Sample records for airway resistance increased

  1. Does rapid maxillary expansion increase nasopharyngeal space and improve nasal airway resistance?

    PubMed

    Langer, Marjorie Regina Eguren; Itikawa, Carla Enoki; Valera, Fabiana Cardoso Pereira; Matsumoto, Mírian Aiko Nakane; Anselmo-Lima, Wilma Terezinha

    2011-01-01

    To evaluate the effect of rapid maxillary expansion (RME) on the dimension of the nasopharyngeal space and its relation to nasal airway resistance. Twenty-five school-age children (from 7 to 10 year-old) with mouth and/or mixed breathing, with mixed dentition and uni- or bilateral posterior crossbite involving the deciduous canines and the first permanent molars, were evaluated. RME was placed and remained during 90 days. Rhinomanometry and orthodontic documentation were performed at four different times, i.e., before (T(1)), immediately after (T(2)), 90 days (T(3)) and 30 months (T(4)) after RME. Differences in nasopharyngeal area and in nasal airway resistance were observed only 30 months after RME, and could be explained by facial growth, and not because of the orthodontic procedure. RME does not influence on nasopharyngeal area or nasal airway resistance in long-term evaluation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Coaxial Tubing Systems Increase Artificial Airway Resistance and Work of Breathing.

    PubMed

    Wenzel, Christin; Schumann, Stefan; Spaeth, Johannes

    2017-09-01

    Tubing systems are an essential component of the ventilation circuit, connecting the ventilator to the patient's airways. Coaxial tubing systems incorporate the inspiratory tube within the lumen of the expiratory one. We hypothesized that by design, these tubing systems increase resistance to air flow compared with conventional ones. We investigated the flow-dependent pressure gradient across coaxial, conventional disposable, and conventional reusable tubing systems from 3 different manufacturers. Additionally, the additional work of breathing and perception of resistance during breathing through the different devices were determined in 18 healthy volunteers. The pressure gradient across coaxial tubing systems was up to 6 times higher compared with conventional ones (1.90 ± 0.03 cm H 2 O vs 0.34 ± 0.01 cm H 2 O, P < .001) and was higher during expiration compared with inspiration ( P < .001). Additional work of breathing and perceived breathing resistance were highest in coaxial tubing systems, accordingly. Our findings suggest that the use of coaxial tubing systems should be carefully considered with respect to their increased resistance. Copyright © 2017 by Daedalus Enterprises.

  3. Emodin mitigates diesel exhaust particles-induced increase in airway resistance, inflammation and oxidative stress in mice.

    PubMed

    Nemmar, Abderrahim; Al-Salam, Suhail; Yuvaraju, Priya; Beegam, Sumaya; Ali, Badreldin H

    2015-08-15

    Clinical and experimental studies have reported that short-term exposure to particulate air pollution is associated with inflammation, oxidative stress and impairment of lung function. Emodin (1,3,8-trihydroxy-6-methylanthraquinone) has a strong antioxidant and anti-inflammatory actions. Therefore, in the present study, we evaluated the possible ameliorative effect of emodin on diesel exhaust particles (DEP)-induced impairment of lung function, inflammation and oxidative stress in mice. Mice were intratracheally instilled with DEP (20 μg/mouse) or saline (control). Emodin was administered intraperitoneally 1h before and 7h after pulmonary exposure to DEP. Twenty-four hours following DEP exposure, we evaluated airway resistance measured by forced oscillation technique, lung inflammation and oxidative stress. Emodin treatment abated the DEP-induced increase in airway resistance, and prevented the influx of neutrophils in bronchoalveolar lavage fluid. Similarly, lung histopathology confirmed the protective effect of emodin on DEP-induced lung inflammation. DEP induced a significant increase of proinflammatory cytokines in the lung including tumor necrosis factor α, interleukin 6 and interleukin 1β. The latter effect was significantly ameliorated by emodin. DEP caused a significant increase in lung lipid peroxidation, reactive oxygen species and a significant decrease of reduced glutathione concentration. These effects were significantly mitigated by emodin. We conclude that emodin significantly mitigated DEP-induced increase of airway resistance, lung inflammation and oxidative stress. Pending further pharmacological and toxicological studies, emodin may be considered a potentially useful pulmonary protective agent against particulate air pollution-induced lung toxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Smooth muscle in the maintenance of increased airway resistance elicited by methacholine in humans.

    PubMed

    Chapman, David G; Pascoe, Chris D; Lee-Gosselin, Audrey; Couture, Christian; Seow, Chun Y; Paré, Peter D; Salome, Cheryl M; King, Gregory G; Bossé, Ynuk

    2014-10-15

    Airway narrowing is maintained for a prolonged period after acute bronchoconstriction in humans in the absence of deep inspirations (DIs). To determine whether maintenance of airway smooth muscle (ASM) shortening is responsible for the persistence of airway narrowing in healthy subjects following transient methacholine (MCh)-induced bronchoconstriction. On two separate visits, five healthy subjects underwent MCh challenges until respiratory system resistance (Rrs) had increased by approximately 1.5 cm H2O/L/s. Subjects took a DI either immediately after or 30 minutes after the last dose. The extent of renarrowing following the bronchodilator effect of DI was used to assess the continued action of MCh (calculated as percent change in Rrs from the pre-DI Rrs). We then used human bronchial rings to determine whether ASM can maintain shortening during a progressive decrease of carbachol concentration. The increased Rrs induced by MCh was maintained for 30 minutes despite waning of MCh concentration over that period, measured as attenuated renarrowing when the DI was taken 30 minutes after compared with immediately after the last dose (7 min post-DI, -36.2 ± 11.8 vs. 14.4 ± 13.2%; 12 min post-DI, -39.5 ± 9.8 vs. 15.2 ± 17.8%). Ex vivo, ASM shortening was largely maintained during a progressive decrease of carbachol concentration, even down to concentrations that would not be expected to induce shortening. The maintenance of airway narrowing despite MCh clearance in humans is attributed to an intrinsic ability of ASM to maintain shortening during a progressive decrease of contractile stimulation.

  5. [The research on the airway hyperresponsiveness and IOS airway resistance index of industrial area resident].

    PubMed

    Xu, Jin; Wang, Zhen; Sun, Hongcun

    2015-09-01

    To study airway reactivity and impulse oscillation (IOS)-measured airway resistance indicators of residents of Zhenhai industrial area in Ningbo city. In the form of follow-up, both. airway reactivity and respiratory functions of populations in Zhenhai industrial zone (n = 215) and urban (n = 203) were measured, comparing difference degree between different regions. Ninty-five of 215 cases in industrial area were identified as suspected airway hyperresponsiveness, but only 43 of 203 cases were in urban areas. Forty-seven of 95 cases (49.5%) in industrial zone were positive, while only 14 cases (32.6%) in urban. The proportions of people in the two regions on different types of airway hyperresponsiveness were significantly different (P < 0.01). All airway resistance indexes of urban populations were significantly lower than that of industrial zone (P < 0.05). The prevalence of airway hyperresponsiveness and IOS airway resistance aspects of industrial area residents was higher than that of urban residents. Monitoring and evaluating the airway diseases, inflammatory lesions and respiratory function in the region were good for understanding the severe pollution in the local area in certain significance.

  6. Specific airway resistance in healthy young Vietnamese and Caucasian adults.

    PubMed

    Le Tuan, Thanh; Nguyen, Ngoc Minh; Demoulin, Bruno; Bonabel, Claude; Nguyen-Thi, Phi Linh; Ioan, Iulia; Schweitzer, Cyril; Nguyen, H T T; Varechova, Silvia; Marchal, Francois

    2015-06-01

    In healthy Vietnamese children the respiratory resistance has been suggested to be similar at 110 cm height but larger at 130 cm when compared with data in Caucasians from the literature, suggesting smaller airways in older Vietnamese children (Vu et al., 2008). The hypothesis tested here is whether the difference in airway resistance remains consistent throughout growth, and if it is larger in adult Vietnamese than in Caucasians. Airway resistance and Functional Residual Capacity were measured in healthy young Caucasian and Vietnamese adults in their respective native country using identical equipment and protocols. Ninety five subjects in Vietnam (60 males) and 101 in France (41 males) were recruited. Airway resistance was significantly larger in Vietnamese than in Caucasians and in females than in males, consistent with difference in body dimensions. Specific airway resistance however was not different by ethnicity or gender. The findings do not support the hypothesis that airway size at adult age - once normalized for lung volume - differs between Vietnamese and Caucasians. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Toluene diisocyanate increases airway responsiveness to substance P and decreases airway neutral endopeptidase.

    PubMed

    Sheppard, D; Thompson, J E; Scypinski, L; Dusser, D; Nadel, J A; Borson, D B

    1988-04-01

    Substance P and related tachykinins contribute to the airway hyperresponsiveness caused by toluene diisocyanate (TDI) in guinea pigs. Neutral endopeptidase (NEP) is an important modulator of substance P-induced responses. To test the hypothesis that exposure to TDI would increase responsiveness to substance P by inhibiting activity of this enzyme, we determined the dose of substance P required to increase pulmonary resistance by 200% above baseline (PD200) before and after administration of the pharmacologic inhibitor phosphoramidon in guinea pigs studied 1 h after a 1-h exposure to air or 3 ppm TDI. TDI exposure increased responsiveness to substance P significantly. However, phosphoramidon caused a significantly greater leftward shift of the substance P dose-response curve in air-exposed animals than it did in TDI-exposed animals, so that after phosphoramidon, mean values of PD200 in animals exposed to air or TDI did not differ. Tracheal NEP activity was significantly less after exposure to TDI than after exposure to air, whereas activity in the esophagus was the same in both groups. These results suggest that TDI exposure increases the bronchoconstrictor responsiveness of guinea pigs to substance P, in large part through inhibition of airway NEP.

  8. Toluene diisocyanate increases airway responsiveness to substance P and decreases airway neutral endopeptidase.

    PubMed Central

    Sheppard, D; Thompson, J E; Scypinski, L; Dusser, D; Nadel, J A; Borson, D B

    1988-01-01

    Substance P and related tachykinins contribute to the airway hyperresponsiveness caused by toluene diisocyanate (TDI) in guinea pigs. Neutral endopeptidase (NEP) is an important modulator of substance P-induced responses. To test the hypothesis that exposure to TDI would increase responsiveness to substance P by inhibiting activity of this enzyme, we determined the dose of substance P required to increase pulmonary resistance by 200% above baseline (PD200) before and after administration of the pharmacologic inhibitor phosphoramidon in guinea pigs studied 1 h after a 1-h exposure to air or 3 ppm TDI. TDI exposure increased responsiveness to substance P significantly. However, phosphoramidon caused a significantly greater leftward shift of the substance P dose-response curve in air-exposed animals than it did in TDI-exposed animals, so that after phosphoramidon, mean values of PD200 in animals exposed to air or TDI did not differ. Tracheal NEP activity was significantly less after exposure to TDI than after exposure to air, whereas activity in the esophagus was the same in both groups. These results suggest that TDI exposure increases the bronchoconstrictor responsiveness of guinea pigs to substance P, in large part through inhibition of airway NEP. PMID:2450892

  9. Bronchoconstriction induced by increasing airway temperature in ovalbumin-sensitized rats: role of tachykinins.

    PubMed

    Hsu, Chun-Chun; Lin, Ruei-Lung; Lin, You Shuei; Lee, Lu-Yuan

    2013-09-01

    This study was carried out to determine the effect of allergic inflammation on the airway response to increasing airway temperature. Our results showed the following: 1) In Brown-Norway rats actively sensitized by ovalbumin (Ova), isocapnic hyperventilation with humidified warm air (HWA) for 2 min raised tracheal temperature (Ttr) from 33.4 ± 0.6°C to 40.6 ± 0.1°C, which induced an immediate and sustained (>10 min) increase in total pulmonary resistance (Rl) from 0.128 ± 0.004 to 0.212 ± 0.013 cmH2O·ml(-1)·s (n = 6, P < 0.01). In sharp contrast, the HWA challenge caused the same increase in Ttr but did not generate any increase in Rl in control rats. 2) The increase in Rl in sensitized rats was reproducible when the same HWA challenge was repeated 60-90 min later. 3) This bronchoconstrictive effect was temperature dependent: a slightly smaller increase in peak Ttr (39.6 ± 0.2°C) generated a significant but smaller increase in Rl in sensitized rats. 4) The HWA-induced bronchoconstriction was not generated by the humidity delivered by the HWA challenge alone, because the same water content delivered by saline aerosol at room temperature had no effect. 5) The HWA-evoked increase in Rl in sensitized rats was not blocked by atropine but was completely prevented by pretreatment either with a combination of neurokinin (NK)-1 and NK-2 antagonists or with formoterol, a β2 agonist, before the HWA challenge. This study showed that increasing airway temperature evoked a pronounced and reversible increase in airway resistance in sensitized rats and that tachykinins released from the vagal bronchopulmonary C-fiber endings were primarily responsible.

  10. Relationship between Pulmonary Airflow and Resistance in Patients with Airway Narrowing Using An 1-D Network Resistance and Compliance Model

    NASA Astrophysics Data System (ADS)

    Choi, Sanghun; Choi, Jiwoong; Hoffman, Eric; Lin, Ching-Long

    2016-11-01

    To predict the proper relationship between airway resistance and regional airflow, we proposed a novel 1-D network model for airway resistance and acinar compliance. First, we extracted 1-D skeletons at inspiration images, and generated 1-D trees of CT unresolved airways with a volume filling method. We used Horsfield order with random heterogeneity to create diameters of the generated 1-D trees. We employed a resistance model that accounts for kinetic energy and viscous dissipation (Model A). The resistance model is further coupled with a regional compliance model estimated from two static images (Model B). For validation, we applied both models to a healthy subject. The results showed that Model A failed to provide airflows consistent with air volume change, whereas Model B provided airflows consistent with air volume change. Since airflows shall be regionally consistent with air volume change in patients with normal airways, Model B was validated. Then, we applied Model B to severe asthmatic subjects. The results showed that regional airflows were significantly deviated from air volume change due to airway narrowing. This implies that airway resistance plays a major role in determining regional airflows of patients with airway narrowing. Support for this study was provided, in part, by NIH Grants U01 HL114494, R01 HL094315, R01 HL112986, and S10 RR022421.

  11. Airway extravasation induced by increasing airway temperature in ovalbumin-sensitized rats

    PubMed Central

    Hsu, Chun-Chun; Tapia, Reyno J.; Lee, Lu-Yuan

    2015-01-01

    This study was carried out to determine whether hyperventilation of humidified warm air (HWA) induced airway extravasation in ovalbumin (Ova)-sensitized rats. Our results showed: 1) After isocapnic hyperventilation with HWA for 2 min, tracheal temperature (Ttr) was increased to 40.3°C, and the Evans blue contents in major airways and lung tissue were elevated to 651% and 707%, respectively, of that after hyperventilation with humidified room air in Ova-sensitized rats; this striking effect of HWA was absent in control rats. 2) The HWA-induced increase in Evans blue content in sensitized rats was completely prevented by a pretreatment with either L-732138, a selective antagonist of neurokinin type 1 (NK-1) receptor, or formoterol, a selective agonist of β2 adrenoceptor. This study demonstrated that an increase in airway temperature induced protein extravasation in the major airways and lung tissue of sensitized rats, and an activation of the NK-1 receptor by tachykinins released from bronchopulmonary C-fiber nerve endings was primarily responsible. PMID:25864799

  12. Use of body plethysmography to measure effect of bimaxillary orthognathic surgery on airway resistance and lung volumes.

    PubMed

    Rezaeetalab, Fariba; Kazemian, Mozhgan; Vaezi, Touraj; Shaban, Barratollah

    2015-12-01

    Bimaxillary orthognathic surgery can cause changes to respiration and the airways. We used body plethysmography to evaluate its effect on airway resistance and lung volumes in 20 patients with class III malocclusions (8 men and 12 women, aged 17 - 32 years). Lung volumes (forced vital capacity; forced inspiratory volume/one second; forced expiratory volume/one second: forced vital capacity; peak expiratory flow; maximum expiratory flow 25-75; maximum inspiratory flow; total lung capacity; residual volume; residual volume:total lung capacity), and airway resistance were evaluated one week before, and six months after, operation. Bimaxillary operations to correct class III malocclusions significantly increased airway resistance, residual volume, total lung capacity, and residual volume:total lung capacity. Other variables also changed after operation but not significantly so. Orthognathic operations should be done with caution in patients who have pre-existing respiratory diseases. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  13. Potentially pathogenic airway bacteria and neutrophilic inflammation in treatment resistant severe asthma.

    PubMed

    Green, Benjamin J; Wiriyachaiporn, Surasa; Grainge, Christopher; Rogers, Geraint B; Kehagia, Valia; Lau, Laurie; Carroll, Mary P; Bruce, Kenneth D; Howarth, Peter H

    2014-01-01

    Molecular microbiological analysis of airway samples in asthma has demonstrated an altered microbiome in comparison to healthy controls. Such changes may have relevance to treatment-resistant severe asthma, particularly those with neutrophilic airway inflammation, as bacteria might be anticipated to activate the innate immune response, a process that is poorly steroid responsive. An understanding of the relationship between airway bacterial presence and dominance in severe asthma may help direct alternative treatment approaches. We aimed to use a culture independent analysis strategy to describe the presence, dominance and abundance of bacterial taxa in induced sputum from treatment resistant severe asthmatics and correlate findings with clinical characteristics and airway inflammatory markers. Induced sputum was obtained from 28 stable treatment-resistant severe asthmatics. The samples were divided for supernatant IL-8 measurement, cytospin preparation for differential cell count and Terminal Restriction Fragment Length Polymorphism (T-RFLP) profiling for bacterial community analysis. In 17/28 patients, the dominant species within the airway bacterial community was Moraxella catarrhalis or a member of the Haemophilus or Streptococcus genera. Colonisation with these species was associated with longer asthma disease duration (mean (SD) 31.8 years (16.7) vs 15.6 years (8.0), p = 0.008), worse post-bronchodilator percent predicted FEV1 (68.0% (24.0) vs 85.5% (19.7), p = 0.025) and higher sputum neutrophil differential cell counts (median (IQR) 80% (67-83) vs 43% (29-67), p = 0.001). Total abundance of these organisms significantly and positively correlated with sputum IL-8 concentration and neutrophil count. Airway colonisation with potentially pathogenic micro-organisms in asthma is associated with more severe airways obstruction and neutrophilic airway inflammation. This altered colonisation may have a role in the development of an asthma phenotype that

  14. Genetic deletion of apolipoprotein A-I increases airway hyperresponsiveness, inflammation, and collagen deposition in the lung

    PubMed Central

    Wang, Weiling; Xu, Hao; Shi, Yang; Nandedkar, Sandhya; Zhang, Hao; Gao, Haiqing; Feroah, Thom; Weihrauch, Dorothee; Schulte, Marie L.; Jones, Deron W.; Jarzembowski, Jason; Sorci-Thomas, Mary; Pritchard, Kirkwood A.

    2010-01-01

    The relationship between high-density lipoprotein and pulmonary function is unclear. To determine mechanistic relationships we investigated the effects of genetic deletion of apolipoprotein A-I (apoA-I) on plasma lipids, paraoxonase (PON1), pro-inflammatory HDL (p-HDL), vasodilatation, airway hyperresponsiveness and pulmonary oxidative stress, and inflammation. ApoA-I null (apoA-I−/−) mice had reduced total and HDL cholesterol but increased pro-inflammatory HDL compared with C57BL/6J mice. Although PON1 protein was increased in apoA-I−/− mice, PON1 activity was decreased. ApoA-I deficiency did not alter vasodilatation of facialis arteries, but it did alter relaxation responses of pulmonary arteries. Central airway resistance was unaltered. However, airway resistance mediated by tissue dampening and elastance were increased in apoA-I−/− mice, a finding also confirmed by positive end-expiratory pressure (PEEP) studies. Inflammatory cells, collagen deposition, 3-nitrotyrosine, and 4-hydroxy-2-nonenal were increased in apoA-I−/− lungs but not oxidized phospholipids. Colocalization of 4-hydroxy-2-nonenal with transforming growth factor β-1 (TGFβ-1 was increased in apoA-I−/− lungs. Xanthine oxidase, myeloperoxidase and endothelial nitric oxide synthase were increased in apoA-I−/− lungs. Dichlorodihydrofluorescein-detectable oxidants were increased in bronchoalveolar lavage fluid (BALF) in apoA-I−/− mice. In contrast, BALF nitrite+nitrate levels were decreased in apoA-I−/− mice. These data demonstrate that apoA-I plays important roles in limiting pulmonary inflammation and oxidative stress, which if not prevented, will decrease pulmonary artery vasodilatation and increase airway hyperresponsiveness. PMID:20498409

  15. Sciatic Nerve Stimulation and its Effects on Upper Airway Resistance in the Anesthetized Rabbit Model Relevant to Sleep Apnea.

    PubMed

    Schiefer, Matthew; Gamble, Jenniffer; Strohl, Kingman Perkins

    2018-06-07

    Obstructive sleep apnea (OSA) is a disorder characterized by collapse of the velopharynx and/or oropharynx during sleep when drive to the upper airway is reduced. Here, we explore an indirect approach for activation of upper airway muscles which might affect airway dynamics- unilateral electrical stimulation of the afferent fibers of the sciatic nerve- in an anesthetized rabbit model. A nerve cuff electrode was placed around the sciatic and hypoglossal nerves to deliver stimulus while air flow, air pressure, and alae nasi electromyogram (EMG) were monitored both prior to and after sciatic transection. Sciatic nerve stimulation increased respiratory effort, rate, and alae nasi EMG, which persisted for seconds after stimulation; however, upper airway resistance was unchanged. Hypoglossal stimulation reduced resistance without altering drive. While sciatic nerve stimulation is not ideal for treating obstructive sleep apnea, it remains a target for altering respiratory drive.

  16. Role of substance P and neurokinin A in toluene diisocyanate-induced increased airway responsiveness in rabbits.

    PubMed

    Marek, W; Potthast, J J; Marcynski, B; Baur, X

    1996-01-01

    The aim of the present study was to examine the role of neuropeptides, especially substance P (SP) and neurokinin A (NKA), in toluene diisocyanate (TDI)-induced airway hyperresponsiveness (AHR) to acetylcholine aerosols. Thirty parts per billion of TDI in air administered over 4 hours caused a significant increase in the airway constrictive response to acetylcholine (ACH) aerosols in rabbits (DeltaRI: 245 +/- 30%, p < 0.005) without altering basic values of respiratory, cardiovascular or blood gas parameters. Inhalation of the aerosolized neuropeptides SP and NKA resulted in a similar increase in airway responsiveness (AR) to ACH as exposure to 30 ppb TDI. To determine whether neuropeptides contribute to TDI-induced AHR, we studied their effects after systemic treatment with capsaicin as well as after infusion of specific synthetic antagonists for SP and NK2 (NKA) receptors. CAPS treatment performed on 4 consecutive days as well as antagonists' infusion only moderately (p > 0.05) decreased airway responses to ACH. CAPS application prevented the TDI-induced increase in AR to ACH in all rabbits. The increase in airway resistance to ACH did not significantly change after TDI exposure (98 +/- 22% of the control response before TDI, p > 0.05). Simultaneous infusion of specific synthetic SP and NK2 receptor antagonists also abolished the TDI-induced increase in airway responses to ACH in all animals investigated (p > 0.05). The results of this study demonstrate that neuropeptides, especially the tachykinins SP and NKA, are important mediators in TDI-induced AHR in rabbits.

  17. [Arousal of respiratory origin and upper airway resistance syndrome: pathophysiological and diagnostic aspects].

    PubMed

    Puertas, F J; Ondzé, B; Carlander, B; Billiard, M

    The description of Upper Airway Resistance Syndrome (UARS) let us to recognize the importance of the pair 'respiratory effort-arousal' on sleep-disordered breathing pathophysiology. First part of this paper reviews knowledge about respiratory arousal pathophysiology. Arousal response is normally needed to end obstructive respiratory episodes, but it is also the cause of sleep fragmentation. Among respiratory stimuli able to provoke arousal (respiratory effort, hypoxemia and hypercapnia), respiratory effort is the most constant. Neurophysiological mechanisms involved in arousal, sleep and vegetative consequences, and the possible role of non visible arousals, are also discussed. In UARS, because of the absence of apnea/hypopnea and significative O2 desaturations, arousals are induced by the increased respiratory effort. Diagnosis needs the simultaneous recording of polysomnography and esophageal pressure. Some symptoms and signs of UARS are similar to those of Obstructive Sleep Apnea Syndrome. However, UARS shows any differences: a lower Body Mass Index, less constant snoring, males and females are similarly affected or higher frequency of craniofacial abnormalities. Diagnostic difficulties may be due to confusion between hypopneas and episodes of increased resistance of upper airway, or to the lack of definitive diagnostic criteria. Finally, differential diagnosis needs a broad knowledge of disorders of excessive daytime sleepiness.

  18. Arousal from sleep does not lead to reduced dilator muscle activity or elevated upper airway resistance on return to sleep in healthy individuals.

    PubMed

    Jordan, Amy S; Cori, Jennifer M; Dawson, Andrew; Nicholas, Christian L; O'Donoghue, Fergal J; Catcheside, Peter G; Eckert, Danny J; McEvoy, R Doug; Trinder, John

    2015-01-01

    To compare changes in end-tidal CO2, genioglossus muscle activity and upper airway resistance following tone-induced arousal and the return to sleep in healthy individuals with small and large ventilatory responses to arousal. Observational study. Two sleep physiology laboratories. 35 men and 25 women with no medical or sleep disorders. Auditory tones to induce 3-s to 15-s cortical arousals from sleep. During arousal from sleep, subjects with large ventilatory responses to arousal had higher ventilation (by analytical design) and tidal volume, and more marked reductions in the partial pressure of end-tidal CO2 compared to subjects with small ventilatory responses to arousal. However, following the return to sleep, ventilation, genioglossus muscle activity, and upper airway resistance did not differ between high and low ventilatory response groups (Breath 1 on return to sleep: ventilation 6.7±0.4 and 5.5±0.3 L/min, peak genioglossus activity 3.4%±1.0% and 4.8%±1.0% maximum, upper airway resistance 4.7±0.7 and 5.5±1.0 cm H2O/L/s, respectively). Furthermore, dilator muscle activity did not fall below the pre-arousal sleeping level and upper airway resistance did not rise above the pre-arousal sleeping level in either group for 10 breaths following the return to sleep. Regardless of the magnitude of the ventilatory response to arousal from sleep and subsequent reduction in PETCO2, healthy individuals did not develop reduced dilator muscle activity nor increased upper airway resistance, indicative of partial airway collapse, on the return to sleep. These findings challenge the commonly stated notion that arousals predispose to upper airway obstruction. © 2014 Associated Professional Sleep Societies, LLC.

  19. Electronic cigarette inhalation alters innate immunity and airway cytokines while increasing the virulence of colonizing bacteria.

    PubMed

    Hwang, John H; Lyes, Matthew; Sladewski, Katherine; Enany, Shymaa; McEachern, Elisa; Mathew, Denzil P; Das, Soumita; Moshensky, Alexander; Bapat, Sagar; Pride, David T; Ongkeko, Weg M; Crotty Alexander, Laura E

    2016-06-01

    Electronic (e)-cigarette use is rapidly rising, with 20 % of Americans ages 25-44 now using these drug delivery devices. E-cigarette users expose their airways, cells of host defense, and colonizing bacteria to e-cigarette vapor (EV). Here, we report that exposure of human epithelial cells at the air-liquid interface to fresh EV (vaped from an e-cigarette device) resulted in dose-dependent cell death. After exposure to EV, cells of host defense-epithelial cells, alveolar macrophages, and neutrophils-had reduced antimicrobial activity against Staphylococcus aureus (SA). Mouse inhalation of EV for 1 h daily for 4 weeks led to alterations in inflammatory markers within the airways and elevation of an acute phase reactant in serum. Upon exposure to e-cigarette vapor extract (EVE), airway colonizer SA had increased biofilm formation, adherence and invasion of epithelial cells, resistance to human antimicrobial peptide LL-37, and up-regulation of virulence genes. EVE-exposed SA were more virulent in a mouse model of pneumonia. These data suggest that e-cigarettes may be toxic to airway cells, suppress host defenses, and promote inflammation over time, while also promoting virulence of colonizing bacteria. Acute exposure to e-cigarette vapor (EV) is cytotoxic to airway cells in vitro. Acute exposure to EV decreases macrophage and neutrophil antimicrobial function. Inhalation of EV alters immunomodulating cytokines in the airways of mice. Inhalation of EV leads to increased markers of inflammation in BAL and serum. Staphylococcus aureus become more virulent when exposed to EV.

  20. Arousal from Sleep Does Not Lead to Reduced Dilator Muscle Activity or Elevated Upper Airway Resistance on Return to Sleep in Healthy Individuals

    PubMed Central

    Jordan, Amy S.; Cori, Jennifer M.; Dawson, Andrew; Nicholas, Christian L.; O'Donoghue, Fergal J.; Catcheside, Peter G.; Eckert, Danny J.; McEvoy, R. Doug; Trinder, John

    2015-01-01

    Study Objectives: To compare changes in end-tidal CO2, genioglossus muscle activity and upper airway resistance following tone-induced arousal and the return to sleep in healthy individuals with small and large ventilatory responses to arousal. Design: Observational study. Setting: Two sleep physiology laboratories. Patients or Participants: 35 men and 25 women with no medical or sleep disorders. Interventions: Auditory tones to induce 3-s to 15-s cortical arousals from sleep. Measurements and Results: During arousal from sleep, subjects with large ventilatory responses to arousal had higher ventilation (by analytical design) and tidal volume, and more marked reductions in the partial pressure of end-tidal CO2 compared to subjects with small ventilatory responses to arousal. However, following the return to sleep, ventilation, genioglossus muscle activity, and upper airway resistance did not differ between high and low ventilatory response groups (Breath 1 on return to sleep: ventilation 6.7 ± 0.4 and 5.5 ± 0.3 L/min, peak genioglossus activity 3.4% ± 1.0% and 4.8% ± 1.0% maximum, upper airway resistance 4.7 ± 0.7 and 5.5 ± 1.0 cm H2O/L/s, respectively). Furthermore, dilator muscle activity did not fall below the pre-arousal sleeping level and upper airway resistance did not rise above the pre-arousal sleeping level in either group for 10 breaths following the return to sleep. Conclusions: Regardless of the magnitude of the ventilatory response to arousal from sleep and subsequent reduction in PETCO2, healthy individuals did not develop reduced dilator muscle activity nor increased upper airway resistance, indicative of partial airway collapse, on the return to sleep. These findings challenge the commonly stated notion that arousals predispose to upper airway obstruction. Citation: Jordan AS, Cori JM, Dawson A, Nicholas CL, O'Donoghue FJ, Catcheside PG, Eckert DJ, McEvoy RD, Trinder J. Arousal from sleep does not lead to reduced dilator muscle activity or

  1. The Effects of Hyper- and Hypocapnia on Phonatory Laryngeal Airway Resistance in Women

    ERIC Educational Resources Information Center

    Gillespie, Amanda I.; Slivka, William; Atwood, Charles W., Jr.; Abbott, Katherine Verdolini

    2015-01-01

    Purpose: The larynx has a dual role in the regulation of gas flow into and out of the lungs while also establishing resistance required for vocal fold vibration. This study assessed reciprocal relations between phonatory functions--specifically, phonatory laryngeal airway resistance (R[subscript law])--and respiratory homeostasis during states of…

  2. Small Airway Obstruction in COPD

    PubMed Central

    McDonough, John E.; Suzuki, Masaru

    2013-01-01

    The increase in total cross-sectional area in the distal airways of the human lung enhances the mixing of each tidal breath with end-expiratory gas volume by slowing bulk flow and increasing gas diffusion. However, this transition also favors the deposition of airborne particulates in this region because they diffuse 600 times slower than gases. Furthermore, the persistent deposition of toxic airborne particulates stimulates a chronic inflammatory immune cell infiltration and tissue repair and remodeling process that increases the resistance in airways <2 mm in diameter four to 40-fold in COPD. This increase was originally attributed to lumen narrowing because it increases resistance in proportion to the change in lumen radius raised to the fourth power. In contrast, removal of one-half the number of tubes arranged in parallel is required to double their resistance, and approximately 90% need to be removed to explain the increase in resistance measured in COPD. However, recent reexamination of this problem based on micro-CT imaging indicates that terminal bronchioles are both narrowed and reduced to 10% of the control values in the centrilobular and 25% in the panlobular emphysematous phenotype of very severe (GOLD [Global Initiative for Chronic Obstructive Lung Disease] grade IV) COPD. These new data indicate that both narrowing and reduction in numbers of terminal bronchioles contribute to the rapid decline in FEV1 that leads to severe airway obstruction in COPD. Moreover, the observation that terminal bronchiolar loss precedes the onset of emphysematous destruction suggests this destruction begins in the very early stages of COPD. PMID:23648907

  3. Vitamin D deficiency causes airway hyperresponsiveness, increases airway smooth muscle mass, and reduces TGF‐β expression in the lungs of female BALB/c mice

    PubMed Central

    Foong, Rachel E.; Shaw, Nicole C.; Berry, Luke J.; Hart, Prue H.; Gorman, Shelley; Zosky, Graeme R.

    2014-01-01

    Abstract Vitamin D deficiency is associated with disease severity in asthma. We tested whether there is a causal association between vitamin D deficiency, airway smooth muscle (ASM) mass, and the development of airway hyperresponsiveness (AHR). A physiologically relevant mouse model of vitamin D deficiency was developed by raising BALB/c mice on vitamin D‐deficient or ‐replete diets. AHR was assessed by measuring lung function responses to increasing doses of inhaled methacholine. Five‐micron sections from formalin‐fixed lungs were used for ASM measurement and assessment of lung structure using stereological methods. Transforming growth factor (TGF)‐β levels were measured in bronchoalveolar lavage fluid (BALF). Lungs were dissected from embryonic day (E) 17.5 vitamin D‐deficient and ‐replete fetal mice for quantification of ASM density and relative gene expression of TGF‐β signaling pathway molecules. Eight‐week‐old adult vitamin D‐deficient female mice had significantly increased airway resistance and ASM in the large airways compared with controls. Vitamin D‐deficient female mice had a smaller lung volume, volume of parenchyma, and alveolar septa. Both vitamin D‐deficient male and female mice had reduced TGF‐β levels in BALF. Vitamin D deficiency did not have an effect on ASM density in E17.5 mice, however, expression of TGF‐β1 and TGF‐β receptor I was downregulated in vitamin D‐deficient female fetal mice. Decreased expression of TGF‐β1 and TGF‐β receptor I during early lung development in vitamin D‐deficient mice may contribute to airway remodeling and AHR in vitamin D‐deficient adult female mice. This study provides a link between vitamin D deficiency and respiratory symptoms in chronic lung disease. PMID:24760528

  4. Smooth muscle in human bronchi is disposed to resist airway distension.

    PubMed

    Gazzola, Morgan; Henry, Cyndi; Couture, Christian; Marsolais, David; King, Gregory G; Fredberg, Jeffrey J; Bossé, Ynuk

    2016-07-15

    Studying airway smooth muscle (ASM) in conditions that emulate the in vivo environment within which the bronchi normally operate may provide important clues regarding its elusive physiological function. The present study examines the effect of lengthening and shortening of ASM on tension development in human bronchial segments. ASM from each bronchial segment was set at a length approximating in situ length (Linsitu). Bronchial tension was then measured during a slow cyclical strain (0.004Hz, from 0.7Linsitu to 1.3Linsitu) in the relaxed state and at graded levels of activation by methacholine. In all cases, tension was greater at longer ASM lengths, and greater during lengthening than shortening. The threshold of methacholine concentration that was required for ASM to account for bronchial tension across the entire range of ASM lengths tested was on average smaller by 2.8 logs during lengthening than during shortening. The length-dependency of ASM tension, together with this lower threshold of methacholine concentration during lengthening versus shortening, suggest that ASM has a greater ability to resist airway dilation during lung inflation than to narrow the airways during lung deflation. More than serving to narrow the airway, as has long been thought, these data suggest that the main function of ASM contraction is to limit airway wall distension during lung inflation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Expression of nitric oxide synthase-2 in the lungs decreases airway resistance and responsiveness.

    PubMed

    Hjoberg, Josephine; Shore, Stephanie; Kobzik, Lester; Okinaga, Shoji; Hallock, Arlene; Vallone, Joseph; Subramaniam, Venkat; De Sanctis, George T; Elias, Jack A; Drazen, Jeffrey M; Silverman, Eric S

    2004-07-01

    Individuals with asthma have increased levels of nitric oxide in their exhaled air. To explore its role, we have developed a regulatable transgenic mouse capable of overexpressing inducible nitric oxide synthase in a lung-specific fashion. The CC10-rtTA-NOS-2 mouse contains two transgenes, a reverse tetracycline transactivator under the control of the Clara cell protein promoter and the mouse nitric oxide synthase-2 (NOS-2) coding region under control of a tetracycline operator. Addition of doxycycline to the drinking water of CC10-rtTA-NOS-2 mice causes an increase in nitric oxide synthase-2 that is largely confined to the airway epithelium. The fraction of expired nitric oxide increases over the first 24 h from approximately 10 parts per billion to a plateau of approximately 20 parts per billion. There were no obvious differences between CC10-rtTA-NOS-2 mice, with or without doxycycline, and wild-type mice in lung histology, bronchoalveolar protein, total cell count, or count differentials. However, airway resistance was lower in CC10-rtTA-NOS-2 mice with doxycycline than in CC10-rtTA-NOS-2 mice without doxycycline or wild-type mice with doxycycline. Moreover, doxycycline-treated CC10-rtTA-NOS-2 mice were hyporesponsive to methacholine compared with other groups. These data suggest that increased nitric oxide in the airways has no proinflammatory effects per se and may have beneficial effects on pulmonary function.

  6. The impact of obesity on specific airway resistance and conductance among schoolchildren.

    PubMed

    Parraguez Arévalo, Andrea; Rojas Navarro, Francisco; Ruz Céspedes, Macarena; Medina González, Paul; Escobar Cabello, Máximo; Muñoz Cofré, Rodrigo

    2018-04-01

    Child and adolescent obesity is an epidemiological problem in developing countries. Its prevalence among preschoolers and schoolchildren is over 30%. It has been associated with a wide range of health complications, including rapid loss of lung function leading to changes in physiology and ventilatory mechanics. The objective of this study was to analyze the association between obesity and the increase in specific airway resistance (sRaw) in a sample of obese children and adolescents from the district of Talca. In a sample of 36 subjects with an average age of 9.38 ± 1.99 years, divided into 2 groups (normal weight and obese), the tricipital, subscapular, and abdominal skinfolds and lung volumes were measured. For the statistical analysis, data normality was determined and then the Student's t test or the Mann-Whitney U test and Pearson's or Spearman's correlations were used, as applicable. A value of p < 0.05 was considered statistically significant. When comparing normal weight and obese subjects, a significant increase in sRaw and a significant reduction in specific airway conductance (sGaw) were observed in obese subjects. In addition, an adequate and significant correlation was observed between sRaw and fat percentage. Obese subjects showed an increased sRaw and a reduced sGaw. Sociedad Argentina de Pediatría.

  7. Contributions of Kinetic Energy and Viscous Dissipation to Airway Resistance in Pulmonary Inspiratory and Expiratory Airflows in Successive Symmetric Airway Models With Various Bifurcation Angles.

    PubMed

    Choi, Sanghun; Choi, Jiwoong; Lin, Ching-Long

    2018-01-01

    The aim of this study was to investigate and quantify contributions of kinetic energy and viscous dissipation to airway resistance during inspiration and expiration at various flow rates in airway models of different bifurcation angles. We employed symmetric airway models up to the 20th generation with the following five different bifurcation angles at a tracheal flow rate of 20 L/min: 15 deg, 25 deg, 35 deg, 45 deg, and 55 deg. Thus, a total of ten computational fluid dynamics (CFD) simulations for both inspiration and expiration were conducted. Furthermore, we performed additional four simulations with tracheal flow rate values of 10 and 40 L/min for a bifurcation angle of 35 deg to study the effect of flow rate on inspiration and expiration. Using an energy balance equation, we quantified contributions of the pressure drop associated with kinetic energy and viscous dissipation. Kinetic energy was found to be a key variable that explained the differences in airway resistance on inspiration and expiration. The total pressure drop and airway resistance were larger during expiration than inspiration, whereas wall shear stress and viscous dissipation were larger during inspiration than expiration. The dimensional analysis demonstrated that the coefficients of kinetic energy and viscous dissipation were strongly correlated with generation number. In addition, the viscous dissipation coefficient was significantly correlated with bifurcation angle and tracheal flow rate. We performed multiple linear regressions to determine the coefficients of kinetic energy and viscous dissipation, which could be utilized to better estimate the pressure drop in broader ranges of successive bifurcation structures.

  8. Viral infection potentiates the increase in airway blood flow produced by substance P.

    PubMed

    Yamawaki, I; Geppetti, P; Bertrand, C; Chan, B; Massion, P; Piedimonte, G; Nadel, J A

    1995-08-01

    We examined the effect of respiratory tract infection with Sendai virus on the responsiveness of airway blood flow to substance P (SP) in rats. Pathogen-free rats were inoculated with either Sendai virus suspension or sterile viral growth medium into each nostril. Five days later, we measured airway and esophageal blood flows before and immediately after injection of SP or histamine into the left ventricle of rats in both groups using a modification of the reference-sample microsphere technique. Viral infection potentiated the increase in airway blood flow evoked by SP but not by histamine. We also examined the effect of neutral endopeptidase (NEP) and angiotensin-converting enzyme (ACE) on the SP-induced increase in airway blood flow. Both phosphoramidon (NEP inhibitor) and captopril (ACE inhibitor) potentiated the increase in airway blood flow produced by SP in pathogen-free rats. In the presence of both peptidase inhibitors, a submaximal dose of SP increased blood flow to a similar level in infected and pathogen-free rats. Thus decreased activity of both ACE and NEP may be involved in the exaggerated increase in airway blood flow evoked by SP in virus-infected rats.

  9. Increased airway reactivity in a neonatal mouse model of Continuous Positive Airway Pressure (CPAP)

    PubMed Central

    Mayer, Catherine A.; Martin, Richard J.; MacFarlane, Peter M.

    2015-01-01

    Background Continuous positive airway pressure (CPAP) is a primary form of respiratory support used in the intensive care of preterm infants, but its long-term effects on airway (AW) function are unknown. Methods We developed a neonatal mouse model of CPAP treatment to determine whether it modifies later AW reactivity. Un-anesthetized spontaneously breathing mice were fitted with a mask to deliver CPAP (6cmH2O, 3hrs/day) for 7 consecutive days starting at postnatal day 1. Airway reactivity to methacholine was assessed using the in vitro living lung slice preparation. Results One week of CPAP increased AW responsiveness to methacholine in male, but not female mice, compared to untreated control animals. The AW hyper-reactivity of male mice persisted for 2 weeks (at P21) after CPAP treatment ended. 4 days of CPAP, however, did not significantly increase AW reactivity. Females also exhibited AW hyper-reactivity at P21, suggesting a delayed response to early (7 days) CPAP treatment. The effects of 7 days of CPAP on hyper-reactivity to methacholine were unique to smaller AWs whereas larger ones were relatively unaffected. Conclusion These data may be important to our understanding of the potential long-term consequences of neonatal CPAP therapy used in the intensive care of preterm infants. PMID:25950451

  10. Neutrophil elastase-mediated increase in airway temperature during inflammation.

    PubMed

    Schmidt, Annika; Belaaouaj, Azzaq; Bissinger, Rosi; Koller, Garrit; Malleret, Laurette; D'Orazio, Ciro; Facchinelli, Martino; Schulte-Hubbert, Bernhard; Molinaro, Antonio; Holst, Otto; Hammermann, Jutta; Schniederjans, Monika; Meyer, Keith C; Damkiaer, Soeren; Piacentini, Giorgio; Assael, Baroukh; Bruce, Kenneth; Häußler, Susanne; LiPuma, John J; Seelig, Joachim; Worlitzsch, Dieter; Döring, Gerd

    2014-12-01

    How elevated temperature is generated during airway infections represents a hitherto unresolved physiological question. We hypothesized that innate immune defence mechanisms would increase luminal airway temperature during pulmonary infection. We determined the temperature in the exhaled air of cystic fibrosis (CF) patients. To further test our hypothesis, a pouch inflammatory model using neutrophil elastase-deficient mice was employed. Next, the impact of temperature changes on the dominant CF pathogen Pseudomonas aeruginosa growth was tested by plating method and RNAseq. Here we show a temperature of ~38°C in neutrophil-dominated mucus plugs of chronically infected CF patients and implicate neutrophil elastase:α1-proteinase inhibitor complex formation as a relevant mechanism for the local temperature rise. Gene expression of the main pathogen in CF, P. aeruginosa, under anaerobic conditions at 38°C vs 30°C revealed increased virulence traits and characteristic cell wall changes. Neutrophil elastase mediates increase in airway temperature, which may contribute to P. aeruginosa selection during the course of chronic infection in CF. Copyright © 2014 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  11. Microbial exposure early in life regulates airway inflammation in mice after infection with Streptococcus pneumoniae with enhancement of local resistance.

    PubMed

    Yasuda, Yasuki; Matsumura, Yoko; Kasahara, Kazuki; Ouji, Noriko; Sugiura, Shigeki; Mikasa, Keiichi; Kita, Eiji

    2010-01-01

    The immunological explanation for the "hygiene hypothesis" has been proposed to be induction of T helper 1 (Th1) responses by microbial products. However, the protective results of hygiene hypothesis-linked microbial exposures are currently shown to be unlikely to result from a Th1-skewed response. Until now, effect of microbial exposure early in life on airway innate resistance remained unclear. We examined the role of early life exposure to microbes in airway innate resistance to a respiratory pathogen. Specific pathogen-free weanling mice were nasally exposed to the mixture of microbial extracts or PBS (control) every other day for 28 days and intratracheally infected with Streptococcus pneumoniae 10 days after the last exposure. Exposure to microbial extracts facilitated colonization of aerobic gram-positive bacteria, anaerobic microorganisms, and Lactobacillus in the airway, compared with control exposure. In pneumococcal pneumonia, the exposure prolonged mouse survival days by suppressing bacterial growth and by retarding pneumococcal blood invasion, despite significantly low levels of leukocyte recruitment in the lung. Enhancement of airway resistance was associated with a significant decrease in production of leukocyte chemokine (KC) and TNFalpha, and suppression of matrix metalloproteinase (MMP-9) expression/activation with enhancement of tissue inhibitor of MMP (TIMP-3) activation. The exposure increased production of IFN-gamma, IL-4, and monocyte chemoattractant-1 following infection. Furthermore, expression of Toll-like receptor 2, 4, and 9 was promoted by the exposure but no longer upregulated upon pneumococcal infection. Thus, we suggest that hygiene hypothesis is more important in regulating the PMN-dominant inflammatory response than in inducing a Th1-dominant response.

  12. Could an increase in airway smooth muscle shortening velocity cause airway hyperresponsiveness?

    PubMed Central

    Bullimore, Sharon R.; Siddiqui, Sana; Donovan, Graham M.; Martin, James G.; Sneyd, James; Bates, Jason H. T.

    2011-01-01

    Airway hyperresponsiveness (AHR) is a characteristic feature of asthma. It has been proposed that an increase in the shortening velocity of airway smooth muscle (ASM) could contribute to AHR. To address this possibility, we tested whether an increase in the isotonic shortening velocity of ASM is associated with an increase in the rate and total amount of shortening when ASM is subjected to an oscillating load, as occurs during breathing. Experiments were performed in vitro using 27 rat tracheal ASM strips supramaximally stimulated with methacholine. Isotonic velocity at 20% isometric force (Fiso) was measured, and then the load on the muscle was varied sinusoidally (0.33 ± 0.25 Fiso, 1.2 Hz) for 20 min, while muscle length was measured. A large amplitude oscillation was applied every 4 min to simulate a deep breath. We found that: 1) ASM strips with a higher isotonic velocity shortened more quickly during the force oscillations, both initially (P < 0.001) and after the simulated deep breaths (P = 0.002); 2) ASM strips with a higher isotonic velocity exhibited a greater total shortening during the force oscillation protocol (P < 0.005); and 3) the effect of an increase in isotonic velocity was at least comparable in magnitude to the effect of a proportional increase in ASM force-generating capacity. A cross-bridge model showed that an increase in the total amount of shortening with increased isotonic velocity could be explained by a change in either the cycling rate of phosphorylated cross bridges or the rate of myosin light chain phosphorylation. We conclude that, if asthma involves an increase in ASM velocity, this could be an important factor in the associated AHR. PMID:20971805

  13. The Effect of Lung Stretch during Sleep on Airway Mechanics in Overweight and Obese Asthma

    PubMed Central

    Campana, L.M.; Malhotra, A.; Suki, B.; Hess, L.; Israel, E.; Smales, E.; DeYoung, P.; Owens, R.L.

    2012-01-01

    Both obesity and sleep reduce lung volume and limit deep breaths, possibly contributing to asthma. We hypothesize that increasing lung volume dynamically during sleep would reduce airway resistance in asthma. Asthma (n=10) and control (n=10) subjects were studied during sleep at baseline and with increased lung volume via bi-level positive airway pressure (BPAP). Using forced oscillations, respiratory system resistance (Rrs) and reactance (Xrs) were measured during sleep and Rrs was partitioned to upper and lower airway resistance (Rup, Rlow) using an epiglottic pressure catheter. Rrs and Rup increased with sleep (p<0.01) and Xrs was decreased in REM (p=0.02) as compared to wake. Rrs, Rup, and Rlow, were larger (p<0.01) and Xrs was decreased (p<0.02) in asthma. On BPAP, Rrs and Rup were decreased (p<0.001) and Xrs increased (p<0.01), but Rlow was unchanged. High Rup was observed in asthma, which reduced with BPAP. We conclude that the upper airway is a major component of Rrs and larger lung volume changes may be required to alter Rlow. PMID:23041446

  14. Detection of changes in respiratory mechanics due to increasing degrees of airway obstruction in asthma by the forced oscillation technique.

    PubMed

    Cavalcanti, Juliana V; Lopes, Agnaldo J; Jansen, José M; Melo, Pedro L

    2006-12-01

    Forced expiratory airflows and volumes are often used to assess the airway obstruction in asthmatics. However, forced maneuvers may change bronchial tone and modify airway patency. The aim of this study was to determine whether the Forced Oscillation Technique (FOT), which does not require forced manoeuvres, may be useful to describe the changes in respiratory mechanics in progressive asthma. This study involved 25 healthy and 84 asthmatics, including patients with normal spirometric exam (NE), mild moderate and severe obstruction. Resistive data were interpreted using the respiratory system resistance extrapolated at 0 Hz (R0), the mean respiratory resistance (Rm), and the resistance/frequency slope (S). Reactance data were interpreted by its mean values (Xm), the dynamic compliance (Crs,dyn), and resonant frequency (fr). Receiver operating characteristics curves were used to determine the sensitivity (Se) and specificity (Sp) of FOT parameters in identifying asthma. There were not statistically significant differences between the control and NE groups. Comparing the control and mild groups, significant increases of R0 (P<0.0007), Rm (P<0.003), and S (P<0.003) were observed. In reactive parameters, a significant reduction in Crs,dyn (P<0.04) was observed, while Xm and fr presented significant increases (P<0.0007 and P<0.006, respectively). Comparison between mild and moderate groups showed non-significant modifications in all of the parameters, except for Xm (P<0.02). In the late stages (moderate to severe obstruction), all of the resistive parameters, as well as the reactive ones Xm (P<0.007) and Crs,dyn (P<0.03), presented statistically significant modifications. Among the studied parameters, the effects of airway obstruction in asthma seem to be well described by R0, Rm, S and Xm, which were in close agreement with physiological fundamentals. The best parameters for detecting asthma were R0 (Se=81%, Sp=76%), S (Se=78%, Sp=72%) and Xm (Se=81%, Sp=80%). In

  15. Upper airway resistance syndrome.

    PubMed

    Montserrat, J M; Badia, J R

    1999-03-01

    This article reviews the clinical picture, diagnosis and management of the upper airway resistance syndrome (UARS). Presently, there is not enough data on key points like the frequency of UARS and the morbidity associated with this condition. Furthermore, the existence of LIARS as an independent sleep disorder and its relation with snoring and obstructive events is in debate. The diagnosis of UARS is still a controversial issue. The technical limitations of the classic approach to monitor airflow with thermistors and inductance plethysmography, as well as the lack of a precise definition of hypopnea, may have led to a misinterpretation of UARS as an independent diagnosis from the sleep apnea/hypopnea syndrome. The diagnosis of this syndrome can be missed using a conventional polysomnographic setting unless appropriate techniques are applied. The use of an esophageal balloon to monitor inspiratory effort is currently the gold standard. However, other sensitive methods such as the use of a pneumotachograph and, more recently, nasal cannula/pressure transducer systems or on-line monitoring of respiratory impedance with the forced oscillation technique may provide other interesting possibilities. Recognition and characterization of this subgroup of patients within sleep breathing disorders is important because they are symptomatic and may benefit from treatment. Management options to treat UARS comprise all those currently available for sleep apnea/hypopnea syndrome (SAHS). However, the subset of patients classically identified as LIARS that exhibit skeletal craneo-facial abnormalities might possibly obtain further benefit from maxillofacial surgery.

  16. Control of nasal vasculature and airflow resistance in the dog.

    PubMed Central

    Lung, M A; Phipps, R J; Wang, J C; Widdicombe, J G

    1984-01-01

    Nasal vascular and airflow resistances have been measured in dogs, simultaneously on both sides separately. Vascular resistance was measured either by constant flow perfusion of the terminal branch of the maxillary artery (which supplies, via the sphenopalatine artery, the nasal septum, most of the turbinates and the nasal sinuses) or by measuring blood flow through this artery, maintained by the dog's own blood pressure. Airflow resistance was assessed by inserting balloon-tipped endotracheal catheters into the back of each nasal cavity via the nasopharynx, and measuring transnasal pressure at constant airflow through each side of the nose simultaneously. Preliminary experiments indicated that there was 5-10% collateral anastomosis between the two sides. Close-arterial injection of drugs showed different patterns of response. Adrenaline, phenylephrine, chlorpheniramine and low doses of prostaglandin F2 alpha increased vascular resistance and lowered airway resistance. Salbutamol, methacholine and histamine lowered vascular resistance and increased airway resistance. Dobutamine decreased airway resistance with a small increase in vascular resistance. Prostaglandins E1, E2 and F2 alpha (high dose) decreased both vascular and airway resistances. Substance P, eledoisin-related peptide and vasoactive intestinal polypeptide lowered vascular resistance with little change in airway resistance. The results are interpreted in terms of possible drug actions on precapillary resistance vessels, sinusoids and venules, and arteriovenous anastomoses. It is concluded that nasal airway resistance cannot be correlated with vascular resistance or blood flow, since the latter has a complex and ill-defined relationship with nasal vascular blood volume. PMID:6204040

  17. Control of nasal vasculature and airflow resistance in the dog.

    PubMed

    Lung, M A; Phipps, R J; Wang, J C; Widdicombe, J G

    1984-04-01

    Nasal vascular and airflow resistances have been measured in dogs, simultaneously on both sides separately. Vascular resistance was measured either by constant flow perfusion of the terminal branch of the maxillary artery (which supplies, via the sphenopalatine artery, the nasal septum, most of the turbinates and the nasal sinuses) or by measuring blood flow through this artery, maintained by the dog's own blood pressure. Airflow resistance was assessed by inserting balloon-tipped endotracheal catheters into the back of each nasal cavity via the nasopharynx, and measuring transnasal pressure at constant airflow through each side of the nose simultaneously. Preliminary experiments indicated that there was 5-10% collateral anastomosis between the two sides. Close-arterial injection of drugs showed different patterns of response. Adrenaline, phenylephrine, chlorpheniramine and low doses of prostaglandin F2 alpha increased vascular resistance and lowered airway resistance. Salbutamol, methacholine and histamine lowered vascular resistance and increased airway resistance. Dobutamine decreased airway resistance with a small increase in vascular resistance. Prostaglandins E1, E2 and F2 alpha (high dose) decreased both vascular and airway resistances. Substance P, eledoisin-related peptide and vasoactive intestinal polypeptide lowered vascular resistance with little change in airway resistance. The results are interpreted in terms of possible drug actions on precapillary resistance vessels, sinusoids and venules, and arteriovenous anastomoses. It is concluded that nasal airway resistance cannot be correlated with vascular resistance or blood flow, since the latter has a complex and ill-defined relationship with nasal vascular blood volume.

  18. The contribution of airway smooth muscle to airway narrowing and airway hyperresponsiveness in disease.

    PubMed

    Martin, J G; Duguet, A; Eidelman, D H

    2000-08-01

    Airway hyperresponsiveness (AHR), the exaggerated response to constrictor agonists in asthmatic subjects, is incompletely understood. Changes in either the quantity or properties of airway smooth muscle (ASM) are possible explanations for AHR. Morphometric analyses demonstrate structural changes in asthmatic airways, including subepithelial fibrosis, gland hyperplasia/hypertrophy, neovascularization and an increase in ASM mass. Mathematical modelling of airway narrowing suggests that, of all the changes in structure, the increase in ASM mass is the most probable cause of AHR. An increase in ASM mass in the large airways is more closely associated with a greater likelihood of dying from asthma than increases in ASM mass in other locations within the airway tree. ASM contraction is opposed by the elastic recoil of the lungs and airways, which appears to limit the degree of bronchoconstriction in vivo. The cyclical nature of tidal breathing applies stresses to the airway wall that enhance the bronchodilating influence of the lung tissues on the contracting ASM, in all probability by disrupting cross-bridges. However, the increase in ASM mass in asthma may overcome the limitation resulting from the impedances to ASM shortening imposed by the lung parenchyma and airway wall tissues. Additionally, ASM with the capacity to shorten rapidly may achieve shorter lengths and cause a greater degree of bronchoconstriction when stimulated to contract than slower ASM. Changes in ASM properties are induced by the process of sensitization and allergen-exposure such as enhancement of phospholipase C activity and inositol phosphate turnover, and increases in myosin light chain kinase activity. Whether changes in ASM mass or biochemical/biomechanical properties form the basis for asthma remains to be determined.

  19. SUBCHRONIC ENDOTOXIN INHALATION CAUSES CHRONIC AIRWAY DISEASE IN ENDOTOXIN-SENSITIVE BUT NOT ENDOTOXIN-RESISTANT MICE

    EPA Science Inventory

    SUBCHRONIC ENDOTOXIN INHALATION CAUSES CHRONIC AIRWAY DISEASE IN ENDOTOXIN-SENSITIVE BUT NOT ENDOTOXIN-RESISTANT MICE. D. M. Brass, J. D. Savov, *S. H. Gavett, ?C. George, D. A. Schwartz. Duke Univ Medical Center Durham, NC, *U.S. E.P.A. Research Triangle Park, NC, ?Univ of Iowa,...

  20. Effect of Heat Moisture Exchanger on Aerosol Drug Delivery and Airway Resistance in Simulated Ventilator-Dependent Adults Using Jet and Mesh Nebulizers.

    PubMed

    Ari, Arzu; Dang, Truong; Al Enazi, Fahad H; Alqahtani, Mohammed M; Alkhathami, Abdulrahman; Qoutah, Rowaida; Almamary, Ahmad S; Fink, James B

    2018-02-01

    Placement of a heat moisture exchanger (HME) between aerosol generator and patient has been associated with greatly reduced drug delivery. The purpose of this study was to evaluate the effect of filtered and nonfiltered HMEs placed between nebulizer and patient on aerosol deposition and airway resistance (Raw) in simulated ventilator-dependent adults. An in vitro lung model was developed to simulate a mechanically ventilated adult (Vt 500 mL, RR 15/min, and PEEP 5 cmH 2 O, using two inspiratory flow rates 40 and 50 L/min) using an intubated adult manikin with an endotracheal tube (8 mmID). The bronchi of the manikin were connected to a Y-adapter through a collecting filter (Respirgard II) attached to a test lung through a heated humidifier (37°C producing 100% relative humidity) to simulate exhaled humidity. For treatment conditions, a nonfiltered HME (ThermoFlo™ 6070; ARC Medical) and filtered HMEs (ThermoFlo™ Filter; ARC Medical and PALL Ultipor; Pall Medical) were placed between the ventilator circuit at the endotracheal tube and allowed to acclimate to the exhaled heat and humidity for 30 minutes before aerosol administration. Airway resistance (cmH 2 O/L/s) was taken at 0, 10, 20, and 30 minutes after HME placement and after each of four aerosol treatments. Albuterol sulfate (2.5 mg/3 mL) was administered with jet (Misty Max 10; Airlife) and mesh (Aerogen Solo; Aerogen) nebulizers positioned in the inspiratory limb proximal to the Y-adapter. Control consisted of nebulization with no HME. Drug was eluted from filter at the end of the trachea and measured using spectrophotometry (276 nm). Greater than 60% of the control dose was delivered through the ThermoFlo. No significant difference was found between the first four treatments given by the jet (p = 0.825) and the mesh (p = 0.753) nebulizers. There is a small increase in Raw between pre- and post-four treatments with the jet (p = 0.001) and mesh (p = 0.015) nebulizers. Aerosol

  1. Maternal Diesel Inhalation Increases Airway Hyperreactivity in Ozone Exposed Offspring

    EPA Science Inventory

    Air pollutant exposure is linked with childhood asthma incidence and exacerbations, and maternal exposure to airborne pollutants during pregnancy increases airway hyperreactivity (ARR) in offspring. To determine if exposure to diesel exhaust during pregnancy worsened postnatal oz...

  2. Forced oscillometry track sites of airway obstruction in bronchial asthma.

    PubMed

    Hafez, Manal Refaat; Abu-Bakr, Samiha Mohamed; Mohamed, Alyaa Abdelnaser

    2015-07-01

    Spirometry is the most commonly used method for assessment of airway function in bronchial asthma but has several limitations. Forced oscillometry was developed as a patient-friendly test that requires passive cooperation of the patient breathing normally through the mouth. To compare spirometry with forced oscillometry to assess the role of forced oscillometry in the detection of the site of airway obstruction. This case-and-control study included 50 patients with known stable asthma and 50 age- and sex-matched healthy subjects. All participants underwent spirometry (ratio of force expiration volume in 1 second to forced vital capacity, percentage predicted for forced expiration volume in 1 second, percentage predicted for forced vital capacity, percentage predicted for vital capacity, and forced expiratory flow at 25-75%) and forced oscillometry (resistance at 5, 20, and 5-20 Hz). By spirometry, all patients with asthma had airway obstruction, 8% had isolated small airway obstruction, 10% had isolated large airway obstruction, and 82% had large and small airway obstruction. By forced oscillometry, 12% had normal airway resistance, 50% had isolated small airway obstruction with frequency-dependent resistance, and 38% had large and small airway obstruction with frequency-independent resistance. There was significant difference between techniques for the detection of the site of airway obstruction (P = .012). Forced oscillometry indices were negatively correlated with spirometric indices (P < .01). Forced oscillometry as an effortless test, conducted during quiet tidal breathing, and does not alter airway caliber; thus, it can detect normal airway function better than spirometry in patients with asthma. Forced oscillometry detects isolated small airway obstruction better than spirometry in bronchial asthma. Copyright © 2015 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. Protective effects of valproic acid against airway hyperresponsiveness and airway remodeling in a mouse model of allergic airways disease.

    PubMed

    Royce, Simon G; Dang, William; Ververis, Katherine; De Sampayo, Nishika; El-Osta, Assam; Tang, Mimi L K; Karagiannis, Tom C

    2011-12-01

    Airway remodeling and airway hyperresponsiveness are major aspects of asthma pathology that are not targeted optimally by existing anti-inflammatory drugs. Histone deacetylase inhibitors have a wide range of effects that may potentially abrogate aspects of remodeling. One such histone deacetylase inhibitor is valproic acid (2-propylvaleric acid). Valproic acid is used clinically as an anti-epileptic drug and is a potent inhibitor of class I histone deacetylases but also inhibits class II histone deacetylases. We used valproic acid as a molecular model of histone deacetylase inhibition in vivo in chronic allergic airways disease mice with airway remodeling and airway hyperresponsiveness. Wild-type Balb/c mice with allergic airways disease were treated with valproic acid or vehicle control. Airway inflammation was assessed by bronchoalveolar lavage fluid cell counts and examination of lung tissue sections. Remodeling was assessed by morphometric analysis of histochemically stained slides and lung function was assessed by invasive plethysmography measurement of airway resistance. Valproic acid treatment did not affect inflammation parameters; however, valproic acid treatment resulted in reduced epithelial thickness as compared to vehicle treated mice (p < 0.01), reduced subepithelial collagen deposition (p < 0.05) and attenuated airway hyperresponsiveness (p < 0.05 and p < 0.01 for the two highest doses of methacholine, respectively). These findings show that treatment with valproic acid can reduce structural airway remodeling changes and hyperresponsiveness, providing further evidence for the potential use of histone deacetylase inhibitors for the treatment of asthma.

  4. Administration of SIN-1 induces guinea pig airway hyperresponsiveness through inactivation of airway neutral endopeptidase.

    PubMed

    Kanazawa, H; Hirata, K; Yoshikawa, J

    1999-12-01

    Peroxynitrite plays an important role in the pathogenesis of airway inflammation. We have already found that peroxynitrite may contribute to decreased beta(2)-adrenoceptor responses in airway smooth muscle. However, it is not known whether peroxynitrite can alter neutral endopeptidase (EC 3.4.24.11; NEP) activity in the airways. This study was designed to determine whether peroxynitrite induces airway hyperresponsiveness to substance P (SP) and endothelin-1 (ET-1) through the inactivation of airway NEP. We examined whether the administration of S-morpholinosydnonimine (SIN-1), a compound that releases peroxynitrite, increased bronchoconstrictor responses to SP and ET-1 in anesthetized guinea pigs. In addition, we assayed NEP activity in the airways of SIN-1-exposed guinea pigs. Though SIN-1 (10(-7) M) alone had no effect on pulmonary resistance, pretreatment with SIN-1 significantly enhanced SP- and ET-1-induced bronchoconstriction. Pretreatment with phosphoramidon, an NEP inhibitor, also enhanced SP- and ET-1-induced bronchoconstriction. However, simultaneous administration of phosphoramidon and SIN-1 had no additive effect on SP- and ET-1-induced bronchoconstriction. Peroxynitrite formation by SIN-1 was completely inhibited by N-acetylcysteine (NAC) and glutathione (GSH) in vitro, and pretreatment with NAC and GSH significantly reversed the potentiation by SIN-1 of SP-induced bronchoconstriction. In addition, the NEP activity of the trachea after SIN-1 exposure was significantly reduced compared to the level in control guinea pigs (solvent for SIN-1: 30.0+/-4.2 fmol.min(-1).mg tissue(-1); 10(-7) M SIN-1; 15.5+/-4.5 fmol.min(-1).mg tissue(-1), p<0.05). These findings suggest that peroxynitrite induces airway hyperresponsiveness to SP and ET-1 through the inactivation of airway NEP, and that peroxynitrite is an important mediator of the alterations in airway functions.

  5. The effects of thiopental and generic and nongeneric propofol on respiratory resistance during anesthetic induction in patients with reactive airways.

    PubMed

    Arain, Shahbaz R; Navani, Annu; Ebert, Thomas J

    2002-06-01

    To demonstrate a favorable effect of propofol on respiratory system resistance during anesthetic induction, and to determine if generic propofol causes adverse effects on respiratory resistance. Randomized pilot study. Anesthetic induction for elective surgery. 27 consenting ASA physical status II and III patients with reactive airways (positive smoking history or chronic obstructive pulmonary disease), but not receiving bronchodilator therapy. Patients were randomized equally to one of three anesthetic induction (and maintenance) drugs: sodium thiopental, 5 mg/kg (25 microg/kg/min), generic or nongeneric propofol, 1.25 mg/kg (50 microg/kg/min). They received preinduction midazolam and fentanyl (2 mg and 150 microg) and intravenous lidocaine (0.5 mg/kg). After anesthetic induction, tracheal intubation was established, and predetermined settings for mechanical ventilation were initiated. Immediately after intubation, a sensor was placed on the 8-mm endotracheal tube to detect baseline airway pressure and flow. During maintenance, repeat measurements of pressure and flow were obtained at 2.5-minute intervals for 10 minutes. Respiratory system resistance was derived off-line using the isovolumetric technique. Patients were similar across groups. The respiratory resistance measured after anesthetic induction did not differ among groups. During the maintenance infusion of thiopental or propofol, respiratory resistance increased gradually across all groups. There was no difference in the response of respiratory resistance either at induction or during the 10-minute maintenance between the generic and the nongeneric propofol groups. In contrast to earlier reports, this pilot study was unable to document a difference in the respiratory resistance in patients induced with thiopental or propofol. In addition, we were unable to demonstrate any different respiratory responses between generic propofol, containing sodium metabisulfite preservative, and nongeneric propofol.

  6. Oral Sulforaphane increases Phase II antioxidant enzymes in the human upper airway

    PubMed Central

    Riedl, Marc A.; Saxon, Andrew; Diaz-Sanchez, David

    2009-01-01

    Background Cellular oxidative stress is an important factor in asthma and is thought to be the principle mechanism by which oxidant pollutants such as ozone and particulates mediate their pro-inflammatory effects. Endogenous Phase II enzymes abrogate oxidative stress through the scavenging of reactive oxygen species and metabolism of reactive chemicals. Objective We conducted a placebo-controlled dose escalation trial to investigate the in vivo effects of sulforaphane, a naturally occurring potent inducer of Phase II enzymes, on the expression of glutathione-s-transferase M1 (GSTM1), glutathione-s-transferase P1 (GSTP1), NADPH quinone oxidoreductase (NQO1), and hemoxygenase-1 (HO-1) in the upper airway of human subjects. Methods Study subjects consumed oral sulforaphane doses contained in a standardized broccoli sprout homogenate (BSH). RNA expression for selected Phase II enzymes was measured in nasal lavage cells by RT-PCR before and after sulforaphane dosing. Results All subjects tolerated oral sulforaphane dosing without significant adverse events. Increased Phase II enzyme expression in nasal lavage cells occurred in a dose-dependent manner with maximal enzyme induction observed at the highest dose of 200 grams broccoli sprouts prepared as BSH. Significant increases were seen in all sentinel Phase II enzymes RNA expression compared to baseline. Phase II enzyme induction was not seen with ingestion of non-sulforaphane containing alfalfa sprouts. Conclusion Oral sulforaphane safely and effectively induces mucosal Phase II enzyme expression in the upper airway of human subjects. This study demonstrates the potential of antioxidant Phase II enzymes induction in the human airway as a strategy to reduce the inflammatory effects of oxidative stress. Clinical Implications This study demonstrates the potential of enhancement of Phase II enzyme expression as a novel therapeutic strategy for oxidant induced airway disease. Capsule Summary A placebo-controlled dose

  7. Theoretical and experimental evaluation of the effects of an argon gas mixture on the pressure drop through adult tracheobronchial airway replicas.

    PubMed

    Litwin, Patrick D; Reis Dib, Anna Luisa; Chen, John; Noga, Michelle; Finlay, Warren H; Martin, Andrew R

    2017-06-14

    Argon has the potential to be a novel inhaled therapeutic agent, owing to the neuroprotective and organoprotective properties demonstrated in preclinical studies. Before human trials are performed, an understanding of varying gas properties on airway resistance during inhalation is essential. This study predicts the effect of an 80% argon/20% oxygen gas mixture on the pressure drop through conducting airways, and by extension the airway resistance, and then verifies these predictions experimentally using 3-D printed adult tracheobronchial airway replicas. The predicted pressure drop was calculated using established analytical models of airway resistance, incorporating the change in viscosity and density of the 80% argon/20% oxygen mixture versus that of air. Predicted pressure drop for the argon mixture increased by approximately 29% compared to that for air. The experimental results were consistent with this prediction for inspiratory flows ranging from 15 to 90slpm. These results indicate that established analytical models may be used to predict increases in conducting airway resistance for argon/oxygen mixtures, compared with air. Such predictions are valuable in predicting average patient response to breathing argon/oxygen mixtures, and in selecting or designing delivery systems for use in administration of argon/oxygen mixtures to critically ill or injured patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Inhibition of neutral endopeptidase increases airway responsiveness to ACh in nonsensitized normal rats.

    PubMed

    Chiba, Y; Misawa, M

    1995-02-01

    The effects of sensory neuropeptides on the airway responsiveness to acetylcholine (ACh) were investigated in normal nonsensitized rats. The airway responsiveness to inhaled ACh was significantly increased after treatment with neurokinin A (NKA; 0.001%) or substance P (SP; 0.01%) aerosol in the presence of the neutral endopeptidase (NEP) inhibitor. NKA had a more potent effect than SP. Interestingly, the intravenous treatment with NEP inhibitor alone also induced airway hyperresponsiveness (AHR) to inhaled ACh. This AHR was significantly attenuated by pretreatment with a nonselective NK-receptor antagonist, [D-Pro2,D-Trp7,9]SP, systemic capsaicin, or bilateral cervical vagotomy, indicating that decreased NEP activity results in accumulation of endogenous sensory neuropeptide(s) and enhancement of vagal reflex to cause AHR. The airway responsiveness to ACh of isolated left main bronchus was also increased after treatment with 10(-6) M NKA, but not SP, together with 10(-6) M phosphoramidon. This in vitro AHR to ACh induced by phosphoramidon plus NKA was significantly attenuated by pretreatment with 10(-6) M tetrodotoxin. These findings suggest that overaccumulated sensory neuropeptides, especially NKA, may enhance the probability of transmitter release, probably via NK2 receptors, and that the enhanced transmitter release might be involved in AHR in rats.

  9. Acrolein increases airway sensitivity to substance P and decreases NEP activity in guinea pigs.

    PubMed

    Turner, C R; Stow, R B; Hubbs, S J; Gomes, B C; Williams, J C

    1993-04-01

    The effects of acrolein exposure on airway responses to intravenous substance P were determined in guinea pigs exposed to vehicle or 1.6 ppm acrolein for 7.5 h on 2 consecutive days and examined 1, 4, 8, 15, and 28 days after exposure by use of pulmonary mechanics and bronchoalveolar lavage (BAL). Lung, trachea, liver, and BAL fluid were also assayed for neutral endopeptidase (NEP) activity 1, 7, and 28 days after exposure. Pulmonary inflammation and epithelial damage were prominent 1 day after acrolein exposure. NEP activity was decreased in the lungs, trachea, and liver 1 and 7 days after acrolein. Twenty-eight days after exposure, NEP activity in the lungs and liver was not significantly different in vehicle- and acrolein-exposed guinea pigs but was still reduced in tracheal tissue. The BAL NEP activity in acrolein-exposed guinea pigs was approximately twice that of vehicle control guinea pigs at all three time points. Acrolein caused a prolonged increase in airway sensitivity to substance P. Experiments performed in the presence of thiorphan suggested that the acrolein-induced reduction in NEP may contribute to increased airway sensitivity to aerosolized substance P, but the increase in airway sensitivity to intravenous substance P may occur by additional mechanisms.

  10. Role of upper airway in ventilatory control in awake and sleeping dogs.

    PubMed

    Stradling, J R; England, S J; Harding, R; Kozar, L F; Andrey, S; Phillipson, E A

    1987-03-01

    We examined the role of the upper airway in the regulation of the pattern of breathing in six adult dogs during wakefulness and sleep. The dogs breathed through a fenestrated endotracheal tube inserted through a tracheostomy. The tube was modified to allow airflow to be directed either through the nose or through the tracheostomy. When airflow was diverted from nose to tracheostomy there was an abrupt increase in the rate of expiratory airflow, resulting in prolongation of the end-expiratory pause but no change in overall expiratory duration or respiratory frequency. Furthermore, electromyogram recordings from implanted diaphragmatic and laryngeal muscle electrodes did not show any changes that could be interpreted as an attempt to delay expiratory airflow or increase end-expiratory lung volume. The effects of switching from nose to tracheostomy breathing could be reversed by adding a resistance to the endotracheal tube so as to approximate upper airway resistance. The findings indicate that under normal conditions in the adult dog upper airway receptors play little role in regulation of respiratory pattern and that the upper airway exerts little influence on the maintenance of end-expiratory lung volume.

  11. Effect of prophylactic bronchodilator treatment with intravenous colforsin daropate, a water-soluble forskolin derivative, on airway resistance after tracheal intubation.

    PubMed

    Wajima, Zen'ichiro; Shiga, Toshiya; Yoshikawa, Tatsusuke; Ogura, Akira; Imanaga, Kazuyuki; Inoue, Tetsuo; Ogawa, Ryo

    2003-07-01

    After induction of anesthesia, lung resistance increases. The authors hypothesized that prophylactic bronchodilator treatment with intravenous colforsin daropate, a water-soluble forskolin derivative, before tracheal intubation would result in decreased lung resistance and increased lung compliance after tracheal intubation when compared with placebo medication. Forty-six adult patients were randomized to placebo or colforsin daropate treatment. Patients in the control group received normal saline; patients in the colforsin group received 0.75 microg. kg-1 x min-1 colforsin daropate intravenously until the study ended. Thirty minutes after the study began, the authors administered 5 mg/kg thiamylal and 5 microg/kg fentanyl for induction of general anesthesia and 0.3 mg/kg vecuronium for muscle relaxation. A 15-mg. kg-1. h-1 continuous infusion of thiamylal followed anesthetic induction. Four, 8, 12, and 16 min after tracheal intubation, mean airway resistance (R(awm)), expiratory airway resistance (R(awe)), and dynamic lung compliance (C(dyn)) were measured. Patients in the colforsin group had significantly lower R(awm) and R(awe) and higher C(dyn) after intubation than those in the control group. Differences in R(awm), R(awe), and C(dyn) between the two groups persisted through the final measurement at 16 min. At 4 min after intubation, smokers had a higher R(awm) and a lower C(dyn) than nonsmokers in the control group. After treatment by intravenous colforsin daropate, R(awm), R(awe), and C(dyn) values were similar for smokers and nonsmokers after tracheal intubation. Prophylactic treatment with colforsin daropate produced lower R(awm) and R(awe) and higher C(dyn) after tracheal intubation when compared with placebo medication. Pretreatment before intubation may be beneficial and advantageous for middle-aged smokers.

  12. Investigating the effects of laryngotracheal stenosis on upper airway aerodynamics.

    PubMed

    Cheng, Tracy; Carpenter, David; Cohen, Seth; Witsell, David; Frank-Ito, Dennis O

    2018-04-01

    Very little is known about the impact of laryngotracheal stenosis (LTS) on inspiratory airflow and resistance, especially in air hunger states. This study investigates the effect of LTS on airway resistance and volumetric flow across three different inspiratory pressures. Head-and-neck computed tomography scans of 11 subjects from 2010 to 2016 were collected. Three-dimensional reconstructions of the upper airway from the nostrils to carina, including the oral cavity, were created for one subject with a normal airway and for 10 patients with LTS. Airflow simulations were conducted using computational fluid dynamics modeling at three different inspiratory pressures (10, 25, 40 pascals [Pa]) for all subjects under two scenarios: 1) inspiration through nostrils only (MC), and 2) through both nostrils and mouth (MO). Volumetric flows in the normal subject at the three inspiratory pressures were considerably higher (MC: 11.8-26.1 L/min; MO: 17.2-36.9 L/min) compared to those in LTS (MC: 2.86-6.75 L/min; MO: 4.11-9.00 L/min). Airway resistances in the normal subject were 0.051 to 0.092 pascal seconds per milliliter (Pa.s)/mL (MC) and 0.035-0.065 Pa.s/mL (MO), which were approximately tenfold lower than those of subjects with LTS: 0.39 to 0.89 Pa.s/mL (MC) and 0.45 to 0.84 Pa.s/mL (MO). Furthermore, subjects with glottic stenosis had the greatest resistance, whereas subjects with subglottic stenosis had the greatest variability in resistance. Subjects with tracheal stenosis had the lowest resistance. This pilot study demonstrates that LTS increases resistance and decreases airflow. Mouth breathing significantly improved airflow and resistance but cannot completely compensate for the effects of stenosis. Furthermore, location of stenosis appears to modulate the effect of the stenosis on resistance differentially. NA. Laryngoscope, 128:E141-E149, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  13. Responses of lung parenchyma and airways to tachykinin peptides in piglets.

    PubMed

    Dreshaj, I A; Martin, R J; Miller, M J; Haxhiu, M A

    1994-07-01

    The tachykinin peptides substance P (SP) and neurokinin A (NKA) have been shown to induce tracheal smooth muscle contraction in piglets, and the enzyme neutral endopeptidase has been shown to modulate this effect. In these studies, we compared the SP and NKA responsiveness of piglet airways and lung parenchymal tissues in anesthetized paralyzed open-chest piglets 2-3 wk old, partitioning total lung resistance (RL) into airway resistance (Raw) and tissue resistance (Rti). During tidal breathing, pressure was measured at the trachea and in two alveolar regions by means of alveolar capsules. Intravenous administration of SP caused concentration-dependent increases in Rti and Raw and a decrease in dynamic lung compliance. Under baseline conditions, Rti contributed 74.6 +/- 1.9% (SE) of RL, and at any level of constriction, Rti accounted for > 50% of RL. The responses of Rti and Raw to NKA were negligible and were always significantly weaker than those to SP. These results indicate that both central airways and tissue contractile elements respond vigorously to SP, but not to NKA, in maturing piglets.

  14. Upper airway resistance syndrome. Central electroencephalographic power and changes in breathing effort.

    PubMed

    Black, J E; Guilleminault, C; Colrain, I M; Carrillo, O

    2000-08-01

    Upper airway resistance syndrome (UARS) is defined by excessive daytime sleepiness and tiredness, and is associated with increased breathing effort. Its polygraphic features involve progressive increases in esophageal pressure (Pes), terminated by arousal (AR) as defined by the American Sleep Disorders Association (ASDA). With the arousal there is an abrupt decrease in Pes, called Pes reversal. However, Pes reversal can be seen without the presence of an AR. We performed spectral analysis on electroencephalographic data from a central lead for both AR and nonarousal (N-AR) events obtained from 15 UARS patients (eight men and seven women). Delta band activity was increased before and surrounding Pes reversal regardless of the presence or absence of AR. In the period after Pes reversal, alpha, sigma, and beta activity showed a greater increase in AR events than in N-AR events. The Pes measures were identical leading up to the point of reversal, but showed a longer-lasting and significantly greater decrease in respiratory effort after an AR. The data indicate that substantial electroencephalographic changes can be identified in association with Pes events, even when ARs cannot be detected according to standard criteria; however, visually identifiable electroencephalographic arousals clearly have a greater impact on ongoing inspiratory effort.

  15. Anatomic Optical Coherence Tomography of Upper Airways

    NASA Astrophysics Data System (ADS)

    Chin Loy, Anthony; Jing, Joseph; Zhang, Jun; Wang, Yong; Elghobashi, Said; Chen, Zhongping; Wong, Brian J. F.

    The upper airway is a complex and intricate system responsible for respiration, phonation, and deglutition. Obstruction of the upper airways afflicts an estimated 12-18 million Americans. Pharyngeal size and shape are important factors in the pathogenesis of airway obstructions. In addition, nocturnal loss in pharyngeal muscular tone combined with high pharyngeal resistance can lead to collapse of the airway and periodic partial or complete upper airway obstruction. Anatomical optical coherence tomography (OCT) has the potential to provide high-speed three-dimensional tomographic images of the airway lumen without the use of ionizing radiation. In this chapter we describe the methods behind endoscopic OCT imaging and processing to generate full three dimensional anatomical models of the human airway which can be used in conjunction with numerical simulation methods to assess areas of airway obstruction. Combining this structural information with flow dynamic simulations, we can better estimate the site and causes of airway obstruction and better select and design surgery for patients with obstructive sleep apnea.

  16. Airway and alveolar nitric oxide production, lung function, and pulmonary blood flow in sickle cell disease.

    PubMed

    Lunt, Alan; Ahmed, Na'eem; Rafferty, Gerrard F; Dick, Moira; Rees, David; Height, Sue; Thein, Swee Lay; Greenough, Anne

    2016-02-01

    Children with sickle cell disease (SCD) often have obstructive lung function abnormalities which could be due to asthma or increased pulmonary blood volume; it is important to determine the underlying mechanism to direct appropriate treatment. In asthmatics, exhaled nitric oxide (FeNO) is elevated. FeNO, however, can also be raised due to increased alveolar production. Our aim, therefore, was to determine if airway or alveolar NO production differed between SCD children and ethnic and age-matched controls. Lung function, airway NO flux and alveolar NO production, and effective pulmonary blood flow were assessed in 18 SCD children and 18 ethnic and age-matched controls. The SCD children compared to the controls had a higher respiratory system resistance (P = 0.0008), alveolar NO production (P = 0.0224), and pulmonary blood flow (P < 0.0001), but not airway NO flux. There was no significant correlation between FeNO and respiratory system resistance in either group, but in the SCD children, there were correlations between alveolar NO production (P = 0.0006) and concentration (P < 0.0001) and pulmonary blood flow. Airway NO flux was not elevated in the SCD children nor correlated with airways obstruction, suggesting that airways obstruction, at least in some SCD children, is not due to asthma.

  17. Pro-inflammatory mediators disrupt glucose homeostasis in airway surface liquid ‡

    PubMed Central

    Garnett, James P.; Nguyen, Trang T.; Moffatt, James D.; Pelham, Elizabeth R.; Kalsi, Kameljit K.; Baker, Emma H.; Baines, Deborah L.

    2012-01-01

    The glucose concentration of the airway surface liquid (ASL) is much lower than blood and is tightly regulated by the airway epithelium. ASL glucose is elevated in patients with viral colds, cystic fibrosis, chronic obstructive pulmonary disease (COPD) and asthma. Elevated ASL glucose is also associated with increased incidence of respiratory infection. However, the mechanism by which ASL glucose increases under inflammatory conditions is unknown. The aim of this study was to investigate the effect of pro-inflammatory mediators (PIMs) on the mechanisms governing airway glucose homeostasis in polarised monolayers of human airway (H441) and primary human bronchial epithelial (HBE) cells. Monolayers were treated with TNF-α, IFN-γ and LPS over 72 hours. PIM treatment led to increase in ASL glucose concentration and significantly reduced H441 and HBE transepithelial resistance (RT). This decline in RT was associated with an increase in paracellular permeability of glucose. Similar enhanced rates of paracellular glucose flux were also observed across excised trachea from LPS-treated mice. Interestingly, PIMs enhanced glucose uptake across the apical, but not the basolateral, membrane of H441 and HBE monolayers. This increase was predominantly via phloretin-sensitive GLUT-mediated uptake, which coincided with an increase in GLUT2 and GLUT10 abundance. In conclusion, exposure of airway epithelial monolayers to PIMs results in increased paracellular glucose flux, and apical GLUT-mediated glucose uptake. However uptake was insufficient to limit glucose accumulation in ASL. These data provide for the first time, a mechanism to support clinical findings that ASL glucose concentration is increased in patients with airway inflammation. PMID:22623330

  18. Hyaluronan mediates airway hyperresponsiveness in oxidative lung injury

    PubMed Central

    Lazrak, Ahmed; Creighton, Judy; Yu, Zhihong; Komarova, Svetlana; Doran, Stephen F.; Aggarwal, Saurabh; Emala, Charles W.; Stober, Vandy P.; Trempus, Carol S.; Garantziotis, Stavros

    2015-01-01

    Chlorine (Cl2) inhalation induces severe oxidative lung injury and airway hyperresponsiveness (AHR) that lead to asthmalike symptoms. When inhaled, Cl2 reacts with epithelial lining fluid, forming by-products that damage hyaluronan, a constituent of the extracellular matrix, causing the release of low-molecular-weight fragments (L-HA, <300 kDa), which initiate a series of proinflammatory events. Cl2 (400 ppm, 30 min) exposure to mice caused an increase of L-HA and its binding partner, inter-α-trypsin-inhibitor (IαI), in the bronchoalveolar lavage fluid. Airway resistance following methacholine challenge was increased 24 h post-Cl2 exposure. Intratracheal administration of high-molecular-weight hyaluronan (H-HA) or an antibody against IαI post-Cl2 exposure decreased AHR. Exposure of human airway smooth muscle (HASM) cells to Cl2 (100 ppm, 10 min) or incubation with Cl2-exposed H-HA (which fragments it to L-HA) increased membrane potential depolarization, intracellular Ca2+, and RhoA activation. Inhibition of RhoA, chelation of intracellular Ca2+, blockade of cation channels, as well as postexposure addition of H-HA, reversed membrane depolarization in HASM cells. We propose a paradigm in which oxidative lung injury generates reactive species and L-HA that activates RhoA and Ca2+ channels of airway smooth muscle cells, increasing their contractility and thus causing AHR. PMID:25747964

  19. Gadolinium prevents high airway pressure-induced permeability increases in isolated rat lungs.

    PubMed

    Parker, J C; Ivey, C L; Tucker, J A

    1998-04-01

    To determine the initial signaling event in the vascular permeability increase after high airway pressure injury, we compared groups of lungs ventilated at different peak inflation pressures (PIPs) with (gadolinium group) and without (control group) infusion of 20 microM gadolinium chloride, an inhibitor of endothelial stretch-activated cation channels. Microvascular permeability was assessed by using the capillary filtration coefficient (Kfc), a measure of capillary hydraulic conductivity. Kfc was measured after ventilation for 30-min periods with 7, 20, and 30 cmH2O PIP with 3 cmH2O positive end-expiratory pressure and with 35 cmH2O PIP with 8 cmH2O positive end-expiratory pressure. In control lungs, Kfc increased significantly to 1.8 and 3.7 times baseline after 30 and 35 cmH2O PIP, respectively. In the gadolinium group, Kfc was unchanged from baseline (0.060 +/- 0.010 ml . min-1 . cmH2O-1 . 100 g-1) after any PIP ventilation period. Pulmonary vascular resistance increased significantly from baseline in both groups before the last Kfc measurement but was not different between groups. These results suggest that microvascular permeability is actively modulated by a cellular response to mechanical injury and that stretch-activated cation channels may initiate this response through increases in intracellular calcium concentration.

  20. A Computational Study of the Respiratory Airflow Characteristics in Normal and Obstructed Human Airways

    DTIC Science & Technology

    2014-01-01

    normal and three different obstructed airway geometries, consisting of symmetric, asym- metric, and random obstructions. Fig. 2 shows the geometric ...normal and obstructed airways Airway resistance is a measure of the opposition to the airflow caused by geometric properties, such as airway obstruction...pressure drops. Resistance values were dependent on the degree and geometric distribution of the obstruction sites. In the symmetric obstruction model

  1. Application of process improvement principles to increase the frequency of complete airway management documentation.

    PubMed

    McCarty, L Kelsey; Saddawi-Konefka, Daniel; Gargan, Lauren M; Driscoll, William D; Walsh, John L; Peterfreund, Robert A

    2014-12-01

    Process improvement in healthcare delivery settings can be difficult, even when there is consensus among clinicians about a clinical practice or desired outcome. Airway management is a medical intervention fundamental to the delivery of anesthesia care. Like other medical interventions, a detailed description of the management methods should be documented. Despite this expectation, airway documentation is often insufficient. The authors hypothesized that formal adoption of process improvement methods could be used to increase the rate of "complete" airway management documentation. The authors defined a set of criteria as a local practice standard of "complete" airway management documentation. The authors then employed selected process improvement methodologies over 13 months in three iterative and escalating phases to increase the percentage of records with complete documentation. The criteria were applied retrospectively to determine the baseline frequency of complete records, and prospectively to measure the impact of process improvements efforts over the three phases of implementation. Immediately before the initial intervention, a retrospective review of 23,011 general anesthesia cases over 6 months showed that 13.2% of patient records included complete documentation. At the conclusion of the 13-month improvement effort, documentation improved to a completion rate of 91.6% (P<0.0001). During the subsequent 21 months, the completion rate was sustained at an average of 90.7% (SD, 0.9%) across 82,571 general anesthetic records. Systematic application of process improvement methodologies can improve airway documentation and may be similarly effective in improving other areas of anesthesia clinical practice.

  2. A Continuous Quality Improvement Airway Program Results in Sustained Increases in Intubation Success.

    PubMed

    Olvera, David J; Stuhlmiller, David F E; Wolfe, Allen; Swearingen, Charles F; Pennington, Troy; Davis, Daniel P

    2018-02-21

    Airway management is a critical skill for air medical providers, including the use of rapid sequence intubation (RSI) medications. Mediocre success rates and a high incidence of complications has challenged air medical providers to improve training and performance improvement efforts to improve clinical performance. The aim of this research was to describe the experience with a novel, integrated advanced airway management program across a large air medical company and explore the impact of the program on improvement in RSI success. The Helicopter Advanced Resuscitation Training (HeART) program was implemented across 160 bases in 2015. The HeART program includes a novel conceptual framework based on thorough understanding of physiology, critical thinking using a novel algorithm, difficult airway predictive tools, training in the optimal use of specific airway techniques and devices, and integrated performance improvement efforts to address opportunities for improvement. The C-MAC video/direct laryngoscope and high-fidelity human patient simulation laboratories were implemented during the study period. Chi-square test for trend was used to evaluate for improvements in airway management and RSI success (overall intubation success, first-attempt success, first-attempt success without desaturation) over the 25-month study period following HeART implementation. A total of 5,132 patients underwent RSI during the study period. Improvements in first-attempt intubation success (85% to 95%, p < 0.01) and first-attempt success without desaturation (84% to 94%, p < 0.01) were observed. Overall intubation success increased from 95% to 99% over the study period, but the trend was not statistically significant (p = 0.311). An integrated advanced airway management program was successful in improving RSI intubation performance in a large air medical company.

  3. Loss of anion transport without increased sodium absorption characterizes newborn porcine cystic fibrosis airway epithelia

    PubMed Central

    Chen, Jeng-Haur; Stoltz, David A.; Karp, Philip H.; Ernst, Sarah E.; Pezzulo, Alejandro A.; Moninger, Thomas O.; Rector, Michael V.; Reznikov, Leah R.; Launspach, Janice L.; Chaloner, Kathryn; Zabner, Joseph; Welsh, Michael J.

    2011-01-01

    SUMMARY Defective transepithelial electrolyte transport is thought to initiate cystic fibrosis (CF) lung disease. Yet, how loss of CFTR affects electrolyte transport remains uncertain. CFTR−/− pigs spontaneously develop lung disease resembling human CF. At birth, their airways exhibit a bacterial host defense defect, but are not inflamed. Therefore, we studied ion transport in newborn nasal and tracheal/bronchial epithelia in tissue, cultures, and in vivo. CFTR−/− epithelia showed markedly reduced Cl− and HCO3− transport. However, in contrast to a widely held view, lack of CFTR did not increase transepithelial Na+ or liquid absorption or reduce periciliary liquid depth. Like human CF, CFTR−/− pigs showed increased amiloride-sensitive voltage and current, but lack of apical Cl− conductance caused the change, not increased Na+ transport. These results indicate that CFTR provides the predominant transcellular pathway for Cl− and HCO3− in porcine airway epithelia, and reduced anion permeability may initiate CF airway disease. PMID:21145458

  4. Trefoil factor-2 reverses airway remodeling changes in allergic airways disease.

    PubMed

    Royce, Simon G; Lim, Clarice; Muljadi, Ruth C; Samuel, Chrishan S; Ververis, Katherine; Karagiannis, Tom C; Giraud, Andrew S; Tang, Mimi L K

    2013-01-01

    Trefoil factor 2 (TFF2) is a small peptide with an important role in mucosal repair. TFF2 is up-regulated in asthma, suggesting a role in asthma pathogenesis. Given its known biological role in promoting epithelial repair, TFF2 might be expected to exert a protective function in limiting the progression of airway remodeling in asthma. The contribution of TFF2 to airway remodeling in asthma was investigated by examining the expression of TFF2 in the airway and lung, and evaluating the effects of recombinant TFF2 treatment on established airway remodeling in a murine model of chronic allergic airways disease (AAD). BALB/c mice were sensitized and challenged with ovalbumin (OVA) or saline for 9 weeks, whereas mice with established OVA-induced AAD were treated with TFF2 or vehicle control (intranasally for 14 d). Effects on airway remodeling, airway inflammation, and airway hyperresponsiveness were then assessed, whereas TFF2 expression was determined by immunohistochemistry. TFF2 expression was significantly increased in the airways of mice with AAD, compared with expression levels in control mice. TFF2 treatment resulted in reduced epithelial thickening, subepithelial collagen deposition, goblet-cell metaplasia, bronchial epithelium apoptosis, and airway hyperresponsiveness (all P < 0.05, versus vehicle control), but TFF2 treatment did not influence airway inflammation. The increased expression of endogenous TFF2 in response to chronic allergic inflammation is insufficient to prevent the progression of airway inflammation and remodeling in a murine model of chronic AAD. However, exogenous TFF2 treatment is effective in reversing aspects of established airway remodeling. TFF2 has potential as a novel treatment for airway remodeling in asthma.

  5. Detection of the airway obstruction stage in asthma using impulse oscillometry system.

    PubMed

    Qi, Guang-Sheng; Zhou, Zhi-Cai; Gu, Wen-Chao; Xi, Feng; Wu, Hao; Yang, Wen-Lan; Liu, Jin-Ming

    2013-02-01

    Although spirometry is the most common method for evaluating the airway obstruction stage in asthma patients, it is difficult to perform in some patients. The aim of this study was to evaluate whether impulse oscillometry, an easy-to-perform technique, can detect asthmatic airway obstruction stage. A total of 80 subjects, including healthy volunteers and patients with asthma, were enrolled in this study. The asthma patients were classified into three groups according to American Thoracic Society (ATS)/European Respiratory Society (ERS)-2005: the mild group (forced expiratory volume in 1 second (FEV(1)) ≥ 70% predicted (Pred), n = 20), the moderate group (50% Pred ≤ FEV(1) <70% Pred, n = 20), and the severe group (FEV(1) < 50% Pred, n = 20). Spirometry and impulse oscillometry (IOS) parameters were obtained from every subject. Correlation analysis was used to compare spirometry measurements and IOS parameters. One-way analysis of variance (ANOVA) was performed to compare IOS parameters among different groups. The potential of using all individual IOS parameters to detect the different stages of asthmatic airway obstruction was evaluated by the receiver operating characteristic (ROC) curve analysis. The correlation analysis showed that IOS parameters, such as respiratory resistance at 5 Hz (R(5)), respiratory resistance at 10 Hz (R(10)), respiratory resistance at 20 Hz (R(20)), difference in resistance between 5 Hz and 20 Hz (R(5-20)), impedance at 5 Hz (Z(5)), resonant frequency (Fres), and area of reactance (AX) were negatively correlated with FEV(1) and peak expiratory flow (PEF), while reactance at 5 Hz (X(5)) was positively correlated with FEV(1) and PEF. The increase in R(5), R(10), R(20), Z(5), R(5-20), Fres, (-X(5)), and AX parameters corresponded significantly with an increase in the airway obstruction stage, as determined by one-way ANOVA . ROC curve analysis revealed that all the IOS parameters studied, except for Fres, were capable of classifying

  6. Effect of ZCR-2060, an antiallergic agent, on antigen-induced immediate- and late-phase increases in airway resistance in sensitized guinea pigs.

    PubMed

    Abe, T; Yoshida, K; Omata, T; Segawa, Y; Matsuda, K; Nagai, H

    1995-01-01

    The effect of 2-[2-[4-(diphenylmethyl)-1-piperadinyl]ethoxy] benzoic acid maleate (ZCR-2060) on passive systemic anaphylaxis (PSA) and antigen-induced immediate- and late-phase increase in airway resistance (Rrs) in either passively or actively sensitized guinea pigs were investigated. ZCR-2060 inhibited PSA in guinea pigs. ID50 values of ZCR-2060, ketotifen, terfenadine and cetirizine on PSA were 0.03, 0.02, 0.8 and 0.3 mg/kg, respectively, when administered orally 1 h before the antigen challenge. The protective effect of ZCR-2060 was observed until 12 h before the antigen challenge. Aeroantigen-induce immediate increase in Rrs in passively sensitized guinea pigs with and without metyrapone treatment was inhibited by ZCR-2060, ketotifen, terfenadine and cetirizine. In contrast, prednisolone did not affect the aeroantigen-induced immediate increase in Rrs in animals not treated with metyrapone, but significantly inhibited the metyrapone-induced enhanced immediate response. In actively sensitized animals, the immediate- and late-phase increases in Rrs were observed within 30 min and between 3 and 8 h after the aeroantigen challenge. Pretreatment with metyrapone accelerated both antigen-induced responses. ZCR-2060 (1 mg/kg) significantly inhibited both responses. Ketotifen (1 mg/kg), terfenadine (10 mg/kg) and prednisolone (10 mg/kg) significantly the inhibited the late-phase response, but did not affect the immediate-phase response. In contrast, Cetirizine (10 mg/kg) did not affect either response. The effect of ZCR-2060 on late-phase response was stronger than that of ketotifen, terfenadine and cetirizine, and was almost the same as that of prednisolone. These results suggest that ZCR-2060 has a potent protective effect on immediate- and late-phase increases in Rrs.

  7. Noninvasive estimation of pharyngeal airway resistance and compliance in children based on volume-gated dynamic MRI and computational fluid dynamics.

    PubMed

    Persak, Steven C; Sin, Sanghun; McDonough, Joseph M; Arens, Raanan; Wootton, David M

    2011-12-01

    Computational fluid dynamics (CFD) analysis was used to model the effect of collapsing airway geometry on internal pressure and velocity in the pharyngeal airway of three sedated children with obstructive sleep apnea syndrome (OSAS) and three control subjects. Model geometry was reconstructed from volume-gated magnetic resonance images during normal tidal breathing at 10 increments of tidal volume through the respiratory cycle. Each geometry was meshed with an unstructured grid and solved using a low-Reynolds number k-ω turbulence model driven by flow data averaged over 12 consecutive breathing cycles. Combining gated imaging with CFD modeling created a dynamic three-dimensional view of airway anatomy and mechanics, including the evolution of airway collapse and flow resistance and estimates of the local effective compliance. The upper airways of subjects with OSAS were generally much more compliant during tidal breathing. Compliance curves (pressure vs. cross-section area), derived for different locations along the airway, quantified local differences along the pharynx and between OSAS subjects. In one subject, the distal oropharynx was more compliant than the nasopharynx (1.028 vs. 0.450 mm(2)/Pa) and had a lower theoretical limiting flow rate, confirming the distal oropharynx as the flow-limiting segment of the airway in this subject. Another subject had a more compliant nasopharynx (0.053 mm(2)/Pa) during inspiration and apparent stiffening of the distal oropharynx (C = 0.0058 mm(2)/Pa), and the theoretical limiting flow rate indicated the nasopharynx as the flow-limiting segment. This new method may help to differentiate anatomical and functional factors in airway collapse.

  8. Exercise-induced airway obstruction in young asthmatics measured by impulse oscillometry.

    PubMed

    Lee, J H; Lee, Y W; Shin, Y S; Jung, Y H; Hong, C S; Park, J W

    2010-01-01

    Impulse oscillometry (IOS) is a good method for measuring airway resistance. It does not require special breathing skills and it can reflect different aspects of airway obstruction to those revealed by spirometry, which is an effort-dependent maneuver. To evaluate the characteristics of airway obstruction in young asthmatics after an exercise bronchial provocation test (EBPT) using IOS. Forty-seven young adults were enrolled in the study. All the participants underwent a methacholine bronchial provocation test (MBPT) and an EBPT for the evaluation of their asthma. IOS and spirometric parameters were collected at baseline and at 0, 5, 10, 20, and 30 minutes post-EBPT.The participants were divided into 2 groups according to MBPT positivity: an airway hyperresponsiveness (AHR) group and a no-AHR group. There were differences in the percent decrease in forced expiratory volume in the first second (FEV1) between the 2 groups at 5, 10, and 20 minutes after exercise. Resistance at 5 Hz (R5) increased in the AHR group but not in the no-AHR group at 5 and 10 minutes after exercise. Integration of reactance from 5 Hz to resonance frequency (area of reactance, AX) was also increased in the AHR group at only 5 and 10 minutes post-EBPT. Delta R5 and delta AX at 5 and 10 minutes post-exercise were well correlated with the percent decrease in FEV1. IOS parameters, especially delta R5 and delta AX, may be useful for performing objective evaluations and improving our understanding of exercise-induced airway obstruction in young asthmatics.

  9. Interleukin(IL)-1 Regulates Ozone-enhanced Tracheal Smooth Muscle Responsiveness by Increasing Substance P (SP) Production in Intrinsic Airway Neurons of Ferret

    PubMed Central

    Wu, Z.-X.; Barker, J. S.; Batchelor, T. P.; Dey, R.D.

    2008-01-01

    Exposure to ozone induces airway hyperresponsiveness (AHR) mediated partly by SP released from nerve terminals of intrinsic airway neurons. Our recent studies showed that IL-1, an important multifunctional proinflammatory cytokine, increases synthesis and release of SP from intrinsic airway neurons. The purpose of this study is to investigate the possible involvement of endogenous IL-1 in modulating neural responses associated with ozone-enhanced airway responsiveness. Ferrets were exposed to 2 ppm ozone or filtered air for 3 hrs. IL-1 in the bronchoalveolar lavage (BAL) fluid was significantly increased in ozone-exposed animals and responses of tracheal smooth muscle to methacholine (MCh) and electrical field stimulation (EFS) were elevated significantly. Both the SP nerve fiber density in tracheal smooth muscle and the number of SP-containing neurons in airway ganglia were significantly increased following ozone exposure. Pretreatment with IL-1 receptor antagonist (IL-1 Ra) significantly diminished ozone-enhanced airway responses to EFS as well as ozone-increased SP in the airway. To selectively investigate intrinsic airway neurons, segments of ferret trachea were maintained in culture conditions for 24 hrs to eliminate extrinsic contributions from sensory nerves. The segments were then exposed to 2 ppm ozone in vitro for 3 hrs. The changes of ozone-induced airway responses to MCh and EFS, and the SP levels in airway neurons paralleled those observed with in vivo ozone exposure. The ozone-enhanced airway responses and neuronal SP levels were inhibited by pretreatment with IL-1 Ra. These findings show that IL-1 is released during ozone exposure enhances airway responsiveness by modulating SP expression in airway neurons. PMID:18718561

  10. Acidic pH increases airway surface liquid viscosity in cystic fibrosis

    PubMed Central

    Tang, Xiao Xiao; Ostedgaard, Lynda S.; Hoegger, Mark J.; Moninger, Thomas O.; Karp, Philip H.; McMenimen, James D.; Choudhury, Biswa; Varki, Ajit; Stoltz, David A.; Welsh, Michael J.

    2016-01-01

    Cystic fibrosis (CF) disrupts respiratory host defenses, allowing bacterial infection, inflammation, and mucus accumulation to progressively destroy the lungs. Our previous studies revealed that mucus with abnormal behavior impaired mucociliary transport in newborn CF piglets prior to the onset of secondary manifestations. To further investigate mucus abnormalities, here we studied airway surface liquid (ASL) collected from newborn piglets and ASL on cultured airway epithelia. Fluorescence recovery after photobleaching revealed that the viscosity of CF ASL was increased relative to that of non-CF ASL. CF ASL had a reduced pH, which was necessary and sufficient for genotype-dependent viscosity differences. The increased viscosity of CF ASL was not explained by pH-independent changes in HCO3– concentration, altered glycosylation, additional pH-induced disulfide bond formation, increased percentage of nonvolatile material, or increased sulfation. Treating acidic ASL with hypertonic saline or heparin largely reversed the increased viscosity, suggesting that acidic pH influences mucin electrostatic interactions. These findings link loss of cystic fibrosis transmembrane conductance regulator–dependent alkalinization to abnormal CF ASL. In addition, we found that increasing Ca2+ concentrations elevated ASL viscosity, in part, independently of pH. The results suggest that increasing pH, reducing Ca2+ concentration, and/or altering electrostatic interactions in ASL might benefit early CF. PMID:26808501

  11. Airway Surface Dehydration Aggravates Cigarette Smoke-Induced Hallmarks of COPD in Mice.

    PubMed

    Seys, Leen J M; Verhamme, Fien M; Dupont, Lisa L; Desauter, Elke; Duerr, Julia; Seyhan Agircan, Ayca; Conickx, Griet; Joos, Guy F; Brusselle, Guy G; Mall, Marcus A; Bracke, Ken R

    2015-01-01

    Airway surface dehydration, caused by an imbalance between secretion and absorption of ions and fluid across the epithelium and/or increased epithelial mucin secretion, impairs mucociliary clearance. Recent evidence suggests that this mechanism may be implicated in chronic obstructive pulmonary disease (COPD). However, the role of airway surface dehydration in the pathogenesis of cigarette smoke (CS)-induced COPD remains unknown. We aimed to investigate in vivo the effect of airway surface dehydration on several CS-induced hallmarks of COPD in mice with airway-specific overexpression of the β-subunit of the epithelial Na⁺ channel (βENaC). βENaC-Tg mice and wild-type (WT) littermates were exposed to air or CS for 4 or 8 weeks. Pathological hallmarks of COPD, including goblet cell metaplasia, mucin expression, pulmonary inflammation, lymphoid follicles, emphysema and airway wall remodelling were determined and lung function was measured. Airway surface dehydration in βENaC-Tg mice aggravated CS-induced airway inflammation, mucin expression and destruction of alveolar walls and accelerated the formation of pulmonary lymphoid follicles. Moreover, lung function measurements demonstrated an increased compliance and total lung capacity and a lower resistance and hysteresis in βENaC-Tg mice, compared to WT mice. CS exposure further altered lung function measurements. We conclude that airway surface dehydration is a risk factor that aggravates CS-induced hallmarks of COPD.

  12. Increased risk of pneumonia and bronchiolitis after bacterial colonization of the airways as neonates.

    PubMed

    Vissing, Nadja H; Chawes, Bo L K; Bisgaard, Hans

    2013-11-15

    The frequency of pneumonia and bronchiolitis exhibits considerable variation in otherwise healthy children, and suspected risk factors explain only a minor proportion of the variation. We hypothesized that alterations in the airway microbiome in early life may be associated with susceptibility to pneumonia and bronchiolitis in young children. To investigate the relation between neonatal airway colonization and pneumonia and bronchiolitis during the first 3 years of life. Participants comprised children of the Copenhagen Prospective Studies on Asthma in Childhood2000 (COPSAC2000) cohort, a prospective birth cohort study of 411 children born to mothers with asthma. Aspirates from the hypopharynx at age 4 weeks were cultured for Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Staphylococcus aureus. Clinical information on pneumonia and bronchiolitis within the first 3 years of life was prospectively collected by the research physicians at the center. Analyses were adjusted for covariates associated with pneumonia and bronchiolitis and bacterial airway colonization. Hypopharyngeal aspirates and full clinical follow-up until 3 years of age were available for 265 children. Of these, 56 (21%) neonates were colonized with S. pneumoniae, H. influenzae, and/or M. catarrhalis at 4 weeks of age. Colonization with at least one of these microorganisms (but not S. aureus) was significantly associated with increased incidence of pneumonia and bronchiolitis (adjusted incidence rate ratio, 1.79 [1.29-2.48]; P < 0.005) independently of concurrent or later asthma. Neonatal airway colonization with S. pneumoniae, H. influenzae, or M. catarrhalis is associated with increased risk of pneumonia and bronchiolitis in early life independently of asthma. This suggests a role of pathogenic bacterial colonization of the airways in neonates for subsequent susceptibly to pneumonia and bronchiolitis.

  13. Pseudomonas Pyocyanin Increases Interleukin-8 Expression by Human Airway Epithelial Cells

    PubMed Central

    Denning, Gerene M.; Wollenweber, Laura A.; Railsback, Michelle A.; Cox, Charles D.; Stoll, Lynn L.; Britigan, Bradley E.

    1998-01-01

    Pseudomonas aeruginosa, an opportunistic human pathogen, causes acute pneumonia in patients with hospital-acquired infections and is commonly associated with chronic lung disease in individuals with cystic fibrosis (CF). Evidence suggests that the pathophysiological effects of P. aeruginosa are mediated in part by virulence factors secreted by the bacterium. Among these factors is pyocyanin, a redox active compound that increases intracellular oxidant stress. We find that pyocyanin increases release of interleukin-8 (IL-8) by both normal and CF airway epithelial cell lines and by primary airway epithelial cells. Moreover, pyocyanin synergizes with the inflammatory cytokines tumor necrosis factor alpha and IL-1α. RNase protection assays indicate that increased IL-8 release is accompanied by increased levels of IL-8 mRNA. The antioxidant n-acetyl cysteine, general inhibitors of protein tyrosine kinases, and specific inhibitors of mitogen-activated protein kinases diminish pyocyanin-dependent increases in IL-8 release. Conversely, inhibitors of protein kinases C (PKC) and PKA have no effect. In contrast to its effects on IL-8 expression, pyocyanin inhibits cytokine-dependent expression of the monocyte/macrophage/T-cell chemokine RANTES. Increased release of IL-8, a potent neutrophil chemoattractant, in response to pyocyanin could contribute to the marked infiltration of neutrophils and subsequent neutrophil-mediated tissue damage that are observed in Pseudomonas-associated lung disease. PMID:9826354

  14. Adam8 Limits the Development of Allergic Airway Inflammation in Mice

    PubMed Central

    Knolle, Martin D.; Nakajima, Takahiro; Hergrueter, Anja; Gupta, Kushagra; Polverino, Francesca; Craig, Vanessa J.; Fyfe, Susanne E.; Zahid, Muhammad; Permaul, Perdita; Cernadas, Manuela; Montano, Gilbert; Tesfaigzi, Yohannes; Sholl, Lynette; Kobzik, Lester; Israel, Elliot; Owen, Caroline A.

    2013-01-01

    To determine whether a disintegrin and a metalloproteinase-8 (Adam8) regulates allergic airway inflammation (AAI) and airway hyper-responsiveness (AHR), we compared AAI and AHR in wild type (WT) versus Adam8−/− mice in different genetic backgrounds sensitized and challenged with ovalbumin (OVA) or house dust mite protein extract (HDM). OVA- and HDM-treated Adam8−/− mice had higher lung leukocyte counts, more airway mucus metaplasia, greater lung levels of some TH2 cytokines, and higher methacholine-induced increases in central airway resistance than allergen-treated WT mice. Studies of OVA-treated Adam8 bone marrow chimeric mice confirmed that leukocyte-derived Adam8 predominantly mediated Adam8’s anti-inflammatory activities in murine airways. Airway eosinophils and macrophages both expressed Adam8 in WT mice with AAI. Adam8 limited AAI and AHR in mice by reducing leukocyte survival because: 1) Adam8−/− mice with AAI had fewer apoptotic eosinophils and macrophages in their airways than WT mice with AAI; and 2) Adam8−/− macrophages and eosinophils had reduced rates of apoptosis compared with WT leukocytes when the intrinsic (but not the extrinsic) apoptosis pathway was triggered in the cells in vitro. ADAM8 was robustly expressed by airway granulocytes in lung sections from human asthma patients but, surprisingly, airway macrophages had less ADAM8 staining than airway eosinophils. Thus, ADAM8 has anti-inflammatory activities during AAI in mice by activating the intrinsic apoptosis pathway in myeloid leukocytes. Strategies that increase ADAM8 levels in myeloid leukocytes may have therapeutic efficacy in asthma. PMID:23670189

  15. Innate Immune Signaling Activated by MDR Bacteria in the Airway

    PubMed Central

    Parker, Dane; Ahn, Danielle; Cohen, Taylor; Prince, Alice

    2015-01-01

    Health care-associated bacterial pneumonias due to multiple-drug resistant (MDR) pathogens are an important public health problem and are major causes of morbidity and mortality worldwide. In addition to antimicrobial resistance, these organisms have adapted to the milieu of the human airway and have acquired resistance to the innate immune clearance mechanisms that normally prevent pneumonia. Given the limited efficacy of antibiotics, bacterial clearance from the airway requires an effective immune response. Understanding how specific airway pathogens initiate and regulate innate immune signaling, and whether this response is excessive, leading to host-induced pathology may guide future immunomodulatory therapy. We will focus on three of the most important causes of health care-associated pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, and review the mechanisms through which an inappropriate or damaging innate immune response is stimulated, as well as describe how airway pathogens cause persistent infection by evading immune activation. PMID:26582515

  16. Allergic Sensitization through the Airway Primes Th17-dependent Neutrophilia and Airway Hyperresponsiveness

    PubMed Central

    Wilson, Rhonda H.; Whitehead, Gregory S.; Nakano, Hideki; Free, Meghan E.; Kolls, Jay K.; Cook, Donald N.

    2009-01-01

    Rationale: In humans, immune responses to inhaled aeroallergens develop in the lung and draining lymph nodes. Many animal models of asthma bypass this route and instead use intraperitoneal injections of allergen using aluminum hydroxide as an adjuvant. Objectives: We investigated whether allergic sensitization through the airway elicits immune responses qualitatively different than those arising in the peritoneum. Methods: Mice were sensitized to allergen through the airway using low-dose LPS as an adjuvant, or through the peritoneum using aluminum hydroxide as an adjuvant. After a single allergen challenge, ELISA and flow cytometry were used to measure cytokines and leukocyte subsets. Invasive measurements of airway resistance were used to measure allergen-induced airway hyperreactivity (AHR). Measurements and Main Results: Sensitization through the peritoneum primed strong Th2 responses and eosinophilia, but not AHR, after a single allergen challenge. By contrast, allergic sensitization through the airway primed only modest Th2 responses, but strong Th17 responses. Th17 cells homed to the lung and released IL-17 into the airway on subsequent encounter with inhaled allergen. As a result, these mice developed IL-17–dependent airway neutrophilia and AHR. This AHR was neutrophil-dependent because it was abrogated in CXCR2-deficient mice and also in wild-type mice receiving a neutrophil-depleting antibody. Individually, neither IL-17 nor ongoing Th2 responses were sufficient to confer AHR, but together they acted synergistically to promote neutrophil recruitment, eosinophil recruitment and AHR. Conclusions: Allergic sensitization through the airway primes modest Th2 responses but strong Th17 responses that promote airway neutrophilia and acute AHR. These findings support a causal role for neutrophils in severe asthma. PMID:19661246

  17. Effects of Increasing Airway Pressures on the Pressure of the Endotracheal Tube Cuff During Pelvic Laparoscopic Surgery.

    PubMed

    Rosero, Eric B; Ozayar, Esra; Eslava-Schmalbach, Javier; Minhajuddin, Abu; Joshi, Girish P

    2017-11-17

    Tracheal tube cuff pressures exceeding the perfusion pressures of the tracheal mucosa have been associated with complications such as sore throat, tracheal mucosa ulcers, tracheal rupture, and subglottic stenosis. Despite appropriate inflation, many factors can increase the tracheal cuff pressure during mechanical ventilation. This prospective observational cohort study was designed to test the hypothesis that during a clinical model of decreasing respiratory compliance, the pressure within the endotracheal tube cuff will rise in direct relationship to increases in the airway pressures. Twenty-eight adult obese patients (BMI ≥30 kg/m) scheduled for elective laparoscopic gynecologic procedures were enrolled. All patients received general anesthesia utilizing endotracheal tubes with low-pressure high-volume cuffs. After baseline adjustment of the cuff pressure to 25 cm H2O, the airway pressures and endotracheal cuff pressures were continuously measured using pressure transducers connected to the anesthesia circuit and cuff pilot, respectively. Data on cuff and airway pressures, mechanical ventilation parameters, intraabdominal pressures, and degree of surgical table inclination were collected throughout the anesthetic procedure. General linear regression models with fixed and random effects were fit to assess the effect of increases in airway pressures on cuff pressure, after adjusting for covariates and the clustered structure of the data. The mean (standard deviation) age and body mass index were 42.2 (8.8) years and 37.7 (5.1) kg/m, respectively. After tracheal intubation, the cuffs were overinflated (ie, intracuff pressures >30 cm H2O) in 89% of patients. The cuff pressures significantly changed after concomitant variations in the airway pressures from a mean (standard error) value of 29.6 (1.30) cm H2O before peritoneal insufflations, to 35.6 (0.68) cm H2O after peritoneal insufflation, and to 27.8 (0.79) cm H2O after peritoneal deflation (P < .0001). The

  18. Small airway obstruction in COPD: new insights based on micro-CT imaging and MRI imaging.

    PubMed

    Hogg, James C; McDonough, John E; Suzuki, Masaru

    2013-05-01

    The increase in total cross-sectional area in the distal airways of the human lung enhances the mixing of each tidal breath with end-expiratory gas volume by slowing bulk flow and increasing gas diffusion. However, this transition also favors the deposition of airborne particulates in this region because they diffuse 600 times slower than gases. Furthermore, the persistent deposition of toxic airborne particulates stimulates a chronic inflammatory immune cell infiltration and tissue repair and remodeling process that increases the resistance in airways <2 mm in diameter four to 40-fold in COPD. This increase was originally attributed to lumen narrowing because it increases resistance in proportion to the change in lumen radius raised to the fourth power. In contrast, removal of one-half the number of tubes arranged in parallel is required to double their resistance, and approximately 90% need to be removed to explain the increase in resistance measured in COPD. However, recent reexamination of this problem based on micro-CT imaging indicates that terminal bronchioles are both narrowed and reduced to 10% of the control values in the centrilobular and 25% in the panlobular emphysematous phenotype of very severe (GOLD [Global Initiative for Chronic Obstructive Lung Disease] grade IV) COPD. These new data indicate that both narrowing and reduction in numbers of terminal bronchioles contribute to the rapid decline in FEV₁ that leads to severe airway obstruction in COPD. Moreover, the observation that terminal bronchiolar loss precedes the onset of emphysematous destruction suggests this destruction begins in the very early stages of COPD.

  19. PAI-1 gain-of-function genotype, factors increasing PAI-1 levels, and airway obstruction: The GALA II Cohort.

    PubMed

    Sherenian, M G; Cho, S H; Levin, A; Min, J-Y; Oh, S S; Hu, D; Galanter, J; Sen, S; Huntsman, S; Eng, C; Rodriguez-Santana, J R; Serebrisky, D; Avila, P C; Kalhan, R; Smith, L J; Borrell, L N; Seibold, M A; Keoki Williams, L; Burchard, E G; Kumar, R

    2017-09-01

    PAI-1 gain-of-function variants promote airway fibrosis and are associated with asthma and with worse lung function in subjects with asthma. We sought to determine whether the association of a gain-of-function polymorphism in plasminogen activator inhibitor-1 (PAI-1) with airway obstruction is modified by asthma status, and whether any genotype effect persists after accounting for common exposures that increase PAI-1 level. We studied 2070 Latino children (8-21y) with genotypic and pulmonary function data from the GALA II cohort. We estimated the relationship of the PAI-1 risk allele with FEV1/FVC by multivariate linear regression, stratified by asthma status. We examined the association of the polymorphism with asthma and airway obstruction within asthmatics via multivariate logistic regression. We replicated associations in the SAPPHIRE cohort of African Americans (n=1056). Secondary analysis included the effect of the at-risk polymorphism on postbronchodilator lung function. There was an interaction between asthma status and the PAI-1 polymorphism on FEV 1 /FVC (P=.03). The gain-of-function variants, genotypes (AA/AG), were associated with lower FEV 1 /FVC in subjects with asthma (β=-1.25, CI: -2.14,-0.35, P=.006), but not in controls. Subjects with asthma and the AA/AG genotypes had a 5% decrease in FEV 1 /FVC (P<.001). In asthmatics, the risk genotype (AA/AG) was associated with a 39% increase in risk of clinically relevant airway obstruction (OR=1.39, CI: 1.01, 1.92, P=.04). These associations persisted after exclusion of factors that increase PAI-1 including tobacco exposure and obesity. The decrease in the FEV 1 /FVC ratio associated with the risk genotype was modified by asthma status. The genotype increased the odds of airway obstruction by 75% within asthmatics only. As exposures known to increase PAI-1 levels did not mitigate this association, PAI-1 may contribute to airway obstruction in the context of chronic asthmatic airway inflammation. © 2017

  20. Computed tomography-guided tissue engineering of upper airway cartilage.

    PubMed

    Brown, Bryan N; Siebenlist, Nicholas J; Cheetham, Jonathan; Ducharme, Norm G; Rawlinson, Jeremy J; Bonassar, Lawrence J

    2014-06-01

    Normal laryngeal function has a large impact on quality of life, and dysfunction can be life threatening. In general, airway obstructions arise from a reduction in neuromuscular function or a decrease in mechanical stiffness of the structures of the upper airway. These reductions decrease the ability of the airway to resist inspiratory or expiratory pressures, causing laryngeal collapse. We propose to restore airway patency through methods that replace damaged tissue and improve the stiffness of airway structures. A number of recent studies have utilized image-guided approaches to create cell-seeded constructs that reproduce the shape and size of the tissue of interest with high geometric fidelity. The objective of the present study was to establish a tissue engineering approach to the creation of viable constructs that approximate the shape and size of equine airway structures, in particular the epiglottis. Computed tomography images were used to create three-dimensional computer models of the cartilaginous structures of the larynx. Anatomically shaped injection molds were created from the three-dimensional models and were seeded with bovine auricular chondrocytes that were suspended within alginate before static culture. Constructs were then cultured for approximately 4 weeks post-seeding and evaluated for biochemical content, biomechanical properties, and histologic architecture. Results showed that the three-dimensional molded constructs had the approximate size and shape of the equine epiglottis and that it is possible to seed such constructs while maintaining 75%+ cell viability. Extracellular matrix content was observed to increase with time in culture and was accompanied by an increase in the mechanical stiffness of the construct. If successful, such an approach may represent a significant improvement on the currently available treatments for damaged airway cartilage and may provide clinical options for replacement of damaged tissue during treatment of

  1. Mass loading of the upper airway extraluminal tissue space in rabbits: effects on tissue pressure and pharyngeal airway lumen geometry.

    PubMed

    Kairaitis, Kristina; Howitt, Lauren; Wheatley, John R; Amis, Terence C

    2009-03-01

    Lateral pharyngeal fat pad compression of the upper airway (UA) wall is thought to influence UA size in patients with obstructive sleep apnea. We examined interactions between acute mass/volume loading of the UA extra-luminal tissue space and UA patency. We studied 12 supine, anesthetized, spontaneously breathing, head position-controlled (50 degrees ), New Zealand White rabbits. Submucosal extraluminal tissue pressures (ETP) in the anterolateral (ETPlat) and anterior (ETPant) pharyngeal wall were monitored with surgically inserted pressure transducer-tipped catheters (Millar). Tracheal pressure (Ptr) and airflow (V) were measured via a pneumotachograph and pressure transducer inserted in series into the intact trachea, with hypopharyngeal cross-sectional area (CSA) measured via computed tomography, while graded saline inflation (0-1.5ml) of a compliant tissue expander balloon in the anterolateral subcutaneous tissue was performed. Inspiratory UA resistance (Rua) at 20 ml/s was calculated from a power function fitted to Ptr vs. V data. Graded expansion of the anterolateral balloon increased ETPlat from 2.3 +/- 0.5 cmH(2)O (n = 11, mean +/- SEM) to 5.0 +/- 1.1 cmH(2)O at 1.5-ml inflation (P < 0.05; ANOVA). However, ETPant was unchanged from 0.5 +/- 0.5 cmH(2)O (n = 9; P = 0.17). Concurrently, Rua increased to 119 +/- 4.2% of baseline value (n = 12; P < 0.001) associated with a significant reduction in CSA between 10 and 70% of airway length to a minimum of 82.2 +/- 4.4% of baseline CSA at 40% of airway length (P < 0.05). We conclude that anterolateral loading of the upper airway extraluminal tissue space decreases upper airway patency via an increase in ETPlat, but not ETPant. Lateral pharyngeal fat pad size may influence UA patency via increased tissue volume and pressure causing UA wall compression.

  2. Effects of hypercapnia and hypoxia on nasal vasculature and airflow resistance in the anaesthetized dog.

    PubMed Central

    Lung, M A; Wang, J C

    1986-01-01

    The experiments were performed on anaesthetized dogs which breathed spontaneously or were artificially ventilated and paralysed. The spontaneous nasal arterial blood flow was measured on one side of the nose while nasal vascular resistance was determined on the other side simultaneously. Nasal arterial blood flow was measured by means of an electromagnetic flow sensor placed around the terminal branch of the internal maxillary artery, the main arterial supply to the nasal mucosa. Nasal vascular resistance was measured by constant-flow perfusion of the terminal branch of the internal maxillary artery. Nasal airway resistance was assessed by monitoring the transnasal pressure at constant airflow through each side of the nose simultaneously. Hypercapnic gas challenge (8% CO2, 30% O2 in N2) to the lungs increased nasal vascular resistance and decreased nasal airway resistance. Similar gas challenge to the nose did not affect nasal vascular resistance but decreased nasal airway resistance. Hypoxic gas challenge (6% O2 in N2) to the lungs did not affect the nasal vascular resistance but decreased nasal airway resistance only when the nasal vascular bed was under controlled perfusion. Similar gas challenge to the nose did not affect either nasal vascular or airway resistance. Arterial chemoreceptor stimulation by intracarotid injection of sodium cyanide increased nasal vascular resistance and decreased nasal airway resistance. The nasal vascular response to hypercapnia and arterial chemoreceptor stimulation was reflex in nature, being abolished by nasal sympathectomy. The nasal airway response to hypercapnia, hypoxia and arterial chemoreceptor stimulation was reflex in nature, being partially or completely abolished by nasal sympathectomy. Hypercapnia probably induced a local vasodilatatory effect on the capacitance vessels whereas hypoxia had no direct action on the vasculature. PMID:3091811

  3. Inspiratory High Frequency Airway Oscillation Attenuates Resistive Loaded Dyspnea and Modulates Respiratory Function in Young Healthy Individuals

    PubMed Central

    Morris, Theresa; Sumners, David Paul; Green, David Andrew

    2014-01-01

    Direct chest-wall percussion can reduce breathlessness in Chronic Obstructive Pulmonary Disease and respiratory function may be improved, in health and disease, by respiratory muscle training (RMT). We tested whether high-frequency airway oscillation (HFAO), a novel form of airflow oscillation generation can modulate induced dyspnoea and respiratory strength and/or patterns following 5 weeks of HFAO training (n = 20) compared to a SHAM-RMT (conventional flow-resistive RMT) device (n = 15) in healthy volunteers (13 males; aged 20–36 yrs). HFAO causes oscillations with peak-to-peak amplitude of 1 cm H2O, whereas the SHAM-RMT device was identical but created no pressure oscillation. Respiratory function, dyspnoea and ventilation during 3 minutes of spontaneous resting ventilation, 1 minute of maximal voluntary hyperventilation and 1 minute breathing against a moderate inspiratory resistance, were compared PRE and POST 5-weeks of training (2×30 breaths at 70% peak flow, 5 days a week). Training significantly reduced NRS dyspnoea scores during resistive loaded ventilation, both in the HFAO (p = 0.003) and SHAM-RMT (p = 0.005) groups. Maximum inspiratory static pressure (cm H2O) was significantly increased by HFAO training (vs. PRE; p<0.001). Maximum inspiratory dynamic pressure was increased by training in both the HFAO (vs. PRE; p<0.001) and SHAM-RMT (vs. PRE; p = 0.021) groups. Peak inspiratory flow rate (L.s−1) achieved during the maximum inspiratory dynamic pressure manoeuvre increased significantly POST (vs. PRE; p = 0.001) in the HFAO group only. HFAO reduced inspiratory resistive loading–induced dyspnoea and augments static and dynamic maximal respiratory manoeuvre performance in excess of flow-resistive IMT (SHAM-RMT) in healthy individuals without the respiratory discomfort associated with RMT. PMID:24651392

  4. Definitive airway management after pre-hospital supraglottic airway insertion: Outcomes and a management algorithm for trauma patients.

    PubMed

    Hernandez, Matthew C; Aho, Johnathon M; Zielinski, Martin D; Zietlow, Scott P; Kim, Brian D; Morris, David S

    2018-01-01

    Prehospital airway management increasingly involves supraglottic airway insertion and a paucity of data evaluates outcomes in trauma populations. We aim to describe definitive airway management in traumatically injured patients who necessitated prehospital supraglottic airway insertion. We performed a single institution retrospective review of multisystem injured patients (≥15years) that received prehospital supraglottic airway insertion during 2009 to 2016. Baseline demographics, number and type of: supraglottic airway insertion attempts, definitive airway and complications were recorded. Primary outcome was need for tracheostomy. Univariate and multivariable statistics were performed. 56 patients met inclusion criteria and were reviewed, 78% were male. Median age [IQR] was 36 [24-56] years. Injuries comprised blunt (94%), penetrating (4%) and burns (2%). Median ISS was 26 [22-41]. Median number of prehospital endotracheal intubation (PETI) attempts was 2 [1-3]. Definitive airway management included: (n=20, 36%, tracheostomy), (n=10, 18%, direct laryngoscopy), (n=6, 11%, bougie), (n=9, 15%, Glidescope), (n=11, 20%, bronchoscopic assistance). 24-hour mortality was 41%. Increasing number of PETI was associated with increasing facial injury. On regression, increasing cervical and facial injury patterns as well as number of PETI were associated with definitive airway control via surgical tracheostomy. After supraglottic airway insertion, operative or non-operative approaches can be utilized to obtain a definitive airway. Patients with increased craniofacial injuries have an increased risk for airway complications and need for tracheostomy. We used these factors to generate an evidence based algorithm that requires prospective validation. Level IV - Retrospective study. Retrospective single institution study. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Airway responsiveness and airway remodeling after chronic exposure to procaterol and fenoterol in guinea pigs in vivo.

    PubMed

    Nishimura, Hideko; Tokuyama, Kenichi; Arakawa, Hirokazu; Ohki, Yasushi; Sato, Akira; Kato, Masahiko; Mochizuki, Hiroyuki; Morikawa, Akihiro

    2002-12-01

    Chronic exposure to fenoterol (FEN), a beta(2)-adrenergic receptor (beta(2)-AR) agonist, was shown to induce both airway hyperresponsiveness and airway remodeling in experimental animals. We wanted to know the effects of chronic exposure to procaterol (PRO), a beta(2)-AR agonist, on airway function and structure, because this agent is widely used as a bronchodilator in Japan. For comparison, the effects of FEN were also examined. Aerosolized PRO (0.1 or 1 mg/ml), FEN (1 mg/ml) or vehicle (0.9% NaCl) was given to guinea pigs 3 times a day for 6 weeks. Sublaryngeal deposition of these agents was calculated using radioisotopes. At 72 h after the last inhalation of PRO, FEN or vehicle, the dose-response relationship between lung resistance (R(L)) and intravenously administered acetylcholine (ACh) was measured. After measuring R(L), histological changes in noncartilaginous airway dimensions were evaluated. The amount of sublaryngeal deposition of 0.1 mg/ml PRO in the present study was speculated to be 100 times larger than that of therapeutic dose. ACh concentrations causing 2-fold, 10-fold and maximal increases in R(L) were not different in 4 groups tested. In the smaller membranous airways (<0.4 mm in diameter), but not the larger ones, thickening of adventitial areas was significantly greater in animals treated with beta(2)-AR agonists than in control animals (23 and 25, and 96% higher in animals treated with 0.1 and 1 mg/ml PRO or 1 mg/ml FEN, respectively). The degree of the increase was significantly less in PRO-treated animals than in FEN-treated animals (p < 0.01). Our results did not provide any evidence that regular inhalation of PRO at the therapeutic dose might induce bronchial hyperresponsiveness. In addition, huge amounts of PRO only caused a mild thickening of the adventitial areas, suggesting that PRO may be a weak inducer of airway remodeling compared with FEN. Copyright 2002 S. Karger AG, Basel

  6. Steroid Treatment Reduces Allergic Airway Inflammation and Does Not Alter the Increased Numbers of Dendritic Cells and Calcitonin Gene-Related Peptide-Expressing Neurons in Airway Sensory Ganglia.

    PubMed

    Le, Duc Dung; Funck, Ulrike; Wronski, Sabine; Heck, Sebastian; Tschernig, Thomas; Bischoff, Markus; Sester, Martina; Herr, Christian; Bals, Robert; Welte, Tobias; Braun, Armin; Dinh, Quoc Thai

    2016-01-01

    Our previous data demonstrated that allergic airway inflammation induces migration of dendritic cells (DC) into airway sensory jugular and nodose ganglia (jugular-nodose ganglion complex; JNC). Here we investigated the effects of steroid treatment regarding the expression and migration of DC and calcitonin gene-related peptide (CGRP)-immunoreactive neurons of vagal sensory ganglia during allergic airway inflammation. A house dust mite (HDM) model for allergic airway inflammation was used. The mice received 0.3 mg fluticasone propionate per kilogram of body weight in the last 9 days. JNC slices were analyzed on MHC II, the neuronal marker PGP9.5, and the neuropeptide CGRP. Allergic airway inflammation increased the numbers of DC and CGRP-expressing neurons in the JNC significantly in comparison to the controls (DC/neurons: HDM 44.58 ± 1.6% vs. saline 33.29 ± 1.6%, p < 0.05; CGRP-positive neurons/total neurons: HDM 30.65 ± 1.9% vs. saline 19.49 ± 2.3%, p < 0.05). Steroid treatment did not have any effect on the numbers of DC and CGRP-expressing neurons in the JNC compared to HDM-treated mice. The present findings indicate an important role of DC and CGRP-containing neurons in the pathogenesis of allergic airway inflammation. However, steroid treatment did not have an effect on the population of DC and neurons displaying CGRP in the JNC, whereas steroid treatment was found to suppress allergic airway inflammation. © 2015 S. Karger AG, Basel.

  7. Airway-parenchymal interdependence

    PubMed Central

    Paré, Peter D; Mitzner, Wayne

    2015-01-01

    In this manuscript we discuss the interaction of the lung parenchyma and the airways as well as the physiological and pathophysiological significance of this interaction. These two components of the respiratory organ can be thought of as two independent elastic structures but in fact the mechanical properties of one influence the behavior of the other. Traditionally the interaction has focused on the effects of the lung on the airways but there is good evidence that the opposite is also true, i.e., that the mechanical properties of the airways influence the elastic properties of the parenchyma. The interplay between components of the respiratory system including the airways, parenchyma and vasculature is often referred to as “interdependence.” This interdependence transmits the elastic recoil of the lung to create an effective pressure that dilates the airways as transpulmonary pressure and lung volume increase. By using a continuum mechanics analysis of the lung parenchyma, it is possible to predict the effective pressure between the airways and parenchyma, and these predictions can be empirically evaluated. Normal airway caliber is maintained by this pressure in the adventitial interstitium of the airway, and it counteracts airway compression during forced expiration as well as the ability of airway smooth muscle to narrow airways. Interdependence has physiological and pathophysiological significance. Weakening of the forces of interdependence contributes to airway dysfunction and gas exchange impairment in acute and chronic airway diseases including asthma and emphysema. PMID:23723029

  8. Assessment of upper airway mechanics during sleep.

    PubMed

    Farré, Ramon; Montserrat, Josep M; Navajas, Daniel

    2008-11-30

    Obstructive sleep apnea, which is the most prevalent sleep breathing disorder, is characterized by recurrent episodes of upper airway collapse and reopening. However, the mechanical properties of the upper airway are not directly measured in routine polysomnography because only qualitative sensors (thermistors for flow and thoraco-abdominal bands for pressure) are used. This review focuses on two techniques that quantify upper airway obstruction during sleep. A Starling model of collapsible conduit allows us to interpret the mechanics of the upper airway by means of two parameters: the critical pressure (Pcrit) and the upstream resistance (Rup). A simple technique to measure Pcrit and Rup involves the application of different levels of continuous positive airway pressure (CPAP) during sleep. The forced oscillation technique is another non-invasive procedure for quantifying upper airway impedance during the breathing cycle in sleep studies. The latest developments in these two methods allow them to be easily applied on a routine basis in order to more fully characterize upper airway mechanics in patients with sleep breathing disorders.

  9. The Effects of Airway Microbiome on Corticosteroid Responsiveness in Asthma

    PubMed Central

    Goleva, Elena; Jackson, Leisa P.; Harris, J. Kirk; Robertson, Charles E.; Sutherland, E. Rand; Hall, Clifton F.; Good, James T.; Gelfand, Erwin W.; Martin, Richard J.

    2013-01-01

    Rationale: The role of airway microbiome in corticosteroid response in asthma is unknown. Objectives: To examine airway microbiome composition in patients with corticosteroid-resistant (CR) asthma and compare it with patients with corticosteroid-sensitive (CS) asthma and normal control subjects and explore whether bacteria in the airways of subjects with asthma may direct alterations in cellular responses to corticosteroids. Methods: 16S rRNA gene sequencing was performed on bronchoalveolar lavage (BAL) samples of 39 subjects with asthma and 12 healthy control subjects. In subjects with asthma, corticosteroid responsiveness was characterized, BAL macrophages were stimulated with pathogenic versus commensal microorganisms, and analyzed by real-time polymerase chain reaction for the expression of corticosteroid-regulated genes and cellular p38 mitogen-activated protein kinase (MAPK) activation. Measurements and Main Results: Of the 39 subjects with asthma, 29 were CR and 10 were CS. BAL microbiome from subjects with CR and CS asthma did not differ in richness, evenness, diversity, and community composition at the phylum level, but did differ at the genus level, with distinct genus expansions in 14 subjects with CR asthma. Preincubation of asthmatic airway macrophages with Haemophilus parainfluenzae, a uniquely expanded potential pathogen found only in CR asthma airways, resulted in p38 MAPK activation, increased IL-8 (P < 0.01), mitogen-activated kinase phosphatase 1 mRNA (P < 0.01) expression, and inhibition of corticosteroid responses (P < 0.05). This was not observed after exposure to commensal bacterium Prevotella melaninogenica. Inhibition of transforming growth factor-β–associated kinase-1 (TAK1), upstream activator of MAPK, but not p38 MAPK restored cellular sensitivity to corticosteroids. Conclusions: A subset of subjects with CR asthma demonstrates airway expansion of specific gram-negative bacteria, which trigger TAK1/MAPK activation and induce

  10. Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells.

    PubMed

    Wu, Qun; Jiang, Di; Minor, Maisha; Chu, Hong Wei

    2014-01-01

    The use of electronic cigarettes (e-cigarettes) is rapidly increasing in the United States, especially among young people since e-cigarettes have been perceived as a safer alternative to conventional tobacco cigarettes. However, the scientific evidence regarding the human health effects of e-cigarettes on the lung is extremely limited. The major goal of our current study is to determine if e-cigarette use alters human young subject airway epithelial functions such as inflammatory response and innate immune defense against respiratory viral (i.e., human rhinovirus, HRV) infection. We examined the effects of e-cigarette liquid (e-liquid) on pro-inflammatory cytokine (e.g., IL-6) production, HRV infection and host defense molecules (e.g., short palate, lung, and nasal epithelium clone 1, SPLUNC1) in primary human airway epithelial cells from young healthy non-smokers. Additionally, we examined the role of SPLUNC1 in lung defense against HRV infection using a SPLUNC1 knockout mouse model. We found that nicotine-free e-liquid promoted IL-6 production and HRV infection. Addition of nicotine into e-liquid further amplified the effects of nicotine-free e-liquid. Moreover, SPLUNC1 deficiency in mice significantly increased lung HRV loads. E-liquid inhibited SPLUNC1 expression in primary human airway epithelial cells. These findings strongly suggest the deleterious health effects of e-cigarettes in the airways of young people. Our data will guide future studies to evaluate the impact of e-cigarettes on lung health in human populations, and help inform the public about potential health risks of e-cigarettes.

  11. Identification of genes differentially regulated by vitamin D deficiency that alter lung pathophysiology and inflammation in allergic airways disease.

    PubMed

    Foong, Rachel E; Bosco, Anthony; Troy, Niamh M; Gorman, Shelley; Hart, Prue H; Kicic, Anthony; Zosky, Graeme R

    2016-09-01

    Vitamin D deficiency is associated with asthma risk. Vitamin D deficiency may enhance the inflammatory response, and we have previously shown that airway remodeling and airway hyperresponsiveness is increased in vitamin D-deficient mice. In this study, we hypothesize that vitamin D deficiency would exacerbate house dust mite (HDM)-induced inflammation and alterations in lung structure and function. A BALB/c mouse model of vitamin D deficiency was established by dietary manipulation. Responsiveness to methacholine, airway smooth muscle (ASM) mass, mucus cell metaplasia, lung and airway inflammation, and cytokines in bronchoalveolar lavage (BAL) fluid were assessed. Gene expression patterns in mouse lung samples were profiled by RNA-Seq. HDM exposure increased inflammation and inflammatory cytokines in BAL, baseline airway resistance, tissue elastance, and ASM mass. Vitamin D deficiency enhanced the HDM-induced influx of lymphocytes into BAL, ameliorated the HDM-induced increase in ASM mass, and protected against the HDM-induced increase in baseline airway resistance. RNA-Seq identified nine genes that were differentially regulated by vitamin D deficiency in the lungs of HDM-treated mice. Immunohistochemical staining confirmed that protein expression of midline 1 (MID1) and adrenomedullin was differentially regulated such that they promoted inflammation, while hypoxia-inducible lipid droplet-associated, which is associated with ASM remodeling, was downregulated. Protein expression studies in human bronchial epithelial cells also showed that addition of vitamin D decreased MID1 expression. Differential regulation of these genes by vitamin D deficiency could determine lung inflammation and pathophysiology and suggest that the effect of vitamin D deficiency on HDM-induced allergic airways disease is complex. Copyright © 2016 the American Physiological Society.

  12. The Supraglottic Effect of a Reduction in Expiratory Mask Pressure During Continuous Positive Airway Pressure

    PubMed Central

    Masdeu, Maria J.; Patel, Amit V.; Seelall, Vijay; Rapoport, David M.; Ayappa, Indu

    2012-01-01

    Study Objectives: Patients with obstructive sleep apnea may have difficulty exhaling against positive pressure, hence limiting their acceptance of continuous positive airway pressure (CPAP). C-Flex is designed to improve comfort by reducing pressure in the mask during expiration proportionally to expiratory airflow (3 settings correspond to increasing pressure changes). When patients use CPAP, nasal resistance determines how much higher supraglottic pressure is than mask pressure. We hypothesized that increased nasal resistance results in increased expiratory supraglottic pressure swings that could be mitigated by the effects of C-Flex on mask pressure. Design: Cohort study. Setting: Sleep center. Participants: Seventeen patients with obstructive sleep apnea/hypopnea syndrome and a mechanical model of the upper airway. Interventions: In patients on fixed CPAP, CPAP with different C-Flex levels was applied multiple times during the night. In the model, 2 different respiratory patterns and resistances were tested. Measurements and Results: Airflow, expiratory mask, and supraglottic pressures were measured on CPAP and on C-Flex. Swings in pressure during expiration were determined. On CPAP, higher nasal resistance produced greater expiratory pressure swings in the supraglottis in the patients and in the model, as expected. C-Flex 3 produced expiratory drops in mask pressure (range −0.03 to −2.49 cm H2O) but mitigated the expira-tory pressure rise in the supraglottis only during a sinusoidal respiratory pattern in the model. Conclusions: Expiratory changes in mask pressure induced by C-Flex did not uniformly transmit to the supraglottis in either patients with obstructive sleep apnea on CPAP or in a mechanical model of the upper airway with fixed resistance. Data suggest that the observed lack of expiratory drop in supraglottic pressure swings is related to dynamics of the C-Flex algorithm. Citation: Masdeu MJ; Patel AV; Seelall V; Rapoport DM; Ayappa I. The

  13. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yuan, E-mail: yuan.xu@ki.se; Cardell, Lars-Olaf

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin-more » (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance

  14. Aspergillus fumigatus Invasion Increases with Progressive Airway Ischemia

    PubMed Central

    Hsu, Joe L.; Khan, Mohammad A.; Sobel, Raymond A.; Jiang, Xinguo; Clemons, Karl V.; Nguyen, Tom T.; Stevens, David A.; Martinez, Marife; Nicolls, Mark R.

    2013-01-01

    Despite the prevalence of Aspergillus-related disease in immune suppressed lung transplant patients, little is known of the host-pathogen interaction. Because of the mould’s angiotropic nature and because of its capacity to thrive in hypoxic conditions, we hypothesized that the degree of Aspergillus invasion would increase with progressive rejection-mediated ischemia of the allograft. To study this relationship, we utilized a novel orthotopic tracheal transplant model of Aspergillus infection, in which it was possible to assess the effects of tissue hypoxia and ischemia on airway infectivity. Laser Doppler flowmetry and FITC-lectin were used to determine blood perfusion, and a fiber optic microsensor was used to measure airway tissue oxygen tension. Fungal burden and depth of invasion were graded using histopathology. We demonstrated a high efficacy (80%) for producing a localized fungal tracheal infection with the majority of infection occurring at the donor-recipient anastomosis; Aspergillus was more invasive in allogeneic compared to syngeneic groups. During the study period, the overall kinetics of both non-infected and infected allografts was similar, demonstrating a progressive loss of perfusion and oxygenation, which reached a nadir by days 10-12 post-transplantation. The extent of Aspergillus invasion directly correlated with the degree of graft hypoxia and ischemia. Compared to the midtrachea, the donor-recipient anastomotic site exhibited lower perfusion and more invasive disease; a finding consistent with clinical experience. For the first time, we identify ischemia as a putative risk factor for Aspergillus invasion. Therapeutic approaches focused on preserving vascular health may play an important role in limiting Aspergillus infections. PMID:24155924

  15. Characterization of airway and vascular responses in murine lungs

    PubMed Central

    Held, Heinz-Dieter; Martin, Christian; Uhlig, Stefan

    1999-01-01

    We characterized the responses of murine airways and pulmonary vessels to a variety of endogenous mediators in the isolated perfused and ventilated mouse lung (IPL) and compared them with those in precision-cut lung slices. Airways: The EC50 (μM) for contractions of airways in IPL/slices was methacholine (Mch), 6.1/1.5>serotonin, 0.7/2.0>U46619 (TP-receptor agonist), 0.1/0.06>endothelin-1, 0.1/0.05. In the IPL, maximum increase in airway resistance (RL) was 0.6, 0.4, 0.8 and 11 cmH2O s ml−1, respectively. Adenosine (⩽1 mM), bombesin (⩽100 μM), histamine (⩽10 mM), LTC4 (⩽1 μM), PAF (0.25 μM) and substance P (⩽100 μM) had only weak effects (<5% of Mch) on RL. Vessels: The EC50 (μM) for vasoconstriction in the IPL was LTC4, 0.06>U46619, 0.05increase in pulmonary artery pressure (PAP) was 11, 41 and 48 cmH2O, respectively. At 250 nM, the activity of PAF was comparable to that of LTC4. At 100 μM only, substance P caused a largely variable increase in PAP. Serotonin, adenosine, bombesin, histamine and Mch had no or only very small effects on PAP. Hyperresponsiveness: In both the IPL and slices, U46619 in subthreshold concentrations (10 nM) reduced the EC50 to 0.6 μM. In the IPL, U46619 raised the maximum airway response to Mch 5 fold and the maximum PAF-induced vasoconstriction 4 fold. Conclusion: Murine precision-cut lung slices maintain important characteristics of the whole organ. The maximum reagibility of murine airways to endogenous mediators is serotoninairway and vessel hyperreactivity induced by U46619 raises the possibility that thromboxane contributes directly to airway hyperresponsiveness in various experimental and clinical settings. PMID:10205008

  16. Airway recovery after face transplantation.

    PubMed

    Fischer, Sebastian; Wallins, Joe S; Bueno, Ericka M; Kueckelhaus, Maximilian; Chandawarkar, Akash; Diaz-Siso, J Rodrigo; Larson, Allison; Murphy, George F; Annino, Donald J; Caterson, Edward J; Pomahac, Bohdan

    2014-12-01

    Severe facial injuries can compromise the upper airway by reducing airway volume, obstructing or obliterating the nasal passage, and interfering with oral airflow. Besides the significant impact on quality of life, upper airway impairments can have life-threatening or life-altering consequences. The authors evaluated improvements in functional airway after face transplantation. Between 2009 and 2011, four patients underwent face transplantation at the authors' institution, the Brigham and Women's Hospital. Patients were examined preoperatively and postoperatively and their records reviewed for upper airway infections and sleeping disorders. The nasal mucosa was biopsied after face transplantation and analyzed using scanning electron microscopy. Volumetric imaging software was used to evaluate computed tomographic scans of the upper airway and assess airway volume changes before and after transplantation. Before transplantation, two patients presented an exposed naked nasal cavity and two suffered from occlusion of the nasal passage. Two patients required tracheostomy tubes and one had a prosthetic nose. Sleeping disorders were seen in three patients, and chronic cough was diagnosed in one. After transplantation, there was no significant improvement in sleeping disorders. The incidence of sinusitis increased because of mechanical interference of the donor septum and disappeared after surgical correction. All patients were decannulated after transplantation and were capable of nose breathing. Scanning electron micrographs of the respiratory mucosa revealed viable tissue capable of mucin production. Airway volume significantly increased in all patients. Face transplantation successfully restored the upper airway in four patients. Unhindered nasal breathing, viable respiratory mucosa, and a significant increase in airway volume contributed to tracheostomy decannulation.

  17. Respiratory impedance is correlated with airway narrowing in asthma using three-dimensional computed tomography.

    PubMed

    Karayama, M; Inui, N; Mori, K; Kono, M; Hozumi, H; Suzuki, Y; Furuhashi, K; Hashimoto, D; Enomoto, N; Fujisawa, T; Nakamura, Y; Watanabe, H; Suda, T

    2018-03-01

    Respiratory impedance comprises the resistance and reactance of the respiratory system and can provide detailed information on respiratory function. However, details of the relationship between impedance and morphological airway changes in asthma are unknown. We aimed to evaluate the correlation between imaging-based airway changes and respiratory impedance in patients with asthma. Respiratory impedance and spirometric data were evaluated in 72 patients with asthma and 29 reference subjects. We measured the intraluminal area (Ai) and wall thickness (WT) of third- to sixth-generation bronchi using three-dimensional computed tomographic analyses, and values were adjusted by body surface area (BSA, Ai/BSA, and WT/the square root (√) of BSA). Asthma patients had significantly increased respiratory impedance, decreased Ai/BSA, and increased WT/√BSA, as was the case in those without airflow limitation as assessed by spirometry. Ai/BSA was inversely correlated with respiratory resistance at 5 Hz (R5) and 20 Hz (R20). R20 had a stronger correlation with Ai/BSA than did R5. Ai/BSA was positively correlated with forced expiratory volume in 1 second/forced vital capacity ratio, percentage predicted forced expiratory volume in 1 second, and percentage predicted mid-expiratory flow. WT/√BSA had no significant correlation with spirometry or respiratory impedance. Respiratory resistance is associated with airway narrowing. © 2018 John Wiley & Sons Ltd.

  18. The effects of IL-5 on airway physiology and inflammation in rats.

    PubMed

    Nag, Sammy S; Xu, Li Jing; Hamid, Qutayba; Renzi, Paolo M

    2003-03-01

    There is evidence that the cytokine IL-5 is a prominent feature of airway inflammation in asthma. The aim of this study was to determine whether exogenous IL-5 could cause changes in lung physiology, the early and late airway response after antigen challenge, and airway inflammation in rats that do not have a propensity to develop these changes after sensitization and challenge. Intratracheal administration of IL-5 to ovalbumin sensitized Brown Norway SSN rats increased the airway responsiveness to methacholine (AHR) 20 hours after administration of IL-5 at the same time as an increase in neutrophils occurred in the lung lavage. This effect was dose dependent and was not caused by endotoxin. Concurrent intratracheal administration of 50 ng of anti-IL-5 monoclonal antibody with 10 microg of recombinant human IL-5 decreased the AHR and neutrophil influx. Pretreatment with 3 microg of IL-5 had no effect on the early and late airway response or on AHR after ovalbumin challenge. However, IL-5 increased lung re-sistance 20 hours after antigen challenge. Although total lung cells and differential counts did not differ significantly 8 hours after antigen challenge, the blood lymphocyte CD4/CD8 ratio decreased in IL-5 pretreated rats (P <.05). In addition, in situ hybridization showed a significant increase in cells within the airway wall expressing IL-4 and IL-5 mRNA in IL-5 treated/challenged rats compared to controls (P <.05). The intratracheal administration of IL-5 causes only part of the physiologic changes that are associated with asthma. Other factors are necessary to obtain the complete asthma phenotype.

  19. The effect of body weight on distal airway function and airway inflammation.

    PubMed

    van de Kant, Kim D G; Paredi, Paolo; Meah, Sally; Kalsi, Harpal S; Barnes, Peter J; Usmani, Omar S

    Obesity is a global health problem that adversely influences the respiratory system. We assessed the effects of body mass index (BMI) on distal airway function and airway inflammation. Impulse oscillometry (IOS) as a measure of distal airway function, together with spirometry, were assessed in adults with a range of different BMIs. Airway inflammation was assessed with the fraction of exhaled nitric oxide (FeNO) and participants exhaled at various exhalation flows to determine alveolar and bronchial NO. In total 34 subjects were enrolled in the study; 19 subjects had a normal BMI (18.50-24.99), whilst 15 subjects were overweight (BMI 25.00-29.99), or obese (BMI ≥30). All subjects had normal spirometry. However, IOS measures of airway resistance (R) at 5Hz, 20Hz and frequency dependence (R 5-20 ) were elevated in overweight/obese individuals, compared to subjects with a normal BMI (median (interquartile range)); 5Hz: 0.41 (0.37, 0.45) vs. 0.32 (0.30, 0.37)kPa/l/s; 20Hz: 0.34 (0.30, 0.37) vs. 0.30 (0.26, 0.33)kPa/l/s; R 5-20 : 0.06 (0.04, 0.11) vs. 0.03 (0.01, 0.05)kPa/l/s; p<0.05), whereas airway reactance at 20Hz was decreased in overweight/obese individuals (20Hz: 0.07 (0.03, 0.09) vs. 0.10 (0.07, 0.13)kPa/l/s, p=0.009; 5Hz: -0.12 (-0.15, -0.10) vs. -0.10 (-0.13, -0.09)kPa/l/s, p=0.07). In contrast, within-breath IOS measures (a sign of expiratory flow limitation) and FeNO inflammatory measures, did not differ between groups (p>0.05). Being overweight has significant effects on distal and central airway function as determined by IOS, which is not detected by spirometry. Obesity does not influence airway inflammation as measured by FeNO. IOS is a reliable technique to identify airway abnormalities in the presence of normal spirometry in overweight people. Copyright © 2015 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  20. IL-18 Does not Increase Allergic Airway Disease in Mice When Produced by BCG

    PubMed Central

    Amniai, L.; Biet, F.; Marquillies, P.; Locht, C.; Pestel, J.; Tonnel, A.-B.; Duez, C.

    2007-01-01

    Whilst BCG inhibits allergic airway responses in murine models, IL-18 has adversary effects depending on its environment. We therefore constructed a BCG strain producing murine IL-18 (BCG-IL-18) and evaluated its efficiency to prevent an asthma-like reaction in mice. BALB/cByJ mice were sensitized (day (D) 1 and D10) by intraperitoneal injection of ovalbumin (OVA)-alum and primary (D20–22) and secondary (D62, 63) challenged with OVA aerosols. BCG or BCG-IL-18 were intraperitonealy administered 1 hour before each immunization (D1 and D10). BCG-IL-18 and BCG were shown to similarly inhibit the development of AHR, mucus production, eosinophil influx, and local Th2 cytokine production in BAL, both after the primary and secondary challenge. These data show that IL-18 did not increase allergic airway responses in the context of the mycobacterial infection, and suggest that BCG-IL-18 and BCG are able to prevent the development of local Th2 responses and therefore inhibit allergen-induced airway responses even after restimulation. PMID:18299704

  1. Attenuation of tachykinin-induced airflow obstruction and microvascular leakage in immature airways.

    PubMed Central

    Tokuyama, K.; Yokoyama, T.; Morikawa, A.; Mochizuki, H.; Kuroume, T.; Barnes, P. J.

    1993-01-01

    1. To study the effect of maturation on substance P (SP)- and neurokinin A (NKA)-induced airflow obstruction and airway microvascular leakage (MVL), we have measured changes in both lung resistance (RL) and extravasation of Evans blue dye in anaesthetized immature (aged 14 +/- 1 days) and adult guinea-pigs (aged 80 +/- 3 days). 2. RL and its recovery after hyperinflation at 5 min were measured for 6 min after i.v. SP (0.2, 1 and 30 nmol kg-1), NKA (1 and 10 nmol kg-1) or vehicle (0.9% NaCl). After measurement of RL, MVL in trachea, main bronchi and intrapulmonary airways was also examined. 3. The order of potency in inducing airflow obstruction did not change with age (NKA > SP) but immature animals required a larger dose of SP or NKA than adults to cause a significant increase in RL. 4. The order of potency in inducing airway microvascular leakage was SP > NKA in both immature and adult animals. The amount of extravasated dye after SP was significantly less in immature airways, especially in central airways. 5. Phosphoramidon (2.5 mg kg-1), a neutral endopeptidase (NEP) inhibitor, significantly increased RL after 0.2 nmol kg-1 SP only in adult airways. Phosphoramidon enhanced the dye extravasation after 0.2 nmol kg-1 SP in both immature and adult airways with a significantly greater amount of dye in adult animals, suggesting that mechanisms other than changes in NEP activity may be responsible for this age-related difference.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7679033

  2. Exposure to Ozone Modulates Human Airway Protease/Antiprotease Balance Contributing to Increased Influenza A Infection

    PubMed Central

    Kesic, Matthew J.; Meyer, Megan; Bauer, Rebecca; Jaspers, Ilona

    2012-01-01

    Exposure to oxidant air pollution is associated with increased respiratory morbidities and susceptibility to infections. Ozone is a commonly encountered oxidant air pollutant, yet its effects on influenza infections in humans are not known. The greater Mexico City area was the primary site for the spring 2009 influenza A H1N1 pandemic, which also coincided with high levels of environmental ozone. Proteolytic cleavage of the viral membrane protein hemagglutinin (HA) is essential for influenza virus infectivity. Recent studies suggest that HA cleavage might be cell-associated and facilitated by the type II transmembrane serine proteases (TTSPs) human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2), whose activities are regulated by antiproteases, such as secretory leukocyte protease inhibitor (SLPI). Based on these observations, we sought to determine how acute exposure to ozone may modulate cellular protease/antiprotease expression and function, and to define their roles in a viral infection. We utilized our in vitro model of differentiated human nasal epithelial cells (NECs) to determine the effects of ozone on influenza cleavage, entry, and replication. We show that ozone exposure disrupts the protease/antiprotease balance within the airway liquid. We also determined that functional forms of HAT, TMPRSS2, and SLPI are secreted from human airway epithelium, and acute exposure to ozone inversely alters their expression levels. We also show that addition of antioxidants significantly reduces virus replication through the induction of SLPI. In addition, we determined that ozone-induced cleavage of the viral HA protein is not cell-associated and that secreted endogenous proteases are sufficient to activate HA leading to a significant increase in viral replication. Our data indicate that pre-exposure to ozone disrupts the protease/antiprotease balance found in the human airway, leading to increased influenza susceptibility. PMID

  3. Perivascular fluid cuffs decrease lung compliance by increasing tissue resistance.

    PubMed

    Lowe, Kevin; Alvarez, Diego F; King, Judy A; Stevens, Troy

    2010-06-01

    Lung inflammation causes perivascular fluid cuffs to form around extra-alveolar blood vessels; however, the physiologic consequences of such cuffs remain poorly understood. Herein, we tested the hypothesis that perivascular fluid cuffs, without concomitant alveolar edema, are sufficient to decrease lung compliance. Prospective, randomized, controlled study. Research laboratory. One hundred twenty male CD40 rats. To test this hypothesis, the plant alkaloid thapsigargin was used to activate store-operated calcium entry and increase cytosolic calcium in endothelium. Thapsigargin was infused into a central venous catheter of intact, sedated, and mechanically ventilated rats. Static and dynamic lung mechanics and hemodynamics were measured continuously. Thapsigargin produced perivascular fluid cuffs along extra-alveolar vessels but did not cause alveolar flooding or blood gas abnormalities. Lung compliance dose-dependently decreased after thapsigargin infusion, attributable to an increase in tissue resistance that was attributed to increased tissue damping and tissue elastance. Airway resistance was not changed. Neither central venous pressure nor left ventricular end diastolic pressure was altered by thapsigargin. Heart rate did not change, although thapsigargin decreased left ventricular systolic function sufficient to reduce cardiac output by 50%. Infusion of the type 4 phosphodiesterase inhibitor, rolipram, prevented thapsigargin from inducing perivascular cuffs and decreasing lung compliance. Rolipram also normalized pressure over time and corrected the deficit in cardiac output. Our findings resolve for the first time that perivascular cuff formation negatively impacts mechanical coupling between the bronchovascular bundle and the lung parenchyma, decreasing lung compliance without impacting central venous pressure.

  4. Azithromycin ameliorates airway remodeling via inhibiting airway epithelium apoptosis.

    PubMed

    Liu, Yuanqi; Pu, Yue; Li, Diandian; Zhou, Liming; Wan, Lihong

    2017-02-01

    Azithromycin can benefit treating allergic airway inflammation and remodeling. In the present study, we hypothesized that azithromycin alleviated airway epithelium injury through inhibiting airway epithelium apoptosis via down regulation of caspase-3 and Bax/Bcl2 ratio in vivo and in vitro. Ovalbumin induced rat asthma model and TGF-β1-induced BEAS-2B cell apoptosis model were established, respectively. In vivo experiments, airway epithelium was stained with hematoxylin and eosin (HE) and periodic acid-Schiff (PAS) to histologically evaluate the airway inflammation and remodeling. Airway epithelium apoptotic index (AI) was further analyzed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), while expression of apoptosis related gene (Bax, Bcl2, Caspase-3) in lungs were measured by qRT-PCR and western blotting, respectively. In vitro experiments, apoptosis were evaluated by Flow cytometry (FCM) and TUNEL. Above apoptosis related gene were also measured by qRT-PCR and western blotting. Compared with the OVA group, azithromycin significantly reduced the inflammation score, peribronchial smooth muscle layer thickness, epithelial thickening and goblet cell metaplasia (P<0.05), and effectively suppressed AI of airway epithelium (P<0.05). Moreover, the increasing mRNA and protein expressions of Caspase-3 and Bax/Bcl-2 ratio in lung tissue were all significantly decreased in azithromycin-treated rats (P<0.05). In vitro, azithromycin significantly suppressed TGF-β1-induced BEAS-2B cells apoptosis (P<0.05) and reversed TGF-β1 elevated Caspase-3 mRNA level and Bax/Bcl-2 ratio (P<0.05). Azithromycin is an attractive treatment option for reducing airway epithelial cell apoptosis by improving the imbalance of Bax/Bcl-2 ratio and inhibiting Caspase-3 level in airway epithelium. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Effects of the tripeptide substance P antagonist, FR113680, on airway constriction and airway edema induced by neurokinins in guinea-pigs.

    PubMed

    Murai, M; Morimoto, H; Maeda, Y; Fujii, T

    1992-06-24

    FR113680 is a newly developed tripeptide substance P (SP) receptor antagonist. The effects of FR113680 on airway constriction and airway edema induced by neurokinins were investigated in guinea-pigs. In in vitro experiments, FR113680 inhibited the contraction of isolated guinea-pig trachea induced by SP and neurokinin A (NKA) in a dose-dependent manner with IC50 values of 2.3 x 10(-6) and 1.5 x 10(-5) M, respectively. The tracheal contraction induced by histamine and acetylcholine was not affected by FR113680. FR113680 (5 x 10(-5) M) also significantly inhibited the atropine-resistant contraction of isolated guinea-pig bronchi induced by electrical field stimulation. In in vivo experiments, FR113680 given i.v. inhibited SP-induced airway constriction in guinea-pigs at doses of 1 and 10 mg kg-1. However, FR113680 only inhibited NKA- and capsaicin-induced airway constriction by 40-50% even at a dose of 10 mg kg-1. FR113680 also inhibited SP-induced airway edema in guinea-pigs with the same potency as it inhibited SP-induced airway constriction. Histamine-induced airway constriction and airway edema were not affected at a dose of 10 mg kg-1. These results suggest that FR113680 preferentially inhibits responses induced by NK1 receptor activation (SP-induced airway constriction and airway edema), but is less effective on a NK2 receptor-induced response (airway constriction by NKA and neurogenic stimulation).

  6. Maternal diesel inhalation increases airway hyperreactivity in ozone-exposed offspring.

    PubMed

    Auten, Richard L; Gilmour, M Ian; Krantz, Q Todd; Potts, Erin N; Mason, S Nicholas; Foster, W Michael

    2012-04-01

    Air pollutant exposure is linked with childhood asthma incidence and exacerbations, and maternal exposure to airborne pollutants during pregnancy increases airway hyperreactivity (AHR) in offspring. To determine if exposure to diesel exhaust (DE) during pregnancy worsened postnatal ozone-induced AHR, timed pregnant C57BL/6 mice were exposed to DE (0.5 or 2.0 mg/m(3)) 4 hours daily from Gestation Day 9-17, or received twice-weekly oropharyngeal aspirations of the collected DE particles (DEPs). Placentas and fetal lungs were harvested on Gestation Day 18 for cytokine analysis. In other litters, pups born to dams exposed to air or DE, or to dams treated with aspirated diesel particles, were exposed to filtered air or 1 ppm ozone beginning the day after birth, for 3 hours per day, 3 days per week for 4 weeks. Additional pups were monitored after a 4-week recovery period. Diesel inhalation or aspiration during pregnancy increased levels of placental and fetal lung cytokines. There were no significant effects on airway leukocytes, but prenatal diesel augmented ozone-induced elevations of bronchoalveolar lavage cytokines at 4 weeks. Mice born to the high-concentration diesel-exposed dams had worse ozone-induced AHR, which persisted in the 4-week recovery animals. Prenatal diesel exposure combined with postnatal ozone exposure also worsened secondary alveolar crest development. We conclude that maternal inhalation of DE in pregnancy provokes a fetal inflammatory response that, combined with postnatal ozone exposure, impairs alveolar development, and causes a more severe and long-lasting AHR to ozone exposure.

  7. Sensory neuropeptides modulate cigarette smoke-induced decrease in neutral endopeptidase activity in guinea pig airways.

    PubMed

    Kuo, H P; Lu, L C

    1995-01-01

    Cigarette smoke (CS) inhalation stimulates C-fibers to release sensory neuropeptides which mediate airway reflex responses to prevent irritants from entering the lower airways. When CS is inhaled via the upper airways, these airway defense responses may modulate the effect of CS on airway NEP activity and related airway hyperresponsiveness. To examine this possibility, we exposed guinea pigs to 1:10 diluted mid-tar cigarette smoke 100 puffs per day for 7 days and recorded pulmonary resistance of cumulative doses of neurokinin A (NKA, 10(-12)-10(-8) mol/kg, i.v.) or methacholine (Mch, 1-50 micrograms/kg, i.v.). NEP activity in the tracheobronchi was measured using fluorometric assay. Exposure of CS alone failed to alter the dose-response to NKA or Mch compared with air control. NEP activity in the airways after CS exposure was slightly but significantly lower than that of air control. Capsaicin pretreatment 1 week before CS exposure significantly shifted the dose-response curves of NKA, but not Mch, to the left and decreased NEP activity in the airways to a greater extent compared with CS exposure alone group. Capsaicin pretreatment alone failed to alter the responsiveness to NKA or NEP activity. CS also induced a significant increase in neutrophil counts in airways. Capsaicin pretreatment enhanced the effect of CS on neutrophil recruitment. We conclude that sensory neuropeptides may have a protective role in modulation of airways NEP activity downregulation induced by CS, probably by preventing CS from entering the lower airways or the chronic release of sensory neuropeptides induced by CS providing increased amount of substrata for NEP upregulation, and therefore modify the direct effect of CS on NEP activity and related airway hyperresponsiveness.

  8. Endogenous gamma-aminobutyric acid modulates tonic guinea pig airway tone and propofol-induced airway smooth muscle relaxation.

    PubMed

    Gallos, George; Gleason, Neil R; Virag, Laszlo; Zhang, Yi; Mizuta, Kentaro; Whittington, Robert A; Emala, Charles W

    2009-04-01

    Emerging evidence indicates that an endogenous autocrine/paracrine system involving gamma-aminobutyric acid (GABA) is present in airways. GABAA channels, GABAB receptors, and the enzyme that synthesizes GABA have been identified in airway epithelium and smooth muscle. However, the endogenous ligand itself, GABA, has not been measured in airway tissues. The authors sought to demonstrate that GABA is released in response to contractile agonists and tonically contributes a prorelaxant component to contracted airway smooth muscle. The amount and cellular localization of GABA in upper guinea pig airways under resting and contracted tone was determined by high pressure liquid chromatography and immunohistochemistry, respectively. The contribution that endogenous GABA imparts on the maintenance of airway smooth muscle acetylcholine-induced contraction was assessed in intact guinea pig airway tracheal rings using selective GABAA antagonism (gabazine) under resting or acetylcholine-contracted conditions. The ability of an allosteric agent (propofol) to relax a substance P-induced relaxation in an endogenous GABA-dependent manner was assessed. GABA levels increased and localized to airway smooth muscle after contractile stimuli in guinea pig upper airways. Acetylcholine-contracted guinea pig tracheal rings exhibited an increase in contracted force upon addition of the GABAA antagonist gabazine that was subsequently reversed by the addition of the GABAA agonist muscimol. Propofol dose-dependently relaxed a substance P contraction that was blocked by gabazine. These studies demonstrate that GABA is endogenously present and increases after contractile stimuli in guinea pig upper airways and that endogenous GABA contributes a tonic prorelaxant component in the maintenance of airway smooth muscle tone.

  9. Endogenous γ-aminobutyric Acid Modulates Tonic Guinea Pig Airway Tone and Propofol-induced Airway Smooth Muscle Relaxation

    PubMed Central

    Gallos, George; Gleason, Neil R.; Virag, Laszlo; Zhang, Yi; Mizuta, Kentauro; Whittington, Robert A.; Emala, Charles W.

    2009-01-01

    Background Emerging evidence indicates that an endogenous autocrine/paracrine system involving γ-aminobutyric acid (GABA) is present in airways. GABAA channels, GABAB receptors and the enzyme that synthesizes GABA have been identified in airway epithelium and smooth muscle. However, the endogenous ligand itself, GABA, has not been measured in airway tissues. We sought to demonstrate that GABA is released in response to contractile agonists and tonically contributes a pro-relaxant component to contracted airway smooth muscle. Methods The amount and cellular localization of GABA in upper guinea pig airways under resting and contracted tone was determined by high pressure liquid chromatography and immunohistochemistry, respectively. The contribution that endogenous GABA imparts on the maintenance of airway smooth muscle acetylcholine-induced contraction was assessed in intact guinea pig airway tracheal rings using selective GABAA antagonism (gabazine) under resting or acetylcholine-contracted conditions. The ability of an allosteric agent (propofol) to relax a substance P-induced relaxation in an endogenous GABA-dependent manner was assessed. Results GABA levels increased and localized to airway smooth muscle following contractile stimuli in guinea pig upper airways. Acetylcholine-contracted guinea pig tracheal rings exhibited an increase in contracted force upon addition of the GABAA antagonist gabazine which was subsequently reversed by the addition of the GABAA agonist muscimol. Propofol dose-dependently relaxed a substance P contraction that was blocked by gabazine. Conclusion These studies demonstrate that GABA is endogenously present and increases following contractile stimuli in guinea pig upper airways and that endogenous GABA contributes a tonic pro-relaxant component in the maintenance of airway smooth muscle tone. PMID:19322939

  10. Assessment of central airway obstruction using impulse oscillometry before and after interventional bronchoscopy.

    PubMed

    Handa, Hiroshi; Huang, Jyongsu; Murgu, Septimiu D; Mineshita, Masamichi; Kurimoto, Noriaki; Colt, Henri G; Miyazawa, Teruomi

    2014-02-01

    Spirometry is used to physiologically assess patients with central airway obstruction (CAO) before and after interventional bronchoscopy, but is not always feasible in these patients, does not localize the anatomic site of obstruction, and may not correlate with the patient's functional impairment. Impulse oscillometry may overcome these limitations. We assessed the correlations between impulse oscillometry measurements, symptoms, and type of airway narrowing, before and after interventional bronchoscopy, and whether impulse oscillometry parameters can discriminate between fixed and dynamic CAO. Twenty consecutive patients with CAO underwent spirometry, impulse oscillometry, computed tomography, dyspnea assessment, and bronchoscopy, before and after interventional bronchoscopy. The collapsibility index (the percent difference in airway lumen diameter during expiration versus during inspiration) was calculated using morphometric bronchoscopic images during quiet breathing. Variable CAO was defined as a collapsibility index of > 50%. Fixed CAO was defined as a collapsibility index of < 50%. The degree of obstruction was analyzed with computed tomography measurements. After interventional bronchoscopy, all impulse oscillometry measurements significantly improved, especially resistance at 5 Hz, which decreased from 0.67 ± 0.29kPa/L/s to 0.38 ± 0.17kPa/L/s (P < .001), and reactance at 20 Hz, which increased from -0.09 ± 0.11 to 0.03 ± 0.08 (P < .001). Changes in dyspnea score correlated with resistance at 5 Hz, the difference between the resistance at 5 Hz and the resistance at 20 Hz, and the reactance at 5 Hz, but not with spirometry measurements. The type of obstruction also correlated with dyspnea score, and showed distinct impulse oscillometry measurements. Impulse oscillometry measurements correlate with symptom improvements after interventional bronchoscopy. Impulse oscillometry might be useful to discriminate variable from fixed central airway obstruction

  11. Relationship Between Respiratory Dynamics and Body Mass Index in Patients Undergoing General Anesthesia with Laryngeal Mask Airway (LMA) and Comparison Between Lithotomy and Supine Positions

    PubMed Central

    Zhao, Xiao; Huang, Shiwei; Wang, Zhaomin; Chen, Lianhua; Li, Shitong

    2016-01-01

    Background This study aimed to compare respiratory dynamics in patients undergoing general anesthesia with a laryngeal mask airway (LMA) in lithotomy and supine positions and to validate the impact of operational position on effectiveness of LMA ventilation. Material/Methods A total of 90 patients (age range, 18–65 years) who underwent general anesthesia were selected and divided into supine position (SP group) and lithotomy position groups (LP group). Vital signs and respiratory dynamic parameters of the 2 groups were measured at different time points and after implantation of an LMA. The arterial blood gas was monitored at 15 min after induction. The intraoperative changes of hemodynamic indexes and postoperative adverse reactions of LMA were recorded. The possible correlation between body mass index (BMI) and respiratory dynamic indexes was analyzed. Results With prolonged duration of the operation, the inspiratory plateau pressure (Pplat), inspiratory resistance (RI), and work of breathing (WOB) gradually increased, while chest-lung compliance (Compl) and partial pressure of carbon dioxide in end-expiratory gas (PetCO2) gradually decreased (all P value <0.05). The mean airway pressure (Pmean), Pplat, and expiratory resistance (Re) in the LP group were significantly higher than in the SP group (P<0.05), while the peak inspiratory flow (FImax), peak expiratory flow (FEmax), WOB, and Compl in the LP group were significantly lower than in the SP group (P<0.05). BMI was positively correlated with peak airway pressure (PIP/Ppeak), Pplat, and airway resistance (Raw) and was negatively correlated with Compl; the differences among patients in lithotomy position were more remarkable (P<0.05). Conclusions The inspiratory plateau pressure and airway resistance increased with prolonged duration of the operation, accompanied by decreased chest-lung compliance. Peak airway pressure and airway resistance were positively correlated with BMI, and chest-lung compliance was

  12. Insights on persistent airway infection by non-typeable Haemophilus influenzae in chronic obstructive pulmonary disease

    PubMed Central

    Ahearn, Christian P.; Gallo, Mary C.

    2017-01-01

    Abstract Non-typeable Haemophilus influenzae (NTHi) is the most common bacterial cause of infection of the lower airways in adults with chronic obstructive pulmonary disease (COPD). Infection of the COPD airways causes acute exacerbations, resulting in substantial morbidity and mortality. NTHi has evolved multiple mechanisms to establish infection in the hostile environment of the COPD airways, allowing the pathogen to persist in the airways for months to years. Persistent infection of the COPD airways contributes to chronic airway inflammation that increases symptoms and accelerates the progressive loss of pulmonary function, which is a hallmark of the disease. Persistence mechanisms of NTHi include the expression of multiple redundant adhesins that mediate binding to host cellular and extracellular matrix components. NTHi evades host immune recognition and clearance by invading host epithelial cells, forming biofilms, altering gene expression and displaying surface antigenic variation. NTHi also binds host serum factors that confer serum resistance. Here we discuss the burden of COPD and the role of NTHi infections in the course of the disease. We provide an overview of NTHi mechanisms of persistence that allow the pathogen to establish a niche in the hostile COPD airways. PMID:28449098

  13. Atopic asthmatic immune phenotypes associated with airway microbiota and airway obstruction.

    PubMed

    Turturice, Benjamin A; McGee, Halvor S; Oliver, Brian; Baraket, Melissa; Nguyen, Brian T; Ascoli, Christian; Ranjan, Ravi; Rani, Asha; Perkins, David L; Finn, Patricia W

    2017-01-01

    Differences in asthma severity may be related to inflammation in the airways. The lower airway microbiota has been associated with clinical features such as airway obstruction, symptom control, and response to corticosteroids. To assess the relationship between local airway inflammation, severity of disease, and the lower airway microbiota in atopic asthmatics. A cohort of young adult, atopic asthmatics with intermittent or mild/moderate persistent symptoms (n = 13) were assessed via bronchoscopy, lavage, and spirometry. These individuals were compared to age matched non-asthmatic controls (n = 6) and to themselves after six weeks of treatment with fluticasone propionate (FP). Inflammation of the airways was assessed via a cytokine and chemokine panel. Lower airway microbiota composition was determined by metagenomic shotgun sequencing. Unsupervised clustering of cytokines and chemokines prior to treatment with FP identified two asthmatic phenotypes (AP), termed AP1 and AP2, with distinct bronchoalveolar lavage inflammatory profiles. AP2 was associated with more obstruction, compared to AP1. After treatment with FP reduced MIP-1β and TNF-α and increased IL-2 was observed. A module of highly correlated cytokines that include MIP-1β and TNF-α was identified that negatively correlated with pulmonary function. Independently, IL-2 was positively correlated with pulmonary function. The airway microbiome composition correlated with asthmatic phenotypes. AP2, prior to FP treatment, was enriched with Streptococcus pneumoniae. Unique associations between IL-2 or the cytokine module and the microbiota composition of the airways were observed in asthmatics subjects prior to treatment but not after or in controls. The underlying inflammation in atopic asthma is related to the composition of microbiota and is associated with severity of airway obstruction. Treatment with inhaled corticosteroids was associated with changes in the airway inflammatory response to microbiota.

  14. A 'Good' muscle in a 'Bad' environment: the importance of airway smooth muscle force adaptation to airway hyperresponsiveness.

    PubMed

    Bossé, Ynuk; Chapman, David G; Paré, Peter D; King, Gregory G; Salome, Cheryl M

    2011-12-15

    Asthma is characterized by airway inflammation, with a consequent increase in spasmogens, and exaggerated airway narrowing in response to stimuli, termed airway hyperresponsiveness (AHR). The nature of any relationship between inflammation and AHR is less clear. Recent ex vivo data has suggested a novel mechanism by which inflammation may lead to AHR, in which increased basal ASM-tone, due to the presence of spasmogens in the airways, may "strengthen" the ASM and ultimately lead to exaggerated airway narrowing. This phenomenon was termed "force adaptation" [Bossé, Y., Chin, L.Y., Paré, P.D., Seow, C.Y., 2009. Adaptation of airway smooth muscle to basal tone: relevance to airway hyperresponsiveness. Am. J. Respir. Cell Mol. Biol. 40, 13-18]. However, it is unknown whether the magnitude of the effect of force adaptation ex vivo could contribute to exaggerated airway narrowing in vivo. Our aim was to utilize a computational model of ASM shortening in order to quantify the potential effect of force adaptation on airway narrowing when all other mechanical factors were kept constant. The shortening in the model is dictated by a balance between physiological loads and ASM force-generating capacity at different lengths. The results suggest that the magnitude of the effect of force adaptation on ASM shortening would lead to substantially more airway narrowing during bronchial challenge at any given airway generation. We speculate that the increased basal ASM-tone in asthma, due to the presence of inflammation-derived spasmogens, produces an increase in the force-generating capacity of ASM, predisposing to AHR during subsequent challenge. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Difficult airway response team: a novel quality improvement program for managing hospital-wide airway emergencies.

    PubMed

    Mark, Lynette J; Herzer, Kurt R; Cover, Renee; Pandian, Vinciya; Bhatti, Nasir I; Berkow, Lauren C; Haut, Elliott R; Hillel, Alexander T; Miller, Christina R; Feller-Kopman, David J; Schiavi, Adam J; Xie, Yanjun J; Lim, Christine; Holzmueller, Christine; Ahmad, Mueen; Thomas, Pradeep; Flint, Paul W; Mirski, Marek A

    2015-07-01

    Difficult airway cases can quickly become emergencies, increasing the risk of life-threatening complications or death. Emergency airway management outside the operating room is particularly challenging. We developed a quality improvement program-the Difficult Airway Response Team (DART)-to improve emergency airway management outside the operating room. DART was implemented by a team of anesthesiologists, otolaryngologists, trauma surgeons, emergency medicine physicians, and risk managers in 2005 at The Johns Hopkins Hospital in Baltimore, Maryland. The DART program had 3 core components: operations, safety, and education. The operations component focused on developing a multidisciplinary difficult airway response team, standardizing the emergency response process, and deploying difficult airway equipment carts throughout the hospital. The safety component focused on real-time monitoring of DART activations and learning from past DART events to continuously improve system-level performance. This objective entailed monitoring the paging system, reporting difficult airway events and DART activations to a Web-based registry, and using in situ simulations to identify and mitigate defects in the emergency airway management process. The educational component included development of a multispecialty difficult airway curriculum encompassing case-based lectures, simulation, and team building/communication to ensure consistency of care. Educational materials were also developed for non-DART staff and patients to inform them about the needs of patients with difficult airways and ensure continuity of care with other providers after discharge. Between July 2008 and June 2013, DART managed 360 adult difficult airway events comprising 8% of all code activations. Predisposing patient factors included body mass index >40, history of head and neck tumor, prior difficult intubation, cervical spine injury, airway edema, airway bleeding, and previous or current tracheostomy. Twenty

  16. Difficult Airway Response Team: A Novel Quality Improvement Program for Managing Hospital-Wide Airway Emergencies

    PubMed Central

    Mark, Lynette J.; Herzer, Kurt R.; Cover, Renee; Pandian, Vinciya; Bhatti, Nasir I.; Berkow, Lauren C.; Haut, Elliott R.; Hillel, Alexander T.; Miller, Christina R.; Feller-Kopman, David J.; Schiavi, Adam J.; Xie, Yanjun J.; Lim, Christine; Holzmueller, Christine; Ahmad, Mueen; Thomas, Pradeep; Flint, Paul W.; Mirski, Marek A.

    2015-01-01

    Background Difficult airway cases can quickly become emergencies, increasing the risk of life-threatening complications or death. Emergency airway management outside the operating room is particularly challenging. Methods We developed a quality improvement program—the Difficult Airway Response Team (DART)—to improve emergency airway management outside the operating room. DART was implemented by a team of anesthesiologists, otolaryngologists, trauma surgeons, emergency medicine physicians, and risk managers in 2005 at The Johns Hopkins Hospital in Baltimore, Maryland. The DART program had three core components: operations, safety, and education. The operations component focused on developing a multidisciplinary difficult airway response team, standardizing the emergency response process, and deploying difficult airway equipment carts throughout the hospital. The safety component focused on real-time monitoring of DART activations and learning from past DART events to continuously improve system-level performance. This objective entailed monitoring the paging system, reporting difficult airway events and DART activations to a web-based registry, and using in situ simulations to identify and mitigate defects in the emergency airway management process. The educational component included development of a multispecialty difficult airway curriculum encompassing case-based lectures, simulation, and team building/communication to ensure consistency of care. Educational materials were also developed for non-DART staff and patients to inform them about the needs of patients with difficult airways and ensure continuity of care with other providers after discharge. Results Between July 2008 and June 2013, DART managed 360 adult difficult airway events comprising 8% of all code activations. Predisposing patient factors included body mass index > 40, history of head and neck tumor, prior difficult intubation, cervical spine injury, airway edema, airway bleeding, and previous

  17. Airway response to emotion- and disease-specific films in asthma, blood phobia, and health.

    PubMed

    Ritz, Thomas; Wilhelm, Frank H; Meuret, Alicia E; Gerlach, Alexander L; Roth, Walton T

    2011-01-01

    Earlier research found autonomic and airway reactivity in asthma patients when they were exposed to blood-injection-injury (BII) stimuli. We studied oscillatory resistance (R(os)) in asthma and BII phobia during emotional and disease-relevant films and examined whether muscle tension counteracts emotion-induced airway constriction. Fifteen asthma patients, 12 BII phobia patients, and 14 healthy controls viewed one set of negative, positive, neutral, BII-related, and asthma-related films with leg muscle tension and a second set without. R(os), ventilation, cardiovascular activity, and skin conductance were measured continuously. R(os) was higher during emotional compared to neutral films, particularly during BII material, and responses increased from healthy over asthmatic to BII phobia participants. Leg muscle tension did not abolish R(os) increases. Thus, the airways are particularly responsive to BII-relevant stimuli, which could become risk factors for asthma patients. Copyright © 2010 Society for Psychophysiological Research.

  18. Assessment of airway hyperreactivity: comparison of forced spirometry and body plethysmography for methacholine challenge tests

    PubMed Central

    2009-01-01

    Introduction Bronchial challenge tests by inhalation of aerosolized methacholine (MCH) are commonly used in the clinical diagnosis of airway hyperresponsiveness (AHR). While the detection of airway narrowing relies on the patient's cooperation performing forced spirometry, body plethysmographic measurements of airway resistance are less depending on the patient's cooperation and do not alter the respiratory tract by maximal maneuvers. Hence we compared both methods concerning their clinical value and correlation during MCH challenges in patients with asthma. Materials and Methods Cumulative MCH challenges test, consisting of up to 5 steps, evaluated with body plethysmography on each step were performed in 155 patients with bronchial asthma. Airway responses were recorded at each step of MCH application (Master-Screen Body, Cardinal Health, Höchberg). At the baseline test and after crossing the provocation dose (PD) threshold in body plethysmography (PD+100 sReff), forced expirations were performed and FEV1, FVC, and FEV1 %FVC were measured. Using regression analysis of the airway parameters and taking the MCH dose as the covariate, we could extrapolate to missing spirometric values and interpolate the estimated MCH dose when crossing the PD threshold (PD-20 FEV1) between two consecutive measurements. The administered PD+100 MCH doses for specific airway resistance, sRtot, and sReff were compared with resistance parameters Rtot and Reff, and to PD-20 of FEV1 and FEV1 %FVC. Results Regarding sReff we found a mild, moderate, or severe AHR in 114 patients (75%), but only 50 (32%) according to FEV1. A statistical analysis showed strongly linear correlated parameters of airway resistance, but no significant correlation between the results of body plethysmography and forced spirometry Conclusions Using MCH challenges, we found specific airway resistance to be the most sensitive parameter to detect AHR. Raw is largely independent of height and gender facilitating the

  19. Sphingosine-1-phosphate induces pro-remodelling response in airway smooth muscle cells

    PubMed Central

    Fuerst, E; Foster, H R; Ward, J P T; Corrigan, C J; Cousins, D J; Woszczek, G

    2014-01-01

    Background Increased proliferation of airway smooth muscle (ASM) cells leading to hyperplasia and increased ASM mass is one of the most characteristic features of airway remodelling in asthma. A bioactive lipid, sphingosine-1-phosphate (S1P), has been suggested to affect airway remodelling by stimulation of human ASM cell proliferation. Objective To investigate the effect of S1P on signalling and regulation of gene expression in ASM cells from healthy and asthmatic individuals. Methods Airway smooth muscle cells grown from bronchial biopsies of healthy and asthmatic individuals were exposed to S1P. Gene expression was analysed using microarray, real-time PCR and Western blotting. Receptor signalling and function were determined by mRNA knockdown and intracellular calcium mobilization experiments. Results S1P potently regulated the expression of more than 80 genes in human ASM cells, including several genes known to be involved in the regulation of cell proliferation and airway remodelling (HBEGF, TGFB3, TXNIP, PLAUR, SERPINE1, RGS4). S1P acting through S1P2 and S1P3 receptors activated intracellular calcium mobilization and extracellular signal-regulated and Rho-associated kinases to regulate gene expression. S1P-induced responses were not inhibited by corticosteroids and did not differ significantly between ASM cells from healthy and asthmatic individuals. Conclusion S1P induces a steroid-resistant, pro-remodelling pathway in ASM cells. Targeting S1P or its receptors could be a novel treatment strategy for inhibiting airway remodelling in asthma. PMID:25041788

  20. The effect of inhaled K+ channel openers on bronchoconstriction and airway microvascular leakage in anaesthetised guinea pigs.

    PubMed

    Kidney, J C; Lotvall, J O; Lei, Y; Chung, K F; Barnes, P J

    1996-01-18

    Since orally administered K+ channel openers may have cardiovascular side effects, it is possible that inhaled administration would be preferred for the treatment of asthma. We have investigated whether inhaled levcromakalim and HOE 234 inhibit histamine-induced bronchoconstriction and airway plasma exudation in anaesthetised guinea pigs. We have also investigated whether inhaled HOE 234 inhibits the bronchoconstriction and plasma exudation induced by vagus nerve stimulation, which is due to the release of tachykinins from sensory nerves. Lung resistance was measured by airway resistance (RL) computed from airway and transpulmonary pressures and plasma exudation by measurement of Evans blue dye extravasation. Inhaled levcromakalim (25 mu g/ml) had a short duration of action, being effective against histamine-induced bronchoconstriction 2 min after pretreatment, but not at 10 min. Inhaled HOE 234 (25 mu g/ml) was similarly effective against histamine-induced bronchoconstriction but had a longer duration of action. Inhaled levcromakalim partially attenuated histamine-induced plasma extravasation in small airways, but not in the trachea or main bronchi, whereas inhaled HOE 234 had no effect. HOE 234 protected against non-adrenergic non-cholinergic nerve-induced bronchoconstriction, but had no effect on neurogenic- or substance P-induced plasma extravasation in the airway. Inhaled K+ channel openers protect against induced bronchoconstriction, but provide little or no protection against plasma exudation, possibly because of an increase in airway blood flow. In addition, inhaled HOE 234 had no effect on neurogenic leakage, suggesting that its vagal inhibitory effect on bronchoconstriction was on airway smooth muscle, rather than on release of neuropeptides from sensory nerves.

  1. Impulse oscillometry in the evaluation of diseases of the airways in children

    PubMed Central

    Komarow, Hirsh D.; Myles, Ian A.; Uzzaman, Ashraf; Metcalfe, Dean D.

    2012-01-01

    Objective To provide an overview of impulse oscillometry and its application to the evaluation of children with diseases of the airways. Data Sources Medline and PubMed search, limited to English language and human disease, with keywords forced oscillation, impulse oscillometry, and asthma. Study Selections The opinions of the authors were used to select studies for inclusion in this review. Results Impulse oscillometry is a noninvasive and rapid technique requiring only passive cooperation by the patient. Pressure oscillations are applied at the mouth to measure pulmonary resistance and reactance. It is employed by health care professionals to help diagnose pediatric pulmonary diseases such asthma and cystic fibrosis; assess therapeutic responses; and measure airway resistance during provocation testing. Conclusions Impulse oscillometry provides a rapid, noninvasive measure of airway impedance. It may be easily employed in the diagnosis and management of diseases of the airways in children. PMID:21354020

  2. Evaluation of Endotracheal Tube Scraping on Airway Resistance.

    PubMed

    Scott, J Brady; Dubosky, Meagan N; Vines, David L; Sulaiman, Adewunmi S; Jendral, Kyle R; Singh, Gagan; Patel, Ankeet; Kaplan, Carl A; Gurka, David P; Balk, Robert A

    2017-11-01

    Spontaneous breathing trials (SBTs) are used to assess the readiness for discontinuation of mechanical ventilation. When airway resistance (R aw ) is elevated, the imposed work of breathing can lead to prolongation of mechanical ventilation. Biofilm and mucus build-up within the endotracheal tube (ETT) can increase R aw . Scraping the ETT can remove the biofilm build-up and decrease mechanical R aw . The primary aim of this study was to evaluate the impact of ETT scraping on R aw . The secondary aim was to determine whether decreasing R aw would impact subsequent SBT success. Intubated, mechanically ventilated subjects were enrolled if they failed an SBT and had an R aw of > 10 cm H 2 O/L/s. SBT failure was based on institutional guidelines, and R aw was calculated by subtracting the difference between the measured peak and plateau pressures using a square flow waveform with an inspiratory flow set at 60 L/min. The endOclear device was inserted into the ETT and withdrawn per manufacturer's guidelines. Scraping was repeated until the ETT was cleared. Change in R aw was compared pre- and post-ETT scraping using a paired t test. A Mann-Whitney U test evaluated the difference in percentage change in R aw between SBT groups. Twenty-nine subjects completed the study. The mean pre- and post-ETT scraping R aw values were 15.17 ± 3.83 and 12.05 ± 3.19 cm H 2 O/L/s, respectively ( P < .001). Subsequent SBT success was 48%; however, there was no difference in percentage change in R aw between subsequent passed SBT (18.61% [interquartile range 8.90-33.93%]) and failed SBT (23.88% [interquartile range 0.00-34.80%]), U = 78.5, z = -0.284, P = .78. No adverse events were noted with ETT scraping. This study demonstrated that ETT scraping can reduce R aw . The decrease in R aw post-ETT scraping did not affect subsequent SBT success. Copyright © 2017 by Daedalus Enterprises.

  3. Modulating airway defenses against microbes.

    PubMed

    Reynolds, Herbert Y

    2002-05-01

    Prevention and treatment of respiratory infections remain an important health care challenge as the US population ages, contains more susceptible or high-risk people, and encounters new pathogens or antibiotic resistant bacteria. Reasonably protective vaccines against very common microbes are available for childhood and adult immunization, but, generally, these are underutilized. A broader definition of higher risk individuals is evolving, which will include more for immunization. Different approaches to vaccine development through design of new component vaccines are necessary. This review has updated host defense mechanisms at three levels in the human respiratory tract: naso-oropharynx (upper airways), conducting airways, and alveolar space. Examples of representative pathogenic microbes have been inserted at the respective airway segment where they may colonize or create infection (influenza, measles virus, Porphyromonas gingivalis causing periodontitis, Bordetella pertussis, Chlamydia pneumoniae, Streptococcus pneumoniae, and Bacillus anthracis ). Hopefully, microbe-host interactions will suggest new approaches for preventing these kinds of infections.

  4. Increased CCL24/eotaxin-2 with postnatal ozone exposure in allergen-sensitized infant monkeys is not associated with recruitment of eosinophils to airway mucosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Debbie L.; Gerriets, Joan E.; Schelegle, Edward S.

    Epidemiology supports a causal link between air pollutant exposure and childhood asthma, but the mechanisms are unknown. We have previously reported that ozone exposure can alter the anatomic distribution of CD25+ lymphocytes in airways of allergen-sensitized infant rhesus monkeys. Here, we hypothesized that ozone may also affect eosinophil trafficking to allergen-sensitized infant airways. To test this hypothesis, we measured blood, lavage, and airway mucosa eosinophils in 3-month old monkeys following cyclical ozone and house dust mite (HDM) aerosol exposures. We also determined if eotaxin family members (CCL11, CCL24, CCL26) are associated with eosinophil location in response to exposures. In lavage,more » eosinophil numbers increased in animals exposed to ozone and/or HDM. Ozone + HDM animals showed significantly increased CCL24 and CCL26 protein in lavage, but the concentration of CCL11, CCL24, and CCL26 was independent of eosinophil number for all exposure groups. In airway mucosa, eosinophils increased with exposure to HDM alone; comparatively, ozone and ozone + HDM resulted in reduced eosinophils. CCL26 mRNA and immunofluorescence staining increased in airway mucosa of HDM alone animals and correlated with eosinophil volume. In ozone + HDM animal groups, CCL24 mRNA and immunofluorescence increased along with CCR3 mRNA, but did not correlate with airway mucosa eosinophils. Cumulatively, our data indicate that ozone exposure results in a profile of airway eosinophil migration that is distinct from HDM mediated pathways. CCL24 was found to be induced only by combined ozone and HDM exposure, however expression was not associated with the presence of eosinophils within the airway mucosa. -- Highlights: Black-Right-Pointing-Pointer Ozone can modulate the localization of eosinophils in infant allergic airways. Black-Right-Pointing-Pointer Expression of eotaxins within the lung is affected by ozone and allergen exposure. Black-Right-Pointing-Pointer CCL24

  5. Cystic Fibrosis Transmembrane Conductance Regulator in Sarcoplasmic Reticulum of Airway Smooth Muscle. Implications for Airway Contractility

    PubMed Central

    Cook, Daniel P.; Rector, Michael V.; Bouzek, Drake C.; Michalski, Andrew S.; Gansemer, Nicholas D.; Reznikov, Leah R.; Li, Xiaopeng; Stroik, Mallory R.; Ostedgaard, Lynda S.; Abou Alaiwa, Mahmoud H.; Thompson, Michael A.; Prakash, Y. S.; Krishnan, Ramaswamy; Meyerholz, David K.; Seow, Chun Y.

    2016-01-01

    Rationale: An asthma-like airway phenotype has been described in people with cystic fibrosis (CF). Whether these findings are directly caused by loss of CF transmembrane conductance regulator (CFTR) function or secondary to chronic airway infection and/or inflammation has been difficult to determine. Objectives: Airway contractility is primarily determined by airway smooth muscle. We tested the hypothesis that CFTR is expressed in airway smooth muscle and directly affects airway smooth muscle contractility. Methods: Newborn pigs, both wild type and with CF (before the onset of airway infection and inflammation), were used in this study. High-resolution immunofluorescence was used to identify the subcellular localization of CFTR in airway smooth muscle. Airway smooth muscle function was determined with tissue myography, intracellular calcium measurements, and regulatory myosin light chain phosphorylation status. Precision-cut lung slices were used to investigate the therapeutic potential of CFTR modulation on airway reactivity. Measurements and Main Results: We found that CFTR localizes to the sarcoplasmic reticulum compartment of airway smooth muscle and regulates airway smooth muscle tone. Loss of CFTR function led to delayed calcium reuptake following cholinergic stimulation and increased myosin light chain phosphorylation. CFTR potentiation with ivacaftor decreased airway reactivity in precision-cut lung slices following cholinergic stimulation. Conclusions: Loss of CFTR alters porcine airway smooth muscle function and may contribute to the airflow obstruction phenotype observed in human CF. Airway smooth muscle CFTR may represent a therapeutic target in CF and other diseases of airway narrowing. PMID:26488271

  6. Neurokinin-1 receptor mediates stress-exacerbated allergic airway inflammation and airway hyperresponsiveness in mice.

    PubMed

    Joachim, Ricarda A; Sagach, Viktoriya; Quarcoo, David; Dinh, Q Thai; Arck, Petra C; Klapp, Burghard F

    2004-01-01

    A wealth of clinical observation has suggested that stress and asthma morbidity are associated. We have previously established a mouse model of stress-exacerbated allergic airway inflammation, which reflects major clinical findings. The aim of the current study was to investigate the role of the neurokinin- (NK-)1 receptor in the mediation of stress effects in allergic airway inflammation. BALB/c mice were systemically sensitized with ovalbumin (OVA) on assay days 1, 14, and 21 and repeatedly challenged with OVA aerosol on days 26 and 27. Sound stress was applied to the animals for 24 hours, starting with the first airway challenge. Additionally, one group of stressed and one group of nonstressed mice received the highly specific NK-1 receptor antagonist RP 67580. Bronchoalveolar lavage fluid was obtained, and cell numbers and differentiation were determined. Airway hyperreactivity was measured in vitro by electrical field stimulation of tracheal smooth-muscle elements. Application of stress in sensitized and challenged animals resulted in a significant increase in leukocyte number in the bronchoalveolar lavage fluid. Furthermore, stressed animals showed enhanced airway reactivity. The increase of inflammatory cells and airway reactivity was blocked by treatment of animals with the NK-1 receptor antagonist. These data indicate that the NK-1 receptor plays an important role in mediating stress effects in allergen-induced airway inflammation.

  7. Impact of airway morphological changes on pulmonary flows in scoliosis

    NASA Astrophysics Data System (ADS)

    Farrell, James; Garrido, Enrique; Valluri, Prashant

    2016-11-01

    The relationship between thoracic deformity in scoliosis and lung function is poorly understood. In a pilot study, we reviewed computed tomography (CT) routine scans of patients undergoing scoliosis surgery. The CT scans were processed to segment the anatomy of the airways, lung and spine. A three-dimensional model was created to study the anatomical relationship. Preliminary analysis showed significant airway morphological differences depending on the anterior position of the spine. A computational fluid dynamics (CFD) study was also conducted on the airway geometry using the inspiratory scans. The CFD model assuming non-compliant airway walls was capable of showing pressure drops in areas of high airway resistance, but was unable to predict regional ventilation differences. Our results indicate a dependence between the dynamic deformation of the airway during breathing and lung function. Dynamic structural deformation must therefore be incorporated within any modelling approaches to guide clinicians on the decision to perform surgical correction of the scoliosis.

  8. Functional residual capacity and airway resistance of the rat measured with a heat- and temperature-adjusted body plethysmograph.

    PubMed

    Tajiri, Sakurako; Kondo, Tetsuri; Yamabayashi, Hajime

    2006-12-01

    The functional residual capacity (FRC) and airway resistance (R(aw)) of the rat were measured, using a newly designed body plethysmograph (BPG), the inner environment of which was maintained at body temperature and was water-vapor saturated. The subjects were anesthetized and tracheally intubated male Wistar rats (n = 15). After measuring the FRC and R(aw), we analyzed the effects of inhaled methacholine (Mch, 0-8 mg/ml) on R(aw).The determined FRC was 5.37 +/- 0.22 ml (mean +/- SE). An almost linear relationship between box pressure and respiratory flow was obtained when the difference between box-gas temperature and the rectal temperature of the rat was less than 1.0 degrees C. The R(aw) at FRC was 0.230 +/- 0.017 cm H(2)O/ml/s. It increased proportionally with increases in the Mch concentration. When the dynamic changes in R(aw) were analyzed, the R(aw) was found to progressively increase during expiration; this increase continued throughout inspiration. Thus in the rat, R(aw) is not simply a function of changes in lung volume. In conclusion, the humidity- and temperature-adjusted BPG provided an absolute and possibly dynamic value of R(aw).

  9. Relationships between equine airway reactivity measured by flowmetric plethysmography and specific indicators of airway inflammation in horses with suspected inflammatory airway disease.

    PubMed

    Wichtel, M; Gomez, D; Burton, S; Wichtel, J; Hoffman, A

    2016-07-01

    Agreement between airway reactivity measured by flowmetric plethysmography and histamine bronchoprovocation, and lower airway inflammation measured by bronchoalveolar lavage (BAL) cytology, has not been studied in horses with suspected inflammatory airway disease (IAD). We tested the hypothesis that airway reactivity is associated with BAL cytology in horses presenting for unexplained poor performance and/or chronic cough. Prospective clinical study. Forty-five horses, predominantly young Standardbred racehorses, presenting for unexplained poor performance or chronic cough, underwent endoscopic evaluation, tracheal wash, flowmetric plethysmography with histamine bronchoprovocation and BAL. Histamine response was measured by calculating PC35, the concentration of nebulised histamine eliciting an increase in Δflow of 35%. In this population, there was no significant correlation between histamine response and cell populations in BAL cytology. When airway hyperreactivity (AHR) was defined as ≥35% increase in Δflow at a histamine concentration of <6 mg/ml, 24 of the 45 horses (53%) were determined to have AHR. Thirty-three (73%) had either abnormal BAL cytology or AHR, and were diagnosed with IAD on this basis. Of horses diagnosed with IAD, 9 (27%) had an abnormal BAL, 11 (33%) had AHR and 13 (39%) had both. Airway reactivity and BAL cytology did not show concordance in this population of horses presenting for unexplained poor performance and/or chronic cough. Failure to include tests of airway reactivity may lead to underdiagnosis of IAD in young Standardbred racehorses that present with clinical signs suggestive of IAD. © 2015 EVJ Ltd.

  10. Airway smooth muscle responsiveness from dogs with airway hyperresponsiveness after O/sub 3/ inhalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, G.L.; O'Byrne, P.M.; Pashley, M.

    1988-07-01

    Airway hyperresponsiveness occurs after inhalation of O3 in dogs. The purpose of this study was to examine the responsiveness of trachealis smooth muscle in vitro to electrical field stimulation, exogenous acetylcholine, and potassium chloride from dogs with airway hyperresponsiveness after inhaled O3 in vivo and to compare this with the responsiveness of trachealis muscle from control dogs. In addition, excitatory junction potentials were measured with the use of single and double sucrose gap techniques in both groups of dogs to determine whether inhaled O3 affects the release of acetylcholine from parasympathetic nerves in trachealis muscle. Airway hyperresponsiveness developed in allmore » dogs after inhaled O3 (3 ppm for 30 min). The acetylcholine provocative concentration decreased from 4.11 mg/ml before O3 inhalation to 0.66 mg/ml after O3 (P less than 0.0001). The acetylcholine provocative concentration increased slightly after control inhalation of dry room air. Airway smooth muscle showed increased responses to both electrical field stimulation and exogenous acetylcholine but not to potassium chloride in preparations from dogs with airway hyperresponsiveness in vivo. The increased response to electrical field stimulation was not associated with a change in excitatory junctional potentials. These results suggest that a postjunctional alteration in trachealis muscle function occurs after inhaled O3 in dogs, which may account for airway hyperresponsiveness after O3 in vivo.« less

  11. Analysis of the interplay between neurochemical control of respiration and upper airway mechanics producing upper airway obstruction during sleep in humans.

    PubMed

    Longobardo, G S; Evangelisti, C J; Cherniack, N S

    2008-02-01

    with hypercapnia and hypoxia could prevent obstructed apnoeas with moderate but not with severe reductions in stiffness. Increases in controller gain, as might occur with hypoxia, converted obstructive to central apnoeas. Breathing CO2 eliminated apnoeas when the activity of the upper airway muscles was considered to change as a function of CO2 to some exponent. Low arousal thresholds and increased upper airway resistance are two factors that promoted the occurrence and persistence of obstructive sleep apnoeas.

  12. A Mechanism for Upper Airway Stability during Slow Wave Sleep

    PubMed Central

    McSharry, David G.; Saboisky, Julian P.; DeYoung, Pam; Matteis, Paul; Jordan, Amy S.; Trinder, John; Smales, Erik; Hess, Lauren; Guo, Mengshuang; Malhotra, Atul

    2013-01-01

    Study Objectives: The severity of obstructive sleep apnea is diminished (sometimes markedly) during slow wave sleep (SWS). We sought to understand why SWS stabilizes the upper airway. Increased single motor unit (SMU) activity of the major upper airway dilating muscle (genioglossus) should improve upper airway stability. Therefore, we hypothesized that genioglossus SMUs would increase their activity during SWS in comparison with Stage N2 sleep. Design: The activity of genioglossus SMUs was studied on both sides of the transition between Stage N2 sleep and SWS. Setting: Sleep laboratory. Participants: Twenty-nine subjects (age 38 ± 13 yr, 17 males) were studied. Intervention: SWS. Measurement and Results: Subjects slept overnight with fine-wire electrodes in their genioglossus muscles and with full polysomnographic and end tidal carbon dioxide monitors. Fifteen inspiratory phasic (IP) and 11 inspiratory tonic (IT) units were identified from seven subjects and these units exhibited significantly increased inspiratory discharge frequencies during SWS compared with Stage N2 sleep. The peak discharge frequency of the inspiratory units (IP and IT) was 22.7 ± 4.1 Hz in SWS versus 20.3 ± 4.5 Hz in Stage N2 (P < 0.001). The IP units also fired for a longer duration (expressed as a percentage of inspiratory time) during SWS (104.6 ± 39.5 %TI) versus Stage N2 sleep (82.6 ± 39.5 %TI, P < 0.001). The IT units fired faster during expiration in SWS (14.2 ± 1.8 Hz) versus Stage N2 sleep (12.6 ± 3.1 Hz, P = 0.035). There was minimal recruitment or derecruitment of units between SWS and Stage N2 sleep. Conclusion: Increased genioglossus SMU activity likely makes the airway more stable and resistant to collapse throughout the respiratory cycle during SWS. Citation: McSharry DG; Saboisky JP; DeYoung P; Matteis P; Jordan AS; Trinder J; Smales E; Hess L; Guo M; Malhotra A. A mechanism for upper airway stability during slow wave sleep. SLEEP 2013;36(4):555-563. PMID:23565001

  13. The Contribution of Small Airway Obstruction to the Pathogenesis of Chronic Obstructive Pulmonary Disease.

    PubMed

    Hogg, James C; Paré, Peter D; Hackett, Tillie-Louise

    2017-04-01

    The hypothesis that the small conducting airways were the major site of obstruction to airflow in normal lungs was introduced by Rohrer in 1915 and prevailed until Weibel introduced a quantitative method of studying lung anatomy in 1963. Green repeated Rohrer's calculations using Weibels new data in 1965 and found that the smaller conducting airways offered very little resistance to airflow. This conflict was resolved by seminal experiments conducted by Macklem and Mead in 1967, which confirmed that a small proportion of the total lower airways resistance is attributable to small airways <2 mm in diameter. Shortly thereafter, Hogg, Macklem, and Thurlbeck used this technique to show that small airways become the major site of obstruction in lungs affected by emphysema. These and other observations led Mead to write a seminal editorial in 1970 that postulated the small airways are a silent zone within normal lungs where disease can accumulate over many years without being noticed. This review provides a progress report since the 1970s on methods for detecting chronic obstructive pulmonary disease, the structural nature of small airways' disease, and the cellular and molecular mechanisms that are thought to underlie its pathogenesis. Copyright © 2017 the American Physiological Society.

  14. Interleukin-1beta-induced airway hyperresponsiveness enhances substance P in intrinsic neurons of ferret airway.

    PubMed

    Wu, Z-X; Satterfield, B E; Fedan, J S; Dey, R D

    2002-11-01

    Interleukin (IL)-1beta causes airway inflammation, enhances airway smooth muscle responsiveness, and alters neurotransmitter expression in sensory, sympathetic, and myenteric neurons. This study examines the role of intrinsic airway neurons in airway hyperresponsiveness (AHR) induced by IL-1beta. Ferrets were instilled intratracheally with IL-1beta (0.3 microg/0.3 ml) or saline (0.3 ml) once daily for 5 days. Tracheal smooth muscle contractility in vitro and substance P (SP) expression in tracheal neurons were assessed. Tracheal smooth muscle reactivity to acetylcholine (ACh) and methacholine (MCh) and smooth muscle contractions to electric field stimulation (EFS) both increased after IL-1beta. The IL-1beta-induced AHR was maintained in tracheal segments cultured for 24 h, a procedure that depletes SP from sensory nerves while maintaining viability of intrinsic airway neurons. Pretreatment with CP-99994, an antagonist of neurokinin 1 receptor, attenuated the IL-1beta-induced hyperreactivity to ACh and MCh and to EFS in cultured tracheal segments. SP-containing neurons in longitudinal trunk, SP innervation of superficial muscular plexus neurons, and SP nerve fiber density in tracheal smooth muscle all increased after treatment with IL-1beta. These results show that IL-1beta-enhanced cholinergic airway smooth muscle contractile responses are mediated by the actions of SP released from intrinsic airway neurons.

  15. Site of Allergic Airway Narrowing and the Influence of Exogenous Surfactant in the Brown Norway Rat

    PubMed Central

    Risse, Paul-André; Bullimore, Sharon R.; Benedetti, Andrea; Martin, James G.

    2012-01-01

    Background The parameters RN (Newtonian resistance), G (tissue damping), and H (tissue elastance) of the constant phase model of respiratory mechanics provide information concerning the site of altered mechanical properties of the lung. The aims of this study were to compare the site of allergic airway narrowing implied from respiratory mechanics to a direct assessment by morphometry and to evaluate the effects of exogenous surfactant administration on the site and magnitude of airway narrowing. Methods We induced airway narrowing by ovalbumin sensitization and challenge and we tested the effects of a natural surfactant lacking surfactant proteins A and D (Infasurf®) on airway responses. Sensitized, mechanically ventilated Brown Norway rats underwent an aerosol challenge with 5% ovalbumin or vehicle. Other animals received nebulized surfactant prior to challenge. Three or 20 minutes after ovalbumin challenge, airway luminal areas were assessed on snap-frozen lungs by morphometry. Results At 3 minutes, RN and G detected large airway narrowing whereas at 20 minutes G and H detected small airway narrowing. Surfactant inhibited RN at the peak of the early allergic response and ovalbumin-induced increase in bronchoalveolar lavage fluid cysteinyl leukotrienes and amphiregulin but not IgE-induced mast cell activation in vitro. Conclusion Allergen challenge triggers the rapid onset of large airway narrowing, detected by RN and G, and subsequent peripheral airway narrowing detected by G and H. Surfactant inhibits airway narrowing and reduces mast cell-derived mediators. PMID:22276110

  16. Interaction of ozone exposure with airway hyperresponsiveness and inflammation induced by trimellitic anhydride in sensitized guinea pigs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jian; Chung, K.Fan

    1997-09-01

    The effect of prior ozone (O{sub 3}) exposure on airway hyperresponsiveness and inflammation induced by trimellitic anhydride (TMA) has been investigated in TMA-sensitized guinea pigs. Airway responsiveness was measured as the concentration of acetylcholine needed to increase baseline lung resistance (RL) by 300% (PC300). Ozone (3 ppm, for 3 h) caused an increase in-log PC300 at 1 h after exposure, with return of -log PC300 to control levels at 8 h. Ozone also increased baseline RL at 8 h. TMA challenge increase -log PC300 in TMA-sensitized guinea pigs at 8 h after challenge from 3.85 {+-} 0.09 to 4.11 {+-}more » 0.09. Ozone exposure prior to TMA challenge prevented the induction of airway hyperresponsiveness with a mean -log PC300 of 3.51 {+-} 0.20, which was not different from that of control TMA-Sensitized group. Baseline RL was significantly higher in ozone-pretreated animals after TMA challenge when compared to those of either control or challenged with TMA alone. Ozone had no effect on TMA challenge-induced BAL eosinophilia and neutrophilia. We conclude that a single exposure to ozone inhibits the increase in airway responsiveness, but increases the bronchoconstrictor response induced by TMA in TMA-Sensitized guinea pigs; however, the inflammatory airway response to TMA is unchanged by preexposure to ozone. 29 refs., 2 figs., 1 tab.« less

  17. Experimental evidence of age-related adaptive changes in human acinar airways

    PubMed Central

    Quirk, James D.; Sukstanskii, Alexander L.; Woods, Jason C.; Lutey, Barbara A.; Conradi, Mark S.; Gierada, David S.; Yusen, Roger D.; Castro, Mario

    2015-01-01

    The progressive decline of lung function with aging is associated with changes in lung structure at all levels, from conducting airways to acinar airways (alveolar ducts and sacs). While information on conducting airways is becoming available from computed tomography, in vivo information on the acinar airways is not conventionally available, even though acini occupy 95% of lung volume and serve as major gas exchange units of the lung. The objectives of this study are to measure morphometric parameters of lung acinar airways in living adult humans over a broad range of ages by using an innovative MRI-based technique, in vivo lung morphometry with hyperpolarized 3He gas, and to determine the influence of age-related differences in acinar airway morphometry on lung function. Pulmonary function tests and MRI with hyperpolarized 3He gas were performed on 24 healthy nonsmokers aged 19-71 years. The most significant age-related difference across this population was a 27% loss of alveolar depth, h, leading to a 46% increased acinar airway lumen radius, hence, decreased resistance to acinar air transport. Importantly, the data show a negative correlation between h and the pulmonary function measures forced expiratory volume in 1 s and forced vital capacity. In vivo lung morphometry provides unique information on age-related changes in lung microstructure and their influence on lung function. We hypothesize that the observed reduction of alveolar depth in subjects with advanced aging represents a remodeling process that might be a compensatory mechanism, without which the pulmonary functional decline due to other biological factors with advancing age would be significantly larger. PMID:26542518

  18. Eosinophilic airway inflammation is increased in children with asthma and food allergies.

    PubMed

    Kulkarni, Neeta; Ragazzo, Vincenzo; Costella, Silvia; Piacentini, Giorgio; Boner, Attilio; O'Callaghan, Christopher; Fiocchi, Alessandro; Kantar, Ahmad

    2012-02-01

    Asthma is associated with food allergies in a significant number of children, with evidence linking allergies to asthma severity and morbidity. In this study, we tested our hypothesis that the eosinophilic lower airway inflammation is higher in asthmatic children with food allergies. The aims of the study were to compare the eosinophilic inflammatory markers in asthmatic children with and without food allergies. Children with asthma, with (n = 22) and (n = 53) without food allergies were included. All subjects were classified according to the GINA guidelines (2009) and had received at least 3 months of anti-inflammatory therapy prior to testing. Fractional exhaled nitric oxide and sputum differential counts were performed using standard techniques.   Children with asthma and food allergies had significantly higher fractional exhaled nitric oxide median (range) [(22.4 (6.1-86.9) vs. 10.3 (2.7-38.7) (p = 0.01)] and sputum eosinophil percentage [15.5 (5.0-53.0) vs. 2.0 (0-20) (p < 0.001)] compared with asthmatic children without allergies. These results suggest that the children with asthma and food allergies have increased eosinophilic inflammation of the airways. © 2011 John Wiley & Sons A/S.

  19. Antigen challenge induces pulmonary airway eosinophil accumulation and airway hyperreactivity in sensitized guinea-pigs: the effect of anti-asthma drugs.

    PubMed Central

    Sanjar, S.; Aoki, S.; Kristersson, A.; Smith, D.; Morley, J.

    1990-01-01

    1. Guinea-pigs were sensitized with 3 injections of ovalbumin (OA) (1 or 10 micrograms per animal) using Al(OH)3 and pertussis vaccine as adjuvants at two week intervals. 2. Sensitized guinea-pigs were challenged with an aerosol of OA (0.1%) over a one hour period and both airway reactivity and cellular content of bronchoalveolar lavage (BAL) fluid were assessed at intervals for up to 7 days. 3. Guinea-pigs sensitized with 1 microgram of ovalbumin responded to an aerosol of OA with increased pulmonary airway eosinophilia, which was evident 1 day after challenge and was present for up to 7 days. Airway hyperreactivity was not detectable in these animals. 4. Guinea-pigs sensitized with 10 micrograms of ovalbumin responded to an aerosol of OA with increased pulmonary airway neutrophilia and eosinophilia and with increased airway reactivity which was maximal between 8 and 24 h after exposure to OA. 5. Depletion of circulating platelets or neutrophils, by use of selective antisera, did not alter either the magnitude of eosinophilia or the intensity of airway reactivity in sensitized guinea-pigs (10 micrograms) exposed to an aerosol of OA. 6. Pretreatment of sensitized guinea-pigs (10 micrograms) for 6 days with AH 21-132, aminophylline, dexamethasone or ketotifen inhibited pulmonary airway eosinophilia, but did not diminish airway hyperreactivity. Neither eosinophil accumulation nor development of airway hyperreactivity was influenced by treatment with mepyramine or salbutamol over a 6 day period before OA inhalation. 7. Although eosinophilia may occur in association with increased airway reactivity in this animal model, there is no evidence of a causal relationship. PMID:2361168

  20. Continuous positive airway pressure intolerance associated with elevated nasal resistance is possible mechanism of complex sleep apnea syndrome.

    PubMed

    Nakazaki, Chie; Noda, Akiko; Yasuda, Yoshinari; Nakata, Seiichi; Koike, Yasuo; Yasuma, Fumihiko; Murohara, Toyoaki; Nakashima, Tsutomu

    2012-09-01

    Complex sleep apnea syndrome (CompSAS) is diagnosed after an elimination of obstructive events with continuous positive airway pressure (CPAP), when a central apnea index ≥5/h or Cheyne-Stokes respiration pattern emerges in patients with obstructive sleep apnea syndrome (OSAS). However, the pathophysiology of CompSAS remains controversial. Of the 281 patients with suspected OSAS, all of whom underwent polysomnography conducted at Nagoya University Hospital, we enrolled 52 patients with apnea-hypopnea index ≥15/h (age 51.4 ± 13.3 years). The polysomnographic findings, left ventricular ejection fraction (LVEF), and nasal resistance were compared between the CompSAS patients and OSAS patients. Forty-three patients were diagnosed with OSAS and nine patients with central sleep apnea syndrome by natural sleep PSG. Furthermore, 43 OSAS patients were classified into the OSAS patients (OSAS group, n = 38) and the CompSAS patients (CompSAS group, n = 5) by the night on CPAP PSG. The nasal resistance was significantly higher in CompSAS group than in OSAS group (0.30 ± 0.10 vs. 0.19 ± 0.07 Pa/cm(3)/s, P = 0.004). The arousal index, percentage of stage 1 sleep, and oxygen desaturation index were significantly decreased, and the percentage of stage REM sleep was significantly increased in the OSAS group with the initial CPAP treatment, but not in the CompSAS group. In addition, the patients with CompSAS showed normal LVEF. CPAP intolerance secondary to an elevated nasal resistance might relate to frequent arousals, which could presumably contribute to an increase in central sleep apnea. Further evaluation in a large study is needed to clarify the mechanism of CompSAS.

  1. Neutrophil Extracellular Trap (NET)-Mediated Killing of Pseudomonas aeruginosa: Evidence of Acquired Resistance within the CF Airway, Independent of CFTR

    PubMed Central

    Young, Robert L.; Malcolm, Kenneth C.; Kret, Jennifer E.; Caceres, Silvia M.; Poch, Katie R.; Nichols, David P.; Taylor-Cousar, Jennifer L.; Saavedra, Milene T.; Randell, Scott H.; Vasil, Michael L.; Burns, Jane L.; Moskowitz, Samuel M.; Nick, Jerry A.

    2011-01-01

    The inability of neutrophils to eradicate Pseudomonas aeruginosa within the cystic fibrosis (CF) airway eventually results in chronic infection by the bacteria in nearly 80 percent of patients. Phagocytic killing of P. aeruginosa by CF neutrophils is impaired due to decreased cystic fibrosis transmembrane conductance regulator (CFTR) function and virulence factors acquired by the bacteria. Recently, neutrophil extracellular traps (NETs), extracellular structures composed of neutrophil chromatin complexed with granule contents, were identified as an alternative mechanism of pathogen killing. The hypothesis that NET-mediated killing of P. aeruginosa is impaired in the context of the CF airway was tested. P. aeruginosa induced NET formation by neutrophils from healthy donors in a bacterial density dependent fashion. When maintained in suspension through continuous rotation, P. aeruginosa became physically associated with NETs. Under these conditions, NETs were the predominant mechanism of killing, across a wide range of bacterial densities. Peripheral blood neutrophils isolated from CF patients demonstrated no impairment in NET formation or function against P. aeruginosa. However, isogenic clinical isolates of P. aeruginosa obtained from CF patients early and later in the course of infection demonstrated an acquired capacity to withstand NET-mediated killing in 8 of 9 isolates tested. This resistance correlated with development of the mucoid phenotype, but was not a direct result of the excess alginate production that is characteristic of mucoidy. Together, these results demonstrate that neutrophils can kill P. aeruginosa via NETs, and in vitro this response is most effective under non-stationary conditions with a low ratio of bacteria to neutrophils. NET-mediated killing is independent of CFTR function or bacterial opsonization. Failure of this response in the context of the CF airway may occur, in part, due to an acquired resistance against NET-mediated killing by

  2. A mechanism for upper airway stability during slow wave sleep.

    PubMed

    McSharry, David G; Saboisky, Julian P; Deyoung, Pam; Matteis, Paul; Jordan, Amy S; Trinder, John; Smales, Erik; Hess, Lauren; Guo, Mengshuang; Malhotra, Atul

    2013-04-01

    The severity of obstructive sleep apnea is diminished (sometimes markedly) during slow wave sleep (SWS). We sought to understand why SWS stabilizes the upper airway. Increased single motor unit (SMU) activity of the major upper airway dilating muscle (genioglossus) should improve upper airway stability. Therefore, we hypothesized that genioglossus SMUs would increase their activity during SWS in comparison with Stage N2 sleep. The activity of genioglossus SMUs was studied on both sides of the transition between Stage N2 sleep and SWS. Sleep laboratory. Twenty-nine subjects (age 38 ± 13 yr, 17 males) were studied. SWS. Subjects slept overnight with fine-wire electrodes in their genioglossus muscles and with full polysomnographic and end tidal carbon dioxide monitors. Fifteen inspiratory phasic (IP) and 11 inspiratory tonic (IT) units were identified from seven subjects and these units exhibited significantly increased inspiratory discharge frequencies during SWS compared with Stage N2 sleep. The peak discharge frequency of the inspiratory units (IP and IT) was 22.7 ± 4.1 Hz in SWS versus 20.3 ± 4.5 Hz in Stage N2 (P < 0.001). The IP units also fired for a longer duration (expressed as a percentage of inspiratory time) during SWS (104.6 ± 39.5 %TI) versus Stage N2 sleep (82.6 ± 39.5 %TI, P < 0.001). The IT units fired faster during expiration in SWS (14.2 ± 1.8 Hz) versus Stage N2 sleep (12.6 ± 3.1 Hz, P = 0.035). There was minimal recruitment or derecruitment of units between SWS and Stage N2 sleep. Increased genioglossus SMU activity likely makes the airway more stable and resistant to collapse throughout the respiratory cycle during SWS.

  3. Recurrent milk aspiration produces changes in airway mechanics, lung eosinophilia, and goblet cell hyperplasia in a murine model.

    PubMed

    Janahi, I A; Elidemir, O; Shardonofsky, F R; Abu-Hassan, M N; Fan, L L; Larsen, G L; Blackburn, M R; Colasurdo, G N

    2000-12-01

    Recurrent aspiration of milk into the respiratory tract has been implicated in the pathogenesis of a variety of inflammatory lung disorders including asthma. However, the lack of animal models of aspiration-induced lung injury has limited our knowledge of the pathophysiological characteristics of this disorder. This study was designed to evaluate the effects of recurrent milk aspiration on airway mechanics and lung cells in a murine model. Under light anesthesia, BALB/c mice received daily intranasal instillations of whole cow's milk (n = 7) or sterile physiologic saline (n = 9) for 10 d. Respiratory system resistance (Rrs) and dynamic elastance (Edyn,rs) were measured in anesthetized, tracheotomized, paralyzed and mechanically ventilated mice 24 h after the last aspiration of milk. Rrs and Edyn,rs were derived from transrespiratory and plethysmographic pressure signals. In addition, airway responses to increasing concentrations of i.v. methacholine (Mch) were determined. Airway responses were measured in terms of PD(100) (dose of Mch causing 100% increase from baseline Rrs) and Rrs,max (% increase from baseline at the maximal plateau response) and expressed as % control (mean +/- SE). We found recurrent milk aspiration did not affect Edyn and baseline Rrs values. However, airway responses to Mch were increased after milk aspiration when compared with control mice. These changes in airway mechanics were associated with an increased percentage of lymphocytes and eosinophils in the bronchoalveolar lavage, mucus production, and lung inflammation. Our findings suggest that recurrent milk aspiration leads to alterations in airway function, lung eosinophilia, and goblet cell hyperplasia in a murine model.

  4. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease.

    PubMed

    McDonough, John E; Yuan, Ren; Suzuki, Masaru; Seyednejad, Nazgol; Elliott, W Mark; Sanchez, Pablo G; Wright, Alexander C; Gefter, Warren B; Litzky, Leslie; Coxson, Harvey O; Paré, Peter D; Sin, Don D; Pierce, Richard A; Woods, Jason C; McWilliams, Annette M; Mayo, John R; Lam, Stephen C; Cooper, Joel D; Hogg, James C

    2011-10-27

    The major sites of obstruction in chronic obstructive pulmonary disease (COPD) are small airways (<2 mm in diameter). We wanted to determine whether there was a relationship between small-airway obstruction and emphysematous destruction in COPD. We used multidetector computed tomography (CT) to compare the number of airways measuring 2.0 to 2.5 mm in 78 patients who had various stages of COPD, as judged by scoring on the Global Initiative for Chronic Obstructive Lung Disease (GOLD) scale, in isolated lungs removed from patients with COPD who underwent lung transplantation, and in donor (control) lungs. MicroCT was used to measure the extent of emphysema (mean linear intercept), the number of terminal bronchioles per milliliter of lung volume, and the minimum diameters and cross-sectional areas of terminal bronchioles. On multidetector CT, in samples from patients with COPD, as compared with control samples, the number of airways measuring 2.0 to 2.5 mm in diameter was reduced in patients with GOLD stage 1 disease (P=0.001), GOLD stage 2 disease (P=0.02), and GOLD stage 3 or 4 disease (P<0.001). MicroCT of isolated samples of lungs removed from patients with GOLD stage 4 disease showed a reduction of 81 to 99.7% in the total cross-sectional area of terminal bronchioles and a reduction of 72 to 89% in the number of terminal bronchioles (P<0.001). A comparison of the number of terminal bronchioles and dimensions at different levels of emphysematous destruction (i.e., an increasing value for the mean linear intercept) showed that the narrowing and loss of terminal bronchioles preceded emphysematous destruction in COPD (P<0.001). These results show that narrowing and disappearance of small conducting airways before the onset of emphysematous destruction can explain the increased peripheral airway resistance reported in COPD. (Funded by the National Heart, Lung, and Blood Institute and others.).

  5. Investigation of mucus transport in an idealized lung airway model using multiphase CFD analysis

    NASA Astrophysics Data System (ADS)

    Rajendran, Rahul; Banerjee, Arindam

    2015-11-01

    Mucus, a Bingham fluid is transported in the pulmonary airways by consistent beating of the cilia and exhibits a wide range of physical properties in response to the core air flow and various pathological conditions. A better understanding of the interfacial instability is required as it plays a crucial role in gas transport, mixing, mucus clearance and drug delivery. In the current study, mucus is modelled as a Newtonian fluid and the two phase gas-liquid flow in the airways is investigated using an inhomogeneous Eulerian-Eulerian approach. The complex interface between the phases is tracked using the conventional VOF (Volume of Fluid) method. Results from our CFD simulations which are performed in idealized single and double bifurcation geometries will be presented and the influence of airflow rate, mucus layer thickness, mucus viscosity, airway geometry (branching & diameter) and surface tension on mucus flow behavior will be discussed. Mean mucus layer thickness, pressure drop due to momentum transfer & increased airway resistance, mucus transport speed and the flow morphology will be compared to existing experimental and theoretical data.

  6. Differential roles of endothelin-1 ETA and ETB receptors and vasoactive intestinal polypeptide in regulation of the airways and the pulmonary vasculature in isolated rat lung.

    PubMed

    Janosi, Tibor; Peták, Ferenc; Fontao, Fabienne; Morel, Denis R; Beghetti, Maurice; Habre, Walid

    2008-11-01

    The available treatment strategies against pulmonary hypertension include the administration of endothelin-1 (ET-1) receptor subtype blockers (ET(A) and ET(B) antagonists); vasoactive intestinal polypeptide (VIP) has recently been suggested as a potential new therapeutic agent. We set out to investigate the ability of these agents to protect against the vasoconstriction and impairment of lung function commonly observed in patients with pulmonary hypertension. An ET(A) blocker (BQ123), ET(B) blocker (BQ788), a combination of these selective blockers (ET(A) + ET(B) blockers) or VIP (V6130) was administered into the pulmonary circulation in four groups of perfused normal rat lungs. Pulmonary vascular resistance (PVR) and forced oscillatory lung input impedance (Z(L)) were measured in all groups under baseline conditions and at 1 min intervals following ET-1 administrations. The airway resistance, inertance, tissue damping and elastance were extracted from the Z(L) spectra. While VIP, ET(A) blocker and combined ET(A) and ET(B) blockers significantly prevented the pulmonary vasoconstriction induced by ET-1, ET(B) blockade enhanced the ET-1-induced increases in PVR. In contrast, the ET(A) and ET(B) blockers markedly elevated the ET-1-induced increases in airway resistance, while VIP blunted this constrictor response. Our results suggest that VIP potently acts against the airway and pulmonary vascular constriction mediated by endothelin-1, while the ET(A) and ET(B) blockers exert a differential effect between airway resistance and PVR.

  7. Airway and Pulmonary β2-Adrenergic Vasodilatory Function in Current Smokers and Never Smokers.

    PubMed

    Hurwitz, Barry E; Mendes, Eliana S; Schmid, Andreas; Parker, Meela; Arana, Johana; Gonzalez, Alex; Wanner, Adam

    2017-03-01

    Cigarette smoking has been associated with diminished vasodilatory function in the airway circulation. It is possible that cigarette smoking similarly affects the pulmonary circulation before resting pulmonary circulatory abnormalities become manifested. The aim of this study was to compare the acute effect of inhaled albuterol on airway and pulmonary hemodynamic function as an index of β 2 -adrenoceptor-mediated vasodilation in smokers and never smokers. In 30 adults, airway and pulmonary vascular function was assessed before and 15 min after albuterol inhalation (270 μg). From mean systemic arterial pressure, cardiac output, airway blood flow, and mean pulmonary arterial pressure, airway vascular resistance (AVR) and pulmonary vascular resistance (PVR) were derived. Albuterol induced a substantial drop in mean (± SE) PVR (-67.2% ± 5%), with no difference between groups. In contrast, the albuterol-induced decrease in AVR was significantly greater in never smokers than in smokers (-28.6% ± 3% vs -3.1% ± 6%; P < .02). These results are consistent with a dysfunction in a β 2 -adrenergic signaling pathway mediating vasorelaxation in the airway circulation of current smokers. The vasodilatory deficit in the airway circulation but not in the pulmonary circulation could be related to local differences in the impact of cigarette smoke on the vascular endothelium. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  8. Retinoic acid reverses the airway hyperresponsiveness but not the parenchymal defect that is associated with vitamin A deficiency.

    PubMed

    McGowan, Stephen E; Holmes, Amey Jo; Smith, Jennifer

    2004-02-01

    Airway hyperresponsiveness (AHR) is influenced by structural components of the bronchial wall, including the smooth muscle and connective tissue elements and the neuromuscular function. AHR is also influenced by parenchymally derived tethering forces on the bronchial wall, which maintain airway caliber by producing outward radial traction. Our previous work has shown that vitamin A-deficient (VAD) rats exhibit cholinergic hyperresponsiveness and a decrease in the expression and function of the muscarinic-2 receptors (M2R). We hypothesized that if decreases in radial traction from airway or parenchymal structures contributed to the VAD-related increase in AHR, then the radial traction would normalize more slowly than VAD-related alterations in neurotransmitter signaling. Rats remained vitamin A sufficient (VAS) or were rendered VAD and then maintained on the VAD diet in the presence or absence of supplementation with all-trans retinoic acid (RA). VAD was associated with an approximately twofold increase in respiratory resistance and elastance compared with VAS rats. Exposure to RA for 12 days but not 4 days restored resistance and elastance to control (VAS) levels. In VAD rats, AHR was accompanied by decreases in bronchial M2R gene expression and function, which were restored after 12 days of RA supplementation. Subepithelial bronchial elastic fibers were decreased by approximately 50% in VAD rats and were significantly restored by RA. The increase in AHR that is associated with VAD is accompanied by decreases in M2R expression and function that can be restored by RA and a reduction in airway elastic fibers that can be partially restored by RA.

  9. Extraglottic airway devices: technology update.

    PubMed

    Sharma, Bimla; Sahai, Chand; Sood, Jayashree

    2017-01-01

    Extraglottic airway devices (EADs) have revolutionized the field of airway management. The invention of the laryngeal mask airway was a game changer, and since then, there have been several innovations to improve the EADs in design, functionality, safety and construction material. These have ranged from changes in the shape of the mask, number of cuffs and material used, like rubber, polyvinylchloride and latex. Phthalates, which were added to the construction material in order to increase device flexibility, were later omitted when this chemical was found to have serious adverse reproductive outcomes. The various designs brought out by numerous companies manufacturing EADs resulted in the addition of several devices to the airway market. These airway devices were put to use, many of them with inadequate or no evidence base regarding their efficacy and safety. To reduce the possibility of compromising the safety of the patient, the Difficult Airway Society (DAS) formed the Airway Device Evaluation Project Team (ADEPT) to strengthen the evidence base for airway equipment and vet the new extraglottic devices. A preuse careful analysis of the design and structure may help in better understanding of the functionality of a particular device. In the meantime, the search for the ideal EAD continues.

  10. Diesel Exhaust Particle-Induced Airway Responses are Augmented in Obese Rats

    PubMed Central

    Moon, Kuk-Young; Park, Moo-Kyun; Leikauf, George D.; Park, Choon-Sik; Jang, An-Soo

    2015-01-01

    Air pollutants and obesity are important factors that contribute to asthma. The aim of this study was to assess the airway responsiveness and inflammation in Otsuka-Long Evans Tokushima Fatty (OLETF) obese rats and Long Evans Tokushima-Otsuka (LETO) nonobese rats exposed to diesel exhaust particles (DEPs). Otsuka Long Evans Tokushima fatty rats and LETO rats were exposed intranasally to DEP and then challenged with aerosolized DEP on days 6 to 8. Body plethysmography, bronchoalveolar lavage (BAL), and histology were performed. Enhanced pause (Penh) was measured as an indicator of airway resistance on day 9 and samples were collected on day 10. After exposure to DEP, the OLETF group exhibited a greater increase in Penh compared to that in the LETO group. Moreover, the BAL fluid in mice showed an increase in the total and differential cell counts in the DEP-exposed OLETF group compared to that in the DEP-exposed LETO group. Histological assessment of lung tissue from each group revealed that the DEP-exposed OLETF group tended to have increased inflammatory cell infiltrations in the prebronchial area. Increased peroxisome proliferator-activated receptor γ, coactivator 1β messenger RNA was observed in the lungs of obese rats compared to that in nonobese rats following DEP exposure. These data indicate that the DEP-exposed OLETF group had increased airway responses and inflammation compared to the DEP-exposed LETO group, indicating that diesel particulates and obesity may be co-contributors to asthma. PMID:24536021

  11. Nerve growth factor-enhanced airway responsiveness involves substance P in ferret intrinsic airway neurons.

    PubMed

    Wu, Z-X; Dey, R D

    2006-07-01

    Nerve growth factor (NGF), a member of the neurotrophin family, enhances synthesis of neuropeptides in sensory and sympathetic neurons. The aim of this study was to examine the effect of NGF on airway responsiveness and determine whether these effects are mediated through synthesis and release of substance P (SP) from the intrinsic airway neurons. Ferrets were instilled intratracheally with NGF or saline. Tracheal smooth muscle contractility to methacholine and electrical field stimulation (EFS) was assessed in vitro. Contractions of isolated tracheal smooth muscle to EFS at 10 and 30 Hz were significantly increased in the NGF treatment group (10 Hz: 33.57 +/- 2.44%; 30 Hz: 40.12 +/- 2.78%) compared with the control group (10 Hz: 27.24 +/- 2.14%; 30 Hz: 33.33 +/- 2.31%). However, constrictive response to cholinergic agonist was not significantly altered between the NGF treatment group and the control group. The NGF-induced modulation of airway smooth muscle to EFS was maintained in tracheal segments cultured for 24 h, a procedure that causes a significant anatomic and functional loss of SP-containing sensory fibers while maintaining viability of intrinsic airway neurons. The number of SP-containing neurons in longitudinal trunk and superficial muscular plexus and SP nerve fiber density in tracheal smooth muscle all increased significantly in cultured trachea treated with NGF. Pretreatment with CP-99994, an antagonist of neurokinin 1 receptor, attenuated the NGF-induced increased contraction to EFS in cultured segments but had no effect in saline controls. These results show that the NGF-enhanced airway smooth muscle contractile responses to EFS are mediated by the actions of SP released from intrinsic airway neurons.

  12. Airway malacia in children with achondroplasia.

    PubMed

    Dessoffy, Kimberly E; Modaff, Peggy; Pauli, Richard M

    2014-02-01

    This study was undertaken to assess the frequency of airway malacia in infants and young children with achondroplasia, a population well known to be at risk for a variety of respiratory problems. We also wished to evaluate what, if any, contribution airway malacia makes to the complex respiratory issues that may be present in those with achondroplasia. Retrospective chart review of all infants and young children with achondroplasia who were assessed through the Midwest Regional Bone Dysplasia Clinics from 1985 through 2012 (n = 236) was completed. Records of comprehensive clinical examinations, polysomnographic assessments, and airway visualization were reviewed and abstracted using a data collection form. Analyses were completed comparing the group with and those without evidence for airway malacia. Thirteen of 236 patients (5.5%) were found to have airway malacia. Most of those affected had lower airway involvement (9/13). The presence of airway malacia was correlated with an increased occurrence of obstructive sleep apnea as well as need for oxygen supplementation, airway surgeries and tracheostomy placement. Although estimates of the frequency of airway malacia in the general population are limited, its frequency in children with achondroplasia appears to be much higher than any published general population estimate. The presence of airway malacia appears to confound other breathing abnormalities in this population and results in the need for more invasive airway treatments. © 2013 Wiley Periodicals, Inc.

  13. Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients

    PubMed Central

    D’Argenio, David A.; Wu, Manhong; Hoffman, Lucas R.; Kulasekara, Hemantha D.; Déziel, Eric; Smith, Eric E.; Nguyen, Hai; Ernst, Robert K.; Larson Freeman, Theodore J.; Spencer, David H.; Brittnacher, Mitchell; Hayden, Hillary S.; Selgrade, Sara; Klausen, Mikkel; Goodlett, David R.; Burns, Jane L.; Ramsey, Bonnie W.; Miller, Samuel I.

    2009-01-01

    Summary The opportunistic pathogen Pseudomonas aeruginosa undergoes genetic change during chronic airway infection of cystic fibrosis (CF) patients. One common change is a mutation inactivating lasR, which encodes a transcriptional regulator that responds to a homoserine lactone signal to activate expression of acute virulence factors. Colonies of lasR mutants visibly accumulated the iridescent intercellular signal 4-hydroxy-2-heptylquinoline. Using this colony phenotype, we identified P. aeruginosa lasR mutants that emerged in the airway of a CF patient early during chronic infection, and during growth in the laboratory on a rich medium. The lasR loss-of-function mutations in these strains conferred a growth advantage with particular carbon and nitrogen sources, including amino acids, in part due to increased expression of the catabolic pathway regulator CbrB. This growth phenotype could contribute to selection of lasR mutants both on rich medium and within the CF airway, supporting a key role for bacterial metabolic adaptation during chronic infection. Inactivation of lasR also resulted in increased β-lactamase activity that increased tolerance to ceftazidime, a widely used β-lactam antibiotic. Loss of LasR function may represent a marker of an early stage in chronic infection of the CF airway with clinical implications for antibiotic resistance and disease progression. PMID:17493132

  14. Antibiotic resistance increases with local temperature

    NASA Astrophysics Data System (ADS)

    MacFadden, Derek R.; McGough, Sarah F.; Fisman, David; Santillana, Mauricio; Brownstein, John S.

    2018-06-01

    Bacteria that cause infections in humans can develop or acquire resistance to antibiotics commonly used against them1,2. Antimicrobial resistance (in bacteria and other microbes) causes significant morbidity worldwide, and some estimates indicate the attributable mortality could reach up to 10 million by 20502-4. Antibiotic resistance in bacteria is believed to develop largely under the selective pressure of antibiotic use; however, other factors may contribute to population level increases in antibiotic resistance1,2. We explored the role of climate (temperature) and additional factors on the distribution of antibiotic resistance across the United States, and here we show that increasing local temperature as well as population density are associated with increasing antibiotic resistance (percent resistant) in common pathogens. We found that an increase in temperature of 10 °C across regions was associated with an increases in antibiotic resistance of 4.2%, 2.2%, and 2.7% for the common pathogens Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus. The associations between temperature and antibiotic resistance in this ecological study are consistent across most classes of antibiotics and pathogens and may be strengthening over time. These findings suggest that current forecasts of the burden of antibiotic resistance could be significant underestimates in the face of a growing population and climate change4.

  15. Pressure-volume behavior of the upper airway.

    PubMed

    Fouke, J M; Teeter, J P; Strohl, K P

    1986-09-01

    The study was performed to investigate the relationship between force generation and upper airway expansion during respiratory efforts by upper airway muscles. In 11 anesthetized dogs we isolated the upper airway (nasal, oral, pharyngeal, and laryngeal regions) by transecting the cervical trachea and sealing the nasal and oral openings. During spontaneous respiratory efforts the pressure within the sealed upper airway, used as an index of dilating force, decreased during inspiration. On alternate breaths the upper airway was opened to a pneumotachograph, and an increase in volume occurred, also during inspiration. Progressive hyperoxic hypercapnia produced by rebreathing increased the magnitude of change in pressure and volume. At any level of drive, peak pressure or volume occurred at the same point during inspiration. At any level of drive, volume and pressure changes increased with end-expiratory occlusion of the trachea. The force-volume relationship determined from measurements during rebreathing was compared with pressure-volume curves performed by passive inflation of the airway while the animal was apneic. The relationship during apnea was 1.06 +/- 0.55 (SD) ml/cmH2O, while the force-volume relationship from rebreathing trials was -1.09 +/- 0.45 ml/cmH2O. We conclude that there is a correspondence between force production and volume expansion in the upper airway during active respiratory efforts.

  16. Airway responsiveness to mannitol in asthma is associated with chymase-positive mast cells and eosinophilic airway inflammation.

    PubMed

    Sverrild, A; Bergqvist, A; Baines, K J; Porsbjerg, C; Andersson, C K; Thomsen, S F; Hoffmann, H J; Gibson, P; Erjefält, J S; Backer, V

    2016-02-01

    Airway hyperresponsiveness (AHR) to inhaled mannitol is associated with indirect markers of mast cell activation and eosinophilic airway inflammation. It is unknown how AHR to mannitol relates to mast cell phenotype, mast cell function and measures of eosinophilic inflammation in airway tissue. We compared the number and phenotype of mast cells, mRNA expression of mast cell-associated genes and number of eosinophils in airway tissue of subjects with asthma and healthy controls in relation to AHR to mannitol. Airway hyperresponsiveness to inhaled mannitol was measured in 23 non-smoking, corticosteroid-free asthmatic individuals and 10 healthy controls. Mast cells and eosinophils were identified in mucosal biopsies from all participants. Mast cells were divided into phenotypes based on the presence of chymase. mRNA expression of mast cell-associated genes was measured by real-time PCR. The proportion of submucosal MCTC was higher in asthmatic individuals with AHR to mannitol compared with asthmatic individuals without AHR (median: 40.3% vs. 18.7%, P = 0.03). Increased submucosal MCTC numbers were associated with increased levels of mRNA for thymic stromal lymphopoietin (TSLP) and CPA3 in asthmatics. Reactivity to mannitol correlated significantly with eosinophils in submucosa (r(s): 0.56, P = 0.01). Airway hyperresponsiveness to inhaled mannitol is associated with an altered submucosal mast cell profile in asthmatic individuals. This mast cell profile is associated with increased levels of TSLP and CPA3. The degree of AHR to mannitol is correlated with the degree of eosinophilic inflammation in the airway submucosa. © 2015 John Wiley & Sons Ltd.

  17. Pituitary Adenylate Cyclase-Activating Polypeptide Reverses Ammonium Metavanadate-Induced Airway Hyperresponsiveness in Rats

    PubMed Central

    Tlili, Mounira; Sriha, Badreddine; Ben Rhouma, Khémais; Sakly, Mohsen; Wurtz, Olivier

    2015-01-01

    The rate of atmospheric vanadium is constantly increasing due to fossil fuel combustion. This environmental pollution favours vanadium exposure in particular to its vanadate form, causing occupational bronchial asthma and bronchitis. Based on the well admitted bronchodilator properties of the pituitary adenylate cyclase-activating polypeptide (PACAP), we investigated the ability of this neuropeptide to reverse the vanadate-induced airway hyperresponsiveness in rats. Exposure to ammonium metavanadate aerosols (5 mg/m3/h) for 15 minutes induced 4 hours later an array of pathophysiological events, including increase of bronchial resistance and histological alterations, activation of proinflammatory alveolar macrophages, and increased oxidative stress status. Powerfully, PACAP inhalation (0.1 mM) for 10 minutes alleviated many of these deleterious effects as demonstrated by a decrease of bronchial resistance and histological restoration. PACAP reduced the level of expression of mRNA encoding inflammatory chemokines (MIP-1α, MIP-2, and KC) and cytokines (IL-1α and TNF-α) in alveolar macrophages and improved the antioxidant status. PACAP reverses the vanadate-induced airway hyperresponsiveness not only through its bronchodilator activity but also by counteracting the proinflammatory and prooxidative effects of the metal. Then, the development of stable analogs of PACAP could represent a promising therapeutic alternative for the treatment of inflammatory respiratory disorders. PMID:26199679

  18. Repeated episodes of ozone inhalation amplifies the effects of allergen sensitization and inhalation on airway immune and structural development in Rhesus monkeys.

    PubMed

    Schelegle, Edward S; Miller, Lisa A; Gershwin, Laurel J; Fanucchi, Michelle V; Van Winkle, Laura S; Gerriets, Joan E; Walby, William F; Mitchell, Valerie; Tarkington, Brian K; Wong, Viviana J; Baker, Gregory L; Pantle, Lorraine M; Joad, Jesse P; Pinkerton, Kent E; Wu, Reen; Evans, Michael J; Hyde, Dallas M; Plopper, Charles G

    2003-08-15

    Twenty-four infant rhesus monkeys (30 days old) were exposed to 11 episodes of filtered air (FA), house dust mite allergen aerosol (HDMA), ozone (O3), or HDMA + O3 (5 days each followed by 9 days of FA). Ozone was delivered for 8 h/day at 0.5 ppm. Twelve of the monkeys were sensitized to house dust mite allergen (Dermatophagoides farinae) at ages 14 and 28 days by subcutaneous inoculation (SQ) of HDMA in alum and intraperitoneal injection of heat-killed Bordetella pertussis cells. Sensitized monkeys were exposed to HDMA aerosol for 2 h/day on days 3-5 of either FA (n = 6) or O3 (n = 6) exposure. Nonsensitized monkeys were exposed to either FA (n = 6) or O3 (n = 6). During the exposure regimen, parameters of allergy (i.e., serum IgE, histamine, and eosinophilia), airways resistance, reactivity, and structural remodeling were evaluated. Eleven repeated 5-day cycles of inhaling 0.5 ppm ozone over a 6-month period had only mild effects on the airways of nonsensitized infant rhesus monkeys. Similarly, the repeated inhalation of HDMA by HDMA-sensitized infant monkeys resulted in only mild airway effects, with the exception of a marked increase in proximal airway and terminal bronchiole content of eosinophils. In contrast, the combined cyclic inhalation of ozone and HDMA by HDMA sensitized infants monkeys resulted in a marked increase in serum IgE, serum histamine, and airways eosinophilia. Furthermore, combined cyclic inhalation of ozone and HDMA resulted in even greater alterations in airway structure and content that were associated with a significant elevation in baseline airways resistance and reactivity. These results suggest that ozone can amplify the allergic and structural remodeling effects of HDMA sensitization and inhalation.

  19. Peripheral airway impairment measured by oscillometry predicts loss of asthma control in children.

    PubMed

    Shi, Yixin; Aledia, Anna S; Galant, Stanley P; George, Steven C

    2013-03-01

    We previously showed that impulse oscillometry (IOS) indices of peripheral airway function are associated with asthma control in children. However, little data exist on whether dysfunction in the peripheral airways can predict loss of asthma control. We sought to determine the utility of peripheral airway impairment, as measured by IOS, in predicting loss of asthma control in children. Fifty-four children (age, 7-17 years) with controlled asthma were enrolled in the study. Spirometric and IOS indices of airway function were obtained at baseline and at a follow-up visit 8 to 12 weeks later. Physicians who were blinded to the IOS measurements assessed asthma control (National Asthma Education and Prevention Program guidelines) on both visits and prescribed no medication change between visits. Thirty-eight (70%) patients maintained asthma control between 2 visits (group C-C), and 16 patients had asthma that became uncontrolled on the follow-up visit (group C-UC). There was no difference in baseline spirometric results between the C-C and C-UC groups, except for FEV1/forced vital capacity ratio (86% vs 82%, respectively; P < .01). Baseline IOS results, including resistance of the respiratory system at 5 Hz (R5; 6.4 vs 4.3 cm H2O · L(-1) · s), frequency dependence of resistance (difference of R5 and resistance of the respiratory system at 20 Hz [R5-20]; 2.0 vs 0.7 cm H2O · L(-1) · s), and reactance area (13.1 vs 4.1 cm H2O · L(-1)), of group C-UC were significantly higher than those of group C-C (P < .01). Receiver operating characteristic analysis showed baseline R5-20 and reactance area effectively predicted asthma control status at the follow-up visit (area under the curve, 0.91 and 0.90). Children with controlled asthma who have increased peripheral airway IOS indices are at risk of losing asthma control. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  20. Critical role of actin-associated proteins in smooth muscle contraction, cell proliferation, airway hyperresponsiveness and airway remodeling.

    PubMed

    Tang, Dale D

    2015-10-30

    Asthma is characterized by airway hyperresponsiveness and airway remodeling, which are largely attributed to increased airway smooth muscle contractility and cell proliferation. It is known that both chemical and mechanical stimulation regulates smooth muscle contraction. Recent studies suggest that contractile activation and mechanical stretch induce actin cytoskeletal remodeling in smooth muscle. However, the mechanisms that control actin cytoskeletal reorganization are not completely elucidated. This review summarizes our current understanding regarding how actin-associated proteins may regulate remodeling of the actin cytoskeleton in airway smooth muscle. In particular, there is accumulating evidence to suggest that Abelson tyrosine kinase (Abl) plays a critical role in regulating airway smooth muscle contraction and cell proliferation in vitro, and airway hyperresponsiveness and remodeling in vivo. These studies indicate that Abl may be a novel target for the development of new therapy to treat asthma.

  1. Contribution of rostral fluid shift to intrathoracic airway narrowing in asthma.

    PubMed

    Bhatawadekar, Swati A; Inman, Mark D; Fredberg, Jeffrey J; Tarlo, Susan M; Lyons, Owen D; Keller, Gabriel; Yadollahi, Azadeh

    2017-04-01

    In asthma, supine posture and sleep increase intrathoracic airway narrowing. When humans are supine, because of gravity fluid moves out of the legs and accumulates in the thorax. We hypothesized that fluid shifting out of the legs into the thorax contributes to the intrathoracic airway narrowing in asthma. Healthy and asthmatic subjects sat for 30 min and then lay supine for 30 min. To simulate overnight fluid shift, supine subjects were randomized to receive increased fluid shift out of the legs with lower body positive pressure (LBPP, 10-30 min) or none (control) and crossed over. With forced oscillation at 5 Hz, respiratory resistance (R5) and reactance (X5, reflecting respiratory stiffness) and with bioelectrical impedance, leg and thoracic fluid volumes (LFV, TFV) were measured while subjects were seated and supine (0 min, 30 min). In 17 healthy subjects (age: 51.8 ± 10.9 yr, FEV 1 /FVC z score: -0.4 ± 1.1), changes in R5 and X5 were similar in both study arms ( P > 0.05). In 15 asthmatic subjects (58.5 ± 9.8 yr, -2.1 ± 1.3), R5 and X5 increased in both arms (ΔR5: 0.6 ± 0.9 vs. 1.4 ± 0.8 cmH 2 O·l -1 ·s -1 , ΔX5: 0.3 ± 0.7 vs. 1.1 ± 0.9 cmH 2 O·l -1 ·s -1 ). The increases in R5 and X5 were 2.3 and 3.7 times larger with LBPP than control, however ( P = 0.008, P = 0.006). The main predictor of increases in R5 with LBPP was increases in TFV (r = 0.73, P = 0.002). In asthmatic subjects, the magnitude of increases in X5 with LBPP was comparable to that with posture change from sitting to supine (1.1 ± 0.9 vs. 1.4 ± 0.9 cmH 2 O·l -1 ·s -1 , P = 0.32). We conclude that in asthmatic subjects fluid shifting from the legs to the thorax while supine contributed to increases in the respiratory resistance and stiffness. NEW & NOTEWORTHY In supine asthmatic subjects, application of positive pressure to the lower body caused appreciable increases in respiratory system resistance and stiffness. Moreover, these changes in respiratory mechanics correlated

  2. Interleukin-6 and lung inflammation: evidence for a causative role in inducing respiratory system resistance increments.

    PubMed

    Rubini, Alessandro

    2013-10-01

    Interleukin-6 is a multifunctional cytokine that has been shown to be increased in some pathological conditions involving the respiratory system such as those experimentally induced in animals or spontaneously occurring in humans. Experimental data demonstrating that interleukin-6 plays a significant role in commonly occurring respiratory system inflammatory diseases are reviewed here. Those diseases, i.e. asthma and chronic obstructive pulmonary disease, are characterised by mechanical derangements of the respiratory system, for the most part due to increased elastance and airway resistance. Recent findings showing that interleukin-6 has a causative role in determining an increase in airway resistance are reviewed. The end-inflation occlusion method was used to study the mechanical properties of the respiratory system before and after interleukin-6 administration. The cytokine was shown to induce significant, dose-dependent increments in both the resistive pressure dissipation due to frictional forces opposing the airflow in the airway (ohmic resistance) and the additional resistive pressure dissipation due to the visco-elastic properties of the system, i.e. stress relaxation (visco-elastic resistance). There were no alterations in respiratory system elastance. Even when administered to healthy mammals, interleukin-6 determines a significant effect on respiratory system resistance causing an increase in the mechanical work of breathing during inspiration. IL-6 hypothetically plays an active role in the pathogenesis of respiratory system diseases and the mechanisms that may be involved are discussed here.

  3. Eotaxin, but not IL-8, is increased in upper and lower airways of allergic rhinitis subjects after nasal allergen challenge.

    PubMed

    Semik-Orzech, Aleksandra; Barczyk, Adam; Wiaderkiewicz, Ryszard; Pierzchała, Władysław

    2011-01-01

    The aim of this study was to assess the impact of a single nasal allergen challenge (NAC) on levels of eotaxin and IL-8 and the inflammatory cells in upper and lower airways of allergic rhinitis (AR) patients. Twenty-four AR patients and 12 control subjects entered a sequential nasal placebo challenge and NAC study, out of the pollen season. Nasal lavage fluid (NLF) was obtained at baseline, 15 minutes, and 1, 5, and 24 hours postchallenge. Before and 24 hours after placebo/allergen challenge induced sputum was performed. NLF and induced sputum were evaluated for total cell count (TCC) and differential cell count and analyzed for concentrations of eotaxin and IL-8 using ELISA method. NAC in AR subjects was associated with significantly increased sputum (p = 0.008) and NLF (p < 0.001) eotaxin levels. Post-NAC IL-8 levels were significantly increased in NLF (p < 00001) but not in sputum (p = 0.080) of AR subjects. Increased eotaxin levels in NLF positively correlated with the increased TCC and eosinophils. Positive correlations were also found between NLF increased eotaxin level and sputum TCC, eosinophils, and macrophages. NAC is associated with the increased levels of eotaxin in lower airways of AR subjects. Allergen-induced secretion of eotaxin in nasal mucosa of AR subjects is involved in determining the cellular character of both upper and lower airway inflammation.

  4. BLOCKADE OF TRKA OR P75 NEUROTROPHIN RECEPTORS ATTENUATES DIESEL PARTICULATE-INDUCED ENHANCEMENT OF ALLERGIC AIRWAYS RESPONSES IN BALB/C MICE

    EPA Science Inventory

    Neurotrophins, including nerve growth factor (NGF) partially mediate many features of allergic airways disease including airway resistance. Exposure to diesel exhaust particles (DEP) associated with the combustion of diesel fuel exacerbates allergic airways responses. We tested t...

  5. Substance P released from intrinsic airway neurons contributes to ozone-enhanced airway hyperresponsiveness in ferret trachea.

    PubMed

    Wu, Zhong-Xin; Satterfield, Brian E; Dey, Richard D

    2003-08-01

    Exposure to ozone (O3) induces airway hyperresponsiveness mediated partly through the release of substance P (SP) from nerve terminals in the airway wall. Although substantial evidence suggests that SP is released by sensory nerves, SP is also present in neurons of airway ganglia. The purpose of this study was to investigate the role of intrinsic airway neurons in O3-enhanced airway responsiveness in ferret trachea. To remove the effects of sensory innervation, segments of ferret trachea were maintained in culture conditions for 24 h before in vitro exposure to 2 parts/million of O3 or air for 1 h. Sensory nerve depletion was confirmed by showing that capsaicin did not affect tracheal smooth muscle responsiveness to cholinergic agonist or contractility responses to electrical field stimulation (EFS). Contractions of isolated tracheal smooth muscle to EFS were significantly increased after in vitro O3 exposure, but the constrictor response to cholinergic agonist was not altered. Pretreatment with CP-99994, an antagonist of the neurokinin 1 receptor, attenuated the increased contraction to EFS after O3 exposure but had no effect in the air exposure group. The number of SP-positive neurons in longitudinal trunk ganglia, the extent of SP innervation to superficial muscular plexus nerve cell bodies, and SP nerve fiber density in tracheal smooth muscle all increased significantly after O3 exposure. The results show that release of SP from intrinsic airway neurons contributes to O3-enhanced tracheal smooth muscle responsiveness by facilitating acetylcholine release from cholinergic nerve terminals.

  6. A computational study of the respiratory airflow characteristics in normal and obstructed human airways.

    PubMed

    Sul, Bora; Wallqvist, Anders; Morris, Michael J; Reifman, Jaques; Rakesh, Vineet

    2014-09-01

    Obstructive lung diseases in the lower airways are a leading health concern worldwide. To improve our understanding of the pathophysiology of lower airways, we studied airflow characteristics in the lung between the 8th and the 14th generations using a three-dimensional computational fluid dynamics model, where we compared normal and obstructed airways for a range of breathing conditions. We employed a novel technique based on computing the Pearson׳s correlation coefficient to quantitatively characterize the differences in airflow patterns between the normal and obstructed airways. We found that the airflow patterns demonstrated clear differences between normal and diseased conditions for high expiratory flow rates (>2300ml/s), but not for inspiratory flow rates. Moreover, airflow patterns subjected to filtering demonstrated higher sensitivity than airway resistance for differentiating normal and diseased conditions. Further, we showed that wall shear stresses were not only dependent on breathing rates, but also on the distribution of the obstructed sites in the lung: for the same degree of obstruction and breathing rate, we observed as much as two-fold differences in shear stresses. In contrast to previous studies that suggest increased wall shear stress due to obstructions as a possible damage mechanism for small airways, our model demonstrated that for flow rates corresponding to heavy activities, the wall shear stress in both normal and obstructed airways was <0.3Pa, which is within the physiological limit needed to promote respiratory defense mechanisms. In summary, our model enables the study of airflow characteristics that may be impractical to assess experimentally. Published by Elsevier Ltd.

  7. Anatomic and physiopathologic changes affecting the airway of the elderly patient: implications for geriatric-focused airway management

    PubMed Central

    Johnson, Kathleen N; Botros, Daniel B; Groban, Leanne; Bryan, Yvon F

    2015-01-01

    There are many anatomical, physiopathological, and cognitive changes that occur in the elderly that affect different components of airway management: intubation, ventilation, oxygenation, and risk of aspiration. Anatomical changes occur in different areas of the airway from the oral cavity to the larynx. Common changes to the airway include tooth decay, oropharyngeal tumors, and significant decreases in neck range of motion. These changes may make intubation challenging by making it difficult to visualize the vocal cords and/or place the endotracheal tube. Also, some of these changes, including but not limited to, atrophy of the muscles around the lips and an edentulous mouth, affect bag mask ventilation due to a difficult face-mask seal. Physiopathologic changes may impact airway management as well. Common pulmonary issues in the elderly (eg, obstructive sleep apnea and COPD) increase the risk of an oxygen desaturation event, while gastrointestinal issues (eg, achalasia and gastroesophageal reflux disease) increase the risk of aspiration. Finally, cognitive changes (eg, dementia) not often seen as related to airway management may affect patient cooperation, especially if an awake intubation is required. Overall, degradation of the airway along with other physiopathologic and cognitive changes makes the elderly population more prone to complications related to airway management. When deciding which airway devices and techniques to use for intubation, the clinician should also consider the difficulty associated with ventilating the patient, the patient’s risk of oxygen desaturation, and/or aspiration. For patients who may be difficult to bag mask ventilate or who have a risk of aspiration, a specialized supralaryngeal device may be preferable over bag mask for ventilation. Patients with tumors or decreased neck range of motion may require a device with more finesse and maneuverability, such as a flexible fiberoptic broncho-scope. Overall, geriatric-focused airway

  8. Aerosolized neutral endopeptidase reverses ozone-induced airway hyperreactivity to substance P.

    PubMed

    Murlas, C G; Lang, Z; Williams, G J; Chodimella, V

    1992-03-01

    We investigated the effects of ozone exposure (3.0 ppm, 2 h) on airway neutral endopeptidase (NEP) activity and bronchial reactivity to substance P in guinea pigs. Reactivity after ozone or air exposure was determined by measuring specific airway resistance in intact unanesthetized spontaneously breathing animals in response to increasing doses of intravenous substance P boluses. The effective dose of substance P (in micrograms) that produced a doubling of baseline specific airway resistance (ED200SP) was determined by interpolation of cumulative substance P dose-response curves. NEP activity was measured in tracheal homogenates made from each animal of other groups exposed to either ozone or room air. By reverse-phase high-pressure liquid chromatography, this activity was characterized by the phosphoramidon-inhibitable cleavage of alanine-p-nitroaniline from succinyl-(Ala)3-p-nitroaniline in the presence of 100 microM amastatin. Mean values of the changes in log ED200SP were 0.27 +/- 0.07 (SE) for the ozone-exposed group and 0.08 +/- 0.04 for the air-exposed group. We found that phosphoramidon significantly increased substance P reactivity in the air-exposed animals (P less than 0.01), but it had no effect in the ozone-exposed group. This finding was associated with a significant reduction in tracheal homogenate NEP activity of ozone-exposed animals compared with controls: mean values were 18.1 +/- 1.9 nmol.min-1.mg protein-1 for the ozone-exposed group and 25.1 +/- 2.4 nmol.min-1.mg protein-1 for air-exposed animals (P less than 0.05). Inhalation of an aerosolized NEP preparation, partially purified from guinea pig kidney, reversed the substance P hyperreactivity produced by ozone exposure.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Aerosolized neutral endopeptidase reverses ozone-induced airway hyperreactivity to substance P

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murlas, C.G.; Lang, Z.; Williams, G.J.

    1992-03-01

    The authors investigated the effects of ozone exposure (3.0 ppm, 2 h) on airway neutral endopeptidase (NEP) activity and bronchial reactivity to substance P in guinea pigs. Reactivity after ozone or air exposure was determined by measuring specific airway resistance in intact unanesthetized spontaneously breathing animals in response to increasing doses of intravenous substance P boluses. The effective dose of substance P (in micrograms) that produced a doubling of baseline specific airway resistance (ED200SP) was determined by interpolation of cumulative substance P dose-response curves. NEP activity was measured in tracheal homogenates made from each animal of other groups exposed tomore » either ozone or room air. By reverse-phase high-pressure liquid chromatography, this activity was characterized by the phosphoramidon-inhibitable cleavage of alanine-p-nitroaniline from succinyl-(Ala)3-p-nitroaniline in the presence of 100 microM amastatin. Mean values of the changes in log ED200SP were 0.27 +/- 0.07 (SE) for the ozone-exposed group and 0.08 +/- 0.04 for the air-exposed group. We found that phosphoramidon significantly increased substance P reactivity in the air-exposed animals (P less than 0.01), but it had no effect in the ozone-exposed group. This finding was associated with a significant reduction in tracheal homogenate NEP activity of ozone-exposed animals compared with controls: mean values were 18.1 +/- 1.9 nmol.min-1.mg protein-1 for the ozone-exposed group and 25.1 +/- 2.4 nmol.min-1.mg protein-1 for air-exposed animals (P less than 0.05). Inhalation of an aerosolized NEP preparation, partially purified from guinea pig kidney, reversed the substance P hyperreactivity produced by ozone exposure.(ABSTRACT TRUNCATED AT 250 WORDS)« less

  10. Novel and emerging nonpositive airway pressure therapies for sleep apnea.

    PubMed

    Park, John G; Morgenthaler, Timothy M; Gay, Peter C

    2013-12-01

    CPAP therapy has remained the standard of care for the treatment of sleep apnea for nearly 4 decades. Its overall effectiveness, however, has been limited by incomplete adherence despite many efforts to improve comfort. Conventional alternative therapies include oral appliances and upper airway surgeries. Recently, several innovative alternatives to CPAP have been developed. These novel approaches include means to increase arousal thresholds, electrical nerve stimulation, oral vacuum devices, and nasal expiratory resistive devices. We will review the physiologic mechanisms and the current evidence for these novel treatments.

  11. Airway disease: anatomopathologic patterns and functional correlations.

    PubMed

    Mormile, F; Ciappi, G

    1997-01-01

    Airways represent a serial and parallel branched system, through which the alveoli are connected with the external air. They participate in the mechanical and immune defense against noxious agents, regional flow regulation to optimize the perfusion/ventilation ratio and provide lung mechanical support. Functional exploration of central airways is based on resistance measurement, flow-volume curve or spirometry, while peripheral airways influence parameters as the upstream resistance, the slope of phase III nitrogen washout and the residual volume. Bronchodynamic tests supply important information on airway reversibility and nonspecific reactivity. Anatomopathologic alterations of obstructive chronic bronchitis, pulmonary emphysema and bronchial asthma account for their specific functional and bronchodynamic alterations. There is a growing interest for bronchiolitis in the clinical, radiologic and functional field. This type of lesion, always present in COPD, asthma and interstitial disease, becomes relevant when isolated or predominant. The most useful anatomofunctional classification separates the "constrictive" forms, the cause of obstruction and hyperinflation, from "proliferative" forms where an intraluminal proliferation more or less extended to alveolar air spaces as in BOOP (bronchiolitis obliterans organizing pneumonia) results in restrictive dysfunction. Constrictive bronchiolitis obliterans represents a severe and frequent complication of lung and bone marrow transplantation. Idiopathic BOOP may occur with cough or flue-like symptoms. In other cases, constrictive and proliferative forms may have a toxic (gases or drugs), postinfective or immune etiology (rheumatoid arthritis, LES, etc). Respiratory bronchiolitis or smokers' bronchiolitis, an often asymptomatic lesion, rarely associated to an interstitial lung disease, should be considered separately. The relationships between respiratory bronchiolitis, COPD and initial centriacinar emphysema is still to

  12. Deletion of Pten Expands Lung Epithelial Progenitor Pools and Confers Resistance to Airway Injury

    PubMed Central

    Tiozzo, Caterina; De Langhe, Stijn; Yu, Mingke; Londhe, Vedang A.; Carraro, Gianni; Li, Min; Li, Changgong; Xing, Yiming; Anderson, Stewart; Borok, Zea; Bellusci, Saverio; Minoo, Parviz

    2009-01-01

    Rationale: Pten is a tumor-suppressor gene involved in stem cell homeostasis and tumorigenesis. In mouse, Pten expression is ubiquitous and begins as early as 7 days of gestation. Pten−/− mouse embryos die early during gestation indicating a critical role for Pten in embryonic development. Objectives: To test the role of Pten in lung development and injury. Methods: We conditionally deleted Pten throughout the lung epithelium by crossing Ptenflox/flox with Nkx2.1-cre driver mice. The resulting PtenNkx2.1-cre mutants were analyzed for lung defects and response to injury. Measurements and Main Results: PtenNkx2.1-cre embryonic lungs showed airway epithelial hyperplasia with no branching abnormalities. In adult mice, PtenNkx2.1-cre lungs exhibit increased progenitor cell pools composed of basal cells in the trachea, CGRP/CC10 double-positive neuroendocrine cells in the bronchi, and CC10/SPC double-positive cells at the bronchioalveolar duct junctions. Pten deletion affected differentiation of various lung epithelial cell lineages, with a decreased number of terminally differentiated cells. Over time, PtenNxk2.1-cre epithelial cells residing in the bronchioalveolar duct junctions underwent proliferation and formed uniform masses, supporting the concept that the cells residing in this distal niche may also be the source of procarcinogenic stem cells. Finally, increased progenitor cells in all the lung compartments conferred an overall selective advantage to naphthalene injury compared with wild-type control mice. Conclusions: Pten has a pivotal role in lung stem cell homeostasis, cell differentiation, and consequently resistance to lung injury. PMID:19574443

  13. Airway Strain during Mechanical Ventilation in an Intact Animal Model

    PubMed Central

    Sinclair, Scott E.; Molthen, Robert C.; Haworth, Steve T.; Dawson, Christopher A.; Waters, Christopher M.

    2007-01-01

    Rationale: Mechanical ventilation with large tidal volumes causes ventilator-induced lung injury in animal models. Little direct evidence exists regarding the deformation of airways in vivo during mechanical ventilation, or in the presence of positive end-expiratory pressure (PEEP). Objectives: To measure airway strain and to estimate airway wall tension during mechanical ventilation in an intact animal model. Methods: Sprague-Dawley rats were anesthetized and mechanically ventilated with tidal volumes of 6, 12, and 25 cm3/kg with and without 10–cm H2O PEEP. Real-time tantalum bronchograms were obtained for each condition, using microfocal X-ray imaging. Images were used to calculate circumferential and longitudinal airway strains, and on the basis of a simplified mathematical model we estimated airway wall tensions. Measurements and Main Results: Circumferential and longitudinal airway strains increased with increasing tidal volume. Levels of mechanical strain were heterogeneous throughout the bronchial tree. Circumferential strains were higher in smaller airways (less than 800 μm). Airway size did not influence longitudinal strain. When PEEP was applied, wall tensions increased more rapidly than did strain levels, suggesting that a “strain limit” had been reached. Airway collapse was not observed under any experimental condition. Conclusions: Mechanical ventilation results in significant airway mechanical strain that is heterogeneously distributed in the uninjured lung. The magnitude of circumferential but not axial strain varies with airway diameter. Airways exhibit a “strain limit” above which an abrupt dramatic rise in wall tension is observed. PMID:17626911

  14. Differential effects of phosphoramidon on neurokinin A- and substance P-induced airflow obstruction and airway microvascular leakage in guinea-pig.

    PubMed Central

    Lötvall, J. O.; Elwood, W.; Tokuyama, K.; Barnes, P. J.; Chung, K. F.

    1991-01-01

    1. The effects of the inhaled neuropeptides, neurokinin A (NKA) and substance P (SP) on lung resistance (RL) and airway microvascular permeability were studied in anaesthetized guinea-pigs. 2. Single doses of inhaled NKA (3 x 10(-5), 1 x 10(-4), 3 x 10(-4) M; 45 breaths) and SP (1 x 10(-4), 3 x 10(-4), 1 x 10(-3); 45 breaths) caused a dose-dependent increase in both RL and airway microvascular leakage, assessed as extravasation of the albumin marker, Evans blue dye. 3. NKA at 1 x 10(-4) and 3 x 10(-4) M resulted in a significantly higher increase in RL than SP at the same doses. 4. Inhaled SP (3 x 10(-4) M; 45 breaths) caused significantly higher Evans blue dye extravasation in main bronchi and proximal intrapulmonary airways compared to the same dose of NKA. 5. Pretreatment with the specific inhibitor of neural endopeptidase (NEP24.11), phosphoramidon, caused an approximately 100 fold leftward shift of the RL responses to inhaled NKA and SP. 6. Phosphoramidon significantly potentiated both NKA- and SP-induced airway microvascular leakage at proximal intrapulmonary airways, but not at any other airway level. 7. Inhibition of NEP24.11 potentiate both the SP- or NKA-induced airflow obstruction to a larger extent than the induced airway microvascular leakage, suggesting that NEP24.11 is more important in the modulation of the airflow obstruction observed after these mediators. PMID:1725766

  15. Differential effects of phosphoramidon on neurokinin A- and substance P-induced airflow obstruction and airway microvascular leakage in guinea-pig.

    PubMed

    Lötvall, J O; Elwood, W; Tokuyama, K; Barnes, P J; Chung, K F

    1991-12-01

    1. The effects of the inhaled neuropeptides, neurokinin A (NKA) and substance P (SP) on lung resistance (RL) and airway microvascular permeability were studied in anaesthetized guinea-pigs. 2. Single doses of inhaled NKA (3 x 10(-5), 1 x 10(-4), 3 x 10(-4) M; 45 breaths) and SP (1 x 10(-4), 3 x 10(-4), 1 x 10(-3); 45 breaths) caused a dose-dependent increase in both RL and airway microvascular leakage, assessed as extravasation of the albumin marker, Evans blue dye. 3. NKA at 1 x 10(-4) and 3 x 10(-4) M resulted in a significantly higher increase in RL than SP at the same doses. 4. Inhaled SP (3 x 10(-4) M; 45 breaths) caused significantly higher Evans blue dye extravasation in main bronchi and proximal intrapulmonary airways compared to the same dose of NKA. 5. Pretreatment with the specific inhibitor of neural endopeptidase (NEP24.11), phosphoramidon, caused an approximately 100 fold leftward shift of the RL responses to inhaled NKA and SP. 6. Phosphoramidon significantly potentiated both NKA- and SP-induced airway microvascular leakage at proximal intrapulmonary airways, but not at any other airway level. 7. Inhibition of NEP24.11 potentiate both the SP- or NKA-induced airflow obstruction to a larger extent than the induced airway microvascular leakage, suggesting that NEP24.11 is more important in the modulation of the airflow obstruction observed after these mediators.

  16. Nebulized perflubron and carbon dioxide rapidly dilate constricted airways in an ovine model of allergic asthma.

    PubMed

    El Mays, Tamer Y; Choudhury, Parichita; Leigh, Richard; Koumoundouros, Emmanuel; Van der Velden, Joanne; Shrestha, Grishma; Pieron, Cora A; Dennis, John H; Green, Francis Hy; Snibson, Ken J

    2014-09-16

    The low toxicity of perfluorocarbons (PFCs), their high affinity for respiratory gases and their compatibility with lung surfactant have made them useful candidates for treating respiratory diseases such as adult respiratory distress syndrome. We report results for treating acute allergic and non-allergic bronchoconstriction in sheep using S-1226 (a gas mixture containing carbon dioxide and small volumes of nebulized perflubron). The carbon dioxide, which is highly soluble in perflubron, was used to relax airway smooth muscle. Sheep previously sensitized to house dust mite (HDM) were challenged with HDM aerosols to induce early asthmatic responses. At the maximal responses (characterised by an increase in lung resistance), the sheep were either not treated or treated with one of the following; nebulized S-1226 (perflubron + 12% CO2), nebulized perflubron + medical air, 12% CO2, salbutamol or medical air. Lung resistance was monitored for up to 20 minutes after cessation of treatment. Treatment with S-1226 for 2 minutes following HDM challenge resulted in a more rapid, more profound and more prolonged decline in lung resistance compared with the other treatment interventions. Video bronchoscopy showed an immediate and complete (within 5 seconds) re-opening of MCh-constricted airways following treatment with S-1226. S-1226 is a potent and rapid formulation for re-opening constricted airways. Its mechanism(s) of action are unknown. The formulation has potential as a rescue treatment for acute severe asthma.

  17. Airway hyperresponsiveness; smooth muscle as the principal actor

    PubMed Central

    Lauzon, Anne-Marie; Martin, James G.

    2016-01-01

    Airway hyperresponsiveness (AHR) is a defining characteristic of asthma that refers to the capacity of the airways to undergo exaggerated narrowing in response to stimuli that do not result in comparable degrees of airway narrowing in healthy subjects. Airway smooth muscle (ASM) contraction mediates airway narrowing, but it remains uncertain as to whether the smooth muscle is intrinsically altered in asthmatic subjects or is responding abnormally as a result of the milieu in which it sits. ASM in the trachea or major bronchi does not differ in its contractile characteristics in asthmatics, but the more pertinent peripheral airways await complete exploration. The mass of ASM is increased in many but not all asthmatics and therefore cannot be a unifying hypothesis for AHR, although when increased in mass it may contribute to AHR. The inability of a deep breath to reverse or prevent bronchial narrowing in asthma may reflect an intrinsic difference in the mechanisms that lead to softening of contracted ASM when subjected to stretch. Cytokines such as interleukin-13 and tumor necrosis factor-α promote a more contractile ASM phenotype. The composition and increased stiffness of the matrix in which ASM is embedded promotes a more proliferative and pro-inflammatory ASM phenotype, but the expected dedifferentiation and loss of contractility have not been shown. Airway epithelium may drive ASM proliferation and/or molecular remodeling in ways that may lead to AHR. In conclusion, AHR is likely multifactorial in origin, reflecting the plasticity of ASM properties in the inflammatory environment of the asthmatic airway. PMID:26998246

  18. Inhibition of airway surface fluid absorption by cholinergic stimulation

    PubMed Central

    Joo, Nam Soo; Krouse, Mauri E.; Choi, Jae Young; Cho, Hyung-Ju; Wine, Jeffrey J.

    2016-01-01

    In upper airways airway surface liquid (ASL) depth and clearance rates are both increased by fluid secretion. Secretion is opposed by fluid absorption, mainly via the epithelial sodium channel, ENaC. In static systems, increased fluid depth activates ENaC and decreased depth inhibits it, suggesting that secretion indirectly activates ENaC to reduce ASL depth. We propose an alternate mechanism in which cholinergic input, which causes copious airway gland secretion, also inhibits ENaC-mediated absorption. The conjoint action accelerates clearance, and the increased transport of mucus out of the airways restores ASL depth while cleansing the airways. We were intrigued by early reports of cholinergic inhibition of absorption by airways in some species. To reinvestigate this phenomenon, we studied inward short-circuit currents (Isc) in tracheal mucosa from human, sheep, pig, ferret, and rabbit and in two types of cultured cells. Basal Isc was inhibited 20–70% by the ENaC inhibitor, benzamil. Long-lasting inhibition of ENaC-dependent Isc was also produced by basolateral carbachol in all preparations except rabbit and the H441 cell line. Atropine inhibition produced a slow recovery or prevented inhibition if added before carbachol. The mechanism for inhibition was not determined and is most likely multi-factorial. However, its physiological significance is expected to be increased mucus clearance rates in cholinergically stimulated airways. PMID:26846701

  19. Relationship between gastro-oesophageal reflux and airway diseases: the airway reflux paradigm.

    PubMed

    Pacheco-Galván, Adalberto; Hart, Simon P; Morice, Alyn H

    2011-04-01

    Our understanding of the relationship between gastro-oesophageal reflux and respiratory disease has recently undergone important changes. The previous paradigm of airway reflux as synonymous with the classic gastro-oesophageal reflux disease (GORD) causing heartburn has been overturned. Numerous epidemiological studies have shown a highly significant association of the acid, liquid, and gaseous reflux of GORD with conditions such as laryngeal diseases, chronic rhinosinusitis, treatment resistant asthma, COPD and even idiopathic pulmonary fibrosis. However, it has become clear from studies on cough hypersensitivity syndrome that much reflux of importance in the airways has been missed, since it is either non- or weakly acid and gaseous in composition. The evidence for such a relationship relies on the clinical history pointing to symptom associations with known precipitants of reflux. The tools for the diagnosis of extra-oesophageal reflux, in contrast to the oesophageal reflux of GORD, lack sensitivity and reproducibility. Unfortunately, methodology for detecting such reflux is only just becoming available and much additional work is required to properly delineate its role. Copyright © 2011 SEPAR. Published by Elsevier Espana. All rights reserved.

  20. Eicosanoids modulate hyperpnea-induced late phase airway obstruction and hyperreactivity in dogs.

    PubMed

    Davis, Michael S; McCulloch, Sharron; Myers, Teresa; Freed, Arthur N

    2002-01-01

    A canine model of exercise-induced asthma was used to test the hypothesis that the development of a late phase response to hyperventilation depends on the acute production of pro-inflammatory mediators. Peripheral airway resistance, reactivity to hypocapnia and aerosol histamine, and bronchoalveolar lavage fluid (BALF) cell and eicosanoid content were measured in dogs approximately 5 h after dry air challenge (DAC). DAC resulted in late phase obstruction, hyperreactivity to histamine, and neutrophilic inflammation. Both cyclooxygenase and lipoxygenase inhibitors administered in separate experiments attenuated the late phase airway obstruction and hyperreactivity to histamine. Neither drug affected the late phase inflammation nor the concentrations of eicosanoids in the BALF obtained 5 h after DAC. This study confirms that hyperventilation of peripheral airways with unconditioned air causes late phase neutrophilia, airway obstruction, and hyperreactivity. The late phase changes in airway mechanics are related to the hyperventilation-induced release of both prostaglandins and leukotrienes, and appear to be independent of the late phase infiltration of inflammatory cells.

  1. Brain-Derived Neurotrophic Factor in the Airways

    PubMed Central

    Prakash, Y.S.; Martin, Richard J.

    2014-01-01

    In addition to their well-known roles in the nervous system, there is increasing recognition that neurotrophins such as brain derived neurotrophic factor (BDNF) as well as their receptors are expressed in peripheral tissues including the lung, and can thus potentially contribute to both normal physiology and pathophysiology of several diseases. The relevance of this family of growth factors lies in emerging clinical data indicating altered neurotrophin levels and function in a range of diseases including neonatal and adult asthma, sinusitis, influenza, and lung cancer. The current review focuses on 1) the importance of BDNF expression and signaling mechanisms in early airway and lung development, critical to both normal neonatal lung function and also its disruption in prematurity and insults such as inflammation and infection; 2) how BDNF, potentially derived from airway nerves modulate neurogenic control of airway tone, a key aspect of airway reflexes as well as dysfunctional responses to allergic inflammation; 3) the emerging idea that local BDNF production by resident airway cells such as epithelium and airway smooth muscle can contribute to normal airway structure and function, and to airway hyperreactivity and remodeling in diseases such as asthma. Furthermore, given its pleiotropic effects in the airway, BDNF may be a novel and appealing therapeutic target. PMID:24560686

  2. Bronchoconstriction induced by hyperventilation with humidified hot air: role of TRPV1-expressing airway afferents.

    PubMed

    Lin, Ruei-Lung; Hayes, Don; Lee, Lu-Yuan

    2009-06-01

    A recent study by our laboratory has shown that an increase in intrathoracic temperature activates vagal pulmonary C-fibers. Because these afferents are known to elicit reflex bronchoconstriction upon stimulation, this study was carried out to investigate if an increase in airway temperature within the physiological range alters bronchomotor tone. Adult guinea pigs were anesthetized and mechanically ventilated via a tracheal tube. After the lung had been hyperventilated with humidified hot air (HHA) for 4 min, the tracheal temperature was elevated from 36.4 to 40.5 degrees C, which induced an immediate bronchoconstriction, increasing total pulmonary resistance (R(L)) to 177 +/- 10% and decreasing dynamic lung compliance to 81 +/- 6% of their respective baselines. The increase in R(L) returned spontaneously toward the baseline in <10 min and was reproducible in the same animals. There were no difference in the responses whether the humidity was generated from distilled water or isotonic saline. In contrast, hyperventilation with humidified air at room temperature did not cause any increase in R(L). The increase in R(L) caused by HHA was attenuated by 65.9% after a pretreatment with atropine alone and by 72.0% after a pretreatment with a combination of atropine and neurokinin receptor type 1 and 2 antagonists. In addition, capsazepine, a selective transient receptor potential vanilloid type 1 (TRPV1) antagonist, reduced the HHA-induced increase in R(L) by 64.1% but did not abolish it. However, pretreatment with formoterol, a beta(2)-agonist, completely prevented the HHA-induced bronchoconstriction. These results indicate that the increase in airway temperature induced transient airway constriction in guinea pigs. Approximately two-thirds of the increase in bronchomotor tone was mediated through the cholinergic reflex, which was probably elicited by the activation of TRPV1-expressing airway afferents. The remaining bronchoconstriction was caused by other, yet

  3. Antimicrobial resistance in the respiratory microbiota of people with cystic fibrosis.

    PubMed

    Sherrard, Laura J; Tunney, Michael M; Elborn, J Stuart

    2014-08-23

    Cystic fibrosis is characterised by chronic polymicrobial infection and inflammation in the airways of patients. Antibiotic treatment regimens, targeting recognised pathogens, have substantially contributed to increased life expectancy of patients with this disease. Although the emergence of antimicrobial resistance and selection of highly antibiotic-resistant bacterial strains is of major concern, the clinical relevance in cystic fibrosis is yet to be defined. Resistance has been identified in recognised cystic fibrosis pathogens and in other bacteria (eg, Prevotella and Streptococcus spp) detected in the airway microbiota, but their role in the pathophysiology of infection and inflammation in chronic lung disease is unclear. Increased antibiotic resistance in cystic fibrosis might be attributed to a range of complex factors including horizontal gene transfer, hypoxia, and biofilm formation. Strategies to manage antimicrobial resistance consist of new antibiotics or localised delivery of antimicrobial agents, iron sequestration, inhibition of quorum-sensing, and resistome analysis. Determination of the contributions of every bacterial species to lung health or disease in cystic fibrosis might also have an important role in the management of antibiotic resistance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Nogo-B regulates migration and contraction of airway smooth muscle cells by decreasing ARPC 2/3 and increasing MYL-9 expression.

    PubMed

    Xu, Wujian; Hong, Weijun; Shao, Yan; Ning, Yunye; Cai, Zailong; Li, Qiang

    2011-01-21

    Abnormal proliferation, apoptosis, migration and contraction of airway smooth muscle (ASM) cells in airway remodeling in asthma are basically excessive repair responses to a network of inflammatory mediators such as PDGF, but the mechanisms of such responses remain unclear. Nogo-B, a member of the reticulum family 4(RTN4), is known to play a key role in arteriogenesis and tissue repair. Further studies are needed to elucidate the role of Nogo-B in airway smooth muscle abnormalities. A mouse model of chronic asthma was established by repeated OVA inhalation and subjected to Nogo-B expression analysis using immunohistochemistry and Western Blotting. Then, primary human bronchial smooth muscle cells (HBSMCs) were cultured in vitro and a siRNA interference was performed to knockdown the expression of Nogo-B in the cells. The effects of Nogo-B inhibition on PDGF-induced HBSMCs proliferation, migration and contraction were evaluated. Finally, a proteomic analysis was conducted to unveil the underlying mechanisms responsible for the function of Nogo-B. Total Nogo-B expression was approximately 3.08-fold lower in chronic asthmatic mice compared to naïve mice, which was obvious in the smooth muscle layer of the airways. Interference of Nogo-B expression by siRNA resulted nearly 96% reduction in mRNA in cultured HBSMCs. In addition, knockdown of Nogo-B using specific siRNA significantly decreased PDGF-induced migration of HBSMCs by 2.3-fold, and increased the cellular contraction by 16% compared to negative controls, but had limited effects on PDGF-induced proliferation. Furthermore, using proteomic analysis, we demonstrate that the expression of actin related protein 2/3 complex subunit 5 (ARPC 2/3) decreased and, myosin regulatory light chain 9 isoform a (MYL-9) increased after Nogo-B knockdown. These data define a novel role for Nogo-B in airway remodeling in chronic asthma. Endogenous Nogo-B, which may exert its effects through ARPC 2/3 and MYL-9, is necessary for the

  5. The ordinary work environment increases symptoms from eyes and airways in mild steel welders.

    PubMed

    Jönsson, Lena S; Tinnerberg, Håkan; Jacobsson, Helene; Andersson, Ulla; Axmon, Anna; Nielsen, Jørn

    2015-11-01

    We aimed to follow diary-registered symptoms from eyes and airways in mild steel welders and relate them to different exposure measures. Furthermore, we would clarify the influence of possible effect modifiers. Non-smoking welders with (N = 74) and without (N = 32) work-related symptoms the last month were enroled. Symptoms and work tasks each day for three two-week periods during 1 year were obtained. Respirable dust (RD) was measured 1 day each period for each worker. The personal daily exposure was assessed as: (1) days at work, (2) welding time and (3) estimates of RD from welding and grinding, calculated from diary entries and measurements. Only 9.2 % of the particle measurements exceed the Swedish occupational exposure limit (OEL; 5 mg/m(3)). Days at work increased the risk of symptoms studied: eyes: 1.79 (1.46-2.19), nasal: 2.16 (1.81-2.58), dry cough: 1.50 (1.23-1.82) and wheezing and/or dyspnoea: 1.27 (1.03-1.56; odds ratio, 95 % confidence interval). No clear dose-response relationships were found for the other exposure estimates. Eye symptoms increased by number of years welding. Nasal symptoms and dry cough increased having forced expiratory volume in first second below median at baseline. Wheezing and/or dyspnoea increased in winter, by number of years welding, having a negative standard skin-prick test and having a vital capacity above median at baseline. The current Swedish OEL may not protect welders against eye and airway symptoms. The results add to the evidence that welders should be offered regular medical surveillance from early in the career.

  6. INCREASED IL-8 AND IL-6 EXPRESSION IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES

    EPA Science Inventory

    INCREASED IL-6 AND IL-8 EXPRESSION IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES.
    R Silbajoris1, A G Lenz2, I Jaspers3, J M Samet1. 1NHEERL, USEPA, RTP, NC, USA; 2GSF-Institute for Inhalation Biology, Neuherberg, Germany; 3 CEMLB, UNC-CH, Chapel Hill, ...

  7. How the airway smooth muscle in cystic fibrosis reacts in proinflammatory conditions: implications for airway hyper-responsiveness and asthma in cystic fibrosis.

    PubMed

    McCuaig, Sarah; Martin, James G

    2013-04-01

    Among patients with cystic fibrosis there is a high prevalence (40-70%) of asthma signs and symptoms such as cough and wheezing and airway hyper-responsiveness to inhaled histamine or methacholine. Whether these abnormal airway responses are due to a primary deficiency in the cystic fibrosis transmembrane conductance regulator (CFTR) or are secondary to the inflammatory environment in the cystic fibrosis lungs is not clear. A role for the CFTR in smooth muscle function is emerging, and alterations in contractile signalling have been reported in CFTR-deficient airway smooth muscle. Persistent bacterial infection, especially with Pseudomonas aeruginosa, stimulates interleukin-8 release from the airway epithelium, resulting in neutrophilic inflammation. Increased neutrophilia and skewing of CFTR-deficient T-helper cells to type 2 helper T cells creates an inflammatory environment characterised by high concentrations of tumour necrosis factor α, interleukin-8, and interleukin-13, which might all contribute to increased contractility of airway smooth muscle in cystic fibrosis. An emerging role of interleukin-17, which is raised in patients with cystic fibrosis, in airway smooth muscle proliferation and hyper-responsiveness is apparent. Increased understanding of the molecular mechanisms responsible for the altered smooth muscle physiology in patients with cystic fibrosis might provide insight into airway dysfunction in this disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Comparison of analysis methods for airway quantification

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.

    2012-03-01

    Diseased airways have been known for several years as a possible contributing factor to airflow limitation in Chronic Obstructive Pulmonary Diseases (COPD). Quantification of disease severity through the evaluation of airway dimensions - wall thickness and lumen diameter - has gained increased attention, thanks to the availability of multi-slice computed tomography (CT). Novel approaches have focused on automated methods of measurement as a faster and more objective means that the visual assessment routinely employed in the clinic. Since the Full-Width Half-Maximum (FWHM) method of airway measurement was introduced two decades ago [1], several new techniques for quantifying airways have been detailed in the literature, but no approach has truly become a standard for such analysis. Our own research group has presented two alternative approaches for determining airway dimensions, one involving a minimum path and the other active contours [2, 3]. With an increasing number of techniques dedicated to the same goal, we decided to take a step back and analyze the differences of these methods. We consequently put to the test our two methods of analysis and the FWHM approach. We first measured a set of 5 airways from a phantom of known dimensions. Then we compared measurements from the three methods to those of two independent readers, performed on 35 airways in 5 patients. We elaborate on the differences of each approach and suggest conclusions on which could be defined as the best one.

  9. Investigating the geometry of pig airways using computed tomography

    NASA Astrophysics Data System (ADS)

    Mansy, Hansen A.; Azad, Md Khurshidul; McMurray, Brandon; Henry, Brian; Royston, Thomas J.; Sandler, Richard H.

    2015-03-01

    Numerical modeling of sound propagation in the airways requires accurate knowledge of the airway geometry. These models are often validated using human and animal experiments. While many studies documented the geometric details of the human airways, information about the geometry of pig airways is scarcer. In addition, the morphology of animal airways can be significantly different from that of humans. The objective of this study is to measure the airway diameter, length and bifurcation angles in domestic pigs using computed tomography. After imaging the lungs of 3 pigs, segmentation software tools were used to extract the geometry of the airway lumen. The airway dimensions were then measured from the resulting 3 D models for the first 10 airway generations. Results showed that the size and morphology of the airways of different animals were similar. The measured airway dimensions were compared with those of the human airways. While the trachea diameter was found to be comparable to the adult human, the diameter, length and branching angles of other airways were noticeably different from that of humans. For example, pigs consistently had an early airway branching from the trachea that feeds the superior (top) right lung lobe proximal to the carina. This branch is absent in the human airways. These results suggested that the human geometry may not be a good approximation of the pig airways and may contribute to increasing the errors when the human airway geometric values are used in computational models of the pig chest.

  10. Automated airway evaluation system for multi-slice computed tomography using airway lumen diameter, airway wall thickness and broncho-arterial ratio

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.; Lerallut, Jean-Francois

    2006-03-01

    Pulmonary diseases such as bronchiectasis, asthma, and emphysema are characterized by abnormalities in airway dimensions. Multi-slice computed tomography (MSCT) has become one of the primary means to depict these abnormalities, as the availability of high-resolution near-isotropic data makes it possible to evaluate airways at oblique angles to the scanner plane. However, currently, clinical evaluation of airways is typically limited to subjective visual inspection only: systematic evaluation of the airways to take advantage of high-resolution data has not proved practical without automation. We present an automated method to quantitatively evaluate airway lumen diameter, wall thickness and broncho-arterial ratios. In addition, our method provides 3D visualization of these values, graphically illustrating the location and extent of disease. Our algorithm begins by automatic airway segmentation to extract paths to the distal airways, and to create a map of airway diameters. Normally, airway diameters decrease as paths progress distally; failure to taper indicates abnormal dilatation. Our approach monitors airway lumen diameters along each airway path in order to detect abnormal profiles, allowing even subtle degrees of pathologic dilatation to be identified. Our method also systematically computes the broncho-arterial ratio at every terminal branch of the tree model, as a ratio above 1 indicates potentially abnormal bronchial dilatation. Finally, the airway wall thickness is computed at corresponding locations. These measurements are used to highlight abnormal branches for closer inspection, and can be summed to compute a quantitative global score for the entire airway tree, allowing reproducible longitudinal assessment of disease severity. Preliminary tests on patients diagnosed with bronchiectasis demonstrated rapid identification of lack of tapering, which also was confirmed by corresponding demonstration of elevated broncho-arterial ratios.

  11. Transnasal Humidified Rapid-Insufflation Ventilatory Exchange (THRIVE): a physiological method of increasing apnoea time in patients with difficult airways.

    PubMed

    Patel, A; Nouraei, S A R

    2015-03-01

    Emergency and difficult tracheal intubations are hazardous undertakings where successive laryngoscopy-hypoxaemia-re-oxygenation cycles can escalate to airway loss and the 'can't intubate, can't ventilate' scenario. Between 2013 and 2014, we extended the apnoea times of 25 patients with difficult airways who were undergoing general anaesthesia for hypopharyngeal or laryngotracheal surgery. This was achieved through continuous delivery of transnasal high-flow humidified oxygen, initially to provide pre-oxygenation, and continuing as post-oxygenation during intravenous induction of anaesthesia and neuromuscular blockade until a definitive airway was secured. Apnoea time commenced at administration of neuromuscular blockade and ended with commencement of jet ventilation, positive-pressure ventilation or recommencement of spontaneous ventilation. During this time, upper airway patency was maintained with jaw-thrust. Transnasal Humidified Rapid-Insufflation Ventilatory Exchange (THRIVE) was used in 15 males and 10 females. Mean (SD [range]) age at treatment was 49 (15 [25-81]) years. The median (IQR [range]) Mallampati grade was 3 (2-3 [2-4]) and direct laryngoscopy grade was 3 (3-3 [2-4]). There were 12 obese patients and nine patients were stridulous. The median (IQR [range]) apnoea time was 14 (9-19 [5-65]) min. No patient experienced arterial desaturation < 90%. Mean (SD [range]) post-apnoea end-tidal (and in four patients, arterial) carbon dioxide level was 7.8 (2.4 [4.9-15.3]) kPa. The rate of increase in end-tidal carbon dioxide was 0.15 kPa.min(-1) . We conclude that THRIVE combines the benefits of 'classical' apnoeic oxygenation with continuous positive airway pressure and gaseous exchange through flow-dependent deadspace flushing. It has the potential to transform the practice of anaesthesia by changing the nature of securing a definitive airway in emergency and difficult intubations from a pressured stop-start process to a smooth and unhurried undertaking

  12. Postnatal airway growth in cystic fibrosis piglets.

    PubMed

    Adam, Ryan J; Abou Alaiwa, Mahmoud H; Bouzek, Drake C; Cook, Daniel P; Gansemer, Nicholas D; Taft, Peter J; Powers, Linda S; Stroik, Mallory R; Hoegger, Mark J; McMenimen, James D; Hoffman, Eric A; Zabner, Joseph; Welsh, Michael J; Meyerholz, David K; Stoltz, David A

    2017-09-01

    Mutations in the gene encoding the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) anion channel cause CF. The leading cause of death in the CF population is lung disease. Increasing evidence suggests that in utero airway development is CFTR-dependent and that developmental abnormalities may contribute to CF lung disease. However, relatively little is known about postnatal CF airway growth, largely because such studies are limited in humans. Therefore, we examined airway growth and lung volume in a porcine model of CF. We hypothesized that CF pigs would have abnormal postnatal airway growth. To test this hypothesis, we performed CT-based airway and lung volume measurements in 3-wk-old non-CF and CF pigs. We found that 3-wk-old CF pigs had tracheas of reduced caliber and irregular shape. Their bronchial lumens were reduced in size proximally but not distally, were irregularly shaped, and had reduced distensibility. Our data suggest that lack of CFTR results in aberrant postnatal airway growth and development, which could contribute to CF lung disease pathogenesis. NEW & NOTEWORTHY This CT scan-based study of airway morphometry in the cystic fibrosis (CF) postnatal period is unique, as analogous studies in humans are greatly limited for ethical and technical reasons. Findings such as reduced airway lumen area and irregular caliber suggest that airway growth and development are CF transmembrane conductance regulator-dependent and that airway growth defects may contribute to CF lung disease pathogenesis. Copyright © 2017 the American Physiological Society.

  13. Airway obstruction in children with infectious mononucleosis.

    PubMed

    Wohl, D L; Isaacson, J E

    1995-09-01

    Epstein-Barr Virus (EBV) infection generally has a benign clinical course. Upper airway obstruction is a known complication requiring the otolaryngologist's attention. EBV is usually associated with adolescence but has been increasingly documented in younger children. We review 36 pediatric admissions for infectious mononucleosis over a 12-year period at our institution, 11 of which required consultation for airway obstruction. Airway management was based on clinical severity and ranged from monitored observation, with or without nasopharyngeal stenting, to prolonged intubation or emergent tonsilloadenoidectomy. A rare case of a four-year-old with near total upper airway obstruction secondary to panpharyngeal and transglottic inflammatory edema prompted this review and is reported. The otolaryngologist must recognize the potential severity of EBV-related airway compromise and be prepared to manage it.

  14. Motorcycle exhaust particles induce airway inflammation and airway hyperresponsiveness in BALB/C mice.

    PubMed

    Lee, Chen-Chen; Liao, Jiunn-Wang; Kang, Jaw-Jou

    2004-06-01

    A number of large studies have reported that environmental pollutants from fossil fuel combustion can cause deleterious effects to the immune system, resulting in an allergic reaction leading to respiratory tract damage. In this study, we investigated the effect of motorcycle exhaust particles (MEP), a major pollutant in the Taiwan urban area, on airway inflammation and airway hyperresponsiveness in laboratory animals. BALB/c mice were instilled intratracheally (i.t.) with 1.2 mg/kg and 12 mg/kg of MEP, which was collected from two-stroke motorcycle engines. The mice were exposed 3 times i.t. with MEP, and various parameters for airway inflammation and hyperresponsiveness were sequentially analyzed. We found that MEP would induce airway and pulmonary inflammation characterized by infiltration of eosinophils, neutrophils, lymphocytes, and macrophages in bronchoalveolar lavage fluid (BALF) and inflammatory cell infiltration in lung. In addition, MEP treatment enhanced BALF interleukin-4 (IL-4), IL-5, and interferon-gamma (IFN-gamma) cytokine levels and serum IgE production. Bronchial response measured by unrestrained plethysmography with methacholine challenge showed that MEP treatment induced airway hyperresponsiveness (AHR) in BALB/c mice. The chemical components in MEP were further fractionated with organic solvents, and we found that the benzene-extracted fraction exerts a similar biological effect as seen with MEP, including airway inflammation, increased BALF IL-4, serum IgE production, and induction of AHR. In conclusion, we present evidence showing that the filter-trapped particles emitted from the unleaded-gasoline-fueled two-stroke motorcycle engine may induce proinflammatory and proallergic response profiles in the absence of exposure to allergen.

  15. Airway stents

    PubMed Central

    Keyes, Colleen

    2018-01-01

    Stents and tubes to maintain the patency of the airways are commonly used for malignant obstruction and are occasionally employed in benign disease. Malignant airway obstruction usually results from direct involvement of bronchogenic carcinoma, or by extension of carcinomas occurring in the esophagus or the thyroid. External compression from lymph nodes or metastatic disease from other organs can also cause central airway obstruction. Most malignant airway lesions are surgically inoperable due to advanced disease stage and require multimodality palliation, including stent placement. As with any other medical device, stents have significantly evolved over the last 50 years and deserve an in-depth understanding of their true capabilities and complications. Not every silicone stent is created equal and the same holds for metallic stents. Herein, we present an overview of the topic as well as some of the more practical and controversial issues surrounding airway stents. We also try to dispel the myths surrounding stent removal and their supposed use only in central airways. At the end, we come to the long-held conclusion that stents should not be used as first line treatment of choice, but after ruling out the possibility of curative surgical resection or repair. PMID:29707506

  16. RGS4 Overexpression in Lung Attenuates Airway Hyperresponsiveness in Mice.

    PubMed

    Madigan, Laura A; Wong, Gordon S; Gordon, Elizabeth M; Chen, Wei-Sheng; Balenga, Nariman; Koziol-White, Cynthia J; Panettieri, Reynold A; Levine, Stewart J; Druey, Kirk M

    2018-01-01

    A cardinal feature of asthma is airway hyperresponsiveness (AHR) to spasmogens, many of which activate G protein-coupled receptors (GPCRs) on airway smooth muscle (ASM) cells. Asthma subtypes associated with allergy are characterized by eosinophilic inflammation in the lung due to the type 2 immune response to allergens and proinflammatory mediators that promote AHR. The degree to which intrinsic abnormalities of ASM contribute to this phenotype remains unknown. The regulators of G protein signaling (RGS) proteins are a large group of intracellular proteins that inhibit GPCR signaling pathways. RGS2- and RGS5-deficient mice develop AHR spontaneously. Although RGS4 is upregulated in ASM from patients with severe asthma, the effects of increased RGS4 expression on AHR in vivo are unknown. Here, we examined the impact of forced RGS4 overexpression in lung on AHR using transgenic (Tg) mice. Tg RGS4 was expressed in bronchial epithelium and ASM in vivo, and protein expression in lung was increased at least 4-fold in Tg mice compared with wild-type (WT) mice. Lung slices from Tg mice contracted less in response to the m3 muscarinic receptor agonist methacholine compared with the WT, although airway resistance in live, unchallenged mice of both strains was similar. Tg mice were partially protected against AHR induced by fungal allergen challenge due to weakened contraction signaling in ASM and reduced type 2 cytokine (IL-5 and IL-13) levels in Tg mice compared with the WT. These results provide support for the hypothesis that increasing RGS4 expression and/or function could be a viable therapeutic strategy for asthma.

  17. The effects of gas humidification with high-flow nasal cannula on cultured human airway epithelial cells.

    PubMed

    Chidekel, Aaron; Zhu, Yan; Wang, Jordan; Mosko, John J; Rodriguez, Elena; Shaffer, Thomas H

    2012-01-01

    Humidification of inspired gas is important for patients receiving respiratory support. High-flow nasal cannula (HFNC) effectively provides temperature and humidity-controlled gas to the airway. We hypothesized that various levels of gas humidification would have differential effects on airway epithelial monolayers. Calu-3 monolayers were placed in environmental chambers at 37°C with relative humidity (RH) < 20% (dry), 69% (noninterventional comparator), and >90% (HFNC) for 4 and 8 hours with 10 L/min of room air. At 4 and 8 hours, cell viability and transepithelial resistance measurements were performed, apical surface fluid was collected and assayed for indices of cell inflammation and function, and cells were harvested for histology (n = 6/condition). Transepithelial resistance and cell viability decreased over time (P < 0.001) between HFNC and dry groups (P < 0.001). Total protein secretion increased at 8 hours in the dry group (P < 0.001). Secretion of interleukin (IL)-6 and IL-8 in the dry group was greater than the other groups at 8 hours (P < 0.001). Histological analysis showed increasing injury over time for the dry group. These data demonstrate that exposure to low humidity results in reduced epithelial cell function and increased inflammation.

  18. The Effects of Gas Humidification with High-Flow Nasal Cannula on Cultured Human Airway Epithelial Cells

    PubMed Central

    Chidekel, Aaron; Zhu, Yan; Wang, Jordan; Mosko, John J.; Rodriguez, Elena; Shaffer, Thomas H.

    2012-01-01

    Humidification of inspired gas is important for patients receiving respiratory support. High-flow nasal cannula (HFNC) effectively provides temperature and humidity-controlled gas to the airway. We hypothesized that various levels of gas humidification would have differential effects on airway epithelial monolayers. Calu-3 monolayers were placed in environmental chambers at 37°C with relative humidity (RH) < 20% (dry), 69% (noninterventional comparator), and >90% (HFNC) for 4 and 8 hours with 10 L/min of room air. At 4 and 8 hours, cell viability and transepithelial resistance measurements were performed, apical surface fluid was collected and assayed for indices of cell inflammation and function, and cells were harvested for histology (n = 6/condition). Transepithelial resistance and cell viability decreased over time (P < 0.001) between HFNC and dry groups (P < 0.001). Total protein secretion increased at 8 hours in the dry group (P < 0.001). Secretion of interleukin (IL)-6 and IL-8 in the dry group was greater than the other groups at 8 hours (P < 0.001). Histological analysis showed increasing injury over time for the dry group. These data demonstrate that exposure to low humidity results in reduced epithelial cell function and increased inflammation. PMID:22988501

  19. Nitrogen Dioxide Exposure and Airway Responsiveness in ...

    EPA Pesticide Factsheets

    Controlled human exposure studies evaluating the effect of inhaled NO2 on the inherent responsiveness of the airways to challenge by bronchoconstricting agents have had mixed results. In general, existing meta-analyses show statistically significant effects of NO2 on the airway responsiveness of individuals with asthma. However, no meta-analysis has provided a comprehensive assessment of clinical relevance of changes in airway responsiveness, the potential for methodological biases in the original papers, and the distribution of responses. This paper provides analyses showing that a statistically significant fraction, 70% of individuals with asthma exposed to NO2 at rest, experience increases in airway responsiveness following 30-minute exposures to NO2 in the range of 200 to 300 ppb and following 60-minute exposures to 100 ppb. The distribution of changes in airway responsiveness is log-normally distributed with a median change of 0.75 (provocative dose following NO2 divided by provocative dose following filtered air exposure) and geometric standard deviation of 1.88. About a quarter of the exposed individuals experience a clinically relevant reduction in their provocative dose due to NO2 relative to air exposure. The fraction experiencing an increase in responsiveness was statistically significant and robust to exclusion of individual studies. Results showed minimal change in airway responsiveness for individuals exposed to NO2 during exercise. A variety of fa

  20. Local small airway epithelial injury induces global smooth muscle contraction and airway constriction.

    PubMed

    Zhou, Jian; Alvarez-Elizondo, Martha B; Botvinick, Elliot; George, Steven C

    2012-02-01

    Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca(2+) wave in the epithelium, and multiple Ca(2+) waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca(2+) or decreasing intracellular Ca(2+) both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca(2+)-dependent smooth muscle shortening.

  1. Patterns of recruitment and injury in a heterogeneous airway network model

    PubMed Central

    Stewart, Peter S.; Jensen, Oliver E.

    2015-01-01

    In respiratory distress, lung airways become flooded with liquid and may collapse due to surface-tension forces acting on air–liquid interfaces, inhibiting gas exchange. This paper proposes a mathematical multiscale model for the mechanical ventilation of a network of occluded airways, where air is forced into the network at a fixed tidal volume, allowing investigation of optimal recruitment strategies. The temporal response is derived from mechanistic models of individual airway reopening, incorporating feedback on the airway pressure due to recruitment. The model accounts for stochastic variability in airway diameter and stiffness across and between generations. For weak heterogeneity, the network is completely ventilated via one or more avalanches of recruitment (with airways recruited in quick succession), each characterized by a transient decrease in the airway pressure; avalanches become more erratic for airways that are initially more flooded. However, the time taken for complete ventilation of the network increases significantly as the network becomes more heterogeneous, leading to increased stresses on airway walls. The model predicts that the most peripheral airways are most at risk of ventilation-induced damage. A positive-end-expiratory pressure reduces the total recruitment time but at the cost of larger stresses exerted on airway walls. PMID:26423440

  2. Role for NLRP3 Inflammasome-mediated, IL-1β-Dependent Responses in Severe, Steroid-Resistant Asthma.

    PubMed

    Kim, Richard Y; Pinkerton, James W; Essilfie, Ama T; Robertson, Avril A B; Baines, Katherine J; Brown, Alexandra C; Mayall, Jemma R; Ali, M Khadem; Starkey, Malcolm R; Hansbro, Nicole G; Hirota, Jeremy A; Wood, Lisa G; Simpson, Jodie L; Knight, Darryl A; Wark, Peter A; Gibson, Peter G; O'Neill, Luke A J; Cooper, Matthew A; Horvat, Jay C; Hansbro, Philip M

    2017-08-01

    Severe, steroid-resistant asthma is the major unmet need in asthma therapy. Disease heterogeneity and poor understanding of pathogenic mechanisms hampers the identification of therapeutic targets. Excessive nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome and concomitant IL-1β responses occur in chronic obstructive pulmonary disease, respiratory infections, and neutrophilic asthma. However, the direct contributions to pathogenesis, mechanisms involved, and potential for therapeutic targeting remain poorly understood, and are unknown in severe, steroid-resistant asthma. To investigate the roles and therapeutic targeting of the NLRP3 inflammasome and IL-1β in severe, steroid-resistant asthma. We developed mouse models of Chlamydia and Haemophilus respiratory infection-mediated, ovalbumin-induced severe, steroid-resistant allergic airway disease. These models share the hallmark features of human disease, including elevated airway neutrophils, and NLRP3 inflammasome and IL-1β responses. The roles and potential for targeting of NLRP3 inflammasome, caspase-1, and IL-1β responses in experimental severe, steroid-resistant asthma were examined using a highly selective NLRP3 inhibitor, MCC950; the specific caspase-1 inhibitor Ac-YVAD-cho; and neutralizing anti-IL-1β antibody. Roles for IL-1β-induced neutrophilic inflammation were examined using IL-1β and anti-Ly6G. Chlamydia and Haemophilus infections increase NLRP3, caspase-1, IL-1β responses that drive steroid-resistant neutrophilic inflammation and airway hyperresponsiveness. Neutrophilic airway inflammation, disease severity, and steroid resistance in human asthma correlate with NLRP3 and IL-1β expression. Treatment with anti-IL-1β, Ac-YVAD-cho, and MCC950 suppressed IL-1β responses and the important steroid-resistant features of disease in mice, whereas IL-1β administration recapitulated these features. Neutrophil depletion suppressed IL-1

  3. Does rapid maxillary expansion have long-term effects on airway dimensions and breathing?

    PubMed

    Baratieri, Carolina; Alves, Matheus; de Souza, Margareth Maria Gomes; de Souza Araújo, Mônica Tirre; Maia, Lucianne Cople

    2011-08-01

    In this systematic review, we identified and qualified the evidence of long-term reports on the effects of rapid maxillary expansion (RME) on airway dimensions and functions. Electronic databases (Ovid, Scirus, Scopus, Virtual Health Library, and Cochrane Library) were searched from 1900 to September 2010. Clinical trials that assessed airway changes at least 6 months after RME in growing children with rhinomanometry, acoustic rhinometry, computed tomography, or posteroanterior and lateral radiographs were selected. Studies that used surgically assisted RME and evaluated other simultaneous treatments during expansion, systemically compromised subjects, or cleft patients were excluded. A methodologic-quality scoring process was used to identify which studies would be most valuable. Fifteen articles fulfilled the inclusion criteria, and full texts were assessed. Three were excluded, and 12 were assessed for eligibility. Four articles with low methodologic quality were not considered. The remaining 8 were qualified as moderate. The posteroanterior radiographs showed that nasal cavity width increases; in the lateral radiographs, decreased craniocervical angulation was associated with increases of posterior nasal space. Cone-beam computed tomography did not show significant increases of nasal cavity volume. Rhinomanometry showed reduction of nasal airway resistance and increase of total nasal flow, and acoustic rhinometry detected increases of minimal cross-sectional area and nasal cavity volume. There is moderate evidence that changes after RME in growing children improve the conditions for nasal breathing and the results can be expected to be stable for at least 11 months after therapy. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  4. Popcorn flavoring effects on reactivity of rat airways in vivo and in vitro.

    PubMed

    Zaccone, Eric J; Thompson, Janet A; Ponnoth, Dovenia S; Cumpston, Amy M; Goldsmith, W Travis; Jackson, Mark C; Kashon, Michael L; Frazer, David G; Hubbs, Ann F; Shimko, Michael J; Fedan, Jeffrey S

    2013-01-01

    "Popcorn workers' lung" is an obstructive pulmonary disease produced by inhalation of volatile artificial butter flavorings. In rats, inhalation of diacetyl, a major component of butter flavoring, and inhalation of a diacetyl substitute, 2,3-pentanedione, produce similar damage to airway epithelium. The effects of diacetyl and 2,3-pentanedione and mixtures of diacetyl, acetic acid, and acetoin, all components of butter flavoring, on pulmonary function and airway reactivity to methacholine (MCh) were investigated. Lung resistance (RL) and dynamic compliance (Cdyn) were negligibly changed 18 h after a 6-h inhalation exposure to diacetyl or 2,3-pentanedione (100-360 ppm). Reactivity to MCh was not markedly changed after diacetyl, but was modestly decreased after 2,3-pentanedione inhalation. Inhaled diacetyl exerted essentially no effect on reactivity to mucosally applied MCh, but 2,3-pentanedione (320 and 360 ppm) increased reactivity to MCh in the isolated, perfused trachea preparation (IPT). In IPT, diacetyl and 2,3-pentanedione (≥3 mM) applied to the serosal and mucosal surfaces of intact and epithelium-denuded tracheas initiated transient contractions followed by relaxations. Inhaled acetoin (150 ppm) exerted no effect on pulmonary function and airway reactivity in vivo; acetic acid (27 ppm) produced hyperreactivity to MCh; and exposure to diacetyl + acetoin + acetic acid (250 + 150 + 27 ppm) led to a diacetyl-like reduction in reactivity. Data suggest that the effects of 2,3-pentanedione on airway reactivity are greater than those of diacetyl, and that flavorings are airway smooth muscle relaxants and constrictors, thus indicating a complex mechanism.

  5. POPCORN FLAVORING EFFECTS ON REACTIVITY OF RAT AIRWAYS IN VIVO AND IN VITRO

    PubMed Central

    Zaccone, Eric J.; Thompson, Janet A.; Ponnoth, Dovenia S.; Cumpston, Amy M.; Goldsmith, W. Travis; Jackson, Mark C.; Kashon, Michael L.; Frazer, David G.; Hubbs, Ann F.; Shimko, Michael J.; Fedan, Jeffrey S.

    2015-01-01

    “Popcorn workers’ lung” is an obstructive pulmonary disease produced by inhalation of volatile artificial butter flavorings. In rats, inhalation of diacetyl, a major component of butter flavoring, and inhalation of a diacetyl substitute, 2,3-pentanedione, produce similar damage to airway epithelium. The effects of diacetyl and 2,3-pentanedione and mixtures of diacetyl, acetic acid, and acetoin, all components of butter flavoring, on pulmonary function and airway reactivity to methacholine (MCh) were investigated. Lung resistance (RL) and dynamic compliance (Cdyn) were negligibly changed 18 h after a 6-h inhalation exposure to diacetyl or 2,3-pentanedione (100–360 ppm). Reactivity to MCh was not markedly changed after diacetyl, but was modestly decreased after 2,3-pentanedione inhalation. Inhaled diacetyl exerted essentially no effect on reactivity to mucosally applied MCh, but 2,3-pentanedione (320 and 360 ppm) increased reactivity to MCh in the isolated, perfused trachea preparation (IPT). In IPT, diacetyl and 2,3-pentanedione (≥3 mM) applied to the serosal and mucosal surfaces of intact and epithelium-denuded tracheas initiated transient contractions followed by relaxations. Inhaled acetoin (150 ppm) exerted no effect on pulmonary function and airway reactivity in vivo; acetic acid (27 ppm) produced hyperreactivity to MCh; and exposure to diacetyl + acetoin + acetic acid (250 + 150 + 27 ppm) led to a diacetyl-like reduction in reactivity. Data suggest that the effects of 2,3-pentanedione on airway reactivity are greater than those of diacetyl, and that flavorings are airway smooth muscle relaxants and constrictors, thus indicating a complex mechanism. PMID:23941636

  6. Corticosteroid treatment inhibits airway hyperresponsiveness and lung injury in a murine model of chemical-induced airway inflammation.

    PubMed

    Wigenstam, Elisabeth; Jonasson, Sofia; Koch, Bo; Bucht, Anders

    2012-11-15

    Exposure to toxic alkylating mustard agents causes both acute and long-term effects to the lungs as indicated by increased number of inflammatory cells in airways, lung edema and lung tissue fibrosis. We have previously demonstrated that treatment with the corticosteroid dexamethasone 1 h after lung exposure to the nitrogen mustard analog melphalan protects mice from acute and sub-acute inflammatory responses, as well as from lung tissue fibrosis. In order to address the importance of early anti-inflammatory treatment, we investigated the therapeutic effect of dexamethasone administered 1, 2 or 6 h following exposure to melphalan. C57BL/6 mice were exposed to melphalan and treated with dexamethasone 1, 2 or 6 h after exposure. Twenty hours or 14 days post exposure mice were subjected to analysis of respiratory mechanics where the effects of incremental doses of methacholine on central and peripheral lung components were measured. We also determined the amount of inflammatory cells in the bronchoalveolar lavage fluid and measured the amount of collagen content in the lungs. Melphalan exposure increased airway hyperresponsiveness in both central and peripheral airways and induced an airway inflammation dominated by infiltration of macrophages and neutrophils. Dexamethasone given 1 h after exposure to melphalan provided better protection against airway inflammation than administration 2 or 6 h after exposure. Collagen deposition 14 days after exposure was decreased due to dexamethasone treatment. Early treatment with dexamethasone is important in order to reduce the airway hyperresponsiveness and inflammation caused by toxic alkylating mustards such as melphalan. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Cigarette smoke increases Toll-like receptor 4 and modifies lipopolysaccharide-mediated responses in airway epithelial cells

    PubMed Central

    Pace, Elisabetta; Ferraro, Maria; Siena, Liboria; Melis, Mario; Montalbano, Angela M; Johnson, Malcolm; Bonsignore, Maria R; Bonsignore, Giovanni; Gjomarkaj, Mark

    2008-01-01

    Airway epithelium is emerging as a regulator of innate immune responses to a variety of insults including cigarette smoke. The main goal of this study was to explore the effects of cigarette smoke extracts (CSE) on Toll-like receptor (TLR) expression and activation in a human bronchial epithelial cell line (16-HBE). The CSE increased the expression of TLR4 and the lipopolysaccharide (LPS) binding, the nuclear factor-κB (NF-κB) activation, the release of interleukin-8 (IL-8) and the chemotactic activity toward neutrophils. It did not induce TLR2 expression or extracellular signal-regulated signal kinase 1/2 (ERK1/2) activation. The LPS increased the expression of TLR4 and induced both NF-κB and ERK1/2 activation. The combined exposure of 16-HBE to CSE and LPS was associated with ERK activation rather than NF-κB activation and with a further increase of IL-8 release and of chemotactic activity toward neutrophils. Furthermore, CSE decreased the constitutive interferon-inducible protein-10 (IP-10) release and counteracted the effect of LPS in inducing both the IP-10 release and the chemotactic activity toward lymphocytes. In conclusion, cigarette smoke, by altering the expression and the activation of TLR4 via the preferential release of IL-8, may contribute to the accumulation of neutrophils within the airways of smokers. PMID:18217953

  8. Effects of conventional tobacco smoke and nicotine-free cigarette smoke on airway inflammation, airway remodelling and lung function in a triple allergen model of severe asthma.

    PubMed

    Tilp, C; Bucher, H; Haas, H; Duechs, M J; Wex, E; Erb, K J

    2016-07-01

    Patients with asthma who smoke have reduced lung function, increased exacerbation rates and increased steroid resistance compared to non-smoking asthmatics. In mice, cigarette smoke has been reported to have both pro- and anti-Th2 response effects. We hypothesized that combining tobacco cigarette smoke (tCS) with allergen exposure increases inflammation, airway remodelling and lung function in mice. To test this hypothesis, we combined a severe triple allergen model with tCS exposure and investigated whether effects were due to Toll-like receptor 4 signalling and/or nicotine and also observed when nicotine-free cigarettes were used. Mice were sensitized with ovalbumin, cockroach and house dust mite allergen in alum followed by intratracheal challenges with allergen twice a week for 6 weeks or additionally exposed to tCS during the allergen challenge period. Nicotine or nicotine-free herbal cigarette smoke was also applied to allergen challenged mice. tCS significantly reduced eosinophil numbers, IL-4 and IL-5 concentrations in the lung, total and allergen-specific IgE in serum, improved lung function and reduced collagen I levels. With the exception of collagen I all parameters reduced by tobacco cigarette smoke were also reduced in Toll-like receptor 4-deficient mice. Nicotine-free cigarette smoke also had significant anti-inflammatory effects on eosinophils, IL-4 and IL-5 concentrations in the lung and reduced airway hyperreactivity, albeit weaker than tobacco smoke. Applying nicotine alone also reduced Th2 cytokine levels and eosinophil numbers in the airways. Our experiments show that tCS exposure reduces allergen-induced Th2 response in the lung and associated collagen I production and development of airway hyperreactivity. With the exception on collagen I formation, these effects were not dependent on Toll-like receptor 4. The observed anti-Th2 effects of both nicotine and nicotine-free herbal cigarette smoke together suggests that tCS reduces the Th2

  9. Degrees of reality: airway anatomy of high-fidelity human patient simulators and airway trainers.

    PubMed

    Schebesta, Karl; Hüpfl, Michael; Rössler, Bernhard; Ringl, Helmut; Müller, Michael P; Kimberger, Oliver

    2012-06-01

    Human patient simulators and airway training manikins are widely used to train airway management skills to medical professionals. Furthermore, these patient simulators are employed as standardized "patients" to evaluate airway devices. However, little is known about how realistic these patient simulators and airway-training manikins really are. This trial aimed to evaluate the upper airway anatomy of four high-fidelity patient simulators and two airway trainers in comparison with actual patients by means of radiographic measurements. The volume of the pharyngeal airspace was the primary outcome parameter. Computed tomography scans of 20 adult trauma patients without head or neck injuries were compared with computed tomography scans of four high-fidelity patient simulators and two airway trainers. By using 14 predefined distances, two cross-sectional areas and three volume parameters of the upper airway, the manikins' similarity to a human patient was assessed. The pharyngeal airspace of all manikins differed significantly from the patients' pharyngeal airspace. The HPS Human Patient Simulator (METI®, Sarasota, FL) was the most realistic high-fidelity patient simulator (6/19 [32%] of all parameters were within the 95% CI of human airway measurements). The airway anatomy of four high-fidelity patient simulators and two airway trainers does not reflect the upper airway anatomy of actual patients. This finding may impact airway training and confound comparative airway device studies.

  10. Inflammation Promotes Airway Epithelial ATP Release via Calcium-Dependent Vesicular Pathways

    PubMed Central

    Okada, Seiko F.; Ribeiro, Carla M. P.; Sesma, Juliana I.; Seminario-Vidal, Lucia; Abdullah, Lubna H.; van Heusden, Catharina; Lazarowski, Eduardo R.

    2013-01-01

    ATP in airway surface liquid (ASL) controls mucociliary clearance functions via the activation of airway epithelial purinergic receptors. However, abnormally elevated ATP levels have been reported in inflamed airways, suggesting that excessive ATP in ASL contributes to airway inflammation. Despite these observations, little is known about the mechanisms of ATP accumulation in the ASL covering inflamed airways. In this study, links between cystic fibrosis (CF)–associated airway inflammation and airway epithelial ATP release were investigated. Primary human bronchial epithelial (HBE) cells isolated from CF lungs exhibited enhanced IL-8 secretion after 6 to 11 days, but not 28 to 35 days, in culture, compared with normal HBE cells. Hypotonic cell swelling–promoted ATP release was increased in 6- to 11-day-old CF HBE cells compared with non-CF HBE cells, but returned to normal values after 28 to 35 days in culture. The exposure of non-CF HBE cells to airway secretions isolated from CF lungs, namely, sterile supernatants of mucopurulent material (SMM), also caused enhanced IL-8 secretion and increased ATP release. The SMM-induced increase in ATP release was sensitive to Ca2+ chelation and vesicle trafficking/exocytosis inhibitors, but not to pannexin inhibition. Transcript levels of the vesicular nucleotide transporter, but not pannexin 1, were up-regulated after SMM exposure. SMM-treated cultures displayed increased basal mucin secretion, but mucin secretion was not enhanced in response to hypotonic challenge after the exposure of cells to either vehicle or SMM. We propose that CF airway inflammation up-regulates the capacity of airway epithelia to release ATP via Ca2+-dependent vesicular mechanisms not associated with mucin granule secretion. PMID:23763446

  11. Filaggrin mutations increase allergic airway disease in childhood and adolescence through interactions with eczema and aeroallergen sensitization.

    PubMed

    Chan, Adrian; Terry, William; Zhang, Hongmei; Karmaus, Wilfried; Ewart, Susan; Holloway, John W; Roberts, Graham; Kurukulaaratchy, Ramesh; Arshad, Syed Hasan

    2018-02-01

    Filaggrin loss-of-function (FLG-LOF) mutations are an established genetic cause of eczema. These mutations have subsequently been reported to increase the risk of aeroallergen sensitization and allergic airway disease. However, it is unclear whether FLG variants require both eczema and aeroallergen sensitization to influence airway disease development long-term outcomes. To examine the effects of FLG-LOF mutations on allergic airway disease outcomes, with eczema and aeroallergen sensitization as intermediate variables, using the Isle of Wight birth cohort. Study participants were evaluated at ages 1, 2, 4, 10 and 18 years to ascertain the development of allergic diseases (eczema, asthma and allergic rhinitis) and aeroallergen sensitization (determined by skin prick tests). FLG-LOF mutations were genotyped in 1150 subjects. To understand the complex associations between FLG mutations, intermediate variables (eczema and aeroallergen sensitization) and airway disease, path analysis was performed. There were significant total effects of FLG-LOF mutations on both asthma and allergic rhinitis at all ages as well as on aeroallergen sensitization up till 10 years old. In the filaggrin-asthma analysis, a direct effect of FLG-LOF mutations was observed on early childhood eczema (age 1 and 2 years) (relative risk (RR) 2.01, 95% CI: 1.74-2.31, P < .001), and all significant indirect pathways on asthma outcomes passed through eczema at these ages. In contrast, for the filaggrin-rhinitis model, FLG-LOF mutations exerted significant direct effects on early eczema as well as rhinitis at 10 years (RR 1.99; 95% CI: 1.72-2.29, P = .002). FLG-LOF mutations are a significant risk factor for later childhood asthma and rhinitis. However, the pathway to asthma is only through early childhood eczema while a direct effect was observed for childhood rhinitis. © 2017 John Wiley & Sons Ltd.

  12. Local small airway epithelial injury induces global smooth muscle contraction and airway constriction

    PubMed Central

    Zhou, Jian; Alvarez-Elizondo, Martha B.; Botvinick, Elliot

    2012-01-01

    Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca2+ wave in the epithelium, and multiple Ca2+ waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca2+ or decreasing intracellular Ca2+ both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca2+-dependent smooth muscle shortening. PMID:22114176

  13. The Difficult Airway Society 'ADEPT' guidance on selecting airway devices: the basis of a strategy for equipment evaluation.

    PubMed

    Pandit, J J; Popat, M T; Cook, T M; Wilkes, A R; Groom, P; Cooke, H; Kapila, A; O'Sullivan, E

    2011-08-01

    Faced with the concern that an increasing number of airway management devices were being introduced into clinical practice with little or no prior evidence of their clinical efficacy or safety, the Difficult Airway Society formed a working party (Airway Device Evaluation Project Team) to establish a process by which the airway management community within the profession could itself lead a process of formal device/equipment evaluation. Although there are several national and international regulations governing which products can come on to the market and be legitimately sold, there has hitherto been no formal professional guidance relating to how products should be selected (i.e. purchased). The Airway Device Evaluation Project Team's first task was to formulate such advice, emphasising evidence-based principles. Team discussions led to a definition of the minimum level of evidence needed to make a pragmatic decision about the purchase or selection of an airway device. The Team concluded that this definition should form the basis of a professional standard, guiding those with responsibility for selecting airway devices. We describe how widespread adoption of this professional standard can act as a driver to create an infrastructure in which the required evidence can be obtained. Essential elements are that: (i) the Difficult Airway Society facilitates a coherent national network of research-active units; and (ii) individual anaesthetists in hospital trusts play a more active role in local purchasing decisions, applying the relevant evidence and communicating their purchasing decisions to the Difficult Airway Society. © 2011 The Authors. Anaesthesia © 2011 The Association of Anaesthetists of Great Britain and Ireland.

  14. Effect of airway acidosis and alkalosis on airway vascular smooth muscle responsiveness to albuterol.

    PubMed

    Cancado, Jose E; Mendes, Eliana S; Arana, Johana; Horvath, Gabor; Monzon, Maria E; Salathe, Matthias; Wanner, Adam

    2015-04-02

    In vitro and animal experiments have shown that the transport and signaling of β2-adrenergic agonists are pH-sensitive. Inhaled albuterol, a hydrophilic β2-adrenergic agonist, is widely used for the treatment of obstructive airway diseases. Acute exacerbations of obstructive airway diseases can be associated with changes in ventilation leading to either respiratory acidosis or alkalosis thereby affecting albuterol responsiveness in the airway. The purpose of this study was to determine if airway pH has an effect on albuterol-induced vasodilation in the airway. Ten healthy volunteers performed the following respiratory maneuvers: quiet breathing, hypocapnic hyperventilation, hypercapnic hyperventilation, and eucapnic hyperventilation (to dissociate the effect of pH from the effect of ventilation). During these breathing maneuvers, exhaled breath condensate (EBC) pH and airway blood flow response to inhaled albuterol (ΔQ̇aw) were assessed. Mean ± SE EBC pH (units) and ΔQ̇aw (μl.min(-1).mL(-1)) were 6.4 ± 0.1 and 16.8 ± 1.9 during quiet breathing, 6.3 ± 0.1 and 14.5 ± 2.4 during eucapnic hyperventilation, 6.6 ± 0.2 and -0.2 ± 1.8 during hypocapnic hyperventilation (p = 0.02 and <0.01 vs. quiet breathing), and 5.9 ± 0.1 and 2.0 ± 1.5 during hypercapnic hyperventilation (p = 0.02 and <0.02 vs quiet breathing). Albuterol responsiveness in the airway as assessed by ΔQ̇aw is pH sensitive. The breathing maneuver associated with decreased and increased EBC pH both resulted in a decreased responsiveness independent of the level of ventilation. These findings suggest an attenuated response to hydrophilic β2-adrenergic agonists during airway disease exacerbations associated with changes in pH. Registered at clinicaltrials.gov: NCT01216748 .

  15. Airway basement membrane perimeter in human airways is not a constant; potential implications for airway remodeling in asthma.

    PubMed

    McParland, Brent E; Paré, Peter D; Johnson, Peter R A; Armour, Carol L; Black, Judith L

    2004-08-01

    Many studies that demonstrate an increase in airway smooth muscle in asthmatic patients rely on the assumption that bronchial internal perimeter (P(i)) or basement membrane perimeter (P(bm)) is a constant, i.e., not affected by fixation pressure or the degree of smooth muscle shortening. Because it is the basement membrane that has been purported to be the indistensible structure, this study examines the assumption that P(bm) is not affected by fixation pressure. P(bm) was determined for the same human airway segment (n = 12) fixed at distending pressures of 0 cmH(2)O and 21 cmH(2)O in the absence of smooth muscle tone. P(bm) for the segment fixed at 0 cmH(2)O was determined morphometrically, and the P(bm) for the same segment, had the segment been fixed at 21 cmH(2)O, was predicted from knowing the luminal volume and length of the airway when distended to 21 cmH(2)O (organ bath-derived P(i)). To ensure an accurate transformation of the organ bath-derived P(i) value to a morphometry-derived P(bm) value, had the segment been fixed at 21 cmH(2)O, the relationship between organ bath-derived P(i) and morphometry-derived P(bm) was determined for five different bronchial segments distended to 21 cmH(2)O and fixed at 21 cmH(2)O (r(2) = 0.99, P < 0.0001). Mean P(bm) for bronchial segments fixed at 0 cmH(2)O was 9.4 +/- 0.4 mm, whereas mean predicted P(bm), had the segments been fixed at 21 cmH(2)O, was 14.1 +/- 0.5 mm (P < 0.0001). This indicates that P(bm) is not a constant when isolated airway segments without smooth muscle tone are fixed distended to 21 cmH(2)O. The implication of these results is that the increase in smooth muscle mass in asthma may have been overestimated in some previous studies. Therefore, further studies are required to examine the potential artifact using whole lungs with and without abolition of airway smooth muscle tone and/or inflation.

  16. Anaerobic bacteria colonizing the lower airways in lung cancer patients.

    PubMed

    Rybojad, Pawel; Los, Renata; Sawicki, Marek; Tabarkiewicz, Jacek; Malm, Anna

    2011-01-01

    Anaerobes comprise most of the endogenous oropharyngeal microflora, and can cause infections of airways in lung cancer patients who are at high risk for respiratory tract infections. The aim of this study was to determine the frequency and species diversity of anaerobes in specimens from the lower airways of lung cancer patients. Sensitivity of the isolates to conventional antimicrobial agents used in anaerobe therapy was assessed. Respiratory secretions obtained by bronchoscopy from 30 lung cancer patients were cultured onto Wilkins-Chalgren agar in anaerobic conditions at 37°C for 72-96 hours. The isolates were identified using microtest Api 20A. The minimal inhibitory concentrations for penicillin G, amoxicillin/clavulanate, piperacillin/tazobactam, cefoxitin, imipenem, clindamycin, and metronidazole were determined by E-test. A total of 47 isolates of anaerobic bacteria were detected in 22 (73.3%) specimens. More than one species of anaerobe was found in 16 (53.3%) samples. The most frequently isolated were Actinomyces spp. and Peptostreptococcus spp., followed by Eubacterium lentum, Veillonella parvula, Prevotella spp., Bacteroides spp., Lactobacillus jensenii. Among antibiotics used in the study amoxicillin/clavulanate and imipenem were the most active in vitro (0% and 2% resistant strains, respectively). The highest resistance rate was found for penicillin G and metronidazole (36% and 38% resistant strains, respectively). The results obtained confirm the need to conduct analyses of anaerobic microflora colonizing the lower respiratory tract in patients with lung cancer to monitor potential etiologic factors of airways infections, as well as to propose efficient, empirical therapy.

  17. Capnographic Parameters in Ventilated Patients: Correspondence with Airway and Lung Tissue Mechanics.

    PubMed

    Csorba, Zsofia; Petak, Ferenc; Nevery, Kitti; Tolnai, Jozsef; Balogh, Adam L; Rarosi, Ferenc; Fodor, Gergely H; Babik, Barna

    2016-05-01

    Although the mechanical status of the lungs affects the shape of the capnogram, the relations between the capnographic parameters and those reflecting the airway and lung tissue mechanics have not been established in mechanically ventilated patients. We, therefore, set out to characterize how the mechanical properties of the airways and lung tissues modify the indices obtained from the different phases of the time and volumetric capnograms and how the lung mechanical changes are reflected in the altered capnographic parameters after a cardiopulmonary bypass (CPB). Anesthetized, mechanically ventilated patients (n = 101) undergoing heart surgery were studied in a prospective consecutive cross-sectional study under the open-chest condition before and 5 minutes after CPB. Forced oscillation technique was applied to measure airway resistance (Raw), tissue damping (G), and elastance (H). Time and volumetric capnography were performed to assess parameters reflecting the phase II (SII) and phase III slopes (SIII), their transition (D2min), the dead-space indices according to Fowler, Bohr, and Enghoff and the intrapulmonary shunt. Before CPB, SII and D2min exhibited the closest (P = 0.006) associations with H (0.65 and -0.57; P < 0.0001, respectively), whereas SIII correlated most strongly (P < 0.0001) with Raw (r = 0.63; P < 0.0001). CPB induced significant elevations in Raw and G and H (P < 0.0001). These adverse mechanical changes were reflected consistently in SII, SIII, and D2min, with weaker correlations with the dead-space indices (P < 0.0001). The intrapulmonary shunt expressed as the difference between the Enghoff and Bohr dead-space parameters was increased after CPB (95% ± 5% [SEM] vs 143% ± 6%; P < 0.001). In mechanically ventilated patients, the capnographic parameters from the early phase of expiration (SII and D2min) are linked to the pulmonary elastic recoil, whereas the effect of airway patency on SIII dominates over the lung tissue stiffness. However

  18. Parasympathetic Control of Airway Submucosal Glands: Central Reflexes and the Airway Intrinsic Nervous System

    PubMed Central

    Wine, Jeffrey J.

    2007-01-01

    Airway submucosal glands produce the mucus that lines the upper airways to protect them against insults. This review summarizes evidence for two forms of gland secretion, and hypothesizes that each is mediated by different but partially overlapping neural pathways. Airway innate defense comprises low level gland secretion, mucociliary clearance and surveillance by airway-resident phagocytes to keep the airways sterile in spite of nearly continuous inhalation of low levels of pathogens. Gland secretion serving innate defense is hypothesized to be under the control of intrinsic (peripheral) airway neurons and local reflexes, and these may depend disproportionately on non-cholinergic mechanisms, with most secretion being produced by VIP and tachykinins. In the genetic disease cystic fibrosis, airway glands no longer secrete in response to VIP alone and fail to show the synergy between VIP, tachykinins and ACh that is observed in normal glands. The consequent crippling of the submucosal gland contribution to innate defense may be one reason that cystic fibrosis airways are infected by mucus-resident bacteria and fungi that are routinely cleared from normal airways. By contrast, the acute (emergency) airway defense reflex is centrally mediated by vagal pathways, is primarily cholinergic, and stimulates copious volumes of gland mucus in response to acute, intense challenges to the airways, such as those produced by very vigorous exercise or aspiration of foreign material. In cystic fibrosis, the acute airway defense reflex can still stimulate the glands to secrete large amounts of mucus, although its properties are altered. Importantly, treatments that recruit components of the acute reflex, such as inhalation of hypertonic saline, are beneficial in treating cystic fibrosis airway disease. The situation for recipients of lung transplants is the reverse; transplanted airways retain the airway intrinsic nervous system but lose centrally mediated reflexes. The consequences

  19. Inhibition of pan neurotrophin receptor p75 attenuates diesel particulate-induced enhancement of allergic airway responses in C57/B16J mice.

    PubMed

    Farraj, Aimen K; Haykal-Coates, Najwa; Ledbetter, Allen D; Evansky, Paul A; Gavett, Stephen H

    2006-06-01

    Recent investigations have linked neurotrophins, including nerve growth factor (NGF), neurotrophin-3 (NT-3), and brain-derived neurotrophic factor (BDNF), to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance in allergic mice. Diesel exhaust particle (DEP) exposure has been linked to asthma exacerbation in many cities with vehicular traffic congestion. We tested the hypothesis that DEP-induced enhancement of the hallmark features of allergic airway disease in a murine model is dependent on the function of the pan neurotrophin receptor p75. Ovalbumin (OVA)-sensitized C57B1/6J mice were intranasally instilled with an antibody against the p75 receptor or saline alone 1 h before OVA challenge. The mice were then exposed nose-only to the PM2.5 fraction of SRM2975 DEP or air alone for 5 h beginning 1 h after OVA challenge. Two days later, air-exposed OVA-allergic mice developed a small but insignificant increase in methacholine-induced airflow obstruction relative to air-exposed, vehicle-sensitized mice. DEP-exposed OVA-allergic mice had a significantly greater degree of airway obstruction than all other groups. Instillation of anti-p75 significantly attenuated the DEP-induced increase in airway obstruction in OVA-allergic mice to levels similar to non-sensitized mice. The DEP-induced exacerbation of allergic airway responses may, in part, be mediated by neurotrophins.

  20. Effects of fixed functional therapy on tongue and hyoid positions and posterior airway.

    PubMed

    Ozdemir, Fulya; Ulkur, Feyza; Nalbantgil, Didem

    2014-03-01

    To evaluate how therapy with a fixed functional appliance affects airway dimensions, dentoalveolar changes, and tongue and hyoid positions. A retrospective study was carried out on 46 pre- and posttreatment lateral cephalometric radiographs of 23 post-peak Class II patients (12 girls, 11 boys) treated with a Forsus Fatigue Resistant Device (FRD) appliance. The radiographies were taken at the start and at the end of Forsus FRD appliance therapy when a Class I or overcorrected Class I canine and molar relationship was achieved. The process took an average of 5 months 13 days ± 1 month 4 days. Skeletal and dental parameters were measured using Dolphin software, and the sagittal airway area was measured by AutoCAD software. Analyses of the pre- and posttreatment means revealed that there was no statistically significant skeletal correction of the sagittal malocclusion; increase of lower incisor inclination, decrease of upper incisor inclination, decrease of interincisal angle, and rotation of occlusal plane all contributed to the reduction of overjet. The tongue area and intermaxillary space area increased in response to these dentoalveolar changes; however, there was no statistically significant change in the hyoid position or the oropharyngeal area between the two time points. The dentoalveolar changes produced by Forsus FRD appliance did not cause any significant posterior airway changes in young adult patients.

  1. Defective parasympathetic innervation is associated with airway branching abnormalities in experimental CDH

    PubMed Central

    Rhodes, Julie; Saxena, Deeksha; Zhang, GuangFeng; Gittes, George K.

    2015-01-01

    Developmental mechanisms leading to lung hypoplasia in congenital diaphragmatic hernia (CDH) remain poorly defined. Pulmonary innervation is defective in the human disease and in the rodent models of CDH. We hypothesize that defective parasympathetic innervation may contribute to airway branching abnormalities and, therefore, lung hypoplasia, during lung development in CDH. The murine nitrofen model of CDH was utilized to study the effect of the cholinergic agonist carbachol on embryonic day 11.5 (E11.5) lung explant cultures. Airway branching and contractions were quantified. In a subset of experiments, verapamil was added to inhibit airway contractions. Sox9 immunostaining and 5-bromo-2-deoxyuridine incorporation were used to identify and quantify the number and proliferation of distal airway epithelial progenitor cells. Intra-amniotic injections were used to determine the in vivo effect of carbachol. Airway branching and airway contractions were significantly decreased in nitrofen-treated lungs compared with controls. Carbachol resulted in increased airway contractions and branching in nitrofen-treated lungs. Nitrofen-treated lungs exhibited an increased number of proliferating Sox9-positive distal epithelial progenitor cells, which were decreased and normalized by treatment with carbachol. Verapamil inhibited the carbachol-induced airway contractions in nitrofen-treated lungs but had no effect on the carbachol-induced increase in airway branching, suggesting a direct carbachol effect independent of airway contractions. In vivo treatment of nitrofen-treated embryos via amniotic injection of carbachol at E10.5 resulted in modest increases in lung size and branching at E17.5. These results suggest that defective parasympathetic innervation may contribute to airway branching abnormalities in CDH. PMID:25934671

  2. Ventilation heterogeneity is a major determinant of airway hyperresponsiveness in asthma, independent of airway inflammation

    PubMed Central

    Downie, Sue R; Salome, Cheryl M; Verbanck, Sylvia; Thompson, Bruce; Berend, Norbert; King, Gregory G

    2007-01-01

    Background Airway hyperresponsiveness is the ability of airways to narrow excessively in response to inhaled stimuli and is a key feature of asthma. Airway inflammation and ventilation heterogeneity have been separately shown to be associated with airway hyperresponsiveness. A study was undertaken to establish whether ventilation heterogeneity is associated with airway hyperresponsiveness independently of airway inflammation in subjects with asthma and to determine the effect of inhaled corticosteroids on this relationship. Methods Airway inflammation was measured in 40 subjects with asthma by exhaled nitric oxide, ventilation heterogeneity by multiple breath nitrogen washout and airway hyperresponsiveness by methacholine challenge. In 18 of these subjects with uncontrolled symptoms, measurements were repeated after 3 months of treatment with inhaled beclomethasone dipropionate. Results At baseline, airway hyperresponsiveness was independently predicted by airway inflammation (partial r2 = 0.20, p<0.001) and ventilation heterogeneity (partial r2 = 0.39, p<0.001). Inhaled corticosteroid treatment decreased airway inflammation (p = 0.002), ventilation heterogeneity (p = 0.009) and airway hyperresponsiveness (p<0.001). After treatment, ventilation heterogeneity was the sole predictor of airway hyperresponsiveness (r2 = 0.64, p<0.001). Conclusions Baseline ventilation heterogeneity is a strong predictor of airway hyperresponsiveness, independent of airway inflammation in subjects with asthma. Its persistent relationship with airway hyperresponsiveness following anti‐inflammatory treatment suggests that it is an important independent determinant of airway hyperresponsiveness. Normalisation of ventilation heterogeneity is therefore a potential goal of treatment that may lead to improved long‐term outcomes. PMID:17311839

  3. Concomitant Exposure to Ovalbumin and Endotoxin Augments Airway Inflammation but Not Airway Hyperresponsiveness in a Murine Model of Asthma

    PubMed Central

    Mac Sharry, John; Shalaby, Karim H.; Marchica, Cinzia; Farahnak, Soroor; Chieh-Li, Tien; Lapthorne, Susan; Qureshi, Salman T.; Shanahan, Fergus; Martin, James G.

    2014-01-01

    Varying concentrations of lipopolysaccharide (LPS) in ovalbumin (OVA) may influence the airway response to allergic sensitization and challenge. We assessed the contribution of LPS to allergic airway inflammatory responses following challenge with LPS-rich and LPS-free commercial OVA. BALB/c mice were sensitized with LPS-rich OVA and alum and then underwent challenge with the same OVA (10 µg intranasally) or an LPS-free OVA. Following challenge, bronchoalveolar lavage (BAL), airway responsiveness to methacholine and the lung regulatory T cell population (Treg) were assessed. Both OVA preparations induced BAL eosinophilia but LPS-rich OVA also evoked BAL neutrophilia. LPS-free OVA increased interleukin (IL)-2, IL-4 and IL-5 whereas LPS-rich OVA additionally increased IL-1β, IL-12, IFN-γ, TNF-α and KC. Both OVA-challenged groups developed airway hyperresponsiveness. TLR4-deficient mice challenged with either OVA preparation showed eosinophilia but not neutrophilia and had increased IL-5. Only LPS-rich OVA challenged mice had increased lung Tregs and LPS-rich OVA also induced in vitro Treg differentiation. LPS-rich OVA also induced a Th1 cytokine response in human peripheral blood mononuclear cells.We conclude that LPS-rich OVA evokes mixed Th1, Th2 and innate immune responses through the TLR-4 pathway, whereas LPS-free OVA evokes only a Th2 response. Contaminating LPS is not required for induction of airway hyperresponsiveness but amplifies the Th2 inflammatory response and is a critical mediator of the neutrophil, Th1 and T regulatory cell responses to OVA. PMID:24968337

  4. Myosin Light Chain Kinase Is Necessary for Tonic Airway Smooth Muscle Contraction*

    PubMed Central

    Zhang, Wen-Cheng; Peng, Ya-Jing; Zhang, Gen-Sheng; He, Wei-Qi; Qiao, Yan-Ning; Dong, Ying-Ying; Gao, Yun-Qian; Chen, Chen; Zhang, Cheng-Hai; Li, Wen; Shen, Hua-Hao; Ning, Wen; Kamm, Kristine E.; Stull, James T.; Gao, Xiang; Zhu, Min-Sheng

    2010-01-01

    Different interacting signaling modules involving Ca2+/calmodulin-dependent myosin light chain kinase, Ca2+-independent regulatory light chain phosphorylation, myosin phosphatase inhibition, and actin filament-based proteins are proposed as specific cellular mechanisms involved in the regulation of smooth muscle contraction. However, the relative importance of specific modules is not well defined. By using tamoxifen-activated and smooth muscle-specific knock-out of myosin light chain kinase in mice, we analyzed its role in tonic airway smooth muscle contraction. Knock-out of the kinase in both tracheal and bronchial smooth muscle significantly reduced contraction and myosin phosphorylation responses to K+-depolarization and acetylcholine. Kinase-deficient mice lacked bronchial constrictions in normal and asthmatic airways, whereas the asthmatic inflammation response was not affected. These results indicate that myosin light chain kinase acts as a central participant in the contractile signaling module of tonic smooth muscle. Importantly, contractile airway smooth muscles are necessary for physiological and asthmatic airway resistance. PMID:20018858

  5. Effects of maternal folic acid supplementation on airway remodeling and allergic airway disease development.

    PubMed

    İscan, Burcin; Tuzun, Funda; Eroglu Filibeli, Berna; Cilekar Micili, Serap; Ergur, Bekir Ugur; Duman, Nuray; Ozkan, Hasan; Kumral, Abdullah

    2018-03-27

    Maternal folic acid supplementation has been recommended prior to and during the first trimester of pregnancy to reduce the risk of infant neural tube defects. However, an uncertain relationship between folic acid supplementation during pregnancy and development of childhood asthma exists. Recent data show a methyl donor-rich diet could increase the risk of developing allergic airway disease through DNA methylation and aberrant gene transcription. This study evaluated the effect of folic acid supplementation during pregnancy on airway remodeling and allergic airway disease vulnerability in a mouse asthma model. BALB/c mice were divided into four groups according to gestational folic acid supplementation and postnatal ovalbumin (OVA) exposure: Group 1 (whole pregnancy folic acid supplementation + OVA-exposed group), Group 2 (first gestational week folic acid supplementation + OVA-exposed group), Group 3 (no folic acid supplementation + OVA-exposed group), and Group 4 (control group). Offspring were sacrificed on day 45 for immunohistological and ultrastructural tests. In OVA challenged groups, folic acid supplementation led to a thicker epithelial and subepithelial smooth muscle layer than in the unsupplemented group. Moreover, folic acid supplementation during whole pregnancy (Group 1) was associated with a thicker epithelial and subepithelial smooth muscle layer than folic acid supplementation during the first week of pregnancy (Group 2), suggesting a duration-response relationship. Electron microscopic imaging revealed that structural changes including the loss of epithelial integrity, thickening of basement membrane, and subepithelial fibrosis were more prominent in the folic acid supplementation groups. This study suggested that maternal folic acid supplementation during pregnancy affects airway remodeling and increases the allergic responses induced by ovalbumin challenge in offspring. In addition, the effect size increased as the duration and

  6. Parasympathetic control of airway submucosal glands: central reflexes and the airway intrinsic nervous system.

    PubMed

    Wine, Jeffrey J

    2007-04-30

    Airway submucosal glands produce the mucus that lines the upper airways to protect them against insults. This review summarizes evidence for two forms of gland secretion, and hypothesizes that each is mediated by different but partially overlapping neural pathways. Airway innate defense comprises low level gland secretion, mucociliary clearance and surveillance by airway-resident phagocytes to keep the airways sterile in spite of nearly continuous inhalation of low levels of pathogens. Gland secretion serving innate defense is hypothesized to be under the control of intrinsic (peripheral) airway neurons and local reflexes, and these may depend disproportionately on non-cholinergic mechanisms, with most secretion being produced by VIP and tachykinins. In the genetic disease cystic fibrosis, airway glands no longer secrete in response to VIP alone and fail to show the synergy between VIP, tachykinins and ACh that is observed in normal glands. The consequent crippling of the submucosal gland contribution to innate defense may be one reason that cystic fibrosis airways are infected by mucus-resident bacteria and fungi that are routinely cleared from normal airways. By contrast, the acute (emergency) airway defense reflex is centrally mediated by vagal pathways, is primarily cholinergic, and stimulates copious volumes of gland mucus in response to acute, intense challenges to the airways, such as those produced by very vigorous exercise or aspiration of foreign material. In cystic fibrosis, the acute airway defense reflex can still stimulate the glands to secrete large amounts of mucus, although its properties are altered. Importantly, treatments that recruit components of the acute reflex, such as inhalation of hypertonic saline, are beneficial in treating cystic fibrosis airway disease. The situation for recipients of lung transplants is the reverse; transplanted airways retain the airway intrinsic nervous system but lose centrally mediated reflexes. The consequences

  7. Ozone increases susceptibility to antigen inhalation in allergic dogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanai, M.; Ohrui, T.; Aikawa, T.

    1990-06-01

    To determine whether O3 exposure increased airway responsiveness to antigen inhalation, we studied airway responsiveness to acetylcholine (ACh) and Ascaris suum antigen (AA) before and after O3 in dogs both sensitive and insensitive to AA. Airway responsiveness was assessed by determining the provocative concentration of ACh and AA aerosols that increased respiratory resistance (Rrs) to twice the base-line value. O3 (3 parts per million) increased airway responsiveness to ACh in dogs both sensitive and insensitive to AA, and it significantly decreased the ACh provocation concentration from 0.541 +/- 0.095 to 0.102 +/- 0.047 (SE) mg/ml (P less than 0.01; nmore » = 10). AA aerosols, even at the highest concentration in combination with O3, did not increase Rrs in dogs insensitive to AA. However, O3 increased airway responsiveness to AA in AA-sensitive dogs and significantly decreased log AA provocation concentration from 2.34 +/- 0.22 to 0.50 +/- 0.17 (SE) log protein nitrogen units/ml (P less than 0.01; n = 7). O3-induced hyperresponsiveness to ACh returned to the base-line level within 2 wk, but hyperresponsiveness to AA continued for greater than 2 wk. The plasma histamine concentration after AA challenge was significantly higher after than before O3 (P less than 0.01). Intravenous infusion of OKY-046 (100 micrograms.kg-1.min-1), an inhibitor of thromboxane synthesis, inhibited the O3-induced increase in responsiveness to ACh, but it had no effects on the O3-induced increase in responsiveness to AA and the increase in the plasma histamine concentration. These results suggest that O3 increases susceptibility to the antigen in sensitized dogs via a different mechanism from that of O3-induced muscarinic hyperresponsiveness.« less

  8. Effects of Ginger and Its Constituents on Airway Smooth Muscle Relaxation and Calcium Regulation

    PubMed Central

    Siviski, Matthew E.; Zhang, Yi; Xu, Carrie; Hoonjan, Bhupinder; Emala, Charles W.

    2013-01-01

    The prevalence of asthma has increased in recent years, and is characterized by airway hyperresponsiveness and inflammation. Many patients report using alternative therapies to self-treat asthma symptoms as adjuncts to short-acting and long-acting β-agonists and inhaled corticosteroids (ICS). As many as 40% of patients with asthma use herbal therapies to manage asthma symptoms, often without proven efficacy or known mechanisms of action. Therefore, investigations of both the therapeutic and possible detrimental effects of isolated components of herbal treatments on the airway are important. We hypothesized that ginger and its active components induce bronchodilation by modulating intracellular calcium ([Ca2+]i) in airway smooth muscle (ASM). In isolated human ASM, ginger caused significant and rapid relaxation. Four purified constituents of ginger were subsequently tested for ASM relaxant properties in both guinea pig and human tracheas: [6]-gingerol, [8]-gingerol, and [6]-shogaol induced rapid relaxation of precontracted ASM (100–300 μM), whereas [10]-gingerol failed to induce relaxation. In human ASM cells, exposure to [6]-gingerol, [8]-gingerol, and [6]-shogaol, but not [10]-gingerol (100 μM), blunted subsequent Ca2+ responses to bradykinin (10 μM) and S-(−)-Bay K 8644 (10 μM). In A/J mice, the nebulization of [8]-gingerol (100 μM), 15 minutes before methacholine challenge, significantly attenuated airway resistance, compared with vehicle. Taken together, these novel data show that ginger and its isolated active components, [6]-gingerol, [8]-gingerol, and [6]-shogaol, relax ASM, and [8]-gingerol attenuates airway hyperresponsiveness, in part by altering [Ca2+]i regulation. These purified compounds may provide a therapeutic option alone or in combination with accepted therapeutics, including β2-agonists, in airway diseases such as asthma. PMID:23065130

  9. Allergic inflammation induces a persistent mechanistic switch in thromboxane-mediated airway constriction in the mouse

    PubMed Central

    Cyphert, Jaime M.; Allen, Irving C.; Church, Rachel J.; Latour, Anne M.; Snouwaert, John N.; Coffman, Thomas M.

    2012-01-01

    Actions of thromboxane (TXA2) to alter airway resistance were first identified over 25 years ago. However, the mechanism underlying this physiological response has remained largely undefined. Here we address this question using a novel panel of mice in which expression of the thromboxane receptor (TP) has been genetically manipulated. We show that the response of the airways to TXA2 is complex: it depends on expression of other G protein-coupled receptors but also on the physiological context of the signal. In the healthy airway, TXA2-mediated airway constriction depends on expression of TP receptors by smooth muscle cells. In contrast, in the inflamed lung, the direct actions of TXA2 on smooth muscle cell TP receptors no longer contribute to bronchoconstriction. Instead, in allergic lung disease, TXA2-mediated airway constriction depends on neuronal TP receptors. Furthermore, this mechanistic switch persists long after resolution of pulmonary inflammation. Our findings demonstrate the powerful ability of lung inflammation to modify pathways leading to airway constriction, resulting in persistent changes in mechanisms of airway reactivity to key bronchoconstrictors. Such alterations are likely to shape the pathogenesis of asthmatic lung disease. PMID:21984570

  10. Host-microbe interactions in distal airways: relevance to chronic airway diseases.

    PubMed

    Martin, Clémence; Burgel, Pierre-Régis; Lepage, Patricia; Andréjak, Claire; de Blic, Jacques; Bourdin, Arnaud; Brouard, Jacques; Chanez, Pascal; Dalphin, Jean-Charles; Deslée, Gaetan; Deschildre, Antoine; Gosset, Philippe; Touqui, Lhousseine; Dusser, Daniel

    2015-03-01

    This article is the summary of a workshop, which took place in November 2013, on the roles of microorganisms in chronic respiratory diseases. Until recently, it was assumed that lower airways were sterile in healthy individuals. However, it has long been acknowledged that microorganisms could be identified in distal airway secretions from patients with various respiratory diseases, including cystic fibrosis (CF) and non-CF bronchiectasis, chronic obstructive pulmonary disease, asthma and other chronic airway diseases (e.g. post-transplantation bronchiolitis obliterans). These microorganisms were sometimes considered as infectious agents that triggered host immune responses and contributed to disease onset and/or progression; alternatively, microorganisms were often considered as colonisers, which were considered unlikely to play roles in disease pathophysiology. These concepts were developed at a time when the identification of microorganisms relied on culture-based methods. Importantly, the majority of microorganisms cannot be cultured using conventional methods, and the use of novel culture-independent methods that rely on the identification of microorganism genomes has revealed that healthy distal airways display a complex flora called the airway microbiota. The present article reviews some aspects of current literature on host-microbe (mostly bacteria and viruses) interactions in healthy and diseased airways, with a special focus on distal airways. Copyright ©ERS 2015.

  11. The New Perilaryngeal Airway (CobraPLA™)1 Is as Efficient as the Laryngeal Mask Airway (LMA™)2, But Provides Better Airway Sealing Pressures

    PubMed Central

    Akça, Ozan; Wadhwa, Anupama; Sengupta, Papiya; Durrani, Jaleel; Hanni, Keith; Wenke, Mary; Yücel, Yüksel; Lenhardt, Rainer; Doufas, Anthony G.; Sessler, Daniel I.

    2006-01-01

    The Laryngeal Mask Airway (LMA) is a frequently-used efficient airway device, yet it sometimes seals poorly, thus reducing the efficacy of positive-pressure ventilation. The Perilaryngeal Airway (CobraPLA) is a novel airway device with a larger pharyngeal cuff (when inflated). We tested the hypothesis that the CobraPLA was superior to LMA with regard to insertion time and airway sealing pressure and comparable to LMA in airway adequacy and recovery characteristics. After midazolam and fentanyl, 81 ASA I-II outpatients having elective surgery were randomized to receive an LMA or CobraPLA. Anesthesia was induced with propofol (2.5 mg/kg, IV), and the airway inserted. We measured 1) insertion time; 2) adequacy of the airway (no leak at 15-cm-H2O peak pressure or tidal volume of 5 ml/kg); 3) airway sealing pressure; 4) number of repositioning attempts; and 5) sealing quality (no leak at tidal volume of 8 ml/kg). At the end of surgery, gastric insufflation, postoperative sore throat, dysphonia, and dysphagia were evaluated. Data were compared with unpaired t-tests, chi-square tests, or Fisher’s Exact tests; P<0.05 was significant. Patient characteristics, insertion times, airway adequacy, number of repositioning attempts, and recovery were similar in each group. Airway sealing pressure was significantly greater with CobraPLA (23±6 cm H2O) than LMA (18±5 cm H2O, P<0.001). The CobraPLA has insertion characteristics similar to LMA, but better airway sealing capabilities. PMID:15281543

  12. Airway surface mycosis in chronic TH2-associated airway disease.

    PubMed

    Porter, Paul C; Lim, Dae Jun; Maskatia, Zahida Khan; Mak, Garbo; Tsai, Chu-Lin; Citardi, Martin J; Fakhri, Samer; Shaw, Joanne L; Fothergil, Annette; Kheradmand, Farrah; Corry, David B; Luong, Amber

    2014-08-01

    Environmental fungi have been linked to TH2 cell-related airway inflammation and the TH2-associated chronic airway diseases asthma, chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP), and allergic fungal rhinosinusitis (AFRS), but whether these organisms participate directly or indirectly in disease pathology remains unknown. To determine the frequency of fungus isolation and fungus-specific immunity in patients with TH2-associated and non-TH2-associated airway disease. Sinus lavage fluid and blood were collected from sinus surgery patients (n = 118) including patients with CRSwNP, patients with CRS without nasal polyps, patients with AFRS, and non-CRS/nonasthmatic control patients. Asthma status was determined from medical history. Sinus lavage fluids were cultured and directly examined for evidence of viable fungi. PBMCs were restimulated with fungal antigens in an enzyme-linked immunocell spot assay to determine total memory fungus-specific IL-4-secreting cells. These data were compared with fungus-specific IgE levels measured from plasma by ELISA. Filamentous fungi were significantly more commonly cultured in patients with TH2-associated airway disease (asthma, CRSwNP, or AFRS: n = 68) than in control patients with non-TH2-associated disease (n = 31): 74% vs 16%, respectively (P < .001). Both fungus-specific IL-4 enzyme-linked immunocell spot (n = 48) and specific IgE (n = 70) data correlated with TH2-associated diseases (sensitivity 73% and specificity 100% vs 50% and 77%, respectively). The frequent isolation of fungi growing directly within the airways accompanied by specific immunity to these organisms only in patients with TH2-associated chronic airway diseases suggests that fungi participate directly in the pathogenesis of these conditions. Efforts to eradicate airway fungi from the airways should be considered in selected patients. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  13. Cluster-specific small airway modeling for imaging-based CFD analysis of pulmonary air flow and particle deposition in COPD smokers

    NASA Astrophysics Data System (ADS)

    Haghighi, Babak; Choi, Jiwoong; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long

    2017-11-01

    Accurate modeling of small airway diameters in patients with chronic obstructive pulmonary disease (COPD) is a crucial step toward patient-specific CFD simulations of regional airflow and particle transport. We proposed to use computed tomography (CT) imaging-based cluster membership to identify structural characteristics of airways in each cluster and use them to develop cluster-specific airway diameter models. We analyzed 284 COPD smokers with airflow limitation, and 69 healthy controls. We used multiscale imaging-based cluster analysis (MICA) to classify smokers into 4 clusters. With representative cluster patients and healthy controls, we performed multiple regressions to quantify variation of airway diameters by generation as well as by cluster. The cluster 2 and 4 showed more diameter decrease as generation increases than other clusters. The cluster 4 had more rapid decreases of airway diameters in the upper lobes, while cluster 2 in the lower lobes. We then used these regression models to estimate airway diameters in CT unresolved regions to obtain pressure-volume hysteresis curves using a 1D resistance model. These 1D flow solutions can be used to provide the patient-specific boundary conditions for 3D CFD simulations in COPD patients. Support for this study was provided, in part, by NIH Grants U01-HL114494, R01-HL112986 and S10-RR022421.

  14. Use of an Airway Exchange Catheter-Assisted Extubation With Continuous End-Tidal Carbon Dioxide Monitoring in a Pediatric Patient With a Known Difficult Airway: A Case Report.

    PubMed

    Yegian, Courtney C; Volz, Lana M; Galgon, Richard E

    2018-05-11

    Tracheal extubation in children with known difficult airways is associated with an increased risk of adverse events. Currently, there is no reliable measure to predict the need for emergent reintubation due to airway inadequacy. Airway exchange catheter-assisted extubation has been shown to be a useful adjunct in decreasing the risk of adverse events due to failed extubation. We report a case of using an airway exchange catheter-assisted extubation with continuous end-tidal carbon dioxide monitoring for a pediatric patient with a known difficult airway.

  15. Airway smooth muscle in airway reactivity and remodeling: what have we learned?

    PubMed Central

    2013-01-01

    It is now established that airway smooth muscle (ASM) has roles in determining airway structure and function, well beyond that as the major contractile element. Indeed, changes in ASM function are central to the manifestation of allergic, inflammatory, and fibrotic airway diseases in both children and adults, as well as to airway responses to local and environmental exposures. Emerging evidence points to novel signaling mechanisms within ASM cells of different species that serve to control diverse features, including 1) [Ca2+]i contractility and relaxation, 2) cell proliferation and apoptosis, 3) production and modulation of extracellular components, and 4) release of pro- vs. anti-inflammatory mediators and factors that regulate immunity as well as the function of other airway cell types, such as epithelium, fibroblasts, and nerves. These diverse effects of ASM “activity” result in modulation of bronchoconstriction vs. bronchodilation relevant to airway hyperresponsiveness, airway thickening, and fibrosis that influence compliance. This perspective highlights recent discoveries that reveal the central role of ASM in this regard and helps set the stage for future research toward understanding the pathways regulating ASM and, in turn, the influence of ASM on airway structure and function. Such exploration is key to development of novel therapeutic strategies that influence the pathophysiology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. PMID:24142517

  16. Synchronized imaging and acoustic analysis of the upper airway in patients with sleep-disordered breathing.

    PubMed

    Chang, Yi-Chung; Huon, Leh-Kiong; Pham, Van-Truong; Chen, Yunn-Jy; Jiang, Sun-Fen; Shih, Tiffany Ting-Fang; Tran, Thi-Thao; Wang, Yung-Hung; Lin, Chen; Tsao, Jenho; Lo, Men-Tzung; Wang, Pa-Chun

    2014-12-01

    Progressive narrowing of the upper airway increases airflow resistance and can produce snoring sounds and apnea/hypopnea events associated with sleep-disordered breathing due to airway collapse. Recent studies have shown that acoustic properties during snoring can be altered with anatomic changes at the site of obstruction. To evaluate the instantaneous association between acoustic features of snoring and the anatomic sites of obstruction, a novel method was developed and applied in nine patients to extract the snoring sounds during sleep while performing dynamic magnetic resonance imaging (MRI). The degree of airway narrowing during the snoring events was then quantified by the collapse index (ratio of airway diameter preceding and during the events) and correlated with the synchronized acoustic features. A total of 201 snoring events (102 pure retropalatal and 99 combined retropalatal and retroglossal events) were recorded, and the collapse index as well as the soft tissue vibration time were significantly different between pure retropalatal (collapse index, 2 ± 11%; vibration time, 0.2 ± 0.3 s) and combined (retropalatal and retroglossal) snores (collapse index, 13 ± 7% [P ≤ 0.0001]; vibration time, 1.2 ± 0.7 s [P ≤ 0.0001]). The synchronized dynamic MRI and acoustic recordings successfully characterized the sites of obstruction and established the dynamic relationship between the anatomic site of obstruction and snoring acoustics.

  17. Role of IRE1α/XBP-1 in Cystic Fibrosis Airway Inflammation

    PubMed Central

    Ribeiro, Carla M. P.; Lubamba, Bob A.

    2017-01-01

    Cystic fibrosis (CF) pulmonary disease is characterized by chronic airway infection and inflammation. The infectious and inflamed CF airway environment impacts on the innate defense of airway epithelia and airway macrophages. The CF airway milieu induces an adaptation in these cells characterized by increased basal inflammation and a robust inflammatory response to inflammatory mediators. Recent studies have indicated that these responses depend on activation of the unfolded protein response (UPR). This review discusses the contribution of airway epithelia and airway macrophages to CF airway inflammatory responses and specifically highlights the functional importance of the UPR pathway mediated by IRE1/XBP-1 in these processes. These findings suggest that targeting the IRE1/XBP-1 UPR pathway may be a therapeutic strategy for CF airway disease. PMID:28075361

  18. Fisetin, a bioactive flavonol, attenuates allergic airway inflammation through negative regulation of NF-κB.

    PubMed

    Goh, Fera Y; Upton, Nadine; Guan, Shouping; Cheng, Chang; Shanmugam, Muthu K; Sethi, Gautam; Leung, Bernard P; Wong, W S Fred

    2012-03-15

    Persistent activation of nuclear factor-κB (NF-κB) has been associated with the development of asthma. Fisetin (3,7,3',4'-tetrahydroxyflavone), a naturally occurring bioactive flavonol, has been shown to inhibit NF-κB activity. We hypothesized that fisetin may attenuate allergic asthma via negative regulation of the NF-κB activity. Female BALB/c mice sensitized and challenged with ovalbumin developed airway inflammation. Bronchoalveolar lavage fluid was assessed for total and differential cell counts, and cytokine and chemokine levels. Lung tissues were examined for cell infiltration and mucus hypersecretion, and the expression of inflammatory biomarkers. Airway hyperresponsiveness was monitored by direct airway resistance analysis. Fisetin dose-dependently inhibited ovalbumin-induced increases in total cell count, eosinophil count, and IL-4, IL-5 and IL-13 levels recovered in bronchoalveolar lavage fluid. It attenuated ovalbumin-induced lung tissue eosinophilia and airway mucus production, mRNA expression of adhesion molecules, chitinase, IL-17, IL-33, Muc5ac and inducible nitric oxide synthase in lung tissues, and airway hyperresponsiveness to methacholine. Fisetin blocked NF-κB subunit p65 nuclear translocation and DNA-binding activity in the nuclear extracts from lung tissues of ovalbumin-challenged mice. In normal human bronchial epithelial cells, fisetin repressed TNF-α-induced NF-κB-dependent reporter gene expression. Our findings implicate a potential therapeutic value of fisetin in the treatment of asthma through negative regulation of NF-κB pathway. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Laryngeal mask airway for airway control during percutaneous dilatational tracheostomy.

    PubMed

    Pratt, T; Bromilow, J

    2011-11-01

    Percutaneous dilatational tracheostomy is a common bedside procedure in critical care for patients requiring prolonged mechanical ventilation. The traditional technique requires withdrawal of the endotracheal tube to a proximal position to facilitate tracheostomy insertion, but this carries the risk of inadvertent extubation and does not prevent cuff rupture. Use of a supraglottic airway such as the laryngeal mask airway may avoid these risks and could provide a safe alternative to the endotracheal tube. We present an appraisal of the literature to date. We found reasonable evidence to show improved ventilation and bronchoscopic visualisation with the laryngeal mask airway, but this has not been translated into improved outcome. There is currently insufficient evidence to draw conclusions about the safety of the laryngeal mask airway during percutaneous dilatational tracheostomy.

  20. Fluid structure interaction simulations of the upper airway in obstructive sleep apnea patients before and after maxillomandibular advancement surgery.

    PubMed

    Chang, Kwang K; Kim, Ki Beom; McQuilling, Mark W; Movahed, Reza

    2018-06-01

    The purpose of this study was to analyze pharyngeal airflow using both computational fluid dynamics (CFD) and fluid structure interactions (FSI) in obstructive sleep apnea patients before and after maxillomandibular advancement (MMA) surgery. The airflow characteristics before and after surgery were compared with both CFD and FSI. In addition, the presurgery and postsurgery deformations of the airway were evaluated using FSI. Digitized pharyngeal airway models of 2 obstructive sleep apnea patients were generated from cone-beam computed tomography scans before and after MMA surgery. CFD and FSI were used to evaluate the pharyngeal airflow at a maximum inspiration rate of 166 ml per second. Standard steady-state numeric formulations were used for airflow simulations. Airway volume increased, pressure drop decreased, maximum airflow velocity decreased, and airway resistance dropped for both patients after the MMA surgery. These findings occurred in both the CFD and FSI simulations. The FSI simulations showed an area of marked airway deformation in both patients before surgery, but this deformation was negligible after surgery for both patients. Both CFD and FSI simulations produced airflow results that indicated less effort was needed to breathe after MMA surgery. The FSI simulations demonstrated a substantial decrease in airway deformation after surgery. These beneficial changes positively correlated with the large improvements in polysomnography outcomes after MMA surgery. Copyright © 2018 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  1. Matrix Metalloproteinase-1 Activation Contributes to Airway Smooth Muscle Growth and Asthma Severity

    PubMed Central

    Naveed, Shams-un-nisa; Clements, Debbie; Jackson, David J.; Philp, Christopher; Billington, Charlotte K.; Soomro, Irshad; Reynolds, Catherine; Harrison, Timothy W.; Johnston, Sebastian L.; Shaw, Dominick E.

    2017-01-01

    Rationale: Matrix metalloproteinase-1 (MMP-1) and mast cells are present in the airways of people with asthma. Objectives: To investigate whether MMP-1 could be activated by mast cells and increase asthma severity. Methods: Patients with stable asthma and healthy control subjects underwent spirometry, methacholine challenge, and bronchoscopy, and their airway smooth muscle cells were grown in culture. A second asthma group and control subjects had symptom scores, spirometry, and bronchoalveolar lavage before and after rhinovirus-induced asthma exacerbations. Extracellular matrix was prepared from decellularized airway smooth muscle cultures. MMP-1 protein and activity were assessed. Measurements and Main Results: Airway smooth muscle cells generated pro–MMP-1, which was proteolytically activated by mast cell tryptase. Airway smooth muscle treated with activated mast cell supernatants produced extracellular matrix, which enhanced subsequent airway smooth muscle growth by 1.5-fold (P < 0.05), which was dependent on MMP-1 activation. In asthma, airway pro–MMP-1 was 5.4-fold higher than control subjects (P = 0.002). Mast cell numbers were associated with airway smooth muscle proliferation and MMP-1 protein associated with bronchial hyperresponsiveness. During exacerbations, MMP-1 activity increased and was associated with fall in FEV1 and worsening asthma symptoms. Conclusions: MMP-1 is activated by mast cell tryptase resulting in a proproliferative extracellular matrix. In asthma, mast cells are associated with airway smooth muscle growth, MMP-1 levels are associated with bronchial hyperresponsiveness, and MMP-1 activation are associated with exacerbation severity. Our findings suggest that airway smooth muscle/mast cell interactions contribute to asthma severity by transiently increasing MMP activation, airway smooth muscle growth, and airway responsiveness. PMID:27967204

  2. Use of a Novel Airway Kit and Simulation in Resident Training on Emergent Pediatric Airways.

    PubMed

    Melzer, Jonathan M; Hamersley, Erin R S; Gallagher, Thomas Q

    2017-06-01

    Objective Development of a novel pediatric airway kit and implementation with simulation to improve resident response to emergencies with the goal of improving patient safety. Methods Prospective study with 9 otolaryngology residents (postgraduate years 1-5) from our tertiary care institution. Nine simulated pediatric emergency airway drills were carried out with the existing system and a novel portable airway kit. Response times and time to successful airway control were noted with both the extant airway system and the new handheld kit. Results were analyzed to ensure parametric data and compared with t tests. A Bonferroni adjustment indicated that an alpha of 0.025 was needed for significance. Results Use of the airway kit significantly reduced the mean time of resident arrival by 47% ( P = .013) and mean time of successful intubation by 50% ( P = .007). Survey data indicated 100% improved resident comfort with emergent airway scenarios with use of the kit. Discussion Times to response and meaningful intervention were significantly reduced with implementation of the handheld airway kit. Use of simulation training to implement the new kit improved residents' comfort and airway skills. This study describes an affordable novel mobile airway kit and demonstrates its ability to improve response times. Implications for Practice The low cost of this airway kit makes it a tenable option even for smaller hospitals. Simulation provides a safe and effective way to familiarize oneself with novel equipment, and, when possible, realistic emergent airway simulations should be used to improve provider performance.

  3. INHIBITION OF PAN NEUROTROPHIN RECEPTOR P75 ATTENUATES DIESEL PARTICULATE-INDUCED ENHANCEMENT OF ALLERGIC AIRWAY RESPONSES IN C57/BL6J MICE

    EPA Science Inventory

    Recent investigations have linked neurotrophins including nerve growth factor (NGF), neurotrophin-3 (NT-3), and brain-derived neurotrophic factor (BDNF) to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance in allergic mice. Diesel exhaust particle...

  4. Myb permits multilineage airway epithelial cell differentiation

    PubMed Central

    Pan, Jie-hong; Adair-Kirk, Tracy L.; Patel, Anand C.; Huang, Tao; Yozamp, Nicholas S.; Xu, Jian; Reddy, E. Premkumar; Byers, Derek E.; Pierce, Richard A.; Holtzman, Michael J.; Brody, Steven L.

    2014-01-01

    The epithelium of the pulmonary airway is specially differentiated to provide defense against environmental insults, but also subject to dysregulated differentiation that results in lung disease. The current paradigm for airway epithelial differentiation is a one-step program whereby a p63+ basal epithelial progenitor cell generates a ciliated or secretory cell lineage, but the cue for this transition and whether there are intermediate steps is poorly defined. Here we identify transcription factor Myb as a key regulator that permits early multilineage differentiation of airway epithelial cells. Myb+ cells were identified as p63− and therefore distinct from basal progenitor cells, but were still negative for markers of differentiation. Myb RNAi treatment of primary-culture airway epithelial cells and Myb gene deletion in mice resulted in a p63− population with failed maturation of Foxj1+ ciliated cells, as well as Scbg1a1+ and Muc5ac+ secretory cells. Consistent with these findings, analysis of whole genome expression of Myb-deficient cells identified Myb-dependent programs for ciliated and secretory cell differentiation. Myb+ cells were rare in human airways but were increased in regions of ciliated cells and mucous cell hyperplasia in samples from subjects with chronic obstructive pulmonary disease. Together, the results show that a p63− Myb+ population of airway epithelial cells represents a distinct intermediate stage of differentiation that is required under normal conditions and may be heightened in airway disease. PMID:25103188

  5. Crosstalk between beta-2-adrenoceptor and muscarinic acetylcholine receptors in the airway.

    PubMed

    Pera, Tonio; Penn, Raymond B

    2014-06-01

    The M3 and M2 muscarinic acetylcholine receptors (mAChRs) and beta-2-adrenoceptors (β2ARs) are important regulators of airway cell function, and drugs targeting these receptors are among the first line drugs in the treatment of the obstructive lung diseases asthma and chronic obstructive lung disease (COPD). Cross-regulation or crosstalk between mAChRs and β2ARs in airway smooth muscle (ASM) helps determine the contractile state of the muscle, thus airway diameter and resistance to airflow. In this review we will detail mAChR and β2AR-signaling and crosstalk, focusing on events in the ASM cell but also addressing the function of these receptors in other cell types that impact airway physiology. We conclude by discussing how recent advances in GPCR pharmacology offer a unique opportunity to fine tune mAChR and β2AR signaling and their crosstalk, and thereby produce superior therapeutics for obstructive lung and other diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Efficacy of Surgical Airway Plasty for Benign Airway Stenosis.

    PubMed

    Tsukioka, Takuma; Takahama, Makoto; Nakajima, Ryu; Kimura, Michitaka; Inoue, Hidetoshi; Yamamoto, Ryoji

    2016-01-01

    Long-term patency is required during treatment for benign airway stenosis. This study investigated the effectiveness of surgical airway plasty for benign airway stenosis. Clinical courses of 20 patients, who were treated with surgical plasty for their benign airway stenosis, were retrospectively investigated. Causes of stenosis were tracheobronchial tuberculosis in 12 patients, post-intubation stenosis in five patients, malacia in two patients, and others in one patient. 28 interventional pulmonology procedures and 20 surgical plasty were performed. Five patients with post-intubation stenosis and four patients with tuberculous stenosis were treated with tracheoplasty. Eight patients with tuberculous stenosis were treated with bronchoplasty, and two patients with malacia were treated with stabilization of the membranous portion. Anastomotic stenosis was observed in four patients, and one to four additional treatments were required. Performance status, Hugh-Jones classification, and ventilatory functions were improved after surgical plasty. Outcomes were fair in patients with tuberculous stenosis and malacia. However, efficacy of surgical plasty for post-intubation stenosis was not observed. Surgical airway plasty may be an acceptable treatment for tuberculous stenosis. Patients with malacia recover well after surgical plasty. There may be untreated patients with malacia who have the potential to benefit from surgical plasty.

  7. Efficacy of Surgical Airway Plasty for Benign Airway Stenosis

    PubMed Central

    Takahama, Makoto; Nakajima, Ryu; Kimura, Michitaka; Inoue, Hidetoshi; Yamamoto, Ryoji

    2015-01-01

    Background: Long-term patency is required during treatment for benign airway stenosis. This study investigated the effectiveness of surgical airway plasty for benign airway stenosis. Methods: Clinical courses of 20 patients, who were treated with surgical plasty for their benign airway stenosis, were retrospectively investigated. Results: Causes of stenosis were tracheobronchial tuberculosis in 12 patients, post-intubation stenosis in five patients, malacia in two patients, and others in one patient. 28 interventional pulmonology procedures and 20 surgical plasty were performed. Five patients with post-intubation stenosis and four patients with tuberculous stenosis were treated with tracheoplasty. Eight patients with tuberculous stenosis were treated with bronchoplasty, and two patients with malacia were treated with stabilization of the membranous portion. Anastomotic stenosis was observed in four patients, and one to four additional treatments were required. Performance status, Hugh–Jones classification, and ventilatory functions were improved after surgical plasty. Outcomes were fair in patients with tuberculous stenosis and malacia. However, efficacy of surgical plasty for post-intubation stenosis was not observed. Conclusion: Surgical airway plasty may be an acceptable treatment for tuberculous stenosis. Patients with malacia recover well after surgical plasty. There may be untreated patients with malacia who have the potential to benefit from surgical plasty. PMID:26567879

  8. FABP4 induces asthmatic airway epithelial barrier dysfunction via ROS-activated FoxM1.

    PubMed

    Wu, Gaohui; Yang, Liteng; Xu, Yi; Jiang, Xiaohong; Jiang, Xiaomin; Huang, Lisha; Mao, Ling; Cai, Shaoxi

    2018-01-01

    Functional abnormal airway epithelial cells, along with activated inflammatory cells, resulting in chronic airway inflammation, are considered as the characteristic of asthma. Fatty Acid Binding Protein 4 (FABP4) takes part in glucose and lipid homeostasis, and also have an important role in allergic airway inflammation. However, whether FABP4 influence barrier function of airway epithelial cells is unknown. In vivo, a HDM-induced murine model of asthma was obtained to assessed airway inflammation and protein expression of E-cadherin and Forkhead Box M1 (FoxM1). In vitro, 16-HBE was cultured and was treated with hrFABP4, siFABP4, FABPF4 inhibitor BMS, or FoxM1 inhibitor RCM-1. IL-4, IL-5, and IL-13 level was determined by ELISA. Transepithelial electrical resistance (TER), paracellular permeability and E-cadherin-special immunofluorescence were measured to value airway epithelial barrier function. Intracellular ROS production was determined by DCF-DA fluorescence. FABP4 inhibitor BMS alleviate airway inflammation and destruction of E-cad in allergic mouse. Treatment with HDM or hrFABP4 aggravated inflammatory response, damaged airway epithelial barrier, which could be inhibited by siFABP4 and BMS. Treatment with HDM or hrFABP4 also enhanced levels of FoxM1, and Inhibited FoxM1 suppressed HDM- and hrFABP4-induced inflammation and airway epithelial barrier dysfunction. In addition, H 2 O 2 promoted FoxM1 expression, HDM and hrFABP4 induced-FoxM1 could be inhibited by NAC, leading to decreased inflammation and improved airway epithelial barrier. Upregulated ROS induced by FABP4 was of significance in activating FoxM1 leading to airway inflammation and epithelial barrier dysfunction. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Airway growth and development: a computerized 3-dimensional analysis.

    PubMed

    Schendel, Stephen A; Jacobson, Richard; Khalessi, Sadri

    2012-09-01

    The present study was undertaken to investigate the changes in the normal upper airway during growth and development using 3-dimensional computer analysis from cone-beam computed tomography (CBCT) data to provide a normative reference. The airway size and respiratory mode are known to have a relationship to facial morphology and the development of a malocclusion. The use of CBCT, 3-dimensional imaging, and automated computer analysis in treatment planning allows the upper airway to be precisely evaluated. In the present study, we evaluated the growth of the airway using 3-dimensional analysis and CBCT data from age 6 through old age, in 1300 normal individuals. The airway size and length increase until age 20 at which time a variable period of stability occurs. Next, the airway at first decreases slowly in size and then, after age 40, more rapidly. Normative data are provided in the present study for age groups from 6 to 60 years in relation to the airway total volume, smallest cross-sectional area and vertical length of the airway. This 3-dimensional data of the upper airway will provide a normative reference as an aid in the early understanding of respiration and dentofacial anatomy, which will help in early treatment planning. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  10. The cervical spine in maxillofacial trauma. Assessment and airway management.

    PubMed

    Kellman, R

    1991-02-01

    Although the presence of a real or potential cervical spine injury limits the options for emergency airway management, many choices still remain. The otolaryngologist-head and neck surgeon frequently is called on to treat patients with airway emergencies; therefore, familiarity with the risk of spinal cord damage and methods to avoid it when establishing a safe airway constitute important knowledge. Experience with the variety of airway techniques available increases the number of options and decreases the risks of morbidity and mortality for the patient with cervical spine injury.

  11. Decreased airway narrowing and smooth muscle contraction in hyperresponsive pigs.

    PubMed

    Turner, Debra J; Noble, Peter B; Lucas, Matthew P; Mitchell, Howard W

    2002-10-01

    Increased smooth muscle contractility or reduced smooth muscle mechanical loads could account for the excessive airway narrowing and hyperresponsiveness seen in asthma. These mechanisms were investigated by using an allergen-induced porcine model of airway hyperresponsiveness. Airway narrowing to electric field stimulation was measured in isolated bronchial segments, over a range of transmural pressures (0-20 cmH(2)O). Contractile responses to ACh were measured in bronchial segments and in isolated tracheal smooth muscle strips isolated from control and test (ovalbumin sensitized and challenged) pigs. Test airways narrowed less than controls (P < 0.0001). Test pigs showed reduced contractility to ACh, both in isolated bronchi (P < 0.01) and smooth muscle strips (P < 0.01). Thus isolated airways from pigs exhibiting airway hyperresponsiveness in vivo are hyporesponsive in vitro. The decreased narrowing in bronchi from hyperresponsive pigs may be related to decreased smooth muscle contractility. These data suggest that mechanisms external to the airway wall may be important to the hyperresponsive nature of sensitized lungs.

  12. Topical airway anesthesia for awake fiberoptic intubation: Comparison between airway nerve blocks and nebulized lignocaine by ultrasonic nebulizer

    PubMed Central

    Gupta, Babita; Kohli, Santvana; Farooque, Kamran; Jalwal, Gopal; Gupta, Deepak; Sinha, Sumit; Chandralekha

    2014-01-01

    Overview: Awake fiberoptic bronchoscope (FOB) guided intubation is the gold standard of airway management in patients with cervical spine injury. It is essential to sufficiently anesthetize the upper airway before the performance of awake FOB guided intubation in order to ensure patient comfort and cooperation. This randomized controlled study was performed to compare two methods of airway anesthesia, namely ultrasonic nebulization of local anesthetic and performance of airway blocks. Materials and Methods: A total of 50 adult patients with cervical spine injury were randomly allocated into two groups. Group L received airway anesthesia through ultrasonic nebulization of 10 ml of 4% lignocaine and Group NB received airway blocks (bilateral superior laryngeal and transtracheal recurrent laryngeal) each with 2 ml of 2% lignocaine and viscous lignocaine gargles. FOB guided orotracheal intubation was then performed. Hemodynamic variables at baseline and during the procedure, patient recall, vocal cord visibility, ease of intubation, coughing/gagging episodes, and signs of lignocaine toxicity were noted. Results: The observations did not reveal any significant differences in demographics or hemodynamic parameters at any time during the study. However, the time taken for intubation was significantly lower in Group NB as compared with the Group L. Group L had an increased number of coughing/gagging episodes as compared with Group NB. Vocal cord visibility and ease of intubation were better in patients who received airway blocks and hence the amount of supplemental lignocaine used was less in this group. Overall patient comfort was better in Group NB with fewer incidences of unpleasant recalls as compared with Group L. Conclusion: Upper airway blocks provide better quality of anesthesia than lignocaine nebulization as assessed by patient recall of procedure, coughing/gagging episodes, ease of intubation, vocal cord visibility, and time taken to intubate. PMID:25538514

  13. STUDIES TO ADDRESS THE ASSOCIATION BETWEEN PARTICULATE MATTER (PM) EXPOSURE AND DEVELOPMENT/EXACERBATION OF LUNG INJURY, INFLAMMATION, AND INCREASED AIRWAY RESPONSIVENESS.

    EPA Science Inventory

    Asthma, an inflammatory airways disease, has become an urgent health problem affecting an estimated 17 million persons in the United States alone (CDC 1998 MMWR 47). Since 1979, the death rate from asthma has increased by almost 56%. Epidemiologic studies have demonstrated posit...

  14. Lipopolysaccharide does not alter small airway reactivity in mouse lung slices.

    PubMed

    Donovan, Chantal; Royce, Simon G; Vlahos, Ross; Bourke, Jane E

    2015-01-01

    The bacterial endotoxin, lipopolysaccharide (LPS) has been associated with occupational airway diseases with asthma-like symptoms and in acute exacerbations of COPD. The direct and indirect effects of LPS on small airway reactivity have not been fully elucidated. We tested the hypothesis that both in vitro and in vivo LPS treatment would increase contraction and impair relaxation of mouse small airways. Lung slices were prepared from naïve Balb/C mice and cultured in the absence or presence of LPS (10 μg/ml) for up to 48 h for measurement of TNFα levels in conditioned media. Alternatively, mice were challenged with PBS or LPS in vivo once a day for 4 days for preparation of lung slices or for harvest of lungs for Q-PCR analysis of gene expression of pro-inflammatory cytokines and receptors involved in airway contraction. Reactivity of small airways to contractile agonists, methacholine and serotonin, and bronchodilator agents, salbutamol, isoprenaline and rosiglitazone, were assessed using phase-contrast microscopy. In vitro LPS treatment of slices increased TNFα release 6-fold but did not alter contraction or relaxation to any agonists tested. In vivo LPS treatment increased lung gene expression of TNFα, IL-1β and ryanodine receptor isoform 2 more than 5-fold. However there were no changes in reactivity in lung slices from these mice, even when also incubated with LPS ex vivo. Despite evidence of LPS-induced inflammation, neither airway hyperresponsiveness or impaired dilator reactivity were evident. The increase in ryanodine receptor isoform 2, known to regulate calcium signaling in vascular smooth muscle, warrants investigation. Since LPS failed to elicit changes in small airway reactivity in mouse lung slices following in vitro or in vivo treatment, alternative approaches are required to define the potential contribution of this endotoxin to altered small airway reactivity in human lung diseases.

  15. Lipopolysaccharide Does Not Alter Small Airway Reactivity in Mouse Lung Slices

    PubMed Central

    Donovan, Chantal; Royce, Simon G.; Vlahos, Ross; Bourke, Jane E.

    2015-01-01

    The bacterial endotoxin, lipopolysaccharide (LPS) has been associated with occupational airway diseases with asthma-like symptoms and in acute exacerbations of COPD. The direct and indirect effects of LPS on small airway reactivity have not been fully elucidated. We tested the hypothesis that both in vitro and in vivo LPS treatment would increase contraction and impair relaxation of mouse small airways. Lung slices were prepared from naïve Balb/C mice and cultured in the absence or presence of LPS (10 μg/ml) for up to 48 h for measurement of TNFα levels in conditioned media. Alternatively, mice were challenged with PBS or LPS in vivo once a day for 4 days for preparation of lung slices or for harvest of lungs for Q-PCR analysis of gene expression of pro-inflammatory cytokines and receptors involved in airway contraction. Reactivity of small airways to contractile agonists, methacholine and serotonin, and bronchodilator agents, salbutamol, isoprenaline and rosiglitazone, were assessed using phase-contrast microscopy. In vitro LPS treatment of slices increased TNFα release 6-fold but did not alter contraction or relaxation to any agonists tested. In vivo LPS treatment increased lung gene expression of TNFα, IL-1β and ryanodine receptor isoform 2 more than 5-fold. However there were no changes in reactivity in lung slices from these mice, even when also incubated with LPS ex vivo. Despite evidence of LPS-induced inflammation, neither airway hyperresponsiveness or impaired dilator reactivity were evident. The increase in ryanodine receptor isoform 2, known to regulate calcium signaling in vascular smooth muscle, warrants investigation. Since LPS failed to elicit changes in small airway reactivity in mouse lung slices following in vitro or in vivo treatment, alternative approaches are required to define the potential contribution of this endotoxin to altered small airway reactivity in human lung diseases. PMID:25822969

  16. Airway exchange of highly soluble gases.

    PubMed

    Hlastala, Michael P; Powell, Frank L; Anderson, Joseph C

    2013-03-01

    Highly blood soluble gases exchange with the bronchial circulation in the airways. On inhalation, air absorbs highly soluble gases from the airway mucosa and equilibrates with the blood before reaching the alveoli. Highly soluble gas partial pressure is identical throughout all alveoli. At the end of exhalation the partial pressure of a highly soluble gas decreases from the alveolar level in the terminal bronchioles to the end-exhaled partial pressure at the mouth. A mathematical model simulated the airway exchange of four gases (methyl isobutyl ketone, acetone, ethanol, and propylene glycol monomethyl ether) that have high water and blood solubility. The impact of solubility on the relative distribution of airway exchange was studied. We conclude that an increase in water solubility shifts the distribution of gas exchange toward the mouth. Of the four gases studied, ethanol had the greatest decrease in partial pressure from the alveolus to the mouth at end exhalation. Single exhalation breath tests are inappropriate for estimating alveolar levels of highly soluble gases, particularly for ethanol.

  17. Airway exchange of highly soluble gases

    PubMed Central

    Powell, Frank L.; Anderson, Joseph C.

    2013-01-01

    Highly blood soluble gases exchange with the bronchial circulation in the airways. On inhalation, air absorbs highly soluble gases from the airway mucosa and equilibrates with the blood before reaching the alveoli. Highly soluble gas partial pressure is identical throughout all alveoli. At the end of exhalation the partial pressure of a highly soluble gas decreases from the alveolar level in the terminal bronchioles to the end-exhaled partial pressure at the mouth. A mathematical model simulated the airway exchange of four gases (methyl isobutyl ketone, acetone, ethanol, and propylene glycol monomethyl ether) that have high water and blood solubility. The impact of solubility on the relative distribution of airway exchange was studied. We conclude that an increase in water solubility shifts the distribution of gas exchange toward the mouth. Of the four gases studied, ethanol had the greatest decrease in partial pressure from the alveolus to the mouth at end exhalation. Single exhalation breath tests are inappropriate for estimating alveolar levels of highly soluble gases, particularly for ethanol. PMID:23305981

  18. Reference values for airway resistance in newborns, infants and preschoolers from a Latin American population.

    PubMed

    Gochicoa, Laura G; Thomé-Ortiz, Laura P; Furuya, María E Y; Canto, Raquel; Ruiz-García, Martha E; Zúñiga-Vázquez, Guillermo; Martínez-Ramírez, Filiberto; Vargas, Mario H

    2012-05-01

    Several studies have determined reference values for airway resistance measured by the interrupter technique (Rint) in paediatric populations, but only one has been done on Latin American children, and no studies have been performed on Mexican children. Moreover, these previous studies mostly included children aged 3 years and older; therefore, information regarding Rint reference values for newborns and infants is scarce. Rint measurements were performed on preschool children attending eight kindergartens (Group 1) and also on sedated newborns, infants and preschool children admitted to a tertiary-level paediatric hospital due to non-cardiopulmonary disorders (Group 2). In both groups, Rint values were inversely associated with age, weight and height, but the strongest association was with height. The linear regression equation for Group 1 (n = 209, height 86-129 cm) was Rint = 2.153 - 0.012 × height (cm) (standard deviation of residuals 0.181 kPa/L/s). The linear regression equation for Group 2 (n = 55, height 52-113 cm) was Rint = 4.575 - 0.035 × height (cm) (standard deviation of residuals 0.567 kPa/L/s). Girls tended to have slightly higher Rint values than boys, a difference that diminished with increasing height. In this study, Rint reference values applicable to Mexican children were determined, and these values are probably also applicable to other paediatric populations with similar Spanish-Amerindian ancestries. There was an inverse relationship between Rint and height, with relatively large between-subject variability. © 2012 The Authors. Respirology © 2012 Asian Pacific Society of Respirology.

  19. Specificity of arrestin subtypes in regulating airway smooth muscle G protein-coupled receptor signaling and function.

    PubMed

    Pera, Tonio; Hegde, Akhil; Deshpande, Deepak A; Morgan, Sarah J; Tiegs, Brian C; Theriot, Barbara S; Choi, Yeon H; Walker, Julia K L; Penn, Raymond B

    2015-10-01

    Arrestins have been shown to regulate numerous G protein-coupled receptors (GPCRs) in studies employing receptor/arrestin overexpression in artificial cell systems. Which arrestin isoforms regulate which GPCRs in primary cell types is poorly understood. We sought to determine the effect of β-arrestin-1 or β-arrestin-2 inhibition or gene ablation on signaling and function of multiple GPCRs endogenously expressed in airway smooth muscle (ASM). In vitro [second messenger (calcium, cAMP generation)], ex vivo (ASM tension generation in suspended airway), and in vivo (invasive airway resistance) analyses were performed on human ASM cells and murine airways/whole animal subject to β-arrestin-1 or -2 knockdown or knockout (KO). In both human and murine model systems, knockdown or KO of β-arrestin-2 relative to control missense small interfering RNA or wild-type mice selectively increased (40-60%) β2-adrenoceptor signaling and function. β-arrestin-1 knockdown or KO had no effect on signaling and function of β2-adrenoceptor or numerous procontractile GPCRs, but selectively inhibited M3 muscarinic acetylcholine receptor signaling (∼50%) and function (∼25% ex vivo, >50% in vivo) without affecting EC50 values. Arrestin subtypes differentially regulate ASM GPCRs and β-arrestin-1 inhibition represents a novel approach to managing bronchospasm in obstructive lung diseases. © FASEB.

  20. Sleep and pulmonary outcomes for clinical trials of airway plexiform neurofibromas in NF1.

    PubMed

    Plotkin, Scott R; Davis, Stephanie D; Robertson, Kent A; Akshintala, Srivandana; Allen, Julian; Fisher, Michael J; Blakeley, Jaishri O; Widemann, Brigitte C; Ferner, Rosalie E; Marcus, Carole L

    2016-08-16

    Plexiform neurofibromas (PNs) are complex, benign nerve sheath tumors that occur in approximately 25%-50% of individuals with neurofibromatosis type 1 (NF1). PNs that cause airway compromise or pulmonary dysfunction are uncommon but clinically important. Because improvement in sleep quality or airway function represents direct clinical benefit, measures of sleep and pulmonary function may be more meaningful than tumor size as endpoints in therapeutic clinical trials targeting airway PN. The Response Evaluation in Neurofibromatosis and Schwannomatosis functional outcomes group reviewed currently available endpoints for sleep and pulmonary outcomes and developed consensus recommendations for response evaluation in NF clinical trials. For patients with airway PNs, polysomnography, impulse oscillometry, and spirometry should be performed to identify abnormal function that will be targeted by the agent under clinical investigation. The functional group endorsed the use of the apnea hypopnea index (AHI) as the primary sleep endpoint, and pulmonary resistance at 10 Hz (R10) or forced expiratory volume in 1 or 0.75 seconds (FEV1 or FEV0.75) as primary pulmonary endpoints. The group defined minimum changes in AHI, R10, and FEV1 or FEV0.75 for response criteria. Secondary sleep outcomes include desaturation and hypercapnia during sleep and arousal index. Secondary pulmonary outcomes include pulmonary resistance and reactance measurements at 5, 10, and 20 Hz; forced vital capacity; peak expiratory flow; and forced expiratory flows. These recommended sleep and pulmonary evaluations are intended to provide researchers with a standardized set of clinically meaningful endpoints for response evaluation in trials of NF1-related airway PNs. © 2016 American Academy of Neurology.

  1. Safety and Efficacy of Thoracic External Beam Radiotherapy After Airway Stenting in Malignant Airway Obstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rochet, Nathalie, E-mail: nrochet@partners.org; Hauswald, Henrik; Schmaus, Martina

    Purpose: We retrospectively evaluated the outcome and toxicity of external beam radiotherapy (EBRT) after airway stents were placed in patients treated for malignant airway obstruction. Methods and Materials: Between 2004 and 2009, we performed airway stenting followed by EBRT in 43 patients for symptomatic primary lung cancer (n = 31) or other thoracic malignancies (n = 12). The median time interval between stent placement and first irradiation was 14 days. A median total dose of 50 Gy was delivered. Sixty-seven percent of the patients had reduced performance status (Karnofsky performance score, {<=}70). Results: EBRT had to be stopped prematurely inmore » 16 patients (37%), at a median total dose of 17 Gy, for various reasons. In this group of patients, the survival was poor, with a median overall survival (OS) of only 21 days. Twenty-seven patients (63%) completed radiotherapy as planned, with a median OS of 8.4 months. Fourteen of 43 patients (33%) developed at least one Common Terminology Criteria for Adverse Event of grade 3 to 5. The most common event was a malignant restenosis of the stent leading to asphyxia (n = 7), followed by fistula formation (n = 4), necrosis (n = 3), mediastinitis with abscess (n = 1), secondary nonmalignant airway stenosis (n = 1), and hemoptysis (n = 1). With the exception of one event, all events were associated with a local progression of the tumor. Conclusions: Although the long-term prognosis for patients with malignant airway obstruction is poor, airway stenting combined with EBRT offers a possible therapeutic option, achieving fast relief of acute respiratory distress with an associated antitumor effect, resulting in a potential survival benefit. However, due to local advanced tumor growth, increased rates of adverse events are to be expected, necessitating careful monitoring.« less

  2. Bitter tasting compounds dilate airways by inhibiting airway smooth muscle calcium oscillations and calcium sensitivity

    PubMed Central

    Tan, Xiahui; Sanderson, Michael J

    2014-01-01

    Background and Purpose While selective, bitter tasting, TAS2R agonists can relax agonist-contracted airway smooth muscle (ASM), their mechanism of action is unclear. However, ASM contraction is regulated by Ca2+ signalling and Ca2+ sensitivity. We have therefore investigated how the TAS2R10 agonists chloroquine, quinine and denotonium regulate contractile agonist-induced Ca2+ signalling and sensitivity. Experimental Approach Airways in mouse lung slices were contracted with either methacholine (MCh) or 5HT and bronchodilation assessed using phase-contrast microscopy. Ca2+ signalling was measured with 2-photon fluorescence microscopy of ASM cells loaded with Oregon Green, a Ca2+-sensitive indicator (with or without caged-IP3). Effects on Ca2+ sensitivity were assessed on lung slices treated with caffeine and ryanodine to permeabilize ASM cells to Ca2+. Key Results The TAS2R10 agonists dilated airways constricted by either MCh or 5HT, accompanied by inhibition of agonist-induced Ca2+ oscillations. However, in non-contracted airways, TAS2R10 agonists, at concentrations that maximally dilated constricted airways, did not evoke Ca2+ signals in ASM cells. Ca2+ increases mediated by the photolysis of caged-IP3 were also attenuated by chloroquine, quinine and denotonium. In Ca2+-permeabilized ASM cells, the TAS2R10 agonists dilated MCh- and 5HT-constricted airways. Conclusions and Implications TAS2R10 agonists reversed bronchoconstriction by inhibiting agonist-induced Ca2+ oscillations while simultaneously reducing the Ca2+ sensitivity of ASM cells. Reduction of Ca2+ oscillations may be due to inhibition of Ca2+ release through IP3 receptors. Further characterization of bronchodilatory TAS2R agonists may lead to the development of novel therapies for the treatment of bronchoconstrictive conditions. PMID:24117140

  3. Mechanisms determining cholinergic neural responses in airways of young and mature rabbits.

    PubMed

    Larsen, Gary L; Loader, Joan; Nguyen, Dee Dee; Fratelli, Cori; Dakhama, Azzeddine; Colasurdo, Giuseppe N

    2004-08-01

    Neural pathways help control airway caliber and responsiveness. Yet little is known of how neural control changes as a function of development. In rabbits, we found electrical field stimulation (EFS) of airway nerves led to more marked contractile responses in 2- vs. 13-week-old animals. This enhanced response to EFS may be due to prejunctional, junctional, and/or postjunctional neural mechanisms. We assessed these mechanisms in airways of 2- and 13-week-old rabbits. The contractile responses to methacholine did not differ in the groups, suggesting postjunctional neural events are not primarily responsible for differing responses to EFS. To address junctional events, acetylcholinesterase (AChE) was measured (spectrophotometry). AChE was elevated in 2-week-olds. However, this should lead to less and not greater responses. Prejunctionally, EFS-induced acetylcholine (ACh) release was assessed by HPLC. Airways of 2-week-old rabbits released significantly more ACh than airways from mature rabbits. Choline acetyltransferase, a marker of cholinergic nerves, was not different between groups, suggesting that more ACh release in young rabbits was not due to increased nerve density. ACh release in the presence of polyarginine increased significantly in both groups, supporting the presence of functional muscarinic autoreceptors (M2) at both ages. Because substance P (SP) increases release of ACh, SP was measured by ELISA. This neuropeptide was significantly elevated in airways of younger rabbits. Nerve growth factor (NGF) increased SP and was also significantly increased in airways from younger rabbits. This work suggests that increases in EFS-induced responsiveness in young rabbits are likely due to prejunctional events with enhanced release of ACh. Increases in NGF and SP early in life may contribute to this increased responsiveness. Copyright 2004 Wiley-Liss, Inc.

  4. Airway hyperreactivity in asymptomatic military personnel.

    PubMed

    Morris, Michael J; Schwartz, Darin S; Nohrenberg, Jana L; Dooley, Sean N

    2007-11-01

    Asthma is frequently diagnosed in military personnel despite strict guidelines that disqualify persons with active disease or a recent history of asthma. It is generally considered incompatible with military service, because of the regular physical training, outdoor training exercises, and deployments to remote locations. The objective of this study was to determine the prevalence of airway hyperreactivity in asymptomatic military personnel, as an estimate of subclinical reactive airway disease. A prospective study of healthy, asymptomatic, military personnel with no previous history of asthma and <1 year on active duty status was conducted. After completion of a screening questionnaire, personnel underwent baseline spirometry with a portable spirometer. Personnel with obstructive indices (based on published guidelines) and matched control subjects participated in an exercise test (1.5-mile run), with pre- and postexercise spirometry. A total of 222 asymptomatic military personnel completed baseline spirometry, and 31 (14%) were found have airway obstruction. A normal matched control group of 31 military personnel and 26 personnel with obstruction performed exercise spirometry. Twenty-three percent of the participants with obstruction demonstrated increased airway hyper-reactivity after exercise, based on a reduction in forced expiratory volume at 1 second, compared with 19% of control subjects. Asymptomatic airway obstruction has a prevalence of 14% in young military personnel. A significant percentage of individuals also have evidence of worsening obstruction during exercise. These data suggest that screening spirometry may identify early reactive airway disease in asymptomatic individuals and should be considered as a method to identify persons predisposed to developing symptomatic asthma.

  5. Multimodal airway evaluation in growing patients after rapid maxillary expansion.

    PubMed

    Fastuca, R; Meneghel, M; Zecca, P A; Mangano, F; Antonello, M; Nucera, R; Caprioglio, A

    2015-06-01

    The objective of this study was to evaluate the airway volume of growing patients combining a morphological approach using cone beam computed tomography associated with functional data obtained by polysomnography examination after rapid maxillary expansion treatment. 22 Caucasian patients (mean age 8.3±0.9 years) undergoing rapid maxillary expansion with Haas type expander banded on second deciduous upper molars were enrolled for this prospective study. Cone beam computed tomography scans and polysomnography exams were collected before placing the appliance (T0) and after 12 months (T1). Image processing with airway volume computing and analyses of oxygen saturation and apnoea/hypopnoea index were performed. Airway volume, oxygen saturation and apnea/hypopnea index underwent significant increase over time. However, no significant correlation was seen between their increases. The rapid maxillary expansion treatment induced significant increases in the total airway volume and respiratory performance. Functional respiratory parameters should be included in studies evaluating the RME treatment effects on the respiratory performance.

  6. Airway management in neuroanesthesiology.

    PubMed

    Aziz, Michael

    2012-06-01

    Airway management for neuroanesthesiology brings together some key principles that are shared throughout neuroanesthesiology. This article appropriately targets the cervical spine with associated injury and the challenges surrounding airway management. The primary focus of this article is on the unique airway management obstacles encountered with cervical spine injury or cervical spine surgery, and unique considerations regarding functional neurosurgery are addressed. Furthermore, topics related to difficult airway management for those with rheumatoid arthritis or pituitary surgery are reviewed. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Supplemental Carbon Dioxide Stabilizes the Upper Airway in Volunteers Anesthetized with Propofol.

    PubMed

    Ruscic, Katarina Jennifer; Bøgh Stokholm, Janne; Patlak, Johann; Deng, Hao; Simons, Jeroen Cedric Peter; Houle, Timothy; Peters, Jürgen; Eikermann, Matthias

    2018-05-10

    Propofol impairs upper airway dilator muscle tone and increases upper airway collapsibility. Preclinical studies show that carbon dioxide decreases propofol-mediated respiratory depression. We studied whether elevation of end-tidal carbon dioxide (PETCO2) via carbon dioxide insufflation reverses the airway collapsibility (primary hypothesis) and impaired genioglossus muscle electromyogram that accompany propofol anesthesia. We present a prespecified, secondary analysis of previously published experiments in 12 volunteers breathing via a high-flow respiratory circuit used to control upper airway pressure under propofol anesthesia at two levels, with the deep level titrated to suppression of motor response. Ventilation, mask pressure, negative pharyngeal pressure, upper airway closing pressure, genioglossus electromyogram, bispectral index, and change in end-expiratory lung volume were measured as a function of elevation of PETCO2 above baseline and depth of propofol anesthesia. PETCO2 augmentation dose-dependently lowered upper airway closing pressure with a decrease of 3.1 cm H2O (95% CI, 2.2 to 3.9; P < 0.001) under deep anesthesia, indicating improved upper airway stability. In parallel, the phasic genioglossus electromyogram increased by 28% (23 to 34; P < 0.001). We found that genioglossus electromyogram activity was a significant modifier of the effect of PETCO2 elevation on closing pressure (P = 0.005 for interaction term). Upper airway collapsibility induced by propofol anesthesia can be reversed in a dose-dependent manner by insufflation of supplemental carbon dioxide. This effect is at least partly mediated by increased genioglossus muscle activity.

  8. [Difficult Ventilation Requiring Emergency Endotracheal Intubation during Awake Craniotomy Managed by Laryngeal Mask Airway].

    PubMed

    Matsuda, Asako; Mizota, Toshiyuki; Tanaka, Tomoharu; Segawa, Hajime; Fukuda, Kazuhiko

    2016-04-01

    We report a case of difficult ventilation requiring emergency endotracheal intubation during awake craniotomy managed by laryngeal mask airway (LMA). A 45-year-old woman was scheduled to receive awake craniotomy for brain tumor in the frontal lobe. After anesthetic induction, airway was secured using ProSeal LMA and patient was mechanically ventilated in pressure-control mode. Patient's head was fixed with head-pins at anteflex position, and the operation started. About one hour after the start of the operation, tidal volume suddenly decreased. We immediately started manual ventilation, but the airway resistance was extremely high and we could not adequately ventilate the patient. We administered muscle relaxant for suspected laryngospasm, but ventilatory status did not improve; so we decided to conduct emergency endotracheal intubation. We tried to intubate using Airwayscope or LMA-Fastrach, but they were not effective in our case. Finally trachea was intubated using transnasal fiberoptic bronchoscopy. We discuss airway management during awake craniotomy, focusing on emergency endotracheal intubation during surgery.

  9. Emergency airway puncture

    MedlinePlus

    ... support for only a very short period of time. Alternative Names Needle cricothyrotomy Images Emergency airway puncture Cricoid cartilage Emergency airway puncture - series References Hebert RB, Bose S, Mace SE. Cricothyrotomy and ...

  10. Pulmonary Stress Induced by Hyperthermia: Role of Airway Sensory Nerves

    DTIC Science & Technology

    2014-12-01

    developed in Ova -sensitized mice was less pronounced in TRPV1-null mice, indicating an important role of TRPV1. 2) An increase in airway temperature...actively sensitized by inhalation of ovalbumin ( Ova ) aerosol for 3 weeks). These rats were divided into two groups: control and sensitized groups...airway extravasation in Ova -sensitized rats. 2) The airway 5 extravasation can be prevented by pretreatment with the selective antagonist of NK-1

  11. Infection-induced airway fibrosis in two rat strains with differential susceptibility.

    PubMed Central

    McIntosh, J C; Simecka, J W; Ross, S E; Davis, J K; Miller, E J; Cassell, G H

    1992-01-01

    Chronic infections play a significant role in the morbidity and mortality of patients with chronic airflow limitation. By stimulating airway inflammation, persistent infection has the potential to cause airway fibrosis. However, in patient this condition is most typically found in lungs damaged by other factors, such as smoking, abnormal secretions, or barotrauma. We report the characterization of Mycoplasma pulmonis infection-induced lung fibrosis in two immunocompetent rat strains with no preexisting lung disease. The fibrosis was predominantly in the airways, as demonstrated by the findings for infected animals of increased airway inflammation, airway fibrosis, and airway wall thickness, which correlated with the collagen content of the lungs. Also, the physiological alterations were the opposite of those found in interstitial fibrosis, with a positive correlation between lung compliance and collagen content. The airway fibrosis was noted earlier and to a greater extent in Lewis rats than in Fisher rats, and this result apparently was related to regulation of the inflammatory response. Airway wall thickness, airway inflammation, and airway fibrosis are commonly reported in tissue specimens from patients with chronic airway diseases and have been shown to correlate with airflow limitation in patients with chronic obstructive pulmonary disease. Thus, this model may be useful in furthering our understanding of the role of chronic infection and airway inflammation in airflow obstruction. Images PMID:1612760

  12. Influence of pharyngeal airway respiration pressure on Class II mandibular retrusion in children: A computational fluid dynamics study of inspiration and expiration.

    PubMed

    Iwasaki, T; Sato, H; Suga, H; Takemoto, Y; Inada, E; Saitoh, I; Kakuno, K; Kanomi, R; Yamasaki, Y

    2017-05-01

    To examine the influence of negative pressure of the pharyngeal airway on mandibular retraction during inspiration in children with nasal obstruction using the computational fluid dynamics (CFD) method. Sixty-two children were divided into Classes I, II (mandibular retrusion) and III (mandibular protrusion) malocclusion groups. Cone-beam computed tomography data were used to reconstruct three-dimensional shapes of the nasal and pharyngeal airways. Airflow pressure was simulated using CFD to calculate nasal resistance and pharyngeal airway pressure during inspiration and expiration. Nasal resistance of the Class II group was significantly higher than that of the other two groups, and oropharyngeal airway inspiration pressure in the Class II (-247.64 Pa) group was larger than that in the Class I (-43.51 Pa) and Class III (-31.81 Pa) groups (P<.001). The oropharyngeal airway inspiration-expiration pressure difference in the Class II (-27.38 Pa) group was larger than that in the Class I (-5.17 Pa) and Class III (0.68 Pa) groups (P=.006). Large negative inspiratory pharyngeal airway pressure due to nasal obstruction in children with Class II malocclusion may be related to their retrognathia. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Airway smooth muscle contraction - perspectives on past, present and future.

    PubMed

    Mitchell, H W

    2009-10-01

    Past and contemporary views of airway smooth muscle (ASM) have led to a high level of understanding of the control and intracellular regulation of force or shortening of ASM and of its possible role in airway disease. As well as the multitude of cellular mechanisms that regulate ASM contraction, a number of structural and mechanical factors, which are only present at the airway and lung level, provide overriding control over ASM. With new knowledge about the cellular physiology and biology of ASM, there is increasing need to understand how ASM contraction is regulated and expressed at these airway and system levels.

  14. Careers in Airway Science.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    The Federal Aviation Administration (FAA) has initiated the Airway Science curriculum as a method of preparing the next generation of aviation technicians and managers. This document: (1) discusses the FAA's role in the Airway Science program; (2) describes some of the career fields that FAA offers to Airway Science graduates (air traffic control…

  15. Interventions designed using quality improvement methods reduce the incidence of serious airway events and airway cardiac arrests during pediatric anesthesia.

    PubMed

    Spaeth, James P; Kreeger, Renee; Varughese, Anna M; Wittkugel, Eric

    2016-02-01

    Although serious complications during pediatric anesthesia are less common than they were 20 years ago, serious airway events continue to occur. Based on Quality Improvement (QI) data from our institution, a QI project was designed to reduce the incidence of serious airway events and airway cardiac arrests. A quality improvement team consisting of members of the Department of Anesthesia was formed and QI data from previous years were analyzed. The QI team developed a Smart Aim, Key Driver Diagram, and specific Interventions that focused on the accessibility of emergency drugs, the use of nondepolarizing muscle relaxants for endotracheal intubation in children 2 years and younger, and the presence of anesthesia providers until emergence from anesthesia in high-risk patients. The percentage of cases where muscle relaxants were utilized in children 2 years and younger for endotracheal intubation and where atropine and succinylcholine were readily available increased at both our base and outpatient facilities. Over the 2.5-year study period, the incidence of serious airway events and airway cardiac arrests was reduced by 44% and 59%, respectively compared to the previous 2-year period. We utilized QI methodology to design and implement a project which led to greater standardization of clinical practice within a large pediatric anesthesia group. Based on an understanding of system issues impacting our clinical practice, we designed and tested interventions that led to a significant reduction in the incidence of serious airway events and airway cardiac arrests. © 2015 John Wiley & Sons Ltd.

  16. Post-Exposure Antioxidant Treatment in Rats Decreases Airway Hyperplasia and Hyperreactivity Due to Chlorine Inhalation

    PubMed Central

    Bracher, Andreas; Doran, Stephen F.; Squadrito, Giuseppe L.; Fernandez, Solana; Postlethwait, Edward M.; Bowen, Larry; Matalon, Sadis

    2012-01-01

    We assessed the safety and efficacy of combined intravenous and aerosolized antioxidant administration to attenuate chlorine gas–induced airway alterations when administered after exposure. Adult male Sprague-Dawley rats were exposed to air or 400 parts per million (ppm) chlorine (a concentration likely to be encountered in the vicinity of industrial accidents) in environmental chambers for 30 minutes, and returned to room air, and they then received a single intravenous injection of ascorbic acid and deferoxamine or saline. At 1 hour and 15 hours after chlorine exposure, the rats were treated with aerosolized ascorbate and deferoxamine or vehicle. Lung antioxidant profiles, plasma ascorbate concentrations, airway morphology, and airway reactivity were evaluated at 24 hours and 7 days after chlorine exposure. At 24 hours after exposure, chlorine-exposed rats had significantly lower pulmonary ascorbate and reduced glutathione concentrations. Treatment with antioxidants restored depleted ascorbate in lungs and plasma. At 7 days after exposure, in chlorine-exposed, vehicle-treated rats, the thickness of the proximal airways was 60% greater than in control rats, with twice the amount of mucosubstances. Airway resistance in response to methacholine challenge was also significantly elevated. Combined treatment with intravenous and aerosolized antioxidants restored airway morphology, the amount of airway mucosubstances, and airway reactivity to control levels by 7 days after chlorine exposure. Our results demonstrate for the first time, to the best of our knowledge, that severe injury to major airways in rats exposed to chlorine, as characterized by epithelial hyperplasia, mucus accumulation, and airway hyperreactivity, can be reversed in a safe and efficacious manner by the post-exposure administration of ascorbate and deferoxamine. PMID:22162906

  17. Quercetin acutely relaxes airway smooth muscle and potentiates β-agonist-induced relaxation via dual phosphodiesterase inhibition of PLCβ and PDE4

    PubMed Central

    Emala, Charles W.

    2013-01-01

    Asthma is a disease of the airways with symptoms including exaggerated airway narrowing and airway inflammation. Early asthma therapies used methylxanthines to relieve symptoms, in part, by inhibiting cyclic nucleotide phosphodiesterases (PDEs), the enzyme responsible for degrading cAMP. The classification of tissue-specific PDE subtypes and the clinical introduction of PDE-selective inhibitors for chronic obstructive pulmonary disease (i.e., roflumilast) have reopened the possibility of using PDE inhibition in the treatment of asthma. Quercetin is a naturally derived PDE4-selective inhibitor found in fruits, vegetables, and tea. We hypothesized that quercetin relaxes airway smooth muscle via cAMP-mediated pathways and augments β-agonist relaxation. Tracheal rings from male A/J mice were mounted in myographs and contracted with acetylcholine (ACh). Addition of quercetin (100 nM-1 mM) acutely and concentration-dependently relaxed airway rings precontracted with ACh. In separate studies, pretreatment with quercetin (100 μM) prevented force generation upon exposure to ACh. In additional studies, quercetin (50 μM) significantly potentiated isoproterenol-induced relaxations. In in vitro assays, quercetin directly attenuated phospholipase C activity, decreased inositol phosphate synthesis, and decreased intracellular calcium responses to Gq-coupled agonists (histamine or bradykinin). Finally, nebulization of quercetin (100 μM) in an in vivo model of airway responsiveness significantly attenuated methacholine-induced increases in airway resistance. These novel data show that the natural PDE4-selective inhibitor quercetin may provide therapeutic relief of asthma symptoms and decrease reliance on short-acting β-agonists. PMID:23873842

  18. Aggravation of airway inflammation and hyper-responsiveness following nasal challenge with Dermatophagoides pteronyssinus in perennial allergic rhinitis without symptoms of asthma.

    PubMed

    Wang, W; Xian, M; Xie, Y; Zheng, J; Li, J

    2016-03-01

    House dust mites are the most prevalent allergen causing sensitizations in patients with rhinitis and asthma in China. We aimed to investigate the changes in both upper and lower airway inflammation and responsiveness following Dermatophagoides pteronyssinus (Der-p) nasal provocation test (NPT) in rhinitis patients. Study subjects included 15 nonasthmatic Der-p-sensitized rhinitis (AR) patients with airway hyper-responsiveness (AHR) (AR+AHR+), 15 AR patients without AHR (AR+AHR-), 15 healthy controls (HCs) with Der-p sensitization (HC+DP+), and 15 HC without Der-p sensitization (HC+DP-). All subjects underwent Der-p NPT. Visual analogue scale (VAS) scores of nasal symptoms, nasal lavage and nasal airway resistance (NAR) measurement, sputum induction, and forced expiratory volume in 1 second (FEV1 ) were performed. Airway responsiveness to histamine bronchoprovocation (PD20 -FEV1 ) and exhaled nitric oxide (FeNO) was determined. NAR increased significantly in all subjects with the greatest effect seen in AR+AHR+ individuals. VAS increased in all subjects at 30 min and returned to baseline at 6 h, with significantly higher levels in AR+AHR+ and AR+AHR- subjects (P < 0.05). Eosinophils in nasal lavage fluid and sputum increased significantly after NPT in AR+AHR+ and AR+AHR- subjects (P < 0.001). FEV1 % and PD20 -FEV1 decreased and FeNO increased significantly after NPT only in AR+AHR+ subjects (P < 0.05). Nasal lavage eosinophil count was positively correlated with sputum eosinophil count and the level of FeNO and negatively correlated with FEV1 and PD20 . House dust mite nasal provocation test induces and aggravates both upper and lower airway inflammation and hyper-responsiveness in patients with persistent allergic rhinitis without asthmatic symptoms. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Novel analysis of 4DCT imaging quantifies progressive increases in anatomic dead space during mechanical ventilation in mice.

    PubMed

    Kim, Elizabeth H; Preissner, Melissa; Carnibella, Richard P; Samarage, Chaminda R; Bennett, Ellen; Diniz, Marcio A; Fouras, Andreas; Zosky, Graeme R; Jones, Heather D

    2017-09-01

    Increased dead space is an important prognostic marker in early acute respiratory distress syndrome (ARDS) that correlates with mortality. The cause of increased dead space in ARDS has largely been attributed to increased alveolar dead space due to ventilation/perfusion mismatching and shunt. We sought to determine whether anatomic dead space also increases in response to mechanical ventilation. Mice received intratracheal lipopolysaccharide (LPS) or saline and mechanical ventilation (MV). Four-dimensional computed tomography (4DCT) scans were performed at onset of MV and after 5 h of MV. Detailed measurements of airway volumes and lung tidal volumes were performed using image analysis software. The forced oscillation technique was used to obtain measures of airway resistance, tissue damping, and tissue elastance. The ratio of airway volumes to total tidal volume increased significantly in response to 5 h of mechanical ventilation, regardless of LPS exposure, and airways demonstrated significant variation in volumes over the respiratory cycle. These findings were associated with an increase in tissue elastance (decreased lung compliance) but without changes in tidal volumes. Airway volumes increased over time with exposure to mechanical ventilation without a concomitant increase in tidal volumes. These findings suggest that anatomic dead space fraction increases progressively with exposure to positive pressure ventilation and may represent a pathological process. NEW & NOTEWORTHY We demonstrate that anatomic dead space ventilation increases significantly over time in mice in response to mechanical ventilation. The novel functional lung-imaging techniques applied here yield sensitive measures of airway volumes that may have wide applications. Copyright © 2017 the American Physiological Society.

  20. Histamine inhalation challenge in normal horses and in horses with small airway disease.

    PubMed Central

    Doucet, M Y; Vrins, A A; Ford-Hutchinson, A W

    1991-01-01

    A histamine inhalation challenge (HIC) procedure was developed to assess hyperreactive states in horses. Following clinical evaluation, percutaneous lung biopsies were performed on nine light breed mares aged 6 to 15 years. Five horses, with normal small airways, were classified as group A and four subjects with small airway disease (SAD) lesions formed group B. Pulmonary mechanics parameters were monitored following an aerosol of 0.9% saline and every 5 min for up to 30 min after HIC with 0.5% w/v of histamine diphosphate, administered through a face mask for 2.5 min. Tidal volume (VT) and airflow (V) values were obtained with a pneumotachograph. Transpulmonary pressure (delta Ppl) was measured by the esophageal balloon catheter method. Dynamic compliance (Cdyn), total pulmonary resistance (RL), end expiratory work of breathing (EEW) and respiratory rate (f) were calculated by a pulmonary mechanics computer. Group A horses had increases in RL, and decreases in Cdyn whereas horses in group B were hyperreactive and showed greater changes in EEW, Cdyn, and delta Ppl but with a relatively lower variation of RL. One horse in clinical remission from SAD, but with a high biopsy score (group B), and one clinically normal horse belonging to group A showed marked hyperreactivity as shown by increases in EEW, maximum change in delta Ppl and RL and decreases in Cdyn. These results suggest that the HIC described can be used as a method to investigate airway hyperreactivity and SAD in horses. Images Fig. 1. PMID:1889039

  1. 20-HETE mediates ozone-induced, neutrophil-independent airway hyper-responsiveness in mice.

    PubMed

    Cooper, Philip R; Mesaros, A Clementina; Zhang, Jie; Christmas, Peter; Stark, Christopher M; Douaidy, Karim; Mittelman, Michael A; Soberman, Roy J; Blair, Ian A; Panettieri, Reynold A

    2010-04-20

    Ozone, a pollutant known to induce airway hyper-responsiveness (AHR), increases morbidity and mortality in patients with obstructive airway diseases and asthma. We postulate oxidized lipids mediate in vivo ozone-induced AHR in murine airways. Male BALB/c mice were exposed to ozone (3 or 6 ppm) or filtered air (controls) for 2 h. Precision cut lung slices (PCLS; 250 microm thickness) containing an intrapulmonary airway ( approximately 0.01 mm(2) lumen area) were prepared immediately after exposure or 16 h later. After 24 h, airways were contracted to carbachol (CCh). Log EC(50) and E(max) values were then calculated by measuring the airway lumen area with respect to baseline. In parallel studies, dexamethasone (2.5 mg/kg), or 1-aminobenzotriazol (ABT) (50 mg/kg) were given intraperitoneal injection to naïve mice 18 h prior to ozone exposure. Indomethacin (10 mg/kg) was administered 2 h prior. Cell counts, cytokine levels and liquid chromatography-mass spectrometry (LC-MS) for lipid analysis were assessed in bronchoalveolar lavage (BAL) fluid from ozone exposed and control mice. Ozone acutely induced AHR to CCh. Dexamethasone or indomethacin had little effect on the ozone-induced AHR; while, ABT, a cytochrome P450 inhibitor, markedly attenuated airway sensitivity. BAL fluid from ozone exposed animals, which did not contain an increase in neutrophils or interleukin (IL)-6 levels, increased airway sensitivity following in vitro incubation with a naïve PCLS. In parallel, significant increases in oxidized lipids were also identified using LC-MS with increases of 20-HETE that were decreased following ABT treatment. These data show that ozone acutely induces AHR to CCh independent of inflammation and is insensitive to steroid treatment or cyclooxygenase (COX) inhibition. BAL fluid from ozone exposed mice mimicked the effects of in vivo ozone exposure that were associated with marked increases in oxidized lipids. 20-HETE plays a pivotal role in mediating acute ozone

  2. Small airways function in aluminium and stainless steel welders.

    PubMed

    Nielsen, J; Dahlqvist, M; Welinder, H; Thomassen, Y; Alexandersson, R; Skerfving, S

    1993-01-01

    The effect of welding fumes on small airways was studied in 25 male subjects who welded in aluminium (Al) and to some extent also in stainless steel (SS). Despite a low exposure to welding fumes as compared to the permissible exposure limits, excretion of Al in urine was found to be increased in all subjects (median value: 0.29 mmol/mol creatinine on Friday afternoon, as compared to an upper reference level of 0.10 mmol/mol creatinine). In addition, the welders displayed increased prevalences of work-related eye and airways (pharyngitis and non-specific bronchial hyperreactivity) symptoms, as compared to 25 matched controls. Short-term welders (< or = 2.5 years) had more symptoms related to the upper airways than did long-term welders, which may indicate a selection. Spirometry, closing volume and volume of trapped gas (VTG) did not deviate. However, after methacholine inhalation, the long-term welders had a significantly steeper slope of the alveolar plateau on the single-breath nitrogen wash-out test, and a slight increase in VTG, as compared to the short-term welders and the controls. These findings may indicate a welding fume-induced increase in the reactivity of the small airways. Because Al welding was far more frequent than SS welding, an association with the former seems likely.

  3. Mechanisms of Cigarette Smoke Effects on Human Airway Smooth Muscle.

    PubMed

    Wylam, Mark E; Sathish, Venkatachalem; VanOosten, Sarah Kay; Freeman, Michelle; Burkholder, David; Thompson, Michael A; Pabelick, Christina M; Prakash, Y S

    2015-01-01

    Cigarette smoke contributes to or exacerbates airway diseases such as asthma and COPD, where airway hyperresponsiveness and airway smooth muscle (ASM) proliferation are key features. While factors such as inflammation contribute to asthma in part by enhancing agonist-induced intracellular Ca(2+) ([Ca(2+)]i) responses of ASM, the mechanisms by which cigarette smoke affect ASM are still under investigation. In the present study, we tested the hypothesis that cigarette smoke enhances the expression and function of Ca(2+) regulatory proteins leading to increased store operated Ca(2+) entry (SOCE) and cell proliferation. Using isolated human ASM (hASM) cells, incubated in the presence and absence cigarette smoke extract (CSE) we determined ([Ca(2+)]i) responses and expression of relevant proteins as well as ASM proliferation, reactive oxidant species (ROS) and cytokine generation. CSE enhanced [Ca(2+)]i responses to agonist and SOCE: effects mediated by increased expression of TRPC3, CD38, STIM1, and/or Orai1, evident by attenuation of CSE effects when siRNAs against these proteins were used, particularly Orai1. CSE also increased hASM ROS generation and cytokine secretion. In addition, we found in the airways of patients with long-term smoking history, TRPC3 and CD38 expression were significantly increased compared to life-long never-smokers, supporting the role of these proteins in smoking effects. Finally, CSE enhanced hASM proliferation, an effect confirmed by upregulation of PCNA and Cyclin E. These results support a critical role for Ca(2+) regulatory proteins and enhanced SOCE to alter airway structure and function in smoking-related airway disease.

  4. Relapsing polychondritis and airway involvement.

    PubMed

    Ernst, Armin; Rafeq, Samaan; Boiselle, Phillip; Sung, Arthur; Reddy, Chakravarthy; Michaud, Gaetane; Majid, Adnan; Herth, Felix J F; Trentham, David

    2009-04-01

    To assess the prevalence and characteristics of airway involvement in relapsing polychondritis (RP). Retrospective chart review and data analysis of RP patients seen in the Rheumatology Clinic and the Complex Airway Center at Beth Israel Deaconess Medical Center from January 2004 through February 2008. RP was diagnosed in 145 patients. Thirty-one patients had airway involvement, a prevalence of 21%. Twenty-two patients were women (70%), and they were between 11 and 61 years of age (median age, 42 years) at the time of first symptoms. Airway symptoms were the first manifestation of disease in 17 patients (54%). Dyspnea was the most common symptom in 20 patients (64%), followed by cough, stridor, and hoarseness. Airway problems included the following: subglottic stenosis (n = 8; 26%); focal and diffuse malacia (n = 15; 48%); and focal stenosis in different areas of the bronchial tree in the rest of the patients. Twelve patients (40%) required and underwent intervention including balloon dilatation, stent placement, tracheotomy, or a combination of the above with good success. The majority of patients experienced improvement in airway symptoms after intervention. One patient died during the follow-up period from the progression of airway disease. The rest of the patients continue to undergo periodic evaluation and intervention. In this largest cohort described in the English language literature, we found symptomatic airway involvement in RP to be common and at times severe. The nature of airway problems is diverse, with tracheomalacia being the most common. Airway intervention is frequently required and in experienced hands results in symptom improvement.

  5. CD8+IL-17+ T Cells Mediate Neutrophilic Airway Obliteration in T-bet–Deficient Mouse Lung Allograft Recipients

    PubMed Central

    Dodd-o, Jeffrey M.; Coon, Tiffany A.; Miller, Hannah L.; Ganguly, Sudipto; Popescu, Iulia; O'Donnell, Christopher P.; Cardenes, Nayra; Levine, Melanie; Rojas, Mauricio; Weathington, Nathaniel M.; Zhao, Jing; Zhao, Yutong; McDyer, John F.

    2015-01-01

    Acute cellular rejection is a known risk factor for the development of obliterative bronchiolitis, which limits the long-term survival of lung transplant recipients. However, the T cell effector mechanisms in both of these processes remain incompletely understood. Using the mouse orthotopic lung transplant model, we investigated whether C57BL/6 T-bet−/− recipients of major histocompatibility complex (MHC)-mismatched BALB/c lung grafts develop rejection pathology and allospecific cytokine responses that differ from wild-type mice. T-bet−/− recipients demonstrated vigorous allograft rejection at 10 days, characterized by neutrophilic inflammation and predominantly CD8+ T cells producing allospecific IL-17 and/or IFN-γ, in contrast to IFN-γ–dominant responses in WT mice. CD4+ T cells produced IL-17 but not IFN-γ responses in T-bet−/− recipients, in contrast to WT controls. Costimulation blockade using anti-CD154 Ab significantly reduced allospecific CD8+IFN-γ+ responses in both T-bet−/− and WT mice but had no attenuating effect on lung rejection pathology in T-bet−/− recipients or on the development of obliterative airway inflammation that occurred only in T-bet−/− recipients. However, neutralization of IL-17A significantly attenuated costimulation blockade–resistant rejection pathology and airway inflammation in T-bet−/− recipients. In addition, CXCL1 (neutrophil chemokine) was increased in T-bet−/− allografts, and IL-17 induced CXCL1 from mouse lung epithelial cells in vitro. Taken together, our data show that T-bet–deficient recipients of complete MHC-mismatched lung allografts develop costimulation blockade–resistant rejection characterized by neutrophilia and obliterative airway inflammation that is predominantly mediated by CD8+IL-17+ T cells. Our data support T-bet–deficient mouse recipients of lung allografts as a viable animal model to study the immunopathogenesis of small airway injury in lung transplantation

  6. Effect of thromboxane antagonists on ozone-induced airway responses in dogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, G.L.; Lane, C.G.; O'Byrne, P.M.

    1990-09-01

    Airway hyperresponsiveness after inhaled ozone in dogs may occur as a result of thromboxane release in the airway. In this study, two thromboxane receptor antagonists, L-655,240 and L-670,596, were used in doses that inhibit the response to an inhaled thromboxane mimetic, U-46619, to determine further the role of thromboxane in ozone-induced airway hyperresponsiveness. Dogs were studied on 2 days separated by 1 wk. On each day, the dogs inhaled ozone (3 ppm) for 30 min. On one randomly assigned day, 10 dogs received an infusion of L-655,240 (5 mg.kg-1.h-1) and 5 dogs received an infusion of L-670,596 (1 mg.kg-1.h-1); onmore » the other day dogs received a control infusion. Airway responses to doubling doses of acetylcholine were measured before and after inhalation of ozone and were expressed as the concentration of acetylcholine giving a rise in resistance of 5 cmH2O.l-1.s from baseline (acetylcholine provocation concentration). The development of airway hyperresponsiveness after ozone was not inhibited by the thromboxane antagonists. The mean log difference in the acetylcholine provocative concentration before and after ozone on the L-655,240 treatment day was 0.62 +/- 0.12 (SE) and on the control day was 0.71 +/- 0.12 (P = 0.48); on the L-670,596 treatment day the mean log difference was 0.68 +/- 0.15 (SE) and on the control day it was 0.75 +/- 0.19 (P = 0.45). These results do not support an important role for thromboxane in causing ozone-induced airway hyperresponsiveness.« less

  7. The epidemiology of upper airway injury in patients undergoing major surgical procedures.

    PubMed

    Hua, May; Brady, Joanne; Li, Guohua

    2012-01-01

    Airway injury is a potentially serious and costly adverse event of anesthesia care. The epidemiologic characteristics of airway injury have not been well documented. The American College of Surgeons National Surgical Quality Improvement Program (NSQIP) is a multicenter, prospective, outcome-oriented database for patients undergoing major surgical procedures. Using the NSQIP data for the years 2005 to 2008, we examined the incidence of, and risk factors for, airway injury. Of the 563,190 patients studied, 1202 (0.2%) sustained airway injury. The most common airway injury was lip laceration/hematoma (61.4%), followed by tooth injury (26.1%), tongue laceration (5.7%), pharyngeal laceration (4.7%), and laryngeal laceration (2.1%). Multivariable logistic modeling revealed an increased risk of airway injury in patients with Mallampati class III (adjusted odds ratio [OR], 1.69; 99% confidence interval [CI], 1.36-2.11, relative to patients with Mallampati classes I and II) or class IV (adjusted OR, 2.6; 99% CI, 1.52-4.02), and in patients aged 80 years or older (adjusted OR, 1.50; 99% CI, 1.02-2.19, relative to patients aged 40 to 49 years). The risk of airway injury for patients undergoing major surgical procedures is approximately 1 in 500. Patients with difficult airways as indicated by Mallampati classes III and IV are at significantly increased risk of sustaining airway injury during anesthesia for major surgical procedures.

  8. [Quality assurance in airway management: education and training for difficult airway management].

    PubMed

    Kaminoh, Yoshiroh

    2006-01-01

    Respiratory problem is one of the main causes of death or severe brain damage in perioperative period. Three major factors of respiratory problem are esophageal intubation, inadequate ventilation, and difficult airway. The wide spread of pulse oximeter and capnograph reduced the incidences of esophageal intubation and inadequate ventilation, but the difficult airway still occupies the large portion in the causes of adverse events during anesthesia. "Practice guideline for management of the difficult airway" was proposed by American Society of Anesthesiologists (ASA) in 1992 and 2002. Improvement of knowledge, technical skills, and cognitive skills are necessary for the education and training of the difficult airway management. "The practical seminar of difficult airway management (DAM practical seminar)" has been cosponsored by the Japanese Association of Medical Simulation (JAMS) in the 51 st and 52 nd annual meetings of Japanese Society of Anesthesiologists and the 24th annual meeting of Japanese Society for Clinical Anesthesia. The DAM practical seminar is composed of the lecture session for ASA difficult airway algorithm, the hands-on training session for technical skills, and the scenario-based training session for cognitive skills. Ninty six Japanese anesthesiologists have completed the DAM practical seminar in one year. "The DAM instructor course" should be immediately prepared to organize the seminar more frequently.

  9. Clinical phenotype of South-East Asian temporomandibular disorder patients with upper airway resistance syndrome.

    PubMed

    Tay, D K L; Pang, K P

    2018-01-01

    Clinical and radiographic characteristics of a subset of South East Asian temporomandibular disorder (TMD) patients with comorbid upper airway resistance syndrome (UARS) were documented in a multi-center prospective series of 86 patients (26 men and 60 women / mean age 35.7 years). All had excessive daytime sleepiness, high arousal index and Apnoea-Hypopnoea Index (AHI) <5. The mean body mass index was 20·1, mean arousal index 16·2, mean respiratory disturbance index 19·6, mean AHI 3·9 while the mean Epworth Sleepiness Scale was 14·8. Many had functional somatic complaints; 66·3% headaches, 41·9% neck aches, 53·5% masticatory muscle myalgia, 68·6% temporomandibular joint (TMJ) arthralgia while 90·7% reported sleep bruxism (SB). Unlike patients with obstructive sleep apnoea (OSA), hypertension was uncommon (4·7%) while depression was prevalent at 68·6% with short REM latency of <90 min and an increased REM composition >25% documented in 79·6% and 57·6% of these depressed patients, respectively. 65·1% displayed a posteriorly displaced condyle at maximum intercuspation with or without TMJ clicking. Most exhibited a forward head posture (FHP) characterised by loss of normal cervical lordosis (80·2%), C0-C1 narrowing (38·4%) or an elevated hyoid position (50%), and 91·9% had nasal congestion. We postulate the TMD-UARS phenotype may have originally developed as an adaptive response to 'awake' disordered breathing during growth. Patients with persistent TMD and/or reporting SB should be screened for UARS and chronic nasal obstruction, especially when they also present with FHP. The lateral cephalogram is a useful tool in the differentiation of UARS from other OSA phenotypes. © 2017 John Wiley & Sons Ltd.

  10. Management of the Upper Airway in Cystic Fibrosis

    PubMed Central

    Illing, Elisa A.; Woodworth, Bradford A.

    2015-01-01

    Purpose of Review Upper airway disease engenders significant morbidity for patients with cystic fibrosis and is increasingly recognized as having a much greater role in pulmonary outcomes and quality of life than originally believed. Widespread disparate therapeutic strategies for cystic fibrosis chronic rhinosinusitis underscore the absence of a standardized treatment paradigm. This review outlines the most recent evidence-based trends in the management of upper airway disease in cystic fibrosis. Recent Findings The unified airway theory proposes that the sinuses are a focus of initial bacterial colonization which seeds the lower airway and may play a large role in maintaining lung infections. Mounting evidence suggests more aggressive treatment of the sinuses may confer significant improvement in pulmonary disease and quality of life outcomes in cystic fibrosis patients. However, there is a lack of high-level evidence regarding medical and surgical management of cystic fibrosis chronic rhinosinusitis that makes generalizations difficult. Summary Well designed clinical trials with long-term follow-up concerning medical and surgical interventions for cystic fibrosis sinus disease are required to establish standardized treatment protocols, but increased interest in the sinuses as a bacterial reservoir for pulmonary infections has generated considerable attention. PMID:25250804

  11. Influence of airway wall compliance on epithelial cell injury and adhesion during interfacial flows

    PubMed Central

    Higuita-Castro, Natalia; Mihai, Cosmin; Hansford, Derek J.

    2014-01-01

    Interfacial flows during cyclic airway reopening are an important source of ventilator-induced lung injury. However, it is not known how changes in airway wall compliance influence cell injury during airway reopening. We used an in vitro model of airway reopening in a compliant microchannel to investigate how airway wall stiffness influences epithelial cell injury. Epithelial cells were grown on gel substrates with different rigidities, and cellular responses to substrate stiffness were evaluated in terms of metabolic activity, mechanics, morphology, and adhesion. Repeated microbubble propagations were used to simulate cyclic airway reopening, and cell injury and detachment were quantified via live/dead staining. Although cells cultured on softer gels exhibited a reduced elastic modulus, these cells experienced less plasma membrane rupture/necrosis. Cells on rigid gels exhibited a minor, but statistically significant, increase in the power law exponent and also exhibited a significantly larger height-to-length aspect ratio. Previous studies indicate that this change in morphology amplifies interfacial stresses and, therefore, correlates with the increased necrosis observed during airway reopening. Although cells cultured on stiff substrates exhibited more plasma membrane rupture, these cells experienced significantly less detachment and monolayer disruption during airway reopening. Western blotting and immunofluorescence indicate that this protection from detachment and monolayer disruption correlates with increased focal adhesion kinase and phosphorylated paxillin expression. Therefore, changes in cell morphology and focal adhesion structure may govern injury responses during compliant airway reopening. In addition, these results indicate that changes in airway compliance, as occurs during fibrosis or emphysema, may significantly influence cell injury during mechanical ventilation. PMID:25213636

  12. [Effect of airway humidification on lung injury induced by mechanical ventilation].

    PubMed

    Song, Junjie; Jiang, Min; Qi, Guiyan; Xie, Yuying; Wang, Huaiquan; Tian, Yonggang; Qu, Jingdong; Zhang, Xiaoming; Li, Haibo

    2014-12-01

    To explore the effect of airway humidification on lung injury as a result of mechanical ventilation with different tidal volume (VT). Twenty-four male Japanese white rabbits were randomly divided into four groups: low VT with airway humidification group, high VT with airway humidification group, low VT and high VT group without humidification, with 6 rabbits in each group. Mechanical ventilation was started after intubation and lasted for 6 hours. Low VT denoted 8 mL/kg, while high VT was 16 mL/kg, fraction of inspired oxygen (FiO₂) denoted 0.40, positive end-expiratory pressure (PEEP) was 0. Temperature at Y piece of circuit in airway humidification groups was monitored and controlled at 40 centigrade. Arterial blood gas analysis, including pH value, arterial partial pressure of oxygen (PaO₂), arterial partial pressure of carbon dioxide (PaCO₂), lung mechanics indexes, including peak airway pressure (P(peak)) and airway resistance (Raw), and lung compliance was measured at 0, 2, 4, 6 hours of mechanical ventilation. The levels of tumor necrosis factor-α (TNF-α) and interleukin-8 (IL-8) in plasma and bronchoalveolar lavage fluid (BALF) were determined by enzyme linked immunosorbent assay (ELISA). The animals were sacrificed at the end of mechanical ventilation. The wet to dry (W/D) ratio of lung tissues was calculated. Histopathologic changes in the lung tissueies were observed with microscope, and lung injury score was calculated. Scanning and transmission electron microscopies were used to examine the integrity of the airway cilia and the tracheal epithelium. Compared with low V(T) group, pH value in high V(T) group was significantly increased, PaCO₂was significantly lowered, and no difference in PaO₂was found. P(peak), Raw, and lung compliance were significantly increased during mechanical ventilation. There were no significant differences in blood gas analysis and lung mechanics indexes between low V(T) with airway humidification group and low V

  13. Airway Protective Mechanisms

    PubMed Central

    Pitts, Teresa

    2014-01-01

    Cough and swallow are highly coordinated reflex behaviors whose common purpose is to protect the airway. The pharynx is the common tube for air and food/liquid movement from the mouth into the thorax, has been largely overlooked, and is potentially seen as just a passive space. The thyropharyngeus muscle responds to cough inducing stimuli to prepare a transient holding area for material that has been removed from the subglottic airway. The cricopharyngeus muscle participates with the larynx to ensure regulation of pressure when a bolus/air is moving from the upper airway through to the thorax (i.e inspiration or swallow) or the reverse (i.e expiration reflex or vomiting).These vital mechanisms have not been evaluated in clinical conditions, but could be impaired in many neurodegenerative diseases leading to aspiration pneumonia. These newly described airway protective mechanisms need further study, especially in healthy and pathologic human populations. PMID:24297325

  14. Upper Airway Elasticity Estimation in Pediatric Down Syndrome Sleep Apnea Patients Using Collapsible Tube Theory.

    PubMed

    Subramaniam, Dhananjay Radhakrishnan; Mylavarapu, Goutham; McConnell, Keith; Fleck, Robert J; Shott, Sally R; Amin, Raouf S; Gutmark, Ephraim J

    2016-05-01

    Elasticity of the soft tissues surrounding the upper airway lumen is one of the important factors contributing to upper airway disorders such as snoring and obstructive sleep apnea. The objective of this study is to calculate patient specific elasticity of the pharynx from magnetic resonance (MR) images using a 'tube law', i.e., the relationship between airway cross-sectional area and transmural pressure difference. MR imaging was performed under anesthesia in children with Down syndrome (DS) and obstructive sleep apnea (OSA). An airway segmentation algorithm was employed to evaluate changes in airway cross-sectional area dilated by continuous positive airway pressure (CPAP). A pressure-area relation was used to make localized estimates of airway wall stiffness for each patient. Optimized values of patient specific Young's modulus for tissue in the velopharynx and oropharynx, were estimated from finite element simulations of airway collapse. Patient specific deformation of the airway wall under CPAP was found to exhibit either a non-linear 'hardening' or 'softening' behavior. The localized airway and tissue elasticity were found to increase with increasing severity of OSA. Elasticity based patient phenotyping can potentially assist clinicians in decision making on CPAP and airway or tissue elasticity can supplement well-known clinical measures of OSA severity.

  15. The role of anaerobic bacteria in the cystic fibrosis airway.

    PubMed

    Sherrard, Laura J; Bell, Scott C; Tunney, Michael M

    2016-11-01

    Anaerobic bacteria are not only normal commensals, but are also considered opportunistic pathogens and have been identified as persistent members of the lower airway community in people with cystic fibrosis of all ages and stages of disease. Currently, the role of anaerobic bacteria in cystic fibrosis lower airway disease is not well understood. Therefore, this review describes the recent studies relating to the potential pathophysiological role(s) of anaerobes within the cystic fibrosis lungs. The most frequently identified anaerobic bacteria in the lower airways are common to both cystic fibrosis and healthy lungs. Studies have shown that in cystic fibrosis, the relative abundance of anaerobes fluctuates in the lower airways with reduced lung function and increased inflammation associated with a decreased anaerobic load. However, anaerobes found within the lower airways also produce virulence factors, may cause a host inflammatory response and interact synergistically with recognized pathogens. Anaerobic bacteria are potentially members of the airway microbiota in health but could also contribute to the pathogenesis of lower airway disease in cystic fibrosis via both direct and indirect mechanisms. A personalized treatment strategy that maintains a normal microbial community may be possible in the future.

  16. Particle deposition in tracheobronchial airways of an infant, child and adult.

    PubMed

    Deng, Qihong; Ou, Cuiyun; Chen, Jiao; Xiang, Yuguang

    2018-01-15

    Particle deposition in human airways is important for assessing both health effects of inhaled particles and therapeutic efficacy of inhaled drug aerosols, but is not well understood for infants and children. We investigate particle deposition in infants and children by using computational fluid dynamics (CFD), and compare this with particle deposition in adults. We chose three population age groups: 7-month infant, 4-year old child, and 20-year old adult. Both airway structures and breathing conditions are considered to vary as a human grows from infancy to adulthood. We investigated deposition of micron-size particles (1-10μm) in both the upper (G3-G6) and lower (G9-G12) tracheobronchial (TB) airways under sedentary conditions. We found that particle deposition in both upper and lower airways is the highest in an infant, next in a child, and lowest in an adult. As age increases, particle deposition decreases in the upper airways but increases in the lower. For infants, inertial impaction is the dominant deposition mechanism, thus particles are deposited more in the upper airways than in the lower. However, particles are deposited more in the lower airways than in the upper in adults, as gravitational sedimentation is the dominant deposition mechanism. Given the differences in the airway structure and particle deposition mechanisms, particle deposition in infants and children differs from that in adults, not only in the efficiency of deposition but also in the site. Our findings provide evidence that "children are not small adults". Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Arsenic Compromises Conducting Airway Epithelial Barrier Properties in Primary Mouse and Immortalized Human Cell Cultures

    PubMed Central

    Sherwood, Cara L.; Liguori, Andrew E.; Olsen, Colin E.; Lantz, R. Clark; Burgess, Jefferey L.; Boitano, Scott

    2013-01-01

    Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb)] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE) cell model we found that both micromolar (3.9 μM) and submicromolar (0.8 μM) arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl) Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-). We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway. PMID:24349408

  18. Airway compliance and dynamics explain the apparent discrepancy in length adaptation between intact airways and smooth muscle strips.

    PubMed

    Dowie, Jackson; Ansell, Thomas K; Noble, Peter B; Donovan, Graham M

    2016-01-01

    Length adaptation is a phenomenon observed in airway smooth muscle (ASM) wherein over time there is a shift in the length-tension curve. There is potential for length adaptation to play an important role in airway constriction and airway hyper-responsiveness in asthma. Recent results by Ansell et al., 2015 (JAP 2014 10.1152/japplphysiol.00724.2014) have cast doubt on this role by testing for length adaptation using an intact airway preparation, rather than strips of ASM. Using this technique they found no evidence for length adaptation in intact airways. Here we attempt to resolve this apparent discrepancy by constructing a minimal mathematical model of the intact airway, including ASM which follows the classic length-tension curve and undergoes length adaptation. This allows us to show that (1) no evidence of length adaptation should be expected in large, cartilaginous, intact airways; (2) even in highly compliant peripheral airways, or at more compliant regions of the pressure-volume curve of large airways, the effect of length adaptation would be modest and at best marginally detectable in intact airways; (3) the key parameters which control the appearance of length adaptation in intact airways are airway compliance and the relaxation timescale. The results of this mathematical simulation suggest that length adaptation observed at the level of the isolated ASM may not clearly manifest in the normal intact airway. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Effect of Class III bone anchor treatment on airway.

    PubMed

    Nguyen, Tung; De Clerck, Hugo; Wilson, Michael; Golden, Brent

    2015-07-01

    To compare airway volumes and minimum cross-section area changes of Class III patients treated with bone-anchored maxillary protraction (BAMP) versus untreated Class III controls. Twenty-eight consecutive skeletal Class III patients between the ages of 10 and 14 years (mean age, 11.9 years) were treated using Class III intermaxillary elastics and bilateral miniplates (two in the infra-zygomatic crests of the maxilla and two in the anterior mandible). The subjects had cone beam computed tomographs (CBCTs) taken before initial loading (T1) and 1 year out (T2). Twenty-eight untreated Class III patients (mean age, 12.4 years) had CBCTs taken and cephalograms generated. The airway volumes and minimum cross-sectional area measurements were performed using Dolphin Imaging 11.7 3D software. The superior border of the airway was defined by a plane that passes through the posterior nasal spine and basion, while the inferior border included the base of the epiglottis to the lower border of C3. From T1 to T2, airway volume from BAMP-treated subjects showed a statistically significant increase (1499.64 mm(3)). The area in the most constricted section of the airway (choke point) increased slightly (15.44 mm(2)). The airway volume of BAMP patients at T2 was 14136.61 mm(3), compared with 14432.98 mm(3) in untreated Class III subjects. Intraexaminer correlation coefficients values and 95% confidence interval values were all greater than .90, showing a high degree of reliability of the measurements. BAMP treatment did not hinder the development of the oropharynx.

  20. Pharyngeal airway changes following maxillary expansion or protraction: A meta-analysis.

    PubMed

    Lee, W-C; Tu, Y-K; Huang, C-S; Chen, R; Fu, M-W; Fu, E

    2018-02-01

    The aim of this meta-analysis was to investigate the changes in airway dimensions after rapid maxillary expansion (RME) and facemask (FM) protraction. Using PubMed, Medline, ScienceDirect and Web of Science, only controlled clinical trials, published up to November 2016, with RME and/or FM as keywords that had ≥6 months follow-up period were included in this meta-analysis. The changes in pharyngeal airway dimension in both two-dimensional and three-dimensional images were included in the analysis. Nine studies met the criteria. There are statically significant changes in upper airway and nasal passage airway in the intervention groups as compared to the control groups, assessed in two-dimensional and three-dimensional images. However , in the lower airway and the airway below the palatal plane, no statistically significant changes are seen in 2D and 3D images. RME/FM treatments might increase the upper airway space in children and young adolescents. However, more RCTs and long-term cohort studies are needed to further clarify the effects on pharyngeal airway changes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Progesterone attenuates airway remodeling and glucocorticoid resistance in a murine model of exposing to ozone.

    PubMed

    Zhang, Xue; Bao, Wuping; Fei, Xia; Zhang, Yingying; Zhang, Guoqing; Zhou, Xin; Zhang, Min

    2018-04-01

    Airway remodeling is a vital component of chronic obstructive pulmonary disease (COPD). Despite the broad anti-inflammation effects of glucocorticoids, they exhibit relatively little therapeutic benefit in COPD, indicating the accelerating demands of new agents for COPD. We aim to explore the effect of progesterone on airway remodeling in a murine modeling of exposing to ozone and to further examine the potential effect of progesterone on glucocorticoid insensitivity. C57/BL6 mice were exposed to ozone for 12 times over 6 weeks, and were administered with progesterone alone or combined with budesonide (BUD) after each exposure until the 10th week. The peribronchial collagen deposition was measured. The protein levels of MMP8 and MMP9 in bronchoalveolar lavage fluid (BALF) and lungs were assessed. Western blot analysis was used to detect the levels of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), a-smooth muscle actin (α-SMA), glycogen synthase kinase-3β (GSK-3β). The expression of VEGF and histone deacetylase 2 (HDAC2) in the lung were determined by Immunohistochemical analyses. We observe that progesterone attenuates the peribronchial collagen deposition, as well as the expression of MMP8, MMP9, HIF-1α, VEGF, α-SMA, and GSK-3β in BALF or lung tissues. Progesterone or BUD monotherapy has no effect on HDAC2 production. Progesterone combines with BUD induce dramatically enhanced effects. Thus, these results demonstrate novel roles of progesterone for the pathogenesis and airway remodeling in COPD. Progesterone plus BUD administration exerts more significant inhibition on airway remodeling with dose-independent. Additionally, progesterone may, to some extent, improve the glucocorticoid insensitivity. Copyright © 2018. Published by Elsevier Ltd.

  2. Airway difficulty in Mallampati 'class zero' patients: a prospective double-blind observational study.

    PubMed

    Hegde, Harihar V; Prasad, Kothegala C; Bhat, Manjunath T; Hegde, Jyothirmay S; Santhosh Mysore, C b; Yaliwal, Vijay G; Raghavendra Rao, P

    2012-07-01

    Assessment of Mallampati class is an integral part of preoperative airway evaluation. Increasing Mallampati class is known to be associated with greater difficulty with intubation, but some cases of airway difficulty in Mallampati 'class zero' patients have been reported. We undertook this study to evaluate intubation difficulty and to correlate this with indirect laryngoscopy findings in Mallampati class zero patients. The incidence of Mallampati class zero airway in Indian patients and the difficulty in mask ventilation were also evaluated. Prospective double-blind observational study. A tertiary care medical college hospital in Karnataka, India. September 2010 to April 2011. Patients of either sex, 18 years and older, presenting for preanaesthetic examination for elective surgery were evaluated. All patients with Mallampati class zero airway undergoing general anaesthesia with tracheal intubation were included. Exclusion criteria were upper airway disorder, unstable cervical spine, increased risk for aspiration, ischaemic heart disease, increased intracranial pressure, respiratory distress, those unable to sit upright, or infected with hepatitis B, hepatitis C, HIV or pulmonary tuberculosis, or requiring emergency surgery. All underwent indirect laryngoscopy performed by the otorhinolaryngologist and subsequently, direct laryngoscopy performed by the anaesthesiologist. Intubation difficulty was assessed by the Cormack & Lehane grades. Evaluation of intubation difficulty and correlation with indirect laryngoscopy findings in Mallampati class zero patients. Estimation of the incidence of Mallampati class zero airway in Indian patients and the difficulty in mask ventilation. Twenty women and thirteen men, aged 18-65 years, of Mallampati class zero were identified out of 1937 (incidence, 1.7%). The data of 27 patients were analysed. Two patients had 'difficult' mask ventilation. All had a 'predicted easy' airway on indirect laryngoscopy and 'easy' (Cormack & Lehane

  3. Targeting Phosphoinositide 3-Kinase γ in Airway Smooth Muscle Cells to Suppress Interleukin-13-Induced Mouse Airway Hyperresponsiveness

    PubMed Central

    Jiang, Haihong; Xie, Yan; Abel, Peter W.; Toews, Myron L.; Townley, Robert G.; Casale, Thomas B.

    2012-01-01

    We recently reported that phosphoinositide 3-kinase γ (PI3Kγ) directly regulates airway smooth muscle (ASM) contraction by modulating Ca2+ oscillations. Because ASM contraction plays a critical role in airway hyperresponsiveness (AHR) of asthma, the aim of the present study was to determine whether targeting PI3Kγ in ASM cells could suppress AHR in vitro and in vivo. Intranasal administration into mice of interleukin-13 (IL-13; 10 μg per mouse), a key pathophysiologic cytokine in asthma, induced AHR after 48 h, as assessed by invasive tracheostomy. Intranasal administration of a broad-spectrum PI3K inhibitor or a PI3Kγ-specific inhibitor 1 h before AHR assessment attenuated IL-13 effects. Airway responsiveness to bronchoconstrictor agonists was also examined in precision-cut mouse lung slices pretreated without or with IL-13 for 24 h. Acetylcholine and serotonin dose-response curves indicated that IL-13-treated lung slices had a 40 to 50% larger maximal airway constriction compared with controls. Furthermore, acetylcholine induced a larger initial Ca2+ transient and increased Ca2+ oscillations in IL-13-treated primary mouse ASM cells compared with control cells, correlating with increased cell contraction. As expected, PI3Kγ inhibitor treatment attenuated IL-13-augmented airway contractility of lung slices and ASM cell contraction. In both control and IL-13-treated ASM cells, small interfering RNA-mediated knockdown of PI3Kγ by 70% only reduced the initial Ca2+ transient by 20 to 30% but markedly attenuated Ca2+ oscillations and contractility of ASM cells by 50 to 60%. This report is the first to demonstrate that PI3Kγ in ASM cells is important for IL-13-induced AHR and that acute treatment with a PI3Kγ inhibitor can ameliorate AHR in a murine model of asthma. PMID:22543031

  4. Pulmonary edema associated with upper airway obstruction in dogs.

    PubMed

    Algren, J T; Price, R D; Buchino, J J; Stremel, R W

    1993-12-01

    In order to evaluate the effect of acute upper airway obstruction upon pulmonary edema (PE) formation, we studied seven dogs that were subjected to inspiratory obstruction for three hours. Hypoxia was avoided by the administration of supplemental oxygen during the study period. Six dogs developed pulmonary vascular congestion, and four developed histologic findings of PE. Inspiratory intrapleural pressure decreased to -28 +/- 4 mmHg in dogs that developed PE and to -23 +/- 2 mmHg in dogs that did not. Transmural pulmonary artery pressure and pulmonary artery wedge pressure did not increase significantly. Central venous pressure during inspiration (CVPi) increased in all dogs, and CVP at end expiration (CVPe) was significantly higher in dogs with PE. Dogs that developed PE experienced a decrease in cardiac output and an increase in systemic vascular resistance. Furthermore, alveolar ventilation declined in dogs with PE, ultimately resulting in ventilatory failure. Pulmonary edema formation was not preceded by an increase in pulmonary vascular pressures but was associated with higher CVP, pulmonary vascular congestion, and hypercarbia.

  5. [Correlation between obstructive apnea syndrome and difficult airway in ENT surgery].

    PubMed

    Pera, Marcia Hiray; Tardelli, Maria Angela; Novo, Neil Ferreira; Juliano, Yara; Silva, Helga Cristina Almeida da

    2017-12-21

    ENT patients with obstructive sleep apnea syndrome have a tendency of collapsing the upper airways in addition to anatomical obstacles. Obstructive sleep apnea syndrome is related to the increased risk of difficult airway and also increased perioperative complications. In order to identify these patients in the preoperative period, the STOP Bang questionnaire has been highlighted because it is summarized and easy to apply. Evaluate through the STOP Bang questionnaire whether patients undergoing ENT surgery with a diagnosis of obstructive sleep apnea syndrome have a higher risk of complications, particularly the occurrence of difficult airway. Measurements of anatomical parameters for difficult airway and questionnaire application for clinical prediction of obstructive sleep apnea syndrome were performed in 48 patients with a previous polysomnographic study. The sample detected difficult airway in about 18.7% of patients, all of them with obstructive sleep apnea syndrome. This group had older age, cervical circumference > 40cm, ASA II and Cormack III/IV. Patients with obstructive sleep apnea syndrome had higher body mass index, cervical circumference, and frequent apnea. In subgroup analysis, the group with severe obstructive sleep apnea syndrome showed a significantly higher SB score compared to patients without this syndrome or with a mild/moderate obstructive sleep apnea syndrome. The STOP Bang questionnaire was not able to predict difficult airway and mild obstructive sleep apnea syndrome, but it identified marked obstructive sleep apnea syndrome. All patients with difficult airway had moderate and marked obstructive sleep apnea syndrome, although this syndrome did not involve difficult airway. The variables Cormack III/IV and BMI greater than 35 Kg.m -2 were able to predict difficult airway and obstructive sleep apnea syndrome, respectively. Copyright © 2017 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  6. Rhinovirus disrupts the barrier function of polarized airway epithelial cells.

    PubMed

    Sajjan, Umadevi; Wang, Qiong; Zhao, Ying; Gruenert, Dieter C; Hershenson, Marc B

    2008-12-15

    Secondary bacterial infection following rhinovirus (RV) infection has been recognized in chronic obstructive pulmonary disease. We sought to understand mechanisms by which RV infection facilitates secondary bacterial infection. Primary human airway epithelial cells grown at air-liquid interface and human bronchial epithelial (16HBE14o-) cells grown as polarized monolayers were infected apically with RV. Transmigration of bacteria (nontypeable Haemophilus influenzae and others) was assessed by colony counting and transmission electron microscopy. Transepithelial resistance (R(T)) was measured by using a voltmeter. The distribution of zona occludins (ZO)-1 was determined by immunohistochemistry and immunoblotting. Epithelial cells infected with RV showed 2-log more bound bacteria than sham-infected cultures, and bacteria were recovered from the basolateral media of RV- but not sham-infected cells. Infection of polarized airway epithelial cell cultures with RV for 24 hours caused a significant decrease in R(T) without causing cell death or apoptosis. Ultraviolet-treated RV did not decrease R(T), suggesting a requirement for viral replication. Reduced R(T) was associated with increased paracellular permeability, as determined by flux of fluorescein isothiocyanate (FITC)-inulin. Neutralizing antibodies to tumor necrosis factor (TNF)-alpha, IFN-gamma and IL-1beta reversed corresponding cytokine-induced reductions in R(T) but not that induced by RV, indicating that the RV effect is independent of these proinflammatory cytokines. Confocal microscopy and immunoblotting revealed the loss of ZO-1 from tight junction complexes in RV-infected cells. Intranasal inoculation of mice with RV1B also caused the loss of ZO-1 from the bronchial epithelium tight junctions in vivo. RV facilitates binding, translocation, and persistence of bacteria by disrupting airway epithelial barrier function.

  7. Hyoid expansion with titanium plate and screw: a human cadaveric study using computer-assisted airway measurement.

    PubMed

    Toh, Song-Tar; Hsu, Pon-Poh; Tan, Kah Leong Alvin; Lu, Kuo-Sun Peter; Han, Hong-Juan

    2013-08-01

    Hyoid expansion with suspension can potentially increase the upper airway at the hypopharyngeal level, benefitting patients with sleep-related breathing disorder. To document the effect of hyoid expansion using titanium plate and screw on retrolingual hypopharyngeal airway dimension and to compare the airway dimension after isolated hyoid expansion with hyoid expansion + hyomandibular suspension. Anatomical cadaveric dissection study. This study was performed in a laboratory setting using human cadavers. This is an anatomical feasibility study of hyoid expansion using titanium plate and screw on 10 cadaveric human heads and necks. The hyoid bone is trifractured with bony cuts made just medial to the lesser cornu. The freed hyoid body and lateral segments are expanded and stabilized to a titanium adaptation plate. Computer-assisted airway measurement (CAM) was used to measure the airway dimension at the hypopharynx at the level of the tongue base before and after the hyoid expansion. The expanded hyoid bone was then suspended to the mandible, and the airway dimension was measured again with CAM. Airway dimension after isolated hyoid expansion with hyoid expansion with hyomandibular suspension. RESULTS Hyoid expansion with titanium plate and screw resulted in statistical significant increase in the retrolingual hypopharyngeal airway space in all of the 10 human cadavers. The mean (SD) increase in retroglossal area was 33.4 (13.2) mm² (P < .005) (range, 6.0-58.7 mm²). Hyoid expansion with hyomandibular suspension resulted in a greater degree of airway enlargement. The mean (SD) increase in retroglossal area was 99.4 (15.0) mm² (P < .005) (range, 81.9-127.5 mm²). The retrolingual hypopharyngeal airway space increased with hyoid expansion using titanium plate and screw in our human cadaveric study, measured using CAM. The degree of increase is further augmented with hyomandibular suspension.

  8. Fentanyl reduces desflurane-induced airway irritability following thiopental administration in children.

    PubMed

    Lee, J; Oh, Y; Kim, C; Kim, S; Park, H; Kim, H

    2006-10-01

    Airway irritation is a major drawback of desflurane anesthesia. This study was designed to evaluate the effect of intravenous fentanyl given before thiopental induction on airway irritation caused by a stepwise increase in desflurane in children. Eighty children (2-8 years) were enrolled in a randomized, double-blind study. Forty received saline and 40 received 2 microg/kg of fentanyl intravenously; this was followed by thiopental sodium 5 mg/kg in both groups. Patients were assistant-ventilated with desflurane 1%, which was then increased by 1% every six breaths up to 10%. During this period, cough, secretion, excitation and apnea were graded and the desflurane concentration at which airway irritation symptoms first occurred was recorded. The results were analyzed using Pearson's chi-squared test. The incidence of typical airway irritation events was lower with fentanyl than with saline (cough, 2.5% vs. 42.5%; secretion, 27.5% vs. 82.5%; excitation, 10% vs. 82.5%; apnea, 20% vs. 65%; P < 0.05). The mean expired desflurane concentration at which the first airway irritation symptom occurred was greater with fentanyl than with saline (7.3% vs. 5.5%, P < 0.05). Intravenous fentanyl in children reduces airway complications caused by desflurane.

  9. Evaluation of pharmacological relaxation effect of the natural product naringin on in vitro cultured airway smooth muscle cells and in vivo ovalbumin-induced asthma Balb/c mice

    PubMed Central

    Wang, Yue; Lu, Yun; Luo, Mingzhi; Shi, Xiaohao; Pan, Yan; Zeng, Huilong; Deng, Linhong

    2016-01-01

    Asthma has become a common chronic respiratory disease worldwide and its prevalence is predicted to continue increasing in the next decade, particularly in developing countries. A key component in asthma therapy is to alleviate the excessive bronchial airway narrowing ultimately due to airway smooth muscle contraction, which is often facilitated by a smooth muscle relaxant, such as the β2-adrenergic agonists. Recently, bitter taste receptor (TAS2R) agonists, including saccharin and chloroquine, have been found to potently relax the airway smooth muscle cells (ASMCs) via intracellular Ca2+ signaling. This inspires a great interest in screening the vast resource of natural bitter substances for potential bronchodilatory drugs. In the present study, the relaxation effect of naringin, a compound extracted from common grapefruit, on ASMCs cultured in vitro or bronchial airways of Balb/c mice in vivo was evaluated. The results demonstrated that, when exposed to increasing doses of naringin (0.125, 0.25, 0.5 and 1.0 mM), the traction force generated by the cultured ASMCs decreased progressively, while the intracellular calcium flux signaling in the ASMCs increased. When inhaled at increasing doses (15, 30 and 60 µg), naringin also dose-dependently reduced the bronchial airway resistance of the normal and ovalbumin-induced asthma Balb/c mice in response to challenge with methacholine. In conclusion, these findings indicate that naringin was able to effectively relax murine ASMCs in vitro and in vivo, thus suggesting that it is a promising drug agent to be further investigated in the development of novel bronchodilators for the treatment of asthma. PMID:28101344

  10. Emotions and stress increase respiratory resistance in asthma.

    PubMed

    Ritz, T; Steptoe, A; DeWilde, S; Costa, M

    2000-01-01

    Clinical reports suggest that various emotions and types of stress can precipitate asthmatic symptoms, but there is little experimental evidence to substantiate this claim. We studied the impact of different emotional states and stress on respiratory resistance in asthmatic and nonasthmatic individuals. Participants (24 asthmatic and 24 nonasthmatic patients) viewed short film sequences selected to induce anxiety, anger, depression, elation, happiness, contentment, or a neutral affective state and completed two stressful tasks, mental arithmetic to induce active coping efforts and viewing of medical slides to induce passive coping efforts. Oscillatory resistance, heart rate, blood pressure, baroreflex sensitivity, skin conductance level, respiration rate and volume, and self-reported affective state were measured throughout the session. Uniform increases in oscillatory resistance were found in all emotional states compared with the neutral state and during mental arithmetic in both groups. Asthmatic patients showed stronger reactions to the medical slides than healthy control subjects, with significant increases in oscillatory resistance, blood pressure, skin conductance level, and minute volume, as well as higher levels of self-reported depression, arousal, and shortness of breath. Changes in oscillatory resistance were inconsistently correlated with other physiological indices. Various emotional states and stress increase oscillatory resistance largely independently of concurrent increases in autonomic or ventilatory activity. The particular sensitivity of asthmatics to passive coping demand requires additional research.

  11. Localized compliance of small airways in excised rat lungs using microfocal X-ray computed tomography.

    PubMed

    Sera, Toshihiro; Fujioka, Hideki; Yokota, Hideo; Makinouchi, Akitake; Himeno, Ryutaro; Schroter, Robert C; Tanishita, Kazuo

    2004-05-01

    Airway compliance is a key factor in understanding lung mechanics and is used as a clinical diagnostic index. Understanding such mechanics in small airways physiologically and clinically is critical. We have determined the "morphometric change" and "localized compliance" of small airways under "near"-physiological conditions; namely, the airways were embedded in parenchyma without dehydration and fixation. Previously, we developed a two-step method to visualize small airways in detail by staining the lung tissue with a radiopaque solution and then visualizing the tissue with a cone-beam microfocal X-ray computed tomography system (Sera et al. J Biomech 36: 1587-1594, 2003). In this study, we used this technique to analyze changes in diameter and length of the same small airways ( approximately 150 microm ID) and then evaluated the localized compliance as a function of airway generation (Z). For smaller (<300-microm-diameter) airways, diameter was 36% larger at end-tidal inspiration and 89% larger at total lung capacity; length was 18% larger at end-tidal inspiration and 43% larger at total lung capacity than at functional residual capacity. Diameter, especially at smaller airways, did not behave linearly with V(1/3) (where V is volume). With increasing lung pressure, diameter changed dramatically at a particular pressure and length changed approximately linearly during inflation and deflation. Percentage of airway volume for smaller airways did not behave linearly with that of lung volume. Smaller airways were generally more compliant than larger airways with increasing Z and exhibited hysteresis in their diameter behavior. Airways at higher Z deformed at a lower pressure than those at lower Z. These results indicated that smaller airways did not behave homogeneously.

  12. 3D CFD Simulation of Plug Dynamics and Splitting through a Bifurcating Airway Model

    NASA Astrophysics Data System (ADS)

    Hoi, Cory; Raessi, Mehdi

    2017-11-01

    Respiratory distress syndrome (RDS) occurs because of pulmonary surfactant insufficiency in the lungs of preterm infants. The common medical procedure to treat RDS, called surfactant respiratory therapy (SRT), involves instilling liquid surfactant plugs into the pulmonary airways. SRT's effectiveness highly depends on the ability to deliver surfactant through the complex branching airway network. Experimental and computational efforts have been made to understand complex fluid dynamics of liquid plug motion through the lung airways in order to increase SRT's response rate. However, previous computational work used 2D airway model geometries and studied plug dynamics of a pre-split plug. In this work, we present CFD simulations of surfactant plug motion through a 3D bifurcating airway model. In our 3D y-tube geometry representing the lung airways, we are not limited by 2D or pre-split plug assumptions. The airway walls are covered with a pre-existing liquid film. Using a passive scalar marking the surfactant plug, the plug splitting and surfactant film deposition is studied under various airway orientations. Exploring the splitting process and liquid distribution in a 3D geometry will advance our understanding of surfactant delivery and will increase the effectiveness of SRT.

  13. Critical Airway Team: A Retrospective Study of an Airway Response System in a Pediatric Hospital.

    PubMed

    Sterrett, Emily C; Myer, Charles M; Oehler, Jennifer; Das, Bobby; Kerrey, Benjamin T

    2017-12-01

    Objective Study the performance of a pediatric critical airway response team. Study Design Case series with chart review. Setting Freestanding academic children's hospital. Subjects and Methods A structured review of the electronic medical record was conducted for all activations of the critical airway team. Characteristics of the activations and patients are reported using descriptive statistics. Activation of the critical airway team occurred 196 times in 46 months (March 2012 to December 2015); complete data were available for 162 activations (83%). For 49 activations (30%), patients had diagnoses associated with difficult intubation; 45 (28%) had a history of difficult laryngoscopy. Results Activation occurred at least 4 times per month on average (vs 3 per month for hospital-wide codes). The most common reasons for team activation were anticipated difficult intubation (45%) or failed intubation attempt (20%). For 79% of activations, the team performed an airway procedure, most commonly direct laryngoscopy and tracheal intubation. Bronchoscopy was performed in 47% of activations. Surgical airway rescue was attempted 4 times. Cardiopulmonary resuscitation occurred in 41 activations (25%). Twenty-nine patients died during or following team activation (18%), including 10 deaths associated with the critical airway event. Conclusion Critical airway team activation occurred at least once per week on average. Direct laryngoscopy, tracheal intubation, and bronchoscopic procedures were performed frequently; surgical airway rescue was rare. Most patients had existing risk factors for difficult intubation. Given our rate of serious morbidity and mortality, primary prevention of critical airway events will be a focus of future efforts.

  14. A 4-Week Model of House Dust Mite (HDM) Induced Allergic Airways Inflammation with Airway Remodeling.

    PubMed

    Woo, L N; Guo, W Y; Wang, X; Young, A; Salehi, S; Hin, A; Zhang, Y; Scott, J A; Chow, C W

    2018-05-02

    Animal models of allergic airways inflammation are useful tools in studying the pathogenesis of asthma and potential therapeutic interventions. The different allergic airways inflammation models available to date employ varying doses, frequency, duration and types of allergen, which lead to the development of different features of asthma; showing varying degrees of airways inflammation and hyper-responsiveness (AHR) and airways remodeling. Models that also exhibit airway remodeling, a key feature of asthma, in addition to AHR and airway inflammation typically require 5-12 weeks to develop. In this report, we describe a 4-week mouse model of house dust mite (HDM)-induced allergic airways inflammation, and compare the phenotypic features of two different doses of HDM exposures (10 µg and 25 µg) for 5 days/week with a well-characterized 8-week chronic HDM model. We found that 4 weeks of intranasal HDM (25 µg in 35 µl saline; 5 days/week) resulted in AHR, airway inflammation and airway remodeling that were comparable to the 8-week model. We conclude that this new 4-week HDM model is another useful tool in studies of human asthma that offers advantages of shorter duration for development and decreased costs when compared to other models that require longer durations of exposure (5-12 weeks) to develop.

  15. Orosomucoid-like 3 (ORMDL3) upregulates airway smooth muscle proliferation, contraction, and Ca2+ oscillations in asthma.

    PubMed

    Chen, Jun; Miller, Marina; Unno, Hirotoshi; Rosenthal, Peter; Sanderson, Michael J; Broide, David H

    2017-09-07

    Airway hyperresponsiveness is a major feature of asthma attributed predominantly to an extrinsic immune/inflammatory response increasing airway smooth muscle (ASM) contractility. We investigated whether increased ASM expression of orosomucoid-like 3 (ORMDL3), a gene on chromosome 17q21 highly linked to asthma, induced increased ASM proliferation and contractility in vitro and influenced airway contractility and calcium flux in ASM in precision-cut lung slices (PCLSs) from wild-type and hORMDL3 Zp3-Cre mice (which express increased levels of human ORMDL3 [hORMDL3]). Levels of ASM proliferation and contraction were assessed in ASM cells transfected with ORMDL3 in vitro. In addition, airway contractility and calcium oscillations were quantitated in ASM cells in PCLSs derived from naive wild-type and naive hORMDL3 Zp3-Cre mice, which do not have a blood supply. Increased ASM expression of ORMDL3 in vitro resulted in increased ASM proliferation and contractility. PCLSs derived from naive hORMDL3 Zp3-Cre mice, which do not have airway inflammation, exhibit increased airway contractility with increased calcium oscillations in ASM cells. Increased ASM ORMDL3 expression increases levels of ASM sarcoplasmic reticulum Ca 2+ ATPase 2b (SERCA2b), which increases ASM proliferation and contractility. Overall, these studies provide evidence that an intrinsic increase in ORMDL3 expression in ASM can induce increased ASM proliferation and contractility, which might contribute to increased airway hyperresponsiveness in the absence of airway inflammation in asthmatic patients. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. Exposure to welding fumes and lower airway infection with Streptococcus pneumoniae.

    PubMed

    Suri, Reetika; Periselneris, Jimstan; Lanone, Sophie; Zeidler-Erdely, Patti C; Melton, Geoffrey; Palmer, Keith T; Andujar, Pascal; Antonini, James M; Cohignac, Vanessa; Erdely, Aaron; Jose, Ricardo J; Mudway, Ian; Brown, Jeremy; Grigg, Jonathan

    2016-02-01

    Welders are at increased risk of pneumococcal pneumonia. The mechanism for this association is not known. The capacity of pneumococci to adhere to and infect lower airway cells is mediated by host-expressed platelet-activating factor receptor (PAFR). We sought to assess the effect of mild steel welding fumes (MS-WF) on PAFR-dependent pneumococcal adhesion and infection to human airway cells in vitro and on pneumococcal airway infection in a mouse model. The oxidative potential of MS-WF was assessed by their capacity to reduce antioxidants in vitro. Pneumococcal adhesion and infection of A549, BEAS-2B, and primary human bronchial airway cells were assessed by means of quantitative bacterial culture and expressed as colony-forming units (CFU). After intranasal instillation of MS-WF, mice were infected with Streptococcus pneumoniae, and bronchoalveolar lavage fluid (BALF) and lung CFU values were determined. PAFR protein levels were assessed by using immunofluorescence and immunohistochemistry, and PAFR mRNA expression was assessed by using quantitative PCR. PAFR was blocked by CV-3988, and oxidative stress was attenuated by N-acetylcysteine. MS-WF exhibited high oxidative potential. In A549 and BEAS-2B cells MS-WF increased pneumococcal adhesion and infection and PAFR protein expression. Both CV-3988 and N-acetylcysteine reduced MS-WF-stimulated pneumococcal adhesion and infection of airway cells. MS-WF increased mouse lung PAFR mRNA expression and increased BALF and lung pneumococcal CFU values. In MS-WF-exposed mice CV-3988 reduced BALF CFU values. Hypersusceptibility of welders to pneumococcal pneumonia is in part mediated by the capacity of welding fumes to increase PAFR-dependent pneumococcal adhesion and infection of lower airway cells. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  17. Exposure to welding fumes and lower airway infection with Streptococcus pneumoniae

    PubMed Central

    Suri, Reetika; Periselneris, Jimstan; Lanone, Sophie; Zeidler-Erdely, Patti C.; Melton, Geoffrey; Palmer, Keith T.; Andujar, Pascal; Antonini, James M.; Cohignac, Vanessa; Erdely, Aaron; Jose, Ricardo J.; Mudway, Ian; Brown, Jeremy; Grigg, Jonathan

    2015-01-01

    Background Welders are at increased risk of pneumococcal pneumonia. The mechanism for this association is not known. The capacity of pneumococci to adhere to and infect lower airway cells is mediated by host-expressed platelet-activating factor receptor (PAFR). Objective We sought to assess the effect of mild steel welding fumes (MS-WF) on PAFR-dependent pneumococcal adhesion and infection to human airway cells in vitro and on pneumococcal airway infection in a mouse model. Methods The oxidative potential of MS-WF was assessed by their capacity to reduce antioxidants in vitro. Pneumococcal adhesion and infection of A549, BEAS-2B, and primary human bronchial airway cells were assessed by means of quantitative bacterial culture and expressed as colony-forming units (CFU). After intranasal instillation of MS-WF, mice were infected with Streptococcus pneumoniae, and bronchoalveolar lavage fluid (BALF) and lung CFU values were determined. PAFR protein levels were assessed by using immunofluorescence and immunohistochemistry, and PAFR mRNA expression was assessed by using quantitative PCR. PAFR was blocked by CV-3988, and oxidative stress was attenuated by N-acetylcysteine. Results: MS-WF exhibited high oxidative potential. In A549 and BEAS-2B cells MS-WF increased pneumococcal adhesion and infection and PAFR protein expression. Both CV-3988 and N-acetylcysteine reduced MS-WF–stimulated pneumococcal adhesion and infection of airway cells. MS-WF increased mouse lung PAFR mRNA expression and increased BALF and lung pneumococcal CFU values. In MS-WF–exposed mice CV-3988 reduced BALF CFU values. Conclusions Hypersusceptibility of welders to pneumococcal pneumonia is in part mediated by the capacity of welding fumes to increase PAFR-dependent pneumococcal adhesion and infection of lower airway cells. PMID:26277596

  18. DETANO and Nitrated Lipids Increase Chloride Secretion across Lung Airway Cells

    PubMed Central

    Chen, Lan; Bosworth, Charles A.; Pico, Tristant; Collawn, James F.; Varga, Karoly; Gao, Zhiqian; Clancy, John Paul; Fortenberry, James A.; Lancaster, Jack R.; Matalon, Sadis

    2008-01-01

    We investigated the cellular mechanisms by which nitric oxide (NO) increases chloride (Cl−) secretion across lung epithelial cells in vitro and in vivo. Addition of (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl) amino] diazen-1-ium-1, 2-diolate (DETANONOate [DETANO];1–1,000 μM) into apical compartments of Ussing chambers containing Calu-3 cells increased short-circuit currents (Isc) from 5.2 ± 0.8 to 15.0 ± 2.1 μA/cm2 (X ± 1 SE; n = 7; P < 0.001). NO generated from two nitrated lipids (nitrolinoleic and nitrooleic acids; 1–10 μM) also increased Isc by about 100%. Similar effects were noted across basolaterally, but not apically, permeabilized Calu-3 cells. None of these NO donors increased Isc in Calu-3 cells pretreated with 10 μM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (an inhibitor of soluble guanylyl cyclase). Scavenging of NO either prevented or reversed the increase of Isc. These data indicate that NO stimulation of soluble guanylyl cyclase was sufficient and necessary for the increase of Isc via stimulation of the apical cystic fibrosis transmembrane regulator (CFTR). Both Calu-3 and alveolar type II (ATII) cells contained CFTR, as demonstrated by in vitro phosphorylation of immunoprecipitated CFTR by protein kinase (PK) A. PKGII (but not PKGI) phosphorylated CFTR immuniprecipitated from Calu-3 cells. Corresponding values in ATII cells were below the threshold of detection. Furthermore, DETANO, 8-Br-cGMP, or 8-(4-chlorophenylthio)-cGMP (up to 2 mM each) did not increase Cl− secretion across amiloride-treated ATII cells in vitro. Measurements of nasal potential differences in anesthetized mice showed that perfusion of the nares with DETANO activated glybenclamide-sensitive Cl− secretion. These findings suggest that small concentrations of NO donors may prove beneficial in stimulating Cl− secretion across airway cells without promoting alveolar edema. PMID:18314534

  19. DETANO and nitrated lipids increase chloride secretion across lung airway cells.

    PubMed

    Chen, Lan; Bosworth, Charles A; Pico, Tristant; Collawn, James F; Varga, Karoly; Gao, Zhiqian; Clancy, John Paul; Fortenberry, James A; Lancaster, Jack R; Matalon, Sadis

    2008-08-01

    We investigated the cellular mechanisms by which nitric oxide (NO) increases chloride (Cl-) secretion across lung epithelial cells in vitro and in vivo. Addition of (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl) amino] diazen-1-ium-1, 2-diolate (DETANONOate [DETANO];1-1,000 microM) into apical compartments of Ussing chambers containing Calu-3 cells increased short-circuit currents (I(sc)) from 5.2 +/- 0.8 to 15.0 +/- 2.1 microA/cm(2) (X +/- 1 SE; n = 7; P < 0.001). NO generated from two nitrated lipids (nitrolinoleic and nitrooleic acids; 1-10 microM) also increased I(sc) by about 100%. Similar effects were noted across basolaterally, but not apically, permeabilized Calu-3 cells. None of these NO donors increased I(sc) in Calu-3 cells pretreated with 10 microM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (an inhibitor of soluble guanylyl cyclase). Scavenging of NO either prevented or reversed the increase of I(sc). These data indicate that NO stimulation of soluble guanylyl cyclase was sufficient and necessary for the increase of I(sc) via stimulation of the apical cystic fibrosis transmembrane regulator (CFTR). Both Calu-3 and alveolar type II (ATII) cells contained CFTR, as demonstrated by in vitro phosphorylation of immunoprecipitated CFTR by protein kinase (PK) A. PKGII (but not PKGI) phosphorylated CFTR immuniprecipitated from Calu-3 cells. Corresponding values in ATII cells were below the threshold of detection. Furthermore, DETANO, 8-Br-cGMP, or 8-(4-chlorophenylthio)-cGMP (up to 2 mM each) did not increase Cl- secretion across amiloride-treated ATII cells in vitro. Measurements of nasal potential differences in anesthetized mice showed that perfusion of the nares with DETANO activated glybenclamide-sensitive Cl- secretion. These findings suggest that small concentrations of NO donors may prove beneficial in stimulating Cl- secretion across airway cells without promoting alveolar edema.

  20. Operative endoscopy of the airway

    PubMed Central

    Walters, Dustin M.

    2016-01-01

    Airway endoscopy has long been an important and useful tool in the management of thoracic diseases. As thoracic specialists have gained experience with both flexible and rigid bronchoscopic techniques, the technology has continued to evolve so that bronchoscopy is currently the foundation for diagnosis and treatment of many thoracic ailments. Airway endoscopy plays a significant role in the biopsy of tumors within the airways, mediastinum, and lung parenchyma. Endoscopic methods have been developed to treat benign and malignant airway stenoses and tracheomalacia. And more recently, techniques have been conceived to treat end-stage emphysema and prolonged air leaks in select patients. This review describes the abundant uses of airway endoscopy, as well as technical considerations and limitations of the current technologies. PMID:26981263

  1. Longitudinal changes in airway remodeling and air trapping in severe asthma

    PubMed Central

    Witt, Chad A.; Sheshadri, Ajay; Carlstrom, Luke; Tarsi, Jaime; Kozlowski, James; Wilson, Brad; Gierada, David; Hoffman, Eric; Fain, Sean; Cook-Granroth, Janice; Sajol, Geneline; Sierra, Oscar; Giri, Tusar; O'Neil, Michael; Zheng, Jie; Schechtman, Kenneth B.; Bacharier, Leonard B.; Jarjour, Nizar; Busse, William; Castro, Mario

    2014-01-01

    Rationale and Objectives Previous cross-sectional studies have demonstrated that airway wall thickness and air trapping are greater in subjects with severe asthma than in those with mild-to-moderate asthma. However, a better understanding of how airway remodeling and lung density change over time is needed. This study aims to evaluate predictors of airway wall remodeling and change in lung function and lung density over time in severe asthma. Materials and Methods Phenotypic characterization and quantitative multidetector computed tomography (MDCT) of the chest was performed at baseline and ∼2.6 years later in 38 participants with asthma (severe n=24, mild-moderate n=14) and 9 normal controls from the Severe Asthma Research Program. Results Subjects with severe asthma had a significant decline in post-bronchodilator FEV1% predicted over time (p = <0.001). Airway wall thickness measured by MDCT was increased at multiple airway generations in severe asthma compared to mild-to-moderate asthma (wall area percent (WA%): p <0.05) and normals (p <0.05) at baseline and year 2. Over time, there was an increase in WA% and wall thickness (WT%) in all subjects (p = 0.030 and 0.009 respectively) with no change in emphysema-like lung or air trapping. Baseline pre-bronchodilator FEV1% inversely correlated with WA% and WT% (both p = <0.05). In a multivariable regression model, baseline WA%, race and healthcare utilization were predictors of subsequent airway remodeling. Conclusions Severe asthma subjects have a greater decline in lung function over time than normal subjects or those with mild-to-moderate asthma. MDCT provides a noninvasive measure of airway wall thickness that may predict subsequent airway remodeling. PMID:25018070

  2. Respiratory gas conditioning in infants with an artificial airway.

    PubMed

    Schulze, Andreas

    2002-10-01

    There is a strong physiological rationale for delivering the inspiratory gas at or close to core body temperature and saturated with water vapour to infants with an artificial airway undergoing long-term mechanical ventilatory assistance. Cascade humidifiers with heated wire ventilatory circuitry may achieve this goal safely. Whenever saturated air leaves the humidifier chamber at 37 degrees C and condensate accumulates in the circuit, the gas loses humidity and acquires the potential to dry airway secretions near the tip of the endotracheal tube. Heat and moisture exchangers and hygroscopic condenser humidifiers with or without bacterial filters have become available for neonates. They can provide sufficient moisture output for short-term ventilation without excessive additional dead space or flow-resistive load for term infants. Their safety and efficacy for very low birthweight infants and for long-term mechanical ventilation has not been established conclusively. A broader application of these inexpensive and simple devices is likely to occur with further design improvements. When heated humidifiers are appropriately applied, water or normal saline aerosol application offers no additional significant advantage in terms of inspiratory gas conditioning and may impose a water overload on the airway or even systemically. Although airway irrigation by periodic bolus instillation of normal saline solution prior to suctioning procedures is widely practised in neonatology, virtually no data exist on its safety and efficacy when used with appropriately humidified inspired gas. There is no evidence that conditioning of inspired gas to core body temperature and full water vapour saturation may promote nosocomial respiratory infections.

  3. Neural control of airway to deep inhalation in rabbits.

    PubMed

    Schweitzer, Cyril; Demoulin, Bruno; Varechova, Silvia; Poussel, Mathias; Marchal, François

    2011-07-31

    Bronchodilation induced by a deep inhalation (DI) is usually attributed to the mechanical interdependence between airways and parenchyma. The aim of the study was to evaluate the contribution of neural control of the airway in the response to DI. In mechanically ventilated rabbits, cervical vagi were cooled using 2 Peltier elements. Lung resistance was measured before and up to 2 min after a DI at vagus nerve temperature = 37 °C (R(L37 °C)), 8 °C (R(L8 °C)) and 4 °C (R(L4 °C)). Measurements were performed in control conditions (Ctrl) and during infusion of methacholine (Mch). At Ctrl, R(L8 °C) and R(L4 °C) were significantly lower than R(L37 °C). After Mch, however, R(L4 °C) was not different from R(L37 °C), both being significantly higher than R(L8 °C). Vagal cold block (VCB) abolished the bronchodilation observed after the control DI and reduced its magnitude after Mch. The magnitude of bronchodilation immediately after the DI was significantly related to baseline R(L) at any vagal temperature (p < 0.001), but the renarrowing was more strongly related to baseline R(L) after VCB than at baseline. The data indicate a significant contribution of respiratory reflexes to the airway response after DI, highlight the influence of vagal control of airway wall visco-elasticity and suggests the occurrence of a moderate reflex bronchodilation in response to Mch. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Repurposing tromethamine as inhaled therapy to treat CF airway disease

    PubMed Central

    Alaiwa, Mahmoud H. Abou; Launspach, Janice L.; Sheets, Kelsey A.; Rivera, Jade A.; Gansemer, Nicholas D.; Taft, Peter J.; Thorne, Peter S.; Welsh, Michael J.; Stoltz, David A.

    2016-01-01

    In cystic fibrosis (CF), loss of CF transmembrane conductance regulator (CFTR) anion channel activity causes airway surface liquid (ASL) pH to become acidic, which impairs airway host defenses. One potential therapeutic approach is to correct the acidic pH in CF airways by aerosolizing HCO3– and/or nonbicarbonate pH buffers. Here, we show that raising ASL pH with inhaled HCO3– increased pH. However, the effect was transient, and pH returned to baseline values within 30 minutes. Tromethamine (Tham) is a buffer with a long serum half-life used as an i.v. formulation to treat metabolic acidosis. We found that Tham aerosols increased ASL pH in vivo for at least 2 hours and enhanced bacterial killing. Inhaled hypertonic saline (7% NaCl) is delivered to people with CF in an attempt to promote mucus clearance. Because an increased ionic strength inhibits ASL antimicrobial factors, we added Tham to hypertonic saline and applied it to CF sputum. We found that Tham alone and in combination with hypertonic saline increased pH and enhanced bacterial killing. These findings suggest that aerosolizing the HCO3–-independent buffer Tham, either alone or in combination with hypertonic saline, might be of therapeutic benefit in CF airway disease. PMID:27390778

  5. [Sleep apnea syndrome -- cause of resistance to treatment of arterial hypertension].

    PubMed

    Frenţ, Stefan; Tudorache, Voicu; Ardelean, Carmen; Dimitriu, Diana; Lighezan, Daniel; Gaiţă, Dan; Mihăicuţă, Stefan

    2011-01-01

    The prevalence of sleep apnea syndrome is relatively high in population (5%). The mortality is significantly higher in those with apnea-hypopnea index >20. There is an increased rate of car accidents in the subjects with OSA compared to those who don't have this syndrome (31% versus 6%). The impact of OSA on mortality is also given by its association with a significant number of cardiovascular diseases. The association between OSA and hypertension has been much debated. The prevalence of hypertension among patients with OSA varies between 50-58%, while the prevalence of OSA in hypertensive patients is 30%. A particular association is OSA and resistant hypertension, i.e. blood pressure that remains above goal in spite of the concurrent use of three antihypertensive agents of different classes, one to be a diuretic and all pharmacological agents being prescribed at recommended doses. Secondary causes of hypertension are common in patients with resistant hypertension. Among these causes, one of the most frequent is sleep apnea syndrome. Some of the mechanisms by which sleep apnea contributes to the development of hypertension are intermittent hypoxia and/or increased upper airway resistance associated with sleep apnea that induces a sustained increase in sympathetic nervous system activity. Treatment of sleep apnea with continuous positive airway pressure devices (CPAP) improves blood pressure control, although the benefit of CPAP evaluated in clinical trials is variable.

  6. The effect of cuff presence and cuff inflation on airway pressure in a canine tracheostomy tube model.

    PubMed

    Wignall, Jamie R; Baines, Stephen J

    2014-01-01

    To evaluate the effect of cuff presence and cuff inflation on airway pressure in an inspiratory model of canine tracheostomy. Ex vivo experimental study. Cadaver tracheas from Beagle dogs were attached aborally to a vacuum. Airway pressure and flow rate was measured before and after placement of tracheostomy tubes. None. Adult uncuffed tubes and cuffed tracheostomy tubes (sizes 4, 6, 8, and 10) were placed within tracheas. Cuffs were investigated without inflation and at maximum cuff inflation. Airway pressure was measured at constant airflow rates at 30 and 60 L/min. At set flow rates, airway pressures of tracheostomy tubes were compared to the intact trachea. A size 4 uncuffed tracheostomy tube showed the lowest airway pressure and a size 4 cuffed trachestomy tube with inflation showed the highest airway pressures. For sizes 6, 8, and 10 tubes, the presence of a cuff with and without inflation significantly increased airway pressure. Inflation of a cuff always significantly increased airway pressure. Similar pressure is seen between sizes 4 and 6 uncuffed tubes. Cuffed tracheostomy tubes should not be used unless specifically indicated due to increased airway pressure. © Veterinary Emergency and Critical Care Society 2013.

  7. Increased concentration of iodide in airway secretions is associated with reduced respiratory syncytial virus disease severity.

    PubMed

    Derscheid, Rachel J; van Geelen, Albert; Berkebile, Abigail R; Gallup, Jack M; Hostetter, Shannon J; Banfi, Botond; McCray, Paul B; Ackermann, Mark R

    2014-02-01

    Recent studies have revealed that the human and nonrodent mammalian airway mucosa contains an oxidative host defense system. This three-component system consists of the hydrogen peroxide (H2O2)-producing enzymes dual oxidase (Duox)1 and Duox2, thiocyanate (SCN(-)), and secreted lactoperoxidase (LPO). The LPO-catalyzed reaction between H2O2 and SCN(-) yields the bactericidal hypothiocyanite (OSCN(-)) in airway surface liquid (ASL). Although SCN(-) is the physiological substrate of LPO, the Duox/LPO/halide system can generate hypoiodous acid when the iodide (I(-)) concentration is elevated in ASL. Because hypoiodous acid, but not OSCN(-), inactivates respiratory syncytial virus (RSV) in cell culture, we used a lamb model of RSV to test whether potassium iodide (KI) could enhance this system in vivo. Newborn lambs received KI by intragastric gavage or were left untreated before intratracheal inoculation of RSV. KI treatment led to a 10-fold increase in ASL I(-) concentration, and this I(-) concentration was approximately 30-fold higher than that measured in the serum. Also, expiratory effort, gross lung lesions, and pulmonary expression of an RSV antigen and IL-8 were reduced in the KI-treated lambs as compared with nontreated control lambs. Inhibition of LPO activity significantly increased lesions, RSV mRNA, and antigen. Similar experiments in 3-week-old lambs demonstrated that KI administration was associated with reduced gross lesions, decreased RSV titers in bronchoalveolar lavage fluid, and reduced RSV antigen expression. Overall, these data indicate that high-dose KI supplementation can be used in vivo to lessen the severity of RSV infections, potentially through the augmentation of mucosal oxidative defenses.

  8. The Human Airway Epithelial Basal Cell Transcriptome

    PubMed Central

    Wang, Rui; Zwick, Rachel K.; Ferris, Barbara; Witover, Bradley; Salit, Jacqueline; Crystal, Ronald G.

    2011-01-01

    Background The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. Methodology/Principal Findings Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the “human airway basal cell signature” as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. Conclusion/Significance The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem

  9. Antitussive activity of Althaea officinalis L. polysaccharide rhamnogalacturonan and its changes in guinea pigs with ovalbumine-induced airways inflammation.

    PubMed

    Sutovska, M; Capek, P; Franova, S; Joskova, M; Sutovsky, J; Marcinek, J; Kalman, M

    2011-01-01

    The presented studies were aimed on experimental confirmation of Althaea officinalis polysaccharide rhamnogalacturonan antitussive effect and its changes in conditions of allergic inflammation. We have tested whether rhamnogalacturonan inhibits cough reflex and modulates airways reactivity of guinea pigs in vivo. The cough in guinea pigs was induced by 0.3 M citric acid (CA) aerosol for 3 min interval, in which total number of cough efforts (sudden enhancement of expiratory flow accompanied by cough movement and sound) was counted. Specific airway resistance and its changes induced by citric acid aerosol were considered as an indicator of the in vivo reactivity changes. 1) Althaea officinalis polysaccharide rhamnogalacturonan dose- dependently inhibits cough reflex in unsensitized guinea pigs. Simultaneously, plant polysaccharide shortened the duration of antitussive effect when it was been tested in inflammatory conditions. 2) Rhamnogalacturonan did not influence airways reactivity in vivo conditions expressed as specific resistance values neither sensitized nor unsensitized groups of animals. 3) The antitussive activity of codeine (dose 10 mg.kg(-1) b.w. orally) tested under the same condition was comparable to higher dose of rhamnogalacturonan in unsensitized animals. 4) The characteristic cellular pattern of allergic airways inflammation was confirmed by histopathological investigations. Rhamnogalacturonan isolated from Althaea officinalis mucilage possesses very high cough suppressive effect in guinea pigs test system, which is shortened in conditions of experimentally induced airways allergic inflammation (Tab. 1, Fig. 4, Ref. 25). Full Text in free PDF www.bmj.sk.

  10. Classification of pulmonary airway disease based on mucosal color analysis

    NASA Astrophysics Data System (ADS)

    Suter, Melissa; Reinhardt, Joseph M.; Riker, David; Ferguson, John Scott; McLennan, Geoffrey

    2005-04-01

    Airway mucosal color changes occur in response to the development of bronchial diseases including lung cancer, cystic fibrosis, chronic bronchitis, emphysema and asthma. These associated changes are often visualized using standard macro-optical bronchoscopy techniques. A limitation to this form of assessment is that the subtle changes that indicate early stages in disease development may often be missed as a result of this highly subjective assessment, especially in inexperienced bronchoscopists. Tri-chromatic CCD chip bronchoscopes allow for digital color analysis of the pulmonary airway mucosa. This form of analysis may facilitate a greater understanding of airway disease response. A 2-step image classification approach is employed: the first step is to distinguish between healthy and diseased bronchoscope images and the second is to classify the detected abnormal images into 1 of 4 possible disease categories. A database of airway mucosal color constructed from healthy human volunteers is used as a standard against which statistical comparisons are made from mucosa with known apparent airway abnormalities. This approach demonstrates great promise as an effective detection and diagnosis tool to highlight potentially abnormal airway mucosa identifying a region possibly suited to further analysis via airway forceps biopsy, or newly developed micro-optical biopsy strategies. Following the identification of abnormal airway images a neural network is used to distinguish between the different disease classes. We have shown that classification of potentially diseased airway mucosa is possible through comparative color analysis of digital bronchoscope images. The combination of the two strategies appears to increase the classification accuracy in addition to greatly decreasing the computational time.

  11. The role of bronchoscopy in the diagnosis of airway disease

    PubMed Central

    Dixon, Jennifer; Tieu, Brandon H.

    2016-01-01

    Endoscopy of the airway is a valuable tool for the evaluation and management of airway disease. It can be used to evaluate many different bronchopulmonary diseases including airway foreign bodies, tumors, infectious and inflammatory conditions, airway stenosis, and bronchopulmonary hemorrhage. Traditionally, options for evaluation were limited to flexible and rigid bronchoscopy. Recently, more sophisticated technology has led to the development of endobronchial ultrasound (EBUS) and electromagnetic navigational bronchoscopy (ENB). These technological advances, combined with increasing provider experience have resulted in a higher diagnostic yield with endoscopic biopsies. This review will focus on the role of bronchoscopy, including EBUS, ENB, and rigid bronchoscopy in the diagnosis of bronchopulmonary diseases. In addition, it will cover the anesthetic considerations, equipment, diagnostic yield, and potential complications. PMID:28149583

  12. Determinants of peripheral airway function in adults with and without asthma.

    PubMed

    Robinson, Paul D; King, Gregory G; Sears, Malcolm R; Hong, Chuen Y; Hancox, Robert J

    2017-08-01

    Peripheral airway involvement in asthma remains poorly understood. We investigated impulse oscillometry (IOS) measures of peripheral airway function in a population-based birth cohort. Pre- and post-bronchodilator spirometry and IOS measures of respiratory resistance and reactance were measured in 915 participants at age 38 years. Current asthma was associated with impairments in both spirometry and IOS parameters. These impairments were greater in men and in those with childhood persistent asthma. Spirometry and IOS values for those whose asthma was in remission were not different to non-asthmatic participants. There were significant changes in IOS in both asthmatic and non-asthmatic participants after bronchodilator, but between-group differences persisted. Higher BMIs were associated with impairments in IOS but not spirometry. Cumulative tobacco use was associated with spirometric airflow obstruction in both sexes, whereas cannabis use was associated with impairments in IOS in women. Despite higher lifetime exposure, there were few associations between cannabis and IOS in men. Asthma is associated with abnormalities in IOS measures of peripheral airway dysfunction. This association is stronger in men and in those with asthma persisting since childhood. Tobacco and cannabis use are associated with different patterns of spirometry and IOS abnormalities and may affect the bronchial tree at different airway generations with differences in susceptibility between sexes. © 2017 Asian Pacific Society of Respirology.

  13. Physical principle of airway design in human lungs

    NASA Astrophysics Data System (ADS)

    Park, Keunhwan; Son, Taeho; Kim, Wonjung; Kim, Ho-Young

    2014-11-01

    From an engineering perspective, lungs are natural microfluidic devices that extract oxygen from air. In the bronchial tree, airways branch by dichotomy with a systematic reduction of their diameters. It is generally accepted that in conducting airways, which air passes on the way to the acinar airways from the atmosphere, the reduction ratio of diameter is closely related to the minimization of viscous dissipation. Such a principle is formulated as the Hess-Murray law. However, in acinar airways, where oxygen transfer to alveolae occurs, the diameter reduction with progressive generations is more moderate than in conducting airways. Noting that the dominant transfer mechanism in acinar airways is diffusion rather than advection, unlike conducting airways, we construct a mathematical model for oxygen transfer through a series of acinar airways. Our model allows us to predict the optimal airway reduction ratio that maximizes the oxygen transfer in a finite airway volume, thereby rationalizing the observed airway reduction ratio in acinar airways.

  14. Airway management in cervical spine injury

    PubMed Central

    Austin, Naola; Krishnamoorthy, Vijay; Dagal, Arman

    2014-01-01

    To minimize risk of spinal cord injury, airway management providers must understand the anatomic and functional relationship between the airway, cervical column, and spinal cord. Patients with known or suspected cervical spine injury may require emergent intubation for airway protection and ventilatory support or elective intubation for surgery with or without rigid neck stabilization (i.e., halo). To provide safe and efficient care in these patients, practitioners must identify high-risk patients, be comfortable with available methods of airway adjuncts, and know how airway maneuvers, neck stabilization, and positioning affect the cervical spine. This review discusses the risks and benefits of various airway management strategies as well as specific concerns that affect patients with known or suspected cervical spine injury. PMID:24741498

  15. Cephalomteric changes in airway dimensions with twin block therapy in growing Class II patients

    PubMed Central

    Vinoth, Santhana Krishnan; Thomas, Ashwin Varghese; Nethravathy, Ramya

    2013-01-01

    Introduction: Myofunctional appliances are commonly used for correction of skeletal Class II malrelationship. These appliances influence craniofacial and nasopharyngeal dimensions. Objectives: The present study was done to evaluate changes in airway with twin block therapy. Materials and Methods: Cephalometric assessment of airway was done in 25 growing children in the age group of 11-13 years with Class II skeletal pattern. All the patients were treated with twin block appliance. Pre and post treatment lateral cephalograms were taken to evaluate the changes in different airway and craniofacial dimensions during the treatment period. The average treatment duration was 14.5 months. Results: Airway: A significant increase was observed in upper and lower pharyngeal width and area of bony nasopharynx. Craniofacial dimension: There was a significant increase in effective mandibular length, ramal length and mandibular plane angle. There was an increase in SNB angle, which resulted in decreased ANB angle. Conclusion: There was a definite improvement in airway dimension following twin block therapy PMID:23946570

  16. The assessment of midface distraction osteogenesis in treatment of upper airway obstruction.

    PubMed

    Xu, Haisong; Yu, Zheyan; Mu, Xiongzheng

    2009-09-01

    Le Fort III osteotomy with midface distraction osteogenesis (Le Fort III DO) can improve the midface form and change the upper airway space. Some surgeons believe that midface advancement can improve respiratory outcome dramatically, but others think it does not predictably result in the cure of obstructive sleep apnea (OSA). In this study, we evaluated the structural and functional changes of the upper airway before and after Le Fort III DO; we hope these studies can improve future protocols for midface advancement. A retrospective study of 11 patients with severe midface retrusion who underwent Le Fort III osteotomy with midface external distractor system was undertaken. These patients had an average of 5.4 months of follow-up. Three-dimensional volumetric assessment of the upper airway was used before and after surgery. We also evaluated the two-dimensional cross-sectional area of the upper airway to show the changes in different airway levels. Two patients with preoperative evidence of OSA were evaluated both preoperatively and postoperatively by overnight polysomnography. The midface was distracted for an average of 20.27 +/- 8.04 mm. Comparison between preoperative and postoperative three-dimensional computed tomographic data showed an average 64.30% increase in upper airway volume, an improvement of 9.13 +/- 6.94 mL (P < 0.05). The two-dimensional measurement also showed that the cross-sectional area at the posterior nasal spine and uvula airway level increased (P < 0.05), but the cross-sectional area at the epiglottis level and the separation of airway and esophagus level did not increase (P > 0.05). Two patients with preoperative evidence of OSA had both preoperative and postoperative sleeping studies that showed improvement. Le Fort III DO can significantly improve the upper airway space in the cases of syndromic craniosynostosis. The upper airway space above the uvula level was significantly enlarged after Le Fort III DO according to two-dimensional and

  17. Radiology-guided forceps biopsy and airway stenting in severe airway stenosis.

    PubMed

    Li, Zong Ming; Wu, Gang; Han, Xin Wei; Ren, Ke Wei; Zhu, Ming

    2014-01-01

    We aimed to determine the feasibility, safety, and effectiveness of radiology-guided forceps biopsy and airway stenting in patients with severe airway stenosis. This study involved 28 patients with severe airway stenosis who underwent forceps biopsy between October 2006 and September 2011. Chest multislice computed tomography was used to determine the location and extent of stenosis. Sixteen patients had tracheal stenosis, two patients had stenosis of the tracheal carina, six patients had stenosis of the left main bronchus, and four patients had stenosis of the right main bronchus. Forceps biopsy and stenting of the stenosed area were performed under fluoroscopic guidance in digital subtraction angiography and the biopsy specimens were analyzed histopathologically. We contacted the patients via phone call and utilized a standardized questionnaire to determine their medical condition during a postoperative three-month follow-up. The technical success rate of radiology-guided forceps biopsy was 100%. Biopsy specimens were obtained in all patients. Dyspnea was relieved immediately after stent placement. No serious complications, such as tracheal hemorrhage or perforation, mediastinal emphysema, or asphyxia, occurred. Radiology-guided forceps biopsy and airway stenting can be used for the emergency treatment of severe airway stenosis. This method appears to be safe and effective, and it may be an alternative therapeutic option in patients who cannot tolerate fiberoptic bronchoscopy.

  18. Radiology-guided forceps biopsy and airway stenting in severe airway stenosis

    PubMed Central

    Li, Zong-Ming; Wu, Gang; Han, Xin-Wei; Ren, Ke-Wei; Zhu, Ming

    2014-01-01

    PURPOSE We aimed to determine the feasibility, safety, and effectiveness of radiology-guided forceps biopsy and airway stenting in patients with severe airway stenosis. MATERIALS AND METHODS This study involved 28 patients with severe airway stenosis who underwent forceps biopsy between October 2006 and September 2011. Chest multislice computed tomography was used to determine the location and extent of stenosis. Sixteen patients had tracheal stenosis, two patients had stenosis of the tracheal carina, six patients had stenosis of the left main bronchus, and four patients had stenosis of the right main bronchus. Forceps biopsy and stenting of the stenosed area were performed under fluoroscopic guidance in digital subtraction angiography and the biopsy specimens were analyzed histopathologically. We contacted the patients via phone call and utilized a standardized questionnaire to determine their medical condition during a postoperative three-month follow-up. RESULTS The technical success rate of radiology-guided forceps biopsy was 100%. Biopsy specimens were obtained in all patients. Dyspnea was relieved immediately after stent placement. No serious complications, such as tracheal hemorrhage or perforation, mediastinal emphysema, or asphyxia, occurred. CONCLUSION Radiology-guided forceps biopsy and airway stenting can be used for the emergency treatment of severe airway stenosis. This method appears to be safe and effective, and it may be an alternative therapeutic option in patients who cannot tolerate fiberoptic bronchoscopy. PMID:24808434

  19. Airway responsiveness to mannitol 24 h after allergen challenge in atopic asthmatics.

    PubMed

    Davis, B E; Amakye, D O; Cockcroft, D W

    2015-06-01

    Airway responsiveness to indirect stimuli correlates positively with airway inflammation. In atopic asthmatics, allergen inhalation is associated with an influx of inflammatory cells and increased responsiveness to the direct-acting stimuli methacholine at 3 and 24 h after exposure. We have shown mannitol responsiveness decreases 3 h after allergen inhalation. The current investigation assessed mannitol responsiveness 24 h after allergen challenge. Eleven mild atopic asthmatics completed allergen challenges on two separate occasions. In random order, methacholine or mannitol challenges were performed 24 h pre- and post-allergen challenge. Levels of fractional exhaled nitric oxide were also measured. Allergen challenge increased airway responsiveness to methacholine 24 h postchallenge; the geometric mean (95% CI) methacholine PC20 decreased from 5.9 mg/ml (1.8-19.4) to 2.2 mg/ml (0.81-5.89); P = 0.01. This coincided with a significant increase (P = 0.02) in FeNO levels. Conversely, allergen challenge decreased airway responsiveness to mannitol; geometric mean (95% CI) dose-response ratio was significantly higher after allergen exposure (57 mg/% FEV1 fall [27-121] to 147 mg/% FEV1 fall [57-379]; P = 0.03), and FeNO levels were not significantly increased (P = 0.054). Allergen-induced changes in airway responsiveness to direct and indirect stimuli are markedly different. The loss in responsiveness to mannitol is likely not explainable by a refractory state. The effect(s) of allergen exposure on airway responsiveness to indirect-acting stimuli require further investigation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Neurokinin-neurotrophin interactions in airway smooth muscle

    PubMed Central

    Meuchel, Lucas W.; Stewart, Alecia; Smelter, Dan F.; Abcejo, Amard J.; Thompson, Michael A.; Zaidi, Syed I. A.; Martin, Richard J.

    2011-01-01

    Neurally derived tachykinins such as substance P (SP) play a key role in modulating airway contractility (especially with inflammation). Separately, the neurotrophin brain-derived neurotrophic factor (BDNF; potentially derived from nerves as well as airway smooth muscle; ASM) and its tropomyosin-related kinase receptor, TrkB, are involved in enhanced airway contractility. In this study, we hypothesized that neurokinins and neurotrophins are linked in enhancing intracellular Ca2+ concentration ([Ca2+]i) regulation in ASM. In rat ASM cells, 24 h exposure to 10 nM SP significantly increased BDNF and TrkB expression (P < 0.05). Furthermore, [Ca2+]i responses to 1 μM ACh as well as BDNF (30 min) effects on [Ca2+]i regulation were enhanced by prior SP exposure, largely via increased Ca2+ influx (P < 0.05). The enhancing effect of SP on BDNF signaling was blunted by the neurokinin-2 receptor antagonist MEN-10376 (1 μM, P < 0.05) to a greater extent than the neurokinin-1 receptor antagonist RP-67580 (5 nM). Chelation of extracellular BDNF (chimeric TrkB-Fc; 1 μg/ml), as well as tyrosine kinase inhibition (100 nM K252a), substantially blunted SP effects (P < 0.05). Overnight (24 h) exposure of ASM cells to 50% oxygen increased BDNF and TrkB expression and potentiated both SP- and BDNF-induced enhancement of [Ca2+]i (P < 0.05). These results suggest a novel interaction between SP and BDNF in regulating agonist-induced [Ca2+]i regulation in ASM. The autocrine mechanism we present here represents a new area in the development of bronchoconstrictive reflex response and airway hyperreactive disorders. PMID:21515660

  1. Athletic Training Students Demonstrate Airway Management Skill Decay, but Retain Knowledge over 6 Months

    ERIC Educational Resources Information Center

    Popp, Jennifer K.; Berry, David C.

    2016-01-01

    Context: Airway management (AM) knowledge and skills are taught in all athletic training programs; however, research suggests that skill decay occurs with acute care skills as length of nonpractice increases. Objective: Evaluate retention of AM knowledge and skills, specifically oropharyngeal airway (OPA) and nasopharyngeal airway (NPA) use, in…

  2. Allergen and ozone exacerbate serotonin-induced increases in airway smooth muscle contraction in a model of childhood asthma.

    PubMed

    Moore, Brian D; Hyde, Dallas; Miller, Lisa; Wong, Emily; Frelinger, Jessica; Schelegle, Edward S

    2012-01-01

    Serotonin (5-HT) modulates cholinergic neurotransmission and exacerbates airway smooth muscle (ASM) contraction in normal animal and nonasthmatic human tissue. Exposure to house dust mite allergen (HDMA) and ozone (O(3)) leads to airway hyperreactivity and 5-HT-positive cells in the airway epithelium of infant rhesus monkeys. Research shows that concomitant exposure in allergic animals has an additive effect on airway hyperreactivity. In this study, the hypothesis is that the exposure of allergic infant rhesus monkeys to HDMA, O(3) and in combination, acting through 5-HT receptors, enhances 5-HT modulation of postganglionic cholinergic ASM contraction. Twenty-four HDMA-sensitized infant monkeys were split into 4 groups at the age of 1 month, and were exposed to filtered air (FA), HDMA, O(3) or in combination (HDMA+O(3)). At the age of 6 months, airway rings were harvested and postganglionic, and parasympathetic-mediated ASM contraction was evaluated using electrical-field stimulation (EFS). 5-HT exacerbated the EFS response within all exposure groups, but had no effect in the FA group. 5-HT(2), 5-HT(3) and 5-HT(4) receptor agonists exacerbated the response. 5-HT concentration-response curves performed after incubation with specific receptor antagonists confirmed the involvement of 5-HT(2), 5-HT(3) and 5-HT(4) receptors. Conversely, a 5-HT(1) receptor agonist attenuated the tension across all groups during EFS, and in ASM contracted via exogenous acetylcholine. HDMA, O(3) and HDMA+O(3) exposure in a model of childhood allergic asthma enhances 5-HT exacerbation of EFS-induced ASM contraction through 5-HT(2), 5-HT(3) and 5-HT(4) receptors. A nonneurogenic inhibitory pathway exists, unaffected by exposure, mediated by 5-HT(1) receptors located on ASM. Copyright © 2012 S. Karger AG, Basel.

  3. RSV-encoded NS2 promotes epithelial cell shedding and distal airway obstruction

    PubMed Central

    Liesman, Rachael M.; Buchholz, Ursula J.; Luongo, Cindy L.; Yang, Lijuan; Proia, Alan D.; DeVincenzo, John P.; Collins, Peter L.; Pickles, Raymond J.

    2014-01-01

    Respiratory syncytial virus (RSV) infection is the major cause of bronchiolitis in young children. The factors that contribute to the increased propensity of RSV-induced distal airway disease compared with other commonly encountered respiratory viruses remain unclear. Here, we identified the RSV-encoded nonstructural 2 (NS2) protein as a viral genetic determinant for initiating RSV-induced distal airway obstruction. Infection of human cartilaginous airway epithelium (HAE) and a hamster model of disease with recombinant respiratory viruses revealed that NS2 promotes shedding of infected epithelial cells, resulting in two consequences of virus infection. First, epithelial cell shedding accelerated the reduction of virus titers, presumably by clearing virus-infected cells from airway mucosa. Second, epithelial cells shedding into the narrow-diameter bronchiolar airway lumens resulted in rapid accumulation of detached, pleomorphic epithelial cells, leading to acute distal airway obstruction. Together, these data indicate that RSV infection of the airway epithelium, via the action of NS2, promotes epithelial cell shedding, which not only accelerates viral clearance but also contributes to acute obstruction of the distal airways. Our results identify RSV NS2 as a contributing factor for the enhanced propensity of RSV to cause severe airway disease in young children and suggest NS2 as a potential therapeutic target for reducing the severity of distal airway disease. PMID:24713657

  4. Inflammatory bowel disease and airway diseases.

    PubMed

    Vutcovici, Maria; Brassard, Paul; Bitton, Alain

    2016-09-14

    Airway diseases are the most commonly described lung manifestations of inflammatory bowel disease (IBD). However, the similarities in disease pathogenesis and the sharing of important environmental risk factors and genetic susceptibility suggest that there is a complex interplay between IBD and airway diseases. Recent evidence of IBD occurrence among patients with airway diseases and the higher than estimated prevalence of subclinical airway injuries among IBD patients support the hypothesis of a two-way association. Future research efforts should be directed toward further exploration of this association, as airway diseases are highly prevalent conditions with a substantial public health impact.

  5. Diesel exhaust particulate induces airway hyperresponsiveness in a murine model: essential role of GM-CSF.

    PubMed

    Ohta, K; Yamashita, N; Tajima, M; Miyasaka, T; Nakano, J; Nakajima, M; Ishii, A; Horiuchi, T; Mano, K; Miyamoto, T

    1999-11-01

    Inhaled pollutants were recently shown to be responsible for an increased incidence of airway allergic diseases, including asthma. A common feature of all forms of asthma is airway hyperresponsiveness. Our purpose was to elucidate the effects of diesel exhaust particulate (DEP), one of the most prevalent inhaled pollutants, on airway responsiveness. A/J and C57Bl/6 mice were used; the former are genetically predisposed to be hyperresponsive to acetylcholine, whereas the latter are not. DEP was administered intranasally for 2 weeks, after which pulmonary function was analyzed by whole-body plethysmography. Intranasal administration of DEP increased airway responsiveness to acetylcholine in both A/J and C57Bl/6 mice and induced displacement of ciliated epithelial cells by mucus-secreting Clara cells. The effect was mediated by M(3) muscarinic receptors. Acetylcholine-evoked bronchial constriction was reversed by administration of terbutaline, a beta(2)-adrenergic antagonist, which is also characteristic of human asthma. Intranasal administration of antibody raised against GM-CSF abolished DEP-evoked increases in airway responsiveness and Clara cell hyperplasia. The antibody raised against IL-4 also inhibited DEP-evoked increases in airway responsiveness. However, it was to a lesser extent compared with antibody against GM-CSF. In addition, DEP stimulated GM-CSF messenger RNA expression in the lung. DEP induces airway hyperresponsiveness by stimulating GM-CSF synthesis.

  6. Cigarette smoke induces bronchoconstrictor hyperresponsiveness to substance P and inactivates airway neutral endopeptidase in the guinea pig. Possible role of free radicals.

    PubMed

    Dusser, D J; Djokic, T D; Borson, D B; Nadel, J A

    1989-09-01

    We examined the effects of acute exposure to cigarette smoke on the airway responses to substance P in anesthetized guinea pigs and on the activity of airway neutral endopeptidase (NEP). After exposure to air or to cigarette smoke we measured the change in total pulmonary resistance (RL) induced by increasing concentrations of aerosolized substance P in the absence or presence of the NEP inhibitor phosphoramidon. In the absence of phosphramidon the bronchoconstrictor responses to substance P were greater in cigarette smoke-exposed guinea pigs than in air-exposed animals. Phosphoramidon did not further potentiate the responses to substance P in smoke-exposed guinea pigs, whereas it did so in air-exposed animals. In the presence of phosphoramidon, bronchoconstrictor responses to substance P in animals exposed to air or to cigarette smoke were not different. Aerosols of SOD delivered before cigarette smoke exposures dramatically reduced smoke-induced hyperresponsiveness to substance P, whereas heat-inactivated SOD had no effect on smoke-induced hyper-responsiveness to substance P. Cigarette smoke solution inhibited NEP activity from tracheal homogenate in a concentration-dependent fashion, an inhibitory effect that was mostly due to the gas phase of the smoke, but not to nicotine. The mild chemical oxidant N-chlorosuccinimide mimicked the concentration-dependent inhibitory effect of smoke solution on airway NEP activity. We conclude that cigarette smoke causes enhanced airway responsiveness to substance P in vivo by inactivating airway NEP. We suggest that cigarette smoke-induced inhibition of airway NEP is due to effects of free radicals.

  7. Cigarette smoke induces bronchoconstrictor hyperresponsiveness to substance P and inactivates airway neutral endopeptidase in the guinea pig. Possible role of free radicals.

    PubMed Central

    Dusser, D J; Djokic, T D; Borson, D B; Nadel, J A

    1989-01-01

    We examined the effects of acute exposure to cigarette smoke on the airway responses to substance P in anesthetized guinea pigs and on the activity of airway neutral endopeptidase (NEP). After exposure to air or to cigarette smoke we measured the change in total pulmonary resistance (RL) induced by increasing concentrations of aerosolized substance P in the absence or presence of the NEP inhibitor phosphoramidon. In the absence of phosphramidon the bronchoconstrictor responses to substance P were greater in cigarette smoke-exposed guinea pigs than in air-exposed animals. Phosphoramidon did not further potentiate the responses to substance P in smoke-exposed guinea pigs, whereas it did so in air-exposed animals. In the presence of phosphoramidon, bronchoconstrictor responses to substance P in animals exposed to air or to cigarette smoke were not different. Aerosols of SOD delivered before cigarette smoke exposures dramatically reduced smoke-induced hyperresponsiveness to substance P, whereas heat-inactivated SOD had no effect on smoke-induced hyper-responsiveness to substance P. Cigarette smoke solution inhibited NEP activity from tracheal homogenate in a concentration-dependent fashion, an inhibitory effect that was mostly due to the gas phase of the smoke, but not to nicotine. The mild chemical oxidant N-chlorosuccinimide mimicked the concentration-dependent inhibitory effect of smoke solution on airway NEP activity. We conclude that cigarette smoke causes enhanced airway responsiveness to substance P in vivo by inactivating airway NEP. We suggest that cigarette smoke-induced inhibition of airway NEP is due to effects of free radicals. PMID:2474576

  8. Nitric oxide enhances Th9 cell differentiation and airway inflammation

    PubMed Central

    Niedbala, Wanda; Besnard, Anne-Gaelle; Nascimento, Daniele Carvalho; Donate, Paula Barbim; Sonego, Fabiane; Yip, Edwin; Guabiraba, Rodrigo; Chang, Hyun-Dong; Fukada, Sandra Y.; Salmond, Robert J.; Schmitt, Edgar; Bopp, Tobias; Ryffel, Bernhard; Liew, Foo Y.

    2014-01-01

    Th9 cells protect hosts against helminthic infection but also mediate allergic disease. Here we show that nitric oxide (NO) promotes Th9 cell polarization of murine and human CD4+ T cells. NO de-represses the tumor suppressor gene p53 via nitrosylation of Mdm2. NO also increases p53-mediated IL-2 production, STAT5 phosphorylation and IRF4 expression, all essential for Th9 polarization. NO also increases the expression of TGFβR and IL-4R, pivotal to Th9 polarization. OVA-sensitized mice treated with an NO donor developed more severe airway inflammation. Transferred Th9 cells induced airway inflammation, which was exacerbated by NO and blocked by anti-IL-9 antibody. Nos2−/− mice had less Th9 cells and developed attenuated eosinophilia during OVA-induced airway inflammation compared to wild-type mice. Our data demonstrate that NO is an important endogenous inducer of Th9 cells and provide a hitherto unrecognized mechanism for NO-mediated airway inflammation via the expansion of Th9 cells. PMID:25099390

  9. Nitric oxide enhances Th9 cell differentiation and airway inflammation.

    PubMed

    Niedbala, Wanda; Besnard, Anne-Gaelle; Nascimento, Daniele Carvalho; Donate, Paula Barbim; Sonego, Fabiane; Yip, Edwin; Guabiraba, Rodrigo; Chang, Hyun-Dong; Fukada, Sandra Y; Salmond, Robert J; Schmitt, Edgar; Bopp, Tobias; Ryffel, Bernhard; Liew, Foo Y

    2014-08-07

    Th9 cells protect hosts against helminthic infection but also mediate allergic disease. Here we show that nitric oxide (NO) promotes Th9 cell polarization of murine and human CD4(+) T cells. NO de-represses the tumour suppressor gene p53 via nitrosylation of Mdm2. NO also increases p53-mediated IL-2 production, STAT5 phosphorylation and IRF4 expression, all essential for Th9 polarization. NO also increases the expression of TGFβR and IL-4R, pivotal to Th9 polarization. OVA-sensitized mice treated with an NO donor developed more severe airway inflammation. Transferred Th9 cells induced airway inflammation, which was exacerbated by NO and blocked by anti-IL-9 antibody. Nos2(-/-) mice had less Th9 cells and developed attenuated eosinophilia during OVA-induced airway inflammation compared with wild-type mice. Our data demonstrate that NO is an important endogenous inducer of Th9 cells and provide a hitherto unrecognized mechanism for NO-mediated airway inflammation via the expansion of Th9 cells.

  10. Sidestream Smoke Exposure Increases the Susceptibility of Airway Epithelia to Adenoviral Infection

    PubMed Central

    Sharma, Priyanka; Kolawole, Abimbola O.; Core, Susan B.; Kajon, Adriana E.; Excoffon, Katherine J. D. A.

    2012-01-01

    Background Although significant epidemiological evidence indicates that cigarette smoke exposure increases the incidence and severity of viral infection, the molecular mechanisms behind the increased susceptibility of the respiratory tract to viral pathogens are unclear. Adenoviruses are non-enveloped DNA viruses and important causative agents of acute respiratory disease. The Coxsackievirus and adenovirus receptor (CAR) is the primary receptor for many adenoviruses. We hypothesized that cigarette smoke exposure increases epithelial susceptibility to adenovirus infection by increasing the abundance of apical CAR. Methodology and Findings Cultured human airway epithelial cells (CaLu-3) were used as a model to investigate the effect of sidestream cigarette smoke (SSS), mainstream cigarette smoke (MSS), or control air exposure on the susceptibility of polarized respiratory epithelia to adenoviral infection. Using a Cultex air-liquid interface exposure system, we have discovered novel differences in epithelial susceptibility between SSS and MSS exposures. SSS exposure upregulates an eight-exon isoform of CAR and increases adenoviral entry from the apical surface whilst MSS exposure is similar to control air exposure. Additionally, the level of cellular glycogen synthase kinase 3β (GSK3β) is downregulated by SSS exposure and treatment with a specific GSK3β inhibitor recapitulates the effects of SSS exposure on CAR expression and viral infection. Conclusions This is the first time that SSS exposure has been shown to directly enhance the susceptibility of a polarized epithelium to infection by a common respiratory viral pathogen. This work provides a novel understanding of the impact of SSS on the burden of respiratory viral infections and may lead to new strategies to alter viral infections. Moreover, since GSK3β inhibitors are under intense clinical investigation as therapeutics for a diverse range of diseases, studies such as these might provide insight to extend

  11. Mechanics of airway and alveolar collapse in human breath-hold diving.

    PubMed

    Fitz-Clarke, John R

    2007-11-15

    A computational model of the human respiratory tract was developed to study airway and alveolar compression and re-expansion during deep breath-hold dives. The model incorporates the chest wall, supraglottic airway, trachea, branched airway tree, and elastic alveoli assigned time-dependent surfactant properties. Total lung collapse with degassing of all alveoli is predicted to occur around 235 m, much deeper than estimates for aquatic mammals. Hysteresis of the pressure-volume loop increases with maximum diving depth due to progressive alveolar collapse. Reopening of alveoli occurs stochastically as airway pressure overcomes adhesive and compressive forces on ascent. Surface area for gas exchange vanishes at collapse depth, implying that the risk of decompression sickness should reach a plateau beyond this depth. Pulmonary capillary transmural stresses cannot increase after local alveolar collapse. Consolidation of lung parenchyma might provide protection from capillary injury or leakage caused by vascular engorgement due to outward chest wall recoil at extreme depths.

  12. Effect of tachykinins in small human airways.

    PubMed

    Frossard, N; Barnes, J

    1991-07-01

    We have compared the contractile responses of substance P (SP) and neurokinin A (NKA) to that of the non degradable muscarinic agonist, carbachol, in small and large human airways in vitro. We have also investigated the effects of the neutral endopeptidase (NEP) inhibitor, thiorphan (100 microM) on these responses. NKA contracted large and small airways to a different extent (56% vs 92% of carbachol maximal contraction, respectively). NKA was significantly less potent in large vs small bronchi (EC50 = 150 +/- 15 vs 12 +/- 5 nM respectively, p less than 0.05). SP had a lower contractile effect in large (26% carbachol maximum) and small airways (59%) with EC50 values higher than 0.5 microM. The enkephalinase inhibitor thiorphan shifted the concentration-response curve to NKA to the left in large (EC50 = 35.2 +/- 8.2 nM) and small bronchi (EC50 = 2.8 +/- 1.3 nM, p less than 0.02). This shift was associated with an increase in the maximal contraction to NKA (75% in large vs 123% in small bronchi). The amplitude of contraction to SP was also potentiated in large (45%) and in smaller bronchi (101%). In conclusion, we have demonstrated that NKA has a significantly greater constrictor effect than a cholinergic agent in more peripheral human airways in vitro. This suggests that non cholinergic constrictor pathways are more likely to be important in more peripheral airways.

  13. [Regulation of airway stem cell proliferation in idiopathic pulmonary fibrosis].

    PubMed

    Yang, S X; Wu, Q; Sun, X; Li, X; Li, K; Xu, L; Li, Y; Zhang, Q Y; Zhang, Y C; Chen, H Y

    2016-09-01

    To investigate the effect of fibroblasts on regulating airway stem cell proliferation in idiopathic pulmonary fibrosis. Lung cell suspension was prepared from β-actin-GFP mice. Airway stem cells were obtained by fluorescence activated cell sorting and co-cultured with lung fibroblasts. The fibroblasts were treated with TGF-β inhibitor SB43142. The expression of growth factors FGF1/2 and the effect of FGF1/2 on stem cell proliferation were observed. The cloning efficiency of airway stem cells, when co-cultured with normal lung fibroblast cells for 8 days, was (3.5±1.1)%, while the cloning efficiency was reduced to (0.04±0.04)% when co-cultured with lung fibroblasts from idiopathic pulmonary fibrosis patients. The difference between the 2 groups was statistically significant(P=0.002 5). TGF-β receptor inhibitor SB431542 increased lung fibroblast growth factors FGF1/2 expression.FGF1 mRNA expression was increased to the experimental group 0.005 5 from 0.000 2 in the control group.FGF2 mRNA expression of the amount raised to the experimental group 0.000 15 from 0.000 8 in the control group.FGF1/2 promoted the growth of airway stem cells. After FGF1/2 was co-cultured with normal lung fibroblast cells for 8 days, the cloning efficiency of airway stem cells was (0.3±0.1)%. During the development of idiopathic pulmonary fibrosis, fibroblast secreted FGF1/2 regulate airway stem cell proliferation.

  14. Airway reactivity in response to repeated emotional film clip presentation in asthma.

    PubMed

    Janssens, Thomas; Steele, Ashton M; Rosenfield, David; Ritz, Thomas

    2017-02-01

    Emotional stimuli elicit airway constriction in individuals with asthma and in healthy individuals, but little is known about effects of repeated stimulation. We therefore explored the effect of repeated emotion induction on respiratory resistance (R rs ) using unpleasant, high-arousal surgery films and investigated effects of respiration and emotional reactivity. Twenty-six participants (13 with asthma) watched a series of 12 short, 45-s surgery films followed by 2-min recovery periods. R rs assessed with impulse oscillometry was significantly elevated during films in both groups compared to baseline and recovered quickly after that. No habituation of airway responses occurred. R rs was higher in participants who felt more aroused and less in control when watching the films. Changes in R rs remained significant when controlling for changes in respiration or emotional experience. Thus, although unpleasant stimuli lead to elevated R rs , airway obstruction is not exacerbated with repeated stimulation due to a fast return to baseline after stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Influence of Gender and Age on Upper-Airway Length During Development

    PubMed Central

    Ronen, Ohad; Malhotra, Atul; Pillar, Giora

    2008-01-01

    OBJECTIVE Obstructive sleep apnea has a strong male predominance in adults but not in children. The collapsible portion of the upper airway is longer in adult men than in women (a property that may increase vulnerability to collapse during sleep). We sought to test the hypothesis that in prepubertal children, pharyngeal airway length is equal between genders, but after puberty boys have a longer upper airway than girls, thus potentially contributing to this change in apnea propensity. METHODS Sixty-nine healthy boys and girls who had undergone computed tomography scans of their neck for other reasons were selected from the computed tomography archives of Rambam and Carmel hospitals. The airway length was measured in the midsagittal plane and defined as the length between the lower part of the posterior hard palate and the upper limit of the hyoid bone. Airway length and normalized airway length/body height were compared between the genders in prepubertal (4- to 10-year-old) and postpubertal (14- to 19-year-old) children. RESULTS In prepubertal children, airway length was similar between boys and girls (43.2 ± 5.9 vs 46.8 ± 7.7 mm, respectively). When normalized to body height, airway length/body height was significantly shorter in prepubertal boys than in girls (0.35 ± 0.03 vs 0.38 ± 0.04 mm/cm). In contrast, postpubertal boys had longer upper airways (66.5 ± 9.2 vs 52.2 ± 7.0 mm) and normalized airway length/body height (0.38 ± 0.05 vs 0.33 ± 0.05 mm/cm) than girls. CONCLUSIONS Although boys have equal or shorter airway length compared with girls among prepubertal children, after puberty, airway length and airway length normalized for body height are significantly greater in boys than in girls. These data suggest that important anatomic changes at puberty occur in a gender-specific manner, which may be important in explaining the male predisposition to pharyngeal collapse in adults. PMID:17908723

  16. Some methods of increasing the density of metal in order to increase him corrosion resistance

    NASA Astrophysics Data System (ADS)

    Chumanov, I. V.; Anikeev, A. N.; Sergeev, D. V.; Maltseva, A. N.

    2017-11-01

    Methods to increase the density of metal in order to increase its corrosion resistance in an aggressive environment are examined in the article. Two steel grades, differing in the content of alloying elements, increasing the resistance to corrosion are selected for the manufacture of experimental metallic materials. Two technologies are chosen as methods for increasing the density, and as a result, corrosion resistance, of the experimental materials obtained: the first is electroslag remelting with rotation of the consumable electrode, the second is centrifugal casting with modification. The microstructure of the metal becomes more homogeneous, the degree of metal refining from non-metallic inclusions increases, the rate of crystallization during metal smelting by the ESR method increases with rotation of the consumable electrode. When ingots are produced by the method of centrifugal casting, they are modified with dispersed WC and TiC particles, which increases the crystallization rate, increases the metal density, corrosion and mechanical properties. The evaluation of their corrosion resistance with the help of the autoclaved test complex “Cortest” is made after obtaining ingots by various technologies.

  17. SponTaneous Respiration using IntraVEnous anaesthesia and Hi-flow nasal oxygen (STRIVE Hi) maintains oxygenation and airway patency during management of the obstructed airway: an observational study.

    PubMed

    Booth, A W G; Vidhani, K; Lee, P K; Thomsett, C-M

    2017-03-01

    High-flow nasal oxygen (HFNO) has been shown to benefit oxygenation, ventilation and upper airway patency in a range of clinical scenarios, however its use in spontaneously breathing patients during general anaesthesia has not been described. Spontaneous respiration using i.v. anaesthesia is the primary technique used at our institution for tubeless airway surgery. We hypothesized that the addition of HFNO would increase our margin of safety, particularly during management of an obstructed airway. A retrospective observational study was conducted using a SponTaneous Respiration using IntraVEnous anaesthesia and High-flow nasal oxygen (STRIVE Hi) technique to manage 30 adult patients undergoing elective laryngotracheal surgery. Twenty-six patients (87%) presented with significant airway and/or respiratory compromise (16 were stridulous, 10 were dyspnoeic). No episodes of apnoea or complete airway obstruction occurred during the induction of anaesthesia using STRIVE Hi. The median [IQR (range)] lowest oxygen saturation during the induction period was 100 [99–100 (97–100)] %. The median [IQR (range)] overall duration of spontaneous ventilation was 44 [40–49.5 (18–100)] min. The median [IQR (range)] end-tidal carbon dioxide (ETCO2) level at the end of the spontaneous ventilation period was 6.8 [6.4–7.1 (4.8–8.9)] kPa. The mean rate of increase in ETCO2 was 0.03 kPa min−1. STRIVE Hi succeeded in preserving adequate oxygen saturation, end-tidal carbon dioxide and airway patency. We suggest that the upper and lower airway benefits attributed to HFNO, are ideally suited to a spontaneous respiration induction, increasing its margin of safety. STRIVE Hi is a modern alternative to the traditional inhalation induction. © The Author 2017. Published by Oxford University Press on behalf of the British Journal of Anaesthesia.

  18. Tidal stretches do not modulate responsiveness of intact airways in vitro

    PubMed Central

    Szabo, Thomas L.; Suki, Béla; Lutchen, Kenneth R.

    2010-01-01

    Studies on isolated tracheal airway smooth muscle (ASM) strips have shown that length/force fluctuations, similar to those likely occurring during breathing, will mitigate ASM contractility. These studies conjecture that, solely by reducing length oscillations on a healthy, intact airway, one can create airway hyperresponsiveness, but this has never been explicitly tested. The intact airway has additional complexities of geometry and structure that may impact its relevance to isolated ASM strips. We examined the role of transmural pressure (Ptm) fluctuations of physiological amplitudes on the responsiveness of an intact airway. We developed an integrated system utilizing ultrasound imaging to provide real-time measurements of luminal radius and wall thickness over the full length of an intact airway (generation 10 and below) during Ptm oscillations. First, airway constriction dynamics to cumulative acetylcholine (ACh) doses (10−7 to 10−3 M) were measured during static and dynamic Ptm protocols. Regardless of the breathing pattern, the Ptm oscillation protocols were ineffective in reducing the net level of constriction for any ACh dose, compared with the static control (P = 0.225–0.793). Next, Ptm oscillations of increasing peak-to-peak amplitude were applied subsequent to constricting intact airways under static conditions (5.0-cmH2O Ptm) with a moderate ACh dose (10−5 M). Peak-to-peak Ptm oscillations ≤5.0 cmH2O resulted in no statistically significant bronchodilatory response (P = 0.429 and 0.490). Larger oscillations (10 cmH2O, peak to peak) produced modest dilation of 4.3% (P = 0.009). The lack of modulation of airway responsiveness by Ptm oscillations in intact, healthy airways suggests that ASM level mechanisms alone may not be the sole determinant of airway responsiveness. PMID:20431023

  19. Upper airway muscles awake and asleep.

    PubMed

    Sériès, Frédéric

    2002-06-01

    Upper airway (UA) structures are involved in different respiratory and non-respiratory tasks. The coordination of agonist and antagonist UA dilators is responsible for their mechanical function and their ability to maintain UA patency throughout the respiratory cycle. The activity of these muscles is linked with central respiratory activity but also depends on UA pressure changes and is greatly influenced by sleep. UA muscles are involved in determining UA resistance and stability (i.e. closing pressure), and the effect of sleep on these variables may be accounted for by its effect on tonic and phasic skeletal muscle activities. The mechanical effects of UA dilator contraction also depend on their physiological properties (capacity to generate tension in vitro, activity of the anaerobic enzymatic pathway, histo-chemical characteristics that may differ between subjects who may or may not have sleep-related obstructive breathing disorders). These characteristics may represent an adaptive process to an increased resistive loading of these muscles. The apparent discrepancy between the occurrence of UA closure and an increased capacity to generate tension in sleep apnea patients may be due to a reduction in the effectiveness of UA muscle contraction in these patients; such an increase in tissue stiffness could be accounted for by peri-muscular tissue characteristics. Therefore, understanding of UA muscle physiological characteristics should take into account its capacity for force production and its mechanical coupling with other UA tissues. Important research goals for the future will be to integrate these issues with other physiological features of the disease, such as UA size and dimension, histological characteristics of UA tissues and the effect of sleep on muscle function. Such integration will better inform understanding of the role of pharyngeal UA muscles in the pathophysiology of the sleep apnea/hypopnea syndrome.

  20. Overexpression of human Hsp27 inhibits serum-induced proliferation in airway smooth muscle myocytes and confers resistance to hydrogen peroxide cytotoxicity.

    PubMed

    Salinthone, Sonemany; Ba, Mariam; Hanson, Lisa; Martin, Jody L; Halayko, Andrew J; Gerthoffer, William T

    2007-11-01

    Airway smooth muscle (ASM) hypertrophy and hyperplasia are characteristics of asthma that lead to thickening of the airway wall and obstruction of airflow. Very little is known about mechanisms underlying ASM remodeling, but in vascular smooth muscle, it is known that progression of atherosclerosis depends on the balance of myocyte proliferation and cell death. Small heat shock protein 27 (Hsp27) is antiapoptotic in nonmuscle cells, but its role in ASM cell survival is unknown. Our hypothesis was that phosphorylation of Hsp27 may regulate airway remodeling by modifying proliferation, cell survival, or both. To test this hypothesis, adenoviral vectors were used to overexpress human Hsp27 in ASM cells. Cells were infected with empty vector (Ad5) or wild-type Hsp27 (AdHsp27 WT), and proliferation and death were assessed. Overexpressing Hsp27 WT caused a 50% reduction in serum-induced proliferation and increased cell survival after exposure to 100 microM hydrogen peroxide (H(2)O(2)) compared with mock-infected controls. Overexpression studies utilizing an S15A, S78A, and S82A non-phosphorylation mutant (AdHsp27 3A) and an S15D, S78D, and S82D pseudo-phosphorylation mutant (AdHsp27 3D) showed phosphorylation of Hsp27 was necessary for regulation of ASM proliferation, but not survival. Hsp27 provided protection against H(2)O(2)-induced cytotoxicity by upregulating cellular glutathione levels and preventing necrotic cell death, but not apoptotic cell death. The results support the notion that ASM cells can be stimulated to undergo proliferation and death and that Hsp27 may regulate these processes, thereby contributing to airway remodeling in asthmatics.

  1. Inhibition of neutrophil elastase attenuates airway hyperresponsiveness and inflammation in a mouse model of secondary allergen challenge: neutrophil elastase inhibition attenuates allergic airway responses

    PubMed Central

    2013-01-01

    Background Chronic asthma is often associated with neutrophilic infiltration in the airways. Neutrophils contain elastase, a potent secretagogue in the airways, nonetheless the role for neutrophil elastase as well as neutrophilic inflammation in allergen-induced airway responses is not well defined. In this study, we have investigated the impact of neutrophil elastase inhibition on the development of allergic airway inflammation and airway hyperresponsiveness (AHR) in previously sensitized and challenged mice. Methods BALB/c mice were sensitized and challenged (primary) with ovalbumin (OVA). Six weeks later, a single OVA aerosol (secondary challenge) was delivered and airway inflammation and airway responses were monitored 6 and 48 hrs later. An inhibitor of neutrophil elastase was administered prior to secondary challenge. Results Mice developed a two-phase airway inflammatory response after secondary allergen challenge, one neutrophilic at 6 hr and the other eosinophilic, at 48 hr. PAR-2 expression in the lung tissues was enhanced following secondary challenge, and that PAR-2 intracellular expression on peribronchial lymph node (PBLN) T cells was also increased following allergen challenge of sensitized mice. Inhibition of neutrophil elastase significantly attenuated AHR, goblet cell metaplasia, and inflammatory cell accumulation in the airways following secondary OVA challenge. Levels of IL-4, IL-5 and IL-13, and eotaxin in BAL fluid 6 hr after secondary allergen challenge were significantly suppressed by the treatment. At 48 hr, treatment with the neutrophil elastase inhibitor significantly reduced the levels of IL-13 and TGF-β1 in the BAL fluid. In parallel, in vitro IL-13 production was significantly inhibited in spleen cells from sensitized mice. Conclusion These data indicate that neutrophil elastase plays an important role in the development of allergic airway inflammation and hyperresponsiveness, and would suggest that the neutrophil elastase inhibitor

  2. Airway Management in a Patient With Tracheal Disruption due to Penetrating Neck Trauma With Hollow Point Ammunition: A Case Report.

    PubMed

    Johnson, Angela M; Hill, James L; Zagorski, Dave J; McClain, Joseph M; Maronian, Nicole C

    2017-11-27

    Rapid sequence induction and intubation was performed for a patient in respiratory distress after a gunshot wound to the neck. Resistance was noted distal to vocal cords. With a bronchoscope unavailable, the endotracheal tube was advanced with a corkscrew maneuver. Subcutaneous emphysema had developed. The endotracheal tube was advanced into the right mainstem with adequate ventilation. Imaging illustrated tracheoesophageal injury. The patient was emergently explored. An intraluminal bullet was removed, lateral wall tracheal defect was repaired, and a tracheostomy was placed. The intubating provider should secure the airway by the method they are most comfortable, have high suspicion of airway injury, and prepare to manage airway disruption.

  3. Airway Management in a Patient With Tracheal Disruption due to Penetrating Neck Trauma With Hollow Point Ammunition: A Case Report.

    PubMed

    Johnson, Angela M; Hill, James L; Zagorski, Dave J; McClain, Joseph M; Maronian, Nicole C

    2018-05-01

    Rapid sequence induction and intubation was performed for a patient in respiratory distress after a gunshot wound to the neck. Resistance was noted distal to vocal cords. With a bronchoscope unavailable, the endotracheal tube was advanced with a corkscrew maneuver. Subcutaneous emphysema had developed. The endotracheal tube was advanced into the right mainstem with adequate ventilation. Imaging illustrated tracheoesophageal injury. The patient was emergently explored. An intraluminal bullet was removed, lateral wall tracheal defect was repaired, and a tracheostomy was placed. The intubating provider should secure the airway by the method they are most comfortable, have high suspicion of airway injury, and prepare to manage airway disruption.

  4. Mechanotransduction, asthma, and airway smooth muscle

    PubMed Central

    Fabry, Ben; Fredberg, Jeffrey J.

    2008-01-01

    Excessive force generation by airway smooth muscle is the main culprit in excessive airway narrowing during an asthma attack. The maximum force the airway smooth muscle can generate is exquisitely sensitive to muscle length fluctuations during breathing, and is governed by complex mechanotransduction events that can best be studied by a hybrid approach in which the airway wall is modeled in silico so as to set a dynamic muscle load comparable to that experienced in vivo. PMID:18836522

  5. Nitric oxide airway diffusing capacity and mucosal concentration in asthmatic schoolchildren.

    PubMed

    Pedroletti, Christophe; Högman, Marieann; Meriläinen, Pekka; Nordvall, Lennart S; Hedlin, Gunilla; Alving, Kjell

    2003-10-01

    Asthmatic patients show increased concentrations of nitric oxide (NO) in exhaled air (Feno). The diffusing capacity of NO in the airways (Dawno), the NO concentrations in the alveoli and the airway wall, and the maximal airway NO diffusion rate have previously been estimated noninvasively by measuring Feno at different exhalation flow rates in adults. We investigated these variables in 15 asthmatic schoolchildren (8-18 y) and 15 age-matched control subjects, with focus on their relation to exhaled NO at the recommended exhalation flow rate of 0.05 L/s (Feno0.05), age, and volume of the respiratory anatomic dead space. NO was measured on-line by chemiluminescence according to the European Respiratory Society's guidelines, and the NO plateau values at three different exhalation flow rates (11, 99, and 382 mL/s) were incorporated in a two-compartment model for NO diffusion. The NO concentration in the airway wall (p < 0.001), Dawno (p < 0.01), and the maximal airway NO diffusion rate (p < 0.001) were all higher in the asthmatic children than in control children. In contrast, there was no difference in the NO concentration in the alveoli (p = 0.13) between the groups. A positive correlation was seen between the volume of the respiratory anatomic dead space and Feno0.05 (r = 0.68, p < 0.01), the maximal airway NO diffusion rate (r = 0.71, p < 0.01), and Dawno (r = 0.56, p < 0.01) in control children, but not in asthmatic children. Feno0.05 correlated better with Dawno in asthmatic children (r = 0.65, p < 0.01) and with the NO concentration in the airway wall in control subjects (r < 0.77, p < 0.001) than vice versa. We conclude that Feno0.05 increases with increasing volume of the respiratory anatomic dead space in healthy children, suggesting that normal values for Feno0.05 should be related to age or body weight in this age group. Furthermore, the elevated Feno0.05 seen in asthmatic children is related to an increase in both Dawno and NO concentration in the airway

  6. Cardiovascular causes of airway compression.

    PubMed

    Kussman, Barry D; Geva, Tal; McGowan, Francis X

    2004-01-01

    Compression of the paediatric airway is a relatively common and often unrecognized complication of congenital cardiac and aortic arch anomalies. Airway obstruction may be the result of an anomalous relationship between the tracheobronchial tree and vascular structures (producing a vascular ring) or the result of extrinsic compression caused by dilated pulmonary arteries, left atrial enlargement, massive cardiomegaly, or intraluminal bronchial obstruction. A high index of suspicion of mechanical airway compression should be maintained in infants and children with recurrent respiratory difficulties, stridor, wheezing, dysphagia, or apnoea unexplained by other causes. Prompt diagnosis is required to avoid death and minimize airway damage. In addition to plain chest radiography and echocardiography, diagnostic investigations may consist of barium oesophagography, magnetic resonance imaging (MRI), computed tomography, cardiac catheterization and bronchoscopy. The most important recent advance is MRI, which can produce high quality three-dimensional reconstruction of all anatomic elements allowing for precise anatomic delineation and improved surgical planning. Anaesthetic technique will depend on the type of vascular ring and the presence of any congenital heart disease or intrinsic lesions of the tracheobronchial tree. Vascular rings may be repaired through a conventional posterolateral thoracotomy, or utilizing video-assisted thoracoscopic surgery (VATS) or robotic endoscopic surgery. Persistent airway obstruction following surgical repair may be due to residual compression, secondary airway wall instability (malacia), or intrinsic lesions of the airway. Simultaneous repair of cardiac defects and vascular tracheobronchial compression carries a higher risk of morbidity and mortality.

  7. Vagal afferents contribute to exacerbated airway responses following ozone and allergen challenge

    PubMed Central

    Schelegle, Edward S.; Walby, William F.

    2012-01-01

    Brown-Norway rats (n = 113) sensitized and challenged with nDer f 1 allergen were used to examine the contribution of lung sensory nerves to ozone (O3) exacerbation of asthma. Prior to their third challenge rats inhaled 1.0 ppm O3 for 8 hours. There were three groups: 1) control; 2) vagus perineural capsaicin treatment (PCT) with or without hexamethonium; and 3) vagotomy. O3 inhalation resulted in a significant increase in lung resistance (RL) and an exaggerated response to subsequent allergen challenge. PCT abolished the O3-induced increase in RL and significantly reduced the increase in RL induced by a subsequent allergen challenge, while hexamethonium treatment reestablished bronchoconstriction induced by allergen challenge. Vagotomy resulted in a significant increase in the bronchoconstriction induced by O3 inhalation and subsequent challenge with allergen. In this model of O3 exacerbation of asthma, vagal C-fibers initiate reflex bronchoconstriction, vagal myelinated fibers initiate reflex bronchodilation, and mediators released within the airway initiate bronchoconstriction. PMID:22525484

  8. 21 CFR 868.2600 - Airway pressure monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Airway pressure monitor. 868.2600 Section 868.2600...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2600 Airway pressure monitor. (a) Identification. An airway pressure monitor is a device used to measure the pressure in a patient's upper airway...

  9. Role of tachykinins in ozone-induced airway hyperresponsiveness to cigarette smoke in guinea pigs.

    PubMed

    Wu, Z X; Morton, R F; Lee, L Y

    1997-09-01

    Acute exposure to ozone (O3) induces airway hyperresponsiveness to various inhaled bronchoactive substances. Inhalation of cigarette smoke, a common inhaled irritant in humans, is known to evoke a transient bronchoconstrictive effect. To examine whether O3 increases airway responsiveness to cigarette smoke, effects of smoke inhalation challenge on total pulmonary resistance (RL) and dynamic lung compliance (Cdyn) were compared before and after exposure to O3 (1.5 ppm, 1 h) in anesthetized guinea pigs. Before O3 exposure, inhalation of two breaths of cigarette smoke (7 ml) at a low concentration (33%) induced a mild and reproducible bronchoconstriction that slowly developed and reached its peak (DeltaRL = 67 +/- 19%, DeltaCdyn = -29 +/- 6%) after a delay of >1 min. After exposure to O3 the same cigarette smoke inhalation challenge evoked an intense bronchoconstriction that occurred more rapidly, reaching its peak (DeltaRL = 620 +/- 224%, DeltaCdyn = -35 +/- 7%) within 20 s, and was sustained for >2 min. By contrast, sham exposure to room air did not alter the bronchomotor response to cigarette smoke challenge. Pretreatment with CP-99994 and SR-48968, the selective antagonists of neurokinin type 1 and 2 receptors, respectively, completely blocked the enhanced responses of RL and Cdyn to cigarette smoke challenge induced by O3. These results show that O3 exposure induces airway hyperresponsiveness to inhaled cigarette smoke and that the enhanced responses result primarily from the bronchoconstrictive effect of endogenous tachykinins.

  10. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines.

    PubMed

    Molet, S; Hamid, Q; Davoine, F; Nutku, E; Taha, R; Pagé, N; Olivenstein, R; Elias, J; Chakir, J

    2001-09-01

    IL-17 is a cytokine that has been reported to be produced by T lymphocytes. In vitro, IL-17 activates fibro-blasts and macrophages for the secretion of GM-CSF, TNF-alpha, IL-1beta, and IL-6. A number of these cytokines are involved in the airway remodeling that is observed within the lungs of asthmatic individuals. In this study, we investigated the expression of IL-17 in sputum and bronchoalveolar lavage specimens obtained from asthmatic subjects and from nonasthmatic control subjects. IL-17 was detected through use of immunocytochemistry, in situ hybridization, and Western blot. Bronchial fibroblasts were stimulated with IL-17, and cytokine production and chemokine production were detected through use of ELISA and RT-PCR. Using immunocytochemistry, we demonstrated that the numbers of cells positive for IL-17 are significantly increased in sputum and bronchoalveolar lavage fluids of subjects with asthma in comparison with control subjects (P <.001 and P <.005, respectively). We demonstrated that in addition to T cells, eosinophils in sputum and bronchoalveolar lavage fluids expressed IL-17. Peripheral blood eosinophils were also positive for IL-17, and the level of IL-17 in eosinophils purified from peripheral blood was significantly higher in subjects with asthma than in controls (P <.01). To further investigate the mechanism of action of IL-17 in vivo, we examined the effect of this cytokine on fibroblasts isolated from bronchial biopsies of asthmatic and nonasthmatic subjects. IL-17 did enhance the production of pro-fibrotic cytokines (IL-6 and IL-11) by fibroblasts, and this was inhibited by dexamethasone. Similarly, IL-17 increased the level of other fibroblast-derived inflammatory mediators, such as the alpha-chemokines, IL-8, and growth-related oncogene-alpha. Our results, which demonstrate for the first time that eosinophils are a potential source of IL-17 within asthmatic airways, suggest that IL-17 might have the potential to amplify inflammatory

  11. Awake Craniotomy: A New Airway Approach.

    PubMed

    Sivasankar, Chitra; Schlichter, Rolf A; Baranov, Dimitry; Kofke, W Andrew

    2016-02-01

    Awake craniotomies have been performed regularly at the University of Pennsylvania since 2004. Varying approaches to airway management are described for this procedure, including intubation with an endotracheal tube and use of a laryngeal mask airway, simple facemask, or nasal cannula. In this case series, we describe the successful use (i.e., no need for endotracheal intubation related to inadequate gas exchange) of bilateral nasopharyngeal airways in 90 patients undergoing awake craniotomies. The use of nasopharyngeal airways can ease the transition between the asleep and awake phases of the craniotomy without the need to stimulate the airway. Our purpose was to describe our experience and report adverse events related to this technique.

  12. Airway structure and function in Eisenmenger's syndrome.

    PubMed

    McKay, K O; Johnson, P R; Black, J L; Glanville, A R; Armour, C L

    1998-10-01

    The responsiveness of airways from patients with Eisenmenger's syndrome (n = 5) was compared with that in airways from organ donors (n = 10). Enhanced contractile responses to cholinergic stimulation were found in airways from patients with Eisenmenger's syndrome. The maximal responses to acetylcholine, carbachol, and parasympathetic nerve stimulation in airway tissue from these patients were 221%, 139%, and 152%, respectively, of the maximal responses obtained in donor tissue. Further, relaxation responses to isoproterenol and levocromakalim were absent (n = 2) or markedly impaired (n = 3) in airways from patients with Eisenmenger's syndrome. This attenuated relaxation response was nonspecific in that it was also absent after vasoactive intestinal peptide, sodium nitroprusside, papaverine, and electrical field application. These observations can most likely be explained by a decrease in intrinsic smooth muscle tone, as precontraction of airways revealed relaxation responses that were equivalent to those obtained in donor tissues. Morphometric analysis of tissues used for the functional studies revealed no differences in the airway dimensions (internal perimeter) or airway wall components (e.g., smooth muscle, cartilage) or total area to explain these observations. Although the mechanism for this observed decrease in intrinsic airway smooth muscle tone is not certain, it may be due to alteration in the substructure of the airway wall or, alternatively, may result from the continued release of depressant factors in the vicinity of the smooth muscle which permanently alters smooth muscle responsiveness.

  13. Neutrophilic infiltration within the airway smooth muscle in patients with COPD

    PubMed Central

    Baraldo, S; Turato, G; Badin, C; Bazzan, E; Beghe, B; Zuin, R; Calabrese, F; Casoni, G; Maestrelli, P; Papi, A; Fabbri, L; Saetta, M

    2004-01-01

    Background: COPD is an inflammatory disorder characterised by chronic airflow limitation, but the extent to which airway inflammation is related to functional abnormalities is still uncertain. The interaction between inflammatory cells and airway smooth muscle may have a crucial role. Methods: To investigate the microlocalisation of inflammatory cells within the airway smooth muscle in COPD, surgical specimens obtained from 26 subjects undergoing thoracotomy (eight smokers with COPD, 10 smokers with normal lung function, and eight non-smoking controls) were examined. Immunohistochemical analysis was used to quantify the number of neutrophils, macrophages, mast cells, CD4+ and CD8+ cells localised within the smooth muscle of peripheral airways. Results: Smokers with COPD had an increased number of neutrophils and CD8+ cells in the airway smooth muscle compared with non-smokers. Smokers with normal lung function also had a neutrophilic infiltration in the airway smooth muscle, but to a lesser extent. When all the subjects were analysed as one group, neutrophilic infiltration was inversely related to forced expiratory volume in 1 second (% predicted). Conclusions: Microlocalisation of neutrophils and CD8+ cells in the airway smooth muscle in smokers with COPD suggests a possible role for these cells in the pathogenesis of smoking induced airflow limitation. PMID:15047950

  14. EFFECTS OF TITANIUM DIOXIDE NANOPARTICLE EXPOSURE ON NEUROIMMUNE RESPONSES IN RAT AIRWAYS

    PubMed Central

    Scuri, Mario; Chen, Bean T.; Castranova, Vincent; Reynolds, Jeffrey S.; Johnson, Victor J.; Samsell, Lennie; Walton, Cheryl; Piedimonte, Giovanni

    2013-01-01

    Exposure to ambient nanoparticles (defined as particulate matter [PM] having one dimension < 100 nm) is associated with increased risk of childhood and adult asthma. Nanomaterials feature a smaller aerodynamic diameter and a higher surface area per unit mass ratio compared to fine or coarse-sized particles, resulting in greater lung deposition efficiency and an increased potential for biological interaction. The neurotrophins nerve growth factor and brain-derived neurotrophic factor are key regulatory elements of neuronal development and responsiveness of airway sensory neurons. Changes in their expression are associated with bronchoconstriction, airway hyperresponsiveness, and airway inflammation. The neurogenic-mediated control of airway responses is a key pathophysiological mechanism of childhood asthma. However, the effects of nanoparticle exposure on neurotrophin-driven airway responses and their potential role as a predisposing factor for developing asthma have not been clearly elucidated. In this study, in vivo inhalation exposure to titanium dioxide nanoparticles (12 mg/m13; 5.6 h/d for 3 d) produced upregulation of lung neurotrophins in weanling (2-wk-old) and newborn (2-d-old) rats but not in adult (12-wk-old) animals compared to controls. This effect was associated with increased airway responsiveness and upregulation of growth-related oncogene/keratine-derived chemokine (GRO/KC; CXCL1, rat equivalent of human interleukin [IL]-8) in bronchoalveolar lavage fluid. These data show for the first time that exposure to nanoparticulate upregulates the expression of lung neurotrophins in an age-dependent fashion and that this effect is associated with airway hyperresponsiveness and inflammation. These results suggest the presence of a critical window of vulnerability in earlier stages of lung development, which may lead to a higher risk of developing asthma. PMID:20818535

  15. A meta-analysis of prehospital airway control techniques part II: alternative airway devices and cricothyrotomy success rates.

    PubMed

    Hubble, Michael W; Wilfong, Denise A; Brown, Lawrence H; Hertelendy, Attila; Benner, Randall W

    2010-01-01

    Airway management is a key component of prehospital care for seriously ill and injured patients. Oral endotracheal intubation (OETI) is the definitive airway of choice in most emergency medical services (EMS) systems. However, OETI may not be an approved skill for some clinicians or may prove problematic in certain patients because of anatomic abnormalities, trauma, or inadequate relaxation. In these situations alternative airways are frequently employed. However, the reported success rates for these devices vary widely, and established benchmarks are lacking. We sought to determine pooled estimates of the success rates of alternative airway devices (AADs) and needle cricothyrotomy (NCRIC) and surgical cricothyrotomy (SCRIC) placement through a meta-analysis of the literature. We performed a systematic literature search for all English-language articles reporting success rates for AADs, SCRIC, and NCRIC. Studies of field procedures performed by prehospital personnel from any nation were included. All titles were reviewed independently by two authors using prespecified inclusion criteria. Pooled estimates of success rates for each airway technique were calculated using a random-effects meta-analysis model. Of 2,005 prehospital airway titles identified, 35 unique studies were retained for analysis of AAD success rates, encompassing a total of 10,172 prehospital patients. The success rates for SCRIC and NCRIC were analyzed across an additional 21 studies totaling 512 patients. The pooled estimates (and 95% confidence intervals [CIs]) for intervention success across all clinicians and patients were as follows: esophageal obturator airway-esophageal gastric tube airway (EOA-EGTA) 92.6% (90.1%-94.5%); pharyngeotracheal lumen airway (PTLA) 82.1% (74.0%-88.0%); esophageal-tracheal Combitube (ETC) 85.4% (77.3%-91.0%); laryngeal mask airway (LMA) 87.4% (79.0%-92.8%); King Laryngeal Tube airway (King LT) 96.5% (71.2%-99.7%); NCRIC 65.8% (42.3%-83.59%); and SCRIC 90.5% (84

  16. Trichostatin A Abrogates Airway Constriction, but Not Inflammation, in Murine and Human Asthma Models

    PubMed Central

    Trivedi, Chinmay M.; Damera, Gautam; Jiang, Meiqi; Jester, William; Hoshi, Toshinori; Epstein, Jonathan A.; Panettieri, Reynold A.

    2012-01-01

    Histone deacetylase (HDAC) inhibitors may offer novel approaches in the treatment of asthma. We postulate that trichostatin A (TSA), a Class 1 and 2 inhibitor of HDAC, inhibits airway hyperresponsiveness in antigen-challenged mice. Mice were sensitized and challenged with Aspergillus fumigatus antigen (AF) and treated with TSA, dexamethasone, or vehicle. Lung resistance (RL) and dynamic compliance were measured, and bronchial alveolar lavage fluid (BALF) was analyzed for numbers of leukocytes and concentrations of cytokines. Human precision-cut lung slices (PCLS) were treated with TSA and their agonist-induced bronchoconstriction was measured, and TSA-treated human airway smooth muscle (ASM) cells were evaluated for the agonist-induced activation of Rho and intracellular release of Ca2+. The activity of HDAC in murine lungs was enhanced by antigen and abrogated by TSA. TSA also inhibited methacholine (Mch)-induced increases in RL and decreases in dynamic compliance in naive control mice and in AF-sensitized and -challenged mice. Total cell counts, concentrations of IL-4, and numbers of eosinophils in BALF were unchanged in mice treated with TSA or vehicle, whereas dexamethasone inhibited the numbers of eosinophils in BALF and concentrations of IL-4. TSA inhibited the carbachol-induced contraction of PCLS. Treatment with TSA inhibited the intracellular release of Ca2+ in ASM cells in response to histamine, without affecting the activation of Rho. The inhibition of HDAC abrogates airway hyperresponsiveness to Mch in both naive and antigen-challenged mice. TSA inhibits the agonist-induced contraction of PCLS and mobilization of Ca2+ in ASM cells. Thus, HDAC inhibitors demonstrate a mechanism of action distinct from that of anti-inflammatory agents such as steroids, and represent a promising therapeutic agent for airway disease. PMID:22298527

  17. A novel animal model for hyperdynamic airway collapse.

    PubMed

    Tsukada, Hisashi; O'Donnell, Carl R; Garland, Robert; Herth, Felix; Decamp, Malcolm; Ernst, Armin

    2010-12-01

    Tracheobronchomalacia (TBM) is increasingly recognized as a condition associated with significant pulmonary morbidity. However, treatment is invasive and complex, and because there is no appropriate animal model, novel diagnostic and treatment strategies are difficult to evaluate. We endeavored to develop a reliable airway model to simulate hyperdynamic airway collapse in humans. Seven 20-kg male sheep were enrolled in this study. Tracheomalacia was created by submucosal resection of > 50% of the circumference of 10 consecutive cervical tracheal cartilage rings through a midline cervical incision. A silicone stent was placed in the trachea to prevent airway collapse during recovery. Tracheal collapsibility was assessed at protocol-specific time points by bronchoscopy and multidetector CT imaging while temporarily removing the stent. Esophageal pressure and flow data were collected to assess flow limitation during spontaneous breathing. All animals tolerated the surgical procedure well and were stented without complications. One sheep died at 2 weeks because of respiratory failure related to stent migration. In all sheep, near-total forced inspiratory airway collapse was observed up to 3 months postprocedure. Esophageal manometry demonstrated flow limitation associated with large negative pleural pressure swings during rapid spontaneous inhalation. Hyperdynamic airway collapse can reliably be induced with this technique. It may serve as a model for evaluation of novel diagnostic and therapeutic strategies for TBM.

  18. Development of an airway mucus defect in the cystic fibrosis rat

    PubMed Central

    Birket, Susan E.; Davis, Joy M.; Fernandez, Courtney M.; Tuggle, Katherine L.; Oden, Ashley M.; Chu, Kengyeh K.; Tearney, Guillermo J.; Fanucchi, Michelle V.; Sorscher, Eric J.

    2018-01-01

    The mechanisms underlying the development and natural progression of the airway mucus defect in cystic fibrosis (CF) remain largely unclear. New animal models of CF, coupled with imaging using micro-optical coherence tomography, can lead to insights regarding these questions. The Cftr–/– (KO) rat allows for longitudinal examination of the development and progression of airway mucus abnormalities. The KO rat exhibits decreased periciliary depth, hyperacidic pH, and increased mucus solid content percentage; however, the transport rates and viscoelastic properties of the mucus are unaffected until the KO rat ages. Airway submucosal gland hypertrophy develops in the KO rat by 6 months of age. Only then does it induce increased mucus viscosity, collapse of the periciliary layer, and delayed mucociliary transport; stimulation of gland secretion potentiates this evolution. These findings could be reversed by bicarbonate repletion but not pH correction without counterion donation. These studies demonstrate that abnormal surface epithelium in CF does not cause delayed mucus transport in the absence of functional gland secretions. Furthermore, abnormal bicarbonate transport represents a specific target for restoring mucus clearance, independent of effects on periciliary collapse. Thus, mature airway secretions are required to manifest the CF defect primed by airway dehydration and bicarbonate deficiency. PMID:29321377

  19. Neutralizing inhibitors in the airways of naïve ferrets do not play a major role in modulating the virulence of H3 subtype influenza A viruses.

    PubMed

    Job, Emma R; Pizzolla, Angela; Nebl, Thomas; Short, Kirsty R; Deng, Yi-Mo; Carolan, Louise; Laurie, Karen L; Brooks, Andrew G; Reading, Patrick C

    2016-07-01

    Many insights regarding the pathogenesis of human influenza A virus (IAV) infections have come from studies in mice and ferrets. Surfactant protein (SP)-D is the major neutralizing inhibitor of IAV in mouse airway fluids and SP-D-resistant IAV mutants show enhanced virus replication and virulence in mice. Herein, we demonstrate that sialylated glycoproteins, rather than SP-D, represent the major neutralizing inhibitors against H3 subtype viruses in airway fluids from naïve ferrets. Moreover, while resistance to neutralizing inhibitors is a critical factor in modulating virus replication and disease in the mouse model, it does not appear to be so in the ferret model, as H3 mutants resistant to either SP-D or sialylated glycoproteins in ferret airway fluids did not show enhanced virulence in ferrets. These data have important implications for our understanding of pathogenesis and immunity to human IAV infections in these two widely used animal models of infection. Copyright © 2016. Published by Elsevier Inc.

  20. [A case of postoperative airway obstruction by Quincke edema].

    PubMed

    Ebata, S; Fujii, Y; Kojima, Y; Tanaka, H

    1994-05-01

    A 42-year-old female was scheduled for removal of brain tumor under general anesthesia with nitrous oxide, oxygen and isoflurane. Two days after operation, airway obstruction by increased swelling around the neck was observed. The first neck X-ray films and CT-scans after operation were not indicative of the hematoma or cyst but suggestive of the neurovascular edema (Quincke). It is necessary not to overlook postoperative airway obstruction by Quincke's edema.

  1. Computed Tomographic Airway Morphology in Chronic Obstructive Pulmonary Disease. Remodeling or Innate Anatomy?

    PubMed

    Diaz, Alejandro A; Estépar, Raul San José; Washko, George R

    2016-01-01

    Computed tomographic measures of central airway morphology have been used in clinical, epidemiologic, and genetic investigation as an inference of the presence and severity of small-airway disease in smokers. Although several association studies have brought us to believe that these computed tomographic measures reflect airway remodeling, a careful review of such data and more recent evidence may reveal underappreciated complexity to these measures and limitations that prompt us to question that belief. This Perspective offers a review of seminal papers and alternative explanations of their data in the light of more recent evidence. The relationships between airway morphology and lung function are observed in subjects who never smoked, implying that native airway structure indeed contributes to lung function; computed tomographic measures of central airways such as wall area, lumen area, and total bronchial area are smaller in smokers with chronic obstructive pulmonary disease versus those without chronic obstructive pulmonary disease; and the airways are smaller as disease severity increases. The observations suggest that (1) native airway morphology likely contributes to the relationships between computed tomographic measures of airways and lung function; and (2) the presence of smaller airways in those with chronic obstructive pulmonary disease versus those without chronic obstructive pulmonary disease as well as their decrease with disease severity suggests that smokers with chronic obstructive pulmonary disease may simply have smaller airways to begin with, which put them at greater risk for the development of smoking-related disease.

  2. Patency of paediatric endotracheal tubes for airway instrumentation.

    PubMed

    Elfgen, J; Buehler, P K; Thomas, J; Kemper, M; Imach, S; Weiss, M

    2017-01-01

    Airway exchange catheters (AEC) and fiberoptic bronchoscopes (FOB) for tracheal intubation are selected so that there is only a minimal gap between their outer and inner diameter of endotracheal tube (ETT) to minimize the risk of impingement during airway instrumentation. This study aimed to test the ease of passage of FOBs and AECs through paediatric ETT of different sizes and from different manufacturers when using current recommendations for dimensional equipment compatibility taken from text books and manufacturers information. Twelve different brands of cuffed and uncuffed ETT sized ID 2.5 to 5.0 mm were evaluated in an in vitro set-up. Ease of device passage as well as the locations of an impaired passage within the ETT were assessed. Redundant samples were used for same sized ETT and all measurements were triple-checked in randomized order. In total, 51 paired samples of uncuffed as well as cuffed paediatric ETT were tested. There were substantial differences in the ease of ETT passage concordantly for FOBs and AECs among different manufacturers, but also among the product lines from the same manufacturer for a given ID size. Restriction to passage most frequently was found near the endotracheal tube tip or as a gradually increasing resistance along the ETT shaft. Current recommendations for dimensional equipment compatibility AECs and FOBs with ETTs do not appear to be completely accurate for all ETT brands available. We recommend that specific equipment combinations always must be tested carefully together before attempting to use them in a patient. © 2016 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  3. Respiratory health of elite athletes - preventing airway injury: a critical review.

    PubMed

    Kippelen, Pascale; Fitch, Kenneth D; Anderson, Sandra Doreen; Bougault, Valerie; Boulet, Louis-Philippe; Rundell, Kenneth William; Sue-Chu, Malcolm; McKenzie, Donald C

    2012-06-01

    Elite athletes, particularly those engaged in endurance sports and those exposed chronically to airborne pollutants/irritants or allergens, are at increased risk for upper and lower airway dysfunction. Airway epithelial injury may be caused by dehydration and physical stress applied to the airways during severe exercise hyperpnoea and/or by inhalation of noxious agents. This is thought to initiate an inflammatory cascade/repair process that, ultimately, could lead to airway hyperresponsiveness (AHR) and asthma in susceptible athletes. The authors review the evidence relating to prevention or reduction of the risk of AHR/asthma development. Appropriate measures should be implemented when athletes exercise strenuously in an attempt to attenuate the dehydration stress and reduce the exposure to noxious airborne agents. Environmental interventions are the most important. Non-pharmacological strategies can assist, but currently, pharmacological measures have not been demonstrated to be effective. Whether early prevention of airway injury in elite athletes can prevent or reduce progression to AHR/asthma remains to be established.

  4. Chloride and potassium channels in cystic fibrosis airway epithelia

    NASA Astrophysics Data System (ADS)

    Welsh, Michael J.; Liedtke, Carole M.

    1986-07-01

    Cystic fibrosis, the most common lethal genetic disease in Caucasians, is characterized by a decreased permeability in sweat gland duct and airway epithelia. In sweat duct epithelium, a decreased Cl- permeability accounts for the abnormally increased salt content of sweat1. In airway epithelia a decreased Cl- permeability, and possibly increased sodium absorption, may account for the abnormal respiratory tract fluid2,3. The Cl- impermeability has been localized to the apical membrane of cystic fibrosis airway epithelial cells4. The finding that hormonally regulated Cl- channels make the apical membrane Cl- permeable in normal airway epithelial cells5 suggested abnormal Cl- channel function in cystic fibrosis. Here we report that excised, cell-free patches of membrane from cystic fibrosis epithelial cells contain Cl- channels that have the same conductive properties as Cl- channels from normal cells. However, Cl- channels from cystic fibrosis cells did not open when they were attached to the cell. These findings suggest defective regulation of Cl- channels in cystic fibrosis epithelia; to begin to address this issue, we performed two studies. First, we found that isoprenaline, which stimulates Cl- secretion, increases cellular levels of cyclic AMP in a similar manner in cystic fibrosis and non-cystic fibrosis epithelial cells. Second, we show that adrenergic agonists open calcium-activated potassium channels, indirectly suggesting that calcium-dependent stimulus-response coupling is intact in cystic fibrosis. These data suggest defective regulation of Cl- channels at a site distal to cAMP accumulation.

  5. Structural and functional localization of airway effects from episodic exposure of infant monkeys to allergen and/or ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joad, Jesse P.; Kott, Kayleen S.; Bric, John M.

    2006-08-01

    Both allergen and ozone exposure increase asthma symptoms and airway responsiveness in children. Little is known about how these inhalants may differentially modify airway responsiveness in large proximal as compared to small distal airways. We evaluated whether bronchi and respiratory bronchioles from infant monkeys exposed episodically to allergen and/or ozone differentially develop intrinsic hyperresponsiveness to methacholine and whether eosinophils and/or pulmonary neuroendocrine cells play a role. Infant monkeys were exposed episodically for 5 months to: (1) filtered air, (2) aerosolized house dust mite allergen, (3) ozone 0.5 ppm, or (4) house dust mite allergen + ozone. Studying the function/structure relationshipmore » of the same lung slices, we evaluated methacholine airway responsiveness and histology of bronchi and respiratory bronchioles. In bronchi, intrinsic responsiveness was increased by allergen exposure, an effect reduced by bombesin antagonist. In respiratory bronchioles, intrinsic airway responsiveness was increased by allergen + ozone exposure. Eosinophils were increased by allergen and allergen + ozone exposure in bronchi and by allergen exposure in respiratory bronchioles. In both airways, exposure to allergen + ozone resulted in fewer tissue eosinophils than did allergen exposure alone. In bronchi, but not in respiratory bronchioles, the number of eosinophils and neuroendocrine cells correlated with airway responsiveness. We conclude that episodically exposing infant monkeys to house dust mite allergen with or without ozone increased intrinsic airway responsiveness to methacholine in bronchi differently than in respiratory bronchioles. In bronchi, eosinophils and neuroendocrine cells may play a role in the development of airway hyperresponsiveness.« less

  6. Can breathing-like pressure oscillations reverse or prevent narrowing of small intact airways?

    PubMed

    Harvey, Brian C; Parameswaran, Harikrishnan; Lutchen, Kenneth R

    2015-07-01

    Periodic length fluctuations of airway smooth muscle during breathing are thought to modulate airway responsiveness in vivo. Recent animal and human intact airway studies have shown that pressure fluctuations simulating breathing can only marginally reverse airway narrowing and are ineffective at protecting against future narrowing. However, these previous studies were performed on relatively large (>5 mm diameter) airways, which are inherently stiffer than smaller airways for which a preponderance of airway constriction in asthma likely occurs. The goal of this study was to determine the effectiveness of breathing-like transmural pressure oscillations to reverse induced narrowing and/or protect against future narrowing of smaller, more compliant intact airways. We constricted smaller (luminal diameter = 2.92 ± 0.29 mm) intact airway segments twice with ACh (10(-6) M), once while applying tidal-like pressure oscillations (5-15 cmH2O) before, during, and after inducing constriction (Pre + Post) and again while only imposing the tidal-like pressure oscillation after induced constriction (Post Only). Smaller airways were 128% more compliant than previously studied larger airways. This increased compliance translated into 196% more strain and 76% greater recovery (41 vs. 23%) because of tidal-like pressure oscillations. Larger pressure oscillations (5-25 cmH2O) caused more recovery (77.5 ± 16.5%). However, pressure oscillations applied before and during constriction resulted in the same steady-state diameter as when pressure oscillations were only applied after constriction. These data show that reduced straining of the airways before a challenge likely does not contribute to the emergence of airway hyperreactivity observed in asthma but may serve to sustain a given level of constriction. Copyright © 2015 the American Physiological Society.

  7. Arginase inhibition in airways from normal and nitric oxide synthase 2-knockout mice exposed to ovalbumin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bratt, Jennifer M.; Franzi, Lisa M.; Linderholm, Angela L.

    Arginase1 and nitric oxide synthase2 (NOS2) utilize L-arginine as a substrate, with both enzymes expressed at high levels in the asthmatic lung. Inhibition of arginase in ovalbumin-exposed C57BL/6 mice with the transition state inhibitor N{sup o}mega-hydroxy-nor-L-arginine (nor-NOHA) significantly increased total L-arginine content in the airway compartment. We hypothesized that such an increase in L-arginine content would increase the amount of nitric oxide (NO) being produced in the airways and thereby decrease airway hyperreactivity and eosinophilic influx. We further hypothesized that despite arginase inhibition, NOS2 knockout (NOS2-/-) mice would be unable to up-regulate NO production in response to allergen exposure andmore » would demonstrate higher amounts of airway hyperreactivity and eosinophilia under conditions of arginase inhibition than C57BL/6 animals. We found that administration of nor-NOHA significantly decreased airway hyperreactivity and eosinophilic airway inflammation in ovalbumin-exposed C57BL/6 mice, but these parameters were unchanged in ovalbumin-exposed NOS2-/- mice. Arginase1 protein content was increased in mice exposed to ovalbumin, an effect that was reversed upon nor-NOHA treatment in C57BL/6 mice. Arginase1 protein content in the airway compartment directly correlated with the degree of airway hyperreactivity in all treatment groups. NOS2-/- mice had significantly greater arginase1 and arginase2 concentrations compared to their respective C57BL/6 groups, indicating that inhibition of arginase may be dependent upon NOS2 expression. Arginase1 and 2 content were not affected by nor-NOHA administration in the NOS2-/- mice. We conclude that L-arginine metabolism plays an important role in the development of airway hyperreactivity and eosinophilic airway inflammation. Inhibition of arginase early in the allergic inflammatory response decreases the severity of the chronic inflammatory phenotype. These effects appear to be attributable to

  8. Sequential Stenting for Extensive Malignant Airway Stenosis

    PubMed Central

    Takahama, Makoto; Nakajima, Ryu; Kimura, Michitaka; Tei, Keiko; Yamamoto, Ryoji

    2014-01-01

    Purpose: Malignant airway stenosis extending from the bronchial bifurcation to the lower lobar orifice was treated with airway stenting. We herein examine the effectiveness of airway stenting for extensive malignant airway stenosis. Methods: Twelve patients with extensive malignant airway stenosis underwent placement of a silicone Dumon Y stent (Novatech, La Ciotat, France) at the tracheal bifurcation and a metallic Spiral Z-stent (Medico’s Hirata, Osaka, Japan) at either distal side of the Y stent. We retrospectively analyzed the therapeutic efficacy of the sequential placement of these silicone and metallic stents in these 12 patients. Results: The primary disease was lung cancer in eight patients, breast cancer in two patients, tracheal cancer in one patient, and thyroid cancer in one patient. The median survival period after airway stent placement was 46 days. The Hugh–Jones classification and performance status improved in nine patients after airway stenting. One patient had prolonged hemoptysis and died of respiratory tract hemorrhage 15 days after the treatment. Conclusion: Because the initial disease was advanced and aggressive, the prognosis after sequential airway stent placement was significantly poor. However, because respiratory distress decreased after the treatment in most patients, this treatment may be acceptable for selected patients with extensive malignant airway stenosis. PMID:25273272

  9. Malignant central airway obstruction

    PubMed Central

    Mudambi, Lakshmi; Miller, Russell

    2017-01-01

    This review comprehensively describes recent advances in the management of malignant central airway obstruction (CAO). Malignant CAO can be a dramatic and devastating manifestation of primary lung cancer or metastatic disease. A variety of diagnostic modalities are available to provide valuable information to plan a therapeutic intervention. Clinical heterogeneity in the presentation of malignant CAO provides opportunities to adapt and utilize endoscopic technology and tools in many ways. Mechanical debulking, thermal tools, cryotherapy and airway stents are methods and instruments used to rapidly restore airway patency. Delayed bronchoscopic methods, such as photodynamic therapy (PDT) and brachytherapy can also be utilized in specific non-emergent situations to establish airway patency. Although data regarding the success and complications of therapeutic interventions are retrospective and characterized by clinical and outcome measure variability, the symptoms of malignant CAO can often be successfully palliated. Assessment of risks and benefits of interventions in each individual patient during the decision-making process forms the critical foundation of the management of malignant CAO. PMID:29214067

  10. S-Nitrosoglutathione Reductase Inhibition Regulates Allergen-Induced Lung Inflammation and Airway Hyperreactivity

    PubMed Central

    Bassett, David J. P.; Bradley, Matthews O.; Jaffar, Zeina

    2013-01-01

    Allergic asthma is characterized by Th2 type inflammation, leading to airway hyperresponsivenes, mucus hypersecretion and tissue remodeling. S-Nitrosoglutathione reductase (GSNOR) is an alcohol dehydrogenase involved in the regulation of intracellular levels of S-nitrosothiols. GSNOR activity has been shown to be elevated in human asthmatic lungs, resulting in diminished S-nitrosothiols and thus contributing to increased airway hyperreactivity. Using a mouse model of allergic airway inflammation, we report that intranasal administration of a new selective inhibitor of GSNOR, SPL-334, caused a marked reduction in airway hyperreactivity, allergen-specific T cells and eosinophil accumulation, and mucus production in the lungs in response to allergen inhalation. Moreover, SPL-334 treatment resulted in a significant decrease in the production of the Th2 cytokines IL-5 and IL-13 and the level of the chemokine CCL11 (eotaxin-1) in the airways. Collectively, these observations reveal that GSNOR inhibitors are effective not only in reducing airway hyperresponsiveness but also in limiting lung inflammatory responses mediated by CD4+ Th2 cells. These findings suggest that the inhibition of GSNOR may provide a novel therapeutic approach for the treatment of allergic airway inflammation. PMID:23936192

  11. Regulation of human airway surface liquid.

    PubMed

    Widdicombe, J H; Widdicombe, J G

    1995-01-01

    Human airways are lined with a film of liquid from 5-100 microns in depth, consisting of a periciliary sol around and a mucous gel above the cilia. Microscopical studies have shown the sol to be invariably the same depth as the length of the cilia, and we discuss possible reasons for this. The composition and sources of the airway surface liquid are also described. In addition the forces regulating its volume are analyzed. Several airway diseases are characterised by dramatic changes in the volume and composition of airway liquid. We review recent research suggesting that the accumulation of airway mucous secretions in cystic fibrosis is caused by alterations in active transport of ions and water across both the surface and gland epithelia.

  12. Continuous positive airway pressure for the treatment of obstructive sleep apnea.

    PubMed

    Nurwidya, Fariz; Susanto, Agus Dwi; Juzar, Dafsah A; Kobayashi, Isao; Yunus, Faisal

    2016-01-01

    Obstructive sleep apnea (OSA) is a recurrent episode of partial or complete upper airway obstruction during sleep despite ongoing respiratory efforts and is implicated as the risk factor of cardiovascular disease. The OSA syndrome is typified by recurring partial or total occlusion of the pharynx, sleep fragmentation, episodes of gasping, and, eventually, daytime sleepiness. If it is left untreated, OSA syndrome can cause hypertension, coronary artery disease congestive heart disease, insulin resistance and death. In this review, we describe the pathogenesis and diagnosis of OSA. We also focused on the continuous positive airway pressure (CPAP) as the main therapy for OSA. CPAP has been shown to provide benefit for not only respiratory system, but also for cardiovascular system and metabolic system. Finally, we discussed briefly about the issue of adherence of using CPAP that could contribute to lower compliant in patient with OSA.

  13. Physiologic control. Anatomy and physiology of the airway circulation.

    PubMed

    Widdicombe, J

    1992-11-01

    Both for the nose and the lower airways there is an extensive subepithelial capillary network. That for the nose is fenestrated, and this is true for the tracheobronchial tree of rats, guinea pigs, and hamsters, and for that of human asthmatics. However, healthy humans, dogs, and sheep have capillaries without fenestrations except for those close to neuroepithelial bodies and submucosal glands. Deeper in the mucosa there is a capacitance system of vessels, conspicuous in the nose but present also in the lower airways of rabbits and sheep and, to a lesser extent, in those of dogs and humans. Both for the nose and the lower airways, parasympathetic nerves are vasodilator, sympathetic nerves are vasoconstrictor, and sensory nerves are able to release dilator neuropeptides. Most inflammatory and immunologic mediators are vasodilator. A conspicuous difference between the nasal and lower airway vasculatures is the presence of arteriovenous anastomoses only in the former. Countercurrent mechanisms also exist in the nose to increase its efficiency in air conditioning, but they have not been established for the trachea. The pulmonary vasculature could be part of such a system for the bronchi. Distension of the airway vasculature thickens the mucosa, probably both by vascular distension and by edema formation. The latter can lead to exudation into the airway lumen. These processes have not been well quantitated, and the balance sheet of capillary and capacitance vessel volumes, interstitial liquid volume, and exudate volume needs to be worked out in physiologic and pathologic conditions.

  14. Relating small airways to asthma control using impulse oscillometry in children

    PubMed Central

    Shi, Yixin; Aledia, Anna S.; Tatavoosian, Ahramahzd V.; Vijayalakshmi, Shruthi; Galant, Stanley P.; George, Steven C.

    2012-01-01

    Background Previous reports suggest that peripheral airways are associated with asthma control. Patient history, although subjective is used largely to assess asthma control in children because spirometry is many times normal. Impulse oscillometry (IOS) is an objective non-invasive measurement of lung function, which has the potential to examine independently both small and large airway obstruction. Objective To determine the utility of IOS in assessing asthma control in children. Methods Asthmatic and healthy children (6–17 yrs) were enrolled in the study. Spirometry and IOS (resistance at 5 and 20 Hz, R5 and R20, respectively, reactance at 5 Hz, X5, resonant frequency, Fres, and area under the reactance curve between 5 Hz and Fres, AX) were collected in triplicate before and after a bronchodilator was administered. The physicians were blinded to the IOS measurements and assessed asthma control using ATS guidelines. Results Small airway IOS measurements, including R5-20, X5, Fres and AX, of children with uncontrolled asthma (n=44) were significantly different from those of controlled asthmatic (n=57) and healthy (n=14) children, especially prior to the administration of a bronchodilator. However, there was no difference in large airway IOS (R20). No differences were found between controlled asthmatic and healthy children in any of the endpoints. ROC analysis showed cut-points for baseline R5-20 (1.5 cmH2O·L−1·s) and AX (9.5 cmH2O·L−1) that effectively discriminated controlled versus uncontrolled asthma (AUC=0.86 and 0.84), and correctly classified more than 80% of the population. Conclusion Uncontrolled asthma is associated with small airways dysfunction, and IOS may be a reliable non-invasive method to assess asthma control in children. PMID:22178635

  15. What evidence implicates airway smooth muscle in the cause of BHR?

    PubMed

    Dulin, Nickolai O; Fernandes, Darren J; Dowell, Maria; Bellam, Shashi; McConville, John; Lakser, Oren; Mitchell, Richard; Camoretti-Mercado, Blanca; Kogut, Paul; Solway, Julian

    2003-02-01

    Bronchial hyperresponsiveness (BHR), the occurrence of excessive bronchoconstriction in response to relatively small constrictor stimuli, is a cardinal feature of asthma. Here, we consider the role that airway smooth muscle might play in the generation of BHR. The weight of evidence suggests that smooth muscle isolated from asthmatic tissues exhibits normal sensitivity to constrictor agonists when studied during isometric contraction, but the increased muscle mass within asthmatic airways might generate more total force than the lesser amount of muscle found in normal bronchi. Another salient difference between asthmatic and normal individuals lies in the effect of deep inhalation (DI) on bronchoconstriction. DI often substantially reverses induced bronchoconstriction in normals, while it often has much less effect on spontaneous or induced bronchoconstriction in asthmatics. It has been proposed that abnormal dynamic aspects of airway smooth muscle contraction velocity of contraction or plasticity- elasticity balance might underlie the abnormal DI response in asthma. We suggest a speculative model in which abnormally long actin filaments might account for abnormally increased elasticity of contracted airway smooth muscle.

  16. Pulmonary Stress Induced by Hyperthermia: Role of Airway Sensory Nerves

    DTIC Science & Technology

    2013-10-01

    ABSTRACT Based upon the results obtained from these studies, we can draw the following conclusions: 1) Airway hyperresponsiveness developed in Ova ...hyperthermia in Ova -sensitized rats. The manuscript reporting the results obtained frim this study has been accepted for publication by the Journal of...to increasing airway temperature. Our results showed: 1) In Brown-Norway rats actively sensitized by ovalbumin ( Ova ), isocapnic hyperventilation with

  17. Innate lymphoid cells contribute to allergic airway disease exacerbation by obesity.

    PubMed

    Everaere, Laetitia; Ait-Yahia, Saliha; Molendi-Coste, Olivier; Vorng, Han; Quemener, Sandrine; LeVu, Pauline; Fleury, Sebastien; Bouchaert, Emmanuel; Fan, Ying; Duez, Catherine; de Nadai, Patricia; Staels, Bart; Dombrowicz, David; Tsicopoulos, Anne

    2016-11-01

    Epidemiologic and clinical observations identify obesity as an important risk factor for asthma exacerbation, but the underlying mechanisms remain poorly understood. Type 2 innate lymphoid cells (ILC2s) and type 3 innate lymphoid cells (ILC3s) have been implicated, respectively, in asthma and adipose tissue homeostasis and in obesity-associated airway hyperresponsiveness (AHR). We sought to determine the potential involvement of innate lymphoid cells (ILCs) in allergic airway disease exacerbation caused by high-fat diet (HFD)-induced obesity. Obesity was induced by means of HFD feeding, and allergic airway inflammation was subsequently induced by means of intranasal administration of house dust mite (HDM) extract. AHR, lung and visceral adipose tissue inflammation, humoral response, cytokines, and innate and adaptive lymphoid populations were analyzed in the presence or absence of ILCs. HFD feeding exacerbated allergic airway disease features, including humoral response, airway and tissue eosinophilia, AHR, and T H 2 and T H 17 pulmonary profiles. Notably, nonsensitized obese mice already exhibited increased lung ILC counts and tissue eosinophil infiltration compared with values in lean mice in the absence of AHR. The numbers of total and cytokine-expressing lung ILC2s and ILC3s further increased in HDM-challenged obese mice compared with those in HDM-challenged lean mice, and this was accompanied by high IL-33 and IL-1β levels and decreased ILC markers in visceral adipose tissue. Furthermore, depletion of ILCs with an anti-CD90 antibody, followed by T-cell reconstitution, led to a profound decrease in allergic airway inflammatory features in obese mice, including T H 2 and T H 17 infiltration. These results indicate that HFD-induced obesity might exacerbate allergic airway inflammation through mechanisms involving ILC2s and ILC3s. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  18. Evaluation of 3D airway imaging of obstructive sleep apnea with cone-beam computed tomography.

    PubMed

    Ogawa, Takumi; Enciso, Reyes; Memon, Ahmed; Mah, James K; Clark, Glenn T

    2005-01-01

    This study evaluates the use of cone-beam Computer Tomography (CT) for imaging the upper airway structure of Obstructive Sleep Apnea (OSA) patients. The total airway volume and the anteroposterior dimension of oropharyngeal airway showed significant group differences between OSA and gender-matched controls, so if we increase sample size these measurements may distinguish the two groups. We demonstrate the utility of diagnosis of anatomy with the 3D airway imaging with cone-beam Computed Tomography.

  19. Immunomodulation of afferent neurons in guinea-pig isolated airway.

    PubMed

    Riccio, M M; Myers, A C; Undem, B J

    1996-03-01

    1. The trachea, larynx and main bronchi with the right vagus nerve and nodose ganglion were isolated from guinea-pigs passively immunized 24 h previously with serum containing anti-ovalbumin antibody. 2. The airways were placed in one compartment of a Perspex chamber for recording of isometric tension while the nodose ganglion and attached vagus nerve were pulled into another compartment. Action potentials arriving from single airway afferent nerve endings were monitored extracellularly using a glass microelectrode positioned near neuronal cell bodies in the ganglion. Mechanosensitivity of the nerve endings was quantified using calibrated von Frey filaments immediately before and after exposure to antigen (10 micrograms ml-1 ovalbumin). 3. Ten endings responded to the force exerted by the lowest filament (0.078 mN) and were not further investigated. In airways from thirteen immunized guinea-pigs, the mechanical sensitivity of A delta afferent fibres (conduction velocity = 4.3 +/- 0.6 m s-1) was enhanced 4.1 +/- 0.9-fold following airway exposure to antigen (P < 0.005). Mechanical sensitivities of afferent fibres (conduction velocity = 4.3 +/- 0.6 m s-1) from non-immunized control guinea-pig airways were unaffected by antigen (n = 13). 4. Antigen did not overtly cause action potential generation except in one instance when the receptive field was located over the smooth muscle. This ending also responded to methacholine suggesting that spatial changes in the receptive field, induced by muscle contraction, were responsible for the activation. 5. The mediators responsible for these effects are unknown, although histamine, prostaglandins, leukotrienes and tachykinins do not appear to be essential. The increase in mechanical responsiveness was not associated with the smooth muscle contraction since leukotriene C4, histamine and tachykinins, which all caused a similar contraction to antigen, did not affect mechanical thresholds. Moreover, the antigen-induced increases in

  20. Intrathoracic airway measurement: ex-vivo validation

    NASA Astrophysics Data System (ADS)

    Reinhardt, Joseph M.; Raab, Stephen A.; D'Souza, Neil D.; Hoffman, Eric A.

    1997-05-01

    High-resolution x-ray CT (HRCT) provides detailed images of the lungs and bronchial tree. HRCT-based imaging and quantitation of peripheral bronchial airway geometry provides a valuable tool for assessing regional airway physiology. Such measurements have been sued to address physiological questions related to the mechanics of airway collapse in sleep apnea, the measurement of airway response to broncho-constriction agents, and to evaluate and track the progression of disease affecting the airways, such as asthma and cystic fibrosis. Significant attention has been paid to the measurements of extra- and intra-thoracic airways in 2D sections from volumetric x-ray CT. A variety of manual and semi-automatic techniques have been proposed for airway geometry measurement, including the use of standardized display window and level settings for caliper measurements, methods based on manual or semi-automatic border tracing, and more objective, quantitative approaches such as the use of the 'half-max' criteria. A recently proposed measurements technique uses a model-based deconvolution to estimate the location of the inner and outer airway walls. Validation using a plexiglass phantom indicates that the model-based method is more accurate than the half-max approach for thin-walled structures. In vivo validation of these airway measurement techniques is difficult because of the problems in identifying a reliable measurement 'gold standard.' In this paper we report on ex vivo validation of the half-max and model-based methods using an excised pig lung. The lung is sliced into thin sections of tissue and scanned using an electron beam CT scanner. Airways of interest are measured from the CT images, and also measured with using a microscope and micrometer to obtain a measurement gold standard. The result show no significant difference between the model-based measurements and the gold standard; while the half-max estimates exhibited a measurement bias and were significantly

  1. The Development and Application of Airway Devices in China

    PubMed Central

    Chen, Xiangdong; Ma, Wuhua; Liu, Renyu; Yao, Shanglong

    2017-01-01

    Airway management is one of the most important tasks for anesthesiologists. Anesthesiologists are experts in airway management and have made tremendous contribution to the development of the airway devices. Chinese anesthesiologists have made significant contribution in introducing advanced airway management and developing innovative techniques and devices for airway management in China. This article overviews the development and application of airway devices in China as well as the dedication and contribution of Chinese experts in the development of novel airway devices. With the development of science and technology accompanied by the advanced knowledge in airway management, more effective and safe artificial airways will be developed for clinical practice. The authors believe that Chinese experts will continue their outstanding contribution to the development of innovative airway devices, systems and knowledge. PMID:28191485

  2. Alcohol and Airways Function in Health and Disease

    PubMed Central

    Sisson, Joseph H.

    2007-01-01

    The volatility of alcohol promotes the movement of alcohol from the bronchial circulation across the airway epithelium and into the conducting airways of the lung. The exposure of the airways through this route likely accounts for many of the biologic effects of alcohol on lung airway functions. The impact of alcohol on lung airway functions is dependent on the concentration, duration and route of exposure. Brief exposure to mild concentrations of alcohol may enhance mucociliary clearance, stimulates bronchodilation and probably attenuates the airway inflammation and injury observed in asthma and COPD. Prolonged and heavy exposure to alcohol impairs mucociliary clearance, may complicate asthma management and likely worsens outcomes including lung function and mortality in COPD patients. Non-alcohol congeners and alcohol metabolites act as triggers for airway disease exacerbations especially in atopic asthmatics and in Asian populations who have a reduced capacity to metabolize alcohol. Research focused on the mechanisms of alcohol-mediated changes in airway functions has identified specific mechanisms that mediate alcohol effects within the lung airways. These include prominent roles for the second messengers calcium and nitric oxide, regulatory kinases including PKG and PKA, alcohol and acetaldehyde-metabolizing enzymes such as aldehyde dehydrogenase type 2 (ALDH2). The role alcohol may play in the pathobiology of airway mucus, bronchial blood flow, airway smooth muscle regulation and the interaction with other airway exposure agents, such as cigarette smoke, represent opportunities for future investigation. PMID:17764883

  3. Alcohol and airways function in health and disease.

    PubMed

    Sisson, Joseph H

    2007-08-01

    The volatility of alcohol promotes the movement of alcohol from the bronchial circulation across the airway epithelium and into the conducting airways of the lung. The exposure of the airways through this route likely accounts for many of the biologic effects of alcohol on lung airway functions. The effect of alcohol on lung airway functions is dependent on the concentration, duration, and route of exposure. Brief exposure to mild concentrations of alcohol may enhance mucociliary clearance, stimulates bronchodilation, and probably attenuates the airway inflammation and injury observed in asthma and chronic obstructive pulmonary disease (COPD). Prolonged and heavy exposure to alcohol impairs mucociliary clearance, may complicate asthma management, and likely worsens outcomes including lung function and mortality in COPD patients. Nonalcohol congeners and alcohol metabolites act as triggers for airway disease exacerbations especially in atopic asthmatics and in Asian populations who have a reduced capacity to metabolize alcohol. Research focused on the mechanisms of alcohol-mediated changes in airway functions has identified specific mechanisms that mediate alcohol effects within the lung airways. These include prominent roles for the second messengers calcium and nitric oxide, regulatory kinases including PKG and PKA, alcohol- and acetaldehyde-metabolizing enzymes such as aldehyde dehydrogenase 2. The role alcohol may play in the pathobiology of airway mucus, bronchial blood flow, airway smooth muscle regulation, and the interaction with other airway exposure agents, such as cigarette smoke, represents opportunities for future investigation.

  4. Manipulation of Cell Physiology Enables Gene Silencing in Well-differentiated Airway Epithelia

    PubMed Central

    Krishnamurthy, Sateesh; Behlke, Mark A; Ramachandran, Shyam; Salem, Aliasger K; McCray Jr, Paul B; Davidson, Beverly L

    2012-01-01

    The application of RNA interference-based gene silencing to the airway surface epithelium holds great promise to manipulate host and pathogen gene expression for therapeutic purposes. However, well-differentiated airway epithelia display significant barriers to double-stranded small-interfering RNA (siRNA) delivery despite testing varied classes of nonviral reagents. In well-differentiated primary pig airway epithelia (PAE) or human airway epithelia (HAE) grown at the air–liquid interface (ALI), the delivery of a Dicer-substrate small-interfering RNA (DsiRNA) duplex against hypoxanthine–guanine phosphoribosyltransferase (HPRT) with several nonviral reagents showed minimal uptake and no knockdown of the target. In contrast, poorly differentiated cells (2–5-day post-seeding) exhibited significant oligonucleotide internalization and target knockdown. This finding suggested that during differentiation, the barrier properties of the epithelium are modified to an extent that impedes oligonucleotide uptake. We used two methods to overcome this inefficiency. First, we tested the impact of epidermal growth factor (EGF), a known enhancer of macropinocytosis. Treatment of the cells with EGF improved oligonucleotide uptake resulting in significant but modest levels of target knockdown. Secondly, we used the connectivity map (Cmap) database to correlate gene expression changes during small molecule treatments on various cells types with genes that change upon mucociliary differentiation. Several different drug classes were identified from this correlative assessment. Well-differentiated epithelia treated with DsiRNAs and LY294002, a PI3K inhibitor, significantly improved gene silencing and concomitantly reduced target protein levels. These novel findings reveal that well-differentiated airway epithelia, normally resistant to siRNA delivery, can be pretreated with small molecules to improve uptake of synthetic oligonucleotide and RNA interference (RNAi) responses. PMID

  5. Antioxidant airway responses following experimental exposure to wood smoke in man

    PubMed Central

    2010-01-01

    Background Biomass combustion contributes to the production of ambient particulate matter (PM) in rural environments as well as urban settings, but relatively little is known about the health effects of these emissions. The aim of this study was therefore to characterize airway responses in humans exposed to wood smoke PM under controlled conditions. Nineteen healthy volunteers were exposed to both wood smoke, at a particulate matter (PM2.5) concentration of 224 ± 22 μg/m3, and filtered air for three hours with intermittent exercise. The wood smoke was generated employing an experimental set-up with an adjustable wood pellet boiler system under incomplete combustion. Symptoms, lung function, and exhaled NO were measured over exposures, with bronchoscopy performed 24 h post-exposure for characterisation of airway inflammatory and antioxidant responses in airway lavages. Results Glutathione (GSH) concentrations were enhanced in bronchoalveolar lavage (BAL) after wood smoke exposure vs. air (p = 0.025), together with an increase in upper airway symptoms. Neither lung function, exhaled NO nor systemic nor airway inflammatory parameters in BAL and bronchial mucosal biopsies were significantly affected. Conclusions Exposure of healthy subjects to wood smoke, derived from an experimental wood pellet boiler operating under incomplete combustion conditions with PM emissions dominated by organic matter, caused an increase in mucosal symptoms and GSH in the alveolar respiratory tract lining fluids but no acute airway inflammatory responses. We contend that this response reflects a mobilisation of GSH to the air-lung interface, consistent with a protective adaptation to the investigated wood smoke exposure. PMID:20727160

  6. Pharyngeal airway changes associated with maxillary distraction osteogenesis in adult cleft lip and palate patients.

    PubMed

    Aksu, Muge; Taner, Tülin; Sahin-Veske, Pınar; Kocadereli, Ilken; Konas, Ersoy; Mavili, Mehmet Emin

    2012-02-01

    To investigate 1) the changes in pharyngeal airway sizes associated with maxillary distraction osteogenesis and 2) the correlations between maxillary skeletal variables and the pharyngeal airway in adult patients with cleft lip and palate. The study was carried out in 14 adult subjects with cleft lip and palate. Predistraction records were taken at a mean age of 22.7 ± 4.6 years. All patients had placement of a rigid external distraction device (RED I; KLS Martin, Tuttlingen, Germany) after Le Fort I osteotomy. Lateral cephalograms were assessed before surgery and at short-term follow-up (8.0 ± 6.4 months). The cephalometric skeletal and pharyngeal airway variables were statistically evaluated by use of the Wilcoxon signed-rank test. Spearman ρ correlation was performed to check the correlations between maxillary skeletal and pharyngeal variables. The maxillary movement was 8.7 mm (P < .01). The maxillary depth angle (+7.9°) and effective maxillary length (9.4 mm) increased significantly (P < .01) after distraction, whereas the palatal plane angle remained unchanged. Anterior nasal spine (8.2 mm) and Posterior nasal spine (6.9 mm) moved anteriorly. The overjet increased (9.5 mm) significantly (P < .01). Posterior, superoposterior, and middle airway spaces increased significantly, with mean differences of 7.5 mm, 5.1 mm, and 3.3 mm, respectively. The soft palate moved anteriorly, with the greatest movement at its superior point. Significant positive correlations were observed for the posterior and superoposterior airway spaces and maxillary movement. PNS changes showed the highest correlation with posterior airway changes. The significant anterior movement of the maxilla resulted in significant increases in posterior, superoposterior, and middle airway spaces. The posterior airway space showed the highest significant positive correlation with the movement of PNS. The posterior and superoposterior airway spaces also showed significant positive correlations with

  7. Adeno-Associated Virus Type 6 (AAV6) Vectors Mediate Efficient Transduction of Airway Epithelial Cells in Mouse Lungs Compared to That of AAV2 Vectors

    PubMed Central

    Halbert, Christine L.; Allen, James M.; Miller, A. Dusty

    2001-01-01

    Although vectors derived from adeno-associated virus type 2 (AAV2) promote gene transfer and expression in many somatic tissues, studies with animal models and cultured cells show that the apical surface of airway epithelia is resistant to transduction by AAV2 vectors. Approaches to increase transduction rates include increasing the amount of vector and perturbing the integrity of the epithelia. In this study, we explored the use of vectors based on AAV6 to increase transduction rates in airways. AAV vectors were made using combinations of rep, cap, and packaged genomes from AAV2 or AAV6. The packaged genomes encoded human placental alkaline phosphatase and contained terminal repeat sequences from AAV2 or AAV6. We found that transduction efficiency was primarily dependent on the source of Cap protein, defined here as the vector pseudotype. The AAV6 and AAV2 pseudotype vectors exhibited different tropisms in tissue-cultured cells, and cell transduction by AAV6 vectors was not inhibited by heparin, nor did they compete for entry in a transduction assay, indicating that AAV6 and AAV2 capsid bind different receptors. In vivo analysis of vectors showed that AAV2 pseudotype vectors gave high transduction rates in alveolar cells but much lower rates in the airway epithelium. In contrast, the AAV6 pseudotype vectors exhibited much more efficient transduction of epithelial cells in large and small airways, showing up to 80% transduction in some airways. These results, combined with our previous results showing lower immunogenicity of AAV6 than of AAV2 vectors, indicate that AAV6 vectors may provide significant advantages over AAV2 for gene therapy of lung diseases like cystic fibrosis. PMID:11413329

  8. Accurate Measurement of Small Airways on Low-Dose Thoracic CT Scans in Smokers

    PubMed Central

    Conradi, Susan H.; Atkinson, Jeffrey J.; Zheng, Jie; Schechtman, Kenneth B.; Senior, Robert M.; Gierada, David S.

    2013-01-01

    Background: Partial volume averaging and tilt relative to the scan plane on transverse images limit the accuracy of airway wall thickness measurements on CT scan, confounding assessment of the relationship between airway remodeling and clinical status in COPD. The purpose of this study was to assess the effect of partial volume averaging and tilt corrections on airway wall thickness measurement accuracy and on relationships between airway wall thickening and clinical status in COPD. Methods: Airway wall thickness measurements in 80 heavy smokers were obtained on transverse images from low-dose CT scan using the open-source program Airway Inspector. Measurements were corrected for partial volume averaging and tilt effects using an attenuation- and geometry-based algorithm and compared with functional status. Results: The algorithm reduced wall thickness measurements of smaller airways to a greater degree than larger airways, increasing the overall range. When restricted to analyses of airways with an inner diameter < 3.0 mm, for a theoretical airway of 2.0 mm inner diameter, the wall thickness decreased from 1.07 ± 0.07 to 0.29 ± 0.10 mm, and the square root of the wall area decreased from 3.34 ± 0.15 to 1.58 ± 0.29 mm, comparable to histologic measurement studies. Corrected measurements had higher correlation with FEV1, differed more between BMI, airflow obstruction, dyspnea, and exercise capacity (BODE) index scores, and explained a greater proportion of FEV1 variability in multivariate models. Conclusions: Correcting for partial volume averaging improves accuracy of airway wall thickness estimation, allowing direct measurement of the small airways to better define their role in COPD. PMID:23172175

  9. Epithelium-generated neuropeptide Y induces smooth muscle contraction to promote airway hyperresponsiveness.

    PubMed

    Li, Shanru; Koziol-White, Cynthia; Jude, Joseph; Jiang, Meiqi; Zhao, Hengjiang; Cao, Gaoyuan; Yoo, Edwin; Jester, William; Morley, Michael P; Zhou, Su; Wang, Yi; Lu, Min Min; Panettieri, Reynold A; Morrisey, Edward E

    2016-05-02

    Asthma is one of the most common chronic diseases globally and can be divided into presenting with or without an immune response. Current therapies have little effect on nonimmune disease, and the mechanisms that drive this type of asthma are poorly understood. Here, we have shown that loss of the transcription factors forkhead box P1 (Foxp1) and Foxp4, which are critical for lung epithelial development, in the adult airway epithelium evokes a non-Th2 asthma phenotype that is characterized by airway hyperresponsiveness (AHR) without eosinophilic inflammation. Transcriptome analysis revealed that loss of Foxp1 and Foxp4 expression induces ectopic expression of neuropeptide Y (Npy), which has been reported to be present in the airways of asthma patients, but whose importance in disease pathogenesis remains unclear. Treatment of human lung airway explants with recombinant NPY increased airway contractility. Conversely, loss of Npy in Foxp1- and Foxp4-mutant airway epithelium rescued the AHR phenotype. We determined that NPY promotes AHR through the induction of Rho kinase activity and phosphorylation of myosin light chain, which induces airway smooth muscle contraction. Together, these studies highlight the importance of paracrine signals from the airway epithelium to the underlying smooth muscle to induce AHR and suggest that therapies targeting epithelial induction of this phenotype may prove useful in treatment of noneosinophilic asthma.

  10. Measurement of upper airway pressures in exercising horses with dorsal displacement of the soft palate.

    PubMed

    Rehder, R S; Ducharme, N G; Hackett, R P; Nielan, G J

    1995-03-01

    To determine whether abnormal airway pressures have a role in development of dorsal displacement of the soft palate (DDSP), measurements of tracheal and pharyngeal pressures were correlated with nasopharyngeal morphology in exercising horses. Exercising videoendoscopy and measurement of tracheal and pharyngeal pressures were used in 14 clinically normal horses and 19 horses with intermittent DDSP. The pressure signals were superimposed on the videoendoscope image, and both images were saved simultaneously on a videocassette for slow motion analysis to determine the instant displacement occurred in the respiratory cycle. Horses were submitted to an escalating 8-minute high-speed test with a maximal speed of 14 m/s. Compared with clinically normal horses, horses with intermittent DDSP did not have excessively negative inspiratory pressures during exercise. Eight horses displaced the soft palate during inspiration, 4 horses displaced it during expiration, and 7 displaced it by swallowing. Some horses displaced the soft palate at the beginning of the exercise trial, before reaching maximal speed, some horses displaced it at the peak speed, and some horses displaced it when slowing down. Epiglottic size in horses with DDSP was within normal limits, ruling out epiglottic hypoplasia as a cause of DDSP during exercise. Airway pressures were significantly (P < 0.002) altered after DDSP. Pharyngeal and tracheal inspiratory pressures were less negative, whereas pharyngeal expiratory pressure became less positive and tracheal expiratory pressure became more positive after displacement, suggesting a decrease in airflow and an increase in expiratory resistance in the upper airway.

  11. Elevated Airway Purines in COPD

    PubMed Central

    Lazaar, Aili L.; Bordonali, Elena; Qaqish, Bahjat; Boucher, Richard C.

    2011-01-01

    Background: Adenosine and related purines have established roles in inflammation, and elevated airway concentrations are predicted in patients with COPD. However, accurate airway surface purine measurements can be confounded by stimulation of purine release during collection of typical respiratory samples. Methods: Airway samples were collected noninvasively as exhaled breath condensate (EBC) from 36 healthy nonsmokers (NS group), 28 healthy smokers (S group), and 89 subjects with COPD (29 with GOLD [Global Initiative for Chronic Obstructive Lung Disease] stage II, 29 with GOLD stage III, and 31 with GOLD stage IV) and analyzed with mass spectrometry for adenosine, adenosine monophosphate (AMP), and phenylalanine, plus urea as a dilution marker. Variable dilution of airway secretions in EBC was controlled using ratios to urea, and airway surface concentrations were calculated using EBC to serum urea-based dilution factors. Results: EBC adenosine to urea ratios were similar in NS (0.20 ± 0.21) and S (0.22 ± 0.20) groups but elevated in those with COPD (0.32 ± 0.30, P < .01 vs NS). Adenosine to urea ratios were highest in the most severely affected cohort (GOLD IV, 0.35 ± 0.34, P < .01 vs NS) and negatively correlated with FEV1 (r = −0.27, P < .01). Elevated AMP to urea ratios were also observed in the COPD group (0.58 ± 0.97 COPD, 0.29 ± 0.35 NS, P < .02), but phenylalanine to urea ratios were similar in all groups. Airway surface adenosine concentrations calculated in a subset of subjects were 3.2 ± 2.7 μM in those with COPD (n = 28) relative to 1.7 ± 1.5 μM in the NS group (n = 16, P < .05). Conclusions: Airway purines are present on airway surfaces at physiologically significant concentrations, are elevated in COPD, and correlate with markers of COPD severity. Purinergic signaling pathways are potential therapeutic targets in COPD, and EBC purines are potential noninvasive biomarkers. PMID:21454402

  12. [Management of malignant and benign airway stenosis by stent implantation].

    PubMed

    Gyulai, Márton; Slavei, Krisztina; Pénzes, István; Strausz, János

    2006-11-12

    In the last few decades the different bronchoscopic procedures have gained an important role in the treatment of airway stenosis, and the number of implanted airway stents has also greatly increased. Between 1998 and 2004 the authors implanted altogether 108 airway prosthesis in 90 patients at the Institute of Pulmonology of Pest County. 58% of the patients were males, 42% females, the average age was 57.5 years, the average follow-up time was 7 months. On the basis of different etiology the patients were separated into two main groups. In 57% the airway stenosis was caused by malignant illnesses, in these cases stents can be used only with palliative purpose. However, in case of benign lesions they can offer a long-term solution and require an adequate follow-up of the patients. The authors' main aim was to get an overall picture of the interventions they had done by processing the data, with the help of the measurable characteristics that make possible to follow the airways' permeability and its changes. Analysing the results of the respiratory function and blood gas examinations they didn't find a significant difference inspite of the subjective improvement.

  13. Virtual 3D Modeling of Airways in Congenital Heart Defects

    PubMed Central

    Speggiorin, Simone; Durairaj, Saravanan; Mimic, Branko; Corno, Antonio F.

    2016-01-01

    The involvement of the airway is not uncommon in the presence of complex cardiovascular malformations. In these cases, a careful inspection of the relationship between the airway and the vasculature is paramount to plan the surgical procedure. Three-dimensional printing enhanced the visualization of the cardiovascular structure. Unfortunately, IT does not allow to remove selected anatomy to improve the visualization of the surrounding ones. Computerized modeling has the potential to fill this gap by allowing a dynamic handling of different anatomies, increasing the exposure of vessels or bronchi to show their relationship. We started to use this technique to plan the surgical repair in these complex cases where the airway is affected. This technique is routinely used in our Institution as an additional tool in the presurgical assessment. We report four cases in which the airways were compressed by vascular structures – ascending aorta in one, left pulmonary artery sling in one, patent ductus arteriosus in one, and major aorto-pulmonary collateral artery in one. We believe this technique can enhance the understanding of the causes of airway involvement and facilitate the creation of an appropriate surgical plan. PMID:27833903

  14. Draft genome sequence of Inquilinus limosus strain MP06, a multidrug-resistant clinical isolate

    PubMed Central

    Pino, Marylú; Conza, José Di; Gutkind, Gabriel

    2015-01-01

    The bacterium, Inquilinus limosus, with its remarkable antimicrobial multiresistant profile, has increasingly been isolated in cystic fibrosis patients. We report draft genome sequence of a strain MP06, which is of considerable interest in elucidating the associated mechanisms of antibiotic resistance in this bacterium and for an insight about its persistence in airways of these patients. PMID:26691451

  15. Multi-stage surgery for airway patency after metallic stent removal in benign laryngotracheal airway disease in two adolescents.

    PubMed

    Coordes, Annekatrin; Todt, Ingo; Ernst, Arne; Seidl, Rainer O

    2013-05-01

    Laryngotracheal stents may damage the highly complex laryngeal structures, impair voice and swallowing functions and cause tissue ingrowths, thereby necessitating airway patency interventions. In benign airway disease, the number of adolescents with laryngotracheal stents is therefore limited. We present two cases of laryngeal metallic stent placement following benign airway disease. Two adolescents presented with severe dyspnea and self-expandable metallic stent placement after benign laryngotracheal stenoses. Granulation tissue ingrowths required additional surgical interventions every 6-8 weeks to recanalize the stent lumen. We performed multi-stage surgery including removal of the embedded stent, segmental resection of the stenotic area, end-to-end-anastomosis and laryngotracheal reconstruction respectively, to achieve patent airway without tracheal cannulation. Montgomery T-tubes were temporarily inserted to bridge the complex reconstructions. In both adolescents, we achieved successful removal of the embedded stent and patent airway. Bilateral vocal fold paralysis required additional surgery to improve the final airway patency and vocal rehabilitation. Stent removal, segmental resection and laryngotracheal reconstruction provide the achievement of patent airway and allow decannulation. Temporary Montgomery T-tubes bridge complex laryngotracheal reconstructions. In benign laryngeal airway disease, stent placement should be avoided, especially in adolescents. Transfer to a specialist center should be considered prior to metallic stent implantation. In general, self-expanding tracheobronchial stents can be placed in selected patients where surgical interventions are limited. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Mast cell mediators in citric acid-induced airway constriction of guinea pigs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, C.-H.; Lai, Y.-L.

    2005-08-15

    We demonstrated previously that mast cells play an important role in citric acid (CA)-induced airway constriction. In this study, we further investigated the underlying mediator(s) for this type of airway constriction. At first, to examine effects caused by blocking agents, 67 young Hartley guinea pigs were divided into 7 groups: saline + CA; methysergide (serotonin receptor antagonist) + CA; MK-886 (leukotriene synthesis inhibitor) + CA; mepyramine (histamine H{sub 1} receptor antagonist) + CA; indomethacin (cyclooxygenase inhibitor) + CA; cromolyn sodium (mast cell stabilizer) + CA; and compound 48/80 (mast cell degranulating agent) + CA. Then, we tested whether leukotriene C{submore » 4} (LTC{sub 4}) or histamine enhances CA-induced airway constriction in compound 48/80-pretreated guinea pigs. We measured dynamic respiratory compliance (Crs) and forced expiratory volume in 0.1 s (FEV{sub 0.1}) during either baseline or recovery period. In addition, we detected histamine level, an index of pulmonary mast cell degranulation, in bronchoalveolar lavage (BAL) samples. Citric acid aerosol inhalation caused decreases in Crs and FEV{sub 0.1}, indicating airway constriction in the control group. This airway constriction was significantly attenuated by MK-886, mepyramine, cromolyn sodium, and compound 48/80, but not by either methysergide or indomethacin. Both LTC{sub 4} and histamine infusion significantly increased the magnitude of CA-induced airway constriction in compound 48/80-pretreated guinea pigs. Citric acid inhalation caused significant increase in histamine level in the BAL sample, which was significantly suppressed by compound 48/80. These results suggest that leukotrienes and histamine originating from mast cells play an important role in CA inhalation-induced noncholinergic airway constriction.« less

  17. Psoriatic inflammation enhances allergic airway inflammation through IL-23/STAT3 signaling in a murine model.

    PubMed

    Nadeem, Ahmed; Al-Harbi, Naif O; Ansari, Mushtaq A; Al-Harbi, Mohammed M; El-Sherbeeny, Ahmed M; Zoheir, Khairy M A; Attia, Sabry M; Hafez, Mohamed M; Al-Shabanah, Othman A; Ahmad, Sheikh F

    2017-01-15

    Psoriasis is an autoimmune inflammatory skin disease characterized by activated IL-23/STAT3/Th17 axis. Recently psoriatic inflammation has been shown to be associated with asthma. However, no study has previously explored how psoriatic inflammation affects airway inflammation. Therefore, this study investigated the effect of imiquimod (IMQ)-induced psoriatic inflammation on cockroach extract (CE)-induced airway inflammation in murine models. Mice were subjected to topical and intranasal administration of IMQ and CE to develop psoriatic and airway inflammation respectively. Various analyses in lung/spleen related to inflammation, Th17/Th2/Th1 cell immune responses, and their signature cytokines/transcription factors were carried out. Psoriatic inflammation in allergic mice was associated with increased airway inflammation with concurrent increase in Th2/Th17 cells/signature cytokines/transcription factors. Splenic CD4+ T and CD11c+ dendritic cells in psoriatic mice had increased STAT3/RORC and IL-23 mRNA expression respectively. This led us to explore the effect of systemic IL-23/STAT3 signaling on airway inflammation. Topical application of STA-21, a small molecule STAT3 inhibitor significantly reduced airway inflammation in allergic mice having psoriatic inflammation. On the other hand, adoptive transfer of IL-23-treated splenic CD4+ T cells from allergic mice into naive recipient mice produced mixed neutrophilic/eosinophilic airway inflammation similar to allergic mice with psoriatic inflammation. Our data suggest that systemic IL-23/STAT3 axis is responsible for enhanced airway inflammation during psoriasis. The current study also suggests that only anti-asthma therapy may not be sufficient to alleviate airway inflammatory burden in asthmatics with psoriasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Integrated care pathways for airway diseases (AIRWAYS-ICPs).

    PubMed

    Bousquet, J; Addis, A; Adcock, I; Agache, I; Agusti, A; Alonso, A; Annesi-Maesano, I; Anto, J M; Bachert, C; Baena-Cagnani, C E; Bai, C; Baigenzhin, A; Barbara, C; Barnes, P J; Bateman, E D; Beck, L; Bedbrook, A; Bel, E H; Benezet, O; Bennoor, K S; Benson, M; Bernabeu-Wittel, M; Bewick, M; Bindslev-Jensen, C; Blain, H; Blasi, F; Bonini, M; Bonini, S; Boulet, L P; Bourdin, A; Bourret, R; Bousquet, P J; Brightling, C E; Briggs, A; Brozek, J; Buhl, R; Bush, A; Caimmi, D; Calderon, M; Calverley, P; Camargos, P A; Camuzat, T; Canonica, G W; Carlsen, K H; Casale, T B; Cazzola, M; Cepeda Sarabia, A M; Cesario, A; Chen, Y Z; Chkhartishvili, E; Chavannes, N H; Chiron, R; Chuchalin, A; Chung, K F; Cox, L; Crooks, G; Crooks, M G; Cruz, A A; Custovic, A; Dahl, R; Dahlen, S E; De Blay, F; Dedeu, T; Deleanu, D; Demoly, P; Devillier, P; Didier, A; Dinh-Xuan, A T; Djukanovic, R; Dokic, D; Douagui, H; Dubakiene, R; Eglin, S; Elliot, F; Emuzyte, R; Fabbri, L; Fink Wagner, A; Fletcher, M; Fokkens, W J; Fonseca, J; Franco, A; Frith, P; Furber, A; Gaga, M; Garcés, J; Garcia-Aymerich, J; Gamkrelidze, A; Gonzales-Diaz, S; Gouzi, F; Guzmán, M A; Haahtela, T; Harrison, D; Hayot, M; Heaney, L G; Heinrich, J; Hellings, P W; Hooper, J; Humbert, M; Hyland, M; Iaccarino, G; Jakovenko, D; Jardim, J R; Jeandel, C; Jenkins, C; Johnston, S L; Jonquet, O; Joos, G; Jung, K S; Kalayci, O; Karunanithi, S; Keil, T; Khaltaev, N; Kolek, V; Kowalski, M L; Kull, I; Kuna, P; Kvedariene, V; Le, L T; Lodrup Carlsen, K C; Louis, R; MacNee, W; Mair, A; Majer, I; Manning, P; de Manuel Keenoy, E; Masjedi, M R; Melen, E; Melo-Gomes, E; Menzies-Gow, A; Mercier, G; Mercier, J; Michel, J P; Miculinic, N; Mihaltan, F; Milenkovic, B; Molimard, M; Momas, I; Montilla-Santana, A; Morais-Almeida, M; Morgan, M; N'Diaye, M; Nafti, S; Nekam, K; Neou, A; Nicod, L; O'Hehir, R; Ohta, K; Paggiaro, P; Palkonen, S; Palmer, S; Papadopoulos, N G; Papi, A; Passalacqua, G; Pavord, I; Pigearias, B; Plavec, D; Postma, D S; Price, D; Rabe, K F; Radier Pontal, F; Redon, J; Rennard, S; Roberts, J; Robine, J M; Roca, J; Roche, N; Rodenas, F; Roggeri, A; Rolland, C; Rosado-Pinto, J; Ryan, D; Samolinski, B; Sanchez-Borges, M; Schünemann, H J; Sheikh, A; Shields, M; Siafakas, N; Sibille, Y; Similowski, T; Small, I; Sola-Morales, O; Sooronbaev, T; Stelmach, R; Sterk, P J; Stiris, T; Sud, P; Tellier, V; To, T; Todo-Bom, A; Triggiani, M; Valenta, R; Valero, A L; Valiulis, A; Valovirta, E; Van Ganse, E; Vandenplas, O; Vasankari, T; Vestbo, J; Vezzani, G; Viegi, G; Visier, L; Vogelmeier, C; Vontetsianos, T; Wagstaff, R; Wahn, U; Wallaert, B; Whalley, B; Wickman, M; Williams, D M; Wilson, N; Yawn, B P; Yiallouros, P K; Yorgancioglu, A; Yusuf, O M; Zar, H J; Zhong, N; Zidarn, M; Zuberbier, T

    2014-08-01

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will add value to existing public health knowledge by: 1) proposing a common framework of care pathways for chronic respiratory diseases, which will facilitate comparability and trans-national initiatives; 2) informing cost-effective policy development, strengthening in particular those on smoking and environmental exposure; 3) aiding risk stratification in chronic disease patients, using a common strategy; 4) having a significant impact on the health of citizens in the short term (reduction of morbidity, improvement of education in children and of work in adults) and in the long-term (healthy ageing); 5) proposing a common simulation tool to assist physicians; and 6) ultimately reducing the healthcare burden (emergency visits, avoidable hospitalisations, disability and costs) while improving quality of life. In the longer term, the incidence of disease may be reduced by innovative prevention strategies. AIRWAYSICPs was initiated by Area 5 of the Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing. All stakeholders are involved (health and social care, patients, and policy makers).

  19. Increasing incidence of fluoroquinolone-resistant Mycobacterium tuberculosis in Mumbai, India.

    PubMed

    Agrawal, D; Udwadia, Z F; Rodriguez, C; Mehta, A

    2009-01-01

    Tertiary referral centre, private hospital, Mumbai, India. To analyse the incidence of fluoroquinolone (FQ) resistant Mycobacterium tuberculosis (TB) in our laboratory from 1995 to 2004. Retrospective review and analysis of the drug susceptibility test records of all M. tuberculosis culture-positive samples from our Microbiology Department from 1995 to 2004. FQ resistance has increased exponentially in our laboratory, from 3% in 1996 to 35% in 2004. The incidence of multidrug-resistant tuberculosis has also increased during the same period, from 33% in 1995 to 56% in 2004. The incidence of FQ-resistant M. tuberculosis is gradually increasing to alarming levels. This may be due to widespread use of this vital group of drugs in the treatment of community-acquired infections. We urge that these broad spectrum antibiotics be used judiciously, and ideally be reserved for treatment of resistant TB in TB-endemic areas.

  20. Inhibition of TRPC3 downregulates airway hyperresponsiveness, remodeling of OVA-sensitized mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lingwei; Li, Jie; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou

    Airway hyperresponsiveness (AHR), airway remodeling and inflammation are the fundamental pathological alterations that occur in asthma. Transient receptor potential canonical 3 (TRPC3) has been implicated in diverse functions of airway smooth muscle cells (ASMCs) in asthma. However, the underlying mechanisms remain incompletely understood. We investigated the mRNA and protein expression of TRPC3 in ASMCs from normal and OVA-sensitized mouse. And the effects of inhibition or knockdown of TRPC3 with Ethyl-1- (4- (2,3,3-trichloroacrylamide) phenyl) −5 - (trifluoromethyl) -1H -pyrazole -4-carboxylate (Pyr3) and lentiviral shRNA on OVA-sensitized mouse AHR, airway remodeling, circulating inflammatory cytokines, cell proliferation and migration. We found that TRPC3 mRNAmore » and protein expression levels were significantly increased in ASMCs from OVA-sensitized mouse. Inhibiting TRPC3 with continuous subcutaneous administration of Pyr3 decreased enhanced pause (Penh) of OVA-sensitized mouse. Meanwhile, both Pyr3 and lentiviral shRNA treatment of ASMCs in OVA-sensitized mouse significantly decreased their proliferation and migration. These results suggest that TRPC3 plays a critical role in asthma and represents a promising new target for asthma treatment. - Highlights: • Penh, airway remodeling and the gene expression and protein of TRPC3 are increased in OVA-sensitized mice. • Inhibition of TRPC3 suppresses the OVA-sensitized mice Penh and airway remodeling. • Inhibition of TRPC3 decreases OVA-sensitized mice ASMC proliferation and migration.« less

  1. Induction of tachykinin gene and peptide expression in guinea pig nodose primary afferent neurons by allergic airway inflammation.

    PubMed Central

    Fischer, A; McGregor, G P; Saria, A; Philippin, B; Kummer, W

    1996-01-01

    Substance P (SP), neurokinin A (NKA), and calcitonin gene-related peptide (CGRP) have potent proinflammatory effects in the airways. They are released from sensory nerve endings originating in jugular and dorsal root ganglia. However, the major sensory supply to the airways originates from the nodose ganglion. In this study, we evaluated changes in neuropeptide biosynthesis in the sensory airway innervation of ovalbumin-sensitized and -challenged guinea pigs at the mRNA and peptide level. In the airways, a three- to fourfold increase of SP, NKA, and CGRP, was seen 24 h following allergen challenge. Whereas no evidence of local tachykinin biosynthesis was found 12 h after challenge, increased levels of preprotachykinin (PPT)-A mRNA (encoding SP and NKA) were found in nodose ganglia. Quantitative in situ hybridization indicated that this increase could be accounted for by de novo induction of PPT-A mRNA in nodose ganglion neurons. Quantitative immunohistochemistry showed that 24 h after challenge, the number of tachykinin-immunoreactive nodose ganglion neurons had increased by 25%. Their projection to the airways was shown. Changes in other sensory ganglia innervating the airways were not evident. These findings suggest that an induction of sensory neuropeptides in nodose ganglion neurons is crucially involved in the increase of airway hyperreactivity in the late response to allergen challenge. PMID:8941645

  2. Moderately high frequency ventilation with a conventional ventilator allows reduction of tidal volume without increasing mean airway pressure.

    PubMed

    Cordioli, Ricardo Luiz; Park, Marcelo; Costa, Eduardo Leite Vieira; Gomes, Susimeire; Brochard, Laurent; Amato, Marcelo Britto Passos; Azevedo, Luciano Cesar Pontes

    2014-12-01

    The aim of this study was to explore if positive-pressure ventilation delivered by a conventional ICU ventilator at a moderately high frequency (HFPPV) allows a safe reduction of tidal volume (V T) below 6 mL/kg in a porcine model of severe acute respiratory distress syndrome (ARDS) and at a lower mean airway pressure than high-frequency oscillatory ventilation (HFOV). This is a prospective study. In eight pigs (median weight 34 [29,36] kg), ARDS was induced by pulmonary lavage and injurious ventilation. The animals were ventilated with a randomized sequence of respiratory rates: 30, 60, 90, 120, 150, followed by HFOV at 5 Hz. At each step, V T was adjusted to allow partial pressure of arterial carbon dioxide (PaCO2) to stabilize between 57 and 63 mmHg. Data are shown as median [P25th,P75th]. After lung injury, the PaO2/FiO2 (P/F) ratio was 92 [63,118] mmHg, pulmonary shunt 26 [17,31]%, and static compliance 11 [8,14] mL/cmH2O. Positive end-expiratory pressure (PEEP) was 14 [10,17] cmH2O. At 30 breaths/min, V T was higher than 6 (7.5 [6.8,10.2]) mL/kg, but at all higher frequencies, V T could be reduced and PaCO2 maintained, leading to reductions in plateau pressures and driving pressures. For frequencies of 60 to 150/min, V T progressively fell from 5.2 [5.1,5.9] to 3.8 [3.7,4.2] mL/kg (p < 0.001). There were no detrimental effects in terms of lung mechanics, auto-PEEP generation, hemodynamics, or gas exchange. Mean airway pressure was maintained constant and was increased only during HFOV. During protective mechanical ventilation, HFPPV delivered by a conventional ventilator in a severe ARDS swine model safely allows further tidal volume reductions. This strategy also allowed decreasing airway pressures while maintaining stable PaCO2 levels.

  3. Effect of Mucin and Bicarbonate Ion on Corrosion Behavior of AZ31 Magnesium Alloy for Airway Stents.

    PubMed

    Jang, Yongseok; Owuor, Daniel; Waterman, Jenora T; White, Leon; Collins, Boyce; Sankar, Jagannathan; Gilbert, Thomas W; Yun, Yeoheung

    2014-08-15

    The biodegradable ability of magnesium alloys is an attractive feature for tracheal stents since they can be absorbed by the body through gradual degradation after healing of the airway structure, which can reduce the risk of inflammation caused by long-term implantation and prevent the repetitive surgery for removal of existing stent. In this study, the effects of bicarbonate ion (HCO₃ - ) and mucin in Gamble's solution on the corrosion behavior of AZ31 magnesium alloy were investigated, using immersion and electrochemical tests to systematically identify the biodegradation kinetics of magnesium alloy under in vitro environment, mimicking the epithelial mucus surfaces in a trachea for development of biodegradable airway stents. Analysis of corrosion products after immersion test was performed using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). Electrochemical impedance spectroscopy (EIS) was used to identify the effects of bicarbonate ions and mucin on the corrosion behavior of AZ31 magnesium alloys with the temporal change of corrosion resistance. The results show that the increase of the bicarbonate ions in Gamble's solution accelerates the dissolution of AZ31 magnesium alloy, while the addition of mucin retards the corrosion. The experimental data in this work is intended to be used as foundational knowledge to predict the corrosion behavior of AZ31 magnesium alloy in the airway environment while providing degradation information for future in vivo studies.

  4. Effects of obesity on lung function and airway reactivity in healthy dogs.

    PubMed

    Manens, J; Bolognin, M; Bernaerts, F; Diez, M; Kirschvink, N; Clercx, C

    2012-07-01

    The present study investigated the effects of bodyweight (BW) gain on respiratory function and airway responsiveness in healthy Beagles using barometric whole body plethysmography (BWBP). Six adult dogs were examined before and after a fattening diet. The high-energy diet induced a mean increase in BW of 41±6%. BWBP basal parameters were recorded prior to airway reactivity testing (using increasing concentrations of histamine nebulisations). An airway responsiveness index (H-Penh300) was calculated as the histamine concentration necessary to reach 300% of basal enhanced pause (Penh, bronchoconstriction index). The same dogs underwent a doxapram hydrochloride (Dxp) stimulation testing 2 weeks later. Basal measurements showed that obese dogs had tidal volume per kg (TV/BW) that was significantly decreased whilst respiratory rate (RR) increased significantly. H-Penh300 decreased significantly in obese Beagles, indicating increased bronchoreactivity. Dxp administration induced a significant increase in TV/BW, minute volume per kg (MV/BW), peak inspiratory and expiratory flows per kg (PIF/BW and PEF/BW) in both normal and obese dogs although the TV/BW increase was significantly less marked in the obese group. In conclusion, obesity induced changes in basal respiratory parameters, increased bronchoreactivity and a blunted response to Dxp-induced respiratory stimulation. This combination of basal respiratory parameters, bronchoreactivity testing and pharmacological stimulation testing using non-invasive BWBP can help characterize pulmonary function and airway responsiveness in obese dogs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Difficult airway management in a patient with a parapharyngeal tumor.

    PubMed

    Ji, Sung-Mi

    2015-09-01

    A 47-year-old man was referred to the operating room to treat a dentigenous cyst of the mandibular bone. Initial assessment of the airway was considered normal. However, after the induction of anesthesia, we could not intubate the patient due to severe distortion of the glottis. Fiberoptic bronchoscopy and video laryngoscopy were not effective. Intubation using a retrograde wire technique was successful. After the conclusion of surgery, the patient recovered without any complications. Subsequent magnetic resonance imaging of the patient's neck showed a 6 × 4 × 8.6 cm heterogeneous T2 hyperintense, T1 isointense well-enhancing mass in the prestyloid parapharyngeal space. The patient was scheduled for excision of the mass. We planned awake intubation with fiberoptic bronchoscopy. The procedure was successful and the patient recovered without complications. Anesthetic induction can decrease the muscle tone of the airway and increase airway distortion. Therefore, careful airway assessment is necessary.

  6. Allergen challenge-induced extravasation of plasma in mouse airways.

    PubMed

    Erjefält, J S; Andersson, P; Gustafsson, B; Korsgren, M; Sonmark, B; Persson, C G

    1998-08-01

    Mouse models are extensively used to study genetic and immunological mechanisms of potential importance to inflammatory airway diseases, e.g. asthma. However, the airway pathophysiology in allergic mice has received less attention. For example, plasma extravasation and the ensuing tissue-deposition of plasma proteins, which is a hallmark of inflammation, has not been examined in allergic mice. This study aims to examine the vascular permeability and the distribution of plasma proteins in mouse airways following exposure to allergen and serotonin. Extravasated plasma was quantified by a dual isotop technique using intravascular (131I-albumin) and extrasvascular (125I-albumin) plasma tracers. Histological visualization of fibrinogen and colloidal gold revealed the tissue distribution of extravasated plasma. Allergen aerosol exposure (3% OVA, 15min) of sensitized animals resulted in a marked plasma extravasation response in the trachea (P < 0.01) and the bronchi but not in the lung parenchyma. A similar extravasation response was induced by serotonin (P<0.001). Extravasating vessels (assessed by Monastral blue dye) were identified as intercartilaginous venules. Extravasated plasma abounded in the subepithelial tissue but was absent in the epithelium and airway lumen. The allergen-induced response was dose-dependently inhibited by iv administration of formoterol (P < 0.001), a vascular antipermeability agent. The present study demonstrates that serotonin and allergen challenge of sensitized mice increase airway venular permeability to cause transient extravasation and lamina propria distribution of plasma in the large airways. We suggest that the extravasation response is a useful measure of the intensity and the distribution of active inflammation

  7. Sucralose Increases Antimicrobial Resistance and Stimulates Recovery of Escherichia coli Mutants.

    PubMed

    Qu, Yilin; Li, Rongyan; Jiang, Mingshan; Wang, Xiuhong

    2017-07-01

    Because of heavy use of antimicrobials, antimicrobial resistance in bacteria has become of great concern. The effect of some widely used food additives such as sucralose on bacteria in the gut and the environment has also drawn increasing attention. In this study, we investigated the interaction between antimicrobials and sucralose impacting antimicrobial resistance and mutation of Escherichia coli (E. coli). To examine antimicrobial resistance and mutation frequency, different subinhibitory concentrations of sucralose were added to cultures of E.coli BW25113 that were then treated with antimicrobials, oxolinic acid, or moxifloxacin. Then the E.coli were assayed for bacterial survival and recovery of mutants resistant to an unrelated antimicrobial, rifampicin. Pre-treatment of E.coli BW25113 with 1/2 minimal inhibitory concentration (MIC) of sucralose increased the survival rate in oxolinic acid or moxifloxacin. A 1/3 MIC of sucralose increased rifampicin-resistant mutation rate of E.coli BW25113 after 72 h, while rifampicin-resistant mutation rate was increased when co-treated with 1/8 MIC, 1/4 MIC, 1/3 MIC sucralose, and oxolinic acid after 24 h. Sucralose can increase the antimicrobial resistance and mutation frequency of E.coli to some antimicrobials.

  8. TNFα enhances force generation in airway smooth muscle

    PubMed Central

    Han, Young-Soo; Delmotte, Philippe

    2017-01-01

    Airway inflammation is a hallmark of asthma, triggering airway smooth muscle (ASM) hyperreactivity and airway remodeling. TNFα increases both agonist-induced cytosolic Ca2+ concentration ([Ca2+]cyt) and force in ASM. The effects of TNFα on ASM force may also be due to an increase in Ca2+ sensitivity, cytoskeletal remodeling, and/or changes in contractile protein content. We hypothesized that 24 h of exposure to TNFα increases ASM force by changing actin and myosin heavy chain (MyHC) content and/or polymerization. Porcine ASM strips were permeabilized with 10% Triton X-100, and force was measured in response to increasing concentrations of Ca2+ (pCa 9.0 to 4.0) in control and TNFα-treated groups. Relative phosphorylation of the regulatory myosin light chain (p-MLC) and total actin, MLC, and MyHC concentrations were quantified at pCa 9.0, 6.1, and 4.0. Actin polymerization was quantified by the ratio of filamentous to globular actin at pCa 9.0 and 4.0. For determination of total cross-bridge formation, isometric ATP hydrolysis rate at pCa 4.0 was measured using an enzyme-coupled NADH-linked fluorometric technique. Exposure to TNFα significantly increased force across the range of Ca2+ activation but did not affect the intrinsic Ca2+ sensitivity of force generation. The TNFα-induced increase in ASM force was associated with an increase in total actin, MLC, and MyHC content, as well as an increase in actin polymerization and an increase in maximum isometric ATP hydrolysis rate. The results of this study support our hypothesis that TNFα increases force generation in ASM by increasing the number of contractile units (actin-myosin content) contributing to force generation. PMID:28385814

  9. Relaxant effect of superimposed length oscillation on sensitized airway smooth muscle.

    PubMed

    Jo-Avila, Miguel; Al-Jumaily, Ahmed M; Lu, Jun

    2015-03-01

    Asthma is associated with reductions in the airway lumen and breathing difficulties that are attributed to airway smooth muscles (ASM) hyperconstriction. Pharmaceutical bronchodilators such as salbutamol and isoproterenol are normally used to alleviate this constriction. Deep inspirations and tidal oscillations (TO) have also been reported to relax ASM in healthy airways with less response in asthmatics. Little information is available on the effect of other forms of oscillation on asthmatic airways. This study investigates the effect of length oscillations (LO), with amplitude 1 and 1.5% in the frequency range 5-20 Hz superimposed on breathing equivalent LO, on contracted ASM dissected from sensitized mice. These mice are believed to show some symptoms such as airway hyperreactivity similar to those associated with asthma in humans. In the frequency range used in this work, this study shows an increase in ASM relaxation of an average of 10% for 1.5% amplitude when compared with TO, ISO, or the combination of both. No similar finding is observed with 1% amplitude. This suggests that superimposed length oscillation acting over the interaction of myosin and actin during contraction may lead to temporal rearrangement and disturbance of the cross-bridge process in asthmatic airways. Copyright © 2015 the American Physiological Society.

  10. Respiratory health of elite athletes – preventing airway injury: a critical review

    PubMed Central

    Kippelen, Pascale; Fitch, Kenneth D; Anderson, Sandra Doreen; Bougault, Valerie; Boulet, Louis-Philippe; Rundell, Kenneth William; Sue-Chu, Malcolm; McKenzie, Donald C

    2012-01-01

    Elite athletes, particularly those engaged in endurance sports and those exposed chronically to airborne pollutants/irritants or allergens, are at increased risk for upper and lower airway dysfunction. Airway epithelial injury may be caused by dehydration and physical stress applied to the airways during severe exercise hyperpnoea and/or by inhalation of noxious agents. This is thought to initiate an inflammatory cascade/repair process that, ultimately, could lead to airway hyperresponsiveness (AHR) and asthma in susceptible athletes. The authors review the evidence relating to prevention or reduction of the risk of AHR/asthma development. Appropriate measures should be implemented when athletes exercise strenuously in an attempt to attenuate the dehydration stress and reduce the exposure to noxious airborne agents. Environmental interventions are the most important. Non-pharmacological strategies can assist, but currently, pharmacological measures have not been demonstrated to be effective. Whether early prevention of airway injury in elite athletes can prevent or reduce progression to AHR/asthma remains to be established. PMID:22522585

  11. Mechanical Properties of the Upper Airway

    PubMed Central

    Strohl, Kingman P.; Butler, James P.; Malhotra, Atul

    2013-01-01

    The importance of the upper airway (nose, pharynx, and larynx) in health and in the pathogenesis of sleep apnea, asthma, and other airway diseases, discussed elsewhere in the Comprehensive Physiology series, prompts this review of the biomechanical properties and functional aspects of the upper airway. There is a literature based on anatomic or structural descriptions in static circumstances, albeit studied in limited numbers of individuals in both health and disease. As for dynamic features, the literature is limited to studies of pressure and flow through all or parts of the upper airway and to the effects of muscle activation on such features; however, the links between structure and function through airway size, shape, and compliance remain a topic that is completely open for investigation, particularly through analyses using concepts of fluid and structural mechanics. Throughout are included both historically seminal references, as well as those serving as signposts or updated reviews. This article should be considered a resource for concepts needed for the application of biomechanical models of upper airway physiology, applicable to understanding the pathophysiology of disease and anticipated results of treatment interventions. PMID:23723026

  12. Increased radiation resistance in lithium-counterdoped silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Mehta, S.

    1984-01-01

    Lithium-counterdoped n(+)p silicon solar cells are found to exhibit significantly increased radiation resistance to 1-MeV electron irradiation when compared to boron-doped n(+)p silicon solar cells. In addition to improved radiation resistance, considerable damage recovery by annealing is observed in the counterdoped cells at T less than or equal to 100 C. Deep level transient spectroscopy measurements are used to identify the defect whose removal results in the low-temperature aneal. It is suggested that the increased radiation resistance of the counterdoped cells is primarily due to interaction of the lithium with interstitial oxygen.

  13. [Small airway diseases and immune deficiency].

    PubMed

    Burgel, P-R; Bergeron, A; Knoop, C; Dusser, D

    2016-02-01

    Innate or acquired immune deficiency may show respiratory manifestations, often characterized by small airway involvement. The purpose of this article is to provide an overview of small airway disease across the major causes of immune deficiency. In patients with common variable immune deficiency, recurrent lower airway infections may lead to bronchiolitis and bronchiectasis. Follicular and/or granulomatous bronchiolitis of unknown origin may also occur. Bronchiolitis obliterans is the leading cause of death after the first year in patients with lung transplantation. Bronchiolitis obliterans also occurs in patients with allogeneic haematopoietic stem cell transplantation, especially in the context of systemic graft-versus-host disease. Small airway diseases have different clinical expression and pathophysiology across various causes of immune deficiency. A better understanding of small airways disease pathogenesis in these settings may lead to the development of novel targeted therapies. Copyright © 2015 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  14. How anaesthesiologists understand difficult airway guidelines-an interview study.

    PubMed

    Knudsen, Kati; Pöder, Ulrika; Nilsson, Ulrica; Högman, Marieann; Larsson, Anders; Larsson, Jan

    2017-11-01

    In the practice of anaesthesia, clinical guidelines that aim to improve the safety of airway procedures have been developed. The aim of this study was to explore how anaesthesiologists understand or conceive of difficult airway management algorithms. A qualitative phenomenographic design was chosen to explore anaesthesiologists' views on airway algorithms. Anaesthesiologists working in three hospitals were included. Individual face-to-face interviews were conducted. Four different ways of understanding were identified, describing airway algorithms as: (A) a law-like rule for how to act in difficult airway situations; (B) a cognitive aid, an action plan for difficult airway situations; (C) a basis for developing flexible, personal action plans for the difficult airway; and (D) the experts' consensus, a set of scientifically based guidelines for handling the difficult airway. The interviewed anaesthesiologists understood difficult airway management guidelines/algorithms very differently.

  15. Gene Delivery to the Airway

    PubMed Central

    Keiser, Nicholas W.; Engelhardt, John F.

    2013-01-01

    This unit describes generation of and gene transfer to several commonly used airway models. Isolation and transduction of primary airway epithelial cells are first described. Next, the preparation of polarized airway epithelial monolayers is outlined. Transduction of these polarized cells is also described. Methods are presented for generation of tracheal xenografts as well as both ex vivo and in vivo gene transfer to these xenografts. Finally, a method for in vivo gene delivery to the lungs of rodents is included. Methods for evaluating transgene expression are given in the support protocols. PMID:23853081

  16. Tumor necrosis factor regulates NMDA receptor-mediated airway smooth muscle contractile function and airway responsiveness.

    PubMed

    Anaparti, Vidyanand; Pascoe, Christopher D; Jha, Aruni; Mahood, Thomas H; Ilarraza, Ramses; Unruh, Helmut; Moqbel, Redwan; Halayko, Andrew J

    2016-08-01

    We have shown that N-methyl-d-aspartate receptors (NMDA-Rs) are receptor-operated calcium entry channels in human airway smooth muscle (HASM) during contraction. Tumor necrosis factor (TNF) augments smooth muscle contractility by influencing pathways that regulate intracellular calcium flux and can alter NMDA-R expression and activity in cortical neurons and glial cells. We hypothesized that NMDA-R-mediated Ca(2+) and contractile responses of ASM can be altered by inflammatory mediators, including TNF. In cultured HASM cells, we assessed TNF (10 ng/ml, 48 h) effect on NMDA-R subunit abundance by quantitative PCR, confocal imaging, and immunoblotting. We observed dose- and time-dependent changes in NMDA-R composition: increased obligatory NR1 subunit expression and altered regulatory NR2 and inhibitory NR3 subunits. Measuring intracellular Ca(2+) flux in Fura-2-loaded HASM cultures, we observed that TNF exposure enhanced cytosolic Ca(2+) mobilization and changed the temporal pattern of Ca(2+) flux in individual myocytes induced by NMDA, an NMDA-R selective analog of glutamate. We measured airway responses to NMDA in murine thin-cut lung slices (TCLS) from allergen-naive animals and observed significant airway contraction. However, NMDA acted as a bronchodilator in TCLS from house dust mice-challenged mice and in allergen-naive TCLS subjected to TNF exposure. All contractile or bronchodilator responses were blocked by a selective NMDA-R antagonist, (2R)-amino-5-phosphonopentanoate, and bronchodilator responses were prevented by N(G)-nitro-l-arginine methyl ester (nitric oxide synthase inhibitor) or indomethacin (cyclooxygenase inhibitor). Collectively, we show that TNF augments NMDA-R-mediated Ca(2+) mobilization in HASM cells, whereas in multicellular TCLSs allergic inflammation and TNF exposure leads to NMDA-R-mediated bronchodilation. These findings reveal the unique contribution of ionotrophic NMDA-R to airway hyperreactivity. Copyright © 2016 the American

  17. Three-dimensional evaluation of upper airway following rapid maxillary expansion: a CBCT study.

    PubMed

    El, Hakan; Palomo, Juan Martin

    2014-03-01

    To evaluate, by using cone beam computed tomography, the skeletal, dental, oropharyngeal (OP) airway volume, and nasal passage (NP) volume changes that occur after rapid maxillary expansion (RME). Two groups were selected, each with 35 patients (15 males, 20 females), an RME group (mean age, 14.02 ± 1.46 years) and a control group (mean age, 14.10 ± 1.44 years). The RME group consisted of patients with maxillary constriction who were treated with Hyrax palatal expanders, and the control group comprised age- and sex-matched patients who underwent comprehensive orthodontic treatment without the use of a rapid maxillary expander. All of the transverse skeletal (medial orbital width, lateral nasal width, maxillary width, and mandibular width) and interdental (intermolar, interpremolar, and intercanine) parameters were significantly enlarged in the RME group. A statistically significant increase in airway variables was seen in both groups between pretreatment (T0) and final records (T1). The mean increase of NP airway volume for the RME group (1719.9 ± 1510.7 mm(3)) was twofold compared with the control group (813.6 ± 1006.7 mm(3)), and no intergroup significant difference was found for the OP volume. Rapid maxillary expansion creates a significant increase in nasal passage airway volume but no significant change in the oropharyngeal airway volume.

  18. Sensory neuropeptides and the human lower airways: present state and future directions.

    PubMed

    Joos, G F; Germonpre, P R; Kips, J C; Peleman, R A; Pauwels, R A

    1994-06-01

    The sensory neuropeptides, substance P and neurokinin A, are present in human airway nerves, beneath and within the epithelium, around blood vessels and submucosal glands, and within the bronchial smooth muscle layer. Studies on autopsy tissue, bronchoalveolar lavage and sputum suggest that in asthma the substance P content of the airways may be increased. Neurokinin A is a more potent bronchoconstrictor than substance P. Asthmatics are hyperresponsive to neurokinin A and substance P. The neuropeptide degrading enzyme, neutral endopeptidase is present in the airways and is involved in the degradation of endogenously released and exogenously administered substance P and neurokinin A, both in normal and asthmatic subjects. As for other indirect bronchoconstrictor stimuli, the effect of neurokinin A on airway calibre in asthmatics can be inhibited by pretreatment with nedocromil sodium. Evidence is accumulating, not only from studies in animals but also from experiments on human airways, that tachykinins may also cause mucus secretion and plasma extravasation. They also have important proinflammatory effects, such as the chemoattraction of eosinophils and neutrophils, the adhesion of neutrophils, and the stimulation of lymphocytes, macrophages and mast cells. The tachykinins interact with the targets on the airways by specific tachykinin receptors. The NK1 and the NK2 receptor have been characterized in human airways, both pharmacologically and by cloning. The NK2 receptor is responsible for the in vitro contraction of normal airways, whilst the NK1 receptor is responsible for most of the other airway effects. Because of their presence in the airways and because of their ability to mimic the various pathophysiological features of asthma, substance P and neurokinin A are presently considered as possible mediators of asthma. The present development of potent and selective tachykinin antagonists will allow us to further define the role of tachykinins in the pathogenesis

  19. CFTR rescue with VX-809 and VX-770 favors the repair of primary airway epithelial cell cultures from patients with class II mutations in the presence of Pseudomonas aeruginosa exoproducts.

    PubMed

    Adam, Damien; Bilodeau, Claudia; Sognigbé, Laura; Maillé, Émilie; Ruffin, Manon; Brochiero, Emmanuelle

    2018-04-13

    Progressive airway damage due to bacterial infections, especially with Pseudomonas aeruginosa remains the first cause of morbidity and mortality in CF patients. Our previous work revealed a repair delay in CF airway epithelia compared to non-CF. This delay was partially prevented after CFTR correction (with VRT-325) in the absence of infection. Our goals were now to evaluate the effect of the Orkambi combination (CFTR VX-809 corrector + VX-770 potentiator) on the repair of CF primary airway epithelia, in infectious conditions. Primary airway epithelial cell cultures from patients with class II mutations were mechanically injured and wound healing rates and transepithelial resistances were monitored after CFTR rescue, in the absence and presence of P. aeruginosa exoproducts. Our data revealed that combined treatment with VX-809 and VX-770 elicited a greater beneficial impact on airway epithelial repair than VX-809 alone, in the absence of infection. The treatment with Orkambi was effective not only in airway epithelial cell cultures from patients homozygous for the F508del mutation but also from heterozygous patients carrying F508del and another class II mutation (N1303 K, I507del). The stimulatory effect of the Orkambi treatment was prevented by CFTR inhibition with GlyH101. Finally, Orkambi combination elicited a slight but significant improvement in airway epithelial repair and transepithelial resistance, despite the presence of P. aeruginosa exoproducts. Our findings indicate that Orkambi may favor airway epithelial integrity in CF patients with class II mutations. Complementary approaches would however be needed to further improve CFTR rescue and airway epithelial repair. Copyright © 2018 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  20. Three-dimensional cone-beam computed tomography analysis of enlargement of the pharyngeal airway by the Herbst appliance.

    PubMed

    Iwasaki, Tomonori; Takemoto, Yoshihiko; Inada, Emi; Sato, Hideo; Saitoh, Issei; Kakuno, Eriko; Kanomi, Ryuzo; Yamasaki, Youichi

    2014-12-01

    Pharyngeal airway size is increasingly recognized as an important factor in obstructive sleep apnea. However, few studies have examined the changes of pharyngeal airway form after dental procedures for treating obstructive sleep apnea during growth. The purpose of this study was to evaluate the effect of the Herbst appliance on the 3-dimensional form of the pharyngeal airway using cone-beam computed tomography. Twenty-four Class II subjects (ANB, ≥5°; 11 boys; mean age, 11.6 years) who required Herbst therapy with edgewise treatment had cone-beam computed tomography images taken before and after Herbst treatment. Twenty Class I control subjects (9 boys; mean age, 11.5 years) received edgewise treatment only. The volume, depth, and width of the pharyngeal airway were compared between the groups using measurements from 3-dimensional cone-beam computed tomography images of the entire pharyngeal airway. The increase of the oropharyngeal airway volume in the Herbst group (5000.2 mm(3)) was significantly greater than that of the control group (2451.6 mm(3)). Similarly, the increase of the laryngopharyngeal airway volume in the Herbst group (1941.8 mm(3)) was significantly greater than that of the control group (1060.1 mm(3)). The Herbst appliance enlarges the oropharyngeal and laryngopharyngeal airways. These results may provide a useful assessment of obstructive sleep apnea treatment during growth. Copyright © 2014 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  1. The effect of closed system suction on airway pressures when using the Servo 300 ventilator.

    PubMed

    Frengley, R W; Closey, D N; Sleigh, J W; Torrance, J M

    2001-12-01

    To measure airway pressures during closed system suctioning with the ventilator set to three differing modes of ventilation. Closed system suctioning was conducted in 16 patients following cardiac surgery. Suctioning was performed using a 14 French catheter with a vacuum level of -500 cmH2O through an 8.0 mm internal diameter endotracheal tube. The lungs were mechanically ventilated with a Servo 300 ventilator set to one of three ventilation modes: volume-control, pressure-control or CPAP/pressure support. Airway pressures were measured via a 4 French electronic pressure transducer in both proximal and distal airways. Following insertion of the suction catheter, end-expiratory pressure increased significantly (p < 0.001) in both pressure-control and volume-control ventilation. This increase was greatest (p = 0.018) in volume-control mode (2.7 +/- 1.7 cmH2O). On performing a five second suction, airway pressure decreased in all modes, however the lowest airway pressure in volume-control mode (-4.9 +/- 4.0 cmH2O) was significantly (p = 0.001) less than the lowest airway pressure recorded in either pressure-control (0.8 +/- 1.9 cmH2O) or CPAP/pressure support (0.4 +/- 2.8 cmH2O) modes. In CPAP/pressure support mode, 13 of the 16 patients experienced a positive pressure 'breath' at the end of suctioning with airway pressures rising to 21 +/- 1.6 cmH2O. Closed system suctioning in volume control ventilation may result in elevations of end-expiratory pressure following catheter insertion and subatmospheric airway pressures during suctioning. Pressure control ventilation produces less elevation of end-expiratory pressure following catheter insertion and is less likely to be associated with subatmospheric airway pressures during suctioning. CPAP/pressure support has no effect on end-expiratory pressure following catheter insertion and subatmospheric airway pressures are largely avoided during suctioning.

  2. Are new supraglottic airway devices, tracheal tubes and airway viewing devices cost-effective?

    PubMed

    Slinn, Simon J; Froom, Stephen R; Stacey, Mark R W; Gildersleve, Christopher D

    2015-01-01

    Over the past two decades, a plethora of new airway devices has become available to the pediatric anesthetist. While all have the laudable intention of improving patient care and some have proven clinical benefits, these devices are often costly and at times claims of an advantage over current equipment and techniques are marginal. Supraglottic airway devices are used in the majority of pediatric anesthetics delivered in the U.K., and airway-viewing devices provide an alternative for routine intubation as well as an option in the management of the difficult airway. Yet hidden beneath the convenience of the former and the technology of the latter, the impact on basic airway skills with a facemask and the lack of opportunities to fine-tune the core skill of intubation represent an unrecognised and unquantifiable cost. A judgement on this value must be factored into the absolute purchase cost and any potential benefits to the quality of patient care, thus blurring any judgement on cost-effectiveness that we might have. An overall value on cost-effectiveness though not in strict monetary terms can then be ascribed. In this review, we evaluate the role of these devices in the care of the pediatric patient and attempt to balance the advantages they offer against the cost they incur, both financial and environmental, and in any quality improvement they might offer in clinical care. © 2014 John Wiley & Sons Ltd.

  3. Effect of ozone exposure on antigen-induced airway hyperresponsiveness in guinea pigs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vargas, M.H.; Segura, P.; Campos, M.G.

    1994-12-31

    Airway hyperresponsiveness can be induced by several stimuli including antigen and ozone, both of which may be present in the air of polluted cities. Though the effect of ozone on the bronchoconstrictor response to antigen has been well described, the combined effect of these stimuli on airway hyperresponsiveness has not yet been studied. Sensitized guinea pigs with or without ozone exposure for 1 h at 3 ppm, 18 h prior to study, were challenged with a dose-response curve to histamine (0.01-1.8 {mu}g/kg, iv), and then by a second histamine dose-response curve 1 h later. Airway responses were measured as themore » increase in pulmonary insufflation pressure. In sensitized guinea pigs, the histamine ED50 significantly decreased after antigen challenge, demonstrating the development of airway hyperresponsiveness. Sensitized guinea pigs exposed to ozone showed airway hyperresponsiveness to histamine when compared with nonexposed animals, and such hyperresponsiveness was further enhanced after antigen challenge. We conclude that in this guinea pig model of acute allergic bronchoconstriction both antigen challenge and ozone induce airway hyperresponsiveness, while ozone exposure does not modify the development of antigen-induced hyperresponsiveness. 25 refs., 1 fig., 1 tab.« less

  4. Ethanologenic bacteria with increased resistance to furfural

    DOEpatents

    Miller, Elliot Norman; Jarboe, Laura R.; Yomano, Lorraine P.; York, Sean W.; Shanmugam, Keelnatham; Ingram, Lonnie O'Neal

    2015-10-06

    The invention relates to bacterium that have increased resistance to furfural and methods of preparation. The invention also relates to methods of producing ethanol using the bacterium and corresponding kits.

  5. How anaesthesiologists understand difficult airway guidelines—an interview study

    PubMed Central

    Knudsen, Kati; Nilsson, Ulrica; Larsson, Anders; Larsson, Jan

    2017-01-01

    Background In the practice of anaesthesia, clinical guidelines that aim to improve the safety of airway procedures have been developed. The aim of this study was to explore how anaesthesiologists understand or conceive of difficult airway management algorithms. Methods A qualitative phenomenographic design was chosen to explore anaesthesiologists’ views on airway algorithms. Anaesthesiologists working in three hospitals were included. Individual face-to-face interviews were conducted. Results Four different ways of understanding were identified, describing airway algorithms as: (A) a law-like rule for how to act in difficult airway situations; (B) a cognitive aid, an action plan for difficult airway situations; (C) a basis for developing flexible, personal action plans for the difficult airway; and (D) the experts’ consensus, a set of scientifically based guidelines for handling the difficult airway. Conclusions The interviewed anaesthesiologists understood difficult airway management guidelines/algorithms very differently. PMID:29299973

  6. Attenuation of airway smooth muscle contractility via flavonol-mediated inhibition of phospholipase-Cβ

    PubMed Central

    Brown, Amy; Danielsson, Jennifer; Townsend, Elizabeth A.; Zhang, Yi; Perez-Zoghbi, Jose F.; Emala, Charles W.

    2016-01-01

    Enhanced contractility of airway smooth muscle (ASM) is a major pathophysiological characteristic of asthma. Expanding the therapeutic armamentarium beyond β-agonists that target ASM hypercontractility would substantially improve treatment options. Recent studies have identified naturally occurring phytochemicals as candidates for acute ASM relaxation. Several flavonoids were evaluated for their ability to acutely relax human and murine ASM ex vivo and murine airways in vivo and were evaluated for their ability to inhibit procontractile signaling pathways in human ASM (hASM) cells. Two members of the flavonol subfamily, galangin and fisetin, significantly relaxed acetylcholine-precontracted murine tracheal rings ex vivo (n = 4 and n = 5, respectively, P < 0.001). Galangin and fisetin also relaxed acetylcholine-precontracted hASM strips ex vivo (n = 6–8, P < 0.001). Functional respiratory in vivo murine studies demonstrated that inhaled galangin attenuated the increase in lung resistance induced by inhaled methacholine (n = 6, P < 0.01). Both flavonols, galangin and fisetin, significantly inhibited purified phosphodiesterase-4 (PDE4) (n = 7, P < 0.05; n = 7, P < 0.05, respectively), and PLCβ enzymes (n = 6, P < 0.001 and n = 6, P < 0.001, respectively) attenuated procontractile Gq agonists' increase in intracellular calcium (n = 11, P < 0.001), acetylcholine-induced increases in inositol phosphates, and CPI-17 phosphorylation (n = 9, P < 0.01) in hASM cells. The prorelaxant effect retained in these structurally similar flavonols provides a novel pharmacological method for dual inhibition of PLCβ and PDE4 and therefore may serve as a potential treatment option for acute ASM constriction. PMID:26773068

  7. Attenuation of airway smooth muscle contractility via flavonol-mediated inhibition of phospholipase-Cβ.

    PubMed

    Brown, Amy; Danielsson, Jennifer; Townsend, Elizabeth A; Zhang, Yi; Perez-Zoghbi, Jose F; Emala, Charles W; Gallos, George

    2016-04-15

    Enhanced contractility of airway smooth muscle (ASM) is a major pathophysiological characteristic of asthma. Expanding the therapeutic armamentarium beyond β-agonists that target ASM hypercontractility would substantially improve treatment options. Recent studies have identified naturally occurring phytochemicals as candidates for acute ASM relaxation. Several flavonoids were evaluated for their ability to acutely relax human and murine ASM ex vivo and murine airways in vivo and were evaluated for their ability to inhibit procontractile signaling pathways in human ASM (hASM) cells. Two members of the flavonol subfamily, galangin and fisetin, significantly relaxed acetylcholine-precontracted murine tracheal rings ex vivo (n = 4 and n = 5, respectively, P < 0.001). Galangin and fisetin also relaxed acetylcholine-precontracted hASM strips ex vivo (n = 6-8, P < 0.001). Functional respiratory in vivo murine studies demonstrated that inhaled galangin attenuated the increase in lung resistance induced by inhaled methacholine (n = 6, P < 0.01). Both flavonols, galangin and fisetin, significantly inhibited purified phosphodiesterase-4 (PDE4) (n = 7, P < 0.05; n = 7, P < 0.05, respectively), and PLCβ enzymes (n = 6, P < 0.001 and n = 6, P < 0.001, respectively) attenuated procontractile Gq agonists' increase in intracellular calcium (n = 11, P < 0.001), acetylcholine-induced increases in inositol phosphates, and CPI-17 phosphorylation (n = 9, P < 0.01) in hASM cells. The prorelaxant effect retained in these structurally similar flavonols provides a novel pharmacological method for dual inhibition of PLCβ and PDE4 and therefore may serve as a potential treatment option for acute ASM constriction. Copyright © 2016 the American Physiological Society.

  8. TRPV1 Blocking Alleviates Airway Inflammation and Remodeling in a Chronic Asthma Murine Model.

    PubMed

    Choi, Joon Young; Lee, Hwa Young; Hur, Jung; Kim, Kyung Hoon; Kang, Ji Young; Rhee, Chin Kook; Lee, Sook Young

    2018-05-01

    Asthma is a chronic inflammatory airway disease characterized by airway hyperresponsiveness (AHR), inflammation, and remodeling. There is emerging interest in the involvement of the transient receptor potential vanilloid 1 (TRPV1) channel in the pathophysiology of asthma. This study examined whether TRPV1 antagonism alleviates asthma features in a murine model of chronic asthma. BALB/c mice were sensitized to and challenged by ovalbumin to develop chronic asthma. Capsazepine (TRPV1 antagonist) or TRPV1 small interfering RNA (siRNA) was administered in the treatment group to evaluate the effect of TPV1 antagonism on AHR, airway inflammation, and remodeling. The mice displayed increased AHR, airway inflammation, and remodeling. Treatment with capsazepine or TRPV1 siRNA reduced AHR to methacholine and airway inflammation. Type 2 T helper (Th2) cytokines (interleukin [IL]-4, IL-5, and IL-13) were reduced and epithelial cell-derived cytokines (thymic stromal lymphopoietin [TSLP], IL-33, and IL-25), which regulate Th2 cytokine-associated inflammation, were also reduced. Airway remodeling characterized by goblet cell hyperplasia, increased α-smooth muscle action, and collagen deposition was also alleviated by both treatments. Treatment directed at TRPV1 significantly alleviated AHR, airway inflammation, and remodeling in a chronic asthma murine model. The TRPV1 receptor can be a potential drug target for chronic bronchial asthma. Copyright © 2018 The Korean Academy of Asthma, Allergy and Clinical Immunology · The Korean Academy of Pediatric Allergy and Respiratory Disease.

  9. cAMP-dependent activation of protein kinase A attenuates respiratory syncytial virus-induced human airway epithelial barrier disruption

    PubMed Central

    Harford, Terri J.; Linfield, Debra T.; Altawallbeh, Ghaith; Midura, Ronald J.; Ivanov, Andrei I.; Piedimonte, Giovanni

    2017-01-01

    Airway epithelium forms a barrier to the outside world and has a crucial role in susceptibility to viral infections. Cyclic adenosine monophosphate (cAMP) is an important second messenger acting via two intracellular signaling molecules: protein kinase A (PKA) and the guanidine nucleotide exchange factor, Epac. We sought to investigate effects of increased cAMP level on the disruption of model airway epithelial barrier caused by RSV infection and the molecular mechanisms underlying cAMP actions. Human bronchial epithelial cells were infected with RSV-A2 and treated with either cAMP releasing agent, forskolin, or cAMP analogs. Structure and functions of the Apical Junctional Complex (AJC) were evaluated by measuring transepithelial electrical resistance and permeability to FITC-dextran, and determining localization of AJC proteins by confocal microscopy. Increased intracellular cAMP level significantly attenuated RSV-induced disassembly of AJC. These barrier-protective effects of cAMP were due to the activation of PKA signaling and did not involve Epac activity. Increased cAMP level reduced RSV-induced reorganization of the actin cytoskeleton, including apical accumulation of an essential actin-binding protein, cortactin, and inhibited expression of the RSV F protein. These barrier-protective and antiviral-function of cAMP signaling were evident even when cAMP level was increased after the onset of RSV infection. Taken together, our study demonstrates that cAMP/PKA signaling attenuated RSV-induced disruption of structure and functions of the model airway epithelial barrier by mechanisms involving the stabilization of epithelial junctions and inhibition of viral biogenesis. Improving our understanding of the mechanisms involved in RSV-induced epithelial dysfunction and viral pathogenesis will help to develop novel anti-viral therapeutic approaches. PMID:28759570

  10. Loss of Cystic Fibrosis Transmembrane Conductance Regulator Function Enhances Activation of p38 and ERK MAPKs, Increasing Interleukin-6 Synthesis in Airway Epithelial Cells Exposed to Pseudomonas aeruginosa*

    PubMed Central

    Bérubé, Julie; Roussel, Lucie; Nattagh, Leila; Rousseau, Simon

    2010-01-01

    In cystic fibrosis (CF), the absence of functional cystic fibrosis transmembrane conductance regulator (CFTR) translates into chronic bacterial infection, excessive inflammation, tissue damage, impaired lung function and eventual death. Understanding the mechanisms underlying this vicious circle of inflammation is important to design better therapies for CF. We found in CF lung biopsies increased immunoreactivity for p38 MAPK activity markers. Moreover, when compared with their non-CF counterpart, airway epithelial cells expressing the most common mutation in CF (CFTRΔF508) were more potent at inducing neutrophil chemotaxis through increased interleukin (IL)-6 synthesis when challenged with Pseudomonas aeruginosa diffusible material. We then discovered that in CFTRΔF508 cells, the p38 and ERK MAPKs are hyperactivated in response to P. aeruginosa diffusible material, leading to increased IL-6 mRNA expression and stability. Moreover, although TLR5 contributes to p38 MAPK activation upon P. aeruginosa challenge, it only played a weak role in IL-6 synthesis. Instead, we found that the production of reactive oxygen species is essential for IL-6 synthesis in response to P. aeruginosa diffusible material. Finally, we uncovered that in CFTRΔF508 cells, the extracellular glutathione levels are decreased, leading to a greater sensitivity to reactive oxygen species, providing an explanation for the hyperactivation of the p38 and ERK MAPKs and increased IL-6 synthesis. Taken together, our study has characterized a mechanism whereby the CFTRΔF508 mutation in airway epithelial cells contributes to increase inflammation of the airways. PMID:20460375

  11. Increased dead space in face mask continuous positive airway pressure in neonates.

    PubMed

    Hishikawa, Kenji; Fujinaga, Hideshi; Ito, Yushi

    2017-01-01

    Continuous positive airway pressure (CPAP) by face mask is commonly performed in newborn resuscitation. We evaluated the effect of face mask CPAP on system dead space. Face mask CPAP increases dead space. A CPAP model study. We estimated the volume of the inner space of the mask. We devised a face mask CPAP model, in which the outlet of the mask was covered with plastic; and three modified face mask CPAP models, in which holes were drilled near to the cushion of the covered face mask to alter the air exit. We passed a continuous flow of 21% oxygen through each model and we controlled the inner pressure to 5 cmH 2 O by adjusting the flow-relief valve. To evaluate the ventilation in the inner space of each model, we measured the oxygen concentration rise time, that is, the time needed for the oxygen concentration of each model to reach 35% after the oxygen concentration of the continuous flow was raised from 21% to 40%. The volume of inner space of the face mask was 38.3 ml. Oxygen concentration rise time in the face mask CPAP model was significantly longer at various continuous flow rates and points of the inner space of the face mask compared with that of the modified face mask CPAP model. Our study indicates that face mask CPAP leads to an increase in dead space and a decrease in ventilation efficiency under certain circumstances. Pediatr Pulmonol. 2017;52:107-111. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Air-Q intubating laryngeal airway: A study of the second generation supraglottic airway device.

    PubMed

    Attarde, Viren Bhaskar; Kotekar, Nalini; Shetty, Sarika M

    2016-05-01

    Air-Q intubating laryngeal mask airway (ILA) is used as a supraglottic airway device and as a conduit for endotracheal intubation. This study aims to assess the efficacy of the Air-Q ILA regarding ease of insertion, adequacy of ventilation, rate of successful intubation, haemodynamic response and airway morbidity. Sixty patients presenting for elective surgery at our Medical College Hospital were selected. Following adequate premedication, baseline vital parameters, pulse rate and blood pressure were recorded. Air-Q size 3.5 for patients 50-70 kg and size 4.5 for 70-100 kg was selected. After achieving adequate intubating conditions, Air-Q ILA was introduced. Confirming adequate ventilation, appropriate sized endotracheal tube was advanced through the Air-Q blindly to intubate the trachea. Placement of the endotracheal tube in trachea was confirmed. Air-Q ILA was successfully inserted in 88.3% of patients in first attempt and 11.7% patients in second attempt. Ventilation was adequate in 100% of patients. Intubation was successful in 76.7% of patients with Air-Q ILA. 23.3% of patients were intubated by direct laryngoscopy following failure with two attempts using Air-Q ILA. Post-intubation the change in heart rate was statistically significant (P < 0.0001). 10% of patients were noted to have a sore throat and 5% of patients had mild airway trauma. Air-Q ILA is a reliable device as a supraglottic airway ensuring adequate ventilation as well as a conduit for endotracheal intubation. It benefits the patient by avoiding the stress of direct laryngoscopy and is also superior alternative device for use in a difficult airway.

  13. External stent for repair of secondary tracheomalacia.

    PubMed

    Johnston, M R; Loeber, N; Hillyer, P; Stephenson, L W; Edmunds, L H

    1980-09-01

    Tracheomalacia was created in anesthetized piglets by submucosal resection of 3 to 5 tracheal cartilages. Measurements of airway pressure and flow showed that expiratory airway resistance is maximal at low lung volumes and is significantly increased by creation of the malacic segment. Cervical flexion increases expiratory airway resistance, whereas hyperextension of the neck reduces resistance toward normal. External stenting of the malacic segment reduces expiratory airway resistance, and the combination of external stenting and hyperextension restores airway resistance to normal except at low lung volume. Two patients with secondary tracheomalacia required tracheostomy and could not be decannulated after the indication for the tracheostomy was corrected. Both were successfully decannulated after external stenting of the malacic segment with rib grafts. Postoperative measurements of expiratory pulmonary resistance show a marked decrease from preoperative measurements. External stenting of symptomatic tracheomalacia reduces expiratory airway resistance by supporting and stretching the malacic segment and is preferable to prolonged internal stenting or tracheal resection.

  14. Role of Aquaporin Water Channels in Airway Fluid Transport, Humidification, and Surface Liquid Hydration

    PubMed Central

    Song, Yuanlin; Jayaraman, Sujatha; Yang, Baoxue; Matthay, Michael A.; Verkman, A.S.

    2001-01-01

    Several aquaporin-type water channels are expressed in mammalian airways and lung: AQP1 in microvascular endothelia, AQP3 in upper airway epithelia, AQP4 in upper and lower airway epithelia, and AQP5 in alveolar epithelia. Novel quantitative methods were developed to compare airway fluid transport–related functions in wild-type mice and knockout mice deficient in these aquaporins. Lower airway humidification, measured from the moisture content of expired air during mechanical ventilation with dry air through a tracheotomy, was 54–56% efficient in wild-type mice, and reduced by only 3–4% in AQP1/AQP5 or AQP3/AQP4 double knockout mice. Upper airway humidification, measured from the moisture gained by dry air passed through the upper airways in mice breathing through a tracheotomy, decreased from 91 to 50% with increasing ventilation from 20 to 220 ml/min, and reduced by 3–5% in AQP3/AQP4 knockout mice. The depth and salt concentration of the airway surface liquid in trachea was measured in vivo using fluorescent probes and confocal and ratio imaging microscopy. Airway surface liquid depth was 45 ± 5 μm and [Na+] was 115 ± 4 mM in wild-type mice, and not significantly different in AQP3/AQP4 knockout mice. Osmotic water permeability in upper airways, measured by an in vivo instillation/sample method, was reduced by ∼40% by AQP3/AQP4 deletion. In doing these measurements, we discovered a novel amiloride-sensitive isosmolar fluid absorption process in upper airways (13% in 5 min) that was not affected by aquaporin deletion. These results establish the fluid transporting properties of mouse airways, and indicate that aquaporins play at most a minor role in airway humidification, ASL hydration, and isosmolar fluid absorption. PMID:11382807

  15. Use of a Supraglottic Airway to Relieve Ventilation-Impeding Gastric Insufflation During Emergency Airway Management in an Infant.

    PubMed

    Dodd, Kenneth W; Strobel, Ashley M; Driver, Brian E; Reardon, Robert F

    2016-10-01

    Positive-pressure bag-valve-mask ventilation during emergency airway management often results in significant gastric insufflation, which may impede adequate ventilation and oxygenation. Current-generation supraglottic airways have beneficial features, such as channels for gastric decompression while ventilation is ongoing. A 5-week-old female infant required resuscitation for hypoxemic respiratory failure caused by rhinovirus with pneumonia. Bag-valve-mask ventilation led to gastric insufflation that compromised ventilation, thereby interfering with intubation because of precipitous oxygen desaturation during laryngoscopy. A current-generation supraglottic airway (LMA Supreme; Teleflex Inc, Morrisville, NC) was used to facilitate gastric decompression while ventilation and oxygenation was ongoing. After gastric decompression, ventilation was markedly improved and the pulse oxygen saturation improved to 100%. Intubation was successful on the next attempt, without oxygen desaturation. Current-generation supraglottic airways have 3 distinct advantages compared with first-generation supraglottic airways, which make them better devices for emergency airway management: gastric decompression ports, conduits for intubation, and higher oropharyngeal leak pressures. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  16. Hyperoside attenuates OVA-induced allergic airway inflammation by activating Nrf2.

    PubMed

    Ye, Peng; Yang, Xi-Liang; Chen, Xing; Shi, Cai

    2017-03-01

    Allergic airways disease (AAD) is one of the most common medical illnesses that is associated with an increased allergic airway inflammation. Hyperoside, an active compound isolated from Rhododendron brachycarpum G. Don, has been reported to have anti-inflammatory effect. The aim of this study was to analyze the protective effect of hyperoside on OVA-induced allergic airway inflammation in mice. In the present study, the mouse asthma model was induced by given OVA and hyperoside was administrated 1h before OVA challenge. The levels of IL-4, IL-5, IL-13, and IgE were detected by ELISA. H&E staining was used to assess lung histopathological changes. The expression of NF-κB p65, IκB, HO-1, and Nf-E2 related factor 2 (Nrf2) were measured by western blot analysis. The results showed that hyperoside significantly reduced the inflammatory cells infiltration and the levels of IL-4, IL-5, IL-13, and IgE. Hyperoside significantly inhibited OVA-induced oxidative stress as demonstrated by decreased MDA, and increased GSH and SOD levels. Treatment of hyperoside also inhibited OVA-induced airway hyperresponsiveness (AHR). Furthermore, the results showed that treatment of hyperoside significantly inhibited LPS-induced NF-κB activation. In addition, hyperoside was found to activate Nrf2/HO-1 signaling pathway. In conclusion, these results suggest that hyperoside ameliorates OVA-induced allergic airway inflammation by activating Nrf2 signaling pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Respiratory symptoms following wildfire smoke exposure: airway size as a susceptibility factor.

    PubMed

    Mirabelli, Maria C; Künzli, Nino; Avol, Edward; Gilliland, Frank D; Gauderman, W James; McConnell, Rob; Peters, John M

    2009-05-01

    Associations between exposure to smoke during wildfire events and respiratory symptoms are well documented, but the role of airway size remains unclear. We conducted this analysis to assess whether small airway size modifies these relationships. We analyzed data from 465 nonasthmatic 16- to 19-year-old participants in the Children's Health Study. Following an outbreak of wildfires in 2003, each student completed a questionnaire about smoke exposure, dry and wet cough, wheezing, and eye symptoms. We used log-binomial regression to evaluate associations between smoke exposure and fire-related health symptoms, and to assess modification of the associations by airway size. As a marker of airway size, we used the ratio of maximum midexpiratory flow to forced vital capacity. Forty percent (186 of 465) of this population (including students from 11 of 12 surveyed communities) reported the odor of wildfire smoke at home. We observed increased respiratory and eye symptoms with increasing frequency of wildfire smoke exposure. Associations between smoke exposure and having any of 4 respiratory symptoms were stronger in the lowest quartile of the lung function ratio (eg, fire smoke 6+ days: prevalence ratio: 3.8; 95% confidence interval (CI = 2.0-7.2), compared with the remaining quartiles (fire smoke 6+ days: prevalence ratio = 2.0; 1.2-3.2). Analysis of individual symptoms suggests that this interaction may be strongest for effects on wheezing. Small airways may serve as a marker of susceptibility to effects of wildfire smoke. Future studies should investigate the role of airway size for more common exposures and should include persons with asthma.

  18. Baicalein Reduces Airway Injury in Allergen and IL-13 Induced Airway Inflammation

    PubMed Central

    Mabalirajan, Ulaganathan; Ahmad, Tanveer; Rehman, Rakhshinda; Leishangthem, Geeta Devi; Dinda, Amit Kumar; Agrawal, Anurag; Ghosh, Balaram; Sharma, Surendra Kumar

    2013-01-01

    Background Baicalein, a bioflavone present in the dry roots of Scutellaria baicalensis Georgi, is known to reduce eotaxin production in human fibroblasts. However, there are no reports of its anti-asthma activity or its effect on airway injury. Methodology/Principal Findings In a standard experimental asthma model, male Balb/c mice that were sensitized with ovalbumin (OVA), treated with baicalein (10 mg/kg, ip) or a vehicle control, either during (preventive use) or after OVA challenge (therapeutic use). In an alternate model, baicalein was administered to male Balb/c mice which were given either IL-4 or IL-13 intranasally. Features of asthma were determined by estimating airway hyperresponsiveness (AHR), histopathological changes and biochemical assays of key inflammatory molecules. Airway injury was determined with apoptotic assays, transmission electron microscopy and assessing key mitochondrial functions. Baicalein treatment reduced AHR and inflammation in both experimental models. TGF-β1, sub-epithelial fibrosis and goblet cell metaplasia, were also reduced. Furthermore, baicalein treatment significantly reduced 12/15-LOX activity, features of mitochondrial dysfunctions, and apoptosis of bronchial epithelia. Conclusion/Significance Our findings demonstrate that baicalein can attenuate important features of asthma, possibly through the reduction of airway injury and restoration of mitochondrial function. PMID:23646158

  19. COLCHICINE DECREASES AIRWAY HYPERACTIVITY AFTER PHOSGENE EXPOSURE

    EPA Science Inventory

    Phosgene (COCl(2)) exposure affects an influx of inflammatory cells into the lung, which can be reduced in an animal model by pretreatment with colchicine. Inflammation in the respiratory tract can be associated with an increase in airway hyperreactivity. We tested the hypotheses...

  20. Definitive airway management of patients presenting with a pre-hospital inserted King LT(S)-D laryngeal tube airway: a historical cohort study.

    PubMed

    Subramanian, Arun; Garcia-Marcinkiewicz, Annery G; Brown, Daniel R; Brown, Michael J; Diedrich, Daniel A

    2016-03-01

    The King LT(S)-D laryngeal tube (King LT) has gained popularity as a bridge airway for pre-hospital airway management. In this study, we retrospectively reviewed the use of the King LT and its associated airway outcomes at a single Level 1 trauma centre. The data on all adult patients presenting to the Mayo Clinic in Rochester, Minnesota with a King LT in situ from July 1, 2007 to October 10, 2012 were retrospectively evaluated. Data collected and descriptively analyzed included patient demographics, comorbidities, etiology of respiratory failure, airway complications, subsequent definitive airway management technique, duration of mechanical ventilation, and status at discharge. Forty-eight adult patients met inclusion criteria. The most common etiology for respiratory failure requiring an artificial airway was cardiac arrest [28 (58%) patients] or trauma [9 (19%) patients]. Four of the nine trauma patients had facial trauma. Surgical tracheostomy was the definitive airway management technique in 14 (29%) patients. An airway exchange catheter, direct laryngoscopy, and video laryngoscopy were used in 11 (23%), ten (21%), and ten (21%) cases, respectively. Seven (78%) of the trauma patients underwent surgical tracheostomy compared with seven (18%) of the medical patients. Adverse events associated with King LT use occurred in 13 (27%) patients, with upper airway edema (i.e., tongue engorgement and glottic edema) being most common (19%). In this study of patients presenting to a hospital with a King LT, the majority of airway exchanges required an advanced airway management technique beyond direct laryngoscopy. Upper airway edema was the most common adverse observation associated with King LT use.

  1. Cricothyrotomy training increases adherence to the ASA difficult airway algorithm in a simulated crisis: a randomized controlled trial.

    PubMed

    You-Ten, Kong Eric; Bould, M Dylan; Friedman, Zeev; Riem, Nicole; Sydor, Devin; Boet, Sylvain

    2015-05-01

    Non-adherence to airway guidelines in a 'cannot intubate-cannot oxygenate' (CICO) crisis situation is associated with adverse patient outcomes. This study investigated the effects of hands-on training in cricothyrotomy on adherence to the American Society of Anesthesiologists difficult airway algorithm (ASA-DAA) during a simulated CICO scenario. A total of 21 postgraduate second-year anesthesia residents completed a pre-test teaching session during which they reviewed the ASA-DAA, became familiarized with the Melker cricothyrotomy kit, and watched a video on cricothyrotomy. Participants were randomized to either the intervention 'Trained' group (n = 10) (taught and practiced cricothyrotomy) or the control 'Non-Trained' group (n = 11) (no extra training). After two to three weeks, performances of the groups were assessed in a simulated CICO scenario. The primary outcome measure was major deviation from the ASA-DAA. Secondary outcome measures were (1) performance of the four categories of non-technical behaviours using the validated Anaesthetists' Non-Technical Skills scale (ANTS) and (2) time to perform specific tasks. Significantly more non-trained than trained participants (6/11 vs 0/10, P = 0.012) committed at least one major ASA-DAA deviation, including failure to insert an oral airway, failure to call for help, bypassing the laryngeal mask airway, and attempting fibreoptic intubation. ANTS scores for all four categories of behaviours, however, were similar between the groups. Trained participants called for help faster [26 (2) vs 63 (48) sec, P = 0.012] but delayed opening of the cricothyrotomy kit [130 (50) vs 74 (36) sec, P = 0.014]. Hands-on training in cricothyrotomy resulted in fewer major ASA-DAA deviations in a simulated CICO scenario. Training in cricothyrotomy may play an important role in complying with the ASA-DAA in a CICO situation but does not appear to affect non-technical behaviours such as decision-making.

  2. Vagal afferents contribute to exacerbated airway responses following ozone and allergen challenge.

    PubMed

    Schelegle, Edward S; Walby, William F

    2012-05-31

    Brown-Norway rats (n=113) sensitized and challenged with nDer f 1 allergen were used to examine the contribution of lung sensory nerves to ozone (O(3)) exacerbation of asthma. Prior to their third challenge rats inhaled 1.0ppm O(3) for 8h. There were three groups: (1) control; (2) vagus perineural capsaicin treatment (PCT) with or without hexamethonium; and (3) vagotomy. O(3) inhalation resulted in a significant increase in lung resistance (R(L)) and an exaggerated response to subsequent allergen challenge. PCT abolished the O(3)-induced increase in R(L) and significantly reduced the increase in R(L) induced by a subsequent allergen challenge, while hexamethonium treatment reestablished bronchoconstriction induced by allergen challenge. Vagotomy resulted in a significant increase in the bronchoconstriction induced by O(3) inhalation and subsequent challenge with allergen. In this model of O(3) exacerbation of asthma, vagal C-fibers initiate reflex bronchoconstriction, vagal myelinated fibers initiate reflex bronchodilation, and mediators released within the airway initiate bronchoconstriction. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Regulation of Cl^- Channels in Normal and Cystic Fibrosis Airway Epithelial Cells by Extracellular ATP

    NASA Astrophysics Data System (ADS)

    Stutts, M. J.; Chinet, T. C.; Mason, S. J.; Fullton, J. M.; Clarke, L. L.; Boucher, R. C.

    1992-03-01

    The rate of Cl^- secretion by human airway epithelium is determined, in part, by apical cell membrane Cl^- conductance. In cystic fibrosis airway epithelia, defective regulation of Cl^- conductance decreases the capability to secrete Cl^-. Here we report that extracytosolic ATP in the luminal bath of cultured human airway epithelia increased transepithelial Cl^- secretion and apical membrane Cl^- permeability. Single-channel studies in excised membrane patches revealed that ATP increased the open probability of outward rectifying Cl^- channels. The latter effect occurs through a receptor mechanism that requires no identified soluble second messengers and is insensitive to probes of G protein function. These results demonstrate a mode of regulation of anion channels by binding ATP at the extracellular surface. Regulation of Cl^- conductance by external ATP is preserved in cystic fibrosis airway epithelia.

  4. The effects of inhaled corticosteroids on intrinsic responsiveness and histology of airways from infant monkeys exposed to house dust mite allergen and ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joad, Jesse P.; Kott, Kayleen S.; Bric, John M.

    2008-01-15

    Inhaled corticosteroids (ICS) are recommended to treat infants with asthma, some with intermittent asthma. We previously showed that exposing infant monkeys to allergen/ozone resulted in asthma-like characteristics of their airways. We evaluated the effects of ICS on histology and intrinsic responsiveness of allergen/ozone-exposed and normal infant primate airways. Infant monkeys were exposed by inhalation to (1) filtered air and saline, (2) house dust mite allergen (HDMA) + ozone and saline, (3) filtered air and ICS (budesonide) or (4) HDMA + ozone and ICS. Allergen/ozone exposures started at 1 month and ICS at 3 months of age. At 6 months ofmore » age, methacholine-induced changes in luminal area of airways in proximal and distal lung slices were determined using videomicrometry, followed by histology of the same slices. Proximal airway responsiveness was increased by allergen/ozone and by ICS. Eosinophil profiles were increased by allergen/ozone in both proximal and distal airways, an effect that was decreased by ICS in distal airways. In both allergen/ozone- and air-exposed monkeys, ICS increased the number of alveolar attachments in distal airways, decreased mucin in proximal airways and decreased epithelial volume in both airways. ICS increased smooth muscle in air-exposed animals while decreasing it in allergen/ozone-exposed animals in both airways. In proximal airways, there was a small but significant positive correlation between smooth muscle and airway responsiveness, as well as between alveolar attachments and responsiveness. ICS change morphology and function in normal airways as well as allergen/ozone-exposed airways, suggesting that they should be reserved for infants with active symptoms.« less

  5. Oxidative airway inflammation leads to systemic and vascular oxidative stress in a murine model of allergic asthma.

    PubMed

    Al-Harbi, Naif O; Nadeem, A; Al-Harbi, Mohamed M; Imam, F; Al-Shabanah, Othman A; Ahmad, Sheikh F; Sayed-Ahmed, Mohamed M; Bahashwan, Saleh A

    2015-05-01

    Oxidant-antioxidant imbalance plays an important role in repeated cycles of airway inflammation observed in asthma. It is when reactive oxygen species (ROS) overwhelm antioxidant defenses that a severe inflammatory state becomes apparent and may impact vasculature. Several studies have shown an association between airway inflammation and cardiovascular complications; however so far none has investigated the link between airway oxidative stress and systemic/vascular oxidative stress in a murine model of asthma. Therefore, this study investigated the contribution of oxidative stress encountered in asthmatic airways in modulation of vascular/systemic oxidant-antioxidant balance. Rats were sensitized intraperitoneally with ovalbumin (OVA) in the presence of aluminum hydroxide followed by several intranasal (i.n.) challenges with OVA. Rats were then assessed for airway and vascular inflammation, oxidative stress (ROS, lipid peroxides) and antioxidants measured as total antioxidant capacity (TAC) and thiol content. Challenge with OVA led to increased airway inflammation and oxidative stress with a concomitant increase in vascular inflammation and oxidative stress. Oxidative stress in the vasculature was significantly inhibited by antioxidant treatment, N-acetyl cysteine; whereas hydrogen peroxide (H2O2) inhalation worsened it. Therefore, our study shows that oxidative airway inflammation is associated with vascular/systemic oxidative stress which might predispose these patients to increased cardiovascular risk. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Airway remodeling in murine asthma correlates with a defect in PGE2 synthesis by lung fibroblasts

    PubMed Central

    Stumm, Camila Leindecker; Wettlaufer, Scott H.; Jancar, Sonia

    2011-01-01

    Asthma is a chronic lung disease characterized by local inflammation that can result in structural alterations termed airway remodeling. One component of airway remodeling involves fibroblast accumulation and activation, resulting in deposition of collagen I around small bronchi. Prostaglandin E2 (PGE2) is the main eicosanoid lipid mediator produced by lung fibroblasts, and it exerts diverse anti-fibrotic actions. Dysregulation of the PGE2 synthesis/response axis has been identified in human pulmonary fibrotic diseases and implicated in the pathogenesis of animal models of lung parenchymal fibrosis. Here we investigated the relationship between the fibroblast PGE2 axis and airway fibrosis in an animal model of chronic allergic asthma. Airway fibrosis increased progressively as the number of airway challenges with antigen increased from 3 to 7 to 12. Compared with cells from control lungs, fibroblasts grown from the lungs of asthmatic animals, regardless of challenge number, exhibited no defect in the ability of PGE2 or its analogs to inhibit cellular proliferation and collagen I expression. This correlated with intact expression of the EP2 receptor, which is pivotal for PGE2 responsiveness. However, cytokine-induced upregulation of PGE2 biosynthesis as well as expression of cyclooxygenase-2 (COX-2) and microsomal PGE synthase-1 declined with increasing numbers of antigen challenges. In addition, treatment with the COX-2-selective inhibitor nimesulide potentiated the degree of airway fibrosis following repeated allergen challenge. Because endogenous COX-2-derived PGE2 acts as a brake on airway fibrosis, the inability of fibroblasts to upregulate PGE2 generation in the inflammatory milieu presented by repeated allergen exposure could contribute to the airway remodeling and fibrosis observed in chronic asthma. PMID:21873451

  7. Evolution of the Immune Response to Chronic Airway Colonization with Aspergillus fumigatus Hyphae.

    PubMed

    Urb, Mirjam; Snarr, Brendan D; Wojewodka, Gabriella; Lehoux, Mélanie; Lee, Mark J; Ralph, Benjamin; Divangahi, Maziar; King, Irah L; McGovern, Toby K; Martin, James G; Fraser, Richard; Radzioch, Danuta; Sheppard, Donald C

    2015-09-01

    Airway colonization by the mold Aspergillus fumigatus is common in patients with underlying lung disease and is associated with chronic airway inflammation. Studies probing the inflammatory response to colonization with A. fumigatus hyphae have been hampered by the lack of a model of chronic colonization in immunocompetent mice. By infecting mice intratracheally with conidia embedded in agar beads (Af beads), we have established an in vivo model to study the natural history of airway colonization with live A. fumigatus hyphae. Histopathological examination and galactomannan assay of lung homogenates demonstrated that hyphae exited beads and persisted in the lungs of mice up to 28 days postinfection without invasive disease. Fungal lesions within the airways were surrounded by a robust neutrophilic inflammatory reaction and peribronchial infiltration of lymphocytes. Whole-lung cytokine analysis from Af bead-infected mice revealed an increase in proinflammatory cytokines and chemokines early in infection. Evidence of a Th2 type response was observed only early in the course of colonization, including increased levels of interleukin-4 (IL-4), elevated IgE levels in serum, and a mild increase in airway responsiveness. Pulmonary T cell subset analysis during infection mirrored these results with an initial transient increase in IL-4-producing CD4(+) T cells, followed by a rise in IL-17 and Foxp3(+) cells by day 14. These results provide the first report of the evolution of the immune response to A. fumigatus hyphal colonization. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Rhinovirus Delays Cell Repolarization in a Model of Injured/Regenerating Human Airway Epithelium

    PubMed Central

    Faris, Andrea N.; Ganesan, Shyamala; Chattoraj, Asamanja; Chattoraj, Sangbrita S.; Comstock, Adam T.; Unger, Benjamin L.; Hershenson, Marc B.

    2016-01-01

    Rhinovirus (RV), which causes exacerbation in patients with chronic airway diseases, readily infects injured airway epithelium and has been reported to delay wound closure. In this study, we examined the effects of RV on cell repolarization and differentiation in a model of injured/regenerating airway epithelium (polarized, undifferentiated cells). RV causes only a transient barrier disruption in a model of normal (mucociliary-differentiated) airway epithelium. However, in the injury/regeneration model, RV prolongs barrier dysfunction and alters the differentiation of cells. The prolonged barrier dysfunction caused by RV was not a result of excessive cell death but was instead associated with epithelial-to-mesenchymal transition (EMT)-like features, such as reduced expression of the apicolateral junction and polarity complex proteins, E-cadherin, occludin, ZO-1, claudins 1 and 4, and Crumbs3 and increased expression of vimentin, a mesenchymal cell marker. The expression of Snail, a transcriptional repressor of tight and adherence junctions, was also up-regulated in RV-infected injured/regenerating airway epithelium, and inhibition of Snail reversed RV-induced EMT-like features. In addition, compared with sham-infected cells, the RV-infected injured/regenerating airway epithelium showed more goblet cells and fewer ciliated cells. Inhibition of epithelial growth factor receptor promoted repolarization of cells by inhibiting Snail and enhancing expression of E-cadherin, occludin, and Crumbs3 proteins, reduced the number of goblet cells, and increased the number of ciliated cells. Together, these results suggest that RV not only disrupts barrier function, but also interferes with normal renewal of injured/regenerating airway epithelium by inducing EMT-like features and subsequent goblet cell hyperplasia. PMID:27119973

  9. β2-Agonist Induced cAMP Is Decreased in Asthmatic Airway Smooth Muscle Due to Increased PDE4D

    PubMed Central

    Trian, Thomas; Burgess, Janette K.; Niimi, Kyoko; Moir, Lyn M.; Ge, Qi; Berger, Patrick; Liggett, Stephen B.; Black, Judith L.; Oliver, Brian G.

    2011-01-01

    Background and Objective Asthma is associated with airway narrowing in response to bronchoconstricting stimuli and increased airway smooth muscle (ASM) mass. In addition, some studies have suggested impaired β-agonist induced ASM relaxation in asthmatics, but the mechanism is not known. Objective To characterize the potential defect in β-agonist induced cAMP in ASM derived from asthmatic in comparison to non-asthmatic subjects and to investigate its mechanism. Methods We examined β2-adrenergic (β2AR) receptor expression and basal β-agonist and forskolin (direct activator of adenylyl cyclase) stimulated cAMP production in asthmatic cultured ASM (n = 15) and non-asthmatic ASM (n = 22). Based on these results, PDE activity, PDE4D expression and cell proliferation were determined. Results In the presence of IBMX, a pan PDE inhibitor, asthmatic ASM had ∼50% lower cAMP production in response to isoproterenol, albuterol, formoterol, and forskolin compared to non-asthmatic ASM. However when PDE4 was specifically inhibited, cAMP production by the agonists and forskolin was normalized in asthmatic ASM. We then measured the amount and activity of PDE4, and found ∼2-fold greater expression and activity in asthmatic ASM compared to non-asthmatic ASM. Furthermore, inhibition of PDE4 reduced asthmatic ASM proliferation but not that of non-asthmatic ASM. Conclusion Decreased β-agonist induced cAMP in ASM from asthmatics results from enhanced degradation due to increased PDE4D expression. Clinical manifestations of this dysregulation would be suboptimal β-agonist-mediated bronchodilation and possibly reduced control over increasing ASM mass. These phenotypes appear to be “hard-wired” into ASM from asthmatics, as they do not require an inflammatory environment in culture to be observed. PMID:21611147

  10. Allergic asthma is distinguished by sensitivity of allergen-specific CD4+ T cells and airway structural cells to type 2 inflammation.

    PubMed

    Cho, Josalyn L; Ling, Morris F; Adams, David C; Faustino, Lucas; Islam, Sabina A; Afshar, Roshi; Griffith, Jason W; Harris, Robert S; Ng, Aylwin; Radicioni, Giorgia; Ford, Amina A; Han, Andre K; Xavier, Ramnik; Kwok, William W; Boucher, Richard; Moon, James J; Hamilos, Daniel L; Kesimer, Mehmet; Suter, Melissa J; Medoff, Benjamin D; Luster, Andrew D

    2016-10-05

    Despite systemic sensitization, not all allergic individuals develop asthma symptoms upon airborne allergen exposure. Determination of the factors that lead to the asthma phenotype in allergic individuals could guide treatment and identify novel therapeutic targets. We used segmental allergen challenge of allergic asthmatics (AA) and allergic nonasthmatic controls (AC) to determine whether there are differences in the airway immune response or airway structural cells that could drive the development of asthma. Both groups developed prominent allergic airway inflammation in response to allergen. However, asthmatic subjects had markedly higher levels of innate type 2 receptors on allergen-specific CD4 + T cells recruited into the airway. There were also increased levels of type 2 cytokines, increased total mucin, and increased mucin MUC5AC in response to allergen in the airways of AA subjects. Furthermore, type 2 cytokine levels correlated with the mucin response in AA but not AC subjects, suggesting differences in the airway epithelial response to inflammation. Finally, AA subjects had increased airway smooth muscle mass at baseline measured in vivo using novel orientation-resolved optical coherence tomography. Our data demonstrate that the development of allergic asthma is dependent on the responsiveness of allergen-specific CD4 + T cells to innate type 2 mediators as well as increased sensitivity of airway epithelial cells and smooth muscle to type 2 inflammation. Copyright © 2016, American Association for the Advancement of Science.

  11. [Upper airway morphology in Down Syndrome patients under dexmedetomidine sedation].

    PubMed

    Subramanyam, Rajeev; Fleck, Robert; McAuliffe, John; Radhakrishnan, Rupa; Jung, Dorothy; Patino, Mario; Mahmoud, Mohamed

    2016-01-01

    Children with Down Syndrome are vulnerable to significant upper airway obstruction due to relative macroglossia and dynamic airway collapse. The objective of this study was to compare the upper airway dimensions of children with Down Syndrome and obstructive sleep apnea with normal airway under dexmedetomidine sedation. IRB approval was obtained. In this retrospective study, clinically indicated dynamic sagittal midline magnetic resonance images of the upper airway were obtained under low (1mcg/kg/h) and high (3mcg/kg/h) dose dexmedetomidine. Airway anteroposterior diameters and sectional areas were measured as minimum and maximum dimensions by two independent observers at soft palate (nasopharyngeal airway) and at base of the tongue (retroglossal airway). Minimum anteroposterior diameter and minimum sectional area at nasopharynx and retroglossal airway were significantly reduced in Down Syndrome compared to normal airway at both low and high dose dexmedetomidine. However, there were no significant differences between low and high dose dexmedetomidine in both Down Syndrome and normal airway. The mean apnea hypopnea index in Down Syndrome was 16±11. Under dexmedetomidine sedation, children with Down Syndrome and obstructive sleep apnea when compared to normal airway children show significant reductions in airway dimensions most pronounced at the narrowest points in the nasopharyngeal and retroglossal airways. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  12. Upper airway morphology in Down Syndrome patients under dexmedetomidine sedation.

    PubMed

    Subramanyam, Rajeev; Fleck, Robert; McAuliffe, John; Radhakrishnan, Rupa; Jung, Dorothy; Patino, Mario; Mahmoud, Mohamed

    2016-01-01

    Children with Down Syndrome are vulnerable to significant upper airway obstruction due to relative macroglossia and dynamic airway collapse. The objective of this study was to compare the upper airway dimensions of children with Down Syndrome and obstructive sleep apnea with normal airway under dexmedetomidine sedation. IRB approval was obtained. In this retrospective study, clinically indicated dynamic sagittal midline magnetic resonance images of the upper airway were obtained under low (1mcg/kg/h) and high (3mcg/kg/h) dose dexmedetomidine. Airway anteroposterior diameters and sectional areas were measured as minimum and maximum dimensions by two independent observers at soft palate (nasopharyngeal airway) and at base of the tongue (retroglossal airway). Minimum anteroposterior diameter and minimum sectional area at nasopharynx and retroglossal airway were significantly reduced in Down Syndrome compared to normal airway at both low and high dose dexmedetomidine. However, there were no significant differences between low and high dose dexmedetomidine in both Down Syndrome and normal airway. The mean apnea hypopnea index in Down Syndrome was 16±11. Under dexmedetomidine sedation, children with Down Syndrome and obstructive sleep apnea when compared to normal airway children show significant reductions in airway dimensions most pronounced at the narrowest points in the nasopharyngeal and retroglossal airways. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  13. Green tea epigallo-catechin-galleate ameliorates the development of obliterative airway disease.

    PubMed

    Liang, Olin D; Kleibrink, Bjoern E; Schuette-Nuetgen, Katharina; Khatwa, Umakanth U; Mfarrej, Bechara; Subramaniam, Meera

    2011-09-01

    Lung transplantation has the worst outcome compared to all solid organ transplants due to chronic rejection known as obliterative bronchiolitis (OB). Pathogenesis of OB is a complex interplay of alloimmune-dependent and -independent factors, which leads to the development of inflammation, fibrosis, and airway obliteration that have been resistant to therapy. The alloimmune-independent inflammatory pathway has been the recent focus in the pathogenesis of rejection, suggesting that targeting this may offer therapeutic benefits. As a potent anti-inflammatory agent, epigallo-catechin-galleate (EGCG), a green tea catechin, has been very effective in ameliorating inflammation in a variety of diseases, providing the rationale for its use in this study in a murine heterotopic tracheal allograft model of OB. Mice treated with EGCG had reduced inflammation, with significantly less neutrophil and macrophage infiltration and significantly reduced fibrosis. On further investigation into the mechanisms, inflammatory cytokines keratinocyte (KC), interleukin-17 (IL-17), and tumor necrosis factor-α (TNF-α), involved in neutrophil recruitment, were reduced in the EGCG-treated mice. In addition, monocyte chemokine monocyte chemoattractant protein-1 (MCP-1) was significantly reduced by EGCG treatment. Antifibrotic cytokine interferon-γ-inducible protein-10 (IP-10) was increased and profibrotic cytokine transforming growth factor-β (TGF-β) was reduced, further characterizing the antifibrotic effects of EGCG. These findings suggest that EGCG has great potential in ameliorating the development of obliterative airway disease.

  14. The Tulip GT® airway versus the facemask and Guedel airway: a randomised, controlled, cross-over study by Basic Life Support-trained airway providers in anaesthetised patients.

    PubMed

    Shaikh, A; Robinson, P N; Hasan, M

    2016-03-01

    We performed a randomised, controlled, cross-over study of lung ventilation by Basic Life Support-trained providers using either the Tulip GT® airway or a facemask with a Guedel airway in 60 anaesthetised patients. Successful ventilation was achieved if the provider produced an end-tidal CO2 > 3.5 kPa and a tidal volume > 250 ml in two of the first three breaths, within 60 sec and within two attempts. Fifty-seven (95%) providers achieved successful ventilation using the Tulip GT compared with 35 (58%) using the facemask (p < 0.0001). Comparing the Tulip GT and facemask, the mean (SD) end-tidal CO2 was 5.0 (0.7) kPa vs 2.5 (1.5) kPa, tidal volume was 494 (175) ml vs 286 (186) ml and peak inspiratory pressure was 18.3 (3.4) cmH2 O vs 13.6 (7) cmH2 O respectively (all p < 0.0001). Forty-seven (78%) users favoured the Tulip GT airway. These results are similar to a previous manikin study using the same protocol, suggesting a close correlation between human and manikin studies for this airway device. We conclude that the Tulip GT should be considered as an adjunct to airway management both within and outside hospitals when ventilation is being undertaken by Basic Life Support-trained airway providers. © 2015 The Association of Anaesthetists of Great Britain and Ireland.

  15. Naringin Protects Ovalbumin-Induced Airway Inflammation in a Mouse Model of Asthma.

    PubMed

    Guihua, Xiong; Shuyin, Liu; Jinliang, Gao; Wang, Shumin

    2016-04-01

    Many plant species containing flavonoids have been widely used in traditional Chinese medicine. Naringin, a well-known flavanone glycoside of citrus fruits, possesses antioxidant, anti-inflammatory, anti-apoptotic, anti-ulcer, anti-osteoporosis, and anti-carcinogenic properties. The aim of the study was to investigate the anti-asthmatic effects of naringin and the possible mechanisms. Asthma model was established by ovalbumin. A total of 50 mice were randomly assigned to five experimental groups: control, model, and dexamethasone (2 mg/kg, orally) and naringin (5 mg/kg, 10 mg/kg, orally). Airway resistance (Raw) were measured, histological studies were evaluated by the hematoxylin and eosin (HE) staining, OVA-specific serum and BALF IgE levels and Th1/Th2 cytokines were evaluated by enzyme-linked immunosorbent assay (ELISA), and Th1/Th2 cells was evaluated by flow cytometry (FCM). T-bet and GABA3 in the lung were evaluated by Western blot. Our study demonstrated that naringin inhibited OVA-induced increases in Raw and eosinophil count; OVA-induced effects on interleukin (IL)-4 and INF-gamma levels were blunted with naringin administration. Histological studies demonstrated that naringin substantially inhibited OVA-induced eosinophilia in lung tissue and airway tissue. Flow cytometry studies demonstrated that naringin substantially inhibited Th2 cells and enhanced Th1 cells. Naringin substantially inhibited GABA3 and increased T-bet. These findings suggest that naringin may effectively ameliorate the progression of asthma and could be used as a therapy for patients with allergic asthma.

  16. Nonantibiotic macrolides restore airway macrophage phagocytic function with potential anti-inflammatory effects in chronic lung diseases

    PubMed Central

    Tran, Hai B.; Hamon, Rhys; Roscioli, Eugene; Hodge, Greg; Jersmann, Hubertus; Ween, Miranda; Reynolds, Paul N.; Yeung, Arthur; Treiberg, Jennifer; Wilbert, Sibylle

    2017-01-01

    We reported defective efferocytosis associated with cigarette smoking and/or airway inflammation in chronic lung diseases, including chronic obstructive pulmonary disease, severe asthma, and childhood bronchiectasis. We also showed defects in phagocytosis of nontypeable Haemophilus influenzae (NTHi), a common colonizer of the lower airway in these diseases. These defects could be substantially overcome with low-dose azithromycin; however, chronic use may induce bacterial resistance. The aim of the present study was therefore to investigate two novel macrolides—2′-desoxy-9-(S)-erythromycylamine (GS-459755) and azithromycin-based 2′-desoxy molecule (GS-560660)—with significantly diminished antibiotic activity against Staphylococcus aureus, Streptococcus pneumonia, Moraxella catarrhalis, and H. influenzae. We tested their effects on efferocytosis, phagocytosis of NTHi, cell viability, receptors involved in recognition of apoptotic cells and/or NTHi (flow cytometry), secreted and cleaved intracellular IL-1β (cytometric bead array, immunofluorescence/confocal microscopy), and nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) using primary alveolar macrophages and THP-1 macrophages ± 10% cigarette smoke extract. Dose-response experiments showed optimal prophagocytic effects of GS-459755 and GS-560660 at concentrations of 0.5–1 µg/ml compared with our findings with azithromycin. Both macrolides significantly improved phagocytosis of apoptotic cells and NTHi (e.g., increases in efferocytosis and phagocytosis of NTHi: GS-459755, 23 and 22.5%, P = 0.043; GS-560660, 23.5 and 22%, P = 0.043, respectively). Macrophage viability remained >85% following 24 h exposure to either macrolide at concentrations up to 20 µg/ml. Secreted and intracellular-cleaved IL-1β was decreased with both macrolides with no significant changes in recognition molecules c-mer proto-oncogene tyrosine kinase; scavenger receptor class A, member

  17. Nonantibiotic macrolides restore airway macrophage phagocytic function with potential anti-inflammatory effects in chronic lung diseases.

    PubMed

    Hodge, Sandra; Tran, Hai B; Hamon, Rhys; Roscioli, Eugene; Hodge, Greg; Jersmann, Hubertus; Ween, Miranda; Reynolds, Paul N; Yeung, Arthur; Treiberg, Jennifer; Wilbert, Sibylle

    2017-05-01

    We reported defective efferocytosis associated with cigarette smoking and/or airway inflammation in chronic lung diseases, including chronic obstructive pulmonary disease, severe asthma, and childhood bronchiectasis. We also showed defects in phagocytosis of nontypeable Haemophilus influenzae (NTHi), a common colonizer of the lower airway in these diseases. These defects could be substantially overcome with low-dose azithromycin; however, chronic use may induce bacterial resistance. The aim of the present study was therefore to investigate two novel macrolides-2'-desoxy-9-(S)-erythromycylamine (GS-459755) and azithromycin-based 2'-desoxy molecule (GS-560660)-with significantly diminished antibiotic activity against Staphylococcus aureus , Streptococcus pneumonia , Moraxella catarrhalis , and H. influenzae We tested their effects on efferocytosis, phagocytosis of NTHi, cell viability, receptors involved in recognition of apoptotic cells and/or NTHi (flow cytometry), secreted and cleaved intracellular IL-1β (cytometric bead array, immunofluorescence/confocal microscopy), and nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) using primary alveolar macrophages and THP-1 macrophages ± 10% cigarette smoke extract. Dose-response experiments showed optimal prophagocytic effects of GS-459755 and GS-560660 at concentrations of 0.5-1 µg/ml compared with our findings with azithromycin. Both macrolides significantly improved phagocytosis of apoptotic cells and NTHi (e.g., increases in efferocytosis and phagocytosis of NTHi: GS-459755, 23 and 22.5%, P = 0.043; GS-560660, 23.5 and 22%, P = 0.043, respectively). Macrophage viability remained >85% following 24 h exposure to either macrolide at concentrations up to 20 µg/ml. Secreted and intracellular-cleaved IL-1β was decreased with both macrolides with no significant changes in recognition molecules c-mer proto-oncogene tyrosine kinase; scavenger receptor class A, member 1; Toll

  18. Differentiated human airway organoids to assess infectivity of emerging influenza virus.

    PubMed

    Zhou, Jie; Li, Cun; Sachs, Norman; Chiu, Man Chun; Wong, Bosco Ho-Yin; Chu, Hin; Poon, Vincent Kwok-Man; Wang, Dong; Zhao, Xiaoyu; Wen, Lei; Song, Wenjun; Yuan, Shuofeng; Wong, Kenneth Kak-Yuen; Chan, Jasper Fuk-Woo; To, Kelvin Kai-Wang; Chen, Honglin; Clevers, Hans; Yuen, Kwok-Yung

    2018-06-26

    Novel reassortant avian influenza H7N9 virus and pandemic 2009 H1N1 (H1N1pdm) virus cause human infections, while avian H7N2 and swine H1N1 virus mainly infect birds and pigs, respectively. There is no robust in vitro model for assessing the infectivity of emerging viruses in humans. Based on a recently established method, we generated long-term expanding 3D human airway organoids which accommodate four types of airway epithelial cells: ciliated, goblet, club, and basal cells. We report differentiation conditions which increase ciliated cell numbers to a nearly physiological level with synchronously beating cilia readily discernible in every organoid. In addition, the differentiation conditions induce elevated levels of serine proteases, which are essential for productive infection of human influenza viruses and low-pathogenic avian influenza viruses. We also established improved 2D monolayer culture conditions for the differentiated airway organoids. To demonstrate the ability of differentiated airway organoids to identify human-infective virus, 3D and 2D differentiated airway organoids are applied to evaluate two pairs of viruses with known distinct infectivity in humans, H7N9/Ah versus H7N2 and H1N1pdm versus an H1N1 strain isolated from swine (H1N1sw). The human-infective H7N9/Ah virus replicated more robustly than the poorly human-infective H7N2 virus; the highly human-infective H1N1pdm virus replicated to a higher titer than the counterpart H1N1sw. Collectively, we developed differentiated human airway organoids which can morphologically and functionally simulate human airway epithelium. These differentiated airway organoids can be applied for rapid assessment of the infectivity of emerging respiratory viruses to human. Copyright © 2018 the Author(s). Published by PNAS.

  19. Novel therapeutic strategies for lung disorders associated with airway remodelling and fibrosis.

    PubMed

    Royce, Simon G; Moodley, Yuben; Samuel, Chrishan S

    2014-03-01

    Inflammatory cell infiltration, cytokine release, epithelial damage, airway/lung remodelling and fibrosis are central features of inflammatory lung disorders, which include asthma, chronic obstructive pulmonary disease, acute respiratory distress syndrome and idiopathic pulmonary fibrosis. Although the lung has some ability to repair itself from acute injury, in the presence of ongoing pathological stimuli and/or insults that lead to chronic disease, it no longer retains the capacity to heal, resulting in fibrosis, the final common pathway that causes an irreversible loss of lung function. Despite inflammation, genetic predisposition/factors, epithelial-mesenchymal transition and mechanotransduction being able to independently contribute to airway remodelling and fibrosis, current therapies for inflammatory lung diseases are limited by their ability to only target the inflammatory component of the disease without having any marked effects on remodelling (epithelial damage and fibrosis) that can cause lung dysfunction independently of inflammation. Furthermore, as subsets of patients suffering from these diseases are resistant to currently available therapies (such as corticosteroids), novel therapeutic approaches are required to combat all aspects of disease pathology. This review discusses emerging therapeutic approaches, such as trefoil factors, relaxin, histone deacetylase inhibitors and stem cells, amongst others that have been able to target airway inflammation and airway remodelling while improving related lung dysfunction. A better understanding of the mode of action of these therapies and their possible combined effects may lead to the identification of their clinical potential in the setting of lung disease, either as adjunct or alternative therapies to currently available treatments. © 2013.

  20. Scabies in the age of increasing drug resistance

    PubMed Central

    Khalil, Samar; Abbas, Ossama; Kibbi, Abdul Ghani; Kurban, Mazen

    2017-01-01

    Scabies is an infestation of the skin by the mite Sarcoptes scabiei. It manifests with pruritic erythematous papules and excoriations, in addition to the pathognomonic burrows. Multiple drugs can be used for treatment, but resistance to conventional therapy is increasing throughout the years. This paper will review the mechanisms of resistance proposed in the literature and some of the potential solutions to this problem. PMID:29190303

  1. Scabies in the age of increasing drug resistance.

    PubMed

    Khalil, Samar; Abbas, Ossama; Kibbi, Abdul Ghani; Kurban, Mazen

    2017-11-01

    Scabies is an infestation of the skin by the mite Sarcoptes scabiei. It manifests with pruritic erythematous papules and excoriations, in addition to the pathognomonic burrows. Multiple drugs can be used for treatment, but resistance to conventional therapy is increasing throughout the years. This paper will review the mechanisms of resistance proposed in the literature and some of the potential solutions to this problem.

  2. 21 CFR 868.2600 - Airway pressure monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Airway pressure monitor. 868.2600 Section 868.2600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2600 Airway pressure monitor. (a) Identification. An airway pressure monitor is a devic...

  3. Alterations in airway microbiota in patients with PaO2/FiO2 ...

    EPA Pesticide Factsheets

    BACKGROUND: Injury to the airways after smoke inhalation is a major mortality risk factor in victims of burn injuries, resulting in a 15-45% increase in patient deaths. Damage to the airways by smoke may induce acute respiratory distress syndrome (ARDS), which is partly characterized by hypoxemia in the airways. While ARDS has been associated with bacterial infection, the impact of hypoxemia on airway microbiota is unknown. Our objective was to identify differences in microbiota within the airways of burn patients who develop hypoxemia early after inhalation injury and those that do not using next-generation sequencing of bacterial 16S rRNA genes. RESULTS: DNA was extracted from therapeutic bronchial washings of 48 patients performed within 72 hours of hospitalization for burn and inhalation injury at the North Carolina Jaycee Burn Center. DNA was prepared for sequencing using a novel molecule tagging method and sequenced on the lllumina MiSeq platform. Bacterial species were identified using the MTToolbox pipeline. Patients with hypoxemia, as indicated by a Pa02/FiO2 ratio ≤ 300, had a 30% increase in abundance of Streptococcaceae and Enterobacteriaceae and 84% increase in Staphylococcaceae as compared to patients with a Pa02/Fi02 ratio > 300. Wilcoxon rank-sum test identified significant enrichment in abundance of OTUs identified as Prevotella melaninogenica (p = 0.042), Corynebacterium (p=0.037) and Mogibacterium (p=0.048). Linear discriminant effect s

  4. Disrupting actin-myosin-actin connectivity in airway smooth muscle as a treatment for asthma?

    PubMed

    Lavoie, Tera L; Dowell, Maria L; Lakser, Oren J; Gerthoffer, William T; Fredberg, Jeffrey J; Seow, Chun Y; Mitchell, Richard W; Solway, Julian

    2009-05-01

    Breathing is known to functionally antagonize bronchoconstriction caused by airway muscle contraction. During breathing, tidal lung inflation generates force fluctuations that are transmitted to the contracted airway muscle. In vitro, experimental application of force fluctuations to contracted airway smooth muscle strips causes them to relengthen. Such force fluctuation-induced relengthening (FFIR) likely represents the mechanism by which breathing antagonizes bronchoconstriction. Thus, understanding the mechanisms that regulate FFIR of contracted airway muscle could suggest novel therapeutic interventions to increase FFIR, and so to enhance the beneficial effects of breathing in suppressing bronchoconstriction. Here we propose that the connectivity between actin filaments in contracting airway myocytes is a key determinant of FFIR, and suggest that disrupting actin-myosin-actin connectivity by interfering with actin polymerization or with myosin polymerization merits further evaluation as a potential novel approach for preventing prolonged bronchoconstriction in asthma.

  5. Recurrent airway obstructions in a patient with benign tracheal stenosis and a silicone airway stent: a case report

    PubMed Central

    Sriram, KB; Robinson, PC

    2008-01-01

    Airway stents (silicone and metal stents) are used to treat patients with benign tracheal stenosis, who are symptomatic and in whom tracheal surgical reconstruction has failed or is not appropriate. However airway stents are often associated with complications such as migration, granuloma formation and mucous hypersecretion, which cause significant morbidity, especially in patients with benign tracheal stenosis and relatively normal life expectancy. We report a patient who had frequent critical airway obstructions over 8 years due to granuloma and mucus hypersecretion in a silicone airway stent. The problem was resolved when the silicone stent was removed and replaced with a covered self expanding metal stent. PMID:18840299

  6. Intranasal Administration of poly(I:C) and LPS in BALB/c Mice Induces Airway Hyperresponsiveness and Inflammation via Different Pathways

    PubMed Central

    Starkhammar, Magnus; Kumlien Georén, Susanna; Swedin, Linda; Dahlén, Sven-Erik; Adner, Mikael; Cardell, Lars Olaf

    2012-01-01

    Background Bacterial and viral infections are known to promote airway hyperresponsiveness (AHR) in asthmatic patients. The mechanism behind this reaction is poorly understood, but pattern recognizing Toll-like receptors (TLRs) have recently been suggested to play a role. Materials and Methods To explore the relation between infection-induced airway inflammation and the development of AHR, poly(I:C) activating TLR3 and LPS triggering TLR4, were chosen to represent viral and bacterial induced interactions, respectively. Female BALB/c or MyD88-deficient C57BL/6 mice were treated intranasally with either poly(I:C), LPS or PBS (vehicle for the control group), once a day, during 4 consecutive days. Results When methacholine challenge was performed on day 5, BALB/c mice responded with an increase in airway resistance. The maximal resistance was higher in the poly(I:C) and LPS treated groups than among the controls, indicating development of AHR in response to repeated TLR activation. The proportion of lymphocytes in broncheoalveolar lavage fluid (BALF) increased after poly(I:C) treatment whereas LPS enhanced the amount of neutrophils. A similar cellular pattern was seen in lung tissue. Analysis of 21 inflammatory mediators in BALF revealed that the TLR response was receptor-specific. MyD88-deficient C57BL/6 mice responded to poly (I:C) with an influx of lymphocytes, whereas LPS caused no inflammation. Conclusion In vivo activation of TLR3 and TLR4 in BALB/c mice both caused AHR in conjunction with a local inflammatory reaction. The AHR appeared to be identical regardless of which TLR that was activated, whereas the inflammation exhibited a receptor specific profile in terms of both recruited cells and inflammatory mediators. The inflammatory response caused by LPS appeared to be dependent on MyD88 pathway. Altogether the presented data indicate that the development of AHR and the induction of local inflammation might be the result of two parallel events, rather than one

  7. Effects of different antibiotic classes on airway bacteria in stable COPD using culture and molecular techniques: a randomised controlled trial

    PubMed Central

    Brill, Simon E; Law, Martin; El-Emir, Ethaar; Allinson, James P; James, Phillip; Maddox, Victoria; Donaldson, Gavin C; McHugh, Timothy D; Cookson, William O; Moffatt, Miriam F; Nazareth, Irwin; Hurst, John R; Calverley, Peter M A; Sweeting, Michael J; Wedzicha, Jadwiga A

    2015-01-01

    Background Long-term antibiotic therapy is used to prevent exacerbations of COPD but there is uncertainty over whether this reduces airway bacteria. The optimum antibiotic choice remains unknown. We conducted an exploratory trial in stable patients with COPD comparing three antibiotic regimens against placebo. Methods This was a single-centre, single-blind, randomised placebo-controlled trial. Patients aged ≥45 years with COPD, FEV1<80% predicted and chronic productive cough were randomised to receive either moxifloxacin 400 mg daily for 5 days every 4 weeks, doxycycline 100 mg/day, azithromycin 250 mg 3 times a week or one placebo tablet daily for 13 weeks. The primary outcome was the change in total cultured bacterial load in sputum from baseline; secondary outcomes included bacterial load by 16S quantitative PCR (qPCR), sputum inflammation and antibiotic resistance. Results 99 patients were randomised; 86 completed follow-up, were able to expectorate sputum and were analysed. After adjustment, there was a non-significant reduction in bacterial load of 0.42 log10 cfu/mL (95% CI −0.08 to 0.91, p=0.10) with moxifloxacin, 0.11 (−0.33 to 0.55, p=0.62) with doxycycline and 0.08 (−0.38 to 0.54, p=0.73) with azithromycin from placebo, respectively. There were also no significant changes in bacterial load measured by 16S qPCR or in airway inflammation. More treatment-related adverse events occurred with moxifloxacin. Of note, mean inhibitory concentrations of cultured isolates increased by at least three times over placebo in all treatment arms. Conclusions Total airway bacterial load did not decrease significantly after 3 months of antibiotic therapy. Large increases in antibiotic resistance were seen in all treatment groups and this has important implications for future studies. Trial registration number clinicaltrials.gov (NCT01398072). PMID:26179246

  8. Adoptive transfer of induced-Treg cells effectively attenuates murine airway allergic inflammation.

    PubMed

    Xu, Wei; Lan, Qin; Chen, Maogen; Chen, Hui; Zhu, Ning; Zhou, Xiaohui; Wang, Julie; Fan, Huimin; Yan, Chun-Song; Kuang, Jiu-Long; Warburton, David; Togbe, Dieudonnée; Ryffel, Bernhard; Zheng, Song-Guo; Shi, Wei

    2012-01-01

    Both nature and induced regulatory T (Treg) lymphocytes are potent regulators of autoimmune and allergic disorders. Defects in endogenous Treg cells have been reported in patients with allergic asthma, suggesting that disrupted Treg cell-mediated immunological regulation may play an important role in airway allergic inflammation. In order to determine whether adoptive transfer of induced Treg cells generated in vitro can be used as an effective therapeutic approach to suppress airway allergic inflammation, exogenously induced Treg cells were infused into ovalbumin-sensitized mice prior to or during intranasal ovalbumin challenge. The results showed that adoptive transfer of induced Treg cells prior to allergen challenge markedly reduced airway hyperresponsiveness, eosinophil recruitment, mucus hyper-production, airway remodeling, and IgE levels. This effect was associated with increase of Treg cells (CD4(+)FoxP3(+)) and decrease of dendritic cells in the draining lymph nodes, and with reduction of Th1, Th2, and Th17 cell response as compared to the controls. Moreover, adoptive transfer of induced Treg cells during allergen challenge also effectively attenuate airway inflammation and improve airway function, which are comparable to those by natural Treg cell infusion. Therefore, adoptive transfer of in vitro induced Treg cells may be a promising therapeutic approach to prevent and treat severe asthma.

  9. Adoptive Transfer of Induced-Treg Cells Effectively Attenuates Murine Airway Allergic Inflammation

    PubMed Central

    Chen, Maogen; Chen, Hui; Zhu, Ning; Zhou, Xiaohui; Wang, Julie; Fan, Huimin; Yan, Chun-Song; Kuang, Jiu-Long; Warburton, David; Togbe, Dieudonnée; Ryffel, Bernhard; Zheng, Song-Guo; Shi, Wei

    2012-01-01

    Both nature and induced regulatory T (Treg) lymphocytes are potent regulators of autoimmune and allergic disorders. Defects in endogenous Treg cells have been reported in patients with allergic asthma, suggesting that disrupted Treg cell-mediated immunological regulation may play an important role in airway allergic inflammation. In order to determine whether adoptive transfer of induced Treg cells generated in vitro can be used as an effective therapeutic approach to suppress airway allergic inflammation, exogenously induced Treg cells were infused into ovalbumin-sensitized mice prior to or during intranasal ovalbumin challenge. The results showed that adoptive transfer of induced Treg cells prior to allergen challenge markedly reduced airway hyperresponsiveness, eosinophil recruitment, mucus hyper-production, airway remodeling, and IgE levels. This effect was associated with increase of Treg cells (CD4+FoxP3+) and decrease of dendritic cells in the draining lymph nodes, and with reduction of Th1, Th2, and Th17 cell response as compared to the controls. Moreover, adoptive transfer of induced Treg cells during allergen challenge also effectively attenuate airway inflammation and improve airway function, which are comparable to those by natural Treg cell infusion. Therefore, adoptive transfer of in vitro induced Treg cells may be a promising therapeutic approach to prevent and treat severe asthma. PMID:22792275

  10. Vicks VapoRub induces mucin secretion, decreases ciliary beat frequency, and increases tracheal mucus transport in the ferret trachea.

    PubMed

    Abanses, Juan Carlos; Arima, Shinobu; Rubin, Bruce K

    2009-01-01

    Vicks VapoRub (VVR) [Proctor and Gamble; Cincinnati, OH] is often used to relieve symptoms of chest congestion. We cared for a toddler in whom severe respiratory distress developed after VVR was applied directly under her nose. We hypothesized that VVR induced inflammation and adversely affected mucociliary function, and tested this hypothesis in an animal model of airway inflammation. [1] Trachea specimens excised from 15 healthy ferrets were incubated in culture plates lined with 200 mg of VVR, and the mucin secretion was compared to those from controls without VVR. Tracheal mucociliary transport velocity (MCTV) was measured by timing the movement of 4 microL of mucus across the trachea. Ciliary beat frequency (CBF) was measured using video microscopy. [2] Anesthetized and intubated ferrets inhaled a placebo or VVR that was placed at the proximal end of the endotracheal tube. We evaluated both healthy ferrets and animals in which we first induced tracheal inflammation with bacterial endotoxin (a lipopolysaccharide [LPS]). Mucin secretion was measured using an enzyme-linked lectin assay, and lung water was measured by wet/dry weight ratios. [1] Mucin secretion was increased by 63% over the controls in the VVR in vitro group (p < 0.01). CBF was decreased by 35% (p < 0.05) in the VVR group. [2] Neither LPS nor VVR increased lung water, but LPS decreased MCTV in both normal airways (31%) and VVR-exposed airways (30%; p = 0.03), and VVR increased MCTV by 34% in LPS-inflamed airways (p = 0.002). VVR stimulates mucin secretion and MCTV in the LPS-inflamed ferret airway. This set of findings is similar to the acute inflammatory stimulation observed with exposure to irritants, and may lead to mucus obstruction of small airways and increased nasal resistance.

  11. Effect of Emphysema on CT Scan Measures of Airway Dimensions in Smokers

    PubMed Central

    Han, MeiLan K.; Come, Carolyn E.; San José Estépar, Raúl; Ross, James C.; Kim, Victor; Dransfield, Mark T.; Curran-Everett, Douglas; Schroeder, Joyce D.; Lynch, David A.; Tschirren, Juerg; Silverman, Edwin K.; Washko, George R.

    2013-01-01

    Background: In CT scans of smokers with COPD, the subsegmental airway wall area percent (WA%) is greater and more strongly correlated with FEV1 % predicted than WA% obtained in the segmental airways. Because emphysema is linked to loss of airway tethering and may limit airway expansion, increases in WA% may be related to emphysema and not solely to remodeling. We aimed to first determine whether the stronger association of subsegmental vs segmental WA% with FEV1 % predicted is mitigated by emphysema and, second, to assess the relationships among emphysema, WA%, and total bronchial area (TBA). Methods: We analyzed CT scan segmental and subsegmental WA% (WA% = 100 × wall area/TBA) of six bronchial paths and corresponding lobar emphysema, lung function, and clinical data in 983 smokers with COPD. Results: Compared with segmental WA%, the subsegmental WA% had a greater effect on FEV1% predicted (−0.8% to −1.7% vs −1.9% to −2.6% per 1-unit increase in WA%, respectively; P < .05 for most bronchial paths). After adjusting for emphysema, the association between subsegmental WA% and FEV1 % predicted was weakened in two bronchial paths. Increases in WA% between bronchial segments correlated directly with emphysema in all bronchial paths (P < .05). In multivariate regression models, emphysema was directly related to subsegmental WA% in most bronchial paths and inversely related to subsegmental TBA in all bronchial paths. Conclusion: The greater effect of subsegmental WA% on airflow obstruction is mitigated by emphysema. Part of the emphysema effect might be due to loss of airway tethering, leading to a reduction in TBA and an increase in WA%. Trial registry: ClinicalTrials.gov; No.: NCT00608764; URL: www.clinicaltrials.gov PMID:23460155

  12. Impact of System-Wide King LT Airway Implementation on Orotracheal Intubation.

    PubMed

    Hilton, Michael T; Wayne, Max; Martin-Gill, Christian

    2016-01-01

    Orotracheal intubation is a key component of prehospital airway management and success rates are dependent on procedural experience. Supraglottic airway devices are increasingly being used in the prehospital setting. As a result, paramedics may have fewer opportunities for performing intubation, limiting their proficiency in the procedure. We aimed to determine the trends in intubation versus supraglottic airway use over an 8 year period. We also aimed to determine the association between system-wide introduction of King LT guidelines and ETI success rates. We performed a retrospective observational study of 37 Emergency Medical Services (EMS) agencies in a 10 county region of Southwestern Pennsylvania. Cases between January 1, 2005 and December 31, 2012 were included if an advanced airway procedure was performed. We determined trends in advanced airway placement and compared the proportion of cases with first pass intubation success before and after the King LT was introduced and promoted by statewide protocol starting in 2007. Use of airway devices before and after King LT implementation were presented using descriptive statistics and compared using Pearson's Chi-square or Fishers Exact test as appropriate. We compared first pass success rate of orotracheal intubation between study periods using multivariable logistic regression, controlling for other factors that may impact success of orotracheal intubation (year, EMS agency, age category, traumatic injury, and cardiac arrest). There were 712 cases of orotracheal intubation before and 2,835 cases after introduction of the King LT. The proportion of cases ultimately managed with orotracheal intubation before and after 2007 decreased from 72.3% (95% CI 68.9-75.6%) to 67.1% (95% CI 65.3-68.8%) (p = 0.007). In the multivariable analysis, success of orotracheal intubation was not associated with implementation of the King LT airway (OR 1.02, 95% CI 0.74-1.41). Fewer patients with advanced airway management received

  13. SLC26A9-mediated chloride secretion prevents mucus obstruction in airway inflammation

    PubMed Central

    Anagnostopoulou, Pinelopi; Riederer, Brigitte; Duerr, Julia; Michel, Sven; Binia, Aristea; Agrawal, Raman; Liu, Xuemei; Kalitzki, Katrin; Xiao, Fang; Chen, Mingmin; Schatterny, Jolanthe; Hartmann, Dorothee; Thum, Thomas; Kabesch, Michael; Soleimani, Manoocher; Seidler, Ursula; Mall, Marcus A.

    2012-01-01

    Asthma is a chronic condition with unknown pathogenesis, and recent evidence suggests that enhanced airway epithelial chloride (Cl–) secretion plays a role in the disease. However, the molecular mechanism underlying Cl– secretion and its relevance in asthma pathophysiology remain unknown. To determine the role of the solute carrier family 26, member 9 (SLC26A9) Cl– channel in asthma, we induced Th2-mediated inflammation via IL-13 treatment in wild-type and Slc26a9-deficient mice and compared the effects on airway ion transport, morphology, and mucus content. We found that IL-13 treatment increased Cl– secretion in the airways of wild-type but not Slc26a9-deficient mice. While IL-13–induced mucus overproduction was similar in both strains, treated Slc26a9-deficient mice exhibited airway mucus obstruction, which did not occur in wild-type controls. In a study involving healthy children and asthmatics, a polymorphism in the 3′ UTR of SLC26A9 that reduced protein expression in vitro was associated with asthma. Our data demonstrate that the SLC26A9 Cl– channel is activated in airway inflammation and suggest that SLC26A9-mediated Cl– secretion is essential for preventing airway obstruction in allergic airway disease. These results indicate that SLC26A9 may serve as a therapeutic target for airway diseases associated with mucus plugging. PMID:22945630

  14. The effect of severe acute respiratory syndrome (SARS) on emergency airway management.

    PubMed

    Wong, Evelyn; Ho, Khoy Kheng

    2006-07-01

    From early March 2003 to late May 2003, severe acute respiratory syndrome (SARS) was detected in Singapore. The increase in workload and new infection control procedures were thought to affect resuscitation and airway management. Our aim was to study the effects of wearing of personal protective equipment (PPE) and powered air-purifying respirator (PAPR) and the restriction in the number of resuscitation personnel on airway management during the SARS crisis. Data was collected prospectively through an ongoing emergency airway registry. The data was divided into three periods: (1) before PPE was instituted from 1 November 2002 to 31 March 2003; (2) during SARS (when PPE use was mandatory) from 1 April to 31 July 2003; (3) post-SARs (when PPE use was non-mandatory but encouraged) from 1 August to 31 March 2004. There was no change in patient demographics during the three periods. There were significant increases in the proportion of resuscitation cases and airway interventions during the SARS period compared to the pre-SARS period. The resident medical officer intubation rate decreased from 45.1% pre-SARS to 35.2% during SARS and 17.7% post-SARS. The complication rates were 10.5%, 9.9% and 9.4% in periods 1-3, respectively. Restriction in the number of healthcare staff attending to each patient may have influenced the department's decision to allow only the most confident or experienced personnel to manage the airway. The exposure of junior medical officers in emergency airway management during SARS and the immediate post-SARS period was decreased. This trend should be monitored further and intervention may be necessary should it continue to decline.

  15. Biodiversity increases the resistance of ecosystem productivity to climate extremes

    NASA Astrophysics Data System (ADS)

    Isbell, Forest; Craven, Dylan; Connolly, John; Loreau, Michel; Schmid, Bernhard; Beierkuhnlein, Carl; Bezemer, T. Martijn; Bonin, Catherine; Bruelheide, Helge; de Luca, Enrica; Ebeling, Anne; Griffin, John N.; Guo, Qinfeng; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtěch; Manning, Pete; Meyer, Sebastian T.; Mori, Akira S.; Naeem, Shahid; Niklaus, Pascal A.; Polley, H. Wayne; Reich, Peter B.; Roscher, Christiane; Seabloom, Eric W.; Smith, Melinda D.; Thakur, Madhav P.; Tilman, David; Tracy, Benjamin F.; van der Putten, Wim H.; van Ruijven, Jasper; Weigelt, Alexandra; Weisser, Wolfgang W.; Wilsey, Brian; Eisenhauer, Nico

    2015-10-01

    It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16-32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.

  16. Biodiversity increases the resistance of ecosystem productivity to climate extremes.

    PubMed

    Isbell, Forest; Craven, Dylan; Connolly, John; Loreau, Michel; Schmid, Bernhard; Beierkuhnlein, Carl; Bezemer, T Martijn; Bonin, Catherine; Bruelheide, Helge; de Luca, Enrica; Ebeling, Anne; Griffin, John N; Guo, Qinfeng; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtěch; Manning, Pete; Meyer, Sebastian T; Mori, Akira S; Naeem, Shahid; Niklaus, Pascal A; Polley, H Wayne; Reich, Peter B; Roscher, Christiane; Seabloom, Eric W; Smith, Melinda D; Thakur, Madhav P; Tilman, David; Tracy, Benjamin F; van der Putten, Wim H; van Ruijven, Jasper; Weigelt, Alexandra; Weisser, Wolfgang W; Wilsey, Brian; Eisenhauer, Nico

    2015-10-22

    It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16-32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.

  17. Effects of continuous positive airway pressure on blood pressure in patients with resistant hypertension and obstructive sleep apnea: a systematic review and meta-analysis of six randomized controlled trials

    PubMed Central

    Lei, Qiang; Lv, Yunhui; Li, Kai; Ma, Lei; Du, Guodong; Xiang, Yan; Li, Xuqing

    2017-01-01

    ABSTRACT Objective: To evaluate systematically the effects of continuous positive airway pressure (CPAP) on blood pressure in patients with resistant hypertension and obstructive sleep apnea (OSA). Methods: The Cochrane Library, PubMed, ScienceDirect, and the Web of Science were searched for studies investigating the effects of CPAP on blood pressure in patients with resistant hypertension and OSA. The selected studies underwent quality assessment and meta-analysis, as well as being tested for heterogeneity. Results: Six randomized controlled trials were included in the meta-analysis. The pooled estimates of the changes in mean systolic blood pressure and mean diastolic blood pressure (as assessed by 24-h ambulatory blood pressure monitoring) were −5.40 mmHg (95% CI: −9.17 to −1.64; p = 0.001; I2 = 74%) and −3.86 mmHg (95% CI: −6.41 to −1.30; p = 0.00001; I2 = 79%), respectively. Conclusions: CPAP therapy can significantly reduce blood pressure in patients with resistant hypertension and OSA. PMID:28767770

  18. A Different Microbiome Gene Repertoire in the Airways of Cystic Fibrosis Patients with Severe Lung Disease

    PubMed Central

    Bacci, Giovanni; Fiscarelli, Ersilia; Taccetti, Giovanni; Dolce, Daniela; Paganin, Patrizia; Morelli, Patrizia; Tuccio, Vanessa; De Alessandri, Alessandra; Lucidi, Vincenzina

    2017-01-01

    In recent years, next-generation sequencing (NGS) was employed to decipher the structure and composition of the microbiota of the airways in cystic fibrosis (CF) patients. However, little is still known about the overall gene functions harbored by the resident microbial populations and which specific genes are associated with various stages of CF lung disease. In the present study, we aimed to identify the microbial gene repertoire of CF microbiota in twelve patients with severe and normal/mild lung disease by performing sputum shotgun metagenome sequencing. The abundance of metabolic pathways encoded by microbes inhabiting CF airways was reconstructed from the metagenome. We identified a set of metabolic pathways differently distributed in patients with different pulmonary function; namely, pathways related to bacterial chemotaxis and flagellar assembly, as well as genes encoding efflux-mediated antibiotic resistance mechanisms and virulence-related genes. The results indicated that the microbiome of CF patients with low pulmonary function is enriched in virulence-related genes and in genes encoding efflux-mediated antibiotic resistance mechanisms. Overall, the microbiome of severely affected adults with CF seems to encode different mechanisms for the facilitation of microbial colonization and persistence in the lung, consistent with the characteristics of multidrug-resistant microbial communities that are commonly observed in patients with severe lung disease. PMID:28758937

  19. Effect of Perinatal secondhand tobacco smoke exposure on in vivo and intrinsic airway structure/function in non-human primates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joad, Jesse P.; Kott, Kayleen S.; Bric, John M.

    Infants exposed to second hand smoke (SHS) experience more problems with wheezing. This study was designed to determine if perinatal SHS exposure increases intrinsic and/or in vivo airway responsiveness to methacholine and whether potential structural/cellular alterations in the airway might explain the change in responsiveness. Pregnant rhesus monkeys were exposed to filtered air (FA) or SHS (1 mg/m{sup 3} total suspended particulates) for 6 h/day, 5 days/week starting at 50 days gestational age. The mother/infant pairs continued the SHS exposures postnatally. At 3 months of age each infant: 1) had in vivo lung function measurements in response to inhaled methacholine,more » or 2) the right accessory lobe filled with agarose, precision-cut to 600 {mu}m slices, and bathed in increasing concentrations of methacholine. The lumenal area of the central airway was determined using videomicrometry followed by fixation and histology with morphometry. In vivo tests showed that perinatal SHS increases baseline respiratory rate and decreases responsiveness to methacholine. Perinatal SHS did not alter intrinsic airway responsiveness in the bronchi. However in respiratory bronchioles, SHS exposure increased airway responsiveness at lower methacholine concentrations but decreased it at higher concentrations. Perinatal SHS did not change eosinophil profiles, epithelial volume, smooth muscle volume, or mucin volume. However it did increase the number of alveolar attachments in bronchi and respiratory bronchioles. In general, as mucin increased, airway responsiveness decreased. We conclude that perinatal SHS exposure alters in vivo and intrinsic airway responsiveness, and alveolar attachments.« less

  20. Tube Law of the Pharyngeal Airway in Sleeping Patients with Obstructive Sleep Apnea.

    PubMed

    Genta, Pedro R; Edwards, Bradley A; Sands, Scott A; Owens, Robert L; Butler, James P; Loring, Stephen H; White, David P; Wellman, Andrew

    2016-02-01

    Obstructive sleep apnea (OSA) is characterized by repetitive pharyngeal collapse during sleep. However, the dynamics of pharyngeal narrowing and re-expansion during flow-limited breathing are not well described. The static pharyngeal tube law (end-expiratory area versus luminal pressure) has demonstrated increasing pharyngeal compliance as luminal pressure decreases, indicating that the airway would be sucked closed with sufficient inspiratory effort. On the contrary, the airway is rarely sucked closed during inspiratory flow limitation, suggesting that the airway is getting stiffer. Therefore, we hypothesized that during inspiratory flow limitation, as opposed to static conditions, the pharynx becomes stiffer as luminal pressure decreases. Upper airway endoscopy and simultaneous measurements of airflow and epiglottic pressure were performed during natural nonrapid eye movement sleep. Continuous positive (or negative) airway pressure was used to induce flow limitation. Flow-limited breaths were selected for airway cross-sectional area measurements. Relative airway area was quantified as a percentage of end-expiratory area. Inspiratory airway radial compliance was calculated at each quintile of epiglottic pressure versus airway area plot (tube law). Eighteen subjects (14 males) with OSA (apnea-hypopnea index = 57 ± 27 events/h), aged 49 ± 8 y, with a body mass index of 35 ± 6 kg/m(2) were studied. A total of 163 flow limited breaths were analyzed (9 ± 3 breaths per subject). Compliances at the fourth (2.0 ± 4.7 % area/cmH2O) and fifth (0.0 ± 1.7 % area/cmH2O) quintiles were significantly lower than the first (12.2 ± 5.5 % area/cmH2O) pressure quintile (P < 0.05). The pharyngeal tube law is concave (airway gets stiffer as luminal pressure decreases) during respiratory cycles under inspiratory flow limitation. © 2016 Associated Professional Sleep Societies, LLC.