Science.gov

Sample records for airway science program

  1. Careers in Airway Science.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    The Federal Aviation Administration (FAA) has initiated the Airway Science curriculum as a method of preparing the next generation of aviation technicians and managers. This document: (1) discusses the FAA's role in the Airway Science program; (2) describes some of the career fields that FAA offers to Airway Science graduates (air traffic control…

  2. Difficult Airway Response Team: A Novel Quality Improvement Program for Managing Hospital-Wide Airway Emergencies

    PubMed Central

    Mark, Lynette J.; Herzer, Kurt R.; Cover, Renee; Pandian, Vinciya; Bhatti, Nasir I.; Berkow, Lauren C.; Haut, Elliott R.; Hillel, Alexander T.; Miller, Christina R.; Feller-Kopman, David J.; Schiavi, Adam J.; Xie, Yanjun J.; Lim, Christine; Holzmueller, Christine; Ahmad, Mueen; Thomas, Pradeep; Flint, Paul W.; Mirski, Marek A.

    2015-01-01

    Background Difficult airway cases can quickly become emergencies, increasing the risk of life-threatening complications or death. Emergency airway management outside the operating room is particularly challenging. Methods We developed a quality improvement program—the Difficult Airway Response Team (DART)—to improve emergency airway management outside the operating room. DART was implemented by a team of anesthesiologists, otolaryngologists, trauma surgeons, emergency medicine physicians, and risk managers in 2005 at The Johns Hopkins Hospital in Baltimore, Maryland. The DART program had three core components: operations, safety, and education. The operations component focused on developing a multidisciplinary difficult airway response team, standardizing the emergency response process, and deploying difficult airway equipment carts throughout the hospital. The safety component focused on real-time monitoring of DART activations and learning from past DART events to continuously improve system-level performance. This objective entailed monitoring the paging system, reporting difficult airway events and DART activations to a web-based registry, and using in situ simulations to identify and mitigate defects in the emergency airway management process. The educational component included development of a multispecialty difficult airway curriculum encompassing case-based lectures, simulation, and team building/communication to ensure consistency of care. Educational materials were also developed for non-DART staff and patients to inform them about the needs of patients with difficult airways and ensure continuity of care with other providers after discharge. Results Between July 2008 and June 2013, DART managed 360 adult difficult airway events comprising 8% of all code activations. Predisposing patient factors included body mass index > 40, history of head and neck tumor, prior difficult intubation, cervical spine injury, airway edema, airway bleeding, and previous

  3. Airway Science Curriculum Demonstration Project: Summary of Initial Evaluation Findings

    DTIC Science & Technology

    1988-10-01

    DEMONSTRATION PROJECT: Or C988 SUMMARY OF INITIAL EVALUATION FINDINGS 8. Performn 9 Organ zaton Report No. 7. Author’ s$ Debora L. Clough 9...Airway Science project objectives for which data were available. Two limitations associated with the project evaluation at this time were described... EVALUATION FINDINGS INTRODUCTION The Airway Science Curriculum Demonstration Project was designed to investigate the effectiveness of an alternative approach

  4. ICASE Computer Science Program

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Institute for Computer Applications in Science and Engineering computer science program is discussed in outline form. Information is given on such topics as problem decomposition, algorithm development, programming languages, and parallel architectures.

  5. Waunakee's Summer Science Program.

    ERIC Educational Resources Information Center

    O'Neil, J. Peter

    1981-01-01

    Describes Waunakee Community School's six-week Summer Science Program for students entering the seventh grade. Students are selected for this science enrichment program on the basis of interest, ability, and maturity. Program content includes wetlands, forests, prairies, and animals, concluding with a camping trip. (DS)

  6. British Airways' pre-command training program

    NASA Technical Reports Server (NTRS)

    Holdstock, L. F. J.

    1980-01-01

    Classroom, flight simulator, and in-flight sessions of an airline pilot training program are briefly described. Factors discussed include initial command potential assessment, precommand airline management studies course, precommand course, and command course.

  7. NASA Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Frederick, Martin

    2006-01-01

    This presentation highlights the NASA Applied Sciences Program. The goal of the program is to extend the results of scientific research and knowledge beyond the science community to contribute to NASA's partners' applications of national priority, such as agricultural efficiency, energy management and Homeland Security. Another purpose of the program's scientific research is to increase knowledge of the Earth-Sun system to enable improved predictions of climate, weather, and natural hazards. The program primarily optimizes benefits for citizens by contributing to partnering on applications that are used by state, local and tribal governments.

  8. Basic Science Training Program.

    ERIC Educational Resources Information Center

    Brummel, Clete

    These six learning modules were developed for Lake Michigan College's Basic Science Training Program, a workshop to develop good study skills while reviewing basic science. The first module, which was designed to provide students with the necessary skills to study efficiently, covers the following topics: time management; an overview of a study…

  9. NASA Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Estes, Sue M.; Haynes, J. A.

    2009-01-01

    NASA's strategic Goals: a) Develop a balanced overall program of science, exploration, and aeronautics consistent with the redirection of human spaceflight program to focus on exploration. b) Study Earth from space to advance scientific understanding and meet societal needs. NASA's partnership efforts in global modeling and data assimilation over the next decade will shorten the distance from observations to answers for important, leading-edge science questions. NASA's Applied Sciences program will continue the Agency's efforts in benchmarking the assimilation of NASA research results into policy and management decision-support tools that are vital for the Nation's environment, economy, safety, and security. NASA also is working with NOAH and inter-agency forums to transition mature research capabilities to operational systems, primarily the polar and geostationary operational environmental satellites, and to utilize fully those assets for research purposes.

  10. The SNOLAB Science Program

    NASA Astrophysics Data System (ADS)

    Jillings, Chris

    2016-05-01

    SNOLAB has a rich and varied program in underground science. This report discusses the work in neutrino physics, direct dark-matter search, biology, and mining engineering. SNOLAB has recently implemented a new process for allocation of lab resources, including space allocation. This will be discussed.

  11. NASA's Microgravity Science Program

    NASA Technical Reports Server (NTRS)

    Salzman, Jack A.

    1994-01-01

    Since the late 1980s, the NASA Microgravity Science Program has implemented a systematic effort to expand microgravity research. In 1992, 114 new investigators were selected to enter the program and more US microgravity experiments were conducted in space than in all the years combined since Skylab (1973-74). The use of NASA Research Announcements (NRA's) to solicit research proposals has proven to be highly successful in building a strong base of high-quality peer-reviewed science in both the ground-based and flight experiment elements of the program. The ground-based part of the program provides facilities for low gravity experiments including drop towers and aircraft for making parabolic flights. Program policy is that investigations should not proceed to the flight phase until all ground-based investigative capabilities have been exhausted. In the space experiments program, the greatest increase in flight opportunities has been achieved through dedicated or primary payload Shuttle missions. These missions will continue to be augmented by both mid-deck and GAS-Can accommodated experiments. A US-Russian cooperative flight program envisioned for 1995-97 will provide opportunities for more microgravity research as well as technology demonstration and systems validation efforts important for preparing for experiment operations on the Space Station.

  12. Rural Science Education Program

    SciTech Connect

    Intress, C.

    1994-12-31

    The Rural Science Education Project is an outreach program of the New Mexico Museum of Natural History and Science with the goal of helping rural elementary schools improve science teaching and learning by using local natural environmental resources. This program is based on the assumption that rural schools, so often described as disadvantaged in terms of curricular resources, actually provide a science teaching advantage because of their locale. The natural environment of mountains, forests, ponds, desert, or fields offers a context for the study of scientific concepts and skills that appeals to many youngsters. To tap these resources, teachers need access to knowledge about the rural school locality`s natural history. Through a process of active participation in school-based workshops and field site studies, teachers observe and learn about the native flora, fauna, geology, and paleontology of their community. In addition, they are exposed to instructional strategies, activities, and provided with materials which foster experimential learning. This school-museum partnership, now in its fifth year, has aided more than 800 rural teachers` on-going professional development. These educators have, in turn, enhanced science education throughout New Mexico for more than 25,000 students.

  13. Nevada Underserved Science Education Program

    SciTech Connect

    Nicole Rourke; Jason Marcks

    2004-07-06

    Nevada Underserved Science Education Program (NUSEP) is a project to examine the effect of implementing new and innovative Earth and space science education curriculum in Nevada schools. The project provided professional development opportunities and educational materials for teachers participating in the program.

  14. Student science enrichment training program

    SciTech Connect

    Sandhu, S.S.

    1994-08-01

    This is a report on the Student Science Enrichment Training Program, with special emphasis on chemical and computer science fields. The residential summer session was held at the campus of Claflin College, Orangeburg, SC, for six weeks during 1993 summer, to run concomitantly with the college`s summer school. Fifty participants selected for this program, included high school sophomores, juniors and seniors. The students came from rural South Carolina and adjoining states which, presently, have limited science and computer science facilities. The program focused on high ability minority students, with high potential for science engineering and mathematical careers. The major objective was to increase the pool of well qualified college entering minority students who would elect to go into science, engineering and mathematical careers. The Division of Natural Sciences and Mathematics and engineering at Claflin College received major benefits from this program as it helped them to expand the Departments of Chemistry, Engineering, Mathematics and Computer Science as a result of additional enrollment. It also established an expanded pool of well qualified minority science and mathematics graduates, which were recruited by the federal agencies and private corporations, visiting Claflin College Campus. Department of Energy`s relationship with Claflin College increased the public awareness of energy related job opportunities in the public and private sectors.

  15. NASA Applied Sciences Program Intro

    NASA Video Gallery

    NASA Earth Science has a program that helps government agencies and non-profit organizations use Earth observations to inform decision-making and develop practical solutions to real-world problems ...

  16. NASA's Microgravity Science Research Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The ongoing challenge faced by NASA's Microgravity Science Research Program is to work with the scientific and engineering communities to secure the maximum return from our Nation's investments by: assuring that the best possible science emerges from the science community for microgravity investigations; ensuring the maximum scientific return from each investigation in the most timely and cost-effective manner; and enhancing the distribution of data and applications of results acquired through completed investigations to maximize their benefits.

  17. Summer Science Camps Program (SSC).

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Directorate for Education and Human Resources.

    The Summer Science Camps (SSC) Program supports residential and commuter enrichment projects for seventh through ninth grade minority students who are underrepresented in science, engineering, and mathematics. Eligible organizations include school districts, museums, colleges, universities, and nonprofit youth-centered and/or community-based…

  18. Cooperative Program In Space Science

    NASA Technical Reports Server (NTRS)

    Black, David

    2003-01-01

    The mission of this activity, know as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, USRA recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members.

  19. National Science Foundation Programs.

    ERIC Educational Resources Information Center

    Curtis, Kent K.

    Established by Congressional Act in 1950, the National Science Foundation (NSF) is charged with a variety of responsibilities in the areas of education, research, applications of research, data gathering, and information dissemination. The foundation is governed by an appointed director and a national board and is primarily funded by the federal…

  20. Science Scholars Program

    DTIC Science & Technology

    1994-06-30

    elegantly, if at all. 2. Valuable time to write. Many Science Scholars have juggled the heavy demands of teaching , administrative work and research...undergraduate college (Wellesley), where the teaching is combined with a heavy workload of both advising and administrative duties. Rose, however, adds...1991-1993 Postdoctoral Research Fellow, Harvard University. 1985-1989 Research and Teaching Assistant, Princeton University. 1984-1985 Research and

  1. Comparative Guide to Science and Engineering Programs.

    ERIC Educational Resources Information Center

    Cass, James; Birnbaum, Max

    Comparative information about individual departments and programs in colleges and universities is presented for the biological sciences, chemistry, earth sciences, engineering, general science, mathematical sciences, physics, and astronomy. Institutions are listed alphabetically within the seven major fields. Department information includes…

  2. NASA's computer science research program

    NASA Technical Reports Server (NTRS)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  3. Environmental Management Science Program Workshop

    SciTech Connect

    1998-07-01

    This program summary book is a compendium of project summaries submitted by principal investigators in the Environmental Management Science Program and Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program). These summaries provide information about the most recent project activities and accomplishments. All projects will be represented at the workshop poster sessions, so you will have an opportunity to meet with the researchers. The projects will be presented in the same order at the poster session as they are presented in this summary book. Detailed questions about an individual project may be directed to the investigators involved.

  4. Shenandoah elementary science enrichment program

    SciTech Connect

    Garrett, P.

    1994-12-31

    Shenandoah Elementary School is a rural educational facility located in the farmlands of Indiana. The Elementary Science Enrichment Program was established to create a learning atmosphere that encourages scientific thinking and problem-solving. Its inception was founded on the belief that the concepts and process skills inherent in the teaching of science are critical to the early intellectual development of elementary students. The program was established through speaking engagements at the local and state level which resulted in the necessary support to insure its continuation. All students in grades K-5 meet for weekly science activities in our elementary lab to investigate many exciting curricular areas including planaria regeneration, star life cycles, and acid rain telecommunications. This allows for in-depth exploration of the science process skills which culminate in a variety of products including student portfolios, hands-on assessments, simulations and global data communications. These activities are extended through family science and the modeling of science instructional techniques for classroom educators.

  5. Science in action: An interdisciplinary science education program

    NASA Technical Reports Server (NTRS)

    Horton, Linda L.

    1992-01-01

    Science in Action is an education outreach program for pre-collegiate students. It is based on the concept that, in order to interest students in science, they must see science and scientists at work. The program encompasses the full range of scientific disciplines - the core sciences, engineering, and mathematics. A unique aspect of the program is the involvement and support of scientists and engineers representing local professional societies, industries, business, and academic institutions. An outline of the program is given.

  6. Functional Programming in Computer Science

    SciTech Connect

    Anderson, Loren James; Davis, Marion Kei

    2016-01-19

    We explore functional programming through a 16-week internship at Los Alamos National Laboratory. Functional programming is a branch of computer science that has exploded in popularity over the past decade due to its high-level syntax, ease of parallelization, and abundant applications. First, we summarize functional programming by listing the advantages of functional programming languages over the usual imperative languages, and we introduce the concept of parsing. Second, we discuss the importance of lambda calculus in the theory of functional programming. Lambda calculus was invented by Alonzo Church in the 1930s to formalize the concept of effective computability, and every functional language is essentially some implementation of lambda calculus. Finally, we display the lasting products of the internship: additions to a compiler and runtime system for the pure functional language STG, including both a set of tests that indicate the validity of updates to the compiler and a compiler pass that checks for illegal instances of duplicate names.

  7. Science CAP: Curriculum Assistance Program. [Multimedia.

    ERIC Educational Resources Information Center

    DEMCO, Inc., Madison, WI.

    Science Curriculum Assistance Program (Science CAP(TM)) is a multimedia package developed to create a model for preserving classroom science activities that can be shared and customized by teachers. This program is designed to assist teachers in preparing classroom science activities for grades five through eight, and to foster an environment of…

  8. The Science Ambassador Program: Partnering Scientists with Science Teachers

    ERIC Educational Resources Information Center

    Hamner, Heather C.; Flores, Alina L.; Prue, Christine E.; Mersereau, Patricia

    2008-01-01

    This article focuses on the development and implementation of the Science Ambassador (SA) Program, which targets adolescents by working directly with science teachers who write and implement lesson plans that feature public health topics. The main goals of the program are to develop science lesson plans on public health topics, expose adolescents…

  9. Images of Science and Scientists on Children's Educational Science Programs.

    ERIC Educational Resources Information Center

    Long, Marilee; Steinke, Jocelyn

    A qualitative study analyzed images of science and scientists in children's educational science programs on television to determine whether they conveyed the images found in other media. Four episodes of each of four 30-minute, non-animated programs ("Beakman's World" broadcast on CBS, "Bill Nye, The Science Guy" shown on…

  10. NASA's Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1998-01-01

    Materials Science research programs are funded by NASA through the Microgravity Research Division. Such programs are normally designated as flight definition or ground based and can be awarded initially for up to four years. Selection is through a peer review process in response to a biennial NASA Research Announcement (NRA). The next announcement is due in November 1998 with proposals due in March 1999. Topics of special interest to NASA are described in the guidelines for proposal writing within the NRA. NASA's interest in materials is wide and covers a range which includes metals and alloys, ceramics, glasses, polymers, non-linear optics, aerogels and nanostructures. With increasing interest in the Human Exploration and Development of Space (HEDS) program, the materials research funded will not be exclusively devoted to processes dependent on microgravity, but will also support materials of strategic interest in meeting NASA's long range plans of interplanetary travel.

  11. A Microcomputer-Based Computer Science Program.

    ERIC Educational Resources Information Center

    Compeau, Larry D.

    1984-01-01

    Examines the use of the microcomputer in computer science programs as an alternative to time-sharing computers at North Country Community College. Discusses factors contributing to the program's success, security problems, outside application possibilities, and program implementation concerns. (DMM)

  12. NASA's Current Earth Science Program

    NASA Technical Reports Server (NTRS)

    Charles, Leslie Bermann

    1998-01-01

    NASA's Earth science program is a scientific endeavor whose goal is to provide long-term understanding of the Earth as an integrated system of land, water, air and life. A highly developed scientific knowledge of the Earth system is necessary to understand how the environment affects humanity, and how humanity may be affecting the environment. The remote sensing technologies used to gather the global environmental data used in such research also have numerous practical applications. Current applications of remote sensing data demonstrate their practical benefits in areas such as the monitoring of crop conditions and yields, natural disasters and forest fires; hazardous waste clean up; and tracking of vector-borne diseases. The long-term availability of environmental data is essential for the continuity of important research and applications efforts. NASA's Earth observation program has undergone many changes in the recent past.

  13. Accreditation standards for undergraduate forensic science programs

    NASA Astrophysics Data System (ADS)

    Miller, Marilyn Tebbs

    Undergraduate forensic science programs are experiencing unprecedented growth in numbers of programs offered and, as a result, student enrollments are increasing. Currently, however, these programs are not subject to professional specialized accreditation. This study sought to identify desirable student outcome measures for undergraduate forensic science programs that should be incorporated into such an accreditation process. To determine desirable student outcomes, three types of data were collected and analyzed. All the existing undergraduate forensic science programs in the United States were examined with regard to the input measures of degree requirements and curriculum content, and for the output measures of mission statements and student competencies. Accreditation procedures and guidelines for three other science-based disciplines, computer science, dietetics, and nursing, were examined to provide guidance on accreditation processes for forensic science education programs. Expert opinion on outcomes for program graduates was solicited from the major stakeholders of undergraduate forensic science programs-forensic science educators, crime laboratory directors, and recent graduates. Opinions were gathered by using a structured Internet-based survey; the total response rate was 48%. Examination of the existing undergraduate forensic science programs revealed that these programs do not use outcome measures. Of the accreditation processes for other science-based programs, nursing education provided the best model for forensic science education, due primarily to the balance between the generality and the specificity of the outcome measures. From the analysis of the questionnaire data, preliminary student outcomes, both general and discipline-specific, suitable for use in the accreditation of undergraduate forensic science programs were determined. The preliminary results were reviewed by a panel of experts and, based on their recommendations, the outcomes

  14. Implementing an Applied Science Program

    NASA Technical Reports Server (NTRS)

    Rickman, Doug; Presson, Joan

    2007-01-01

    The work implied in the NASA Applied Science Program requires a delicate balancing act for the those doing it. At the implementation level there are multiple tensions intrinsic to the program. For example each application of an existing product to a decision support process requires deep knowledge about the data and deep knowledge about the decision making process. It is highly probable no one person has this range of knowledge. Otherwise the decision making process would already be using the data. Therefore, a team is required. But building a team usually requires time, especially across agencies. Yet the program mandates efforts of relatively short duration. Further, those who know the data are scientists, which makes them essential to the program. But scientists are evaluated on their publication record. Anything which diverts a scientist from the research for his next publication is an anathema to him and potential death to their career. Trying to get another agency to use NASA data does not strike most scientists as material inherently suitable for publication. Also, NASA wishes to rapidly implement often substantial changes to another agency's process. For many reasons, such as budget and program constraints, speed is important. But the owner of a decision making process is tightly constrained, usually by law, regulation, organization and custom. Changes when made are slow, cautious, even hesitant, and always done according a process specific to the situation. To manage this work MSFC must balance these and other tensions. Some things we have relatively little control over, such as budget. These we try to handle by structural techniques. For example by insisting all of our people work on multiple projects simultaneously we inherently have diversification of funding for all of our people. In many cases we explicitly use some elements of tension to be productive. For example the need for the scientists to constantly publish is motivation to keep tasks short and

  15. FWP executive summaries: Basic energy sciences materials sciences programs

    SciTech Connect

    Samara, G.A.

    1996-02-01

    This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

  16. NABS Program: (Native Americans in Biological Science).

    ERIC Educational Resources Information Center

    Gettys, Nancy, Comp.

    1994-01-01

    Describes the four-week summer program of the Native Americans in Biological Sciences Program that engages Native American eighth- and ninth-grade students in studying the problems related to the waste water treatment plant in Cushing, Oklahoma. (MDH)

  17. Mature cystic fibrosis airway neutrophils suppress T cell function: evidence for a role of arginase 1 but not programmed death-ligand 1.

    PubMed

    Ingersoll, Sarah A; Laval, Julie; Forrest, Osric A; Preininger, Marcela; Brown, Milton R; Arafat, Dalia; Gibson, Greg; Tangpricha, Vin; Tirouvanziam, Rabindra

    2015-06-01

    Bacteria colonize cystic fibrosis (CF) airways, and although T cells with appropriate Ag specificity are present in draining lymph nodes, they are conspicuously absent from the lumen. To account for this absence, we hypothesized that polymorphonuclear neutrophils (PMNs), recruited massively into the CF airway lumen and actively exocytosing primary granules, also suppress T cell function therein. Programmed death-ligand 1 (PD-L1), which exerts T cell suppression at a late step, was expressed bimodally on CF airway PMNs, delineating PD-L1(hi) and PD-L1(lo) subsets, whereas healthy control (HC) airway PMNs were uniformly PD-L1(hi). Blood PMNs incubated in CF airway fluid lost PD-L1 over time; in coculture, Ab blockade of PD-L1 failed to inhibit the suppression of T cell proliferation by CF airway PMNs. In contrast with PD-L1, arginase 1 (Arg1), which exerts T cell suppression at an early step, was uniformly high on CF and HC airway PMNs. However, arginase activity was high in CF airway fluid and minimal in HC airway fluid, consistent with the fact that Arg1 activation requires primary granule exocytosis, which occurs in CF, but not HC, airway PMNs. In addition, Arg1 expression on CF airway PMNs correlated negatively with lung function and positively with arginase activity in CF airway fluid. Finally, combined treatment with arginase inhibitor and arginine rescued the suppression of T cell proliferation by CF airway fluid. Thus, Arg1 and PD-L1 are dynamically modulated upon PMN migration into human airways, and, Arg1, but not PD-L1, contributes to early PMN-driven T cell suppression in CF, likely hampering resolution of infection and inflammation.

  18. MATURE CYSTIC FIBROSIS AIRWAY NEUTROPHILS SUPPRESS T-CELL FUNCTION: EVIDENCE FOR A ROLE OF ARGINASE 1, BUT NOT PROGRAMMED DEATH-LIGAND 1

    PubMed Central

    Ingersoll, Sarah A.; Laval, Julie; Forrest, Osric A.; Preininger, Marcela; Brown, Milton R.; Arafat, Dalia; Gibson, Greg; Tangpricha, Vin; Tirouvanziam, Rabindra

    2015-01-01

    Bacteria colonize cystic fibrosis (CF) airways, and while T cells with appropriate antigen specificity are present in draining lymph nodes, they are conspicuously absent from the lumen. To account for this absence, we hypothesized that polymorphonuclear neutrophils (PMNs), recruited massively into the CF airway lumen and actively exocytosing primary granules, also suppress T-cell function therein. Programmed Death-Ligand 1 (PD-L1), which exerts T-cell suppression at a late step, was expressed bimodally on CF airway PMNs, delineating PD-L1hi and PD-L1lo subsets, while healthy control (HC) airway PMNs were uniformly PD-L1hi. Blood PMNs incubated in CF airway fluid lost PD-L1 over time, and in coculture, antibody blockade of PD-L1 failed to inhibit the suppression of T-cell proliferation by CF airway PMNs. In contrast with PD-L1, arginase 1 (Arg1), which exerts T-cell suppression at an early step, was uniformly high on CF and HC airway PMNs. However, arginase activity was high in CF airway fluid and minimal in HC airway fluid, consistent with the fact that Arg1 activation requires primary granule exocytosis, which occurs in CF, but not HC, airway PMNs. In addition, Arg1 expression on CF airway PMNs correlated negatively with lung function and positively with arginase activity in CF airway fluid. Finally, combined treatment with arginase inhibitor and arginine rescued the suppression of T-cell proliferation by CF airway fluid. Thus, Arg1 and PD-L1 are dynamically modulated upon PMN migration into human airways, and, Arg1, but not PD-L1, contributes to early PMN-driven T-cell suppression in CF, likely hampering resolution of infection and inflammation. PMID:25926674

  19. The NASA computer science research program plan

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A taxonomy of computer science is included, one state of the art of each of the major computer science categories is summarized. A functional breakdown of NASA programs under Aeronautics R and D, space R and T, and institutional support is also included. These areas were assessed against the computer science categories. Concurrent processing, highly reliable computing, and information management are identified.

  20. Program in Science, Technology, and Society.

    ERIC Educational Resources Information Center

    Massachusetts Inst. of Tech., Cambridge.

    The Program in Science, Technology, and Society at the Massachusetts Institute of Technology is described. Two broad aims of the program are to explore the influence of social, political, and cultural forces on science and technology, and to examine the impact of technologies and scientific ideas on people's lives. Although based in the School of…

  1. How One Computer Science Program Grew.

    ERIC Educational Resources Information Center

    Adams, James C.

    1983-01-01

    Describes growth of computer science program in Chetek Junior High School (Wisconsin), from having a single DecWriter II terminal to 14 microprocessors, electronic training devices, and a sequence of computer science courses. Students learn about basic computer literacy, hardware, software, programing, and computer technology. (EAO)

  2. Out of School Programs in Science.

    ERIC Educational Resources Information Center

    Stern, Virginia W., Comp.; And Others

    Science programs which take place outside the traditional classroom and beyond the usual school hours are listed. The programs (designed for all ages and educational levels and scheduled after school, on Saturdays, evenings, and during summer months) are offered in multidisciplinary science centers located in larger cities, small town museums,…

  3. The Rural Girls in Science Program

    ERIC Educational Resources Information Center

    Ginorio, Angela B.; Fournier, Janice; Frevert, Katie

    2004-01-01

    The rural girls in science program presented a comprehensive model of the entire scientific process. National Science Foundation funded a program, which targeted girls in rural schools serving American Indian or Latina, who are less fortunate than American students of Washington State.

  4. New Directions in NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Recently, NASA's Microgravity Research Division was re-aligned to match the Agency's increasing awareness of the importance of biological and nano-structural sciences. The Division has become the Physical Sciences Research section within the newly created Office of Biological and Physical Research. Within materials science and in the last few years, new programs aimed at biomaterials have been initiated. Results from these programs and also new research pertaining to materials for radiation protection will be discussed.

  5. Life sciences flight experiments program - Overview

    NASA Technical Reports Server (NTRS)

    Berry, W. E.; Dant, C. C.

    1981-01-01

    The considered LSFE program focuses on Spacelab life sciences missions planned for the 1984-1985 time frame. Life Sciences Spacelab payloads, launched at approximately 18-months intervals, will enable scientists to test hypotheses from such disciplines as vestibular physiology, developmental biology, biochemistry, cell biology, plant physiology, and a variety of other life sciences. An overview is presented of the LSFE program that will take advantage of the unique opportunities for biological experimentation possible on Spacelab. Program structure, schedules, and status are considered along with questions of program selection, and the science investigator working groups. A description is presented of the life sciences laboratory equipment program, taking into account the general purpose work station, the research animal holding facility, and the plant growth unit.

  6. Science in Action'': An interdisciplinary science education program

    SciTech Connect

    Horton, L.L.

    1991-01-01

    Science in Action is an education outreach program for pre-collegiate students. It is based on the concept that, in order to interest students in science, they must see science and scientists at work. The program encompasses the full range of scientific disciplines -- the core sciences, engineering and mathematics. A unique aspect of the program is the involvement and support of scientists and engineers representing local professional societies, industries, businesses, and academic institutions. The goal of the presentations is to be highly interactive. The students have some hands on'' experiences and leave with a good feeling about science and engineering. To present a broad spectrum of role models, scientists and engineers were involved as presenters, guides, and exhibitors.

  7. Grant Reports, Office of Intergovernmental Science Programs, National Science Foundation.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Office of Intergovernmental Science Programs.

    A total of 85 intergovernmental science programs sponsored by the National Science Foundation between 1969 and 1972 is listed in this report issued in April, 1972. Included in the entries are the titles, grant numbers, National Technical Information Service (NTIS) accession numbers, and the names of states, principal investigators, and…

  8. NASA Microgravity Combustion Science Program

    NASA Technical Reports Server (NTRS)

    King, Merrill K.

    1999-01-01

    Combustion has been a subject of increasingly vigorous scientific research for over a century, not surprising considering that combustion accounts for approximately 85% of the world's energy production and is a key element of many critical technologies used by contemporary society. Although combustion technology is vital to our standard of living, it also poses great challenges to maintaining a habitable environment. A major goal of combustion research is production of fundamental (foundational) knowledge that can be used in developing accurate simulations of complex combustion processes, replacing current "cut-and-try" approaches and allowing developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion. With full understanding of the physics and chemistry involved in a given combustion process, including details of the unit processes and their interactions, physically accurate models which can then be used for parametric exploration of new combustion domains via computer simulation can be developed, with possible resultant definition of radically different approaches to accomplishment of various combustion goals. Effects of gravitational forces on earth impede combustion studies more than they impede most other areas of science. The effects of buoyancy are so ubiquitous that we often do not appreciate the enormous negative impact that they have had on the rational development of combustion science. Microgravity offers potential for major gains in combustion science understanding in that it offers unique capability to establish the flow environment rather than having it dominated by uncontrollable (under normal gravity) buoyancy effects and, through this control, to extend the range of test conditions that can be studied. It cannot be emphasized too strongly that our program is dedicated to taking advantage of microgravity to untangle complications caused

  9. NASA's Space Science Programming Possibilities for Planetaria

    NASA Technical Reports Server (NTRS)

    Adams, M. L.

    2003-01-01

    The relationship between NASA and the planetarium community is an important one. Indeed, NASA's Office of Space Science has invested in a study of the Space Science Media Needs of Science Center Professionals. Some of the findings indicate a need for exposure to space science researchers, workshops for museum educators, 'canned' programs, and access to a speakers bureau. We will discuss some of the programs of NASA's Sun-Earth Connection Education Forum, distribute sample multimedia products, explain the role of NASA's Educator Resource Center, and review our contributions to NASA's Education and Public Outreach effort.

  10. NASA Microgravity Science and Applications Program

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Key elements of the microgravity research program as conducted by the Microgravity Science and Applications Division (MSAD) within the Office of Space Science and Applications (OSSA) during fiscal year (FY) 1992 are described. This NASA funded program supported investigators from the university, industry, and government research communities. The program's goals, the approach taken to achieve those goals, and the resources that were available are summarized. It provides a 'snapshot' of the Program's status at the end of FY 1992 and reviews highlights and progress in the ground and flight-based research during the year. It also describes four major space missions that flew during FY 1992, the advanced technology development (ATD) activities, and the plans to use the research potential of Space Station Freedom and other advanced carriers. The MSAD program structure encompassed five research areas: (1) Biotechnology, (2) Combustion Science, (3) Fluid Physics, (4) Materials Science, and (5) Benchmark Physics.

  11. GLOBE: A Science/Education Partnership Program.

    ERIC Educational Resources Information Center

    Murphy, Anthony P.; Coppola, Ralph K.

    This paper reviews the history of the GLOBE (Global Learning and Observations to Benefit the Environment) Program, an international environmental science education program. The goals of the program are to: enhance the environmental awareness of individuals around the world; contribute to the scientific understanding of the earth; and to help all…

  12. Developing Gifted Programs in Science.

    ERIC Educational Resources Information Center

    Consuegra, Gerard F.

    The paper explores the needs of gifted students with exceptional interests and talents in science. General characteristics of gifted students are listed, as are characteristics of the gifted in science (including questing, personal drive, and an enjoyment of numbers). A multidimensional gifted identification process is reviewed, and the lack of…

  13. Elementary Science. Primary Program Guide.

    ERIC Educational Resources Information Center

    Northwest Territories Dept. of Education, Yellowknife.

    As the world becomes more complex and the rate of change increases, Canadian students need more and better science education increases, Canadian students need more and better science education to prepare them for the future. This book provides a framework for building scientific concepts and developing the learning of process skills for grades 1…

  14. Materials sciences programs, Fiscal year 1997

    SciTech Connect

    1998-10-01

    The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

  15. Life Sciences Program Tasks and Bibliography

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1995. Additionally, this inaugural edition of the Task Book includes information for FY 1994 programs. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web page

  16. Cognitive and Neural Sciences Division 1990 Programs.

    ERIC Educational Resources Information Center

    Vaughan, Willard S., Jr., Ed.

    Research and development efforts carried out under sponsorship of the Cognitive and Neural Sciences Division of the Office of Naval Research during fiscal year 1990 are described in this compilation of project description summaries. The Division's research is organized in three types of programs: (1) Cognitive Science (the human learner--cognitive…

  17. The University of Alabama's Integrated Science Program.

    ERIC Educational Resources Information Center

    Rainey, Larry; Mitrook, Kim

    This program, supported by the Center for Communication and Educational Technology at the University of Alabama, incorporates the perspectives of biology, earth/space science, chemistry, and physics into an innovative science curriculum for the middle grades. Students are engaged for 20 minutes 3 times a week by an on-air instructor who is doing…

  18. Math and Science Model Programs Manual.

    ERIC Educational Resources Information Center

    Sawyer, Donna, Comp.; And Others

    This implementation manual has been developed to describe four model mathematics and science programs designed to increase African-American students' interest in mathematics and science. The manual will help affiliates of the Urban League to mobilize existing community resources to achieve the goals of the national education initiative. The four…

  19. SOFIA Program Status and Science Vision

    NASA Technical Reports Server (NTRS)

    Smith, Kimberly

    2017-01-01

    I will present an overview of the SOFIA program, its science vision and upcoming plans for the observatory. The talk will feature several scientific highlights since full operations, along with summaries of planned science observations for this coming year, platform enhancements and new instrumentation.

  20. STOP for Science! A School-Wide Science Enrichment Program

    NASA Astrophysics Data System (ADS)

    Slane, P.; Slane, R.; Arcand, K. K.; Lestition, K.; Watzke, M.

    2012-08-01

    Young students are often natural scientists. They love to poke and prod, and they live to compare and contrast. What is the fastest animal? Where is the tallest mountain on Earth (or in the Solar System)? Where do the colors in a rainbow come from? And why do baseball players choke up on their bats? Educators work hard to harness this energy and enthusiasm in the classroom but, particularly at an early age, science enrichment - exposure outside the formal classroom - is crucial to help expand science awareness and hone science skills. Developed under a grant from NASA's Chandra X-ray Center, "STOP for Science!" is a simple but effective (and extensible) school-wide science enrichment program aimed at raising questions about science topics chosen to capture student interest. Created through the combined efforts of an astrophysicist and an elementary school principal, and strongly recommended by NASA's Earth & Space Science product review, "STOP for Science" combines aesthetic displays of science topics accompanied by level-selected questions and extensive facilitator resources to provide broad exposure to familiar, yet intriguing, science themes.

  1. The DOE/NREL Environmental Science Program

    SciTech Connect

    Douglas R. Lawson; Michael Gurevich

    2001-05-14

    This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects.

  2. Cognitive and Neural Sciences Division 1990 Programs

    DTIC Science & Technology

    1990-08-01

    f D-/a33 773 ! COGNITIVE AND NEURAL SCIENCES -DIVISION 1990 PROGRAMS P .. i I’ • . M,’AR ’ OFFICE OF NAVAL RESEARCH 800 NORTH QUINCY STREET ARLINGTON... Cognitive and Neural Sciences Division 1990 Programs PE 61153N * 6. AUTHOR(S)I Edited by W-illard S. Vaughan 7. PERFORMING ORGANIZATION NAME(S) AND...NOTES This is a compilation of abstracts representing R&D sponsured by the ONR Cognitive and Neural Sciences Division. 12a. DISTRIBUTION AVAILABILITY

  3. Space Life Sciences Research and Education Program

    NASA Technical Reports Server (NTRS)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  4. High School Health Science Program.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This curriculum guide contains units of study for high school health science courses in Iowa. The first section is a competency outline for three topics: introduction to health care; nurse aide/orderly; and rehabilitation aide. For each competency, the following information is provided: objectives; suggested learning activities; resources; and…

  5. Environmental Management Science Program Workshop. Proceedings

    SciTech Connect

    1998-07-01

    The Department of Energy Office of Environmental Management (EM), in partnership with the Office of Energy Research (ER), designed, developed, and implemented the Environmental Management Science Program as a basic research effort to fund the scientific and engineering understanding required to solve the most challenging technical problems facing the government's largest, most complex environmental cleanup program. The intent of the Environmental Management Science Program is to: (1) Provide scientific knowledge that will revolutionize technologies and cleanup approaches to significantly reduce future costs, schedules, and risks. (2) Bridge the gap between broad fundamental research that has wide-ranging applications such as that performed in the Department's Office of Energy Research and needs-driven applied technology development that is conducted in Environmental Management's Office of Science and Technology. (3) Focus the nation's science infrastructure on critical Department of Energy environmental problems. In an effort to share information regarding basic research efforts being funded by the Environmental Management Science Program and the Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program), this CD includes summaries for each project. These project summaries, available in portable document format (PDF), were prepared in the spring of 1998 by the principal investigators and provide information about their most recent project activities and accomplishments.

  6. SOFIA general investigator science program

    NASA Astrophysics Data System (ADS)

    Young, Erick T.; Andersson, B.-G.; Becklin, Eric E.; Reach, William T.; Sankrit, Ravi; Zinnecker, Hans; Krabbe, Alfred

    2014-07-01

    SOFIA is a joint project between NASA and DLR, the German Aerospace Center, to provide the worldwide astronomical community with an observatory that offers unique capabilities from visible to far-infrared wavelengths. SOFIA consists of a 2.7-m telescope mounted in a highly modified Boeing 747-SP aircraft, a suite of instruments, and the scientific and operational infrastructure to support the observing program. This paper describes the current status of the observatory and details the General Investigator program. The observatory has recently completed major development activities, and it has transitioned into full operational status. Under the General Investigator program, astronomers submit proposals that are peer reviewed for observation on the facility. We describe the results from the first two cycles of the General Investigator program. We also describe some of the new observational capabilities that will be available for Cycle 3, which will begin in 2015.

  7. General Atomics Science Education Outreach Programs

    NASA Astrophysics Data System (ADS)

    Winter, Patricia S.

    1996-11-01

    Motivated by a desire to improve science literacy and to help the current generation of students to be more prepared for an increasingly technological future, General Atomics has been a leader in science education outreach to local K-12 schools. Through its nonprofit ``Sciences Education Foundation,'' and in cooperation with local science teachers, General Atomics has sponsored a variety of education activities and developed several science teaching units including Fusion --- Energy of the Stars; An Exploration of Materials Science, Recombinant DNA Technology; Environmental Radioactivity; and Energy from the Atom. Printed materials and laboratory kits for ``hands-on'' teaching units have been made available to over 600 teachers (from over 175 schools) who have attended General Atomics sponsored workshops, and presentations at education and professional meetings. Additional outreach activities include school partnerships, facility tours, and mentoring programs.

  8. Materials sciences programs, fiscal year 1994

    SciTech Connect

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  9. Biological Sciences Division 1991 Programs

    DTIC Science & Technology

    1991-08-01

    AWARD PERIOD: May 1, 1990 - April 30, 1992 OBJECTIVE: To train undergraduate/graduate level candi- dates in an intensive program designed to teach ...and Hopkins, P.B., " Thermochemistry of Metal Ion Stabilized Peptide Helices," in preparation for submission to J. Am. Chem. Soc. 291 ANNUAL PROGESS

  10. A study of science leadership and science standards in exemplary standards-based science programs

    NASA Astrophysics Data System (ADS)

    Carpenter, Wendy Renae

    The purpose for conducting this qualitative study was to explore best practices of exemplary standards-based science programs and instructional leadership practices in a charter high school and in a traditional high school. The focus of this study included how twelve participants aligned practices to National Science Education Standards to describe their science programs and science instructional practices. This study used a multi-site case study qualitative design. Data were obtained through a review of literature, interviews, observations, review of educational documents, and researcher's notes collected in a field log. The methodology used was a multi-site case study because of the potential, through cross analysis, for providing greater explanation of the findings in the study (Merriam, 1988). This study discovered six characteristics about the two high school's science programs that enhance the literature found in the National Science Education Standards; (a) Culture of expectations for learning-In exemplary science programs teachers are familiar with a wide range of curricula. They have the ability to examine critically and select activities to use with their students to promote the understanding of science; (b) Culture of varied experiences-In exemplary science programs students are provided different paths to learning, which help students, take in information and make sense of concepts and skills that are set forth by the standards; (c) Culture of continuous feedback-In exemplary science programs teachers and students work together to engage students in ongoing assessments of their work and that of others as prescribed in the standards; (d) Culture of Observations-In exemplary science programs students, teachers, and principals reflect on classroom instructional practices; teachers receive ongoing evaluations about their teaching and apply feedback towards improving practices as outlined in the standards; (e) Culture of continuous learning-In exemplary

  11. Psychological Sciences Division 1979 Programs.

    DTIC Science & Technology

    1979-11-01

    assembly and con-Sternberg, RIJ (’inira,iing conceptions. iit intelligence and their trot variations in test-performance programs. Ini- educaional ...University of influence the readers’s perception of the subject Arzona, January 1979 matter by having them identify the topics of pas - sages which varied in...were identified. An engage- completed during the pas year ment model or outcome calculator was developed which provides a rapid estimate of air strike

  12. Aquarium of Pacific's Science Education Program

    NASA Astrophysics Data System (ADS)

    Iliff, Warren

    2000-04-01

    The Aquarium, since its opening in June 1998, has been "mission driven" to "instill in its visitors a sense of wonder, respect and stewardship for the Pacific Ocean and its inhabitants." During its first year over 1.8 million visitors and 240,000 school children were provided a broad array of school and public programs. The Aquarium's "science education program" places a major emphasis on "teacher training," hands-on lab learning opportunities with a focus on the "inquiry method" of teaching and school programs that are highly interactive and fun. Also the Aquarium's education staff is expanding its programming to the internet and to early childhood education.

  13. NASA Microgravity Combustion Science Program

    NASA Technical Reports Server (NTRS)

    King, Merrill K.

    1997-01-01

    Combustion is a key element of many critical technologies used by contemporary society. For example, electric power production, home heating, surface and air transportation, space propulsion, and materials synthesis all utilize combustion as a source of energy. Yet, although combustion technology is vital to our standard of living, it poses great challenges to maintaining a habitable environment. For example, pollutants, atmospheric change and global warming, unwanted fires and explosions, and the incineration of hazardous wastes are major problem areas which would benefit from improved understanding of combustion. Effects of gravitational forces impede combustion studies more than most other areas of science since combustion involves production of high-temperature gases whose low density results in buoyant motion, vastly complicating the execution and interpretation of experiments. Effects of buoyancy are so ubiquitous that their enormous negative impact on the rational development of combustion science is generally not recognized. Buoyant motion also triggers the onset of turbulence, yielding complicating unsteady effects. Finally, gravity forces cause particles and drops to settle, inhibiting deconvoluted studies of heterogeneous flames important to furnace, incineration and power generation technologies. Thus, effects of buoyancy have seriously limited our capabilities to carry out 'clean' experiments needed for fundamental understanding of flame phenomena. Combustion scientists can use microgravity to simplify the study of many combustion processes, allowing fresh insights into important problems via a deeper understanding of elemental phenomena also found in Earth-based combustion processes and to additionally provide valuable information concerning how fires behave in microgravity and how fire safety on spacecraft can be enhanced.

  14. Prehospital Glidescope video laryngoscopy for difficult airway management in a helicopter rescue program with anaesthetists.

    PubMed

    Struck, Manuel Florian; Wittrock, Maike; Nowak, Andreas

    2011-10-01

    The objective of this study was to analyze the prehospital use of a Glidescope video laryngoscope (GSVL) due to anticipated and unexpected difficult airway in a helicopter emergency medical service setting in which emergency physicians (EP) are experienced anesthetists. Retrospective observational study and survey of the experiences of EP were conducted for more than a 3-year period (July 2007-August 2010). In 1675 missions, 152 tracheal intubations (TI) were performed. GSVL was used in 23 cases (15%). A total of 17 patients presented with multiple traumas, including nine with cervical spine immobilization, three with burns, and three with nontraumatic diagnoses. Eight patients experienced previously failed TI with conventional laryngoscopy (five by nonhelicopter emergency medical service EP). In two patients, the EP required two attempts with GSVL to obtain a successful TI. Since the introduction of the GSVL, no other backup airway device was necessary. GSVL may be a valuable support instrument in the prehospital management of difficult airways in emergency patients.

  15. Computer Programs in Marine Science

    DTIC Science & Technology

    1976-04-01

    available from the NODC. If the NODC holds a copy of the program, it will be so noted at the end of the abstract, and the form will be described (listing...equation end the Wilson sound velocity formula are used in the computations. Running time is two seconds per sta.ion. -p / ! Miguel Angel Alatorre Copy on...RAXSC Hardware - CDC 6600 Determines th! inteinal and external changes of a multi-strand electrome-hanical cable under end zoustrair,:s and loadings

  16. Airborne Science Program: Observing Platforms for Earth Science Investigations

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.

    2009-01-01

    This slide presentation reviews the Airborne Science Program and the platforms used for conducting investigations for the Earth System Science. Included is a chart that shows some of the aircraft and the operational altitude and the endurance of the aircraft, views of the Dryden Aircraft Operation Facility, and some of the current aircraft that the facility operates, and the varieties of missions that are flown and the type of instrumentation. Also included is a chart showing the attributes of the various aircraft (i.e., duration, weight for a payload, maximum altitude, airspeed and range) for comparison

  17. Basic Energy Sciences Program Update

    SciTech Connect

    None, None

    2016-01-04

    The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels to provide the foundations for new energy technologies and to support DOE missions in energy, environment, and national security. The research disciplines covered by BES—condensed matter and materials physics, chemistry, geosciences, and aspects of physical biosciences— are those that discover new materials and design new chemical processes. These disciplines touch virtually every aspect of energy resources, production, conversion, transmission, storage, efficiency, and waste mitigation. BES also plans, constructs, and operates world-class scientific user facilities that provide outstanding capabilities for imaging and spectroscopy, characterizing materials of all kinds ranging from hard metals to fragile biological samples, and studying the chemical transformation of matter. These facilities are used to correlate the microscopic structure of materials with their macroscopic properties and to study chemical processes. Such experiments provide critical insights to electronic, atomic, and molecular configurations, often at ultrasmall length and ultrafast time scales.

  18. Cognitive and Neural Sciences Division, 1989 Programs.

    ERIC Educational Resources Information Center

    Vaughan, Willard S., Ed.

    This report documents research and development performed by principal investigators under the sponsorship of the Office of Naval Research Cognitive and Neural Sciences Division during fiscal year 1989. Programs are conducted under contracts and grants awarded on the basis of proposals received in response to a Broad Agency Announcement in the…

  19. NASA's Space Life Sciences Training Program

    NASA Technical Reports Server (NTRS)

    Coulter, G.; Lewis, L.; Atchison, D.

    1994-01-01

    The Space Life Sciences Training Program (SLSTP) is an intensive, six-week training program held every summer since 1985 at the Kennedy Space Center (KSC). A major goal of the SLSTP is to develop a cadre of qualified scientists and engineers to support future space life sciences and engineering challenges. Hand-picked, undergraduate college students participate in lectures, laboratory sessions, facility tours, and special projects: including work on actual Space Shuttle flight experiments and baseline data collection. At NASA Headquarters (HQ), the SLSTP is jointly sponsored by the Life Sciences Division and the Office of Equal Opportunity Programs: it has been very successful in attracting minority students and women to the fields of space science and engineering. In honor of the International Space Year (ISY), 17 international students participated in this summer's program. An SLSTP Symposium was held in Washington D. C., just prior to the World Space Congress. The Symposium attracted over 150 SLSTP graduates for a day of scientific discussions and briefings concerning educational and employment opportunities within NASA and the aerospace community. Future plans for the SLSTP include expansion to the Johnson Space Center in 1995.

  20. The Environmental Science and Health Effects Program

    SciTech Connect

    Michael Gurevich; Doug Lawson; Joe Mauderly

    2000-04-10

    The goal of the Environmental Science and Health Effect Program is to conduct policy-relevant research that will help us understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources.

  1. Materials Sciences programs, Fiscal year 1993

    SciTech Connect

    1994-02-01

    This report provides a compilation and index of the DOE Materials Sciences Division programs; the compilation is to assist administrators, managers, and scientists to help coordinate research. The report is divided into 7 sections: laboratory projects, contract research projects, small business innovation research, major user facilities, other user facilities, funding level distributions, and indexes.

  2. Cognitive and Neural Sciences Division, 1991 Programs.

    ERIC Educational Resources Information Center

    Vaughan, Willard S., Ed.

    This report documents research and development performed under the sponsorship of the Cognitive and Neural Sciences Division of the Office of Naval Research in fiscal year 1991. It provides abstracts (title, principal investigator, project code, objective, approach, progress, and related reports) of projects of three program divisions (cognitive…

  3. Police Science Program Survey: Research Note.

    ERIC Educational Resources Information Center

    Colorado State Dept. of Education, Denver. National Origin Desegregation Project (LAU).

    A study, involving two independent surveys and a transcript analysis, was conducted to determine the background characteristics, attitudes, and needs of students enrolled in police science programs at Moraine Valley Community College (MVCC). The first survey, which focused on personal characteristics and course enrollment data, was distributed in…

  4. The Science Exchange Program - A Proposal.

    ERIC Educational Resources Information Center

    Klausen, James

    An exchange program is described in which two groups of high school science students, one from Long Island, New York, and one from upstate New York, visited each other's school districts for three days to broaden their experiences with different physical and geological surroundings. The inland group of students was exposed to marine geology and…

  5. Science and the Constellation Systems Program Office

    NASA Technical Reports Server (NTRS)

    Mendell, Wendell

    2007-01-01

    An underlying tension has existed throughout the history of NASA between the human spaceflight programs and the external scientific constituencies of the robotic exploration programs. The large human space projects have been perceived as squandering resources that might otherwise be utilized for scientific discoveries. In particular, the history of the relationship of science to the International Space Station Program has not been a happy one. The leadership of the Constellation Program Office, created in NASA in October, 2005, asked me to serve on the Program Manager s staff as a liaison to the science community. Through the creation of my position, the Program Manager wanted to communicate and elucidate decisions inside the program to the scientific community and, conversely, ensure that the community had a voice at the highest levels within the program. Almost all of my technical contributions at NASA, dating back to the Apollo Program, has been within the auspices of what is now known as the Science Mission Directorate. However, working at the Johnson Space Center, where human spaceflight is the principal activity, has given me a good deal of incidental contact and some more direct exposure through management positions to the structures and culture of human spaceflight programs. I entered the Constellation family somewhat naive but not uninformed. In addition to my background in NASA science, I have also written extensively over the past 25 years on the topic of human exploration of the Moon and Mars. (See, for example, Mendell, 1985). I have found that my scientific colleagues generally have little understanding of the structure and processes of a NASA program office; and many of them do not recognize the name, Constellation. In many respects, the international ILEWG community is better informed. Nevertheless, some NASA decision processes on the role of science, particularly with respect to the formulation of a lunar surface architecture, are not well known

  6. Suborbital Science Program: Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    DelFrate, John

    2008-01-01

    This viewgraph presentation reviews the suborbital science program at NASA Dryden Flight Research Center. The Program Objectives are given in various areas: (1) Satellite Calibration and Validation (Cal/val)--Provide methods to perform the cal/val requirements for Earth Observing System satellites; (2) New Sensor Development -- Provide methods to reduce risk for new sensor concepts and algorithm development prior to committing sensors to operations; (3) Process Studies -- Facilitate the acquisition of high spatial/temporal resolution focused measurements that are required to understand small atmospheric and surface structures which generate powerful Earth system effects; and (4) Airborne Networking -- Develop disruption-tolerant networking to enable integrated multiple scale measurements of critical environmental features. Dryden supports the NASA Airborne Science Program and the nation in several elements: ER-2, G-3, DC-8, Ikhana (Predator B) & Global Hawk and Reveal. These are reviewed in detail in the presentation.

  7. 1998 Environmental Management Science Program Annual Report

    SciTech Connect

    1999-03-01

    The Environmental Management Science Program (EMSP) is a collaborative partnership between the DOE Office of Environmental Management (EM), Office of Science (DOE-SC), and the Idaho Operations Office (DOE-ID) to sponsor basic environmental and waste management related research. Results are expected to lead to reduction of the costs, schedule, and risks associated with cleaning up the nation's nuclear complex. The EMSP research portfolio addresses the most challenging technical problems of the EM program related to high level waste, spent nuclear fuel, mixed waste, nuclear materials, remedial action, decontamination and decommissioning, and health, ecology, or risk. The EMSP was established in response to a mandate from Congress in the fiscal year 1996 Energy and Water Development Appropriations Act. Congress directed the Department to ''provide sufficient attention and resources to longer-term basic science research which needs to be done to ultimately reduce cleanup costs, develop a program that takes advantage of laboratory and university expertise, and seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective''. This mandate followed similar recommendations from the Galvin Commission to the Secretary of Energy Advisory Board. The EMSP also responds to needs identified by National Academy of Sciences experts, regulators, citizen advisory groups, and other stakeholders.

  8. The LSSTC Data Science Fellowship Program

    NASA Astrophysics Data System (ADS)

    Miller, Adam; Walkowicz, Lucianne; LSSTC DSFP Leadership Council

    2017-01-01

    The Large Synoptic Survey Telescope Corporation (LSSTC) Data Science Fellowship Program (DSFP) is a unique professional development program for astronomy graduate students. DSFP students complete a series of six, one-week long training sessions over the course of two years. The sessions are cumulative, each building on the last, to allow an in-depth exploration of the topics covered: data science basics, statistics, image processing, machine learning, scalable software, data visualization, time-series analysis, and science communication. The first session was held in Aug 2016 at Northwestern University, with all materials and lectures publicly available via github and YouTube. Each session focuses on a series of technical problems which are written in iPython notebooks. The initial class of fellows includes 16 students selected from across the globe, while an additional 14 fellows will be added to the program in year 2. Future sessions of the DSFP will be hosted by a rotating cast of LSSTC member institutions. The DSFP is designed to supplement graduate education in astronomy by teaching the essential skills necessary for dealing with big data, serving as a resource for all in the LSST era. The LSSTC DSFP is made possible by the generous support of the LSST Corporation, the Data Science Initiative (DSI) at Northwestern, and CIERA.

  9. Overview of NASA's Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Downey, James Patton

    2012-01-01

    The microgravity materials program was nearly eliminated in the middle of the aughts due to budget constraints. Hardware developments were eliminated. Some investigators with experiments that could be performed using ISS partner hardware received continued funding. Partnerships were established between US investigators and ESA science teams for several investigations. ESA conducted peer reviews on the proposals of various science teams as part of an ESA AO process. Assuming he or she was part of a science team that was selected by the ESA process, a US investigator would submit a proposal to NASA for grant funding to support their part of the science team effort. In a similar manner, a US materials investigator (Dr. Rohit Trivedi) is working as a part of a CNES selected science team. As funding began to increase another seven materials investigators were selected in 2010 through an NRA mechanism to perform research related to development of Materials Science Research Rack investigations. One of these has since been converted to a Glovebox investigation.

  10. Thinking about Television Science: How Students Understand the Nature of Science from Different Program Genres.

    ERIC Educational Resources Information Center

    Dhingra, Koshi

    2003-01-01

    Examines how high school students think about science that is mediated by four different program genres on television: (1) documentary; (2) magazine-format programming; (3) network news; and (4) dramatic or fictional programming. Discusses findings regarding ethics and the validity of science, final form science, science as portrayed by its…

  11. An Informal Elementary Science Education Program's Response to the National Science Education Reform Movement.

    ERIC Educational Resources Information Center

    Katz, Phyllis; McGinnis, J. Randy

    1999-01-01

    Provides an overview of informal elementary science-education programs in the United States, and features a detailed description of the Hands on Science Outreach program. Presents insights for informal elementary science-education programs trying to maintain their unique niche while conforming to the new national standards in science education.…

  12. 2015 Stewardship Science Academic Programs Annual

    SciTech Connect

    Stone, Terri; Mischo, Millicent

    2015-02-01

    The Stockpile Stewardship Academic Programs (SSAP) are essential to maintaining a pipeline of professionals to support the technical capabilities that reside at the National Nuclear Security Administration (NNSA) national laboratories, sites, and plants. Since 1992, the United States has observed the moratorium on nuclear testing while significantly decreasing the nuclear arsenal. To accomplish this without nuclear testing, NNSA and its laboratories developed a science-based Stockpile Stewardship Program to maintain and enhance the experimental and computational tools required to ensure the continued safety, security, and reliability of the stockpile. NNSA launched its academic program portfolio more than a decade ago to engage students skilled in specific technical areas of relevance to stockpile stewardship. The success of this program is reflected by the large number of SSAP students choosing to begin their careers at NNSA national laboratories.

  13. AAAS Communicating Science Program: Reflections on Evaluation

    NASA Astrophysics Data System (ADS)

    Braha, J.

    2015-12-01

    The AAAS Center for Public Engagement (Center) with science builds capacity for scientists to engage public audiences by fostering collaboration among natural or physical scientists, communication researchers, and public engagement practitioners. The recently launched Leshner Leadership Institute empowers cohorts of mid-career scientists to lead public engagement by supporting their networks of scientists, researchers, and practitioners. The Center works closely with social scientists whose research addresses science communication and public engagement with science to ensure that the Communicating Science training program builds on empirical evidence to inform best practices. Researchers ( Besley, Dudo, & Storkdieck 2015) have helped Center staff and an external evaluator develop pan instrument that measures progress towards goals that are suggested by the researcher, including internal efficacy (increasing scientists' communication skills and confidence in their ability to engage with the public) and external efficacy (scientists' confidence in engagement methods). Evaluation results from one year of the Communicating Science program suggest that the model of training yields positive results that support scientists in the area that should lead to greater engagement. This talk will explore the model for training, which provides a context for strategic communication, as well as the practical factors, such as time, access to public engagement practitioners, and technical skill, that seems to contribute to increased willingness to engage with public audiences. The evaluation program results suggest willingness by training participants to engage directly or to take preliminary steps towards engagement. In the evaluation results, 38% of trained scientists reported time as a barrier to engagement; 35% reported concern that engagement would distract from their work as a barrier. AAAS works to improve practitioner-researcher-scientist networks to overcome such barriers.

  14. Materials sciences programs: Fiscal year 1995

    SciTech Connect

    1996-05-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Science Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  15. Materials sciences programs fiscal year 1996

    SciTech Connect

    1997-06-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  16. Rocket Science 101 Interactive Educational Program

    NASA Technical Reports Server (NTRS)

    Armstrong, Dennis; Funkhouse, Deborah; DiMarzio, Donald

    2007-01-01

    To better educate the public on the basic design of NASA s current mission rockets, Rocket Science 101 software has been developed as an interactive program designed to retain a user s attention and to teach about basic rocket parts. This program also has helped to expand NASA's presence on the Web regarding educating the public about the Agency s goals and accomplishments. The software was designed using Macromedia s Flash 8. It allows the user to select which type of rocket they want to learn about, interact with the basic parts, assemble the parts to create the whole rocket, and then review the basic flight profile of the rocket they have built.

  17. Atmospheric Science Program (ASP) Data Archive

    DOE Data Explorer

    The Department of Energy's Atmospheric Science Program (ASP) originally consisted of an atmospheric chemistry program, an environmental meteorology program, a tropospheric aerosol program, and NARSTO activities. In 2004, the ASP was reconfigured to focus on aerosol radiative forcing of climate change: aerosol formation and evolution and aerosol properties that affect direct and indirect influences on climate and climate change. This included developing a comprehensive understanding of the atmospheric processes that control the transport, transformation, and fate of energy related trace chemicals and particulate matter. The current focus of the program is aerosol radiative forcing of climate. Effective October 1, 2009, The ASP merged with the Atmospheric Radiation Measurement Program (ARM), with the overall program now called Atmospheric System Research. The overall research goal is one that was shared in common, i.e. to further the understanding of how the climate, as a system works, and to represent the understanding in computer models. The Office of Science and Brookhaven announced, ôA major benefit of the merge is expected to be a strengthening of the aerosol- and cloud-related research components of the programs by bringing together the ARM capabilities of continuous remote sensing measurements of cloud properties and aerosol influences on radiation with the ASP capabilities for in-situ characterization of aerosol properties, evolution, and cloud interactions.ö [http://www.asp.bnl.gov/#New] The ASP data archive has now been moved to a new location in order to be maintained with ARM data. The new url is http://iop.archive.arm.gov/arm-iop/0special-data/ASP_Campaigns_past/. BNL continues to maintain an excellent list of ASP-publications at http://www.asp.bnl.gov/asp_pubs.html

  18. Increased Science Instrumentation Funding Strengthens Mars Program

    NASA Technical Reports Server (NTRS)

    Graham, Lee D.; Graff, T. G.

    2012-01-01

    As the strategic knowledge gaps mature for the exploration of Mars, Mars sample return (MSR), and Phobos/Deimos missions, one approach that becomes more probable involves smaller science instrumentation and integrated science suites. Recent technological advances provide the foundation for a significant evolution of instrumentation; however, the funding support is currently too small to fully utilize these advances. We propose that an increase in funding for instrumentation development occur in the near-term so that these foundational technologies can be applied. These instruments would directly address the significant knowledge gaps for humans to Mars orbit, humans to the Martian surface, and humans to Phobos/ Deimos. They would also address the topics covered by the Decadal Survey and the Mars scientific goals, objectives, investigations and priorities as stated by the MEPAG. We argue that an increase of science instrumentation funding would be of great benefit to the Mars program as well as the potential for human exploration of the Mars system. If the total non-Earth-related planetary science instrumentation budget were increased 100% it would not add an appreciable amount to the overall NASA budget and would provide the real potential for future breakthroughs. If such an approach were implemented in the near-term, NASA would benefit greatly in terms of science knowledge of the Mars, Phobos/Deimos system, exploration risk mitigation, technology development, and public interest.

  19. Dartmouth College Earth Sciences Mobile Field Program

    NASA Astrophysics Data System (ADS)

    Meyer, E. E.; Osterberg, E. C.; Dade, W. B.; Sonder, L. J.; Renshaw, C. E.; Kelly, M. A.; Hawley, R. L.; Chipman, J. W.; Mikucki, J.; Posmentier, E. S.; Moore, J. R.

    2011-12-01

    For the last 50 years the Department of Earth Sciences at Dartmouth College has offered a term-long, undergraduate field program, informally called "the Stretch". A student typically enrolls during fall quarter of his or her junior year soon after choosing a major or minor. The program thus provides valuable field context for courses that a student will take during the remainder of his or her undergraduate career. Unlike many traditional field camps that focus on one particular region, the Stretch is a mobile program that currently travels through Western North America, from the Canadian Rockies to the Grand Canyon. The program spans two and a half months, during which time undergraduates, graduate TAs, and faculty live, work, and learn collaboratively. Dartmouth College faculty members sequentially teach individual 1- to 2-week segments that focus on their interests and expertise; currently, there are a total of eight segments led by eleven faculty members. Consequently, topics are diverse and include economic geology, geobiology, geomorphology, glaciology, glacial geology, geophysics, hydrogeology, paleontology, stratigraphy, structure and tectonics, and volcanology. The field localities are equally varied, including the alpine glaciers of western Alberta, the national parks of Montana, Wyoming and Utah, the eastern Sierra Nevada, the southern Great Basin, and highlight such classic geological field locales as Sheep Mountain in Wyoming's Bighorn Basin, Death Valley, and the Grand Canyon. Overall, the program aims to: 1) give students a broad perspective on the timing and nature of the processes that resulted in the landscape and underlying geology of western North America; and 2) introduce students to a wide variety of geological environments, field techniques, and research equipment. Students emerge from the program with wide-ranging exposure to active research questions as well as a working knowledge of core field skills in the earth sciences. Stretch students

  20. 75 FR 22576 - Minority Science and Engineering Improvement Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... Minority Science and Engineering Improvement Program AGENCY: Office of Postsecondary Education, Department... Minority Science and Engineering Improvement Program. SUMMARY: The Secretary intends to use the grant slate developed in FY 2009 for the Minority Science and Engineering Improvement Program (MSEIP), authorized...

  1. The NASA Earth Science Flight Program

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2014-10-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 17 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission and the Orbiting Carbon Observatory-2 (OCO-2). The ESD has 18 more missions planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small competitively selected orbital and instrument missions of opportunity belonging to the Earth Venture (EV) Program. The International Space Station (ISS) is being used to host a variety of NASA Earth science instruments. An overview of plans and current status will be presented.

  2. The Australian Science Facilities Program: A Study of Its Influence on Science Education in Australian Schools.

    ERIC Educational Resources Information Center

    Ainley, John G.

    This report is a study conducted by the Australian Council for Educational Research to evaluate the influence of science material resources, provided under the Australian Science Facilities Program, on science education in Australia. Under the Australian Science Facilities Program some $123 million was spent, between July 1964 and June 1975, on…

  3. SOLIB: A Social Science Program Library for Small Computers.

    ERIC Educational Resources Information Center

    Halley, Fred S.

    A package of social science programs--Sociology Library (SOLIB)--for small computers provides users with a partial solution to the problems stemming from the heterogeneity of social science applications programs. SOLIB offers a uniform approach to data handling and program documentation; all its programs are written in standard FORTRAN for the IBM…

  4. Ukrainian Program for Material Science in Microgravity

    NASA Astrophysics Data System (ADS)

    Fedorov, Oleg

    Ukrainian Program for Material Sciences in Microgravity O.P. Fedorov, Space Research Insti-tute of NASU -NSAU, Kyiv, The aim of the report is to present previous and current approach of Ukrainian research society to the prospect of material sciences in microgravity. This approach is based on analysis of Ukrainian program of research in microgravity, preparation of Russian -Ukrainian experiments on Russian segment of ISS and development of new Ukrainian strategy of space activity for the years 2010-2030. Two parts of issues are discussed: (i) the evolution of our views on the priorities in microgravity research (ii) current experiments under preparation and important ground-based results. item1 The concept of "space industrialization" and relevant efforts in Soviet and post -Soviet Ukrainian research institutions are reviewed. The main topics are: melt supercooling, crystal growing, testing of materials, electric welding and study of near-Earth environment. The anticipated and current results are compared. item 2. The main experiments in the framework of Ukrainian-Russian Research Program for Russian Segment of ISS are reviewed. Flight installations under development and ground-based results of the experiments on directional solidification, heat pipes, tribological testing, biocorrosion study is presented. Ground-based experiments and theoretical study of directional solidification of transparent alloys are reviewed as well as preparation of MORPHOS installation for study of succinonitrile -acetone in microgravity.

  5. Scaling Plant Phenology in Citizen Science Programs

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Richardson, A. D.; Kosmala, M.; Ward, D.; Bevington, K.

    2015-12-01

    In the past decade, there has been increasing interest in exploring phenology as a way to better understand how the natural world is responding to changing climates. Concurrently, there has been rapid growth in the collection and analysis of data by non-experts. So called 'citizen scientists' are collecting and analyzing data at unprecedented rates on a variety of topics including plant phenology. Through the development of online programs and activities, citizen science data is being collected at spatial and temporal scales that were previously not possible. Citizen science data vastly exceeds what scientists or land managers can collect or analyze on their own. As such, it provides opportunities for scaling both in terms of data collection and analysis. This presentation will focus on two plant phenology projects that involve citizen scientists in the data life cycle at different scales - Project BudBurst which is based on the collection of ground observations and Season Spotter which is based on the classification of remotely sensed landscape imagery. NEON's Project BudBurst (budburst.org) is a national citizen science program focused on the collection of observations of the timing of leafing, flowering, and fruiting in hundreds of plant species. The PhenoCam Network's Season Spotter (seasonspotter.org) engages individuals in the classification and annotation of a variety of vegetated landscape images via a new platform on Zooniverse. Citizen Science contributions to plant phenology are proving to be an invaluable tool that can be used to both validate existing and support development of new methods to extract phenology information from remotely sensed imagery including PhenoCam and satellite sources. This presentation will compare and contrast the contribution made to the study of plant phenology at multiple scales - ground observation data of individual plants and classification and annotation of data collected through a network do automated digital cameras.

  6. Laser Science & Technology Program Annual Report - 2000

    SciTech Connect

    Chen, H-L

    2001-03-20

    The Laser Science and Technology (LS&T) Program Annual Report 2001 provides documentation of the achievements of the LLNL LS&T Program during the April 2001 to March 2002 period using three formats: (1) an Overview that is a narrative summary of important results for the year; (2) brief summaries of research and development activity highlights within the four Program elements: Advanced Lasers and Components (AL&C), Laser Optics and Materials (LO&M), Short Pulse Laser Applications and Technologies (SPLAT), and High-Energy Laser System and Tests (HELST); and (3) a compilation of selected articles and technical reports published in reputable scientific or technology journals in this period. All three elements (Annual Overview, Activity Highlights, and Technical Reports) are also on the Web: http://laser.llnl.gov/lasers/pubs/icfq.html. The underlying mission for the LS&T Program is to develop advanced lasers, optics, and materials technologies and applications to solve problems and create new capabilities of importance to the Laboratory and the nation. This mission statement has been our guide for defining work appropriate for our Program. A major new focus of LS&T beginning this past year has been the development of high peak power short-pulse capability for the National Ignition Facility (NIF). LS&T is committed to this activity.

  7. NASA's Earth science flight program status

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  8. The SIM PlanetQuest Science Program

    NASA Technical Reports Server (NTRS)

    Edberg, Stephen J.; Traub, Wesley A.; Unwin, Stephen C.; Marr, James C., IV

    2007-01-01

    SIM PlanetQuest (hereafter, just SIM) is a NASA mission to measure the angular positions of stars with unprecedented accuracy. We outline the main astrophysical science programs planned for SIM, and related opportunities for community participation. We focus especially on SIM's ability to detect exoplanets as small as the Earth around nearby stars. The planned synergy between SIM and other planet-finding missions including Kepler and GAIA, and planet-characterizing missions including the James Webb Space Telescope (JWST), Terrestrial Planet Finder--Coronagraph (TPF-C), and Terrestrial Planet Finder--Interferometer (TPF-I), is a key element in NASA's Navigator Program to find Earth-like planets, determine their habitability, and search for signs of life in the universe. SIM's technology development is now complete and the project is proceeding towards a launch in the next decade.

  9. A research program in empirical computer science

    NASA Technical Reports Server (NTRS)

    Knight, J. C.

    1991-01-01

    During the grant reporting period our primary activities have been to begin preparation for the establishment of a research program in experimental computer science. The focus of research in this program will be safety-critical systems. Many questions that arise in the effort to improve software dependability can only be addressed empirically. For example, there is no way to predict the performance of the various proposed approaches to building fault-tolerant software. Performance models, though valuable, are parameterized and cannot be used to make quantitative predictions without experimental determination of underlying distributions. In the past, experimentation has been able to shed some light on the practical benefits and limitations of software fault tolerance. It is common, also, for experimentation to reveal new questions or new aspects of problems that were previously unknown. A good example is the Consistent Comparison Problem that was revealed by experimentation and subsequently studied in depth. The result was a clear understanding of a previously unknown problem with software fault tolerance. The purpose of a research program in empirical computer science is to perform controlled experiments in the area of real-time, embedded control systems. The goal of the various experiments will be to determine better approaches to the construction of the software for computing systems that have to be relied upon. As such it will validate research concepts from other sources, provide new research results, and facilitate the transition of research results from concepts to practical procedures that can be applied with low risk to NASA flight projects. The target of experimentation will be the production software development activities undertaken by any organization prepared to contribute to the research program. Experimental goals, procedures, data analysis and result reporting will be performed for the most part by the University of Virginia.

  10. Evaluation of a model science teacher education program

    NASA Astrophysics Data System (ADS)

    Krajcik, Joseph S.; Penick, John E.

    This study assessed the effectiveness of one science teacher education program designed to be a model program. The study provided evidence that preservice science teacher education can have a very positive effect on the development of preservice science teachers into effective practicing teachers. Thirty program graduates completed a pilot version of the 1985 National Survey of Science and Mathematics Education providing information on course objectives, teaching strategies, equipment use, time allocation, and textbook use. The responses of program graduates were compared to the responses of a select national sample of teachers. All teachers in the comparison group were from programs in the Search for Excellence in Science Education, Presidential Award winners, recognized as outstanding state science teachers, employed as department chairs, or actively involved in the development of science curriculum. Analysis of the responses indicated that both program graduates and comparison group teachers had similar course objectives and teaching strategies, used materials and equipment a similar amount of time, and allocated class time in similar ways. In another component of the study, students of 37 program graduates completed a questionnaire that assessed their attitudes toward science teachers, science classes, and the study of science. Analysis of attitudinal data from their 2871 students indicated that students of program graduates generally had positive attitudes. For instance, 89% of the students perceived their science teacher as asking questions and 80% perceived their science teacher as letting them ask questions. In general, the data are in stark contrast to the images obtained from National Assessment efforts.

  11. The Stanford Medical Youth Science Program: Educational and Science-Related Outcomes

    ERIC Educational Resources Information Center

    Crump, Casey; Ned, Judith; Winkleby, Marilyn A.

    2015-01-01

    Biomedical preparatory programs (pipeline programs) have been developed at colleges and universities to better prepare youth for entering science- and health-related careers, but outcomes of such programs have seldom been rigorously evaluated. We conducted a matched cohort study to evaluate the Stanford Medical Youth Science Program's Summer…

  12. Development and Implementation of Science and Technology Ethics Education Program for Prospective Science Teachers

    ERIC Educational Resources Information Center

    Rhee, Hyang-yon; Choi, Kyunghee

    2014-01-01

    The purposes of this study were (1) to develop a science and technology (ST) ethics education program for prospective science teachers, (2) to examine the effect of the program on the perceptions of the participants, in terms of their ethics and education concerns, and (3) to evaluate the impact of the program design. The program utilized…

  13. Playtime Is Science: Implementing a Parent/Child Activity Program.

    ERIC Educational Resources Information Center

    Sprung, Barbara; And Others

    A program of science activities for children in the early childhood years and their parents is offered. The three different formats of the Playtime Is Science program are adaptable to a variety of settings and schedules. The Parent/Child Activity Program includes one parents-only session in which participants learn that routine chores involve…

  14. A Mathematical Sciences Program at an Upper-Division Campus.

    ERIC Educational Resources Information Center

    Swetz, Frank J.

    1978-01-01

    The conception, objectives, contents, and limitations of a degree program in the mathematical sciences at Pennsylvania State University, Capitol Campus, are discussed. Career goals that may be pursued include: managerial, science, education, actuarial, and computer. (MP)

  15. A Resource Guide to Elementary Science Programs. National, State and Community-Based Programs.

    ERIC Educational Resources Information Center

    Marganoff, Bruce, Comp.

    This document, which reviews national, state, and local science activities and programs, provides educators with concrete examples of varied science programs that are a valuable resource for teaching science skills and proficiencies. This resource guide is intended to help educators supplement, amend, and revise their elementary science programs…

  16. K-12 Social Science. Program Evaluation. Agenda 93-225.

    ERIC Educational Resources Information Center

    Brown, Carol S.

    This document is an evaluation of the social science program in the Des Moines (Iowa) Public Schools. The program is a traditional instructional program that grows conceptually with the student and is designed to meet the needs of students and society. The elementary program meets state guidelines and is the expanding horizon program researched…

  17. Microgravity science & applications. Program tasks and bibliography for FY 1995

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This annual report includes research projects funded by the Office of Life and Microgravity Sciences and Applications, Microgravity Science and Applications Division, during FY 1994. It is a compilation of program tasks (objective, description, significance, progress, students funded under research, and bibliographic citations) for flight research and ground based research in five major scientific disciplines: benchmark science, biotechnology, combustion science, fluid physics, and materials science. Advanced technology development (ATD) program task descriptions are also included. The bibliography cites the related principle investigator (PI) publications and presentations for these program tasks in FY 1994. Three appendices include a Table of Acronyms, a Guest Investigator index and a Principle Investigator index.

  18. NASA Airborne Science Program: NASA Stratospheric Platforms

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.

    2010-01-01

    The National Aeronautics and Space Administration conducts a wide variety of remote sensing projects using several unique aircraft platforms. These vehicles have been selected and modified to provide capabilities that are particularly important for geophysical research, in particular, routine access to very high altitudes, long range, long endurance, precise trajectory control, and the payload capacity to operate multiple, diverse instruments concurrently. While the NASA program has been in operation for over 30 years, new aircraft and technological advances that will expand the capabilities for airborne observation are continually being assessed and implemented. This presentation will review the current state of NASA's science platforms, recent improvements and new missions concepts as well as provide a survey of emerging technologies unmanned aerial vehicles for long duration observations (Global Hawk and Predator). Applications of information technology that allow more efficient use of flight time and the ability to rapidly reconfigure systems for different mission objectives are addressed.

  19. Learning from Science: Case Studies of Science Offerings in Afterschool Programs

    ERIC Educational Resources Information Center

    Lundh, Patrik; House, Ann; Means, Barbara; Harris, Christopher J.

    2013-01-01

    Afterschool programs have increasingly gained attention as settings that can help enrich students' science learning. Even though science is widely included in afterschool activities, sites often lack adequate materials and staff know-how to implement quality science. To address this need, this article examines afterschool science in light of the…

  20. Laser Science and Technology Program Update 2001

    SciTech Connect

    Chen, H L; Hackel, L A

    2002-01-01

    The Laser Science and Technology (LS&T) Program's mission is to develop advanced solid-state lasers, optics, materials technologies, and applications to solve problems and create new capabilities of importance to the Nation and the Laboratory. A top, near-term priority is to provide technical support to the National Ignition Facility (NIF) to ensure activation success. LS&T provides the NIF Programs with core competencies and supports its economic viability. The primary objectives of LS&T activities in fiscal year (FY) 2001 have been threefold: (1) to support deployment of hardware and to enhance lasers and optics performance for NIF, (2) to develop advanced solid-state laser systems and optical components for the Department of Energy (DOE) and the Department of Defense (DoD), and (3) to invent, develop, and deliver improved concepts and hardware for other government agencies and U.S. industry. Special efforts have also been devoted to building and maintaining our capabilities in three technology areas: high-power solid-state lasers, high-power optical materials, and applications of advanced lasers.

  1. Staff Development Program in Science K-5.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.

    The need to reinforce the skills of science teachers and supervisors and the need to increase student performance in the sciences have become critical national concerns. The importance of quality science education grows as science and technology continue to be major factors in our daily lives. New York City has recognized the need to enhance…

  2. Beginning Science Curriculum for English Speaking Tropical Africa (African Primary Science Program). Final Report.

    ERIC Educational Resources Information Center

    Education Development Center, Inc., Newton, MA.

    The African Primary Science Program, which was established in 1960 as part of the African Education Program, has operated widely in English-speaking African countries. Science centers have been established with program assistance in seven of these: Ghana, Kenya, Malawi, Nigeria, Sierra Leone, Tanzania, and Uganda. Its goals have been centered on…

  3. Atmospheric Radiation Measurement Program Science Plan. Current Status and Future Directions of the ARM Science Program

    SciTech Connect

    Ackerman, Thomas P.; Del Genio, Anthony D.; Ellingson, Robert G.; Ferrare, Richard A.; Klein, Steve A.; McFarquhar, Gregory M.; Lamb, Peter J.; Long, Charles M.; Verlinde, Johannes

    2004-10-30

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years; Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square; Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds; Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations; Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites; Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale; and, Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote

  4. Laser Science and Technology Program Update 2002

    SciTech Connect

    Hackel, L A; Chen, H L

    2003-03-01

    The Laser Science and Technology (LS&T) Program's mission is to develop advanced lasers, optics, materials technologies, and applications to solve problems and create new capabilities of importance to the nation and the Laboratory. A top, near-term priority is to provide technical support in the deployment and upgrade of the National Ignition Facility (NIF). Our other program activities synergistically develop technologies that are of interest to the NIF Directorate but outside the scope of the NIF funding. The primary objectives of LS&T activities in 2002 have been fourfold--(a) to support deployment of hardware and to enhance laser and optics performance for NIF, (b) to develop high-energy petawatt laser science and technology for the Department of Energy (DOE), (c) to develop advanced solid-state laser systems and optical components for the Department of Defense (DoD), and to invent develop, and deliver improved concepts and hardware for other government agencies and industry. Special efforts have been devoted to building and maintaining our capabilities in three technology areas: high-power short-pulse solid-state lasers, high-power optical materials, and applications of advanced lasers. LS&T activities during 2002 focused on seven major areas: (1) NIF Project--LS&T led major advances in the deployment of NIF Final Optics Assembly (FOA) and the development of 3{omega} optics processing and treatment technologies to enhance NIF's operations and performance capabilities. (2) Stockpile Stewardship Program (SSP)--LS&T personnel continued development of ultrashort-pulse lasers and high-power, large-aperture optics for applications in SSP, extreme-field science and national defense. To enhance the high-energy petawatt (HEPW) capability in NIF, LS&T continued development of advanced compressor-grating and front-end laser technologies utilizing optical-parametric chirped-pulse amplification (OPCPA). (3) High-energy-density physics and inertial fusion energy

  5. New Millenium Program Serving Earth and Space Sciences

    NASA Technical Reports Server (NTRS)

    Li, Fuk

    1999-01-01

    A cross-Enterprise program is to identify and validate flight breakthrough technologies that will significantly benefit future space science and earth science missions. The breakthrough technologies are: enable new capabilities to meet earth and space science needs and reducing costs of future missions. The flight validation are: mitigates risks to first users and enables rapid technology infusion into future missions.

  6. Mexico's Program for Science and Technology, 1978 to 1982.

    ERIC Educational Resources Information Center

    Flores, Edmundo

    1979-01-01

    Describes briefly the National Council for Science and Technology (CONACYT) of Mexico, and outlines Mexico's Program for Science and Technology which includes 2,489 projects in basic and applied sciences at a cost of $260 million from 1978 to 1982. (HM)

  7. Diversifying Science: Underrepresented Student Experiences in Structured Research Programs

    PubMed Central

    Cabrera, Nolan L.; Lin, Monica H.; Arellano, Lucy; Espinosa, Lorelle L.

    2013-01-01

    Targeting four institutions with structured science research programs for undergraduates, this study focuses on how underrepresented students experience science. Several key themes emerged from focus group discussions: learning to become research scientists, experiences with the culture of science, and views on racial and social stigma. Participants spoke of essential factors for becoming a scientist, but their experiences also raised complex issues about the role of race and social stigma in scientific training. Students experienced the collaborative and empowering culture of science, exhibited strong science identities and high self-efficacy, while developing directed career goals as a result of “doing science” in these programs. PMID:23503690

  8. Asdeqwa Yoedza: The Outdoor Seneca Science Teaching Program.

    ERIC Educational Resources Information Center

    Dobey, Daniel C.; And Others

    1996-01-01

    A summer science enrichment program addressed the cultural and academic needs of middle school students living on the Cattaraugus and Allegany reservations of the Seneca Nation (New York). The program integrated language arts skills and science content with Seneca culture and language. Learning activities included vocabulary lessons, critical and…

  9. Advanced Science for Kids: Multicultural Assessment and Programming.

    ERIC Educational Resources Information Center

    Bettac, Teresa; Huckabee, Colleen; Musser, Louise; Patton, Paulette; Yates, Joyce

    1997-01-01

    Describes Advanced Science for Kids (ASK), a multicultural approach to assessment and programming for a middle school advanced science program. ASK is designed to provide alternative approaches to identification and assessment, facilitate authentic instruction and assessment, and provide minority students with academic and social support as they…

  10. Exemplary Programs in Physics, Chemistry, Biology, and Earth Science.

    ERIC Educational Resources Information Center

    Yager, Robert E., Ed.

    The 1982 Search for Excellence in Science Education project has identified 50 exemplary programs in physics, chemistry, biology, and earth science. Descriptions of four of these programs and the criteria used in their selection are presented. The first section reviews the direction established by Project Synthesis in searching for exemplary…

  11. Development and Evaluation of the Science Careers Program. Final Report.

    ERIC Educational Resources Information Center

    Weiss, Iris R.

    This report discusses the development of the Science Careers Program (SCP), describes the final product, presents the results of an evaluation study of the program, and discusses plans for dissemination. SCP is aimed at increasing the career relevance of science education for all students in grades 4-9, while at the same time particularly…

  12. Case Studies of Liberal Arts Computer Science Programs

    ERIC Educational Resources Information Center

    Baldwin, D.; Brady, A.; Danyluk, A.; Adams, J.; Lawrence, A.

    2010-01-01

    Many undergraduate liberal arts institutions offer computer science majors. This article illustrates how quality computer science programs can be realized in a wide variety of liberal arts settings by describing and contrasting the actual programs at five liberal arts colleges: Williams College, Kalamazoo College, the State University of New York…

  13. Microgravity Combustion Science: 1995 Program Update

    NASA Technical Reports Server (NTRS)

    Ross, Howard D. (Editor); Gokoglu, Suleyman A. (Editor); Friedman, Robert (Editor)

    1995-01-01

    Microgravity greatly benefits the study of fundamental combustion processes. In this environment, buoyancy-induced flow is nearly eliminated, weak or normally obscured forces and flows can be isolated, gravitational settling or sedimentation is nearly eliminated, and temporal and spatial scales can be expanded. This document reviews the state of knowledge in microgravity combustion science with the emphasis on NASA-sponsored developments in the current period of 1992 to early 1995. The subjects cover basic research in gaseous premixed and diffusion-flame systems, flame structure and sooting, liquid droplets and pools, and solid-surface ignition and flame spread. They also cover applied research in combustion synthesis of ceramic-metal composites, advanced diagnostic instrumentation, and on-orbit fire safety. The review promotes continuing research by describing the opportunities for Principal Investigator participation through the NASA Research Announcement program and the available NASA Lewis Research Center ground-based facilities and spaceflight accommodations. This review is compiled by the members and associates of the NASA Lewis Microgravity Combustion Branch, and it serves as an update of two previous overview reports.

  14. Overview of the RFX fusion science program

    NASA Astrophysics Data System (ADS)

    Martin, P.; Adamek, J.; Agostinetti, P.; Agostini, M.; Alfier, A.; Angioni, C.; Antoni, V.; Apolloni, L.; Auriemma, F.; Barana, O.; Barison, S.; Baruzzo, M.; Bettini, P.; Boldrin, M.; Bolzonella, T.; Bonfiglio, D.; Bonomo, F.; Boozer, A. H.; Brombin, M.; Brotankova, J.; Buffa, A.; Canton, A.; Cappello, S.; Carraro, L.; Cavazzana, R.; Cavinato, M.; Chacon, L.; Chitarin, G.; Cooper, W. A.; Dal Bello, S.; Dalla Palma, M.; Delogu, R.; De Lorenzi, A.; De Masi, G.; Dong, J. Q.; Drevlak, M.; Escande, D. F.; Fantini, F.; Fassina, A.; Fellin, F.; Ferro, A.; Fiameni, S.; Fiorentin, A.; Franz, P.; Gaio, E.; Garbet, X.; Gazza, E.; Giudicotti, L.; Gnesotto, F.; Gobbin, M.; Grando, L.; Guo, S. C.; Hirano, Y.; Hirshman, S. P.; Ide, S.; Igochine, V.; In, Y.; Innocente, P.; Kiyama, S.; Liu, S. F.; Liu, Y. Q.; Lòpez Bruna, D.; Lorenzini, R.; Luchetta, A.; Manduchi, G.; Mansfield, D. K.; Marchiori, G.; Marcuzzi, D.; Marrelli, L.; Martini, S.; Matsunaga, G.; Martines, E.; Mazzitelli, G.; McCollam, K.; Menmuir, S.; Milani, F.; Momo, B.; Moresco, M.; Munaretto, S.; Novello, L.; Okabayashi, M.; Ortolani, S.; Paccagnella, R.; Pasqualotto, R.; Pavei, M.; Perverezev, G. V.; Peruzzo, S.; Piovan, R.; Piovesan, P.; Piron, L.; Pizzimenti, A.; Pomaro, N.; Pomphrey, N.; Predebon, I.; Puiatti, M. E.; Rigato, V.; Rizzolo, A.; Rostagni, G.; Rubinacci, G.; Ruzzon, A.; Sakakita, H.; Sanchez, R.; Sarff, J. S.; Sattin, F.; Scaggion, A.; Scarin, P.; Schneider, W.; Serianni, G.; Sonato, P.; Spada, E.; Soppelsa, A.; Spagnolo, S.; Spolaore, M.; Spong, D. A.; Spizzo, G.; Takechi, M.; Taliercio, C.; Terranova, D.; Toigo, V.; Valisa, M.; Veranda, M.; Vianello, N.; Villone, F.; Wang, Z.; White, R. B.; Yadikin, D.; Zaccaria, P.; Zamengo, A.; Zanca, P.; Zaniol, B.; Zanotto, L.; Zilli, E.; Zollino, G.; Zuin, M.

    2011-09-01

    This paper summarizes the main achievements of the RFX fusion science program in the period between the 2008 and 2010 IAEA Fusion Energy Conferences. RFX-mod is the largest reversed field pinch in the world, equipped with a system of 192 coils for active control of MHD stability. The discovery and understanding of helical states with electron internal transport barriers and core electron temperature >1.5 keV significantly advances the perspectives of the configuration. Optimized experiments with plasma current up to 1.8 MA have been realized, confirming positive scaling. The first evidence of edge transport barriers is presented. Progress has been made also in the control of first-wall properties and of density profiles, with initial first-wall lithization experiments. Micro-turbulence mechanisms such as ion temperature gradient and micro-tearing are discussed in the framework of understanding gradient-driven transport in low magnetic chaos helical regimes. Both tearing mode and resistive wall mode active control have been optimized and experimental data have been used to benchmark numerical codes. The RFX programme also provides important results for the fusion community and in particular for tokamaks and stellarators on feedback control of MHD stability and on three-dimensional physics. On the latter topic, the result of the application of stellarator codes to describe three-dimensional reversed field pinch physics will be presented.

  15. Research Experiences in Community College Science Programs

    NASA Astrophysics Data System (ADS)

    Beauregard, A.

    2011-12-01

    research with my community college students by partnering with a research oceanographer. Through this partnership, students have had access to an active oceanographic researcher through classroom visits, use of data in curriculum, and research/cruise progress updates. With very little research activity currently going on at the community college, this "window" into scientific research is invaluable. Another important aspect of this project is the development of a summer internship program that has allowed four community college students to work directly with an oceanographer in her lab for ten weeks. This connection of community college students with world-class scientists in the field promotes better understanding of research and potentially may encourage more students to major in the sciences. In either approach, the interaction with scientists at different stages of their careers, from undergraduate and graduate students at universities to post docs and research scientists, also provides community college students with the opportunity to gain insight into possible career pathways. For both majors and non-majors, a key outcome of such experiences will be gaining experience in using inquiry and reasoning through the scientific method and becoming comfortable with data and technology.

  16. Preparing Science Teachers: Strong Emphasis on Science Content Course Work in a Master's Program in Education

    NASA Astrophysics Data System (ADS)

    Ajhar, Edward A.; Blackwell, E.; Quesada, D.

    2010-05-01

    In South Florida, science teacher preparation is often weak as a shortage of science teachers often prompts administrators to assign teachers to science classes just to cover the classroom needs. This results is poor preparation of students for college science course work, which, in turn, causes the next generation of science teachers to be even weaker than the first. This cycle must be broken in order to prepare better students in the sciences. At St. Thomas University in Miami Gardens, Florida, our School of Science has teamed with our Institute for Education to create a program to alleviate this problem: A Master of Science in Education with a Concentration in Earth/Space Science. The Master's program consists of 36 total credits. Half the curriculum consists of traditional educational foundation and instructional leadership courses while the other half is focused on Earth and Space Science content courses. The content area of 18 credits also provides a separate certificate program. Although traditional high school science education places a heavy emphasis on Earth Science, this program expands that emphasis to include the broader context of astronomy, astrophysics, astrobiology, planetary science, and the practice and philosophy of science. From this contextual basis the teacher is better prepared to educate and motivate middle and high school students in all areas of the physical sciences. Because hands-on experience is especially valuable to educators, our program uses materials and equipment including small optical telescopes (Galileoscopes), several 8-in and 14-in Celestron and Meade reflectors, and a Small Radio Telescope installed on site. (Partial funding provided by the US Department of Education through Minority Science and Engineering Improvement Program grant P120A050062.)

  17. Students' perceptions of the nature of science and the process of science through a project-based science program

    NASA Astrophysics Data System (ADS)

    Lagnado, Jennifer Marie

    This study examined students' understanding of the epistemology of science and the nature of science (NOS) within a high school and middle school project-based science program. Science research programs have become increasingly popular, causing educational researchers to question what students are learning within such classes. Twenty three students enrolled in a high school science research program and twenty five students enrolled in a middle school science research program completed questionnaires pertaining to the NOS. Thirteen high school students and two middle school students of those surveyed were individually interviewed. Upon finding consistent answers among the high school Science Projects students, students enrolled in only traditional science classes (non-participants of the research program) also completed questionnaires. Teachers of traditional science classes were interviewed and questioned on each NOS topic examined in this study as well. It was found that both high school Science Projects students and non-participants all had a good understanding of the NOS. When data were examined more closely, students of the research program demonstrated an evidenced-based logical structure of thought as demonstrated by the many more examples from the history of science used to support their premises on the NOS. This suggests that science research students have developed a higher order cognitive method of thinking that is more logical and critical, based on evidence, due to their experiencing research science. Non-participants did not provide evidence to support their premises suggesting that they lack a meta-cognitive type of thinking that the participants have developed. Science Projects students also demonstrated substantial self-awareness when asked to reflect on their learning. Students reported that they acquired a special type of thought process, coupled with analytical skills that they used when conducting science research. Others spoke of a deeper

  18. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    SciTech Connect

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  19. Effect of Teacher Education Program on Science Process Skills of Pre-Service Science Teachers

    ERIC Educational Resources Information Center

    Yakar, Zeha

    2014-01-01

    Over the past three or more decades, many studies have been written about teacher education and the preparation of science teachers. Presented here is one which investigated the effectiveness of scientific process skills on pre-service science teachers of Pamukkale University Primary Science Teacher Education Program for four years. This study…

  20. Informal Science Education for Girls: Careers in Science and Effective Program Elements

    ERIC Educational Resources Information Center

    Fadigan, Kathleen A.; Hammrich, Penny L.

    2005-01-01

    Addressing the need for continued support of after-school and summer science enrichment programs for urban girls and at-risk youth, this paper describes the educational and career paths of a sample of young women who participated in the Women in Natural Sciences (WINS) program during high school. This study also attempts to determine how the…

  1. The New Swing Toward Science Education: Interjecting Interpretive Programs with School Science Curricula.

    ERIC Educational Resources Information Center

    Kelly, John

    1985-01-01

    Shows how the integration of interpretive programs with school science curricula can strengthen the power and relevance of science education, while increasing the scientific depth of environmental programs. Curriculum resources, need for interpretive resources, role of interpreters, and evaluation/development strategies are addressed. (JN)

  2. NASA information sciences and human factors program

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee; Hood, Ray; Montemerlo, Melvin; Jenkins, James; Smith, Paul; Dibattista, John; Depaula, Ramon; Hunter, Paul; Lavery, David

    1991-01-01

    The FY-90 descriptions of technical accomplishments are contained in seven sections: Automation and Robotics, Communications, Computer Sciences, Controls and Guidance, Data Systems, Human Factors, and Sensor Technology.

  3. NASA Information Sciences and Human Factors Program

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee; Hood, Ray; Montemerlo, Melvin; Jenkins, James; Smith, Paul; Dibattista, John; Depaula, Ramon; Hunter, Paul

    1990-01-01

    Fiscal year 1989 descriptions of technical accomplishments in seven sections are presented: automation and robotics; communications; computer sciences; controls and guidance; data systems; human factors; and sensor technology.

  4. NASA Information Sciences and Human Factors Program

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee B.; Mciver, Duncan E.; Dibattista, John D.; Larsen, Ronald L.; Montemerlo, Melvin D.; Wallgren, Ken; Sokoloski, Marty; Wasicko, Dick

    1985-01-01

    This report contains FY 1984/85 descriptions and accomplishments in six sections: Computer Science and Automation, Controls and Guidance, Data Systems, Human Factors, Sensor Technology, and Communications.

  5. Strategic plan for the restructured US fusion energy sciences program

    SciTech Connect

    1996-08-01

    This plan reflects a transition to a restructured fusion program, with a change in focus from an energy technology development program to a fusion energy sciences program. Since the energy crisis of the early 1970`s, the U.S. fusion program has presented itself as a goal- oriented fusion energy development program, with milestones that required rapidly increasing budgets. The Energy Policy Act of 1992 also called for a goal-oriented development program consistent with the Department`s planning. Actual funding levels, however, have forced a premature narrowing of the program to the tokamak approach. By 1995, with no clear, immediate need driving the schedule for developing fusion energy and with enormous pressure to reduce discretionary spending, Congress cut fusion program funding for FY 1996 by one-third and called for a major restructuring of the program. Based on the recommendations of the Fusion Energy Advisory Committee (FEAC), the Department has decided to pursue a program that concentrates on world-class plasma, science, and on maintaining an involvement in fusion energy science through international collaboration. At the same time, the Japanese and Europeans, with energy situations different from ours, are continuing with their goal- oriented fusion programs. Collaboration with them provides a highly leveraged means of continued involvement in fusion energy science and technology, especially through participation in the engineering and design activities of the International Thermonuclear Experimental Reactor program, ITER. This restructured fusion energy sciences program, with its focus on fundamental fusion science and technology, may well provide insights that lead to more attractive fusion power plants, and will make use of the scientific infrastructure that will allow the United States to launch a fusion energy development program at some future date.

  6. Whales and Hermit Crabs: Integrated Programming and Science.

    ERIC Educational Resources Information Center

    Kataoka, Joy C.; Lock, Robin

    1995-01-01

    This article describes an integrated program in marine biology. The program was implemented in a nongraded inclusive setting with second- to fourth-grade students whose abilities ranged from gifted to learning disabled. The program integrated science, art, music, language arts, and research and computer skills. (DB)

  7. Information systems requirements for the Microgravity Science and Applications Program

    NASA Technical Reports Server (NTRS)

    Kicza, M. E.; Kreer, J. R.

    1991-01-01

    NASA's Microgravity Science and Applications (MSAD) Program is presented. Additionally, the types of information produced wiithin the program and the anticipated growth in information system requirements as the program transitions to Space Station Freedom utilization are discussed. Plans for payload operations support in the Freedom era are addressed, as well as current activities to define research community requirements for data and sample archives.

  8. Guidelines for Science Programs for Hearing Impaired Adolescents.

    ERIC Educational Resources Information Center

    Mertens, Donna M.

    This evaluation study examined the implementation of the Marine Science Young Scholars Program, which provided 32 gifted deaf and hearing-impaired adolescents with a 4-week summer enrichment program in 1988 and 1989. The instructional program: used a cognitively based curriculum; included labs, lectures, and field experiences; promoted one-to-one…

  9. Hybrid-Mentoring Programs for Beginning Elementary Science Teachers

    ERIC Educational Resources Information Center

    Bang, EunJin

    2013-01-01

    This study examines four induction models and teacher changes in science teaching practices, as a result of several mentoring programs. It explores three different computer-mediated mentoring programs, and a traditional offline induction program--in terms of interactivity, inquiry-based teaching, and topics of knowledge. Fifteen elementary science…

  10. Information systems requirements for the microgravity science and applications program

    NASA Technical Reports Server (NTRS)

    Kicza, M. E.; Kreer, J. R.

    1990-01-01

    NASA's Microgravity Science and Applications (MSAD) Program is presented. Additionally, the types of information produced within the program and the anticipated growth in information system requirements as the program transitions to Space Station Freedom utilization are discussed. Plans for payload operations support in the Freedom era are addressed, as well as current activities to define research community requirements for data and sample archives.

  11. Learning to teach science in a professional development school program

    NASA Astrophysics Data System (ADS)

    Hildreth, David P.

    1997-09-01

    The purpose of this study was to determine the effects of learning to teach science in a Professional Development School (PDS) program on university elementary education preservice teachers' (1) attitudes toward science, (2) science process skills achievement, and (3) sense of science teaching efficacy. Data were collected and analyzed using both quantitative and qualitative methods. Quantitative data were collected using the Science Attitude Inventory (North Carolina Math and Science Education Network (1994), the Test of Integrated Process Skills, TIPS, (Dillashaw & Okey, 1980), and the Science Teaching Efficacy Belief Instrument, STEBI, form B (Enochs & Riggs, 1990). A pretest posttest research design was used for the attitude and process skills constructs. These results were analyzed using paired t test procedures. A pre-experimental group comparison group research design was used for the efficacy construct. Results from this comparison were analyzed using unpaired t test procedures. Qualitative data were collected through students' responses to open-ended questionnaires, narrative interviews, journal entries, small messages, and unsolicited conversations. These data were analyzed via pattern analysis. Posttest scores were significantly higher than pretests scores on both the Science Attitude Inventory and the TIPS. This indicated that students had improved attitudes toward science and science teaching and higher process skills achievement after three semesters in the science-focused PDS program. Scores on the STEBI were significantly higher for students in the pre-experimental group when compared to students in the comparison group. This indicates that students in the science-focused PDS program possessed more efficacious beliefs about science teaching than did the comparison group. Quantitative data were supported by analysis of qualitative data. Implications from this study point to the effectiveness of learning to teach science in a science-focused PDS

  12. Lessons from NASA Applied Sciences Program: Success Factors in Applying Earth Science in Decision Making

    NASA Astrophysics Data System (ADS)

    Friedl, L. A.; Cox, L.

    2008-12-01

    The NASA Applied Sciences Program collaborates with organizations to discover and demonstrate applications of NASA Earth science research and technology to decision making. The desired outcome is for public and private organizations to use NASA Earth science products in innovative applications for sustained, operational uses to enhance their decisions. In addition, the program facilitates the end-user feedback to Earth science to improve products and demands for research. The Program thus serves as a bridge between Earth science research and technology and the applied organizations and end-users with management, policy, and business responsibilities. Since 2002, the Applied Sciences Program has sponsored over 115 applications-oriented projects to apply Earth observations and model products to decision making activities. Projects have spanned numerous topics - agriculture, air quality, water resources, disasters, public health, aviation, etc. The projects have involved government agencies, private companies, universities, non-governmental organizations, and foreign entities in multiple types of teaming arrangements. The paper will examine this set of applications projects and present specific examples of successful use of Earth science in decision making. The paper will discuss scientific, organizational, and management factors that contribute to or impede the integration of the Earth science research in policy and management. The paper will also present new methods the Applied Sciences Program plans to implement to improve linkages between science and end users.

  13. The Development and Application of Airway Devices in China

    PubMed Central

    Chen, Xiangdong; Ma, Wuhua; Liu, Renyu; Yao, Shanglong

    2017-01-01

    Airway management is one of the most important tasks for anesthesiologists. Anesthesiologists are experts in airway management and have made tremendous contribution to the development of the airway devices. Chinese anesthesiologists have made significant contribution in introducing advanced airway management and developing innovative techniques and devices for airway management in China. This article overviews the development and application of airway devices in China as well as the dedication and contribution of Chinese experts in the development of novel airway devices. With the development of science and technology accompanied by the advanced knowledge in airway management, more effective and safe artificial airways will be developed for clinical practice. The authors believe that Chinese experts will continue their outstanding contribution to the development of innovative airway devices, systems and knowledge. PMID:28191485

  14. A Research Program in Flight Sciences

    NASA Technical Reports Server (NTRS)

    Whitesides, John L.; Waggoner, Edgar G. (Technical Monitor)

    2005-01-01

    Since its inception in January 2003, thc program has provided support for 1 faculty and a total of 7 Graduate Research Scholar Assistants, of these all 7 have completed their MS degree program. The program has generated 5 MS thesis and 2 MS project reports. Attachment: Appendix A, B, C, and D.

  15. Notification: Review of Science to Achieve Results (STAR) Grant Program

    EPA Pesticide Factsheets

    Project #OA-FY12-0606, July 16, 2012. EPA’s Office of Inspector General (OIG) plans to begin preliminary research for an audit of grants awarded under EPA’s Science to Achieve Results (STAR) program.

  16. An Introduction to Programming for Students in Sciences.

    ERIC Educational Resources Information Center

    Boero, P.; And Others

    1982-01-01

    Describes a method for integrating basic instruction on computer programing in mathematics courses for earth science, chemistry, and pharmaceutical chemistry students to provide them with a knowledge of the real possibilities of computing media. (CHC)

  17. Space life sciences: Programs and projects

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA space life science activities are outlined. Brief, general descriptions are given of research in the areas of biomedical research, space biology, closed loop life support systems, exobiology, and biospherics.

  18. NASA information sciences and human factors program

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee; Hood, Ray; Montemerlo, Melvin; Sokoloski, Martin; Jenkins, James; Smith, Paul; Dibattista, John

    1989-01-01

    The FY 1988 descriptions of technical accomplishments is presented in seven sections: Automation and Robotics, Communications Systems, Computer Sciences, Controls and Guidance, Data Systems, Human Factors, and Sensor Technology.

  19. NASA Information Sciences and Human Factors Program

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee (Editor); Hood, Ray (Editor); Montemerlo, Melvin (Editor); Sokoloski, Martin M. (Editor); Jenkins, James P. (Editor); Smith, Paul H. (Editor); Dibattista, John D. (Editor)

    1988-01-01

    The FY 1987 descriptions of technical accomplishments are contained for seven areas: automation and robotics, communications systems, computer sciences, controls and guidance, data systems, human factors, and sensor technology.

  20. Computer Science Programs in Engineering Colleges = Fewer Females.

    ERIC Educational Resources Information Center

    Camp, Tracy

    1998-01-01

    When a Department of Computer Science (CS) recently formed stronger ties with the College of Engineering and weaker ties with the College of Arts and Science, CS faculty began encouraging CS majors to switch to the former college from the latter. Analyzes the decline of females in the CS program as a result. (Author/PVD)

  1. Promoting Science via an Equipment Loan Outreach Program

    ERIC Educational Resources Information Center

    Krieble, Kelly; Salter, Carl

    2008-01-01

    An important component of many college and university science programs is that of community outreach. Some of the more typical kinds of outreach activities include teacher training workshops, public lectures, open house "science days," and school demonstration visits. The latter activity usually consists of students and faculty transporting…

  2. Direction Discovery: A Science Enrichment Program for High School Students

    ERIC Educational Resources Information Center

    Sikes, Suzanne S.; Schwartz-Bloom, Rochelle D.

    2009-01-01

    Launch into education about pharmacology (LEAP) is an inquiry-based science enrichment program designed to enhance competence in biology and chemistry and foster interest in science careers especially among under-represented minorities. The study of how drugs work, how they enter cells, alter body chemistry, and exit the body engages students to…

  3. Gender Digital Divide and Challenges in Undergraduate Computer Science Programs

    ERIC Educational Resources Information Center

    Stoilescu, Dorian; McDougall, Douglas

    2011-01-01

    Previous research revealed a reduced number of female students registered in computer science studies. In addition, the female students feel isolated, have reduced confidence, and underperform. This article explores differences between female and male students in undergraduate computer science programs in a mid-size university in Ontario. Based on…

  4. Development and Implementation of Science and Technology Ethics Education Program for Prospective Science Teachers

    NASA Astrophysics Data System (ADS)

    Rhee, Hyang-yon; Choi, Kyunghee

    2014-05-01

    The purposes of this study were (1) to develop a science and technology (ST) ethics education program for prospective science teachers, (2) to examine the effect of the program on the perceptions of the participants, in terms of their ethics and education concerns, and (3) to evaluate the impact of the program design. The program utilized problem-based learning (PBL) which was performed as an iterative process during two cycles. A total of 23 and 29 prospective teachers in each cycle performed team activities. A PBL-based ST ethics education program for the science classroom setting was effective in enhancing participants' perceptions of ethics and education in ST. These perceptions motivated prospective science teachers to develop and implement ST ethics education in their future classrooms. The change in the prospective teachers' perceptions of ethical issues and the need for ethics education was greater when the topic was controversial.

  5. How Has Reform in Science Teacher Education Programs Changed Preservice Teachers' Views About Science?

    NASA Astrophysics Data System (ADS)

    Ucar, Sedat; Sanalan, Vehbi Aytekin

    2011-02-01

    Reforms are typically criticized for failing to bridge the gap between practitioners and researchers and for the lack of research support provided prior to implementation. Research has indicated that preservice teachers' understandings of high-quality science teaching are formed by teacher training programs. The purposes of this study are to investigate views about science in preservice teachers in old and new teacher training programs and to determine whether and how these two programs shape teacher trainees' views of science. A total of 459 students from a 4-year elementary science teacher training program participated in the study. A 41-item instrument was used to collect data. Four factors were extracted from the data, explaining 41.58% of the variance, and the reliability was found to be .86. There were significant differences for both males and females between the old and new programs. However, no difference was found between males' and females' total scores. In addition, students from the two programs had significantly different scores on the sub-scales of "Anxiety" and "Uncertainty". For example, males in the new program had significantly higher scores on the "Anxiety" and "Uncertainty" sub-scales. The overall increase in science course hours and decrease in science method course hours in the new program may account for these findings.

  6. Developing a Seamless Science Education Program (K-Graduate School)

    NASA Astrophysics Data System (ADS)

    Hyde, Truell; Smith, Bernard; Matthews, Lorin; Carmona-Reyes, Jorge

    The production of STEM personnel has declined precipitously over the past several decades. This is threatening not only the international economy but also the world's access to space. It is imperative that scientists within the current space physics community develop programs at the K-12 level able to spark an interest in science while providing an understanding that a career in science can be rewarding both professionally and financially. Ideally such programs should mesh seamlessly with current university undergraduate and graduate programs, easing the student's transition from one to the other. This goal is the primary driver behind CASPER's current outreach program. CASPER programs supporting this paradigm will be discussed along with related funding opportunities such as the Department of Education GearUp Program and the NSF REU and RET programs.

  7. A Study of Educational Opportunity Program (EOP) Students Within Health Science Career Preparation Programs.

    ERIC Educational Resources Information Center

    James, William H.; And Others

    Participation of minority students within health science career preparation programs is investigated in this study from the University of Washington. The history of minority admissions to medical and nursing schools throughout the country is reviewed. Health sciences programs for minorities at the university are discussed and the impact of the…

  8. Animal Science Technology. An Experimental Developmental Program. Volume I, Report of the Developmental Program.

    ERIC Educational Resources Information Center

    Brant, Herman G.; And Others

    In 1961, administrative personnel at Delhi College in New York observed that formal training programs for animal science technicians were virtually nonexistant. Response to this apparent need resulted in the initiation of perhaps the first 2-year Animal Science Technology Program in the nation. This two-volume report is the result of an extensive…

  9. Earth system science: A program for global change

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Earth System Sciences Committee (ESSC) was appointed to consider directions for the NASA Earth-sciences program, with the following charge: review the science of the Earth as a system of interacting components; recommend an implementation strategy for Earth studies; and define the role of NASA in such a program. The challenge to the Earth system science is to develop the capability to predict those changes that will occur in the next decade to century, both naturally and in response to human activity. Sustained, long-term measurements of global variables; fundamental descriptions of the Earth and its history; research foci and process studies; development of Earth system models; an information system for Earth system science; coordination of Federal agencies; and international cooperation are examined.

  10. Spacelab 1 and the Life Sciences Flight Experiments Program

    NASA Technical Reports Server (NTRS)

    Bush, W. H.; Clark, R. S.

    1984-01-01

    The Life Sciences Flight Experiments Program (LSFEP) was established by NASA in 1978 to plan and direct efforts necessary to conduct a continuing program of in-flight life science investigations throughout the Space Shuttle era. The Spacelab 1 (SL-1) mission, conducted from November 28 to December 8, 1983, was to verify Spacelab performance through a variety of scientific experiments including life science. A description is given of the seven NASA life sciences experiments, which consisted of four human experiments, a fungus experiment, a plant experiment, and radiation experiments. Ten life sciences experiments from the European Space Agency were also flown. The experiments include studies of the circadian rhythms in Neurospora crassa, the nutation of Helianthus annus, the vestibular function during weightlessness, the influence of space flight on erythrokinetics in man, and the adaptation of vestibulo-spinal reflex mechanisms during space flight.

  11. NASA'S Water Resources Element Within the Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2011-01-01

    The NASA Earth Systems Division has the primary responsibility for the Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the NASA Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses major problems facing water resources managers, including having timely and accurate data to drive their decision support tools. It then describes how NASA's science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA's Water Resources Applications Program are described.

  12. Supporting an Elementary Science Program Through Community Industry

    ERIC Educational Resources Information Center

    Lapp, Douglas M.; Benton, Leslie J.

    1974-01-01

    Describes a program in Fairfax County, Virginia, in which Elementary Science Study (ESS) materials are constructed and reconditioned in an Instructional Materials Processing Center using local community labor. Also discusses an inservice program for training teachers in the use of ESS materials. (JR)

  13. MORE for Teachers: A Program for Science Teacher Preparation

    ERIC Educational Resources Information Center

    Miller, Matthew; Ohana, Chris; Hanley, Daniel

    2013-01-01

    This article summarizes how a group of undergraduate regional university faculty built a program for rigorous and research-based science teacher preparation at the elementary level--namely, the "Model of Research-Based Education for Teachers" (MORE for Teachers). First, we discuss the research upon which the program is built: (1) a…

  14. Earth-Like Exoplanets: The Science of NASA's Navigator Program

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R. (Editor); Traub, Wesley A. (Editor)

    2006-01-01

    This book outlines the exoplanet science content of NASA's Navigator Program, and it identifies the exoplanet research priorities. The goal of Navigator Program missions is to detect and characterize Earth-like planets in the habitable zone of nearby stars and to search for signs of life on those planets.

  15. Development of an Actuarial Science Program at Salisbury University

    ERIC Educational Resources Information Center

    Wainwright, Barbara A.

    2014-01-01

    This paper focuses on the development of an actuarial science track for the mathematics major at Salisbury University (SU). A timeline from the initial investigation into such a program through the proposal and approval processes is shared for those who might be interested in developing a new actuarial program. It is wise to start small and take…

  16. Family and Consumer Sciences Education. Vocational Education Program Courses Standards.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Div. of Applied Tech., Adult, and Community Education.

    This document contains vocational education program course standards (curriculum frameworks and student performance standards) for exploratory courses, practical arts courses, and job preparatory programs offered at the secondary and postsecondary level as part of the family and consumer sciences component of Florida's comprehensive vocational…

  17. Practices and Innovations in Australian Science Teacher Education Programs

    ERIC Educational Resources Information Center

    Palmer, David

    2008-01-01

    This paper reports part of a larger study which was designed to investigate current practices in initial teacher education programs in Australia. The main data collection was by telephone interviews, which were carried out with science education specialists and program coordinators at all institutions which offer primary teacher education or…

  18. Health Science Education. Vocational Education Program Courses Standards.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Div. of Applied Tech., Adult, and Community Education.

    This document contains vocational education program course standards (curriculum frameworks and student performance standards) for exploratory courses, practical arts courses, and job preparatory programs offered at the secondary and postsecondary level as part of the health science education component of Florida's comprehensive vocational…

  19. University of Utah Summer Health Science Program 1977.

    ERIC Educational Resources Information Center

    Martinez, Luciano S.

    The Summer Health Science Program aimed to give minority students a chance to explore career options in various allied health fields. After initial funding and student admission problems, the program was begun on June 13, 1977. CETA (Comprehensive Employment and Training Act) paid the student's salary up to 32 hours a week for 10 weeks (20 hours…

  20. INSTITUTING A FIRE SCIENCE PROGRAM AT SHASTA COLLEGE.

    ERIC Educational Resources Information Center

    BROOKS, WALTER L.; KIELBART, RONALD F.

    A STRUCTURED INTERVIEW WAS USED AS THE INSTRUMENT IN A STUDY OF THE SHASTA COLLEGE SERVICE AREA TO DETERMINE THE NEED FOR ESTABLISHMENT OF A FIRE SCIENCE EDUCATION PROGRAM. THE RESEARCHERS IDENTIFIED SEVEN TYPES OF NONADMINISTRATIVE JOBS FOR WHICH SUCH A PROGRAM WOULD BE HELPFUL, BOTH AS PREPARATION FOR ENTRY AND AS A PART OF AN INSERVICE TRAINING…

  1. Exercise Science Academic Programs and Research in the Philippines

    PubMed Central

    MADRIGAL, NORBERTO; REYES, JOSEPHINE JOY; PAGADUAN, JEFFREY; ESPINO, REIL VINARD

    2010-01-01

    In this invited editorial, professors from leading institutions in the Philippines, share information regarding their programs relating to Exercise Science. They have provided information on academic components such as entrance requirements, progression through programs, and professional opportunities available to students following completion; as well as details regarding funding available to students to participate in research, collaboration, and specific research interests. PMID:27182343

  2. Cognitive and Neural Sciences Division, 1988 Programs.

    ERIC Educational Resources Information Center

    Vaughan, Willard S., Ed.

    The research and development efforts performed by principal investigators under sponsorship of the Office of Naval Research Cognitive and Neural Sciences Division during 1988 are documented. The title, name and affiliation of the principal investigator, project code, contract number, current end date, technical objective, approach, and progress of…

  3. Education Department's Senese Outlines Science, Math Programs.

    ERIC Educational Resources Information Center

    Lepkowski, Wil

    1983-01-01

    Presented is an interview with Donald J. Senese (Department of Education Assistant Secretary) in which the department's functions, responsibilities, and philosophies in precollege science/mathematics education are outlined and discussed. Specific questions answered relate to curriculum development, creationism, copyright ownership of software,…

  4. A Science Program for the Disadvantaged Child

    ERIC Educational Resources Information Center

    Webster, John W.

    1970-01-01

    Suggests the need for science teachers to (1) examine their negative attitudes and prejudices concerning disadvantaged children, and (2) study the general characteristics and problems peculiar to these children. Classroom techniques that are effective in working with such children are discussed. Bibliography. (LC)

  5. NASA's Space Science and Applications Program.

    ERIC Educational Resources Information Center

    Newell, Homer E.

    This booklet contains material prepared by the National Aeronautic and Space Administration (NASA) office of Space Science and Applications for presentation to the United States Congress. It contains discussion of basic research, its value as a source of knowledge, techniques and skills that go into the development of technology, and practical…

  6. Science and engineering programs for the IBM PC

    SciTech Connect

    Not Available

    1983-01-01

    The selection of programs for the IBM PC in this book is aimed primarily at the electronics and communications engineer, programmer, college student, and advanced electronic hobbyist, all having at least some familiarity with the computer and with programming in BASIC. The programs are all written in BASIC, will work with both DOS 1.1 and 2.0 releases, and can easily be modified to the user's specific needs. Thus any program can be applied either as it is, to solve many science, engineering, and operations research problems, or it can be incorporated into another program written by the user. The programs presented cover assorted problems in the fields of electrical engineering, probability, statistics, queuing theory, reliability, curve fitting, graph generation, number theory, computer science, artificial intelligence, and other disciplines. 13 references.

  7. Science Educational Outreach Programs That Benefit Students and Scientists.

    PubMed

    Clark, Greg; Russell, Josh; Enyeart, Peter; Gracia, Brant; Wessel, Aimee; Jarmoskaite, Inga; Polioudakis, Damon; Stuart, Yoel; Gonzalez, Tony; MacKrell, Al; Rodenbusch, Stacia; Stovall, Gwendolyn M; Beckham, Josh T; Montgomery, Michael; Tasneem, Tania; Jones, Jack; Simmons, Sarah; Roux, Stanley

    2016-02-01

    Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs--"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist"--that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities.

  8. The George Engelmann Mathematics & Science Institute. 1993 Annual Report Science Scholar Program.

    ERIC Educational Resources Information Center

    Missouri Univ., St. Louis. George Englemann Mathematics & Science Inst.

    This publication is a comprehensive report on the George Engelmann Mathematics and Science Institute's Science Scholar program (SSP) and its activities in 1993. The SSP provides high achieving high school students an introductory, 4-week summer curriculum designed to demonstrate the connecting thread running through all scientific thought. The 52…

  9. Engineering Efforts and Opportunities in the National Science Foundation's Math and Science Partnerships (MSP) Program

    ERIC Educational Resources Information Center

    Brown, Pamela; Borrego, Maura

    2013-01-01

    The National Science Foundation's Math and Science Partnership (MSP) program (NSF, 2012) supports partnerships between K-12 school districts and institutions of higher education (IHEs) and has been funding projects to improve STEM education in K-12 since 2002. As of 2011, a total of 178 MSP projects have received support as part of a STEM…

  10. Building Alaska's Science and Engineering Pipeline: Evaluation of the Alaska Native Science & Engineering Program

    ERIC Educational Resources Information Center

    Bernstein, Hamutal; Martin, Carlos; Eyster, Lauren; Anderson, Theresa; Owen, Stephanie; Martin-Caughey, Amanda

    2015-01-01

    The Urban Institute conducted an implementation and participant-outcomes evaluation of the Alaska Native Science & Engineering Program (ANSEP). ANSEP is a multi-stage initiative designed to prepare and support Alaska Native students from middle school through graduate school to succeed in science, technology, engineering, and math (STEM)…

  11. The Impact of an Informal Science Program on Students' Science Knowledge and Interest

    ERIC Educational Resources Information Center

    Zandstra, Anne Maria

    2012-01-01

    In this sequential explanatory mixed methods study, quantitative and qualitative data were used to measure the impact of an informal science program on eleventh grade students' science knowledge and interest. The local GEAR UP project has been working for six years with a cohort of students who were in eleventh and twelfth grade during the time of…

  12. The Sisters in Science Program: Building Girls' Interest and Achievement in Science and Mathematics.

    ERIC Educational Resources Information Center

    Hammrich, Penny L.; Richardson, Greer M.; Livingston, Beverly

    The Sisters in Science program seeks to increase elementary school girls' interest and achievement in science and mathematics, to create a more positive learning climate for minority school girls and their families on academic and community/social levels, and increase the knowledge base and understanding of parents with respect to their influence…

  13. NASA information sciences and human factors program

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Data Systems Program consists of research and technology devoted to controlling, processing, storing, manipulating, and analyzing space-derived data. The objectives of the program are to provide the technology advancements needed to enable affordable utilization of space-derived data, to increase substantially the capability for future missions of on-board processing and recording and to provide high-speed, high-volume computational systems that are anticipated for missions such as the evolutionary Space Station and Earth Observing System.

  14. Life sciences experiments mission development test program

    NASA Technical Reports Server (NTRS)

    Bush, W. H., Jr.; White, R. C.

    1978-01-01

    The development, goals, and experimental programs of the three Spacelab Mission Developmental tests are described. The tests were structured as a total simulation of a dedicated mission commencing with experiment solicitation; continuing with experiment development, integration, and mission planning; and ending with the actual conduct of a seven-day 24-hour per day mission in mockup facilities. Topics such as test payload management; payload integration, training, and testing; test operations and program facilities are discussed.

  15. Ground-Based Research within NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Ground-based research in Materials Science for NASA's Microgravity program serves several purposes, and includes approximately four Principal Investigators for every one in the flight program. While exact classification is difficult. the ground program falls roughly into the following categories: (1) Intellectual Underpinning of the Flight Program - Theoretical Studies; (2) Intellectual Underpinning of the Flight Program - Bringing to Maturity New Research; (3) Intellectual Underpinning of the Flight Program - Enabling Characterization; (4) Intellectual Underpinning of the Flight Program - Thermophysical Property Determination; (5) Radiation Shielding; (6) Preliminary In Situ Resource Utilization; (7) Biomaterials; (8) Nanostructured Materials; (9) Materials Science for Advanced Space Propulsion. It must be noted that while the first four categories are aimed at using long duration low gravity conditions, the other categories pertain more to more recent NASA initiatives in materials science. These new initiatives address NASA's future materials science needs in the realms of crew health and safety, and exploration, and have been included in the most recent NASA Research Announcements (NRA). A description of each of these nine categories will be given together with examples of the kinds of research being undertaken.

  16. The Canadian Clean Air Regulatory Agenda Mercury Science Program.

    PubMed

    Morrison, Heather A

    2011-10-01

    The Clean Air Regulatory Agenda (CARA) Mercury Science Program was developed to provide scientific information to support regulatory activities and accountability pertaining to atmospheric emissions of mercury in Canada. The first phase of the science program, entitled "Setting-the-Baseline", sought to achieve the following: identify key indicators of the state-of-the-Canadian environment with respect to the transport, fate and effects of mercury; define these indicators; and, understand the processes that relate these indicators to anthropogenic emissions of mercury. To achieve these outcomes, a consultative process was used to identify the scientific needs of the agenda for mercury; understand Canada's scientific capacity; and, develop a plan to fulfill these scientific needs. The science plan that emerged from this process was structured around the themes of atmospheric monitoring, landscape-based risk assessment, ecological risk assessment, ecosystem modeling, and trends. Implementation of the science plan necessitated a multi-disciplinary and extensively partnered program. To date, the CARA Mercury Science Program is producing coordinated science at the national-scale that aims to directly assess the effectiveness of the CARA for mercury and for many of Canada's other mercury-related policies.

  17. The Sombrero Marsh Education Program: Diverse partnerships building strong Earth System science programs

    NASA Astrophysics Data System (ADS)

    Smith, L. K.; Bierbaum, V.

    2003-12-01

    Broad-based science education partnerships can create exemplary education programs because each partner brings their particular expertise to the table. The Sombrero Marsh Education Program provides an example of such a program where a school district, a local government agency, a non-profit organization, and an institute of higher learning developed a field-based watershed curriculum for upper elementary students at Sombrero Marsh, a recently restored rare saline marsh located in Boulder Valley. The partners' expertise, ranging from wetland ecology and restoration to pedagogy, yielded a curriculum that includes many of the characteristics that are highlighted within the National Science Education Standards, such as inquiry-based, hands-on activities where students serve as scientists and collect real data that will be used to monitor the progress of marsh restoration. Once established, these diverse partnerships can attract further funding and expand their programs from the local to the national level, thus providing a successful model with a widespread impact. The Sombrero Marsh Program will soon be making this transition because the Cooperative Institute for Research in Environmental Science (CIRES), along with 4 other departments of the University of Colorado, was awarded a NSF GK-12 Grant to expand the marsh program to the secondary science level. Using the initial Sombrero Marsh Program as a guide, eight GK-12 Fellows from the departments of Chemistry and Biochemistry, Geological Sciences, Environmental and Evolutionary Biology, and Astrophysical and Planetary Sciences will develop a secondary science level program at Sombrero Marsh, which initially will be delivered to schools with a significant population of students from under-represented groups. Several dimensions of the marsh program, such as community-based research and ecological sterwardship, can serve as a national model for similar science education programs that aim to promote Earth System science.

  18. Addressing the Process Improvement Science Knowledge and Skills of Program Directors and Associate Program Directors

    PubMed Central

    Gravdal, Judith A.; Hyziak, Pamela; Belmonte, Frank; Clemens, Mary Ann; Sulo, Suela

    2015-01-01

    Background Process improvement (PI) science is relatively new to healthcare and has only recently been introduced to medical education. Most residency faculty lack training or experience in PI science activities. We assessed the impact of PI science education on the knowledge and attitudes of a group of residency and fellowship program directors and associate program directors using their respective Accreditation Council for Graduate Medical Education annual program evaluations (APEs) as an experiential object. Methods For this pre/post study, 16 program directors and 7 associate program directors were surveyed before and after 4 didactic modules. The APEs for the 2 years prior to the intervention and in the fall after the intervention were analyzed. Mentoring in the use of these skills in the preparation of the APEs was provided. Results The participants demonstrated improved knowledge in some areas and increased awareness of deficits in other areas. APE quality did not show consistent improvement following the intervention. Conclusion The PI science knowledge and skill gaps of program directors and associate program directors are likely to impact the content and success of residency curricula. The designed PI science curriculum was slightly effective. Using the APE as the experiential object was convenient, but the APE was not the best project for a PI exercise. New, effective strategies and interventions to develop expertise in PI science are important as programs grapple with meeting new requirements, ensuring quality programs, and preparing residents and fellows for practice. PMID:25829878

  19. Apoptosis and the Airway Epithelium

    PubMed Central

    White, Steven R.

    2011-01-01

    The airway epithelium functions as a barrier and front line of host defense in the lung. Apoptosis or programmed cell death can be elicited in the epithelium as a response to viral infection, exposure to allergen or to environmental toxins, or to drugs. While apoptosis can be induced via activation of death receptors on the cell surface or by disruption of mitochondrial polarity, epithelial cells compared to inflammatory cells are more resistant to apoptotic stimuli. This paper focuses on the response of airway epithelium to apoptosis in the normal state, apoptosis as a potential regulator of the number and types of epithelial cells in the airway, and the contribution of epithelial cell apoptosis in important airways diseases. PMID:22203854

  20. Girls in Engineering, Mathematics and Science, GEMS: A Science Outreach Program for Middle-School Female Students

    ERIC Educational Resources Information Center

    Dubetz, Terry A.; Wilson, Jo Ann

    2013-01-01

    Girls in Engineering, Mathematics and Science (GEMS) is a science and math outreach program for middle-school female students. The program was developed to encourage interest in math and science in female students at an early age. Increased scientific familiarity may encourage girls to consider careers in science and mathematics and will also help…

  1. Microgravity sciences application visiting scientist program

    NASA Technical Reports Server (NTRS)

    Glicksman, Martin; Vanalstine, James

    1995-01-01

    Marshall Space Flight Center pursues scientific research in the area of low-gravity effects on materials and processes. To facilitate these Government performed research responsibilities, a number of supplementary research tasks were accomplished by a group of specialized visiting scientists. They participated in work on contemporary research problems with specific objectives related to current or future space flight experiments and defined and established independent programs of research which were based on scientific peer review and the relevance of the defined research to NASA microgravity for implementing a portion of the national program. The programs included research in the following areas: protein crystal growth, X-ray crystallography and computer analysis of protein crystal structure, optimization and analysis of protein crystal growth techniques, and design and testing of flight hardware.

  2. Science, society and the space program.

    NASA Technical Reports Server (NTRS)

    Stafford, T. P.

    1972-01-01

    Exposition of the contributions the space program can make toward improving the quality of life. The contribution involves both short-range application of space technology and the long-range search for knowledge. Large land areas can be surveyed from spacecraft to determine not only whether land is tillable, but what kind of crops will flourish. The space communications program can reach many millions of people more economically than other methods. The long-range aspects are concerned with the effect of modification of the environment.

  3. Summer Program in Planetary Science and Astronomy for Gifted and Talented High School Students

    NASA Astrophysics Data System (ADS)

    Miller, J. P.; Fetters, J.; West, K.; Frazee, P.

    2002-03-01

    The Summer Science and Mathematics Program (SS&MP) is an 8-week program in planetary science and astronomy for gifted and talented high school students. Students undertake research projects, which include current topics in planetary science.

  4. The Phillips airway.

    PubMed

    Haridas, R P; Wilkinson, D J

    2012-07-01

    The Phillips airway was developed by George Ramsay Phillips. There is no known original description of the airway and the earliest known reference to it is from 1919. The airway and its modifications are described.

  5. The Stanford Medical Youth Science Program: educational and science-related outcomes.

    PubMed

    Crump, Casey; Ned, Judith; Winkleby, Marilyn A

    2015-05-01

    Biomedical preparatory programs (pipeline programs) have been developed at colleges and universities to better prepare youth for entering science- and health-related careers, but outcomes of such programs have seldom been rigorously evaluated. We conducted a matched cohort study to evaluate the Stanford Medical Youth Science Program's Summer Residential Program (SRP), a 25-year-old university-based biomedical pipeline program that reaches out to low-income and underrepresented ethnic minority high school students. Five annual surveys were used to assess educational outcomes and science-related experience among 96 SRP participants and a comparison group of 192 youth who applied but were not selected to participate in the SRP, using ~2:1 matching on sociodemographic and academic background to control for potential confounders. SRP participants were more likely than the comparison group to enter college (100.0 vs. 84.4 %, p = 0.002), and both of these matriculation rates were more than double the statewide average (40.8 %). In most areas of science-related experience, SRP participants reported significantly more experience (>twofold odds) than the comparison group at 1 year of follow-up, but these differences did not persist after 2-4 years. The comparison group reported substantially more participation in science or college preparatory programs, more academic role models, and less personal adversity than SRP participants, which likely influenced these findings toward the null hypothesis. SRP applicants, irrespective of whether selected for participation, had significantly better educational outcomes than population averages. Short-term science-related experience was better among SRP participants, although longer-term outcomes were similar, most likely due to college and science-related opportunities among the comparison group. We discuss implications for future evaluations of other biomedical pipeline programs.

  6. A new program in earth system science education

    NASA Technical Reports Server (NTRS)

    Huntress, Wesley; Kalb, Michael W.; Johnson, Donald R.

    1990-01-01

    A program aimed at accelerating the development of earth system science curricula at the undergraduate level and at seeding the establishment of university-based mechanisms for cooperative research and education among universities and NASA has been initiated by the Universities Space Research Association (USRA) in conjunction with NASA. Proposals were submitted by 100 U.S. research universities which were selected as candidates to participate in a three-year pilot program to develop undergraduate curricula in earth system science. Universities were then selected based upon peer review and considerations of overall scientific balance among proposed programs. The program will also aim to integrate a number of universities with evolving earth system programs, linking them with a cooperative curriculum, shared faculty, and NASA scientists in order to establish a stronger base for earth systems related education and interdisciplinary research collaboration.

  7. Terrebonne Parish Nautical Science Program Curriculum.

    ERIC Educational Resources Information Center

    Louisiana State Univ., Baton Rouge. Center for Wetland Resources.

    The curriculum presented in this document was created through the auspices of Louisiana State University's Center for Wetland Resources. Need for a program to train qualified personnel for the transportation segment of the mineral and oil industry was shown by a shortage of skilled workers. With the cooperation of a local high school, a one-year…

  8. Environmental Science Education Programs: Opportunities for Geographers

    ERIC Educational Resources Information Center

    Earl, Richard A.; Montalvo, Edris J.; Ross, Amanda R.; Hefty, Eunice

    2009-01-01

    Environmental agencies in most states have an environmental education Web page that can point geography teachers to a variety of opportunities and resources to enhance their teaching. Most states provide linkages to local and national programs such as Project WET and Project WILD, and access to lesson plans and other teaching materials. A number…

  9. Polymer Science. Program CIP: 15.0607

    ERIC Educational Resources Information Center

    Research and Curriculum Unit, 2010

    2010-01-01

    Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…

  10. OVERVIEW OF EPA'S LANDSCAPE SCIENCE PROGRAM

    EPA Science Inventory

    Over the past 10 years, the U.S. Environmental Protection Agency's Office of Research and Development's National Exposure Research Laboratory has expanded it's ecological research program to include the development of landscape metrics and indicators to assess ecological risk and...

  11. OVERVIEW OF EPA'S LANDSCAPE SCIENCES PROGRAM

    EPA Science Inventory

    Over the past 10 years, the U.S. Environmental Protection Agency's Office of Research and Development's National Exposure Research Laboratory has expanded it's ecological research program to include the development of landscape metrics and indicators to assess ecological risk and...

  12. Health Sciences. Program CIP: 51.0000

    ERIC Educational Resources Information Center

    Murdock, Ashleigh, Ed.

    2007-01-01

    Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…

  13. Data systems and computer science programs: Overview

    NASA Technical Reports Server (NTRS)

    Smith, Paul H.; Hunter, Paul

    1991-01-01

    An external review of the Integrated Technology Plan for the Civil Space Program is presented. The topics are presented in viewgraph form and include the following: onboard memory and storage technology; advanced flight computers; special purpose flight processors; onboard networking and testbeds; information archive, access, and retrieval; visualization; neural networks; software engineering; and flight control and operations.

  14. The Glory Program: Global Science from a Unique Spacecraft Integration

    NASA Technical Reports Server (NTRS)

    Bajpayee Jaya; Durham, Darcie; Ichkawich, Thomas

    2006-01-01

    The Glory program is an Earth and Solar science mission designed to broaden science community knowledge of the environment. The causes and effects of global warming have become a concern in recent years and Glory aims to contribute to the knowledge base of the science community. Glory is designed for two functions: one is solar viewing to monitor the total solar irradiance and the other is observing the Earth s atmosphere for aerosol composition. The former is done with an active cavity radiometer, while the latter is accomplished with an aerosol polarimeter sensor to discern atmospheric particles. The Glory program is managed by NASA Goddard Space Flight Center (GSFC) with Orbital Sciences in Dulles, VA as the prime contractor for the spacecraft bus, mission operations, and ground system. This paper will describe some of the more unique features of the Glory program including the integration and testing of the satellite and instruments as well as the science data processing. The spacecraft integration and test approach requires extensive analysis and additional planning to ensure existing components are successfully functioning with the new Glory components. The science mission data analysis requires development of mission unique processing systems and algorithms. Science data analysis and distribution will utilize our national assets at the Goddard Institute for Space Studies (GISS) and the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP). The Satellite was originally designed and built for the Vegetation Canopy Lidar (VCL) mission, which was terminated in the middle of integration and testing due to payload development issues. The bus was then placed in secure storage in 2001 and removed from an environmentally controlled container in late 2003 to be refurbished to meet the Glory program requirements. Functional testing of all the components was done as a system at the start of the program, very different from a traditional program

  15. An Interdisciplinary Program in Materials Science at James Madison University.

    NASA Astrophysics Data System (ADS)

    Hughes, Chris

    2008-03-01

    Over the past decade a core group of faculty at James Madison University has created an interdisciplinary program in materials science that provides our students with unique courses and research experiences that augment the existing, high-quality majors in physics and astronomy, chemistry and biochemistry, geology and environmental science, mathematics and statistics, and integrated science and technology. The university started this program by creating a Center for Materials Science whose budget is directly allocated by the provost. This source of funds acts as seed money for research, support for students, and a motivating factor for each of the academic units to support the participation of their faculty in the program. Courses were created at the introductory and intermediate level that are cross-listed by the departments to encourage students to enroll in them as electives toward their majors. Furthermore, the students are encouraged to participate in undergraduate research in materials since this is the most fundamental unifying theme across the disciplines. This talk will cover some of the curricular innovations that went into the design of the program to make it successful, examples of faculty and student research and how that feeds back into the classroom, and success stories of the interactions that have developed between departments because of this program. Student outcomes and future plans to improve the program will also be discussed.

  16. Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program

    SciTech Connect

    2000-12-01

    This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Priorities and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects

  17. National Science Foundation PMSA Program: Promoting Systemic Change in Racially Isolated Schools via Math and Science.

    ERIC Educational Resources Information Center

    Adenika-Morrow, T. Jean

    The Project for Minority Student Achievement (PMSA), a 5-year program funded in part by the National Science Foundation, is a program designed to engender systemic change within a segment of a large urban school district in the Los Angeles (California) Basin. Approximately 40% of the student participants were African American and approximately 60%…

  18. Computer Related Mathematics and Science Curriculum Materials - A National Science Foundation Cooperative College-School Science Program in Computing Science Education.

    ERIC Educational Resources Information Center

    Feng, Chuan C.

    Reported is the Cooperative College-School Science Program in Computing Science Education which was conducted by the University of Colorado Department of Civil Engineering in the summer of 1967. The program consisted of two five-week terms. The course work was composed of two formal lecture courses in Computer Related Mathematics and Computer…

  19. Science mentor program at Mission Hill Junior High School

    SciTech Connect

    Dahlquist, K.

    1994-12-31

    Science graduate students from the University of California at Santa Cruz mentor a class of 7th graders from the Mission Hill Junior High School. The program`s purpose is: (1) to create a scientific learning community where scientists interact at different levels of the educational hierarchy; (2) to have fun in order to spark interest in science; and (3) to support girls and minority students in science. A total of seven mentors met with the students at least once a week after school for one quarter to tutor and assist with science fair projects. Other activities included a field trip to a university earth science lab, judging the science fair, and assisting during laboratory exercises. Graduate students run the program with minimal organization and funding, communicating by electronic mail. An informal evaluation of the program by the mentors has concluded that the most valuable and effective activities have been the field trip and assisting with labs. The actual {open_quotes}mentor meetings{close_quotes} after school did not work effectively because they had a vaguely defined purpose and the kids did not show up regularly to participate. Future directions include redefining ourselves as mentors for the entire school instead of just one class and better coordinating our activities with the teachers` curriculum. We will continue to assist with the labs and organize formal tutoring for students having problems with math and science. Finally, we will arrange more activities and field trips such as an amateur astronomy night. We will especially target girls who attended the {open_quotes}Expanding Your Horizons{trademark} in Science, Mathematics, and Engineering{close_quotes} career day for those activities.

  20. Microgravity science and applications program tasks, 1991 revision

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Presented here is a compilation of the active research tasks for FY 1991 sponsored by the Microgravity Science and Applications Division of the NASA Office of Space Science and Applications. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. Included is an introductory description of the program, the strategy and overall goal, identification of the organizational structures and the people involved, and a description of each. The tasks are grouped into several categories: electronic materials; solidification of metals, alloys, and composites; fluids, interfaces, and transport; biotechnology; combustion science; glasses and ceramics; experimental technology, instrumentation, and facilities; and Physical and Chemistry Experiments (PACE). The tasks cover both the ground based and flight programs.

  1. Microgravity Science and Application Program tasks, 1989 revision

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The active research tasks, as of the fiscal year 1989, of the Microgravity Science and Applications Program, NASA Office of Space Science and Applications, involving several NASA Centers and other organizations are compiled. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The scientists in industry, university, and government communities. An introductory description of the program, the strategy and overall goal, identification of the organizational structures and people involved, and a description of each task are included. Also provided is a list of recent publications. The tasks are grouped into several major categories: electronic materials, solidification of metals, alloys, and composites; fluids, interfaces, and transport; biotechnology; glasses and ceramics; combustion science; physical and chemistry experiments (PACE); and experimental technology, facilities, and instrumentation.

  2. Initiating the 2002 Mars Science Laboratory (MSL) Technology Program

    NASA Technical Reports Server (NTRS)

    Caffrey, Robert T.; Udomkesmalee, Gabriel; Hayati, Samad A.; Henderson, Rebecca

    2004-01-01

    The Mars Science Laboratory (MSL) Project is an aggressive mission launching in 2009 to investigate the Martian environment and requires new capabilities that are currently are not available. The MSL Technology Program is developing a wide-range of technologies needed for this Mission and potentially other space missions. The MSL Technology Program reports to both the MSL Project and the Mars Technology Program (MTP). The dual reporting process creates a challenging management situation, but ensures the new technology meets both the specific MSL requirements and the broader Mars Program requirements. MTP is a NASA-wide technology development program managed by JPL and is divided into a Focused Program and a Base Program. The MSL Technology Program is under the focused program and is tightly coupled to MSL's mission milestones and deliverables. The technology budget is separate from the flight Project budget, but the technology's requirements and the development process are tightly coordinated with the Project. The MSL Technology Program combines the proven management techniques of flight projects with the commercial technology management strategies of industry and academia, to create a technology management program that meets the short-term requirements of MSL and the long-term requirements of MTP. This paper examines the initiation of 2002 MSL Technology program. Some of the areas discussed in this paper include technology definition, task selection, technology management, and technology assessment. This paper also provides an update of the 2003 MSL technology program and examines some of the drivers that changed the program from its initiation.

  3. The Ridge 2000 Program: Promoting Earth Systems Science Literacy Through Science Education Partnerships

    NASA Astrophysics Data System (ADS)

    Simms, E.; Goehring, E.; Larsen, J.; Kusek, K.

    2007-12-01

    Sponsored by the National Science Foundation, Ridge 2000 (R2K) is a mid-ocean ridge and hydrothermal vent research program with a history of successful education and public outreach (EPO) programs and products. This presentation will share general science and education partnership strategies and best practices employed by the R2K program, with a particular emphasis on the innovative R2K project From Local to EXtreme Environments (FLEXE). As a new project of the international NSF and NASA sponsored GLOBE earth science education program, FLEXE involves middle and high school students in structured, guided analyses and comparisons of real environmental data. The science and education partnership model employed by FLEXE relies on experienced education coordinators within the R2K and international InterRidge and ChEss science research programs, who directly solicit and facilitate the involvement of an interdisciplinary community of scientists in the project based on their needs and interests. Concurrently, the model also relies on the GLOBE program to facilitate awareness and access to a large, established network of international educators who are interested in the process of science and interacting with the scientific community. The predominantly web-based interfaces that serve to effectively link together the FLEXE science and education communities have been developed by the Center for Science and the Schools at Penn State University, and are based on researched educational pedagogy, tools and techniques. The FLEXE partnership model will be discussed in the context of both broad and specific considerations of audience needs, scientist and educator recruitment, and the costs and benefits for those involved in the project.

  4. Smith college secondary math and science outreach program

    SciTech Connect

    Powell, J.A.; Clark, C.

    1994-12-31

    The Smith College Secondary Math and Science Outreach Program works collaboratively with front-line educators to encourage young women students of all abilities, especially underrepresented and underserved minorities, to continue studying math and science throughout high school. The program includes three main components: (1) Twenty-five to thirty teams of math/science teachers and guidance counselors participate in a year-long program which begins with a three-day Current Students/Future Scientists and Engineering Workshop. This event includes a keynote address, presentations and workshops by successful women in science and engineering, and hands-on laboratory sessions. Each participant receives a stipend and free room and board. Returning to their schools, the teacher-counselor teams implement ongoing plans designed to counteract gender bias in the sciences and to alert female students to the broad range of math, science, and engineering career choices open to them. A follow-up session in the spring allows the teams to present and discuss their year-long activities. (2) TRI-ON, a day of science for 120 ninth- and tenth- grade girls from schools with a large underserved and underrepresented population, is held in early spring. Girls discover the excitement of laboratory investigation and interact with female college science and math majors. (3) Teaching Internships, initiated in 1991, involve ten to fifteen Smith College math and science majors in teaching in public schools. The teaching interns experience the rewards and challenges of classroom teaching, and they also serve as role models for younger students.

  5. Blockage of upper airway

    MedlinePlus

    ... Airway obstruction - acute upper Images Throat anatomy Choking Respiratory system References Cukor J, Manno M. Pediatric respiratory emergencies: upper airway obstruction and infections. In: Marx ...

  6. Integrated life sciences technology utilization development program

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The goal of the TU program was to maximize the development of operable hardware and systems which will be of substantial benefit to the public. Five working prototypes were developed, and a meal system for the elderly is now undergoing evaluation. Manpower utilization is shown relative to the volume of requests in work for each month. The ASTP mobile laboratories and post Skylab bedrest study are also described.

  7. Cognitive and Neural Sciences Division 1989 Programs.

    DTIC Science & Technology

    1989-09-01

    responses made by experts dealing with a series of risks that were correlated rather than independent. Efforts on a contextual theory of risk achieved...will test with a series of experiments using an artificial symbolic system. Approach: A series of experiments will be conducted to test hypotheses...capabilities of the GUIDON series of intelligent tutoring programs so that they reflect new theoretical ideas about learning that emphasize the

  8. Microgravity sciences application visiting scientist program

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Contract NAS8-38785, Microgravity Experimental and Theoretical Research, is a project involving a large number of individual research programs related to: determination of the structure of human serum albumin and other biomedically important proteins; analysis of thermodynamic properties of various proteins and models of protein nucleation; development of experimental techniques for the growth of protein crystals in space; study of the physics of electrical double layers in the mechanics of liquid interfaces; computational analysis of vapor crystal growth processes in microgravity; analysis of the influence of magnetic fields in damping residual flows in directional solidification processes; crystal growth and characterization of II-VI semiconductor alloys; and production of thin films for nonlinear optics. It is not intended that the programs will be necessarily limited to this set at any one time. The visiting scientists accomplishing these programs shall serve on-site at MSFC to take advantage of existing laboratory facilities and the daily opportunities for technical communications with various senior scientists.

  9. Academic and Research Programs in Exercise Science, South Korea

    PubMed Central

    PARK, KYUNG-SHIN; SONG, WOOK

    2009-01-01

    We appreciate the opportunity to review academic curriculum and current research focus of Exercise Science programs in South Korea. The information of this paper was collected by several different methods, including e-mail and phone interviews, and a discussion with Korean professors who attended the 2009 ACSM annual conference. It was agreed that exercise science programming in South Korea has improved over the last 60 years since being implemented. One of distinguishable achievement is that exercise science programs after the 1980’s has been expanded to several different directions. It does not only produce physical education teachers but also attributes more to research, sports medicine, sports, leisure and recreation. Therefore, it has produced various jobs in exercise-related fields. Some of exercise science departments do not require teacher preparation course work in their curriculum which allows students to focus more on their specialty. Secondly, we believe we South Korea has caught up with advanced countries in terms of research quality. Many Korean researchers have recently published and presented their investigations in international journals and conferences. The quality and quantity of these studies introduced to international societies indicate that Exercise Science programs in South Korea is continuing to develop and plays an important part in the world. PMID:27182314

  10. Mexico's Program for Science and Technology, 1978 to 1982.

    PubMed

    Flores, E

    1979-06-22

    In response to a request by President José López Portillo, the National Council of Science and Technology (CONACYT) worked out a program of scientific research and development in Mexico in keeping with the economic and social priorities of his administration-food production, energy, public health, and employment. Representatives from public, private, and academic sectors participated in preparing an inventory of needs for the development of human, economic, and physical resources. The program includes 2,489 projects in basic and applied sciences at a cost of $260 million to 1982 and 17,000 scholarships at a cost of $130 million.

  11. FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)

    SciTech Connect

    Samara, G.A.

    1997-05-01

    The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfaces for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.

  12. NASA Applied Sciences Program Rapid Prototyping Results and Conclusions

    NASA Astrophysics Data System (ADS)

    Cox, E. L.

    2007-12-01

    NASA's Applied Sciences Program seeks to expand the use of Earth science research results to benefit current and future operational systems tasked with making policy and management decisions. The Earth Science Division within the Science Mission Directorate sponsors over 1000 research projects annually to answer the fundamental research question: How is the Earth changing and what are the consequences for life on Earth? As research results become available, largely from satellite observations and Earth system model outputs, the Applied Sciences Program works diligently with scientists and researchers (internal and external to NASA) , and other government agency officials (USDA, EPA, CDC, DOE, US Forest Service, US Fish and Wildlife Service, DHS, USAID) to determine useful applications for these results in decision-making, ultimately benefiting society. The complexity of Earth science research results and the breadth of the Applied Sciences Program national priority areas dictate a broad scope and multiple approaches available to implement their use in decision-making. Over the past five years, the Applied Sciences Program has examined scientific and engineering practices and solicited the community for methods and steps that can lead to the enhancement of operational systems (Decision Support Systems - DSS) required for decision-making. In November 2006, the Applied Sciences Program launched an initiative aimed at demonstrating the applicability of NASA data (satellite observations, models, geophysical parameters from data archive centers) being incorporated into decision support systems and their related environments at a low cost and quick turnaround of results., i.e. designed rapid prototyping. Conceptually, an understanding of Earth science research (and results) coupled with decision-making requirements and needs leads to a demonstration (experiment) depicting enhancements or improvements to an operational decisions process through the use of NASA data. Five

  13. Evaluating environmental education, citizen science, and stewardship through naturalist programs.

    PubMed

    Merenlender, Adina M; Crall, Alycia W; Drill, Sabrina; Prysby, Michelle; Ballard, Heidi

    2016-12-01

    Amateur naturalists have played an important role in the study and conservation of nature since the 17th century. Today, naturalist groups make important contributions to bridge the gap between conservation science and practice around the world. We examined data from 2 regional naturalist programs to understand participant motivations, barriers, and perspectives as well as the actions they take to advance science, stewardship, and community engagement. These programs provide certification-based natural history and conservation science training for adults that is followed by volunteer service in citizen science, education, and stewardship. Studies in California and Virginia include quantitative and qualitative evaluation data collected through pre- and postcourse surveys, interviews, and long-term tracking of volunteer hours. Motivations of participants focused on learning about the local environment and plants and animals, connecting with nature, becoming certified, and spending time with people who have similar interests. Over half the participants surveyed were over 50 years old, two-thirds were women, and a majority reported household incomes of over $50,000 (60% in California, 85% in Virginia), and <20% of those surveyed in both states described themselves as nonwhite. Thus, these programs need to improve participation by a wider spectrum of the public. We interviewed younger and underrepresented adults to examine barriers to participation in citizen science. The primary barrier was lack of time due to the need to work and focus on career advancement. Survey data revealed that participants' ecological knowledge, scientific skills, and belief in their ability to address environmental issues increased after training. Documented conservation actions taken by the participants include invasive plant management, habitat restoration, and cleanups of natural areas and streams. Long-term data from Virginia on volunteer hours dedicated to environmental citizen science

  14. Workshop on the Suborbital Science Sounding Rocket Program, Volume 1

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The unique characteristics of the sounding rocket program is described, with its importance to space science stressed, especially in providing UARS correlative measurements. The program provided opportunities to do innovative scientific studies in regions not other wise accessible; it was a testbed for developing new technologies; and its key attributes were flexibility, reliability, and economy. The proceedings of the workshop are presented in viewgraph form, including the objectives of the workshop and the workshop agenda.

  15. Restructuring High School Science Curriculum: A Program Evaluation

    NASA Astrophysics Data System (ADS)

    Robertson, Cathy Jean

    One rural Midwestern high school discovered a discrepancy among school, state, and national science skill attainment, verified by ACT scores. If students do not acquire vital science skills, they may not perform proficiently on science tests, thus impacting future college options. Inquiry based instruction and constructivism provided the basis for the theoretical framework. This study questioned associations between ACT scores, inquiry science technique usage, and ACT standard usage (Phase 1), and teachers' views on science instruction (Phase 2). This sequential explanatory mixed methods program evaluation included 469 ACT scores, surveys sent to 9 science teachers, and 8 interviews. Phase 1 used the inquiry science implementation scale survey and an ACT college readiness standards workbook to determine proportional associations between datasets. Descriptive statistics, one-sample t tests, and binomial tests were used to analyze Phase 1 data. Phase 2 interviews augmented Phase 1 data and were disassembled, reassembled, and interpreted for parallel viewpoints. Phase 1 data indicated that teachers use a slightly above average amount of inquiry and science ACT standards in the classroom; however, most science students did not test above the curriculum and there were inconsistencies in standards covered. Phase 2 data revealed teachers need time to collaborate and become skilled in inquiry methods to rectify the inconsistencies. The project was an evaluation report. This study will foster positive social change by giving the district a plan: adapt the science curriculum by integrating more ACT and inquiry standards and participate in more professional development that applies inquiry as a tool to increase science skill proficiency, thus generating locally competitive students for college and the workforce.

  16. NASA's Applied Sciences: Natural Disasters Program

    NASA Technical Reports Server (NTRS)

    Kessler, Jason L.

    2010-01-01

    Fully utilize current and near-term airborne and spaceborne assets and capabilities. NASA spaceborne instruments are for research but can be applied to natural disaster response as appropriate. NASA airborne instruments can be targeted specifically for disaster response. Could impact research programs. Better flow of information improves disaster response. Catalog capability, product, applicable disaster, points of contact. Ownership needs to come from the highest level of NASA - unpredictable and irregular nature of disasters requires contingency funding for disaster response. Build-in transfer of applicable natural disaster research capabilities to operational functionality at other agencies (e.g., USFS, NOAA, FEMA...) at the outset, whenever possible. For the Decadal Survey Missions, opportunities exist to identify needs and requirements early in the mission design process. Need to understand additional needs and commitments for meeting the needs of the disaster community. Opportunity to maximize disaster response and mitigation from the Decadal Survey Missions. Additional needs or capabilities may require agency contributions.

  17. Field experiences in science teacher preparation programs of Missouri

    NASA Astrophysics Data System (ADS)

    Rhea, Marilyn Sue Alvis

    The purpose of this study was to collect and analyze data pertinent to identifying the differences and similarities in the design and implementation of field experiences for pre-service science teachers in institutions of higher education in the State of Missouri. Directors of field experience from 25 Institutions of Higher Education (IHE) that prepare both elementary and secondary science teachers and 5 additional IHE that prepare only elementary teachers were surveyed using a 48-item Likert scale instrument designed for this study. Data were collected on the hours of field experience in relation to science and other methods classes, distribution of field experience hours across the program, and total hours of field experience required. Comparisons were made between elementary and secondary science teacher preparation programs. Five areas of field experience were surveyed: design of early field experience, design of student teaching, support provided by IHE for cooperating schools, field experience assessment practices, and relationships between pre-service teachers, cooperating teachers and IHE educators. Analyses of the responses indicate statistically significant differences in the number of field experience hours between IRE programs for both early field experience (p < .05) and student teaching (p < .01). Differences in number of field experience hours by level of certification were not significant. Correlation of scores was significant between the elementary and secondary levels for both early field experience design (r = .97) and student teaching design (r = .75). No other significant correlation was found. This study found highly heterogeneous practices regarding field experience exist in Missouri IHE programs. When reported practices are compared to standards set in the professional literature, as a group Missouri IHE science teacher preparation programs could be described as traditional apprenticeships or quasi-professional development school programs.

  18. Interdisciplinary Teaching in a Water Educational Training Science Program: Its Impact on Science Concept Knowledge, Writing Performance, and Interest in Science and Writing of Elementary Students.

    ERIC Educational Resources Information Center

    Moore-Hart, Margaret A.; Liggit, Peggy; Daisey, Peggy

    This paper presents a study investigating the effects of the Water Education Training (WET) program on students' performance in science. The WET Program is an after school program using an interdisciplinary approach which has three main objectives: improving science concept knowledge, writing performance, and attitudes toward science and writing.…

  19. A Mentoring Program in Environmental Science for Underrepresented Groups

    NASA Astrophysics Data System (ADS)

    Stevens, L.; Rizzo, D. M.

    2009-12-01

    We developed a four-year program, combining educational and career support and research activities, to recruit and retain students from underrepresented groups in environmental sciences. Specifically, the program: ○ Assigns each student a faculty or graduate student mentor with whom the student conducts research activities. ○ Includes a weekly group meeting for team building and to review professional development and academic topics, such as time management and research ethics. ○ Requires students to make multiple formal presentations of their research proposals and results. ○ Provides scholarships and stipends for both the academic year and to engage students in summer research. The program seeks to achieve several goals including: ● Enhance academic performance. ● Encourage continued study in environmental science. ● Facilitate students completing their studies at UVM. ● Increase students’ interest in pursuing science careers. ● Create a more welcoming academic environment. To assess progress toward achievement of these goals, we conducted individual structured interviews with participating undergraduate students, graduate students, and faculty members at two points in time. First, interviews were conducted in the fall of 2007 after two years, and again in spring 2009, after four years. An independent research consultant, Dr. Livingston, conducted the interviews. In 2009, over the course of three days, the interviews included three graduate student and two faculty mentors, and six of the seven undergraduate students. Of the six students, three were juniors and three were graduating seniors. Results of the 2009 interviews echoed those of 2007. Both students and their mentors are quite satisfied with the program. The student presentations, weekly meetings, mentoring relationships, and summer research experiences all get high ratings from program participants. Students give high praise to their mentors and the program directors for providing

  20. FLEDGE-ling: A Science Program for Girls.

    ERIC Educational Resources Information Center

    Bartsch, Ingrid; Snow, Eleanour; Bell, Susan

    1998-01-01

    Presents the planning, implementation, and assessment of a four-week summer program entitled Florida Education in Geology and Ecology: FLEDGE-ling Camp for Girls. Exit surveys and follow-up interviews proved that girls learned most from field and hands-on activities. Outcomes included a change in view of science and scientists and an increase in…

  1. Handheld technology acceptance in radiologic science education and training programs

    NASA Astrophysics Data System (ADS)

    Powers, Kevin Jay

    The purpose of this study was to explore the behavioral intention of directors of educational programs in the radiologic sciences to adopt handheld devices to aid in managing student clinical data. Handheld devices were described to participants as a technology representing a class of mobile electronic devices including, but not limited to, personal digital assistants such as a Palm TX, Apple iPod Touch, Apple iPad or Hewlett Packard iPaq, and cellular or smartphones with third generation mobile capabilities such as an Apple iPhone, Blackberry or Android device. The study employed a non-experimental, cross-sectional survey design to determine the potential of adopting handheld technologies based on the constructs of Davis's (1989) Technology Acceptance Model. An online self-report questionnaire survey instrument was used to gather study data from 551 entry level radiologic science programs specializing in radiography, radiation therapy, nuclear medicine and medical sonography. The study design resulted in a single point in time assessment of the relationship between the primary constructs of the Technology Acceptance Model: perceived usefulness and perceived ease of use, and the behavioral intention of radiography program directors to adopt the information technology represented by hand held devices. Study results provide justification for investing resources to promote the adoption of mobile handheld devices in radiologic science programs and study findings serve as a foundation for further research involving technology adoption in the radiologic sciences.

  2. The National Research Program in the hydrological sciences

    USGS Publications Warehouse

    ,

    2005-01-01

    The National Research Program (NRP) in the hydrological sciences encompasses a broad spectrum of scientific investigations and focuses on long-term integrated studies related to water resource and environmental problems. The NRP provides an infrastructure within which the USGS can develop new information, theories, and techniques to understand, anticipate, and solve water-resource problems facing managers of Federal lands and the Nation.

  3. Research Informed Science Enrichment Programs at the Gravity Discovery Centre

    ERIC Educational Resources Information Center

    Venville, Grady; Blair, David; Coward, David; Deshon, Fred; Gargano, Mark; Gondwe, Mzamose; Heary, Auriol; Longnecker, Nancy; Pitts, Marina; Zadnik, Marjan

    2012-01-01

    Excursions to museums and science centres generally are great fun for students and teachers. The potential educational benefits beyond enjoyment, however, are rarely realised or analysed for their efficacy. The purpose of this paper is to describe four educational enrichment programs delivered at the Gravity Discovery Centre (GDC), near Gingin,…

  4. Animal Science Update Programs--The Role of Teacher Educators.

    ERIC Educational Resources Information Center

    Osborne, Ed; And Others

    1986-01-01

    Agricultural teachers must continually improve their knowledge and skills in animal science. Teacher educators can play a significant role in this process through the following channels: summer courses, teleconferencing, workshops, summer internships, technical update programs, field days, curriculum materials development and dissemination, and…

  5. THE EFFECTIVENESS OF FOUR VARIATIONS OF PROGRAMED SCIENCE MATERIALS.

    ERIC Educational Resources Information Center

    GORDON, JOHN M.

    INVESTIGATED WERE CHANGES IN THE PERFORMANCE OF SEVENTH GRADE STUDENTS AS A RESULT OF EXPOSURE TO A SYMBOLIC SCIENCE PROGRAM IN ELECTRICITY MODIFIED BY THE ADDITION OF SEVERAL TYPES OF CONCRETE EXPERIENCES. POSSIBLE RELATIONSHIPS BETWEEN THE DIFFERENT TYPES OF EXPERIENCES AND CHANGES IN HIGHER LEVELS OF COGNITIVE FUNCTIONING AND LINGUISTIC AND…

  6. An Experiential Career Exploration Program in Science and Technology.

    ERIC Educational Resources Information Center

    Burkhalter, Bettye B.; And Others

    1983-01-01

    Describes the Experimental Career Exploration Program whose goal was to introduce students with no experience with technology to careers in aerospace science and technology at the Alabama Space and Rocket Center. The project involved cooperation from education, industry, and government. (JOW)

  7. Assessment of a Library Science Program Specializing in Chemical Information.

    ERIC Educational Resources Information Center

    Wiggins, Gary; Monnier, Cynthia

    1994-01-01

    Reports on a survey of Indiana University Master in Library Science (M.L.S.)-Chemical Information Specialist program graduates. Information includes graduates' educational background; the nature of first jobs and current positions held; and databases most frequently used. Graduates generally favored more training in computer skills, patent…

  8. Globalizing Agricultural Science and Education Programs for America.

    ERIC Educational Resources Information Center

    National Association of State Universities and Land Grant Colleges, Washington, DC.

    This document proposes an agenda for globalizing agricultural science and education which has implications for higher education, research, and extension programs at land-grant and similar universities. To enhance global competitiveness of U.S. agriculture through human resource development, institutions are urged to: globalize undergraduate and…

  9. Environmental Management Science Program (EMSP) for Deactivation and Decommissioning

    SciTech Connect

    Phillips, Ann Marie

    2002-03-01

    The mission of the EMSP is to develop and fund targeted, long-term research programs that will result in transformational or breakthrough approaches for solving DOE’s environmental problems. The purpose of this research is to provide the basic science knowledge that will lead to reduced remediation cost, schedule, technical uncertainty, and risk.

  10. Biological and Earth Systems Science: A Program for the Future.

    ERIC Educational Resources Information Center

    Fortner, Rosanne; And Others

    1992-01-01

    Describes a school district's refocusing of lesson plans in the natural sciences to teach students about the structure and function of the earth--a focus all but abandoned in many school programs. Details of the curriculum; the resources used; leadership initiatives; and obstacles to implementation are discussed. (PR)

  11. An Analysis of the Demand for Postgraduate Educational Science Programs

    ERIC Educational Resources Information Center

    Aslan, Gulay

    2014-01-01

    This study, aimed to determine the variables that have a role in the emergence of individual demand for postgraduate educational sciences programs, is a descriptive one. The sample of the study consisted of 222 postgraduate students from Ankara University, a developed university, and Gaziosmanpasa University, a developing university. The data was…

  12. Handheld Technology Acceptance in Radiologic Science Education and Training Programs

    ERIC Educational Resources Information Center

    Powers, Kevin Jay

    2012-01-01

    The purpose of this study was to explore the behavioral intention of directors of educational programs in the radiologic sciences to adopt handheld devices to aid in managing student clinical data. Handheld devices were described to participants as a technology representing a class of mobile electronic devices including, but not limited to,…

  13. Effective Programs for Elementary Science: A Best-Evidence Synthesis. Educator's Summary

    ERIC Educational Resources Information Center

    Center for Research and Reform in Education, 2012

    2012-01-01

    Which science programs have been proven to help elementary students to succeed? To find out, this review summarizes evidence on three types of programs designed to improve the science achievement of students in grades K-6: (1) Inquiry-oriented programs without science kits, such as Increasing Conceptual Challenge, Science IDEAS, and Collaborative…

  14. The Canadian Microgravity Sciences Program - Past present and future

    NASA Astrophysics Data System (ADS)

    Wetter, Barry; Saghir, Ziad; Mortimer, Alan

    1992-08-01

    An overview is given of the Canadian microgravity sciences program emphasizing the development and progress of microgravity-related research in the areas of materials and life sciences. Activities in the area of materials include: (1) materials processing by means of lasers; (2) crystal growth from melts solutions, and/or biological materials; (3) composite, glass, metal, and alloy materials research; and (4) combustion and fluid physics studies. The life-sciences segment incorporates studies of: cardiovascular/muscular acclimatization, radiation dosimetry, aquatic biology, bone decalcification, neurovestibular adaptations, cell cultures, and metabolism. Experimental payloads and processes are described for such infrastructures as the Mir space station, sounding rockets, drop towers, and the International Microgravity Laboratory. In addition to a significant body of useful scientific data the program contributes to the development of useful R&D hardware such as laser systems and a float-zone furnace.

  15. Promoting Science via an Equipment Loan Outreach Program

    NASA Astrophysics Data System (ADS)

    Krieble, Kelly; Salter, Carl

    2008-05-01

    An important component of many college and university science programs is that of community outreach. Some of the more typical kinds of outreach activities include teacher training workshops, public lectures, open house "science days," and school demonstration visits. The latter activity usually consists of students and faculty transporting equipment from their institution to a local secondary school to provide "hands-on" demonstrations or activities to a few science classes. One problem with such visits is the short interaction time (usually an hour or so), which often comes and goes and is soon forgotten by the participating students. We discuss in this paper the specifics of an outreach program that has been successful in addressing this and other issues.

  16. Summer graduate research program for interns in science and engineering

    NASA Technical Reports Server (NTRS)

    Lee, Clinton B.

    1992-01-01

    The goal of the 10 week graduate intern program was to increase the source of candidates for positions in science and engineering at the Goddard Space Flight Center. Students participating in this program submitted papers on the work they performed over the 10 week period and also filled out questionnaires on the program's effectiveness, their own performance, and suggestions on improvements. The topics covered by the student's papers include: microsoft excel applications; fast aurora zone analysis; injection seeding of a Q-switched alexandrite laser; use of high temperature superconductors; modifications on a communication interface board; modeling of space network activities; prediction of atmospheric ozone content; and applications of industrial engineering.

  17. Summer graduate research program for interns in science and engineering

    SciTech Connect

    Lee, C.B.

    1992-03-01

    The goal of the 10 week graduate intern program was to increase the source of candidates for positions in science and engineering at the Goddard Space Flight Center. Students participating in this program submitted papers on the work they performed over the 10 week period and also filled out questionnaires on the program's effectiveness, their own performance, and suggestions on improvements. The topics covered by the student's papers include: microsoft excel applications; fast aurora zone analysis; injection seeding of a Q-switched alexandrite laser; use of high temperature superconductors; modifications on a communication interface board; modeling of space network activities; prediction of atmospheric ozone content; and applications of industrial engineering.

  18. Microgravity Science and Applications Program Tasks, 1984 Revision

    NASA Technical Reports Server (NTRS)

    Pentecost, E. (Compiler)

    1985-01-01

    This report is a compilation of the active research tasks as of the end of the fiscal year 1984 of the Microgravity Science and Applications Program, NASA-Office of Space Science and Applications, involving several NASA centers and other organizations. The purpose of the document is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The report is structured to include an introductory description of the program, strategy and overall goal; identification of the organizational structures and people involved; and a description of each research task, together with a list of recent publications. The tasks are grouped into six categories: (1) electronic materials; (2) solidification of metals, alloys, and composites; (3) fluid dynamics and transports; (4) biotechnology; (5) glasses and ceramics; and (6) combustion.

  19. The women in science and engineering scholars program

    NASA Technical Reports Server (NTRS)

    Falconer, Etta Z.; Guy, Lori Ann

    1989-01-01

    The Women in Science and Engineering Scholars Program provides scientifically talented women students, including those from groups underrepresented in the scientific and technical work force, with the opportunity to pursue undergraduate studies in science and engineering in the highly motivating and supportive environment of Spelman College. It also exposes students to research training at NASA Centers during the summer. The program provides an opportunity for students to increase their knowledge of career opportunities at NASA and to strengthen their motivation through exposure to NASA women scientists and engineers as role models. An extensive counseling and academic support component to maximize academic performance supplements the instructional and research components. The program is designed to increase the number of women scientists and engineers with graduate degrees, particularly those with an interest in a career with NASA.

  20. Microgravity Science and Applications Program tasks, 1987 revision

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A compilation is presented of the active research tasks as of the end of the FY87 of the Microgravity Science and Applications Program, NASA-Office of Space Science and Applications, involving several NASA centers and other organizations. An overview is provided of the program scope for managers and scientists in industry, university, and government communities. An introductory description is provided of the program along with the strategy and overall goal, identification of the organizational structures and people involved, and a description of each task. A list of recent publications is also provided. The tasks are grouped into six major categories: Electronic Materials; Solidification of Metals, Alloys, and Composites; Fluid Dynamics and Transport Phenomena; Biotechnology; Glasses and Ceramics; and Combustion. Other categories include Experimental Technology, General Studies and Surveys; Foreign Government Affiliations; Industrial Affiliations; and Physics and Chemistry Experiments (PACE). The tasks are divided into ground based and flight experiments.

  1. Microgravity Science and Applications Program tasks, 1988 revision

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The active research tasks as of the end of the fiscal year 1988 of the Microgravity Science and Applications Program, NASA-Office of Space Science and Applications, involving several NASA centers and other organizations are compiled. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. Also included are an introductory description of the program, the strategy and overall goal, identification of the organizational structures and people involved, and a description of each task. A list of recent publications is provided. The tasks are grouped into six major categories: electronic materials; solidification of metals, alloys, and composites; fluid dynamics and transport phenomena; biotechnology; glasses and ceramics; and combustion. Other categories include experimental technology, general studies and surveys; foreign government affiliations; industrial affiliations; and Physics And Chemistry Experiments (PACE). The tasks are divided into ground-based and flight experiments.

  2. Undergraduates' Perceived Gains and Ideas about Teaching and Learning Science from Participating in Science Education Outreach Programs

    ERIC Educational Resources Information Center

    Carpenter, Stacey L.

    2015-01-01

    This study examined what undergraduate students gain and the ideas about science teaching and learning they develop from participating in K-12 science education outreach programs. Eleven undergraduates from seven outreach programs were interviewed individually about their experiences with outreach and what they learned about science teaching and…

  3. Humanities Perspectives on Technology Program: Science, Technology & Society Program. Lehigh University, 1977-80.

    ERIC Educational Resources Information Center

    Cutcliffe, Stephen H., Ed.

    Newsletter issues pertaining to Lehigh University's Humanities Perspectives on Technology (HPT) Program, which was renamed the Science, Technology and Society Program, are presented. Additionally, a newsletter article excerpt entitled "Elements of Technology in a Liberal Education" is included. Two 1977 issues of "HRP News,"…

  4. Food, Environment, Engineering and Life Sciences Program (Invited)

    NASA Astrophysics Data System (ADS)

    Mohtar, R. H.; Whittaker, A.; Amar, N.; Burgess, W.

    2009-12-01

    Food, Environment, Engineering and Life Sciences Program Nadia Amar, Wiella Burgess, Rabi H. Mohtar, and Dale Whitaker Purdue University Correspondence: mohtar@purdue.edu FEELS, the Food, Environment, Engineering and Life Sciences Program is a grant of the National Science Foundation for the College of Agriculture at Purdue University. FEELS’ mission is to recruit, retain, and prepare high-achieving students with financial difficulties to pursue STEM (Science, Technology, Engineering, and Mathematics) careers. FEELS achieves its goals offering a scholarship of up to 10,000 per student each year, academic, research and industrial mentors, seminars, study tables, social and cultural activities, study abroad and community service projects. In year one, nine low-income, first generation and/or ethnic minority students joined the FEELS program. All 9 FEELS fellows were retained in Purdue’s College of Agriculture (100%) with 7 of 9 (77.7%) continuing to pursue STEM majors. FEELS fellows achieved an average GPA in their first year of 3.05, compared to the average GPA of 2.54 for low-income non- FEELS students in the College of Agriculture. A new cohort of 10 students joined the program in August 2009. FEELS fellows received total scholarships of nearly 50,000 for the 2008-2009 academic year. These scholarships were combined with a holistic program that included the following key elements: FEELS Freshman Seminars I and II, 2 study tables per week, integration activities and frequent meetings with FEELS academic mentors and directors. Formative assessments of all FEELS activities were used to enhance the first year curriculum for the second cohort. Cohort 1 will continue into their second year where the focus will be on undergraduate research. More on FEELS programs and activities: www.purdue.edu/feels.

  5. Searching for Good Science - The Cancellation of NASA's SETI Program

    NASA Astrophysics Data System (ADS)

    Garber, S. J.

    On Columbus Day, 1992, the National Aeronautics and Space Administration (NASA) formally initiated a radio astronomy program called SETI (Search for Extraterrestrial Intelligence). Less than a year later, Congress abruptly canceled the program. Why? While there was and still is a debate over the likelihood of finding intelligent extraterrestrial life, virtually all informed parties agreed that the SETI program constituted worthwhile, valid science. Yet, fervor over the federal budget deficit, lack of support from other scientists and aerospace contractors and a significant history of unfounded associations with nonscientific elements combined with bad timing in fall 1993 to make the program an easy target to eliminate. Thus SETI was a relative anomaly in terms of a small, scientifically valid program that was canceled for political expediency.

  6. Initiating the 2002 Mars Science Laboratory (MSL) Focused Technology Program

    NASA Technical Reports Server (NTRS)

    Caffrey, Robert T.; Udomkesmalee, Gabriel; Hayati, Samad A.

    2004-01-01

    The Mars Science Laboratory (MSL) Project is an aggressive mission launching in 2009 to deliver a new generation of rover safely to the surface of Mars and conduct comprehensive in situ investigations using a new generation of instruments. This system will be designed to land with precision and be capable of operating over a large percentage on the surface of Mars. It will have capabilities that will support NASA's scientific goals into the next decade of exphation. The MSL Technology program is developing a wide-range of technologies needed for this Mission and potentially other space missions. The MSL Technology Program reports to both the MSL Project and the Mars Technology Program (MTP). The dual reporting process creates a challenging management situation, but ensures the new technology meets both the specific MSL requirements and the broader Mars Program requirements. MTP is a NASA-wide technology development program managed by the Jet Propulsion Laboratory (JPL) and is divided into a Focused Program and a Base Program. The Focused Technology Program addresses technologies that are specific and critical to near-term missions, while the Base Technology Program addresses those technologies that are applicable to multiple missions and which can be characterized as longer term, higher risk, and high payoff technologies. The MSL Technology Program is under the Focused Program and is tightly coupled to MSL's mission milestones and deliverables. The technology budget is separate from the flight Project budget, but the technology s requirements and the development process are tightly coordinated with the Project. The Technology Program combines proven management techniques of flight projects with commercial and academic technology management strategies, to create a technology management program that meets the near-term requirements of MSL and the long-term requirements of MTP. This paper examines the initiation of 2002 MSL Technology program. Some of the areas

  7. Science Teaching Experiences in Informal Settings: One Way to Enrich the Preparation Program for Preservice Science Teachers

    ERIC Educational Resources Information Center

    Hsu, Pei-Ling

    2016-01-01

    The high attrition rate of new science teachers demonstrates the urgent need to incorporate effective practices in teacher preparation programs to better equip preservice science teachers. The purpose of the study is to demonstrate a way to enrich preservice science teachers' preparation by incorporating informal science teaching practice into…

  8. The Role of a Museum-Based Science Education Program in Promoting Content Knowledge and Science Motivation

    ERIC Educational Resources Information Center

    Martin, Andrew J.; Durksen, Tracy L.; Williamson, Derek; Kiss, Julia; Ginns, Paul

    2016-01-01

    Informal learning settings such as museums have been identified as opportunities to enhance students' knowledge and motivation in science and to optimize the connection between science and everyday life. The present study assessed the role of a self-paced science education program (situated in a medical science museum) in enhancing students'…

  9. The Science on Saturday Program at Princeton Plasma Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Bretz, N.; Lamarche, P.; Lagin, L.; Ritter, C.; Carroll, D. L.

    1996-11-01

    The Science on Saturday Program at Princeton Plasma Physics Laboratory consists of a series of Saturday morning lectures on various topics in science by scientists, engineers, educators, and others with an interesting story. This program has been in existence for over twelve years and has been advertised to and primarily aimed at the high school level. Topics ranging from superconductivity to computer animation and gorilla conservation to pharmaceutical design have been covered. Lecturers from the staff of Princeton, Rutgers, AT and T, Bristol Meyers Squibb, and many others have participated. Speakers have ranged from Nobel prize winners, astronauts, industrialists, educators, engineers, and science writers. Typically, there are eight to ten lectures starting in January. A mailing list has been compiled for schools, science teachers, libraries, and museums in the Princeton area. For the past two years AT and T has sponsored buses for Trenton area students to come to these lectures and an effort has been made to publicize the program to these students. The series has been very popular, frequently overfilling the 300 seat PPPL auditorium. As a result, the lectures are videotaped and broadcast to a large screen TV for remote viewing. Lecturers are encouraged to interact with the audience and ample time is provided for questions.

  10. Materials Sciences Programs. Fiscal Year 1980, Office of Basic Energy Sciences

    SciTech Connect

    Not Available

    1980-09-01

    This report provides a convenient compilation index of the DOE Materials Sciences Division programs. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs and is divided into Sections A and B, listing all the projects, Section C, a summary of funding levels, and Section D, an index (the investigator index is in two parts - laboratory and contract research).

  11. NASA'S Water Resources Element Within the Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2010-01-01

    The NASA Applied Sciences Program works within NASA Earth sciences to leverage investment of satellite and information systems to increase the benefits to society through the widest practical use of NASA research results. Such observations provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as land cover type, vegetation type and health, precipitation, snow, soil moisture, and water levels and radiation. Observations of this type combined with models and analysis enable satellite-based assessment of numerous water resources management activities. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, model results, and development and deployment of enabling technologies, systems, and capabilities. Water resources is one of eight elements in the Applied Sciences Program and it addresses concerns and decision making related to water quantity and water quality. With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. Mitigating these conflicts and meeting water demands requires using existing resources more efficiently. The potential crises and conflicts arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. but also in many parts of the world. In addition to water availability issues, water quality related

  12. Lessons Learned from NASA UAV Science Demonstration Program Missions

    NASA Technical Reports Server (NTRS)

    Wegener, Steven S.; Schoenung, Susan M.

    2003-01-01

    During the summer of 2002, two airborne missions were flown as part of a NASA Earth Science Enterprise program to demonstrate the use of uninhabited aerial vehicles (UAVs) to perform earth science. One mission, the Altus Cumulus Electrification Study (ACES), successfully measured lightning storms in the vicinity of Key West, Florida, during storm season using a high-altitude Altus(TM) UAV. In the other, a solar-powered UAV, the Pathfinder Plus, flew a high-resolution imaging mission over coffee fields in Kauai, Hawaii, to help guide the harvest.

  13. National Aeronautics and Space Administration Science and Engineering Apprentice Program

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The National Aeronautics and Space Administration's Science and Engineering Apprentice Program for high school students is one of NASA's many efforts toward a goal of scientific literacy. It embraces science, mathematics, and technology as keys to purposeful and sustained progress and security for our nation and its people. It serves as a model for helping reform education by striving to address mechanisms to influence the knowledge, skills, and attitudes of our students. It focuses on what to do today to meet the challenges of tomorrow.

  14. Cognitive Science Program. Force Control and Its Relation to Timing.

    DTIC Science & Technology

    1986-05-01

    RD-Rl7l 74 COGNITIYE SCIENCE PRORRM FORCE CONTROL RIO ITS / I REL TION TO TIMING (U) O EGON UNIY EUGENE DEPT OF I PSYCHOLOGY S W KEELE ET RL. SI NAY...STANDA. DS 1963 A .- ’.:: -I~ op. %., o .. I a Cognitive Science Program I FOiE aW - MD ITS Of LATICI TO TIMING BY STEVEN W. KEELEj RICHARD I. IVRYj...ONR No. 86-4 IF._ C TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED FORCE CONTROL AND ITS RELATION TO TIMING Final Report 6. PERFORMING ORG

  15. NASA's MEaSUREs Program Serving the Earth Science Community

    NASA Astrophysics Data System (ADS)

    Ramapriyan, H. K.; Tsaoussi, L.; Olding, S. W.

    2014-12-01

    A major need stated by the NASA Earth science research strategy is to develop long-term, consistent, and calibrated data and products that are valid across multiple missions and satellite sensors. NASA has invested in the creation of consistent time series satellite data sets over decades, through both mission science team-based and measurement-based data product reprocessing and through solicitations for merged data products. The NOAA/NASA Pathfinder Program, carried out in the mid-1990's, resulted in the reprocessing of four long time-series datasets from existing archives. The Research, Education and Applications Solutions Network (REASoN) Program, initiated in 2002, consisted of several projects that provided data products, information systems and services capabilities, and/or advanced data systems technologies, to address strategic needs in Earth science research, applications, and education. The Program named Making Earth System data records for Use in Research for Earth Science, or MEaSUREs has had two requests for proposals, the first in 2006 and the second in 2012. With this Program, the Earth Science Division has focused on generating datasets for particular Earth science research measurement needs, and refers to such datasets as Earth System Data Records (ESDRs). Climate Data Records (CDRs) are a particular case of ESDRs. An ESDR is defined as a unified and coherent set of observations of a given parameter of the Earth system, which is optimized to meet specific requirements in addressing science questions. Most of the MEaSUREs projects are five years long. They produce ESDRs using mature, peer-reviewed algorithms. The products are vetted by the user community in the respective scientific disciplines. They are made available publicly by the projects during their execution period. Before the projects end, the ESDRs are transferred to one of the NASA-assigned Distributed Active Archive Centers for longer-term archiving and distribution. Tens of millions of

  16. Lincoln Advanced Science and Engineering Reinforcement (LASER) program

    NASA Technical Reports Server (NTRS)

    Williams, Willie E.

    1989-01-01

    Lincoln University, under the Lincoln Advanced Science and Engineering Reinforcement (LASER) Program, has identified and successfully recruited over 100 students for majors in technical fields. To date, over 70 percent of these students have completed or will complete technical degrees in engineering, physics, chemistry, and computer science. Of those completing the undergraduate degree, over 40 percent have gone on to graduate and professional schools. This success is attributable to well planned approaches to student recruitment, training, personal motivation, retention, and program staff. Very closely coupled to the above factors is a focus designed to achieve excellence in program services and student performance. Future contributions by the LASER Program to the pool of technical minority graduates will have a significant impact. This is already evident from the success of the students that began the first year of the program. With program plans to refine many of the already successful techniques, follow-on activities are expected to make even greater contributions to the availability of technically trained minorities. For example, undergraduate research exposure, broadened summer, and co-op work experiences will be enhanced.

  17. Bachelor of Science in Medical Physics Program at Ryerson University

    NASA Astrophysics Data System (ADS)

    Antimirova, Tetyana

    2006-12-01

    A new Bachelor of Science in Medical Physics program at Ryerson University, Toronto, Ontario was launched in Fall 2006. The program builds on Ryerson’s strong existing capabilities in biomedical physics research. The program’s point of entry is the common first year during which all students in Biology, Chemistry, Contemporary Science and Medical Physics programs complete the foundation courses that include physics, calculus, biology, chemistry, and introduction to computing. In addition to the foundation courses, the first-year studies include an orientation course that supports the students in making a successful transition to university studies. The courses beyond the first year include such topics as radiation therapy, image analysis, medical diagnostics and computer modeling techniques. In the final year the students will undertake an independent, faculty-supervised thesis project in an area of personal research interest. Co-op and industrial internship options are available. Our program promotes natural interaction between physics, life sciences, mathematics and computing. The flexibility built into our curriculum will open a variety of career options for our graduates.

  18. Integrating Science and Policy: A Case Study of the Hubbard Brook Research Foundation Science Links Program

    ERIC Educational Resources Information Center

    Driscoll, Charles T.; Lambert, Kathy Fallon; Weathers, Kathleen C.

    2011-01-01

    Scientists, related professionals, and the public have for decades called for greater interaction among scientists, policymakers, and the media to address contemporary environmental challenges. Practical examples of effective "real-world" programs designed to catalyze interactions and provide relevant science are few. Existing successful models…

  19. Internships in Public Science Education program: a model for informal science education

    NASA Astrophysics Data System (ADS)

    Zenner, Greta

    2005-03-01

    The NSF-funded Internships in Public Science Education (IPSE) program provides a unique opportunity for undergraduate and graduate students with varied academic background to experience learning and teaching science--specifically nanotechnology--to the general public and middle-school students. The program is in collaboration with Discovery World Museum of Milwaukee, Wisconsin. IPSE interns have created a number of classroom activities ranging from understanding the scale of a nanometer to experimenting with liquid crystal sensors to critically examining the societal implications of nanotechnology. In a new phase of the program, the interns are developing a museum exhibit on nanotechnology to be housed at the Discovery World Museum. Through this experience, intern teams learn about nanotechnology, brainstorm ideas, present and receive feedback on their ideas, and create an exhibit prototype to explain nanotechnology and related science concepts. The program also focuses on professional development, during which interns learn techniques for presenting to non-technical audiences, strategies for assessing their materials, and work on their skills in teamwork, project design, leadership, and science communication.

  20. Authorized Course of Instruction for the Quinmester Program. Science: Cell Biology, Introduction to Life Science.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This instructional package contains two biological units developed for the Dade County Florida Quinmester Program. "Introduction to Life Sciences" develops student understandings of cell structure and function, and compares different levels of cellular organization. "Cell Biology" investigates the origin of modern cellular…

  1. Research programs for Division of Chemical Sciences, Office of Basic Energy Sciences, Department of Energy

    SciTech Connect

    Not Available

    1988-01-01

    A chemical sciences review meeting was held in which research programs in chemistry were discussed. Major topics included: chemistry of actinides and fission products, interactions of solvents, solutes and surfaces in supercritical extraction, chemical and physical principles in multiphase separations, and chemical kinetics of enzyme catalyzed reactions. Individual projects are processed separately for the data bases. (CBS)

  2. Developing an Assessment Process for a Master's of Science Degree in a Pharmaceutical Sciences Program.

    PubMed

    Bloom, Timothy J; Hall, Julie M; Liu, Qinfeng; Stagner, William C; Adams, Michael L

    2016-09-25

    Objective. To develop a program-level assessment process for a master's of science degree in a pharmaceutical sciences (MSPS) program. Design. Program-level goals were created and mapped to course learning objectives. Embedded assessment tools were created by each course director and used to gather information related to program-level goals. Initial assessment iterations involved a subset of offered courses, and course directors met with the department assessment committee to review the quality of the assessment tools as well as the data collected with them. Insights from these discussions were used to improve the process. When all courses were used for collecting program-level assessment data, a modified system of guided reflection was used to reduce demands on committee members. Assessment. The first two iterations of collecting program-level assessment revealed problems with both the assessment tools and the program goals themselves. Course directors were inconsistent in the Bloom's Taxonomy level at which they assessed student achievement of program goals. Moreover, inappropriate mapping of program goals to course learning objectives were identified. These issues led to unreliable measures of how well students were doing with regard to program-level goals. Peer discussions between course directors and the assessment committee led to modification of program goals as well as improved assessment data collection tools. Conclusion. By starting with a subset of courses and using course-embedded assessment tools, a program-level assessment process was created with little difficulty. Involving all faculty members and avoiding comparisons between courses made obtaining faculty buy-in easier. Peer discussion often resulted in consensus on how to improve assessment tools.

  3. NASA Applied Sciences Program. Overview Presentation; Discovering and Demonstrating Innovative and Practical Applications of Earth Science

    NASA Technical Reports Server (NTRS)

    Irwin, Daniel

    2010-01-01

    Goal 1: Enhance Applications Research Advance the use of NASA Earth science in policy making, resource management and planning, and disaster response. Key Actions: Identify priority needs, conduct applied research to generate innovative applications, and support projects that demonstrate uses of NASA Earth science. Goal 2: Increase Collaboration Establish a flexible program structure to meet diverse partner needs and applications objectives. Key Actions: Pursue partnerships to leverage resources and risks and extend the program s reach and impact. Goal 3:Accelerate Applications Ensure that NASA s flight missions plan for and support applications goals in conjunction with their science goals, starting with mission planning and extending through the mission life cycle. Key Actions: Enable identification of applications early in satellite mission lifecycle and facilitate effective ways to integrate end-user needs into satellite mission planning

  4. A new high school science program and its effect on student achievement in mathematics and science

    NASA Astrophysics Data System (ADS)

    Goodman, Robert

    Student achievement in mathematics and science is a high educational priority worldwide. The American educational system is not meeting its objectives for these subjects: our students are performing below international standards. The problem is endemic, leading to the conclusion that it is structural. During the last seven years, I have led the creation and implementation of a program whose aim is to address this problem. The structure of this program stresses horizontal and vertical curriculum articulations in order to increase curriculum efficiency and meaningfulness to students. My first aim, in conducting this study, was to determine the program's effectiveness. Since this was a long term program created in a real world environment it would be difficult to use experimental or quasi-experimental analysis. However, I was able to develop a plausible argument for the effectiveness of the program by using two measures to create a baseline for student aptitude and three measures to determine student achievement. Together these showed that the school's students, while typical of those in New Jersey, achieved very positive results in mathematic and science. The likelihood that the new program was responsible for this was enhanced by the fact that the verbal and mathematical aptitudes of the students were comparable, but their achievement in areas outside mathematic and science were not exceptional. My second aim was to provide documentation so that the program could be replicated at other schools. This included the scope and sequence of the mathematics and science courses; the curricula of the physics courses; an explanation the pedagogical approach used in the physics courses, and sample chapters of a textbook being written to support the first year physic course. Whiles those documents supply a snapshot of the current state of the program; they are probably insufficient to replicate it. This would also require an understanding of the program's rationale. Towards this

  5. Triggers of airway inflammation.

    PubMed

    Kerrebijn, K F

    1986-01-01

    Most asthmatics have hyperresponsive airways. This makes them more sensitive than non-asthmatics to bronchoconstricting environmental exposures which, in their turn, may enhance responsiveness. Airway inflammation is considered to be a key determinant of airway hyperresponsiveness: the fact that chronic airway inflammation in cystic fibrosis does not lead to airway hyperresponsiveness of any importance indicates, however, that the role of airway inflammation is complex and incompletely elucidated. The main inducers of airway inflammation are viral infections, antigens, occupational stimuli and pollutants. Although exercise, airway cooling and hyper- or hypotonic aerosols are potent stimuli of bronchoconstriction, it is questionable if airway inflammation is involved in their mode of action. Each of the above-mentioned stimuli is discussed, with emphasis laid on the relation of symptoms to mechanisms.

  6. Science Career Interests among High School Girls One Year after Participation in a Summer Science Program

    NASA Astrophysics Data System (ADS)

    Phillips, Katherine A.; Barrow, Lloyd H.; Chandrasekhar, Meera

    A residential summer program, the New Experiences far Women in Science and Technology (Newton) Academy, was developed to encourage high school girls' interest in the physical sciences and engineering. The goal of the Newton Academy was to increase and/or maintain interest and participation in the physical sciences among high schoolgirls. This study, part of a larger evaluation of the academy, reports the results of a follow-up of the 1998 Newton Academy participants 1 year after participation. It focuses on the participants' interests in the physical sciences and related careers as measured by the Strong Interest Inventory before and 1 year after participation. The results a/participant interviews conducted to further illuminate the findings from the quantitative data are also presented.

  7. Minority Summer Research Program in the Plant Sciences

    SciTech Connect

    Poff, Kenneth L.

    2004-08-12

    Gutierrez and Larcom (2000) suggest that ''According to the National Science Foundation/Division of Science Resources Studies in 1997, the percentage distribution of scientists and engineers in the labor force by race/ethnicity changed little between 1993 and 1997''. According to this report, Black, non-Hispanic went from 3.6 in 1993 to 3.4 in 1997. Hispanic went from 3.0 in 1993 to 3.1 in 1997; and American Indian/Alaskan Native stayed the same at 0.3 during the same period. The only exceptions were a slight increase in the percentage of Asian from 9.2 in 1993 to 10.4 in 1997, while a slight decrease in percentage White from 83.9 in 1993 to 82.8 in 1997. Overall, no major changes in minorities were present in the science and engineering fields during that period. These data shows that major efforts are needed in order to improve and achieve better results for diversity in the workplace (Gutierrez & Larcom, 2000). This does not mean that major steps have not been taken over this period. For example, the Minority Summer Research Program in Plant Sciences (also funded in part by NSF under the title, ''Undergraduate Researchers in Plant Sciences Program'') was established in an effort to enhance the diversity of the plant science community. The Minority Summer Research Program in Plant Sciences was designed to encourage members of underrepresented groups to seek career opportunities in the plant sciences. To achieve this end, the program contained several components with the primary focus on mentored research for undergraduate students. The research experience was provided during the summer months on the campus of Michigan State University in East Lansing, Michigan. At the end of the summer experience, each participant presented an oral report on their research, and submitted a written paper on the same topic. This was deliberately designed to mimic the plant science professions in which research leads to presentations in the form of reports, papers, etc. In addition

  8. Innovative Space Sciences Education Programs for Young People

    NASA Astrophysics Data System (ADS)

    Inbar, T.

    2002-01-01

    The future of the world is greatly depends on space. Through space sciences education programs with the main focus is on young people, the society, as a whole will gain in the years to come. The Weizmann Institute of Science is the leading scientific research center in Israel. After the need for science education programs for young students was recognized, the institute established its Youth Activities Section, which serves as the institute's outreach for the general population of school children nation-wide. The youth activities section holds courses, seminars, science camps etc. for almost 40 years. As an instructor in the youth activities section since 1990, my focus is space sciences programs, such as rocketry courses, planetarium demonstrations, astronomical observations and special events - all in the creed of bringing the space science to everyone, in a enjoyable, innovative and creative way. Two of the courses conducted combines' scientific knowledge, hands-on experience and a glimpse into the work of space programs: the rocketry courses offered a unique chance of design, build and fly actual rockets, to height of about 800 meters. The students conduct research on the rockets, such as aerial photography, environmental measurements and aerodynamic research - using student built wind tunnel. The space engineering course extend the high frontier of the students into space: the objective of a two year course is to design, build an launch an experiments package to space, using one of NASA's GAS programs. These courses, combined with special guest lectures by Weizmann institute's senior researchers, tours to facilities like satellite control center, clean rooms, the aeronautical industry, give the students a chance to meet with "the real world" of space sciences applications and industry, and this - in turn - will have payback effect on the society as a whole in years to come. The activities of space sciences education include two portable planetariums, 4

  9. Science at NASA field centers: Findings and recommendations on the scope, strength and interactions of science and science-related technology programs

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Great achievements by NASA and other space agencies have shown us what opportunities lie in the opening of the space frontier. A broad and vigorous science program in NASA is vital to full U.S. exploitation of these new opportunities. Today, science in NASA Centers is characterized by its breadth, relevance, and excellence. The NASA in-house science program and its links to university programs constitute a vitally important national resource. Maintaining excellence as a foundation for the future is a fundamental responsibility of NASA, one that requires constant attention and effort. This report by the NASA Center Science Assessment Team documents the current state of science within NASA and recommends actions to maintain a healthy program. NASA scientists have always played key roles in planning, guiding, and conducting national programs in space science. The review of Center science programs is intended to ensure that both NASA and the nation can depend on their continuing contribution in these roles.

  10. The Impact of Science Graduate Students in Urban Science Classrooms: The SFOS Program at Cal State Los Angeles

    NASA Astrophysics Data System (ADS)

    Terebey, S.; Mayo, D.; Strauss, J.

    2005-12-01

    The SFOS program at Cal State Los Angeles places science graduate students in minority serving high schools and middle schools in the Los Angeles region. Graduate fellows pursue Master's degrees in biology, chemistry, geology, or physics while working with partner teachers to provide science demonstrations and activities that are based on California science content standards. Fellows in the classroom are not apprentice teachers, but rather, their role is science communication. Now in its third year, we discuss the impacts of the SFOS program on graduate fellows, teachers, and high school curricula. We thank the National Science Foundation for funding through the GK-12 program.

  11. COSI: The Compton Spectrometer and Imager Science Program

    NASA Astrophysics Data System (ADS)

    Tomsick, John; Jean, Pierre; Chang, Hsiang-Kuang; Boggs, Steven; Zoglauer, A.; Von Ballmoos, Peter; Amman, Mark; Chiu, Jeng-Lun; Chang, Yuan-Hann.; Chou, Yi; Kierans, Carolyn; Lin, Chih-Hsun.; Lowell, Alex; Shang, Jie-Rou.; Tseng, Chao-Hsiung; Yang, Chien-Ying

    The Compton Spectrometer and Imager (COSI), which was formerly known as the Nuclear Compton Telescope (NCT), is a balloon-borne soft gamma-ray telescope (0.2-5 MeV) designed to probe the origins of Galactic positrons, uncover sites of nucleosynthesis in the Galaxy, and perform pioneering studies of gamma-ray polarization in a number of source classes. COSI uses a compact Compton telescope design, resulting from a decade of development under NASA's ROSES program - a modern take on techniques successfully pioneered by COMPTEL on CGRO. We have rebuilt the COSI instrument and flight systems, upgraded for balloon flights and improved polarization sensitivity. We will present the redesign of COSI and the overall goals of the 5-year science program. Three science flights are planned to fulfill the COSI science goals: an LDB in 2014 from Antarctica on a superpressure balloon (SuperCOSI), followed by two 100-day ULDB flights from New Zealand. COSI is a wide-field survey telescope designed to perform imaging, spectroscopy, and polarization measurements. It employs a novel Compton telescope design utilizing a compact array of cross-strip germanium detectors (GeDs) to resolve individual gamma-ray interactions with high spectral and spatial resolution. The COSI array is housed in a common vacuum cryostat cooled by a mechanical cryocooler. An active CsI shield encloses the cryostat on the sides and bottom. The FoV of the instrument covers 25% of the full sky at a given moment. The COSI instrument is mature, building upon considerable heritage from the previous NCT balloon instrument that underwent a successful technology demonstration flight in June 2005 from Fort Sumner, NM, a successful "first light" science flight from Fort Sumner in May 2009, and quickly turned around and delivered on time for a launch campaign from Alice Springs, Australia in June 2010, where it unfortunately suffered a launch mishap. The NCT instrument and Flight System are being rebuilt under the NASA

  12. Microgravity Science and Applications Program tasks, 1990 revision

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The active research tasks as of the end of the fiscal year 1990 sponsored by the Microgravity Science and Applications Division of the NASA Office of Space Science and Applications are compiled. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The report includes an introductory description of the program, the strategy and overall goal; an index of principle investigators; and a description of each task. A list of recent publications is also provided. The tasks are grouped into six major categories: electronic materials; solidification of metals, alloys, and composites; fluid dynamics and transport phenomena; biotechnology; glasses and ceramics; combustion; experimental technology; facilities; and Physics And Chemistry Experiments (PACE). The tasks are divided into ground-based and flight experiments.

  13. Windows to the Universe: Earth Science Enterprise Education Program

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Over the past year, Windows to the Universe has continued a multifaceted program of support to the Earth Science Enterprise Education program. Areas of activity include continued maintenance of the W2U website and user traffic analysis, development of new and revised content and activities on the website, implementation of new tools to facilitate website development and maintenance, response to users questions and comments, professional development for educators through workshops at the National Science Teachers Association meetings and at NCAR, and dissemination of information about the project through materials distribution at NSTAs, AGUs, AMS and other venues. This report provides some background on the project and summarizes progress for the third and final year of the project.

  14. The NASA Life Sciences experiment program for Shuttle/Spacelab

    NASA Technical Reports Server (NTRS)

    Winter, D.

    1978-01-01

    The Life Sciences experiment program for the Shuttle/Spacelab has basically two scientific objectives. The first objective is related to an understanding and interpretation of the medical data from Skylab. The second objective is concerned with a utilization of the space environment, notably the very low g field, as an experimental variable in a broad range of fundamental studies. The program considered will use the pressurized module, almost exclusively, and will aim toward the greatest investigator participation in flight that is possible. Facilities must be provided to support such requirements as tissue biopses, blood, urine and tissue collections, and microbial and plant manipulations.

  15. Bioremediation Education Science and Technology (BEST) Program Annual Report 1999

    SciTech Connect

    Hazen, Terry C.

    2000-07-01

    The Bioremediation, Education, Science and Technology (BEST) partnership provides a sustainable and contemporary approach to developing new bioremedial technologies for US Department of Defense (DoD) priority contaminants while increasing the representation of underrepresented minorities and women in an exciting new biotechnical field. This comprehensive and innovative bioremediation education program provides under-represented groups with a cross-disciplinary bioremediation cirruculum and financial support, coupled with relevant training experiences at advanced research laboratories and field sites. These programs are designed to provide a stream of highly trained minority and women professionals to meet national environmental needs.

  16. Atmospheric Sciences Program summaries of research in FY 1993

    SciTech Connect

    Not Available

    1993-11-01

    This document describes the activities and products of the Atmospheric Science Program of the Environmental Sciences Division, Office of Health and Environmental Research, Office of Energy Research, in FY 1993. Each description contains the project`s title; three-year funding history; the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date. Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states its goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used. This document has been indexed to aid the reader in locating research topics, participants, and research institutions in the text and the project descriptions. Comprehensive subject, principal investigator, and institution indexes are provided at the end of the text for this purpose. The comprehensive subject index includes keywords from the introduction and chapter texts in addition to those from the project descriptions.

  17. Atmospheric Sciences Program summaries of research in FY 1993

    NASA Astrophysics Data System (ADS)

    1993-11-01

    This document describes the activities and products of the Atmospheric Science Program of the Environmental Sciences Division, Office of Health and Environmental Research, Office of Energy Research, in FY 1993. Each description contains the project's title; three-year funding history; the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project's objectives, products, approach, and results to date. Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states its goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used. This document has been indexed to aid the reader in locating research topics, participants, and research institutions in the text and the project descriptions. Comprehensive subject, principal investigator, and institution indexes are provided at the end of the text for this purpose. The comprehensive subject index includes keywords from the introduction and chapter texts in addition to those from the project descriptions.

  18. 75 FR 15675 - Professional Research Experience Program in Chemical Science and Technology Laboratory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... National Institute of Standards and Technology Professional Research Experience Program in Chemical Science...) Chemical Science and Technology Laboratory (CSTL) announces that the Professional Research Experience... Research and Standards--11.609. Program Description: The National Institute of Standards and...

  19. Tailoring science education graduate programs to the needs of science educators in low-income countries

    NASA Astrophysics Data System (ADS)

    Lunetta, Vincent N.; van den Berg, Euwe

    Science education graduate programs in high-income countries frequently enroll students from low-income countries. Upon admission these students have profiles of knowledge, skills, and experiences which can be quite different from those of students from the host high-income countries. Upon graduation, they will normally return to work in education systems with conditions which differ greatly from those in high-income countries. This article attempts to clarify some of the differences and similarities between such students. It offers suggestions for making graduate programs more responsive to the special needs of students from low-income countries and to the opportunities they offer for enhancing cross-cultural sensitivity. Many of the suggestions can be incorporated within existing programs through choices of elective courses and topics for papers, projects, and research. Many references are provided to relevant literature on cultural issues and on science education in low-income countries.

  20. Master's Degree Programs for the Preparation of Secondary Earth Science Teachers.

    ERIC Educational Resources Information Center

    Passero, Richard Nicholas

    Investigated were master's degree programs for the preparation of secondary school earth science teachers. Programs studied were classified as: (1) noninstitute college programs, and (2) National Science Foundation (NSF) institute programs. A total of 289 students enrolled in noninstitute programs contributed data by personal visits and…

  1. Future opportunities for life science programs in space.

    PubMed

    Yokota, H; Sun, H B; Malacinski, G M

    2000-09-01

    Most space-related life science programs are expensive and time-consuming, requiring international cooperation and resources with trans-disciplinary expertise. A comprehensive future program in "life sciences in space" needs, therefore, well-defined research goals and strategies as well as a sound ground-based program. The first half of this review will describe four key aspects such as the environment in space, previous accomplishments in space (primarily focusing on amphibian embryogenesis), available resources, and recent advances in bioinformatics and biotechnology, whose clear understanding is imperative for defining future directions. The second half of this review will focus on a broad range of interdisciplinary research opportunities currently supported by the National Aeronautics and Space Administration (NASA), National Institute of Health (NIH), and National Science Foundation (NSF). By listing numerous research topics such as alterations in a diffusion-limited metabolic process, bone loss and skeletal muscle weakness of astronauts, behavioral and cognitive ability in space, life in extreme environment, etc., we will attempt to suggest future opportunities.

  2. NASA space life sciences research and education support program

    NASA Technical Reports Server (NTRS)

    Jones, Terri K.

    1995-01-01

    USRA's Division of Space Life Sciences (DSLS) was established in 1983 as the Division of Space Biomedicine to facilitate participation of the university community in biomedical research programs at the NASA Johnson Space Center (JSC). The DSLS is currently housed in the Center for Advanced Space Studies (CASS), sharing quarters with the Division of Educational Programs and the Lunar and Planetary Institute. The DSLS provides visiting scientists for the Johnson Space Center; organizes conferences, workshops, meetings, and seminars; and, through subcontracts with outside institutions, supports NASA-related research at more than 25 such entities. The DSLS has considerable experience providing visiting scientists, experts, and consultants to work in concert with NASA Life Sciences researchers to define research missions and goals and to perform a wide variety of research administration and program management tasks. The basic objectives of this contract have been to stimulate, encourage, and assist research and education in the NASA life sciences. Scientists and experts from a number of academic and research institutions in this country and abroad have been recruited to support NASA's need to find a solution to human physiological problems associated with living and working in space and on extraterrestrial bodies in the solar system.

  3. Recent Enrollment Trends in American Soil Science Programs

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.; Abit, Sergio; Brown, David; Dolliver, Holly; Hopkins, David; Lindbo, David; Manu, Andrew; Mbila, Monday; Parikh, Sanjai J.; Schulze, Darrell; Shaw, Joey; Weil, Ray; Weindorf, David

    2015-04-01

    Soil science student enrollment was on the decline in the United States from the early 1990s through the early 2000s. Overall undergraduate student enrollment in American colleges and universities rose by about 11% over the same time period. This fact created considerable consternation among the American soil science community. As we head into the International Year of Soil, it seemed to be a good time to revisit this issue and examine current enrollment trends. Fourteen universities that offer undergraduate and/or graduate programs in soil science were surveyed for their enrollments over the time period 2007-2014 (the last seven academic years). The 14 schools represent about 20% of the institutions that offer soil science degrees/programs in the United States. Thirteen institutions submitted undergraduate data and 10 submitted graduate data, which was analyzed by individual institution and in aggregate. Simple linear regression was used to find the slope of best-fit trend lines. For individual institutions, a slope of ≥ 0.5 (on average, the school gained 0.5 students per year or more) was considered to be growing enrollment, ≤ -0.5 was considered shrinking enrollment, and between -0.5 and 0.5 was considered to be stable enrollment. For aggregated data, the 0.5 slope standard was multiplied by the number of schools in the aggregated survey to determine whether enrollment was growing, shrinking, or stable. Over the period of the study, six of the 13 schools reporting undergraduate data showed enrollment gains, five of the 13 showed stable enrollments, one of the 13 showed declining enrollments, and one of the 13 discontinued their undergraduate degree program. The linear regression trend line for the undergraduate schools' composite data had a slope of 55.0 students/year (R2 = 0.96), indicating a strong overall trend of undergraduate enrollment growth at these schools. However, the largest school had also seen large growth in enrollment. To ensure that this one

  4. The New Millenium Program: Serving Earth and Space Sciences

    NASA Technical Reports Server (NTRS)

    Li, Fuk K.

    2000-01-01

    NASA has exciting plans for space science and Earth observations during the next decade. A broad range of advanced spacecraft and measurement technologies will be needed to support these plans within the existing budget and schedule constraints. Many of these technology needs are common to both NASA's Office of Earth Science (OES) and Office of Space Sciences (OSS). Even though some breakthrough technologies have been identified to address these needs, project managers have traditionally been reluctant to incorporate them into flight programs because their inherent development risk. To accelerate the infusion of new technologies into its OES and OSS missions, NASA established the New Millennium Program (NMP). This program analyzes the capability needs of these enterprises, identifies candidate technologies to address these needs, incorporates advanced technology suites into validation flights, validates them in the relevant space environment, and then proactively infuses the validated technologies into future missions to enhance their capabilities while reducing their life cycle cost. The NMP employs a cross-enterprise Science Working Group, the NASA Enterprise science and technology roadmaps to define the capabilities needed by future Earth and Space science missions. Additional input from the science community is gathered through open workshops and peer-reviewed NASA Research Announcement (NRAs) for advanced measurement concepts. Technology development inputs from the technology organizations within NASA, other government agencies, federally funded research and development centers (FFRDC's), U.S. industry, and academia are sought to identify breakthrough technologies that might address these needs. This approach significantly extends NASA's technology infrastructure. To complement other flight test programs that develop or validate of individual components, the NMP places its highest priority on system-level validations of technology suites in the relevant space

  5. Evaluating the Effectiveness of the 2002-2003 NASA SCIence Files(TM) Program

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Lambert, Matthew A.; Williams, Amy C.

    2004-01-01

    NASA SCIence Files (tm) is a research-, inquiry-, and standards-based, integrated mathematics, science, and technology series of 60-minute instructional distance learning (television and web-based) programs for students in grades 3-5. Respondents who evaluated the programs in the 2002-2003 NASA SCIence Files (tm) series reported that (1) they used the programs in the series; (2) the goals and objectives for the series were met; (3) the programs were aligned with the national mathematics, science, and technology standards; (4) the program content was developmentally appropriate for grade level; and (5) the programs in the series enhanced and enriched the teaching of mathematics, science, and technology.

  6. Direction discovery: A science enrichment program for high school students.

    PubMed

    Sikes, Suzanne S; Schwartz-Bloom, Rochelle D

    2009-03-01

    Launch into education about pharmacology (LEAP) is an inquiry-based science enrichment program designed to enhance competence in biology and chemistry and foster interest in science careers especially among under-represented minorities. The study of how drugs work, how they enter cells, alter body chemistry, and exit the body engages students to conceptualize fundamental precepts in biology, chemistry, and math. Students complete an intensive three-week course in the fundamentals of pharmacology during the summer followed by a mentored research component during the school year. Following a 5E learning paradigm, the summer course captures student interest by introducing controversial topics in pharmacology and provides a framework that guides them to explore topics in greater detail. The 5E learning cycle is recapitulated as students extend their knowledge to design and to test an original research question in pharmacology. LEAP students demonstrated significant gains in biology and chemistry knowledge and interests in pursuing science. Several students earned honors for the presentation of their research in regional and state science fairs. Success of the LEAP model in its initial 2 years argues that coupling college-level coursework of interest to teens with an authentic research experience enhances high school student success in and enthusiasm for science.

  7. Summaries of the FY 1981 applied mathematical sciences research program

    SciTech Connect

    Not Available

    1981-12-01

    Applied Mathematical Sciences serves as the DOE focal point for monitoring and advancing the state of the art in mathematics, statistics, and computer science. Several DOE mission programs develop and refine specific techniques from the applied mathematical sciences applicable to their immediate needs. In contrast, Applied Mathematical Sciences concentrates on more broadly based, continuing needs throughout the DOE community. Emphasis is placed on research basic to the analysis, development, and use of large-scale computational models; the management and analysis of large, complex collections of information; and the effective use of DOE computing resources. The purpose of this research is not to improve existing technologies and methodologies, but rather to render them obsolete. Each part of the Applied Mathematical Sciences activity has been designed with the help and advice of leading mathematicians and computer scientists from universities, industry, and DOE laboratories to assure the broadest and greatest impact on the nation's energy R and D enterprise. Many of them are expert in industry's needs in the relevant areas. Close liaison is maintained with other federal agencies in the selection of areas of emphasis and of individual research tasks. This is high leverage research. In favorable cases, the results may be of great benefit simultaneously to a number of different energy technologies. The requested increase will be an exceptionally sound investment.

  8. Improving epistemological beliefs and moral judgment through an STS-based science ethics education program.

    PubMed

    Han, Hyemin; Jeong, Changwoo

    2014-03-01

    This study develops a Science-Technology-Society (STS)-based science ethics education program for high school students majoring in or planning to major in science and engineering. Our education program includes the fields of philosophy, history, sociology and ethics of science and technology, and other STS-related theories. We expected our STS-based science ethics education program to promote students' epistemological beliefs and moral judgment development. These psychological constructs are needed to properly solve complicated moral and social dilemmas in the fields of science and engineering. We applied this program to a group of Korean high school science students gifted in science and engineering. To measure the effects of this program, we used an essay-based qualitative measurement. The results indicate that there was significant development in both epistemological beliefs and moral judgment. In closing, we briefly discuss the need to develop epistemological beliefs and moral judgment using an STS-based science ethics education program.

  9. Science and technology disclosure in the state of Queretaro: Science and Technology for Children program

    NASA Astrophysics Data System (ADS)

    Contreras Flores, Rubén; Villeda Muñoz, Gabriel

    2007-03-01

    Science and technology disclosure is an integral part of our scientific work as researches; it is an induction process for children, young people and teachers of primary and secondary schools in the state of Queretaro. Education must be offered in a clear and objective way, it allows to the students apply the acquired knowledge to understand the world and improve his quality of life. Nowadays, the Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada of the Instituto Politecnico Nacional Unidad Queretaro (CICATA-IPN Queretaro) together with the Consejo de Ciencia y Tecnologia del Estado de Queretaro (CONCYTEQ) have implemented the "Science and Technology for Children" program (Ciencia y Tecnologia para Ninos - CTN), it allows to the educative sector obtain information through the CONCYTEQ web page. The fist stage of the program was the development of two subjects: the brochure titled "Petroleum, Nonrenewable Natural Resource that Moves the World" and the manual "Experiments of Physics". At the moment we are working with the second stage of the program, it is about the energy generation using renewable sources such as: geothermal, aeolian, solar and biomass. The CTN program allows to students and teachers to create conscience about the importance of the development of the science of technology in our country.

  10. NEW Planetarium Programs for Polar Informal Science Education

    NASA Astrophysics Data System (ADS)

    Sumners, C.; Schloss, A. L.; Reiff, P.

    2007-12-01

    The modern planetarium is an immersive full-dome theater that can take audiences to Polar Regions in the past, present, or future and can simulate dynamic polar events. With the goal of public engagement and education, we are producing two programs: Night of the Titanic and Ice Worlds. Night of the Titanic uses a famous tragedy to uncover the science that could have saved the ship and the changing conditions in the North Atlantic over the last century. This program also fosters discussion about how humans evaluate data and make critical decisions related to the changing condition of polar ice. Ice Worlds uses comparative planetology themes to present Earth in the context of all ice worlds in the solar system, thus providing a broader perspective for analysis of changes in Earth's Polar Regions. Both programs rely on themes of high public interest to drive attendance and engagement. Both programs are being developed for the large dome theater or planetarium market and for portable Discovery Domes, which can reach urban and rural audiences throughout the world. This paper focuses on techniques for presentation of rigorous science content in a context that will engage the general public as well as school groups over a wide age range.

  11. Research Experience for Undergraduates Program in Multidisciplinary Environmental Science

    NASA Astrophysics Data System (ADS)

    Wu, M. S.

    2012-12-01

    During summers 2011 and 12 Montclair State University hosted a Research Experience for Undergraduates Program (REU) in transdisciplinary, hands-on, field-oriented research in environmental sciences. Participants were housed at the Montclair State University's field station situated in the middle of 30,000 acres of mature forest, mountain ridges and freshwater streams and lakes within the Kittatinny Mountains of Northwest New Jersey, Program emphases were placed on development of project planning skills, analytical skills, creativity, critical thinking and scientific report preparation. Ten students were recruited in spring with special focus on recruiting students from underrepresented groups and community colleges. Students were matched with their individual research interests including hydrology, erosion and sedimentation, environmental chemistry, and ecology. In addition to research activities, lectures, educational and recreational field trips, and discussion on environmental ethics and social justice played an important part of the program. The ultimate goal of the program is to facilitate participants' professional growth and to stimulate the participants' interests in pursuing Earth Science as the future career of the participants.

  12. Emergency airway puncture

    MedlinePlus

    ... support for only a very short period of time. Alternative Names Needle cricothyrotomy Images Emergency airway puncture Cricoid cartilage Emergency airway puncture - series References Hebert RB, Bose S, Mace SE. Cricothyrotomy and ...

  13. Upper airway biopsy

    MedlinePlus

    ... upper airway Images Upper airway test Bronchoscopy Throat anatomy References Yung RC, Boss EF. Tracheobronchial endoscopy. In: Flint PW, Haughey BH, Lund LJ, et al, eds. Cummings Otolaryngology: Head & Neck Surgery. 5th ed. Philadelphia, PA: Elsevier Mosby; ...

  14. DPS Planetary Science Graduate Programs Database for Students and Advisors

    NASA Astrophysics Data System (ADS)

    Klassen, David R.; Roman, Anthony; Meinke, Bonnie K.

    2016-10-01

    Several years ago the DPS Education committee decided that it should have an online resource that could help undergraduate students find graduate programs that could lead to a PhD with a focus in planetary science. It began in 2013 as a static page of information and evolved from there to a database-driven web site. Visitors can browse the entire list of programs or create a subset listing based on several filters. The site should be of use not only to undergraduates looking for programs, but also for advisers looking to help their students decide on their future plans. The reason for such a list is that "planetary science" is a heading that covers an extremely diverse set of disciplines. The usual case is that planetary scientists are housed in a discipline-placed department so that finding them is typically not easy—undergraduates cannot look for a Planetary Science department, but must (somehow) know to search for them in all their possible places. This can overwhelm even determined undergraduate student, and even many advisers!We present here the updated site and a walk-through of the basic features as well as some usage statistics from the collected web site analytics. We ask for community feedback on additional features to make the system more usable for them. We also call upon those mentoring and advising undergraduates to use this resource, and for program admission chairs to continue to review their entry and provide us with the most up-to-date information.The URL for our site is http://dps.aas.org/education/graduate-schools.

  15. Partnering to Enhance Planetary Science Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    Dalton, Heather; Shipp, Stephanie; Shupla, Christine; Shaner, Andrew; LaConte, Keliann

    2015-11-01

    The Lunar and Planetary Institute (LPI) in Houston, Texas utilizes many partners to support its multi-faceted Education and Public Outreach (E/PO) program. The poster will share what we have learned about successful partnerships. One portion of the program is focused on providing training and NASA content and resources to K-12 educators. Teacher workshops are performed in several locations per year, including LPI and the Harris County Department of Education, as well as across the country in cooperation with other programs and NASA Planetary Science missions.To serve the public, LPI holds several public events per year called Sky Fest, featuring activities for children, telescopes for night sky viewing, and a short scientist lecture. For Sky Fest, LPI partners with the NASA Johnson Space Center Astronomical Society; they provide the telescopes and interact with members of the public as they are viewing celestial objects. International Observe the Moon Night (InOMN) is held annually and involves the same aspects as Sky Fest, but also includes partners from Johnson Space Center’s Astromaterials Research and Exploration Science group, who provide Apollo samples for the event.Another audience that LPI E/PO serves is the NASA Planetary Science E/PO community. Partnering efforts for the E/PO community include providing subject matter experts for professional development workshops and webinars, connections to groups that work with diverse and underserved audiences, and avenues to collaborate with groups such as the National Park Service and the Afterschool Alliance.Additional information about LPI’s E/PO programs can be found at http://www.lpi.usra.edu/education. View a list of LPI E/PO’s partners here: http://www.lpi.usra.edu/education/partners/.

  16. Partnering to Enhance Planetary Science Education and Public Outreach Programs

    NASA Astrophysics Data System (ADS)

    Dalton, H.; Shipp, S. S.; Shupla, C. B.; Shaner, A. J.; LaConte, K.

    2015-12-01

    The Lunar and Planetary Institute (LPI) in Houston, Texas utilizes many partners to support its multi-faceted Education and Public Outreach (E/PO) program. The poster will share what we have learned about successful partnerships. One portion of the program is focused on providing training and NASA content and resources to K-12 educators. Teacher workshops are performed in several locations per year, including LPI and the Harris County Department of Education, as well as across the country in cooperation with other programs and NASA Planetary Science missions. To serve the public, LPI holds several public events per year called Sky Fest, featuring activities for children, telescopes for night sky viewing, and a short scientist lecture. For Sky Fest, LPI partners with the NASA Johnson Space Center Astronomical Society; they provide the telescopes and interact with members of the public as they are viewing celestial objects. International Observe the Moon Night (InOMN) is held annually and involves the same aspects as Sky Fest, but also includes partners from Johnson Space Center's Astromaterials Research and Exploration Science group, who provide Apollo samples for the event. Another audience that LPI E/PO serves is the NASA Planetary Science E/PO community. Partnering efforts for the E/PO community include providing subject matter experts for professional development workshops and webinars, connections to groups that work with diverse and underserved audiences, and avenues to collaborate with groups such as the National Park Service and the Afterschool Alliance. Additional information about LPI's E/PO programs can be found at http://www.lpi.usra.edu/education. View a list of LPI E/PO's partners here: http://www.lpi.usra.edu/education/partners/.

  17. Technology and Science Education: Starting Points, Research Programs, and Trends.

    ERIC Educational Resources Information Center

    Linn, Marcia C.

    2003-01-01

    Explores technology in science education in five paths: (1) science texts and lectures; (2) science discussions and collaboration; (3) data collection and representation; (4) science visualization; and (5) science simulation and modeling. (Contains 92 references.) (Author/SOE)

  18. Long-Term Stewardship Program Science and Technology Requirements

    SciTech Connect

    Joan McDonald

    2002-09-01

    Many of the United States’ hazardous and radioactively contaminated waste sites will not be sufficiently remediated to allow unrestricted land use because funding and technology limitations preclude cleanup to pristine conditions. This means that after cleanup is completed, the Department of Energy will have long-term stewardship responsibilities to monitor and safeguard more than 100 sites that still contain residual contamination. Long-term stewardship encompasses all physical and institutional controls, institutions, information, and other mechanisms required to protect human health and the environment from the hazards remaining. The Department of Energy Long-Term Stewardship National Program is in the early stages of development, so considerable planning is still required to identify all the specific roles and responsibilities, policies, and activities needed over the next few years to support the program’s mission. The Idaho National Engineering and Environmental Laboratory was tasked with leading the development of Science and Technology within the Long-Term Stewardship National Program. As part of that role, a task was undertaken to identify the existing science and technology related requirements, identify gaps and conflicts that exist, and make recommendations to the Department of Energy for future requirements related to science and technology requirements for long-term stewardship. This work is summarized in this document.

  19. Effect of Federal programs on health sciences libraries.

    PubMed

    Palmer, R A

    1987-01-01

    The radical changes and improvements in health sciences libraries during the last quarter century have been primarily achieved through the leadership of the National Library of Medicine (NLM) in the application of technology and in the creation of a biomedical communications network. This article describes principal programs and activities of the National Library of Medicine and their effects on health sciences libraries: the Medical Literature Analysis and Retrieval System (MEDLARS), implementation of the Medical Library Assistance Act (MLAA), and defense of "fair use" of copyrighted material. The article briefly summarizes more recent Federal activities which directly affect access to and dissemination of health information and concludes with a summary of problems for which solutions must be found if health sciences libraries are to be prepared to meet the future. It is clear from comparing the programs described with current government attitudes that, although the Federal government has promoted advancement in the dissemination of biomedical information in the past, this trend is reversing, and Federal funding to libraries is decreasing while the cost of accessing information is increasing.

  20. An analysis of undergraduate exercise science programs: an exercise science curriculum survey.

    PubMed

    Elder, Craig L; Pujol, Thomas J; Barnes, Jeremy T

    2003-08-01

    Undergraduate exercise science programs develop curricula by referring to standards set by professional organizations. A web-based survey was administered to 235 institutions with exercise science undergraduate programs to evaluate their adherence to stated curricular guidelines. Results indicate that 29% of institutions considered American College of Sports Medicine (ACSM) Knowledge, skills, and abilities (KSAs); 33% both ACSM and National Association for Sport and Physical Education (NASPE) guidelines; 6% ACSM, NASPE, and National Strength and Conditioning Association (NSCA); 8% ACSM, NASPE, NSCA, and American Society of Exercise Physiologists, and 5% NASPE. The two largest subgroups had good compliance with the areas of exercise physiology, biomechanics, and human anatomy and physiology. However, neither subgroup adhered to the areas of exercise prescription, testing, and implementation; exercise and aging; or exercise with special populations. Regardless of the implemented guideline(s), most institutions placed minimal emphasis on areas related to health promotion and many curricula did not require any field experience.

  1. Exploring the Impact of an Out-of-School Science Program on the Science Learning of Upper Elementary School Children

    ERIC Educational Resources Information Center

    Marshall, Karen Benn

    2009-01-01

    This study sought to explore qualitatively how participation in an informal science program might affect the following aspects of upper elementary school children's scientific thinking: conceptual understanding, epistemology of science, and the formation of their identity as science learners. A purposefully selected, maximum variation sample of…

  2. Pottery Instead of Science? One Project's Answer to the Programming Dilemma. Programming in Creative Arts.

    ERIC Educational Resources Information Center

    Krause, Claire S.

    Creative arts programing for gifted and talented elementary students has incorporated academics (ecology, mathematics, history, genealogy, computer science, and independent research) into activities such as puppetry, creative drama, storytelling, dance, music, pottery, and poetry. The arts classes have been popular with students, parents,…

  3. DUSEL-related Science at LBNL -- Program and Opportunities

    SciTech Connect

    Bauer, Christian; Detweiler, Jason; Freedman, Stuart; Gilchriese, Murdock; Kadel, Richard; Koch, Volker; Kolomensky, Yury; Lesko, Kevin; von der Lippe, Henrik; Marks, Steve; Nomura, Yasunori; Plate, David; Roe, Natalie; Sichtermann, Ernst; Ligeti, Zoltan

    2009-08-01

    The National Science Foundation is advancing the design of a Deep Underground Science and Engineering Laboratory (DUSEL) at the former Homestake mine in South Dakota. UC Berkeley and LBNL are leading the design effort for the facility and coordinating the definition and integration of the suite of experiments to be coupled to the facility design in the creation of an MREFC (Major Research Equipment and Facility Construction) proposal. The State of South Dakota has marshaled $120M to prepare the site and begin a modest science program at the 4850 ft level. The first physics experiment is anticipated to begin installation in 2009. The current timetable calls for the MREFC Preliminary Design to be assembled by 2010 to be presented to the National Science Board in 2011. This, in turn, indicates that the earliest DUSEL construction start would be FY2013. The MREFC is estimated (before the inclusion of the long baseline neutrino components) at $500--600M, roughly divided evenly between the experimental program and support for the facility. Construction was estimated at 6--8 years. The DOE and NSF are establishing a Joint Oversight Group (JOG) to coordinate the experimental programs and participation in DUSEL. It is anticipated that the JOG would mirror the similar function for the NSF and DOE participation in the LHC, and that DOE-HEP, DOE-NP, and NSF will all participate in the JOG. In parallel with the NSF efforts, DOE-HEP plans to develop a long baseline neutrino program with neutrino beams created at FNAL and aimed at DUSEL. In the P5 report the focus of the program is to pursue CP violation in the lepton sector. The same detectors can also be used for nucleon decay experiments. DOE has indicated that FNAL would be the ''lead lab'' for the long baseline neutrino program and be charged with designing and implementing the neutrino beamline. BNL is to be charged with designing and implementing the detector. The P5 report also emphasizes the importance of dark matter and

  4. A Review of Walden University's Online MSED Science (K-8) Program

    ERIC Educational Resources Information Center

    Iadevaia, David G.

    2010-01-01

    This review is based on the experience of an adjunct professor teaching in the Walden University online MSED Science (K-8) program. The program described by Walden University and the actual implementation of the science component of the program as experienced by the Professor will be presented. The program, while a noble attempt at a completely…

  5. Knowledge gain and behavioral change in citizen-science programs.

    PubMed

    Jordan, Rebecca C; Gray, Steven A; Howe, David V; Brooks, Wesley R; Ehrenfeld, Joan G

    2011-12-01

    Citizen-science programs are often touted as useful for advancing conservation literacy, scientific knowledge, and increasing scientific-reasoning skills among the public. Guidelines for collaboration among scientists and the public are lacking and the extent to which these citizen-science initiatives change behavior is relatively unstudied. Over two years, we studied 82 participants in a three-day program that included education about non-native invasive plants and collection of data on the occurrence of those plants. Volunteers were given background knowledge about invasive plant ecology and trained on a specific protocol for collecting invasive plant data. They then collected data and later gathered as a group to analyze data and discuss responsible environmental behavior with respect to invasive plants. We tested whether participants without experience in plant identification and with little knowledge of invasive plants increased their knowledge of invasive species ecology, participation increased knowledge of scientific methods, and participation affected behavior. Knowledge of invasive plants increased on average 24%, but participation was insufficient to increase understanding of how scientific research is conducted. Participants reported increased ability to recognize invasive plants and increased awareness of effects of invasive plants on the environment, but this translated into little change in behavior regarding invasive plants. Potential conflicts between scientific goals, educational goals, and the motivation of participants must be considered during program design.

  6. [The undergraduate program in forensic science: a national challenge].

    PubMed

    García Castillo, Zoraida; Graue Wiechers, Enrique; Durante Montiel, Irene; Herrera Saint Leu, Patricia

    2014-01-01

    The challenge in achieving an ideal state of justice is that each "proof" has the highest degree of reliability. This is the main responsibility of the forensic scientist. Up to now, criminal investigations in Mexico have been supported by forensic work from a wide variety of disciplinary backgrounds that give testimony in a particular area, even though they may have become forensic witnesses in a complementary and experiential manner. In January 2013, the Universidad Nacional Autónoma de México (UNAM) approved the "Forensic Science" undergraduate program that, in collaboration with various academic entities and government institutions, will develop forensic scientists trained in science, law, and criminology. This is focused on contributing to the national demand that the justice system has more elements to procure and administer justice in dealing with crime.

  7. Epistemology and the nature of science: Implications for preservice elementary science programs

    NASA Astrophysics Data System (ADS)

    Stockton, Jamie D.

    The purpose of this study was to look at the possible interface between college students' epistemological orientation (ways of knowing) and their views on the nature of science (NOS). Eighty-one undergraduate participants were asked to engage in both an interview that focused on their views of the nature of science (VNOS-C, Abd-El-Khalick, 1998) and the RCI (Reasoning about Current Issues) questionnaire based upon Patricia King and Karen Strohm Kitchener's (1994) Reflective Judgment Model (RJM). Three groups of students were used: science majors, elementary education majors, and nonscience non-education majors. The VNOS interviews were assessed using a five point likert scale, also designed by Abd-El-Khalick (but modified for this study), while the RCI was rated in terms of comparisons of responses to the seven stages of the RJM. Results indicated a significant difference for views of NOS between science majors and the other two groupings. Trends for educational level and major discipline were the same across instruments. Furthermore, the statistical analyses conducted on the various groups supported in part the author's hypotheses of a developmental component to NOS. The strongest implication for preservice elementary science programs is the need for direct, interactive instruction on NOS so that misconceptions on NOS will not be perpetuated in the cycle of learning in future elementary classrooms.

  8. The "Science in the Stratosphere" Program: Developing a Role for Airborne Astronomy in Elementary Science Education

    NASA Astrophysics Data System (ADS)

    Lester, D.; Hemenway, M.; Stryker, P.; Willis, M.

    1993-05-01

    The Science in the Stratosphere program on the Kuiper Airborne Observatory (KAO) is an opportunity for selected elementary and middle school teachers from the central Texas area to participate in airborne astronomy, working with researchers on the ground and in the air. Through their experiences, the excitement of hands-on space astronomy can be conveyed to their colleagues and students. These experiences serve as a vehicle for introducing many scientific concepts, as well as the planning, instrument development, cooperation and teamwork that are essential components of scientific research. The airborne setting instills this vignette of modern astronomical research with a spirit of exploration and excitement that inspires even the youngest school children. The inaugural session of this program was held during the summer of 1992. Two school teachers with science specialization were chosen, at grade levels (K and 8) that spanned those targeted by the program. These teachers spent more than a week working with KAO visiting scientists and staff, learning about the research being done, and the operation of this remarkable observatory. Presentations based on their work were made at several science teacher workshops in the months following their trip, and curriculum development is in progress. More so than any other NASA space astronomy facility, airborne telescopes are tangible, accessible, and highly visible. As space astronomy laboratories that are highly fault tolerant, such telescopes (the KAO now, to be followed by SOFIA later) are equipped with instrumentation that is at the leading edge of technology, and thus serve well as educational flagships for modern astronomy. This program receives funds from the NASA Astrophysics AGSE program, and is sponsored by the McDonald Observatory of the University of Texas.

  9. Earth-to-Orbit Education Program 'Makes Science Cool'

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this photograph, students from all over the country gathered and discussed their Earth-to-Orbit (ETO) Design Challenge project at NASA Marshall Space Flight Center in Huntsville, Alabama. These students who are just 'typical teens,' have been spending their time tackling some of the same challenges NASA engineers face when designing propulsion systems at MSFC. The ETO Design Challenge is a hands-on educational program, targeted to middle school students, in which students are assigned a project engaging in related design challenges in their classrooms under the supervision of their teachers. The project is valuable because it can be used by any student, and any teacher, even those without technical backgrounds. Student in 12 states: Alabama, Arkansas, California, Colorado, Illinois, Missouri, Montana, New York, Ohio, Ternessee, Virginia, and Washington, are taking part in MSFC's Earth-to-Orbit program. NASA uses such programs to support educational excellence while participating in educational outreach programs through centers around the country. One of the students' teachers, Joanne Fluvog, commented, 'the biggest change I've seen is in the students' motivation and their belief in their ability to think.' Justin O'Connor and Jeff Alden, students of Lane Middle School in Portland, Oregon, participated in the ETO program and said being involved in a real engineering project has made them realize that 'science is cool.'

  10. Overview of Mars Science Laboratory (MSL) Environmental Program

    NASA Technical Reports Server (NTRS)

    Forgave, John C.; Man, Kin F.; Hoffman, Alan R.

    2006-01-01

    This viewgraph presentation is an overview of the Mars Science Laboratory (MSL) program. The engineering objectives of the program are to create a Mobile Science Laboratory capable of one Mars Year surface operational lifetime (670 Martian sols = 687 Earth days). It will be able to land and operation over wide range of latitudes, altitudes and seasons It must have controlled propulsive landing and demonstrate improved landing precision via guided entry The general science objectives are to perform science that will focus on Mars habitability, perform next generation analytical laboratory science investigations, perform remote sensing/contact investigations and carry a suite of environmental monitoring instruments. Specific scientific objectives of the MSL are: (1) Characterization of geological features, contributing to deciphering geological history and the processes that have modified rocks and regolith, including the role of water. (2) Determination of the mineralogy and chemical composition (including an inventory of elements such as C, H, N, O, P, S, etc. known to be building blocks for life) of surface and near-surface materials. (3) Determination of energy sources that could be used to sustain biological processes. (4) Characterization of organic compounds and potential biomarkers in representative regolith, rocks, and ices. (5) Determination the stable isotopic and noble gas composition of the present-day bulk atmosphere. (6) Identification potential bio-signatures (chemical, textural, isotopic) in rocks and regolith. (7) Characterization of the broad spectrum of surface radiation, including galactic cosmic radiation, solar proton events, and secondary neutrons. (8) Characterization of the local environment, including basic meteorology, the state and cycling of water and C02, and the near-surface distribution of hydrogen. Several views of the planned MSL and the rover are shown. The MSL environmental program is to: (1) Ensure the flight hardware design is

  11. Evaluating RITES, a Statewide Math and Science Partnership Program

    NASA Astrophysics Data System (ADS)

    Murray, D. P.; Caulkins, J. L.; Burns, A. L.; de Oliveira, G.; Dooley, H.; Brand, S.; Veeger, A.

    2013-12-01

    The Rhode Island Technology-Enhanced Science project (RITES) is a NSF-MSP Program that seeks to improve science education by providing professional development to science teachers at the 5th through 12th grade levels. At it's heart, RITES is a complex, multifaceted project that is challenging to evaluate because of the nature of its goal: the development of a large, statewide partnership between higher education and K12 public school districts during a time when science education strategies and leadership are in flux. As a result, these difficulties often require flexibility and creativity regarding evaluation, study design and data collection. In addition, the research agenda of the project often overlaps with the evaluator's agenda, making collaboration and communication a crucial component of the project's success. In it's 5th year, RITES and it's evaluators have developed a large number of instruments, both qualitative and quantitative, to provide direction and feedback on the effectiveness of the project's activities. RITES personnel work closely with evaluators and researchers to obtain a measure of how RITES' 'theory-of-action' affects both student outcomes and teacher practice. Here we discuss measures of teacher and student content gains, student inquiry gains, and teacher implementation surveys. Using content questions based on AAAS and MOSART databases, teachers in the short courses and students in classrooms showed significant normalized learning gains with averages generally above 0.3. Students of RITES-trained teachers also outperformed their non-RITES peers on the inquiry-section of the NECAP test, and The results show, after controlling for race and economic status, a small but statistically significant increase in test scores for RITES students. Technology use in the classroom significantly increased for teachers who were 'expected implementers' where 'expected implementers' are those teachers who implemented RITES as the project was designed. This

  12. Program of Policy Studies in Science and Technology, supplement to seven year review

    NASA Technical Reports Server (NTRS)

    Mayo, L. H.

    1975-01-01

    The activities of the Program of Policy Studies are described and evaluated. Awards, seminars, publications are included along with student researcher profiles, graduate program in science, technology, and public policy, and a statement of program capability.

  13. Impact of Practice-Based Instruction on Graduate Programs in the Pharmaceutical Sciences--A Response.

    ERIC Educational Resources Information Center

    Gourley, Dick R.

    1979-01-01

    Issues concerning graduate programs in the pharmaceutical sciences are discussed, including: recent trends, recruitment, clinical instruction, doctoral programs, graduate faculty, master's programs, competition, supply and demand, and professional education of professionals. (SF)

  14. Global Geospace Science (GGS) Program and the Polar Satellite

    NASA Technical Reports Server (NTRS)

    Hoffman, R. A.; Hesse, M.

    1996-01-01

    The Global Geospace Science (GGS) program's Polar satellite is reported on. The satellite aims to measure: the plasma flux in the polar magnetosphere and the geomagnetic tail; the plasma flux to and from the ionosphere, and the deposition of particle energy in the upper atmosphere. To accomplish these objectives, the satellite was placed on a 86 deg inclination, elliptical orbit whose apogee is located over the northern polar region. The spacecraft carries instruments for observing and measuring the magnetic field and charged particles as well as the imaging instruments.

  15. Atmospheric sciences program at NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Nicholson, James R.; Jafferis, William

    1988-01-01

    A very keen awareness of the impact of lightning threat on ground operations exists at NASA Kennedy Space Center (KSC) because of the high frequency of thunderstorm occurrences in Florida. The majority of thunder events occur in the summertime, initiated by solar heating of the land. Merritt Island, where KSC is located, produces its own thunderstorms under light flow conditions; because some are small, their importance might be unappreciated at first glance. The impress of these facts, and others of pertinence, on the KSC atmospheric sciences development program will be discussed, priorities enumerated, and a review of development projects presented.

  16. Remote sensing applications in marine science programs at VIMS

    NASA Technical Reports Server (NTRS)

    Gordon, H. H.; Penney, M. E.; Byrne, R. J.

    1974-01-01

    Scientists at the Virginia Institute of Marine Science (VIMS) utilized remote sensing in three programs: (1) tonal variations in imagery of wetlands; (2) use of the thermal infrared to delineate the discharge cooling water at the Virginia Electric and Power Company (VEPCO) nuclear power station on the James River; and (3) the use of aerial photography to determine the volume storage function for water in the marsh-bay complex fed by Wachapreague Inlet on the Eastern Shore of Virginia. Details of the investigations are given, along with significant results.

  17. Interdisciplinary research and training program in the plant sciences

    SciTech Connect

    Wolk, C.P.

    1991-01-01

    This document is the compiled progress reports from the Interdisciplinary Research and Training Program in the Plant Sciences funded through the MSU-DOE Plant Research Laboratory. Fourteen reports are included, covering topics such as the molecular basis of plant/microbe symbiosis, cell wall proteins and assembly, gene expression, stress responses, growth regulator biosynthesis, interaction between nuclear and organelle genomes, sensory transduction and tropisms, intracellular sorting and membrane trafficking, regulation of lipid metabolism, the molecular basis of disease resistance and plant pathogenesis, developmental biology of Cyanobacteria and hormonal involvement in environmental control of plant growth. 132 refs. (MHB)

  18. Atmospheric Release Assessment Program (ARAP) Science and Technology Base Development

    SciTech Connect

    Ermak, D L; Sugiyama, G; Nasstrom, J S

    2002-05-10

    ARAP s integrated suite of research, development, and operational programs is focused on the creation of capabilities for predicting the consequences of atmospheric releases of hazardous materials. The foundation of ARAP lies in its science and technology base in multi-scale meteorological and dispersion modeling, field experiments, and software systems (databases, real-time data acquisition software, and remote-access tools). Scientific and technological advancements are integrated into DOENNSA s operational National Atmospheric Release Advisory Center (NARAC) at LLNL to support emergency response, pre-event planning, preparedness, and consequence analysis. Some recent ARAP development highlights are described below.

  19. Environmental Science Program at the Advanced Light Source

    SciTech Connect

    Nico, Peter; A; Anastasio, Cort; Dodge, Cleveland; Fendorf, Scott; Francis, A.J.; Hubbard, Susan; Shuh, David; Tomutsa, Liviu; Tufano, Kate; Tyliszczak, Tolek; Werner, Michelle; Williams, Ken

    2006-04-05

    The Advanced Light Source (ALS) has a variety of capabilities that are applicable to very different types of environmental systems. Shown are the basic descriptions of four of the approximately 35 beam lines at the ALS. The complimentary capabilities of these four beam lines allow for investigations that range from a spatial scale of a few nanometers to several millimeters. The Environmental Science Program at the Advanced Light Source seeks to promote and assist environmental research, particularly on the four beam lines described in this report. Several short examples of the types of research conducted on these beam lines are also described.

  20. Assessment for Effective Intervention: Enrichment Science Academic Program

    NASA Astrophysics Data System (ADS)

    Sasson, Irit; Cohen, Donita

    2012-11-01

    Israel suffers from a growing problem of socio-economic gaps between those who live in the center of the country and residents of outlying areas. As a result, there is a low level of accessibility to higher education among the peripheral population. The goal of the Sidney Warren Science Education Center for Youth at Tel-Hai College is to strengthen the potential of middle and high school students and encourage them to pursue higher education, with an emphasis on majoring in science and technology. This study investigated the implementation and evaluation of the enrichment science academic program, as an example of informal learning environment, with an emphasis on physics studies. About 500 students conducted feedback survey after participating in science activities in four domains: biology, chemistry, physics, and computer science. Results indicated high level of satisfaction among the students. No differences were found with respect to gender excluding in physics with a positive attitudes advantage among boys. In order to get a deeper understanding of this finding, about 70 additional students conducted special questionnaires, both 1 week before the physics enrichment day and at the end of that day. Questionnaires were intended to assess both their attitudes toward physics and their knowledge and conceptions of the physical concept "pressure." We found that the activity moderately improved boys' attitudes toward physics, but that girls displayed decreased interest in and lower self-efficacy toward physics. Research results were used to the improvement of the instructional design of the physics activity demonstrating internal evaluation process for effective intervention.

  1. Teachers' participation in research programs improves their students' achievement in science.

    PubMed

    Silverstein, Samuel C; Dubner, Jay; Miller, Jon; Glied, Sherry; Loike, John D

    2009-10-16

    Research experience programs engage teachers in the hands-on practice of science. Program advocates assert that program participation enhances teachers' skills in communicating science to students. We measured the impact of New York City public high-school science teachers' participation in Columbia University's Summer Research Program on their students' academic performance in science. In the year before program entry, students of participating and nonparticipating teachers passed a New York State Regents science examination at the same rate. In years three and four after program entry, participating teachers' students passed Regents science exams at a rate that was 10.1% higher (P = 0.049) than that of nonparticipating teachers' students. Other program benefits include decreased teacher attrition from classroom teaching and school cost savings of U.S. $1.14 per $1 invested in the program.

  2. Annual program analysis of the NASA Space Life Sciences Research and Education Support Program

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The basic objectives of this contract are to stimulate, encourage, and assist research and education in NASA life sciences. Scientists and experts from a number of academic and research institutions in this country and abroad are recruited to support NASA's need to find a solution to human physiological problems associated with living and working in space and on extraterrestrial bodies in the solar system. To fulfill the contract objectives, a cadre of staff and visiting scientists, consultants, experts, and subcontractors has been assembled into a unique organization dedicated to the space life sciences. This organization, USRA's Division of Space Life Sciences, provides an academic atmosphere, provides an organizational focal point for science and educational activities, and serves as a forum for the participation of eminent scientists in the biomedical programs of NASA. The purpose of this report is to demonstrate adherence to the requirement of Contract NAS9-18440 for a written review and analysis of the productivity and success of the program. In addition, this report makes recommendations for future activities and conditions to further enhance the objectives of the program and provides a self-assessment of the cost performance of the contract.

  3. Dimensions of flow during an experiential wilderness science program

    NASA Astrophysics Data System (ADS)

    Wang, Robert

    Over the past twenty-five years, there has been an alarming decline in academic performance among American students. This trend is seen in failing test scores, poor attendance, and low first-year retention rates at post-secondary institutions. There have been numerous studies that have examined this issue but few to offer solutions. Mihalyi Csikszentmihalyi, the originator of flow theory, suggests that poor academic performance might be best explained in terms of lack of student motivation and engagement (flow) rather than a lack of cognitive abilities. This study was designed to examine a series of activities conducted during an Experiential Wilderness Science Program at a college located in the Rocky Mountain region. Specifically, this study measured student engagement for each activity and described the dimensions (phenomenological, instructional, etc.) that were present when there was a high frequency of engagement among program participants. A combined quantitative and qualitative research methodology was utilized. The Experience Sampling Form (ESF) was administered to 41 freshman students participating in a 3-day wilderness science program to measure the frequency of engagement (flow) for nine different activities. A qualitative investigation using journals, participant interviews, and focus groups was used to describe the dimensions that were present when a high frequency of engagement among program participants was observed. Results revealed that engagement (flow) was highest during two challenge education activities and during a river sampling activity. Dimensions common among these activities included: an environment dimension, a motivation dimension, and an instruction dimension. The environment dimension included: incorporating novel learning activities, creating student interests, and introducing an element of perceived risk. The motivation dimension included: developing internal loci of control, facilitating high levels of self-efficacy, and

  4. Science and Science Education Go Hand-in-Hand: The Impact of the NASA Science Mission Directorate Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Peticolas, L.; Schwerin, T.; Shipp, S.; Manning, J. G.

    2014-07-01

    For nearly two decades, NASA has embedded education and public outreach (EPO) in its Earth and space science missions and research programs on the principle that science education is most effective when educators and scientists work hand-in-hand. Four Science EPO Forums organize the respective NASA Science Mission Directorate (SMD) Astrophysics, Earth Science, Heliophysics, and Planetary Science EPO programs into a coordinated, efficient, and effective nationwide effort. The NASA SMD EPO program evaluates EPO impacts that support NASA's policy of providing a direct return-on-investment for the American public, advances STEM education and literacy, and enables students and educators to participate in the practice of science as embodied in the 2013 Next Generation Science Standards. Leads of the four NASA SMD Science EPO Forums provided big-picture perspectives on NASA's effort to incorporate authentic science into the nation's STEM education and scientific literacy, highlighting examples of program effectiveness and impact. Attendees gained an increased awareness of the depth and breadth of NASA SMD's EPO programs and achievements, the magnitude of its impacts through representative examples, and the ways current and future EPO programs can build upon the work being done.

  5. Earth-to-Orbit Education Program 'Makes Science Cool'

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this photograph, Jeff Alden (left) and Justin O'Cornor, two middle school students at Lane Middle School in Portland, Oregon are demonstrating their Earth-to-Orbit (ETO) Design Challenge project at NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Jeff and Justin, who are just a couple of 'typical teens,' have been spending their time tackling some of the same challenges NASA engineers face when designing propulsion systems at MSFC. The ETO Design Challenge is a hands-on educational program, targeted to middle school students, in which students are assigned a project engaging in related design challenges in their classrooms under the supervision of their teachers. The project is valuable because it can be used by any student and any teacher, even those without technical backgrounds. Students in 12 states: Alabama, Arkansas, California, Colorado, Illinois, Missouri, Montana, New York, Ohio, Tennessee, Virginia, and Washington, are taking part in the MSFC's Earth-to-Orbit program. NASA uses such programs to support educational excellence while participating in educational outreach programs through centers around the country. The Oregon students' teacher, Joanne Fluvog, commented, 'the biggest change I've seen is in the students' motivation and their belief in their ability to think.' Both Justin and Jeff said being involved in a real engineering project has made them realize that 'science is cool.'

  6. Women in science, engineering, and math mentors pilot program

    SciTech Connect

    O`Leary, C.T.

    1994-12-31

    The Women in Science, Engineering, and Math Mentors Program is a partnership program conducted by New York State Education and Research Network (NYSERNet), Rochester Institutes of Technology (RIT) and the Pittsford and Rochester City School districts. The goal of this project is to introduce high school girls to professional women from both educational and industrial scientific fields. The pilot program began in the fall of 1993 with the girls coming to RIT`s campus, via the video interactive network or in person, for a careers assessment seminar. Then they carried on {open_quotes}e-pal{close_quotes} relationships via electronic conferencing on the data network to pursue many mentors and a myriad of different career avenues. The questions ranged from simple information requests regarding the requirements for a job to in-depth pursuit of emotional and personal characteristics needed for different professions. The luncheon finale brought us together on RIT`s campus to get to know each other face to face. We then toured the Micro-electronics lab and manufacturing facility at RIT. A 1993-94 school year program now involves over 140 mentors and students. We have partnered with other projects in the Rochester area to extend the sharing of the vast resources of our community.

  7. Research-Doctorate Programs in the Biomedical Sciences: Selected Findings from the NRC Assessment

    ERIC Educational Resources Information Center

    Lorden, Joan F., Ed.; Kuh, Charlotte V., Ed.; Voytuk, James A., Ed.

    2011-01-01

    "Research Doctorate Programs in the Biomedical Sciences: Selected Findings from the NRC Assessment" examines data on the biomedical sciences programs to gather additional insight about the talent, training environment, outcomes, diversity, and international participation in the biomedical sciences workforce. This report supports an…

  8. Investigating the Impact of a Preservice Program on Beliefs about Science Teaching and Learning

    ERIC Educational Resources Information Center

    Soldat, Christopher Scott

    2009-01-01

    There has been much attention about improving the skills and abilities of students in Science. One critical factor is the quality of teacher education programs for preparing science teachers. There has been little research and much debate about what constitutes an effective science teacher education program. Teacher beliefs are thought to be…

  9. Language Development and Science Inquiry: A Child-Initiated and Teacher-Facilitated Program.

    ERIC Educational Resources Information Center

    Klein, Evelyn R.; Hammrich, Penny L.; Bloom, Stefanie; Ragins, Anika

    The Head Start on Science and Communication Program (HSSC) is a model that fosters science learning for young children through a systematic approach to language development. The HSSC program emphasizes the development of language skills through an explicit teacher-directed and exploratory child-centered approach to acquiring science knowledge and…

  10. Ford Research Laboratory high school science and technology program (HSSTP)

    SciTech Connect

    Hass, K.C.

    1994-12-31

    Since 1984, the Ford Motor Company Research Laboratory has offered a series of Saturday morning enrichment experiences and summer work opportunities for high school students and teachers. The goal is to increase awareness of technical careers and the importance of science and mathematics in industry. The Saturday sessions are run entirely by volunteers and are organized around current topics ranging from fundamental science (e.g., atmospheric chemistry) to advanced engineering and manufacturing (e.g., glass production). A typical session includes a lecture, laboratory tours and demonstrations, a refreshment/social break and a hands-on activity whenever possible. Over 500 students and teachers participate annually from over 120 area high schools. Nearly one third of the students are minorities from the city of Detroit. Session quality is monitored through feedback from participants and volunteers. Juniors and seniors who attend at least three sessions are eligible to compete for four-week summer internships. Typically, about twenty-five to thirty interns (out of forty to fifty applicants) are selected on the basis of a transcript, teacher recommendation and a 2500-word report on a technical topic. Ford also generally hosts about eight summer teacher fellows through a statewide program that began as an HSSTP initiative. The HSSTP was recently recognized by the industrial Research Institute as one of eleven {open_quotes}Winning [Pre-College Education] Programs{close_quotes} nationwide. Keys to success include strong grassroots and managerial support and extensive networking in the community.

  11. Microgravity Science and Applications Program tasks, 1986 revision

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Microgravity Science and Applications (MSA) program is directed toward research in the science and technology of processing materials under conditions of low gravity to provide a detailed examination of the constraints imposed by gravitational forces on Earth. The program is expected to lead to the development of new materials and processes in commercial applications adding to this nation's technological base. The research studies emphasize the selected materials and processes that will best elucidate the limitations due to gravity and demonstrate the enhanced sensitivity of control of processes that may be provided by the weightless environment of space. Primary effort is devoted to a study of the specific areas of research which reveals potential value in the initial investigations of the previous decades. Examples of previous process research include crystal growth and directional solidification of metals; containerless processing of reactive materials; synthesis and separation of biological materials; etc. Additional efforts will be devoted to identifying the special requirements which drive the design of hardware to reduce risk in future developments.

  12. Bringing Up Girls in Science (BUGS): The Effectiveness of an Afterschool Environmental Science Program for Increasing Female Students' Interest in Science Careers

    ERIC Educational Resources Information Center

    Tyler-Wood, Tandra; Ellison, Amber; Lim, Okyoung; Periathiruvadi, Sita

    2012-01-01

    Bringing Up Girls in Science (BUGS) was an afterschool program for 4th and 5th grade girls that provided authentic learning experiences in environmental science as well as valuable female mentoring opportunities in an effort to increase participants' academic achievement in science. BUGS participants demonstrated significantly greater amounts of…

  13. Mentoring Faculty: Results from National Science Foundation's ADVANCE Program

    NASA Astrophysics Data System (ADS)

    Holmes, M. A.

    2015-12-01

    Faculty mentoring programs are common components of National Science Foundation ADVANCE awards. The ADVANCE program aims to increase the number of women on the faculty in science, technology, engineering and mathematics (STEM) departments through grants to individuals and to entire institutions. These grants target a change in institutional culture so that faculty from non-majority groups will succeed and thrive. Mentoring programs are generally designed to fit the particular institution(s) or target population (e.g., meteorologists at the beginning of their careers). A successful mentoring program makes the implicit knowledge necessary for faculty success explicit: policies and practices are made transparent; routes for finding answers are clarified or generated with faculty input; faculty overcome a sense of isolation and develop a community. Mentoring programs may be formal, with assigned mentors and mentees, or informal, with opportunities for beginning, middle and advanced career STEM faculty to mingle, generally over food and sometimes with a formal speaker. The programs are formally evaluated; in general, attention to mentoring generates better outcomes for all faculty. Research indicates that most successful scientists have a network of mentors rather than relying on one person to help navigate department, institution, and profession. The University of Nebraska-Lincoln's (UNL) award, ADVANCE-Nebraska, offered opportunities for faculty to informally network over luncheons with women speakers, advanced in their careers. We also offered after-hours networking receptions. In response to faculty feedback, we shifted to a series of panel discussions entitled "Conversations". Most panels were conducted by successful UNL faculty; about one-third had an outside expert on a given topic. Topics were chosen based on faculty feedback and targeted specifically to beginning faculty (How to Start Up a Lab; How to Balance Teaching and Writing), mid-career faculty (Putting

  14. The NASA Earth Science Program and Small Satellites

    NASA Technical Reports Server (NTRS)

    Neeck, Steven P.

    2015-01-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Small satellites (500 kg or less) are critical contributors to these current and future satellite missions

  15. An Analysis of Adolescents' Science Interest and Competence in Programs with and without a Competitive Component

    ERIC Educational Resources Information Center

    Fox, Janet; Cater, Melissa

    2015-01-01

    The exploratory study examined science interest and perceived science competency in middle and high school youth (N=116) who took part in science-related contests (n=49) and non-competitive special interest science programs (n=67). Study participants were dispersed between females (48.3%) and males (51.7%). Three-fourths (75.1%) of the…

  16. COPES, Conceptually Oriented Program in Elementary Science: Teacher's Guide for Grade Five, Preliminary Edition.

    ERIC Educational Resources Information Center

    New York Univ., NY. Center for Field Research and School Services.

    This document provides the teacher's guide for grade five for the Conceptually Oriented Program in Elementary Science (COPES) science curriculum project. The guide includes an introduction to COPES, instructions for using the guide, instructions for assessment of student's grade 4 mastery of science concepts, and five science units. Each unit…

  17. The DEVELOP Program as a Unique Applied Science Internship

    NASA Astrophysics Data System (ADS)

    Skiles, J. W.; Schmidt, C. L.; Ruiz, M. L.; Cawthorn, J.

    2004-12-01

    The NASA mission includes "Inspiring the next generation of explorers" and "Understanding and protecting our home planet". DEVELOP students conduct research projects in Earth Systems Science, gaining valuable training and work experience, which support accomplishing this mission. This presentation will describe the DEVELOP Program, a NASA human capital development initiative, which is student run and student led with NASA scientists serving as mentors. DEVELOP began in 1998 at NASA's Langley Research Center in Virginia and expanded to NASA's Stennis Space Center in Mississippi and Marshall Space Flight Center in Alabama in 2002. NASA's Ames Research Center in California began DEVELOP activity in 2003. DEVELOP is a year round activity. High school through graduate school students participate in DEVELOP with students' backgrounds encompassing a wide variety of academic majors such as engineering, biology, physics, mathematics, computer science, remote sensing, geographic information systems, business, and geography. DEVELOP projects are initiated when county, state, or tribal governments submit a proposal requesting students work on local projects. When a project is selected, science mentors guide students in the application of NASA applied science and technology to enhance decision support tools for customers. Partnerships are established with customers, professional organizations and state and federal agencies in order to leverage resources needed to complete research projects. Student teams are assigned a project and are responsible for creating an inclusive project plan beginning with the design and approach of the study, the timeline, and the deliverables for the customer. Project results can consist of student papers, both team and individually written, face-to-face meetings and seminars with customers, presentations at national meetings in the form of posters and oral papers, displays at the Western and Southern Governors' Associations, and visualizations

  18. Computer program design specifications for the Balloon-borne Ultraviolet Stellar Spectrometer (BUSS) science data decommutation program (BAPS48)

    NASA Technical Reports Server (NTRS)

    Rodriguez, R. M.

    1975-01-01

    The Balloon-Borne Ultraviolet Stellar Spectrometer (BUSS) Science Data Docummutation Program (BAPS48) is a pulse code modulation docummutation program that will format the BUSS science data contained on a one inch PCM tracking tape into a seven track serial bit stream formatted digital tape.

  19. Science and Science Education Go Hand-in-Hand: The Impact of the NASA Science Mission Directorate Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    Schwerin, T. G.; Shipp, S. S.; Peticolas, L. M.; Smith, D.

    2013-12-01

    For nearly two decades, NASA has embedded education and public outreach (EPO) in its Earth and space science missions and research programs on the principle that science education and science work best when they work hand-in-hand. Four Science EPO Forums organize the respective NASA Science Mission Directorate(SMD) Astrophysics, Earth Science, Heliophysics, and Planetary Science EPO programs into a coordinated, efficient, and effective nationwide effort. The result is significant, evaluated EPO impacts that support NASA's policy of providing a direct return-on-investment for the American public, advance STEM education and literacy, and enable students and educators to participate in the practice of science as embodied in the 2013 Next Generation Science Standards. This presentation provides perspectives on NASA's effort to incorporate authentic science into the nation's STEM education and scientific literacy, highlighting examples of program effectiveness and impact, and will explore the depth and breadth of NASA SMD's EPO programs and achievements, the magnitude of its impacts through representative examples, and how current and future EPO programs can build upon the work being done.

  20. Exploring the impact of an out-of-school science program on the science learning of upper elementary school children

    NASA Astrophysics Data System (ADS)

    Marshall, Karen Benn

    This study sought to explore qualitatively how participation in an informal science program might affect the following aspects of upper elementary school children's scientific thinking: conceptual understanding, epistemology of science, and the formation of their identity as science learners. A purposefully selected, maximum variation sample of five upper elementary school children who had participated in an out-of-school (OST) science program was compared with five similarly selected upper elementary school children who had not participated in an OST science program. Semi-structured interviewing was the method of data collection. Findings reveal that upper elementary children exhibit some qualitative differences with respect to their conceptual understanding, epistemology of science, and formation of identity as science learners. In general, OST participants had more advanced (sophisticated) epistemologies of science than non-OST participants; OST participants also appeared to form stronger identities as science learners than non-OST participants. With respect to conceptual understanding, OST participants demonstrated greater understanding than non-OST participants of the conservation of matter, the physical properties of matter, and the composition of matter. Neither group had a clear understanding of the concepts of the density of various liquids and density as it relates to how objects made of different materials float. The findings from this study also indicate that there are qualitative differences in the in-school science experiences of upper elementary children exposed to OST settings and those not so exposed. OST participants were more able to rapidly recall their in-school science experiences than non-OST participants. OST participants were also able to transfer their OST science knowledge to their in-school science experiences. The theoretical perspectives employed in this study shed new light on the ways in which OST science experiences might impact

  1. The Math and Science Partnership Program Evaluation: Overview of the First Two Years

    ERIC Educational Resources Information Center

    Yin, Robert K.

    2008-01-01

    This study describes the Math and Science Partnership Program Evaluation (MSP-PE) during the project's first two years and provides the evaluation framework being used to assess the National Science Foundation's MSP Program. The study conveys the MSP-PE's ongoing design and implementation. To show how they reflect the nature of the MSP Program,…

  2. Effects of a Science Intervention Program on Middle-Grade Student Achievement and Attitudes.

    ERIC Educational Resources Information Center

    Parker, Verilette; Gerber, Brian

    2000-01-01

    Examines the effectiveness of a standards-based science intervention program on the science achievement and attitudes of middle-grade students attending a five-week academic enrichment program. Finds that students' achievement and attitudes were higher following participation in the program. (Contains 22 references.) (Author/WRM)

  3. Anthropogenic Climate Change in Undergraduate Marine and Environmental Science Programs in the United States

    ERIC Educational Resources Information Center

    Vlietstra, Lucy S.; Mrakovcich, Karina L.; Futch, Victoria C.; Stutzman, Brooke S.

    2016-01-01

    To develop a context for program-level design decisions pertaining to anthropogenic climate change, the authors studied the prevalence of courses focused on human-induced climate change in undergraduate marine science and environmental science degree programs in the United States. Of the 86 institutions and 125 programs the authors examined, 37%…

  4. Evaluation of the National Science Foundation's Local Course Improvement Program, Volume II: Quantitative Analyses.

    ERIC Educational Resources Information Center

    Kulik, James A.; And Others

    This report is the second of three volumes describing the results of the evaluation of the National Science Foundation (NSF) Local Course Improvement (LOCI) program. This volume describes the quantitative results of the program. Evaluation of the LOCI program involved answering questions in the areas of the need for science course improvement as…

  5. Bureau of Indian Affairs Outstanding Programs in Math, Science and Technology, 1995.

    ERIC Educational Resources Information Center

    Bureau of Indian Affairs (Dept. of Interior), Washington, DC. Office of Indian Education Programs.

    This booklet describes the goals and activities of 20 exemplary programs in mathematics, science and technology for students and teachers in schools operated or funded by the Bureau of Indian Affairs. The programs are: "Computer Home Improvement Reading Program," Beclabito Day School (New Mexico); "Cherokee High School Science:…

  6. STEM Enrichment Programs and Graduate School Matriculation: The Role of Science Identity Salience

    ERIC Educational Resources Information Center

    Merolla, David M.; Serpe, Richard T.

    2013-01-01

    Improving the state of science education in the United States has become a national priority. One response to this problem has been the implementation of STEM enrichment programs designed to increase the number of students that enter graduate programs in science. Current research indicates enrichment programs have positive effects for student…

  7. Gender Differences in the Use of Computers, Programming, and Peer Interactions in Computer Science Classrooms

    ERIC Educational Resources Information Center

    Stoilescu, Dorian; Egodawatte, Gunawardena

    2010-01-01

    Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new…

  8. Student science enrichment training program: Progress report, June 1, 1988--May 31, 1989

    SciTech Connect

    Sandhu, S.S.

    1989-04-21

    This is a status report on a Student Science Enrichment Training Program held at the campus of Claflin College, Orangeburg, SC. The topics of the report include the objectives of the project, participation experienced, financial incentives and support for the program, curriculum description, and estimated success of the program in stimulating an occupational interest in science and research fields by the students.

  9. Science to Protect Public Health and the Environment--EPA Research Program Overview 2016-2019

    EPA Pesticide Factsheets

    This document provides an overview of EPA’s research programs within the Office of Research and Development. This critically important work is providing the science needed to address the biggest problems facing environmental science.

  10. Student Teaching in Nonwestern Science Classrooms: Analysis of Views from Potential Participants in the Program.

    ERIC Educational Resources Information Center

    Engida, Temechegn

    2000-01-01

    Surveys the student teaching program for science teachers at the Addis Ababa University. Investigates student teachers' perspectives on the discrepancies between theoretical and experiential science teaching that they have acquired. (Contains 13 references.) (Author/YDS)

  11. STEM enrichment programs and graduate school matriculation: the role of science identity salience.

    PubMed

    Merolla, David M; Serpe, Richard T

    2013-12-01

    Improving the state of science education in the United States has become a national priority. One response to this problem has been the implementation of STEM enrichment programs designed to increase the number of students that enter graduate programs in science. Current research indicates enrichment programs have positive effects for student performance, degree completion, interest in science and graduate enrollment. Moreover, research suggests that beyond improving performance in STEM, and providing access to research experience and faculty mentoring, enrichment programs may also increase the degree to which students identify as scientists. However, researchers investigating the role of science identity on student outcomes have focused primarily on subjective outcomes, leaving a critical question of whether science identity also influences objective outcomes such as whether students attend graduate school. Using identity theory, this study addresses this issue by investigating science identity as a mechanism linking enrichment program participation to matriculation into graduate science programs. Quantitative results from a panel study of 694 students indicate that science identity salience, along with research experience and college GPA, mediate the effect of enrichment program participation on graduate school matriculation. Further, results indicate that although the social psychological process by which science identity salience develops operates independently from student GPA, science identity amplifies the effect of achievement on graduate school matriculation. These results indicate that policies seeking to increase the efficacy of enrichment programs and increase representation in STEM graduate programs should be sensitive to the social and academic aspects of STEM education.

  12. STEM enrichment programs and graduate school matriculation: the role of science identity salience

    PubMed Central

    Serpe, Richard T.

    2013-01-01

    Improving the state of science education in the United States has become a national priority. One response to this problem has been the implementation of STEM enrichment programs designed to increase the number of students that enter graduate programs in science. Current research indicates enrichment programs have positive effects for student performance, degree completion, interest in science and graduate enrollment. Moreover, research suggests that beyond improving performance in STEM, and providing access to research experience and faculty mentoring, enrichment programs may also increase the degree to which students identify as scientists. However, researchers investigating the role of science identity on student outcomes have focused primarily on subjective outcomes, leaving a critical question of whether science identity also influences objective outcomes such as whether students attend graduate school. Using identity theory, this study addresses this issue by investigating science identity as a mechanism linking enrichment program participation to matriculation into graduate science programs. Quantitative results from a panel study of 694 students indicate that science identity salience, along with research experience and college GPA, mediate the effect of enrichment program participation on graduate school matriculation. Further, results indicate that although the social psychological process by which science identity salience develops operates independently from student GPA, science identity amplifies the effect of achievement on graduate school matriculation. These results indicate that policies seeking to increase the efficacy of enrichment programs and increase representation in STEM graduate programs should be sensitive to the social and academic aspects of STEM education. PMID:24578606

  13. HISD Magnet Evaluation: Science, Math, and Computer Enrichment Programs, 1990-91.

    ERIC Educational Resources Information Center

    Kirkpatrick, Nanda D.; And Others

    Twenty-one magnet programs in the Houston Independent School District in Texas feature an enriched curriculum in science, math, and/or computers (science/math). Of these, 12 are elementary programs, 4 are middle school programs, and 5 are high school programs. In these programs, a total of 9,574 students were served during the 1990-91 school year:…

  14. The NASA Earth Science Flight Program: an update

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.

    2015-10-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the space based observing systems and infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions and selected instruments to assure availability of key climate data sets, operational missions to ensure sustained land imaging provided by the Landsat system, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Some

  15. Microgravity science and applications. Program tasks and bibliography for FY 1994

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This annual report includes research projects funded by the Office of Life and Microgravity Sciences and Applications, Microgravity Science and Applications Division, during FY 1994. It is a compilation of program tasks (objective, description, significance, progress, students funded under research, and bibliographic citations) for flight research and ground-based research in five major scientific disciplines: benchmark science, biotechnology, combustion science, fluid physics, and materials science. ATD (Advanced Technology Development) program task descriptions are also included. The bibliography cites the related PI (Principal Investigator) publications and presentations for these program tasks in FY 1994. Three appendices include Table of Acronyms, Guest Investigator Index, and Principal Investigator Index.

  16. The perspectives and experiences of African American students in an informal science program

    NASA Astrophysics Data System (ADS)

    Bulls, Domonique L.

    Science, technology, engineering, and mathematics (STEM) fields are the fastest growing sectors of the economy, nationally and globally. In order for the United States (U.S.) to maintain its competitiveness, it is important to address STEM experiences at the precollege level. In early years, science education serves as a foundation and pipeline for students to pursue STEM in college and beyond. Alternative approaches to instruction in formal classrooms have been introduced to engage more students in science. One alternative is informal science education. Informal science education is an avenue used to promote science education literacy. Because it is less regulated than science teaching in formal classroom settings, it allows for the incorporation of culture into science instruction. Culturally relevant science teaching is one way to relate science to African American students, a population that continually underperforms in K-12 science education. This study explores the science perspectives and experiences of African American middle school students participating in an informal science program. The research is framed by the tenets of culturally relevant pedagogy and shaped by the following questions: (1) What specific aspects of the Carver Program make it unique to African American students? (2) How is culturally relevant pedagogy incorporated into the informal science program? (3) How does the incorporation of culturally relevant pedagogy into the informal science program influence African American students' perceptions about science? The findings to the previously stated questions add to the limited research on African American students in informal science learning environments and contribute to the growing research on culturally relevant science. This study is unique in that it explores the cultural components of an informal science program.

  17. Science Flight Program of the Nuclear Compton Telescope

    NASA Astrophysics Data System (ADS)

    Boggs, Steven

    This is the lead proposal for this program. We are proposing a 5-year program to perform the scientific flight program of the Nuclear Compton Telescope (NCT), consisting of a series of three (3) scientific balloon flights. NCT is a balloon-borne, wide-field telescope designed to survey the gamma-ray sky (0.2-5 MeV), performing high-resolution spectroscopy, wide-field imaging, and polarization measurements. NCT has been rebuilt as a ULDB payload under the current 2-year APRA grant. (In that proposal we stated our goal was to return at this point to propose the scientific flight program.) The NCT rebuild/upgrade is on budget and schedule to achieve flight-ready status in Fall 2013. Science: NCT will map the Galactic positron annihilation emission, shedding more light on the mysterious concentration of this emission uncovered by INTEGRAL. NCT will survey Galactic nucleosynthesis and the role of supernova and other stellar populations in the creation and evolution of the elements. NCT will map 26-Al and positron annihilation with unprecedented sensitivity and uniform exposure, perform the first mapping of 60-Fe, search for young, hidden supernova remnants through 44-Ti emission, and enable a host of other nuclear astrophysics studies. NCT will also study compact objects (in our Galaxy and AGN) and GRBs, providing novel measurements of polarization as well as detailed spectra and light curves. Design: NCT is an array of germanium gamma-ray detectors configured in a compact, wide-field Compton telescope configuration. The array is shielded on the sides and bottom by an active anticoincidence shield but is open to the 25% of the sky above for imaging, spectroscopy, and polarization measurements. The instrument is mounted on a zenith-pointed gondola, sweeping out ~50% of the sky each day. This instrument builds off the Compton telescope technique pioneered by COMPTEL on the Compton Gamma Ray Observatory. However, by utilizing modern germanium semiconductor strip detectors

  18. Lunar and Planetary Science XXXV: Education Programs Demonstrations

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Reports from the session on Education Programs Demonstration include:Hands-On Activities for Exploring the Solar System in K-14; Formal Education and Informal Settings;Making Earth and Space Science and Exploration Accessible; New Thematic Solar System Exploration Products for Scientists and Educators Engaging Students of All Ages with Research-related Activities: Using the Levers of Museum Reach and Media Attention to Current Events; Astronomy Village: Use of Planetary Images in Educational Multimedia; ACUMEN: Astronomy Classes Unleashed: Meaningful Experiences for Neophytes; Unusual Guidebook to Terrestrial Field Work Studies: Microenvironmental Studies by Landers on Planetary Surfaces (New Atlas in the Series of the Solar System Notebooks on E tv s University, Hungary); and The NASA ADS: Searching, Linking and More.

  19. The impacts of an invasive species citizen science training program on participant attitudes, behavior, and science literacy.

    PubMed

    Crall, Alycia W; Jordan, Rebecca; Holfelder, Kirstin; Newman, Gregory J; Graham, Jim; Waller, Donald M

    2013-08-01

    Citizen science can make major contributions to informal science education by targeting participants' attitudes and knowledge about science while changing human behavior towards the environment. We examined how training associated with an invasive species citizen science program affected participants in these areas. We found no changes in science literacy or overall attitudes between tests administered just before and after a one-day training program, matching results from other studies. However, we found improvements in science literacy and knowledge using context-specific measures and in self-reported intention to engage in pro-environmental activities. While we noted modest change in knowledge and attitudes, we found comparison and interpretation of these data difficult in the absence of other studies using similar measures. We suggest that alternative survey instruments are needed and should be calibrated appropriately to the pre-existing attitudes, behavior, and levels of knowledge in these relatively sophisticated target groups.

  20. Environmental Sciences Division Groundwater Program Office. Annual report, 1993

    SciTech Connect

    Not Available

    1993-09-30

    This first edition of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Annual Report summarizes the work carried out by the Energy Systems GWPO for fiscal year (FY) 1993. This introductory section describes the GWPO`s staffing, organization, and funding sources. The GWPO is responsible for coordination and oversight for all components of the groundwater program at the three Oak Ridge facilities [ORNL, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], and the PGDP and PORTS, respectively. Several years ago, Energy systems senior management recognized that the manner in which groundwater activities were conducted at the five facilities could result in unnecessary duplication of effort, inadequate technical input to decisions related to groundwater issues, and could create a perception within the regulatory agencies of a confusing and inconsistent approach to groundwater issues at the different facilities. Extensive interactions among management from Environmental Compliance, Environmental Restoration (ER), Environmental Sciences Division, Environmental Safety and Health, and the five facilities ultimately led to development of a net technical umbrella organization for groundwater. On April 25, 1991, the GWPO was authorized to be set up within ORNL thereby establishing a central coordinating office that would develop a consistent technical and administrative direction for the groundwater programs of all facilities and result in compliance with all relevant U.S. Environmental Protection Agency (EPA) regulations such as RCRA and Comprehensive Environmental Restoration, Compensation and Liability Act (CERCLA) as well as U.S. Department of Energy (DOE) regulations and orders. For example, DOE Order 5400.1, issued on November 9, 1988, called for each DOE facility to develop an environmental monitoring program for all media (e.g., air, surface water, and groundwater).

  1. Bringing Up Girls in Science (BUGS): The Effectiveness of an Afterschool Environmental Science Program for Increasing Female Students' Interest in Science Careers

    NASA Astrophysics Data System (ADS)

    Tyler-Wood, Tandra; Ellison, Amber; Lim, Okyoung; Periathiruvadi, Sita

    2012-02-01

    Bringing Up Girls in Science (BUGS) was an afterschool program for 4th and 5th grade girls that provided authentic learning experiences in environmental science as well as valuable female mentoring opportunities in an effort to increase participants' academic achievement in science. BUGS participants demonstrated significantly greater amounts of gain in science knowledge as measured by the Iowa Test of Basic Skills in Science (ITBS-S). The original BUGS participants and contrasts have now completed high school and entered college, allowing researchers to assess the long-term impact of the BUGS program. Fourteen former BUGS participants completed two instruments to assess their perceptions of science and science, technology, engineering, and mathematics (STEM) careers. Their results were compared to four contrast groups composed entirely of females: 12 former BUGS contrasts, 10 college science majors, 10 non-science majors, and 9 current STEM professionals. Results indicate that BUGS participants have higher perceptions of science careers than BUGS contrasts. There were no significant differences between BUGS participants, Science Majors, and STEM professionals in their perceptions of science and STEM careers, whereas the BUGS contrast group was significantly lower than BUGS participants, Science Majors, and STEM Professionals. Additional results and implications are discussed within.

  2. Pathways to Ocean Sciences: Broadening Participation in Ocean Sciences REU Programs

    NASA Astrophysics Data System (ADS)

    Fauver, A.; Johnson, A.; Detrick, L.; Cash, C.; Siegfried, D.; Valaitis, S.; Saywell, D.; Thomas, S. H.

    2011-12-01

    Increasing the number and diversity of students who successfully pursue careers in Ocean Sciences is key to addressing the growing demand for professionals in our fields who genuinely understand and make a contribution to cutting edge research. Summer research programs for undergraduates play a critical role in this process by creating environments in which students can develop the strategies and professional skills necessary to pursue meaningful careers in various STEM fields and by supporting students as they "bridge" between undergraduate and graduate studies. Within the framework of a diversity briefing illuminating the context behind efforts to broaden participation, the Institute for Broadening Participation (IBP) will provide a short overview on the current state of diversity in the Ocean Sciences community in general and the NSF Ocean Sciences REU community in particular, as well as offer a shared resource pool of studies, references, practical tools and strategies focusing on broadening the participation of women and underrepresented groups in higher education. IBP has been supporting diversity by fostering an on-going exchange of ideas and resources between students, faculty and administrators since 2002. Their web portal, www.pathwaystoscience.org, provides easy access to many resources that support students in successful careers in the STEM fields and support faculty and administrators in enhancing their efforts to increase diversity.

  3. The NASA Sounding Rocket Program and space sciences.

    PubMed

    Gurkin, L W

    1992-10-01

    High altitude suborbital rockets (sounding rockets) have been extensively used for space science research in the post-World War II period; the NASA Sounding Rocket Program has been on-going since the inception of the Agency and supports all space science disciplines. In recent years, sounding rockets have been utilized to provide a low gravity environment for materials processing research, particularly in the commercial sector. Sounding rockets offer unique features as a low gravity flight platform. Quick response and low cost combine to provide more frequent spaceflight opportunities. Suborbital spacecraft design practice has achieved a high level of sophistication which optimizes the limited available flight times. High data-rate telemetry, real-time ground up-link command and down-link video data are routinely used in sounding rocket payloads. Standard, off-the-shelf, active control systems are available which limit payload body rates such that the gravitational environment remains less than 10(-4) g during the control period. Operational launch vehicles are available which can provide up to 7 minutes of experiment time for experiment weights up to 270 kg. Standard payload recovery systems allow soft impact retrieval of payloads. When launched from White Sands Missile Range, New Mexico, payloads can be retrieved and returned to the launch site within hours.

  4. The NASA Sounding Rocket Program and space sciences

    NASA Technical Reports Server (NTRS)

    Gurkin, L. W.

    1992-01-01

    High altitude suborbital rockets (sounding rockets) have been extensively used for space science research in the post-World War II period; the NASA Sounding Rocket Program has been on-going since the inception of the Agency and supports all space science disciplines. In recent years, sounding rockets have been utilized to provide a low gravity environment for materials processing research, particularly in the commercial sector. Sounding rockets offer unique features as a low gravity flight platform. Quick response and low cost combine to provide more frequent spaceflight opportunities. Suborbital spacecraft design practice has achieved a high level of sophistication which optimizes the limited available flight times. High data-rate telemetry, real-time ground up-link command and down-link video data are routinely used in sounding rocket payloads. Standard, off-the-shelf, active control systems are available which limit payload body rates such that the gravitational environment remains less than 10(-4) g during the control period. Operational launch vehicles are available which can provide up to 7 minutes of experiment time for experiment weights up to 270 kg. Standard payload recovery systems allow soft impact retrieval of payloads. When launched from White Sands Missile Range, New Mexico, payloads can be retrieved and returned to the launch site within hours.

  5. A review of forensic science higher education programs in the United States: bachelor's and master's degrees.

    PubMed

    Tregar, Kristen L; Proni, Gloria

    2010-11-01

    As the number of forensic science programs offered at higher education institutions rises, and more students express an interest in them, it is important to gain information regarding the offerings in terms of courses, equipment available to students, degree requirements, and other important aspects of the programs. A survey was conducted examining the existing bachelor's and master's forensic science programs in the U.S. Of the responding institutions, relatively few were, at the time of the survey, accredited by the forensic science Education Programs Accreditation Commission (FEPAC). In general, the standards of the responding programs vary considerably primarily in terms of their size and subjects coverage. While it is clear that the standards for the forensic science programs investigated are not homogeneous, the majority of the programs provide a strong science curriculum, faculties with advanced degrees, and interesting forensic-oriented courses.

  6. The Effects of an After-School Science Program on Middle School Female Students' Attitudes towards Science, Mathematics and Engineering.

    ERIC Educational Resources Information Center

    Ferreira, Maria M.

    This study examined the impact of an after-school science program that incorporated cooperative learning, hands-on activities, mentoring, and role models on a group of minority female students' attitudes toward science, engineering, and mathematics. Eighteen African American middle school students participated in the study. Seven female engineers…

  7. The Effect of a Horseshoe Crab Citizen Science Program on Middle School Student Science Performance and STEM Career Motivation

    ERIC Educational Resources Information Center

    Hiller, Suzanne E.; Kitsantas, Anastasia

    2014-01-01

    The purpose of the present quasi-experimental study was to examine the impact of a horseshoe crab citizen science program on student achievement and science, technology, engineering, and mathematics (STEM) career motivation with 86 (n = 86) eighth-grade students. The treatment group conducted fieldwork with naturalists and collected data for a…

  8. The Catalyst Scholarship Program at Hunter College. A Partnership among Earth Science, Physics, Computer Science and Mathematics

    ERIC Educational Resources Information Center

    Salmun, Haydee; Buonaiuto, Frank

    2016-01-01

    The Catalyst Scholarship Program at Hunter College of The City University of New York (CUNY) was established with a four-year award from the National Science Foundation (NSF) to fund scholarships to 40 academically talented but financially disadvantaged students majoring in four disciplines of science, technology, engineering and mathematics…

  9. In-Depth Science Research Experiences for Teens: The AMNH-ITEST High School Science Research Program. Summative Evaluation Report

    ERIC Educational Resources Information Center

    Smith, Anita

    2008-01-01

    In January 2005, the American Museum of Natural History (AMNH) was awarded a three-year ITEST grant (Innovative Technology Experiences for Students and Teachers) through the National Science Foundation (award #04-23417). This "AMNH-ITEST High School Science Research Program" aimed to target 120 urban high school youth, grades 10-12, from…

  10. Building a College That Builds Science: New Programs at Lac Courte Oreilles Ojibwa Community College Stress Science and Technology.

    ERIC Educational Resources Information Center

    Anderson, Debra

    1992-01-01

    Describes the growth of Lac Courte Oreilles Ojibwa Community College's science and technology programs through grants which have funded new faculty positions, the construction of new science and computer facilities, 16 computers, and the implementation of long-distance learning systems. (DMM)

  11. The 2015-2016 SEPMAP Program at NASA JSC: Science, Engineering, and Program Management Training

    NASA Technical Reports Server (NTRS)

    Graham, L.; Archer, D.; Bakalyar, J.; Berger, E.; Blome, E.; Brown, R.; Cox, S.; Curiel, P.; Eid, R.; Eppler, D.; Fries, M.; Gruener, J.; Haddock, M.; Harder, K.; Hong, T.; McCann, C.; Neiss, K.; Newswander, J.; Odina, J.; Peslier, A.; Quadri, Z.; Ross, S.; Rutovic, M.; Schulte, R.; Thomas, R.; Vos, J.; Waid, M.; William, B.

    2017-01-01

    The Systems Engineering Project Management Advancement Program (SEPMAP) at NASA Johnson Space Center (JSC) is an employee development program designed to provide graduate level training in project management and systems engineering. The program includes an applied learning project with engineering and integrated science goals requirements. The teams were presented with a task: Collect a representative sample set from a field site using a hexacopter platform, as if performing a scientific reconnaissance to assess whether the site is of sufficient scientific interest to justify exploration by astronauts. Four teams worked through the eighteen-month course to design customized sampling payloads integrated with the hexacopter, and then operate the aircraft to meet sampling requirements of number (= 5) and mass (= 5g each). The "Mars Yard" at JSC was utilized for this purpose. This project activity closely parallels NASA plans for the future exploration of Mars, where remote sites will be reconnoitered ahead of crewed exploration.

  12. Promoting an Integrated Science Approach in Teacher Training Programs

    NASA Astrophysics Data System (ADS)

    Morris, P. A.; Reiff, P.; Garcia, J.; McKay, G. A.

    2007-12-01

    for discussion on lunar versus earth surfaces, atmospheres, and skies. The program has been a success as teachers, which have included grades 4-12, can choose the subjects. Some elect to attend the whole week while others may attend only 1 or 2 days. The advantage to this type of program is that it is easily adaptable to the science requirements for the various grade levels and it provides flexibility as some teachers are traveling 2-3 hours by automobile to attend. Thus by bringing both scientists and a planetarium to the Valley, we provide a "field trip without the bus".

  13. Developing Leaders: Implementation of a Peer Advising Program for a Public Health Sciences Undergraduate Program

    PubMed Central

    Griffin, Megan; DiFulvio, Gloria T.; Gerber, Daniel Shea

    2015-01-01

    Peer advising is an integral part of our undergraduate advising system in the Public Health Sciences major at the University of Massachusetts Amherst. The program was developed in 2009 to address the advising needs of a rapidly growing major that went from 25 to over 530 majors between 2007 and 2014. Each year, 9–12 top performing upper-level students are chosen through an intensive application process. A major goal of the program is to provide curriculum and career guidance to students in the major and empower students in their academic and professional pursuits. The year-long program involves several components, including: staffing the drop-in advising center, attending training seminars, developing and presenting workshops for students, meeting prospective students and families, evaluating ways to improve the program, and collaborating on self-directed projects. The peer advisors (PAs) also provide program staff insight into the needs and perspectives of students in the major. In turn, PAs gain valuable leadership and communication skills, and learn strategies for improving student success. The Peer Advising Program builds community and fosters personal and professional development for the PAs. In this paper, we will discuss the undergraduate peer advising model, the benefits and challenges of the program, and lessons learned. Several methods were used to understand the perceived benefits and challenges of the program and experiences of students who utilized the Peer Advising Center. The data for this evaluation were drawn from three sources: (1) archival records from the Peer Advising Center; (2) feedback from PAs who completed the year-long internship; and (3) a survey of students who utilized the Peer Advising Center. Results of this preliminary evaluation indicate that PAs gain valuable skills that they can carry into their professional world. The program is also a way to engage students in building community within the major. PMID:25601907

  14. NASA Planetary Science Division's Instrument Development Programs, PICASSO and MatISSE

    NASA Astrophysics Data System (ADS)

    Gaier, J. R.

    2016-10-01

    The NASA Planetary Science Division's instrument development programs, Planetary Instrument Concept Advancing Solar System Observations (PICASSO), and Maturation of Instruments for Solar System Exploration Program (MatISSE), are described.

  15. Programming, Managing, and Judging Science Symposium Poster Sessions.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    The Pacific Region Junior Science and Humanities Symposium has operated for 14 years as a region of the National Junior Science and Humanities Symposium. In response to the trend among professional science and science education societies to include both formal research report presentations and informal poster presentations, the Pacific Region…

  16. National Science Foundation Guide to Programs, Fiscal Year 1984.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    This document provides information for individuals who want to submit proposals in areas funded by the National Science Foundation (NSF). These areas include: (1) mathematical and physical sciences; (2) engineering; (3) biological, behavioral, and social sciences; (4) astronomical, atmospheric, earth, and ocean sciences; (5) scientific,…

  17. Science Education Programs That Work. A Collection of Proven Exemplary Educational Programs and Practices in the National Diffusion Network.

    ERIC Educational Resources Information Center

    Lewis, Mary G., Comp.

    This catalog contains descriptions of the science education programs and materials in the National Diffusion Network (NDN). These programs and materials are available to school systems or other educational institutions for implementation in their classrooms. Some programs may be able to offer consultant services and limited assistance with the…

  18. Science Education Programs That Work. A Collection of Proven Exemplary Educational Programs and Practices in the National Diffusion Network.

    ERIC Educational Resources Information Center

    Office of Educational Research and Improvement (ED), Washington, DC. National Diffusion Network.

    The National Diffusion Network (NDN) is a federally funded system that makes exemplary educational programs available for use by schools, colleges, and other institutions. This publication contains information describing the science education programs currently in the NDN, along with procedural information on how to access these programs. The…

  19. Science Education Programs That work. A Collection of Proven Exemplary Educational Programs and Practices in the National Diffusion Network.

    ERIC Educational Resources Information Center

    Lewis, Mary G., Comp.

    This catalog contains descriptions of the science education programs in the National Diffusion Network (NDN). These programs are available to school systems or other educational institutions for implementation in their classrooms. Some programs may be able to offer consultant services and limited assistance with the training and materials…

  20. A Comparison of Baccalaureate Programs in Information Technology with Baccalaureate Programs in Computer Science and Information Systems

    ERIC Educational Resources Information Center

    Reichgelt, Han; Lunt, Barry; Ashford, Tina; Phelps, Andy; Slazinski, Erick; Willis, Cheryl

    2004-01-01

    A number of universities have recently started to add baccalaureate programs in Information Technology (IT) to their existing programs in Computer Science (CS) and (Management) Information Systems (IS). While some have welcomed this development, others have argued that (a) there are significant differences between the baccalaureate programs in IT…

  1. Clemson University Science Master's Program in Sustainable and Resilient Infrastructure: A program evaluation

    NASA Astrophysics Data System (ADS)

    O'Sell, Elizabeth Eberhart

    The Clemson University Science Master's Program (SMP) in Sustainable and Resilient Infrastructure is a program which aims to link engineering, materials, construction, environment, architecture, business, and public policy to produce graduates with unique holistic perspective and expertise to immediately contribute to the workforce in the area of sustainable and resilient infrastructure. A program evaluation of the SMP has been performed to study the effectiveness of the SMP and identify areas where the goals and vision of the SMP are achieved and areas where improvements can be made. This was completed by analysis of trends within survey responses, review of Master's thesis reports, and review of courses taken. It was found that the SMP has facilitated new interdisciplinary research collaborations of faculty in different concentration areas within the Glenn Department of Civil Engineering, as well as collaboration with faculty in other departments. It is recommended that a course which provides instruction in all eight competency areas be required for all SMP students to provide a comprehensive overview and ensure all students are exposed to concepts of all competency areas. While all stakeholders are satisfied with the program and believe it has been successful thus far, efforts do need to be made as the program moves forward to address and improve some items that have been mentioned as needing improvement. The concerns about concentration courses, internship planning, and advising should be addressed. This evaluation provides benefits to prospective students, current SMP participants, and outside program supporters. The goal of this evaluation is to provide support that the SMP is an effective and worthwhile program for participating students, while attempting to identify any necessary program improvements and provide recommendations for achieving these improvements. This goal has been accomplished.

  2. Faculty development program models to advance teaching and learning within health science programs.

    PubMed

    Lancaster, Jason W; Stein, Susan M; MacLean, Linda Garrelts; Van Amburgh, Jenny; Persky, Adam M

    2014-06-17

    Within health science programs there has been a call for more faculty development, particularly for teaching and learning. The primary objectives of this review were to describe the current landscape for faculty development programs for teaching and learning and make recommendations for the implementation of new faculty development programs. A thorough search of the pertinent health science databases was conducted, including the Education Resource Information Center (ERIC), MEDLINE, and EMBASE, and faculty development books and relevant information found were reviewed in order to provide recommendations for best practices. Faculty development for teaching and learning comes in a variety of forms, from individuals charged to initiate activities to committees and centers. Faculty development has been effective in improving faculty perceptions on the value of teaching, increasing motivation and enthusiasm for teaching, increasing knowledge and behaviors, and disseminating skills. Several models exist that can be implemented to support faculty teaching development. Institutions need to make informed decisions about which plan could be most successfully implemented in their college or school.

  3. Changes in Korean Science Teachers' Perceptions of Creativity and Science Teaching After Participating in an Overseas Professional Development Program

    NASA Astrophysics Data System (ADS)

    Park, Soonhye; Lee, Soo-Young; Oliver, J. Steve; Cramond, Bonnie

    2006-03-01

    This study investigated changes in Korean science teachers' perceptions of creativity and science teaching after participating in an overseas professional development program. Participants were 35 secondary science teachers. Data were collected from open-ended questionnaires and interviews. Results indicated that participants showed a growing awareness that creativity can be expressed by every student; creativity can be enhanced; science has a much wider range of activities that foster creativity; and creativity-centered science teaching can be implemented in Korea. The major elements of the professional program that promoted these perceptual changes included hands-on creativity activities, observation of creativity-centered classrooms, and discussion with other teachers. Follow-up study revealed that their perceptual changes have been reflected in their teaching practices.

  4. Controversies in Pediatric Perioperative Airways

    PubMed Central

    Klučka, Jozef; Štourač, Petr; Štoudek, Roman; Ťoukálková, Michaela; Harazim, Hana; Kosinová, Martina

    2015-01-01

    Pediatric airway management is a challenge in routine anesthesia practice. Any airway-related complication due to improper procedure can have catastrophic consequences in pediatric patients. The authors reviewed the current relevant literature using the following data bases: Google Scholar, PubMed, Medline (OVID SP), and Dynamed, and the following keywords: Airway/s, Children, Pediatric, Difficult Airways, and Controversies. From a summary of the data, we identified several controversies: difficult airway prediction, difficult airway management, cuffed versus uncuffed endotracheal tubes for securing pediatric airways, rapid sequence induction (RSI), laryngeal mask versus endotracheal tube, and extubation timing. The data show that pediatric anesthesia practice in perioperative airway management is currently lacking the strong evidence-based medicine (EBM) data that is available for adult subpopulations. A number of procedural steps in airway management are derived only from adult populations. However, the objective is the same irrespective of patient age: proper securing of the airway and oxygenation of the patient. PMID:26759809

  5. SUNY Oneonta Earth Sciences Outreach Program (ESOP) - Generating New Drilling Prospects for Geoscience Programs

    NASA Astrophysics Data System (ADS)

    Ellis, T. D.; Ebert, J. R.

    2010-12-01

    The SUNY Oneonta ESOP is a National Science Foundation-funded program that, since 2005, has striven to address the dearth of students graduating with baccalaureate degrees in geoscience disciplines. In large part, its goal has been to provide talented STEM-oriented students with dual-enrollment college-level geoscience programs run by their local teachers for college credit. These high-school upperclassman experiences have been shown to be effective in recruiting talented students to geoscience fields, and we believe that this program is a model by which more baccalaureate programs can locate "new drilling prospects" to keep the pipeline of talented and trained geoscientists flowing into the workforce. In this presentation, we will highlight the current efforts to expand ESOP to other high schools around the country and in recruiting other colleges and universities to create their own dual-enrollment programs. We will also highlight how a senior-level geoscience course is ideal for providing students with meaningful geoscience inquiry experiences, and how we plan to support such efforts through the online teaching and learning cohorts designed to foster collaborative inquiry activities.

  6. 65 FR 75927 - Office of Science; Office of Science Financial Assistance Program Notice 01-04; Division of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2000-12-05

    ... Sciences and Engineering, Robotics and Intelligent Machines (RIM) Program AGENCY: Department of Energy... DOE hereby announces its interest in receiving grant applications for support under its Robotics and... purpose of this program is to support fundamental research in Robotics and Intelligent Machines for...

  7. "Partners in Science": A Model Cooperative Program Introducing High School Teachers and Students to Leading-Edge Pharmaceutical Science

    ERIC Educational Resources Information Center

    Woska, Joseph R., Jr.; Collins, Danielle M.; Canney, Brian J.; Arcario, Erin L.; Reilly, Patricia L.

    2005-01-01

    "Partners in Science" is a cooperative program between Boehringer Ingelheim Pharmaceuticals, Inc. and area high schools in the community surrounding our Connecticut campus. It is a two-phase program that introduces high school students and teachers to the world of drug discovery and leading-edge pharmaceutical research. Phase 1 involves…

  8. A Teacher Professional Development Program for an Authentic Citizen-Science Program: GLOBE at Night

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Pompea, S. M.; Sparks, R.

    2009-12-01

    An authentic science research program in the classroom can take many forms as can the teacher professional development that accompanies the programs. One different approach invites educators to invoke 21st century skills with their students while focusing on a real-world issue of both local and global concern. The citizen-science program on light pollution, GLOBE at Night, has students and the general public measure the darkness of their local skies and contribute observations online to a world map. They do this by looking toward Orion for the faintest stars and matching what they see to one of seven different star maps. (For more precise measurements, digital sky-brightness meters are used.) These measurements can be compared with data from the previous 4 years, as well as with satellite data, population densities, and electrical power-usage maps. Measurements can be examined online via Google Earth or other tools and are downloadable as datasets from the website. Data from multiple locations in one city or region are especially interesting, and have been used as the basis of research in a classroom or science fair project or even to inform the development of public policy. This year, GLOBE at Night has been expanding its role in training educators on fundamental concepts and data collection to include more data analysis for a topical variety of local projects. Many on-site workshops have and are being given to teachers in grades 5 through high school. Some of the U.S. school communities created mini-campaigns that combined local students with public advocates and representatives from local city and county governments, and also collaborated with students in Wales, Canada, Romania and north-central Chile (near major observatories). Internationally, training has been given via on-line forums, telecon-powerpoint presentations, videoconferencing via Skype, and blogs. Informal educators have come from national and international networks of science, technology and

  9. The Maps in Medicine program: An evaluation of the development and implementation of life sciences curriculum

    NASA Astrophysics Data System (ADS)

    O'Malley, Jennifer

    There has been a downward trend in both science proficiency and interest in science in the United States, especially among minority students and students of a disadvantaged background. This has led to a downturn in the number of individuals within these groups considering a career in the sciences or a related field. Studies have identified many potential causes for this problem including the current structure of science curriculum, lack of teacher preparedness, and the lack of quality education and support for those students currently underrepresented in the sciences. Among the solutions to this problem include redesigning the science curriculum, offering high-quality professional development opportunities to teachers, and creating programs to give support to individuals currently underrepresented in the sciences, so that they may have a better chance of pursuing and obtaining a science career. The Maps in Medicine program (MiM) has been designed to incorporate all of the aforementioned solutions and apply them to the current science education problem. The Maps in Medicine (MiM) program was established at the University of Missouri -- Columbia, and is funded by the Howard Hughes Medical Institute. Newly developed MiM curricula and student activities are intended to promote positive attitude changes in those students who are currently underrepresented in Science, Technology, Engineering and Mathematics (STEM) fields, with the program also providing professional development to high school science teachers. It was important to determine if the MiM program's solution to the science education problem has been successful, and so the program evaluation piece was integral. A mixed-methods approach was used to evaluate the MiM program. Formative evaluation results indicated a positive response from teachers and students regarding curriculum and professional development, and student activities. These results have also lead to the identification of appropriate improvements

  10. Environmental Remediation Sciences Program at the Stanford Synchrotron Radiation Laboratory

    SciTech Connect

    Bargar, John R.

    2006-11-15

    Synchrotron radiation (SR)-based techniques provide unique capabilities to address scientific issues underpinning environmental remediation science and have emerged as major research tools in this field. The high intensity of SR sources and x-ray photon-in/photon-out detection allow noninvasive in-situ analysis of dilute, hydrated, and chemically/structurally complex natural samples. SR x-rays can be focused to beams of micron and sub-micron dimension, which allows the study of microstructures, chemical microgradients, and microenvironments such as in biofilms, pore spaces, and around plant roots, that may control the transformation of contaminants in the environment. The utilization of SR techniques in environmental remediation sciences is often frustrated, however, by an ''activation energy barrier'', which is associated with the need to become familiar with an array of data acquisition and analysis techniques, a new technical vocabulary, beam lines, experimental instrumentation, and user facility administrative procedures. Many investigators find it challenging to become sufficiently expert in all of these areas or to maintain their training as techniques evolve. Another challenge is the dearth of facilities for hard x-ray micro-spectroscopy, particularly in the 15 to 23 KeV range, which includes x-ray absorption edges of the priority DOE contaminants Sr, U, Np, Pu, and Tc. Prior to the current program, there were only two (heavily oversubscribed) microprobe facilities in the U.S. that could fully address this energy range (one at each of APS and NSLS); none existed in the Western U.S., in spite of the relatively large number of DOE laboratories in this region.

  11. Teachers' voices: A comparison of two secondary science teacher preparation programs

    NASA Astrophysics Data System (ADS)

    Kohlhaas Labuda, Kathryn

    This dissertation, using cross-case qualitative methodology, investigates the salient and latent features of two philosophically different university-based secondary science teacher preparation programs. Written documents from the two programs and from the Salish I Research project provided the salient data. New teachers' interview transcripts provided the latent data. This study provides the opportunity to hear teachers voice their perceptions of preparation programs. Three questions were investigated in this research study. First, What are the salient features of two different secondary science teacher preparation programs? Second, What are the latent features of two different secondary science teacher programs as perceived by new teachers? Third, How do new secondary science teachers from different programs perceive their preservice programs? The last question incorporates teachers' perceptions of gaps and coherence in the programs and teachers' recommendations to improve their preservice programs. Salient features of the programs revealed differences in the types of certification, and the amounts and types of required course work. Both programs certified teachers at the secondary science level, but only M program certified their teachers as elementary science specialists. Program M required more semester hours of education and science course work than Program S. Although teachers from both programs perceived little coherence between their science and education courses, S-teachers presented a more fragmented picture of their education program and perceived fewer benefits from the program. Lack of relevance and courses that focused on elementary teaching were perceived as part of the problem. M-teachers perceived some cohesion through the use of cohorts in three consecutive semesters of science methods courses that provided multiple field experiences prior to student teaching. S-teachers did not perceive an organized philosophy of their program. M

  12. Final report for the Gateway to Engineering, Science and Technology (GEST) program

    SciTech Connect

    Miller, M.

    1998-04-01

    This report describes the performance of a two year grant to provide partial funding for an engineering/science/mathematics program at the University of Wisconsin, Milwaukee. This program serves middle and high school students in a summer program coupled with academic year activities, and is designed to attract underrepresented students into these disciplines. The UWM program has been running since 1974.

  13. Designing Programs for Teacher Leaders: The Case of the California Science Implementation Network.

    ERIC Educational Resources Information Center

    DiRanna, Kathy; Loucks-Horsley, Susan

    Teacher leadership development programs require careful design if they are to meet the challenges of today's science and mathematics education reform initiatives. This chapter describes the design of one such program using a design framework developed to plan and analyze effective professional development programs. The program, the California…

  14. Science To Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards

    SciTech Connect

    Bredt, Paul R. ); Brockman, Fred J. ); Camaioni, Donald M. ); Felmy, Andrew R. ); Grate, Jay W. ); Hay, Benjamin P.; Hess, Nancy J. ); Meyer, Philip D. ); Murray, Christopher J. ); Pfund, David M. ); Su, Yali ); Thornton, Edward C. ); Weber, William J. ); Zachara, John M. )

    2001-06-19

    Pacific Northwest National Laboratory (PNNL) was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, nine in fiscal year 1998, seven in fiscal year 1999, and five in fiscal year 2000. All of the fiscal year 1996 award projects have published final reports. The 1997 and 1998 award projects have been completed or are nearing completion. Final reports for these awards will be published, so their annual updates will not be included in this document. This section summarizes how each of the 1999 and 2000 grants address significant U.S. Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. The 1999 and 2000 EMSP awards at PNNL are focused primarily in two areas: Tank Waste Remediation, and Soil and Groundwater Cleanup.

  15. A Field Test of the Impact of an Inservice Training Program on Health Sciences Education Faculty

    ERIC Educational Resources Information Center

    Sowers, Jo-Ann; Smith, Martha R.

    2003-01-01

    The goal of the Health Sciences Faculty Education Project at Oregon Health & Science University was to enhance the capacity of health science programs and faculty to admit, teach, accommodate, and graduate students with disabilities. Multiple approaches were implemented to achieve this goal. A key strategy was an inservice training program…

  16. A Rationale for Building a Comprehensive Science Program for Inner-City Education.

    ERIC Educational Resources Information Center

    Martin, Charles Arthur

    The intent of this dissertation was to develop a science curriculum from an inner-city perspective. Five units and a rationale for inner-city education are included. The units include both physical and biological science topics. The units are as follows: (1) Rationale for Building a Comprehensive Science Program for Inner-City Education; (2) With…

  17. Inquiry-Based Science and Technology Enrichment Program for Middle School-Aged Female Students

    ERIC Educational Resources Information Center

    Kim, Hanna

    2016-01-01

    This study investigates the effects of an intensive 1-week Inquiry-Based Science and Technology Enrichment Program (InSTEP) designed for middle school-aged female students. InSTEP uses a guided/open inquiry approach that is deepened and redefined as eight sciences and engineering practices in the Next Generation Science Standards, which aimed at…

  18. Engaging Latino Audiences in Out-of-School Programs about Science

    ERIC Educational Resources Information Center

    Bruyere, Brett L.; Salazar, Guadalupe

    2010-01-01

    Under-represented groups such as Latinos lack sufficient voice in important conversations about science topics. Yet we know that Latinos are under-represented in the profession. One path to careers in science is through early exposure during youth. This article describes research to identify how to engage Latino groups in science programs, such as…

  19. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What is the Minority Science and Engineering... Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering...

  20. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What is the Minority Science and Engineering... Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering...

  1. 34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What definitions apply to the Minority Science and... Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and...

  2. 34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What definitions apply to the Minority Science and... Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and...

  3. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What regulations apply to the Minority Science and... Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and...

  4. Upward Bound Math-Science: Program Description and Interim Impact Estimates

    ERIC Educational Resources Information Center

    Olsen, Robert; Seftor, Neil; Silva, Tim; Myers, David; DesRoches, David; Young, Julie

    2007-01-01

    To help address continuing disparities in academic achievement and under-representation of disadvantaged groups in math and science majors and careers, the U.S. Department of Education (ED) established a math and science initiative in 1990 within Upward Bound, a federal grant program known as Upward Bound Math-Science (UBMS) designed to provide…

  5. Member Perceptions of Informal Science Institution Graduate Certificate Program: Case Study of a Community of Practice

    ERIC Educational Resources Information Center

    Ball, Lois A.

    2012-01-01

    This research attempted to understand the experiences of a cohort of informal and formal science educators and informal science institution (ISI) community representatives during and after completion of a pilot graduate certificate program. Informal science educators (ISEs) find limited opportunities for professional development and support which…

  6. Effective Practices for Creating Transformative Informal Science Education Programs Grounded in Native Ways of Knowing

    ERIC Educational Resources Information Center

    Mack, Elizabeth; Augare, Helen; Cloud-Jones, Linda Different; David, Dominique; Gaddie, Helene Quiver; Honey, Rose E.; Kawagley, Angayuqaq O.; Plume-Weatherwax, Melissa Little; Fight, Lisa Lone; Meier, Gene; Pete, Tachini; Leaf, James Rattling; Returns From Scout, Elvin; Sachatello-Sawyer, Bonnie; Shibata, Hi'ilani; Valdez, Shelly; Wippert, Rachel

    2012-01-01

    There are a growing number of informal science education (ISE) programs in Native communities that engage youth in science education and that are grounded in Native ways of knowing. There is also a growing body of research focusing on the relationship between culture, traditional knowledge, and science education. However, there is little research…

  7. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false What is the Minority Science and Engineering... Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering...

  8. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What is the Minority Science and Engineering... Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering...

  9. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false What is the Minority Science and Engineering... Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering...

  10. 34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false What definitions apply to the Minority Science and... Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and...

  11. 34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false What definitions apply to the Minority Science and... Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and...

  12. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false What regulations apply to the Minority Science and... Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and...

  13. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What regulations apply to the Minority Science and... Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and...

  14. 34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What definitions apply to the Minority Science and... Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and...

  15. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false What regulations apply to the Minority Science and... Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and...

  16. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What regulations apply to the Minority Science and... Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and...

  17. Distance Mentoring in the NASA/Kennedy Space Center Virtual Science Mentor Program.

    ERIC Educational Resources Information Center

    Buckingham, Gregg

    This study examines the results of a three year video mentoring program, the NASA Virtual Science Mentor (VSM) program, which paired 56 NASA mentor engineers and scientists with 56 middle school science teachers in seven Southwest Florida counties. The study sought to determine the impact on students, mentors, and teachers participating in the…

  18. Creation of an Innovative Sustainability Science Undergraduate Degree Program: A 10-Step Process

    ERIC Educational Resources Information Center

    Smith-Sebasto, Nicholas J.; Shebitz, Daniela J.

    2013-01-01

    We explain the process used at Kean University (New Jersey) to create an innovative undergraduate degree program in sustainability science. This interdisciplinary program provides students with the strong science background necessary to understand and address the opportunities associated with sustainability. We articulate seven steps taken during…

  19. Township of Ocean School District Contemporary Science. Program Description, September 1989.

    ERIC Educational Resources Information Center

    Truex, Ronald T.

    This report describes a program that was designed to provide non-academic disaffected students as well as college-bound high school students with a meaningful and positive educational experience in science in order to bridge the gap between science and the citizen in a technological world. The program, designed as a full year elective course,…

  20. hm Science Study Skills Program: People, Energy, and Appropriate Technology. Teacher's Guide.

    ERIC Educational Resources Information Center

    Wilson, Carol; Krasnow, Gary

    This program includes 14 activity-oriented units which integrate instruction in science study skills with hands-on learning about energy and appropriate technology. The program is suitable for use in a wide range of science curricula in grades 7 to 10. Units focus on such topics as the meaning of the word "appropriate," what makes…

  1. hm Science Study Skills Program: People, Energy, and Appropriate Technology. Student Text.

    ERIC Educational Resources Information Center

    Wilson, Carol; Krasnow, Gary

    This program includes 14 activity-oriented units which integrate instruction in science study skills with hands-on learning about energy and appropriate technology. The program is suitable for use in a wide range of science curricula in grades 7 to 10. Unit topics and the corresponding skills fostered (in parentheses) in part one focus on: the…

  2. Health Science Students' Perception about Research Training Programs Offered in Saudi Universities

    ERIC Educational Resources Information Center

    Al Kuwaiti, Ahmed; Subbarayalu, Arun Vijay

    2015-01-01

    Purpose: The purpose of this paper was to examine the perceptions of students of health sciences on research training programs offered at Saudi universities. Design/methodology/approach: A cross-sectional survey design was adopted to capture the perceptions of health science students about research training programs offered at selected Saudi…

  3. A Review of Models for Teacher Preparation Programs for Precollege Computer Science Education.

    ERIC Educational Resources Information Center

    Deek, Fadi P.; Kimmel, Howard

    2002-01-01

    Discusses the need for adequate precollege computer science education and focuses on the issues of teacher preparation programs and requirements needed to teach high school computer science. Presents models of teacher preparation programs and compares state requirements with Association for Computing Machinery (ACM) recommendations. (Author/LRW)

  4. Metals and Ceramics Division Materials Science Program. Annual progress report for period ending December 31, 1982

    SciTech Connect

    McHargue, C.J.

    1983-05-01

    This report summarizes the activities of the Materials Sciences Program in the Metals and Ceramics Division. These activities constitute about one-fourth of the research and development conducted by the division. The major elements of the Materials Sciences Program can be grouped under the areas of (1) structural characterization, (2) high-temperature alloy studies, (3) structural ceramics, and (4) radiation effects.

  5. Directory of Science Training Programs for High Ability Precollege Students. 1987.

    ERIC Educational Resources Information Center

    Science Service, Inc., Washington, DC.

    Designed to help students develop interest in careers in the mathematical, physical, medical, biological, social, or engineering sciences, this directory lists programs which are intended to contribute to precollege students' academic development. These science training programs serve to provide talented high school students with educational…

  6. The Development of Behavioral Objectives for the Undergraduate Science Program for Elementary Teachers. Final Report.

    ERIC Educational Resources Information Center

    Hinerman, Charles O.

    In this study, a set of behavioral objectives was developed and validated for an undergraduate science program for elementary teachers. The behavioral objectives contain both inquiry and content items which were based on analyses of the COPES, SAPA, IDP, SCIS, ESS, and MINNEMAST elementary school science programs. Some measure of validity of the…

  7. Expanding your Horizons: a Program for Engaging Middle School Girls in Science and Mathematics

    NASA Astrophysics Data System (ADS)

    Jahnke, Tamera S.; Level, Allison V.

    Gender equity in science, mathematics, and technology is an issue that has generated the creation of a number of programs. Young women need to be aware that there are a variety of careers in science, mathematics, and technology that they can actively pursue. This article highlights one example of a successful middle school science program in Southwest Missouri. Expanding Your Horizons in Science, Mathematics, and Technology (EYH) integrates keynote speakers, role model mentoring sessions, and small group experiments into a hands-on learning environment. Initial survey results of parents and teachers show support for the conference and indicate that the program helps motivate students to consider careers in science, mathematics, and technology. In addition to the goal of increasing awareness for these young people, there is a need for increased scientific literacy of the general public and an increased application of science to "real world" circumstances. This program addresses these issues.

  8. A hospital/school science fair mentoring program for middle school students.

    PubMed

    Torres, B; Harris, R F; Lockwood, D; Johnson, J; Mirabal, R; Wells, D T; Pacheco, M; Soussou, H; Robb, F; Weissman, G K; Gwosdow, A R

    1997-12-01

    The Massachusetts General Hospital (MGH) and the James P. Timilty Middle School established a partnership to enhance science education, promote faculty development, and improve the health status and academic performance of all Timilty students. This article describes one of the Partnership's Science Connection programs, the Science Fair Mentoring Program, designed to enhance middle school science education, inform urban early adolescents about professions in the health field, inspire them to pursue postsecondary study in the health sciences, and prepare them for rigorous academic work in high school. In this program, hospital-based clinical and research staff mentor young adolescent students. The authors describe the planning, implementation, and evaluation of the Science Fair Mentoring Program as an innovative learning experience.

  9. Science ExpOlympics: An Outreach Program of Competitive and Noncompetitive Events for High School Students

    NASA Astrophysics Data System (ADS)

    Matthews, Fred J.

    1997-04-01

    Austin Peay State University's biennial Science ExpOlympics involves competitive events, activities and demonstrations, and a science bowl competition for regional high school students. The purpose of the APSU Science ExpOlympics is threefold: to show all of the attending high school students that the sciences can be fun and interesting, to challenge those high school students who are already interested in the sciences, and to promote APSU as a potential university for graduating high school students. More than 2000 high school students have attended the Science ExpOlympics program since its inception in 1983. The Science ExpOlympics program has been jointly sponsored by the Biology, Chemistry, Geography and Geology, Industrial Technology, Mathematics and Computer Sciences, Physics, and Psychology departments. A list of departments and the events that each has provided is shown below.

  10. The quantitative evaluation of the Clinical and Translational Science Awards (CTSA) program based on science mapping and scientometric analysis.

    PubMed

    Zhang, Yin; Wang, Lei; Diao, Tianxi

    2013-12-01

    The Clinical and Translational Science Awards (CTSA) program is one of the most important initiatives in translational medical funding. The quantitative evaluation of the efficiency and performance of the CTSA program has a significant referential meaning for the decision making of global translational medical funding. Using science mapping and scientometric analytic tools, this study quantitatively analyzed the scientific articles funded by the CTSA program. The results of the study showed that the quantitative productivities of the CTSA program had a stable increase since 2008. In addition, the emerging trends of the research funded by the CTSA program covered clinical and basic medical research fields. The academic benefits from the CTSA program were assisting its members to build a robust academic home for the Clinical and Translational Science and to attract other financial support. This study provided a quantitative evaluation of the CTSA program based on science mapping and scientometric analysis. Further research is required to compare and optimize other quantitative methods and to integrate various research results.

  11. Athletic Training Students Demonstrate Airway Management Skill Decay, but Retain Knowledge over 6 Months

    ERIC Educational Resources Information Center

    Popp, Jennifer K.; Berry, David C.

    2016-01-01

    Context: Airway management (AM) knowledge and skills are taught in all athletic training programs; however, research suggests that skill decay occurs with acute care skills as length of nonpractice increases. Objective: Evaluate retention of AM knowledge and skills, specifically oropharyngeal airway (OPA) and nasopharyngeal airway (NPA) use, in…

  12. Laboratory for Nuclear Science. High Energy Physics Program

    SciTech Connect

    Milner, Richard

    2014-07-30

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group are given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.

  13. Science Plan for the Atmospheric Radiation Measurement Program (ARM)

    SciTech Connect

    1996-02-01

    The purpose of this Atmospheric Radiation Measurement (ARM) Science Plan is to articulate the scientific issues driving the ARM Program, and to relate them to DOE`s programmatic objectives for ARM, based on the experience and scientific progress gained over the past five years. ARM programmatic objectives are to: (1) Relate observed radiative fluxes and radiances in the atmosphere, spectrally resolved and as a function of position and time, to the temperature and composition of the atmosphere, specifically including water vapor and clouds, and to surface properties, and sample sufficient variety of situations so as to span a wide range of climatologically relevant possibilities; (2) develop and test parameterizations that can be used to accurately predict the radiative properties and to model the radiative interactions involving water vapor and clouds within the atmosphere, with the objective of incorporating these parameterizations into general circulation models. The primary observational methods remote sending and other observations at the surface, particularly remote sensing of clouds, water vapor and aerosols.

  14. USGS California Water Science Center water programs in California

    USGS Publications Warehouse

    Shulters, Michael V.

    2005-01-01

    California is threatened by many natural hazards—fire, floods, landslides, earthquakes. The State is also threatened by longer-term problems, such as hydrologic effects of climate change, and human-induced problems, such as overuse of ground water and degradation of water quality. The threats and problems are intensified by increases in population, which has risen to nearly 36.8 million. For the USGS California Water Science Center, providing scientific information to help address hazards, threats, and hydrologic issues is a top priority. To meet the demands of a growing California, USGS scientific investigations are helping State and local governments improve emergency management, optimize resources, collect contaminant-source and -mobility information, and improve surface- and ground-water quality. USGS hydrologic studies and data collection throughout the State give water managers quantifiable and detailed scientific information that can be used to plan for development and to protect and more efficiently manage resources. The USGS, in cooperation with state, local, and tribal agencies, operates more than 500 instrument stations, which monitor streamflow, ground-water levels, and surface- and ground-water constituents to help protect water supplies and predict the threats of natural hazards. The following are some of the programs implemented by the USGS, in cooperation with other agencies, to obtain and analyze information needed to preserve California's environment and resources.

  15. Program on Public Conceptions of Science, Newsletter 13.

    ERIC Educational Resources Information Center

    Shelanski, Vivien, Ed.

    This newsletter deals with public conceptions of science. Included is a "Survey on Public Attitudes toward Science: Some Key Questions." This inventory, with topic areas, specific questions, and dates of surveys may be useful for research on changing patterns of public understanding of science. Other articles are: "An Annotated,…

  16. The Science Program in Small Rural Secondary Schools.

    ERIC Educational Resources Information Center

    Colton, R. W.

    Rural schools may have an advantage over urban schools in science teaching if sciences are perceived as means of exploring our surroundings, are presented as many viewpoints of one overall picture, and are taught in a form that deals with human situations. Collaboratively taught, rural science curricula can include study of agricultural ecology,…

  17. Life Sciences Program Tasks and Bibliography for FY 1997

    NASA Technical Reports Server (NTRS)

    Nelson, John C. (Editor)

    1998-01-01

    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1997. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive internet web page.

  18. Life Sciences Program Tasks and Bibliography for FY 1996

    NASA Technical Reports Server (NTRS)

    Nelson, John C. (Editor)

    1997-01-01

    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1996. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web page.

  19. Scenes from a Science Classroom: An Enrichment Program Experience.

    ERIC Educational Resources Information Center

    Brownstein, Erica M.; Destino, Thomas

    To increase the representation of African Americans in science fields, potential candidates must have positive personal science experiences. Even with recent reforms, most students in the United States have a limited exposure to science experiences, especially African American students. One approach to addressing this problem has been to offer…

  20. Science Programming and the Audiences for Public Television; An Evaluation of Five Programs in the NET "Spectrum" Series.

    ERIC Educational Resources Information Center

    National Educational Television, New York, NY.

    Questionnaires returned by science teachers across the country and reaction forms completed by selected high school, college, and adult learners, were analyzed to judge the impact of, and acceptance by public television audiences, of five half-hour programs broadcast in the "Spectrum" science series, produced with financial support from…

  1. The Liberal Art of Science: Science and History in an Honors Program.

    ERIC Educational Resources Information Center

    West, Rinda; And Others

    In 1989, Oakton Community College (OCC) in Des Plaines, Illinois, began developing an honors core seminar in the sciences. The course was to be an interdisciplinary, laboratory-based science and humanities seminar, designed to explore the nature, process, and methods of science and the place of science in society. Rather than mastering a body of…

  2. Student Perceptions of the Nature of Science and Attitudes towards Science Education in an Experiential Science Program.

    ERIC Educational Resources Information Center

    Jelinek, David John

    While there is general agreement that student attitudes toward science education are poor, there is little agreement in defining, measuring, or improving attitudes. The nature of how students relate to science rather than what they know about science is becoming an area of increased focus in science education research. This case study specifically…

  3. Technology and science education: starting points, research programs, and trends

    NASA Astrophysics Data System (ADS)

    Linn, Marcia C.

    2003-06-01

    Over the past 25 years, information and communication technologies have had a convoluted but ultimately advantageous impact on science teaching and learning. To highlight the past, present, and future of technology in science education, this paper explores the trajectories in five areas: science texts and lectures; science discussions and collaboration; data collection and representation; science visualization; and science simulation and modeling. These trajectories reflect two overall trends in technological advance. First, designers have tailored general tools to specific disciplines, offering users features specific to the topic or task. For example, developers target visualization tools to molecules, crystals, earth structures, or chemical reactions. Second, new technologies generally support user customization, enabling individuals to personalize their modeling tool, Internet portal, or discussion board. In science education, designers have tailored instructional resources based on advances in understanding of the learner. More recently, designers have created ways for teachers and students to customize learning tools to specific courses, geological formations, interests, or learning preferences.

  4. Teaching planetary sciences to elementary school teachers: Programs that work

    NASA Technical Reports Server (NTRS)

    Lebofsky, Larry A.; Lebofsky, Nancy R.

    1993-01-01

    Planetary sciences can be used to introduce students to the natural world which is a part of their lives. Even children in an urban environment are aware of such phenomena as day and night, shadows, and the seasons. It is a science that transcends cultures, has been prominent in the news in recent years, and can generate excitement in young minds as no other science can. Planetary sciences also provides a useful tool for understanding other sciences and mathematics, and for developing problem solving skills which are important in our technological world. However, only 15 percent of elementary school teachers feel very well qualified to teach earth/space science, while better than 80 percent feel well qualified to teach reading; many teachers avoid teaching science; very little time is actually spent teaching science in the elementary school: 19 minutes per day in K-3 and 38 minutes per day in 4-6. While very little science is taught in elementary and middle school, earth/space science is taught at the elementary level in less than half of the states. It was pointed out that science is not generally given high priority by either teachers or school districts, and is certainly not considered on a par with language arts and mathematics. Therefore, in order to teach science to our youth, we must empower our teachers, making them familiar and comfortable with existing materials. In our earlier workshops, several of our teachers taught in classrooms where the majority of the students were Hispanic (over 90 percent). However, few space sciences materials existed in Spanish. Therefore, most of our materials could not be used effectively in the classroom. To address this issue, NASA materials were translated into Spanish and a series of workshops for bilingual classroom teachers from Tucson and surrounding cities was conducted. Our space sciences workshops and our bilingual classroom workshops and how they address the needs of elementary school teachers in Arizona are

  5. Member Perceptions of Informal Science Institution Graduate Certificate Program: Case Study of a Community of Practice

    NASA Astrophysics Data System (ADS)

    Ball, Lois A.

    This research attempted to understand the experiences of a cohort of informal and formal science educators and informal science institution (ISI) community representatives during and after completion of a pilot graduate certificate program. Informal science educators (ISEs) find limited opportunities for professional development and support which influence their contributions to America's science literacy and school science education. This emergent design nested case study described how an innovative program provided professional development and enabled growth in participants' abilities to contribute to science literacy. Data were collected through interviews, participant observations, and class artifacts. The program by design and constituency was the overarching entity that accounted for members' experiences. Three principal aspects of the ISI certificate program and cohort which influenced perceptions and reported positive outcomes were (1) the cohort's composition and their collaborative activities which established a vigorous community of practice and fostered community building, mentoring, and networking, (2) long term program design and implementation which promoted experiential learning in a generative classroom, and (3) ability of some members who were able to be independent or autonomous learners to embrace science education reform strategies for greater self-efficacy and career advancement. This research extends the limited literature base for professional development of informal science educators and may benefit informal science institutions, informal and formal science educators, science education reform efforts, and public education and science-technology-society understanding. The study may raise awareness of the need to establish more professional development opportunities for ISEs and to fund professional development. Further, recognizing and appreciating informal science educators as a diverse committed community of professionals who positively

  6. A framework for evaluating and designing citizen science programs for natural resources monitoring.

    PubMed

    Chase, Sarah K; Levine, Arielle

    2016-06-01

    We present a framework of resource characteristics critical to the design and assessment of citizen science programs that monitor natural resources. To develop the framework we reviewed 52 citizen science programs that monitored a wide range of resources and provided insights into what resource characteristics are most conducive to developing citizen science programs and how resource characteristics may constrain the use or growth of these programs. We focused on 4 types of resource characteristics: biophysical and geographical, management and monitoring, public awareness and knowledge, and social and cultural characteristics. We applied the framework to 2 programs, the Tucson (U.S.A.) Bird Count and the Maui (U.S.A.) Great Whale Count. We found that resource characteristics such as accessibility, diverse institutional involvement in resource management, and social or cultural importance of the resource affected program endurance and success. However, the relative influence of each characteristic was in turn affected by goals of the citizen science programs. Although the goals of public engagement and education sometimes complimented the goal of collecting reliable data, in many cases trade-offs must be made between these 2 goals. Program goals and priorities ultimately dictate the design of citizen science programs, but for a program to endure and successfully meet its goals, program managers must consider the diverse ways that the nature of the resource being monitored influences public participation in monitoring.

  7. Preparing the Next Generation of Earth Scientists: An Examination of 25 Federal Earth Science Education Programs

    NASA Astrophysics Data System (ADS)

    Linn, A. M.; Goldstein, A.; Manduca, C. A.; Pyle, E. J.; Asher, P. M.; White, L. D.; Riggs, E. M.; Cozzens, S.; Glickson, D.

    2013-12-01

    Federal agencies play a key role in educating the next generation of earth scientists, offering programs that attract students to the field, support them through formal education, and provide training for an earth science career. In a time of reduced budgets, it is important for federal agencies to invest in education programs that are effective. A National Research Council committee examined 25 federal earth science education programs and described ways to evaluate the success of these programs and opportunities for leveraging federal education resources. Although the programs cover a wide range of objectives and audiences, they are part of a system of opportunities and experiences that attract individuals to the field and prepare them for employment. In this conceptual framework, individuals become aware of earth science, then engage in learning about the Earth and the nature of earth science, and finally prepare for a career by acquiring specialized knowledge, skills, and expertise and by exploring different employment options. The federal education programs considered in this report provide a range of opportunities for raising awareness of earth science (e.g., USDA 4-H Club), nurturing that interest to engage students in the field (e.g., USGS Youth Internship Program), and preparing students for earth science careers (NSF Research Experiences for Undergraduates, DOE Science Undergraduate Laboratory Internships). These efforts can also contribute toward the development of a robust earth science workforce by connecting programs and providing pathways for students to move through informal and formal education to careers. The conceptual framework shows how the various education opportunities fit together and where connections are needed to move students along earth science pathways. The framework can also be used by federal agencies to identify gaps, overlaps, and imbalances in existing programs; to identify potential partners in other agencies or organizations

  8. The new Computational and Data Sciences Undergraduate Program at George Mason University

    NASA Astrophysics Data System (ADS)

    Borne, K. D.; Wallin, J. F.

    2008-12-01

    We present the new undergraduate program in Computational and Data Sciences at George Mason University. The goals of the program are to train the next-generation scientists in the tools and techniques of cyber-enabled science. New courses include Introduction to Computational and Data Sciences, Scientific Data and Databases, Scientific Data and Information Visualization, Scientific Data Mining, and Scientific Modeling and Simulation. This is an interdisciplinary program, drawing examples, classroom materials, and student activities from a broad range of physical and biological sciences, including Space Physics (and Space Weather), Solar Physics, Astronomy, Geosciences, Geoinformatics, Materials Science, Bioinformatics, Chemistry, and Physics. We will describe some of the motivations and early results from the program.

  9. NASA Applied Sciences' DEVELOP National Program: Training the Next Generation of Remote Sensing Scientists

    NASA Technical Reports Server (NTRS)

    Childs, Lauren; Brozen, Madeline; Hillyer, Nelson

    2010-01-01

    Since its inception over a decade ago, the DEVELOP National Program has provided students with experience in utilizing and integrating satellite remote sensing data into real world-applications. In 1998, DEVELOP began with three students and has evolved into a nationwide internship program with over 200 students participating each year. DEVELOP is a NASA Applied Sciences training and development program extending NASA Earth science research and technology to society. Part of the NASA Science Mission Directorate s Earth Science Division, the Applied Sciences Program focuses on bridging the gap between NASA technology and the public by conducting projects that innovatively use NASA Earth science resources to research environmental issues. Project outcomes focus on assisting communities to better understand environmental change over time. This is accomplished through research with global, national, and regional partners to identify the widest array of practical uses of NASA data. DEVELOP students conduct research in areas that examine how NASA science can better serve society. Projects focus on practical applications of NASA s Earth science research results. Each project is designed to address at least one of the Applied Sciences focus areas, use NASA s Earth observation sources and meet partners needs. DEVELOP research teams partner with end-users and organizations who use project results for policy analysis and decision support, thereby extending the benefits of NASA science and technology to the public.

  10. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  11. California Community College Family and Consumer Sciences Program Plan, 1996. Including: Directory of Professional and Trade Organizations, Directory of Family and Consumer Sciences and Related Program Areas and Program Coordinators.

    ERIC Educational Resources Information Center

    California Community Colleges, Sacramento. Office of the Chancellor.

    Intended as a resource for California community colleges and districts in assessing and improving family and consumer science (FCS) programs, this program plan provides information on current trends affecting the delivery of FCS programs and guidelines for assessing and developing new comprehensive or specialized programs. Following letters of…

  12. Undergraduate Research Program in Atmospheric Science: Houston Ozone Studies

    NASA Astrophysics Data System (ADS)

    Morris, P. A.; Balimuttajjo, M.; Damon, D.; Herridge, A.; Hromis, A. G.; Litwin, D.; Wright, J. M.

    2011-12-01

    The Minority University Consortium for Earth and Space Sciences (MUCESS) composed of the University of Houston-Downtown (UHD), Medgar Evers College (City University of New York), South Carolina State University, is an undergraduate atmospheric science program funded by NSF. The program's goal is to increase the participation of minority universities in STEM activities and careers by providing students with the knowledge and skills needed to perform weather balloon launches, interpret ozone and temperature variations in the troposphere and stratosphere. Ozone profiles up to 30 km altitude are obtained via an instrument payload attached to a weather balloon. The payload instrumentation consists of an EN-SCI ECC ozonesonde and an iMET radiosonde. The data is transmitted to a base station in real time and includes pressure, temperature, humidity, and GPS coordinates This presentation is directed towards comparing our 2011 Houston data to data that either UHD or the University of Houston (UH) has collected. Our launches are primarily on Sunday, and UH's on Friday. Our primary objective is to identify ground level ozone variations on Sunday and compare with weekday levels as tropospheric ozone is largely controlled by anthropogenic activities. Ozone levels vary depending on the time of year, temperature, rain, wind direction, chemical plant activities, private and commercial traffic patterns.etc. Our limited Friday launches, supported by UH data, indicate that ground level ozone is generally elevated in contrast to Sunday data, For example, our Friday July 2011 launch detected elevated low-altitude ozone levels with ground level ozone levels of 42 nb that increased to 46 nb from 500 m to 1 km. Other peaks are at 2.7 km (44 nb) and 6km (41 nb), decreasing to 17 nb at the tropopause (12 km). Overall, Sunday low altitude ozone levels are generally lower. Our Sunday ground level ozone data ranges from a low of 25 nb on July 11 to a high of 50 nb on August 1. A combination of

  13. The NASA Applied Sciences Program: Volcanic Ash Observations and Applications

    NASA Technical Reports Server (NTRS)

    Murray, John J.; Fairlie, Duncan; Green, David; Haynes, John; Krotkov, Nickolai; Meyer, Franz; Pavolonis, Mike; Trepte, Charles; Vernier, Jean-Paul

    2016-01-01

    Since 2000, the NASA Applied Sciences Program has been actively transitioning observations and research to operations. Particular success has been achieved in developing applications for NASA Earth Observing Satellite (EOS) sensors, integrated observing systems, and operational models for volcanic ash detection, characterization, and transport. These include imager applications for sensors such as the MODerate resolution Imaging SpectroRadiometer (MODIS) on NASA Terra and Aqua satellites, and the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NASA/NOAA Suomi NPP satellite; sounder applications for sensors such as the Atmospheric Infrared Sounder (AIRS) on Aqua, and the Cross-track Infrared Sounder (CrIS) on Suomi NPP; UV applications for the Ozone Mapping Instrument (OMI) on the NASA Aura Satellite and the Ozone Mapping Profiler Suite (OMPS) on Suomi NPP including Direct readout capabilities from OMI and OMPS in Alaska (GINA) and Finland (FMI):; and lidar applications from the Caliop instrument coupled with the imaging IR sensor on the NASA/CNES CALIPSO satellite. Many of these applications are in the process of being transferred to the Washington and Alaska Volcanic Ash Advisory Centers (VAAC) where they support operational monitoring and advisory services. Some have also been accepted, transitioned and adapted for direct, onboard, automated product production in future U.S. operational satellite systems including GOES-R, and in automated volcanic cloud detection, characterization and alerting tools at the VAACs. While other observations and applications remain to be developed for the current constellation of NASA EOS sensors and integrated with observing and forecast systems, future requirements and capabilities for volcanic ash observations and applications are also being developed. Many of these are based on technologies currently being tested on NASA aircraft, Unmanned Aerial Systems (UAS) and balloons. All of these efforts and the potential advances

  14. Preparing new Earth Science teachers via a collaborative program between Research Scientists and Educators

    NASA Astrophysics Data System (ADS)

    Grcevich, Jana; Pagnotta, Ashley; Mac Low, Mordecai-Mark; Shara, Michael; Flores, Kennet; Nadeau, Patricia A.; Sessa, Jocelyn; Ustunisik, Gokce; Zirakparvar, Nasser; Ebel, Denton; Harlow, George; Webster, James D.; Kinzler, Rosamond; MacDonald, Maritza B.; Contino, Julie; Cooke-Nieves, Natasha; Howes, Elaine; Zachowski, Marion

    2015-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a innovative program designed to prepare participants to be world-class Earth Science teachers. New York State is experiencing a lack of qualified Earth Science teachers, leading in the short term to a reduction in students who successfully complete the Earth Science Regents examination, and in the long term potential reductions in the number of students who go on to pursue college degrees in Earth Science related disciplines. The MAT program addresses this problem via a collaboration between practicing research scientists and education faculty. The faculty consists of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level education experts. During the 15-month, full-time program, students participate in a residency program at local urban classrooms as well as taking courses and completing field work in astrophysics, geology, earth science, and paleontology. The program targets high-needs schools with diverse populations. We seek to encourage, stimulate interest, and inform the students impacted by our program, most of whom are from traditionally underrepresented backgrounds, about the rich possibilities for careers in Earth Science related disciplines and the intrinsic value of the subject. We report on the experience of the first and second cohorts, all of whom are now employed in full time teaching positions, and the majority in high needs schools in New York State.

  15. A standards-based formative evaluation of a national professional development program for science teachers

    NASA Astrophysics Data System (ADS)

    Raphael, Carol Greco

    2002-09-01

    The 1996 National Science Education Standards provided educators and policy makers with a major impetus for constructive change in science education. The Standards not only specified what science content should be taught, but also provided organization for future science curricula. A major theme that pervades the Standards is that the classroom teacher is the most important component of classroom change and that reform efforts should be directed at improving the teaching of science through professional development for science teachers. In response to the National Science Education Standards, the Science Teachers Organization (pseudonym) prepared a professional development program for science teachers that was intended to acquaint teachers with the Standards and bring about reform of science teaching by changing teachers' instructional strategies and procedures. This program, named Preparing Schools for Science (PSS), was designed for use in all of the 50 states, but was first introduced in a southwestern state referred to as Utopia in this dissertation. Using the Provus Method of Discrepancy Evaluation, a design and installation audit of the Preparing Schools for Science Program was performed. Suggestions for program improvement, as well as a complete evaluation design for the PSS Program, were presented. Specific program modifications suggested by the research included an improved organization of personnel to monitor and supervise the program, more sustained professional development workshops, a stronger network of support for teachers. Five major implications for future professional development programs emerge from this research. (1) A needs analysis should be conducted before a program is designed in order to ensure that the program meet the needs of those for whom it is intended. (2) The length and type of training are the most important factors in ensuring that teachers have sufficient time to incorporate and learn how to use new ideas. (3) Additional

  16. Life sciences flight experiments program mission science requirements document. The first life sciences dedicated Spacelab mission, part 1

    NASA Technical Reports Server (NTRS)

    Rummel, J. A.

    1982-01-01

    The Mission Science Requirements Document (MSRD) for the First Dedicated Life Sciences Mission (LS-1) represents the culmination of thousands of hours of experiment selection, and science requirement definition activities. NASA life sciences has never before attempted to integrate, both scientifically and operationally, a single mission dedicated to life sciences research, and the complexity of the planning required for such an endeavor should be apparent. This set of requirements completes the first phase of a continual process which will attempt to optimize (within available programmatic and mission resources) the science accomplished on this mission.

  17. A Science Inservice Program for K-6 Teachers. FY 1987-88, Title II-A Program. Final Project Report.

    ERIC Educational Resources Information Center

    Barman, Charles R.; And Others

    The purpose of this project was to develop, conduct, and evaluate a K-6 science inservice program for elementary school teachers. This program was conducted in six 3-hour workshop sessions and consisted of hands-on activities, problem-solving exercises, and large and small group discussions. The individual workshop sessions focused on…

  18. Integrated Science General Education Program (ISGE): Bioastronomy Connections

    NASA Astrophysics Data System (ADS)

    Troncale, Len

    2004-06-01

    A new, NSF-supported, General Education (GE) science curriculum, synthesizes and unifies the key theories and evidence of seven natural sciences using natural systems processes as Integrative Themes. The considerably reformulated subject matter is completely built on interdisciplinary concepts and methods fundamental to newly emerging cross-disciplinary fields like bioastronomy. The year of ISGE study incorporates 15 built-in computer based multimedia features and 10 special learning features to help non-science students learn more science, faster, and with better understanding. Results from seven test course offerings are reported. ISGE intends to be an initial example of the ``living, evolving'' knowledge bases needed for a space-faring species.

  19. Young Women in Science: Impact of a Three-Year Program on Knowledge of and Attitudes Toward Science

    NASA Astrophysics Data System (ADS)

    Schumacher, Mitzi M.; Johnson, Michelle Natasya; Floyd, Sondra R.; Reid, Caroline E.; Noland, Melody Powers; Leukefeld, Carl G.

    Addressing the factors that discourage high school girls from pursuing careers in science, this intervention targeted young women from rural Appalachia, urging them to pursue scientific careers in drug and alcohol research. This three-year program, for 49 young women entering ninth grade in 12 southeastern Kentucky counties, included a summer camp, Saturday Academies (educational seminars held in their communities), and mentoring by university faculty and community leaders. As hypothesized, findings from analyses of baseline and postsummer session data show a reduction in participants' anxiety regarding science. Participants' scientific knowledge also increased. In turn, their science knowledge scores correlated with their third summer posttest confidence in their ability to learn science and motivation for science as well as the belief that teachers can help. The success of such a program demonstrates that the gender gap in science, technology, engineering, and mathematics can be ameliorated. Participants' first steps toward successful scientific careers included improving their attitudes toward science as well as increasing their knowledge.

  20. The implementation of a discovery-oriented science education program in a rural elementary school

    NASA Astrophysics Data System (ADS)

    Liddell, Martha Sue

    2000-10-01

    This study focused on the implementation of a discovery-oriented science education program at a rural elementary school in Mississippi. The instructional leadership role of the principal was examined in the study through identification and documentation of processes undertaken by the principal to implement a discovery-oriented science education program school. The goal of the study was to develop a suggested approach for implementing a discovery-oriented science education program for principals who wish to become instructional leaders in the area of science education at their schools. Mixed methods were used to collect, analyze, and interpret data. Subjects for the study consisted of teachers, students, and parents. Data were collected through field observation; observations of science education being taught by classroom teachers; examination of the principal's log describing actions taken to implement a discovery-oriented science education program; conducting semi-structured interviews with teachers as the key informants; and examining attitudinal data collected by the Carolina Biological Supply Company for the purpose of measuring attitudes of teachers, students, and parents toward the proposed science education program and the Science and Technology for Children (STC) program piloted at the school. To develop a suggested approach for implementing a discovery-oriented science education program, data collected from field notes, classroom observations, the principal's log of activities, and key informant interviews were analyzed and group into themes pertinent to the study. In addition to descriptive measures, chi-square goodness-of-fit tests were used to determine whether the frequency distribution showed a specific pattern within the attitudinal data collected by the Carolina Biological Supply Company. The pertinent question asked in analyzing data was: Are the differences significant or are they due to chance? An alpha level of .01 was selected to determine

  1. Improving Science Teacher Preparation through the APS PhysTEC and NSF Noyce Programs

    NASA Astrophysics Data System (ADS)

    Williams, Tasha; Tyler, Micheal; van Duzor, Andrea; Sabella, Mel

    2013-03-01

    Central to the recruitment of students into science teaching at a school like CSU, is a focus on the professional nature of teaching. The purpose of this focus is twofold: it serves to change student perceptions about teaching and it prepares students to become teachers who value continued professional development and value the science education research literature. The Noyce and PhysTEC programs at CSU place the professional nature of teaching front and center by involving students in education research projects, paid internships, attendance at conferences, and participation in a new Teacher Immersion Institute and a Science Education Journal Reading Class. This poster will focus on specific components of our teacher preparation program that were developed through these two programs. In addition we will describe how these new components provide students with diverse experiences in the teaching of science to students in the urban school district. Supported by the NSF Noyce Program (0833251) and the APS PhysTEC Program.

  2. Handbook for Program Developers of Associate of Applied Science and Business Degrees at Lima Technical College.

    ERIC Educational Resources Information Center

    Casto, Robert A.

    Intended as a resource for program developers, this handbook illustrates the process of developing program proposals for the associate of applied science and business (AASB) degrees at Lima Technical College (LTC), in Ohio. Following an introduction, section 1 discusses the potential reasons for the addition of a program to the LTC curriculum.…

  3. Program Proposal: Certificates of Competence, Certificate of Achievement, Associate in Applied Science Degree in Sustainable Technology.

    ERIC Educational Resources Information Center

    Pezzoli, Jean A.; Ainsworth, Don

    This document proposes a program in sustainable technology at Maui Community College (Hawaii). This new career program would be designed to provide four Certificates of Competence, a Certificate of Achievement, and an Associate in Applied Science degree. The primary objectives of the program are to meet student, county, and state needs for…

  4. Undergraduate Internships for Social Science Majors: Development and Longitudinal Evaluation of a Model Program.

    ERIC Educational Resources Information Center

    Rosmann, Michael R.

    This program report traces the development of the University of Virginia's undergraduate internship program. The original internship program was established in 1973 to provide social science majors, chiefly psychology majors, with opportunities to apply academically derived knowledge and skills in community service areas. Funded by a federal…

  5. Attributions, Influences and Outcomes for Underrepresented and Disadvantaged Participants of a Medical Sciences Enrichment Pipeline Program

    ERIC Educational Resources Information Center

    Pinckney, Charlyene Carol

    2014-01-01

    The current study was undertaken to examine the effectiveness of the Rowan University-School of Osteopathic Medicine - Summer Pre-Medical Research and Education Program (Summer PREP), a postsecondary medical sciences enrichment pipeline program for under-represented and disadvantaged students. Thirty-four former program participants were surveyed…

  6. The Effect of a Zoo-Based Experiential Academic Science Program on High School Students' Math and Science Achievement and Perceptions of School Climate

    ERIC Educational Resources Information Center

    Mulkerrin, Elizabeth A.

    2012-01-01

    The purpose of this study was to determine the effect of an 11th-grade and 12th-grade zoo-based academic high school experiential science program compared to a same school-district school-based academic high school experiential science program on students' pretest and posttest science, math, and reading achievement, and student perceptions of…

  7. Training the Next Generation of Teaching Professors: A Comparative Study of Ph.D. Programs in Political Science

    ERIC Educational Resources Information Center

    Ishiyama, John; Miles, Tom; Balarezo, Christine

    2010-01-01

    In this article, we investigate the graduate curricula of political science programs and 122 Ph.D.-granting political science programs in the United States and how they seek to prepare political science teachers. We first investigate whether the department offers a dedicated political science course at the graduate level on college teaching, and…

  8. Science for early adolescence teachers (science FEAT): A program for research and learning

    NASA Astrophysics Data System (ADS)

    Spiegel, Samuel A.; Collins, Angelo; Gilmer, Penny J.

    1995-09-01

    This article is based on a paper which received the “Innovations in Teaching Science Teachers” award at the 1995 meeting of the Association for the Education of Teachers in Science. The award is made possible by Delta Education.

  9. U.S. Climate Change Science Program. Vision for the Program and Highlights of the Scientific Strategic Plan

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The vision document provides an overview of the Climate Change Science Program (CCSP) long-term strategic plan to enhance scientific understanding of global climate change.This document is a companion to the comprehensive Strategic Plan for the Climate Change Science Program. The report responds to the Presidents direction that climate change research activities be accelerated to provide the best possible scientific information to support public discussion and decisionmaking on climate-related issues.The plan also responds to Section 104 of the Global Change Research Act of 1990, which mandates the development and periodic updating of a long-term national global change research plan coordinated through the National Science and Technology Council.This is the first comprehensive update of a strategic plan for U.S. global change and climate change research since the origal plan for the U.S. Global Change Research Program was adopted at the inception of the program in 1989.

  10. Science and Me: A Student-Driven Science Outreach Program for Lay Adult Audiences

    ERIC Educational Resources Information Center

    Alexander, Hannah; Waldron, Anna M.; Abell, Sandra K.

    2011-01-01

    The increasing need for communicating science to the public suggests that future scientists and science educators should be educated in science outreach and trained to communicate with lay audiences. We present a recently developed novel graduate course, which trains students in outreach efforts aimed to increase the public's understanding of…

  11. The Science Advancement through Group Engagement Program: Leveling the Playing Field and Increasing Retention in Science

    ERIC Educational Resources Information Center

    Hall, Donna M.; Curtin-Soydan, Amanda J.; Canelas, Dorian A.

    2014-01-01

    How can colleges and universities keep an open gateway to the science disciplines for the least experienced first-year science students while also maintaining high standards that challenge the students with the strongest possible high school backgrounds? The Science Advancement through Group Engagement (SAGE) project targets cohorts of less…

  12. Science Museums: Enlisting Communities in Science Education Partnerships: Collaborations between Communities and Science Museums, Aquaria, Botanical Gardens, and Zoos. Science Museum Program Directors Meeting (September 26-28, 1994).

    ERIC Educational Resources Information Center

    Howard Hughes Medical Inst., Chevy Chase, MD. Office of Grants and Special Programs.

    This report of the 1994 meeting of directors of programs funded by the Precollege Science Education Initiative for Science Museums contains proceedings of the meeting along with profiles of grant-supported activities. The community partnerships described share a common theme: the importance of science education not just as a means to an end, but…

  13. Australian Item Bank Program: Science Item Bank. Book 3: Biology.

    ERIC Educational Resources Information Center

    Australian Council for Educational Research, Hawthorn.

    The Australian Science Item Bank consists of three volumes of multiple-choice questions. Book 3 contains questions on the biological sciences. The questions are designed to be suitable for high school students (year 8 to year 12 in Australian schools). The questions are classified by the subject content of the question, the cognitive skills…

  14. Elementary Teachers: Concerns about Implementing a Science Program

    ERIC Educational Resources Information Center

    Dailey, Debbie; Robinson, Ann

    2016-01-01

    The purpose of this study was to examine elementary teachers' science teaching concerns after participating in a two-year extensive and sustained science professional development intervention. The intervention consisted of two types of teacher professional development across two years including: (a) summer institutes (60 hours across two years)…

  15. National Assessment Program--Science Literacy Year 6 Report, 2006

    ERIC Educational Resources Information Center

    Donovan, Jenny; Lennon, Melissa; O'Connor, Gayl; Morrissey, Noni

    2008-01-01

    In 2003 the first nationally-comparable science assessment was designed, developed and carried out under the auspices of the national council of education ministers, the Ministerial Council on Education, Employment, Training and Youth Affairs (MCEETYA). In 2006 a second science assessment was conducted and, for the first time nationally, the…

  16. Cassini/Huygens Program Archive Plan for Science Data

    NASA Technical Reports Server (NTRS)

    Conners, D.

    2000-01-01

    The purpose of this document is to describe the Cassini/Huygens science data archive system which includes policy, roles and responsibilities, description of science and supplementary data products or data sets, metadata, documentation, software, and archive schedule and methods for archive transfer to the NASA Planetary Data System (PDS).

  17. Program on Public Conceptions of Science, Newsletter 11.

    ERIC Educational Resources Information Center

    Blanpied, William A., Ed.; Shelanski, Vivien, Ed.

    This issue contains usual features of an annotated bibliography related to science and society and a general news and communications section. The remainder of the publication focuses on the interaction of science and ethics, both within the academic community and without, among scientists and non-scientists alike. One section consists of brief…

  18. Developing a Science Cafe Program for Your University Library

    ERIC Educational Resources Information Center

    Scaramozzino, Jeanine Marie; Trujillo, Catherine

    2010-01-01

    The Science Cafe is a national movement that attempts to foster community dialog and inquiry on scientific topics in informal venues such as coffee houses, bookstores, restaurants and bars. The California Polytechnic State University, San Luis Obispo, Robert E. Kennedy Library staff have taken the Science Cafe model out of bars and cafes and into…

  19. Effective Secondary Science Programs: A Best-Evidence Synthesis

    ERIC Educational Resources Information Center

    Cheung, Alan; Slavin, Robert E.; Lake, Cynthia; Kim, Elizabeth

    2016-01-01

    Despite widespread recognition among policy makers, educational leaders, and the nation as a whole of the importance of science, engineering, and technology as drivers of the future of the country and society, the science achievement of America's students is mediocre at best, in comparison to that of international peers. On the 2012 PISA tests in…

  20. The Assessment of Hands-On Elementary Science Programs.

    ERIC Educational Resources Information Center

    Hein, George, Ed.

    This document contains 15 chapters on various topics related to elementary science assessment. A comprehensive description of efforts to introduce alternatives to multiple-choice, paper and pencil tests to assess science learning is provided. The monograph includes an analysis of assessment issues, descriptions of current practice, and suggestions…