress: A Review of Antioxidant Strategies in Seals

    PubMed Central

    Vázquez-Medina, José Pablo; Zenteno-Savín, Tania; Elsner, Robert; Ortiz, Rudy M.

    2012-01-01

    While diving, seals are exposed to apnea-induced hypoxemia and repetitive cycles of ischemia/reperfusion. While on land, seals experience sleep apnea, as well as prolonged periods of food and water deprivation. Prolonged fasting, sleep apnea, hypoxemia and ischemia/reperfusion increase oxidant production and oxidative stress in terrestrial mammals. In seals, however, neither prolonged fasting nor apnea-induced hypoxemia or ischemia/reperfusion increase systemic or local oxidative damage. The strategies seals evolved to cope with increased oxidant production are reviewed in the present manuscript. Among these strategies, high antioxidant capacity and the oxidant-mediated activation of hormetic responses against hypoxia and oxidative stress are discussed. In addition to expanding our knowledge of the evolution of antioxidant defenses and adaptive responses to oxidative stress, understanding the mechanisms that allow adapted mammals to avoid oxidative damage has the potential to advance our knowledge of oxidative stress-induced pathologies and to enhance the translative value of biomedical therapies in the long term. PMID:22327141

  9. Oxidation of Proline by Mitochondria Isolated from Water-Stressed Maize Shoots 1

    PubMed Central

    Sells, Gary D.; Koeppe, David E.

    1981-01-01

    Proline oxidation and coupled phosphorylation were measured in mitochondria after isolation from shoots of water-stressed, etiolated maize (Zea mays L.) seedlings. Both state III and state IV rates of proline oxidation decreased as a logarithmic function of increased seedling water stress between −5 and −10 bars. Proline oxidation rates decreased 62% (state III) and 58% (state IV) as seedling water potentials were decreased from −5 to −10 bars. By comparison, oxidation of succinate, exogenous NADH, or malate + pyruvate decreased only 10 to 15% in this stress range. These decreases were a linear function of increased stress and were comparable to oxidation rates of mitochondria subjected to varying in vitro osmotic potentials. Osmotically induced in vitro stress reduced proline oxidation rates linearly with more negative osmotic potentials, a decrease that was similar to the responses of the other substrates to more negative osmotic potentials. Some decrease in coupling, with all substrates as determined by ADP/O ratios, was observed under osmotic stress. Mitochondria were also isolated from shoot tissue that had been stressed and then rewatered. On a percentage basis, the recovery of proline oxidation was greater than that of the other substrates. The decreases in the proline oxidase activity of mitochondria after only slight stress indicate a mitochondrial sensitivity to water stress at significantly less negative water potentials than previously reported for measurements of maize membrane permeability and respiratory activity. PMID:16662051

  10. An Antioxidant Phytotherapy to Rescue Neuronal Oxidative Stress

    PubMed Central

    Lin, Zhihong; Zhu, Danni; Yan, Yongqing; Yu, Boyang; Wang, Qiujuan; Shen, Pingniang; Ruan, Kefeng

    2011-01-01

    Oxidative stress is involved in the pathogenesis of ischemic neuronal injury. A Chinese herbal formula composed of Poria cocos (Chinese name: Fu Ling), Atractylodes macrocephala (Chinese name: Bai Zhu) and Angelica sinensis (Chinese names: Danggui, Dong quai, Donggui; Korean name: Danggwi) (FBD), has been proved to be beneficial in the treatment of cerebral ischemia/reperfusion (I/R).This study was carried out to evaluate the protective effect of FBD against neuronal oxidative stress in vivo and in vitro. Rat I/R were established by middle cerebral artery occlusion (MCAO) for 1 h, followed by 24 h reperfusion. MCAO led to significant depletion in superoxide dismutase and glutathione and rise in lipid peroxidation (LPO) and nitric oxide in brain. The neurological deficit and brain infarction were also significantly elevated by MCAO as compared with sham-operated group. All the brain oxidative stress and damage were significantly attenuated by 7 days pretreatment with the aqueous extract of FBD (250 mg kg−1, p.o.). Moreover, cerebrospinal fluid sampled from FBD-pretreated rats protected PC12 cells against oxidative insult induced by 0.2 mM hydrogen peroxide, in a concentration and time-dependent manner (IC50 10.6%, ET50 1.2 h). However, aqueous extract of FBD just slightly scavenged superoxide anion radical generated in xanthine–xanthine oxidase system (IC50 2.4 mg ml−1) and hydroxyl radical generated in Fenton reaction system (IC50 3.6 mg ml−1). In conclusion, FBD was a distinct antioxidant phytotherapy to rescue neuronal oxidative stress, through blocking LPO, restoring endogenous antioxidant system, but not scavenging free radicals. PMID:18955358

  11. Oxidative stress markers during a course of hyperthyroidism.

    PubMed

    Lampka, Magdalena; Junik, Roman; Nowicka, Anna; Kopczyńska, Ewa; Tyrakowski, Tomasz; Odrowaz-Sypniewska, Grazyna

    2006-01-01

    Previous studies have shown the presence of oxidative stress in hyperthyroid patients. The aim of this study was to evaluate the influence of hyperthyroidism on lipid peroxidation, plasma lipoprotein oxidation and antioxidant status. We have estimated the clinical utility of the biochemical parameters analysed as markers of oxidative stress in hyperthyroidism. Twenty five patients with overt hyperthyroidism because of Graves' disease or toxic multinodular goitre and 20 healthy subjects were included in the study. Lipid peroxidation was evaluated by measurement of peroxides and malondialdehyde with 4-hydroxynonenal (MDA + 4-HNE) concentrations. Autoantibodies against oxidised LDL (anti-oxLDL) were assayed as a marker of lipoprotein oxidation. Changes in the antioxidant defence system were estimated by measurement of total antioxidant status in serum (TAS) and erythrocyte superoxide dismutase activity (SOD). A significant increase in serum concentration of peroxides and MDA + 4-HNE was observed in patients with hyperthyroidism. However, no difference was found in anti-oxLDL concentration and antioxidant status parameters (TAS, SOD) between the control group and the patient group. Our results indicate an intensification of the oxidative processes caused by an excess of thyroid hormones, which is not accompanied by a response from the antioxidant system. Elevated concentrations of lipid peroxidation products in serum, both peroxides and malondialdehyde with 4-hydroxynonenal, may be useful as markers of oxidative stress during the course of hyperthyroidism.

  12. Wet-cupping removes oxidants and decreases oxidative stress.

    PubMed

    Tagil, Suleyman Murat; Celik, Huseyin Tugrul; Ciftci, Sefa; Kazanci, Fatmanur Hacievliyagil; Arslan, Muzeyyen; Erdamar, Nazan; Kesik, Yunus; Erdamar, Husamettin; Dane, Senol

    2014-12-01

    Wet-cupping therapy is one of the oldest known medical techniques. Although it is widely used in various conditions such as acute\\chronic inflammation, infectious diseases, and immune system disorders, its mechanism of action is not fully known. In this study, we investigated the oxidative status as the first step to elucidate possible mechanisms of action of wet cupping. Wet cupping therapy is implemented to 31 healthy volunteers. Venous blood samples and Wet cupping blood samples were taken concurrently. Serum nitricoxide, malondialdehyde levels and activity of superoxide dismutase and myeloperoxidase were measured spectrophotometrically. Wet cupping blood had higher activity of myeloperoxidase, lower activity of superoxide dismutase, higher levels of malondialdehyde and nitricoxide compared to the venous blood. Wet cupping removes oxidants and decreases oxidative stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Oxidative costs of reproduction: Oxidative stress in mice fed standard and low antioxidant diets.

    PubMed

    Vaanholt, L M; Milne, A; Zheng, Y; Hambly, C; Mitchell, S E; Valencak, T G; Allison, D B; Speakman, J R

    2016-02-01

    Lactation is one of the most energetically expensive behaviours, and trade-offs may exist between the energy devoted to it and somatic maintenance, including protection against oxidative damage. However, conflicting data exist for the effects of reproduction on oxidative stress. In the wild, a positive relationship is often observed, but in laboratory studies oxidative damage is often lower in lactating than in non-breeding animals. We hypothesised that this discrepancy may exist because during lactation food intake increases many-fold resulting in a large increase in the intake of dietary antioxidants which are typically high in laboratory rodent chow where they are added as a preservative. We supplied lactating and non-breeding control mice with either a standard or low antioxidant diet and studied how this affected the activity of endogenous antioxidants (catalase, superoxide dismutase; SOD, and glutathione peroxidise; GPx) and oxidative damage to proteins (protein carbonyls, PC) in liver and brain tissue. The low antioxidant diet did not significantly affect activities of antioxidant enzymes in brain or liver, and generally did not result in increased protein damage, except in livers of control mice on low antioxidant diet. Catalase activity, but not GPx or SOD, was decreased in both control and lactating mice on the low antioxidant diet. Lactating mice had significantly reduced oxidative damage to both liver and brain compared to control mice, independent of the diet they were given. In conclusion, antioxidant content of the diet did not affect oxidative stress in control or reproductive mice, and cannot explain the previously observed reduction in oxidative stress in lactating mammals studied in the laboratory. The reduced oxidative stress in the livers of lactating mice even under low antioxidant diet treatment was consistent with the 'shielding' hypothesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Oxidative stress and the effect of parasites on a carotenoid-based ornament.

    PubMed

    Mougeot, F; Martínez-Padilla, J; Blount, J D; Pérez-Rodríguez, L; Webster, L M I; Piertney, S B

    2010-02-01

    Oxidative stress, the physiological condition whereby the production of reactive oxygen and nitrogen species overwhelms the capacity of antioxidant defences, causes damage to key bio-molecules. It has been implicated in many diseases, and is proposed as a reliable currency in the trade-off between individual health and ornamentation. Whether oxidative stress mediates the expression of carotenoid-based signals, which are among the commonest signals of many birds, fish and reptiles, remains controversial. In the present study, we explored interactions between parasites, oxidative stress and the carotenoid-based ornamentation of red grouse Lagopus lagopus scoticus. We tested whether removing nematode parasites influenced both oxidative balance (levels of oxidative damage and circulating antioxidant defences) and carotenoid-based ornamentation. At the treatment group level, parasite purging enhanced the size and colouration of ornaments but did not significantly affect circulating carotenoids, antioxidant defences or oxidative damage. However, relative changes in these traits among individuals indicated that males with a greater number of parasites prior to treatment (parasite purging) showed a greater increase in the levels of circulating carotenoids and antioxidants, and a greater decrease in oxidative damage, than those with initially fewer parasites. At the individual level, a greater increase in carotenoid pigmentation was associated with a greater reduction in oxidative damage. Therefore, an individual's ability to express a carotenoid-based ornament appeared to be linked to its current oxidative balance and susceptibility to oxidative stress. Our experimental results suggest that oxidative stress can mediate the impact of parasites on carotenoid-based signals, and we discuss possible mechanisms linking carotenoid-based ornaments to oxidative stress.

  15. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage

    USDA-ARS?s Scientific Manuscript database

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked: considerable variation in oxidative stress resistance exists among and within species and ...

  16. [Effect of occupational stress on oxidation/antioxidant capacity in nurses].

    PubMed

    Cao, Lili; Tian, Honger; Zhang, Qingdong; Zhu, Xinyun; Zhan, Yongguo; Su, Jingguo; Xu, Tian; Zhu, Huabin; Liu, Ling

    2014-02-01

    To investigate the effect of occupational stress on the oxidation/antioxidant capacity in nurses. A total of 131 nurses were included as study subjects. The occupational health information collection system (based on the Internet of things) was used for measurement of occupational stress. Levels of hydroxyl free radicals and antioxidant enzymes were determined. The serum level of superoxide dismutase (SOD) was the highest in nurses under the age of 30 and the lowest in those over 45 (P < 0.05). The serum levels of glutathione peroxidase (GSH-Px) and peroxidase (POD) were the highest in nurses of working age less than 5 years, followed by those of 5-15 years, and nurses with more than 25 years' working experience showed the lowest GSH-Px and POD levels (P < 0.05). Furthermore, nurses with a university (college) degree had a higher GSH-Px level and a lower POD level compared with those with junior and senior high school degrees (P < 0.05). Job prospects and job control were positive occupational stress factors for SOD. Job hazards were negative occupational stress factors for POD. Psychological satisfaction was negative occupational stress reaction for hydroxyl free radicals. Calmness was positive occupational stress reaction for SOD, and daily stress was a negative one. The positive occupational stress reactions for GSH-Px were psychological satisfaction and job satisfaction, and daily stress was negative reaction. Nurses with higher occupational stress have stronger oxidation and weaker antioxidant capacity, which intensifies oxidant-antioxidant imbalance and leads to oxidative stress damage.

  17. Reduced Coupling of Oxidative Phosphorylation In Vivo Precedes Electron Transport Chain Defects Due to Mild Oxidative Stress in Mice

    PubMed Central

    Siegel, Michael P.; Kruse, Shane E.; Knowels, Gary; Salmon, Adam; Beyer, Richard; Xie, Hui; Van Remmen, Holly; Smith, Steven R.; Marcinek, David J.

    2011-01-01

    Oxidative stress and mitochondrial function are at the core of many degenerative conditions. However, the interaction between oxidative stress and in vivo mitochondrial function is unclear. We used both pharmacological (2 week paraquat (PQ) treatment of wild type mice) and transgenic (mice lacking Cu, Zn-superoxide dismutase (SOD1−/−)) models to test the effect of oxidative stress on in vivo mitochondrial function in skeletal muscle. Magnetic resonance and optical spectroscopy were used to measure mitochondrial ATP and oxygen fluxes and cell energetic state. In both models of oxidative stress, coupling of oxidative phosphorylation was significantly lower (lower P/O) at rest in vivo in skeletal muscle and was dose-dependent in the PQ model. Despite this reduction in efficiency, in vivo mitochondrial phosphorylation capacity (ATPmax) was maintained in both models, and ex vivo mitochondrial respiration in permeabilized muscle fibers was unchanged following PQ treatment. In association with the reduced P/O, PQ treatment led to a dose-dependent reduction in PCr/ATP ratio and increased phosphorylation of AMPK. These results indicate that oxidative stress uncouples oxidative phosphorylation in vivo and results in energetic stress in the absence of defects in the mitochondrial electron transport chain. PMID:22132085

  18. Influence of resveratrol on oxidative stress resistance and life span in Caenorhabditis elegans.

    PubMed

    Chen, Wei; Rezaizadehnajafi, Leila; Wink, Michael

    2013-05-01

    Resveratrol (3,5,4'-trihydroxy-trans-stilbene), a polyphenol from red wine, has been reported to be beneficial in cases of ageing-related cardiovascular and neurodegenerative diseases owing to its property to reduce oxidative stress. Previous studies on the longevity promoting effect of resveratrol have been partly inconclusive, therefore we set out to investigate whether resveratrol at least promoted longevity in Caenorhabditis elegans under acute oxidative stress conditions. C. elegans was cultured under standard conditions with or without resveratrol. After exposure to juglone-induced acute oxidative stress, the survival rate and hsp-16.2::GFP expression were measured. The influence of resveratrol on life span was recorded also under oxidative stress induced by high glucose concentrations in the growth medium. No extension of the normal life span of C. elegans was observed either in liquid or solid growth media containing different concentrations of resveratrol. However, resveratrol alleviated juglone-induced lethal oxidative stress, and significantly prolonged the life span of C. elegans under conditions of acute oxidative damage and oxidative stress caused by high concentrations of glucose. Resveratrol, as an antioxidant, ameliorated oxidative stress in vivo but did not extend the life span of C. elegans under normal conditions. However, resveratrol did extend life span under conditions of oxidative stress. © 2013 The Authors. JPP © 2013 Royal Pharmaceutical Society.

  19. Persistent response of Fanconi anemia haematopoietic stem and progenitor cells to oxidative stress.

    PubMed

    Li, Yibo; Amarachintha, Surya; Wilson, Andrew F; Li, Xue; Du, Wei

    2017-06-18

    Oxidative stress is considered as an important pathogenic factor in many human diseases including Fanconi anemia (FA), an inherited bone marrow failure syndrome with extremely high risk of leukemic transformation. Members of the FA protein family are involved in DNA damage and other cellular stress responses. Loss of FA proteins renders cells hypersensitive to oxidative stress and cancer transformation. However, how FA cells respond to oxidative DNA damage remains unclear. By using an in vivo stress-response mouse strain expressing the Gadd45β-luciferase transgene, we show here that haematopoietic stem and progenitor cells (HSPCs) from mice deficient for the FA gene Fanca or Fancc persistently responded to oxidative stress. Mechanistically, we demonstrated that accumulation of unrepaired DNA damage, particularly in oxidative damage-sensitive genes, was responsible for the long-lasting response in FA HSPCs. Furthermore, genetic correction of Fanca deficiency almost completely abolished the persistent oxidative stress-induced G 2 /M arrest and DNA damage response in vivo. Our study suggests that FA pathway is an integral part of a versatile cellular mechanism by which HSPCs respond to oxidative stress.

  20. Oxidative Stress Mediates Physiological Costs of Begging in Magpie (Pica pica) Nestlings

    PubMed Central

    Moreno-Rueda, Gregorio; Redondo, Tomás; Trenzado, Cristina E.; Sanz, Ana; Zúñiga, Jesús M.

    2012-01-01

    Background Theoretical models predict that a cost is necessary to guarantee honesty in begging displays given by offspring to solicit food from their parents. There is evidence for begging costs in the form of a reduced growth rate and immunocompetence. Moreover, begging implies vigorous physical activity and attentiveness, which should increase metabolism and thus the releasing of pro-oxidant substances. Consequently, we predict that soliciting offspring incur a cost in terms of oxidative stress, and growth rate and immune response (processes that generate pro-oxidants substances) are reduced in order to maintain oxidative balance. Methodology/Principal Findings We test whether magpie (Pica pica) nestlings incur a cost in terms of oxidative stress when experimentally forced to beg intensively, and whether oxidative balance is maintained by reducing growth rate and immune response. Our results show that begging provokes oxidative stress, and that nestlings begging for longer bouts reduce growth and immune response, thereby maintaining their oxidative status. Conclusions/Significance These findings help explaining the physiological link between begging and its associated growth and immunocompetence costs, which seems to be mediated by oxidative stress. Our study is a unique example of the complex relationships between the intensity of a communicative display (begging), oxidative stress, and life-history traits directly linked to viability. PMID:22808144

  1. Chemometrics models for assessment of oxidative stress risk in chrome-electroplating workers.

    PubMed

    Zendehdel, Rezvan; Shetab-Boushehri, Seyed Vahid; Azari, Mansoor R; Hosseini, Vajihe; Mohammadi, Hamidreza

    2015-04-01

    Oxidative stress is the main cause of hexavalant chromium-induced damage in chrome electroplating workers. The main goal of this study is toxicity analysis and the possibility of toxicity risk categorizing in the chrome electroplating workers based on oxidative stress parameters as prognostic variables. We assessed blood chromium levels and biomarkers of oxidative stress such as lipid peroxidation, thiol (SH) groups and antioxidant capacity of plasma. Data were subjected to principle component analysis (PCA) and artificial neuronal network (ANN) to obtain oxidative stress pattern for chrome electroplating workers. Blood chromium levels increased from 4.42 ppb to 10.6 ppb. Induction of oxidative stress was observed by increased in lipid peroxidation (22.38 ± 10.47 μM versus 14.74 ± 4.82 μM, p < 0.0008), decreased plasma antioxidant capacity (3.17 ± 1.35 μM versus 7.74 ± 4.45 μM, p < 0.0001) and plasma total thiol (SH groups) (0.21 ± 0.07 μM versus 0.45 ± 0.41 μM, p < 0.0042) in comparison to controls. Based on the oxidative parameters, two groups were identified by PCA methods. One category is workers with the risk of oxidative stress and second group is subjects with probable risk of oxidative stress induction. ANN methods can predict oxidative-risk category for assessment of toxicity induction in chrome electroplaters. The result showed multivariate modeling can be interpreted as the induced biochemical toxicity in the workers exposed to hexavalent chromium. Different occupation groups were assessed on the basis of risk level of oxidative stress which could further justify proceeding engineering control measures.

  2. The Drosophila carbonyl reductase sniffer prevents oxidative stress-induced neurodegeneration.

    PubMed

    Botella, Jose A; Ulschmid, Julia K; Gruenewald, Christoph; Moehle, Christoph; Kretzschmar, Doris; Becker, Katja; Schneuwly, Stephan

    2004-05-04

    A growing body of evidence suggests that oxidative stress is a common underlying mechanism in the pathogenesis of neurodegenerative disorders such as Alzheimer's, Huntington's, Creutzfeld-Jakob and Parkinson's diseases. Despite the increasing number of reports finding a causal relation between oxidative stress and neurodegeneration, little is known about the genetic elements that confer protection against the deleterious effects of oxidation in neurons. We have isolated and characterized the Drosophila melanogaster gene sniffer, whose function is essential for preventing age-related neurodegeneration. In addition, we demonstrate that oxidative stress is a direct cause of neurodegeneration in the Drosophila central nervous system and that reduction of sniffer activity leads to neuronal cell death. The overexpression of the gene confers neuronal protection against oxygen-induced apoptosis, increases resistance of flies to experimental normobaric hyperoxia, and improves general locomotor fitness. Sniffer belongs to the family of short-chain dehydrogenase/reductase (SDR) enzymes and exhibits carbonyl reductase activity. This is the first in vivo evidence of the direct and important implication of this enzyme as a neuroprotective agent in the cellular defense mechanisms against oxidative stress.

  3. Association between oxidative stress and nutritional status in the elderly.

    PubMed

    Moreira, Priscila Lucelia; Villas Boas, Paulo Jose Fortes; Ferreira, Ana Lucia Anjos

    2014-01-01

    Ageing is a dynamic and progressive process that is characterized by the occurrence of morphological, biochemical, functional and psychological changes in the organism. The aim of the present article is to provide updated concepts on oxidative stress, covering its importance in aging, as well as nutritional status and supplementation with antioxidants (substances that prevent or attenuate oxidation of oxidizable substrates, such as lipids, proteins, carbohydrates and deoxyribonucleic acid) in the geriatric population. Evidence suggests that there is an inverse relationship between oxidative stress and nutritional status in elderly individuals. Although an increase in oxidative stress in chronic diseases associated with aging has been proven, such as Parkinson's disease and Alzheimer's disease, up to now there has been no consistent clinical evidence proving the efficiency of supplementation with antioxidants against oxidative stress. In this context, supplementation is not recommended. On the other hand, the elderly should be encouraged to eat antioxidant foods, such as fruits and vegetables. Maintaining a normal weight (body mass index between 23 and 28 Kg/m(2)) should also be stimulated.

  4. Impact of extreme exercise at high altitude on oxidative stress in humans.

    PubMed

    Quindry, John; Dumke, Charles; Slivka, Dustin; Ruby, Brent

    2016-09-15

    Exercise and oxidative stress research continues to grow as a physiological subdiscipline. The influence of high altitude on exercise and oxidative stress is among the recent topics of intense study in this area. Early findings indicate that exercise at high altitude has an independent influence on free radical generation and the resultant oxidative stress. This review provides a detailed summary of oxidative stress biochemistry as gleaned mainly from studies of humans exercising at high altitude. Understanding of the human response to exercise at altitude is largely derived from field-based research at altitudes above 3000 m in addition to laboratory studies which employ normobaric hypoxia. The implications of oxidative stress incurred during high altitude exercise appear to be a transient increase in oxidative damage followed by redox-sensitive adaptations in multiple tissues. These outcomes are consistent for lowland natives, high altitude acclimated sojourners and highland natives, although the latter group exhibits a more robust adaptive response. To date there is no evidence that altitude-induced oxidative stress is deleterious to normal training or recovery scenarios. Limited evidence suggests that deleterious outcomes related to oxidative stress are limited to instances where individuals are exposed to extreme elevations for extended durations. However, confirmation of this tentative conclusion requires further investigation. More applicably, altitude-induced hypoxia may have an independent influence on redox-sensitive adaptive responses to exercise and exercise recovery. If correct, these findings may hold important implications for athletes, mountaineers, and soldiers working at high altitude. These points are raised within the confines of published research on the topic of oxidative stress during exercise at altitude. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  5. Impact of extreme exercise at high altitude on oxidative stress in humans

    PubMed Central

    Dumke, Charles; Slivka, Dustin; Ruby, Brent

    2015-01-01

    Abstract Exercise and oxidative stress research continues to grow as a physiological subdiscipline. The influence of high altitude on exercise and oxidative stress is among the recent topics of intense study in this area. Early findings indicate that exercise at high altitude has an independent influence on free radical generation and the resultant oxidative stress. This review provides a detailed summary of oxidative stress biochemistry as gleaned mainly from studies of humans exercising at high altitude. Understanding of the human response to exercise at altitude is largely derived from field‐based research at altitudes above 3000 m in addition to laboratory studies which employ normobaric hypoxia. The implications of oxidative stress incurred during high altitude exercise appear to be a transient increase in oxidative damage followed by redox‐sensitive adaptations in multiple tissues. These outcomes are consistent for lowland natives, high altitude acclimated sojourners and highland natives, although the latter group exhibits a more robust adaptive response. To date there is no evidence that altitude‐induced oxidative stress is deleterious to normal training or recovery scenarios. Limited evidence suggests that deleterious outcomes related to oxidative stress are limited to instances where individuals are exposed to extreme elevations for extended durations. However, confirmation of this tentative conclusion requires further investigation. More applicably, altitude‐induced hypoxia may have an independent influence on redox‐sensitive adaptive responses to exercise and exercise recovery. If correct, these findings may hold important implications for athletes, mountaineers, and soldiers working at high altitude. These points are raised within the confines of published research on the topic of oxidative stress during exercise at altitude. PMID:26453842

  6. Overexpression of calreticulin sensitizes SERCA2a to oxidative stress.

    PubMed

    Ihara, Yoshito; Kageyama, Kan; Kondo, Takahito

    2005-04-22

    Calreticulin (CRT), a Ca(2+)-binding molecular chaperone in the endoplasmic reticulum, plays a vital role in cardiac physiology and pathology. Oxidative stress is a main cause of myocardiac disorder in the ischemic heart, but the function of CRT under oxidative stress is not fully understood. In this study, the effect of overexpression of CRT on sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) 2a under oxidative stress was examined using myocardiac H9c2 cells transfected with the CRT gene. The in vitro activity of SERCA2a and uptake of (45)Ca(2+) into isolated microsomes were suppressed by H(2)O(2) in CRT-overexpressing cells compared with controls. Moreover, SERCA2a protein was degraded via a proteasome-dependent pathway following the formation of a complex with CRT under the stress with H(2)O(2). Thus, we conclude that overexpression of CRT enhances the inactivation and degradation of SERCA2a in the cells under oxidative stress, suggesting some pathophysiological functions of CRT in Ca(2+) homeostasis of myocardiac disease.

  7. Graphene Oxide Attenuates Th2-Type Immune Responses, but Augments Airway Remodeling and Hyperresponsiveness in a Murine Model of Asthma

    PubMed Central

    2015-01-01

    Several lines of evidence indicate that exposure to nanoparticles (NPs) is able to modify airway immune responses, thus facilitating the development of respiratory diseases. Graphene oxide (GO) is a promising carbonaceous nanomaterial with unique physicochemical properties, envisioned for a multitude of medical and industrial applications. In this paper, we determined how exposure to GO modulates the allergic pulmonary response. Using a murine model of ovalbumin (OVA)-induced asthma, we revealed that GO, given at the sensitization stage, augmented airway hyperresponsiveness and airway remodeling in the form of goblet cell hyperplasia and smooth muscle hypertrophy. At the same time, the levels of the cytokines IL-4, IL-5, and IL-13 were reduced in broncho-alveolar lavage (BAL) fluid in GO-exposed mice. Exposure to GO during sensitization with OVA decreased eosinophil accumulation and increased recruitment of macrophages in BAL fluid. In line with the cytokine profiles, sensitization with OVA in the presence of GO stimulated the production of OVA-specific IgG2a and down-regulated the levels of IgE and IgG1. Moreover, exposure to GO increased the macrophage production of the mammalian chitinases, CHI3L1 and AMCase, whose expression is associated with asthma. Finally, molecular modeling has suggested that GO may directly interact with chitinase, affecting AMCase activity, which has been directly proven in our studies. Thus, these data show that GO exposure attenuates Th2 immune response in a model of OVA-induced asthma, but leads to potentiation of airway remodeling and hyperresponsiveness, with the induction of mammalian chitinases. PMID:24847914

  8. Exercise-induced oxidative stress and hypoxic exercise recovery.

    PubMed

    Ballmann, Christopher; McGinnis, Graham; Peters, Bridget; Slivka, Dustin; Cuddy, John; Hailes, Walter; Dumke, Charles; Ruby, Brent; Quindry, John

    2014-04-01

    Hypoxia due to altitude diminishes performance and alters exercise oxidative stress responses. While oxidative stress and exercise are well studied, the independent impact of hypoxia on exercise recovery remains unknown. Accordingly, we investigated hypoxic recovery effects on post-exercise oxidative stress. Physically active males (n = 12) performed normoxic cycle ergometer exercise consisting of ten high:low intensity intervals, 20 min at moderate intensity, and 6 h recovery at 975 m (normoxic) or simulated 5,000 m (hypoxic chamber) in a randomized counter-balanced cross-over design. Oxygen saturation was monitored via finger pulse oximetry. Blood plasma obtained pre- (Pre), post- (Post), 2 h post- (2Hr), 4 h post- (4Hr), and 6 h (6Hr) post-exercise was assayed for Ferric Reducing Ability of Plasma (FRAP), Trolox Equivalent Antioxidant Capacity (TEAC), Lipid Hydroperoxides (LOOH), and Protein Carbonyls (PC). Biopsies from the vastus lateralis obtained Pre and 6Hr were analyzed by real-time PCR quantify expression of Heme oxygenase 1 (HMOX1), Superoxide Dismutase 2 (SOD2), and Nuclear factor (euthyroid-derived2)-like factor (NFE2L2). PCs were not altered between trials, but a time effect (13 % Post-2Hr increase, p = 0.044) indicated exercise-induced blood oxidative stress. Plasma LOOH revealed only a time effect (p = 0.041), including a 120 % Post-4Hr increase. TEAC values were elevated in normoxic recovery versus hypoxic recovery. FRAP values were higher 6Hr (p = 0.045) in normoxic versus hypoxic recovery. Exercise elevated gene expression of NFE2L2 (20 % increase, p = 0.001) and SOD2 (42 % increase, p = 0.003), but hypoxic recovery abolished this response. Data indicate that recovery in a hypoxic environment, independent of exercise, may alter exercise adaptations to oxidative stress and metabolism.

  9. Association of military training with oxidative stress and overreaching.

    PubMed

    Tanskanen, Minna M; Uusitalo, Arja L; Kinnunen, Hannu; Häkkinen, Keijo; Kyröläinen, Heikki; Atalay, Mustafa

    2011-08-01

    We hypothesized that increased oxidative stress and disrupted redox balance may be predisposing factors and markers for overreaching (OR). The study's purpose was to examine whether oxidative stress markers and antioxidant status and physical fitness are related to OR during an 8-wk military basic training (BT) period. Oxidative stress and antioxidant status were evaluated in the beginning and after 4 and 7 wk of training in 35 males (age = 19.7 ± 0.3 yr) at rest and immediately after a 45-min submaximal exercise. Physical activity (PA) was monitored by an accelerometer throughout BT. Indicators of OR were also examined. From baseline to week 4, increased daytime moderate to vigorous PA led to concomitant decreases in the ratio of oxidized to total glutathione (GSSG/TGSH) and GSSG. After 4 wk of BT, GSSG/TGSH and GSSG returned to the baseline values at rest, whereas PA remained unchanged. At every time point, acute exercise decreased TGSH and increased GSSG and GSSG/TGSH, whereas a decrease was observed in antioxidant capacity after 4 wk of training. In the beginning of BT, OR subjects (11 of the 35 males) had higher GSSG, GSSG/TGSH, and malondialdehyde (a marker of lipid peroxidation) at rest (P < 0.01-0.05) and lower response of GSSG and GSSG/TGSH ratio (P < 0.01) to exercise than non-OR subjects. Moreover, OR subjects had higher PA during BT than non-OR (P < 0.05). The sustained training load during the last 4 wk of BT led to oxidative stress observable both at rest and after submaximal exercise. Increased oxidative stress may be a marker of insufficient recovery leading possibly to OR.

  10. Oxidative stress and pathology in muscular dystrophies: focus on protein thiol oxidation and dysferlinopathies.

    PubMed

    Terrill, Jessica R; Radley-Crabb, Hannah G; Iwasaki, Tomohito; Lemckert, Frances A; Arthur, Peter G; Grounds, Miranda D

    2013-09-01

    The muscular dystrophies comprise more than 30 clinical disorders that are characterized by progressive skeletal muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism for pathogenesis generally remains unknown. It is considered that disturbed levels of reactive oxygen species (ROS) contribute to the pathology of many muscular dystrophies. Reactive oxygen species and oxidative stress may cause cellular damage by directly and irreversibly damaging macromolecules such as proteins, membrane lipids and DNA; another major cellular consequence of reactive oxygen species is the reversible modification of protein thiol side chains that may affect many aspects of molecular function. Irreversible oxidative damage of protein and lipids has been widely studied in Duchenne muscular dystrophy, and we have recently identified increased protein thiol oxidation in dystrophic muscles of the mdx mouse model for Duchenne muscular dystrophy. This review evaluates the role of elevated oxidative stress in Duchenne muscular dystrophy and other forms of muscular dystrophies, and presents new data that show significantly increased protein thiol oxidation and high levels of lipofuscin (a measure of cumulative oxidative damage) in dysferlin-deficient muscles of A/J mice at various ages. The significance of this elevated oxidative stress and high levels of reversible thiol oxidation, but minimal myofibre necrosis, is discussed in the context of the disease mechanism for dysferlinopathies, and compared with the situation for dystrophin-deficient mdx mice. © 2013 The Authors Journal compilation © 2013 FEBS.

  11. Antioxidant status and biomarkers of oxidative stress in canine lymphoma

    USDA-ARS?s Scientific Manuscript database

    Background – Oxidative stress might play a role in carcinogenesis, as well as impacting morbidity and mortality of veterinary cancer patients. The purpose of this study was to evaluate antioxidant concentrations and biomarkers of oxidative stress in dogs with newly-diagnosed lymphoma prior to treatm...

  12. Microbial oxidative stress response: Novel insights from environmental facultative anaerobic bacteria.

    PubMed

    Fu, Huihui; Yuan, Jie; Gao, Haichun

    2015-10-15

    Facultative bacteria can grow under either oxic or anoxic conditions. While oxygen provides substantial advantages in energy yield by respiration, it can become life-threatening because of reactive oxygen species that derive from the molecule naturally. Thus, to survive and thrive in a given niche, these bacteria have to constantly regulate physiological processes to make maximum benefits from oxygen respiration while restraining oxidative stress. Molecular mechanisms and physiological consequences of oxidative stress have been under extensive investigation for decades, mostly on research model Escherichia coli, from which our understanding of bacterial oxidative stress response is largely derived. Nevertheless, given that bacteria live in enormously diverse environments, to cope with oxidative stress different strategies are conceivably developed. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. CT-assessed large airway involvement and lung function decline in eosinophilic asthma: The association between induced sputum eosinophil differential counts and airway remodeling.

    PubMed

    Inoue, Hideki; Ito, Isao; Niimi, Akio; Matsumoto, Hisako; Matsuoka, Hirofumi; Jinnai, Makiko; Takeda, Tomoshi; Oguma, Tsuyoshi; Otsuka, Kojiro; Nakaji, Hitoshi; Tajiri, Tomoko; Iwata, Toshiyuki; Nagasaki, Tadao; Kanemitsu, Yoshihiro; Mishima, Michiaki

    2016-11-01

    Eosinophilic asthma (EA) is a distinct clinical phenotype characterized by eosinophilic airway inflammation and airway remodeling. Few studies have used computed tomography (CT) scanning to assess the association between sputum eosinophil differential counts and airway involvement. We aimed to investigate the clinical characteristics and airway involvement of EA, and to examine the correlation between induced sputum eosinophil differential counts and CT-assessed airway remodeling. We retrospectively divided 63 patients with stable asthma receiving inhaled corticosteroids into 2 groups: 26 patients with EA (sputum eosinophil >3%) and 37 patients with non-eosinophilic asthma (NEA). Clinical measurements such as spirometry, fractional exhaled nitric oxide levels (FeNO), and CT-assessed indices of airway involvement were compared between the groups. Multivariate analysis was performed to identify determinants of the percentage of wall area (WA%). The EA group had significantly longer asthma duration, lower pulmonary function, and higher FeNO than the NEA group. Also, the EA group had higher WA% and smaller airway luminal area than the NEA group. Sputum eosinophil differential counts and WA% were positively correlated. The multivariate linear regression analysis showed that the factors associated with WA% included sputum eosinophil differential counts, age, and body mass index. However, asthma duration was not associated with WA%. Our CT-assessed findings demonstrated large airway involvement in EA, and we observed a positive association between induced sputum eosinophil differential counts and WA%. The findings indicate that induced sputum eosinophil differential counts may be associated with airway remodeling in patients with stable asthma.

  14. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus

    PubMed Central

    Tangvarasittichai, Surapon

    2015-01-01

    Oxidative stress is increased in metabolic syndrome and type 2 diabetes mellitus (T2DM) and this appears to underlie the development of cardiovascular disease, T2DM and diabetic complications. Increased oxidative stress appears to be a deleterious factor leading to insulin resistance, dyslipidemia, β-cell dysfunction, impaired glucose tolerance and ultimately leading to T2DM. Chronic oxidative stress, hyperglycemia and dyslipidemia are particularly dangerous for β-cells from lowest levels of antioxidant, have high oxidative energy requirements, decrease the gene expression of key β-cell genes and induce cell death. If β-cell functioning is impaired, it results in an under production of insulin, impairs glucose stimulated insulin secretion, fasting hyperglycemia and eventually the development of T2DM. PMID:25897356

  15. A tale of two toxicities: malformed selenoproteins and oxidative stress both contribute to selenium stress in plants

    PubMed Central

    Van Hoewyk, Doug

    2013-01-01

    Background Despite selenium's toxicity in plants at higher levels, crops supply most of the essential dietary selenium in humans. In plants, inorganic selenium can be assimilated into selenocysteine, which can replace cysteine in proteins. Selenium toxicity in plants has been attributed to the formation of non-specific selenoproteins. However, this paradigm can be challenged now that there is increasingly abundant evidence suggesting that selenium-induced oxidative stress also contributes to toxicity in plants. Scope This Botanical Briefing summarizes the evidence indicating that selenium toxicity in plants is attributable to both the accumulation of non-specific selenoproteins and selenium-induced oxidative stress. Evidence is also presented to substantiate the claim that inadvertent selenocysteine replacement probably impairs or misfolds proteins, which supports the malformed selenoprotein hypothesis. The possible physiological ramifications of selenoproteins and selenium-induced oxidative stress are discussed. Conclusions Malformed selenoproteins and oxidative stress are two distinct types of stress that drive selenium toxicity in plants and could impact cellular processes in plants that have yet to be thoroughly explored. Although challenging, deciphering whether the extent of selenium toxicity in plants is imparted by selenoproteins or oxidative stress could be helpful in the development of crops with fortified levels of selenium. PMID:23904445

  16. The effect of upper gastrointestinal system endoscopy process on serum oxidative stress levels.

    PubMed

    Turan, Mehmet Nuri; Aslan, Mehmet; Bolukbas, Filiz Fusun; Bolukbas, Cengiz; Selek, Sahbettin; Sabuncu, Tevfik

    2016-12-01

    Some authors have investigated the effects of oxidative stress in some process such as undergoing laparoscopic. However, the effect of upper gastrointestinal system endoscopy process on oxidative stress is unclear. We evaluated the short-term effect of upper gastrointestinal system endoscopy process on oxidative stress. Thirty patients who underwent endoscopy process and 20 healthy controls were enrolled in the prospective study. Serum total antioxidant capacity and total oxidant status measurements were measured before and after endoscopy process. The ratio percentage of total oxidant status to total antioxidant capacity was regarded as oxidative stress index. Before endoscopy process, serum total antioxidant capacity levels were higher, while serum total oxidant status levels and oxidative stress index values were lower in patients than controls, but this difference was not statistically significant (all, p > 0.05). After endoscopy process, serum total antioxidant capacity and total oxidant status levels were significantly higher in patients than before endoscopy process (both, p < 0.05). However, oxidative stress index values were slight higher in patients but this difference was not statistically significant (p > 0.05). We observed that serum TAC and TOS levels were increased in patients who underwent endoscopy process after endoscopy process. However, short-time upper gastrointestinal system endoscopy process did not cause an important change in the oxidative stress index. Further studies enrolling a larger number of patients are required to clarify the results obtained here.

  17. Oxidative stress and protein aggregation during biological aging.

    PubMed

    Squier, T C

    2001-09-01

    Biological aging is a fundamental process that represents the major risk factor with respect to the development of cancer, neurodegenerative, and cardiovascular diseases in vertebrates. It is, therefore, evident that the molecular mechanisms of aging are fundamental to understand many disease processes. In this regard, the oxidation and nitration of intracellular proteins and the formation of protein aggregates have been suggested to underlie the loss of cellular function and the reduced ability of senescent animals to withstand physiological stresses. Since oxidatively modified proteins are thermodynamically unstable and assume partially unfolded tertiary structures that readily form aggregates, it is likely that oxidized proteins are intermediates in the formation of amyloid fibrils. It is, therefore, of interest to identify oxidatively sensitive protein targets that may play a protective role through their ability to down-regulate energy metabolism and the consequent generation of reactive oxygen species (ROS). In this respect, the maintenance of cellular calcium gradients represents a major energetic expense, which links alterations in intracellular calcium levels to ATP utilization and the associated generation of ROS through respiratory control mechanisms. The selective oxidation or nitration of the calcium regulatory proteins calmodulin and Ca-ATPase that occurs in vivo during aging and under conditions of oxidative stress may represent an adaptive response to oxidative stress that functions to down-regulate energy metabolism and the associated generation of ROS. Since these calcium regulatory proteins are also preferentially oxidized or nitrated under in vitro conditions, these results suggest an enhanced sensitivity of these critical calcium regulatory proteins, which modulate signal transduction processes and intracellular energy metabolism, to conditions of oxidative stress. Thus, the selective oxidation of critical signal transduction proteins probably

  18. Oxidative stress status in elite athletes engaged in different sport disciplines

    PubMed Central

    Hadžović - Džuvo, Almira; Valjevac, Amina; Lepara, Orhan; Pjanić, Samra; Hadžimuratović, Adnan; Mekić, Amel

    2014-01-01

    Exercise training may increase production of free radicals and reactive oxygen species in different ways. The training type and intensity may influence free radicals production, which leads to differences in oxidative stress status between athletes, but the results of the previous studies are incosistent. The aim of our study was to estimate oxidative stress status in elite athletes engaged in different sport disciplines. The study included 39 male highly skilled professional competitors with international experience (2 Olympic players): 12 wrestlers, 14 soccer players and 13 basketball players in whom we determined the levels of advanced oxidation protein products (AOPP) and malondialdehyde (MDA), as markers of oxidative stress and the total antioxidative capacity (ImAnOX) using commercially available assay kits. The mean AOPP concentration was not significantly different between soccer players, wrestler and basketball players (60.0±23.0 vs. 68.5±30.8 and 80.72±29.1 μmol/L respectively). Mean ImAnOX concentration was not different between soccer players (344.8±35.6 μmol/L), wrestlers (342±36.2 μmol/L) and basketball players (347.95±31.3 μmol/L). Mean MDA concentration was significantly higher in basketball players (1912.1±667.7 ng/mL) compared to soccer players (1060.1±391.0 ng/mL, p=0.003). In spite of this fact, oxidative stress markers levels were increased compared to referral values provided by the manufacturer. Type of sports (soccer, wrestler or basketball) have no impact on the levels of oxidative stress markers. Elite sports engagement is a potent stimulus of oxidative stress that leads to the large recruitment of antioxidative defense. Oxidative stress status monitoring followed by appropriate use of antioxidants is recommended as a part of training regime. PMID:24856375

  19. Oxidative stress status in elite athletes engaged in different sport disciplines.

    PubMed

    Hadžović-Džuvo, Almira; Valjevac, Amina; Lepara, Orhan; Pjanić, Samra; Hadžimuratović, Adnan; Mekić, Amel

    2014-05-01

    Exercise training may increase production of free radicals and reactive oxygen species in different ways. The training type and intensity may influence free radicals production, which leads to differences in oxidative stress status between athletes, but the results of the previous studies are incosistent. The aim of our study was to estimate oxidative stress status in elite athletes engaged in different sport disciplines. The study included 39 male highly skilled professional competitors with international experience (2 Olympic players): 12 wrestlers, 14 soccer players and 13 basketball players in whom we determined the levels of advanced oxidation protein products (AOPP) and malondialdehyde (MDA), as markers of oxidative stress and the total antioxidative capacity (ImAnOX) using commercially available assay kits. The mean AOPP concentration was not significantly different between soccer players, wrestler and basketball players (60.0 ± 23.0 vs. 68.5 ± 30.8 and 80.72 ± 29.1 μmol/L respectively). Mean ImAnOX concentration was not different between soccer players (344.8 ± 35.6 μmol/L), wrestlers (342.5 ± 36.2 μmol/L) and basketball players (347.95 ± 31.3 μmol/L). Mean MDA concentration was significantly higher in basketball players (1912.1 ± 667.7 ng/mL) compared to soccer players (1060.1 ± 391.0 ng/mL, p=0.003). In spite of this fact, oxidative stress markers levels were increased compared to referral values provided by the manufacturer. Type of sports (soccer, wrestler or basketball) have no impact on the levels of oxidative stress markers. Elite sports engagement is a potent stimulus of oxidative stress that leads to the large recruitment of antioxidative defense. Oxidative stress status monitoring followed by appropriate use of antioxidants is recommended as a part of training regime.

  20. Progranulin causes adipose insulin resistance via increased autophagy resulting from activated oxidative stress and endoplasmic reticulum stress.

    PubMed

    Guo, Qinyue; Xu, Lin; Li, Huixia; Sun, Hongzhi; Liu, Jiali; Wu, Shufang; Zhou, Bo

    2017-01-31

    Progranulin (PGRN) has recently emerged as an important regulator for insulin resistance. However, the direct effect of progranulin in adipose insulin resistance associated with the autophagy mechanism is not fully understood. In the present study, progranulin was administered to 3T3-L1 adipocytes and C57BL/6 J mice with/without specific inhibitors of oxidative stress and endoplasmic reticulum stress, and metabolic parameters, oxidative stress, endoplasmic reticulum stress and autophagy markers were assessed. Progranulin treatment increased iNOS expression, NO synthesis and ROS generation, and elevated protein expressions of CHOP, GRP78 and the phosphorylation of PERK, and caused a significant increase in Atg7 and LC3-II protein expression and a decreased p62 expression, and decreased insulin-stimulated tyrosine phosphorylation of IRS-1 and glucose uptake, demonstrating that progranulin activated oxidative stress and ER stress, elevated autophagy and induced insulin insensitivity in adipocytes and adipose tissue of mice. Interestingly, inhibition of iNOS and ER stress both reversed progranulin-induced stress response and increased autophagy, protecting against insulin resistance in adipocytes. Furthermore, the administration of the ER stress inhibitor 4-phenyl butyric acid reversed the negative effect of progranulin in vivo. Our findings showed the clinical potential of the novel adipokine progranulin in the regulation of insulin resistance, suggesting that progranulin might mediate adipose insulin resistance, at least in part, by inducing autophagy via activated oxidative stress and ER stress.

  1. Systems-Level Feedbacks of NRF2 Controlling Autophagy upon Oxidative Stress Response

    PubMed Central

    Kapuy, Orsolya; Papp, Diána; Bánhegyi, Gábor

    2018-01-01

    Although the primary role of autophagy-dependent cellular self-eating is cytoprotective upon various stress events (such as starvation, oxidative stress, and high temperatures), sustained autophagy might lead to cell death. A transcription factor called NRF2 (nuclear factor erythroid-related factor 2) seems to be essential in maintaining cellular homeostasis in the presence of either reactive oxygen or nitrogen species generated by internal metabolism or external exposure. Accumulating experimental evidence reveals that oxidative stress also influences the balance of the 5′ AMP-activated protein kinase (AMPK)/rapamycin (mammalian kinase target of rapamycin or mTOR) signaling pathway, thereby inducing autophagy. Based on computational modeling here we propose that the regulatory triangle of AMPK, NRF2 and mTOR guaranties a precise oxidative stress response mechanism comprising of autophagy. We suggest that under conditions of oxidative stress, AMPK is crucial for autophagy induction via mTOR down-regulation, while NRF2 fine-tunes the process of autophagy according to the level of oxidative stress. We claim that the cellular oxidative stress response mechanism achieves an incoherently amplified negative feedback loop involving NRF2, mTOR and AMPK. The mTOR-NRF2 double negative feedback generates bistability, supporting the proper separation of two alternative steady states, called autophagy-dependent survival (at low stress) and cell death (at high stress). In addition, an AMPK-mTOR-NRF2 negative feedback loop suggests an oscillatory characteristic of autophagy upon prolonged intermediate levels of oxidative stress, resulting in new rounds of autophagy stimulation until the stress events cannot be dissolved. Our results indicate that AMPK-, NRF2- and mTOR-controlled autophagy induction provides a dynamic adaptation to altering environmental conditions, assuming their new frontier in biomedicine. PMID:29510589

  2. Oxidative stress in β-thalassaemia and sickle cell disease

    PubMed Central

    Voskou, S.; Aslan, M.; Fanis, P.; Phylactides, M.; Kleanthous, M.

    2015-01-01

    Sickle cell disease and β-thalassaemia are inherited haemoglobinopathies resulting in structural and quantitative changes in the β-globin chain. These changes lead to instability of the generated haemoglobin or to globin chain imbalance, which in turn impact the oxidative environment both intracellularly and extracellularly. The ensuing oxidative stress and the inability of the body to adequately overcome it are, to a large extent, responsible for the pathophysiology of these diseases. This article provides an overview of the main players and control mechanisms involved in the establishment of oxidative stress in these haemoglobinopathies. PMID:26285072

  3. Pro-Oxidant Biological Effects of Inorganic Component of Petroleum: Vanadium and Oxidative Stress

    DTIC Science & Technology

    1996-08-01

    independent existence. Pro-Oxidant Chemicals and Free Radicals Involved in Oxidative Stress Pro-Oxidant Chemicals Chemical and Metabolic Generation... metabolic reactions may generate primary free radicals (Fig. 1). Then, in an avalanche-type process, secondary free radicals and reactive oxygen species...vanadium absorption, distribution, metabolism , and disposition, and no pharmacokinetic model is available describing comparative kinetics and toxicity

  4. The Role of Oxidative Stress in Nervous System Aging

    PubMed Central

    Sims-Robinson, Catrina; Hur, Junguk; Hayes, John M.; Dauch, Jacqueline R.; Keller, Peter J.; Brooks, Susan V.; Feldman, Eva L.

    2013-01-01

    While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1−/−) mice, a mouse model of increased oxidative stress. Sod1−/− mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1+/+ mice at 30 months and the Sod1−/− mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging. PMID:23844146

  5. Role of oxidative stress in female reproduction

    PubMed Central

    Agarwal, Ashok; Gupta, Sajal; Sharma, Rakesh K

    2005-01-01

    In a healthy body, ROS (reactive oxygen species) and antioxidants remain in balance. When the balance is disrupted towards an overabundance of ROS, oxidative stress (OS) occurs. OS influences the entire reproductive lifespan of a woman and even thereafter (i.e. menopause). OS results from an imbalance between prooxidants (free radical species) and the body's scavenging ability (antioxidants). ROS are a double-edged sword – they serve as key signal molecules in physiological processes but also have a role in pathological processes involving the female reproductive tract. ROS affect multiple physiological processes from oocyte maturation to fertilization, embryo development and pregnancy. It has been suggested that OS modulates the age-related decline in fertility. It plays a role during pregnancy and normal parturition and in initiation of preterm labor. Most ovarian cancers appear in the surface epithelium, and repetitive ovulation has been thought to be a causative factor. Ovulation-induced oxidative base damage and damage to DNA of the ovarian epithelium can be prevented by antioxidants. There is growing literature on the effects of OS in female reproduction with involvement in the pathophsiology of preeclampsia, hydatidiform mole, free radical-induced birth defects and other situations such as abortions. Numerous studies have shown that OS plays a role in the pathoysiology of infertility and assisted fertility. There is some evidence of its role in endometriosis, tubal and peritoneal factor infertility and unexplained infertility. This article reviews the role OS plays in normal cycling ovaries, follicular development and cyclical endometrial changes. It also discusses OS-related female infertility and how it influences the outcomes of assisted reproductive techniques. The review comprehensively explores the literature for evidence of the role of oxidative stress in conditions such as abortions, preeclampsia, hydatidiform mole, fetal embryopathies, preterm

  6. Oxidative Stress Mechanisms Do Not Discriminate between Genotoxic and Nongenotoxic Liver Carcinogens.

    PubMed

    Deferme, Lize; Wolters, Jarno; Claessen, Sandra; Briedé, Jacco; Kleinjans, Jos

    2015-08-17

    It is widely accepted that in chemical carcinogenesis different modes-of-action exist, e.g., genotoxic (GTX) versus nongenotoxic (NGTX) carcinogenesis. In this context, it has been suggested that oxidative stress response pathways are typical for NGTX carcinogenesis. To evaluate this, we examined oxidative stress-related changes in gene expression, cell cycle distribution, and (oxidative) DNA damage in human hepatoma cells (HepG2) exposed to GTX-, NGTX-, and noncarcinogens, at multiple time points (4-8-24-48-72 h). Two GTX (azathriopine (AZA) and furan) and two NGTX (tetradecanoyl-phorbol-acetate, (TPA) and tetrachloroethylene (TCE)) carcinogens as well as two noncarcinogens (diazinon (DZN, d-mannitol (Dman)) were selected, while per class one compound was deemed to induce oxidative stress and the other not. Oxidative stressors AZA, TPA, and DZN induced a 10-fold higher number of gene expression changes over time compared to those of furan, TCE, or Dman treatment. Genes commonly expressed among AZA, TPA, and DZN were specifically involved in oxidative stress, DNA damage, and immune responses. However, differences in gene expression between GTX and NGTX carcinogens did not correlate to oxidative stress or DNA damage but could instead be assigned to compound-specific characteristics. This conclusion was underlined by results from functional readouts on ROS formation and (oxidative) DNA damage. Therefore, oxidative stress may represent the underlying cause for increased risk of liver toxicity and even carcinogenesis; however, it does not discriminate between GTX and NGTX carcinogens.

  7. Markers of Oxidative Stress and Neuroprogression in Depression Disorder

    PubMed Central

    Vaváková, Magdaléna; Trebatická, Jana

    2015-01-01

    Major depression is multifactorial disorder with high prevalence and alarming prognostic in the nearest 15 years. Several mechanisms of depression are known. Neurotransmitters imbalance and imbalance between neuroprogressive and neuroprotective factors are observed in major depression. Depression is accompanied by inflammatory responses of the organism and consequent elevation of proinflammatory cytokines and increased lipid peroxidation are described in literature. Neuropsychiatric disorders including major depression are also associated with telomerase shortening, oxidative changes in nucleotides, and polymorphisms in several genes connected to metabolism of reactive oxygen species. Mitochondrion dysfunction is directly associated with increasing levels of oxidative stress. Oxidative stress plays significant role in pathophysiology of major depression via actions of free radicals, nonradical molecules, and reactive oxygen and nitrogen species. Products of oxidative stress represent important parameters for measuring and predicting of depression status as well as for determining effectiveness of administrated antidepressants. Positive effect of micronutrients, vitamins, and antioxidants in depression treatment is also reviewed. PMID:26078821

  8. In-vitro assessment of oxidative stress generated by orthodontic archwires.

    PubMed

    Spalj, Stjepan; Mlacovic Zrinski, Magda; Tudor Spalj, Vedrana; Ivankovic Buljan, Zorana

    2012-05-01

    Several metals undergo redox cycling, producing free radicals and generating oxidative stress. The purpose of this study was to investigate in-vitro oxidative stress of orthodontic archwires made of various alloys. Mouse fibroblast cells L929 were exposed to 6 types of archwires, and the concentration of the oxidative stress marker 8-hydroxy-2'-deoxyguanosine in DNA was evaluated. Trypan blue dye was used in the determination of cell viability and numbers. Standard nickel-titanium archwires generated the highest oxidative stress, significantly higher than all other wires and the controls (P <0.05), and coated nickel-titanium, copper-nickel-titanium, and cobalt-chromium were lower than nickel-titanium (P <0.05), but higher than titanium-molybdenum and the negative and absolute controls (P <0.05). Titanium-molybdenum and stainless steel generated the lowest stress. Nickel-titanium induced the lowest viability, lower than the negative and absolute controls and all other wires (P <0.05) except titanium-molybdenum. Stainless steel showed the highest viability. Nickel-titanium produced the highest inhibition of cell growth, higher than all samples (P <0.05) except the positive control and cobalt-chromium. The lowest inhibition was observed in stainless steel and titanium-molybdenum, lower than nickel-titanium, cobalt-chromium, and the positive control (P <0.05). All orthodontic archwires generate oxidative stress in vitro. Stainless steel archwires have the highest and nickel-titanium the lowest biocompatibility. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  9. Persistent response of Fanconi anemia haematopoietic stem and progenitor cells to oxidative stress

    PubMed Central

    Wilson, Andrew F.; Li, Xue

    2017-01-01

    ABSTRACT Oxidative stress is considered as an important pathogenic factor in many human diseases including Fanconi anemia (FA), an inherited bone marrow failure syndrome with extremely high risk of leukemic transformation. Members of the FA protein family are involved in DNA damage and other cellular stress responses. Loss of FA proteins renders cells hypersensitive to oxidative stress and cancer transformation. However, how FA cells respond to oxidative DNA damage remains unclear. By using an in vivo stress-response mouse strain expressing the Gadd45β-luciferase transgene, we show here that haematopoietic stem and progenitor cells (HSPCs) from mice deficient for the FA gene Fanca or Fancc persistently responded to oxidative stress. Mechanistically, we demonstrated that accumulation of unrepaired DNA damage, particularly in oxidative damage-sensitive genes, was responsible for the long-lasting response in FA HSPCs. Furthermore, genetic correction of Fanca deficiency almost completely abolished the persistent oxidative stress-induced G2/M arrest and DNA damage response in vivo. Our study suggests that FA pathway is an integral part of a versatile cellular mechanism by which HSPCs respond to oxidative stress. PMID:28475398

  10. Thiol specific oxidative stress response in Mycobacteria.

    PubMed

    Dosanjh, Nirpjit S; Rawat, Mamta; Chung, Ji-Hae; Av-Gay, Yossef

    2005-08-01

    The cellular response of mycobacteria to thiol specific oxidative stress was studied in Mycobacterium bovis BCG cultures. Two-dimensional gel electrophoresis revealed that upon diamide treatment at least 60 proteins were upregulated. Fourteen of these proteins were identified by MALDI-MS; four proteins, AhpC, Tpx, GroEL2, and GroEL1 are functionally related to oxidative stress response; eight proteins, LeuC, LeuD, Rv0224c, Rv3029c, AsnB, Rv2971, PheA and HisH are classified as part of the bacterial intermediary metabolism and respiration pathways; protein EchA14 belong to lipid metabolism, and NrdE, belongs to the mycobacterial information pathway category. Reverse transcription followed by quantitative real time PCR in response to diamide stress demonstrated that protein expression is directly proportional to the corresponding gene transcription.

  11. Depression and oxidative stress: results from a meta-analysis of observational studies.

    PubMed

    Palta, Priya; Samuel, Laura J; Miller, Edgar R; Szanton, Sarah L

    2014-01-01

    To perform a systematic review and meta-analysis that quantitatively tests and summarizes the hypothesis that depression results in elevated oxidative stress and lower antioxidant levels. We performed a meta-analysis of studies that reported an association between depression and oxidative stress and/or antioxidant status markers. PubMed and EMBASE databases were searched for articles published from January 1980 through December 2012. A random-effects model, weighted by inverse variance, was performed to pool standard deviation (Cohen's d) effect size estimates across studies for oxidative stress and antioxidant status measures, separately. Twenty-three studies with 4980 participants were included in the meta-analysis. Depression was most commonly measured using the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria. A Cohen's d effect size of 0.55 (95% confidence interval = 0.47-0.63) was found for the association between depression and oxidative stress, indicating a roughly 0.55 of 1-standard-deviation increase in oxidative stress among individuals with depression compared with those without depression. The results of the studies displayed significant heterogeneity (I(2) = 80.0%, p < .001). A statistically significant effect was also observed for the association between depression and antioxidant status markers (Cohen's d = -0.24, 95% confidence interval = -0.33 to -0.15). This meta-analysis observed an association between depression and oxidative stress and antioxidant status across many different studies. Differences in measures of depression and markers of oxidative stress and antioxidant status markers could account for the observed heterogeneity. These findings suggest that well-established associations between depression and poor heath outcomes may be mediated by high oxidative stress.

  12. RAGE polymorphisms and oxidative stress levels in Hashimoto's thyroiditis.

    PubMed

    Giannakou, Maria; Saltiki, Katerina; Mantzou, Emily; Loukari, Eleni; Philippou, Georgios; Terzidis, Konstantinos; Lili, Kiriaki; Stavrianos, Charalampos; Kyprianou, Miltiades; Alevizaki, Maria

    2017-05-01

    Polymorphisms of the receptor for advanced glycation end products (RAGE) gene have been studied in various autoimmune disorders, but not in Hashimoto's thyroiditis. Also, increased oxidative stress has been described in patients with Hashimoto's thyroiditis. The aim of this study was to investigate the possible role of two common RAGE polymorphisms (-429T>C, -374T>A) in Hashimoto's thyroiditis; in parallel, we studied oxidative stress levels. A total of 300 consecutive euthyroid women were examined and classified into three groups: Hashimoto's thyroiditis with treatment (n = 96), Hashimoto's thyroiditis without treatment (n = 109) and controls (n = 95). For a rough evaluation of oxidative stress, total lipid peroxide levels in serum were measured. The -429T>C AluI and -374T>A MfeI polymorphisms of RAGE were studied in genomic DNA. Significant association of the RAGE system with Hashimoto's thyroiditis was found only with regard to the prevalence of the -429T>C, but not with -374T>A polymorphism. The levels of oxidative stress were significantly elevated in Hashimoto's thyroiditis patients under treatment. Further analysis demonstrated that an oxidative stress cut-off value of 590 μmol/L is associated with an increased risk of progression of Hashimoto's thyroiditis from euthyroidism to hypothyroidism; this risk is further increased in carriers of the RAGE -429T>C polymorphism. Our findings indicate that both examined risk factors may be implicated in the occurrence of Hashimoto's thyroiditis, but this covers only a fraction of the pathophysiology of the disease. © 2017 Stichting European Society for Clinical Investigation Journal Foundation.

  13. Oxidative stress in normal hematopoietic stem cells and leukemia.

    PubMed

    Samimi, Azin; Kalantari, Heybatullah; Lorestani, Marzieh Zeinvand; Shirzad, Reza; Saki, Najmaldin

    2018-04-01

    Leukemia is developed following the abnormal proliferation of immature hematopoietic cells in the blood when hematopoietic stem cells lose the ability to turn into mature cells at different stages of maturation and differentiation. Leukemia initiating cells are specifically dependent upon the suppression of oxidative stress in the hypoglycemic bone marrow (BM) environment to be able to start their activities. Relevant literature was identified by a PubMed search (2000-2017) of English-language literature using the terms 'oxidative stress,' 'reactive oxygen species,' 'hematopoietic stem cell,' and 'leukemia.' The generation and degradation of free radicals is a main component of the metabolism in aerobic organisms. A certain level of ROS is required for proper cellular function, but values outside this range will result in oxidative stress (OS). Long-term overactivity of reactive oxygen species (ROS) has harmful effects on the function of cells and their vital macromolecules, including the transformation of proteins into autoantigens and increased degradation of protein/DNA, which eventually leads to the change in pathways involved in the development of cancer and several other disorders. According to the metabolic disorders of cancer, the relationship between OS changes, the viability of cancer cells, and their response to chemotherapeutic agents affecting this pathway are undeniable. Recently, studies have been conducted to determine the effect of herbal agents and cancer chemotherapy drugs on oxidative stress pathways. By emphasizing the role of oxidative stress on stem cells in the incidence of leukemia, this paper attempts to state and summarize this subject. © 2018 APMIS. Published by John Wiley & Sons Ltd.

  14. Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment.

    PubMed

    Chikara, Shireen; Nagaprashantha, Lokesh Dalasanur; Singhal, Jyotsana; Horne, David; Awasthi, Sanjay; Singhal, Sharad S

    2018-01-28

    Several epidemiological observations have shown an inverse relation between consumption of plant-based foods, rich in phytochemicals, and incidence of cancer. Phytochemicals, secondary plant metabolites, via their antioxidant property play a key role in cancer chemoprevention by suppressing oxidative stress-induced DNA damage. In addition, they modulate several oxidative stress-mediated signaling pathways through their anti-oxidant effects, and ultimately protect cells from undergoing molecular changes that trigger carcinogenesis. In several instances, however, the pro-oxidant property of these phytochemicals has been observed with respect to cancer treatment. Further, in vitro and in vivo studies show that several phytochemicals potentiate the efficacy of chemotherapeutic agents by exacerbating oxidative stress in cancer cells. Therefore, we reviewed multiple studies investigating the role of dietary phytochemicals such as, curcumin (turmeric), epigallocatechin gallate (EGCG; green tea), resveratrol (grapes), phenethyl isothiocyanate (PEITC), sulforaphane (cruciferous vegetables), hesperidin, quercetin and 2'-hydroxyflavanone (2HF; citrus fruits) in regulating oxidative stress and associated signaling pathways in the context of cancer chemoprevention and treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress.

    PubMed

    Liu, Shaobin; Zeng, Tingying Helen; Hofmann, Mario; Burcombe, Ehdi; Wei, Jun; Jiang, Rongrong; Kong, Jing; Chen, Yuan

    2011-09-27

    Health and environmental impacts of graphene-based materials need to be thoroughly evaluated before their potential applications. Graphene has strong cytotoxicity toward bacteria. To better understand its antimicrobial mechanism, we compared the antibacterial activity of four types of graphene-based materials (graphite (Gt), graphite oxide (GtO), graphene oxide (GO), and reduced graphene oxide (rGO)) toward a bacterial model-Escherichia coli. Under similar concentration and incubation conditions, GO dispersion shows the highest antibacterial activity, sequentially followed by rGO, Gt, and GtO. Scanning electron microscope (SEM) and dynamic light scattering analyses show that GO aggregates have the smallest average size among the four types of materials. SEM images display that the direct contacts with graphene nanosheets disrupt cell membrane. No superoxide anion (O(2)(•-)) induced reactive oxygen species (ROS) production is detected. However, the four types of materials can oxidize glutathione, which serves as redox state mediator in bacteria. Conductive rGO and Gt have higher oxidation capacities than insulating GO and GtO. Results suggest that antimicrobial actions are contributed by both membrane and oxidation stress. We propose that a three-step antimicrobial mechanism, previously used for carbon nanotubes, is applicable to graphene-based materials. It includes initial cell deposition on graphene-based materials, membrane stress caused by direct contact with sharp nanosheets, and the ensuing superoxide anion-independent oxidation. We envision that physicochemical properties of graphene-based materials, such as density of functional groups, size, and conductivity, can be precisely tailored to either reducing their health and environmental risks or increasing their application potentials. © 2011 American Chemical Society

  16. An update on oxidative stress-mediated organ pathophysiology.

    PubMed

    Rashid, Kahkashan; Sinha, Krishnendu; Sil, Parames C

    2013-12-01

    Exposure to environmental pollutants and drugs can result in pathophysiological situations in the body. Research in this area is essential as the knowledge on cellular survival and death would help in designing effective therapeutic strategies that are needed for the maintenance of the normal physiological functions of the body. In this regard, naturally occurring bio-molecules can be considered as potential therapeutic targets as they are normally available in commonly consumed foodstuffs and are thought to have minimum side effects. This review article describes the detailed mechanisms of oxidative stress-mediated organ pathophysiology and the ultimate fate of the cells either to survive or to undergo necrotic or apoptotic death. The mechanisms underlying the beneficial role of a number of naturally occurring bioactive molecules in oxidative stress-mediated organ pathophysiology have also been included in the review. The review provides useful information about the recent progress in understanding the mechanism(s) of various types of organ pathophysiology, the complex cross-talk between these pathways, as well as their modulation in stressed conditions. Additionally, it suggests possible therapeutic applications of a number of naturally occurring bioactive molecules in conditions involving oxidative stress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Chronic mitochondrial uncoupling treatment prevents acute cold-induced oxidative stress in birds.

    PubMed

    Stier, Antoine; Massemin, Sylvie; Criscuolo, François

    2014-12-01

    Endotherms have evolved two major types of thermogenesis that allow them to actively produce heat in response to cold exposure, either through muscular activity (i.e. shivering thermogenesis) or through futile electro-chemical cycles (i.e. non-shivering thermogenesis). Amongst the latter, mitochondrial uncoupling is of key importance because it is suggested to drive heat production at a low cost in terms of oxidative stress. While this has been experimentally shown in mammals, the oxidative stress consequences of cold exposure and mitochondrial uncoupling are clearly less understood in the other class of endotherms, the birds. We compared metabolic and oxidative stress responses of zebra finches chronically treated with or without a chemical mitochondrial uncoupler (2,4-dinitrophenol: DNP), undergoing an acute (24 h) and a chronic (4 weeks) cold exposure (12 °C). We predicted that control birds should present at least a transient elevation of oxidative stress levels in response to cold exposure. This oxidative stress cost should be more pronounced in control birds than in DNP-treated birds, due to their lower basal uncoupling state. Despite similar increase in metabolism, control birds presented elevated levels of DNA oxidative damage in response to acute (but not chronic) cold exposure, while DNP-treated birds did not. Plasma antioxidant capacity decreased overall in response to chronic cold exposure. These results show that acute cold exposure increases oxidative stress in birds. However, uncoupling mitochondrial functioning appears as a putative compensatory mechanism preventing cold-induced oxidative stress. This result confirms previous observations in mice and underlines non-shivering thermogenesis as a putative key mechanism for endotherms in mounting a response to cold at a low oxidative cost.

  18. The paradoxical relationship between stallion fertility and oxidative stress.

    PubMed

    Gibb, Zamira; Lambourne, Sarah R; Aitken, Robert J

    2014-09-01

    The relationship between stallion fertility and oxidative stress remains poorly understood. The purpose of this study was to identify criteria for thoroughbred fertility assessment by performing a logistical regression analysis using "dismount" sperm parameters as predictors and weekly per-cycle conception rate as the dependent variable. Paradoxically, positive relationships between fertility and oxidative stress were revealed, such that samples that produced pregnancies exhibited higher rates of 8-hydroxy-2'-deoxyguanosine release (1490.2% vs. 705.5 pg/ml/24 h) and lower vitality (60.5% vs. 69.6%) and acrosome integrity (40.2% vs. 50.1%) than those that did not. We hypothesized that the most fertile spermatozoa exhibited the highest levels of oxidative phosphorylation (OXPHOS), with oxidative stress simply being a by-product of intense mitochondrial activity. Accordingly, an experiment to investigate the relationship between oxidative stress and motility was conducted and revealed positive correlations between mitochondrial ROS and total motility (R² = 0.90), rapid motility (R² = 0.89), average path velocity (VAP; R² = 0.59), and curvilinear velocity (VCL; R² = 0.66). Similarly, lipid peroxidation was positively correlated with total motility (R² = 0.46), rapid motility (R² = 0.51), average path velocity (R² = 0.62), and VCL (R² = 0.56), supporting the aforementioned hypothesis. The relative importance of OXPHOS in supporting the motility of equine spermatozoa was contrasted with human spermatozoa, which primarily utilize glycolysis. In this study, mitochondrial inhibition significantly reduced the velocity (P < 0.01) and ATP (P < 0.05) content of equine, but not human, spermatozoa, emphasizing the former's relative dependence on OXPHOS. The equine is the first mammal in which such a positive relationship between oxidative stress and functionality has been observed, with implications for the management of stallion fertility in vitro and in vivo. © 2014 by

  19. Difference in oxidative stress tolerance between rice cultivars estimated with chlorophyll fluorescence analysis.

    PubMed

    Kasajima, Ichiro

    2017-04-26

    Oxidative stress is considered to be involved in growth retardation of plants when they are exposed to a variety of biotic and abiotic stresses. Despite its potential importance in improving crop production, comparative studies on oxidative stress tolerance between rice (Oryza sativa L.) cultivars are limited. This work describes the difference in term of oxidative stress tolerance between 72 rice cultivars. 72 rice cultivars grown under naturally lit greenhouse were used in this study. Excised leaf discs were subjected to a low concentration of methyl viologen (paraquat), a chemical reagent known to generate reactive oxygen species in chloroplast. Chlorophyll fluorescence analysis using a two-dimensional fluorescence meter, ion leakage analysis as well as the measurement of chlorophyll contents were used to evaluate the oxidative stress tolerance of leaf discs. Furthermore, fluorescence intensities were finely analyzed based on new fluorescence theories that we have optimized. Treatment of leaf discs with methyl viologen caused differential decrease of maximum quantum yield of photosystem II (Fv/Fm) between cultivars. Decrease of Fv/Fm was also closely correlated with increase of ion leakage and decrease of chlorophyll a/b ratio. Fv/Fm was factorized into photochemical and non-photochemical parameters to classify rice cultivars into sensitive and tolerant ones. Among the 72 compared rice cultivars, the traditional cultivar Co13 was identified as the most tolerant to oxidative stress. Koshihikari, a dominant modern Japonica cultivar in Japan as well as IR58, one of the modern Indica breeding lines exhibited a strong tolerance to oxidative stress. Close correlation between Fv/Fm and chlorophyll a/b ratio provides a simple method to estimate oxidative stress tolerance, without measurement of chlorophyll fluorescence with special equipment. The fact that modern cultivars, especially major cultivars possessed tolerance to oxidative stress suggests that oxidative stress

  20. Oxidative stress biomarkers in pediatric sepsis: a prospective observational pilot study.

    PubMed

    Molina, Víctor; von Dessauer, Bettina; Rodrigo, Ramón; Carvajal, Cristian

    2017-11-01

    Oxidative stress is known to participate in the progression of sepsis. Definite data regarding the behavior of oxidative stress biomarkers in pediatric sepsis is still lacking. This study hypothesized that oxidative stress occurs in pediatric sepsis and that the magnitude of the redox derangement is associated with worse clinical progression. Forty-two previously healthy pediatric patients with sepsis and a group of control subjects were included. Oxidative stress and inflammatory activity biomarkers were determined in blood samples. Patients were prospectively followed until their discharge or death. Patients with non-severe and severe sepsis showed higher levels of plasmatic antioxidant capacity, lower erythrocyte thiol index, lower superoxide dismutase and catalase activities, higher glutathione peroxidase activity, and higher plasmatic F 2 -isoprostanes concentration than controls. Patients with severe sepsis had higher NF-kappaB activation than those with non-severe sepsis. Although we observed changes in some biomarkers in patients with worse clinical evolution, the explored biomarkers did not correlate with clinical estimators of outcome. Oxidative stress occurs in pediatric sepsis, resulting in oxidative damage. The explored biomarkers are not useful as outcome predictors in the studied population. The behavior of these biomarkers still needs to be addressed in broader groups of pediatric patients with sepsis.

  1. Hormonal Regulation of Response to Oxidative Stress in Insects—An Update

    PubMed Central

    Kodrík, Dalibor; Bednářová, Andrea; Zemanová, Milada; Krishnan, Natraj

    2015-01-01

    Insects, like other organisms, must deal with a wide variety of potentially challenging environmental factors during the course of their life. An important example of such a challenge is the phenomenon of oxidative stress. This review summarizes the current knowledge on the role of adipokinetic hormones (AKH) as principal stress responsive hormones in insects involved in activation of anti-oxidative stress response pathways. Emphasis is placed on an analysis of oxidative stress experimentally induced by various stressors and monitored by suitable biomarkers, and on detailed characterization of AKH’s role in the anti-stress reactions. These reactions are characterized by a significant increase of AKH levels in the insect body, and by effective reversal of the markers—disturbed by the stressors—after co-application of the stressor with AKH. A plausible mechanism of AKH action in the anti-oxidative stress response is discussed as well: this probably involves simultaneous employment of both protein kinase C and cyclic adenosine 3′,5′-monophosphate pathways in the presence of extra and intra-cellular Ca2+ stores, with the possible involvement of the FoxO transcription factors. The role of other insect hormones in the anti-oxidative defense reactions is also discussed. PMID:26516847

  2. ELECTROSTATIC CHARGE STIMULATES OXIDATIVE STRESS IN CNS MICROGLIA.

    EPA Science Inventory

    Nanometer size particles carry free radical activity on their surface and can create oxidative stress (OS)-mediated inflammatory changes upon impact. The oxidative burst signals the activation of phage-lineage cells such as peripheral macrophages, Kupffer cells and CNS microgl...

  3. [Oxidative stress promotes hepatocyte apoptosis mediated by glycogen synthase kinase 3β].

    PubMed

    Zhang, Xiangying; Guo, Yuanyuan; Zhang, Li; Wen, Tao; Piao, Zhengfu; Shi, Hongbo; Chen, Dexi; Duan, Zhongping; Ren, Feng

    2015-01-01

    To analyze the role of glycogen synthase kinase 3β (GSK3β) in hepatocyte apoptosis induced by oxidative stress. Human HL-7702 hepatoma cells were induced by H₂O₂/antimycin A to establish oxidative stress-induced cell apoptosis models. SB216763, a specific inhibitor of GSK3β, was given to the cells two hours before H₂O₂/antimycin A induction. Cell survival was observed using calcein acetoxymethyl ester/propidium iodide (PI) double staining, and cell apoptosis was detected using annexin V-FITC/PI staining combined with flow cytometry. In the meanwhile, the cell culture supernatant was subjected to lactate dehydrogenase (LDH) assay to evaluate the extent of cell death. The expressions of p-GSK3β, GSK3β, caspase-3, cleaved caspase-3, c-Jun N-terminal kinase (JNK) and cytochrome C (CytC) proteins were examined using Western blotting. Oxidative stress triggered by H₂O₂/antimycin A promoted GSK3β activity; inhibition of GSK3β activity by SB216763 relieved oxidative stress and reduced cell apoptosis induced by oxidative stress. Compared with the model groups, SB216763 intervened group showed that the cell apoptosis rate and the level of LDH were reduced significantly, and that the expressions of cleaved caspase-3, JNK, CytC proteins decreased. GSK3β is an important signaling molecule in the apoptosis pathway induced by oxidative stress. The inhibition on GSK3β may alleviate the oxidative stress-induced hepatocyte apoptosis.

  4. Lithospermum erythrorhizon extract protects keratinocytes and fibroblasts against oxidative stress.

    PubMed

    Yoo, Hee Geun; Lee, Bong Han; Kim, Wooki; Lee, Jong Suk; Kim, Gun Hee; Chun, Ock K; Koo, Sung I; Kim, Dae-Ok

    2014-11-01

    Oxidative stress damages dermal and epidermal cells and degrades extracellular matrix proteins, such as collagen, ultimately leading to skin aging. The present study evaluated the potential protective effect of the aqueous methanolic extract obtained from Lithospermum erythrorhizon (LE) against oxidative stress, induced by H2O2 and ultraviolet (UV) irradiation, on human keratinocyte (HaCaT) and human dermal fibroblast-neonatal (HDF-n) cells. Exposure of cells to H2O2 or UVB irradiation markedly increased oxidative stress and reduced cell viability. However, pretreatment of cells with the LE extract not only increased cell viability (up to 84.5%), but also significantly decreased oxidative stress. Further, the LE extract downregulated the expression of matrix metalloproteinase-1, an endopeptidase that degrades extracellular matrix collagen. In contrast, treatment with the LE extract did not affect the expression of procollagen type 1 in HDF-n cells exposed to UVA irradiation. Thirteen phenolic compounds, including derivatives of shikonin and caffeic acid, were identified by ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. These results suggest that LE-derived extracts may protect oxidative-stress-induced skin aging by inhibiting degradation of skin collagen, and that this protection may derive at least in part from the antioxidant phenolics present in these extracts. Further studies are warranted to determine the potential utility of LE-derived extracts in both therapeutic and cosmetic applications.

  5. Age-dependent oxidative stress-induced DNA damage in Down's lymphocytes.

    PubMed

    Zana, Marianna; Szécsényi, Anita; Czibula, Agnes; Bjelik, Annamária; Juhász, Anna; Rimanóczy, Agnes; Szabó, Krisztina; Vetró, Agnes; Szucs, Péter; Várkonyi, Agnes; Pákáski, Magdolna; Boda, Krisztina; Raskó, István; Janka, Zoltán; Kálmán, János

    2006-06-30

    The aim of the present study was to investigate the oxidative status of lymphocytes from children (n=7) and adults (n=18) with Down's syndrome (DS). The basal oxidative condition, the vulnerability to in vitro hydrogen peroxide exposure, and the repair capacity were measured by means of the damage-specific alkaline comet assay. Significantly and age-independently elevated numbers of single strand breaks and oxidized bases (pyrimidines and purines) were found in the nuclear DNA of the lymphocytes in the DS group in the basal condition. These results may support the role of an increased level of endogenous oxidative stress in DS and are similar to those previously demonstrated in Alzheimer's disease. In the in vitro oxidative stress-induced state, a markedly higher extent of DNA damage was observed in DS children as compared with age- and gender-matched healthy controls, suggesting that young trisomic lymphocytes are more sensitive to oxidative stress than normal ones. However, the repair ability itself was not found to be deteriorated in either DS children or DS adults.

  6. Markers of Oxidant Stress that are Clinically Relevant in Aging and Age-related Disease

    PubMed Central

    Jacob, Kimberly D.; Hooten, Nicole Noren; Trzeciak, Andrzej R.; Evans, Michele K.

    2013-01-01

    Despite the long held hypothesis that oxidant stress results in accumulated oxidative damage to cellular macromolecules and subsequently to aging and age-related chronic disease, it has been difficult to consistently define and specifically identify markers of oxidant stress that are consistently and directly linked to age and disease status. Inflammation because it is also linked to oxidant stress, aging, and chronic disease also plays an important role in understanding the clinical implications of oxidant stress and relevant markers. Much attention has focused on identifying specific markers of oxidative stress and inflammation that could be measured in easily accessible tissues and fluids (lymphocytes, plasma, serum). The purpose of this review is to discuss markers of oxidant stress used in the field as biomarkers of aging and age-related diseases, highlighting differences observed by race when data is available. We highlight DNA, RNA, protein, and lipid oxidation as measures of oxidative stress, as well as other well-characterized markers of oxidative damage and inflammation and discuss their strengths and limitations. We present the current state of the literature reporting use of these markers in studies of human cohorts in relation to age and age-related disease and also with a special emphasis on differences observed by race when relevant. PMID:23428415

  7. Cellular and Molecular Biology of Airway Mucins

    PubMed Central

    Lillehoj, Erik P.; Kato, Kosuke; Lu, Wenju; Kim, Kwang C.

    2017-01-01

    Airway mucus constitutes a thin layer of airway surface liquid with component macromolecules that covers the luminal surface of the respiratory tract. The major function of mucus is to protect the lungs through mucociliary clearance of inhaled foreign particles and noxious chemicals. Mucus is comprised of water, ions, mucin glycoproteins, and a variety of other macromolecules, some of which possess anti-microbial, anti-protease, and anti-oxidant activities. Mucins comprise the major protein component of mucus and exist as secreted and cell-associated glycoproteins. Secreted, gel-forming mucins are mainly responsible for the viscoelastic property of mucus, which is crucial for effective mucociliary clearance. Cell-associated mucins shield the epithelial surface from pathogens through their extracellular domains and regulate intracellular signaling through their cytoplasmic regions. However, neither the exact structures of mucin glycoproteins, nor the manner through which their expression is regulated, are completely understood. This chapter reviews what is currently known about the cellular and molecular properties of airway mucins. PMID:23445810

  8. World Trade Center (WTC) dust exposure in mice is associated with inflammation, oxidative stress and epigenetic changes in the lung

    PubMed Central

    Sunil, Vasanthi R.; Vayas, Kinal N.; Fang, Mingzhu; Zarbl, Helmut; Massa, Christopher; Gow, Andrew J.; Cervelli, Jessica A.; Kipen, Howard; Laumbach, Robert J.; Lioy, Paul J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2017-01-01

    Exposure to World Trade Center (WTC) dust has been linked to respiratory disease in humans. In the present studies we developed a rodent model of WTC dust exposure to analyze lung oxidative stress and inflammation, with the goal of elucidating potential epigenetic mechanisms underlying these responses. Exposure of mice to WTC dust (20 μg, i.t.) was associated with upregulation of heme oxygenase-1 and cyclooxygenase-2 within 3 days, a response which persisted for at least 21 days. Whereas matrix metalloproteinase was upregulated 7 days post-WTC dust exposure, IL-6RA1 was increased at 21 days; conversely, expression of mannose receptor, a scavenger receptor important in particle clearance, decreased. After WTC dust exposure, increases in methylation of histone H3 lysine K4 at 3 days, lysine K27 at 7 days and lysine K36, were observed in the lung, along with hypermethylation of Line-1 element at 21 days. Alterations in pulmonary mechanics were also observed following WTC dust exposure. Thus, 3 days post-exposure, lung resistance and tissue damping were decreased. In contrast at 21 days, lung resistance, central airway resistance, tissue damping and tissue elastance were increased. These data demonstrate that WTC dust-induced inflammation and oxidative stress are associated with epigenetic modifications in the lung and altered pulmonary mechanics. These changes may contribute to the development of WTC dust pathologies. PMID:27986442

  9. Introduction to Oxidative Stress in Biomedical and Biological Research

    PubMed Central

    Breitenbach, Michael; Eckl, Peter

    2015-01-01

    Oxidative stress is now a well-researched area with thousands of new articles appearing every year. We want to give the reader here an overview of the topics in biomedical and basic oxidative stress research which are covered by the authors of this thematic issue. We also want to give the newcomer a short introduction into some of the basic concepts, definitions and analytical procedures used in this field. PMID:26117854

  10. The effect of sunblock against oxidative stress in farmers: a pilot study

    PubMed Central

    Kim, Yong-Dae; Yim, Dong-Hyuk; Eom, Sang-Yong; Yeoun Lee, Ji; Kim, Heon

    2017-01-01

    Farmers are frequently exposed to ultraviolet (UV) radiation which causes various diseases by inducing oxidative stress. This study aimed to assess the effects of sunblock on oxidative stress in the body. Eighty-seven farmers were divided into two groups: those who wore sunblock for five days and those who did not. The total antioxidant capacity (TAC) in urine, which is an antioxidant indicator, and 8-hydroxy-2-deoxyguanosine (8-OHdG) levels in urine, an oxidative stress indicator, were measured. The urinary TAC of sunblock users was significantly higher than that of non-users, but urinary 8-OHdG levels were not significantly different. Even after adjustment for potential confounders, urinary TAC was found to be markedly increased with sunblock usage. These results suggest that sunblock is effective in preventing oxidative stress among farmers. In addition, they show that urinary TAC can be used as a good effect marker of oxidative stress caused by UV exposure. PMID:28808206

  11. Oxidative stress and plasma lipoproteins in cancer patients

    PubMed Central

    Maia, Fernanda Maria Machado; Santos, Emanuelly Barbosa; Reis, Germana Elias

    2014-01-01

    Objective To evaluate the relation between oxidative stress and lipid profile in patients with different types of cancer. Methods This was an observational cross-sectional. A total of 58 subjects were evaluated, 33 males, divided into two groups of 29 patients each: Group 1, patients with cancer of the digestive tract and accessory organs; Group 2 patients with other types of cancers, all admitted to a public hospital. The plasma levels (lipoproteins and total cholesterol, HDL, and triglycerides, for example) were analyzed by enzymatic kits, and oxidative stress based on thiobarbituric acid-reactive substances, by assessing the formation of malondialdehyde. Results In general the levels of malondialdehyde of patients were high (5.00μM) as compared to 3.31μM for healthy individuals. The median values of lipids exhibited normal triacylglycerol (138.78±89.88mg/dL), desirable total cholesterol values (163.04±172.38mg/dL), borderline high LDL (151.30±178.25mg/dL) and low HDL (31.70±22.74mg/dL). Median HDL levels in Group 1 were lower (31.32mg/dL) than the cancer patients in Group 2 (43.67mg/dL) (p=0.038). Group 1 also showed higher levels of oxidative stress (p=0.027). Conclusion The lipid profile of patients with cancer was not favorable, which seems to have contributed to higher lipid peroxidation rate, generating a significant oxidative stress. PMID:25628201

  12. Oxidative stress and apoptotic events during thermal stress in the symbiotic sea anemone, Anemonia viridis.

    PubMed

    Richier, Sophie; Sabourault, Cécile; Courtiade, Juliette; Zucchini, Nathalie; Allemand, Denis; Furla, Paola

    2006-09-01

    Symbiosis between cnidarian and photosynthetic protists is widely distributed over temperate and tropical seas. These symbioses can periodically breakdown, a phenomenon known as cnidarian bleaching. This event can be irreversible for some associations subjected to acute and/or prolonged environmental disturbances, and leads to the death of the animal host. During bleaching, oxidative stress has been described previously as acting at molecular level and apoptosis is suggested to be one of the mechanisms involved. We focused our study on the role of apoptosis in bleaching via oxidative stress in the association between the sea anemone Anemonia viridis and the dinoflagellates Symbiodinium species. Characterization of caspase-like enzymes were conducted at the biochemical and molecular level to confirm the presence of a caspase-dependent apoptotic phenomenon in the cnidarian host. We provide evidence of oxidative stress followed by induction of caspase-like activity in animal host cells after an elevated temperature stress, suggesting the concomitant action of these components in bleaching.

  13. Depression and Oxidative Stress: Results From a Meta-Analysis of Observational Studies

    PubMed Central

    Palta, Priya; Samuel, Laura J.; Miller, Edgar R.; Szanton, Sarah L.

    2014-01-01

    Objective To perform a systematic review and meta-analysis that quantitatively tests and summarizes the hypothesis that depression results in elevated oxidative stress and lower antioxidant levels. Methods We performed a meta-analysis of studies that reported an association between depression and oxidative stress and/or antioxidant status markers. PubMed and EMBASE databases were searched for articles published from January 1980 through December 2012. A random-effects model, weighted by inverse variance, was performed to pool standard deviation (Cohen’s d) effect size estimates across studies for oxidative stress and antioxidant status measures, separately. Results Twenty-three studies with 4980 participants were included in the meta-analysis. Depression was most commonly measured using the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria. A Cohen’s d effect size of 0.55 (95% confidence interval = 0.47–0.63) was found for the association between depression and oxidative stress, indicating a roughly 0.55 of 1-standard-deviation increase in oxidative stress among individuals with depression compared with those without depression. The results of the studies displayed significant heterogeneity (I2 = 80.0%, p < .001). A statistically significant effect was also observed for the association between depression and antioxidant status markers (Cohen’s d = −0.24, 95% confidence interval = −0.33 to −0.15). Conclusions This meta-analysis observed an association between depression and oxidative stress and antioxidant status across many different studies. Differences in measures of depression and markers of oxidative stress and antioxidant status markers could account for the observed heterogeneity. These findings suggest that well-established associations between depression and poor heath outcomes may be mediated by high oxidative stress. PMID:24336428

  14. Nitric oxide in the stress axis.

    PubMed

    López-Figueroa, M O; Day, H E; Akil, H; Watson, S J

    1998-10-01

    In recent years nitric oxide (NO) has emerged as a unique biological messenger. NO is a highly diffusible gas, synthesized from L-arginine by the enzyme nitric oxide synthase (NOS). Three unique subtypes of NOS have been described, each with a specific distribution profile in the brain and periphery. NOS subtype I is present, among other areas, in the hippocampus, hypothalamus, pituitary and adrenal gland. Together these structures form the limbic-hypothalamic-pituitary-adrenal (LHPA) or stress axis, activation of which is one of the defining features of a stress response. Evidence suggests that NO may modulate the release of the stress hormones ACTH and corticosterone, and NOS activity and transcription is increased in the LHPA axis following various stressful stimuli. Furthermore, following activation of the stress axis, glucocorticoids are thought to down-regulate the transcription and activity of NOS via a feedback mechanism. Taken together, current data indicate a role for NO in the regulation of the LHPA axis, although at present this role is not well defined. It has been suggested that NO may act as a cellular communicator in plasticity and development, to facilitate the activation or the release of other neurotransmitters, to mediate immune responses, and/or as a vasodilator in the regulation of blood flow. In the following review we summarize some of the latest insights into the function of NO, with special attention to its relationship with the LHPA axis.

  15. Thiamine deficiency induces endoplasmic reticulum stress and oxidative stress in human neurons derived from induced pluripotent stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xin; Xu, Mei; Frank, Jacqueline A.

    Thiamine (vitamin B1) deficiency (TD) plays a major role in the etiology of Wernicke's encephalopathy (WE) which is a severe neurological disorder. TD induces selective neuronal cell death, neuroinflammation, endoplasmic reticulum (ER) stress and oxidative stress in the brain which are commonly observed in many aging-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and progressive supranuclear palsy (PSP). However, the underlying cellular and molecular mechanisms remain unclear. The progress in this line of research is hindered due to the lack of appropriate in vitro models. The neurons derived for the human induced pluripotent stemmore » cells (hiPSCs) provide a relevant and powerful tool for the research in pharmaceutical and environmental neurotoxicity. In this study, we for the first time used human induced pluripotent stem cells (hiPSCs)-derived neurons (iCell neurons) to investigate the mechanisms of TD-induced neurodegeneration. We showed that TD caused a concentration- and duration-dependent death of iCell neurons. TD induced ER stress which was evident by the increase in ER stress markers, such as GRP78, XBP-1, CHOP, ATF-6, phosphorylated eIF2α, and cleaved caspase-12. TD also triggered oxidative stress which was shown by the increase in the expression 2,4-dinitrophenyl (DNP) and 4-hydroxynonenal (HNE). ER stress inhibitors (STF-083010 and salubrinal) and antioxidant N-acetyl cysteine (NAC) were effective in alleviating TD-induced death of iCell neurons, supporting the involvement of ER stress and oxidative stress. It establishes that the iCell neurons are a novel tool to investigate cellular and molecular mechanisms for TD-induced neurodegeneration. - Highlights: • Thiamine deficiency (TD) causes death of human neurons in culture. • TD induces both endoplasmic reticulum (ER) stress and oxidative stress. • Alleviating ER stress and oxidative stress reduces TD

  16. Cobalamin Protection against Oxidative Stress in the Acidophilic Iron-oxidizing Bacterium Leptospirillum Group II CF-1

    PubMed Central

    Ferrer, Alonso; Rivera, Javier; Zapata, Claudia; Norambuena, Javiera; Sandoval, Álvaro; Chávez, Renato; Orellana, Omar; Levicán, Gloria

    2016-01-01

    Members of the genus Leptospirillum are aerobic iron-oxidizing bacteria belonging to the phylum Nitrospira. They are important members of microbial communities that catalyze the biomining of sulfidic ores, thereby solubilizing metal ions. These microorganisms live under extremely acidic and metal-loaded environments and thus must tolerate high concentrations of reactive oxygen species (ROS). Cobalamin (vitamin B12) is a cobalt-containing tetrapyrrole cofactor involved in intramolecular rearrangement reactions and has recently been suggested to be an intracellular antioxidant. In this work, we investigated the effect of the exogenous addition of cobalamin on oxidative stress parameters in Leptospirillum group II strain CF-1. Our results revealed that the external supplementation of cobalamin reduces the levels of intracellular ROSs and the damage to biomolecules, and also stimulates the growth and survival of cells exposed to oxidative stress exerted by ferric ion, hydrogen peroxide, chromate and diamide. Furthermore, exposure of strain CF-1 to oxidative stress elicitors resulted in the transcriptional activation of the cbiA gene encoding CbiA of the cobalamin biosynthetic pathway. Altogether, these data suggest that cobalamin plays an important role in redox protection of Leptospirillum strain CF-1, supporting survival of this microorganism under extremely oxidative environmental conditions. Understanding the mechanisms underlying the protective effect of cobalamin against oxidative stress may help to develop strategies to make biomining processes more effective. PMID:27242761

  17. Cobalamin Protection against Oxidative Stress in the Acidophilic Iron-oxidizing Bacterium Leptospirillum Group II CF-1.

    PubMed

    Ferrer, Alonso; Rivera, Javier; Zapata, Claudia; Norambuena, Javiera; Sandoval, Álvaro; Chávez, Renato; Orellana, Omar; Levicán, Gloria

    2016-01-01

    Members of the genus Leptospirillum are aerobic iron-oxidizing bacteria belonging to the phylum Nitrospira. They are important members of microbial communities that catalyze the biomining of sulfidic ores, thereby solubilizing metal ions. These microorganisms live under extremely acidic and metal-loaded environments and thus must tolerate high concentrations of reactive oxygen species (ROS). Cobalamin (vitamin B12) is a cobalt-containing tetrapyrrole cofactor involved in intramolecular rearrangement reactions and has recently been suggested to be an intracellular antioxidant. In this work, we investigated the effect of the exogenous addition of cobalamin on oxidative stress parameters in Leptospirillum group II strain CF-1. Our results revealed that the external supplementation of cobalamin reduces the levels of intracellular ROSs and the damage to biomolecules, and also stimulates the growth and survival of cells exposed to oxidative stress exerted by ferric ion, hydrogen peroxide, chromate and diamide. Furthermore, exposure of strain CF-1 to oxidative stress elicitors resulted in the transcriptional activation of the cbiA gene encoding CbiA of the cobalamin biosynthetic pathway. Altogether, these data suggest that cobalamin plays an important role in redox protection of Leptospirillum strain CF-1, supporting survival of this microorganism under extremely oxidative environmental conditions. Understanding the mechanisms underlying the protective effect of cobalamin against oxidative stress may help to develop strategies to make biomining processes more effective.

  18. [Modulation of oxidative stresses in human aging skin].

    PubMed

    Blatt, T; Mundt, C; Mummert, C; Maksiuk, T; Wolber, R; Keyhani, R; Schreiner, V; Hoppe, U; Schachtschabel, D O; Stäb, F

    1999-04-01

    Oxidative stress (UV irradiation, free radicals) plays a significant role in aging. Coenzyme Q10 (CoQ10) and exogenously applied antioxidants can significantly reduce the formation of oxidative stress with increasing age. In our in vitro and in vivo experiments concerning the parameters of ultraweak photon emission (UPE), intracellular thiol status, mitochondrial membrane potential and cell vitality, we demonstrated a diminished resistance in keratinocytes of old donors against UV irradiation. This reduced epidermal resistance against oxidative stressors, i.e. UV irradiation, can be improved by topical application of CoQ10 and antioxidants like alpha-glucosylrutin (15). Furthermore, our in vivo investigations show that wrinkles around the region of the eyes ("crow feet") could be reduced by long-term application of CoQ10.

  19. Proteomic expression profiling of Haemophilus influenzae grown in pooled human sputum from adults with chronic obstructive pulmonary disease reveal antioxidant and stress responses

    PubMed Central

    2010-01-01

    Background Nontypeable Haemophilus influenzae colonizes and infects the airways of adults with chronic obstructive pulmonary disease, the fourth most common cause of death worldwide.Thus, H. influenzae, an exclusively human pathogen, has adapted to survive in the hostile environment of the human airways.To characterize proteins expressed by H. influenzae in the airways, a prototype strain was grown in pooled human sputum to simulate conditions in the human respiratory tract.The proteins from whole bacterial cell lysates were solubilized with a strong buffer and then quantitatively cleaned with an optimized precipitation/on-pellet enzymatic digestion procedure.Proteomic profiling was accomplished by Nano-flow liquid chromatography/mass spectroscopy with low void volume and high separation efficiency with a shallow, long gradient. Results A total of 1402 proteins were identified with high confidence, including 170 proteins that were encoded by genes that are annotated as conserved hypothetical proteins.Thirty-one proteins were present in greater abundance in sputum-grown conditions at a ratio of > 1.5 compared to chemically defined media.These included 8 anti-oxidant and 5 stress-related proteins, suggesting that expression of antioxidant activity and stress responses is important for survival in the airways.Four proteins involved in uptake of divalent anions and 9 proteins that function in uptake of various molecules were present in greater abundance in sputum-grown conditions. Conclusions Proteomic expression profiling of H. influenzae grown in pooled human sputum revealed increased expression of antioxidant, stress-response proteins and cofactor and nutrient uptake systems compared to media grown cells.These observations suggest that H. influenzae adapts to the oxidative and nutritionally limited conditions of the airways in adults with chronic obstructive pulmonary disease by increasing expression of molecules necessary for survival in these conditions. PMID

  20. Endoplasmic Reticulum Stress and Oxidative Stress in Cell Fate Decision and Human Disease

    PubMed Central

    Cao, Stewart Siyan

    2014-01-01

    Abstract Significance: The endoplasmic reticulum (ER) is a specialized organelle for the folding and trafficking of proteins, which is highly sensitive to changes in intracellular homeostasis and extracellular stimuli. Alterations in the protein-folding environment cause accumulation of misfolded proteins in the ER that profoundly affect a variety of cellular signaling processes, including reduction–oxidation (redox) homeostasis, energy production, inflammation, differentiation, and apoptosis. The unfolded protein response (UPR) is a collection of adaptive signaling pathways that evolved to resolve protein misfolding and restore an efficient protein-folding environment. Recent Advances: Production of reactive oxygen species (ROS) has been linked to ER stress and the UPR. ROS play a critical role in many cellular processes and can be produced in the cytosol and several organelles, including the ER and mitochondria. Studies suggest that altered redox homeostasis in the ER is sufficient to cause ER stress, which could, in turn, induce the production of ROS in the ER and mitochondria. Critical Issues: Although ER stress and oxidative stress coexist in many pathologic states, whether and how these stresses interact is unknown. It is also unclear how changes in the protein-folding environment in the ER cause oxidative stress. In addition, how ROS production and protein misfolding commit the cell to an apoptotic death and contribute to various degenerative diseases is unknown. Future Directions: A greater fundamental understanding of the mechanisms that preserve protein folding homeostasis and redox status will provide new information toward the development of novel therapeutics for many human diseases. Antioxid. Redox Signal. 21, 396–413. PMID:24702237

  1. Airway-parenchymal interdependence

    PubMed Central

    Paré, Peter D; Mitzner, Wayne

    2015-01-01

    In this manuscript we discuss the interaction of the lung parenchyma and the airways as well as the physiological and pathophysiological significance of this interaction. These two components of the respiratory organ can be thought of as two independent elastic structures but in fact the mechanical properties of one influence the behavior of the other. Traditionally the interaction has focused on the effects of the lung on the airways but there is good evidence that the opposite is also true, i.e., that the mechanical properties of the airways influence the elastic properties of the parenchyma. The interplay between components of the respiratory system including the airways, parenchyma and vasculature is often referred to as “interdependence.” This interdependence transmits the elastic recoil of the lung to create an effective pressure that dilates the airways as transpulmonary pressure and lung volume increase. By using a continuum mechanics analysis of the lung parenchyma, it is possible to predict the effective pressure between the airways and parenchyma, and these predictions can be empirically evaluated. Normal airway caliber is maintained by this pressure in the adventitial interstitium of the airway, and it counteracts airway compression during forced expiration as well as the ability of airway smooth muscle to narrow airways. Interdependence has physiological and pathophysiological significance. Weakening of the forces of interdependence contributes to airway dysfunction and gas exchange impairment in acute and chronic airway diseases including asthma and emphysema. PMID:23723029

  2. Osteogenesis potential of different titania nanotubes in oxidative stress microenvironment.

    PubMed

    Yu, Yonglin; Shen, Xinkun; Luo, Zhong; Hu, Yan; Li, Menghuan; Ma, Pingping; Ran, Qichun; Dai, Liangliang; He, Ye; Cai, Kaiyong

    2018-06-01

    Oxidative stress is commonly existed in bone degenerative disease (osteoarthritis, osteoporosis etc.) and some antioxidants had great potential to enhance osteogenesis. In this study, we aim to investigate the anti-oxidative properties of various TiO 2 nanotubes (TNTs) so to screen the desirable size for improved osteogenesis and reveal the underlying molecular mechanism in vitro. Comparing cellular behaviors under normal and oxidative stress conditions, an interesting conclusion was obtained. In normal microenvironment, small TNTs were beneficial for adhesion and proliferation of osteoblasts, but large TNTs greatly increased osteogenic differentiation. However, after H 2 O 2 (300 μM) treatment (mimicking oxidative stress), only large TNTs samples demonstrated superior cellular behaviors of increased osteoblasts' adhesion, survival and differentiation when comparing with those of native titanium (control). Molecular results revealed that oxidative stress resistance of large nanotubes was closely related to the high expression of integrin α5β1 (ITG α5β1), which further up-regulated the production of anti-apoptotic proteins (p-FAK, p-Akt, p-FoxO3a and Bcl2) and down-regulated the expression of pro-apoptotic protein (Bax). Moreover, we found that Wnt signals (Wnt3a, Wnt5a, Lrp5, Lrp6 and β-catenin) played an important role in promoting osteogenic differentiation of osteoblasts under oxidative condition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Oxidative stress biomarkers in amniotic fluid of pregnant women with hypothyroidism.

    PubMed

    Novakovic, Tanja R; Dolicanin, Zana C; Djordjevic, Natasa Z

    2017-11-15

    Hypothyroidism in pregnancy is the serious state that may lead to fetal morbidity and mortality. Oxidative stress biomarkers in the amniotic fluid can provide important information on the health, development and maturation of the fetus during pregnancy. In this study, we examined whether maternal hypothyroidism contributes to increased oxidative stress biomarkers in the amniotic fluid during the first trimester of pregnancy. The study was conducted on healthy pregnant women and pregnant women with hypothyroidism (gestational age: 16-18 weeks). Oxidative stress biomarkers, such as superoxide anion (O 2 •- ), hydrogen peroxide (H 2 O 2 ), nitric oxide (NO), peroxynitrite (ONOO - ), lipid peroxide (LPO), reduced glutathione (GSH) and oxidized glutathione (GSSG) were assayed in the amniotic fluid. The results of this study indicated that concentrations of O 2 •- and NO are significantly higher, while the concentration of H 2 O 2 is significantly lower in the amniotic fluid of pregnant women with hypothyroidism in comparison to healthy pregnant women. There were no differences in concentrations of LPO, GSH and GSSG among tested groups. Also, we found that amniotic fluid concentration of O 2 •- is negatively correlated with the body weight and Apgar score values of the newborns. These results suggest that pregnancy hypothyroidism is characterized by the amniotic fluid oxidative stress. Incorporation of the oxidative stress biomarkers measurement in the amniotic fluid may be of clinical importance in the management of pregnancy hypothyroidism.

  4. Nrf2 protects against airway disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Hye-Youn, E-mail: cho2@niehs.nih.go; Kleeberger, Steven R.

    Nuclear factor-erythroid 2 related factor 2 (Nrf2) is a ubiquitous master transcription factor that regulates antioxidant response elements (AREs)-mediated expression of antioxidant enzyme and cytoprotective proteins. In the unstressed condition, Kelch-like ECH-associated protein 1 (Keap1) suppresses cellular Nrf2 in cytoplasm and drives its proteasomal degradation. Nrf2 can be activated by diverse stimuli including oxidants, pro-oxidants, antioxidants, and chemopreventive agents. Nrf2 induces cellular rescue pathways against oxidative injury, abnormal inflammatory and immune responses, apoptosis, and carcinogenesis. Application of Nrf2 germ-line mutant mice has identified an extensive range of protective roles for Nrf2 in experimental models of human disorders in the liver,more » gastrointestinal tract, airway, kidney, brain, circulation, and immune or nerve system. In the lung, lack of Nrf2 exacerbated toxicity caused by multiple oxidative insults including supplemental respiratory therapy (e.g., hyperoxia, mechanical ventilation), cigarette smoke, allergen, virus, bacterial endotoxin and other inflammatory agents (e.g., carrageenin), environmental pollution (e.g., particles), and a fibrotic agent bleomycin. Microarray analyses and bioinformatic studies elucidated functional AREs and Nrf2-directed genes that are critical components of signaling mechanisms in pulmonary protection by Nrf2. Association of loss of function with promoter polymorphisms in NRF2 or somatic and epigenetic mutations in KEAP1 and NRF2 has been found in cohorts of patients with acute lung injury/acute respiratory distress syndrome or lung cancer, which further supports the role for NRF2 in these lung diseases. In the current review, we address the role of Nrf2 in airways based on emerging evidence from experimental oxidative disease models and human studies.« less

  5. Sulforaphane Inhibits Mitochondrial Permeability Transition and Oxidative Stress

    PubMed Central

    Greco, Tiffany; Shafer, Jonathan; Fiskum, Gary

    2012-01-01

    Exposure of mitochondria to oxidative stress and elevated Ca2+ promotes opening of the mitochondrial permeability transition pore (PTP), resulting in membrane depolarization, uncoupling of oxidative phosphorylation, and potentially cell death. This study tested the hypothesis that treatment of rats with sulforaphane (SFP), an activator of the Nrf2 pathway of antioxidant gene expression, increases the resistance of liver mitochondria to redox-regulated PTP opening and elevates mitochondrial levels of antioxidants. Rats were injected with SFP or drug vehicle and liver mitochondria were isolated 40 hr later. Respiring mitochondria actively accumulated added Ca2+, which was then released through PTP opening induced by agents that either cause an oxidized shift in the mitochondrial redox state or that directly oxidize protein thiol groups. SFP treatment of rats inhibited the rate of pro-oxidant-induced mitochondrial Ca2+ release and increased expression of the glutathione peroxidase/reductase system, thioredoxin, and malic enzyme. These results are the first to demonstrate that SFP treatment of animals increases liver mitochondrial antioxidant defenses and inhibits redox-sensitive PTP opening. This novel form of preconditioning could protect against a variety of pathologies that include oxidative stress and mitochondrial dysfunction in their etiologies. PMID:21986339

  6. Stress generation and evolution in oxide heteroepitaxy

    NASA Astrophysics Data System (ADS)

    Fluri, Aline; Pergolesi, Daniele; Wokaun, Alexander; Lippert, Thomas

    2018-03-01

    Many physical properties of oxides can be changed by inducing lattice distortions in the crystal through heteroepitaxial growth of thin films. The average lattice strain can often be tuned by changing the film thickness or using suitable buffer layers between film and substrate. The exploitation of the full potential of strain engineering for sample or device fabrication rests on the understanding of the fundamental mechanisms of stress generation and evolution. For this study an optical measurement of the substrate curvature is used to monitor in situ how the stress builds up and relaxes during the growth of oxide thin films by pulsed laser deposition. The relaxation behavior is correlated with the growth mode, which is monitored simultaneously with reflection high-energy electron diffraction. The stress relaxation data is fitted and compared with theoretical models for stress evolution which were established for semiconductor epitaxy. The initial stage of the growth appears to be governed by surface stress and surface energy effects, while the subsequent stress relaxation is found to be fundamentally different between films grown on single-crystal substrates and on buffer layers. The first case can be rationalized with established theoretical models, but these models fail in the attempt to describe the growth on buffer layers. This is most probably due to the larger average density of crystalline defects in the buffer layers, which leads to a two-step stress relaxation mechanism, driven first by the nucleation and later by the migration of dislocation lines.

  7. [The role of oxidative stress in placental-related diseases of pregnancy].

    PubMed

    Jauniaux, E; Burton, G J

    2016-10-01

    In normal pregnancies, the earliest stages of development take place in a low oxygen (O 2 ) environment. This physiological hypoxia of the early gestational sac protects the developing fetus against the deleterious and teratogenic effects of O 2 free radicals. Oxidative stress is manifested at the maternal-fetal interface from early pregnancy onwards. In early pregnancy, a well-controlled oxidative stress plays a role in modulating placental development, functions and remodelling. Focal trophoblastic oxidative damage and progressive villous degeneration trigger the formation of the fetal membranes, which is an essential developmental step enabling vaginal delivery. Our data have demonstrated that the first trimester placenta in humans is histiotrophic and not haemochorial. The development and maintenance of a physiological O 2 gradient between the uterine and fetal circulations is also essential for placental functions, such as transport and hormonal synthesis. Pathological oxidative stress arises when the production of reactive O 2 species overwhelms the intrinsic anti-oxidant defences causing indiscriminate damage to biological molecules, leading to loss of function and cell death. We here review the role of oxidative stress in the pathophysiology of miscarriage, pre-eclampsia and fetal growth restriction. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Delta-aminolevulinate dehydratase activity and oxidative stress markers in preeclampsia.

    PubMed

    de Lucca, Leidiane; Rodrigues, Fabiane; Jantsch, Letícia B; Kober, Helena; Neme, Walter S; Gallarreta, Francisco M P; Gonçalves, Thissiane L

    2016-12-01

    Preeclampsia is an important pregnancy-specific multisystem disorder characterized by the onset of hypertension and proteinuria. It is of unknown etiology and involves serious risks for the pregnant women and fetus. One of the main factors involved in the pathophysiology of preeclampsia is oxidative stress, where excess free radicals produce harmful effects, including damage to macromolecules such as lipids, proteins and DNA. In addition, the sulfhydryl delta-aminolevulinate dehydratase enzyme (δ-ALA-D) that is part of the heme biosynthetic pathway in pro-oxidant conditions can be inhibited, which may result in the accumulation of 5-aminolevulinic acid (ALA), associated with the overproduction of free radicals, suggesting it to be an indirect marker of oxidative stress. As hypertensive pregnancy complications are a major cause of morbidity and mortality maternal and fetal where oxidative stress appears to be an important factor involved in preeclampsia, the aim of this study was to evaluate the activity of δ-ALA-D and classic oxidative stress markers in the blood of pregnant women with mild and severe preeclampsia. The analysis and quantification of the following oxidative stress markers were performed: thiobarbituric acid-reactive species (TBARS); presence of protein and non-protein thiol group; quantification of vitamin C; Catalase and δ-ALA--D activities in samples of blood of pregnant women with mild preeclampsia (n=25), with severe preeclampsia (n=30) and in a control group of healthy pregnant women (n=30). TBARS was significantly higher in women with preeclampsia, while the presence of thiol groups, levels of vitamin C, catalase and δ-ALA-D activity were significantly lower in groups of pregnant women with preeclampsia compared with healthy women. In addition, the results showed no significant difference between groups of pregnant women with mild and severe preeclampsia. The data suggest a state of increased oxidative stress in pregnant women with

  9. Inference of the oxidative stress network in Anopheles stephensi upon Plasmodium infection.

    PubMed

    Shrinet, Jatin; Nandal, Umesh Kumar; Adak, Tridibes; Bhatnagar, Raj K; Sunil, Sujatha

    2014-01-01

    Ookinete invasion of Anopheles midgut is a critical step for malaria transmission; the parasite numbers drop drastically and practically reach a minimum during the parasite's whole life cycle. At this stage, the parasite as well as the vector undergoes immense oxidative stress. Thereafter, the vector undergoes oxidative stress at different time points as the parasite invades its tissues during the parasite development. The present study was undertaken to reconstruct the network of differentially expressed genes involved in oxidative stress in Anopheles stephensi during Plasmodium development and maturation in the midgut. Using high throughput next generation sequencing methods, we generated the transcriptome of the An. stephensi midgut during Plasmodium vinckei petteri oocyst invasion of the midgut epithelium. Further, we utilized large datasets available on public domain on Anopheles during Plasmodium ookinete invasion and Drosophila datasets and arrived upon clusters of genes that may play a role in oxidative stress. Finally, we used support vector machines for the functional prediction of the un-annotated genes of An. stephensi. Integrating the results from all the different data analyses, we identified a total of 516 genes that were involved in oxidative stress in An. stephensi during Plasmodium development. The significantly regulated genes were further extracted from this gene cluster and used to infer an oxidative stress network of An. stephensi. Using system biology approaches, we have been able to ascertain the role of several putative genes in An. stephensi with respect to oxidative stress. Further experimental validations of these genes are underway.

  10. Prevalidation of an Acute Inhalation Toxicity Test Using the EpiAirway In Vitro Human Airway Model.

    PubMed

    Jackson, George R; Maione, Anna G; Klausner, Mitchell; Hayden, Patrick J

    2018-06-01

    Introduction: Knowledge of acute inhalation toxicity potential is important for establishing safe use of chemicals and consumer products. Inhalation toxicity testing and classification procedures currently accepted within worldwide government regulatory systems rely primarily on tests conducted in animals. The goal of the current work was to develop and prevalidate a nonanimal ( in vitro ) test for determining acute inhalation toxicity using the EpiAirway™ in vitro human airway model as a potential alternative for currently accepted animal tests. Materials and Methods: The in vitro test method exposes EpiAirway tissues to test chemicals for 3 hours, followed by measurement of tissue viability as the test endpoint. Fifty-nine chemicals covering a broad range of toxicity classes, chemical structures, and physical properties were evaluated. The in vitro toxicity data were utilized to establish a prediction model to classify the chemicals into categories corresponding to the currently accepted Globally Harmonized System (GHS) and the Environmental Protection Agency (EPA) system. Results: The EpiAirway prediction model identified in vivo rat-based GHS Acute Inhalation Toxicity Category 1-2 and EPA Acute Inhalation Toxicity Category I-II chemicals with 100% sensitivity and specificity of 43.1% and 50.0%, for GHS and EPA acute inhalation toxicity systems, respectively. The sensitivity and specificity of the EpiAirway prediction model for identifying GHS specific target organ toxicity-single exposure (STOT-SE) Category 1 human toxicants were 75.0% and 56.5%, respectively. Corrosivity and electrophilic and oxidative reactivity appear to be the predominant mechanisms of toxicity for the most highly toxic chemicals. Conclusions: These results indicate that the EpiAirway test is a promising alternative to the currently accepted animal tests for acute inhalation toxicity.

  11. Integrated Approaches to Drug Discovery for Oxidative Stress-Related Retinal Diseases.

    PubMed

    Nishimura, Yuhei; Hara, Hideaki

    2016-01-01

    Excessive oxidative stress induces dysregulation of functional networks in the retina, resulting in retinal diseases such as glaucoma, age-related macular degeneration, and diabetic retinopathy. Although various therapies have been developed to reduce oxidative stress in retinal diseases, most have failed to show efficacy in clinical trials. This may be due to oversimplification of target selection for such a complex network as oxidative stress. Recent advances in high-throughput technologies have facilitated the collection of multilevel omics data, which has driven growth in public databases and in the development of bioinformatics tools. Integration of the knowledge gained from omics databases can be used to generate disease-related biological networks and to identify potential therapeutic targets within the networks. Here, we provide an overview of integrative approaches in the drug discovery process and provide simple examples of how the approaches can be exploited to identify oxidative stress-related targets for retinal diseases.

  12. Oxidative Stress and Huntington's Disease: The Good, The Bad, and The Ugly.

    PubMed

    Kumar, Amit; Ratan, Rajiv R

    2016-10-01

    Redox homeostasis is crucial for proper cellular functions, including receptor tyrosine kinase signaling, protein folding, and xenobiotic detoxification. Under basal conditions, there is a balance between oxidants and antioxidants. This balance facilitates the ability of oxidants, such as reactive oxygen species, to play critical regulatory functions through a direct modification of a small number of amino acids (e.g. cysteine) on signaling proteins. These signaling functions leverage tight spatial, amplitude, and temporal control of oxidant concentrations. However, when oxidants overwhelm the antioxidant capacity, they lead to a harmful condition of oxidative stress. Oxidative stress has long been held to be one of the key players in disease progression for Huntington's disease (HD). In this review, we will critically review this evidence, drawing some intermediate conclusions, and ultimately provide a framework for thinking about the role of oxidative stress in the pathophysiology of HD.

  13. Exercise-associated Excessive Dynamic Airway Collapse in Military Personnel.

    PubMed

    Weinstein, Daniel J; Hull, James E; Ritchie, Brittany L; Hayes, Jackie A; Morris, Michael J

    2016-09-01

    Evaluation of military personnel for exertional dyspnea can present a diagnostic challenge, given multiple unique factors that include wide variation in military deployment. Initial consideration is given to common disorders such as asthma, exercise-induced bronchospasm, and inducible laryngeal obstruction. Excessive dynamic airway collapse has not been reported previously as a cause of dyspnea in these individuals. To describe the clinical and imaging characteristics of military personnel with exertional dyspnea who were found to have excessive dynamic collapse of large airways during exercise. After deployment to Afghanistan or Iraq, 240 active U.S. military personnel underwent a standardized evaluation to determine the etiology of persistent dyspnea on exertion. Study procedures included full pulmonary function testing, impulse oscillometry, exhaled nitric oxide measurement, methacholine challenge testing, exercise laryngoscopy, cardiopulmonary exercise testing, and fiberoptic bronchoscopy. Imaging included high-resolution computed tomography with inspiratory and expiratory views. Selected individuals underwent further imaging with dynamic computed tomography. A total of five men and one woman were identified as having exercise-associated excessive dynamic airway collapse on the basis of the following criteria: (1) exertional dyspnea without resting symptoms, (2) focal expiratory wheezing during exercise, (3) functional collapse of the large airways during bronchoscopy, (4) expiratory computed tomographic imaging showing narrowing of a large airway, and (5) absence of underlying apparent pathology in small airways or pulmonary parenchyma. Identification of focal expiratory wheezing correlated with bronchoscopic and imaging findings. Among 240 military personnel evaluated after presenting with postdeployment exertional dyspnea, a combination of symptoms, auscultatory findings, imaging, and visualization of the airways by bronchoscopy identified six individuals

  14. Oxidative Stress in Spinocerebellar Ataxia Type 7 Is Associated with Disease Severity.

    PubMed

    Torres-Ramos, Y; Montoya-Estrada, A; Cisneros, B; Tercero-Pérez, K; León-Reyes, G; Leyva-García, N; Hernández-Hernández, Oscar; Magaña, Jonathan J

    2018-06-06

    Spinocerebellar ataxia type 7 is a neurodegenerative inherited disease caused by a CAG expansion in the coding region of the ATXN7 gene, which results in the synthesis of polyglutamine-containing ataxin-7. Expression of mutant ataxin-7 disturbs different cell processes, including transcriptional regulation, protein conformation and clearance, autophagy, and glutamate transport; however, mechanisms underlying neurodegeneration in SCA7 are still unknown. Implication of oxidative stress in the pathogenesis of various neurodegenerative diseases, including polyglutamine disorders, has recently emerged. We perform a cross-sectional study to determine for the first time pheripheral levels of different oxidative stress markers in 29 SCA7 patients and 28 age- and sex-matched healthy subjects. Patients with SCA7 exhibit oxidative damage to lipids (high levels of lipid hydroperoxides and malondialdehyde) and proteins (elevated levels of advanced oxidation protein products and protein carbonyls). Furthermore, SCA7 patients showed enhanced activity of various anti-oxidant enzymes (glutathione reductase, glutathione peroxidase, and paraoxonase) as well as increased total anti-oxidant capacity, which suggest that activation of the antioxidant defense system might occur to counteract oxidant damage. Strikingly, we found positive correlation between some altered oxidative stress markers and disease severity, as determined by different clinical scales, with early-onset patients showing a more severe disturbance of the redox system than adult-onset patients. In summay, our results suggest that oxidative stress might contribute to SCA7 pathogenesis. Furthermore, oxidative stress biomarkers that were found relevant to SCA7 in this study could be useful to follow disease progression and monitor therapeutic intervention.

  15. Continuum vs. spring network models of airway-parenchymal interdependence

    PubMed Central

    Ma, Baoshun

    2012-01-01

    The outward tethering forces exerted by the lung parenchyma on the airways embedded within it are potent modulators of the ability of the airway smooth muscle to shorten. Much of our understanding of these tethering forces is based on treating the parenchyma as an elastic continuum; yet, on a small enough scale, the lung parenchyma in two dimensions would seem to be more appropriately described as a discrete spring network. We therefore compared how the forces and displacements in the parenchyma surrounding a contracting airway are predicted to differ depending on whether the parenchyma is modeled as an elastic continuum or as a spring network. When the springs were arranged hexagonally to represent alveolar walls, the predicted parenchymal stresses and displacements propagated substantially farther away from the airway than when the springs were arranged in a triangular pattern or when the parenchyma was modeled as a continuum. Thus, to the extent that the parenchyma in vivo behaves as a hexagonal spring network, our results suggest that the range of interdependence forces due to airway contraction may have a greater influence than was previously thought. PMID:22500006

  16. Trefoil factor-2 reverses airway remodeling changes in allergic airways disease.

    PubMed

    Royce, Simon G; Lim, Clarice; Muljadi, Ruth C; Samuel, Chrishan S; Ververis, Katherine; Karagiannis, Tom C; Giraud, Andrew S; Tang, Mimi L K

    2013-01-01

    Trefoil factor 2 (TFF2) is a small peptide with an important role in mucosal repair. TFF2 is up-regulated in asthma, suggesting a role in asthma pathogenesis. Given its known biological role in promoting epithelial repair, TFF2 might be expected to exert a protective function in limiting the progression of airway remodeling in asthma. The contribution of TFF2 to airway remodeling in asthma was investigated by examining the expression of TFF2 in the airway and lung, and evaluating the effects of recombinant TFF2 treatment on established airway remodeling in a murine model of chronic allergic airways disease (AAD). BALB/c mice were sensitized and challenged with ovalbumin (OVA) or saline for 9 weeks, whereas mice with established OVA-induced AAD were treated with TFF2 or vehicle control (intranasally for 14 d). Effects on airway remodeling, airway inflammation, and airway hyperresponsiveness were then assessed, whereas TFF2 expression was determined by immunohistochemistry. TFF2 expression was significantly increased in the airways of mice with AAD, compared with expression levels in control mice. TFF2 treatment resulted in reduced epithelial thickening, subepithelial collagen deposition, goblet-cell metaplasia, bronchial epithelium apoptosis, and airway hyperresponsiveness (all P < 0.05, versus vehicle control), but TFF2 treatment did not influence airway inflammation. The increased expression of endogenous TFF2 in response to chronic allergic inflammation is insufficient to prevent the progression of airway inflammation and remodeling in a murine model of chronic AAD. However, exogenous TFF2 treatment is effective in reversing aspects of established airway remodeling. TFF2 has potential as a novel treatment for airway remodeling in asthma.

  17. Oxidative Stress, Redox Signaling, and Autophagy: Cell Death Versus Survival

    PubMed Central

    Navarro-Yepes, Juliana; Burns, Michaela; Anandhan, Annadurai; Khalimonchuk, Oleh; del Razo, Luz Maria; Quintanilla-Vega, Betzabet; Pappa, Aglaia; Panayiotidis, Mihalis I.

    2014-01-01

    Abstract Significance: The molecular machinery regulating autophagy has started becoming elucidated, and a number of studies have undertaken the task to determine the role of autophagy in cell fate determination within the context of human disease progression. Oxidative stress and redox signaling are also largely involved in the etiology of human diseases, where both survival and cell death signaling cascades have been reported to be modulated by reactive oxygen species (ROS) and reactive nitrogen species (RNS). Recent Advances: To date, there is a good understanding of the signaling events regulating autophagy, as well as the signaling processes by which alterations in redox homeostasis are transduced to the activation/regulation of signaling cascades. However, very little is known about the molecular events linking them to the regulation of autophagy. This lack of information has hampered the understanding of the role of oxidative stress and autophagy in human disease progression. Critical Issues: In this review, we will focus on (i) the molecular mechanism by which ROS/RNS generation, redox signaling, and/or oxidative stress/damage alter autophagic flux rates; (ii) the role of autophagy as a cell death process or survival mechanism in response to oxidative stress; and (iii) alternative mechanisms by which autophagy-related signaling regulate mitochondrial function and antioxidant response. Future Directions: Our research efforts should now focus on understanding the molecular basis of events by which autophagy is fine tuned by oxidation/reduction events. This knowledge will enable us to understand the mechanisms by which oxidative stress and autophagy regulate human diseases such as cancer and neurodegenerative disorders. Antioxid. Redox Signal. 21, 66–85. PMID:24483238

  18. Oxidative stress status in congenital hypogonadism: an appraisal.

    PubMed

    Haymana, C; Aydoğdu, A; Soykut, B; Erdem, O; Ibrahimov, T; Dinc, M; Meric, C; Basaran, Y; Sonmez, A; Azal, O

    2017-07-01

    Patients with hypogonadism are at increased risk of cardiac and metabolic diseases. However, the pathogenesis of increased cardiometabolic risk in patients with hypogonadism is not clear. Oxidative stress plays an important role in the pathogenesis of cardiometabolic diseases. This study aimed to investigate possible differences in oxidative stress conditions between patients with hypogonadism and healthy controls. In this study, 38 male patients with congenital hypogonadotropic hypogonadism (CHH) (mean age: 21.7 ± 1.6 years) and 44 healthy male controls (mean age: 22.3 ± 1.4 years) with almost equal body mass index were enrolled. The demographic parameters, follicle-stimulating hormone (FSH), luteinizing hormone (LH), total and free testosterone, homeostatic model assessment of insulin resistance (HOMA-IR) and oxidative stress parameters, such as superoxide dismutase, catalase (CAT), glutathione peroxidase (GPx) and malondialdehyde (MDA), were compared between both groups. Compared to the healthy controls, triglycerides (p = .02), insulin levels, HOMA-IR values, CAT activities and MDA levels (p < .001 for all) were significantly higher and HDL cholesterol (p = .04), total and free testosterone, FSH, LH levels and GPx activity were significantly lower (p < .001 for all) in patients with CHH. There were significant correlations between total testosterone levels and CAT activity (r = -.33 p = .01), GPx activity (r = .36 p = .007) and MDA (r = -.47 p < .001) levels. The results of this study showed that young and treatment-naïve patients with congenital hypogonadism had an increased status of oxidative stress.

  19. Immune response in a wild bird is predicted by oxidative status, but does not cause oxidative stress.

    PubMed

    Cram, Dominic L; Blount, Jonathan D; York, Jennifer E; Young, Andrew J

    2015-01-01

    The immune system provides vital protection against pathogens, but extensive evidence suggests that mounting immune responses can entail survival and fecundity costs. The physiological mechanisms that underpin these costs remain poorly understood, despite their potentially important role in shaping life-histories. Recent studies involving laboratory models highlight the possibility that oxidative stress could mediate these costs, as immune-activation can increase the production of reactive oxygen species leading to oxidative stress. However, this hypothesis has rarely been tested in free-ranging wild populations, where natural oxidative statuses and compensatory strategies may moderate immune responses and their impacts on oxidative status. Furthermore, the possibility that individuals scale their immune responses according to their oxidative status, conceivably to mitigate such costs, remains virtually unexplored. Here, we experimentally investigate the effects of a phytohaemagglutinin (PHA) immune-challenge on oxidative status in wild male and female white-browed sparrow weavers, Plocepasser mahali. We also establish whether baseline oxidative status prior to challenge predicts the scale of the immune responses. Contrary to previous work on captive animals, our findings suggest that PHA-induced immune-activation does not elicit oxidative stress. Compared with controls (n = 25 birds), PHA-injected birds (n = 27 birds) showed no evidence of a differential change in markers of oxidative damage or enzymatic and non-enzymatic antioxidant protection 24 hours after challenge. We did, however, find that the activity of a key antioxidant enzyme (superoxide dismutase, SOD) prior to immune-activation predicted the scale of the resulting swelling: birds with stronger initial SOD activity subsequently produced smaller swellings. Our findings (i) suggest that wild birds can mount immune responses without suffering from systemic oxidative stress, and (ii) lend support to

  20. Immune Response in a Wild Bird Is Predicted by Oxidative Status, but Does Not Cause Oxidative Stress

    PubMed Central

    Cram, Dominic L.; Blount, Jonathan D.; York, Jennifer E.; Young, Andrew J.

    2015-01-01

    The immune system provides vital protection against pathogens, but extensive evidence suggests that mounting immune responses can entail survival and fecundity costs. The physiological mechanisms that underpin these costs remain poorly understood, despite their potentially important role in shaping life-histories. Recent studies involving laboratory models highlight the possibility that oxidative stress could mediate these costs, as immune-activation can increase the production of reactive oxygen species leading to oxidative stress. However, this hypothesis has rarely been tested in free-ranging wild populations, where natural oxidative statuses and compensatory strategies may moderate immune responses and their impacts on oxidative status. Furthermore, the possibility that individuals scale their immune responses according to their oxidative status, conceivably to mitigate such costs, remains virtually unexplored. Here, we experimentally investigate the effects of a phytohaemagglutinin (PHA) immune-challenge on oxidative status in wild male and female white-browed sparrow weavers, Plocepasser mahali. We also establish whether baseline oxidative status prior to challenge predicts the scale of the immune responses. Contrary to previous work on captive animals, our findings suggest that PHA-induced immune-activation does not elicit oxidative stress. Compared with controls (n = 25 birds), PHA-injected birds (n = 27 birds) showed no evidence of a differential change in markers of oxidative damage or enzymatic and non-enzymatic antioxidant protection 24 hours after challenge. We did, however, find that the activity of a key antioxidant enzyme (superoxide dismutase, SOD) prior to immune-activation predicted the scale of the resulting swelling: birds with stronger initial SOD activity subsequently produced smaller swellings. Our findings (i) suggest that wild birds can mount immune responses without suffering from systemic oxidative stress, and (ii) lend support to

  1. Oxidative stress differentially impacts male and female bovine embryos depending on the culture medium and the stress condition.

    PubMed

    Dallemagne, Matthew; Ghys, Emmanuelle; De Schrevel, Catalina; Mwema, Ariane; De Troy, Delphine; Rasse, Catherine; Donnay, Isabelle

    2018-09-01

    Male and female embryos are known to differ for their metabolism and response to environmental factors very early in development. The present study aimed to evaluate the response to oxidative stress of male and female bovine embryos at the morula-blastocyst stages in terms of developmental rates, total cell number and apoptotic rates in two culture conditions. Embryos where cultured in a medium supplemented with either 5% fetal calf serum (FCS) or 4 mg/mL bovine serum albumin and a mixture of insulin, transferrin and selenium (BSA-ITS). Oxidative stress was applied at Day-5 post insemination (pi) by adding either AAPH or menadione to the culture medium, and blastocysts were analyzed at Day-7pi. The impact on development and blastocyst quality was dependent on the culture medium and the stress inducer but differed between male and female embryos. Male embryos resisted better to oxidative stress in FCS supplemented medium, no matter the stress inducer. Accordingly, the impact on blastocyst cell number tended to be higher in female blastocysts after stress induction with AAPH in FCS supplemented medium. On the other hand, in BSA-ITS supplemented medium, female embryos were more resistant to AAPH induced stress, while menadione had no impact on sex ratio. The weaker resistance of males to AAPH in this medium is in accordance with their trend to show a higher increase in apoptotic rates than females in this condition. In conclusion, this study shows that oxidative stress has differential impact on male and female bovine blastocysts depending on the culture condition and on the way oxidative stress is induced. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Modulating Oxidative Stress and Inflammation in Elders: The MOXIE Study

    PubMed Central

    Ellis, Amy Cameron; Dudenbostel, Tanja; Locher, Julie L.; Crowe-White, Kristi

    2016-01-01

    Cardiovascular disease (CVD) is the leading cause of death among women in the United States. Endothelial dysfunction and arterial stiffness increase with advancing age and are early predictors of future CVD outcomes. We designed the Modulating Oxidative Stress and Inflammation in Elders (MOXIE) study to examine the effects of 100% watermelon juice as a “food-first” intervention to reduce CVD risk among African American (AA) and European American (EA) women aged 55–69 years. Vascular dysfunction is more pronounced in AA compared to EA women due in part to lower nitric oxide bioavailability caused by higher oxidative stress. However, bioactive compounds in watermelon may improve vascular function by increasing nitric oxide bioavailability and antioxidant capacity. This trial will use a randomized, placebo-controlled, crossover design to investigate the potential of 100% watermelon juice to positively impact various robust measures of vascular function as well as serum biomarkers of oxidative stress and antioxidant capacity. This nutrition intervention and its unique methodology to examine both clinical and mechanistic outcomes are described in this article. PMID:27897608

  3. Prebiotics, Prosynbiotics and Synbiotics: Can They Reduce Plasma Oxidative Stress Parameters? A Systematic Review.

    PubMed

    Salehi-Abargouei, Amin; Ghiasvand, Reza; Hariri, Mitra

    2017-03-01

    This study assessed the effectiveness of presybiotics, prosybiotics and synbiotics on reducing serum oxidative stress parameters. PubMed/Medline, Ovid, Google Scholar, ISI Web of Science and SCOPUS were searched up to September 2016. English language randomized clinical trials reporting the effect of presybiotics, prosybiotics or synbiotic interventions on serum oxidative stress parameters in human adults were included. Twenty-one randomized clinical trials met the inclusion criteria for systematic review. Two studies investigated prebiotics, four studies synbiotics and fifteen studies probiotics. According to our systematic review, prebiotic could decrease malondialdehyde and increase superoxidative dismutase, but evidence is not enough. In comparison with fructo-oligosaccharide, inulin is much more useful for oxidative stress reduction. Using probiotics with dairy products could reduce oxidative stress significantly, but probiotic in form of supplementation did not have any effect on oxidative stress. There is limited but supportive evidence that presybiotics, prosybiotics and synbiotics are effective for reducing oxidative stress parameters. Further randomized clinical trials with longer duration of intervention especially on population with increased oxidative stress are needed to provide more definitive results before any recommendation for clinical use of these interventions.

  4. Influence of acute exercise of varying intensity and duration on postprandial oxidative stress.

    PubMed

    Canale, Robert E; Farney, Tyler M; McCarthy, Cameron G; Bloomer, Richard J

    2014-09-01

    Aerobic exercise can reduce postprandial lipemia, and possibly oxidative stress, when performed prior to a lipid-rich meal. To compare the impact of acute exercise on postprandial oxidative stress. We compared aerobic and anaerobic exercise bouts of different intensities and durations on postprandial blood triglycerides (TAG), oxidative stress biomarkers (malondialdehyde, hydrogen peroxide, advanced oxidation protein products), and antioxidant status (trolox equivalent antioxidant capacity, superoxide dismutase, catalase, glutathione peroxidase). Twelve trained men (21-35 years) underwent four conditions: (1) No exercise rest; (2) 60-min aerobic exercise at 70% heart rate reserve; (3) five 60-s sprints at 100% max capacity; and (4) ten 15-s sprints at 200% max capacity. All exercise bouts were performed on a cycle ergometer. A high-fat meal was consumed 1 h after exercise cessation. Blood samples were collected pre-meal and 2 and 4 h post-meal and analyzed for TAG, oxidative stress biomarkers, and antioxidant status. No significant interaction or condition effects were noted for any variable (p > 0.05), with acute exercise having little to no effect on the magnitude of postprandial oxidative stress. In a sample of healthy, well-trained men, neither aerobic nor anaerobic exercise attenuates postprandial oxidative stress in response to a high-fat meal.

  5. Increased endothelial microparticles and oxidative stress at extreme altitude.

    PubMed

    Pichler Hefti, Jacqueline; Leichtle, Alexander; Stutz, Monika; Hefti, Urs; Geiser, Thomas; Huber, Andreas R; Merz, Tobias M

    2016-04-01

    Hypoxia and oxidative stress affect endothelial function. Endothelial microparticles (MP) are established measures of endothelial dysfunction and influence vascular reactivity. To evaluate the effects of hypoxia and antioxidant supplementation on endothelial MP profiles, a double-blind, placebo-controlled trial, during a high altitude expedition was performed. 29 participants were randomly assigned to a treatment group (n = 14), receiving vitamin E, C, A, and N-acetylcysteine daily, and a control group (n = 15), receiving placebo. Blood samples were obtained at 490 m (baseline), 3530, 4590, and 6210 m. A sensitive tandem mass spectrometry method was used to measure 8-iso-prostaglandin F2α and hydroxyoctadecadienoic acids as markers of oxidative stress. Assessment of MP profiles including endothelial activation markers (CD62+MP and CD144+MP) and cell apoptosis markers (phosphatidylserine+MP and CD31+MP) was performed using a standardized flow cytometry-based protocol. 15 subjects reached all altitudes and were included in the final analysis. Oxidative stress increased significantly at altitude. No statistically significant changes were observed comparing baseline to altitude measurements of phosphatidylserine expressing MP (p = 0.1718) and CD31+MP (p = 0.1305). Compared to baseline measurements, a significant increase in CD62+MP (p = 0.0079) and of CD144+MP was detected (p = 0.0315) at high altitudes. No significant difference in any MP level or oxidative stress markers were found between the treatment and the control group. Hypobaric hypoxia is associated with increased oxidative stress and induces a significant increase in CD62+ and CD144+MP, whereas phosphatidylserine+MP and CD31+MP remain unchanged. This indicates that endothelial activation rather than an apoptosis is the primary factor of hypoxia induced endothelial dysfunction.

  6. Oxidative stress reduces levels of dysbindin-1A via its PEST domain.

    PubMed

    Yap, Mei-Yi Alicia; Lo, Yew-Long; Talbot, Konrad; Ong, Wei-Yi

    2014-12-01

    Oxidative stress resulting from the generation of reactive oxygen species has been proposed as an etiological factor in schizophrenia. The present study tests the hypothesis that oxidative stress can affect levels of dysbindin-1A, encoded by Dtnbp1, a genetic risk factor for schizophrenia, via its PEST domain. In vitro studies on SH-SY5Y cells indicate that oxidative stress triggers proteasomal degradation of dysbindin-1A, and that this requires interactions with its PEST domain, which may be a TRIM32 target. We specifically found (a) that oxidative stress induced in SH-SY5Y cells by 500 µM hydrogen peroxide reduced levels of full-length dysbindin-1, but did not reduce levels of that protein lacking its PEST domain and (b) that levels of full-length dysbindin-1, but not dysbindin-1 lacking its PEST domain, were higher in cells treated with the proteasome inhibitor MG132. Oxidative stress thus emerges as the first known cellular factor regulating dysbindin-1 isoforms with PEST domains. These findings are consistent with the previously noted fact that phosphorylation of PEST domains often marks proteins for proteasomal degradation, and raises the possibility that treatments reducing oxidative stress in the brain, especially during development, may lower schizophrenia risk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The effects of anesthetic agents on oxidative stress

    NASA Astrophysics Data System (ADS)

    Yakan, Selvinaz; Düzgüner, Vesile

    2016-04-01

    Oxidative stress can be defined as the instability between antioxidant defense of the body and the production of free radical that causes peroxydation on the lipid layer. Free radicals are reactive oxygen species that are produced in the course of normal metabolisms of aerobe organisms and they may cause disorders in cell structure and organelles by interacting macromolecules, like lipid, protein, nucleic acids. Therefore, they may cause cardiovascular, immune system, liver, kidney illnesses and many other illnesses like cancer, aging, cataract, diabetes. It is known that many drugs used for the purpose of anesthetizing may cause lipid peroxidation in organism. For these reasons, determining the Oxidative stress index of anaesthetic stress chosen in the ones that are exposed to long term anaesthetic agents and anaesthesia appliccations, is so substantial.

  8. Physical exercise and oxidative stress in muscular dystrophies: is there a good balance?

    PubMed

    Chico, L; Ricci, G; Cosci O Di Coscio, M; Simoncini, C; Siciliano, G

    2017-07-01

    The effect of oxidative stress on muscle damage inducted by physical exercise is widely debated. It is generally agreed that endurance and intense exercise can increase oxidative stress and generate changes in antioxidant power inducing muscle damage; however, regular and moderate exercise can be beneficial for the health improving the antioxidant defense mechanisms in the majority of cases. Growing evidences suggest that an increased oxidative/nitrosative stress is involved in the pathogenesis of several muscular dystrophies (MDs). Notably, physical training has been considered useful for patients with these disorders. This review will focus on the involvement of oxidative stress in MDs and on the possible effects of physical activities to decrease oxidative damage and improve motor functions in MDs patients.

  9. 8-isoprostane as Oxidative Stress Marker in Coal Mine Workers.

    PubMed

    Zimet, Zlatko; Bilban, Marjan; Marc Malovrh, Mateja; Korošec, Peter; Poljšak, Borut; Osredkar, Joško; Šilar, Mira

    2016-08-01

    This study was to investigate whether working in conditions of elevated concentrations of mine gases (CO2, CO, CH4, DMS) and dust may result in oxidative stress. Coal miners (n=94) from the Velenje Coal mine who were arranged into control group and three groups according to a number of consecutive working days. 8-isoprostane as a biological marker of oxidative stress was measured in exhaled breath condensate (EBC). Miners who worked for three consecutive days had higher 8-isoprostane values in EBC compared to the control group. Gas/dust concentrations and exposure time of a single/two day shift seem too low to trigger immediate oxidative stress. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  10. Endoplasmic reticulum calcium release potentiates the ER stress and cell death caused by an oxidative stress in MCF-7 cells.

    PubMed

    Dejeans, Nicolas; Tajeddine, Nicolas; Beck, Raphaël; Verrax, Julien; Taper, Henryk; Gailly, Philippe; Calderon, Pedro Buc

    2010-05-01

    Increase in cytosolic calcium concentration ([Ca2+](c)), release of endoplasmic reticulum (ER) calcium ([Ca2+](er)) and ER stress have been proposed to be involved in oxidative toxicity. Nevertheless, their relative involvements in the processes leading to cell death are not well defined. In this study, we investigated whether oxidative stress generated during ascorbate-driven menadione redox cycling (Asc/Men) could trigger these three events, and, if so, whether they contributed to Asc/Men cytoxicity in MCF-7 cells. Using microspectrofluorimetry, we demonstrated that Asc/Men-generated oxidative stress was associated with a slow and moderate increase in [Ca2+](c), largely preceding permeation of propidium iodide, and thus cell death. Asc/Men treatment was shown to partially deplete ER calcium stores after 90 min (decrease by 45% compared to control). This event was associated with ER stress activation, as shown by analysis of eIF2 phosphorylation and expression of the molecular chaperone GRP94. Thapsigargin (TG) was then used to study the effect of complete [Ca2+](er) emptying during the oxidative stress generated by Asc/Men. Surprisingly, the combination of TG and Asc/Men increased ER stress to a level considerably higher than that observed for either treatment alone, suggesting that [Ca2+](er) release alone is not sufficient to explain ER stress activation during oxidative stress. Finally, TG-mediated [Ca2+](er) release largely potentiated ER stress, DNA fragmentation and cell death caused by Asc/Men, supporting a role of ER stress in the process of Asc/Men cytotoxicity. Taken together, our results highlight the involvement of ER stress and [Ca2+](er) decrease in the process of oxidative stress-induced cell death in MCF-7 cells. 2009 Elsevier Inc. All rights reserved.

  11. Integrated Approaches to Drug Discovery for Oxidative Stress-Related Retinal Diseases

    PubMed Central

    Hara, Hideaki

    2016-01-01

    Excessive oxidative stress induces dysregulation of functional networks in the retina, resulting in retinal diseases such as glaucoma, age-related macular degeneration, and diabetic retinopathy. Although various therapies have been developed to reduce oxidative stress in retinal diseases, most have failed to show efficacy in clinical trials. This may be due to oversimplification of target selection for such a complex network as oxidative stress. Recent advances in high-throughput technologies have facilitated the collection of multilevel omics data, which has driven growth in public databases and in the development of bioinformatics tools. Integration of the knowledge gained from omics databases can be used to generate disease-related biological networks and to identify potential therapeutic targets within the networks. Here, we provide an overview of integrative approaches in the drug discovery process and provide simple examples of how the approaches can be exploited to identify oxidative stress-related targets for retinal diseases. PMID:28053689

  12. [Oxidative stress in station service workers].

    PubMed

    Basso, A; Elia, G; Petrozzi, M T; Zefferino, R

    2004-01-01

    The aim of this study is to identify an oxidative stress in service station workers. Previous studies verified an increased incidence of leukemia and myeloma, however other authors haven't verified it. There are reports of nasal, pharyngeal, laryngeal, and lung cancer in service station workers. Our study wants to evaluate the oxidative balance in the fuel workers. We studied 44 subjects with gasoline exposure and 29 control subjects. We determined the blood concentrations of Glutathione reduced and oxidized, Protein sulfhydrylic (PSH) Vitamine E, Vitamine C, Malondialdehyde, Protein oxidized (OX-PROT) and beta carotene. The t test was performed to analyze the differences between the means, the Chi square was used to evaluate the statistical significance of associations between variable categorical (redox index). The Anova test excluded the confusing effect of age, smoke and alcohol habit. The mean age of the workers was 36.6 years, instead the control group was 38. In the workers Glutathione reduced, Vit. E and Beta carotene were lower than in the control subjects, this difference was statistically significant (p < 0.01). The Malondialdehyde concentration was higher in the workers higher than in the control group, but this difference wasn't statistically significant. Our data demonstrated Glutathione, Vit. E, and Beta carotene are useful to verify a reduction of the antioxidant activity. The only marker of the presence of oxidative injury that correlated to work exposure was the malondialdehyde. The redox index was surest marker. The limit of our study is the number of control group, it was little and lower than workers. Conclusively we believe it's useful to continue our studies and, if our results are going to be confirmed, we retain that stress oxidative determination would be verified in occupational medicine using these markers, especially to study exposure of the fuel workers who were investigated less and, in our opinion, would receive more attention.

  13. Serum total oxidant and antioxidant status in earthquake survivors with post-traumatic stress disorder.

    PubMed

    Ozdemir, Pinar Guzel; Kaplan, İbrahim; Uysal, Cem; Bulut, Mahmut; Atli, Abdullah; Bez, Yasin; Kaya, Mehmet Cemal; Ozdemir, Osman

    2015-06-01

    Oxidative stress has been shown to play an important role in the pathogenesis of post-traumatic stress disorder (PTSD). Although there are some studies on oxidative stress and PTSD, there is no report available on the serum total oxidant and antioxidant status in earthquake survivors with PTSD. Therefore, this study aimed to investigate the serum total oxidant and antioxidant status in earthquake survivors with chronic PTSD. The study group included 45 earthquake survivors with PTSD and 40 earthquake survivors without PTSD. The oxidative status was determined using the total antioxidant status and total oxidant status (TOS) measurements and by calculating the oxidative stress index (OSI). There were no statistically significant differences in the total antioxidant status, TOS, or OSI when comparing individuals with and without PTSD (all, p>0.05). There were no correlations between Clinician-Administered PTSD Scale scores and oxidant and antioxidant stress markers (all, p>0.05). Our results suggest that the total oxidant and antioxidant status may not affect earthquake survivors with PTSD. This is the first study to evaluate the oxidative status in earthquake survivors with PTSD. Further studies are necessary to confirm these findings.

  14. Oxidative stress, oxidative balance score, and hypertension among a racially diverse population.

    PubMed

    Annor, Francis B; Goodman, Michael; Okosun, Ike S; Wilmot, Douglas W; Il'yasova, Dora; Ndirangu, Murugi; Lakkur, Sindhu

    2015-08-01

    Hypertension is a risk factor for several vascular diseases. Evidence suggests that oxidative stress (OS) plays a significant role in its pathophysiology. Human studies have shown inconsistent results, varying based on the OS biomarker and study population. In a racially diverse population, examine the association between: (1) blood pressure or hypertension and four markers of OS and (2) blood pressure or hypertension and oxidative balance score (OBS). Using data (n = 317) from the cross-sectional study on race, stress, and hypertension, an OBS was constructed from various measures of pro-oxidant and antioxidant exposures. OS was assessed by four biomarkers: fluorescence oxidative products, F2-isoprostanes, mitochondrial DNA copy number, and gamma tocopherol. Multivariate linear and logistic regression analyses were used to estimate the associations of interest. None of the adjusted associations between hypertension and OS markers was statistically significant. OBS was inversely associated with hypertension after adjusting for study covariates. Persons with higher OBS have lower odds of having hypertension; however, the evidence on the relationship between OS markers and blood pressure remains unconvincing. Copyright © 2015 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  15. Effect of seminal oxidative stress on fertility after vasectomy reversal.

    PubMed

    Kolettis, P N; Sharma, R K; Pasqualotto, F F; Nelson, D; Thomas, A J; Agarwal, A

    1999-02-01

    To evaluate seminal oxidative stress in men after vasectomy reversal and to determine whether seminal oxidative stress could predict fertility after vasectomy reversal. Measurement of seminal reactive oxygen species (ROS) and total antioxidant capacity (TAC) in normal donors, men who were fertile after vasectomy reversal, and men who were infertile after vasectomy reversal. A male infertility clinic of a tertiary care center. Thirty men who underwent vasectomy reversal and 17 normal donors. None. Semen characteristics, seminal ROS, and TAC were measured with chemiluminescence assays in samples from donors and reversal patients. Mean adjusted seminal ROS (log [ROS+1]) was higher in infertile reversal patients (2.38+/-0.25) than in normal donors (1.30+/-0.14). Seminal ROS was also higher in all (fertile and infertile reversal combined) reversal patients than in donors. Total antioxidant capacity did not differ between groups. The ROS-TAC score, a composite index of seminal oxidative stress, was a significant predictor of fertility. A ROS-TAC score of 45 or greater had a positive predictive value of 73% in predicting fertility. Seminal oxidative stress is associated with vasectomy reversal. The ROS-TAC score is a possible predictor of infertility after vasectomy reversal.

  16. Chronic social stress increases nitric oxide-dependent vasorelaxation in normotensive rats

    PubMed Central

    Puzserova, Angelika; Bernatova, Iveta

    2010-01-01

    The aim of this study was to examine oxidative load and endothelium-dependent vasorelaxation in the serotonin pre-constricted femoral artery (FA) of Wistar-Kyoto (WKY) rats exposed to chronic social stress produced by crowding in the presence or absence of ascorbic acid (AsA) in working solution. Adult male rats were randomly divided into control (living space: 480 cm2/rat) or stressed (living space: 200 cm2/rat) groups for 8 weeks. Blood pressure and heart rate, determined using tail-cuff plethysmography, were not influenced by stress vs. control. Conjugated dienes (CD) and concentrations of thiobarbituric acid-reactive substances (TBARS) were measured in the left ventricle and liver (for assessment of oxidative load) and were found unchanged by chronic crowding. The nitric oxide (NO)-dependent component of endothelium-dependent relaxation was investigated in the FA using a wire myograph. In both the presence and absence of AsA, acetylcholine-induced relaxation of the FA of stressed rats significantly exceeded that of the controls, which was associated with an increase of the NO-dependent component. In conclusion, the data showed that chronic crowding did not produce oxidative stress in the organs investigated and indicate that elevation of NO production during chronic stress is an important way of adaptation, which may prevent normotensive rats from the development of stress-induced hypertension. PMID:21331175

  17. A short-term supranutritional vitamin E supplementation alleviated respiratory alkalosis but did not reduce oxidative stress in heat stressed pigs.

    PubMed

    Liu, Fan; Celi, Pietro; Chauhan, Surinder Singh; Cottrell, Jeremy James; Leury, Brian Joseph; Dunshea, Frank Rowland

    2018-02-01

    Heat stress (HS) triggers oxidative stress and respiratory alkalosis in pigs. The objective of this experiment was to study whether a short-term supranutritional amount of dietary vitamin E (VE) can mitigate oxidative stress and respiratory alkalosis in heat-stressed pigs. A total of 24 pigs were given either a control diet (17 IU/kg VE) or a high VE (200 IU/kg VE; HiVE) diet for 14 d, then exposed to thermoneutral (TN; 20°C, 45% humidity) or HS (35°C, 35% to 45% humidity, 8 h daily) conditions for 7 d. Respiration rate and rectal temperature were measured three times daily during the thermal exposure. Blood gas variables and oxidative stress markers were studied in blood samples collected on d 7. Although HiVE diet did not affect the elevated rectal temperature or respiration rate observed during HS, it alleviated (all p<0.05 for diet×temperature) the loss of blood CO 2 partial pressure and bicarbonate, as well as the increase in blood pH in the heat-stressed pigs. The HS reduced (p = 0.003) plasma biological antioxidant potential (BAP) and tended to increase (p = 0.067) advanced oxidized protein products (AOPP) in the heat-stressed pigs, suggesting HS triggers oxidative stress. The HiVE diet did not affect plasma BAP or AOPP. Only under TN conditions the HiVE diet reduced the plasma reactive oxygen metabolites (p<0.05 for diet× temperature). A short-term supplementation with 200 IU/kg VE partially alleviated respiratory alkalosis but did not reduce oxidative stress in heat-stressed pigs.

  18. Differential cellular responses in healthy mice and in mice with established airway inflammation when exposed to hematite nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafsson, Åsa, E-mail: asa.gustafsson@foi.se; Dept of Public Health and Clinical Medicine, Umeå University; Bergström, Ulrika

    The aim of this study was to investigate the inflammatory and immunological responses in airways and lung-draining lymph nodes (LDLNs), following lung exposure to iron oxide (hematite) nanoparticles (NPs). The responses to the hematite NPs were evaluated in both healthy non-sensitized mice, and in sensitized mice with an established allergic airway disease. The mice were exposed intratracheally to either hematite NPs or to vehicle (PBS) and the cellular responses were evaluated on days 1, 2, and 7, post-exposure. Exposure to hematite NPs increased the numbers of neutrophils, eosinophils, and lymphocytes in the airways of non-sensitized mice on days 1 andmore » 2 post-exposure; at these time points the number of lymphocytes was also elevated in the LDLNs. In contrast, exposing sensitized mice to hematite NPs induced a rapid and unspecific cellular reduction in the alveolar space on day 1 post-exposure; a similar decrease of lymphocytes was also observed in the LDLN. The results indicate that cells in the airways and in the LDLN of individuals with established airway inflammation undergo cell death when exposed to hematite NPs. A possible explanation for this toxic response is the extensive generation of reactive oxygen species (ROS) in the pro-oxidative environment of inflamed airways. This study demonstrates how sensitized and non-sensitized mice respond differently to hematite NP exposure, and it highlights the importance of including individuals with respiratory disorders when evaluating health effects of inhaled nanomaterials. - Highlights: • Hematite NPs induce differential responses in airways of healthy and allergic mice. • Hematite induced an airway inflammation in healthy mice. • Hematite induced cellular reduction in the alveolus and lymph nodes of allergic mice. • Cell death is possible due to extensive pro-oxidative environment in allergic mice. • It is important to include sensitive individuals when valuing health effects of NPs.« less

  19. Soft-food diet induces oxidative stress in the rat brain.

    PubMed

    Yoshino, Fumihiko; Yoshida, Ayaka; Hori, Norio; Ono, Yumie; Kimoto, Katsuhiko; Onozuka, Minoru; Lee, Masaichi Chang-il

    2012-02-02

    Decreased dopamine (DA) release in the hippocampus may be caused by dysfunctional mastication, although the mechanisms involved remain unclear. The present study examined the effects of soft- and hard-food diets on oxidative stress in the brain, and the relationship between these effects and hippocampal DA levels. The present study showed that DA release in the hippocampus was decreased in rats fed a soft-food diet. Electron spin resonance studies using the nitroxyl spin probe 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl directly demonstrated a high level of oxidative stress in the rat brain due to soft-food diet feeding. In addition, we confirmed that DA directly react with reactive oxygen species such as hydroxyl radical and superoxide. These observations suggest that soft-food diet feeding enhances oxidative stress, which leads to oxidation and a decrease in the release of DA in the hippocampus of rats. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Hypothermia can reverse hepatic oxidative stress damage induced by hypoxia in rats.

    PubMed

    Garnacho-Castaño, Manuel Vicente; Alva, Norma; Sánchez-Nuño, Sergio; Bardallo, Raquel G; Palomeque, Jesús; Carbonell, Teresa

    2016-12-01

    Our previous findings demonstrated that hypothermia enhances the reduction potential in the liver and helps to maintain the plasmatic antioxidant pool. Here, we aimed to elucidate if hypothermia protects against hypoxia-induced oxidative stress damage in rat liver. Several hepatic markers of oxidative stress were compared in three groups of animals (n = 8 in each group): control normothermic group ventilated with room air and two groups under extreme hypoxia (breathing 10 % O 2 ), one kept at normothermia (HN) (37 °C) and the other under deep hypothermia (HH) (central body temperature of 21-22 °C). Hypoxia in normothermia significantly increased the levels of hepatic nitric oxide, inducible nitric oxide synthase expression, protein oxidation, Carbonilated proteins, advanced oxidation protein products, 4-hydroxynonenal (HNE) protein adducts, and lipid peroxidation when compared to the control group (p < 0.05). However, when hypoxia was induced under hypothermia, results from the oxidative stress biomarker analyses did not differ significantly from those found in the control group. Indeed, 4-HNE protein adduct amounts were significantly lower in the HH versus HN group (p < 0.05). Therefore, hypothermia can mitigate hypoxia-induced oxidative stress damage in rat liver. These effects could help clarify the mechanisms of action of therapeutic hypothermia.

  1. Food-derived bioactive peptides on inflammation and oxidative stress.

    PubMed

    Chakrabarti, Subhadeep; Jahandideh, Forough; Wu, Jianping

    2014-01-01

    Chronic diseases such as atherosclerosis and cancer are now the leading causes of morbidity and mortality worldwide. Inflammatory processes and oxidative stress underlie the pathogenesis of these pathological conditions. Bioactive peptides derived from food proteins have been evaluated for various beneficial effects, including anti-inflammatory and antioxidant properties. In this review, we summarize the roles of various food-derived bioactive peptides in inflammation and oxidative stress and discuss the potential benefits and limitations of using these compounds against the burden of chronic diseases.

  2. N-Acetylcysteine protects against trichloroethene-mediated autoimmunity by attenuating oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Gangduo; Wang, Jianling; Ma, Huaxian

    Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, is known to induce autoimmunity both in humans and animal models. However, mechanisms underlying TCE-mediated autoimmunity remain largely unknown. Previous studies from our laboratory in MRL +/+ mice suggest that oxidative stress may contribute to TCE-induced autoimmune response. The current study was undertaken to further assess the role of oxidative stress in TCE-induced autoimmunity by supplementing with an antioxidant N-acetylcysteine (NAC). Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day through drinking water). TCEmore » exposure led to significant increases in serum levels of anti-nuclear, anti-dsDNA and anti-Sm antibodies. TCE exposure also led to significant induction of anti-malondiadelhyde (MDA)- and anti-hydroxynonenal (HNE)-protein adduct antibodies which were associated with increased ANA in the sera along with increased MDA-/HNE-protein adducts in the livers and kidneys, and increases in protein oxidation (carbonylation) in the sera, livers and kidneys, suggesting an overall increase in oxidative stress. Moreover, TCE exposure also resulted in increased release of IL-17 from splenocytes and increases in IL-17 mRNA expression. Remarkably, NAC supplementation attenuated not only the TCE-induced oxidative stress, IL-17 release and mRNA expression, but also the markers of autoimmunity, as evident from decreased levels of ANA, anti-dsDNA and anti-Sm antibodies in the sera. These results provide further support to a role of oxidative stress in TCE-induced autoimmune response. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for preventive and/or therapeutic strategies. - Highlights: • TCE led to increased autoantibodies, supporting its potential to induce autoimmunity. • TCE exposure led to increases in lipid perioxidation and protein carbonyls. • TCE exposure

  3. Fundamental studies of stress distributions and stress relaxation in oxide scales on high temperature alloys. [Final progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shores, D.A.; Stout, J.H.; Gerberich, W.W.

    1993-06-01

    This report summarizes a three-year study of stresses arising in the oxide scale and underlying metal during high temperature oxidation and of scale cracking. In-situ XRD was developed to measure strains during oxidation over 1000{degrees}C on pure metals. Acoustic emission was used to observe scale fracture during isothermal oxidation and cooling, and statistical analysis was used to infer mechanical aspects of cracking. A microscratch technique was used to measure the fracture toughness of scale/metal interface. A theoretical model was evaluated for the development and relaxation of stresses in scale and metal substrate during oxidation.

  4. The Role of Oxidative Stress in Apoptosis of Breast Cancer.

    DTIC Science & Technology

    1995-09-27

    supported by studies demonstrating that inappropriate expression of an oncogene, bcl - 2 , prevents cell death and thereby promotes Page _1L ANNUAL REPORT...see Appendix: Baker et al., "Decreased Antioxidant Defense and Increased Oxidant Stress During Dexamethasone-Induced Apoptosis: bcl - 2 Selectively...Alzheimer’s disease. The bcl - 2 oncogene blocks apoptosis in diverse systems and protects cells against oxidative stress- induced damage (Hockenbery et

  5. In vitro model suggests oxidative stress involved in keratoconus disease

    PubMed Central

    Karamichos, D.; Hutcheon, A. E. K.; Rich, C. B.; Trinkaus-Randall, V.; Asara, J. M.; Zieske, J. D.

    2014-01-01

    Keratoconus (KC) affects 1:2000 people and is a disorder where cornea thins and assumes a conical shape. Advanced KC requires surgery to maintain vision. The role of oxidative stress in KC remains unclear. We aimed to identify oxidative stress levels between human corneal keratocytes (HCKs), fibroblasts (HCFs) and keratoconus cells (HKCs). Cells were cultured in 2D and 3D systems. Vitamin C (VitC) and TGF-β3 (T3) were used for 4 weeks to stimulate self-assembled extracellular matrix (ECM). No T3 used as controls. Samples were analyzed using qRT-PCR and metabolomics. qRT-PCR data showed low levels of collagen I and V, as well as keratocan for HKCs, indicating differentiation to a myofibroblast phenotype. Collagen type III, a marker for fibrosis, was up regulated in HKCs. We robustly detected more than 150 metabolites of the targeted 250 by LC-MS/MS per condition and among those metabolites several were related to oxidative stress. Lactate levels, lactate/malate and lactate/pyruvate ratios were elevated in HKCs, while arginine and glutathione/oxidized glutathione ratio were reduced. Similar patterns found in both 2D and 3D. Our data shows that fibroblasts exhibit enhanced oxidative stress compared to keratocytes. Furthermore the HKC cells exhibit the greatest level suggesting they may have a myofibroblast phenotype. PMID:24714342

  6. The role of heat shock protein 70 in oxidant stress and inflammatory injury in quail spleen induced by cold stress.

    PubMed

    Ren, Jiayi; Liu, Chunpeng; Zhao, Dan; Fu, Jing

    2018-05-15

    The aim of this study was to investigate the role of heat shock protein 70 (Hsp70) in oxidative stress and inflammatory damage in the spleen of quails which were induced by cold stress. One hundred ninety-two 15-day-old male quails were randomly divided into 12 groups and kept at 12 ± 1 °C to examine acute and chronic cold stress. We first detected the changes in activities of antioxidant enzymes in the spleen tissue under acute and chronic cold stress. The activities of glutathione peroxidase (GSH-Px) fluctuated in acute cold stress groups, while they were significantly decreased (p < 0.05) after chronic cold stress. The activities of superoxide dismutase (SOD), inducible nitric oxide synthase (iNOS), and nitric oxide (NO) content were decreased significantly (p < 0.05) in both of the acute and chronic cold stress groups. Malondialdehyde (MDA) content was significantly increased (p < 0.05) under cold stress except the 0.5 h group of acute cold stress. Besides, histopathological analysis showed that quail's spleen tissue was inflammatory injured seriously in both the acute and chronic cold stress groups. Additionally, the inflammatory factors (cyclooxygenase-2 (COX-2), prostaglandin E synthase (PTGES), iNOS, nuclear factor-kappa B (NF-κB), and tumor necrosis factor-a (TNF-α)) and Hsp70 mRNA levels were increased in both of the acute and chronic cold stress groups compared with the control groups. These results suggest that oxidative stress and inflammatory injury could be induced by cold stress in spleen tissues of quails. Furthermore, the increased expression of Hsp70 may play a role in protecting the spleen against oxidative stress and inflammatory damage caused by cold stress.

  7. Oxidative Stress: A New Target for Pancreatic Cancer Prognosis and Treatment

    PubMed Central

    Martinez-Useros, Javier; Li, Weiyao; Cabeza-Morales, Marticela; Garcia-Foncillas, Jesus

    2017-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of tumors, and its incidence is rising worldwide. Survival can be improved when tumors are detected at an early stage; however, this cancer is usually asymptomatic, and the disease only becomes apparent after metastasis. Several risk factors are associated to this disease. Chronic pancreatitis, diabetes, and some infectious disease are the most relevant risk factors. Incidence of PDAC has increased in the last decades. It is hypothesized it could be due to other acquired risk habits, like smoking, high alcohol intake, and obesity. Indeed, adipose tissue is a dynamic endocrine organ that secretes different pro-inflammatory cytokines, enzymes, and other factors that activate oxidative stress. Reactive oxygen species caused by oxidative stress, damage DNA, proteins, and lipids, and produce several toxic and high mutagenic metabolites that could modify tumor behavior, turning it into a malignant phenotype. Anti-oxidant compounds, like vitamins, are considered protective factors against cancer. Here, we review the literature on oxidative stress, the molecular pathways that activate or counteract oxidative stress, and potential treatment strategies that target reactive oxygen species suitable for this kind of cancer. PMID:28282928

  8. PML is a ROS sensor activating p53 upon oxidative stress.

    PubMed

    Niwa-Kawakita, Michiko; Ferhi, Omar; Soilihi, Hassane; Le Bras, Morgane; Lallemand-Breitenbach, Valérie; de Thé, Hugues

    2017-11-06

    Promyelocytic leukemia (PML) nuclear bodies (NBs) recruit partner proteins, including p53 and its regulators, thereby controlling their abundance or function. Investigating arsenic sensitivity of acute promyelocytic leukemia, we proposed that PML oxidation promotes NB biogenesis. However, physiological links between PML and oxidative stress response in vivo remain unexplored. Here, we identify PML as a reactive oxygen species (ROS) sensor. Pml -/- cells accumulate ROS, whereas PML expression decreases ROS levels. Unexpectedly, Pml -/- embryos survive acute glutathione depletion. Moreover, Pml -/- animals are resistant to acetaminophen hepatotoxicity or fasting-induced steatosis. Molecularly, Pml -/- animals fail to properly activate oxidative stress-responsive p53 targets, whereas the NRF2 response is amplified and accelerated. Finally, in an oxidative stress-prone background, Pml -/- animals display a longevity phenotype, likely reflecting decreased basal p53 activation. Thus, similar to p53, PML exerts basal antioxidant properties but also drives oxidative stress-induced changes in cell survival/proliferation or metabolism in vivo. Through NB biogenesis, PML therefore couples ROS sensing to p53 responses, shedding a new light on the role of PML in senescence or stem cell biology. © 2017 Niwa-Kawakita et al.

  9. Oxidative/nitrosative stress and antidepressants: targets for novel antidepressants.

    PubMed

    Lee, Seung-Yup; Lee, Soo-Jung; Han, Changsu; Patkar, Ashwin A; Masand, Prakash S; Pae, Chi-Un

    2013-10-01

    The brain is an organ predisposed to oxidative/nitrosative stress. This is especially true in the case of aging as well as several neurodegenerative diseases. Under such circumstances, a decline in the normal antioxidant defense mechanisms leads to an increase in the vulnerability of the brain to the deleterious effects of oxidative damage. Highly reactive oxygen/nitrogen species damage lipids, proteins, and mitochondrial and neuronal genes. Unless antioxidant defenses react appropriately to damage inflicted by radicals, neurons may experience microalteration, microdysfunction, and degeneration. We reviewed how oxidative and nitrosative stresses contribute to the pathogenesis of depressive disorders and reviewed the clinical implications of various antioxidants as future targets for antidepressant treatment. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Gypenosides protect retinal pigment epithelium cells from oxidative stress.

    PubMed

    Alhasani, Reem Hasaballah; Biswas, Lincoln; Tohari, Ali Mohammad; Zhou, Xinzhi; Reilly, James; He, Jian-Feng; Shu, Xinhua

    2018-02-01

    Oxidative stress plays a critical role in the pathogenesis of retinal degeneration. Gypenosides are the major functional components isolated from Gynostemma pentaphyllum. They have been shown to protect against oxidative stress and inflammation and have also demonstrated a protective effect on experimental optic neuritis. In order to determine the protective properties of gypenosides against oxidative stress in human retinal pigment epithelium (RPE) cells, ARPE-19 cells were treated with H 2 O 2 or H 2 O 2 plus gypenosides for 24 h. ARPE-19 cells co-treated with gypenosides had significantly increased cell viability and decreased cell death rate when compared to cells treated with H 2 O 2 alone. The level of GSH, the activities of SOD and catalase, and the expression of NRF2 and antioxidant genes were notably decreased, while there were marked increases in ROS, MDA and pro-inflammatory cytokines in ARPE-19 cells exposed to H 2 O 2 ; co-treatment with gypenosides significantly counteract these changes. Our study suggests that gypenosides protect RPE cells from oxidative damage and offer therapeutic potential for the treatment of retinal degeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. p53 as a retrovirus-induced oxidative stress modulator.

    PubMed

    Kim, Soo Jin; Wong, Paul K Y

    2015-01-01

    Infection of astrocytes by the neuropathogenic mutant of Moloney murine leukemia virus, ts1, exhibits increased levels of reactive oxygen species (ROS) and signs of oxidative stress compared with uninfected astrocytes. Previously, we have demonstrated that ts1 infection caused two separate events of ROS upregulation. The first upregulation occurs during early viral establishment in host cells and the second during the virus-mediated apoptotic process. In this study, we show that virus-mediated ROS upregulation activates the protein kinase, ataxia telangiectasia mutated, which in turn phosphorylates serine 15 on p53. This activation of p53 however, is unlikely associated with ts1-induced cell death. Rather p53 appears to be involved in suppressing intracellular ROS levels in astrocytes under oxidative stress. The activated p53 appears to delay retroviral gene expression by suppressing NADPH oxidase, a superoxide-producing enzyme. These results suggest that p53 plays a role as a retrovirus-mediated oxidative stress modulator. © 2015 The Authors.

  12. Insights into the Role and Interdependence of Oxidative Stress and Inflammation in Liver Diseases

    PubMed Central

    Li, Sha; Hong, Ming

    2016-01-01

    The crucial roles of oxidative stress and inflammation in the development of hepatic diseases have been unraveled and emphasized for decades. From steatosis to fibrosis, cirrhosis and liver cancer, hepatic oxidative stress, and inflammation are sustained and participated in this pathological progressive process. Notably, increasing evidences showed that oxidative stress and inflammation are tightly related, which are regarded as essential partners that present simultaneously and interact with each other in various pathological conditions, creating a vicious cycle to aggravate the hepatic diseases. Clarifying the interaction of oxidative stress and inflammation is of great importance to provide new directions and targets for developing therapeutic intervention. Herein, this review is concerned with the regulation and interdependence of oxidative stress and inflammation in a variety of liver diseases. In addition to classical mediators and signaling, particular emphasis is placed upon immune suppression, a potential linkage of oxidative stress and inflammation, to provide new inspiration for the treatment of liver diseases. Furthermore, since antioxidation and anti-inflammation have been extensively attempted as the strategies for treatment of liver diseases, the application of herbal medicines and their derived compounds that protect liver from injury via regulating oxidative stress and inflammation collectively were reviewed and discussed. PMID:28070230

  13. 4-Phenylbutyrate Benefits Traumatic Hemorrhagic Shock in Rats by Attenuating Oxidative Stress, Not by Attenuating Endoplasmic Reticulum Stress.

    PubMed

    Yang, Guangming; Peng, Xiaoyong; Hu, Yi; Lan, Dan; Wu, Yue; Li, Tao; Liu, Liangming

    2016-07-01

    Vascular dysfunction such as vascular hyporeactivity following severe trauma and shock is a major cause of death in injured patients. Oxidative stress and endoplasmic reticulum stress play an important role in vascular dysfunction. The objective of the present study was to determine whether or not 4-phenylbutyrate can improve vascular dysfunction and elicit antishock effects by inhibiting oxidative and endoplasmic reticulum stress. Prospective, randomized, controlled laboratory experiment. State key laboratory of trauma, burns, and combined injury. Five hundred and fifty-two Sprague-Dawley rats. Rats were anesthetized, and a model of traumatic hemorrhagic shock was established by left femur fracture and hemorrhage. The effects of 4-phenylbutyrate (5, 20, 50, 100, 200, and 300 mg/kg) on vascular reactivity, animal survival, hemodynamics, and vital organ function in traumatic hemorrhagic shock rats and cultured vascular smooth muscle cells, and the relationship to oxidative stress and endoplasmic reticulum stress was observed. Lower doses of 4-phenylbutyrate significantly improved the vascular function, stabilized the hemodynamics, and increased the tissue blood flow and vital organ function in traumatic hemorrhagic shock rats, and markedly improved the survival outcomes. Among all dosages observed in the present study, 20 mg/kg of 4-phenylbutyrate had the best effect. Further results indicated that 4-phenylbutyrate significantly inhibited the oxidative stress, decreased shock-induced oxidative stress index such as the production of reactive oxygen species, increased the antioxidant enzyme levels such as superoxide dismutase, catalase, and glutathione, and improved the mitochondrial function by inhibiting the opening of the mitochondrial permeability transition pore in rat artery and vascular smooth muscle cells. In contrast, 4-phenylbutyrate did not affect the changes of endoplasmic reticulum stress markers following traumatic hemorrhagic shock. Furthermore, 4

  14. Roles of the tyrosine isomers meta-tyrosine and ortho-tyrosine in oxidative stress.

    PubMed

    Ipson, Brett R; Fisher, Alfred L

    2016-05-01

    The damage to cellular components by reactive oxygen species, termed oxidative stress, both increases with age and likely contributes to age-related diseases including Alzheimer's disease, atherosclerosis, diabetes, and cataract formation. In the setting of oxidative stress, hydroxyl radicals can oxidize the benzyl ring of the amino acid phenylalanine, which then produces the abnormal tyrosine isomers meta-tyrosine or ortho-tyrosine. While elevations in m-tyrosine and o-tyrosine concentrations have been used as a biological marker of oxidative stress, there is emerging evidence from bacterial, plant, and mammalian studies demonstrating that these isomers, particularly m-tyrosine, directly produce adverse effects to cells and tissues. These new findings suggest that the abnormal tyrosine isomers could in fact represent mediators of the effects of oxidative stress. Consequently the accumulation of m- and o-tyrosine may disrupt cellular homeostasis and contribute to disease pathogenesis, and as result, effective defenses against oxidative stress can encompass not only the elimination of reactive oxygen species but also the metabolism and ultimately the removal of the abnormal tyrosine isomers from the cellular amino acid pool. Future research in this area is needed to clarify the biologic mechanisms by which the tyrosine isomers damage cells and disrupt the function of tissues and organs and to identify the metabolic pathways involved in removing the accumulated isomers after exposure to oxidative stress. Published by Elsevier B.V.

  15. Roles of the tyrosine isomers meta-tyrosine and ortho-tyrosine in oxidative stress

    PubMed Central

    Ipson, Brett R.; Fisher, Alfred L.

    2016-01-01

    The damage to cellular components by reactive oxygen species, termed oxidative stress, both increases with age and likely contributes to age-related diseases including Alzheimer’s disease, atherosclerosis, diabetes, and cataract formation. In the setting of oxidative stress, hydroxyl radicals can oxidize the benzyl ring of the amino acid phenylalanine, which then produces the abnormal tyrosine isomers meta-tyrosine or ortho-tyrosine. While elevations in m-tyrosine and o-tyrosine concentrations have been used as a biological marker of oxidative stress, there is emerging evidence from bacterial, plant, and mammalian studies demonstrating that these isomers, particularly m-tyrosine, directly produce adverse effects to cells and tissues. These new findings suggest that the abnormal tyrosine isomers could in fact represent mediators of the effects of oxidative stress. Consequently the accumulation of m- and o-tyrosine may disrupt cellular homeostasis and contribute to disease pathogenesis, and as result, effective defenses against oxidative stress can encompass not only the elimination of reactive oxygen species but also the metabolism and ultimately the removal of the abnormal tyrosine isomers from the cellular amino acid pool. Future research in this area is needed to clarify the biologic mechanisms by which the tyrosine isomers damage cells and disrupt the function of tissues and organs, and to identify the metabolic pathways involved in removing the accumulated isomers after exposure to oxidative stress. PMID:27039887

  16. Oxidative Stress Promotes Peroxiredoxin Hyperoxidation and Attenuates Pro-survival Signaling in Aging Chondrocytes*

    PubMed Central

    Collins, John A.; Wood, Scott T.; Nelson, Kimberly J.; Rowe, Meredith A.; Carlson, Cathy S.; Chubinskaya, Susan; Poole, Leslie B.; Furdui, Cristina M.; Loeser, Richard F.

    2016-01-01

    Oxidative stress-mediated post-translational modifications of redox-sensitive proteins are postulated as a key mechanism underlying age-related cellular dysfunction and disease progression. Peroxiredoxins (PRX) are critical intracellular antioxidants that also regulate redox signaling events. Age-related osteoarthritis is a common form of arthritis that has been associated with mitochondrial dysfunction and oxidative stress. The objective of this study was to determine the effect of aging and oxidative stress on chondrocyte intracellular signaling, with a specific focus on oxidation of cytosolic PRX2 and mitochondrial PRX3. Menadione was used as a model to induce cellular oxidative stress. Compared with chondrocytes isolated from young adult humans, chondrocytes from older adults exhibited higher levels of PRX1–3 hyperoxidation basally and under conditions of oxidative stress. Peroxiredoxin hyperoxidation was associated with inhibition of pro-survival Akt signaling and stimulation of pro-death p38 signaling. These changes were prevented in cultured human chondrocytes by adenoviral expression of catalase targeted to the mitochondria (MCAT) and in cartilage explants from MCAT transgenic mice. Peroxiredoxin hyperoxidation was observed in situ in human cartilage sections from older adults and in osteoarthritic cartilage. MCAT transgenic mice exhibited less age-related osteoarthritis. These findings demonstrate that age-related oxidative stress can disrupt normal physiological signaling and contribute to osteoarthritis and suggest peroxiredoxin hyperoxidation as a potential mechanism. PMID:26797130

  17. Prevalidation of an Acute Inhalation Toxicity Test Using the EpiAirway In Vitro Human Airway Model

    PubMed Central

    Jackson, George R.; Maione, Anna G.; Klausner, Mitchell

    2018-01-01

    Abstract Introduction: Knowledge of acute inhalation toxicity potential is important for establishing safe use of chemicals and consumer products. Inhalation toxicity testing and classification procedures currently accepted within worldwide government regulatory systems rely primarily on tests conducted in animals. The goal of the current work was to develop and prevalidate a nonanimal (in vitro) test for determining acute inhalation toxicity using the EpiAirway™ in vitro human airway model as a potential alternative for currently accepted animal tests. Materials and Methods: The in vitro test method exposes EpiAirway tissues to test chemicals for 3 hours, followed by measurement of tissue viability as the test endpoint. Fifty-nine chemicals covering a broad range of toxicity classes, chemical structures, and physical properties were evaluated. The in vitro toxicity data were utilized to establish a prediction model to classify the chemicals into categories corresponding to the currently accepted Globally Harmonized System (GHS) and the Environmental Protection Agency (EPA) system. Results: The EpiAirway prediction model identified in vivo rat-based GHS Acute Inhalation Toxicity Category 1–2 and EPA Acute Inhalation Toxicity Category I–II chemicals with 100% sensitivity and specificity of 43.1% and 50.0%, for GHS and EPA acute inhalation toxicity systems, respectively. The sensitivity and specificity of the EpiAirway prediction model for identifying GHS specific target organ toxicity-single exposure (STOT-SE) Category 1 human toxicants were 75.0% and 56.5%, respectively. Corrosivity and electrophilic and oxidative reactivity appear to be the predominant mechanisms of toxicity for the most highly toxic chemicals. Conclusions: These results indicate that the EpiAirway test is a promising alternative to the currently accepted animal tests for acute inhalation toxicity. PMID:29904643

  18. Modulation of oxidative stress by beta-carotene in chicken embryo fibroblasts.

    PubMed

    Lawlor, S M; O'Brien, N M

    1995-06-01

    The ability of beta-carotene to protect against oxidative stress in vitro was assessed. Primary cultures of chicken embryo fibroblasts (CEF) were oxidatively stressed by exposure to paraquat (PQ). Activities of the antioxidant enzymes superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6) and glutathione peroxidase (GSH-Px; EC 1.11.19) were measured as indices of oxidative stress. CEF incubated with 0.25 mM-PQ for 18 h exhibited increased SOD and CAT activities and decreased GSH-Px activity compared with the control (P < 0.001). Incorporation of added beta-carotene (0.1 microM) into 0.25 mM-PQ-treated CEF returned SOD activity to that seen in non-PQ-treated cells. beta-Carotene (0.1 microM) reduced the CAT activity from that seen in PQ-treated cells and returned the GSH-Px activity to its control value thus protecting the cells against PQ-induced oxidative stress. However, at higher concentrations of beta-carotene (10 microM), SOD and CAT activities increased significantly (P < 0.001) relative to non-PQ-treated cells and GSH-Px activity decreased relative to its control value. Similar trends were observed when CEF grown in beta-carotene-enriched media (0.1-10 microM) were oxidatively stressed by exposure to 0.25 mM-PQ for 18 h.

  19. Antioxidant functionalized polymer capsules to prevent oxidative stress.

    PubMed

    Larrañaga, Aitor; Isa, Isma Liza Mohd; Patil, Vaibhav; Thamboo, Sagana; Lomora, Mihai; Fernández-Yague, Marc A; Sarasua, Jose-Ramon; Palivan, Cornelia G; Pandit, Abhay

    2018-02-01

    Polymeric capsules exhibit significant potential for therapeutic applications as microreactors, where the bio-chemical reactions of interest are efficiently performed in a spatial and time defined manner due to the encapsulation of an active biomolecule (e.g., enzyme) and control over the transfer of reagents and products through the capsular membrane. In this work, catalase loaded polymer capsules functionalized with an external layer of tannic acid (TA) are fabricated via a layer-by-layer approach using calcium carbonate as a sacrificial template. The capsules functionalised with TA exhibit a higher scavenging capacity for hydrogen peroxide and hydroxyl radicals, suggesting that the external layer of TA shows intrinsic antioxidant properties, and represents a valid strategy to increase the overall antioxidant potential of the developed capsules. Additionally, the hydrogen peroxide scavenging capacity of the capsules is enhanced in the presence of the encapsulated catalase. The capsules prevent oxidative stress in an in vitro inflammation model of degenerative disc disease. Moreover, the expression of matrix metalloproteinase-3 (MMP-3), and disintegrin and metalloproteinase with thrombospondin motif-5 (ADAMTS-5), which represents the major proteolytic enzymes in intervertebral disc, are attenuated in the presence of the polymer capsules. This platform technology exhibits potential to reduce oxidative stress, a key modulator in the pathology of a broad range of inflammatory diseases. Oxidative stress damages important cell structures leading to cellular apoptosis and senescence, for numerous disease pathologies including cancer, neurodegeneration or osteoarthritis. Thus, the development of biomaterials-based systems to control oxidative stress has gained an increasing interest. Herein, polymer capsules loaded with catalase and functionalized with an external layer of tannic acid are fabricated, which can efficiently scavenge important reactive oxygen species (i

  20. Association between Oxidative Stress, Genetic Factors, and Clinical Severity in Children with Sickle Cell Anemia.

    PubMed

    Renoux, Céline; Joly, Philippe; Faes, Camille; Mury, Pauline; Eglenen, Buse; Turkay, Mine; Yavas, Gokce; Yalcin, Ozlem; Bertrand, Yves; Garnier, Nathalie; Cuzzubbo, Daniela; Gauthier, Alexandra; Romana, Marc; Möckesch, Berenike; Cannas, Giovanna; Antoine-Jonville, Sophie; Pialoux, Vincent; Connes, Philippe

    2018-04-01

    To investigate the associations between several sickle cell disease genetic modifiers (beta-globin haplotypes, alpha-thalassemia, and glucose-6-phosphate dehydrogenase deficiency) and the level of oxidative stress and to evaluate the association between oxidative stress and the rates of vaso-occlusive events. Steady-state oxidative and nitrosative stress markers, biological variables, genetic modulators, and vaso-occlusive crisis events requiring emergency admissions were measured during a 2-year period in 62 children with sickle cell anemia (58 SS and 4 Sβ 0 ). Twelve ethnic-matched children without sickle cell anemia also participated as healthy controls (AA) for oxidative and nitrosative stress level measurement. Oxidative and nitrosative stress were greater in patients with sickle cell anemia compared with control patients, but the rate of vaso-occlusive crisis events in sickle cell anemia was not associated with the level of oxidative stress. The presence of alpha-thalassemia, but not glucose-6-phosphate dehydrogenase deficiency or beta-globin haplotype, modulated the level of oxidative stress in children with sickle cell anemia. Mild hemolysis in children with alpha-thalassemia may limit oxidative stress and could explain the protective role of alpha-thalassemia in hemolysis-related sickle cell complications. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Are there intergenerational and population-specific effects of oxidative stress in sockeye salmon (Oncorhynchus nerka)?

    PubMed

    Taylor, Jessica J; Wilson, Samantha M; Sopinka, Natalie M; Hinch, Scott G; Patterson, David A; Cooke, Steven J; Willmore, William G

    2015-06-01

    Intergenerational effects of stress have been reported in a wide range of taxa; however, few researchers have examined the intergenerational consequences of oxidative stress. Oxidative stress occurs in living organisms when reactive oxygen species remain unquenched by antioxidant defense systems and become detrimental to cells. In fish, it is unknown how maternal oxidative stress and antioxidant capacity influence offspring quality. The semelparous, migratory life history of Pacific salmon (Oncorhynchus spp.) provides a unique opportunity to explore intergenerational effects of oxidative stress. This study examined the effects of population origin on maternal and developing offspring oxidative stress and antioxidant capacity, and elucidated intergenerational relationships among populations of sockeye salmon (Oncorhynchus nerka) with varying migration effort. For three geographically distinct populations of Fraser River sockeye salmon (British Columbia, Canada), antioxidant capacity and oxidative stress were measured in adult female plasma, heart, brain, and liver, as well as in developing offspring until time of emergence. Maternal and offspring oxidative stress and antioxidant capacity varied among populations but patterns were not consistent across tissue/developmental stage. Furthermore, maternal oxidative stress and antioxidant capacity did not affect offspring oxidative stress and antioxidant capacity across any of the developmental stages or populations sampled. Our results revealed that offspring develop their endogenous antioxidant systems at varying rates across populations; however, this variability is overcome by the time of emergence. While offspring may be relying on maternally derived antioxidants in the initial stages of development, they rapidly develop their own antioxidant systems (mainly glutathione) during later stages of development. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Oxidative stress inhibition and oxidant activity by fibrous clays.

    PubMed

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio; Gómez-Vidales, Virginia

    2015-09-01

    Fibrous clays (sepiolite, palygorskite) are produced at 1.2m tonnes per year and have a wide range of industrial applications needing to replace long-fibre length asbestos. However, information on the beneficial effects of fibrous clays on health remains scarce. This paper reports on the effect of sepiolite (Vallecas, Spain) and palygorskite (Torrejón El Rubio, Spain) on cell damage via oxidative stress (determined as the progress of lipid peroxidation, LP). The extent of LP was assessed using the Thiobarbituric Acid Reactive Substances assay. The oxidant activity by fibrous clays was quantified using Electron-Paramagnetic Resonance. Sepiolite and palygorskite inhibited LP, whereby corresponding IC50 values were 6557±1024 and 4250±289μgmL(-1). As evidenced by dose-response experiments LP inhibition by palygorskite was surface-controlled. Fibrous clay surfaces did not stabilize HO species, except for suspensions containing 5000μgmL(-1). A strong oxidant (or weak anti-oxidant) activity favours the inhibition of LP by fibrous clays. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Blue light-induced oxidative stress in live skin.

    PubMed

    Nakashima, Yuya; Ohta, Shigeo; Wolf, Alexander M

    2017-07-01

    Skin damage from exposure to sunlight induces aging-like changes in appearance and is attributed to the ultraviolet (UV) component of light. Photosensitized production of reactive oxygen species (ROS) by UVA light is widely accepted to contribute to skin damage and carcinogenesis, but visible light is thought not to do so. Using mice expressing redox-sensitive GFP to detect ROS, blue light could produce oxidative stress in live skin. Blue light induced oxidative stress preferentially in mitochondria, but green, red, far red or infrared light did not. Blue light-induced oxidative stress was also detected in cultured human keratinocytes, but the per photon efficacy was only 25% of UVA in human keratinocyte mitochondria, compared to 68% of UVA in mouse skin. Skin autofluorescence was reduced by blue light, suggesting flavins are the photosensitizer. Exposing human skin to the blue light contained in sunlight depressed flavin autofluorescence, demonstrating that the visible component of sunlight has a physiologically significant effect on human skin. The ROS produced by blue light is probably superoxide, but not singlet oxygen. These results suggest that blue light contributes to skin aging similar to UVA. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Effect of oxidative stress on Rho kinase II and smooth muscle contraction in rat stomach.

    PubMed

    Al-Shboul, Othman; Mustafa, Ayman

    2015-06-01

    Recent studies have shown that both Rho kinase signaling and oxidative stress are involved in the pathogenesis of a number of human diseases, such as diabetes mellitus, hypertension, and atherosclerosis. However, very little is known about the effect of oxidative stress on the gastrointestinal (GI) smooth muscle Rho kinase pathway. The aim of the current study was to investigate the effect of oxidative stress on Rho kinase II and muscle contraction in rat stomach. The peroxynitrite donor 3-morpholinosydnonimine (SIN-1), hydrogen peroxide (H2O2), and peroxynitrite were used to induce oxidative stress. Rho kinase II expression and ACh-induced activity were measured in control and oxidant-treated cells via specifically designed enzyme-linked immunosorbent assay (ELISA) and activity assay kits, respectively. Single smooth muscle cell contraction was measured via scanning micrometry in the presence or absence of the Rho kinase blocker, Y-27632 dihydrochloride. All oxidant agents significantly increased ACh-induced Rho kinase II activity without affecting its expression level. Most important, oxidative stress induced by all three agents augmented ACh-stimulated muscle cell contraction, which was significantly inhibited by Y-27632. In conclusion, oxidative stress activates Rho kinase II and enhances contraction in rat gastric muscle, suggesting an important role in GI motility disorders associated with oxidative stress.

  5. [Oxidative stress in pathogenesis of COPD].

    PubMed

    Betsuyaku, Tomoko

    2007-04-01

    Cigarette smoke and aging are major risk factors of chronic obstructive pulmonary disease(COPD). It remains unsolved how long -term smoking with age affects the molecular responses in the lung. Respiratory tract is the major interface to the environment and is rich in glutathione, which protects lung from oxidative stress. We performed bronchoalveolar lavage for nonsmokers and smokers of various ages, who were further categorized according to the presence of emphysema on high-resolution computed tomography. We thus evaluated glutathione antioxidant system in BAL fluid. Characterization of older smokers with long-term smoking histories, contrasted with young recent smokers, may in part explain the predisposition of the lungs to destructive lung diseases. On the other hands, oxidative stress results from an imbalance in aerobic metabolism and poses a serious threat to cellular apoptosis, leading to emphysematous lung destruction. The therapeutic interference with targeted up-regulation of protective mechanisms might be critical for the success of future COPD therapies.

  6. Oxidative stress and apoptosis in preeclampsia.

    PubMed

    Can, Murat; Guven, Berrak; Bektas, Sibel; Arikan, Ilker

    2014-12-01

    We aimed to determine the oxidative stress and antioxidant status in preeclamptic placenta. Also, we investigated the apoptotic index of villous trophoblast and proliferation index of cytotrophoblasts. The study included 32 pregnant with preeclampsia and 31 normotensive healthy pregnant women. Malondialdehyde (MDA) and total antioxidant status (TAS) levels were measured in the placenta. For detection of apoptosis and proliferation in trophoblast, apoptosis protease activating factor 1 (APAF-1) and Ki-67 were used. Placental MDA levels in preeclamptic women were significantly higher than normal pregnancies (p=0.002). There was no significant difference between the groups in the TAS levels of placenta (p=0.773). Also, the apoptotic index in villous trophoblasts increased (p<0.001), but proliferation index did not change in preeclampsia (p=0.850). Increased oxidative stress and apoptosis in pathological placenta are not balanced by antioxidant systems and proliferation mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Effects of repeated restraint stress and WiFi signal exposure on behavior and oxidative stress in rats.

    PubMed

    Othman, Haifa; Ammari, Mohamed; Sakly, Mohsen; Abdelmelek, Hafedh

    2017-10-01

    Today, due to technology development and aversive events of daily life, Human exposure to both radiofrequency and stress is unavoidable. This study investigated the co-exposure to repeated restraint stress and WiFi signal on cognitive function and oxidative stress in brain of male rats. Animals were divided into four groups: Control, WiFi-exposed, restrained and both WiFi-exposed and restrained groups. Each of WiFi exposure and restraint stress occurred 2 h (h)/day during 20 days. Subsequently, various tests were carried out for each group, such as anxiety in elevated plus maze, spatial learning abilities in the water maze, cerebral oxidative stress response and cholinesterase activity in brain and serum. Results showed that WiFi exposure and restraint stress, alone and especially if combined, induced an anxiety-like behavior without impairing spatial learning and memory abilities in rats. At cerebral level, we found an oxidative stress response triggered by WiFi and restraint, per se and especially when combined as well as WiFi-induced increase in acetylcholinesterase activity. Our results reveal that there is an impact of WiFi signal and restraint stress on the brain and cognitive processes especially in elevated plus maze task. In contrast, there are no synergistic effects between WiFi signal and restraint stress on the brain.

  8. Frontline Science: Pathological conditioning of human neutrophils recruited to the airway milieu in cystic fibrosis.

    PubMed

    Forrest, Osric A; Ingersoll, Sarah A; Preininger, Marcela K; Laval, Julie; Limoli, Dominique H; Brown, Milton R; Lee, Frances E; Bedi, Brahmchetna; Sadikot, Ruxana T; Goldberg, Joanna B; Tangpricha, Vin; Gaggar, Amit; Tirouvanziam, Rabindra

    2018-05-09

    Recruitment of neutrophils to the airways, and their pathological conditioning therein, drive tissue damage and coincide with the loss of lung function in patients with cystic fibrosis (CF). So far, these key processes have not been adequately recapitulated in models, hampering drug development. Here, we hypothesized that the migration of naïve blood neutrophils into CF airway fluid in vitro would induce similar functional adaptation to that observed in vivo, and provide a model to identify new therapies. We used multiple platforms (flow cytometry, bacteria-killing, and metabolic assays) to characterize functional properties of blood neutrophils recruited in a transepithelial migration model using airway milieu from CF subjects as an apical chemoattractant. Similarly to neutrophils recruited to CF airways in vivo, neutrophils migrated into CF airway milieu in vitro display depressed phagocytic receptor expression and bacterial killing, but enhanced granule release, immunoregulatory function (arginase-1 activation), and metabolic activities, including high Glut1 expression, glycolysis, and oxidant production. We also identify enhanced pinocytic activity as a novel feature of these cells. In vitro treatment with the leukotriene pathway inhibitor acebilustat reduces the number of transmigrating neutrophils, while the metabolic modulator metformin decreases metabolism and oxidant production, but fails to restore bacterial killing. Interestingly, we describe similar pathological conditioning of neutrophils in other inflammatory airway diseases. We successfully tested the hypothesis that recruitment of neutrophils into airway milieu from patients with CF in vitro induces similar pathological conditioning to that observed in vivo, opening new avenues for targeted therapeutic intervention. ©2018 Society for Leukocyte Biology.

  9. Cytokines and Oxidative Stress Status Following a Handball Game in Elite Male Players

    PubMed Central

    Marin, Douglas Popp; Macedo dos Santos, Rita de Cassia; Bolin, Anaysa Paola; Guerra, Beatriz Alves; Hatanaka, Elaine; Otton, Rosemari

    2011-01-01

    Background. Handball is considered an intermittent sport that places an important stress on a player's aerobic and anaerobic metabolism. However, the oxidative stress responses following a handball game remain unknown. We investigated the responses of plasma and erythrocyte antioxidant system and oxidative stress biomarkers following a single handball game. Methods. Fourteen male elite Brazilian handball athletes were recruited in the present study. Blood samples were taken before, immediately, and 24 hours after the game. Results. After the game and during 24 hours of recovery, the concentration of all oxidative stress indices changed significantly in a way indicating increased oxidative stress in the blood (thiol groups and reduced glutathione decreased, whereas TBARS and plasma antioxidant capacity was increased) as well as in erythrocyte (increased levels of TBARS and protein carbonyls). Erythrocyte antioxidant enzyme activities were also significantly changed by handball. Muscle damage indices (creatine kinase and lactate dehydrogenase) increased significantly after exercise. In addition, IL-6 increased after the game, whereas TNF-α decreased during recovery. Conclusion. This study demonstrates that a single handball game in elite athletes induces a marked state of oxidative stress evidenced by the oxidative modification in plasma and erythrocyte macromolecules, as well as by changes in the enzymatic and nonenzymatic antioxidant system. PMID:21922038

  10. Nanoparticle Inhalation Increases Microvascular Oxidative Stress and Compromises Nitric Oxide Bioavailability

    EPA Science Inventory

    We have shown that pulmonary nanoparticle exposure impairs endothelium dependent dilation in systemic arterioles. However, the mechanism(s) through which this effect occurs are unclear. The purpose of this study was to identify alterations in the production of oxidative stress an...

  11. Computational Flow Modeling of Human Upper Airway Breathing

    NASA Astrophysics Data System (ADS)

    Mylavarapu, Goutham

    Computational modeling of biological systems have gained a lot of interest in biomedical research, in the recent past. This thesis focuses on the application of computational simulations to study airflow dynamics in human upper respiratory tract. With advancements in medical imaging, patient specific geometries of anatomically accurate respiratory tracts can now be reconstructed from Magnetic Resonance Images (MRI) or Computed Tomography (CT) scans, with better and accurate details than traditional cadaver cast models. Computational studies using these individualized geometrical models have advantages of non-invasiveness, ease, minimum patient interaction, improved accuracy over experimental and clinical studies. Numerical simulations can provide detailed flow fields including velocities, flow rates, airway wall pressure, shear stresses, turbulence in an airway. Interpretation of these physical quantities will enable to develop efficient treatment procedures, medical devices, targeted drug delivery etc. The hypothesis for this research is that computational modeling can predict the outcomes of a surgical intervention or a treatment plan prior to its application and will guide the physician in providing better treatment to the patients. In the current work, three different computational approaches Computational Fluid Dynamics (CFD), Flow-Structure Interaction (FSI) and Particle Flow simulations were used to investigate flow in airway geometries. CFD approach assumes airway wall as rigid, and relatively easy to simulate, compared to the more challenging FSI approach, where interactions of airway wall deformations with flow are also accounted. The CFD methodology using different turbulence models is validated against experimental measurements in an airway phantom. Two case-studies using CFD, to quantify a pre and post-operative airway and another, to perform virtual surgery to determine the best possible surgery in a constricted airway is demonstrated. The unsteady

  12. Oxidative stress and nitrosative stress are involved in different stages of proteolytic pulmonary emphysema.

    PubMed

    Lanzetti, Manuella; da Costa, Cristiane Aguiar; Nesi, Renata Tiscoski; Barroso, Marina Valente; Martins, Vanessa; Victoni, Tatiana; Lagente, Vincent; Pires, Karla Maria Pereira; e Silva, Patrícia Machado Rodrigues; Resende, Angela Castro; Porto, Luis Cristóvão; Benjamim, Cláudia Farias; Valença, Samuel Santos

    2012-12-01

    Our aim was to investigate the role of oxidative stress in elastase-induced pulmonary emphysema. C57BL/6 mice were subjected to pancreatic porcine elastase (PPE) instillation (0.05 or 0.5 U per mouse, i.t.) to induce pulmonary emphysema. Lungs were collected on days 7, 14, and 21 after PPE instillation. The control group was sham injected. Also, mice treated with 1% aminoguanidine (AMG) and inducible NO synthase (iNOS) knockout mice received 0.5 U PPE (i.t.), and lungs were analyzed 21 days after. We performed bronchoalveolar lavage, biochemical analyses of oxidative stress, and lung stereology and morphometry assays. Emphysema was observed histologically at 21 days after 0.5 U PPE treatment; tissues from these mice exhibited increased alveolar linear intercept and air-space volume density in comparison with the control group. TNF-α was elevated at 7 and 14 days after 0.5 U PPE treatment, concomitant with a reduction in the IL-10 levels at the same time points. Myeloperoxidase was elevated in all groups treated with 0.5 U PPE. Oxidative stress was observed during early stages of emphysema, with increased nitrite levels and malondialdehyde and superoxide dismutase activity at 7 days after 0.5 U PPE treatment. Glutathione peroxidase activity was increased in all groups treated with 0.5 U PPE. The emphysema was attenuated when iNOS was inhibited using 1% AMG and in iNOS knockout mice. Furthermore, proteolytic stimulation by PPE enhanced the expression of nitrotyrosine and iNOS, whereas the PPE+AMG group showed low expression of iNOS and nitrotyrosine. PPE stimulus also induced endothelial (e) NOS expression, whereas AMG reduced eNOS. Our results suggest that the oxidative and nitrosative stress pathways are triggered by nitric oxide production via iNOS expression in pulmonary emphysema. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Oxidative Stress and Autophagy in Cardiovascular Homeostasis

    PubMed Central

    Morales, Cyndi R.; Pedrozo, Zully; Lavandero, Sergio

    2014-01-01

    Abstract Significance: Autophagy is an evolutionarily ancient process of intracellular protein and organelle recycling required to maintain cellular homeostasis in the face of a wide variety of stresses. Dysregulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) leads to oxidative damage. Both autophagy and ROS/RNS serve pathological or adaptive roles within cardiomyocytes, depending on the context. Recent Advances: ROS/RNS and autophagy communicate with each other via both transcriptional and post-translational events. This cross talk, in turn, regulates the structural integrity of cardiomyocytes, promotes proteostasis, and reduces inflammation, events critical to disease pathogenesis. Critical Issues: Dysregulation of either autophagy or redox state has been implicated in many cardiovascular diseases. Cardiomyocytes are rich in mitochondria, which make them particularly sensitive to oxidative damage. Maintenance of mitochondrial homeostasis and elimination of defective mitochondria are each critical to the maintenance of redox homeostasis. Future Directions: The complex interplay between autophagy and oxidative stress underlies a wide range of physiological and pathological events and its elucidation holds promise of potential clinical applicability. Antioxid. Redox Signal. 20, 507–518. PMID:23641894

  14. Live-cell Imaging Approaches for the Investigation of Xenobiotic-Induced Oxidant Stress

    EPA Science Inventory

    BACKGROUND: Oxidant stress is arguably a universal feature in toxicology. Research studies on the role of oxidant stress induced by xenobiotic exposures have typically relied on the identification of damaged biomolecules using a variety of conventional biochemical and molecular t...

  15. NRF2 Oxidative Stress Induced by Heavy Metals is Cell Type Dependent

    EPA Science Inventory

    Exposure to metallic environmental toxicants has been demonstrated to induce a variety of oxidative stress responses in mammalian cells. The transcription factor Nrf2 is activated in response to oxidative stress and coordinates the expression of antioxidant gene products. In this...

  16. The Association Between Physical Activity and Sex-Specific Oxidative Stress in Older Adults

    PubMed Central

    Takahashi, Masaki; Miyashita, Masashi; Park, Jong-Hwan; Kim, Hyun-Shik; Nakamura, Yoshio; Sakamoto, Shizuo; Suzuki, Katsuhiko

    2013-01-01

    Oxidative stress increases with advancing age and is a mediator of several diseases including cancer, cardiovascular disease, and diabetes. Moreover, postmenopausal women have a lower estrogen concentration, which is associated with elevated oxidative stress. However, there is no definitive evidence regarding the relationship between daily physical activity and oxidative stress status in older adults, including postmenopausal women. Twenty-nine adults (age, 70.1 ± 1.0 years, mean ± SE; 12 women and 17 men) were examined in this cross-sectional study. Prior to blood collection, the participants were asked to wear a uniaxial accelerometer for 4 consecutive weeks to determine their level of physical activity. After a 48-h period of physical activity avoidance and a 10-h overnight fast, venous blood samples were obtained from each participant. Fasting plasma derivatives of reactive oxygen metabolites (d-ROMs) and malondialdehyde (MDA) concentrations of oxidative stress markers were negatively correlated with the amount of physical activity in women (d-ROMs; r = -0.708, p = 0.002) (MDA; r = -0.549, p = 0. 028), but not in men. Fasting plasma biological antioxidant potential of antioxidant capacity marker was positively correlated with the amount of physical activity in women (BAP; r = 0.657, p = 0.006) (GSH; r = 0.549, p = 0.028), but not in men. Moreover, superoxide dismutase activity of antioxidant capacity marker was positively correlated with the amount of physical activity in men (r = 0.627, p = 0.039), but not in women. There were no associations between physical activity and other oxidative stress markers (reduced and oxidized glutathione, glutathione peroxidise, thioredoxin). These findings suggest that regular physical activity may have a protective effect against oxidative stress by increasing total antioxidant capacity, especially in postmenopausal women. Key Points It is important to consider daily physical activity status when evaluating antioxidant

  17. The association between physical activity and sex-specific oxidative stress in older adults.

    PubMed

    Takahashi, Masaki; Miyashita, Masashi; Park, Jong-Hwan; Kim, Hyun-Shik; Nakamura, Yoshio; Sakamoto, Shizuo; Suzuki, Katsuhiko

    2013-01-01

    Oxidative stress increases with advancing age and is a mediator of several diseases including cancer, cardiovascular disease, and diabetes. Moreover, postmenopausal women have a lower estrogen concentration, which is associated with elevated oxidative stress. However, there is no definitive evidence regarding the relationship between daily physical activity and oxidative stress status in older adults, including postmenopausal women. Twenty-nine adults (age, 70.1 ± 1.0 years, mean ± SE; 12 women and 17 men) were examined in this cross-sectional study. Prior to blood collection, the participants were asked to wear a uniaxial accelerometer for 4 consecutive weeks to determine their level of physical activity. After a 48-h period of physical activity avoidance and a 10-h overnight fast, venous blood samples were obtained from each participant. Fasting plasma derivatives of reactive oxygen metabolites (d-ROMs) and malondialdehyde (MDA) concentrations of oxidative stress markers were negatively correlated with the amount of physical activity in women (d-ROMs; r = -0.708, p = 0.002) (MDA; r = -0.549, p = 0. 028), but not in men. Fasting plasma biological antioxidant potential of antioxidant capacity marker was positively correlated with the amount of physical activity in women (BAP; r = 0.657, p = 0.006) (GSH; r = 0.549, p = 0.028), but not in men. Moreover, superoxide dismutase activity of antioxidant capacity marker was positively correlated with the amount of physical activity in men (r = 0.627, p = 0.039), but not in women. There were no associations between physical activity and other oxidative stress markers (reduced and oxidized glutathione, glutathione peroxidise, thioredoxin). These findings suggest that regular physical activity may have a protective effect against oxidative stress by increasing total antioxidant capacity, especially in postmenopausal women. Key PointsIt is important to consider daily physical activity status when evaluating antioxidant

  18. Oxidative Stress Relevance in the Pathogenesis of the Rheumatoid Arthritis: A Systematic Review

    PubMed Central

    Quiñonez-Flores, Celia María; González-Chávez, Susana Aideé; Del Río Nájera, Danyella; Pacheco-Tena, César

    2016-01-01

    Rheumatoid arthritis (RA) is an autoimmune inflammatory disease whose pathogenic mechanisms remain to be elucidated. The oxidative stress and antioxidants play an important role in the disease process of RA. The study of oxidants and antioxidants biomarkers in RA patients could improve our understanding of disease pathogenesis; likely determining the oxidative stress levels in these patients could prove helpful in assessing disease activity and might also have prognostic implications. To date, the usefulness of oxidative stress biomarkers in RA patients is unclear and the evidence supporting them is heterogeneous. In order to resume and update the information in the status of oxidants and antioxidants and their connection as biomarkers in RA, we performed a systematic literature search in the PubMed database, including clinical trials published in the last five years using the word combination “rheumatoid arthritis oxidative stress”. In conclusion, this review supports the fact that the oxidative stress is an active process in RA pathogenesis interrelated to other better known pathogenic elements. However, some controversial results preclude a definite conclusion. PMID:27340664

  19. Comparative Expression Profiling of Distinct T Cell Subsets Undergoing Oxidative Stress

    PubMed Central

    Lichtenfels, Rudolf; Mougiakakos, Dimitrios; Johansson, C. Christian; Dressler, Sven P.; Recktenwald, Christian V.; Kiessling, Rolf; Seliger, Barbara

    2012-01-01

    The clinical outcome of adoptive T cell transfer-based immunotherapies is often limited due to different escape mechanisms established by tumors in order to evade the hosts' immune system. The establishment of an immunosuppressive micromilieu by tumor cells along with distinct subsets of tumor-infiltrating lymphocytes is often associated with oxidative stress that can affect antigen-specific memory/effector cytotoxic T cells thereby substantially reducing their frequency and functional activation. Therefore, protection of tumor-reactive cytotoxic T lymphocytes from oxidative stress may enhance the anti-tumor-directed immune response. In order to better define the key pathways/proteins involved in the response to oxidative stress a comparative 2-DE-based proteome analysis of naïve CD45RA+ and their memory/effector CD45RO+ T cell counterparts in the presence and absence of low dose hydrogen peroxide (H2O2) was performed in this pilot study. Based on the profiling data of these T cell subpopulations under the various conditions, a series of differentially expressed spots were defined, members thereof identified by mass spectrometry and subsequently classified according to their cellular function and localization. Representative targets responding to oxidative stress including proteins involved in signaling pathways, in regulating the cellular redox status as well as in shaping/maintaining the structural cell integrity were independently verified at the transcript and protein level under the same conditions in both T cell subsets. In conclusion the resulting profiling data describe complex, oxidative stress-induced, but not strictly concordant changes within the respective expression profiles of CD45RA+ and CD45RO+ T cells. Some of the differentially expressed genes/proteins might be further exploited as potential targets toward modulating the redox capacity of the distinct lymphocyte subsets thereby providing the basis for further studies aiming at rendering them

  20. Serum oxidative-anti-oxidative stress balance is dysregulated in patients with hepatitis C virus-related hepatocellular carcinoma.

    PubMed

    Nishimura, Mamoru; Takaki, Akinobu; Tamaki, Naofumi; Maruyama, Takayuki; Onishi, Hideki; Kobayashi, Sayo; Nouso, Kazuhiro; Yasunaka, Tetsuya; Koike, Kazuko; Hagihara, Hiroaki; Kuwaki, Kenji; Nakamura, Shinichiro; Ikeda, Fusao; Iwasaki, Yoshiaki; Tomofuji, Takaaki; Morita, Manabu; Yamamoto, Kazuhide

    2013-10-01

    Oxidative stress is associated with progression of chronic liver disease (CLD). This association is best established in chronic hepatitis C. However, the anti-oxidative state is not well characterized. The objective of the present study was to investigate the balance of oxidative and anti-oxidative stress in CLD patients. We recruited a study population of 208 patients, including healthy volunteers (HV; n = 15), patients with hepatitis B virus (HBV)-related CLD without or with hepatocellular carcinoma (HBV-non-HCC, n = 25, and HBV-HCC, n = 50, respectively), and patients with hepatitis C virus (HCV)-related CLD without or with HCC (HCV-non-HCC, n = 49, and HCV-HCC, n = 69, respectively). Serum levels of reactive oxygen metabolites (ROM) and anti-oxidative markers (OXY-adsorbent test; OXY) were determined, and the balance of these values was used as the oxidative index. Correlations among ROM, OXY, oxidative index and clinical characteristics were investigated. Patients with CLD exhibited elevated ROM and oxidative index compared to HV. Among patients with CLD, HCV positive status correlated with increased ROM. In CLD, HCV-HCC patients exhibited the highest ROM levels. Among HCV-related CLD patients, lower OXY correlated with HCC positive status, but was recovered by eradication of HCC. In HCV-HCC, lower OXY correlated with high PT-INR. HCV positive CLD patients displayed higher oxidative stress and HCV-HCC patients displayed lower anti-oxidative state. Anti-oxidative state depression was associated with liver reservoir-related data in HCV-HCC and could be reversed with HCC eradication. © 2012 The Japan Society of Hepatology.

  1. Additional oxidative stress reroutes the global response of Aspergillus fumigatus to iron depletion.

    PubMed

    Kurucz, Vivien; Krüger, Thomas; Antal, Károly; Dietl, Anna-Maria; Haas, Hubertus; Pócsi, István; Kniemeyer, Olaf; Emri, Tamás

    2018-05-10

    Aspergillus fumigatus has to cope with a combination of several stress types while colonizing the human body. A functional interplay between these different stress responses can increase the chances of survival for this opportunistic human pathogen during the invasion of its host. In this study, we shed light on how the H 2 O 2 -induced oxidative stress response depends on the iron available to this filamentous fungus, using transcriptomic analysis, proteomic profiles, and growth assays. The applied H 2 O 2 treatment, which induced only a negligible stress response in iron-replete cultures, deleteriously affected the fungus under iron deprivation. The majority of stress-induced changes in gene and protein expression was not predictable from data coming from individual stress exposure and was only characteristic for the combination of oxidative stress plus iron deprivation. Our experimental data suggest that the physiological effects of combined stresses and the survival of the fungus highly depend on fragile balances between economization of iron and production of essential iron-containing proteins. One observed strategy was the overproduction of iron-independent antioxidant proteins to combat oxidative stress during iron deprivation, e.g. the upregulation of superoxide dismutase Sod1, the thioredoxin reductase Trr1, and the thioredoxin orthologue Afu5g11320. On the other hand, oxidative stress induction overruled iron deprivation-mediated repression of several genes. In agreement with the gene expression data, growth studies underlined that in A. fumigatus iron deprivation aggravates oxidative stress susceptibility. Our data demonstrate that studying stress responses under separate single stress conditions is not sufficient to understand how A. fumigatus adapts in a complex and hostile habitat like the human body. The combinatorial stress of iron depletion and hydrogen peroxide caused clear non-additive effects upon the stress response of A. fumigatus. Our data

  2. Relationships between Psychosocial Difficulties and Oxidative Stress Biomarkers in Women Subject to Intimate Partner Violence.

    PubMed

    Kim, Jae Yop; Lee, Ji Hyeon; Song, Hyang Joo; Kim, Dong Goo; Yim, Yeong Shin

    2017-02-01

    Women subject to violence by their intimate partners often experience a range of psychosocial problems such as depression, excessive alcohol use, and stressful life events that, in turn, lead to health issues. This study examined psychosocial difficulties and oxidative stress levels in abused and non-abused Korean women and analyzed the relationship between psychosocial outcomes and oxidative stress levels. Markers were determined in 16 women (seven abused, nine non-abused). The two groups of women (abused and non-abused) were compared with respect to scores in depression, alcohol use, life stress events, and oxidative stress biomarkers using the Mann-Whitney U test. Correlations between depression, alcohol use, life stress events, and oxidative stress biomarkers were tested by the Spearman rank correlation coefficient. The abused women had significantly higher levels of oxidative stress markers and significantly lower levels of antioxidants than the non-abused women. Life stress events and oxidative biomarker levels were significantly correlated. These findings have implications for both social services providers and medical personnel when assessing abused women to ensure that they receive the most appropriate service. © 2016 National Association of Social Workers.

  3. On the determination of growth stress during oxidation of pure zirconium at elevated temperature

    NASA Astrophysics Data System (ADS)

    Kurpaska, L.; Favergeon, J.; Lahoche, L.; Moulin, G.

    2018-07-01

    An experimental approach have been proposed to evaluate growth of stress during high temperature oxidation of pure zirconium. The development of stress in the oxide scale has been investigated experimentally in in-situ conditions by combining the Deflection Test in Monofacial Oxidation (DTMO) with Acoustic Emission analysis (AE). Microstructure of the sample were studied by using Scanning Electron Microscopy technique. Oxidation experiments were performed continuously during 24 h at 400 °C and 500 °C in air under normal atmospheric pressure. Taking into account purely elastic behaviour of the material, primary evolution of growth stress developed in the oxide scale during oxidation process have been estimated. Presented study of the Zr/ZrO2 system revealed two opposite phenomena of stress relief when cooling from 400 °C and 500 °C to room temperature. This study is presented as a tool to understand the phenomena of stress evolution in the zirconia layer during isothermal treatment at high temperature and after cooling.

  4. Oxidative stress and lung injury induced by short-term exposure to wood smoke in guinea pigs.

    PubMed

    Ramos, Carlos; Pedraza-Chaverri, José; Becerril, C; Cisneros, J; González-Ávila, G; Rivera-Rosales, R; Sommer, B; Medina-Campos, O N; Montaño, M

    2013-11-01

    Oxidative stress and lung injury induced by short-term exposure to wood smoke were evaluated in guinea pigs through cell profile, bronchoalveolar lavage (BAL), conventional histology and immunohistochemistry (4-hydroxynonenal, 3-nitrotyrosine, Mn-superoxide dismutase, heme oxygenase-1); malondialdehyde and 4-hydroxynonenal concentration, Mn-superoxide dismutase, glutathione reductase, glutathione peroxidase, and catalase activities in plasma, lung and BAL. Total cells increased in BAL, and the percentage of macrophages, neutrophils and lymphocytes augmented (72-96 h). Histopathological examination of lung tissues showed mild thickening of membranous bronchiole walls, infiltration of foamy macrophages and polymorphonuclear leukocytes in bronchial, bronchiolar and intraalveolar spaces. Goblet cell hyperplasia was also observed in bronchial and bronchiolar epithelia. Plasma malondialdehyde concentration was increased at all times, while 4-hydroxynonenal was increased only in plasma and BAL after 24 h. Plasma glutathione reductase activity increased at 24 and 72 h, BAL glutathione peroxidase activity decreased at 72 and 96 h, whereas catalase activity increased in plasma at 72 h, and decreased in BAL at 24 h. Immunostaining intensity to 4-hydroxynonenal, 3-nitrotyrosine, Mn-superoxide dismutase and heme oxygenase-1 was enhanced mainly in macrophages, bronchial/bronchiolar epithelial cells and type II pneumocytes after 72-96 h of wood smoke exposure. Overall, short-term exposure to wood smoke induces alterations in oxidative/antioxidant state in lung and airway injury, similar to those observed in humans with domestic exposure.

  5. Erythrocyte deformability and oxidative stress in inflammatory bowel disease.

    PubMed

    Akman, Tulay; Akarsu, Mesut; Akpinar, Hale; Resmi, Halil; Taylan, Ebru; Sezer, Ebru

    2012-02-01

    Oxidative stress and reduced microvascular flow are important factors in the pathogenesis of inflammatory bowel disease (IBD). The increased oxidative stress reduces the erythrocyte deformability. However, in IBD, there are no studies in the literature which evaluate erythrocyte deformability. In our study, we investigated the effect of oxidative stress and erythrocyte deformability in IBD. Forty-three patients with active IBD, 48 patients with inactive IBD and 45 healthy controls were included. The erytrocyte deformability, malonyldialdehyde levels, glutation peroxidase and sulfhydryl levels were measured in peripheral venous blood samples. Erytrocyte malonyldialdehyde levels in both active and inactive IBD were significantly increased compared with control groups. Plasma glutation peroxidase levels did not show statistically significant difference between all groups. The decreased plasma sulfhydryl levels in active IBD were statistically significant compared with both the inactive IBD and the control group, but plasma sulfhydryl levels in inactive IBD group did not show statistically significant differences when compared with the control group. Elongation index values in both active and inactive IBD increased significantly compared with the control group. Statistically significant correlations were not found between the elongation index and glutation peroxidase, malonyldialdehyde, sulfhydryl levels in all groups. Our study is the first to evaluate the erythrocyte deformability in IBD. In our study, increased erytrocyte malonyldialdehyde levels and decreased plasma sulfhydryl levels manifested the role of oxidative stress in the pathogenesis of the disease. It is thought that the increased erythrocyte malonyldialdehyde values cause the reduction in erythrocyte deformability.

  6. Oxidative Stress Induces Disruption of the Axon Initial Segment

    PubMed Central

    Clark, Kareem C.; Sword, Brooke A.; Dupree, Jeffrey L.

    2017-01-01

    The axon initial segment (AIS), the domain responsible for action potential initiation and maintenance of neuronal polarity, is targeted for disruption in a variety of central nervous system pathological insults. Previous work in our laboratory implicates oxidative stress as a potential mediator of structural AIS alterations in two separate mouse models of central nervous system inflammation, as these effects were attenuated following reactive oxygen species scavenging and NADPH oxidase-2 ablation. While these studies suggest a role for oxidative stress in modulation of the AIS, the direct effects of reactive oxygen and nitrogen species (ROS/RNS) on the stability of this domain remain unclear. Here, we demonstrate that oxidative stress, as induced through treatment with 3-morpholinosydnonimine (SIN-1), a spontaneous ROS/RNS generator, drives a reversible loss of AIS protein clustering in primary cortical neurons in vitro. Pharmacological inhibition of both voltage-dependent and intracellular calcium (Ca2+) channels suggests that this mechanism of AIS disruption involves Ca2+ entry specifically through L-type voltage-dependent Ca2+ channels and its release from IP3-gated intracellular stores. Furthermore, ROS/RNS-induced AIS disruption is dependent upon activation of calpain, a Ca2+-activated protease previously shown to drive AIS modulation. Overall, we demonstrate for the first time that oxidative stress, as induced through exogenously applied ROS/RNS, is capable of driving structural alterations in the AIS complex. PMID:29228786

  7. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease.

    PubMed

    Yan, Michael H; Wang, Xinglong; Zhu, Xiongwei

    2013-09-01

    Alzheimer disease (AD) and Parkinson disease (PD) are the two most common age-related neurodegenerative diseases characterized by prominent neurodegeneration in selective neural systems. Although a small fraction of AD and PD cases exhibit evidence of heritability, among which many genes have been identified, the majority are sporadic without known causes. Molecular mechanisms underlying neurodegeneration and pathogenesis of these diseases remain elusive. Convincing evidence demonstrates oxidative stress as a prominent feature in AD and PD and links oxidative stress to the development of neuronal death and neural dysfunction, which suggests a key pathogenic role for oxidative stress in both AD and PD. Notably, mitochondrial dysfunction is also a prominent feature in these diseases, which is likely to be of critical importance in the genesis and amplification of reactive oxygen species and the pathophysiology of these diseases. In this review, we focus on changes in mitochondrial DNA and mitochondrial dynamics, two aspects critical to the maintenance of mitochondrial homeostasis and function, in relationship with oxidative stress in the pathogenesis of AD and PD. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease

    PubMed Central

    Yan, Michael H.; Wang, Xinglong; Zhu, Xiongwei

    2013-01-01

    Alzheimer disease (AD) and Parkinson disease (PD) are the two most common age-related neurodegenerative diseases characterized by prominent neurodegeneration in selective neural systems. Although a small fraction of AD and PD cases exhibit evidence of heritability, among which many genes have been identified, the majority are sporadic without known causes. Molecular mechanisms underlying neurodegeneration and pathogenesis of these diseases remain elusive. Convincing evidence demonstrates oxidative stress as a prominent feature in AD and PD and links oxidative stress to the development of neuronal death and neural dysfunction, which suggests a key pathogenic role for oxidative stress in both AD and PD. Notably, mitochondrial dysfunction is also a prominent feature in these diseases, which is likely to be of critical importance in the genesis and amplification of reactive oxygen species and the pathophysiology of these diseases. In this review, we focus on changes in mitochondrial DNA and mitochondrial dynamics, two aspects critical to the maintenance of mitochondrial homeostasis and function, in relationship with oxidative stress in the pathogenesis of AD and PD. PMID:23200807

  9. Emissions of putative isoprene oxidation products from mango branches under abiotic stress

    PubMed Central

    Jardine, Kolby J.; Meyers, Kimberly; Abrell, Leif; Alves, Eliane G.; Yanez Serrano, Ana Maria; Kesselmeier, Jürgen; Karl, Thomas; Guenther, Alex; Vickers, Claudia; Chambers, Jeffrey Q.

    2013-01-01

    Although several per cent of net carbon assimilation can be re-released as isoprene emissions to the atmosphere by many tropical plants, much uncertainty remains regarding its biological significance. In a previous study, we detected emissions of isoprene and its oxidation products methyl vinyl ketone (MVK) and methacrolein (MACR) from tropical plants under high temperature/light stress, suggesting that isoprene is oxidized not only in the atmosphere but also within plants. However, a comprehensive analysis of the suite of isoprene oxidation products in plants has not been performed and production relationships with environmental stress have not been described. In this study, putative isoprene oxidation products from mango (Mangifera indica) branches under abiotic stress were first identified. High temperature/light and freeze–thaw treatments verified direct emissions of the isoprene oxidation products MVK and MACR together with the first observations of 3-methyl furan (3-MF) and 2-methyl-3-buten-2-ol (MBO) as putative novel isoprene oxidation products. Mechanical wounding also stimulated emissions of MVK and MACR. Photosynthesis under 13CO2 resulted in rapid (<30min) labelling of up to five carbon atoms of isoprene, with a similar labelling pattern observed in the putative oxidation products. These observations highlight the need to investigate further the mechanisms of isoprene oxidation within plants under stress and its biological and atmospheric significance. PMID:23881400

  10. Emissions of putative isoprene oxidation products from mango branches under abiotic stress.

    PubMed

    Jardine, Kolby J; Meyers, Kimberly; Abrell, Leif; Alves, Eliane G; Yanez Serrano, Ana Maria; Kesselmeier, Jürgen; Karl, Thomas; Guenther, Alex; Chambers, Jeffrey Q; Vickers, Claudia

    2013-09-01

    Although several per cent of net carbon assimilation can be re-released as isoprene emissions to the atmosphere by many tropical plants, much uncertainty remains regarding its biological significance. In a previous study, we detected emissions of isoprene and its oxidation products methyl vinyl ketone (MVK) and methacrolein (MACR) from tropical plants under high temperature/light stress, suggesting that isoprene is oxidized not only in the atmosphere but also within plants. However, a comprehensive analysis of the suite of isoprene oxidation products in plants has not been performed and production relationships with environmental stress have not been described. In this study, putative isoprene oxidation products from mango (Mangifera indica) branches under abiotic stress were first identified. High temperature/light and freeze-thaw treatments verified direct emissions of the isoprene oxidation products MVK and MACR together with the first observations of 3-methyl furan (3-MF) and 2-methyl-3-buten-2-ol (MBO) as putative novel isoprene oxidation products. Mechanical wounding also stimulated emissions of MVK and MACR. Photosynthesis under (13)CO2 resulted in rapid (<30 min) labelling of up to five carbon atoms of isoprene, with a similar labelling pattern observed in the putative oxidation products. These observations highlight the need to investigate further the mechanisms of isoprene oxidation within plants under stress and its biological and atmospheric significance.

  11. Emissions of putative isoprene oxidation products from mango branches under abiotic stress

    DOE PAGES

    Jardine, Kolby J.; Meyers, Kimberly; Abrell, Leif; ...

    2013-07-23

    Although several per cent of net carbon assimilation can be re-released as isoprene emissions to the atmosphere by many tropical plants, much uncertainty remains regarding its biological significance. In a previous study, we detected emissions of isoprene and its oxidation products methyl vinyl ketone (MVK) and methacrolein (MACR) from tropical plants under high temperature/light stress, suggesting that isoprene is oxidized not only in the atmosphere but also within plants. However, a comprehensive analysis of the suite of isoprene oxidation products in plants has not been performed and production relationships with environmental stress have not been described. In this study, putativemore » isoprene oxidation products from mango (Mangifera indica) branches under abiotic stress were first identified. High temperature/light and freeze–thaw treatments verified direct emissions of the isoprene oxidation products MVK and MACR together with the first observations of 3-methyl furan (3-MF) and 2-methyl-3-buten-2-ol (MBO) as putative novel isoprene oxidation products. Mechanical wounding also stimulated emissions of MVK and MACR. Photosynthesis under 13CO 2 resulted in rapid (<30min) labelling of up to five carbon atoms of isoprene, with a similar labelling pattern observed in the putative oxidation products. These observations highlight the need to investigate further the mechanisms of isoprene oxidation within plants under stress and its biological and atmospheric significance.« less

  12. Emissions of putative isoprene oxidation products from mango branches under abiotic stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardine, Kolby J.; Meyers, Kimberly; Abrell, Leif

    Although several per cent of net carbon assimilation can be re-released as isoprene emissions to the atmosphere by many tropical plants, much uncertainty remains regarding its biological significance. In a previous study, we detected emissions of isoprene and its oxidation products methyl vinyl ketone (MVK) and methacrolein (MACR) from tropical plants under high temperature/light stress, suggesting that isoprene is oxidized not only in the atmosphere but also within plants. However, a comprehensive analysis of the suite of isoprene oxidation products in plants has not been performed and production relationships with environmental stress have not been described. In this study, putativemore » isoprene oxidation products from mango (Mangifera indica) branches under abiotic stress were first identified. High temperature/light and freeze–thaw treatments verified direct emissions of the isoprene oxidation products MVK and MACR together with the first observations of 3-methyl furan (3-MF) and 2-methyl-3-buten-2-ol (MBO) as putative novel isoprene oxidation products. Mechanical wounding also stimulated emissions of MVK and MACR. Photosynthesis under 13CO 2 resulted in rapid (<30min) labelling of up to five carbon atoms of isoprene, with a similar labelling pattern observed in the putative oxidation products. These observations highlight the need to investigate further the mechanisms of isoprene oxidation within plants under stress and its biological and atmospheric significance.« less

  13. Automated airway evaluation system for multi-slice computed tomography using airway lumen diameter, airway wall thickness and broncho-arterial ratio

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.; Lerallut, Jean-Francois

    2006-03-01

    Pulmonary diseases such as bronchiectasis, asthma, and emphysema are characterized by abnormalities in airway dimensions. Multi-slice computed tomography (MSCT) has become one of the primary means to depict these abnormalities, as the availability of high-resolution near-isotropic data makes it possible to evaluate airways at oblique angles to the scanner plane. However, currently, clinical evaluation of airways is typically limited to subjective visual inspection only: systematic evaluation of the airways to take advantage of high-resolution data has not proved practical without automation. We present an automated method to quantitatively evaluate airway lumen diameter, wall thickness and broncho-arterial ratios. In addition, our method provides 3D visualization of these values, graphically illustrating the location and extent of disease. Our algorithm begins by automatic airway segmentation to extract paths to the distal airways, and to create a map of airway diameters. Normally, airway diameters decrease as paths progress distally; failure to taper indicates abnormal dilatation. Our approach monitors airway lumen diameters along each airway path in order to detect abnormal profiles, allowing even subtle degrees of pathologic dilatation to be identified. Our method also systematically computes the broncho-arterial ratio at every terminal branch of the tree model, as a ratio above 1 indicates potentially abnormal bronchial dilatation. Finally, the airway wall thickness is computed at corresponding locations. These measurements are used to highlight abnormal branches for closer inspection, and can be summed to compute a quantitative global score for the entire airway tree, allowing reproducible longitudinal assessment of disease severity. Preliminary tests on patients diagnosed with bronchiectasis demonstrated rapid identification of lack of tapering, which also was confirmed by corresponding demonstration of elevated broncho-arterial ratios.

  14. Oxygen radical absorbance capacity (ORAC) and exercise-induced oxidative stress in trotters.

    PubMed

    Kinnunen, Susanna; Hyyppä, Seppo; Lehmuskero, Arja; Oksala, Niku; Mäenpää, Pekka; Hänninen, Osmo; Atalay, Mustafa

    2005-12-01

    Strenuous exercise is a potent inducer of oxidative stress, which has been suggested to be associated with disturbances in muscle homeostasis, fatigue and injury. There is no comprehensive or uniform view of the antioxidant status in horses. We have previously shown that moderate exercise induces protein oxidation in trotters. The aim of this study was to measure the antioxidative capacity of the horse in relation to different antioxidant components and oxidative stress markers after a single bout of moderate exercise to elucidate the mechanisms of antioxidant protection in horses. Eight clinically normal and regularly trained standard-bred trotters were treadmill-exercised for 53 min at moderate intensity. Blood samples were collected prior to and immediately after exercise and at 4 and 24 h of recovery. Muscle biopsies from the middle gluteal muscle were taken before exercise and after 4 h of recovery. Acute induction of oxygen radical absorbance capacity (ORAC) did not prevent exercise-induced oxidative stress, which was demonstrated by increased lipid hydroperoxides (LPO). Pre-exercise ORAC levels were, however, a determinant of total glutathione content of the blood after 4 and 24 h of recovery. Furthermore, baseline ORAC level correlated negatively with 4-h recovery LPO levels. Our results imply that horses are susceptible to oxidative stress, but a stronger antioxidant capacity may improve coping with exercise-induced oxidative stress.

  15. Mangiferin decreases inflammation and oxidative damage in rat brain after stress.

    PubMed

    Márquez, Lucía; García-Bueno, Borja; Madrigal, José L M; Leza, Juan C

    2012-09-01

    Stress exposure elicits neuroinflammation and oxidative damage in brain, and stress-related neurological and neuropsychiatric diseases have been associated with cell damage and death. Mangiferin (MAG) is a polyphenolic compound abundant in the stem bark of Mangifera indica L. with antioxidant and anti-inflammatory properties in different experimental settings. In this study, the capacity of MAG to prevent neuroinflammation and brain oxidative damage induced by stress exposure was investigated. Young-adult male Wistar rats immobilized during 6 h were administered by oral gavage with increasing doses of MAG (15, 30, and 60 mg/Kg), respectively, 7 days before stress. Prior treatment with MAG prevented all of the following stress-induced effects: (1) increase in glucocorticoids (GCs) and interleukin-1β (IL-1β) plasma levels, (2) loss of redox balance and reduction in catalase brain levels, (3) increase in pro-inflammatory mediators, such as tumor necrosis factor alpha TNF-α and its receptor TNF-R1, nuclear factor-kappa B (NF-κB) and synthesis enzymes, such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), (4) increase in lipid peroxidation. These multifaceted protective effects suggest that MAG administration could be a new therapeutic strategy in neurological/neuropsychiatric pathologies in which hypothalamic/pituitary/adrenal (HPA) stress axis dysregulation, neuroinflammation, and oxidative damage take place in their pathophysiology.

  16. Airway inflammation in cystic fibrosis: molecular mechanisms and clinical implications.

    PubMed

    Cohen-Cymberknoh, Malena; Kerem, Eitan; Ferkol, Thomas; Elizur, Arnon

    2013-12-01

    Airway epithelial cells and immune cells participate in the inflammatory process responsible for much of the pathology found in the lung of patients with cystic fibrosis (CF). Intense bronchial neutrophilic inflammation and release of proteases and oxygen radicals perpetuate the vicious cycle and progressively damage the airways. In vitro studies suggest that CF transmembrane conductance regulator (CFTR)-deficient airway epithelial cells display signalling abnormalities and aberrant intracellular processes which lead to transcription of inflammatory mediators. Several transcription factors, especially nuclear factor-κB, are activated. In addition, the accumulation of abnormally processed CFTR in the endoplasmic reticulum results in unfolded protein responses that trigger 'cell stress' and apoptosis leading to dysregulation of the epithelial cells and innate immune function in the lung, resulting in exaggerated and ineffective airway inflammation. Measuring airway inflammation is crucial for initiating treatment and monitoring its effect. No inflammatory biomarker predictive for the clinical course of CF lung disease is currently known, although neutrophil elastase seems to correlate with lung function decline. CF animal models mimicking human lung disease may provide an important insight into the pathogenesis of lung inflammation in CF and identify new therapeutic targets.

  17. Thiopurines Induce Oxidative Stress in T-Lymphocytes: A Proteomic Approach

    PubMed Central

    Misdaq, Misbah; Ziegler, Sonia; von Ahsen, Nicolas; Asif, Abdul R.

    2015-01-01

    Thiopurines are extensively used immunosuppressants for the treatment of inflammatory bowel disease (IBD). The polymorphism of thiopurine S-methyltransferase (TPMT) influences thiopurine metabolism and therapy outcome. We used a TPMT knockdown (kd) model of human Jurkat T-lymphocytes cells to study the effects of treatment with 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG) on proteome and phosphoproteome. We identified thirteen proteins with altered expression and nine proteins with altered phosphorylation signals. Three proteins (THIO, TXD17, and GSTM3) with putative functions in cellular oxidative stress responses were altered by 6-TG treatment and another protein PRDX3 was differentially phosphorylated in TPMT kd cells. Furthermore, reactive oxygen species (ROS) assay results were consistent with a significant induction of oxidative stress by both TPMT knockdown and thiopurine treatments. Immunoblot analyses showed treatment altered expression of key antioxidant enzymes (i.e., SOD2 and catalase) in both wt and kd groups, while SOD1 was downregulated by 6-TG treatment and TPMT knockdown. Collectively, increased oxidative stress might be a mechanism involved in thiopurine induced cytotoxicity and adverse effects (i.e., hepatotoxicity) and an antioxidant cotherapy might help to combat this. Results highlight the significance of oxidative stress in thiopurines' actions and could have important implications for the treatment of IBD patients. PMID:25873760

  18. Enteric bacteria boost defences against oxidative stress in Entamoeba histolytica.

    PubMed

    Varet, Hugo; Shaulov, Yana; Sismeiro, Odile; Trebicz-Geffen, Meirav; Legendre, Rachel; Coppée, Jean-Yves; Ankri, Serge; Guillen, Nancy

    2018-06-13

    Oxidative stress is one of the strongest toxic factors in nature: it can harm or even kill cells. Cellular means of subverting the toxicity of oxidative stress are important for the success of infectious diseases. Many types of bacterium inhabit the intestine, where they can encounter pathogens. During oxidative stress, we analyzed the interplay between an intestinal parasite (the pathogenic amoeba Entamoeba histolytica - the agent of amoebiasis) and enteric bacteria (microbiome residents, pathogens and probiotics). We found that live enteric bacteria protected E. histolytica against oxidative stress. By high-throughput RNA sequencing, two amoebic regulatory modes were observed with enteric bacteria but not with probiotics. The first controls essential elements of homeostasis, and the second the levels of factors required for amoeba survival. Characteristic genes of both modes have been acquired by the amoebic genome through lateral transfer from the bacterial kingdom (e.g. glycolytic enzymes and leucine-rich proteins). Members of the leucine-rich are homologous to proteins from anti-bacterial innate immune such as Toll-like receptors. The factors identified here suggest that despite its old age in evolutionary terms, the protozoan E. histolytica displays key characteristics of higher eukaryotes' innate immune systems indicating that components of innate immunity existed in the common ancestor of plants and animals.

  19. Azithromycin ameliorates airway remodeling via inhibiting airway epithelium apoptosis.

    PubMed

    Liu, Yuanqi; Pu, Yue; Li, Diandian; Zhou, Liming; Wan, Lihong

    2017-02-01

    Azithromycin can benefit treating allergic airway inflammation and remodeling. In the present study, we hypothesized that azithromycin alleviated airway epithelium injury through inhibiting airway epithelium apoptosis via down regulation of caspase-3 and Bax/Bcl2 ratio in vivo and in vitro. Ovalbumin induced rat asthma model and TGF-β1-induced BEAS-2B cell apoptosis model were established, respectively. In vivo experiments, airway epithelium was stained with hematoxylin and eosin (HE) and periodic acid-Schiff (PAS) to histologically evaluate the airway inflammation and remodeling. Airway epithelium apoptotic index (AI) was further analyzed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), while expression of apoptosis related gene (Bax, Bcl2, Caspase-3) in lungs were measured by qRT-PCR and western blotting, respectively. In vitro experiments, apoptosis were evaluated by Flow cytometry (FCM) and TUNEL. Above apoptosis related gene were also measured by qRT-PCR and western blotting. Compared with the OVA group, azithromycin significantly reduced the inflammation score, peribronchial smooth muscle layer thickness, epithelial thickening and goblet cell metaplasia (P<0.05), and effectively suppressed AI of airway epithelium (P<0.05). Moreover, the increasing mRNA and protein expressions of Caspase-3 and Bax/Bcl-2 ratio in lung tissue were all significantly decreased in azithromycin-treated rats (P<0.05). In vitro, azithromycin significantly suppressed TGF-β1-induced BEAS-2B cells apoptosis (P<0.05) and reversed TGF-β1 elevated Caspase-3 mRNA level and Bax/Bcl-2 ratio (P<0.05). Azithromycin is an attractive treatment option for reducing airway epithelial cell apoptosis by improving the imbalance of Bax/Bcl-2 ratio and inhibiting Caspase-3 level in airway epithelium. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Stress generation in thermally grown oxide films. [oxide scale spalling from superalloy substrates

    NASA Technical Reports Server (NTRS)

    Kumnick, A. J.; Ebert, L. J.

    1981-01-01

    A three dimensional finite element analysis was conducted, using the ANSYS computer program, of the stress state in a thin oxide film thermally formed on a rectangular piece of NiCrAl alloy. The analytical results indicate a very high compressive stress in the lateral directions of the film (approximately 6200 MPa), and tensile stresses in the metal substrate that ranged from essentially zero to about 55 MPa. It was found further that the intensity of the analytically determined average stresses could be approximated reasonably well by the modification of an equation developed previously by Oxx for stresses induced into bodies by thermal gradients.