Science.gov

Sample records for airway science program

  1. Careers in Airway Science.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    The Federal Aviation Administration (FAA) has initiated the Airway Science curriculum as a method of preparing the next generation of aviation technicians and managers. This document: (1) discusses the FAA's role in the Airway Science program; (2) describes some of the career fields that FAA offers to Airway Science graduates (air traffic control…

  2. A study of the quality and effectiveness of the Airway Science Electronic Systems program to meet the workforce needs of the Federal Aviation Administration

    NASA Astrophysics Data System (ADS)

    Hedge, Clarence Alvin

    1999-11-01

    Scope and method of study. The purpose of the study was to determine the quality and effectiveness of the Airway Science Electronics Systems program to meet the workforce needs of the Federal Aviation Administration (FAA). The study was to research traditional FAA hired electronics technicians and Airway Science degree graduate electronics technicians. More specially, the study sought (1) to compare the traditional electronics training course requirements to the Airway Science curriculum course requirements, (2) to examine the ratio of Airway Science Electronics Systems graduates to graduates of other Airway Science options and also related electronics training and (3) to determine strengths and weaknesses in the Airway Science Electronics System. Findings and conclusions. The data were obtained by questionnaires sent to (1) the 61 recognized Airway Science Institutions, (2) personal interviews with department chairmen who are members of the Oklahoma City Aviation Aerospace Alliance and (3) personal interviews were also conducted with Electronics Technicians and supervisors at the Mike Monroney Aeronautical Center, Oklahoma City, Oklahoma. It was found that the present area of airway science curriculum encompasses Airway Science Management, Airway Computer Science, Airway Electronics Systems, Aviation Maintenance Management and Aircraft Systems Management. Programs in airway science are designed specifically to help prepare individuals for meeting the requirements for a strong educational background for tomorrow's aviation leaders. The data indicated that the majority of airway science students pursue careers with the FAA but also find even greater opportunities in industry. The data also shows that in the surveyed schools with approved airway science programs, Airway Science Management was the most frequent offered program.

  3. Difficult Airway Response Team: A Novel Quality Improvement Program for Managing Hospital-Wide Airway Emergencies

    PubMed Central

    Mark, Lynette J.; Herzer, Kurt R.; Cover, Renee; Pandian, Vinciya; Bhatti, Nasir I.; Berkow, Lauren C.; Haut, Elliott R.; Hillel, Alexander T.; Miller, Christina R.; Feller-Kopman, David J.; Schiavi, Adam J.; Xie, Yanjun J.; Lim, Christine; Holzmueller, Christine; Ahmad, Mueen; Thomas, Pradeep; Flint, Paul W.; Mirski, Marek A.

    2015-01-01

    Background Difficult airway cases can quickly become emergencies, increasing the risk of life-threatening complications or death. Emergency airway management outside the operating room is particularly challenging. Methods We developed a quality improvement program—the Difficult Airway Response Team (DART)—to improve emergency airway management outside the operating room. DART was implemented by a team of anesthesiologists, otolaryngologists, trauma surgeons, emergency medicine physicians, and risk managers in 2005 at The Johns Hopkins Hospital in Baltimore, Maryland. The DART program had three core components: operations, safety, and education. The operations component focused on developing a multidisciplinary difficult airway response team, standardizing the emergency response process, and deploying difficult airway equipment carts throughout the hospital. The safety component focused on real-time monitoring of DART activations and learning from past DART events to continuously improve system-level performance. This objective entailed monitoring the paging system, reporting difficult airway events and DART activations to a web-based registry, and using in situ simulations to identify and mitigate defects in the emergency airway management process. The educational component included development of a multispecialty difficult airway curriculum encompassing case-based lectures, simulation, and team building/communication to ensure consistency of care. Educational materials were also developed for non-DART staff and patients to inform them about the needs of patients with difficult airways and ensure continuity of care with other providers after discharge. Results Between July 2008 and June 2013, DART managed 360 adult difficult airway events comprising 8% of all code activations. Predisposing patient factors included body mass index > 40, history of head and neck tumor, prior difficult intubation, cervical spine injury, airway edema, airway bleeding, and previous

  4. ICASE Computer Science Program

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Institute for Computer Applications in Science and Engineering computer science program is discussed in outline form. Information is given on such topics as problem decomposition, algorithm development, programming languages, and parallel architectures.

  5. Science Investigations Mentorship Program.

    ERIC Educational Resources Information Center

    DeBruin, Jerry; And Others

    1993-01-01

    Science fair mentorship programs let students investigate a wide variety of science topics under the guidance of interested community members. These programs enhance the relationships among school, community, and home. (PR)

  6. Design and Implementation of an Educational Program in Advanced Airway Management for Anesthesiology Residents

    PubMed Central

    Borovcanin, Zana; Shapiro, Janine R.

    2012-01-01

    Education and training in advanced airway management as part of an anesthesiology residency program is necessary to help residents attain the status of expert in difficult airway management. The Accreditation Council for Graduate Medical Education (ACGME) emphasizes that residents in anesthesiology must obtain significant experience with a broad spectrum of airway management techniques. However, there is no specific number required as a minimum clinical experience that should be obtained in order to ensure competency. We have developed a curriculum for a new Advanced Airway Techniques rotation. This rotation is supplemented with a hands-on Difficult Airway Workshop. We describe here this comprehensive advanced airway management educational program at our institution. Future studies will focus on determining if education in advanced airway management results in a decrease in airway related morbidity and mortality and overall better patients' outcome during difficult airway management. PMID:22505885

  7. Waunakee's Summer Science Program.

    ERIC Educational Resources Information Center

    O'Neil, J. Peter

    1981-01-01

    Describes Waunakee Community School's six-week Summer Science Program for students entering the seventh grade. Students are selected for this science enrichment program on the basis of interest, ability, and maturity. Program content includes wetlands, forests, prairies, and animals, concluding with a camping trip. (DS)

  8. British Airways' pre-command training program

    NASA Technical Reports Server (NTRS)

    Holdstock, L. F. J.

    1980-01-01

    Classroom, flight simulator, and in-flight sessions of an airline pilot training program are briefly described. Factors discussed include initial command potential assessment, precommand airline management studies course, precommand course, and command course.

  9. Science education research program

    NASA Astrophysics Data System (ADS)

    A deadline for receipt of research proposals on science literacy and science, technology, and society has been set by the National Science Foundation's Research in Science and Education (RISE) program. March 9 is the target date set by NSF to insure that proposals are considered for the RISE fiscal 1981 budget, which is expected to total $6 million.RISE'S purpose is to examine the science literacy of the U.S. public and to determine the publics needs. Although schools have been responsible for teaching science, only 50% of the American public receive formal science instruction after 15 years of age, according to NSF. Those who do not receive formal training must rely on a combination of electronic and print media, museums, and public agencies for science information.

  10. NASA Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Frederick, Martin

    2006-01-01

    This presentation highlights the NASA Applied Sciences Program. The goal of the program is to extend the results of scientific research and knowledge beyond the science community to contribute to NASA's partners' applications of national priority, such as agricultural efficiency, energy management and Homeland Security. Another purpose of the program's scientific research is to increase knowledge of the Earth-Sun system to enable improved predictions of climate, weather, and natural hazards. The program primarily optimizes benefits for citizens by contributing to partnering on applications that are used by state, local and tribal governments.

  11. Basic Science Training Program.

    ERIC Educational Resources Information Center

    Brummel, Clete

    These six learning modules were developed for Lake Michigan College's Basic Science Training Program, a workshop to develop good study skills while reviewing basic science. The first module, which was designed to provide students with the necessary skills to study efficiently, covers the following topics: time management; an overview of a study…

  12. NASA Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Estes, Sue M.; Haynes, J. A.

    2009-01-01

    NASA's strategic Goals: a) Develop a balanced overall program of science, exploration, and aeronautics consistent with the redirection of human spaceflight program to focus on exploration. b) Study Earth from space to advance scientific understanding and meet societal needs. NASA's partnership efforts in global modeling and data assimilation over the next decade will shorten the distance from observations to answers for important, leading-edge science questions. NASA's Applied Sciences program will continue the Agency's efforts in benchmarking the assimilation of NASA research results into policy and management decision-support tools that are vital for the Nation's environment, economy, safety, and security. NASA also is working with NOAH and inter-agency forums to transition mature research capabilities to operational systems, primarily the polar and geostationary operational environmental satellites, and to utilize fully those assets for research purposes.

  13. The SNOLAB Science Program

    NASA Astrophysics Data System (ADS)

    Jillings, Chris

    2016-05-01

    SNOLAB has a rich and varied program in underground science. This report discusses the work in neutrino physics, direct dark-matter search, biology, and mining engineering. SNOLAB has recently implemented a new process for allocation of lab resources, including space allocation. This will be discussed.

  14. Vision Senior High Science Programs.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton.

    This document describes a programs designed to help students attain the scientific awareness needed to function as effective members of society. The Senior High Science Programs (Alberta, Canada) will focus on students learning the big interconnecting ideas and principles of science; place an increased emphasis on developing methods of inquiry…

  15. Nevada Underserved Science Education Program

    SciTech Connect

    Nicole Rourke; Jason Marcks

    2004-07-06

    Nevada Underserved Science Education Program (NUSEP) is a project to examine the effect of implementing new and innovative Earth and space science education curriculum in Nevada schools. The project provided professional development opportunities and educational materials for teachers participating in the program.

  16. Microgravity science and applications program

    NASA Technical Reports Server (NTRS)

    Schmitz, Robert A.; Newcomb, John F.

    1991-01-01

    This paper provides an overview of NASA's microgravity science and applications program. It describes the program mission and goals and provides an overview of the process used to develop experimental concepts into actual flight experiments. The paper then overviews the present ground-based research and flight experiment portions of the microgravity science and applications program, examines recent results, and outlines flights planned for the near future.

  17. Traveling science: An elementary science enhancement program

    SciTech Connect

    Gotlib, L.; Brown, S.; Bibby, E.

    1994-12-31

    Traveling Science is an elementary science visitation program by two high school teachers (using scheduled release time) for every third to fifth grade student and teacher in Granville County, North Carolina (a total of sixty-one classes, 1,600 students-over 25,000 student contacts in three years). Teachers and students see and participate in hands-on, inquiry-based science done with inexpensive, readily available materials (usually less than 2% per class). Teachers become more confident and self-reliant with respect to science education, and students get increased exposure to hands-on science. In addition to the classroom visits (a total of six per year for each class), teachers receive a guide containing introductory and follow-up materials, and a monthly newsletter. Visit topics cover the physical, life and earth sciences; designed to stress the processes of science. We try to use topics of interest and relevance to students, such as toys, food, animals and playground activities. Teachers and schools also receive additional materials (posters and videos).

  18. Student science enrichment training program

    SciTech Connect

    Sandhu, S.S.

    1994-08-01

    This is a report on the Student Science Enrichment Training Program, with special emphasis on chemical and computer science fields. The residential summer session was held at the campus of Claflin College, Orangeburg, SC, for six weeks during 1993 summer, to run concomitantly with the college`s summer school. Fifty participants selected for this program, included high school sophomores, juniors and seniors. The students came from rural South Carolina and adjoining states which, presently, have limited science and computer science facilities. The program focused on high ability minority students, with high potential for science engineering and mathematical careers. The major objective was to increase the pool of well qualified college entering minority students who would elect to go into science, engineering and mathematical careers. The Division of Natural Sciences and Mathematics and engineering at Claflin College received major benefits from this program as it helped them to expand the Departments of Chemistry, Engineering, Mathematics and Computer Science as a result of additional enrollment. It also established an expanded pool of well qualified minority science and mathematics graduates, which were recruited by the federal agencies and private corporations, visiting Claflin College Campus. Department of Energy`s relationship with Claflin College increased the public awareness of energy related job opportunities in the public and private sectors.

  19. Student Science Enrichment Training Program

    SciTech Connect

    Sandhu, S.S.

    1990-12-31

    Funds are requested for the science enrichment training program (emphasis on chemistry and computer science), which will be held at Claflin College during the 1990 and 1991 summers, concomitant with summer school. The thirty participants will include high school students and some college freshmen; the students will come from rural South Carolina schools with limited science and computer facilities. Focus will be on high ability minority students.

  20. NASA's Microgravity Science Research Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The ongoing challenge faced by NASA's Microgravity Science Research Program is to work with the scientific and engineering communities to secure the maximum return from our Nation's investments by: assuring that the best possible science emerges from the science community for microgravity investigations; ensuring the maximum scientific return from each investigation in the most timely and cost-effective manner; and enhancing the distribution of data and applications of results acquired through completed investigations to maximize their benefits.

  1. Cooperative Program In Space Science

    NASA Technical Reports Server (NTRS)

    Black, David

    2003-01-01

    The mission of this activity, know as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, USRA recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members.

  2. NASA's computer science research program

    NASA Technical Reports Server (NTRS)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  3. NASA's Microgravity Materials Science Program

    NASA Astrophysics Data System (ADS)

    Gillies, Donald C.

    1997-07-01

    The Microgravity Research Division of NASA funds materials science research through biannual research programs known as NASA Research Announcements (NRA). Selection is via external peer review with proposals being categorized for ground based research or flight definition status. Topics of special interest to NASA are described in the NRAs and guidelines for successful proposals are outlined. The procedure for progressing from selection to a manifested flight experiment will involve further reviews of the science and also of the engineering needed to complete the experiment successfully. The topics of interest to NASA within the NRAs cover a comprehensive range of subjects, but with the common denominator that the proposed work must necessitate access to the microgravity environment for successful completion. Understanding of the fundamental nature of microstructure and its effects on properties is a major part of the program because it applies to almost all fields of materials science. Other important aspects of the program include non-linear optical materials, glasses and ceramics, metal and alloys and the need to develop materials science specifically to support NASA's Human Exploration and Development of Space (HEDS) enterprise. The transition to the International Space Station (ISS) represents the next stage of the Materials Science program.

  4. Environmental Management Science Program Workshop

    SciTech Connect

    1998-07-01

    This program summary book is a compendium of project summaries submitted by principal investigators in the Environmental Management Science Program and Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program). These summaries provide information about the most recent project activities and accomplishments. All projects will be represented at the workshop poster sessions, so you will have an opportunity to meet with the researchers. The projects will be presented in the same order at the poster session as they are presented in this summary book. Detailed questions about an individual project may be directed to the investigators involved.

  5. ADEOS science program

    NASA Astrophysics Data System (ADS)

    Shimoda, Haruhisa

    1995-12-01

    Global change has now become one of the most important problems for human kind. The major problems are global warming, stratospheric ozone depletion, tropical forest decrease, desertification, acid rain and decrease of bio-diversity. Among them, global warming and ozone depletion are the most urgent and critical problems for human beings. In order to solve these problems, accurate and comprehensive knowledge of the state of the art should be obtained. Polar orbiting earth observation satellite programs now being conducted under international coordination are programs aimed to solve these problems. They are composed of three kinds of series: i.e., ADEOS series by NASDA, Japan; EOS series by NASA, USA; and ENVISAT series by ESA, Europe. ADEOS is the first satellite of this series and will be launched by NASDA on August 1996. There are 8 sensors on-board ADEOS. They are provided by 6 agencies from 3 countries. The scientific objective of ADEOS is to contribute to the understanding of global environment, especially global warming and stratospheric ozone depletion.

  6. Suborbital Science Program

    NASA Technical Reports Server (NTRS)

    Vachon, Jacques; Curry, Robert E.

    2010-01-01

    Program Objectives: 1) Satellite Calibration and Validation: Provide methods to perform the cal/val requirements for Earth Observing System satellites. 2) New Sensor Development: Provide methods to reduce risk for new sensor concepts and algorithm development prior to committing sensors to operations. 3) Process Studies: Facilitate the acquisition of high spatial/temporal resolution focused measurements that are required to understand small atmospheric and surface structures which generate powerful Earth system effects. 4) Airborne Networking: Develop disruption-tolerant networking to enable integrated multiple scale measurements of critical environmental features. Dryden Capabilities include: a) Aeronautics history of aircraft developments and milestones. b) Extensive history and experience in instrument integration. c) Extensive history and experience in aircraft modifications. d) Strong background in international deployments. e) Long history of reliable and dependable execution of projects. f) Varied aircraft types providing different capabilities, performance and duration.

  7. Shenandoah elementary science enrichment program

    SciTech Connect

    Garrett, P.

    1994-12-31

    Shenandoah Elementary School is a rural educational facility located in the farmlands of Indiana. The Elementary Science Enrichment Program was established to create a learning atmosphere that encourages scientific thinking and problem-solving. Its inception was founded on the belief that the concepts and process skills inherent in the teaching of science are critical to the early intellectual development of elementary students. The program was established through speaking engagements at the local and state level which resulted in the necessary support to insure its continuation. All students in grades K-5 meet for weekly science activities in our elementary lab to investigate many exciting curricular areas including planaria regeneration, star life cycles, and acid rain telecommunications. This allows for in-depth exploration of the science process skills which culminate in a variety of products including student portfolios, hands-on assessments, simulations and global data communications. These activities are extended through family science and the modeling of science instructional techniques for classroom educators.

  8. Psychological Sciences Division: 1985 Programs.

    ERIC Educational Resources Information Center

    Office of Naval Research, Washington, DC. Psychological Sciences Div.

    This booklet describes research carried out under sponsorship of the Psychological Sciences Division of the U.S. Office of Naval Research during Fiscal Year 1985. The booklet is divided into three programmatic research areas: (1) Engineering Psychology; (2) Personnel and Training; and (3) Group Psychology. Each program is described by an overview…

  9. Program Objectives for Science. Revised.

    ERIC Educational Resources Information Center

    Bednarczyk, Angela; And Others

    The guide lists program objectives for science instruction of hearing impaired students at Kendall Demonstration Elementary School. The curriculum, it is explained, is based on theories of J. Piaget. Objectives are stated in terms of process skills within four Piagetian stages of development: pre-operational, transition to concrete, concrete, and…

  10. Science in action: An interdisciplinary science education program

    NASA Technical Reports Server (NTRS)

    Horton, Linda L.

    1992-01-01

    Science in Action is an education outreach program for pre-collegiate students. It is based on the concept that, in order to interest students in science, they must see science and scientists at work. The program encompasses the full range of scientific disciplines - the core sciences, engineering, and mathematics. A unique aspect of the program is the involvement and support of scientists and engineers representing local professional societies, industries, business, and academic institutions. An outline of the program is given.

  11. Science CAP: Curriculum Assistance Program. [Multimedia.

    ERIC Educational Resources Information Center

    DEMCO, Inc., Madison, WI.

    Science Curriculum Assistance Program (Science CAP(TM)) is a multimedia package developed to create a model for preserving classroom science activities that can be shared and customized by teachers. This program is designed to assist teachers in preparing classroom science activities for grades five through eight, and to foster an environment of…

  12. NASA's Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1998-01-01

    Materials Science research programs are funded by NASA through the Microgravity Research Division. Such programs are normally designated as flight definition or ground based and can be awarded initially for up to four years. Selection is through a peer review process in response to a biennial NASA Research Announcement (NRA). The next announcement is due in November 1998 with proposals due in March 1999. Topics of special interest to NASA are described in the guidelines for proposal writing within the NRA. NASA's interest in materials is wide and covers a range which includes metals and alloys, ceramics, glasses, polymers, non-linear optics, aerogels and nanostructures. With increasing interest in the Human Exploration and Development of Space (HEDS) program, the materials research funded will not be exclusively devoted to processes dependent on microgravity, but will also support materials of strategic interest in meeting NASA's long range plans of interplanetary travel.

  13. The Science Ambassador Program: Partnering Scientists with Science Teachers

    ERIC Educational Resources Information Center

    Hamner, Heather C.; Flores, Alina L.; Prue, Christine E.; Mersereau, Patricia

    2008-01-01

    This article focuses on the development and implementation of the Science Ambassador (SA) Program, which targets adolescents by working directly with science teachers who write and implement lesson plans that feature public health topics. The main goals of the program are to develop science lesson plans on public health topics, expose adolescents…

  14. Science Challenge: Olympic Achievement for Your Science Program.

    ERIC Educational Resources Information Center

    Maxwell, Donald E.; Berkheimer, Glenn

    1987-01-01

    Describes how a science challenge program was modeled after the Olympics to offer a variety of science events in a competitive setting. Reviews organizational factors, suggests sources for events, and identifies rules and scoring procedures. (ML)

  15. NASA's Current Earth Science Program

    NASA Technical Reports Server (NTRS)

    Charles, Leslie Bermann

    1998-01-01

    NASA's Earth science program is a scientific endeavor whose goal is to provide long-term understanding of the Earth as an integrated system of land, water, air and life. A highly developed scientific knowledge of the Earth system is necessary to understand how the environment affects humanity, and how humanity may be affecting the environment. The remote sensing technologies used to gather the global environmental data used in such research also have numerous practical applications. Current applications of remote sensing data demonstrate their practical benefits in areas such as the monitoring of crop conditions and yields, natural disasters and forest fires; hazardous waste clean up; and tracking of vector-borne diseases. The long-term availability of environmental data is essential for the continuity of important research and applications efforts. NASA's Earth observation program has undergone many changes in the recent past.

  16. A Microcomputer-Based Computer Science Program.

    ERIC Educational Resources Information Center

    Compeau, Larry D.

    1984-01-01

    Examines the use of the microcomputer in computer science programs as an alternative to time-sharing computers at North Country Community College. Discusses factors contributing to the program's success, security problems, outside application possibilities, and program implementation concerns. (DMM)

  17. Accreditation standards for undergraduate forensic science programs

    NASA Astrophysics Data System (ADS)

    Miller, Marilyn Tebbs

    Undergraduate forensic science programs are experiencing unprecedented growth in numbers of programs offered and, as a result, student enrollments are increasing. Currently, however, these programs are not subject to professional specialized accreditation. This study sought to identify desirable student outcome measures for undergraduate forensic science programs that should be incorporated into such an accreditation process. To determine desirable student outcomes, three types of data were collected and analyzed. All the existing undergraduate forensic science programs in the United States were examined with regard to the input measures of degree requirements and curriculum content, and for the output measures of mission statements and student competencies. Accreditation procedures and guidelines for three other science-based disciplines, computer science, dietetics, and nursing, were examined to provide guidance on accreditation processes for forensic science education programs. Expert opinion on outcomes for program graduates was solicited from the major stakeholders of undergraduate forensic science programs-forensic science educators, crime laboratory directors, and recent graduates. Opinions were gathered by using a structured Internet-based survey; the total response rate was 48%. Examination of the existing undergraduate forensic science programs revealed that these programs do not use outcome measures. Of the accreditation processes for other science-based programs, nursing education provided the best model for forensic science education, due primarily to the balance between the generality and the specificity of the outcome measures. From the analysis of the questionnaire data, preliminary student outcomes, both general and discipline-specific, suitable for use in the accreditation of undergraduate forensic science programs were determined. The preliminary results were reviewed by a panel of experts and, based on their recommendations, the outcomes

  18. Implementing an Applied Science Program

    NASA Technical Reports Server (NTRS)

    Rickman, Doug; Presson, Joan

    2007-01-01

    The work implied in the NASA Applied Science Program requires a delicate balancing act for the those doing it. At the implementation level there are multiple tensions intrinsic to the program. For example each application of an existing product to a decision support process requires deep knowledge about the data and deep knowledge about the decision making process. It is highly probable no one person has this range of knowledge. Otherwise the decision making process would already be using the data. Therefore, a team is required. But building a team usually requires time, especially across agencies. Yet the program mandates efforts of relatively short duration. Further, those who know the data are scientists, which makes them essential to the program. But scientists are evaluated on their publication record. Anything which diverts a scientist from the research for his next publication is an anathema to him and potential death to their career. Trying to get another agency to use NASA data does not strike most scientists as material inherently suitable for publication. Also, NASA wishes to rapidly implement often substantial changes to another agency's process. For many reasons, such as budget and program constraints, speed is important. But the owner of a decision making process is tightly constrained, usually by law, regulation, organization and custom. Changes when made are slow, cautious, even hesitant, and always done according a process specific to the situation. To manage this work MSFC must balance these and other tensions. Some things we have relatively little control over, such as budget. These we try to handle by structural techniques. For example by insisting all of our people work on multiple projects simultaneously we inherently have diversification of funding for all of our people. In many cases we explicitly use some elements of tension to be productive. For example the need for the scientists to constantly publish is motivation to keep tasks short and

  19. The Current Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    2000-01-01

    A description will be made of the current materials science program within the microgravity research division. This presentation will be made at a plenary session of the biennial materials Science Conference.

  20. FWP executive summaries: Basic energy sciences materials sciences programs

    SciTech Connect

    Samara, G.A.

    1996-02-01

    This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

  1. NABS Program: (Native Americans in Biological Science).

    ERIC Educational Resources Information Center

    Gettys, Nancy, Comp.

    1994-01-01

    Describes the four-week summer program of the Native Americans in Biological Sciences Program that engages Native American eighth- and ninth-grade students in studying the problems related to the waste water treatment plant in Cushing, Oklahoma. (MDH)

  2. Four educational programs in Space Life Sciences.

    PubMed

    Luttges, M W; Stodieck, L S; Klaus, D M

    1994-01-01

    Four different educational programs impacting Space Life Sciences are described: the NASA/USRA Advanced Design Program, the NASA Specialized Center of Research and Training (NSCORT) Program, the Centers for the Commercial Development of Space (CCDS) Program, and the NASA Graduate Research Fellow Program. Each program makes somewhat different demands on the students engaged in them. Each program, at the University of Colorado, involves Space Life Sciences training. While the Graduate Student Research Fellow and NSCORT Programs are discipline oriented, the Advanced Design and CCDS Programs are focused on design, technologies and applications. Clearly, the "training paradigms" differ for these educational endeavors. But, these paradigms can be made to mutually facilitate enthusiasm and motivation. Discipline-oriented academic programs, ideally, must be flexible enough to accommodate the emergent cross-disciplinary needs of Space Life Sciences students. Models for such flexibility and resultant student performance levels are discussed based upon actual academic and professional records. PMID:11537954

  3. Science Communication Fellowship Program at the Pacific Science Center

    NASA Astrophysics Data System (ADS)

    Harnett, E. M.; Vukajlovich, D.; Fitzwater, S.; Selvakumar, M.

    2011-12-01

    With funding from an NSF Informal Science Education grant, the Pacific Science Center in Seattle, Washington began the Science Communication Fellowship program in 2009 as part of the Portal to the Public initiative. The purpose of the Science Communication Fellowship program is to train scientists and engineers to communicate more effectively with the general public regarding their research and to assist with the development of hands-on activities that can be used by the scientists and engineers for outreach activities. The program came out of a collaboration to develop a model for effectively communicating current science research at informal science education organizations. The program model has undergone in-depth research and evaluation to assess its effectiveness and impact. To become Science Communication Fellows, researchers participate in four three-hour professional development sessions, where they learn communication techniques through role-playing and hands-on activities. The workshops are supplemented with additional one-on-one meetings with Science Center staff to help the new Fellows develop activities for use at outreach events. These activities are then used by the Fellows at public events that highlight current research taking place in the region. To date over 80 scientists and engineers have gone through the training sessions to become Science Communication Fellows. The Pacific Science Center holds approximately 12 events a year in which Fellows can facilitate their activity. Public programs range from small, monthly programs to large, annual Research Weekends. Funding for this program continues through support from NIH, IMLS, NSF, and NASA grants. For more information, please contact the current program administrator Dana Vukajlovich at DVukajlovich@pacsci.org.

  4. Science Days: An Interdisciplinary Outreach Program

    ERIC Educational Resources Information Center

    Flynn, Nick

    2005-01-01

    "Science days" is a project to encourage school students interest at an early age and to ensure that students experience the benefit out of this opportunity. It is found that majority of outreach program focused on chemistry alone as an important science subject, and young students interest in general, and it stated that science should be fostered…

  5. The NASA computer science research program plan

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A taxonomy of computer science is included, one state of the art of each of the major computer science categories is summarized. A functional breakdown of NASA programs under Aeronautics R and D, space R and T, and institutional support is also included. These areas were assessed against the computer science categories. Concurrent processing, highly reliable computing, and information management are identified.

  6. How One Computer Science Program Grew.

    ERIC Educational Resources Information Center

    Adams, James C.

    1983-01-01

    Describes growth of computer science program in Chetek Junior High School (Wisconsin), from having a single DecWriter II terminal to 14 microprocessors, electronic training devices, and a sequence of computer science courses. Students learn about basic computer literacy, hardware, software, programing, and computer technology. (EAO)

  7. Evaluation of the BSCS Human Sciences Program.

    ERIC Educational Resources Information Center

    Robinson, James T.

    Designed for middle and junior high school students, the Human Sciences Program (HSP) represents a three year, interdisciplinary program which focuses on the role of the natural sciences in promoting the cognitive, psycho-social, and moral development of early adolescents. The materials consist of modules of activities designed around major themes…

  8. Program in Science, Technology, and Society.

    ERIC Educational Resources Information Center

    Massachusetts Inst. of Tech., Cambridge.

    The Program in Science, Technology, and Society at the Massachusetts Institute of Technology is described. Two broad aims of the program are to explore the influence of social, political, and cultural forces on science and technology, and to examine the impact of technologies and scientific ideas on people's lives. Although based in the School of…

  9. Out of School Programs in Science.

    ERIC Educational Resources Information Center

    Stern, Virginia W., Comp.; And Others

    Science programs which take place outside the traditional classroom and beyond the usual school hours are listed. The programs (designed for all ages and educational levels and scheduled after school, on Saturdays, evenings, and during summer months) are offered in multidisciplinary science centers located in larger cities, small town museums,…

  10. New Directions in NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Recently, NASA's Microgravity Research Division was re-aligned to match the Agency's increasing awareness of the importance of biological and nano-structural sciences. The Division has become the Physical Sciences Research section within the newly created Office of Biological and Physical Research. Within materials science and in the last few years, new programs aimed at biomaterials have been initiated. Results from these programs and also new research pertaining to materials for radiation protection will be discussed.

  11. Life sciences flight experiments program - Overview

    NASA Technical Reports Server (NTRS)

    Berry, W. E.; Dant, C. C.

    1981-01-01

    The considered LSFE program focuses on Spacelab life sciences missions planned for the 1984-1985 time frame. Life Sciences Spacelab payloads, launched at approximately 18-months intervals, will enable scientists to test hypotheses from such disciplines as vestibular physiology, developmental biology, biochemistry, cell biology, plant physiology, and a variety of other life sciences. An overview is presented of the LSFE program that will take advantage of the unique opportunities for biological experimentation possible on Spacelab. Program structure, schedules, and status are considered along with questions of program selection, and the science investigator working groups. A description is presented of the life sciences laboratory equipment program, taking into account the general purpose work station, the research animal holding facility, and the plant growth unit.

  12. Science in Action'': An interdisciplinary science education program

    SciTech Connect

    Horton, L.L.

    1991-01-01

    Science in Action is an education outreach program for pre-collegiate students. It is based on the concept that, in order to interest students in science, they must see science and scientists at work. The program encompasses the full range of scientific disciplines -- the core sciences, engineering and mathematics. A unique aspect of the program is the involvement and support of scientists and engineers representing local professional societies, industries, businesses, and academic institutions. The goal of the presentations is to be highly interactive. The students have some hands on'' experiences and leave with a good feeling about science and engineering. To present a broad spectrum of role models, scientists and engineers were involved as presenters, guides, and exhibitors.

  13. NASA Microgravity Combustion Science Program

    NASA Technical Reports Server (NTRS)

    King, Merrill K.

    1999-01-01

    Combustion has been a subject of increasingly vigorous scientific research for over a century, not surprising considering that combustion accounts for approximately 85% of the world's energy production and is a key element of many critical technologies used by contemporary society. Although combustion technology is vital to our standard of living, it also poses great challenges to maintaining a habitable environment. A major goal of combustion research is production of fundamental (foundational) knowledge that can be used in developing accurate simulations of complex combustion processes, replacing current "cut-and-try" approaches and allowing developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion. With full understanding of the physics and chemistry involved in a given combustion process, including details of the unit processes and their interactions, physically accurate models which can then be used for parametric exploration of new combustion domains via computer simulation can be developed, with possible resultant definition of radically different approaches to accomplishment of various combustion goals. Effects of gravitational forces on earth impede combustion studies more than they impede most other areas of science. The effects of buoyancy are so ubiquitous that we often do not appreciate the enormous negative impact that they have had on the rational development of combustion science. Microgravity offers potential for major gains in combustion science understanding in that it offers unique capability to establish the flow environment rather than having it dominated by uncontrollable (under normal gravity) buoyancy effects and, through this control, to extend the range of test conditions that can be studied. It cannot be emphasized too strongly that our program is dedicated to taking advantage of microgravity to untangle complications caused

  14. Developing Gifted Programs in Science.

    ERIC Educational Resources Information Center

    Consuegra, Gerard F.

    The paper explores the needs of gifted students with exceptional interests and talents in science. General characteristics of gifted students are listed, as are characteristics of the gifted in science (including questing, personal drive, and an enjoyment of numbers). A multidimensional gifted identification process is reviewed, and the lack of…

  15. NASA's Space Science Programming Possibilities for Planetaria

    NASA Technical Reports Server (NTRS)

    Adams, M. L.

    2003-01-01

    The relationship between NASA and the planetarium community is an important one. Indeed, NASA's Office of Space Science has invested in a study of the Space Science Media Needs of Science Center Professionals. Some of the findings indicate a need for exposure to space science researchers, workshops for museum educators, 'canned' programs, and access to a speakers bureau. We will discuss some of the programs of NASA's Sun-Earth Connection Education Forum, distribute sample multimedia products, explain the role of NASA's Educator Resource Center, and review our contributions to NASA's Education and Public Outreach effort.

  16. NASA Microgravity Science and Applications Program

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Key elements of the microgravity research program as conducted by the Microgravity Science and Applications Division (MSAD) within the Office of Space Science and Applications (OSSA) during fiscal year (FY) 1992 are described. This NASA funded program supported investigators from the university, industry, and government research communities. The program's goals, the approach taken to achieve those goals, and the resources that were available are summarized. It provides a 'snapshot' of the Program's status at the end of FY 1992 and reviews highlights and progress in the ground and flight-based research during the year. It also describes four major space missions that flew during FY 1992, the advanced technology development (ATD) activities, and the plans to use the research potential of Space Station Freedom and other advanced carriers. The MSAD program structure encompassed five research areas: (1) Biotechnology, (2) Combustion Science, (3) Fluid Physics, (4) Materials Science, and (5) Benchmark Physics.

  17. GLOBE: A Science/Education Partnership Program.

    ERIC Educational Resources Information Center

    Murphy, Anthony P.; Coppola, Ralph K.

    This paper reviews the history of the GLOBE (Global Learning and Observations to Benefit the Environment) Program, an international environmental science education program. The goals of the program are to: enhance the environmental awareness of individuals around the world; contribute to the scientific understanding of the earth; and to help all…

  18. BUSINESS ADMINISTRATION, SECRETARIAL SCIENCE PROGRAM. SURVEY INFORMATION.

    ERIC Educational Resources Information Center

    Manitowoc Technical Inst., WI. School of Business.

    THE SECRETARIAL SCIENCE PROGRAM OF MANITOWOC TECHNICAL INSTITUTE IS DESCRIBED TO ASSIST AN EVALUATION TEAM IN THEIR STUDY OF THE BUSINESS ADMINISTRATION-ACCOUNTING MAJOR PROGRAM OF THE SCHOOL. THE OBJECTIVES OF THE 2-YEAR POST-HIGH SCHOOL PROGRAM ARE TO -- (1) PROVIDE INSTRUCTION IN THE SKILLS, KNOWLEDGE, AND UNDERSTANDINGS OF THE SECRETARIAL…

  19. Marine Science Affairs--Selecting Priority Programs.

    ERIC Educational Resources Information Center

    National Council on Marine Resources and Engineering Development, Washington, DC.

    This report summarizes accomplishments in 1969, describing Federal programs and policies, and new programs implemented to meet those policies. The report describes the priorities that have been selected in the Federal Marine Science program during 1969. The first chapter reviews the steps taken by the Federal Government during 1969 to advance and…

  20. [Individualized Reading and Social Science Program.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens.

    This program, included in "Effective Reading Programs...," serves over 800 rural elementary school students, both black and white. The program curriculum is designed to improve the student's basic skills in reading and social science learning. The student reads or listens to short passages that are based on the concept of the functional community.…

  1. The Science For Our Schools (SFOS) Program

    NASA Astrophysics Data System (ADS)

    Terebey, S.; Mayo, D.; Strauss, J.

    2004-12-01

    The Science For Our Schools (SFOS) program at California State University at Los Angeles places graduate students from Astronomy, Biology, Chemistry, Geology, and Physics with science teachers in secondary classrooms throughout the Los Angeles area. The program implements activities and demonstrations based on California's new science content standards. Graduate Fellows act as science communicators to bring the excitement of scientific research to high school classrooms. Fellows are partnered with highly experienced science teachers in seven different middle and high schools, most of which have high minority enrollment and large numbers of students from low-income families. In addition to curriculum development, our Fellows plan field trips, scout funding opportunities, facilitate lab equipment purchases, and help organize special events such as science fairs and "Ask a Scientist" nights. SFOS Fellows and PI's meet weekly to exchange ideas and experiences, to review current science education literature, and to preview curriculum developed for our middle and high school science classrooms. All SFOS participants gather at quarterly workshops to share the results of program activities through presentations and discussions. We thank the National Science Foundation for funding through the GK-12 program.

  2. Materials sciences programs, Fiscal year 1997

    SciTech Connect

    1998-10-01

    The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

  3. Science and Life: A Mainstreamed Secondary Science Program.

    ERIC Educational Resources Information Center

    Wielert, Jan S.; Johnston, Laneh M.

    1984-01-01

    A science and life program developed for mainstreamed secondary students is based on commercially available modules on such topics as pregnancy and fetal development, automobile safety, and heart disease. The program features cooperative group activities, peer tutoring, and ongoing evaluation. (CL)

  4. STOP for Science! A School-Wide Science Enrichment Program

    NASA Astrophysics Data System (ADS)

    Slane, P.; Slane, R.; Arcand, K. K.; Lestition, K.; Watzke, M.

    2012-08-01

    Young students are often natural scientists. They love to poke and prod, and they live to compare and contrast. What is the fastest animal? Where is the tallest mountain on Earth (or in the Solar System)? Where do the colors in a rainbow come from? And why do baseball players choke up on their bats? Educators work hard to harness this energy and enthusiasm in the classroom but, particularly at an early age, science enrichment - exposure outside the formal classroom - is crucial to help expand science awareness and hone science skills. Developed under a grant from NASA's Chandra X-ray Center, "STOP for Science!" is a simple but effective (and extensible) school-wide science enrichment program aimed at raising questions about science topics chosen to capture student interest. Created through the combined efforts of an astrophysicist and an elementary school principal, and strongly recommended by NASA's Earth & Space Science product review, "STOP for Science" combines aesthetic displays of science topics accompanied by level-selected questions and extensive facilitator resources to provide broad exposure to familiar, yet intriguing, science themes.

  5. Life Sciences Program Tasks and Bibliography

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1995. Additionally, this inaugural edition of the Task Book includes information for FY 1994 programs. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web page

  6. An Evaluation of Elementary Science Programs.

    ERIC Educational Resources Information Center

    Moodie, Allan G.; Robinson, T. E.

    The Test of Logical Thinking in Science and tape recordings and notes from a scientific inquiry lesson were used to evaluate the relative effectiveness of the regular and new science programs in developing scientific thinking among elementary school pupils. The findings, limited by sample size and short-term experimental design, indicated that the…

  7. The University of Alabama's Integrated Science Program.

    ERIC Educational Resources Information Center

    Rainey, Larry; Mitrook, Kim

    This program, supported by the Center for Communication and Educational Technology at the University of Alabama, incorporates the perspectives of biology, earth/space science, chemistry, and physics into an innovative science curriculum for the middle grades. Students are engaged for 20 minutes 3 times a week by an on-air instructor who is doing…

  8. Lincoln Advanced Science & Engineering Reinforcement (LASER) Program.

    ERIC Educational Resources Information Center

    Williams, Willie

    The Lincoln Advanced Science and Engineering Reinforcement (LASER) Program at Lincoln University, which has recruited over 100 students for majors in technical fields, is described in this report. To date, over 70% have completed or will complete technical degrees in engineering, physics, chemistry, and computer science. Of those completing the…

  9. Program for Access to Science Study (PASS).

    ERIC Educational Resources Information Center

    Roth, Millicent; Weiner, Michael

    The Program for Access to Science Study (PASS) consists of a preparatory science course which is taught in tandem with a special counseling seminar. Problem solving is taught using content in chemistry and physics. The curriculum is divided into cycles, each built around a single topic. A problem set related to the topic and an illustrative lab…

  10. Cognitive and Neural Sciences Division 1990 Programs.

    ERIC Educational Resources Information Center

    Vaughan, Willard S., Jr., Ed.

    Research and development efforts carried out under sponsorship of the Cognitive and Neural Sciences Division of the Office of Naval Research during fiscal year 1990 are described in this compilation of project description summaries. The Division's research is organized in three types of programs: (1) Cognitive Science (the human learner--cognitive…

  11. The DOE/NREL Environmental Science Program

    SciTech Connect

    Douglas R. Lawson; Michael Gurevich

    2001-05-14

    This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects.

  12. High School Health Science Program.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This curriculum guide contains units of study for high school health science courses in Iowa. The first section is a competency outline for three topics: introduction to health care; nurse aide/orderly; and rehabilitation aide. For each competency, the following information is provided: objectives; suggested learning activities; resources; and…

  13. Space Life Sciences Research and Education Program

    NASA Technical Reports Server (NTRS)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  14. International Program Promotes Creative Thinking in Science

    ERIC Educational Resources Information Center

    Barry, Dana M.; Kanematsu, Hideyuki

    2008-01-01

    An International Program in Creative Education is successfully being carried out by educators in the United States and Japan. Its main goals are to turn students of all ages onto science and engineering and to prepare them to be critical thinkers and creative problem solvers. A brief description of this national award winning program is presented.…

  15. Indian Natural Resource, Science and Engineering Program.

    ERIC Educational Resources Information Center

    Oros, Tia

    1993-01-01

    The Indian Natural Resource, Science, and Engineering Program at California State University, Humboldt, offers a wide variety of courses related to working in natural-resource fields in indigenous communities and provides academic and personal support services to American Indian students in such fields. A program participant is profiled. (SV)

  16. SOFIA general investigator science program

    NASA Astrophysics Data System (ADS)

    Young, Erick T.; Andersson, B.-G.; Becklin, Eric E.; Reach, William T.; Sankrit, Ravi; Zinnecker, Hans; Krabbe, Alfred

    2014-07-01

    SOFIA is a joint project between NASA and DLR, the German Aerospace Center, to provide the worldwide astronomical community with an observatory that offers unique capabilities from visible to far-infrared wavelengths. SOFIA consists of a 2.7-m telescope mounted in a highly modified Boeing 747-SP aircraft, a suite of instruments, and the scientific and operational infrastructure to support the observing program. This paper describes the current status of the observatory and details the General Investigator program. The observatory has recently completed major development activities, and it has transitioned into full operational status. Under the General Investigator program, astronomers submit proposals that are peer reviewed for observation on the facility. We describe the results from the first two cycles of the General Investigator program. We also describe some of the new observational capabilities that will be available for Cycle 3, which will begin in 2015.

  17. Environmental Management Science Program Workshop. Proceedings

    SciTech Connect

    1998-07-01

    The Department of Energy Office of Environmental Management (EM), in partnership with the Office of Energy Research (ER), designed, developed, and implemented the Environmental Management Science Program as a basic research effort to fund the scientific and engineering understanding required to solve the most challenging technical problems facing the government's largest, most complex environmental cleanup program. The intent of the Environmental Management Science Program is to: (1) Provide scientific knowledge that will revolutionize technologies and cleanup approaches to significantly reduce future costs, schedules, and risks. (2) Bridge the gap between broad fundamental research that has wide-ranging applications such as that performed in the Department's Office of Energy Research and needs-driven applied technology development that is conducted in Environmental Management's Office of Science and Technology. (3) Focus the nation's science infrastructure on critical Department of Energy environmental problems. In an effort to share information regarding basic research efforts being funded by the Environmental Management Science Program and the Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program), this CD includes summaries for each project. These project summaries, available in portable document format (PDF), were prepared in the spring of 1998 by the principal investigators and provide information about their most recent project activities and accomplishments.

  18. General Atomics Science Education Outreach Programs

    NASA Astrophysics Data System (ADS)

    Winter, Patricia S.

    1996-11-01

    Motivated by a desire to improve science literacy and to help the current generation of students to be more prepared for an increasingly technological future, General Atomics has been a leader in science education outreach to local K-12 schools. Through its nonprofit ``Sciences Education Foundation,'' and in cooperation with local science teachers, General Atomics has sponsored a variety of education activities and developed several science teaching units including Fusion --- Energy of the Stars; An Exploration of Materials Science, Recombinant DNA Technology; Environmental Radioactivity; and Energy from the Atom. Printed materials and laboratory kits for ``hands-on'' teaching units have been made available to over 600 teachers (from over 175 schools) who have attended General Atomics sponsored workshops, and presentations at education and professional meetings. Additional outreach activities include school partnerships, facility tours, and mentoring programs.

  19. Materials sciences programs, fiscal year 1994

    SciTech Connect

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  20. NASA Microgravity Combustion Science Program

    NASA Technical Reports Server (NTRS)

    King, Merrill K.

    1997-01-01

    Combustion is a key element of many critical technologies used by contemporary society. For example, electric power production, home heating, surface and air transportation, space propulsion, and materials synthesis all utilize combustion as a source of energy. Yet, although combustion technology is vital to our standard of living, it poses great challenges to maintaining a habitable environment. For example, pollutants, atmospheric change and global warming, unwanted fires and explosions, and the incineration of hazardous wastes are major problem areas which would benefit from improved understanding of combustion. Effects of gravitational forces impede combustion studies more than most other areas of science since combustion involves production of high-temperature gases whose low density results in buoyant motion, vastly complicating the execution and interpretation of experiments. Effects of buoyancy are so ubiquitous that their enormous negative impact on the rational development of combustion science is generally not recognized. Buoyant motion also triggers the onset of turbulence, yielding complicating unsteady effects. Finally, gravity forces cause particles and drops to settle, inhibiting deconvoluted studies of heterogeneous flames important to furnace, incineration and power generation technologies. Thus, effects of buoyancy have seriously limited our capabilities to carry out 'clean' experiments needed for fundamental understanding of flame phenomena. Combustion scientists can use microgravity to simplify the study of many combustion processes, allowing fresh insights into important problems via a deeper understanding of elemental phenomena also found in Earth-based combustion processes and to additionally provide valuable information concerning how fires behave in microgravity and how fire safety on spacecraft can be enhanced.

  1. A study of science leadership and science standards in exemplary standards-based science programs

    NASA Astrophysics Data System (ADS)

    Carpenter, Wendy Renae

    The purpose for conducting this qualitative study was to explore best practices of exemplary standards-based science programs and instructional leadership practices in a charter high school and in a traditional high school. The focus of this study included how twelve participants aligned practices to National Science Education Standards to describe their science programs and science instructional practices. This study used a multi-site case study qualitative design. Data were obtained through a review of literature, interviews, observations, review of educational documents, and researcher's notes collected in a field log. The methodology used was a multi-site case study because of the potential, through cross analysis, for providing greater explanation of the findings in the study (Merriam, 1988). This study discovered six characteristics about the two high school's science programs that enhance the literature found in the National Science Education Standards; (a) Culture of expectations for learning-In exemplary science programs teachers are familiar with a wide range of curricula. They have the ability to examine critically and select activities to use with their students to promote the understanding of science; (b) Culture of varied experiences-In exemplary science programs students are provided different paths to learning, which help students, take in information and make sense of concepts and skills that are set forth by the standards; (c) Culture of continuous feedback-In exemplary science programs teachers and students work together to engage students in ongoing assessments of their work and that of others as prescribed in the standards; (d) Culture of Observations-In exemplary science programs students, teachers, and principals reflect on classroom instructional practices; teachers receive ongoing evaluations about their teaching and apply feedback towards improving practices as outlined in the standards; (e) Culture of continuous learning-In exemplary

  2. Airborne Science Program: Observing Platforms for Earth Science Investigations

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.

    2009-01-01

    This slide presentation reviews the Airborne Science Program and the platforms used for conducting investigations for the Earth System Science. Included is a chart that shows some of the aircraft and the operational altitude and the endurance of the aircraft, views of the Dryden Aircraft Operation Facility, and some of the current aircraft that the facility operates, and the varieties of missions that are flown and the type of instrumentation. Also included is a chart showing the attributes of the various aircraft (i.e., duration, weight for a payload, maximum altitude, airspeed and range) for comparison

  3. Operation UPDATES - A Science Program for Nonscience Faculty.

    ERIC Educational Resources Information Center

    Kissinger, Paul B.

    1979-01-01

    Describes a science program for nonscience faculty called Operation UPDATES (a Unique Program for De Pauw Administrators and Teachers for Enrichment in Science). The objectives and the evaluation of the program are presented. (HM)

  4. NASA's Space Life Sciences Training Program

    NASA Technical Reports Server (NTRS)

    Coulter, G.; Lewis, L.; Atchison, D.

    1994-01-01

    The Space Life Sciences Training Program (SLSTP) is an intensive, six-week training program held every summer since 1985 at the Kennedy Space Center (KSC). A major goal of the SLSTP is to develop a cadre of qualified scientists and engineers to support future space life sciences and engineering challenges. Hand-picked, undergraduate college students participate in lectures, laboratory sessions, facility tours, and special projects: including work on actual Space Shuttle flight experiments and baseline data collection. At NASA Headquarters (HQ), the SLSTP is jointly sponsored by the Life Sciences Division and the Office of Equal Opportunity Programs: it has been very successful in attracting minority students and women to the fields of space science and engineering. In honor of the International Space Year (ISY), 17 international students participated in this summer's program. An SLSTP Symposium was held in Washington D. C., just prior to the World Space Congress. The Symposium attracted over 150 SLSTP graduates for a day of scientific discussions and briefings concerning educational and employment opportunities within NASA and the aerospace community. Future plans for the SLSTP include expansion to the Johnson Space Center in 1995.

  5. The Environmental Science and Health Effects Program

    SciTech Connect

    Michael Gurevich; Doug Lawson; Joe Mauderly

    2000-04-10

    The goal of the Environmental Science and Health Effect Program is to conduct policy-relevant research that will help us understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources.

  6. Police Science Program Survey: Research Note.

    ERIC Educational Resources Information Center

    Colorado State Dept. of Education, Denver. National Origin Desegregation Project (LAU).

    A study, involving two independent surveys and a transcript analysis, was conducted to determine the background characteristics, attitudes, and needs of students enrolled in police science programs at Moraine Valley Community College (MVCC). The first survey, which focused on personal characteristics and course enrollment data, was distributed in…

  7. Earth Science. In-Service Television Program.

    ERIC Educational Resources Information Center

    Beyer, Frederick L.; Spooner, William E.

    GRADES OR AGES: Inservice course for secondary teachers. SUBJECT MATTER: Earth science. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is intended for use with a 32-program television course for teachers, with material intended to be used in the classroom. The introductory material explains the rationale of the course and includes the…

  8. Cognitive and Neural Sciences Division, 1991 Programs.

    ERIC Educational Resources Information Center

    Vaughan, Willard S., Ed.

    This report documents research and development performed under the sponsorship of the Cognitive and Neural Sciences Division of the Office of Naval Research in fiscal year 1991. It provides abstracts (title, principal investigator, project code, objective, approach, progress, and related reports) of projects of three program divisions (cognitive…

  9. Materials Sciences programs, Fiscal year 1993

    SciTech Connect

    1994-02-01

    This report provides a compilation and index of the DOE Materials Sciences Division programs; the compilation is to assist administrators, managers, and scientists to help coordinate research. The report is divided into 7 sections: laboratory projects, contract research projects, small business innovation research, major user facilities, other user facilities, funding level distributions, and indexes.

  10. Cognitive and Neural Sciences Division, 1989 Programs.

    ERIC Educational Resources Information Center

    Vaughan, Willard S., Ed.

    This report documents research and development performed by principal investigators under the sponsorship of the Office of Naval Research Cognitive and Neural Sciences Division during fiscal year 1989. Programs are conducted under contracts and grants awarded on the basis of proposals received in response to a Broad Agency Announcement in the…

  11. Science and the Constellation Systems Program Office

    NASA Technical Reports Server (NTRS)

    Mendell, Wendell

    2007-01-01

    An underlying tension has existed throughout the history of NASA between the human spaceflight programs and the external scientific constituencies of the robotic exploration programs. The large human space projects have been perceived as squandering resources that might otherwise be utilized for scientific discoveries. In particular, the history of the relationship of science to the International Space Station Program has not been a happy one. The leadership of the Constellation Program Office, created in NASA in October, 2005, asked me to serve on the Program Manager s staff as a liaison to the science community. Through the creation of my position, the Program Manager wanted to communicate and elucidate decisions inside the program to the scientific community and, conversely, ensure that the community had a voice at the highest levels within the program. Almost all of my technical contributions at NASA, dating back to the Apollo Program, has been within the auspices of what is now known as the Science Mission Directorate. However, working at the Johnson Space Center, where human spaceflight is the principal activity, has given me a good deal of incidental contact and some more direct exposure through management positions to the structures and culture of human spaceflight programs. I entered the Constellation family somewhat naive but not uninformed. In addition to my background in NASA science, I have also written extensively over the past 25 years on the topic of human exploration of the Moon and Mars. (See, for example, Mendell, 1985). I have found that my scientific colleagues generally have little understanding of the structure and processes of a NASA program office; and many of them do not recognize the name, Constellation. In many respects, the international ILEWG community is better informed. Nevertheless, some NASA decision processes on the role of science, particularly with respect to the formulation of a lunar surface architecture, are not well known

  12. Summer Science Student Program: a replication manual

    SciTech Connect

    Not Available

    1981-01-01

    The Summer Science Student Program (SSSP) combines basic skill enrichment (in science, math, and communications), career motivation, and energy awareness to encourage economically disadvantaged and academically talented youth to complete high school and pursue energy-related careers. The program is designed to enrich the academic experiences of the youth while they are in high school and to increase their awareness of energy issues and career opportunities in energy technology. Ultimately, SSSP helps to prepare these youth to enter postsecondary education or skill training leading to technical, paraprofessional, and professional energy-related careers. The purpose of this manual is to provide DOE contractors, private industry, prime sponsors, and community-based organizations with information that can be used in SSSP replication and continuation efforts. Some of the challenges met in the programs's initial implementation are reviewed, and a step-by-step procedure for establishing new SSSP sites is described. 9 figures. (RWR)

  13. Suborbital Science Program: Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    DelFrate, John

    2008-01-01

    This viewgraph presentation reviews the suborbital science program at NASA Dryden Flight Research Center. The Program Objectives are given in various areas: (1) Satellite Calibration and Validation (Cal/val)--Provide methods to perform the cal/val requirements for Earth Observing System satellites; (2) New Sensor Development -- Provide methods to reduce risk for new sensor concepts and algorithm development prior to committing sensors to operations; (3) Process Studies -- Facilitate the acquisition of high spatial/temporal resolution focused measurements that are required to understand small atmospheric and surface structures which generate powerful Earth system effects; and (4) Airborne Networking -- Develop disruption-tolerant networking to enable integrated multiple scale measurements of critical environmental features. Dryden supports the NASA Airborne Science Program and the nation in several elements: ER-2, G-3, DC-8, Ikhana (Predator B) & Global Hawk and Reveal. These are reviewed in detail in the presentation.

  14. 1998 Environmental Management Science Program Annual Report

    SciTech Connect

    1999-03-01

    The Environmental Management Science Program (EMSP) is a collaborative partnership between the DOE Office of Environmental Management (EM), Office of Science (DOE-SC), and the Idaho Operations Office (DOE-ID) to sponsor basic environmental and waste management related research. Results are expected to lead to reduction of the costs, schedule, and risks associated with cleaning up the nation's nuclear complex. The EMSP research portfolio addresses the most challenging technical problems of the EM program related to high level waste, spent nuclear fuel, mixed waste, nuclear materials, remedial action, decontamination and decommissioning, and health, ecology, or risk. The EMSP was established in response to a mandate from Congress in the fiscal year 1996 Energy and Water Development Appropriations Act. Congress directed the Department to ''provide sufficient attention and resources to longer-term basic science research which needs to be done to ultimately reduce cleanup costs, develop a program that takes advantage of laboratory and university expertise, and seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective''. This mandate followed similar recommendations from the Galvin Commission to the Secretary of Energy Advisory Board. The EMSP also responds to needs identified by National Academy of Sciences experts, regulators, citizen advisory groups, and other stakeholders.

  15. Overview of NASA's Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Downey, James Patton

    2012-01-01

    The microgravity materials program was nearly eliminated in the middle of the aughts due to budget constraints. Hardware developments were eliminated. Some investigators with experiments that could be performed using ISS partner hardware received continued funding. Partnerships were established between US investigators and ESA science teams for several investigations. ESA conducted peer reviews on the proposals of various science teams as part of an ESA AO process. Assuming he or she was part of a science team that was selected by the ESA process, a US investigator would submit a proposal to NASA for grant funding to support their part of the science team effort. In a similar manner, a US materials investigator (Dr. Rohit Trivedi) is working as a part of a CNES selected science team. As funding began to increase another seven materials investigators were selected in 2010 through an NRA mechanism to perform research related to development of Materials Science Research Rack investigations. One of these has since been converted to a Glovebox investigation.

  16. Partners in Science Education: SOFIA EPO Program

    NASA Astrophysics Data System (ADS)

    Backman, D.; DeVore, E.; Bennett, M.

    2003-05-01

    NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) represents a unique opportunity for education and public outreach (EPO) as the first research observatory designed to include by educators, journalists and others in research missions. The EPO program will include formal K-12 and undergraduate educational activities, informal education, public outreach, and media relations. SOFIA will carry educators on science flights, enabling them to partner with scientists and see science in action. Up to 200 formal and informal educators will participate in the SOFIA Airborne Astronomy Ambassadors (AAA) program each year. The AAAs will be sustained as a national network via continued communications and material support from the observatory's EPO program office, and will constitute a wide-spread outreach cadre for NASA and space sciences. wide-spread outreach cadre for NASA and space sciences. Scientists, engineers, and other members of the SOFIA team will partner with local teachers and visit their classrooms as a part of the SOFIA Education Partners Program. Trained via the Project ASTRO network of astronomy education sites, SOFIA team members will work with teachrs and students to forge long-lasting science education partnerships. Participating educators may fly onboard SOFIA with their scientist partners. The professors and instructors at community colleges, small colleges, and minority serving institutions teach astronomy in general education courses that include the majority of future K-12 teachers. SOFIA EPO will provide an opportunity for this important segment of the college/university faculty plus staff of science and technology centers and planetaria to learn about research astronomy through summer workshops at the observatory. Participants will be encouraged to develop partnerships with SOFIA-affiliated scientists and participate in research flights. SOFIA is being developed and will be operated for NASA by SOFIA is being developed and will be operated

  17. Thinking about Television Science: How Students Understand the Nature of Science from Different Program Genres.

    ERIC Educational Resources Information Center

    Dhingra, Koshi

    2003-01-01

    Examines how high school students think about science that is mediated by four different program genres on television: (1) documentary; (2) magazine-format programming; (3) network news; and (4) dramatic or fictional programming. Discusses findings regarding ethics and the validity of science, final form science, science as portrayed by its…

  18. AAAS Communicating Science Program: Reflections on Evaluation

    NASA Astrophysics Data System (ADS)

    Braha, J.

    2015-12-01

    The AAAS Center for Public Engagement (Center) with science builds capacity for scientists to engage public audiences by fostering collaboration among natural or physical scientists, communication researchers, and public engagement practitioners. The recently launched Leshner Leadership Institute empowers cohorts of mid-career scientists to lead public engagement by supporting their networks of scientists, researchers, and practitioners. The Center works closely with social scientists whose research addresses science communication and public engagement with science to ensure that the Communicating Science training program builds on empirical evidence to inform best practices. Researchers ( Besley, Dudo, & Storkdieck 2015) have helped Center staff and an external evaluator develop pan instrument that measures progress towards goals that are suggested by the researcher, including internal efficacy (increasing scientists' communication skills and confidence in their ability to engage with the public) and external efficacy (scientists' confidence in engagement methods). Evaluation results from one year of the Communicating Science program suggest that the model of training yields positive results that support scientists in the area that should lead to greater engagement. This talk will explore the model for training, which provides a context for strategic communication, as well as the practical factors, such as time, access to public engagement practitioners, and technical skill, that seems to contribute to increased willingness to engage with public audiences. The evaluation program results suggest willingness by training participants to engage directly or to take preliminary steps towards engagement. In the evaluation results, 38% of trained scientists reported time as a barrier to engagement; 35% reported concern that engagement would distract from their work as a barrier. AAAS works to improve practitioner-researcher-scientist networks to overcome such barriers.

  19. 2015 Stewardship Science Academic Programs Annual

    SciTech Connect

    Stone, Terri; Mischo, Millicent

    2015-02-01

    The Stockpile Stewardship Academic Programs (SSAP) are essential to maintaining a pipeline of professionals to support the technical capabilities that reside at the National Nuclear Security Administration (NNSA) national laboratories, sites, and plants. Since 1992, the United States has observed the moratorium on nuclear testing while significantly decreasing the nuclear arsenal. To accomplish this without nuclear testing, NNSA and its laboratories developed a science-based Stockpile Stewardship Program to maintain and enhance the experimental and computational tools required to ensure the continued safety, security, and reliability of the stockpile. NNSA launched its academic program portfolio more than a decade ago to engage students skilled in specific technical areas of relevance to stockpile stewardship. The success of this program is reflected by the large number of SSAP students choosing to begin their careers at NNSA national laboratories.

  20. Clementine, Deep Space Program Science Experiment

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Clementine, also called the Deep Space Program Science Experiment, is a joint Department of Defense (DoD)/National Aeronautics and Space Administration (NASA) mission with the dual goal of testing small spacecraft, subsystems, and sensors in the deep space environment and also providing a nominal science return. The Clementine mission will provide technical demonstrations of innovative lightweight spacecraft components and sensors, will be launced on a spacecraft developed within 2 years of program start, and will point a way for new planetary mission options under consideration by NASA. This booklet gives the background of the Clementine mission (including the agencies involved), the mission objectives, the mission scenario, the instruments that the mission will carry, and how the data will be analyzed and made accessible.

  1. Surgical Airway

    PubMed Central

    Patel, Sapna A; Meyer, Tanya K

    2014-01-01

    Close to 3% of all intubation attempts are considered difficult airways, for which a plan for a surgical airway should be considered. Our article provides an overview of the different types of surgical airways. This article provides a comprehensive review of the main types of surgical airways, relevant anatomy, necessary equipment, indications and contraindications, preparation and positioning, technique, complications, and tips for management. It is important to remember that the placement of a surgical airway is a lifesaving procedure and should be considered in any setting when one “cannot intubate, cannot ventilate”. PMID:24741501

  2. Astronomy Missions In The Esa Science Program

    NASA Astrophysics Data System (ADS)

    Favata, Fabio

    2011-09-01

    I will present an overview of the Science Programme of the European Space Agency, focusing on the astronomy missions. I will give a brief overview of missions currently in operation and under implementation, and then present the portfolio of missions currently under study as candidates for future implementation in the program. The planning and selection process will be illustrated, as well as the prospective building blocks for the future program. Missions falling under the remit of HEAD, e.g. X-ray, gamma-ray and gravitational wave missions, will be discussed in detail.

  3. Materials sciences programs fiscal year 1996

    SciTech Connect

    1997-06-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  4. Materials sciences programs: Fiscal year 1995

    SciTech Connect

    1996-05-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Science Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  5. Rocket Science 101 Interactive Educational Program

    NASA Technical Reports Server (NTRS)

    Armstrong, Dennis; Funkhouse, Deborah; DiMarzio, Donald

    2007-01-01

    To better educate the public on the basic design of NASA s current mission rockets, Rocket Science 101 software has been developed as an interactive program designed to retain a user s attention and to teach about basic rocket parts. This program also has helped to expand NASA's presence on the Web regarding educating the public about the Agency s goals and accomplishments. The software was designed using Macromedia s Flash 8. It allows the user to select which type of rocket they want to learn about, interact with the basic parts, assemble the parts to create the whole rocket, and then review the basic flight profile of the rocket they have built.

  6. Atmospheric Science Program (ASP) Data Archive

    DOE Data Explorer

    The Department of Energy's Atmospheric Science Program (ASP) originally consisted of an atmospheric chemistry program, an environmental meteorology program, a tropospheric aerosol program, and NARSTO activities. In 2004, the ASP was reconfigured to focus on aerosol radiative forcing of climate change: aerosol formation and evolution and aerosol properties that affect direct and indirect influences on climate and climate change. This included developing a comprehensive understanding of the atmospheric processes that control the transport, transformation, and fate of energy related trace chemicals and particulate matter. The current focus of the program is aerosol radiative forcing of climate. Effective October 1, 2009, The ASP merged with the Atmospheric Radiation Measurement Program (ARM), with the overall program now called Atmospheric System Research. The overall research goal is one that was shared in common, i.e. to further the understanding of how the climate, as a system works, and to represent the understanding in computer models. The Office of Science and Brookhaven announced, ôA major benefit of the merge is expected to be a strengthening of the aerosol- and cloud-related research components of the programs by bringing together the ARM capabilities of continuous remote sensing measurements of cloud properties and aerosol influences on radiation with the ASP capabilities for in-situ characterization of aerosol properties, evolution, and cloud interactions.ö [http://www.asp.bnl.gov/#New] The ASP data archive has now been moved to a new location in order to be maintained with ARM data. The new url is http://iop.archive.arm.gov/arm-iop/0special-data/ASP_Campaigns_past/. BNL continues to maintain an excellent list of ASP-publications at http://www.asp.bnl.gov/asp_pubs.html

  7. Increased Science Instrumentation Funding Strengthens Mars Program

    NASA Technical Reports Server (NTRS)

    Graham, Lee D.; Graff, T. G.

    2012-01-01

    As the strategic knowledge gaps mature for the exploration of Mars, Mars sample return (MSR), and Phobos/Deimos missions, one approach that becomes more probable involves smaller science instrumentation and integrated science suites. Recent technological advances provide the foundation for a significant evolution of instrumentation; however, the funding support is currently too small to fully utilize these advances. We propose that an increase in funding for instrumentation development occur in the near-term so that these foundational technologies can be applied. These instruments would directly address the significant knowledge gaps for humans to Mars orbit, humans to the Martian surface, and humans to Phobos/ Deimos. They would also address the topics covered by the Decadal Survey and the Mars scientific goals, objectives, investigations and priorities as stated by the MEPAG. We argue that an increase of science instrumentation funding would be of great benefit to the Mars program as well as the potential for human exploration of the Mars system. If the total non-Earth-related planetary science instrumentation budget were increased 100% it would not add an appreciable amount to the overall NASA budget and would provide the real potential for future breakthroughs. If such an approach were implemented in the near-term, NASA would benefit greatly in terms of science knowledge of the Mars, Phobos/Deimos system, exploration risk mitigation, technology development, and public interest.

  8. Dartmouth College Earth Sciences Mobile Field Program

    NASA Astrophysics Data System (ADS)

    Meyer, E. E.; Osterberg, E. C.; Dade, W. B.; Sonder, L. J.; Renshaw, C. E.; Kelly, M. A.; Hawley, R. L.; Chipman, J. W.; Mikucki, J.; Posmentier, E. S.; Moore, J. R.

    2011-12-01

    For the last 50 years the Department of Earth Sciences at Dartmouth College has offered a term-long, undergraduate field program, informally called "the Stretch". A student typically enrolls during fall quarter of his or her junior year soon after choosing a major or minor. The program thus provides valuable field context for courses that a student will take during the remainder of his or her undergraduate career. Unlike many traditional field camps that focus on one particular region, the Stretch is a mobile program that currently travels through Western North America, from the Canadian Rockies to the Grand Canyon. The program spans two and a half months, during which time undergraduates, graduate TAs, and faculty live, work, and learn collaboratively. Dartmouth College faculty members sequentially teach individual 1- to 2-week segments that focus on their interests and expertise; currently, there are a total of eight segments led by eleven faculty members. Consequently, topics are diverse and include economic geology, geobiology, geomorphology, glaciology, glacial geology, geophysics, hydrogeology, paleontology, stratigraphy, structure and tectonics, and volcanology. The field localities are equally varied, including the alpine glaciers of western Alberta, the national parks of Montana, Wyoming and Utah, the eastern Sierra Nevada, the southern Great Basin, and highlight such classic geological field locales as Sheep Mountain in Wyoming's Bighorn Basin, Death Valley, and the Grand Canyon. Overall, the program aims to: 1) give students a broad perspective on the timing and nature of the processes that resulted in the landscape and underlying geology of western North America; and 2) introduce students to a wide variety of geological environments, field techniques, and research equipment. Students emerge from the program with wide-ranging exposure to active research questions as well as a working knowledge of core field skills in the earth sciences. Stretch students

  9. The NASA Earth Science Flight Program

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2014-10-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 17 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission and the Orbiting Carbon Observatory-2 (OCO-2). The ESD has 18 more missions planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small competitively selected orbital and instrument missions of opportunity belonging to the Earth Venture (EV) Program. The International Space Station (ISS) is being used to host a variety of NASA Earth science instruments. An overview of plans and current status will be presented.

  10. The California State University, Los Angeles Biomedical Sciences Program.

    ERIC Educational Resources Information Center

    Gutierrez, Carlos G.; Brown, Costello L.

    The Biomedical Sciences Program at California State University, Los Angeles (CSULA), is described. The federally funded program was designed to help economically disadvantaged students to pursue careers in biomedical sciences. The program provided academic support in mathematics, science, and English; study skills development; experiences in…

  11. Assessment of the Fusion Energy Sciences Program. Final Report

    SciTech Connect

    2001-05-01

    An assessment of the Office of Fusion Energy Sciences (OFES) program with guidance for future program strategy. The overall objective of this study is to prepare an independent assessment of the scientific quality of the Office of Fusion Energy Sciences program at the Department of Energy. The Fusion Science Assessment Committee (FuSAC) has been appointed to conduct this study.

  12. Examining participation in a Dolphin Observation Citizen Science program

    NASA Astrophysics Data System (ADS)

    Magdziarz, Susan F.

    This research project examined how people utilized the Dolphin Observation Citizen Science Kit at the Crystal Cove Beach Cottages. This study explored whether this citizen science program successfully engaged people in a recreational setting that is not normally associated with science learning opportunities. Most research on citizen science programs has focused on projects that attract people who already have an interest in science. This study took place in a location that attracts people who may have weak science identities, which made it possible to learn more about how this audience engages in citizen science programs. The data showed that people in this setting participated in this citizen science program. People with weak and strong science identities used the kit. This indicates that this type of recreational setting could be further explored as a place to engage people with weak science identities in science education activities.

  13. Advances in prehospital airway management

    PubMed Central

    Jacobs, PE; Grabinsky, A

    2014-01-01

    Prehospital airway management is a key component of emergency responders and remains an important task of Emergency Medical Service (EMS) systems worldwide. The most advanced airway management techniques involving placement of oropharyngeal airways such as the Laryngeal Mask Airway or endotracheal tube. Endotracheal tube placement success is a common measure of out-of-hospital airway management quality. Regional variation in regard to training, education, and procedural exposure may be the major contributor to the findings in success and patient outcome. In studies demonstrating poor outcomes related to prehospital-attempted endotracheal intubation (ETI), both training and skill level of the provider are usually often low. Research supports a relationship between the number of intubation experiences and ETI success. National standards for certification of emergency medicine provider are in general too low to guarantee good success rate in emergency airway management by paramedics and physicians. Some paramedic training programs require more intense airway training above the national standard and some EMS systems in Europe staff their system with anesthesia providers instead. ETI remains the cornerstone of definitive prehospital airway management, However, ETI is not without risk and outcomes data remains controversial. Many systems may benefit from more input and guidance by the anesthesia department, which have higher volumes of airway management procedures and extensive training and experience not just with training of airway management but also with different airway management techniques and adjuncts. PMID:24741499

  14. Scaling Plant Phenology in Citizen Science Programs

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Richardson, A. D.; Kosmala, M.; Ward, D.; Bevington, K.

    2015-12-01

    In the past decade, there has been increasing interest in exploring phenology as a way to better understand how the natural world is responding to changing climates. Concurrently, there has been rapid growth in the collection and analysis of data by non-experts. So called 'citizen scientists' are collecting and analyzing data at unprecedented rates on a variety of topics including plant phenology. Through the development of online programs and activities, citizen science data is being collected at spatial and temporal scales that were previously not possible. Citizen science data vastly exceeds what scientists or land managers can collect or analyze on their own. As such, it provides opportunities for scaling both in terms of data collection and analysis. This presentation will focus on two plant phenology projects that involve citizen scientists in the data life cycle at different scales - Project BudBurst which is based on the collection of ground observations and Season Spotter which is based on the classification of remotely sensed landscape imagery. NEON's Project BudBurst (budburst.org) is a national citizen science program focused on the collection of observations of the timing of leafing, flowering, and fruiting in hundreds of plant species. The PhenoCam Network's Season Spotter (seasonspotter.org) engages individuals in the classification and annotation of a variety of vegetated landscape images via a new platform on Zooniverse. Citizen Science contributions to plant phenology are proving to be an invaluable tool that can be used to both validate existing and support development of new methods to extract phenology information from remotely sensed imagery including PhenoCam and satellite sources. This presentation will compare and contrast the contribution made to the study of plant phenology at multiple scales - ground observation data of individual plants and classification and annotation of data collected through a network do automated digital cameras.

  15. Laser Science & Technology Program Annual Report - 2000

    SciTech Connect

    Chen, H-L

    2001-03-20

    The Laser Science and Technology (LS&T) Program Annual Report 2001 provides documentation of the achievements of the LLNL LS&T Program during the April 2001 to March 2002 period using three formats: (1) an Overview that is a narrative summary of important results for the year; (2) brief summaries of research and development activity highlights within the four Program elements: Advanced Lasers and Components (AL&C), Laser Optics and Materials (LO&M), Short Pulse Laser Applications and Technologies (SPLAT), and High-Energy Laser System and Tests (HELST); and (3) a compilation of selected articles and technical reports published in reputable scientific or technology journals in this period. All three elements (Annual Overview, Activity Highlights, and Technical Reports) are also on the Web: http://laser.llnl.gov/lasers/pubs/icfq.html. The underlying mission for the LS&T Program is to develop advanced lasers, optics, and materials technologies and applications to solve problems and create new capabilities of importance to the Laboratory and the nation. This mission statement has been our guide for defining work appropriate for our Program. A major new focus of LS&T beginning this past year has been the development of high peak power short-pulse capability for the National Ignition Facility (NIF). LS&T is committed to this activity.

  16. SOLIB: A Social Science Program Library for Small Computers.

    ERIC Educational Resources Information Center

    Halley, Fred S.

    A package of social science programs--Sociology Library (SOLIB)--for small computers provides users with a partial solution to the problems stemming from the heterogeneity of social science applications programs. SOLIB offers a uniform approach to data handling and program documentation; all its programs are written in standard FORTRAN for the IBM…

  17. Russian Earth Science Research Program on ISS

    SciTech Connect

    Armand, N. A.; Tishchenko, Yu. G.

    1999-01-22

    Version of the Russian Earth Science Research Program on the Russian segment of ISS is proposed. The favorite tasks are selected, which may be solved with the use of space remote sensing methods and tools and which are worthwhile for realization. For solving these tasks the specialized device sets (submodules), corresponding to the specific of solved tasks, are working out. They would be specialized modules, transported to the ISS. Earth remote sensing research and ecological monitoring (high rates and large bodies transmitted from spaceborne information, comparatively stringent requirements to the period of its processing, etc.) cause rather high requirements to the ground segment of receiving, processing, storing, and distribution of space information in the interests of the Earth natural resources investigation. Creation of the ground segment has required the development of the interdepartmental data receiving and processing center. Main directions of works within the framework of the ISS program are determined.

  18. The SIM PlanetQuest Science Program

    NASA Technical Reports Server (NTRS)

    Edberg, Stephen J.; Traub, Wesley A.; Unwin, Stephen C.; Marr, James C., IV

    2007-01-01

    SIM PlanetQuest (hereafter, just SIM) is a NASA mission to measure the angular positions of stars with unprecedented accuracy. We outline the main astrophysical science programs planned for SIM, and related opportunities for community participation. We focus especially on SIM's ability to detect exoplanets as small as the Earth around nearby stars. The planned synergy between SIM and other planet-finding missions including Kepler and GAIA, and planet-characterizing missions including the James Webb Space Telescope (JWST), Terrestrial Planet Finder--Coronagraph (TPF-C), and Terrestrial Planet Finder--Interferometer (TPF-I), is a key element in NASA's Navigator Program to find Earth-like planets, determine their habitability, and search for signs of life in the universe. SIM's technology development is now complete and the project is proceeding towards a launch in the next decade.

  19. A research program in empirical computer science

    NASA Technical Reports Server (NTRS)

    Knight, J. C.

    1991-01-01

    During the grant reporting period our primary activities have been to begin preparation for the establishment of a research program in experimental computer science. The focus of research in this program will be safety-critical systems. Many questions that arise in the effort to improve software dependability can only be addressed empirically. For example, there is no way to predict the performance of the various proposed approaches to building fault-tolerant software. Performance models, though valuable, are parameterized and cannot be used to make quantitative predictions without experimental determination of underlying distributions. In the past, experimentation has been able to shed some light on the practical benefits and limitations of software fault tolerance. It is common, also, for experimentation to reveal new questions or new aspects of problems that were previously unknown. A good example is the Consistent Comparison Problem that was revealed by experimentation and subsequently studied in depth. The result was a clear understanding of a previously unknown problem with software fault tolerance. The purpose of a research program in empirical computer science is to perform controlled experiments in the area of real-time, embedded control systems. The goal of the various experiments will be to determine better approaches to the construction of the software for computing systems that have to be relied upon. As such it will validate research concepts from other sources, provide new research results, and facilitate the transition of research results from concepts to practical procedures that can be applied with low risk to NASA flight projects. The target of experimentation will be the production software development activities undertaken by any organization prepared to contribute to the research program. Experimental goals, procedures, data analysis and result reporting will be performed for the most part by the University of Virginia.

  20. Computer programming: Science, art, or both?

    NASA Astrophysics Data System (ADS)

    Gum, Sandra Trent

    The purpose of this study was to determine if spatial intelligence contributes to a student's success in a computer science major or if mathematical-logical intelligence is sufficient data on which to base a prediction of success. The study was performed at a small university. The sample consisted of 15 computer science (CS) majors, enrolled in a computer science class, and 15 non-CS-majors, enrolled in a statistics class. Seven of the CS-majors were considered advanced and seven were considered less advanced. The independent measures were: the mathematics and the English scores from the ACT/SAT (CS-majors); a questionnaire to obtain personal information; the major area of study which compared CS-majors to all other majors; and the number of completed computer science classes (CS-majors) to determine advanced and less advanced CS-majors. The dependent measures were: a multiple intelligence inventory for adults to determine perception of intelligences; the GEFT to determine field independence independence; the Card Rotations Test to determine spatial orientation ability; the Maze Tracing Speed Test to determine spatial scanning ability; and the Surface Development test to determine visualization ability. The visualization measure correlated positively and significantly with the GEFT. The year in college correlated positively and significantly with the GEFT and visualization measure for CS-majors and correlated negatively for non-CS-majors. Although non-CS-majors scored higher on the spatial orientation measure, CS-majors scored significantly higher on the spatial scanning measure. The year in college correlated negatively with many of the measures and perceptions of intelligences among both groups; however, there were more significant negative correlations among non-CS-majors. Results indicated that experience in computer programming may increase field independence, visualization ability, and spatial scanning ability while decreasing spatial orientation ability. The

  1. "Inaugural OCRWM Science and Technology Program"

    SciTech Connect

    Kiess, T; Budnitz, R; Duncan, D; Peters, M; Wengle, J; Wiliams, J

    2005-06-03

    The US Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM) is responsible for obtaining regulatory approval to construct and operate a spent nuclear fuel and high-level waste geologic repository at Yucca Mountain and to develop transportation and infrastructure needed to support operations. Most OCRWM program resources are devoted to these important objectives, to be accomplished over a long time frame. OCRWM has also begun a separate science and technology initiative to develop technological improvements and system enhancements to its baseline practices. Our overview of the technical content of this Science and Technology Program summarizes its rationale, beginnings, areas of current investigation, and near-term plans. In 2002, following a national decision-making process specified in the 1982 Nuclear Waste Policy Act, Yucca Mountain was formally designated as the site for the nation's geologic repository for commercial spent fuel and HLW generated from defense programs. By transporting spent fuel and HLW safely to Yucca Mountain for emplacement underground, OCRWM will fulfill its mission ''to manage and dispose of high-level radioactive waste and spent nuclear fuel in a manner that protects health, safety, and the environment; enhances national and energy security; and merits public confidence''. The activities involved in accepting, transporting, handling, and disposing of spent fuel and other HLW are planned to span decades, if not centuries, and hence many components of the waste management system (e.g., spent fuel handling facilities and the Yucca Mountain repository itself) are designed for long-term operations. Current plans adequately address all system requirements using present-day technology, but relevant technical advances (in both scientific knowledge and engineering practice) will continue over time.

  2. The Stanford Medical Youth Science Program: Educational and Science-Related Outcomes

    ERIC Educational Resources Information Center

    Crump, Casey; Ned, Judith; Winkleby, Marilyn A.

    2015-01-01

    Biomedical preparatory programs (pipeline programs) have been developed at colleges and universities to better prepare youth for entering science- and health-related careers, but outcomes of such programs have seldom been rigorously evaluated. We conducted a matched cohort study to evaluate the Stanford Medical Youth Science Program's Summer…

  3. Development and Implementation of Science and Technology Ethics Education Program for Prospective Science Teachers

    ERIC Educational Resources Information Center

    Rhee, Hyang-yon; Choi, Kyunghee

    2014-01-01

    The purposes of this study were (1) to develop a science and technology (ST) ethics education program for prospective science teachers, (2) to examine the effect of the program on the perceptions of the participants, in terms of their ethics and education concerns, and (3) to evaluate the impact of the program design. The program utilized…

  4. A Resource Guide to Elementary Science Programs. National, State and Community-Based Programs.

    ERIC Educational Resources Information Center

    Marganoff, Bruce, Comp.

    This document, which reviews national, state, and local science activities and programs, provides educators with concrete examples of varied science programs that are a valuable resource for teaching science skills and proficiencies. This resource guide is intended to help educators supplement, amend, and revise their elementary science programs…

  5. Arctic Research NASA's Cryospheric Sciences Program

    NASA Technical Reports Server (NTRS)

    Waleed, Abdalati; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Much of NASA's Arctic Research is run through its Cryospheric Sciences Program. Arctic research efforts to date have focused primarily on investigations of the mass balance of the largest Arctic land-ice masses and the mechanisms that control it, interactions among sea ice, polar oceans, and the polar atmosphere, atmospheric processes in the polar regions, energy exchanges in the Arctic. All of these efforts have been focused on characterizing, understanding, and predicting, changes in the Arctic. NASA's unique vantage from space provides an important perspective for the study of these large scale processes, while detailed process information is obtained through targeted in situ field and airborne campaigns and models. An overview of NASA investigations in the Arctic will be presented demonstrating how the synthesis of space-based technology, and these complementary components have advanced our understanding of physical processes in the Arctic.

  6. NASA Airborne Science Program: NASA Stratospheric Platforms

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.

    2010-01-01

    The National Aeronautics and Space Administration conducts a wide variety of remote sensing projects using several unique aircraft platforms. These vehicles have been selected and modified to provide capabilities that are particularly important for geophysical research, in particular, routine access to very high altitudes, long range, long endurance, precise trajectory control, and the payload capacity to operate multiple, diverse instruments concurrently. While the NASA program has been in operation for over 30 years, new aircraft and technological advances that will expand the capabilities for airborne observation are continually being assessed and implemented. This presentation will review the current state of NASA's science platforms, recent improvements and new missions concepts as well as provide a survey of emerging technologies unmanned aerial vehicles for long duration observations (Global Hawk and Predator). Applications of information technology that allow more efficient use of flight time and the ability to rapidly reconfigure systems for different mission objectives are addressed.

  7. Microgravity science & applications. Program tasks and bibliography for FY 1995

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This annual report includes research projects funded by the Office of Life and Microgravity Sciences and Applications, Microgravity Science and Applications Division, during FY 1994. It is a compilation of program tasks (objective, description, significance, progress, students funded under research, and bibliographic citations) for flight research and ground based research in five major scientific disciplines: benchmark science, biotechnology, combustion science, fluid physics, and materials science. Advanced technology development (ATD) program task descriptions are also included. The bibliography cites the related principle investigator (PI) publications and presentations for these program tasks in FY 1994. Three appendices include a Table of Acronyms, a Guest Investigator index and a Principle Investigator index.

  8. Guide to Program Evaluation K-4. New York State Program Evaluation Test in Science.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany.

    This guide provides information on conducting a detailed program analysis using the New York State Program Evaluation Test in Science. The test consists of two required components (Objective Test and Manipulative Skills Test) and five optional components (Student Science Attitudes Survey; Student Science Program Environment Survey; Administrator…

  9. Science Enrichment Programs for Gifted High School Girls and Boys: Predictors of Program Impact on Science Confidence and Motivation.

    ERIC Educational Resources Information Center

    Stake, Jayne E.; Mares, Kenneth R.

    2001-01-01

    Reports on an evaluation of the impact of two science enrichment programs on gifted high school students (n=330). Evaluates the programs using a multimethod, multiperspective approach that proves to be a comprehensive evaluation of program impact on science attitudes. (Contains 57 references.) (DDR)

  10. Learning from Science: Case Studies of Science Offerings in Afterschool Programs

    ERIC Educational Resources Information Center

    Lundh, Patrik; House, Ann; Means, Barbara; Harris, Christopher J.

    2013-01-01

    Afterschool programs have increasingly gained attention as settings that can help enrich students' science learning. Even though science is widely included in afterschool activities, sites often lack adequate materials and staff know-how to implement quality science. To address this need, this article examines afterschool science in light of…

  11. Laser Science and Technology Program Update 2001

    SciTech Connect

    Chen, H L; Hackel, L A

    2002-01-01

    The Laser Science and Technology (LS&T) Program's mission is to develop advanced solid-state lasers, optics, materials technologies, and applications to solve problems and create new capabilities of importance to the Nation and the Laboratory. A top, near-term priority is to provide technical support to the National Ignition Facility (NIF) to ensure activation success. LS&T provides the NIF Programs with core competencies and supports its economic viability. The primary objectives of LS&T activities in fiscal year (FY) 2001 have been threefold: (1) to support deployment of hardware and to enhance lasers and optics performance for NIF, (2) to develop advanced solid-state laser systems and optical components for the Department of Energy (DOE) and the Department of Defense (DoD), and (3) to invent, develop, and deliver improved concepts and hardware for other government agencies and U.S. industry. Special efforts have also been devoted to building and maintaining our capabilities in three technology areas: high-power solid-state lasers, high-power optical materials, and applications of advanced lasers.

  12. Staff Development Program in Science K-5.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.

    The need to reinforce the skills of science teachers and supervisors and the need to increase student performance in the sciences have become critical national concerns. The importance of quality science education grows as science and technology continue to be major factors in our daily lives. New York City has recognized the need to enhance…

  13. Atmospheric Radiation Measurement Program Science Plan. Current Status and Future Directions of the ARM Science Program

    SciTech Connect

    Ackerman, Thomas P.; Del Genio, Anthony D.; Ellingson, Robert G.; Ferrare, Richard A.; Klein, Steve A.; McFarquhar, Gregory M.; Lamb, Peter J.; Long, Charles M.; Verlinde, Johannes

    2004-10-30

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years; Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square; Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds; Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations; Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites; Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale; and, Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote

  14. Assessment of the National Science Foundation's 1985-87 College Science Instrumentation Program. Final Report.

    ERIC Educational Resources Information Center

    Burgdorf, Kenneth; Celebuski, Carin A.

    The College Science Instrumentation Program (CSIP) was developed to provide seed money matching funds for the acquisition of laboratory instrumentation in order to improve the quality of undergraduate science/engineering education. This report describes the impact of the program and the program characteristics during the years 1985-87. An…

  15. Laser Science and Technology Program Update 2002

    SciTech Connect

    Hackel, L A; Chen, H L

    2003-03-01

    The Laser Science and Technology (LS&T) Program's mission is to develop advanced lasers, optics, materials technologies, and applications to solve problems and create new capabilities of importance to the nation and the Laboratory. A top, near-term priority is to provide technical support in the deployment and upgrade of the National Ignition Facility (NIF). Our other program activities synergistically develop technologies that are of interest to the NIF Directorate but outside the scope of the NIF funding. The primary objectives of LS&T activities in 2002 have been fourfold--(a) to support deployment of hardware and to enhance laser and optics performance for NIF, (b) to develop high-energy petawatt laser science and technology for the Department of Energy (DOE), (c) to develop advanced solid-state laser systems and optical components for the Department of Defense (DoD), and to invent develop, and deliver improved concepts and hardware for other government agencies and industry. Special efforts have been devoted to building and maintaining our capabilities in three technology areas: high-power short-pulse solid-state lasers, high-power optical materials, and applications of advanced lasers. LS&T activities during 2002 focused on seven major areas: (1) NIF Project--LS&T led major advances in the deployment of NIF Final Optics Assembly (FOA) and the development of 3{omega} optics processing and treatment technologies to enhance NIF's operations and performance capabilities. (2) Stockpile Stewardship Program (SSP)--LS&T personnel continued development of ultrashort-pulse lasers and high-power, large-aperture optics for applications in SSP, extreme-field science and national defense. To enhance the high-energy petawatt (HEPW) capability in NIF, LS&T continued development of advanced compressor-grating and front-end laser technologies utilizing optical-parametric chirped-pulse amplification (OPCPA). (3) High-energy-density physics and inertial fusion energy

  16. New Equations: The Urban Schools Science and Mathematics Program.

    ERIC Educational Resources Information Center

    Archer, Elayne

    This report describes the efforts of three urban school districts participating in the Urban Schools Science and Mathematics Program (USSAMP) to enhance mathematics and science education in the middle grades and to prepare more African-American, Latino, and female students for career opportunities in technology and science. In Atlanta (Georgia),…

  17. Diversifying Science: Underrepresented Student Experiences in Structured Research Programs

    ERIC Educational Resources Information Center

    Hurtado, Sylvia; Cabrera, Nolan L.; Lin, Monica H.; Arellano, Lucy; Espinosa, Lorelle L.

    2009-01-01

    Targeting four institutions with structured science research programs for undergraduates, this study focuses on how underrepresented students experience science. Several key themes emerged from focus group discussions: learning to become research scientists, experiences with the culture of science, and views on racial and social stigma.…

  18. Diversifying Science: Underrepresented Student Experiences in Structured Research Programs

    PubMed Central

    Cabrera, Nolan L.; Lin, Monica H.; Arellano, Lucy; Espinosa, Lorelle L.

    2013-01-01

    Targeting four institutions with structured science research programs for undergraduates, this study focuses on how underrepresented students experience science. Several key themes emerged from focus group discussions: learning to become research scientists, experiences with the culture of science, and views on racial and social stigma. Participants spoke of essential factors for becoming a scientist, but their experiences also raised complex issues about the role of race and social stigma in scientific training. Students experienced the collaborative and empowering culture of science, exhibited strong science identities and high self-efficacy, while developing directed career goals as a result of “doing science” in these programs. PMID:23503690

  19. Exemplary Programs in Physics, Chemistry, Biology, and Earth Science.

    ERIC Educational Resources Information Center

    Yager, Robert E., Ed.

    The 1982 Search for Excellence in Science Education project has identified 50 exemplary programs in physics, chemistry, biology, and earth science. Descriptions of four of these programs and the criteria used in their selection are presented. The first section reviews the direction established by Project Synthesis in searching for exemplary…

  20. 75 FR 22576 - Minority Science and Engineering Improvement Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ...: Background On April 1, 2009, we published a notice in the Federal Register (74 FR 14790) inviting... Minority Science and Engineering Improvement Program AGENCY: Office of Postsecondary Education, Department... Minority Science and Engineering Improvement Program. SUMMARY: The Secretary intends to use the grant...

  1. Case Studies of Liberal Arts Computer Science Programs

    ERIC Educational Resources Information Center

    Baldwin, D.; Brady, A.; Danyluk, A.; Adams, J.; Lawrence, A.

    2010-01-01

    Many undergraduate liberal arts institutions offer computer science majors. This article illustrates how quality computer science programs can be realized in a wide variety of liberal arts settings by describing and contrasting the actual programs at five liberal arts colleges: Williams College, Kalamazoo College, the State University of New York…

  2. A University-Based Private School Science Program.

    ERIC Educational Resources Information Center

    Howard, Robert E.; Block, Sharon

    1991-01-01

    The article describes the model science program developed at the University of Tulsa School for Gifted Children. Noted are advantages of the university affiliation for such a program, a curriculum which focuses on interdisciplinary but specific topics, coordination with other subject areas, and utilization of science experiences outside the…

  3. Advanced Science for Kids: Multicultural Assessment and Programming.

    ERIC Educational Resources Information Center

    Bettac, Teresa; Huckabee, Colleen; Musser, Louise; Patton, Paulette; Yates, Joyce

    1997-01-01

    Describes Advanced Science for Kids (ASK), a multicultural approach to assessment and programming for a middle school advanced science program. ASK is designed to provide alternative approaches to identification and assessment, facilitate authentic instruction and assessment, and provide minority students with academic and social support as they…

  4. The NSF Science Development Programs, Volume I: A Documentary Report.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    This report, published in two volumes, provides a documentary record of the National Science Foundation's (NSF) Science Development Program (SDP). Information is given on overall university funding levels and on other development programs, with SDP goals and procedures described in detail. Using information on budgets and goals as well as…

  5. Microgravity Combustion Science: 1995 Program Update

    NASA Technical Reports Server (NTRS)

    Ross, Howard D. (Editor); Gokoglu, Suleyman A. (Editor); Friedman, Robert (Editor)

    1995-01-01

    Microgravity greatly benefits the study of fundamental combustion processes. In this environment, buoyancy-induced flow is nearly eliminated, weak or normally obscured forces and flows can be isolated, gravitational settling or sedimentation is nearly eliminated, and temporal and spatial scales can be expanded. This document reviews the state of knowledge in microgravity combustion science with the emphasis on NASA-sponsored developments in the current period of 1992 to early 1995. The subjects cover basic research in gaseous premixed and diffusion-flame systems, flame structure and sooting, liquid droplets and pools, and solid-surface ignition and flame spread. They also cover applied research in combustion synthesis of ceramic-metal composites, advanced diagnostic instrumentation, and on-orbit fire safety. The review promotes continuing research by describing the opportunities for Principal Investigator participation through the NASA Research Announcement program and the available NASA Lewis Research Center ground-based facilities and spaceflight accommodations. This review is compiled by the members and associates of the NASA Lewis Microgravity Combustion Branch, and it serves as an update of two previous overview reports.

  6. Research Experiences in Community College Science Programs

    NASA Astrophysics Data System (ADS)

    Beauregard, A.

    2011-12-01

    research with my community college students by partnering with a research oceanographer. Through this partnership, students have had access to an active oceanographic researcher through classroom visits, use of data in curriculum, and research/cruise progress updates. With very little research activity currently going on at the community college, this "window" into scientific research is invaluable. Another important aspect of this project is the development of a summer internship program that has allowed four community college students to work directly with an oceanographer in her lab for ten weeks. This connection of community college students with world-class scientists in the field promotes better understanding of research and potentially may encourage more students to major in the sciences. In either approach, the interaction with scientists at different stages of their careers, from undergraduate and graduate students at universities to post docs and research scientists, also provides community college students with the opportunity to gain insight into possible career pathways. For both majors and non-majors, a key outcome of such experiences will be gaining experience in using inquiry and reasoning through the scientific method and becoming comfortable with data and technology.

  7. The science experience: The relationship between an inquiry-based science program and student outcomes

    NASA Astrophysics Data System (ADS)

    Poderoso, Charie

    Science education reforms in U.S. schools emphasize the importance of students' construction of knowledge through inquiry. Organizations such as the National Science Foundation (NSF), the National Research Council (NRC), and the American Association for the Advancement of Science (AAAS) have demonstrated a commitment to searching for solutions and renewed efforts to improve science education. One suggestion for science education reform in U.S. schools was a transition from traditional didactic, textbook-based to inquiry-based instructional programs. While inquiry has shown evidence for improved student learning in science, what is needed is empirical evidence of those inquiry-based practices that affect student outcomes in a local context. This study explores the relationship between instructional programs and curricular changes affecting student outcomes in the Santa Ana Unified District (SAUSD): It provides evidence related to achievement and attitudes. SAUSD employs two approaches to teaching in the middle school science classrooms: traditional and inquiry-based approaches. The Leadership and Assistance for Science Education Reform (LASER) program is an inquiry-based science program that utilizes resources for implementation of the University of California Berkeley's Lawrence Hall of Science Education for Public Understanding Program (SEPUP) to support inquiry-based teaching and learning. Findings in this study provide empirical support related to outcomes of seventh-grade students, N = 328, in the LASER and traditional science programs in SAUSD.

  8. The Los Alamos Space Science Outreach (LASSO) Program

    NASA Astrophysics Data System (ADS)

    Barker, P. L.; Skoug, R. M.; Alexander, R. J.; Thomsen, M. F.; Gary, S. P.

    2002-12-01

    The Los Alamos Space Science Outreach (LASSO) program features summer workshops in which K-14 teachers spend several weeks at LANL learning space science from Los Alamos scientists and developing methods and materials for teaching this science to their students. The program is designed to provide hands-on space science training to teachers as well as assistance in developing lesson plans for use in their classrooms. The program supports an instructional model based on education research and cognitive theory. Students and teachers engage in activities that encourage critical thinking and a constructivist approach to learning. LASSO is run through the Los Alamos Science Education Team (SET). SET personnel have many years of experience in teaching, education research, and science education programs. Their involvement ensures that the teacher workshop program is grounded in sound pedagogical methods and meets current educational standards. Lesson plans focus on current LANL satellite projects to study the solar wind and the Earth's magnetosphere. LASSO is an umbrella program for space science education activities at Los Alamos National Laboratory (LANL) that was created to enhance the science and math interests and skills of students from New Mexico and the nation. The LASSO umbrella allows maximum leveraging of EPO funding from a number of projects (and thus maximum educational benefits to both students and teachers), while providing a format for the expression of the unique science perspective of each project.

  9. Preparing Science Teachers: Strong Emphasis on Science Content Course Work in a Master's Program in Education

    NASA Astrophysics Data System (ADS)

    Ajhar, Edward A.; Blackwell, E.; Quesada, D.

    2010-05-01

    In South Florida, science teacher preparation is often weak as a shortage of science teachers often prompts administrators to assign teachers to science classes just to cover the classroom needs. This results is poor preparation of students for college science course work, which, in turn, causes the next generation of science teachers to be even weaker than the first. This cycle must be broken in order to prepare better students in the sciences. At St. Thomas University in Miami Gardens, Florida, our School of Science has teamed with our Institute for Education to create a program to alleviate this problem: A Master of Science in Education with a Concentration in Earth/Space Science. The Master's program consists of 36 total credits. Half the curriculum consists of traditional educational foundation and instructional leadership courses while the other half is focused on Earth and Space Science content courses. The content area of 18 credits also provides a separate certificate program. Although traditional high school science education places a heavy emphasis on Earth Science, this program expands that emphasis to include the broader context of astronomy, astrophysics, astrobiology, planetary science, and the practice and philosophy of science. From this contextual basis the teacher is better prepared to educate and motivate middle and high school students in all areas of the physical sciences. Because hands-on experience is especially valuable to educators, our program uses materials and equipment including small optical telescopes (Galileoscopes), several 8-in and 14-in Celestron and Meade reflectors, and a Small Radio Telescope installed on site. (Partial funding provided by the US Department of Education through Minority Science and Engineering Improvement Program grant P120A050062.)

  10. Assessment of the basic energy sciences program. Volume II. Appendices

    SciTech Connect

    Not Available

    1982-03-01

    A list of experts reviewing the Basic Energy Sciences (BES) program and their organizations are given. The assessment plan is explained; the program examined the following: quality of science being conducted in the program, quality of performers supported by the Basic Energy Sciences (BES) program, and the impact of the research on mission oriented needs. The intent of the assessment is to provide an indication of general status relative to these questions for the BES divisions. The approach to the assessment is described. The sampling plan which was used as a guide in determining the sample size and selecting the sample to evaluate the research program of the Office of Basic Energy Sciences are discussed. Special analyses were conducted on the dispersion of reviewers' ratings, the ratings of the lower funded projects, and the amount of time the principal investigator devoted to the project. These are presented in the final appendix together with histograms for individual rating variables for each program area. (MCW)

  11. NASA information sciences and human factors program

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee; Hood, Ray; Montemerlo, Melvin; Jenkins, James; Smith, Paul; Dibattista, John; Depaula, Ramon; Hunter, Paul; Lavery, David

    1991-01-01

    The FY-90 descriptions of technical accomplishments are contained in seven sections: Automation and Robotics, Communications, Computer Sciences, Controls and Guidance, Data Systems, Human Factors, and Sensor Technology.

  12. NASA Information Sciences and Human Factors Program

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee; Hood, Ray; Montemerlo, Melvin; Jenkins, James; Smith, Paul; Dibattista, John; Depaula, Ramon; Hunter, Paul

    1990-01-01

    Fiscal year 1989 descriptions of technical accomplishments in seven sections are presented: automation and robotics; communications; computer sciences; controls and guidance; data systems; human factors; and sensor technology.

  13. NASA Information Sciences and Human Factors Program

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee B.; Mciver, Duncan E.; Dibattista, John D.; Larsen, Ronald L.; Montemerlo, Melvin D.; Wallgren, Ken; Sokoloski, Marty; Wasicko, Dick

    1985-01-01

    This report contains FY 1984/85 descriptions and accomplishments in six sections: Computer Science and Automation, Controls and Guidance, Data Systems, Human Factors, Sensor Technology, and Communications.

  14. How Do Pre-Service Science Teachers' Views on Science, Scientists, and Science Teaching Change Over Time in a Science Teacher Training Program?

    NASA Astrophysics Data System (ADS)

    Ucar, Sedat

    2011-05-01

    Every aspect of teaching, including the instructional method, the course content, and the types of assessments, is influenced by teachers' attitudes and beliefs. Teacher education programs play an important role in the development of beliefs regarding teaching and learning. The purpose of the study was to document pre-service teachers' views on science, scientists, and science teaching as well as the relations between these views and the offered courses over several years spent in an elementary science teacher training program. The sample consisted of 145 pre-service elementary science teachers who were being trained to teach general science to students in the 6th through 8th grades. The research design was a cross-sectional study. Three different instruments were used to collect the data, namely, the "Draw a Scientist Test", "Draw a Science Teacher Test", and "Students' Views about Science" tests. The elementary science teacher training program influenced pre-service science teachers' views about science, scientists and science teaching to different degrees. The most pronounced impact of the program was on views about science teaching. Participants' impressions of science teaching changed from teacher-centered views to student-centered ones. In contrast, participants' views about scientists and science did not change much. This result could be interpreted as indicating that science teacher training programs do not change views about science and scientists but do change beliefs regarding teaching science.

  15. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    SciTech Connect

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  16. Effect of Teacher Education Program on Science Process Skills of Pre-Service Science Teachers

    ERIC Educational Resources Information Center

    Yakar, Zeha

    2014-01-01

    Over the past three or more decades, many studies have been written about teacher education and the preparation of science teachers. Presented here is one which investigated the effectiveness of scientific process skills on pre-service science teachers of Pamukkale University Primary Science Teacher Education Program for four years. This study…

  17. Assisting Teachers to Infuse Science Processes Into an Existing Unified Science Program.

    ERIC Educational Resources Information Center

    Fertitta, Neal V.

    The purpose of this study was to develop and implement a means of assisting teachers to infuse the teaching of science processes into an existing Unified Science program for grades K through 6. The identification of component science skills for each grade level and subsequent writing of sample activities are described. Field testing of the…

  18. The Psychological and Social Sciences Research Support Programs of the National Science Foundation: A Background Report.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Science and Technology.

    Offered in response to a request for background information from the Congressional Subcommittee on Science, Research, and Technology, the document presents a report of the National Science Foundation's (NSF) support for social and psychological sciences research. Major objectives of the report are to review the origins of NSF support programs;…

  19. Learning to teach science in a professional development school program

    NASA Astrophysics Data System (ADS)

    Hildreth, David P.

    1997-09-01

    The purpose of this study was to determine the effects of learning to teach science in a Professional Development School (PDS) program on university elementary education preservice teachers' (1) attitudes toward science, (2) science process skills achievement, and (3) sense of science teaching efficacy. Data were collected and analyzed using both quantitative and qualitative methods. Quantitative data were collected using the Science Attitude Inventory (North Carolina Math and Science Education Network (1994), the Test of Integrated Process Skills, TIPS, (Dillashaw & Okey, 1980), and the Science Teaching Efficacy Belief Instrument, STEBI, form B (Enochs & Riggs, 1990). A pretest posttest research design was used for the attitude and process skills constructs. These results were analyzed using paired t test procedures. A pre-experimental group comparison group research design was used for the efficacy construct. Results from this comparison were analyzed using unpaired t test procedures. Qualitative data were collected through students' responses to open-ended questionnaires, narrative interviews, journal entries, small messages, and unsolicited conversations. These data were analyzed via pattern analysis. Posttest scores were significantly higher than pretests scores on both the Science Attitude Inventory and the TIPS. This indicated that students had improved attitudes toward science and science teaching and higher process skills achievement after three semesters in the science-focused PDS program. Scores on the STEBI were significantly higher for students in the pre-experimental group when compared to students in the comparison group. This indicates that students in the science-focused PDS program possessed more efficacious beliefs about science teaching than did the comparison group. Quantitative data were supported by analysis of qualitative data. Implications from this study point to the effectiveness of learning to teach science in a science-focused PDS

  20. Whales and Hermit Crabs: Integrated Programming and Science.

    ERIC Educational Resources Information Center

    Kataoka, Joy C.; Lock, Robin

    1995-01-01

    This article describes an integrated program in marine biology. The program was implemented in a nongraded inclusive setting with second- to fourth-grade students whose abilities ranged from gifted to learning disabled. The program integrated science, art, music, language arts, and research and computer skills. (DB)

  1. Information systems requirements for the microgravity science and applications program

    NASA Technical Reports Server (NTRS)

    Kicza, M. E.; Kreer, J. R.

    1990-01-01

    NASA's Microgravity Science and Applications (MSAD) Program is presented. Additionally, the types of information produced within the program and the anticipated growth in information system requirements as the program transitions to Space Station Freedom utilization are discussed. Plans for payload operations support in the Freedom era are addressed, as well as current activities to define research community requirements for data and sample archives.

  2. Hybrid-Mentoring Programs for Beginning Elementary Science Teachers

    ERIC Educational Resources Information Center

    Bang, EunJin

    2013-01-01

    This study examines four induction models and teacher changes in science teaching practices, as a result of several mentoring programs. It explores three different computer-mediated mentoring programs, and a traditional offline induction program--in terms of interactivity, inquiry-based teaching, and topics of knowledge. Fifteen elementary science…

  3. Information systems requirements for the Microgravity Science and Applications Program

    NASA Technical Reports Server (NTRS)

    Kicza, M. E.; Kreer, J. R.

    1991-01-01

    NASA's Microgravity Science and Applications (MSAD) Program is presented. Additionally, the types of information produced wiithin the program and the anticipated growth in information system requirements as the program transitions to Space Station Freedom utilization are discussed. Plans for payload operations support in the Freedom era are addressed, as well as current activities to define research community requirements for data and sample archives.

  4. Lessons from NASA Applied Sciences Program: Success Factors in Applying Earth Science in Decision Making

    NASA Astrophysics Data System (ADS)

    Friedl, L. A.; Cox, L.

    2008-12-01

    The NASA Applied Sciences Program collaborates with organizations to discover and demonstrate applications of NASA Earth science research and technology to decision making. The desired outcome is for public and private organizations to use NASA Earth science products in innovative applications for sustained, operational uses to enhance their decisions. In addition, the program facilitates the end-user feedback to Earth science to improve products and demands for research. The Program thus serves as a bridge between Earth science research and technology and the applied organizations and end-users with management, policy, and business responsibilities. Since 2002, the Applied Sciences Program has sponsored over 115 applications-oriented projects to apply Earth observations and model products to decision making activities. Projects have spanned numerous topics - agriculture, air quality, water resources, disasters, public health, aviation, etc. The projects have involved government agencies, private companies, universities, non-governmental organizations, and foreign entities in multiple types of teaming arrangements. The paper will examine this set of applications projects and present specific examples of successful use of Earth science in decision making. The paper will discuss scientific, organizational, and management factors that contribute to or impede the integration of the Earth science research in policy and management. The paper will also present new methods the Applied Sciences Program plans to implement to improve linkages between science and end users.

  5. Eisenhower Fund Leads Programs in Science, Math.

    ERIC Educational Resources Information Center

    Pennisi, Elizabeth

    1991-01-01

    Discussed is a program that awards money to institutions that want to develop teacher training programs with national significance. Information on how the funds can be used and how the funds are distributed is included. (KR)

  6. NASA Information Sciences and Human Factors Program

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee (Editor); Hood, Ray (Editor); Montemerlo, Melvin (Editor); Sokoloski, Martin M. (Editor); Jenkins, James P. (Editor); Smith, Paul H. (Editor); Dibattista, John D. (Editor)

    1988-01-01

    The FY 1987 descriptions of technical accomplishments are contained for seven areas: automation and robotics, communications systems, computer sciences, controls and guidance, data systems, human factors, and sensor technology.

  7. NASA information sciences and human factors program

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee; Hood, Ray; Montemerlo, Melvin; Sokoloski, Martin; Jenkins, James; Smith, Paul; Dibattista, John

    1989-01-01

    The FY 1988 descriptions of technical accomplishments is presented in seven sections: Automation and Robotics, Communications Systems, Computer Sciences, Controls and Guidance, Data Systems, Human Factors, and Sensor Technology.

  8. Space life sciences: Programs and projects

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA space life science activities are outlined. Brief, general descriptions are given of research in the areas of biomedical research, space biology, closed loop life support systems, exobiology, and biospherics.

  9. A Research Program in Flight Sciences

    NASA Technical Reports Server (NTRS)

    Whitesides, John L.; Waggoner, Edgar G. (Technical Monitor)

    2005-01-01

    Since its inception in January 2003, thc program has provided support for 1 faculty and a total of 7 Graduate Research Scholar Assistants, of these all 7 have completed their MS degree program. The program has generated 5 MS thesis and 2 MS project reports. Attachment: Appendix A, B, C, and D.

  10. An Introduction to Programming for Students in Sciences.

    ERIC Educational Resources Information Center

    Boero, P.; And Others

    1982-01-01

    Describes a method for integrating basic instruction on computer programing in mathematics courses for earth science, chemistry, and pharmaceutical chemistry students to provide them with a knowledge of the real possibilities of computing media. (CHC)

  11. NSRC Inquiry-Based Science Education Programs, 2005

    ERIC Educational Resources Information Center

    National Science Resources Center, 2005

    2005-01-01

    The National Science Resources Center (NSRC) offers regional, national, and international science education programs, as well as technical assistance, through its three integrated Centers of Excellence. This guide describes NSRC's curricula for grades K-8, how they correlate with national content standards, and how they can be integrated with…

  12. Gender Digital Divide and Challenges in Undergraduate Computer Science Programs

    ERIC Educational Resources Information Center

    Stoilescu, Dorian; McDougall, Douglas

    2011-01-01

    Previous research revealed a reduced number of female students registered in computer science studies. In addition, the female students feel isolated, have reduced confidence, and underperform. This article explores differences between female and male students in undergraduate computer science programs in a mid-size university in Ontario. Based on…

  13. ESTD: A Program that Helps Earth Science Teachers.

    ERIC Educational Resources Information Center

    Bartholowmew, Rolland B.; Boyer, Robert E.

    1981-01-01

    Described is the annual Earth Science Teacher Day sponsored by the University of Texas. The purpose is to provide an attractive program combining both content enrichment and new classroom activities for earth science teachers. The format includes workshops, work sessions and field trips. (DS)

  14. Direction Discovery: A Science Enrichment Program for High School Students

    ERIC Educational Resources Information Center

    Sikes, Suzanne S.; Schwartz-Bloom, Rochelle D.

    2009-01-01

    Launch into education about pharmacology (LEAP) is an inquiry-based science enrichment program designed to enhance competence in biology and chemistry and foster interest in science careers especially among under-represented minorities. The study of how drugs work, how they enter cells, alter body chemistry, and exit the body engages students to…

  15. Development and Implementation of Science and Technology Ethics Education Program for Prospective Science Teachers

    NASA Astrophysics Data System (ADS)

    Rhee, Hyang-yon; Choi, Kyunghee

    2014-05-01

    The purposes of this study were (1) to develop a science and technology (ST) ethics education program for prospective science teachers, (2) to examine the effect of the program on the perceptions of the participants, in terms of their ethics and education concerns, and (3) to evaluate the impact of the program design. The program utilized problem-based learning (PBL) which was performed as an iterative process during two cycles. A total of 23 and 29 prospective teachers in each cycle performed team activities. A PBL-based ST ethics education program for the science classroom setting was effective in enhancing participants' perceptions of ethics and education in ST. These perceptions motivated prospective science teachers to develop and implement ST ethics education in their future classrooms. The change in the prospective teachers' perceptions of ethical issues and the need for ethics education was greater when the topic was controversial.

  16. How Has Reform in Science Teacher Education Programs Changed Preservice Teachers' Views About Science?

    NASA Astrophysics Data System (ADS)

    Ucar, Sedat; Sanalan, Vehbi Aytekin

    2011-02-01

    Reforms are typically criticized for failing to bridge the gap between practitioners and researchers and for the lack of research support provided prior to implementation. Research has indicated that preservice teachers' understandings of high-quality science teaching are formed by teacher training programs. The purposes of this study are to investigate views about science in preservice teachers in old and new teacher training programs and to determine whether and how these two programs shape teacher trainees' views of science. A total of 459 students from a 4-year elementary science teacher training program participated in the study. A 41-item instrument was used to collect data. Four factors were extracted from the data, explaining 41.58% of the variance, and the reliability was found to be .86. There were significant differences for both males and females between the old and new programs. However, no difference was found between males' and females' total scores. In addition, students from the two programs had significantly different scores on the sub-scales of "Anxiety" and "Uncertainty". For example, males in the new program had significantly higher scores on the "Anxiety" and "Uncertainty" sub-scales. The overall increase in science course hours and decrease in science method course hours in the new program may account for these findings.

  17. Developing a Seamless Science Education Program (K-Graduate School)

    NASA Astrophysics Data System (ADS)

    Hyde, Truell; Smith, Bernard; Matthews, Lorin; Carmona-Reyes, Jorge

    The production of STEM personnel has declined precipitously over the past several decades. This is threatening not only the international economy but also the world's access to space. It is imperative that scientists within the current space physics community develop programs at the K-12 level able to spark an interest in science while providing an understanding that a career in science can be rewarding both professionally and financially. Ideally such programs should mesh seamlessly with current university undergraduate and graduate programs, easing the student's transition from one to the other. This goal is the primary driver behind CASPER's current outreach program. CASPER programs supporting this paradigm will be discussed along with related funding opportunities such as the Department of Education GearUp Program and the NSF REU and RET programs.

  18. Utilizing Academic Graduate Programs in Basic Sciences

    ERIC Educational Resources Information Center

    Kitchen, Hyram

    1977-01-01

    The need to expand graduate programs in veterinary medical education is described and suggestions are offered for developing curricula. It is noted that the comparative training in species approach of veterinary schools provides a basis for launching expanded graduate programs. (LBH)

  19. Education Department's Senese Outlines Science, Math Programs.

    ERIC Educational Resources Information Center

    Lepkowski, Wil

    1983-01-01

    Presented is an interview with Donald J. Senese (Department of Education Assistant Secretary) in which the department's functions, responsibilities, and philosophies in precollege science/mathematics education are outlined and discussed. Specific questions answered relate to curriculum development, creationism, copyright ownership of software,…

  20. Math and Science Programs: Making Them Count.

    ERIC Educational Resources Information Center

    Stewart, Lincoln

    A solid background in math, science, and technology is vital to competing in today's workforce, as well as necessary to understanding the world in which we live. Mastery of technology is now necessary even in traditionally vocational careers, as some of today's automobiles have more computing power than a personal computer. New York City private…

  1. Cognitive and Neural Sciences Division, 1988 Programs.

    ERIC Educational Resources Information Center

    Vaughan, Willard S., Ed.

    The research and development efforts performed by principal investigators under sponsorship of the Office of Naval Research Cognitive and Neural Sciences Division during 1988 are documented. The title, name and affiliation of the principal investigator, project code, contract number, current end date, technical objective, approach, and progress of…

  2. Addressing the Nature of Science in Preservice Science Teacher Preparation Programs: Science Educator Perceptions

    ERIC Educational Resources Information Center

    Backhus, DeWayne A.; Thompson, Kenneth Wayne

    2006-01-01

    The nature of science (NOS) has a prominent role among the national science education content standards at all grade levels, K-12. Results from a national survey of collegiate science educators indicate the perception that the greatest contributors to preservice teachers' understanding of the nature of science were science methods courses,…

  3. This Award-Winning Science Program Encourages Students to Learn by Doing.

    ERIC Educational Resources Information Center

    McCormick, Kathleen

    1983-01-01

    Jefferson County (Colorado), because of an elementary school science program and a junior high school applied program, was among the six school systems honored by the National Science Teachers Association for exemplary science programs. Specific characteristics of the Colorado programs, and those common to all successful science programs, are…

  4. A Study of Educational Opportunity Program (EOP) Students Within Health Science Career Preparation Programs.

    ERIC Educational Resources Information Center

    James, William H.; And Others

    Participation of minority students within health science career preparation programs is investigated in this study from the University of Washington. The history of minority admissions to medical and nursing schools throughout the country is reviewed. Health sciences programs for minorities at the university are discussed and the impact of the…

  5. The Transforming Earth System Science Education (TESSE) program

    NASA Astrophysics Data System (ADS)

    Graham, K. J.; Bryce, J. G.; Brown, D.; Darwish, A.; Finkel, L.; Froburg, E.; Furman, T.; Guertin, L.; Hale, S. R.; Johnson, J.; Porter, W.; Smith, M.; Varner, R.; von Damm, K.

    2007-12-01

    A partnership between the University of New Hampshire (UNH), Dillard University, Elizabeth City State University, and Pennsylvania State University has been established to prepare middle and high school teachers to teach Earth and environmental sciences from a processes and systems approach. Specific project goals include: providing Earth system science content instruction; assisting teachers in implementing Earth system science in their own classrooms; and creating opportunities for pre-service teachers to experience authentic research with Earth scientists. TESSE programmatic components comprise (1) a two-week intensive summer institutes for current and future teachers; (2) eight-week research immersion experiences that match preservice teachers with Earth science faculty mentors; and (3) a science liaison program involving the pairing of inservice teachers with graduate students or future teachers. The first year of the program supported a total of 49 participants (42 inservice and preservice teachers, as well as 7 graduate fellows). All participants in the program attended an intensive two-week summer workshop at UNH, and the academic-year science liaison program is underway. In future summers, all partnering institutions will hold similar two-week summer institutes. UNH will offer a more advanced course geared towards "hot topics" and research techniques in the Earth and environmental sciences.

  6. Earth system science: A program for global change

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Earth System Sciences Committee (ESSC) was appointed to consider directions for the NASA Earth-sciences program, with the following charge: review the science of the Earth as a system of interacting components; recommend an implementation strategy for Earth studies; and define the role of NASA in such a program. The challenge to the Earth system science is to develop the capability to predict those changes that will occur in the next decade to century, both naturally and in response to human activity. Sustained, long-term measurements of global variables; fundamental descriptions of the Earth and its history; research foci and process studies; development of Earth system models; an information system for Earth system science; coordination of Federal agencies; and international cooperation are examined.

  7. Spacelab 1 and the Life Sciences Flight Experiments Program

    NASA Technical Reports Server (NTRS)

    Bush, W. H.; Clark, R. S.

    1984-01-01

    The Life Sciences Flight Experiments Program (LSFEP) was established by NASA in 1978 to plan and direct efforts necessary to conduct a continuing program of in-flight life science investigations throughout the Space Shuttle era. The Spacelab 1 (SL-1) mission, conducted from November 28 to December 8, 1983, was to verify Spacelab performance through a variety of scientific experiments including life science. A description is given of the seven NASA life sciences experiments, which consisted of four human experiments, a fungus experiment, a plant experiment, and radiation experiments. Ten life sciences experiments from the European Space Agency were also flown. The experiments include studies of the circadian rhythms in Neurospora crassa, the nutation of Helianthus annus, the vestibular function during weightlessness, the influence of space flight on erythrokinetics in man, and the adaptation of vestibulo-spinal reflex mechanisms during space flight.

  8. NASA'S Water Resources Element Within the Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2011-01-01

    The NASA Earth Systems Division has the primary responsibility for the Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the NASA Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses major problems facing water resources managers, including having timely and accurate data to drive their decision support tools. It then describes how NASA's science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA's Water Resources Applications Program are described.

  9. Family and Consumer Sciences Education. Vocational Education Program Courses Standards.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Div. of Applied Tech., Adult, and Community Education.

    This document contains vocational education program course standards (curriculum frameworks and student performance standards) for exploratory courses, practical arts courses, and job preparatory programs offered at the secondary and postsecondary level as part of the family and consumer sciences component of Florida's comprehensive vocational…

  10. Exercise Science Academic Programs and Research in the Philippines

    PubMed Central

    MADRIGAL, NORBERTO; REYES, JOSEPHINE JOY; PAGADUAN, JEFFREY; ESPINO, REIL VINARD

    2010-01-01

    In this invited editorial, professors from leading institutions in the Philippines, share information regarding their programs relating to Exercise Science. They have provided information on academic components such as entrance requirements, progression through programs, and professional opportunities available to students following completion; as well as details regarding funding available to students to participate in research, collaboration, and specific research interests. PMID:27182343

  11. INSTITUTING A FIRE SCIENCE PROGRAM AT SHASTA COLLEGE.

    ERIC Educational Resources Information Center

    BROOKS, WALTER L.; KIELBART, RONALD F.

    A STRUCTURED INTERVIEW WAS USED AS THE INSTRUMENT IN A STUDY OF THE SHASTA COLLEGE SERVICE AREA TO DETERMINE THE NEED FOR ESTABLISHMENT OF A FIRE SCIENCE EDUCATION PROGRAM. THE RESEARCHERS IDENTIFIED SEVEN TYPES OF NONADMINISTRATIVE JOBS FOR WHICH SUCH A PROGRAM WOULD BE HELPFUL, BOTH AS PREPARATION FOR ENTRY AND AS A PART OF AN INSERVICE TRAINING…

  12. MORE for Teachers: A Program for Science Teacher Preparation

    ERIC Educational Resources Information Center

    Miller, Matthew; Ohana, Chris; Hanley, Daniel

    2013-01-01

    This article summarizes how a group of undergraduate regional university faculty built a program for rigorous and research-based science teacher preparation at the elementary level--namely, the "Model of Research-Based Education for Teachers" (MORE for Teachers). First, we discuss the research upon which the program is built: (1) a…

  13. A Graduate Academic Program in Medical Information Science.

    ERIC Educational Resources Information Center

    Blois, Marsden S., Jr.; Wasserman, Anthony I.

    A graduate academic program in medical information science has been established at the University of California, San Francisco, for the education of scientists capable of performing research and development in information technology in the health care setting. This interdisciplinary program, leading to a Doctor of Philosophy degree, consists of an…

  14. Cooperative General Science Program. Progress Report 1966-74.

    ERIC Educational Resources Information Center

    Puri, O. P.

    This is a final report on an experimental program in curriculum development. Four undergraduate colleges in the Atlanta University Center (Clark, Morehouse, Morris Brown, and Spelman) have cooperated to develop a 1-year course in general science for use in liberal arts colleges. This program has proven successful in developing and presenting…

  15. Health Science Education. Vocational Education Program Courses Standards.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Div. of Applied Tech., Adult, and Community Education.

    This document contains vocational education program course standards (curriculum frameworks and student performance standards) for exploratory courses, practical arts courses, and job preparatory programs offered at the secondary and postsecondary level as part of the health science education component of Florida's comprehensive vocational…

  16. Development of an Actuarial Science Program at Salisbury University

    ERIC Educational Resources Information Center

    Wainwright, Barbara A.

    2014-01-01

    This paper focuses on the development of an actuarial science track for the mathematics major at Salisbury University (SU). A timeline from the initial investigation into such a program through the proposal and approval processes is shared for those who might be interested in developing a new actuarial program. It is wise to start small and take…

  17. Television. Innovations: The Social Consequences of Science and Technology Program.

    ERIC Educational Resources Information Center

    McConnell, Mary C.; And Others

    This module is part of an interdisciplinary program designed to educate the general citizenry regarding the issues of science/technology/society (STS) that have important consequences for both present and future social policies. Specifically, the program provides an opportunity for students to assess the effects of selected technological…

  18. Earth-Like Exoplanets: The Science of NASA's Navigator Program

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R. (Editor); Traub, Wesley A. (Editor)

    2006-01-01

    This book outlines the exoplanet science content of NASA's Navigator Program, and it identifies the exoplanet research priorities. The goal of Navigator Program missions is to detect and characterize Earth-like planets in the habitable zone of nearby stars and to search for signs of life on those planets.

  19. NASA information sciences and human factors program

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Data Systems Program consists of research and technology devoted to controlling, processing, storing, manipulating, and analyzing space-derived data. The objectives of the program are to provide the technology advancements needed to enable affordable utilization of space-derived data, to increase substantially the capability for future missions of on-board processing and recording and to provide high-speed, high-volume computational systems that are anticipated for missions such as the evolutionary Space Station and Earth Observing System.

  20. Introduction of Materials Science and Engineering to High School Students through Science Partnership Program

    NASA Astrophysics Data System (ADS)

    Usami, Hatsuhiko; Adachi, Satoshi; Yasuda, Ken-Ichi; Kaneko, Kei-Ichi; Iwasaki, Masaji

    The present paper describes the introduction of materials science and engineering to high school students through the science partnership program (SPP) planed by the ministry of education and science. Four educational topics of material science and engineering, namely, light emitting diodes (LED), carbon nano-tubes, bio-materials and traditional structural materials were selected for the program. Successive lectures were given on all the topics and practical experiments were carried out on the fabrication of an electrical circuit for LED and manufacturing of silver rings. In order to investigate the outcome of the program, a questionnaire and hearings were conducted. The opinions reflect the effectiveness of young teaching assistants in motivating and alleviating the interest of the students in the SPP program.

  1. NASA's Earth Science Flight Program overview

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2011-11-01

    NASA's Earth Science Division (ESD) conducts pioneering work in Earth system science, the interdisciplinary view of Earth that explores the interaction among the atmosphere, oceans, ice sheets, land surface interior, and life itself that has enabled scientists to measure global and climate changes and to inform decisions by governments, organizations, and people in the United States and around the world. The ESD makes the data collected and results generated by its missions accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster management, agricultural yield projections, and aviation safety. In addition to four missions now in development and 14 currently operating on-orbit, the ESD is now developing the first tier of missions recommended by the 2007 Earth Science Decadal Survey and is conducting engineering studies and technology development for the second tier. Furthermore, NASA's ESD is planning implementation of a set of climate continuity missions to assure availability of key data sets needed for climate science and applications. These include a replacement for the Orbiting Carbon Observatory (OCO), OCO-2, planned for launch in 2013; refurbishment of the SAGE III atmospheric chemistry instrument to be hosted by the International Space Station (ISS) as early as 2014; and the Gravity Recovery and Climate Experiment Follow-On (GRACE FO) mission scheduled for launch in 2016. The new Earth Venture (EV) class of missions is a series of uncoupled, low to moderate cost, small to medium-sized, competitively selected, full orbital missions, instruments for orbital missions of opportunity, and sub-orbital projects.

  2. The Impact of an Informal Science Program on Students' Science Knowledge and Interest

    ERIC Educational Resources Information Center

    Zandstra, Anne Maria

    2012-01-01

    In this sequential explanatory mixed methods study, quantitative and qualitative data were used to measure the impact of an informal science program on eleventh grade students' science knowledge and interest. The local GEAR UP project has been working for six years with a cohort of students who were in eleventh and twelfth grade during the…

  3. Engineering Efforts and Opportunities in the National Science Foundation's Math and Science Partnerships (MSP) Program

    ERIC Educational Resources Information Center

    Brown, Pamela; Borrego, Maura

    2013-01-01

    The National Science Foundation's Math and Science Partnership (MSP) program (NSF, 2012) supports partnerships between K-12 school districts and institutions of higher education (IHEs) and has been funding projects to improve STEM education in K-12 since 2002. As of 2011, a total of 178 MSP projects have received support as part of a STEM…

  4. Science Career Interests among High School Girls One Year after Participation in a Summer Science Program.

    ERIC Educational Resources Information Center

    Phillips, Katherine A.; Barrow, Lloyd H.; Chandrasekhar, Meera

    2002-01-01

    Introduces a residential summer program, the New Experiences for Women in Science and Technology (Newton) Academy, which was developed to encourage high school girls' interest in the physical sciences and engineering. Reports the results of a follow-up evaluative study of the 1998 Newton Academy participants one year after participation. (Contains…

  5. Building Alaska's Science and Engineering Pipeline: Evaluation of the Alaska Native Science & Engineering Program

    ERIC Educational Resources Information Center

    Bernstein, Hamutal; Martin, Carlos; Eyster, Lauren; Anderson, Theresa; Owen, Stephanie; Martin-Caughey, Amanda

    2015-01-01

    The Urban Institute conducted an implementation and participant-outcomes evaluation of the Alaska Native Science & Engineering Program (ANSEP). ANSEP is a multi-stage initiative designed to prepare and support Alaska Native students from middle school through graduate school to succeed in science, technology, engineering, and math (STEM)…

  6. Science and engineering programs for the IBM PC

    SciTech Connect

    Not Available

    1983-01-01

    The selection of programs for the IBM PC in this book is aimed primarily at the electronics and communications engineer, programmer, college student, and advanced electronic hobbyist, all having at least some familiarity with the computer and with programming in BASIC. The programs are all written in BASIC, will work with both DOS 1.1 and 2.0 releases, and can easily be modified to the user's specific needs. Thus any program can be applied either as it is, to solve many science, engineering, and operations research problems, or it can be incorporated into another program written by the user. The programs presented cover assorted problems in the fields of electrical engineering, probability, statistics, queuing theory, reliability, curve fitting, graph generation, number theory, computer science, artificial intelligence, and other disciplines. 13 references.

  7. Science Educational Outreach Programs That Benefit Students and Scientists.

    PubMed

    Clark, Greg; Russell, Josh; Enyeart, Peter; Gracia, Brant; Wessel, Aimee; Jarmoskaite, Inga; Polioudakis, Damon; Stuart, Yoel; Gonzalez, Tony; MacKrell, Al; Rodenbusch, Stacia; Stovall, Gwendolyn M; Beckham, Josh T; Montgomery, Michael; Tasneem, Tania; Jones, Jack; Simmons, Sarah; Roux, Stanley

    2016-02-01

    Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs--"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist"--that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities. PMID:26844991

  8. Apoptosis and the Airway Epithelium

    PubMed Central

    White, Steven R.

    2011-01-01

    The airway epithelium functions as a barrier and front line of host defense in the lung. Apoptosis or programmed cell death can be elicited in the epithelium as a response to viral infection, exposure to allergen or to environmental toxins, or to drugs. While apoptosis can be induced via activation of death receptors on the cell surface or by disruption of mitochondrial polarity, epithelial cells compared to inflammatory cells are more resistant to apoptotic stimuli. This paper focuses on the response of airway epithelium to apoptosis in the normal state, apoptosis as a potential regulator of the number and types of epithelial cells in the airway, and the contribution of epithelial cell apoptosis in important airways diseases. PMID:22203854

  9. Emergency airway puncture

    MedlinePlus

    Emergency airway puncture is the placement of a hollow needle through the throat into the airway. It ... Emergency airway puncture is done in an emergency situation, when someone is choking and all other efforts ...

  10. Ground-Based Research within NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Ground-based research in Materials Science for NASA's Microgravity program serves several purposes, and includes approximately four Principal Investigators for every one in the flight program. While exact classification is difficult. the ground program falls roughly into the following categories: (1) Intellectual Underpinning of the Flight Program - Theoretical Studies; (2) Intellectual Underpinning of the Flight Program - Bringing to Maturity New Research; (3) Intellectual Underpinning of the Flight Program - Enabling Characterization; (4) Intellectual Underpinning of the Flight Program - Thermophysical Property Determination; (5) Radiation Shielding; (6) Preliminary In Situ Resource Utilization; (7) Biomaterials; (8) Nanostructured Materials; (9) Materials Science for Advanced Space Propulsion. It must be noted that while the first four categories are aimed at using long duration low gravity conditions, the other categories pertain more to more recent NASA initiatives in materials science. These new initiatives address NASA's future materials science needs in the realms of crew health and safety, and exploration, and have been included in the most recent NASA Research Announcements (NRA). A description of each of these nine categories will be given together with examples of the kinds of research being undertaken.

  11. Microgravity sciences application visiting scientist program

    NASA Technical Reports Server (NTRS)

    Glicksman, Martin; Vanalstine, James

    1995-01-01

    Marshall Space Flight Center pursues scientific research in the area of low-gravity effects on materials and processes. To facilitate these Government performed research responsibilities, a number of supplementary research tasks were accomplished by a group of specialized visiting scientists. They participated in work on contemporary research problems with specific objectives related to current or future space flight experiments and defined and established independent programs of research which were based on scientific peer review and the relevance of the defined research to NASA microgravity for implementing a portion of the national program. The programs included research in the following areas: protein crystal growth, X-ray crystallography and computer analysis of protein crystal structure, optimization and analysis of protein crystal growth techniques, and design and testing of flight hardware.

  12. The Sombrero Marsh Education Program: Diverse partnerships building strong Earth System science programs

    NASA Astrophysics Data System (ADS)

    Smith, L. K.; Bierbaum, V.

    2003-12-01

    Broad-based science education partnerships can create exemplary education programs because each partner brings their particular expertise to the table. The Sombrero Marsh Education Program provides an example of such a program where a school district, a local government agency, a non-profit organization, and an institute of higher learning developed a field-based watershed curriculum for upper elementary students at Sombrero Marsh, a recently restored rare saline marsh located in Boulder Valley. The partners' expertise, ranging from wetland ecology and restoration to pedagogy, yielded a curriculum that includes many of the characteristics that are highlighted within the National Science Education Standards, such as inquiry-based, hands-on activities where students serve as scientists and collect real data that will be used to monitor the progress of marsh restoration. Once established, these diverse partnerships can attract further funding and expand their programs from the local to the national level, thus providing a successful model with a widespread impact. The Sombrero Marsh Program will soon be making this transition because the Cooperative Institute for Research in Environmental Science (CIRES), along with 4 other departments of the University of Colorado, was awarded a NSF GK-12 Grant to expand the marsh program to the secondary science level. Using the initial Sombrero Marsh Program as a guide, eight GK-12 Fellows from the departments of Chemistry and Biochemistry, Geological Sciences, Environmental and Evolutionary Biology, and Astrophysical and Planetary Sciences will develop a secondary science level program at Sombrero Marsh, which initially will be delivered to schools with a significant population of students from under-represented groups. Several dimensions of the marsh program, such as community-based research and ecological sterwardship, can serve as a national model for similar science education programs that aim to promote Earth System science.

  13. Girls in Engineering, Mathematics and Science, GEMS: A Science Outreach Program for Middle-School Female Students

    ERIC Educational Resources Information Center

    Dubetz, Terry A.; Wilson, Jo Ann

    2013-01-01

    Girls in Engineering, Mathematics and Science (GEMS) is a science and math outreach program for middle-school female students. The program was developed to encourage interest in math and science in female students at an early age. Increased scientific familiarity may encourage girls to consider careers in science and mathematics and will also help…

  14. Data systems and computer science programs: Overview

    NASA Technical Reports Server (NTRS)

    Smith, Paul H.; Hunter, Paul

    1991-01-01

    An external review of the Integrated Technology Plan for the Civil Space Program is presented. The topics are presented in viewgraph form and include the following: onboard memory and storage technology; advanced flight computers; special purpose flight processors; onboard networking and testbeds; information archive, access, and retrieval; visualization; neural networks; software engineering; and flight control and operations.

  15. OVERVIEW OF EPA'S LANDSCAPE SCIENCES PROGRAM

    EPA Science Inventory

    Over the past 10 years, the U.S. Environmental Protection Agency's Office of Research and Development's National Exposure Research Laboratory has expanded it's ecological research program to include the development of landscape metrics and indicators to assess ecological risk and...

  16. OVERVIEW OF EPA'S LANDSCAPE SCIENCE PROGRAM

    EPA Science Inventory

    Over the past 10 years, the U.S. Environmental Protection Agency's Office of Research and Development's National Exposure Research Laboratory has expanded it's ecological research program to include the development of landscape metrics and indicators to assess ecological risk and...

  17. Health Sciences. Program CIP: 51.0000

    ERIC Educational Resources Information Center

    Murdock, Ashleigh, Ed.

    2007-01-01

    Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…

  18. Polymer Science. Program CIP: 15.0607

    ERIC Educational Resources Information Center

    Research and Curriculum Unit, 2010

    2010-01-01

    Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…

  19. Addressing the Process Improvement Science Knowledge and Skills of Program Directors and Associate Program Directors

    PubMed Central

    Gravdal, Judith A.; Hyziak, Pamela; Belmonte, Frank; Clemens, Mary Ann; Sulo, Suela

    2015-01-01

    Background Process improvement (PI) science is relatively new to healthcare and has only recently been introduced to medical education. Most residency faculty lack training or experience in PI science activities. We assessed the impact of PI science education on the knowledge and attitudes of a group of residency and fellowship program directors and associate program directors using their respective Accreditation Council for Graduate Medical Education annual program evaluations (APEs) as an experiential object. Methods For this pre/post study, 16 program directors and 7 associate program directors were surveyed before and after 4 didactic modules. The APEs for the 2 years prior to the intervention and in the fall after the intervention were analyzed. Mentoring in the use of these skills in the preparation of the APEs was provided. Results The participants demonstrated improved knowledge in some areas and increased awareness of deficits in other areas. APE quality did not show consistent improvement following the intervention. Conclusion The PI science knowledge and skill gaps of program directors and associate program directors are likely to impact the content and success of residency curricula. The designed PI science curriculum was slightly effective. Using the APE as the experiential object was convenient, but the APE was not the best project for a PI exercise. New, effective strategies and interventions to develop expertise in PI science are important as programs grapple with meeting new requirements, ensuring quality programs, and preparing residents and fellows for practice. PMID:25829878

  20. Evaluating the Impact of Science-Enrichment Programs on Adolescents' Science Motivation and Confidence: The Splashdown Effect

    ERIC Educational Resources Information Center

    Stake, Jayne E.; Mares, Kenneth R.

    2005-01-01

    The impact of summer science-enrichment programs on high-school students' science motivation and confidence was evaluated in a 7-month period following program completion. The programs took place on a college campus. The splashdown effect was defined as program-related changes the program graduates recognized in themselves that became apparent to…

  1. Scientists Meet to Plan ALMA Science Program

    NASA Astrophysics Data System (ADS)

    1999-09-01

    Two hundred astronomers from around the world will meet in Washington, DC on October 7 and 8 to discuss exciting new science to be done with the Atacama Large Millimeter Array (ALMA). The conference will be held at the Carnegie Institution of Washington (CIW), 1530 P St. NW, and is sponsored by Associated Universities, Inc., which operates the National Radio Astronomy Observatory (NRAO) for the National Science Foundation (NSF). ALMA will study the structure of the early universe and the evolution of galaxies; gather crucial data on the formation of stars, protoplanetary disks, and planets; and provide new insights on the familiar objects of our own solar system. The array, expected to consist of 64 telescopes with 12-meter dish antennas, will be built at a high-altitude, extremely dry mountain site in Chile's Atacama desert in the next decade. ALMA is an international partnership between the United States (National Science Foundation) and Europe. European participants include the member states of the European Southern Observatory (Belgium, Denmark, France, Germany, Italy, the Netherlands, Sweden and Switzerland), the Centre National de la Recherche Scientifique (France), the Max-Planck Gesellschaft (Germany), the Netherlands Foundation for Research in Astronomy, and the United Kingdom Particle Physics and Astronomy Research Council. The project is currently in a Design and Development phase governed by a Memorandum of Understanding between the United States and Europe. It is hoped and expected that Japan will also join the project as a third equal partner. Negotiations are currently underway to add Canada to the United States team and Spain to the European team. "The ALMA partners from the U.S. team, the European team, and hopefully Japan, will form the world's first truly global astronomical collaboration," said Dr. Riccardo Giacconi, President of Associated Universities, Inc., "and together will build a magnificent millimeter/submillimeter observatory for the

  2. Blockage of upper airway

    MedlinePlus

    ... Airway obstruction - acute upper Images Throat anatomy Choking Respiratory system References Cukor J, Manno M. Pediatric respiratory emergencies: upper airway obstruction and infections. In: Marx ...

  3. Climate Science Program at California State University, Northridge

    NASA Astrophysics Data System (ADS)

    Steele Cox, H.; Klein, D.; Cadavid, A. C.; Foley, B.

    2012-12-01

    Due to its interdisciplinary nature, climate science poses wide-ranging challenges for science and mathematics students seeking careers in this field. There is a compelling need for universities to provide coherent programs in climate science in order to train future climate scientists. With funding from NASA Innovations in Climate Education (NICE), California State University, Northridge (CSUN), is creating the CSUN Climate Science Program. An interdisciplinary team of faculty members is working in collaboration with UCLA, Santa Monica College and NASA/JPL partners to create a new curriculum in climate science. The resulting sequence of climate science courses, or Pathway for studying the Mathematics of Climate Change (PMCC), is integrated into a Bachelor of Science degree program in the Applied Mathematical Sciences offered by the Mathematics Department at CSUN. The PMCC consists of courses offered by the departments of Mathematics, Physics, and Geography and is designed to prepare students for Ph.D. programs in technical fields relevant to global climate change and related careers. The students who choose to follow this program will be guided to enroll in the following sequence of courses for their 12 units of upper division electives: 1) A newly created course junior level course, Math 396CL, in applied mathematics which will introduce students to applications of vector calculus and differential equations to the study of thermodynamics and atmospheric dynamics. 2) An already existing course, Math 483, with new content on mathematical modeling specialized for this program; 3) An improved version of Phys 595CL on the mathematics and physics of climate change with emphasis on Radiative Transfer; 4) A choice of Geog 407 on Remote Sensing or Geog 416 on Climate Change with updated content to train the students in the analysis of satellite data obtained with the NASA Earth Observing System and instruction in the analysis of data obtained within a Geographical

  4. The Glory Program: Global Science from a Unique Spacecraft Integration

    NASA Technical Reports Server (NTRS)

    Bajpayee Jaya; Durham, Darcie; Ichkawich, Thomas

    2006-01-01

    The Glory program is an Earth and Solar science mission designed to broaden science community knowledge of the environment. The causes and effects of global warming have become a concern in recent years and Glory aims to contribute to the knowledge base of the science community. Glory is designed for two functions: one is solar viewing to monitor the total solar irradiance and the other is observing the Earth s atmosphere for aerosol composition. The former is done with an active cavity radiometer, while the latter is accomplished with an aerosol polarimeter sensor to discern atmospheric particles. The Glory program is managed by NASA Goddard Space Flight Center (GSFC) with Orbital Sciences in Dulles, VA as the prime contractor for the spacecraft bus, mission operations, and ground system. This paper will describe some of the more unique features of the Glory program including the integration and testing of the satellite and instruments as well as the science data processing. The spacecraft integration and test approach requires extensive analysis and additional planning to ensure existing components are successfully functioning with the new Glory components. The science mission data analysis requires development of mission unique processing systems and algorithms. Science data analysis and distribution will utilize our national assets at the Goddard Institute for Space Studies (GISS) and the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP). The Satellite was originally designed and built for the Vegetation Canopy Lidar (VCL) mission, which was terminated in the middle of integration and testing due to payload development issues. The bus was then placed in secure storage in 2001 and removed from an environmentally controlled container in late 2003 to be refurbished to meet the Glory program requirements. Functional testing of all the components was done as a system at the start of the program, very different from a traditional program

  5. A new program in earth system science education

    NASA Technical Reports Server (NTRS)

    Huntress, Wesley; Kalb, Michael W.; Johnson, Donald R.

    1990-01-01

    A program aimed at accelerating the development of earth system science curricula at the undergraduate level and at seeding the establishment of university-based mechanisms for cooperative research and education among universities and NASA has been initiated by the Universities Space Research Association (USRA) in conjunction with NASA. Proposals were submitted by 100 U.S. research universities which were selected as candidates to participate in a three-year pilot program to develop undergraduate curricula in earth system science. Universities were then selected based upon peer review and considerations of overall scientific balance among proposed programs. The program will also aim to integrate a number of universities with evolving earth system programs, linking them with a cooperative curriculum, shared faculty, and NASA scientists in order to establish a stronger base for earth systems related education and interdisciplinary research collaboration.

  6. An Interdisciplinary Program in Materials Science at James Madison University.

    NASA Astrophysics Data System (ADS)

    Hughes, Chris

    2008-03-01

    Over the past decade a core group of faculty at James Madison University has created an interdisciplinary program in materials science that provides our students with unique courses and research experiences that augment the existing, high-quality majors in physics and astronomy, chemistry and biochemistry, geology and environmental science, mathematics and statistics, and integrated science and technology. The university started this program by creating a Center for Materials Science whose budget is directly allocated by the provost. This source of funds acts as seed money for research, support for students, and a motivating factor for each of the academic units to support the participation of their faculty in the program. Courses were created at the introductory and intermediate level that are cross-listed by the departments to encourage students to enroll in them as electives toward their majors. Furthermore, the students are encouraged to participate in undergraduate research in materials since this is the most fundamental unifying theme across the disciplines. This talk will cover some of the curricular innovations that went into the design of the program to make it successful, examples of faculty and student research and how that feeds back into the classroom, and success stories of the interactions that have developed between departments because of this program. Student outcomes and future plans to improve the program will also be discussed.

  7. Summer Program in Planetary Science and Astronomy for Gifted and Talented High School Students

    NASA Astrophysics Data System (ADS)

    Miller, J. P.; Fetters, J.; West, K.; Frazee, P.

    2002-03-01

    The Summer Science and Mathematics Program (SS&MP) is an 8-week program in planetary science and astronomy for gifted and talented high school students. Students undertake research projects, which include current topics in planetary science.

  8. Integrated life sciences technology utilization development program

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The goal of the TU program was to maximize the development of operable hardware and systems which will be of substantial benefit to the public. Five working prototypes were developed, and a meal system for the elderly is now undergoing evaluation. Manpower utilization is shown relative to the volume of requests in work for each month. The ASTP mobile laboratories and post Skylab bedrest study are also described.

  9. Science mentor program at Mission Hill Junior High School

    SciTech Connect

    Dahlquist, K.

    1994-12-31

    Science graduate students from the University of California at Santa Cruz mentor a class of 7th graders from the Mission Hill Junior High School. The program`s purpose is: (1) to create a scientific learning community where scientists interact at different levels of the educational hierarchy; (2) to have fun in order to spark interest in science; and (3) to support girls and minority students in science. A total of seven mentors met with the students at least once a week after school for one quarter to tutor and assist with science fair projects. Other activities included a field trip to a university earth science lab, judging the science fair, and assisting during laboratory exercises. Graduate students run the program with minimal organization and funding, communicating by electronic mail. An informal evaluation of the program by the mentors has concluded that the most valuable and effective activities have been the field trip and assisting with labs. The actual {open_quotes}mentor meetings{close_quotes} after school did not work effectively because they had a vaguely defined purpose and the kids did not show up regularly to participate. Future directions include redefining ourselves as mentors for the entire school instead of just one class and better coordinating our activities with the teachers` curriculum. We will continue to assist with the labs and organize formal tutoring for students having problems with math and science. Finally, we will arrange more activities and field trips such as an amateur astronomy night. We will especially target girls who attended the {open_quotes}Expanding Your Horizons{trademark} in Science, Mathematics, and Engineering{close_quotes} career day for those activities.

  10. Microgravity sciences application visiting scientist program

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Contract NAS8-38785, Microgravity Experimental and Theoretical Research, is a project involving a large number of individual research programs related to: determination of the structure of human serum albumin and other biomedically important proteins; analysis of thermodynamic properties of various proteins and models of protein nucleation; development of experimental techniques for the growth of protein crystals in space; study of the physics of electrical double layers in the mechanics of liquid interfaces; computational analysis of vapor crystal growth processes in microgravity; analysis of the influence of magnetic fields in damping residual flows in directional solidification processes; crystal growth and characterization of II-VI semiconductor alloys; and production of thin films for nonlinear optics. It is not intended that the programs will be necessarily limited to this set at any one time. The visiting scientists accomplishing these programs shall serve on-site at MSFC to take advantage of existing laboratory facilities and the daily opportunities for technical communications with various senior scientists.

  11. Computer Related Mathematics and Science Curriculum Materials - A National Science Foundation Cooperative College-School Science Program in Computing Science Education.

    ERIC Educational Resources Information Center

    Feng, Chuan C.

    Reported is the Cooperative College-School Science Program in Computing Science Education which was conducted by the University of Colorado Department of Civil Engineering in the summer of 1967. The program consisted of two five-week terms. The course work was composed of two formal lecture courses in Computer Related Mathematics and Computer…

  12. Sisters in Science: An Intergenerational Science Program for Elementary School Girls.

    ERIC Educational Resources Information Center

    Hammrich, Penny L.

    1998-01-01

    Once a week, several classrooms of Philadelphia 4th-grade girls participate in Sisters in Science, an afterschool, intergenerational program sponsored by Temple University that provides hand-on activities exploring urban environmental issues. A two-week summer camp program helps these students explore the rivers of Philadelphia. Participants…

  13. National Science Foundation PMSA Program: Promoting Systemic Change in Racially Isolated Schools via Math and Science.

    ERIC Educational Resources Information Center

    Adenika-Morrow, T. Jean

    The Project for Minority Student Achievement (PMSA), a 5-year program funded in part by the National Science Foundation, is a program designed to engender systemic change within a segment of a large urban school district in the Los Angeles (California) Basin. Approximately 40% of the student participants were African American and approximately 60%…

  14. Science Educational Outreach Programs That Benefit Students and Scientists

    PubMed Central

    Enyeart, Peter; Gracia, Brant; Wessel, Aimee; Jarmoskaite, Inga; Polioudakis, Damon; Stuart, Yoel; Gonzalez, Tony; MacKrell, Al; Rodenbusch, Stacia; Stovall, Gwendolyn M.; Beckham, Josh T.; Montgomery, Michael; Tasneem, Tania; Jones, Jack; Simmons, Sarah; Roux, Stanley

    2016-01-01

    Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs—"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist”—that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities. PMID:26844991

  15. Feasibility and marketing studies of health sciences librarianship education programs.

    PubMed

    Lipscomb, C E; Moran, B B; Jenkins, C G; Cogdill, K W; Friedman, C P; Gollop, C J; Moore, M E; Morrison, M L; Tibbo, H R; Wildemuth, B M

    1999-01-01

    The University of North Carolina at Chapel Hill evaluated five curricular models designed to improve education for health sciences librarianship. Three of the models enhanced existing degree and certificate programs, and two were new programs for working information professionals. Models were developed with input from experts and a Delphi study; the marketability of the models was tested through surveys of potential students and employers; and recommendations were made as a guide to implementation. The results demonstrated a demand for more specialized curricula and for retraining opportunities. Marketing data showed a strong interest from potential students in a specialized master's degree, and mid-career professionals indicated an interest in postmaster's programs that provided the ability to maintain employment. The study pointed to the opportunity for a center of excellence in health sciences information education to enable health sciences librarians to respond to their evolving roles. PMID:9934529

  16. Microgravity Science and Application Program tasks, 1989 revision

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The active research tasks, as of the fiscal year 1989, of the Microgravity Science and Applications Program, NASA Office of Space Science and Applications, involving several NASA Centers and other organizations are compiled. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The scientists in industry, university, and government communities. An introductory description of the program, the strategy and overall goal, identification of the organizational structures and people involved, and a description of each task are included. Also provided is a list of recent publications. The tasks are grouped into several major categories: electronic materials, solidification of metals, alloys, and composites; fluids, interfaces, and transport; biotechnology; glasses and ceramics; combustion science; physical and chemistry experiments (PACE); and experimental technology, facilities, and instrumentation.

  17. Microgravity science and applications program tasks, 1991 revision

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Presented here is a compilation of the active research tasks for FY 1991 sponsored by the Microgravity Science and Applications Division of the NASA Office of Space Science and Applications. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. Included is an introductory description of the program, the strategy and overall goal, identification of the organizational structures and the people involved, and a description of each. The tasks are grouped into several categories: electronic materials; solidification of metals, alloys, and composites; fluids, interfaces, and transport; biotechnology; combustion science; glasses and ceramics; experimental technology, instrumentation, and facilities; and Physical and Chemistry Experiments (PACE). The tasks cover both the ground based and flight programs.

  18. Smith college secondary math and science outreach program

    SciTech Connect

    Powell, J.A.; Clark, C.

    1994-12-31

    The Smith College Secondary Math and Science Outreach Program works collaboratively with front-line educators to encourage young women students of all abilities, especially underrepresented and underserved minorities, to continue studying math and science throughout high school. The program includes three main components: (1) Twenty-five to thirty teams of math/science teachers and guidance counselors participate in a year-long program which begins with a three-day Current Students/Future Scientists and Engineering Workshop. This event includes a keynote address, presentations and workshops by successful women in science and engineering, and hands-on laboratory sessions. Each participant receives a stipend and free room and board. Returning to their schools, the teacher-counselor teams implement ongoing plans designed to counteract gender bias in the sciences and to alert female students to the broad range of math, science, and engineering career choices open to them. A follow-up session in the spring allows the teams to present and discuss their year-long activities. (2) TRI-ON, a day of science for 120 ninth- and tenth- grade girls from schools with a large underserved and underrepresented population, is held in early spring. Girls discover the excitement of laboratory investigation and interact with female college science and math majors. (3) Teaching Internships, initiated in 1991, involve ten to fifteen Smith College math and science majors in teaching in public schools. The teaching interns experience the rewards and challenges of classroom teaching, and they also serve as role models for younger students.

  19. The Ridge 2000 Program: Promoting Earth Systems Science Literacy Through Science Education Partnerships

    NASA Astrophysics Data System (ADS)

    Simms, E.; Goehring, E.; Larsen, J.; Kusek, K.

    2007-12-01

    Sponsored by the National Science Foundation, Ridge 2000 (R2K) is a mid-ocean ridge and hydrothermal vent research program with a history of successful education and public outreach (EPO) programs and products. This presentation will share general science and education partnership strategies and best practices employed by the R2K program, with a particular emphasis on the innovative R2K project From Local to EXtreme Environments (FLEXE). As a new project of the international NSF and NASA sponsored GLOBE earth science education program, FLEXE involves middle and high school students in structured, guided analyses and comparisons of real environmental data. The science and education partnership model employed by FLEXE relies on experienced education coordinators within the R2K and international InterRidge and ChEss science research programs, who directly solicit and facilitate the involvement of an interdisciplinary community of scientists in the project based on their needs and interests. Concurrently, the model also relies on the GLOBE program to facilitate awareness and access to a large, established network of international educators who are interested in the process of science and interacting with the scientific community. The predominantly web-based interfaces that serve to effectively link together the FLEXE science and education communities have been developed by the Center for Science and the Schools at Penn State University, and are based on researched educational pedagogy, tools and techniques. The FLEXE partnership model will be discussed in the context of both broad and specific considerations of audience needs, scientist and educator recruitment, and the costs and benefits for those involved in the project.

  20. Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program

    SciTech Connect

    2000-12-01

    This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Priorities and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects

  1. Initiating the 2002 Mars Science Laboratory (MSL) Technology Program

    NASA Technical Reports Server (NTRS)

    Caffrey, Robert T.; Udomkesmalee, Gabriel; Hayati, Samad A.; Henderson, Rebecca

    2004-01-01

    The Mars Science Laboratory (MSL) Project is an aggressive mission launching in 2009 to investigate the Martian environment and requires new capabilities that are currently are not available. The MSL Technology Program is developing a wide-range of technologies needed for this Mission and potentially other space missions. The MSL Technology Program reports to both the MSL Project and the Mars Technology Program (MTP). The dual reporting process creates a challenging management situation, but ensures the new technology meets both the specific MSL requirements and the broader Mars Program requirements. MTP is a NASA-wide technology development program managed by JPL and is divided into a Focused Program and a Base Program. The MSL Technology Program is under the focused program and is tightly coupled to MSL's mission milestones and deliverables. The technology budget is separate from the flight Project budget, but the technology's requirements and the development process are tightly coordinated with the Project. The MSL Technology Program combines the proven management techniques of flight projects with the commercial technology management strategies of industry and academia, to create a technology management program that meets the short-term requirements of MSL and the long-term requirements of MTP. This paper examines the initiation of 2002 MSL Technology program. Some of the areas discussed in this paper include technology definition, task selection, technology management, and technology assessment. This paper also provides an update of the 2003 MSL technology program and examines some of the drivers that changed the program from its initiation.

  2. The Fermi Guest Investigator program: Impactful Science and Groundbreaking Results

    NASA Astrophysics Data System (ADS)

    Ferrara, Elizabeth C.; Fermi Science Support Center

    2016-01-01

    As an all-sky surveyor, the science impact from the Fermi Gamma-ray Space Telescope is limited by the number of scientists performing data analysis, and not by the number of objects observed by the spacecraft. To encourage this, the Fermi guest investigator (GI) program supports a variety of scientific inquiries that benefit overall Fermi science. The GI program also provides access to radio, optical, X-ray and VHE gamma-ray data and/or observing time, encouraging and enabling relevant multi-wavelength studies. This approach has allowed for new analyses and ideas to flourish, leading to world-class groundbreaking science and a number of unexpected discoveries. The program has also supported a number of multi-year, multi-wavelength observing programs resulting in a rich variety of publicly available resources. Here we describe the most significant results from the Fermi GI program, including those resulting from both sky-survey and target of opportunity pointed observations. We discuss the public resources the program has supported, both for broad-band data acquisition and for the development of new analysis methods and techniques. Additionally, we consider the ramifications of the existence of long-term multi-wavelength datasets, such as those enabled by the Fermi GI program, for future scientific inquiry.

  3. The Fermi Guest Investigator program: Impactful Science and Groundbreaking Results

    NASA Astrophysics Data System (ADS)

    Ferrara, Elizabeth C.

    2016-04-01

    As an all-sky surveyor, the science impact from the Fermi Gamma-ray Space Telescope is limited by the number of scientists performing data analysis, and not by the number of objects observed by the spacecraft. To encourage this, the Fermi guest investigator (GI) program supports a variety of scientific inquiries that benefit overall Fermi science. The GI program also provides access to radio, optical, X-ray and VHE gamma-ray data and/or observing time, encouraging and enabling relevant multi-wavelength studies. This approach has allowed for new analyses and ideas to flourish, leading to world-class groundbreaking science and a number of unexpected discoveries. The program has also supported a number of multi-year, multi-wavelength observing programs resulting in a rich variety of publicly available resources. Here we describe the most significant results from the Fermi GI program, including those resulting from both sky-survey and target of opportunity pointed observations. We discuss the public resources the program has supported, both for broad-band data acquisition and for the development of new analysis methods and techniques. Additionally, we consider the ramifications of the existence of long-term multi-wavelength datasets, such as those enabled by the Fermi GI program, for future scientific inquiry.

  4. FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)

    SciTech Connect

    Samara, G.A.

    1997-05-01

    The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfaces for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.

  5. Longitudinal impact of an inquiry-based science program on middle school students' attitudes toward science

    NASA Astrophysics Data System (ADS)

    Gibson, Helen L.; Chase, Christopher

    2002-09-01

    This study examined the long-term impact of the Summer Science Exploration Program (SSEP), a 2-week inquiry-based science camp, conducted at Hampshire College Amherst, MA from 1992 to 1994. The goal of the program was to stimulate greater interest in science and scientific careers among middle-school students. One hundred fifty-eight students were selected from a pool of applicants to attend the program using stratified random sampling procedures. In 1996, 22 participants were selected to participate in follow-up interviews using stratified random sampling procedures. Two quantitative surveys, the Science Opinion Survey and the Career Decision-Making Revised Surveys, were administered to 79 SSEP students and 35 students who applied but were not accepted (the control group). Pretest and posttest scores were analyzed for any significant change over time. Additionally, a cohort of over 500 students who were enrolled in the same grades and public schools that SSEP students attended completed the two surveys in both 1992-1994 and 1996-1997. The interviews and surveys suggested that SSEP students maintained a more positive attitude towards science and a higher interest in science careers than students who applied to the program but were not selected.

  6. NASA Applied Sciences Program Rapid Prototyping Results and Conclusions

    NASA Astrophysics Data System (ADS)

    Cox, E. L.

    2007-12-01

    NASA's Applied Sciences Program seeks to expand the use of Earth science research results to benefit current and future operational systems tasked with making policy and management decisions. The Earth Science Division within the Science Mission Directorate sponsors over 1000 research projects annually to answer the fundamental research question: How is the Earth changing and what are the consequences for life on Earth? As research results become available, largely from satellite observations and Earth system model outputs, the Applied Sciences Program works diligently with scientists and researchers (internal and external to NASA) , and other government agency officials (USDA, EPA, CDC, DOE, US Forest Service, US Fish and Wildlife Service, DHS, USAID) to determine useful applications for these results in decision-making, ultimately benefiting society. The complexity of Earth science research results and the breadth of the Applied Sciences Program national priority areas dictate a broad scope and multiple approaches available to implement their use in decision-making. Over the past five years, the Applied Sciences Program has examined scientific and engineering practices and solicited the community for methods and steps that can lead to the enhancement of operational systems (Decision Support Systems - DSS) required for decision-making. In November 2006, the Applied Sciences Program launched an initiative aimed at demonstrating the applicability of NASA data (satellite observations, models, geophysical parameters from data archive centers) being incorporated into decision support systems and their related environments at a low cost and quick turnaround of results., i.e. designed rapid prototyping. Conceptually, an understanding of Earth science research (and results) coupled with decision-making requirements and needs leads to a demonstration (experiment) depicting enhancements or improvements to an operational decisions process through the use of NASA data. Five

  7. NASA's Applied Sciences: Natural Disasters Program

    NASA Technical Reports Server (NTRS)

    Kessler, Jason L.

    2010-01-01

    Fully utilize current and near-term airborne and spaceborne assets and capabilities. NASA spaceborne instruments are for research but can be applied to natural disaster response as appropriate. NASA airborne instruments can be targeted specifically for disaster response. Could impact research programs. Better flow of information improves disaster response. Catalog capability, product, applicable disaster, points of contact. Ownership needs to come from the highest level of NASA - unpredictable and irregular nature of disasters requires contingency funding for disaster response. Build-in transfer of applicable natural disaster research capabilities to operational functionality at other agencies (e.g., USFS, NOAA, FEMA...) at the outset, whenever possible. For the Decadal Survey Missions, opportunities exist to identify needs and requirements early in the mission design process. Need to understand additional needs and commitments for meeting the needs of the disaster community. Opportunity to maximize disaster response and mitigation from the Decadal Survey Missions. Additional needs or capabilities may require agency contributions.

  8. Restructuring High School Science Curriculum: A Program Evaluation

    NASA Astrophysics Data System (ADS)

    Robertson, Cathy Jean

    One rural Midwestern high school discovered a discrepancy among school, state, and national science skill attainment, verified by ACT scores. If students do not acquire vital science skills, they may not perform proficiently on science tests, thus impacting future college options. Inquiry based instruction and constructivism provided the basis for the theoretical framework. This study questioned associations between ACT scores, inquiry science technique usage, and ACT standard usage (Phase 1), and teachers' views on science instruction (Phase 2). This sequential explanatory mixed methods program evaluation included 469 ACT scores, surveys sent to 9 science teachers, and 8 interviews. Phase 1 used the inquiry science implementation scale survey and an ACT college readiness standards workbook to determine proportional associations between datasets. Descriptive statistics, one-sample t tests, and binomial tests were used to analyze Phase 1 data. Phase 2 interviews augmented Phase 1 data and were disassembled, reassembled, and interpreted for parallel viewpoints. Phase 1 data indicated that teachers use a slightly above average amount of inquiry and science ACT standards in the classroom; however, most science students did not test above the curriculum and there were inconsistencies in standards covered. Phase 2 data revealed teachers need time to collaborate and become skilled in inquiry methods to rectify the inconsistencies. The project was an evaluation report. This study will foster positive social change by giving the district a plan: adapt the science curriculum by integrating more ACT and inquiry standards and participate in more professional development that applies inquiry as a tool to increase science skill proficiency, thus generating locally competitive students for college and the workforce.

  9. Controlled studies of childhood asthma self-management in Italy using the "open airways" and "living with asthma" programs: a preliminary report.

    PubMed

    Indinnimeo, L; Midulla, F; Hindi-Alexander, M; Bonci, E; Tancredi, G C; Cutrera, R; Zicari, A M; Evans, D; Ronchetti, R

    1987-01-01

    The concept of self-management for childhood asthma was introduced to Italy through a scientific exchange agreement with the United States. Two self-management programs, Living with Asthma (LWA) and Open Airways (OA), are being evaluated in three studies, two of which (Pilot and Atri-Viterbo) were conducted by the Respiratory Service of the Pediatric Department of the University "La Sapienza" in Rome and one by 14 Italian university pediatric respiratory centers (Project Italia). In October 1985, 20 children and their 40 parents were enrolled in the Pilot Study. One hundred percent of the mothers and children and 70% of the fathers attended all of the sessions. Theoretical knowledge about asthma and knowledge of asthma self-management behavior were assessed three times by a questionnaire: at the beginning of the program, at the end of the program and one year later. Significant improvements in knowledge of asthma and in knowledge of asthma self-management behavior were demonstrated by both parents and children at the end of the program and one year later. Analysis of clinical symptoms and drug consumption indicated a statistically nonsignificant trend towards a reduction of asthma severity in the year after the program. In the Atri-Viterbo study 8229 children were initially screened by a questionnaire. One hundred eighty-two children with asthma (2.4%) were identified and invited to participate in a self-management program. Open Airways was used in a shortened version. Only 29 families in Atri (22% of the eligible families) and 24 families in Viterbo (50%) ultimately agreed to participate in the program. A comparison of these families with those who did not participate showed that higher social status (p less than 0.001) and more severe asthma (p less than 0.05) were significantly associated with participation. Attendance by mothers and children was 78% in Atri and 61% in Viterbo. Only 5% of the fathers regularly attended the program. Parents who received the

  10. Workshop on the Suborbital Science Sounding Rocket Program, Volume 1

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The unique characteristics of the sounding rocket program is described, with its importance to space science stressed, especially in providing UARS correlative measurements. The program provided opportunities to do innovative scientific studies in regions not other wise accessible; it was a testbed for developing new technologies; and its key attributes were flexibility, reliability, and economy. The proceedings of the workshop are presented in viewgraph form, including the objectives of the workshop and the workshop agenda.

  11. Field experiences in science teacher preparation programs of Missouri

    NASA Astrophysics Data System (ADS)

    Rhea, Marilyn Sue Alvis

    The purpose of this study was to collect and analyze data pertinent to identifying the differences and similarities in the design and implementation of field experiences for pre-service science teachers in institutions of higher education in the State of Missouri. Directors of field experience from 25 Institutions of Higher Education (IHE) that prepare both elementary and secondary science teachers and 5 additional IHE that prepare only elementary teachers were surveyed using a 48-item Likert scale instrument designed for this study. Data were collected on the hours of field experience in relation to science and other methods classes, distribution of field experience hours across the program, and total hours of field experience required. Comparisons were made between elementary and secondary science teacher preparation programs. Five areas of field experience were surveyed: design of early field experience, design of student teaching, support provided by IHE for cooperating schools, field experience assessment practices, and relationships between pre-service teachers, cooperating teachers and IHE educators. Analyses of the responses indicate statistically significant differences in the number of field experience hours between IRE programs for both early field experience (p < .05) and student teaching (p < .01). Differences in number of field experience hours by level of certification were not significant. Correlation of scores was significant between the elementary and secondary levels for both early field experience design (r = .97) and student teaching design (r = .75). No other significant correlation was found. This study found highly heterogeneous practices regarding field experience exist in Missouri IHE programs. When reported practices are compared to standards set in the professional literature, as a group Missouri IHE science teacher preparation programs could be described as traditional apprenticeships or quasi-professional development school programs.

  12. Evaluation to Improve a High School Summer Science Outreach Program.

    PubMed

    Chiappinelli, Katherine B; Moss, Britney L; Lenz, Devjanee Swain; Tonge, Natasha A; Joyce, Adam; Holt, Glen E; Holt, Leslie Edmonds; Woolsey, Thomas A

    2016-05-01

    The goal of the Young Scientist Program (YSP) at Washington University School of Medicine in St. Louis (WUSM) is to broaden science literacy and recruit talent for the scientific future. In particular, YSP seeks to expose underrepresented minority high school students from St. Louis public schools (SLPS) to a wide variety of careers in the sciences. The centerpiece of YSP, the Summer Focus Program (SFP), is a nine-week, intensive research experience for competitively chosen rising high school seniors (Scholars). Scholars are paired with volunteer graduate student, medical student, or postdoctoral fellow mentors who are active members of the practicing scientific community and serve as guides and exemplars of scientific careers. The SFP seeks to increase the number of underrepresented minority students pursuing STEM undergraduate degrees by making the Scholars more comfortable with science and science literacy. The data presented here provide results of the objective, quick, and simple methods developed by YSP to assess the efficacy of the SFP from 2006 to 2013. We demonstrate that the SFP successfully used formative evaluation to continuously improve the various activities within the SFP over the course of several years and in turn enhance student experiences within the SFP. Additionally we show that the SFP effectively broadened confidence in science literacy among participating high school students and successfully graduated a high percentage of students who went on to pursue science, technology, engineering, and mathematics (STEM) majors at the undergraduate level. PMID:27158303

  13. Interdisciplinary Teaching in a Water Educational Training Science Program: Its Impact on Science Concept Knowledge, Writing Performance, and Interest in Science and Writing of Elementary Students.

    ERIC Educational Resources Information Center

    Moore-Hart, Margaret A.; Liggit, Peggy; Daisey, Peggy

    This paper presents a study investigating the effects of the Water Education Training (WET) program on students' performance in science. The WET Program is an after school program using an interdisciplinary approach which has three main objectives: improving science concept knowledge, writing performance, and attitudes toward science and writing.…

  14. A Mentoring Program in Environmental Science for Underrepresented Groups

    NASA Astrophysics Data System (ADS)

    Stevens, L.; Rizzo, D. M.

    2009-12-01

    We developed a four-year program, combining educational and career support and research activities, to recruit and retain students from underrepresented groups in environmental sciences. Specifically, the program: ○ Assigns each student a faculty or graduate student mentor with whom the student conducts research activities. ○ Includes a weekly group meeting for team building and to review professional development and academic topics, such as time management and research ethics. ○ Requires students to make multiple formal presentations of their research proposals and results. ○ Provides scholarships and stipends for both the academic year and to engage students in summer research. The program seeks to achieve several goals including: ● Enhance academic performance. ● Encourage continued study in environmental science. ● Facilitate students completing their studies at UVM. ● Increase students’ interest in pursuing science careers. ● Create a more welcoming academic environment. To assess progress toward achievement of these goals, we conducted individual structured interviews with participating undergraduate students, graduate students, and faculty members at two points in time. First, interviews were conducted in the fall of 2007 after two years, and again in spring 2009, after four years. An independent research consultant, Dr. Livingston, conducted the interviews. In 2009, over the course of three days, the interviews included three graduate student and two faculty mentors, and six of the seven undergraduate students. Of the six students, three were juniors and three were graduating seniors. Results of the 2009 interviews echoed those of 2007. Both students and their mentors are quite satisfied with the program. The student presentations, weekly meetings, mentoring relationships, and summer research experiences all get high ratings from program participants. Students give high praise to their mentors and the program directors for providing

  15. An Analysis of the Demand for Postgraduate Educational Science Programs

    ERIC Educational Resources Information Center

    Aslan, Gulay

    2014-01-01

    This study, aimed to determine the variables that have a role in the emergence of individual demand for postgraduate educational sciences programs, is a descriptive one. The sample of the study consisted of 222 postgraduate students from Ankara University, a developed university, and Gaziosmanpasa University, a developing university. The data was…

  16. Integrating Research into an Undergraduate Family Sciences Program

    ERIC Educational Resources Information Center

    Khelifa, Maher; Sonleitner, Nancy; Wooldridge, Deborah; Mayers, Gloysis

    2004-01-01

    The authors report the outcomes of introducing undergraduate research to family science majors at Zayed University, United Arab Emirates. The program has enriched students' educational experiences and has had tangible benefits. In addition to acquiring research skills, students improved in critical analysis, originality, independent learning,…

  17. Handheld Technology Acceptance in Radiologic Science Education and Training Programs

    ERIC Educational Resources Information Center

    Powers, Kevin Jay

    2012-01-01

    The purpose of this study was to explore the behavioral intention of directors of educational programs in the radiologic sciences to adopt handheld devices to aid in managing student clinical data. Handheld devices were described to participants as a technology representing a class of mobile electronic devices including, but not limited to,…

  18. Biological and Earth Systems Science: A Program for the Future.

    ERIC Educational Resources Information Center

    Fortner, Rosanne; And Others

    1992-01-01

    Describes a school district's refocusing of lesson plans in the natural sciences to teach students about the structure and function of the earth--a focus all but abandoned in many school programs. Details of the curriculum; the resources used; leadership initiatives; and obstacles to implementation are discussed. (PR)

  19. Eisenhower Program for Math and Science Gets Major Boost.

    ERIC Educational Resources Information Center

    Pennisi, Elizabeth

    1991-01-01

    A training program that allows scientists and educators to experiment with new ways to improve student performance in science and mathematics is described. Scientists and educators are encouraged to work together to develop projects for in-service education and projects that can be worked on by students in the laboratory. (KR)

  20. Globalizing Agricultural Science and Education Programs for America.

    ERIC Educational Resources Information Center

    National Association of State Universities and Land Grant Colleges, Washington, DC.

    This document proposes an agenda for globalizing agricultural science and education which has implications for higher education, research, and extension programs at land-grant and similar universities. To enhance global competitiveness of U.S. agriculture through human resource development, institutions are urged to: globalize undergraduate and…

  1. Characterization of Technology within an Elementary Science Program.

    ERIC Educational Resources Information Center

    Rowell, Patricia M.; Gustafson, Brenda J.; Guilbert, Sandra M.

    1999-01-01

    Presents a qualitative study of the ways in which technology is characterized by educators in a Canadian school district preparing to implement technological problem solving within the framework of a mandatory elementary science program. Highlights include an epistemological basis for technology education, and curriculum development and…

  2. A Primary Grade (K-3) Earth Science Program

    ERIC Educational Resources Information Center

    Schwartz, Maurice L.; Slesnick, Irwin L.

    1973-01-01

    Describes the rationale and structure of a newly developed earth science program for elementary school children (K-3). The activities involve pre-operational and concrete operational stages, progressing from one to the other. Children show sustained interest and enthusiasm as they investigate landforms, the moon, fossils, and weather phenomena.…

  3. THE EFFECTIVENESS OF FOUR VARIATIONS OF PROGRAMED SCIENCE MATERIALS.

    ERIC Educational Resources Information Center

    GORDON, JOHN M.

    INVESTIGATED WERE CHANGES IN THE PERFORMANCE OF SEVENTH GRADE STUDENTS AS A RESULT OF EXPOSURE TO A SYMBOLIC SCIENCE PROGRAM IN ELECTRICITY MODIFIED BY THE ADDITION OF SEVERAL TYPES OF CONCRETE EXPERIENCES. POSSIBLE RELATIONSHIPS BETWEEN THE DIFFERENT TYPES OF EXPERIENCES AND CHANGES IN HIGHER LEVELS OF COGNITIVE FUNCTIONING AND LINGUISTIC AND…

  4. An Experiential Career Exploration Program in Science and Technology.

    ERIC Educational Resources Information Center

    Burkhalter, Bettye B.; And Others

    1983-01-01

    Describes the Experimental Career Exploration Program whose goal was to introduce students with no experience with technology to careers in aerospace science and technology at the Alabama Space and Rocket Center. The project involved cooperation from education, industry, and government. (JOW)

  5. Microanalytical Efforts in Support of NASA's Materials Science Programs

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    2004-01-01

    Following a brief overview of NASA s Microgravity Materials Science programs, specific examples will be given showing electron beam and optical microscopic applications to two-phase glass structures, dendrite tip radii, solid solution semiconductors, undercooled two-phase stainless steels and meteorites.

  6. Handheld technology acceptance in radiologic science education and training programs

    NASA Astrophysics Data System (ADS)

    Powers, Kevin Jay

    The purpose of this study was to explore the behavioral intention of directors of educational programs in the radiologic sciences to adopt handheld devices to aid in managing student clinical data. Handheld devices were described to participants as a technology representing a class of mobile electronic devices including, but not limited to, personal digital assistants such as a Palm TX, Apple iPod Touch, Apple iPad or Hewlett Packard iPaq, and cellular or smartphones with third generation mobile capabilities such as an Apple iPhone, Blackberry or Android device. The study employed a non-experimental, cross-sectional survey design to determine the potential of adopting handheld technologies based on the constructs of Davis's (1989) Technology Acceptance Model. An online self-report questionnaire survey instrument was used to gather study data from 551 entry level radiologic science programs specializing in radiography, radiation therapy, nuclear medicine and medical sonography. The study design resulted in a single point in time assessment of the relationship between the primary constructs of the Technology Acceptance Model: perceived usefulness and perceived ease of use, and the behavioral intention of radiography program directors to adopt the information technology represented by hand held devices. Study results provide justification for investing resources to promote the adoption of mobile handheld devices in radiologic science programs and study findings serve as a foundation for further research involving technology adoption in the radiologic sciences.

  7. Research Informed Science Enrichment Programs at the Gravity Discovery Centre

    ERIC Educational Resources Information Center

    Venville, Grady; Blair, David; Coward, David; Deshon, Fred; Gargano, Mark; Gondwe, Mzamose; Heary, Auriol; Longnecker, Nancy; Pitts, Marina; Zadnik, Marjan

    2012-01-01

    Excursions to museums and science centres generally are great fun for students and teachers. The potential educational benefits beyond enjoyment, however, are rarely realised or analysed for their efficacy. The purpose of this paper is to describe four educational enrichment programs delivered at the Gravity Discovery Centre (GDC), near Gingin,…

  8. Effective Programs for Elementary Science: A Best-Evidence Synthesis. Educator's Summary

    ERIC Educational Resources Information Center

    Center for Research and Reform in Education, 2012

    2012-01-01

    Which science programs have been proven to help elementary students to succeed? To find out, this review summarizes evidence on three types of programs designed to improve the science achievement of students in grades K-6: (1) Inquiry-oriented programs without science kits, such as Increasing Conceptual Challenge, Science IDEAS, and Collaborative…

  9. Summer graduate research program for interns in science and engineering

    SciTech Connect

    Lee, C.B.

    1992-03-01

    The goal of the 10 week graduate intern program was to increase the source of candidates for positions in science and engineering at the Goddard Space Flight Center. Students participating in this program submitted papers on the work they performed over the 10 week period and also filled out questionnaires on the program's effectiveness, their own performance, and suggestions on improvements. The topics covered by the student's papers include: microsoft excel applications; fast aurora zone analysis; injection seeding of a Q-switched alexandrite laser; use of high temperature superconductors; modifications on a communication interface board; modeling of space network activities; prediction of atmospheric ozone content; and applications of industrial engineering.

  10. Summer graduate research program for interns in science and engineering

    NASA Technical Reports Server (NTRS)

    Lee, Clinton B.

    1992-01-01

    The goal of the 10 week graduate intern program was to increase the source of candidates for positions in science and engineering at the Goddard Space Flight Center. Students participating in this program submitted papers on the work they performed over the 10 week period and also filled out questionnaires on the program's effectiveness, their own performance, and suggestions on improvements. The topics covered by the student's papers include: microsoft excel applications; fast aurora zone analysis; injection seeding of a Q-switched alexandrite laser; use of high temperature superconductors; modifications on a communication interface board; modeling of space network activities; prediction of atmospheric ozone content; and applications of industrial engineering.

  11. Microgravity Science and Applications Program Tasks, 1984 Revision

    NASA Technical Reports Server (NTRS)

    Pentecost, E. (Compiler)

    1985-01-01

    This report is a compilation of the active research tasks as of the end of the fiscal year 1984 of the Microgravity Science and Applications Program, NASA-Office of Space Science and Applications, involving several NASA centers and other organizations. The purpose of the document is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The report is structured to include an introductory description of the program, strategy and overall goal; identification of the organizational structures and people involved; and a description of each research task, together with a list of recent publications. The tasks are grouped into six categories: (1) electronic materials; (2) solidification of metals, alloys, and composites; (3) fluid dynamics and transports; (4) biotechnology; (5) glasses and ceramics; and (6) combustion.

  12. Microgravity Science and Applications Program tasks, 1988 revision

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The active research tasks as of the end of the fiscal year 1988 of the Microgravity Science and Applications Program, NASA-Office of Space Science and Applications, involving several NASA centers and other organizations are compiled. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. Also included are an introductory description of the program, the strategy and overall goal, identification of the organizational structures and people involved, and a description of each task. A list of recent publications is provided. The tasks are grouped into six major categories: electronic materials; solidification of metals, alloys, and composites; fluid dynamics and transport phenomena; biotechnology; glasses and ceramics; and combustion. Other categories include experimental technology, general studies and surveys; foreign government affiliations; industrial affiliations; and Physics And Chemistry Experiments (PACE). The tasks are divided into ground-based and flight experiments.

  13. The women in science and engineering scholars program

    NASA Technical Reports Server (NTRS)

    Falconer, Etta Z.; Guy, Lori Ann

    1989-01-01

    The Women in Science and Engineering Scholars Program provides scientifically talented women students, including those from groups underrepresented in the scientific and technical work force, with the opportunity to pursue undergraduate studies in science and engineering in the highly motivating and supportive environment of Spelman College. It also exposes students to research training at NASA Centers during the summer. The program provides an opportunity for students to increase their knowledge of career opportunities at NASA and to strengthen their motivation through exposure to NASA women scientists and engineers as role models. An extensive counseling and academic support component to maximize academic performance supplements the instructional and research components. The program is designed to increase the number of women scientists and engineers with graduate degrees, particularly those with an interest in a career with NASA.

  14. Microgravity Science and Applications Program tasks, 1987 revision

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A compilation is presented of the active research tasks as of the end of the FY87 of the Microgravity Science and Applications Program, NASA-Office of Space Science and Applications, involving several NASA centers and other organizations. An overview is provided of the program scope for managers and scientists in industry, university, and government communities. An introductory description is provided of the program along with the strategy and overall goal, identification of the organizational structures and people involved, and a description of each task. A list of recent publications is also provided. The tasks are grouped into six major categories: Electronic Materials; Solidification of Metals, Alloys, and Composites; Fluid Dynamics and Transport Phenomena; Biotechnology; Glasses and Ceramics; and Combustion. Other categories include Experimental Technology, General Studies and Surveys; Foreign Government Affiliations; Industrial Affiliations; and Physics and Chemistry Experiments (PACE). The tasks are divided into ground based and flight experiments.

  15. Machines, Materials, and Energy: A Source Book for the Modern Elementary School Science Program of the Science Manpower Project.

    ERIC Educational Resources Information Center

    Croasdale, William

    This source book consists of four parts. Part One, an introduction and overview, deals with the need for establishing new science programs and shows the relationship of the source book to the K-12 science program of the Science Manpower Project. Part Two consists of three chapters written for use in grades K-3: "Simple Machines,""Heart and…

  16. Undergraduates' Perceived Gains and Ideas about Teaching and Learning Science from Participating in Science Education Outreach Programs

    ERIC Educational Resources Information Center

    Carpenter, Stacey L.

    2015-01-01

    This study examined what undergraduate students gain and the ideas about science teaching and learning they develop from participating in K-12 science education outreach programs. Eleven undergraduates from seven outreach programs were interviewed individually about their experiences with outreach and what they learned about science teaching and…

  17. Math and Science Partnership Program: Strengthening America by Advancing Academic Achievement in Mathematics and Science. NSF-05-069

    ERIC Educational Resources Information Center

    National Science Foundation, 2006

    2006-01-01

    This booklet presents an overview of the Math Science Partnership program (MSP) at the National Science Foundation (NSF). This program responds to a growing national concern--the educational performance of U.S. children in mathematics and science. Through the MSP, NSF awards competitive, merit-based grants to teams composed of institutions of…

  18. The Splashdown Effect: Measuring the Effect of Science Enrichment Programs on Science Attitudes of Gifted High School Girls and Boys

    ERIC Educational Resources Information Center

    Stake, Jayne E.; Mares, Kenneth R.

    2005-01-01

    The benefits of enrichment programs for the enhancement of students' science achievement are well established. However, little evidence is available on the value of these programs for increasing students' confidence and motivation for science. One problem in measuring changes in students' science attitudes is that students may suffer from a…

  19. Food, Environment, Engineering and Life Sciences Program (Invited)

    NASA Astrophysics Data System (ADS)

    Mohtar, R. H.; Whittaker, A.; Amar, N.; Burgess, W.

    2009-12-01

    Food, Environment, Engineering and Life Sciences Program Nadia Amar, Wiella Burgess, Rabi H. Mohtar, and Dale Whitaker Purdue University Correspondence: mohtar@purdue.edu FEELS, the Food, Environment, Engineering and Life Sciences Program is a grant of the National Science Foundation for the College of Agriculture at Purdue University. FEELS’ mission is to recruit, retain, and prepare high-achieving students with financial difficulties to pursue STEM (Science, Technology, Engineering, and Mathematics) careers. FEELS achieves its goals offering a scholarship of up to 10,000 per student each year, academic, research and industrial mentors, seminars, study tables, social and cultural activities, study abroad and community service projects. In year one, nine low-income, first generation and/or ethnic minority students joined the FEELS program. All 9 FEELS fellows were retained in Purdue’s College of Agriculture (100%) with 7 of 9 (77.7%) continuing to pursue STEM majors. FEELS fellows achieved an average GPA in their first year of 3.05, compared to the average GPA of 2.54 for low-income non- FEELS students in the College of Agriculture. A new cohort of 10 students joined the program in August 2009. FEELS fellows received total scholarships of nearly 50,000 for the 2008-2009 academic year. These scholarships were combined with a holistic program that included the following key elements: FEELS Freshman Seminars I and II, 2 study tables per week, integration activities and frequent meetings with FEELS academic mentors and directors. Formative assessments of all FEELS activities were used to enhance the first year curriculum for the second cohort. Cohort 1 will continue into their second year where the focus will be on undergraduate research. More on FEELS programs and activities: www.purdue.edu/feels.

  20. Searching for Good Science - The Cancellation of NASA's SETI Program

    NASA Astrophysics Data System (ADS)

    Garber, S. J.

    On Columbus Day, 1992, the National Aeronautics and Space Administration (NASA) formally initiated a radio astronomy program called SETI (Search for Extraterrestrial Intelligence). Less than a year later, Congress abruptly canceled the program. Why? While there was and still is a debate over the likelihood of finding intelligent extraterrestrial life, virtually all informed parties agreed that the SETI program constituted worthwhile, valid science. Yet, fervor over the federal budget deficit, lack of support from other scientists and aerospace contractors and a significant history of unfounded associations with nonscientific elements combined with bad timing in fall 1993 to make the program an easy target to eliminate. Thus SETI was a relative anomaly in terms of a small, scientifically valid program that was canceled for political expediency.

  1. The Science on Saturday Program at Princeton Plasma Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Bretz, N.; Lamarche, P.; Lagin, L.; Ritter, C.; Carroll, D. L.

    1996-11-01

    The Science on Saturday Program at Princeton Plasma Physics Laboratory consists of a series of Saturday morning lectures on various topics in science by scientists, engineers, educators, and others with an interesting story. This program has been in existence for over twelve years and has been advertised to and primarily aimed at the high school level. Topics ranging from superconductivity to computer animation and gorilla conservation to pharmaceutical design have been covered. Lecturers from the staff of Princeton, Rutgers, AT and T, Bristol Meyers Squibb, and many others have participated. Speakers have ranged from Nobel prize winners, astronauts, industrialists, educators, engineers, and science writers. Typically, there are eight to ten lectures starting in January. A mailing list has been compiled for schools, science teachers, libraries, and museums in the Princeton area. For the past two years AT and T has sponsored buses for Trenton area students to come to these lectures and an effort has been made to publicize the program to these students. The series has been very popular, frequently overfilling the 300 seat PPPL auditorium. As a result, the lectures are videotaped and broadcast to a large screen TV for remote viewing. Lecturers are encouraged to interact with the audience and ample time is provided for questions.

  2. Distance Learning Programs to Inspire Students in the Sciences

    NASA Astrophysics Data System (ADS)

    Durham, Ian; Durham, Alyson

    2000-04-01

    Inspiring students to enter the sciences, in particular more traditional hard sciences and certain engineering disciplines, has become a greater challenge in the days of high tech computer jobs that pay far higher wages. In addition maintaining student interest in the classroom has also become more difficult with the increasing complexity and sophistication of home computer technology. Often students have better technology at home than they have in school. There is no substitute for actually being in an exciting location, but the cost of such elaborate field trips often outweighs the learning advantage. By developing state-of-the-art and inexpensive distance learning tools based on existing technology, Durham Research is bringing remote and exciting places and experiences live into the classroom as a way of inspiring students to eventually enter the sciences. In this presentation we will speak about our cornerstone distance learning program, the Space Experiment Education Kit, and how we hope it helps to inspire a future generation of scientists and people who appreciate science. We will also briefly talk about some of our other related programs. All programs are geared toward all grade levels from elementary through graduate school.

  3. Is That Really Science? A Look at the Science Practice of an Inner-City Youth Gardening Program.

    ERIC Educational Resources Information Center

    Rahm, Jrene

    Children have ample opportunities to learn about science outside of school through visits to science museums, participation in extra-curricular science programs, and by pursuing experiments at home, yet few studies have examined what it means to do science in such places and how such ways of knowing might become integrated with, or differentiated…

  4. Science Teaching Experiences in Informal Settings: One Way to Enrich the Preparation Program for Preservice Science Teachers

    ERIC Educational Resources Information Center

    Hsu, Pei-Ling

    2016-01-01

    The high attrition rate of new science teachers demonstrates the urgent need to incorporate effective practices in teacher preparation programs to better equip preservice science teachers. The purpose of the study is to demonstrate a way to enrich preservice science teachers' preparation by incorporating informal science teaching practice into…

  5. Materials Sciences Programs. Fiscal Year 1980, Office of Basic Energy Sciences

    SciTech Connect

    Not Available

    1980-09-01

    This report provides a convenient compilation index of the DOE Materials Sciences Division programs. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs and is divided into Sections A and B, listing all the projects, Section C, a summary of funding levels, and Section D, an index (the investigator index is in two parts - laboratory and contract research).

  6. NASA'S Water Resources Element Within the Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2010-01-01

    The NASA Applied Sciences Program works within NASA Earth sciences to leverage investment of satellite and information systems to increase the benefits to society through the widest practical use of NASA research results. Such observations provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as land cover type, vegetation type and health, precipitation, snow, soil moisture, and water levels and radiation. Observations of this type combined with models and analysis enable satellite-based assessment of numerous water resources management activities. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, model results, and development and deployment of enabling technologies, systems, and capabilities. Water resources is one of eight elements in the Applied Sciences Program and it addresses concerns and decision making related to water quantity and water quality. With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. Mitigating these conflicts and meeting water demands requires using existing resources more efficiently. The potential crises and conflicts arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. but also in many parts of the world. In addition to water availability issues, water quality related

  7. Initiating the 2002 Mars Science Laboratory (MSL) Focused Technology Program

    NASA Technical Reports Server (NTRS)

    Caffrey, Robert T.; Udomkesmalee, Gabriel; Hayati, Samad A.

    2004-01-01

    The Mars Science Laboratory (MSL) Project is an aggressive mission launching in 2009 to deliver a new generation of rover safely to the surface of Mars and conduct comprehensive in situ investigations using a new generation of instruments. This system will be designed to land with precision and be capable of operating over a large percentage on the surface of Mars. It will have capabilities that will support NASA's scientific goals into the next decade of exphation. The MSL Technology program is developing a wide-range of technologies needed for this Mission and potentially other space missions. The MSL Technology Program reports to both the MSL Project and the Mars Technology Program (MTP). The dual reporting process creates a challenging management situation, but ensures the new technology meets both the specific MSL requirements and the broader Mars Program requirements. MTP is a NASA-wide technology development program managed by the Jet Propulsion Laboratory (JPL) and is divided into a Focused Program and a Base Program. The Focused Technology Program addresses technologies that are specific and critical to near-term missions, while the Base Technology Program addresses those technologies that are applicable to multiple missions and which can be characterized as longer term, higher risk, and high payoff technologies. The MSL Technology Program is under the Focused Program and is tightly coupled to MSL's mission milestones and deliverables. The technology budget is separate from the flight Project budget, but the technology s requirements and the development process are tightly coordinated with the Project. The Technology Program combines proven management techniques of flight projects with commercial and academic technology management strategies, to create a technology management program that meets the near-term requirements of MSL and the long-term requirements of MTP. This paper examines the initiation of 2002 MSL Technology program. Some of the areas

  8. Lessons Learned from NASA UAV Science Demonstration Program Missions

    NASA Technical Reports Server (NTRS)

    Wegener, Steven S.; Schoenung, Susan M.

    2003-01-01

    During the summer of 2002, two airborne missions were flown as part of a NASA Earth Science Enterprise program to demonstrate the use of uninhabited aerial vehicles (UAVs) to perform earth science. One mission, the Altus Cumulus Electrification Study (ACES), successfully measured lightning storms in the vicinity of Key West, Florida, during storm season using a high-altitude Altus(TM) UAV. In the other, a solar-powered UAV, the Pathfinder Plus, flew a high-resolution imaging mission over coffee fields in Kauai, Hawaii, to help guide the harvest.

  9. National Aeronautics and Space Administration Science and Engineering Apprentice Program

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The National Aeronautics and Space Administration's Science and Engineering Apprentice Program for high school students is one of NASA's many efforts toward a goal of scientific literacy. It embraces science, mathematics, and technology as keys to purposeful and sustained progress and security for our nation and its people. It serves as a model for helping reform education by striving to address mechanisms to influence the knowledge, skills, and attitudes of our students. It focuses on what to do today to meet the challenges of tomorrow.

  10. NASA's MEaSUREs Program Serving the Earth Science Community

    NASA Astrophysics Data System (ADS)

    Ramapriyan, H. K.; Tsaoussi, L.; Olding, S. W.

    2014-12-01

    A major need stated by the NASA Earth science research strategy is to develop long-term, consistent, and calibrated data and products that are valid across multiple missions and satellite sensors. NASA has invested in the creation of consistent time series satellite data sets over decades, through both mission science team-based and measurement-based data product reprocessing and through solicitations for merged data products. The NOAA/NASA Pathfinder Program, carried out in the mid-1990's, resulted in the reprocessing of four long time-series datasets from existing archives. The Research, Education and Applications Solutions Network (REASoN) Program, initiated in 2002, consisted of several projects that provided data products, information systems and services capabilities, and/or advanced data systems technologies, to address strategic needs in Earth science research, applications, and education. The Program named Making Earth System data records for Use in Research for Earth Science, or MEaSUREs has had two requests for proposals, the first in 2006 and the second in 2012. With this Program, the Earth Science Division has focused on generating datasets for particular Earth science research measurement needs, and refers to such datasets as Earth System Data Records (ESDRs). Climate Data Records (CDRs) are a particular case of ESDRs. An ESDR is defined as a unified and coherent set of observations of a given parameter of the Earth system, which is optimized to meet specific requirements in addressing science questions. Most of the MEaSUREs projects are five years long. They produce ESDRs using mature, peer-reviewed algorithms. The products are vetted by the user community in the respective scientific disciplines. They are made available publicly by the projects during their execution period. Before the projects end, the ESDRs are transferred to one of the NASA-assigned Distributed Active Archive Centers for longer-term archiving and distribution. Tens of millions of

  11. The effects of a science intervention program on the attitudes and achievement of high school girls in science

    NASA Astrophysics Data System (ADS)

    Steakley, Carrie Capers

    This study investigated the effects of a high school science intervention program that included hands-on activities, science-related career information and exposure, and real-world experiences on girls' attitudes and achievement in science. Eighty-four girls, 44 ninth-graders and 40 tenth-graders, and 105 parents participated in the study. Survey data was collected to assess the girls' attitudes toward science in seven distinct areas: social implications of science, normality of scientists, attitude toward scientific inquiry, adoption of scientific attitudes, enjoyment of science lessons, leisure interest in science, and career interest in science. Additional questionnaires were used to determine the extent of the girls' participation in sports and the attitudes of their parents toward science. The girls' cumulative science semester grade point averages since the seventh grade were used to assess academic science achievement. This study found no evidence that participation in the program improved the girls' attitudes or achievement in science. Parent attitudes and years of participation in sports were not accurate predictors of science achievement. Additionally, no significant relationship was detected between the girls' and their parents' perceptions of science. However, the study did suggest that extended participation in sports may positively affect science achievement for girls. This study holds implications for educational stakeholders who seek to implement intervention methods and programs that may improve student attitudes and achievement in science and attract more youth to future science-related careers.

  12. Lincoln Advanced Science and Engineering Reinforcement (LASER) program

    NASA Astrophysics Data System (ADS)

    Williams, Willie E.

    Lincoln University, under the Lincoln Advanced Science and Engineering Reinforcement (LASER) Program, has identified and successfully recruited over 100 students for majors in technical fields. To date, over 70 percent of these students have completed or will complete technical degrees in engineering, physics, chemistry, and computer science. Of those completing the undergraduate degree, over 40 percent have gone on to graduate and professional schools. This success is attributable to well planned approaches to student recruitment, training, personal motivation, retention, and program staff. Very closely coupled to the above factors is a focus designed to achieve excellence in program services and student performance. Future contributions by the LASER Program to the pool of technical minority graduates will have a significant impact. This is already evident from the success of the students that began the first year of the program. With program plans to refine many of the already successful techniques, follow-on activities are expected to make even greater contributions to the availability of technically trained minorities. For example, undergraduate research exposure, broadened summer, and co-op work experiences will be enhanced.

  13. Lincoln Advanced Science and Engineering Reinforcement (LASER) program

    NASA Technical Reports Server (NTRS)

    Williams, Willie E.

    1989-01-01

    Lincoln University, under the Lincoln Advanced Science and Engineering Reinforcement (LASER) Program, has identified and successfully recruited over 100 students for majors in technical fields. To date, over 70 percent of these students have completed or will complete technical degrees in engineering, physics, chemistry, and computer science. Of those completing the undergraduate degree, over 40 percent have gone on to graduate and professional schools. This success is attributable to well planned approaches to student recruitment, training, personal motivation, retention, and program staff. Very closely coupled to the above factors is a focus designed to achieve excellence in program services and student performance. Future contributions by the LASER Program to the pool of technical minority graduates will have a significant impact. This is already evident from the success of the students that began the first year of the program. With program plans to refine many of the already successful techniques, follow-on activities are expected to make even greater contributions to the availability of technically trained minorities. For example, undergraduate research exposure, broadened summer, and co-op work experiences will be enhanced.

  14. Bachelor of Science in Medical Physics Program at Ryerson University

    NASA Astrophysics Data System (ADS)

    Antimirova, Tetyana

    2006-12-01

    A new Bachelor of Science in Medical Physics program at Ryerson University, Toronto, Ontario was launched in Fall 2006. The program builds on Ryerson’s strong existing capabilities in biomedical physics research. The program’s point of entry is the common first year during which all students in Biology, Chemistry, Contemporary Science and Medical Physics programs complete the foundation courses that include physics, calculus, biology, chemistry, and introduction to computing. In addition to the foundation courses, the first-year studies include an orientation course that supports the students in making a successful transition to university studies. The courses beyond the first year include such topics as radiation therapy, image analysis, medical diagnostics and computer modeling techniques. In the final year the students will undertake an independent, faculty-supervised thesis project in an area of personal research interest. Co-op and industrial internship options are available. Our program promotes natural interaction between physics, life sciences, mathematics and computing. The flexibility built into our curriculum will open a variety of career options for our graduates.

  15. Program coordinators' perceptions of effective national citizen science programs and their impacts: An exploratory study

    NASA Astrophysics Data System (ADS)

    Clarke, K. C.; Charlevoix, D. J.

    2011-12-01

    The increasing desire to engage the public in science and research has advanced citizen science as a valuable and popular means to this end. Citizen science, a process by which concerned individuals, agencies, industries or community groups collaborate to monitor, track, and respond to issues of common community concerns, has evolved and grown over the past decade. Much of the citizen science research thus far has primarily focused on the public participants (citizen scientists) and/or organizations themselves. This study looks instead at the people, the coordinators, implementing or coordinating citizen science programs and activities, specifically in the Community Collaborative Rain, Hail & Snow Network (CoCoRaHS), and their perceptions for program effectiveness. CoCoRaHS is a national program in which citizens monitor, record, and report precipitation conditions from backyard observations. Semi-structured interviews and an online survey completed by the program's coordinators in the state of Colorado found that the effectiveness of CoCoRaHS depends less on the interactions of the coordinators with each other or funding impacts on program activities, but rather on the interactions between coordinators and citizen scientists. The effectiveness of CoCoRaHS was perceived to depend more significantly on the connections coordinators have with the community of program users and citizen scientists, and a supportive culture within the program. The next step therefore is to explore these interactions between the coordinators and citizen scientists to develop a better understanding of their nature of participation in the citizen science program, and to describe the characteristics of all participants.

  16. NASA Applied Sciences Program. Overview Presentation; Discovering and Demonstrating Innovative and Practical Applications of Earth Science

    NASA Technical Reports Server (NTRS)

    Irwin, Daniel

    2010-01-01

    Goal 1: Enhance Applications Research Advance the use of NASA Earth science in policy making, resource management and planning, and disaster response. Key Actions: Identify priority needs, conduct applied research to generate innovative applications, and support projects that demonstrate uses of NASA Earth science. Goal 2: Increase Collaboration Establish a flexible program structure to meet diverse partner needs and applications objectives. Key Actions: Pursue partnerships to leverage resources and risks and extend the program s reach and impact. Goal 3:Accelerate Applications Ensure that NASA s flight missions plan for and support applications goals in conjunction with their science goals, starting with mission planning and extending through the mission life cycle. Key Actions: Enable identification of applications early in satellite mission lifecycle and facilitate effective ways to integrate end-user needs into satellite mission planning

  17. Authorized Course of Instruction for the Quinmester Program. Science: Cell Biology, Introduction to Life Science.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This instructional package contains two biological units developed for the Dade County Florida Quinmester Program. "Introduction to Life Sciences" develops student understandings of cell structure and function, and compares different levels of cellular organization. "Cell Biology" investigates the origin of modern cellular theories and…

  18. Research programs for Division of Chemical Sciences, Office of Basic Energy Sciences, Department of Energy

    SciTech Connect

    Not Available

    1988-01-01

    A chemical sciences review meeting was held in which research programs in chemistry were discussed. Major topics included: chemistry of actinides and fission products, interactions of solvents, solutes and surfaces in supercritical extraction, chemical and physical principles in multiphase separations, and chemical kinetics of enzyme catalyzed reactions. Individual projects are processed separately for the data bases. (CBS)

  19. Internships in Public Science Education program: a model for informal science education

    NASA Astrophysics Data System (ADS)

    Zenner, Greta

    2005-03-01

    The NSF-funded Internships in Public Science Education (IPSE) program provides a unique opportunity for undergraduate and graduate students with varied academic background to experience learning and teaching science--specifically nanotechnology--to the general public and middle-school students. The program is in collaboration with Discovery World Museum of Milwaukee, Wisconsin. IPSE interns have created a number of classroom activities ranging from understanding the scale of a nanometer to experimenting with liquid crystal sensors to critically examining the societal implications of nanotechnology. In a new phase of the program, the interns are developing a museum exhibit on nanotechnology to be housed at the Discovery World Museum. Through this experience, intern teams learn about nanotechnology, brainstorm ideas, present and receive feedback on their ideas, and create an exhibit prototype to explain nanotechnology and related science concepts. The program also focuses on professional development, during which interns learn techniques for presenting to non-technical audiences, strategies for assessing their materials, and work on their skills in teamwork, project design, leadership, and science communication.

  20. Integrating Science and Policy: A Case Study of the Hubbard Brook Research Foundation Science Links Program

    ERIC Educational Resources Information Center

    Driscoll, Charles T.; Lambert, Kathy Fallon; Weathers, Kathleen C.

    2011-01-01

    Scientists, related professionals, and the public have for decades called for greater interaction among scientists, policymakers, and the media to address contemporary environmental challenges. Practical examples of effective "real-world" programs designed to catalyze interactions and provide relevant science are few. Existing successful models…

  1. Recent Developments in College Science Programs and Courses. ERIC/SMEAC Science Education Digest No. 4.

    ERIC Educational Resources Information Center

    Howe, Robert W.; Warren, Charles R.

    Due to data released in several reports in recent years, concern has been growing regarding the status of undergraduate science in two-year colleges, four-year colleges, and universities. Recommendations of reports on this topic are summarized. Types of programs and activities that have been developed with precollege schools and students; current…

  2. Science Career Interests among High School Girls One Year after Participation in a Summer Science Program

    NASA Astrophysics Data System (ADS)

    Phillips, Katherine A.; Barrow, Lloyd H.; Chandrasekhar, Meera

    A residential summer program, the New Experiences far Women in Science and Technology (Newton) Academy, was developed to encourage high school girls' interest in the physical sciences and engineering. The goal of the Newton Academy was to increase and/or maintain interest and participation in the physical sciences among high schoolgirls. This study, part of a larger evaluation of the academy, reports the results of a follow-up of the 1998 Newton Academy participants 1 year after participation. It focuses on the participants' interests in the physical sciences and related careers as measured by the Strong Interest Inventory before and 1 year after participation. The results a/participant interviews conducted to further illuminate the findings from the quantitative data are also presented.

  3. Magnetic Fusion Science Fellowship program: Summary of program activities for calendar year 1986

    SciTech Connect

    Not Available

    1986-01-01

    This report describes the 1985-1986 progress of the Magnetic Fusion Science Fellowship program (MFSF). The program was established in January of 1985 by the Office of Fusion Energy (OFE) of the US Department of Energy (DOE) to encourage talented undergraduate and first-year graduate students to enter qualified graduate programs in the sciences related to fusion energy development. The program currently has twelve fellows in participating programs. Six new fellows are being appointed during each of the program's next two award cycles. Appointments are for one year and are renewable for two additional years with a three year maximum. The stipend level also continues at a $1000 a month or $12,000 a year. The program pays all tuition and fee expenses for the fellows. Another important aspect of the fellowship program is the practicum. During the practicum fellows receive three month appointments to work at DOE designated fusion science research and development centers. The practicum allows the MFSF fellows to directly participate in on-going DOE research and development programs.

  4. Innovative Space Sciences Education Programs for Young People

    NASA Astrophysics Data System (ADS)

    Inbar, T.

    2002-01-01

    The future of the world is greatly depends on space. Through space sciences education programs with the main focus is on young people, the society, as a whole will gain in the years to come. The Weizmann Institute of Science is the leading scientific research center in Israel. After the need for science education programs for young students was recognized, the institute established its Youth Activities Section, which serves as the institute's outreach for the general population of school children nation-wide. The youth activities section holds courses, seminars, science camps etc. for almost 40 years. As an instructor in the youth activities section since 1990, my focus is space sciences programs, such as rocketry courses, planetarium demonstrations, astronomical observations and special events - all in the creed of bringing the space science to everyone, in a enjoyable, innovative and creative way. Two of the courses conducted combines' scientific knowledge, hands-on experience and a glimpse into the work of space programs: the rocketry courses offered a unique chance of design, build and fly actual rockets, to height of about 800 meters. The students conduct research on the rockets, such as aerial photography, environmental measurements and aerodynamic research - using student built wind tunnel. The space engineering course extend the high frontier of the students into space: the objective of a two year course is to design, build an launch an experiments package to space, using one of NASA's GAS programs. These courses, combined with special guest lectures by Weizmann institute's senior researchers, tours to facilities like satellite control center, clean rooms, the aeronautical industry, give the students a chance to meet with "the real world" of space sciences applications and industry, and this - in turn - will have payback effect on the society as a whole in years to come. The activities of space sciences education include two portable planetariums, 4

  5. Understanding science teacher enhancement programs: Essential components and a model

    NASA Astrophysics Data System (ADS)

    Spiegel, Samuel Albert

    Researchers and practioners alike recognize that "the national goal that every child in the United States has access to high-quality school education in science and mathematics cannot be realized without the availability of effective professional development of teachers" (Hewson, 1997, p. 16). Further, there is a plethora of reports calling for the improvement of professional development efforts (Guskey & Huberman, 1995; Kyle, 1995; Loucks-Horsley, Hewson, Love, & Stiles, 1997). In this study I analyze a successful 3-year teacher enhancement program, one form of professional development, to: (1) identify essential components of an effective teacher enhancement program; and (2) create a model to identify and articulate the critical issues in designing, implementing, and evaluating teacher enhancement programs. Five primary sources of information were converted into data: (1) exit questionnaires, (2) exit surveys, (3) exit interview transcripts, (4) focus group transcripts, and (5) other artifacts. Additionally, a focus group was used to conduct member checks. Data were analyzed in an iterative process which led to the development of the list of essential components. The Components are categorized by three organizers: Structure (e.g., science research experience, a mediator throughout the program), Context (e.g., intensity, collaboration), and Participant Interpretation (e.g., perceived to be "safe" to examine personal beliefs and practices, actively engaged). The model is based on: (1) a 4-year study of a successful teacher enhancement program; (2) an analysis of professional development efforts reported in the literature; and (3) reflective discussions with implementors, evaluators, and participants of professional development programs. The model consists of three perspectives, cognitive, symbolic interaction, and organizational, representing different viewpoints from which to consider issues relevant to the success of a teacher enhancement program. These

  6. Minority Summer Research Program in the Plant Sciences

    SciTech Connect

    Poff, Kenneth L.

    2004-08-12

    Gutierrez and Larcom (2000) suggest that ''According to the National Science Foundation/Division of Science Resources Studies in 1997, the percentage distribution of scientists and engineers in the labor force by race/ethnicity changed little between 1993 and 1997''. According to this report, Black, non-Hispanic went from 3.6 in 1993 to 3.4 in 1997. Hispanic went from 3.0 in 1993 to 3.1 in 1997; and American Indian/Alaskan Native stayed the same at 0.3 during the same period. The only exceptions were a slight increase in the percentage of Asian from 9.2 in 1993 to 10.4 in 1997, while a slight decrease in percentage White from 83.9 in 1993 to 82.8 in 1997. Overall, no major changes in minorities were present in the science and engineering fields during that period. These data shows that major efforts are needed in order to improve and achieve better results for diversity in the workplace (Gutierrez & Larcom, 2000). This does not mean that major steps have not been taken over this period. For example, the Minority Summer Research Program in Plant Sciences (also funded in part by NSF under the title, ''Undergraduate Researchers in Plant Sciences Program'') was established in an effort to enhance the diversity of the plant science community. The Minority Summer Research Program in Plant Sciences was designed to encourage members of underrepresented groups to seek career opportunities in the plant sciences. To achieve this end, the program contained several components with the primary focus on mentored research for undergraduate students. The research experience was provided during the summer months on the campus of Michigan State University in East Lansing, Michigan. At the end of the summer experience, each participant presented an oral report on their research, and submitted a written paper on the same topic. This was deliberately designed to mimic the plant science professions in which research leads to presentations in the form of reports, papers, etc. In addition

  7. Windows to the Universe: Earth Science Enterprise Education Program

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Over the past year, Windows to the Universe has continued a multifaceted program of support to the Earth Science Enterprise Education program. Areas of activity include continued maintenance of the W2U website and user traffic analysis, development of new and revised content and activities on the website, implementation of new tools to facilitate website development and maintenance, response to users questions and comments, professional development for educators through workshops at the National Science Teachers Association meetings and at NCAR, and dissemination of information about the project through materials distribution at NSTAs, AGUs, AMS and other venues. This report provides some background on the project and summarizes progress for the third and final year of the project.

  8. The NASA Space Life Sciences Training Program - Preparing the way

    NASA Technical Reports Server (NTRS)

    Biro, Ronald; Munsey, Bill; Long, Irene

    1990-01-01

    Attention is given to the goals and methods adopted in the NASA Space Life Sciences Training Program (SLSTP) for preparing scientists and engineers for space-related life-sciences research and operations. The SLSTP is based on six weeks of projects and lectures which give an overview of payload processing and experiment flow in the space environment. The topics addressed in the course of the program include descriptions of space vehicles, support hardware, equipment, and research directions. Specific lecture topics include the gravity responses of plants, mission integration of a flight experiment, and the cardiovascular deconditioning. The SLSTP is shown to be an important part of the process of recruiting and training qualified scientists and engineers to support space activities.

  9. Microgravity Science and Applications Program tasks, 1990 revision

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The active research tasks as of the end of the fiscal year 1990 sponsored by the Microgravity Science and Applications Division of the NASA Office of Space Science and Applications are compiled. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The report includes an introductory description of the program, the strategy and overall goal; an index of principle investigators; and a description of each task. A list of recent publications is also provided. The tasks are grouped into six major categories: electronic materials; solidification of metals, alloys, and composites; fluid dynamics and transport phenomena; biotechnology; glasses and ceramics; combustion; experimental technology; facilities; and Physics And Chemistry Experiments (PACE). The tasks are divided into ground-based and flight experiments.

  10. Bioremediation Education Science and Technology (BEST) Program Annual Report 1999

    SciTech Connect

    Hazen, Terry C.

    2000-07-01

    The Bioremediation, Education, Science and Technology (BEST) partnership provides a sustainable and contemporary approach to developing new bioremedial technologies for US Department of Defense (DoD) priority contaminants while increasing the representation of underrepresented minorities and women in an exciting new biotechnical field. This comprehensive and innovative bioremediation education program provides under-represented groups with a cross-disciplinary bioremediation cirruculum and financial support, coupled with relevant training experiences at advanced research laboratories and field sites. These programs are designed to provide a stream of highly trained minority and women professionals to meet national environmental needs.

  11. The NASA Life Sciences experiment program for Shuttle/Spacelab

    NASA Technical Reports Server (NTRS)

    Winter, D.

    1978-01-01

    The Life Sciences experiment program for the Shuttle/Spacelab has basically two scientific objectives. The first objective is related to an understanding and interpretation of the medical data from Skylab. The second objective is concerned with a utilization of the space environment, notably the very low g field, as an experimental variable in a broad range of fundamental studies. The program considered will use the pressurized module, almost exclusively, and will aim toward the greatest investigator participation in flight that is possible. Facilities must be provided to support such requirements as tissue biopses, blood, urine and tissue collections, and microbial and plant manipulations.

  12. Flight- and Ground-Based Materials Science Programs at NASA

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1999-01-01

    The Microgravity Research Division of NASA funds research programs in all branches of materials science including ceramics and glasses. A NASA Research Announcement (NRA)is currently planned with proposals due in March 1999. Proposals are accepted for both flight- definition and ground- based research projects with a main criterion being a strong justification for microgravity. A review of the program in its entirety will be given, with special emphasis on microgravity related ceramics research. The topics of current interest in the NRA will be discussed in terms of International Space Station research and NASA's Human Exploration and Development of Space (HEDS) initiative.

  13. A multidisciplinary Earth science research program in China

    NASA Astrophysics Data System (ADS)

    Dong, Shuwen; Li, Tingdong; Gao, Rui; Hou, Hesheng; Li, Yingkang; Zhang, Shihong; Keller, G. Randy; Liu, Mian

    2011-09-01

    Because China occupies a large and geologically complex region of central and eastern Asia, the country may hold the keys to resolving many basic problems in the Earth sciences, such as how continental collision with India produced China's interconnected array of large intraplate structures, and what links exist between these structures and natural resources. To learn more, the Chinese government has launched SinoProbe, a major research initiative focusing on multidisciplinary imaging of the three-dimensional (3-D) structure and composition of the Chinese continental lithosphere and its evolution through geologic history. This effort is also motivated by China's need for a comprehensive and systematic evaluation of its natural resources and a better understanding of potential geohazards. SinoProbe is funded by the Chinese Ministry of Finance, managed by the Chinese Ministry of Land and Resources, and organized by the Chinese Academy of Geological Sciences. More than 960 investigators and engineers are currently involved with the program, not counting international collaborators. Most of them are affiliated with the Chinese Academy of Geological Sciences, the Chinese Academy of Sciences, the Ministry of Education (i.e., universities), and the China Earthquake Administration. The initial phase of the program (2008-2012), with funding equivalent to about US$164 million, is testing the feasibility of new technologies in geophysical and geochemical exploration and deep continental drilling by focusing on a series of profiles (Figure 1).

  14. 76 FR 11765 - Education Research and Special Education Research Grant Programs; Institute of Education Sciences...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... Education Research and Special Education Research Grant Programs; Institute of Education Sciences; Overview... in the Education Sciences. Research on Statistical and Research Methodology in Education. Under the... of Education Sciences: FY 2012 Grant Competitions To Support Education Research and Special...

  15. The Impact of Science Graduate Students in Urban Science Classrooms: The SFOS Program at Cal State Los Angeles

    NASA Astrophysics Data System (ADS)

    Terebey, S.; Mayo, D.; Strauss, J.

    2005-12-01

    The SFOS program at Cal State Los Angeles places science graduate students in minority serving high schools and middle schools in the Los Angeles region. Graduate fellows pursue Master's degrees in biology, chemistry, geology, or physics while working with partner teachers to provide science demonstrations and activities that are based on California science content standards. Fellows in the classroom are not apprentice teachers, but rather, their role is science communication. Now in its third year, we discuss the impacts of the SFOS program on graduate fellows, teachers, and high school curricula. We thank the National Science Foundation for funding through the GK-12 program.

  16. The Maryland nuclear science baccalaureate degree program: The utility perspective

    SciTech Connect

    Mueller, J.R.

    1989-01-01

    In the early 1980s, Wisconsin Public Service Corporation (WPSC) made a firm commitment to pursue development and subsequent delivery of an appropriate, academically accredited program leading to a baccalaureate degree in nuclear science for its nuclear operations personnel. Recognizing the formidable tasks to be accomplished, WPSC worked closely with the University of Maryland University College (UMUC) in curriculum definition, specific courseware development for delivery by computer-aided instruction, individual student evaluation, and overall program implementation. Instruction began on our nuclear plant site in the fall of 1984. The university anticipates conferring the first degrees from this program at WPSC in the fall of 1989. There are several notable results that WPSC achieved from this degree program. First and most importantly, an increase in the level of education of our employees. It should be stated that this program has been well received by WPSC operator personnel. These employees, now armed with plant experience, a formal degree in nuclear science, and professional education in management are real candidates for advancement in our nuclear organization.

  17. Atmospheric Sciences Program summaries of research in FY 1993

    SciTech Connect

    Not Available

    1993-11-01

    This document describes the activities and products of the Atmospheric Science Program of the Environmental Sciences Division, Office of Health and Environmental Research, Office of Energy Research, in FY 1993. Each description contains the project`s title; three-year funding history; the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date. Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states its goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used. This document has been indexed to aid the reader in locating research topics, participants, and research institutions in the text and the project descriptions. Comprehensive subject, principal investigator, and institution indexes are provided at the end of the text for this purpose. The comprehensive subject index includes keywords from the introduction and chapter texts in addition to those from the project descriptions.

  18. Science at NASA field centers: Findings and recommendations on the scope, strength and interactions of science and science-related technology programs

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Great achievements by NASA and other space agencies have shown us what opportunities lie in the opening of the space frontier. A broad and vigorous science program in NASA is vital to full U.S. exploitation of these new opportunities. Today, science in NASA Centers is characterized by its breadth, relevance, and excellence. The NASA in-house science program and its links to university programs constitute a vitally important national resource. Maintaining excellence as a foundation for the future is a fundamental responsibility of NASA, one that requires constant attention and effort. This report by the NASA Center Science Assessment Team documents the current state of science within NASA and recommends actions to maintain a healthy program. NASA scientists have always played key roles in planning, guiding, and conducting national programs in space science. The review of Center science programs is intended to ensure that both NASA and the nation can depend on their continuing contribution in these roles.

  19. On Minorities in Science: Examining the Role of Mentorship Programs in Earth Sciences

    NASA Astrophysics Data System (ADS)

    Harrison, M. D.; Birt, L.; Frink, K.; Johnson, A.; Williamson Whitney, V.

    2010-12-01

    Broadening participation of minorities in STEM related fields has been the topic of interest in recent years. Many questions about the effectiveness of federally funded programs dedicated to increasing diversity remain unanswered. Evaluating the success of mentorship programs is an important step toward ensuring that under-represented minorities successfully navigate STEM related-disciplines to meet their academic and professional career goals. The Minorities Striving to Pursue Higher Degrees in Earth Sciences Professional Development Program ( MS PHD’S will be examined as a case study to determine the effectiveness of mentorship as a mechanism for increasing diversity in STEM fields. The Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science (MS PHD'S) initiative was developed for underrepresented minorities with the overall purpose of facilitating increased participation in Earth System Science. In this paper, we present information on 1) the role MS PHD’S plays in the socio-academic development of minority students, 2) the extent to which resources that are made available to minority students (e.g., establishment of mentee-mentor relationships, peer-to-peer relationships, and professional networking opportunities) aid in their intellectual growth and development, and 3) the current status of the program and its’ participants as an indicator of success of the program (e.g., number of individuals who have successfully completed the program and number of internships, fellowships, and postdocs received). This information highlights our current status and our understanding of the challenges minority students face across different disciplines, stages of academic career, institutions, and cultural norms. We discuss how to evaluate appropriate measures of success to increase diversity in STEM fields. Finally, we provide suggestions on how creating synergies among and within existing mentoring programs can promote sustainability of

  20. Recent Enrollment Trends in American Soil Science Programs

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.; Abit, Sergio; Brown, David; Dolliver, Holly; Hopkins, David; Lindbo, David; Manu, Andrew; Mbila, Monday; Parikh, Sanjai J.; Schulze, Darrell; Shaw, Joey; Weil, Ray; Weindorf, David

    2015-04-01

    Soil science student enrollment was on the decline in the United States from the early 1990s through the early 2000s. Overall undergraduate student enrollment in American colleges and universities rose by about 11% over the same time period. This fact created considerable consternation among the American soil science community. As we head into the International Year of Soil, it seemed to be a good time to revisit this issue and examine current enrollment trends. Fourteen universities that offer undergraduate and/or graduate programs in soil science were surveyed for their enrollments over the time period 2007-2014 (the last seven academic years). The 14 schools represent about 20% of the institutions that offer soil science degrees/programs in the United States. Thirteen institutions submitted undergraduate data and 10 submitted graduate data, which was analyzed by individual institution and in aggregate. Simple linear regression was used to find the slope of best-fit trend lines. For individual institutions, a slope of ≥ 0.5 (on average, the school gained 0.5 students per year or more) was considered to be growing enrollment, ≤ -0.5 was considered shrinking enrollment, and between -0.5 and 0.5 was considered to be stable enrollment. For aggregated data, the 0.5 slope standard was multiplied by the number of schools in the aggregated survey to determine whether enrollment was growing, shrinking, or stable. Over the period of the study, six of the 13 schools reporting undergraduate data showed enrollment gains, five of the 13 showed stable enrollments, one of the 13 showed declining enrollments, and one of the 13 discontinued their undergraduate degree program. The linear regression trend line for the undergraduate schools' composite data had a slope of 55.0 students/year (R2 = 0.96), indicating a strong overall trend of undergraduate enrollment growth at these schools. However, the largest school had also seen large growth in enrollment. To ensure that this one

  1. NASA space life sciences research and education support program

    NASA Technical Reports Server (NTRS)

    Jones, Terri K.

    1995-01-01

    USRA's Division of Space Life Sciences (DSLS) was established in 1983 as the Division of Space Biomedicine to facilitate participation of the university community in biomedical research programs at the NASA Johnson Space Center (JSC). The DSLS is currently housed in the Center for Advanced Space Studies (CASS), sharing quarters with the Division of Educational Programs and the Lunar and Planetary Institute. The DSLS provides visiting scientists for the Johnson Space Center; organizes conferences, workshops, meetings, and seminars; and, through subcontracts with outside institutions, supports NASA-related research at more than 25 such entities. The DSLS has considerable experience providing visiting scientists, experts, and consultants to work in concert with NASA Life Sciences researchers to define research missions and goals and to perform a wide variety of research administration and program management tasks. The basic objectives of this contract have been to stimulate, encourage, and assist research and education in the NASA life sciences. Scientists and experts from a number of academic and research institutions in this country and abroad have been recruited to support NASA's need to find a solution to human physiological problems associated with living and working in space and on extraterrestrial bodies in the solar system.

  2. The New Millenium Program: Serving Earth and Space Sciences

    NASA Technical Reports Server (NTRS)

    Li, Fuk K.

    2000-01-01

    NASA has exciting plans for space science and Earth observations during the next decade. A broad range of advanced spacecraft and measurement technologies will be needed to support these plans within the existing budget and schedule constraints. Many of these technology needs are common to both NASA's Office of Earth Science (OES) and Office of Space Sciences (OSS). Even though some breakthrough technologies have been identified to address these needs, project managers have traditionally been reluctant to incorporate them into flight programs because their inherent development risk. To accelerate the infusion of new technologies into its OES and OSS missions, NASA established the New Millennium Program (NMP). This program analyzes the capability needs of these enterprises, identifies candidate technologies to address these needs, incorporates advanced technology suites into validation flights, validates them in the relevant space environment, and then proactively infuses the validated technologies into future missions to enhance their capabilities while reducing their life cycle cost. The NMP employs a cross-enterprise Science Working Group, the NASA Enterprise science and technology roadmaps to define the capabilities needed by future Earth and Space science missions. Additional input from the science community is gathered through open workshops and peer-reviewed NASA Research Announcement (NRAs) for advanced measurement concepts. Technology development inputs from the technology organizations within NASA, other government agencies, federally funded research and development centers (FFRDC's), U.S. industry, and academia are sought to identify breakthrough technologies that might address these needs. This approach significantly extends NASA's technology infrastructure. To complement other flight test programs that develop or validate of individual components, the NMP places its highest priority on system-level validations of technology suites in the relevant space

  3. Summaries of the FY 1981 applied mathematical sciences research program

    SciTech Connect

    Not Available

    1981-12-01

    Applied Mathematical Sciences serves as the DOE focal point for monitoring and advancing the state of the art in mathematics, statistics, and computer science. Several DOE mission programs develop and refine specific techniques from the applied mathematical sciences applicable to their immediate needs. In contrast, Applied Mathematical Sciences concentrates on more broadly based, continuing needs throughout the DOE community. Emphasis is placed on research basic to the analysis, development, and use of large-scale computational models; the management and analysis of large, complex collections of information; and the effective use of DOE computing resources. The purpose of this research is not to improve existing technologies and methodologies, but rather to render them obsolete. Each part of the Applied Mathematical Sciences activity has been designed with the help and advice of leading mathematicians and computer scientists from universities, industry, and DOE laboratories to assure the broadest and greatest impact on the nation's energy R and D enterprise. Many of them are expert in industry's needs in the relevant areas. Close liaison is maintained with other federal agencies in the selection of areas of emphasis and of individual research tasks. This is high leverage research. In favorable cases, the results may be of great benefit simultaneously to a number of different energy technologies. The requested increase will be an exceptionally sound investment.

  4. Promoting Science Education Using an Energetic Multi-faceted Program

    NASA Astrophysics Data System (ADS)

    Lee, Richard; Nagy, Alex

    2006-10-01

    The Fusion Education Program at General Atomics is beginning its 13^th year of interaction with teachers and students and continues to be a fundamental source of information and activities covering states of matter, fusion science and technology, and classroom demonstrations. DIII-D facility field trips by students and classroom visits by scientists offer students close interaction with professional scientists and engineers and hands-on demonstrations. Educator workshops allow teachers to build items for their classroom that allow clear demonstration of specific science concepts found in basic plasma science and science measurements using devices such as DVMs, compasses, and pressure gauges. Materials for teaching plasma and fusion science in the class are readily available and formats include notebook, videotape, CD, and DVD. In recent summer `Build-it Day' workshops teachers built a 300 turn coil used in magnetic field mapping exercises and a 200 turn coil used in a magnetic levitation demonstration. Teachers also harvested a small coil from a standard relay to make a magnetic field pickup coil for making quantitative field measurements. Demonstration equipment will be present for review and interaction.

  5. Cosmic Origins: A Traveling Science Exhibit and Education Program

    NASA Astrophysics Data System (ADS)

    Dusenbery, P. B.; Morrow, C. A.; Harold, J.

    2003-12-01

    The Space Science Institute of Boulder, Colorado, is developing a 3,000 square-foot traveling exhibition, called Cosmic Origins, which will bring origins-related research and discoveries to students and the American public. Cosmic Origins will have three interrelated exhibit areas: Star Formation, Planet Quest, and Search for Life. Exhibit visitors will explore the awesome events surrounding the birth of stars and planets; they will join scientists in the hunt for planets outside our solar system including those that may be in "habitable zones" around other stars; and finally they will be able to learn about the wide range of conditions for life on Earth and how scientists are looking for signs of life beyond Earth. Visitors will also learn about the tools scientists' use, such as space-based and ground-based telescopes, to improve our understanding of the cosmos. Exhibit content will address age-old questions that form the basis of NASA's Origins and Astrobiology programs: Where did we come from? Are we alone? In addition to the exhibit, our project will include workshops for educators and docents at host sites, as well as a public Web site that will use a virtual rendering of exhibit content. The exhibit's size will permit it to visit medium sized museums in underserved regions of the country. It will begin its 3-year tour to 9 host museums and science centers in early 2005. A second 3-year tour is also planned for 2008. The Association of Science-Technology Centers (ASTC) will manage the exhibit's national tour. Current partners in the Cosmic Origins project include ASTC, the Denver Museum of Nature and Science, Lawrence Hall of Science, NASA Astrobiology Institute, NASA missions (e.g. PlanetQuest, SIRTF, and Kepler), New York Hall of Science, the SETI Institute, and the Space Telescope Science Institute. The exhibition is supported by grants from NSF and NASA. This report will focus on the Planet Quest part of the exhibition.

  6. Master's Degree Programs for the Preparation of Secondary Earth Science Teachers.

    ERIC Educational Resources Information Center

    Passero, Richard Nicholas

    Investigated were master's degree programs for the preparation of secondary school earth science teachers. Programs studied were classified as: (1) noninstitute college programs, and (2) National Science Foundation (NSF) institute programs. A total of 289 students enrolled in noninstitute programs contributed data by personal visits and…

  7. Upper airway test (image)

    MedlinePlus

    An upper airway biopsy is obtained by using a flexible scope called a bronchoscope. The scope is passed down through ... may be performed when an abnormality of the upper airway is suspected. It may also be performed as ...

  8. Evaluating the Effectiveness of the 2002-2003 NASA SCIence Files(TM) Program

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Lambert, Matthew A.; Williams, Amy C.

    2004-01-01

    NASA SCIence Files (tm) is a research-, inquiry-, and standards-based, integrated mathematics, science, and technology series of 60-minute instructional distance learning (television and web-based) programs for students in grades 3-5. Respondents who evaluated the programs in the 2002-2003 NASA SCIence Files (tm) series reported that (1) they used the programs in the series; (2) the goals and objectives for the series were met; (3) the programs were aligned with the national mathematics, science, and technology standards; (4) the program content was developmentally appropriate for grade level; and (5) the programs in the series enhanced and enriched the teaching of mathematics, science, and technology.

  9. Science and technology disclosure in the state of Queretaro: Science and Technology for Children program

    NASA Astrophysics Data System (ADS)

    Contreras Flores, Rubén; Villeda Muñoz, Gabriel

    2007-03-01

    Science and technology disclosure is an integral part of our scientific work as researches; it is an induction process for children, young people and teachers of primary and secondary schools in the state of Queretaro. Education must be offered in a clear and objective way, it allows to the students apply the acquired knowledge to understand the world and improve his quality of life. Nowadays, the Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada of the Instituto Politecnico Nacional Unidad Queretaro (CICATA-IPN Queretaro) together with the Consejo de Ciencia y Tecnologia del Estado de Queretaro (CONCYTEQ) have implemented the "Science and Technology for Children" program (Ciencia y Tecnologia para Ninos - CTN), it allows to the educative sector obtain information through the CONCYTEQ web page. The fist stage of the program was the development of two subjects: the brochure titled "Petroleum, Nonrenewable Natural Resource that Moves the World" and the manual "Experiments of Physics". At the moment we are working with the second stage of the program, it is about the energy generation using renewable sources such as: geothermal, aeolian, solar and biomass. The CTN program allows to students and teachers to create conscience about the importance of the development of the science of technology in our country.

  10. Research Experience for Undergraduates Program in Multidisciplinary Environmental Science

    NASA Astrophysics Data System (ADS)

    Wu, M. S.

    2012-12-01

    During summers 2011 and 12 Montclair State University hosted a Research Experience for Undergraduates Program (REU) in transdisciplinary, hands-on, field-oriented research in environmental sciences. Participants were housed at the Montclair State University's field station situated in the middle of 30,000 acres of mature forest, mountain ridges and freshwater streams and lakes within the Kittatinny Mountains of Northwest New Jersey, Program emphases were placed on development of project planning skills, analytical skills, creativity, critical thinking and scientific report preparation. Ten students were recruited in spring with special focus on recruiting students from underrepresented groups and community colleges. Students were matched with their individual research interests including hydrology, erosion and sedimentation, environmental chemistry, and ecology. In addition to research activities, lectures, educational and recreational field trips, and discussion on environmental ethics and social justice played an important part of the program. The ultimate goal of the program is to facilitate participants' professional growth and to stimulate the participants' interests in pursuing Earth Science as the future career of the participants.

  11. Improving epistemological beliefs and moral judgment through an STS-based science ethics education program.

    PubMed

    Han, Hyemin; Jeong, Changwoo

    2014-03-01

    This study develops a Science-Technology-Society (STS)-based science ethics education program for high school students majoring in or planning to major in science and engineering. Our education program includes the fields of philosophy, history, sociology and ethics of science and technology, and other STS-related theories. We expected our STS-based science ethics education program to promote students' epistemological beliefs and moral judgment development. These psychological constructs are needed to properly solve complicated moral and social dilemmas in the fields of science and engineering. We applied this program to a group of Korean high school science students gifted in science and engineering. To measure the effects of this program, we used an essay-based qualitative measurement. The results indicate that there was significant development in both epistemological beliefs and moral judgment. In closing, we briefly discuss the need to develop epistemological beliefs and moral judgment using an STS-based science ethics education program. PMID:23338794

  12. 77 FR 73497 - Meeting of the Office of Justice Programs' Science Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... of Justice Programs Meeting of the Office of Justice Programs' Science Advisory Board AGENCY: Office... forthcoming meeting of OJP's Science Advisory Board (``Board''). General Function of the Board: The Board is... science and statistics for the purpose of enhancing the overall impact and performance of its programs...

  13. 78 FR 77168 - Meeting of the Office of Justice Programs' Science Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... of Justice Programs Meeting of the Office of Justice Programs' Science Advisory Board AGENCY: Office... forthcoming meeting of OJP's Science Advisory Board (``Board''). General Function of the Board: The Board is... science and statistics for the purpose of enhancing the overall impact and performance of its programs...

  14. A Hospital/School Science Fair Mentoring Program for Middle School Students.

    ERIC Educational Resources Information Center

    Torres, B.; Harris, R. F.; Lockwood, D.; Johnson, J.; Mirabal, R.; Wells, D. T.; Pacheco, M.; Soussou, H.; Robb, F.; Weissman, G. Kuhn; Gwosdow, A. R.

    1997-01-01

    Describes the Science Fair Mentoring Program, one of the Science Connection programs of the Massachusetts General Hospital/James P. Timilty Middle School Partnership. This program is designed to enhance middle school science education, inform urban early adolescents about professions in the health field, and encourage them to pursue postsecondary…

  15. Technology and Science Education: Starting Points, Research Programs, and Trends.

    ERIC Educational Resources Information Center

    Linn, Marcia C.

    2003-01-01

    Explores technology in science education in five paths: (1) science texts and lectures; (2) science discussions and collaboration; (3) data collection and representation; (4) science visualization; and (5) science simulation and modeling. (Contains 92 references.) (Author/SOE)

  16. Partnering to Enhance Planetary Science Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    Dalton, Heather; Shipp, Stephanie; Shupla, Christine; Shaner, Andrew; LaConte, Keliann

    2015-11-01

    The Lunar and Planetary Institute (LPI) in Houston, Texas utilizes many partners to support its multi-faceted Education and Public Outreach (E/PO) program. The poster will share what we have learned about successful partnerships. One portion of the program is focused on providing training and NASA content and resources to K-12 educators. Teacher workshops are performed in several locations per year, including LPI and the Harris County Department of Education, as well as across the country in cooperation with other programs and NASA Planetary Science missions.To serve the public, LPI holds several public events per year called Sky Fest, featuring activities for children, telescopes for night sky viewing, and a short scientist lecture. For Sky Fest, LPI partners with the NASA Johnson Space Center Astronomical Society; they provide the telescopes and interact with members of the public as they are viewing celestial objects. International Observe the Moon Night (InOMN) is held annually and involves the same aspects as Sky Fest, but also includes partners from Johnson Space Center’s Astromaterials Research and Exploration Science group, who provide Apollo samples for the event.Another audience that LPI E/PO serves is the NASA Planetary Science E/PO community. Partnering efforts for the E/PO community include providing subject matter experts for professional development workshops and webinars, connections to groups that work with diverse and underserved audiences, and avenues to collaborate with groups such as the National Park Service and the Afterschool Alliance.Additional information about LPI’s E/PO programs can be found at http://www.lpi.usra.edu/education. View a list of LPI E/PO’s partners here: http://www.lpi.usra.edu/education/partners/.

  17. Partnering to Enhance Planetary Science Education and Public Outreach Programs

    NASA Astrophysics Data System (ADS)

    Dalton, H.; Shipp, S. S.; Shupla, C. B.; Shaner, A. J.; LaConte, K.

    2015-12-01

    The Lunar and Planetary Institute (LPI) in Houston, Texas utilizes many partners to support its multi-faceted Education and Public Outreach (E/PO) program. The poster will share what we have learned about successful partnerships. One portion of the program is focused on providing training and NASA content and resources to K-12 educators. Teacher workshops are performed in several locations per year, including LPI and the Harris County Department of Education, as well as across the country in cooperation with other programs and NASA Planetary Science missions. To serve the public, LPI holds several public events per year called Sky Fest, featuring activities for children, telescopes for night sky viewing, and a short scientist lecture. For Sky Fest, LPI partners with the NASA Johnson Space Center Astronomical Society; they provide the telescopes and interact with members of the public as they are viewing celestial objects. International Observe the Moon Night (InOMN) is held annually and involves the same aspects as Sky Fest, but also includes partners from Johnson Space Center's Astromaterials Research and Exploration Science group, who provide Apollo samples for the event. Another audience that LPI E/PO serves is the NASA Planetary Science E/PO community. Partnering efforts for the E/PO community include providing subject matter experts for professional development workshops and webinars, connections to groups that work with diverse and underserved audiences, and avenues to collaborate with groups such as the National Park Service and the Afterschool Alliance. Additional information about LPI's E/PO programs can be found at http://www.lpi.usra.edu/education. View a list of LPI E/PO's partners here: http://www.lpi.usra.edu/education/partners/.

  18. Long-Term Stewardship Program Science and Technology Requirements

    SciTech Connect

    Joan McDonald

    2002-09-01

    Many of the United States’ hazardous and radioactively contaminated waste sites will not be sufficiently remediated to allow unrestricted land use because funding and technology limitations preclude cleanup to pristine conditions. This means that after cleanup is completed, the Department of Energy will have long-term stewardship responsibilities to monitor and safeguard more than 100 sites that still contain residual contamination. Long-term stewardship encompasses all physical and institutional controls, institutions, information, and other mechanisms required to protect human health and the environment from the hazards remaining. The Department of Energy Long-Term Stewardship National Program is in the early stages of development, so considerable planning is still required to identify all the specific roles and responsibilities, policies, and activities needed over the next few years to support the program’s mission. The Idaho National Engineering and Environmental Laboratory was tasked with leading the development of Science and Technology within the Long-Term Stewardship National Program. As part of that role, a task was undertaken to identify the existing science and technology related requirements, identify gaps and conflicts that exist, and make recommendations to the Department of Energy for future requirements related to science and technology requirements for long-term stewardship. This work is summarized in this document.

  19. Effect of Federal programs on health sciences libraries.

    PubMed

    Palmer, R A

    1987-01-01

    The radical changes and improvements in health sciences libraries during the last quarter century have been primarily achieved through the leadership of the National Library of Medicine (NLM) in the application of technology and in the creation of a biomedical communications network. This article describes principal programs and activities of the National Library of Medicine and their effects on health sciences libraries: the Medical Literature Analysis and Retrieval System (MEDLARS), implementation of the Medical Library Assistance Act (MLAA), and defense of "fair use" of copyrighted material. The article briefly summarizes more recent Federal activities which directly affect access to and dissemination of health information and concludes with a summary of problems for which solutions must be found if health sciences libraries are to be prepared to meet the future. It is clear from comparing the programs described with current government attitudes that, although the Federal government has promoted advancement in the dissemination of biomedical information in the past, this trend is reversing, and Federal funding to libraries is decreasing while the cost of accessing information is increasing. PMID:10301370

  20. An analysis of undergraduate exercise science programs: an exercise science curriculum survey.

    PubMed

    Elder, Craig L; Pujol, Thomas J; Barnes, Jeremy T

    2003-08-01

    Undergraduate exercise science programs develop curricula by referring to standards set by professional organizations. A web-based survey was administered to 235 institutions with exercise science undergraduate programs to evaluate their adherence to stated curricular guidelines. Results indicate that 29% of institutions considered American College of Sports Medicine (ACSM) Knowledge, skills, and abilities (KSAs); 33% both ACSM and National Association for Sport and Physical Education (NASPE) guidelines; 6% ACSM, NASPE, and National Strength and Conditioning Association (NSCA); 8% ACSM, NASPE, NSCA, and American Society of Exercise Physiologists, and 5% NASPE. The two largest subgroups had good compliance with the areas of exercise physiology, biomechanics, and human anatomy and physiology. However, neither subgroup adhered to the areas of exercise prescription, testing, and implementation; exercise and aging; or exercise with special populations. Regardless of the implemented guideline(s), most institutions placed minimal emphasis on areas related to health promotion and many curricula did not require any field experience. PMID:12930183

  1. Exploring the Impact of an Out-of-School Science Program on the Science Learning of Upper Elementary School Children

    ERIC Educational Resources Information Center

    Marshall, Karen Benn

    2009-01-01

    This study sought to explore qualitatively how participation in an informal science program might affect the following aspects of upper elementary school children's scientific thinking: conceptual understanding, epistemology of science, and the formation of their identity as science learners. A purposefully selected, maximum variation sample of…

  2. Teachers' Nature of Science Implementation Practices 2-5 Years after Having Completed an Intensive Science Education Program

    ERIC Educational Resources Information Center

    Herman, Benjamin C.; Clough, Michael P.; Olson, Joanne K.

    2013-01-01

    Few, if any, studies have examined the impact of nature of science (NOS) instruction on science teachers' practices 2 or more years after completing a science teacher education program. Extant studies on preservice and first-year teachers' NOS teaching practices have had disappointing results, with few teachers valuing NOS as a cognitive objective…

  3. Science for Kids Outreach Programs: College Students Teaching Science to Elementary Students and Their Parents

    NASA Astrophysics Data System (ADS)

    Koehler, Birgit G.; Park, Lee Y.; Kaplan, Lawrence J.

    1999-11-01

    For a number of years we have been organizing and teaching a special outreach course during our Winter Study Program (the month of January). College students plan, develop, and present hands-on workshops to fourth-grade students and their parents, with faculty providing logistical support and pedagogical advice. Recent topics have been "Forensic Science", "Electricity and Magnetism", "Chemistry and Cooking", "Waves", "Natural Disasters", "Liquids", "Pressure", "Color and Light", "Momentum and Inertia", "Illusions", and "The Senses". The two-hour workshops, held one weekend on campus, emphasize hands-on experiments involving both the kids and the parents. Handouts for each workshop give instructions for doing several experiments at home. This program has been a great success for all involved: the college students gain insight into an aspect of science and what it takes to develop and teach that topic, the elementary school students participate in an exciting and challenging scientific exploration, and the parents have a chance to learn some science while spending time working on projects with their children. We provide an overview of the pedagogical aims of our current approach and a sense of the time-line for putting together such a program in a month.

  4. [The undergraduate program in forensic science: a national challenge].

    PubMed

    García Castillo, Zoraida; Graue Wiechers, Enrique; Durante Montiel, Irene; Herrera Saint Leu, Patricia

    2014-01-01

    The challenge in achieving an ideal state of justice is that each "proof" has the highest degree of reliability. This is the main responsibility of the forensic scientist. Up to now, criminal investigations in Mexico have been supported by forensic work from a wide variety of disciplinary backgrounds that give testimony in a particular area, even though they may have become forensic witnesses in a complementary and experiential manner. In January 2013, the Universidad Nacional Autónoma de México (UNAM) approved the "Forensic Science" undergraduate program that, in collaboration with various academic entities and government institutions, will develop forensic scientists trained in science, law, and criminology. This is focused on contributing to the national demand that the justice system has more elements to procure and administer justice in dealing with crime. PMID:24481439

  5. DUSEL-related Science at LBNL -- Program and Opportunities

    SciTech Connect

    Bauer, Christian; Detweiler, Jason; Freedman, Stuart; Gilchriese, Murdock; Kadel, Richard; Koch, Volker; Kolomensky, Yury; Lesko, Kevin; von der Lippe, Henrik; Marks, Steve; Nomura, Yasunori; Plate, David; Roe, Natalie; Sichtermann, Ernst; Ligeti, Zoltan

    2009-08-01

    The National Science Foundation is advancing the design of a Deep Underground Science and Engineering Laboratory (DUSEL) at the former Homestake mine in South Dakota. UC Berkeley and LBNL are leading the design effort for the facility and coordinating the definition and integration of the suite of experiments to be coupled to the facility design in the creation of an MREFC (Major Research Equipment and Facility Construction) proposal. The State of South Dakota has marshaled $120M to prepare the site and begin a modest science program at the 4850 ft level. The first physics experiment is anticipated to begin installation in 2009. The current timetable calls for the MREFC Preliminary Design to be assembled by 2010 to be presented to the National Science Board in 2011. This, in turn, indicates that the earliest DUSEL construction start would be FY2013. The MREFC is estimated (before the inclusion of the long baseline neutrino components) at $500--600M, roughly divided evenly between the experimental program and support for the facility. Construction was estimated at 6--8 years. The DOE and NSF are establishing a Joint Oversight Group (JOG) to coordinate the experimental programs and participation in DUSEL. It is anticipated that the JOG would mirror the similar function for the NSF and DOE participation in the LHC, and that DOE-HEP, DOE-NP, and NSF will all participate in the JOG. In parallel with the NSF efforts, DOE-HEP plans to develop a long baseline neutrino program with neutrino beams created at FNAL and aimed at DUSEL. In the P5 report the focus of the program is to pursue CP violation in the lepton sector. The same detectors can also be used for nucleon decay experiments. DOE has indicated that FNAL would be the ''lead lab'' for the long baseline neutrino program and be charged with designing and implementing the neutrino beamline. BNL is to be charged with designing and implementing the detector. The P5 report also emphasizes the importance of dark matter and

  6. Pottery Instead of Science? One Project's Answer to the Programming Dilemma. Programming in Creative Arts.

    ERIC Educational Resources Information Center

    Krause, Claire S.

    Creative arts programing for gifted and talented elementary students has incorporated academics (ecology, mathematics, history, genealogy, computer science, and independent research) into activities such as puppetry, creative drama, storytelling, dance, music, pottery, and poetry. The arts classes have been popular with students, parents,…

  7. Knowledge gain and behavioral change in citizen-science programs.

    PubMed

    Jordan, Rebecca C; Gray, Steven A; Howe, David V; Brooks, Wesley R; Ehrenfeld, Joan G

    2011-12-01

    Citizen-science programs are often touted as useful for advancing conservation literacy, scientific knowledge, and increasing scientific-reasoning skills among the public. Guidelines for collaboration among scientists and the public are lacking and the extent to which these citizen-science initiatives change behavior is relatively unstudied. Over two years, we studied 82 participants in a three-day program that included education about non-native invasive plants and collection of data on the occurrence of those plants. Volunteers were given background knowledge about invasive plant ecology and trained on a specific protocol for collecting invasive plant data. They then collected data and later gathered as a group to analyze data and discuss responsible environmental behavior with respect to invasive plants. We tested whether participants without experience in plant identification and with little knowledge of invasive plants increased their knowledge of invasive species ecology, participation increased knowledge of scientific methods, and participation affected behavior. Knowledge of invasive plants increased on average 24%, but participation was insufficient to increase understanding of how scientific research is conducted. Participants reported increased ability to recognize invasive plants and increased awareness of effects of invasive plants on the environment, but this translated into little change in behavior regarding invasive plants. Potential conflicts between scientific goals, educational goals, and the motivation of participants must be considered during program design. PMID:21967292

  8. Urban School Key Indicators of Science and Mathematics Education for the National Science Foundation's Urban Systemic Initiative Program.

    ERIC Educational Resources Information Center

    Kim, Jason J.; Lee, Hunhee K.; Crasco, Linda

    This paper describes the "Urban School Key Indicators of Science and Mathematics Education," a four-volume publication designed to visualize the educational reform progress of 21 urban school districts in the National Science Foundation's Urban Systemic Initiative (USI) program launched in 1994. The USI program is intended to be a catalyst for…

  9. The Development of Science Identity: An Evaluation of Youth Development Programs at the Museum of Science and Industry, Chicago

    ERIC Educational Resources Information Center

    Cole, Samuel Edward

    2012-01-01

    The following dissertation presents findings from a year-long evaluation of informal scientific education programs at the Museum of Science and Industry in Chicago, Illinois. Science identity, rather than scientific knowledge, was the analytic lens through which the programs' effectiveness was assessed. A goal of the Museum generally, and the…

  10. The "Science in the Stratosphere" Program: Developing a Role for Airborne Astronomy in Elementary Science Education

    NASA Astrophysics Data System (ADS)

    Lester, D.; Hemenway, M.; Stryker, P.; Willis, M.

    1993-05-01

    The Science in the Stratosphere program on the Kuiper Airborne Observatory (KAO) is an opportunity for selected elementary and middle school teachers from the central Texas area to participate in airborne astronomy, working with researchers on the ground and in the air. Through their experiences, the excitement of hands-on space astronomy can be conveyed to their colleagues and students. These experiences serve as a vehicle for introducing many scientific concepts, as well as the planning, instrument development, cooperation and teamwork that are essential components of scientific research. The airborne setting instills this vignette of modern astronomical research with a spirit of exploration and excitement that inspires even the youngest school children. The inaugural session of this program was held during the summer of 1992. Two school teachers with science specialization were chosen, at grade levels (K and 8) that spanned those targeted by the program. These teachers spent more than a week working with KAO visiting scientists and staff, learning about the research being done, and the operation of this remarkable observatory. Presentations based on their work were made at several science teacher workshops in the months following their trip, and curriculum development is in progress. More so than any other NASA space astronomy facility, airborne telescopes are tangible, accessible, and highly visible. As space astronomy laboratories that are highly fault tolerant, such telescopes (the KAO now, to be followed by SOFIA later) are equipped with instrumentation that is at the leading edge of technology, and thus serve well as educational flagships for modern astronomy. This program receives funds from the NASA Astrophysics AGSE program, and is sponsored by the McDonald Observatory of the University of Texas.

  11. Overview of Mars Science Laboratory (MSL) Environmental Program

    NASA Technical Reports Server (NTRS)

    Forgave, John C.; Man, Kin F.; Hoffman, Alan R.

    2006-01-01

    This viewgraph presentation is an overview of the Mars Science Laboratory (MSL) program. The engineering objectives of the program are to create a Mobile Science Laboratory capable of one Mars Year surface operational lifetime (670 Martian sols = 687 Earth days). It will be able to land and operation over wide range of latitudes, altitudes and seasons It must have controlled propulsive landing and demonstrate improved landing precision via guided entry The general science objectives are to perform science that will focus on Mars habitability, perform next generation analytical laboratory science investigations, perform remote sensing/contact investigations and carry a suite of environmental monitoring instruments. Specific scientific objectives of the MSL are: (1) Characterization of geological features, contributing to deciphering geological history and the processes that have modified rocks and regolith, including the role of water. (2) Determination of the mineralogy and chemical composition (including an inventory of elements such as C, H, N, O, P, S, etc. known to be building blocks for life) of surface and near-surface materials. (3) Determination of energy sources that could be used to sustain biological processes. (4) Characterization of organic compounds and potential biomarkers in representative regolith, rocks, and ices. (5) Determination the stable isotopic and noble gas composition of the present-day bulk atmosphere. (6) Identification potential bio-signatures (chemical, textural, isotopic) in rocks and regolith. (7) Characterization of the broad spectrum of surface radiation, including galactic cosmic radiation, solar proton events, and secondary neutrons. (8) Characterization of the local environment, including basic meteorology, the state and cycling of water and C02, and the near-surface distribution of hydrogen. Several views of the planned MSL and the rover are shown. The MSL environmental program is to: (1) Ensure the flight hardware design is

  12. The Physiologically Difficult Airway.

    PubMed

    Mosier, Jarrod M; Joshi, Raj; Hypes, Cameron; Pacheco, Garrett; Valenzuela, Terence; Sakles, John C

    2015-12-01

    Airway management in critically ill patients involves the identification and management of the potentially difficult airway in order to avoid untoward complications. This focus on difficult airway management has traditionally referred to identifying anatomic characteristics of the patient that make either visualizing the glottic opening or placement of the tracheal tube through the vocal cords difficult. This paper will describe the physiologically difficult airway, in which physiologic derangements of the patient increase the risk of cardiovascular collapse from airway management. The four physiologically difficult airways described include hypoxemia, hypotension, severe metabolic acidosis, and right ventricular failure. The emergency physician should account for these physiologic derangements with airway management in critically ill patients regardless of the predicted anatomic difficulty of the intubation. PMID:26759664

  13. The Physiologically Difficult Airway

    PubMed Central

    Mosier, Jarrod M.; Joshi, Raj; Hypes, Cameron; Pacheco, Garrett; Valenzuela, Terence; Sakles, John C.

    2015-01-01

    Airway management in critically ill patients involves the identification and management of the potentially difficult airway in order to avoid untoward complications. This focus on difficult airway management has traditionally referred to identifying anatomic characteristics of the patient that make either visualizing the glottic opening or placement of the tracheal tube through the vocal cords difficult. This paper will describe the physiologically difficult airway, in which physiologic derangements of the patient increase the risk of cardiovascular collapse from airway management. The four physiologically difficult airways described include hypoxemia, hypotension, severe metabolic acidosis, and right ventricular failure. The emergency physician should account for these physiologic derangements with airway management in critically ill patients regardless of the predicted anatomic difficulty of the intubation. PMID:26759664

  14. Evaluating RITES, a Statewide Math and Science Partnership Program

    NASA Astrophysics Data System (ADS)

    Murray, D. P.; Caulkins, J. L.; Burns, A. L.; de Oliveira, G.; Dooley, H.; Brand, S.; Veeger, A.

    2013-12-01

    The Rhode Island Technology-Enhanced Science project (RITES) is a NSF-MSP Program that seeks to improve science education by providing professional development to science teachers at the 5th through 12th grade levels. At it's heart, RITES is a complex, multifaceted project that is challenging to evaluate because of the nature of its goal: the development of a large, statewide partnership between higher education and K12 public school districts during a time when science education strategies and leadership are in flux. As a result, these difficulties often require flexibility and creativity regarding evaluation, study design and data collection. In addition, the research agenda of the project often overlaps with the evaluator's agenda, making collaboration and communication a crucial component of the project's success. In it's 5th year, RITES and it's evaluators have developed a large number of instruments, both qualitative and quantitative, to provide direction and feedback on the effectiveness of the project's activities. RITES personnel work closely with evaluators and researchers to obtain a measure of how RITES' 'theory-of-action' affects both student outcomes and teacher practice. Here we discuss measures of teacher and student content gains, student inquiry gains, and teacher implementation surveys. Using content questions based on AAAS and MOSART databases, teachers in the short courses and students in classrooms showed significant normalized learning gains with averages generally above 0.3. Students of RITES-trained teachers also outperformed their non-RITES peers on the inquiry-section of the NECAP test, and The results show, after controlling for race and economic status, a small but statistically significant increase in test scores for RITES students. Technology use in the classroom significantly increased for teachers who were 'expected implementers' where 'expected implementers' are those teachers who implemented RITES as the project was designed. This

  15. Earth-to-Orbit Education Program 'Makes Science Cool'

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this photograph, students from all over the country gathered and discussed their Earth-to-Orbit (ETO) Design Challenge project at NASA Marshall Space Flight Center in Huntsville, Alabama. These students who are just 'typical teens,' have been spending their time tackling some of the same challenges NASA engineers face when designing propulsion systems at MSFC. The ETO Design Challenge is a hands-on educational program, targeted to middle school students, in which students are assigned a project engaging in related design challenges in their classrooms under the supervision of their teachers. The project is valuable because it can be used by any student, and any teacher, even those without technical backgrounds. Student in 12 states: Alabama, Arkansas, California, Colorado, Illinois, Missouri, Montana, New York, Ohio, Ternessee, Virginia, and Washington, are taking part in MSFC's Earth-to-Orbit program. NASA uses such programs to support educational excellence while participating in educational outreach programs through centers around the country. One of the students' teachers, Joanne Fluvog, commented, 'the biggest change I've seen is in the students' motivation and their belief in their ability to think.' Justin O'Connor and Jeff Alden, students of Lane Middle School in Portland, Oregon, participated in the ETO program and said being involved in a real engineering project has made them realize that 'science is cool.'

  16. More than Crowdsourcing Science: The Reasons for Museum Citizen Science Programs and how and why they Change

    NASA Astrophysics Data System (ADS)

    Windleharth, Travis W.

    This exploratory research study seeks to identify reasons why museums begin citizen science programming, why they continue to do citizen science, and how and why their programs have changed over time. Citizen science is a growing program area for museums, and yet there is little research examining the role and purpose of these programs from the perspective of museums. Within the context of a purposive sample of eight diverse science museums, three methods were employed to collect data including surveys, interviews, and document analysis. Results suggest three major conclusions. First, the museums studied here reported various institutional benefits from offering citizen science programs, for example museums now use these programs to appeal to donors, to seek grant funding, to build relationships with professional scientists, and to raise awareness of the museum and its mission. Second, the citizen science programs in this sample were highly adaptable. Museums used these programs to meet local needs such as environmental monitoring and resource protection. Third, results suggest that citizen science programs in museums are situated at the intersection of research and education, and as such may have the potential to unite disparate efforts to achieve larger institutional goals.

  17. Assessment for Effective Intervention: Enrichment Science Academic Program

    NASA Astrophysics Data System (ADS)

    Sasson, Irit; Cohen, Donita

    2012-11-01

    Israel suffers from a growing problem of socio-economic gaps between those who live in the center of the country and residents of outlying areas. As a result, there is a low level of accessibility to higher education among the peripheral population. The goal of the Sidney Warren Science Education Center for Youth at Tel-Hai College is to strengthen the potential of middle and high school students and encourage them to pursue higher education, with an emphasis on majoring in science and technology. This study investigated the implementation and evaluation of the enrichment science academic program, as an example of informal learning environment, with an emphasis on physics studies. About 500 students conducted feedback survey after participating in science activities in four domains: biology, chemistry, physics, and computer science. Results indicated high level of satisfaction among the students. No differences were found with respect to gender excluding in physics with a positive attitudes advantage among boys. In order to get a deeper understanding of this finding, about 70 additional students conducted special questionnaires, both 1 week before the physics enrichment day and at the end of that day. Questionnaires were intended to assess both their attitudes toward physics and their knowledge and conceptions of the physical concept "pressure." We found that the activity moderately improved boys' attitudes toward physics, but that girls displayed decreased interest in and lower self-efficacy toward physics. Research results were used to the improvement of the instructional design of the physics activity demonstrating internal evaluation process for effective intervention.

  18. Global Geospace Science (GGS) Program and the Polar Satellite

    NASA Technical Reports Server (NTRS)

    Hoffman, R. A.; Hesse, M.

    1996-01-01

    The Global Geospace Science (GGS) program's Polar satellite is reported on. The satellite aims to measure: the plasma flux in the polar magnetosphere and the geomagnetic tail; the plasma flux to and from the ionosphere, and the deposition of particle energy in the upper atmosphere. To accomplish these objectives, the satellite was placed on a 86 deg inclination, elliptical orbit whose apogee is located over the northern polar region. The spacecraft carries instruments for observing and measuring the magnetic field and charged particles as well as the imaging instruments.

  19. Remote sensing applications in marine science programs at VIMS

    NASA Technical Reports Server (NTRS)

    Gordon, H. H.; Penney, M. E.; Byrne, R. J.

    1974-01-01

    Scientists at the Virginia Institute of Marine Science (VIMS) utilized remote sensing in three programs: (1) tonal variations in imagery of wetlands; (2) use of the thermal infrared to delineate the discharge cooling water at the Virginia Electric and Power Company (VEPCO) nuclear power station on the James River; and (3) the use of aerial photography to determine the volume storage function for water in the marsh-bay complex fed by Wachapreague Inlet on the Eastern Shore of Virginia. Details of the investigations are given, along with significant results.

  20. Interdisciplinary research and training program in the plant sciences

    SciTech Connect

    Wolk, C.P.

    1991-01-01

    This document is the compiled progress reports from the Interdisciplinary Research and Training Program in the Plant Sciences funded through the MSU-DOE Plant Research Laboratory. Fourteen reports are included, covering topics such as the molecular basis of plant/microbe symbiosis, cell wall proteins and assembly, gene expression, stress responses, growth regulator biosynthesis, interaction between nuclear and organelle genomes, sensory transduction and tropisms, intracellular sorting and membrane trafficking, regulation of lipid metabolism, the molecular basis of disease resistance and plant pathogenesis, developmental biology of Cyanobacteria and hormonal involvement in environmental control of plant growth. 132 refs. (MHB)

  1. Atmospheric Release Assessment Program (ARAP) Science and Technology Base Development

    SciTech Connect

    Ermak, D L; Sugiyama, G; Nasstrom, J S

    2002-05-10

    ARAP s integrated suite of research, development, and operational programs is focused on the creation of capabilities for predicting the consequences of atmospheric releases of hazardous materials. The foundation of ARAP lies in its science and technology base in multi-scale meteorological and dispersion modeling, field experiments, and software systems (databases, real-time data acquisition software, and remote-access tools). Scientific and technological advancements are integrated into DOENNSA s operational National Atmospheric Release Advisory Center (NARAC) at LLNL to support emergency response, pre-event planning, preparedness, and consequence analysis. Some recent ARAP development highlights are described below.

  2. Alien Earths: A Traveling Science Exhibit and Education Program

    NASA Astrophysics Data System (ADS)

    Dusenbery, P. B.; Morrow, C. A.; Harold, J.

    2004-05-01

    Where did we come from? Are we alone? These age-old questions form the basis of NASA's Origins Program, a series of missions spanning the next twenty years that will use a host of space- and ground-based observatories to understand the origin and development of galaxies, stars, planets, and the conditions necessary to support life. The Space Science Institute in Boulder, CO, is developing a 3,000 square-foot traveling exhibition, called Alien Earths, which will bring origins-related research and discoveries to students and the American public. Alien Earths will have four interrelated exhibit areas: Our Place in Space, Star Birth, PlanetQuest, and Search for Life. Exhibit visitors will explore the awesome events surrounding the birth of stars and planets; they will join scientists in the hunt for planets outside our solar system including those that may be in "habitable zones" around other stars; and finally they will be able to learn about the wide range of conditions for life on Earth and how scientists are looking for signs of life beyond Earth. Visitors will also learn about the tools scientists use, such as space-based and ground-based telescopes, to improve our understanding of the cosmos. The exhibit's size will permit it to visit medium sized museums in all regions of the country. It will begin its 3-year tour to 9 host museums and science centers in early 2005 at the Lawrence Hall of Science in Berkeley, California. The Association of Science-Technology Centers (ASTC) will manage the exhibit's national tour. In addition to the exhibit, the project includes workshops for educators and docents at host sites, as well as a public website that will use exhibit content to delve deeper into origins research. Current partners in the Alien Earths project include ASTC, Denver Museum of Nature and Science, Lawrence Hall of Science, NASA Astrobiology Institute, NASA missions (Navigator, SIRTF, and Kepler), the SETI Institute, and the Space Telescope Science Institute

  3. Dimensions of flow during an experiential wilderness science program

    NASA Astrophysics Data System (ADS)

    Wang, Robert

    Over the past twenty-five years, there has been an alarming decline in academic performance among American students. This trend is seen in failing test scores, poor attendance, and low first-year retention rates at post-secondary institutions. There have been numerous studies that have examined this issue but few to offer solutions. Mihalyi Csikszentmihalyi, the originator of flow theory, suggests that poor academic performance might be best explained in terms of lack of student motivation and engagement (flow) rather than a lack of cognitive abilities. This study was designed to examine a series of activities conducted during an Experiential Wilderness Science Program at a college located in the Rocky Mountain region. Specifically, this study measured student engagement for each activity and described the dimensions (phenomenological, instructional, etc.) that were present when there was a high frequency of engagement among program participants. A combined quantitative and qualitative research methodology was utilized. The Experience Sampling Form (ESF) was administered to 41 freshman students participating in a 3-day wilderness science program to measure the frequency of engagement (flow) for nine different activities. A qualitative investigation using journals, participant interviews, and focus groups was used to describe the dimensions that were present when a high frequency of engagement among program participants was observed. Results revealed that engagement (flow) was highest during two challenge education activities and during a river sampling activity. Dimensions common among these activities included: an environment dimension, a motivation dimension, and an instruction dimension. The environment dimension included: incorporating novel learning activities, creating student interests, and introducing an element of perceived risk. The motivation dimension included: developing internal loci of control, facilitating high levels of self-efficacy, and

  4. Program of Policy Studies in Science and Technology, supplement to seven year review

    NASA Technical Reports Server (NTRS)

    Mayo, L. H.

    1975-01-01

    The activities of the Program of Policy Studies are described and evaluated. Awards, seminars, publications are included along with student researcher profiles, graduate program in science, technology, and public policy, and a statement of program capability.

  5. Teachers' participation in research programs improves their students' achievement in science.

    PubMed

    Silverstein, Samuel C; Dubner, Jay; Miller, Jon; Glied, Sherry; Loike, John D

    2009-10-16

    Research experience programs engage teachers in the hands-on practice of science. Program advocates assert that program participation enhances teachers' skills in communicating science to students. We measured the impact of New York City public high-school science teachers' participation in Columbia University's Summer Research Program on their students' academic performance in science. In the year before program entry, students of participating and nonparticipating teachers passed a New York State Regents science examination at the same rate. In years three and four after program entry, participating teachers' students passed Regents science exams at a rate that was 10.1% higher (P = 0.049) than that of nonparticipating teachers' students. Other program benefits include decreased teacher attrition from classroom teaching and school cost savings of U.S. $1.14 per $1 invested in the program. PMID:19833969

  6. A study of the long term impact of an inquiry-based science program on student's attitudes towards science and interest in science careers

    NASA Astrophysics Data System (ADS)

    Gibson, Helen Lussier

    One reason science enrichment programs were created was to address the underrepresentation of women and minorities in science. These programs were designed to increase underrepresented groups' interest in science and science careers. One attempt to increase students' interest in science was the Summer Science Exploration Program (SSEP). The SSEP was a two week, inquiry-based summer science camp offered by Hampshire College for students entering grades seven and eight. Students who participated were from three neighboring school districts in Western Massachusetts. The goal of the program was to stimulate greater interest in science and scientific careers among middle school students, in particular among females and students of color. A review of the literature of inquiry-based science programs revealed that the effect of inquiry-based programs on students' attitudes towards science is typically investigated shortly after the end of the treatment period. The findings from this study contribute to our understanding of the long-term impact of inquiry-based science enrichment programs on students' attitude towards science and their interest in science careers. The data collected consisted of quantitative survey data as well as qualitative data through case studies of selected participants from the sample population. This study was guided by the following questions: (1) What was the nature and extent of the impact of the Summer Science Exploration Program (SSEP) on students' attitudes towards science and interest in science careers, in particular among females and students of color? (2) What factors, if any, other than participation in SSEP impacted students' attitude towards science and interest in scientific careers? (3) In what other ways, if any, did the participants benefit from the program? Conclusions drawn from the data indicate that SSEP helped participants maintain a high level of interest in science. In contrast, students who applied but were not accepted

  7. Annual program analysis of the NASA Space Life Sciences Research and Education Support Program

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The basic objectives of this contract are to stimulate, encourage, and assist research and education in NASA life sciences. Scientists and experts from a number of academic and research institutions in this country and abroad are recruited to support NASA's need to find a solution to human physiological problems associated with living and working in space and on extraterrestrial bodies in the solar system. To fulfill the contract objectives, a cadre of staff and visiting scientists, consultants, experts, and subcontractors has been assembled into a unique organization dedicated to the space life sciences. This organization, USRA's Division of Space Life Sciences, provides an academic atmosphere, provides an organizational focal point for science and educational activities, and serves as a forum for the participation of eminent scientists in the biomedical programs of NASA. The purpose of this report is to demonstrate adherence to the requirement of Contract NAS9-18440 for a written review and analysis of the productivity and success of the program. In addition, this report makes recommendations for future activities and conditions to further enhance the objectives of the program and provides a self-assessment of the cost performance of the contract.

  8. Women in science, engineering, and math mentors pilot program

    SciTech Connect

    O`Leary, C.T.

    1994-12-31

    The Women in Science, Engineering, and Math Mentors Program is a partnership program conducted by New York State Education and Research Network (NYSERNet), Rochester Institutes of Technology (RIT) and the Pittsford and Rochester City School districts. The goal of this project is to introduce high school girls to professional women from both educational and industrial scientific fields. The pilot program began in the fall of 1993 with the girls coming to RIT`s campus, via the video interactive network or in person, for a careers assessment seminar. Then they carried on {open_quotes}e-pal{close_quotes} relationships via electronic conferencing on the data network to pursue many mentors and a myriad of different career avenues. The questions ranged from simple information requests regarding the requirements for a job to in-depth pursuit of emotional and personal characteristics needed for different professions. The luncheon finale brought us together on RIT`s campus to get to know each other face to face. We then toured the Micro-electronics lab and manufacturing facility at RIT. A 1993-94 school year program now involves over 140 mentors and students. We have partnered with other projects in the Rochester area to extend the sharing of the vast resources of our community.

  9. Earth-to-Orbit Education Program 'Makes Science Cool'

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this photograph, Jeff Alden (left) and Justin O'Cornor, two middle school students at Lane Middle School in Portland, Oregon are demonstrating their Earth-to-Orbit (ETO) Design Challenge project at NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Jeff and Justin, who are just a couple of 'typical teens,' have been spending their time tackling some of the same challenges NASA engineers face when designing propulsion systems at MSFC. The ETO Design Challenge is a hands-on educational program, targeted to middle school students, in which students are assigned a project engaging in related design challenges in their classrooms under the supervision of their teachers. The project is valuable because it can be used by any student and any teacher, even those without technical backgrounds. Students in 12 states: Alabama, Arkansas, California, Colorado, Illinois, Missouri, Montana, New York, Ohio, Tennessee, Virginia, and Washington, are taking part in the MSFC's Earth-to-Orbit program. NASA uses such programs to support educational excellence while participating in educational outreach programs through centers around the country. The Oregon students' teacher, Joanne Fluvog, commented, 'the biggest change I've seen is in the students' motivation and their belief in their ability to think.' Both Justin and Jeff said being involved in a real engineering project has made them realize that 'science is cool.'

  10. Ford Research Laboratory high school science and technology program (HSSTP)

    SciTech Connect

    Hass, K.C.

    1994-12-31

    Since 1984, the Ford Motor Company Research Laboratory has offered a series of Saturday morning enrichment experiences and summer work opportunities for high school students and teachers. The goal is to increase awareness of technical careers and the importance of science and mathematics in industry. The Saturday sessions are run entirely by volunteers and are organized around current topics ranging from fundamental science (e.g., atmospheric chemistry) to advanced engineering and manufacturing (e.g., glass production). A typical session includes a lecture, laboratory tours and demonstrations, a refreshment/social break and a hands-on activity whenever possible. Over 500 students and teachers participate annually from over 120 area high schools. Nearly one third of the students are minorities from the city of Detroit. Session quality is monitored through feedback from participants and volunteers. Juniors and seniors who attend at least three sessions are eligible to compete for four-week summer internships. Typically, about twenty-five to thirty interns (out of forty to fifty applicants) are selected on the basis of a transcript, teacher recommendation and a 2500-word report on a technical topic. Ford also generally hosts about eight summer teacher fellows through a statewide program that began as an HSSTP initiative. The HSSTP was recently recognized by the industrial Research Institute as one of eleven {open_quotes}Winning [Pre-College Education] Programs{close_quotes} nationwide. Keys to success include strong grassroots and managerial support and extensive networking in the community.

  11. Microgravity Science and Applications Program tasks, 1986 revision

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Microgravity Science and Applications (MSA) program is directed toward research in the science and technology of processing materials under conditions of low gravity to provide a detailed examination of the constraints imposed by gravitational forces on Earth. The program is expected to lead to the development of new materials and processes in commercial applications adding to this nation's technological base. The research studies emphasize the selected materials and processes that will best elucidate the limitations due to gravity and demonstrate the enhanced sensitivity of control of processes that may be provided by the weightless environment of space. Primary effort is devoted to a study of the specific areas of research which reveals potential value in the initial investigations of the previous decades. Examples of previous process research include crystal growth and directional solidification of metals; containerless processing of reactive materials; synthesis and separation of biological materials; etc. Additional efforts will be devoted to identifying the special requirements which drive the design of hardware to reduce risk in future developments.

  12. Bringing Up Girls in Science (BUGS): The Effectiveness of an Afterschool Environmental Science Program for Increasing Female Students' Interest in Science Careers

    ERIC Educational Resources Information Center

    Tyler-Wood, Tandra; Ellison, Amber; Lim, Okyoung; Periathiruvadi, Sita

    2012-01-01

    Bringing Up Girls in Science (BUGS) was an afterschool program for 4th and 5th grade girls that provided authentic learning experiences in environmental science as well as valuable female mentoring opportunities in an effort to increase participants' academic achievement in science. BUGS participants demonstrated significantly greater amounts of…

  13. 76 FR 1641 - Meeting of the Office of Justice Programs' Science Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-11

    ... Office of Justice Programs Meeting of the Office of Justice Programs' Science Advisory Board AGENCY... the first meeting of OJP's Science Advisory Board (``Board''). The Board is chartered to provide OJP, a component of the Department of Justice, with valuable advice in the areas of social science...

  14. 78 FR 57177 - Meeting of the Office of Justice Programs' Science Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ... of Justice Programs Meeting of the Office of Justice Programs' Science Advisory Board AGENCY: Office... forthcoming meeting of OJP's Science Advisory Board (``Board''). The Board is chartered to provide OJP, a component of the Department of Justice, with valuable advice in the areas of science and statistics for...

  15. Research-Doctorate Programs in the Biomedical Sciences: Selected Findings from the NRC Assessment

    ERIC Educational Resources Information Center

    Lorden, Joan F., Ed.; Kuh, Charlotte V., Ed.; Voytuk, James A., Ed.

    2011-01-01

    "Research Doctorate Programs in the Biomedical Sciences: Selected Findings from the NRC Assessment" examines data on the biomedical sciences programs to gather additional insight about the talent, training environment, outcomes, diversity, and international participation in the biomedical sciences workforce. This report supports an earlier…

  16. Active Implementation Frameworks for Program Success: How to Use Implementation Science to Improve Outcomes for Children

    ERIC Educational Resources Information Center

    Metz, Allison; Bartley, Leah

    2012-01-01

    Over the past decade the science related to developing and identifying evidence-based programs and practices for children and families has improved significantly. However, the science related to implementing these programs in early childhood settings has lagged far behind. In this article, the authors outline how the science of implementation and…

  17. Language Development and Science Inquiry: A Child-Initiated and Teacher-Facilitated Program.

    ERIC Educational Resources Information Center

    Klein, Evelyn R.; Hammrich, Penny L.; Bloom, Stefanie; Ragins, Anika

    The Head Start on Science and Communication Program (HSSC) is a model that fosters science learning for young children through a systematic approach to language development. The HSSC program emphasizes the development of language skills through an explicit teacher-directed and exploratory child-centered approach to acquiring science knowledge and…

  18. 76 FR 1640 - Establishment of the Office of Justice Programs' Science Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-11

    ... provide OJP, a component of the Department of Justice, with valuable advice in the areas of social science... of Justice Programs Establishment of the Office of Justice Programs' Science Advisory Board AGENCY.... SUMMARY: The OJP Science Advisory Board is being established in accordance with the provisions of...

  19. The Science Program Group for Public Television in the United States.

    ERIC Educational Resources Information Center

    Ambrosino, Michael; Burns, Blair, Ed.

    A proposal commissioned by the American Association for the Advancement of Science suggests a science programing group for U.S. public television with the mission of increasing the level of understanding of science by a large part of the public. It is proposed that programing be undertaken at WBGH-TV Boston for the entire Public Broadcasting…

  20. The DEVELOP Program as a Unique Applied Science Internship

    NASA Astrophysics Data System (ADS)

    Skiles, J. W.; Schmidt, C. L.; Ruiz, M. L.; Cawthorn, J.

    2004-12-01

    The NASA mission includes "Inspiring the next generation of explorers" and "Understanding and protecting our home planet". DEVELOP students conduct research projects in Earth Systems Science, gaining valuable training and work experience, which support accomplishing this mission. This presentation will describe the DEVELOP Program, a NASA human capital development initiative, which is student run and student led with NASA scientists serving as mentors. DEVELOP began in 1998 at NASA's Langley Research Center in Virginia and expanded to NASA's Stennis Space Center in Mississippi and Marshall Space Flight Center in Alabama in 2002. NASA's Ames Research Center in California began DEVELOP activity in 2003. DEVELOP is a year round activity. High school through graduate school students participate in DEVELOP with students' backgrounds encompassing a wide variety of academic majors such as engineering, biology, physics, mathematics, computer science, remote sensing, geographic information systems, business, and geography. DEVELOP projects are initiated when county, state, or tribal governments submit a proposal requesting students work on local projects. When a project is selected, science mentors guide students in the application of NASA applied science and technology to enhance decision support tools for customers. Partnerships are established with customers, professional organizations and state and federal agencies in order to leverage resources needed to complete research projects. Student teams are assigned a project and are responsible for creating an inclusive project plan beginning with the design and approach of the study, the timeline, and the deliverables for the customer. Project results can consist of student papers, both team and individually written, face-to-face meetings and seminars with customers, presentations at national meetings in the form of posters and oral papers, displays at the Western and Southern Governors' Associations, and visualizations

  1. Mentoring Faculty: Results from National Science Foundation's ADVANCE Program

    NASA Astrophysics Data System (ADS)

    Holmes, M. A.

    2015-12-01

    Faculty mentoring programs are common components of National Science Foundation ADVANCE awards. The ADVANCE program aims to increase the number of women on the faculty in science, technology, engineering and mathematics (STEM) departments through grants to individuals and to entire institutions. These grants target a change in institutional culture so that faculty from non-majority groups will succeed and thrive. Mentoring programs are generally designed to fit the particular institution(s) or target population (e.g., meteorologists at the beginning of their careers). A successful mentoring program makes the implicit knowledge necessary for faculty success explicit: policies and practices are made transparent; routes for finding answers are clarified or generated with faculty input; faculty overcome a sense of isolation and develop a community. Mentoring programs may be formal, with assigned mentors and mentees, or informal, with opportunities for beginning, middle and advanced career STEM faculty to mingle, generally over food and sometimes with a formal speaker. The programs are formally evaluated; in general, attention to mentoring generates better outcomes for all faculty. Research indicates that most successful scientists have a network of mentors rather than relying on one person to help navigate department, institution, and profession. The University of Nebraska-Lincoln's (UNL) award, ADVANCE-Nebraska, offered opportunities for faculty to informally network over luncheons with women speakers, advanced in their careers. We also offered after-hours networking receptions. In response to faculty feedback, we shifted to a series of panel discussions entitled "Conversations". Most panels were conducted by successful UNL faculty; about one-third had an outside expert on a given topic. Topics were chosen based on faculty feedback and targeted specifically to beginning faculty (How to Start Up a Lab; How to Balance Teaching and Writing), mid-career faculty (Putting

  2. The NASA Earth Science Program and Small Satellites

    NASA Technical Reports Server (NTRS)

    Neeck, Steven P.

    2015-01-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Small satellites (500 kg or less) are critical contributors to these current and future satellite missions

  3. COPES, Conceptually Oriented Program in Elementary Science: Teacher's Guide for Grade Five, Preliminary Edition.

    ERIC Educational Resources Information Center

    New York Univ., NY. Center for Field Research and School Services.

    This document provides the teacher's guide for grade five for the Conceptually Oriented Program in Elementary Science (COPES) science curriculum project. The guide includes an introduction to COPES, instructions for using the guide, instructions for assessment of student's grade 4 mastery of science concepts, and five science units. Each unit…

  4. The Status of In-Service Training Programs for Lower Secondary Science Teachers in Japan.

    ERIC Educational Resources Information Center

    Nagasu, Namio

    This study was designed to determine the status of in-service teacher training programs for lower secondary science teachers in Japan. The investigation involved measuring the percentage of science teachers attending in-service training sessions on pure science fields, science teaching, and the use of audio-visual aids. In addition, science…

  5. The Impact of Science Graduate Students in Urban Science Classrooms: The SFOS Program at Cal State Los Angeles

    NASA Astrophysics Data System (ADS)

    Terebey, Susan; Mayo, D.

    2006-12-01

    The SFOS program at Cal State Los Angeles places science graduate students in minority serving high schools and middle schools in the Los Angeles region. Graduate fellows pursue Master's degrees in biology, chemistry, geology, or physics while working with partner teachers to provide science demonstrations and activities that are based on California science content standards. Fellows in the classroom are not apprentice teachers, but rather, their role is science communication. Now in its fourth year, we discuss the impacts of the SFOS program on graduate fellows, teachers, and high school curricula.

  6. Engineering Airway Epithelium

    PubMed Central

    Soleas, John P.; Paz, Ana; Marcus, Paula; McGuigan, Alison; Waddell, Thomas K.

    2012-01-01

    Airway epithelium is constantly presented with injurious signals, yet under healthy circumstances, the epithelium maintains its innate immune barrier and mucociliary elevator function. This suggests that airway epithelium has regenerative potential (I. R. Telford and C. F. Bridgman, 1990). In practice, however, airway regeneration is problematic because of slow turnover and dedifferentiation of epithelium thereby hindering regeneration and increasing time necessary for full maturation and function. Based on the anatomy and biology of the airway epithelium, a variety of tissue engineering tools available could be utilized to overcome the barriers currently seen in airway epithelial generation. This paper describes the structure, function, and repair mechanisms in native epithelium and highlights specific and manipulatable tissue engineering signals that could be of great use in the creation of artificial airway epithelium. PMID:22523471

  7. Computer program design specifications for the Balloon-borne Ultraviolet Stellar Spectrometer (BUSS) science data decommutation program (BAPS48)

    NASA Technical Reports Server (NTRS)

    Rodriguez, R. M.

    1975-01-01

    The Balloon-Borne Ultraviolet Stellar Spectrometer (BUSS) Science Data Docummutation Program (BAPS48) is a pulse code modulation docummutation program that will format the BUSS science data contained on a one inch PCM tracking tape into a seven track serial bit stream formatted digital tape.

  8. The NASA Earth Science Flight Program: an update

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.

    2015-10-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the space based observing systems and infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions and selected instruments to assure availability of key climate data sets, operational missions to ensure sustained land imaging provided by the Landsat system, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Some

  9. Student Teaching in Nonwestern Science Classrooms: Analysis of Views from Potential Participants in the Program.

    ERIC Educational Resources Information Center

    Engida, Temechegn

    2000-01-01

    Surveys the student teaching program for science teachers at the Addis Ababa University. Investigates student teachers' perspectives on the discrepancies between theoretical and experiential science teaching that they have acquired. (Contains 13 references.) (Author/YDS)

  10. Conquering the difficult airway.

    PubMed

    Gandy, William E

    2008-01-01

    Every medic should practice regularly for the inevitable difficult airway case. Practice should include review of the causes of difficult airways, as well as skill practice. Having a preassembled airway kit can make your response to an unexpected difficult situation easier. Of all the devices mentioned, the bougie is the airway practitioner's best friend. Using the BURP technique, if not contraindicated, together with the bougie will enable you to intubate many difficult patients with confidence. Remember, "If your patient cannot breathe, nothing else matters. PMID:18251307

  11. STEM enrichment programs and graduate school matriculation: the role of science identity salience

    PubMed Central

    Serpe, Richard T.

    2013-01-01

    Improving the state of science education in the United States has become a national priority. One response to this problem has been the implementation of STEM enrichment programs designed to increase the number of students that enter graduate programs in science. Current research indicates enrichment programs have positive effects for student performance, degree completion, interest in science and graduate enrollment. Moreover, research suggests that beyond improving performance in STEM, and providing access to research experience and faculty mentoring, enrichment programs may also increase the degree to which students identify as scientists. However, researchers investigating the role of science identity on student outcomes have focused primarily on subjective outcomes, leaving a critical question of whether science identity also influences objective outcomes such as whether students attend graduate school. Using identity theory, this study addresses this issue by investigating science identity as a mechanism linking enrichment program participation to matriculation into graduate science programs. Quantitative results from a panel study of 694 students indicate that science identity salience, along with research experience and college GPA, mediate the effect of enrichment program participation on graduate school matriculation. Further, results indicate that although the social psychological process by which science identity salience develops operates independently from student GPA, science identity amplifies the effect of achievement on graduate school matriculation. These results indicate that policies seeking to increase the efficacy of enrichment programs and increase representation in STEM graduate programs should be sensitive to the social and academic aspects of STEM education. PMID:24578606

  12. STEM enrichment programs and graduate school matriculation: the role of science identity salience.

    PubMed

    Merolla, David M; Serpe, Richard T

    2013-12-01

    Improving the state of science education in the United States has become a national priority. One response to this problem has been the implementation of STEM enrichment programs designed to increase the number of students that enter graduate programs in science. Current research indicates enrichment programs have positive effects for student performance, degree completion, interest in science and graduate enrollment. Moreover, research suggests that beyond improving performance in STEM, and providing access to research experience and faculty mentoring, enrichment programs may also increase the degree to which students identify as scientists. However, researchers investigating the role of science identity on student outcomes have focused primarily on subjective outcomes, leaving a critical question of whether science identity also influences objective outcomes such as whether students attend graduate school. Using identity theory, this study addresses this issue by investigating science identity as a mechanism linking enrichment program participation to matriculation into graduate science programs. Quantitative results from a panel study of 694 students indicate that science identity salience, along with research experience and college GPA, mediate the effect of enrichment program participation on graduate school matriculation. Further, results indicate that although the social psychological process by which science identity salience develops operates independently from student GPA, science identity amplifies the effect of achievement on graduate school matriculation. These results indicate that policies seeking to increase the efficacy of enrichment programs and increase representation in STEM graduate programs should be sensitive to the social and academic aspects of STEM education. PMID:24578606

  13. The Clear Sky Experience: NASA Jumpstarts an Elementary Science Teaching Program

    NASA Astrophysics Data System (ADS)

    Holden, P. N.; Faszewski, E. E.

    2006-03-01

    Wheelock College has moved forward with a new program to produce scientifically skilled and knowledgeable pre-service elementary teachers. A science design team consisting of science and education faculty has planned and begun implementation of the program working through NASA's NOVA Program.

  14. Gender Differences in the Use of Computers, Programming, and Peer Interactions in Computer Science Classrooms

    ERIC Educational Resources Information Center

    Stoilescu, Dorian; Egodawatte, Gunawardena

    2010-01-01

    Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new…

  15. EVALUATION AND FOLLOWUP STUDY OF A SUMMER SCIENCE AND MATHEMATICS PROGRAM FOR TALENTED SECONDARY SCHOOL STUDENTS.

    ERIC Educational Resources Information Center

    BASSETT, ROBERT D.; COOLEY, WILLIAM W.

    THIS STUDY WAS TO EVALUATE A SUMMER PROGRAM IN SCIENCE AND MATHEMATICS FOR 60 PROMISING SCIENCE STUDENTS, AND TO DETERMINE THE EFFECTS OF SUCH A PROGRAM ON THE BEHAVIOR OF STUDENTS IN CLASSES DURING THE ENSUING YEAR AND ON THEIR FUTURE CAREER DECISIONS. THE FIRST 2 OF THE 10 WEEKS OF THIS PROGRAM THE STUDENTS WERE GIVEN ADVANCED INSTRUCTION BY…

  16. A Field-Based Curriculum Model for Earth Science Teacher-Preparation Programs.

    ERIC Educational Resources Information Center

    Dubois, David D.

    1979-01-01

    This study proposed a model set of cognitive-behavioral objectives for field-based teacher education programs for earth science teachers. It describes field experience integration into teacher education programs. The model is also applicable for evaluation of earth science teacher education programs. (RE)

  17. What Do High School Science Students Gain from Field-Based Research Apprenticeship Programs?

    ERIC Educational Resources Information Center

    Abraham, Linda M.

    2002-01-01

    Addresses how to encourage and sustain high school students' interest in science. Evaluates the Earthwatch Institute's Student Challenge Awards Program, an apprenticeship program which allows students to work on authentic research projects. Concludes the program had a profound impact on the students' understanding of and affinity for science. (PM)

  18. Bureau of Indian Affairs Outstanding Programs in Math, Science and Technology, 1995.

    ERIC Educational Resources Information Center

    Bureau of Indian Affairs (Dept. of Interior), Washington, DC. Office of Indian Education Programs.

    This booklet describes the goals and activities of 20 exemplary programs in mathematics, science and technology for students and teachers in schools operated or funded by the Bureau of Indian Affairs. The programs are: "Computer Home Improvement Reading Program," Beclabito Day School (New Mexico); "Cherokee High School Science: Honoring…

  19. The Math and Science Partnership Program Evaluation: Overview of the First Two Years

    ERIC Educational Resources Information Center

    Yin, Robert K.

    2008-01-01

    This study describes the Math and Science Partnership Program Evaluation (MSP-PE) during the project's first two years and provides the evaluation framework being used to assess the National Science Foundation's MSP Program. The study conveys the MSP-PE's ongoing design and implementation. To show how they reflect the nature of the MSP Program,…

  20. Student science enrichment training program: Progress report, June 1, 1988--May 31, 1989

    SciTech Connect

    Sandhu, S.S.

    1989-04-21

    This is a status report on a Student Science Enrichment Training Program held at the campus of Claflin College, Orangeburg, SC. The topics of the report include the objectives of the project, participation experienced, financial incentives and support for the program, curriculum description, and estimated success of the program in stimulating an occupational interest in science and research fields by the students.

  1. STEM Enrichment Programs and Graduate School Matriculation: The Role of Science Identity Salience

    ERIC Educational Resources Information Center

    Merolla, David M.; Serpe, Richard T.

    2013-01-01

    Improving the state of science education in the United States has become a national priority. One response to this problem has been the implementation of STEM enrichment programs designed to increase the number of students that enter graduate programs in science. Current research indicates enrichment programs have positive effects for student…

  2. HISD Magnet Evaluation: Science, Math, and Computer Enrichment Programs, 1990-91.

    ERIC Educational Resources Information Center

    Kirkpatrick, Nanda D.; And Others

    Twenty-one magnet programs in the Houston Independent School District in Texas feature an enriched curriculum in science, math, and/or computers (science/math). Of these, 12 are elementary programs, 4 are middle school programs, and 5 are high school programs. In these programs, a total of 9,574 students were served during the 1990-91 school year:…

  3. Pathways to Ocean Sciences: Broadening Participation in Ocean Sciences REU Programs

    NASA Astrophysics Data System (ADS)

    Fauver, A.; Johnson, A.; Detrick, L.; Cash, C.; Siegfried, D.; Valaitis, S.; Saywell, D.; Thomas, S. H.

    2011-12-01

    Increasing the number and diversity of students who successfully pursue careers in Ocean Sciences is key to addressing the growing demand for professionals in our fields who genuinely understand and make a contribution to cutting edge research. Summer research programs for undergraduates play a critical role in this process by creating environments in which students can develop the strategies and professional skills necessary to pursue meaningful careers in various STEM fields and by supporting students as they "bridge" between undergraduate and graduate studies. Within the framework of a diversity briefing illuminating the context behind efforts to broaden participation, the Institute for Broadening Participation (IBP) will provide a short overview on the current state of diversity in the Ocean Sciences community in general and the NSF Ocean Sciences REU community in particular, as well as offer a shared resource pool of studies, references, practical tools and strategies focusing on broadening the participation of women and underrepresented groups in higher education. IBP has been supporting diversity by fostering an on-going exchange of ideas and resources between students, faculty and administrators since 2002. Their web portal, www.pathwaystoscience.org, provides easy access to many resources that support students in successful careers in the STEM fields and support faculty and administrators in enhancing their efforts to increase diversity.

  4. Lunar and Planetary Science XXXV: Education Programs Demonstrations

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Reports from the session on Education Programs Demonstration include:Hands-On Activities for Exploring the Solar System in K-14; Formal Education and Informal Settings;Making Earth and Space Science and Exploration Accessible; New Thematic Solar System Exploration Products for Scientists and Educators Engaging Students of All Ages with Research-related Activities: Using the Levers of Museum Reach and Media Attention to Current Events; Astronomy Village: Use of Planetary Images in Educational Multimedia; ACUMEN: Astronomy Classes Unleashed: Meaningful Experiences for Neophytes; Unusual Guidebook to Terrestrial Field Work Studies: Microenvironmental Studies by Landers on Planetary Surfaces (New Atlas in the Series of the Solar System Notebooks on E tv s University, Hungary); and The NASA ADS: Searching, Linking and More.

  5. Bringing Up Girls in Science (BUGS): The Effectiveness of an Afterschool Environmental Science Program for Increasing Female Students' Interest in Science Careers

    NASA Astrophysics Data System (ADS)

    Tyler-Wood, Tandra; Ellison, Amber; Lim, Okyoung; Periathiruvadi, Sita

    2012-02-01

    Bringing Up Girls in Science (BUGS) was an afterschool program for 4th and 5th grade girls that provided authentic learning experiences in environmental science as well as valuable female mentoring opportunities in an effort to increase participants' academic achievement in science. BUGS participants demonstrated significantly greater amounts of gain in science knowledge as measured by the Iowa Test of Basic Skills in Science (ITBS-S). The original BUGS participants and contrasts have now completed high school and entered college, allowing researchers to assess the long-term impact of the BUGS program. Fourteen former BUGS participants completed two instruments to assess their perceptions of science and science, technology, engineering, and mathematics (STEM) careers. Their results were compared to four contrast groups composed entirely of females: 12 former BUGS contrasts, 10 college science majors, 10 non-science majors, and 9 current STEM professionals. Results indicate that BUGS participants have higher perceptions of science careers than BUGS contrasts. There were no significant differences between BUGS participants, Science Majors, and STEM professionals in their perceptions of science and STEM careers, whereas the BUGS contrast group was significantly lower than BUGS participants, Science Majors, and STEM Professionals. Additional results and implications are discussed within.

  6. The NASA Sounding Rocket Program and space sciences

    NASA Technical Reports Server (NTRS)

    Gurkin, L. W.

    1992-01-01

    High altitude suborbital rockets (sounding rockets) have been extensively used for space science research in the post-World War II period; the NASA Sounding Rocket Program has been on-going since the inception of the Agency and supports all space science disciplines. In recent years, sounding rockets have been utilized to provide a low gravity environment for materials processing research, particularly in the commercial sector. Sounding rockets offer unique features as a low gravity flight platform. Quick response and low cost combine to provide more frequent spaceflight opportunities. Suborbital spacecraft design practice has achieved a high level of sophistication which optimizes the limited available flight times. High data-rate telemetry, real-time ground up-link command and down-link video data are routinely used in sounding rocket payloads. Standard, off-the-shelf, active control systems are available which limit payload body rates such that the gravitational environment remains less than 10(-4) g during the control period. Operational launch vehicles are available which can provide up to 7 minutes of experiment time for experiment weights up to 270 kg. Standard payload recovery systems allow soft impact retrieval of payloads. When launched from White Sands Missile Range, New Mexico, payloads can be retrieved and returned to the launch site within hours.

  7. ASC Predictive Science Academic Alliance Program Verification and Validation Whitepaper

    SciTech Connect

    Klein, R; Graziani, F; Trucano, T

    2006-03-31

    The purpose of this whitepaper is to provide a framework for understanding the role that verification and validation (V&V) are expected to play in successful ASC Predictive Science Academic Alliance (PSAA) Centers and projects. V&V have been emphasized in the recent specification of the PSAA (NNSA, 2006): (1) The resulting simulation models lend themselves to practical verification and validation methodologies and strategies that should include the integrated use of experimental and/or observational data as a key part of model and sub-model validation, as well as demonstrations of numerical convergence and accuracy for code verification. (2) Verification, validation and prediction methodologies and results must be much more strongly emphasized as research topics and demonstrated via the proposed simulations. (3) It is mandatory that proposals address the following two topics: (a) Predictability in science & engineering; and (b) Verification & validation strategies for large-scale simulations, including quantification of uncertainty and numerical convergence. We especially call attention to the explicit coupling of computational predictability and V&V in the third bullet above. In this whitepaper we emphasize this coupling, and provide concentrated guidance for addressing item 2. The whitepaper has two main components. First, we provide a brief and high-level tutorial on V&V that emphasizes critical elements of the program. Second, we state a set of V&V-related requirements that successful PSAA proposals must address.

  8. The NASA Sounding Rocket Program and space sciences.

    PubMed

    Gurkin, L W

    1992-10-01

    High altitude suborbital rockets (sounding rockets) have been extensively used for space science research in the post-World War II period; the NASA Sounding Rocket Program has been on-going since the inception of the Agency and supports all space science disciplines. In recent years, sounding rockets have been utilized to provide a low gravity environment for materials processing research, particularly in the commercial sector. Sounding rockets offer unique features as a low gravity flight platform. Quick response and low cost combine to provide more frequent spaceflight opportunities. Suborbital spacecraft design practice has achieved a high level of sophistication which optimizes the limited available flight times. High data-rate telemetry, real-time ground up-link command and down-link video data are routinely used in sounding rocket payloads. Standard, off-the-shelf, active control systems are available which limit payload body rates such that the gravitational environment remains less than 10(-4) g during the control period. Operational launch vehicles are available which can provide up to 7 minutes of experiment time for experiment weights up to 270 kg. Standard payload recovery systems allow soft impact retrieval of payloads. When launched from White Sands Missile Range, New Mexico, payloads can be retrieved and returned to the launch site within hours. PMID:11537652

  9. From science to action and from action to science: the Nunavik Trichinellosis Prevention Program

    PubMed Central

    Larrat, Sylvain; Simard, Manon; Lair, Stéphane; Bélanger, Denise; Proulx, Jean-François

    2012-01-01

    Objectives During the 1980s, walrus-meat consumption caused infections with the parasite Trichinella nativa in Nunavik inhabitants. In response to these events, stakeholders set up the community-based Nunavik Trichinellosis Prevention Program (NTPP). The objectives of the present communication are to review the NTPP, describe how science and action were interwoven in its development and identify its assets and limitations. Study design Descriptive study. Methods The NTPP relies on a pooled digestion assay of tongue samples taken from each harvested walrus. The public health recommendations depend on the results of the analyses: infected walrus meat should be destroyed; parasite-free meat may be eaten raw or cooked. Results All communities involved in the walrus hunt participate in the NTPP and a high percentage of harvested walruses are included in the NTPP. Infected animals account for 2.9% of the walruses tested (20/694) since 1992. The NTPP permitted the early management of a trichinellosis event in 1997. Since then, it prevented the new occurrence of outbreaks related to walruses hunted by Nunavimmiut. Conclusions The absence of recent major outbreaks of trichinellosis in Nunavik may reasonably be attributed to the NTPP. The success of the program stands on many facilitating factors such as the nature of the disease and its source, the existence of an efficient analytic method, the strong involvement of the different partners including direct resource users, as well as the comprehensive bidirectional science-to-action approach that has been followed. PMID:22789519

  10. The impacts of an invasive species citizen science training program on participant attitudes, behavior, and science literacy.

    PubMed

    Crall, Alycia W; Jordan, Rebecca; Holfelder, Kirstin; Newman, Gregory J; Graham, Jim; Waller, Donald M

    2013-08-01

    Citizen science can make major contributions to informal science education by targeting participants' attitudes and knowledge about science while changing human behavior towards the environment. We examined how training associated with an invasive species citizen science program affected participants in these areas. We found no changes in science literacy or overall attitudes between tests administered just before and after a one-day training program, matching results from other studies. However, we found improvements in science literacy and knowledge using context-specific measures and in self-reported intention to engage in pro-environmental activities. While we noted modest change in knowledge and attitudes, we found comparison and interpretation of these data difficult in the absence of other studies using similar measures. We suggest that alternative survey instruments are needed and should be calibrated appropriately to the pre-existing attitudes, behavior, and levels of knowledge in these relatively sophisticated target groups. PMID:23825234

  11. Environmental Sciences Division Groundwater Program Office. Annual report, 1993

    SciTech Connect

    Not Available

    1993-09-30

    This first edition of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Annual Report summarizes the work carried out by the Energy Systems GWPO for fiscal year (FY) 1993. This introductory section describes the GWPO`s staffing, organization, and funding sources. The GWPO is responsible for coordination and oversight for all components of the groundwater program at the three Oak Ridge facilities [ORNL, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], and the PGDP and PORTS, respectively. Several years ago, Energy systems senior management recognized that the manner in which groundwater activities were conducted at the five facilities could result in unnecessary duplication of effort, inadequate technical input to decisions related to groundwater issues, and could create a perception within the regulatory agencies of a confusing and inconsistent approach to groundwater issues at the different facilities. Extensive interactions among management from Environmental Compliance, Environmental Restoration (ER), Environmental Sciences Division, Environmental Safety and Health, and the five facilities ultimately led to development of a net technical umbrella organization for groundwater. On April 25, 1991, the GWPO was authorized to be set up within ORNL thereby establishing a central coordinating office that would develop a consistent technical and administrative direction for the groundwater programs of all facilities and result in compliance with all relevant U.S. Environmental Protection Agency (EPA) regulations such as RCRA and Comprehensive Environmental Restoration, Compensation and Liability Act (CERCLA) as well as U.S. Department of Energy (DOE) regulations and orders. For example, DOE Order 5400.1, issued on November 9, 1988, called for each DOE facility to develop an environmental monitoring program for all media (e.g., air, surface water, and groundwater).

  12. Microgravity science and applications. Program tasks and bibliography for FY 1994

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This annual report includes research projects funded by the Office of Life and Microgravity Sciences and Applications, Microgravity Science and Applications Division, during FY 1994. It is a compilation of program tasks (objective, description, significance, progress, students funded under research, and bibliographic citations) for flight research and ground-based research in five major scientific disciplines: benchmark science, biotechnology, combustion science, fluid physics, and materials science. ATD (Advanced Technology Development) program task descriptions are also included. The bibliography cites the related PI (Principal Investigator) publications and presentations for these program tasks in FY 1994. Three appendices include Table of Acronyms, Guest Investigator Index, and Principal Investigator Index.

  13. Student perceptions of the nature of science and attitudes towards science education in an experiential science program

    NASA Astrophysics Data System (ADS)

    Jelinek, David John

    1997-11-01

    This study investigates student perceptions of the nature of science and student attitudes toward science education, then employs experiential teaching strategies to determine what role, if any, these play in enhancing those perceptions and attitudes. The literature review identifies three shortcomings that justify the need for such research, concluding that a study to help broaden knowledge regarding interactive effects of attitudes, perceptions, and experiential learning could add significantly to the literature base. This is an explorative case study of 20 high school students participating in an Upward Bound summer program at the University of California in Santa Barbara. A six-week course drawing upon experiential learning theory was devised and delivered to the students, then various qualitative data collection materials were administered. The objective was to investigate pre-, during-, and post-instruction perspectives of students, thus identifying core factors concerning attitudes and perceptions. Constant comparative analysis was used to investigate the multiple sources of data, resulting in: (a) a collection of emic perspectives that distinguish between pre- and post-perceptions of the nature of science and of attitudes towards science education; (b) three themes of enhanced students' images of science and scientists; (c) two themes suggesting sociological perspectives that help broaden student perceptions; and (d) interest and boredom as key motivational considerations. A model of nature of science enhancement is proposed, proceeding through four stages of: (a) engagement in meaningful, first-hand activities; (b) student accountability for active participation and reflectiveness; (c) emphasis of high importance and high interest values; and (d) in-depth, multiple encounters with the phenomena and processes. Finally, implications of catching and holding interest are discussed. It was found that various experiential strategies proved successful in catching

  14. The Effect of a Horseshoe Crab Citizen Science Program on Middle School Student Science Performance and STEM Career Motivation

    ERIC Educational Resources Information Center

    Hiller, Suzanne E.; Kitsantas, Anastasia

    2014-01-01

    The purpose of the present quasi-experimental study was to examine the impact of a horseshoe crab citizen science program on student achievement and science, technology, engineering, and mathematics (STEM) career motivation with 86 (n = 86) eighth-grade students. The treatment group conducted fieldwork with naturalists and collected data for a…

  15. In-Depth Science Research Experiences for Teens: The AMNH-ITEST High School Science Research Program. Summative Evaluation Report

    ERIC Educational Resources Information Center

    Smith, Anita

    2008-01-01

    In January 2005, the American Museum of Natural History (AMNH) was awarded a three-year ITEST grant (Innovative Technology Experiences for Students and Teachers) through the National Science Foundation (award #04-23417). This "AMNH-ITEST High School Science Research Program" aimed to target 120 urban high school youth, grades 10-12, from the five…

  16. The Effects of an After-School Science Program on Middle School Female Students' Attitudes towards Science, Mathematics and Engineering.

    ERIC Educational Resources Information Center

    Ferreira, Maria M.

    This study examined the impact of an after-school science program that incorporated cooperative learning, hands-on activities, mentoring, and role models on a group of minority female students' attitudes toward science, engineering, and mathematics. Eighteen African American middle school students participated in the study. Seven female engineers…

  17. The Catalyst Scholarship Program at Hunter College. A Partnership among Earth Science, Physics, Computer Science and Mathematics

    ERIC Educational Resources Information Center

    Salmun, Haydee; Buonaiuto, Frank

    2016-01-01

    The Catalyst Scholarship Program at Hunter College of The City University of New York (CUNY) was established with a four-year award from the National Science Foundation (NSF) to fund scholarships to 40 academically talented but financially disadvantaged students majoring in four disciplines of science, technology, engineering and mathematics…

  18. Brachycephalic airway syndrome: management.

    PubMed

    Lodato, Dena L; Hedlund, Cheryl S

    2012-08-01

    Brachycephalic airway syndrome (BAS) is a group of primary and secondary abnormalities that result in upper airway obstruction. Several of these abnormalities can be addressed medically and/or surgically to improve quality of life. This article reviews potential complications, anesthetic considerations, recovery strategies, and outcomes associated with medical and surgical management of BAS. PMID:22935992

  19. Simvastatin Inhibits Airway Hyperreactivity

    PubMed Central

    Zeki, Amir A.; Franzi, Lisa; Last, Jerold; Kenyon, Nicholas J.

    2009-01-01

    Rationale: Statin use has been linked to improved lung health in asthma and chronic obstructive pulmonary disease. We hypothesize that statins inhibit allergic airway inflammation and reduce airway hyperreactivity via a mevalonate-dependent mechanism. Objectives: To determine whether simvastatin attenuates airway inflammation and improves lung physiology by mevalonate pathway inhibition. Methods: BALB/c mice were sensitized to ovalbumin over 4 weeks and exposed to 1% ovalbumin aerosol over 2 weeks. Simvastatin (40 mg/kg) or simvastatin plus mevalonate (20 mg/kg) was injected intraperitoneally before each ovalbumin exposure. Measurements and Main Results: Simvastatin reduced total lung lavage leukocytes, eosinophils, and macrophages (P < 0.05) in the ovalbumin-exposed mice. Cotreatment with mevalonate, in addition to simvastatin, reversed the antiinflammatory effects seen with simvastatin alone (P < 0.05). Lung lavage IL-4, IL-13, and tumor necrosis factor-α levels were all reduced by treatment with simvastatin (P < 0.05). Simvastatin treatment before methacholine bronchial challenge increased lung compliance and reduced airway hyperreactivity (P = 0.0001). Conclusions: Simvastatin attenuates allergic airway inflammation, inhibits key helper T cell type 1 and 2 chemokines, and improves lung physiology in a mouse model of asthma. The mevalonate pathway appears to modulate allergic airway inflammation, while the beneficial effects of simvastatin on lung compliance and airway hyperreactivity may be independent of the mevalonate pathway. Simvastatin and similar agents that modulate the mevalonate pathway may prove to be treatments for inflammatory airway diseases, such as asthma. PMID:19608720

  20. Examination of technology integration in an urban elementary science education program

    NASA Astrophysics Data System (ADS)

    Harlem, Denise A.

    This mixed methodology case study was designed to examine technology integration in an urban elementary science education program pre- and post-professional development. How multimedia was used to enhance science teaching and learning, effective strategies used by teachers to integrate multimedia into the science education program, how well the integration of multimedia into the science education program enhanced student science achievement, barriers preventing teachers from implementing best practices in the teaching of science, and professional development strategies used to effectively increase multimedia integration were examined. Results revealed a correlation between increased technology use and increased student science outcomes. However, expectations associated with high-stakes tests created barriers that impacted opportunities teachers had to participate in job-embedded professional development and to integrate technology in science education at the target school.

  1. Developing Leaders: Implementation of a Peer Advising Program for a Public Health Sciences Undergraduate Program

    PubMed Central

    Griffin, Megan; DiFulvio, Gloria T.; Gerber, Daniel Shea

    2015-01-01

    Peer advising is an integral part of our undergraduate advising system in the Public Health Sciences major at the University of Massachusetts Amherst. The program was developed in 2009 to address the advising needs of a rapidly growing major that went from 25 to over 530 majors between 2007 and 2014. Each year, 9–12 top performing upper-level students are chosen through an intensive application process. A major goal of the program is to provide curriculum and career guidance to students in the major and empower students in their academic and professional pursuits. The year-long program involves several components, including: staffing the drop-in advising center, attending training seminars, developing and presenting workshops for students, meeting prospective students and families, evaluating ways to improve the program, and collaborating on self-directed projects. The peer advisors (PAs) also provide program staff insight into the needs and perspectives of students in the major. In turn, PAs gain valuable leadership and communication skills, and learn strategies for improving student success. The Peer Advising Program builds community and fosters personal and professional development for the PAs. In this paper, we will discuss the undergraduate peer advising model, the benefits and challenges of the program, and lessons learned. Several methods were used to understand the perceived benefits and challenges of the program and experiences of students who utilized the Peer Advising Center. The data for this evaluation were drawn from three sources: (1) archival records from the Peer Advising Center; (2) feedback from PAs who completed the year-long internship; and (3) a survey of students who utilized the Peer Advising Center. Results of this preliminary evaluation indicate that PAs gain valuable skills that they can carry into their professional world. The program is also a way to engage students in building community within the major. PMID:25601907

  2. Science intervention programs for Southern Black students: A cluster evaluation and two proposed models

    NASA Astrophysics Data System (ADS)

    Johnson, Courtney Anne

    This study investigated science intervention programs for Black students in South Carolina, Georgia, and Maryland. The sample consisted of five programs that aim to increase the participation of Blacks in science via after-school, Saturday, and summer experiences. These long-term programs offered a variety of experiences, including hands-on science activities, contact with mentors and role models, exposure to science-related careers, and opportunities to increase science content knowledge and improve science process skills. Artifact data, a Program Coordinator Questionnaire, site visits, and interviews were used to identify and describe five existing science intervention programs for Black students. The study proposed a set of standards for science intervention programs for Black students. These standards addressed eight components of programs, including objectives, format, location, target population, recruitment and selection, intervention activities, staff, and financial information. Using a modified approach to cluster evaluation, the five programs were compared to the standards. This evaluation revealed the strengths and underlying weaknesses of the cluster that informed the development of two models for future science intervention programs. Though implemented in numerous ways, the cluster's strengths included sound, measurable objectives; articulation of program objectives to staff, participants, and parents; frequent contact during sessions; the potential for continuous involvement of staff and participants; the inclusion of a range of student achievement levels; programs that served their target group; the representation of various communities, neighborhoods, and schools; effective recruitment strategies; financially inclusive programs; a variety of intervention activities; intensive training for staff, and substantial staff compensation. Three major shortcomings of the cluster were identified as inadequate focus on science-related careers and science

  3. Controversies in Pediatric Perioperative Airways

    PubMed Central

    Klučka, Jozef; Štourač, Petr; Štoudek, Roman; Ťoukálková, Michaela; Harazim, Hana; Kosinová, Martina

    2015-01-01

    Pediatric airway management is a challenge in routine anesthesia practice. Any airway-related complication due to improper procedure can have catastrophic consequences in pediatric patients. The authors reviewed the current relevant literature using the following data bases: Google Scholar, PubMed, Medline (OVID SP), and Dynamed, and the following keywords: Airway/s, Children, Pediatric, Difficult Airways, and Controversies. From a summary of the data, we identified several controversies: difficult airway prediction, difficult airway management, cuffed versus uncuffed endotracheal tubes for securing pediatric airways, rapid sequence induction (RSI), laryngeal mask versus endotracheal tube, and extubation timing. The data show that pediatric anesthesia practice in perioperative airway management is currently lacking the strong evidence-based medicine (EBM) data that is available for adult subpopulations. A number of procedural steps in airway management are derived only from adult populations. However, the objective is the same irrespective of patient age: proper securing of the airway and oxygenation of the patient. PMID:26759809

  4. Collaboration between science teacher educators and science faculty from arts and sciences for the purpose of developing a middle childhood science teacher education program: A case study

    NASA Astrophysics Data System (ADS)

    Buck, Gayle A.

    1998-12-01

    The science teacher educators at a midwestern university set a goal to establish a collaborative relationship between themselves and representatives from the College of Arts & Sciences for the purpose of developing a middle childhood science education program. The coming together of these two faculties provided a unique opportunity to explore the issues and experiences that emerge as such a collaborative relationship is formed. In order to gain a holistic perspective of the collaboration, a phenomenological case study design and methods were utilized. The study took a qualitative approach to allow the experiences and issues to emerge in a naturalistic manner. The question, 'What are the issues and experiences that emerge as science teacher educators and science faculty attempt to form a collaborative relationship for the purpose of developing a middle childhood science teacher program?' was answered by gathering a wealth of data. These data were collected by means of semi-structured interviews, observations and written document reviews. An overall picture was painted of the case by means of heuristic, phenomenological, and issues analyses. The researcher followed Moustakas' Phases of Heuristic Research to answer the questions 'What does science mean to me?' and 'What are my beliefs about the issues guiding this case?' prior to completing the phenomenological analysis. The phenomenological analysis followed Moustakas' 'Modification of the Van Kaam Methods of Analysis of Phenomenological Data'. This inquiry showed that the participants in this study came to the collaboration for many different reasons and ideas about the purpose for such a relationship. The participants also had very different ideas about how such a relationship should be conducted. These differences combined to create some issues that affected the development of curriculum and instruction. The issues involved the lack of (a) mutual respect for the work of the partners, (b) understanding about the

  5. The Influence of the Modeling of Inquiry-Based Science Teaching By Science Faculty in P-12 Teacher Professional Development Programs.

    ERIC Educational Resources Information Center

    Bentley, Michael L.; Alouf, James L.

    Because research has found that many students experience science as fragmented, this study examined the impact of modeling by science teachers during faculty development programs on participants' subsequent classroom instruction and on their students' science achievement and motivation. In two programs, liberal arts college science professors…

  6. Clemson University Science Master's Program in Sustainable and Resilient Infrastructure: A program evaluation

    NASA Astrophysics Data System (ADS)

    O'Sell, Elizabeth Eberhart

    The Clemson University Science Master's Program (SMP) in Sustainable and Resilient Infrastructure is a program which aims to link engineering, materials, construction, environment, architecture, business, and public policy to produce graduates with unique holistic perspective and expertise to immediately contribute to the workforce in the area of sustainable and resilient infrastructure. A program evaluation of the SMP has been performed to study the effectiveness of the SMP and identify areas where the goals and vision of the SMP are achieved and areas where improvements can be made. This was completed by analysis of trends within survey responses, review of Master's thesis reports, and review of courses taken. It was found that the SMP has facilitated new interdisciplinary research collaborations of faculty in different concentration areas within the Glenn Department of Civil Engineering, as well as collaboration with faculty in other departments. It is recommended that a course which provides instruction in all eight competency areas be required for all SMP students to provide a comprehensive overview and ensure all students are exposed to concepts of all competency areas. While all stakeholders are satisfied with the program and believe it has been successful thus far, efforts do need to be made as the program moves forward to address and improve some items that have been mentioned as needing improvement. The concerns about concentration courses, internship planning, and advising should be addressed. This evaluation provides benefits to prospective students, current SMP participants, and outside program supporters. The goal of this evaluation is to provide support that the SMP is an effective and worthwhile program for participating students, while attempting to identify any necessary program improvements and provide recommendations for achieving these improvements. This goal has been accomplished.

  7. Environmental Remediation Sciences Program at the Stanford Synchrotron Radiation Laboratory

    SciTech Connect

    Bargar, John R.

    2006-11-15

    Synchrotron radiation (SR)-based techniques provide unique capabilities to address scientific issues underpinning environmental remediation science and have emerged as major research tools in this field. The high intensity of SR sources and x-ray photon-in/photon-out detection allow noninvasive in-situ analysis of dilute, hydrated, and chemically/structurally complex natural samples. SR x-rays can be focused to beams of micron and sub-micron dimension, which allows the study of microstructures, chemical microgradients, and microenvironments such as in biofilms, pore spaces, and around plant roots, that may control the transformation of contaminants in the environment. The utilization of SR techniques in environmental remediation sciences is often frustrated, however, by an ''activation energy barrier'', which is associated with the need to become familiar with an array of data acquisition and analysis techniques, a new technical vocabulary, beam lines, experimental instrumentation, and user facility administrative procedures. Many investigators find it challenging to become sufficiently expert in all of these areas or to maintain their training as techniques evolve. Another challenge is the dearth of facilities for hard x-ray micro-spectroscopy, particularly in the 15 to 23 KeV range, which includes x-ray absorption edges of the priority DOE contaminants Sr, U, Np, Pu, and Tc. Prior to the current program, there were only two (heavily oversubscribed) microprobe facilities in the U.S. that could fully address this energy range (one at each of APS and NSLS); none existed in the Western U.S., in spite of the relatively large number of DOE laboratories in this region.

  8. A Comparison of Baccalaureate Programs in Information Technology with Baccalaureate Programs in Computer Science and Information Systems

    ERIC Educational Resources Information Center

    Reichgelt, Han; Lunt, Barry; Ashford, Tina; Phelps, Andy; Slazinski, Erick; Willis, Cheryl

    2004-01-01

    A number of universities have recently started to add baccalaureate programs in Information Technology (IT) to their existing programs in Computer Science (CS) and (Management) Information Systems (IS). While some have welcomed this development, others have argued that (a) there are significant differences between the baccalaureate programs in IT…

  9. Science Education Programs That work. A Collection of Proven Exemplary Educational Programs and Practices in the National Diffusion Network.

    ERIC Educational Resources Information Center

    Lewis, Mary G., Comp.

    This catalog contains descriptions of the science education programs in the National Diffusion Network (NDN). These programs are available to school systems or other educational institutions for implementation in their classrooms. Some programs may be able to offer consultant services and limited assistance with the training and materials…

  10. Science Education Programs That Work. A Collection of Proven Exemplary Educational Programs and Practices in the National Diffusion Network.

    ERIC Educational Resources Information Center

    Lewis, Mary G., Comp.

    This catalog contains descriptions of the science education programs and materials in the National Diffusion Network (NDN). These programs and materials are available to school systems or other educational institutions for implementation in their classrooms. Some programs may be able to offer consultant services and limited assistance with the…

  11. Science Education Programs That Work. A Collection of Proven Exemplary Educational Programs and Practices in the National Diffusion Network.

    ERIC Educational Resources Information Center

    Office of Educational Research and Improvement (ED), Washington, DC. National Diffusion Network.

    The National Diffusion Network (NDN) is a federally funded system that makes exemplary educational programs available for use by schools, colleges, and other institutions. This publication contains information describing the science education programs currently in the NDN, along with procedural information on how to access these programs. The…

  12. Program Review: A Longitudinal Study of Associate in Science Degree Programs, 1983-84 through 1988-89.

    ERIC Educational Resources Information Center

    Baldwin, Anne

    In 1989, a longitudinal study was conducted of Associate in Science (A.S.) degree programs at Miami-Dade Community College from 1983-84 through 1988-89. A.S. program review standards set by the State of Florida require that 70% of program graduates either have found employment utilizing their education or be in the process of continuing their…

  13. Science To Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards

    SciTech Connect

    Bredt, Paul R. ); Brockman, Fred J. ); Camaioni, Donald M. ); Felmy, Andrew R. ); Grate, Jay W. ); Hay, Benjamin P.; Hess, Nancy J. ); Meyer, Philip D. ); Murray, Christopher J. ); Pfund, David M. ); Su, Yali ); Thornton, Edward C. ); Weber, William J. ); Zachara, John M. )

    2001-06-19

    Pacific Northwest National Laboratory (PNNL) was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, nine in fiscal year 1998, seven in fiscal year 1999, and five in fiscal year 2000. All of the fiscal year 1996 award projects have published final reports. The 1997 and 1998 award projects have been completed or are nearing completion. Final reports for these awards will be published, so their annual updates will not be included in this document. This section summarizes how each of the 1999 and 2000 grants address significant U.S. Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. The 1999 and 2000 EMSP awards at PNNL are focused primarily in two areas: Tank Waste Remediation, and Soil and Groundwater Cleanup.

  14. A Teacher Professional Development Program for an Authentic Citizen-Science Program: GLOBE at Night

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Pompea, S. M.; Sparks, R.

    2009-12-01

    An authentic science research program in the classroom can take many forms as can the teacher professional development that accompanies the programs. One different approach invites educators to invoke 21st century skills with their students while focusing on a real-world issue of both local and global concern. The citizen-science program on light pollution, GLOBE at Night, has students and the general public measure the darkness of their local skies and contribute observations online to a world map. They do this by looking toward Orion for the faintest stars and matching what they see to one of seven different star maps. (For more precise measurements, digital sky-brightness meters are used.) These measurements can be compared with data from the previous 4 years, as well as with satellite data, population densities, and electrical power-usage maps. Measurements can be examined online via Google Earth or other tools and are downloadable as datasets from the website. Data from multiple locations in one city or region are especially interesting, and have been used as the basis of research in a classroom or science fair project or even to inform the development of public policy. This year, GLOBE at Night has been expanding its role in training educators on fundamental concepts and data collection to include more data analysis for a topical variety of local projects. Many on-site workshops have and are being given to teachers in grades 5 through high school. Some of the U.S. school communities created mini-campaigns that combined local students with public advocates and representatives from local city and county governments, and also collaborated with students in Wales, Canada, Romania and north-central Chile (near major observatories). Internationally, training has been given via on-line forums, telecon-powerpoint presentations, videoconferencing via Skype, and blogs. Informal educators have come from national and international networks of science, technology and

  15. SUNY Oneonta Earth Sciences Outreach Program (ESOP) - Generating New Drilling Prospects for Geoscience Programs

    NASA Astrophysics Data System (ADS)

    Ellis, T. D.; Ebert, J. R.

    2010-12-01

    The SUNY Oneonta ESOP is a National Science Foundation-funded program that, since 2005, has striven to address the dearth of students graduating with baccalaureate degrees in geoscience disciplines. In large part, its goal has been to provide talented STEM-oriented students with dual-enrollment college-level geoscience programs run by their local teachers for college credit. These high-school upperclassman experiences have been shown to be effective in recruiting talented students to geoscience fields, and we believe that this program is a model by which more baccalaureate programs can locate "new drilling prospects" to keep the pipeline of talented and trained geoscientists flowing into the workforce. In this presentation, we will highlight the current efforts to expand ESOP to other high schools around the country and in recruiting other colleges and universities to create their own dual-enrollment programs. We will also highlight how a senior-level geoscience course is ideal for providing students with meaningful geoscience inquiry experiences, and how we plan to support such efforts through the online teaching and learning cohorts designed to foster collaborative inquiry activities.

  16. "Partners in Science": A Model Cooperative Program Introducing High School Teachers and Students to Leading-Edge Pharmaceutical Science

    ERIC Educational Resources Information Center

    Woska, Joseph R., Jr.; Collins, Danielle M.; Canney, Brian J.; Arcario, Erin L.; Reilly, Patricia L.

    2005-01-01

    "Partners in Science" is a cooperative program between Boehringer Ingelheim Pharmaceuticals, Inc. and area high schools in the community surrounding our Connecticut campus. It is a two-phase program that introduces high school students and teachers to the world of drug discovery and leading-edge pharmaceutical research. Phase 1 involves a series…

  17. Hopes and Fears for Science Teaching: The Possible Selves of Preservice Teachers in a Science Education Program

    NASA Astrophysics Data System (ADS)

    Hong, Ji; Greene, Barbara

    2011-10-01

    Given the high attrition rate of beginning science teachers, it is imperative to better prepare science preservice teachers, so that they can be successful during the early years of their teaching. The purpose of this study was to explore science preservice teachers' views of themselves as a future teacher, in particular their hopes and fears for science teaching and the experiences that help to shape their possible selves. Employed were qualitative methods, which included open-ended surveys and face-to-face interviews. Eleven preservice teachers who enrolled in a secondary science teacher preparation program participated. Findings showed six categories of future selves with the most frequent category being for effective/ineffective science teaching. When their hoped-for and feared selves were not balanced, participants articulated more fears. Regarding the primary influence in shaping their hopes and fears, diverse past experiences related to teaching and learning appeared to be more salient factors than science teacher education program. Given the enriched understanding of the science preservice teachers' perceptions, we provided suggestions for science teacher educators.

  18. EGF shifts human airway basal cell fate toward a smoking-associated airway epithelial phenotype.

    PubMed

    Shaykhiev, Renat; Zuo, Wu-Lin; Chao, Ionwa; Fukui, Tomoya; Witover, Bradley; Brekman, Angelika; Crystal, Ronald G

    2013-07-16

    The airway epithelium of smokers acquires pathological phenotypes, including basal cell (BC) and/or goblet cell hyperplasia, squamous metaplasia, structural and functional abnormalities of ciliated cells, decreased number of secretoglobin (SCGB1A1)-expressing secretory cells, and a disordered junctional barrier. In this study, we hypothesized that smoking alters airway epithelial structure through modification of BC function via an EGF receptor (EGFR)-mediated mechanism. Analysis of the airway epithelium revealed that EGFR is enriched in airway BCs, whereas its ligand EGF is induced by smoking in ciliated cells. Exposure of BCs to EGF shifted the BC differentiation program toward the squamous and epithelial-mesenchymal transition-like phenotypes with down-regulation of genes related to ciliogenesis, secretory differentiation, and markedly reduced junctional barrier integrity, mimicking the abnormalities present in the airways of smokers in vivo. These data suggest that activation of EGFR in airway BCs by smoking-induced EGF represents a unique mechanism whereby smoking can alter airway epithelial differentiation and barrier function. PMID:23818594

  19. The Maps in Medicine program: An evaluation of the development and implementation of life sciences curriculum

    NASA Astrophysics Data System (ADS)

    O'Malley, Jennifer

    There has been a downward trend in both science proficiency and interest in science in the United States, especially among minority students and students of a disadvantaged background. This has led to a downturn in the number of individuals within these groups considering a career in the sciences or a related field. Studies have identified many potential causes for this problem including the current structure of science curriculum, lack of teacher preparedness, and the lack of quality education and support for those students currently underrepresented in the sciences. Among the solutions to this problem include redesigning the science curriculum, offering high-quality professional development opportunities to teachers, and creating programs to give support to individuals currently underrepresented in the sciences, so that they may have a better chance of pursuing and obtaining a science career. The Maps in Medicine program (MiM) has been designed to incorporate all of the aforementioned solutions and apply them to the current science education problem. The Maps in Medicine (MiM) program was established at the University of Missouri -- Columbia, and is funded by the Howard Hughes Medical Institute. Newly developed MiM curricula and student activities are intended to promote positive attitude changes in those students who are currently underrepresented in Science, Technology, Engineering and Mathematics (STEM) fields, with the program also providing professional development to high school science teachers. It was important to determine if the MiM program's solution to the science education problem has been successful, and so the program evaluation piece was integral. A mixed-methods approach was used to evaluate the MiM program. Formative evaluation results indicated a positive response from teachers and students regarding curriculum and professional development, and student activities. These results have also lead to the identification of appropriate improvements

  20. Upward Bound Math-Science: Program Description and Interim Impact Estimates

    ERIC Educational Resources Information Center

    Olsen, Robert; Seftor, Neil; Silva, Tim; Myers, David; DesRoches, David; Young, Julie

    2007-01-01

    To help address continuing disparities in academic achievement and under-representation of disadvantaged groups in math and science majors and careers, the U.S. Department of Education (ED) established a math and science initiative in 1990 within Upward Bound, a federal grant program known as Upward Bound Math-Science (UBMS) designed to provide…

  1. Engaging Latino Audiences in Out-of-School Programs about Science

    ERIC Educational Resources Information Center

    Bruyere, Brett L.; Salazar, Guadalupe

    2010-01-01

    Under-represented groups such as Latinos lack sufficient voice in important conversations about science topics. Yet we know that Latinos are under-represented in the profession. One path to careers in science is through early exposure during youth. This article describes research to identify how to engage Latino groups in science programs, such as…

  2. Report on the Model of Curriculum Diffusion for the BSCS Human Sciences Program.

    ERIC Educational Resources Information Center

    Eckenrod, James S.

    This paper reports on the progress through February 1975 of the Human Sciences Implementation Project of the Biological Sciences Curriculum Study (BSCS). The project's objectives are to disseminate information about the BSCS Human Science Program (HSP) curriculum and to train the staffs of regional centers in the philosophy, rationale, and…

  3. Effective Practices for Creating Transformative Informal Science Education Programs Grounded in Native Ways of Knowing

    ERIC Educational Resources Information Center

    Mack, Elizabeth; Augare, Helen; Cloud-Jones, Linda Different; David, Dominique; Gaddie, Helene Quiver; Honey, Rose E.; Kawagley, Angayuqaq O.; Plume-Weatherwax, Melissa Little; Fight, Lisa Lone; Meier, Gene; Pete, Tachini; Leaf, James Rattling; Returns From Scout, Elvin; Sachatello-Sawyer, Bonnie; Shibata, Hi'ilani; Valdez, Shelly; Wippert, Rachel

    2012-01-01

    There are a growing number of informal science education (ISE) programs in Native communities that engage youth in science education and that are grounded in Native ways of knowing. There is also a growing body of research focusing on the relationship between culture, traditional knowledge, and science education. However, there is little research…

  4. Inquiry-Based Science and Technology Enrichment Program for Middle School-Aged Female Students

    ERIC Educational Resources Information Center

    Kim, Hanna

    2016-01-01

    This study investigates the effects of an intensive 1-week Inquiry-Based Science and Technology Enrichment Program (InSTEP) designed for middle school-aged female students. InSTEP uses a guided/open inquiry approach that is deepened and redefined as eight sciences and engineering practices in the Next Generation Science Standards, which aimed at…

  5. Teaching Science to English Learners, Grades 4-8. NCBE Program Information Series Guide 11.

    ERIC Educational Resources Information Center

    Fathman, Ann K.; And Others

    This guide is intended to help teachers plan, design, and implement science activities for students learning English as a Second Language (ESL) in grades 4-8, in mainstream science classes, ESL classes, bilingual education programs, and also to help others serving this population. Steps for designing science experiments that integrate language and…

  6. A Rationale for Building a Comprehensive Science Program for Inner-City Education.

    ERIC Educational Resources Information Center

    Martin, Charles Arthur

    The intent of this dissertation was to develop a science curriculum from an inner-city perspective. Five units and a rationale for inner-city education are included. The units include both physical and biological science topics. The units are as follows: (1) Rationale for Building a Comprehensive Science Program for Inner-City Education; (2) With…

  7. Member Perceptions of Informal Science Institution Graduate Certificate Program: Case Study of a Community of Practice

    ERIC Educational Resources Information Center

    Ball, Lois A.

    2012-01-01

    This research attempted to understand the experiences of a cohort of informal and formal science educators and informal science institution (ISI) community representatives during and after completion of a pilot graduate certificate program. Informal science educators (ISEs) find limited opportunities for professional development and support which…

  8. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false What is the Minority Science and Engineering... Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering...

  9. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What is the Minority Science and Engineering... Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering...

  10. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false What is the Minority Science and Engineering... Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering...

  11. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What is the Minority Science and Engineering... Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering...

  12. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What is the Minority Science and Engineering... Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering...

  13. Pilot Program for Teaching Earth Science in New York

    NASA Astrophysics Data System (ADS)

    Nadeau, Patricia A.; Flores, Kennet E.; Ustunisik, Gokce; Zirakparvar, Nasser A.; Grcevich, Jana; Pagnotta, Ashley; Sessa, Jocelyn A.; Kinzler, Rosamond J.; Macdonald, Maritza; Mathez, Edmond; Mac Low, Mordecai-Mark

    2013-06-01

    During the 2009-2010 school year, 40% of New York City (NYC) Earth science teachers were not certified to teach Earth science [New York State Education Department (NYSED), 2011]. This highlights a longstanding shortage of certified teachers, which persists today and prevents many schools from offering courses on the subject, thus diminishing student opportunities to study or embark on careers in Earth science. More generally, the paucity of qualified, effective science teachers hinders student achievement in science, technology, engineering, and mathematics (STEM), and research has consistently shown that improving the quality of teaching substantially increases achievement in STEM-related fields [National Science Board, 2007]. With only 36% of NYC 8th graders scoring at or above the basic level of proficiency in science and with even lower scores for African-American and Hispanic students [Livingston and Wirt, 2005], the need for more qualified science teachers is clear.

  14. The Women's Science Forum: a Targeted Outreach Program for High School Girls

    NASA Astrophysics Data System (ADS)

    Danly, L.

    1993-05-01

    The Women's Science Forum is a series of monthly meetings for high school girls who are already interested in science and are contemplating a college degree and a future career in the physical sciences. We are not trying to "sell" science; the participants are already interested in and have shown some aptitude for science in their high school classes. Instead we endeavor to provide information and perspectives which may prevent these potential female scientists from leaving the field prematurely. I shall discuss our methods, successes and failures, and plans for the future. The program is funded by NASA's IDEA grant program.

  15. Final report for the Gateway to Engineering, Science and Technology (GEST) program

    SciTech Connect

    Miller, M.

    1998-04-01

    This report describes the performance of a two year grant to provide partial funding for an engineering/science/mathematics program at the University of Wisconsin, Milwaukee. This program serves middle and high school students in a summer program coupled with academic year activities, and is designed to attract underrepresented students into these disciplines. The UWM program has been running since 1974.

  16. A hospital/school science fair mentoring program for middle school students.

    PubMed

    Torres, B; Harris, R F; Lockwood, D; Johnson, J; Mirabal, R; Wells, D T; Pacheco, M; Soussou, H; Robb, F; Weissman, G K; Gwosdow, A R

    1997-12-01

    The Massachusetts General Hospital (MGH) and the James P. Timilty Middle School established a partnership to enhance science education, promote faculty development, and improve the health status and academic performance of all Timilty students. This article describes one of the Partnership's Science Connection programs, the Science Fair Mentoring Program, designed to enhance middle school science education, inform urban early adolescents about professions in the health field, inspire them to pursue postsecondary study in the health sciences, and prepare them for rigorous academic work in high school. In this program, hospital-based clinical and research staff mentor young adolescent students. The authors describe the planning, implementation, and evaluation of the Science Fair Mentoring Program as an innovative learning experience. PMID:9435745

  17. Expanding your Horizons: a Program for Engaging Middle School Girls in Science and Mathematics

    NASA Astrophysics Data System (ADS)

    Jahnke, Tamera S.; Level, Allison V.

    Gender equity in science, mathematics, and technology is an issue that has generated the creation of a number of programs. Young women need to be aware that there are a variety of careers in science, mathematics, and technology that they can actively pursue. This article highlights one example of a successful middle school science program in Southwest Missouri. Expanding Your Horizons in Science, Mathematics, and Technology (EYH) integrates keynote speakers, role model mentoring sessions, and small group experiments into a hands-on learning environment. Initial survey results of parents and teachers show support for the conference and indicate that the program helps motivate students to consider careers in science, mathematics, and technology. In addition to the goal of increasing awareness for these young people, there is a need for increased scientific literacy of the general public and an increased application of science to "real world" circumstances. This program addresses these issues.

  18. Utah Elementary Science Improvement Project. Final Report Part 2: Program Assessment Report.

    ERIC Educational Resources Information Center

    Daugs, Donald R.

    This program is the result of efforts made to develop a preparation model for elementary teachers. The science component of the program is referred to as SODIA-Science which is derived from the first letters of descriptive words: Self, Others, Discipline, Implementation, and Associate teaching. These words describe the emphasis at each level of…

  19. Health Science Students' Perception about Research Training Programs Offered in Saudi Universities

    ERIC Educational Resources Information Center

    Al Kuwaiti, Ahmed; Subbarayalu, Arun Vijay

    2015-01-01

    Purpose: The purpose of this paper was to examine the perceptions of students of health sciences on research training programs offered at Saudi universities. Design/methodology/approach: A cross-sectional survey design was adopted to capture the perceptions of health science students about research training programs offered at selected Saudi…

  20. Promoting Minority Success in the Sciences: The Minority Opportunities in Research Programs at CSULA

    ERIC Educational Resources Information Center

    Slovacek, Simeon; Whittinghill, Jonathan; Flenoury, Laura; Wiseman, David

    2012-01-01

    Given the large continued investment by the federal government in programs that promote academic success and the pursuit of advanced degrees in the sciences among members groups traditionally underrepresented in the sciences, there is a strong need for research which provides rigorous investigations of these programs and their impact on the target…

  1. hm Science Study Skills Program: People, Energy, and Appropriate Technology. Teacher's Guide.

    ERIC Educational Resources Information Center

    Wilson, Carol; Krasnow, Gary

    This program includes 14 activity-oriented units which integrate instruction in science study skills with hands-on learning about energy and appropriate technology. The program is suitable for use in a wide range of science curricula in grades 7 to 10. Units focus on such topics as the meaning of the word "appropriate," what makes technology…

  2. Township of Ocean School District Contemporary Science. Program Description, September 1989.

    ERIC Educational Resources Information Center

    Truex, Ronald T.

    This report describes a program that was designed to provide non-academic disaffected students as well as college-bound high school students with a meaningful and positive educational experience in science in order to bridge the gap between science and the citizen in a technological world. The program, designed as a full year elective course,…

  3. Introducing Molecular Visualization to Primary Schools in California: The STArt! Teaching Science Through Art Program

    ERIC Educational Resources Information Center

    Halpine, Susana Maria

    2004-01-01

    The STArt! teaching Science Through Art program was developed to help both students and teachers address the new California Science Content standards. An initial presentation of program introduces molecular visualization using narrative discussions, handheld models, visualization software and art workshops and it also emphasize low-cost materials,…

  4. Undergraduate Programs and Courses in the Mathematical Sciences: CUPM Curriculum Guide, 2004

    ERIC Educational Resources Information Center

    Barker, William; Bressoud, David; Epp, Susanna; Ganter, Susan; Haver, Bill; Pollatsek, Harriet

    2004-01-01

    The Mathematical Association of America's Committee on the Undergraduate Program in Mathematics (CUPM) is charged with making recommendations to guide mathematical sciences departments in designing undergraduate curricula. "Undergraduate Programs and Courses in the Mathematical Sciences: CUPM Curriculum Guide, 2004" is based on four years of work,…

  5. hm Science Study Skills Program: People, Energy, and Appropriate Technology. Student Text.

    ERIC Educational Resources Information Center

    Wilson, Carol; Krasnow, Gary

    This program includes 14 activity-oriented units which integrate instruction in science study skills with hands-on learning about energy and appropriate technology. The program is suitable for use in a wide range of science curricula in grades 7 to 10. Unit topics and the corresponding skills fostered (in parentheses) in part one focus on: the…

  6. Creation of an Innovative Sustainability Science Undergraduate Degree Program: A 10-Step Process

    ERIC Educational Resources Information Center

    Smith-Sebasto, Nicholas J.; Shebitz, Daniela J.

    2013-01-01

    We explain the process used at Kean University (New Jersey) to create an innovative undergraduate degree program in sustainability science. This interdisciplinary program provides students with the strong science background necessary to understand and address the opportunities associated with sustainability. We articulate seven steps taken during…

  7. A Review of Models for Teacher Preparation Programs for Precollege Computer Science Education.

    ERIC Educational Resources Information Center

    Deek, Fadi P.; Kimmel, Howard

    2002-01-01

    Discusses the need for adequate precollege computer science education and focuses on the issues of teacher preparation programs and requirements needed to teach high school computer science. Presents models of teacher preparation programs and compares state requirements with Association for Computing Machinery (ACM) recommendations. (Author/LRW)

  8. The Effect of a State Department of Education Mentoring Program for Teachers on Science Student Achievement

    ERIC Educational Resources Information Center

    Lyon, Gilda Darlene

    2009-01-01

    The purpose of this study was to assess the effect of the Georgia Department of Education Science Specialist teacher-mentoring program on student achievement on science standardized tests. This study analyzed the impact this program has had on student achievement in participating high schools when compared with high schools across the state where…

  9. Science Faculty Belief Systems in a Professional Development Program: Inquiry in College Laboratories

    ERIC Educational Resources Information Center

    Hutchins, Kristen L.; Friedrichsen, Patricia J.

    2012-01-01

    The purpose of this study was to investigate how science faculty members' belief systems about inquiry-based teaching changed through their experience in a professional development program. The program was designed to support early career science faculty in learning about inquiry and incorporating an inquiry-based approach to teaching…

  10. Scenes from a Science Classroom: An Enrichment Program Experience.

    ERIC Educational Resources Information Center

    Brownstein, Erica M.; Destino, Thomas

    To increase the representation of African Americans in science fields, potential candidates must have positive personal science experiences. Even with recent reforms, most students in the United States have a limited exposure to science experiences, especially African American students. One approach to addressing this problem has been to offer…

  11. Life Sciences Program Tasks and Bibliography for FY 1997

    NASA Technical Reports Server (NTRS)

    Nelson, John C. (Editor)

    1998-01-01

    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1997. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive internet web page.

  12. Life Sciences Program Tasks and Bibliography for FY 1996

    NASA Technical Reports Server (NTRS)

    Nelson, John C. (Editor)

    1997-01-01

    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1996. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web page.

  13. Program on Public Conceptions of Science, Newsletter 13.

    ERIC Educational Resources Information Center

    Shelanski, Vivien, Ed.

    This newsletter deals with public conceptions of science. Included is a "Survey on Public Attitudes toward Science: Some Key Questions." This inventory, with topic areas, specific questions, and dates of surveys may be useful for research on changing patterns of public understanding of science. Other articles are: "An Annotated, Selected Checklist…

  14. Science Plan for the Atmospheric Radiation Measurement Program (ARM)

    SciTech Connect

    1996-02-01

    The purpose of this Atmospheric Radiation Measurement (ARM) Science Plan is to articulate the scientific issues driving the ARM Program, and to relate them to DOE`s programmatic objectives for ARM, based on the experience and scientific progress gained over the past five years. ARM programmatic objectives are to: (1) Relate observed radiative fluxes and radiances in the atmosphere, spectrally resolved and as a function of position and time, to the temperature and composition of the atmosphere, specifically including water vapor and clouds, and to surface properties, and sample sufficient variety of situations so as to span a wide range of climatologically relevant possibilities; (2) develop and test parameterizations that can be used to accurately predict the radiative properties and to model the radiative interactions involving water vapor and clouds within the atmosphere, with the objective of incorporating these parameterizations into general circulation models. The primary observational methods remote sending and other observations at the surface, particularly remote sensing of clouds, water vapor and aerosols.

  15. Laboratory for Nuclear Science. High Energy Physics Program

    SciTech Connect

    Milner, Richard

    2014-07-30

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group are given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.

  16. Response to science education reforms: The case of three science education doctoral programs in the United States

    NASA Astrophysics Data System (ADS)

    Gwekwerere, Yovita Netsai

    Doctoral programs play a significant role in preparing future leaders. Science Education doctoral programs play an even more significant role preparing leaders in a field that is critical to maintaining national viability in the face of global competition. The current science education reforms have the goal of achieving science literacy for all students and for this national goal to be achieved; we need strong leadership in the field of science education. This qualitative study investigated how doctoral programs are preparing their graduates for leadership in supporting teachers to achieve the national goal of science literacy for all. A case study design was used to investigate how science education faculty interpreted the national reform goal of science literacy for all and how they reformed their doctoral courses and research programs to address this goal. Faculty, graduate students and recent graduates of three science education doctoral programs participated in the study. Data collection took place through surveys, interviews and analysis of course documents. Two faculty members, three doctoral candidates and three recent graduates were interviewed from each of the programs. Data analysis involved an interpretive approach. The National Research Council Framework for Investigating Influence of the National Standards on student learning (2002) was used to analyze interview data. Findings show that the current reforms occupy a significant part of the doctoral coursework and research in these three science education doctoral programs. The extent to which the reforms are incorporated in the courses and the way they are addressed depends on how the faculty members interpret the reforms and what they consider to be important in achieving the goal of science literacy for all. Whereas some faculty members take a simplistic critical view of the reform goals as a call to achieve excellence in science teaching; others take a more complex critical view where they question

  17. Science ExpOlympics: An Outreach Program of Competitive and Noncompetitive Events for High School Students

    NASA Astrophysics Data System (ADS)

    Matthews, Fred J.

    1997-04-01

    Austin Peay State University's biennial Science ExpOlympics involves competitive events, activities and demonstrations, and a science bowl competition for regional high school students. The purpose of the APSU Science ExpOlympics is threefold: to show all of the attending high school students that the sciences can be fun and interesting, to challenge those high school students who are already interested in the sciences, and to promote APSU as a potential university for graduating high school students. More than 2000 high school students have attended the Science ExpOlympics program since its inception in 1983. The Science ExpOlympics program has been jointly sponsored by the Biology, Chemistry, Geography and Geology, Industrial Technology, Mathematics and Computer Sciences, Physics, and Psychology departments. A list of departments and the events that each has provided is shown below.

  18. Student Perceptions of the Nature of Science and Attitudes towards Science Education in an Experiential Science Program.

    ERIC Educational Resources Information Center

    Jelinek, David John

    While there is general agreement that student attitudes toward science education are poor, there is little agreement in defining, measuring, or improving attitudes. The nature of how students relate to science rather than what they know about science is becoming an area of increased focus in science education research. This case study specifically…

  19. Airway dysfunction in swimmers.

    PubMed

    Bougault, Valérie; Boulet, Louis-Philippe

    2012-05-01

    Elite competitive swimmers are particularly affected by airway disorders that are probably related to regular and intense training sessions in a chlorinated environment. Upper and lower airway respiratory symptoms, rhinitis, airway hyper-responsiveness, and exercise-induced bronchoconstriction are highly prevalent in these athletes, but their influence on athletic performance is still unclear. The authors reviewed the main upper and lower respiratory ailments observed in competitive swimmers who train in indoor swimming pools, their pathophysiology, clinical significance and possible effects on performance. Issues regarding the screening of these disorders, their management and preventive measures are addressed. PMID:22247299

  20. Meteorological conditions along airways

    NASA Technical Reports Server (NTRS)

    Gregg, W R

    1927-01-01

    This report is an attempt to show the kind of meteorological information that is needed, and is in part available, for the purpose of determining operating conditions along airways. In general, the same factors affect these operating conditions along all airways though in varying degree, depending upon their topographic, geographic, and other characteristics; but in order to bring out as clearly as possible the nature of the data available, a specific example is taken, that of the Chicago-Dallas airway on which regular flying begins this year (1926).

  1. Technology integration practices in science teacher education: A case study of two courses in a science teacher preparation program

    NASA Astrophysics Data System (ADS)

    Baldwin, Brian Charles

    This study examined two different courses in a science teacher preparation program with special attention given to the integration of computer technology. Previous research regarding technology integration in teacher preparation courses have often focused solely on the students, or future tendencies to teach with technology. This study used a case study methodology to examine the following aspects of technology integration: the types of technology integrated in each course, the impact of the instructors, and the difference in the impact between preservice and inservice students. Results indicated that the practical experience of being K--12 science teachers who taught with technology greatly impacted both the types of technology used, as well as the methods of technology integration. Results also indicated that there was a difference in the impact of computer technology on the preservice teachers and inservice teachers. Further investigation indicated that the educational philosophies between these two groups of students had an impact on the impact of technology. The implications of this study are pertinent for four groups: science teachers, science teacher educators, science teacher education programs, and science education researchers. Future directions for research from data presented in this study include further investigation of the dichotomy between the preservice and inservice students, as well as the re-formulation of programmatic changes in the structure and methods of technology integration in science teacher preparation programs.

  2. The Pre-Instructors in Math and Science (PIMAS) Program at the University of Arizona’s Flandrau Science Center

    NASA Astrophysics Data System (ADS)

    Brissenden, G.; Slater, T. F.; Colodner, D.; Johnson, S.

    2003-12-01

    The Pre-Instructors in Math and Science (PIMAS) Program at the University of Arizona's Flandrau Science Center offers high school students the opportunity to explore careers in science teaching through on-the-job training in informal science teaching, both at Flandrau and in the community. The goal of the PIMAS program is to encourage these students to consider pursuing science teaching careers as they transition from high school to college. Students become members of the Flandrau Science Center staff, learning how to present several astronomy demonstrations. These demonstrations include: A Journey to Pluto, Robots on Mars, and Constructing the Seasons. Students also learn how to host star parties. They then offer these presentations at Flandrau on Saturdays and public viewing nights. During the Fall semester, students have the opportunity to learn about best practices in informal science education. They participate, as peers, in the U of A's Science Teachers Colloquium Series. They meet with astronomers, planetary scientists, engineers, and amateur astronomers to learn more about the science behind the demonstrations they are learning. In the Spring semester, students take what they've learned "on the road." They plan and execute Space Nights for their communities-at their schools, their siblings' schools, their churches, their scouting troupes, etc. We believe that by letting the students go into their own communities, they have a greater sense of ownership and pride in these events. The PIMAS Program is now entering its third year. We present both our successes and our lessons learned, as well as what the PIMAS students have to say about the program. We greatly appreciate, and acknowledge, the support of the Arizona Teacher Education Coalition, which is funded by the US Department of Education.

  3. Early Entry for Youth into the Ocean Science Pipeline Through Ocean Science School Camp and Summer Camp Programs: A Key Strategy for Enhancing Diversity in the Ocean Sciences

    NASA Astrophysics Data System (ADS)

    Crane, N. L.; Wasser, A.; Weiss, T.; Sullivan, M.; Jones, A.

    2004-12-01

    Educators, policymakers, employers and other stakeholders in ocean and other geo-science fields face the continuing challenge of a lack of diversity in these fields. A particular challenge for educators and geo-science professionals promoting ocean sciences is to create programs that have broad access, including access for underrepresented youth. Experiential learning in environments such as intensive multi-day science and summer camps can be a critical captivator and motivator for young people. Our data suggest that youth, especially underrepresented youth, may benefit from exposure to the oceans and ocean science through intensive, sustained (eg more than just an afternoon), hands-on, science-based experiences. Data from the more than 570 youth who have participated in Camp SEA Lab's academically based experiential ocean science camp and summer programs provide compelling evidence for the importance of such programs in motivating young people. We have paid special attention to factors that might play a role in recruiting and retaining these young people in ocean science fields. Over 50% of program attendees were underrepresented youth and on scholarship, which gives us a closer look at the impact of such programs on youth who would otherwise not have the opportunity to participate. Both cognitive (knowledge) and affective (personal growth and motivation) indicators were assessed through surveys and questionnaires. Major themes drawn from the data for knowledge growth and personal growth in Camp SEA Lab youth attendees will be presented. These will be placed into the larger context of critical factors that enhance recruitment and retention in the geo-science pipeline. Successful strategies and challenges for involving families and broadening access to specialized programs such as Camp SEA Lab will also be discussed.

  4. Teaching planetary sciences to elementary school teachers: Programs that work

    NASA Technical Reports Server (NTRS)

    Lebofsky, Larry A.; Lebofsky, Nancy R.

    1993-01-01

    Planetary sciences can be used to introduce students to the natural world which is a part of their lives. Even children in an urban environment are aware of such phenomena as day and night, shadows, and the seasons. It is a science that transcends cultures, has been prominent in the news in recent years, and can generate excitement in young minds as no other science can. Planetary sciences also provides a useful tool for understanding other sciences and mathematics, and for developing problem solving skills which are important in our technological world. However, only 15 percent of elementary school teachers feel very well qualified to teach earth/space science, while better than 80 percent feel well qualified to teach reading; many teachers avoid teaching science; very little time is actually spent teaching science in the elementary school: 19 minutes per day in K-3 and 38 minutes per day in 4-6. While very little science is taught in elementary and middle school, earth/space science is taught at the elementary level in less than half of the states. It was pointed out that science is not generally given high priority by either teachers or school districts, and is certainly not considered on a par with language arts and mathematics. Therefore, in order to teach science to our youth, we must empower our teachers, making them familiar and comfortable with existing materials. In our earlier workshops, several of our teachers taught in classrooms where the majority of the students were Hispanic (over 90 percent). However, few space sciences materials existed in Spanish. Therefore, most of our materials could not be used effectively in the classroom. To address this issue, NASA materials were translated into Spanish and a series of workshops for bilingual classroom teachers from Tucson and surrounding cities was conducted. Our space sciences workshops and our bilingual classroom workshops and how they address the needs of elementary school teachers in Arizona are

  5. A case study of one school system's adoption and implementation of an elementary science program

    NASA Astrophysics Data System (ADS)

    Kelly, Michael P.; Staver, John R.

    2005-01-01

    In this investigation we employed a case study approach with qualitative and quantitative data sources to examine and discover the characteristics of the processes used by a midwestern U.S. school system to adopt and implement a new K-6 science curriculum. Analysis of data yielded several results. Elementary teachers received what they requested, a hands-on science program with texts and kits. Teachers as a group remained in the early stages of the Concerns-Based Adoption Model profile of concerns. Many K-6 teachers remained uncomfortable with teaching science. Teachers' attitudes regarding the new program were positive, and they taught more science. Teachers struggled with science-as-inquiry, with a science program they believe contained too many concepts and too much vocabulary, and with their beliefs that students learned more and loved the new hands-on program. Traditional science teaching remained the norm. Administrative support was positive but insufficient to facilitate full implementation of the new program and more substantial change in teaching. Standardized science achievement test scores did not show an observable pattern of growth. It is concluded that a systematic, ongoing program of professional development is necessary to address teachers' concerns and help the district realize its goal of standards-based K-6 science instruction.

  6. Science Programming and the Audiences for Public Television; An Evaluation of Five Programs in the NET "Spectrum" Series.

    ERIC Educational Resources Information Center

    National Educational Television, New York, NY.

    Questionnaires returned by science teachers across the country and reaction forms completed by selected high school, college, and adult learners, were analyzed to judge the impact of, and acceptance by public television audiences, of five half-hour programs broadcast in the "Spectrum" science series, produced with financial support from the…

  7. Simulators and difficult airway management skills.

    PubMed

    Schaefer, John J

    2004-01-01

    Although difficult airway management remains one of the leading factors in anaesthetic deaths, there have been tremendous advances in the field in the last few decades. The question is, are advanced airway management skills being taught and used? Of the numerous training tools available, simulators have the advantages of providing whole-task learning with the potential to change behaviour and, when applied to large groups of trainees, the possibility of achieving standardized application of the safest practices for a range of scenarios limited only by the creativity of the program designers. Partial-task trainers include computer-based software programs and simulators. Full-scale simulators include a variety of products from several manufacturers. To take full advantage of simulators as educational tools, curricula should be designed around a set of educational objectives that address the objectives of learning in all three skill domains (cognitive, psychomotor, and affective). Simulation experiences using partial-task or whole-task trainers should be coupled whenever feasible with a structured clinical experience in airway management. This can best be achieved through a dedicated airway management rotation. Monitored procedure logs may also be used. Whether using a simulator or in a clinical rotation, experiences should be graded, for example, gaining experience in an adult population before gaining experience in paediatrics and in each population mastering airway management skills for common scenarios before advancing to more complicated techniques such as fibreoptic bronchoscopy. PMID:14717871

  8. Member Perceptions of Informal Science Institution Graduate Certificate Program: Case Study of a Community of Practice

    NASA Astrophysics Data System (ADS)

    Ball, Lois A.

    This research attempted to understand the experiences of a cohort of informal and formal science educators and informal science institution (ISI) community representatives during and after completion of a pilot graduate certificate program. Informal science educators (ISEs) find limited opportunities for professional development and support which influence their contributions to America's science literacy and school science education. This emergent design nested case study described how an innovative program provided professional development and enabled growth in participants' abilities to contribute to science literacy. Data were collected through interviews, participant observations, and class artifacts. The program by design and constituency was the overarching entity that accounted for members' experiences. Three principal aspects of the ISI certificate program and cohort which influenced perceptions and reported positive outcomes were (1) the cohort's composition and their collaborative activities which established a vigorous community of practice and fostered community building, mentoring, and networking, (2) long term program design and implementation which promoted experiential learning in a generative classroom, and (3) ability of some members who were able to be independent or autonomous learners to embrace science education reform strategies for greater self-efficacy and career advancement. This research extends the limited literature base for professional development of informal science educators and may benefit informal science institutions, informal and formal science educators, science education reform efforts, and public education and science-technology-society understanding. The study may raise awareness of the need to establish more professional development opportunities for ISEs and to fund professional development. Further, recognizing and appreciating informal science educators as a diverse committed community of professionals who positively

  9. Life sciences flight experiments program mission science requirements document. The first life sciences dedicated Spacelab mission, part 1

    NASA Technical Reports Server (NTRS)

    Rummel, J. A.

    1982-01-01

    The Mission Science Requirements Document (MSRD) for the First Dedicated Life Sciences Mission (LS-1) represents the culmination of thousands of hours of experiment selection, and science requirement definition activities. NASA life sciences has never before attempted to integrate, both scientifically and operationally, a single mission dedicated to life sciences research, and the complexity of the planning required for such an endeavor should be apparent. This set of requirements completes the first phase of a continual process which will attempt to optimize (within available programmatic and mission resources) the science accomplished on this mission.

  10. A framework for evaluating and designing citizen science programs for natural resources monitoring.

    PubMed

    Chase, Sarah K; Levine, Arielle

    2016-06-01

    We present a framework of resource characteristics critical to the design and assessment of citizen science programs that monitor natural resources. To develop the framework we reviewed 52 citizen science programs that monitored a wide range of resources and provided insights into what resource characteristics are most conducive to developing citizen science programs and how resource characteristics may constrain the use or growth of these programs. We focused on 4 types of resource characteristics: biophysical and geographical, management and monitoring, public awareness and knowledge, and social and cultural characteristics. We applied the framework to 2 programs, the Tucson (U.S.A.) Bird Count and the Maui (U.S.A.) Great Whale Count. We found that resource characteristics such as accessibility, diverse institutional involvement in resource management, and social or cultural importance of the resource affected program endurance and success. However, the relative influence of each characteristic was in turn affected by goals of the citizen science programs. Although the goals of public engagement and education sometimes complimented the goal of collecting reliable data, in many cases trade-offs must be made between these 2 goals. Program goals and priorities ultimately dictate the design of citizen science programs, but for a program to endure and successfully meet its goals, program managers must consider the diverse ways that the nature of the resource being monitored influences public participation in monitoring. PMID:27111860

  11. Airway management in trauma.

    PubMed

    Langeron, O; Birenbaum, A; Amour, J

    2009-05-01

    Maintenance of a patent and prevention of aspiration are essential for the management of the trauma patient, that requires experienced physicians in airway control techniques. Difficulties of the airway control in the trauma setting are increased by the vital failures, the risk of aspiration, the potential cervical spine injury, the combative patient, and the obvious risk of difficult tracheal intubation related to specific injury related to the trauma. Endotracheal intubation remains the gold standard in trauma patient airway management and should be performed via the oral route with a rapid sequence induction and a manual in-line stabilization maneuver, to decrease the risks previously mentioned. Different techniques to control the airway in trauma patients are presented: improvement of the laryngoscopic vision, lighted stylet tracheal intubation, retrograde technique for orotracheal intubation, the laryngeal mask and the intubating laryngeal mask airways, the combitube and cricothyroidotomy. Management of the airway in trauma patients requires regular training in these techniques and the knowledge of complementary techniques allowing tracheal intubation or oxygenation to overcome difficult intubation and to prevent major complications as hypoxemia and aspiration. PMID:19412149

  12. Preparing the Next Generation of Earth Scientists: An Examination of 25 Federal Earth Science Education Programs

    NASA Astrophysics Data System (ADS)

    Linn, A. M.; Goldstein, A.; Manduca, C. A.; Pyle, E. J.; Asher, P. M.; White, L. D.; Riggs, E. M.; Cozzens, S.; Glickson, D.

    2013-12-01

    Federal agencies play a key role in educating the next generation of earth scientists, offering programs that attract students to the field, support them through formal education, and provide training for an earth science career. In a time of reduced budgets, it is important for federal agencies to invest in education programs that are effective. A National Research Council committee examined 25 federal earth science education programs and described ways to evaluate the success of these programs and opportunities for leveraging federal education resources. Although the programs cover a wide range of objectives and audiences, they are part of a system of opportunities and experiences that attract individuals to the field and prepare them for employment. In this conceptual framework, individuals become aware of earth science, then engage in learning about the Earth and the nature of earth science, and finally prepare for a career by acquiring specialized knowledge, skills, and expertise and by exploring different employment options. The federal education programs considered in this report provide a range of opportunities for raising awareness of earth science (e.g., USDA 4-H Club), nurturing that interest to engage students in the field (e.g., USGS Youth Internship Program), and preparing students for earth science careers (NSF Research Experiences for Undergraduates, DOE Science Undergraduate Laboratory Internships). These efforts can also contribute toward the development of a robust earth science workforce by connecting programs and providing pathways for students to move through informal and formal education to careers. The conceptual framework shows how the various education opportunities fit together and where connections are needed to move students along earth science pathways. The framework can also be used by federal agencies to identify gaps, overlaps, and imbalances in existing programs; to identify potential partners in other agencies or organizations

  13. NASA Applied Sciences' DEVELOP National Program: Training the Next Generation of Remote Sensing Scientists

    NASA Technical Reports Server (NTRS)

    Childs, Lauren; Brozen, Madeline; Hillyer, Nelson

    2010-01-01

    Since its inception over a decade ago, the DEVELOP National Program has provided students with experience in utilizing and integrating satellite remote sensing data into real world-applications. In 1998, DEVELOP began with three students and has evolved into a nationwide internship program with over 200 students participating each year. DEVELOP is a NASA Applied Sciences training and development program extending NASA Earth science research and technology to society. Part of the NASA Science Mission Directorate s Earth Science Division, the Applied Sciences Program focuses on bridging the gap between NASA technology and the public by conducting projects that innovatively use NASA Earth science resources to research environmental issues. Project outcomes focus on assisting communities to better understand environmental change over time. This is accomplished through research with global, national, and regional partners to identify the widest array of practical uses of NASA data. DEVELOP students conduct research in areas that examine how NASA science can better serve society. Projects focus on practical applications of NASA s Earth science research results. Each project is designed to address at least one of the Applied Sciences focus areas, use NASA s Earth observation sources and meet partners needs. DEVELOP research teams partner with end-users and organizations who use project results for policy analysis and decision support, thereby extending the benefits of NASA science and technology to the public.

  14. Science for early adolescence teachers (science FEAT): A program for research and learning

    NASA Astrophysics Data System (ADS)

    Spiegel, Samuel A.; Collins, Angelo; Gilmer, Penny J.

    1995-09-01

    This article is based on a paper which received the “Innovations in Teaching Science Teachers” award at the 1995 meeting of the Association for the Education of Teachers in Science. The award is made possible by Delta Education.

  15. The new Computational and Data Sciences Undergraduate Program at George Mason University

    NASA Astrophysics Data System (ADS)

    Borne, K. D.; Wallin, J. F.

    2008-12-01

    We present the new undergraduate program in Computational and Data Sciences at George Mason University. The goals of the program are to train the next-generation scientists in the tools and techniques of cyber-enabled science. New courses include Introduction to Computational and Data Sciences, Scientific Data and Databases, Scientific Data and Information Visualization, Scientific Data Mining, and Scientific Modeling and Simulation. This is an interdisciplinary program, drawing examples, classroom materials, and student activities from a broad range of physical and biological sciences, including Space Physics (and Space Weather), Solar Physics, Astronomy, Geosciences, Geoinformatics, Materials Science, Bioinformatics, Chemistry, and Physics. We will describe some of the motivations and early results from the program.

  16. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  17. Young Women in Science: Impact of a Three-Year Program on Knowledge of and Attitudes Toward Science

    NASA Astrophysics Data System (ADS)

    Schumacher, Mitzi M.; Johnson, Michelle Natasya; Floyd, Sondra R.; Reid, Caroline E.; Noland, Melody Powers; Leukefeld, Carl G.

    Addressing the factors that discourage high school girls from pursuing careers in science, this intervention targeted young women from rural Appalachia, urging them to pursue scientific careers in drug and alcohol research. This three-year program, for 49 young women entering ninth grade in 12 southeastern Kentucky counties, included a summer camp, Saturday Academies (educational seminars held in their communities), and mentoring by university faculty and community leaders. As hypothesized, findings from analyses of baseline and postsummer session data show a reduction in participants' anxiety regarding science. Participants' scientific knowledge also increased. In turn, their science knowledge scores correlated with their third summer posttest confidence in their ability to learn science and motivation for science as well as the belief that teachers can help. The success of such a program demonstrates that the gender gap in science, technology, engineering, and mathematics can be ameliorated. Participants' first steps toward successful scientific careers included improving their attitudes toward science as well as increasing their knowledge.

  18. Laser Science and Technology Program Annual Report-2002 NIF Programs Directorate

    SciTech Connect

    Hackel, L; Chen, H L

    2003-03-01

    The Laser Science and Technology (LS&T) Program's mission is to develop advanced lasers, optics, materials technologies, and applications to solve problems and create new capabilities of importance to the nation and the Laboratory. A top, near-term priority is to provide technical support in the deployment and upgrade of the National Ignition Facility (NIF). Our other program activities synergistically develop technologies that are consistent with the goals of the NIF Directorate and develop state-of-the-art capabilities. The primary objectives of LS&T activities in 2002 have been fourfold--(a) to support deployment of hardware and to enhance laser and optics performance for NIF, (b) to develop high-energy petawatt laser science and technology for the Department of Energy (DOE), (c) to develop advanced solid-state laser systems and optical components for the Department of Defense (DoD), and (d) to invent, develop, and deliver improved concepts and hardware for other government agencies and industry. LS&T activities during 2002 focused on seven major areas: (1) NIF Project-LS&T led major advances in the deployment of NIF Final Optics Assembly (FOA) and the development of 30.1 optics processing and treatment technologies to enhance NIF's operations and performance capabilities. (2) Stockpile Stewardship Program (SSP)-LS&T personnel continued development of ultrashort-pulse lasers and high-power, large-aperture optics for applications in SSP, extreme-field science and national defense. To enhance the high-energy petawatt (HEPW) capability in NIF, LS&T continued development of advanced compressor-grating and front-end laser technologies utilizing optical-parametric chirped-pulse amplification (OPCPA). (3) High-energy-density physics and inertial fusion energy-LS&T continued development of kW- to MW-class, diode-pumped, solid-state laser (DPSSL). (4) Department of Defense (DoD)-LS&T continued development of a 100 kw-class solid-state heat-capacity laser (SSHCL) for

  19. The Significance of Ongoing Teacher Support in Earth Science Education Programs: Evidence from the GLOBE Program

    NASA Astrophysics Data System (ADS)

    Penuel, B.; Korbak, C.; Shear, L.

    2003-12-01

    The GLOBE program provides a rich context for examining issues concerning implementation of inquiry-oriented, scientist-driven educational programs, because the program has both a history of collecting evaluation data on implementation and mechanisms for capturing program activity as it occurs. In this paper, researchers from SRI International's evaluation team explore the different roles that regional partners play in preparing and supporting teachers to implement the GLOBE Program, an international inquiry-based Earth science education initiative that has trained over 14,000 teachers worldwide. GLOBE program evaluation results show the program can be effective in increasing students' inquiry skills, but that the program is also hard for teachers to implement (Means et al., 2001; Penuel et al., 2002). An analysis of GLOBE's regional partner organizations, which are tasked with preparing teachers to implement its data collection and reporting protocols with students, shows that some partners are more successful than others. This paper reports findings from a quantitative analysis of the relationship between data reporting and partner support activities and from case studies of two such regional partners focused on analyzing what makes them successful. The first analysis examined associations between partner training and support activities and data reporting. For this analysis, we used data from the GLOBE Student Data Archive matched with survey data collected from a large sample of GLOBE teachers as part of SRI's Year 5 evaluation of GLOBE. Our analyses point to the central importance of mentoring and material support to teachers. We found that incentives, mentoring, and other on-site support to teachers have a statistically significant association with higher data reporting levels. We also found that at present, teachers access these supports less often than they access listservs and e-mail communication with teachers after GLOBE training. As a follow-up to this

  20. Science and Me: A Student-Driven Science Outreach Program for Lay Adult Audiences

    ERIC Educational Resources Information Center

    Alexander, Hannah; Waldron, Anna M.; Abell, Sandra K.

    2011-01-01

    The increasing need for communicating science to the public suggests that future scientists and science educators should be educated in science outreach and trained to communicate with lay audiences. We present a recently developed novel graduate course, which trains students in outreach efforts aimed to increase the public's understanding of…